xref: /sqlite-3.40.0/src/vdbeInt.h (revision 4dcbdbff)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the header file for information that is private to the
13 ** VDBE.  This information used to all be at the top of the single
14 ** source code file "vdbe.c".  When that file became too big (over
15 ** 6000 lines long) it was split up into several smaller files and
16 ** this header information was factored out.
17 */
18 
19 /*
20 ** intToKey() and keyToInt() used to transform the rowid.  But with
21 ** the latest versions of the design they are no-ops.
22 */
23 #define keyToInt(X)   (X)
24 #define intToKey(X)   (X)
25 
26 /*
27 ** The makefile scans the vdbe.c source file and creates the following
28 ** array of string constants which are the names of all VDBE opcodes.  This
29 ** array is defined in a separate source code file named opcode.c which is
30 ** automatically generated by the makefile.
31 */
32 extern char *sqlite3OpcodeNames[];
33 
34 /*
35 ** SQL is translated into a sequence of instructions to be
36 ** executed by a virtual machine.  Each instruction is an instance
37 ** of the following structure.
38 */
39 typedef struct VdbeOp Op;
40 
41 /*
42 ** Boolean values
43 */
44 typedef unsigned char Bool;
45 
46 /*
47 ** A cursor is a pointer into a single BTree within a database file.
48 ** The cursor can seek to a BTree entry with a particular key, or
49 ** loop over all entries of the Btree.  You can also insert new BTree
50 ** entries or retrieve the key or data from the entry that the cursor
51 ** is currently pointing to.
52 **
53 ** Every cursor that the virtual machine has open is represented by an
54 ** instance of the following structure.
55 **
56 ** If the Cursor.isTriggerRow flag is set it means that this cursor is
57 ** really a single row that represents the NEW or OLD pseudo-table of
58 ** a row trigger.  The data for the row is stored in Cursor.pData and
59 ** the rowid is in Cursor.iKey.
60 */
61 struct Cursor {
62   BtCursor *pCursor;    /* The cursor structure of the backend */
63   i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
64   i64 nextRowid;        /* Next rowid returned by OP_NewRowid */
65   Bool zeroed;          /* True if zeroed out and ready for reuse */
66   Bool rowidIsValid;    /* True if lastRowid is valid */
67   Bool atFirst;         /* True if pointing to first entry */
68   Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
69   Bool nullRow;         /* True if pointing to a row with no data */
70   Bool nextRowidValid;  /* True if the nextRowid field is valid */
71   Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
72   Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
73   Bool isTable;         /* True if a table requiring integer keys */
74   Bool isIndex;         /* True if an index containing keys only - no data */
75   u8 bogusIncrKey;      /* Something for pIncrKey to point to if pKeyInfo==0 */
76   i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
77   Btree *pBt;           /* Separate file holding temporary table */
78   int nData;            /* Number of bytes in pData */
79   char *pData;          /* Data for a NEW or OLD pseudo-table */
80   i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
81   u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
82   KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
83   int nField;           /* Number of fields in the header */
84 
85   /* Cached information about the header for the data record that the
86   ** cursor is currently pointing to.  Only valid if cacheValid is true.
87   ** zRow might point to (ephemeral) data for the current row, or it might
88   ** be NULL. */
89   Bool cacheValid;      /* True if the cache is valid */
90   int payloadSize;      /* Total number of bytes in the record */
91   u32 *aType;           /* Type values for all entries in the record */
92   u32 *aOffset;         /* Cached offsets to the start of each columns data */
93   u8 *aRow;             /* Data for the current row, if all on one page */
94 };
95 typedef struct Cursor Cursor;
96 
97 /*
98 ** Number of bytes of string storage space available to each stack
99 ** layer without having to malloc.  NBFS is short for Number of Bytes
100 ** For Strings.
101 */
102 #define NBFS 32
103 
104 /*
105 ** Internally, the vdbe manipulates nearly all SQL values as Mem
106 ** structures. Each Mem struct may cache multiple representations (string,
107 ** integer etc.) of the same value.  A value (and therefore Mem structure)
108 ** has the following properties:
109 **
110 ** Each value has a manifest type. The manifest type of the value stored
111 ** in a Mem struct is returned by the MemType(Mem*) macro. The type is
112 ** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
113 ** SQLITE_BLOB.
114 */
115 struct Mem {
116   i64 i;              /* Integer value */
117   int n;              /* Number of characters in string value, including '\0' */
118   u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
119   u8  type;           /* One of MEM_Null, MEM_Str, etc. */
120   u8  enc;            /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */
121   double r;           /* Real value */
122   char *z;            /* String or BLOB value */
123   void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
124   char zShort[NBFS];  /* Space for short strings */
125 };
126 typedef struct Mem Mem;
127 
128 /*
129 ** A sorter builds a list of elements to be sorted.  Each element of
130 ** the list is an instance of the following structure.
131 */
132 typedef struct Sorter Sorter;
133 struct Sorter {
134   int nKey;           /* Number of bytes in the key */
135   char *zKey;         /* The key by which we will sort */
136   Mem data;
137   Sorter *pNext;      /* Next in the list */
138 };
139 
140 /*
141 ** Number of buckets used for merge-sort.
142 */
143 #define NSORT 30
144 
145 /* One or more of the following flags are set to indicate the validOK
146 ** representations of the value stored in the Mem struct.
147 **
148 ** If the MEM_Null flag is set, then the value is an SQL NULL value.
149 ** No other flags may be set in this case.
150 **
151 ** If the MEM_Str flag is set then Mem.z points at a string representation.
152 ** Usually this is encoded in the same unicode encoding as the main
153 ** database (see below for exceptions). If the MEM_Term flag is also
154 ** set, then the string is nul terminated. The MEM_Int and MEM_Real
155 ** flags may coexist with the MEM_Str flag.
156 **
157 ** Multiple of these values can appear in Mem.flags.  But only one
158 ** at a time can appear in Mem.type.
159 */
160 #define MEM_Null      0x0001   /* Value is NULL */
161 #define MEM_Str       0x0002   /* Value is a string */
162 #define MEM_Int       0x0004   /* Value is an integer */
163 #define MEM_Real      0x0008   /* Value is a real number */
164 #define MEM_Blob      0x0010   /* Value is a BLOB */
165 
166 /* Whenever Mem contains a valid string or blob representation, one of
167 ** the following flags must be set to determine the memory management
168 ** policy for Mem.z.  The MEM_Term flag tells us whether or not the
169 ** string is \000 or \u0000 terminated
170 */
171 #define MEM_Term      0x0020   /* String rep is nul terminated */
172 #define MEM_Dyn       0x0040   /* Need to call sqliteFree() on Mem.z */
173 #define MEM_Static    0x0080   /* Mem.z points to a static string */
174 #define MEM_Ephem     0x0100   /* Mem.z points to an ephemeral string */
175 #define MEM_Short     0x0200   /* Mem.z points to Mem.zShort */
176 
177 /* The following MEM_ value appears only in AggElem.aMem.s.flag fields.
178 ** It indicates that the corresponding AggElem.aMem.z points to a
179 ** aggregate function context that needs to be finalized.
180 */
181 #define MEM_AggCtx    0x0400  /* Mem.z points to an agg function context */
182 
183 
184 /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
185 ** additional information about auxiliary information bound to arguments
186 ** of the function.  This is used to implement the sqlite3_get_auxdata()
187 ** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
188 ** that can be associated with a constant argument to a function.  This
189 ** allows functions such as "regexp" to compile their constant regular
190 ** expression argument once and reused the compiled code for multiple
191 ** invocations.
192 */
193 struct VdbeFunc {
194   FuncDef *pFunc;               /* The definition of the function */
195   int nAux;                     /* Number of entries allocated for apAux[] */
196   struct AuxData {
197     void *pAux;                   /* Aux data for the i-th argument */
198     void (*xDelete)(void *);      /* Destructor for the aux data */
199   } apAux[1];                   /* One slot for each function argument */
200 };
201 typedef struct VdbeFunc VdbeFunc;
202 
203 /*
204 ** The "context" argument for a installable function.  A pointer to an
205 ** instance of this structure is the first argument to the routines used
206 ** implement the SQL functions.
207 **
208 ** There is a typedef for this structure in sqlite.h.  So all routines,
209 ** even the public interface to SQLite, can use a pointer to this structure.
210 ** But this file is the only place where the internal details of this
211 ** structure are known.
212 **
213 ** This structure is defined inside of vdbe.c because it uses substructures
214 ** (Mem) which are only defined there.
215 */
216 struct sqlite3_context {
217   FuncDef *pFunc;   /* Pointer to function information.  MUST BE FIRST */
218   VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
219   Mem s;            /* The return value is stored here */
220   void *pAgg;       /* Aggregate context */
221   u8 isError;       /* Set to true for an error */
222   int cnt;          /* Number of times that the step function has been called */
223   CollSeq *pColl;
224 };
225 
226 /*
227 ** An Agg structure describes an Aggregator.  Each Agg consists of
228 ** zero or more Aggregator elements (AggElem).  Each AggElem contains
229 ** a key and one or more values.  The values are used in processing
230 ** aggregate functions in a SELECT.  The key is used to implement
231 ** the GROUP BY clause of a select.
232 */
233 typedef struct Agg Agg;
234 typedef struct AggElem AggElem;
235 struct Agg {
236   int nMem;            /* Number of values stored in each AggElem */
237   AggElem *pCurrent;   /* The AggElem currently in focus */
238   FuncDef **apFunc;    /* Information about aggregate functions */
239   Btree *pBtree;       /* The tmp. btree used to group elements, if required. */
240   BtCursor *pCsr;      /* Read/write cursor to the table in pBtree */
241   int nTab;            /* Root page of the table in pBtree */
242   u8 searching;        /* True between the first AggNext and AggReset */
243 };
244 struct AggElem {
245   char *zKey;          /* The key to this AggElem */
246   int nKey;            /* Number of bytes in the key, including '\0' at end */
247   Mem aMem[1];         /* The values for this AggElem */
248 };
249 
250 /*
251 ** A Set structure is used for quick testing to see if a value
252 ** is part of a small set.  Sets are used to implement code like
253 ** this:
254 **            x.y IN ('hi','hoo','hum')
255 */
256 typedef struct Set Set;
257 struct Set {
258   Hash hash;             /* A set is just a hash table */
259   HashElem *prev;        /* Previously accessed hash elemen */
260 };
261 
262 /*
263 ** A FifoPage structure holds a single page of valves.  Pages are arranged
264 ** in a list.
265 */
266 typedef struct FifoPage FifoPage;
267 struct FifoPage {
268   u16 nSlot;         /* Number of entries aSlot[] */
269   u16 iWrite;        /* Push the next value into this entry in aSlot[] */
270   i16 iRead;         /* Read the next value from this entry in aSlot[] */
271   FifoPage *pNext;   /* Next page in the fifo */
272   i64 aSlot[1];      /* One or more slots for rowid values */
273 };
274 
275 /*
276 ** The Fifo structure is typedef-ed in vdbeInt.h.  But the implementation
277 ** of that structure is private to this file.
278 **
279 ** The Fifo structure describes the entire fifo.
280 */
281 typedef struct Fifo Fifo;
282 struct Fifo {
283   int nEntry;         /* Total number of entries */
284   FifoPage *pFirst;   /* First page on the list */
285   FifoPage *pLast;    /* Last page on the list */
286 };
287 
288 /*
289 ** A Context stores the last insert rowid, the last statement change count,
290 ** and the current statement change count (i.e. changes since last statement).
291 ** The current keylist is also stored in the context.
292 ** Elements of Context structure type make up the ContextStack, which is
293 ** updated by the ContextPush and ContextPop opcodes (used by triggers).
294 ** The context is pushed before executing a trigger a popped when the
295 ** trigger finishes.
296 */
297 typedef struct Context Context;
298 struct Context {
299   int lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
300   int nChange;      /* Statement changes (Vdbe.nChanges)     */
301   Fifo sFifo;       /* Records that will participate in a DELETE or UPDATE */
302 };
303 
304 /*
305 ** An instance of the virtual machine.  This structure contains the complete
306 ** state of the virtual machine.
307 **
308 ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
309 ** is really a pointer to an instance of this structure.
310 */
311 struct Vdbe {
312   sqlite3 *db;        /* The whole database */
313   Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
314   FILE *trace;        /* Write an execution trace here, if not NULL */
315   int nOp;            /* Number of instructions in the program */
316   int nOpAlloc;       /* Number of slots allocated for aOp[] */
317   Op *aOp;            /* Space to hold the virtual machine's program */
318   int nLabel;         /* Number of labels used */
319   int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
320   int *aLabel;        /* Space to hold the labels */
321   Mem *aStack;        /* The operand stack, except string values */
322   Mem *pTos;          /* Top entry in the operand stack */
323   Mem **apArg;        /* Arguments to currently executing user function */
324   Mem *aColName;      /* Column names to return */
325   int nCursor;        /* Number of slots in apCsr[] */
326   Cursor **apCsr;     /* One element of this array for each open cursor */
327   Sorter *pSort;      /* A linked list of objects to be sorted */
328   Sorter *pSortTail;  /* Last element on the pSort list */
329   int nVar;           /* Number of entries in aVar[] */
330   Mem *aVar;          /* Values for the OP_Variable opcode. */
331   char **azVar;       /* Name of variables */
332   int okVar;          /* True if azVar[] has been initialized */
333   int magic;              /* Magic number for sanity checking */
334   int nMem;               /* Number of memory locations currently allocated */
335   Mem *aMem;              /* The memory locations */
336   int nAgg;               /* Number of elements in apAgg */
337   Agg *apAgg;             /* Array of aggregate contexts */
338   Agg *pAgg;              /* Current aggregate context */
339   int nCallback;          /* Number of callbacks invoked so far */
340   Fifo sFifo;             /* A list of ROWIDs */
341   int contextStackTop;    /* Index of top element in the context stack */
342   int contextStackDepth;  /* The size of the "context" stack */
343   Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
344   int pc;                 /* The program counter */
345   int rc;                 /* Value to return */
346   unsigned uniqueCnt;     /* Used by OP_MakeRecord when P2!=0 */
347   int errorAction;        /* Recovery action to do in case of an error */
348   int inTempTrans;        /* True if temp database is transactioned */
349   int returnStack[100];   /* Return address stack for OP_Gosub & OP_Return */
350   int returnDepth;        /* Next unused element in returnStack[] */
351   int nResColumn;         /* Number of columns in one row of the result set */
352   char **azResColumn;     /* Values for one row of result */
353   int popStack;           /* Pop the stack this much on entry to VdbeExec() */
354   char *zErrMsg;          /* Error message written here */
355   u8 resOnStack;          /* True if there are result values on the stack */
356   u8 explain;             /* True if EXPLAIN present on SQL command */
357   u8 changeCntOn;         /* True to update the change-counter */
358   u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
359   u8 expired;             /* True if the VM needs to be recompiled */
360   int nChange;            /* Number of db changes made since last reset */
361 };
362 
363 /*
364 ** The following are allowed values for Vdbe.magic
365 */
366 #define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
367 #define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
368 #define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
369 #define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
370 
371 /*
372 ** Function prototypes
373 */
374 void sqlite3VdbeFreeCursor(Cursor*);
375 void sqlite3VdbeSorterReset(Vdbe*);
376 int sqlite3VdbeAggReset(sqlite3*, Agg *, KeyInfo *);
377 void sqliteVdbePopStack(Vdbe*,int);
378 int sqlite3VdbeCursorMoveto(Cursor*);
379 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
380 void sqlite3VdbePrintOp(FILE*, int, Op*);
381 #endif
382 #ifdef SQLITE_DEBUG
383 void sqlite3VdbePrintSql(Vdbe*);
384 #endif
385 int sqlite3VdbeSerialTypeLen(u32);
386 u32 sqlite3VdbeSerialType(Mem*);
387 int sqlite3VdbeSerialPut(unsigned char*, Mem*);
388 int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
389 void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
390 
391 int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
392 int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
393 int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
394 int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
395 int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
396 int sqlite3VdbeIdxRowidLen(int,const u8*);
397 int sqlite3VdbeExec(Vdbe*);
398 int sqlite3VdbeList(Vdbe*);
399 int sqlite3VdbeHalt(Vdbe*);
400 int sqlite3VdbeChangeEncoding(Mem *, int);
401 int sqlite3VdbeMemCopy(Mem*, const Mem*);
402 void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
403 int sqlite3VdbeMemMove(Mem*, Mem*);
404 int sqlite3VdbeMemNulTerminate(Mem*);
405 int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
406 void sqlite3VdbeMemSetInt64(Mem*, i64);
407 void sqlite3VdbeMemSetDouble(Mem*, double);
408 void sqlite3VdbeMemSetNull(Mem*);
409 int sqlite3VdbeMemMakeWriteable(Mem*);
410 int sqlite3VdbeMemDynamicify(Mem*);
411 int sqlite3VdbeMemStringify(Mem*, int);
412 i64 sqlite3VdbeIntValue(Mem*);
413 int sqlite3VdbeMemIntegerify(Mem*);
414 double sqlite3VdbeRealValue(Mem*);
415 int sqlite3VdbeMemRealify(Mem*);
416 int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
417 void sqlite3VdbeMemRelease(Mem *p);
418 #ifndef NDEBUG
419 void sqlite3VdbeMemSanity(Mem*, u8);
420 int sqlite3VdbeOpcodeNoPush(u8);
421 #endif
422 int sqlite3VdbeMemTranslate(Mem*, u8);
423 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
424 int sqlite3VdbeMemHandleBom(Mem *pMem);
425 void sqlite3VdbeFifoInit(Fifo*);
426 int sqlite3VdbeFifoPush(Fifo*, i64);
427 int sqlite3VdbeFifoPop(Fifo*, i64*);
428 void sqlite3VdbeFifoClear(Fifo*);
429