xref: /sqlite-3.40.0/src/vdbeInt.h (revision 74217cc0)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the header file for information that is private to the
13 ** VDBE.  This information used to all be at the top of the single
14 ** source code file "vdbe.c".  When that file became too big (over
15 ** 6000 lines long) it was split up into several smaller files and
16 ** this header information was factored out.
17 */
18 
19 /*
20 ** intToKey() and keyToInt() used to transform the rowid.  But with
21 ** the latest versions of the design they are no-ops.
22 */
23 #define keyToInt(X)   (X)
24 #define intToKey(X)   (X)
25 
26 /*
27 ** The makefile scans the vdbe.c source file and creates the following
28 ** array of string constants which are the names of all VDBE opcodes.  This
29 ** array is defined in a separate source code file named opcode.c which is
30 ** automatically generated by the makefile.
31 */
32 extern char *sqlite3OpcodeNames[];
33 
34 /*
35 ** SQL is translated into a sequence of instructions to be
36 ** executed by a virtual machine.  Each instruction is an instance
37 ** of the following structure.
38 */
39 typedef struct VdbeOp Op;
40 
41 /*
42 ** Boolean values
43 */
44 typedef unsigned char Bool;
45 
46 /*
47 ** A cursor is a pointer into a single BTree within a database file.
48 ** The cursor can seek to a BTree entry with a particular key, or
49 ** loop over all entries of the Btree.  You can also insert new BTree
50 ** entries or retrieve the key or data from the entry that the cursor
51 ** is currently pointing to.
52 **
53 ** Every cursor that the virtual machine has open is represented by an
54 ** instance of the following structure.
55 **
56 ** If the Cursor.isTriggerRow flag is set it means that this cursor is
57 ** really a single row that represents the NEW or OLD pseudo-table of
58 ** a row trigger.  The data for the row is stored in Cursor.pData and
59 ** the rowid is in Cursor.iKey.
60 */
61 struct Cursor {
62   BtCursor *pCursor;    /* The cursor structure of the backend */
63   i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
64   i64 nextRowid;        /* Next rowid returned by OP_NewRowid */
65   Bool zeroed;          /* True if zeroed out and ready for reuse */
66   Bool rowidIsValid;    /* True if lastRowid is valid */
67   Bool atFirst;         /* True if pointing to first entry */
68   Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
69   Bool nullRow;         /* True if pointing to a row with no data */
70   Bool nextRowidValid;  /* True if the nextRowid field is valid */
71   Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
72   Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
73   Bool isTable;         /* True if a table requiring integer keys */
74   Bool isIndex;         /* True if an index containing keys only - no data */
75   u8 bogusIncrKey;      /* Something for pIncrKey to point to if pKeyInfo==0 */
76   i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
77   Btree *pBt;           /* Separate file holding temporary table */
78   int nData;            /* Number of bytes in pData */
79   char *pData;          /* Data for a NEW or OLD pseudo-table */
80   i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
81   u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
82   KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
83   int nField;           /* Number of fields in the header */
84   i64 seqCount;         /* Sequence counter */
85 
86   /* Cached information about the header for the data record that the
87   ** cursor is currently pointing to.  Only valid if cacheValid is true.
88   ** zRow might point to (ephemeral) data for the current row, or it might
89   ** be NULL. */
90   Bool cacheValid;      /* True if the cache is valid */
91   int payloadSize;      /* Total number of bytes in the record */
92   u32 *aType;           /* Type values for all entries in the record */
93   u32 *aOffset;         /* Cached offsets to the start of each columns data */
94   u8 *aRow;             /* Data for the current row, if all on one page */
95 };
96 typedef struct Cursor Cursor;
97 
98 /*
99 ** Number of bytes of string storage space available to each stack
100 ** layer without having to malloc.  NBFS is short for Number of Bytes
101 ** For Strings.
102 */
103 #define NBFS 32
104 
105 /*
106 ** Internally, the vdbe manipulates nearly all SQL values as Mem
107 ** structures. Each Mem struct may cache multiple representations (string,
108 ** integer etc.) of the same value.  A value (and therefore Mem structure)
109 ** has the following properties:
110 **
111 ** Each value has a manifest type. The manifest type of the value stored
112 ** in a Mem struct is returned by the MemType(Mem*) macro. The type is
113 ** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
114 ** SQLITE_BLOB.
115 */
116 struct Mem {
117   i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
118   double r;           /* Real value */
119   char *z;            /* String or BLOB value */
120   int n;              /* Number of characters in string value, including '\0' */
121   u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
122   u8  type;           /* One of MEM_Null, MEM_Str, etc. */
123   u8  enc;            /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */
124   void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
125   char zShort[NBFS];  /* Space for short strings */
126 };
127 typedef struct Mem Mem;
128 
129 /* One or more of the following flags are set to indicate the validOK
130 ** representations of the value stored in the Mem struct.
131 **
132 ** If the MEM_Null flag is set, then the value is an SQL NULL value.
133 ** No other flags may be set in this case.
134 **
135 ** If the MEM_Str flag is set then Mem.z points at a string representation.
136 ** Usually this is encoded in the same unicode encoding as the main
137 ** database (see below for exceptions). If the MEM_Term flag is also
138 ** set, then the string is nul terminated. The MEM_Int and MEM_Real
139 ** flags may coexist with the MEM_Str flag.
140 **
141 ** Multiple of these values can appear in Mem.flags.  But only one
142 ** at a time can appear in Mem.type.
143 */
144 #define MEM_Null      0x0001   /* Value is NULL */
145 #define MEM_Str       0x0002   /* Value is a string */
146 #define MEM_Int       0x0004   /* Value is an integer */
147 #define MEM_Real      0x0008   /* Value is a real number */
148 #define MEM_Blob      0x0010   /* Value is a BLOB */
149 
150 /* Whenever Mem contains a valid string or blob representation, one of
151 ** the following flags must be set to determine the memory management
152 ** policy for Mem.z.  The MEM_Term flag tells us whether or not the
153 ** string is \000 or \u0000 terminated
154 */
155 #define MEM_Term      0x0020   /* String rep is nul terminated */
156 #define MEM_Dyn       0x0040   /* Need to call sqliteFree() on Mem.z */
157 #define MEM_Static    0x0080   /* Mem.z points to a static string */
158 #define MEM_Ephem     0x0100   /* Mem.z points to an ephemeral string */
159 #define MEM_Short     0x0200   /* Mem.z points to Mem.zShort */
160 #define MEM_Agg       0x0400   /* Mem.z points to an agg function context */
161 
162 
163 /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
164 ** additional information about auxiliary information bound to arguments
165 ** of the function.  This is used to implement the sqlite3_get_auxdata()
166 ** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
167 ** that can be associated with a constant argument to a function.  This
168 ** allows functions such as "regexp" to compile their constant regular
169 ** expression argument once and reused the compiled code for multiple
170 ** invocations.
171 */
172 struct VdbeFunc {
173   FuncDef *pFunc;               /* The definition of the function */
174   int nAux;                     /* Number of entries allocated for apAux[] */
175   struct AuxData {
176     void *pAux;                   /* Aux data for the i-th argument */
177     void (*xDelete)(void *);      /* Destructor for the aux data */
178   } apAux[1];                   /* One slot for each function argument */
179 };
180 typedef struct VdbeFunc VdbeFunc;
181 
182 /*
183 ** The "context" argument for a installable function.  A pointer to an
184 ** instance of this structure is the first argument to the routines used
185 ** implement the SQL functions.
186 **
187 ** There is a typedef for this structure in sqlite.h.  So all routines,
188 ** even the public interface to SQLite, can use a pointer to this structure.
189 ** But this file is the only place where the internal details of this
190 ** structure are known.
191 **
192 ** This structure is defined inside of vdbeInt.h because it uses substructures
193 ** (Mem) which are only defined there.
194 */
195 struct sqlite3_context {
196   FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
197   VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
198   Mem s;                /* The return value is stored here */
199   Mem *pMem;            /* Memory cell used to store aggregate context */
200   u8 isError;           /* Set to true for an error */
201   CollSeq *pColl;       /* Collating sequence */
202 };
203 
204 /*
205 ** A Set structure is used for quick testing to see if a value
206 ** is part of a small set.  Sets are used to implement code like
207 ** this:
208 **            x.y IN ('hi','hoo','hum')
209 */
210 typedef struct Set Set;
211 struct Set {
212   Hash hash;             /* A set is just a hash table */
213   HashElem *prev;        /* Previously accessed hash elemen */
214 };
215 
216 /*
217 ** A FifoPage structure holds a single page of valves.  Pages are arranged
218 ** in a list.
219 */
220 typedef struct FifoPage FifoPage;
221 struct FifoPage {
222   int nSlot;         /* Number of entries aSlot[] */
223   int iWrite;        /* Push the next value into this entry in aSlot[] */
224   int iRead;         /* Read the next value from this entry in aSlot[] */
225   FifoPage *pNext;   /* Next page in the fifo */
226   i64 aSlot[1];      /* One or more slots for rowid values */
227 };
228 
229 /*
230 ** The Fifo structure is typedef-ed in vdbeInt.h.  But the implementation
231 ** of that structure is private to this file.
232 **
233 ** The Fifo structure describes the entire fifo.
234 */
235 typedef struct Fifo Fifo;
236 struct Fifo {
237   int nEntry;         /* Total number of entries */
238   FifoPage *pFirst;   /* First page on the list */
239   FifoPage *pLast;    /* Last page on the list */
240 };
241 
242 /*
243 ** A Context stores the last insert rowid, the last statement change count,
244 ** and the current statement change count (i.e. changes since last statement).
245 ** The current keylist is also stored in the context.
246 ** Elements of Context structure type make up the ContextStack, which is
247 ** updated by the ContextPush and ContextPop opcodes (used by triggers).
248 ** The context is pushed before executing a trigger a popped when the
249 ** trigger finishes.
250 */
251 typedef struct Context Context;
252 struct Context {
253   int lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
254   int nChange;      /* Statement changes (Vdbe.nChanges)     */
255   Fifo sFifo;       /* Records that will participate in a DELETE or UPDATE */
256 };
257 
258 /*
259 ** An instance of the virtual machine.  This structure contains the complete
260 ** state of the virtual machine.
261 **
262 ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
263 ** is really a pointer to an instance of this structure.
264 */
265 struct Vdbe {
266   sqlite3 *db;        /* The whole database */
267   Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
268   FILE *trace;        /* Write an execution trace here, if not NULL */
269   int nOp;            /* Number of instructions in the program */
270   int nOpAlloc;       /* Number of slots allocated for aOp[] */
271   Op *aOp;            /* Space to hold the virtual machine's program */
272   int nLabel;         /* Number of labels used */
273   int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
274   int *aLabel;        /* Space to hold the labels */
275   Mem *aStack;        /* The operand stack, except string values */
276   Mem *pTos;          /* Top entry in the operand stack */
277   Mem **apArg;        /* Arguments to currently executing user function */
278   Mem *aColName;      /* Column names to return */
279   int nCursor;        /* Number of slots in apCsr[] */
280   Cursor **apCsr;     /* One element of this array for each open cursor */
281   int nVar;           /* Number of entries in aVar[] */
282   Mem *aVar;          /* Values for the OP_Variable opcode. */
283   char **azVar;       /* Name of variables */
284   int okVar;          /* True if azVar[] has been initialized */
285   int magic;              /* Magic number for sanity checking */
286   int nMem;               /* Number of memory locations currently allocated */
287   Mem *aMem;              /* The memory locations */
288   int nCallback;          /* Number of callbacks invoked so far */
289   Fifo sFifo;             /* A list of ROWIDs */
290   int contextStackTop;    /* Index of top element in the context stack */
291   int contextStackDepth;  /* The size of the "context" stack */
292   Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
293   int pc;                 /* The program counter */
294   int rc;                 /* Value to return */
295   unsigned uniqueCnt;     /* Used by OP_MakeRecord when P2!=0 */
296   int errorAction;        /* Recovery action to do in case of an error */
297   int inTempTrans;        /* True if temp database is transactioned */
298   int returnStack[100];   /* Return address stack for OP_Gosub & OP_Return */
299   int returnDepth;        /* Next unused element in returnStack[] */
300   int nResColumn;         /* Number of columns in one row of the result set */
301   char **azResColumn;     /* Values for one row of result */
302   int popStack;           /* Pop the stack this much on entry to VdbeExec() */
303   char *zErrMsg;          /* Error message written here */
304   u8 resOnStack;          /* True if there are result values on the stack */
305   u8 explain;             /* True if EXPLAIN present on SQL command */
306   u8 changeCntOn;         /* True to update the change-counter */
307   u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
308   u8 expired;             /* True if the VM needs to be recompiled */
309   int nChange;            /* Number of db changes made since last reset */
310   i64 startTime;          /* Time when query started - used for profiling */
311 };
312 
313 /*
314 ** The following are allowed values for Vdbe.magic
315 */
316 #define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
317 #define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
318 #define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
319 #define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
320 
321 /*
322 ** Function prototypes
323 */
324 void sqlite3VdbeFreeCursor(Cursor*);
325 void sqliteVdbePopStack(Vdbe*,int);
326 int sqlite3VdbeCursorMoveto(Cursor*);
327 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
328 void sqlite3VdbePrintOp(FILE*, int, Op*);
329 #endif
330 #ifdef SQLITE_DEBUG
331 void sqlite3VdbePrintSql(Vdbe*);
332 #endif
333 int sqlite3VdbeSerialTypeLen(u32);
334 u32 sqlite3VdbeSerialType(Mem*);
335 int sqlite3VdbeSerialPut(unsigned char*, Mem*);
336 int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
337 void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
338 
339 int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
340 int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
341 int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
342 int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
343 int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
344 int sqlite3VdbeIdxRowidLen(int,const u8*);
345 int sqlite3VdbeExec(Vdbe*);
346 int sqlite3VdbeList(Vdbe*);
347 int sqlite3VdbeHalt(Vdbe*);
348 int sqlite3VdbeChangeEncoding(Mem *, int);
349 int sqlite3VdbeMemCopy(Mem*, const Mem*);
350 void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
351 int sqlite3VdbeMemMove(Mem*, Mem*);
352 int sqlite3VdbeMemNulTerminate(Mem*);
353 int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
354 void sqlite3VdbeMemSetInt64(Mem*, i64);
355 void sqlite3VdbeMemSetDouble(Mem*, double);
356 void sqlite3VdbeMemSetNull(Mem*);
357 int sqlite3VdbeMemMakeWriteable(Mem*);
358 int sqlite3VdbeMemDynamicify(Mem*);
359 int sqlite3VdbeMemStringify(Mem*, int);
360 i64 sqlite3VdbeIntValue(Mem*);
361 int sqlite3VdbeMemIntegerify(Mem*);
362 double sqlite3VdbeRealValue(Mem*);
363 int sqlite3VdbeMemRealify(Mem*);
364 int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
365 void sqlite3VdbeMemRelease(Mem *p);
366 void sqlite3VdbeMemFinalize(Mem*, FuncDef*);
367 #ifndef NDEBUG
368 void sqlite3VdbeMemSanity(Mem*, u8);
369 int sqlite3VdbeOpcodeNoPush(u8);
370 #endif
371 int sqlite3VdbeMemTranslate(Mem*, u8);
372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
373 int sqlite3VdbeMemHandleBom(Mem *pMem);
374 void sqlite3VdbeFifoInit(Fifo*);
375 int sqlite3VdbeFifoPush(Fifo*, i64);
376 int sqlite3VdbeFifoPop(Fifo*, i64*);
377 void sqlite3VdbeFifoClear(Fifo*);
378