xref: /sqlite-3.40.0/src/vdbeInt.h (revision 3438ea3b)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the header file for information that is private to the
13 ** VDBE.  This information used to all be at the top of the single
14 ** source code file "vdbe.c".  When that file became too big (over
15 ** 6000 lines long) it was split up into several smaller files and
16 ** this header information was factored out.
17 */
18 #ifndef _VDBEINT_H_
19 #define _VDBEINT_H_
20 
21 /*
22 ** intToKey() and keyToInt() used to transform the rowid.  But with
23 ** the latest versions of the design they are no-ops.
24 */
25 #define keyToInt(X)   (X)
26 #define intToKey(X)   (X)
27 
28 /*
29 ** The makefile scans the vdbe.c source file and creates the following
30 ** array of string constants which are the names of all VDBE opcodes.  This
31 ** array is defined in a separate source code file named opcode.c which is
32 ** automatically generated by the makefile.
33 */
34 extern char *sqlite3OpcodeNames[];
35 
36 /*
37 ** SQL is translated into a sequence of instructions to be
38 ** executed by a virtual machine.  Each instruction is an instance
39 ** of the following structure.
40 */
41 typedef struct VdbeOp Op;
42 
43 /*
44 ** Boolean values
45 */
46 typedef unsigned char Bool;
47 
48 /*
49 ** A cursor is a pointer into a single BTree within a database file.
50 ** The cursor can seek to a BTree entry with a particular key, or
51 ** loop over all entries of the Btree.  You can also insert new BTree
52 ** entries or retrieve the key or data from the entry that the cursor
53 ** is currently pointing to.
54 **
55 ** Every cursor that the virtual machine has open is represented by an
56 ** instance of the following structure.
57 **
58 ** If the Cursor.isTriggerRow flag is set it means that this cursor is
59 ** really a single row that represents the NEW or OLD pseudo-table of
60 ** a row trigger.  The data for the row is stored in Cursor.pData and
61 ** the rowid is in Cursor.iKey.
62 */
63 struct Cursor {
64   BtCursor *pCursor;    /* The cursor structure of the backend */
65   int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
66   i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
67   i64 nextRowid;        /* Next rowid returned by OP_NewRowid */
68   Bool zeroed;          /* True if zeroed out and ready for reuse */
69   Bool rowidIsValid;    /* True if lastRowid is valid */
70   Bool atFirst;         /* True if pointing to first entry */
71   Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
72   Bool nullRow;         /* True if pointing to a row with no data */
73   Bool nextRowidValid;  /* True if the nextRowid field is valid */
74   Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
75   Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
76   Bool isTable;         /* True if a table requiring integer keys */
77   Bool isIndex;         /* True if an index containing keys only - no data */
78   u8 bogusIncrKey;      /* Something for pIncrKey to point to if pKeyInfo==0 */
79   i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
80   Btree *pBt;           /* Separate file holding temporary table */
81   int nData;            /* Number of bytes in pData */
82   char *pData;          /* Data for a NEW or OLD pseudo-table */
83   i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
84   u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
85   KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
86   int nField;           /* Number of fields in the header */
87   i64 seqCount;         /* Sequence counter */
88   sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
89   const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */
90 
91   /* Cached information about the header for the data record that the
92   ** cursor is currently pointing to.  Only valid if cacheValid is true.
93   ** aRow might point to (ephemeral) data for the current row, or it might
94   ** be NULL.
95   */
96   int cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
97   int payloadSize;      /* Total number of bytes in the record */
98   u32 *aType;           /* Type values for all entries in the record */
99   u32 *aOffset;         /* Cached offsets to the start of each columns data */
100   u8 *aRow;             /* Data for the current row, if all on one page */
101 };
102 typedef struct Cursor Cursor;
103 
104 /*
105 ** Number of bytes of string storage space available to each stack
106 ** layer without having to malloc.  NBFS is short for Number of Bytes
107 ** For Strings.
108 */
109 #define NBFS 32
110 
111 /*
112 ** A value for Cursor.cacheValid that means the cache is always invalid.
113 */
114 #define CACHE_STALE 0
115 
116 /*
117 ** Internally, the vdbe manipulates nearly all SQL values as Mem
118 ** structures. Each Mem struct may cache multiple representations (string,
119 ** integer etc.) of the same value.  A value (and therefore Mem structure)
120 ** has the following properties:
121 **
122 ** Each value has a manifest type. The manifest type of the value stored
123 ** in a Mem struct is returned by the MemType(Mem*) macro. The type is
124 ** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
125 ** SQLITE_BLOB.
126 */
127 struct Mem {
128   i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
129   double r;           /* Real value */
130   char *z;            /* String or BLOB value */
131   int n;              /* Number of characters in string value, including '\0' */
132   u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
133   u8  type;           /* One of MEM_Null, MEM_Str, etc. */
134   u8  enc;            /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */
135   void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
136   char zShort[NBFS];  /* Space for short strings */
137 };
138 typedef struct Mem Mem;
139 
140 /* One or more of the following flags are set to indicate the validOK
141 ** representations of the value stored in the Mem struct.
142 **
143 ** If the MEM_Null flag is set, then the value is an SQL NULL value.
144 ** No other flags may be set in this case.
145 **
146 ** If the MEM_Str flag is set then Mem.z points at a string representation.
147 ** Usually this is encoded in the same unicode encoding as the main
148 ** database (see below for exceptions). If the MEM_Term flag is also
149 ** set, then the string is nul terminated. The MEM_Int and MEM_Real
150 ** flags may coexist with the MEM_Str flag.
151 **
152 ** Multiple of these values can appear in Mem.flags.  But only one
153 ** at a time can appear in Mem.type.
154 */
155 #define MEM_Null      0x0001   /* Value is NULL */
156 #define MEM_Str       0x0002   /* Value is a string */
157 #define MEM_Int       0x0004   /* Value is an integer */
158 #define MEM_Real      0x0008   /* Value is a real number */
159 #define MEM_Blob      0x0010   /* Value is a BLOB */
160 
161 /* Whenever Mem contains a valid string or blob representation, one of
162 ** the following flags must be set to determine the memory management
163 ** policy for Mem.z.  The MEM_Term flag tells us whether or not the
164 ** string is \000 or \u0000 terminated
165 */
166 #define MEM_Term      0x0020   /* String rep is nul terminated */
167 #define MEM_Dyn       0x0040   /* Need to call sqliteFree() on Mem.z */
168 #define MEM_Static    0x0080   /* Mem.z points to a static string */
169 #define MEM_Ephem     0x0100   /* Mem.z points to an ephemeral string */
170 #define MEM_Short     0x0200   /* Mem.z points to Mem.zShort */
171 #define MEM_Agg       0x0400   /* Mem.z points to an agg function context */
172 
173 
174 /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
175 ** additional information about auxiliary information bound to arguments
176 ** of the function.  This is used to implement the sqlite3_get_auxdata()
177 ** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
178 ** that can be associated with a constant argument to a function.  This
179 ** allows functions such as "regexp" to compile their constant regular
180 ** expression argument once and reused the compiled code for multiple
181 ** invocations.
182 */
183 struct VdbeFunc {
184   FuncDef *pFunc;               /* The definition of the function */
185   int nAux;                     /* Number of entries allocated for apAux[] */
186   struct AuxData {
187     void *pAux;                   /* Aux data for the i-th argument */
188     void (*xDelete)(void *);      /* Destructor for the aux data */
189   } apAux[1];                   /* One slot for each function argument */
190 };
191 typedef struct VdbeFunc VdbeFunc;
192 
193 /*
194 ** The "context" argument for a installable function.  A pointer to an
195 ** instance of this structure is the first argument to the routines used
196 ** implement the SQL functions.
197 **
198 ** There is a typedef for this structure in sqlite.h.  So all routines,
199 ** even the public interface to SQLite, can use a pointer to this structure.
200 ** But this file is the only place where the internal details of this
201 ** structure are known.
202 **
203 ** This structure is defined inside of vdbeInt.h because it uses substructures
204 ** (Mem) which are only defined there.
205 */
206 struct sqlite3_context {
207   FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
208   VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
209   Mem s;                /* The return value is stored here */
210   Mem *pMem;            /* Memory cell used to store aggregate context */
211   u8 isError;           /* Set to true for an error */
212   CollSeq *pColl;       /* Collating sequence */
213 };
214 
215 /*
216 ** A Set structure is used for quick testing to see if a value
217 ** is part of a small set.  Sets are used to implement code like
218 ** this:
219 **            x.y IN ('hi','hoo','hum')
220 */
221 typedef struct Set Set;
222 struct Set {
223   Hash hash;             /* A set is just a hash table */
224   HashElem *prev;        /* Previously accessed hash elemen */
225 };
226 
227 /*
228 ** A FifoPage structure holds a single page of valves.  Pages are arranged
229 ** in a list.
230 */
231 typedef struct FifoPage FifoPage;
232 struct FifoPage {
233   int nSlot;         /* Number of entries aSlot[] */
234   int iWrite;        /* Push the next value into this entry in aSlot[] */
235   int iRead;         /* Read the next value from this entry in aSlot[] */
236   FifoPage *pNext;   /* Next page in the fifo */
237   i64 aSlot[1];      /* One or more slots for rowid values */
238 };
239 
240 /*
241 ** The Fifo structure is typedef-ed in vdbeInt.h.  But the implementation
242 ** of that structure is private to this file.
243 **
244 ** The Fifo structure describes the entire fifo.
245 */
246 typedef struct Fifo Fifo;
247 struct Fifo {
248   int nEntry;         /* Total number of entries */
249   FifoPage *pFirst;   /* First page on the list */
250   FifoPage *pLast;    /* Last page on the list */
251 };
252 
253 /*
254 ** A Context stores the last insert rowid, the last statement change count,
255 ** and the current statement change count (i.e. changes since last statement).
256 ** The current keylist is also stored in the context.
257 ** Elements of Context structure type make up the ContextStack, which is
258 ** updated by the ContextPush and ContextPop opcodes (used by triggers).
259 ** The context is pushed before executing a trigger a popped when the
260 ** trigger finishes.
261 */
262 typedef struct Context Context;
263 struct Context {
264   i64 lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
265   int nChange;      /* Statement changes (Vdbe.nChanges)     */
266   Fifo sFifo;       /* Records that will participate in a DELETE or UPDATE */
267 };
268 
269 /*
270 ** An instance of the virtual machine.  This structure contains the complete
271 ** state of the virtual machine.
272 **
273 ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
274 ** is really a pointer to an instance of this structure.
275 **
276 ** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
277 ** any virtual table method invocations made by the vdbe program. It is
278 ** set to 2 for xDestroy method calls and 1 for all other methods. This
279 ** variable is used for two purposes: to allow xDestroy methods to execute
280 ** "DROP TABLE" statements and to prevent some nasty side effects of
281 ** malloc failure when SQLite is invoked recursively by a virtual table
282 ** method function.
283 */
284 struct Vdbe {
285   sqlite3 *db;        /* The whole database */
286   Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
287   FILE *trace;        /* Write an execution trace here, if not NULL */
288   int nOp;            /* Number of instructions in the program */
289   int nOpAlloc;       /* Number of slots allocated for aOp[] */
290   Op *aOp;            /* Space to hold the virtual machine's program */
291   int nLabel;         /* Number of labels used */
292   int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
293   int *aLabel;        /* Space to hold the labels */
294   Mem *aStack;        /* The operand stack, except string values */
295   Mem *pTos;          /* Top entry in the operand stack */
296   Mem **apArg;        /* Arguments to currently executing user function */
297   Mem *aColName;      /* Column names to return */
298   int nCursor;        /* Number of slots in apCsr[] */
299   Cursor **apCsr;     /* One element of this array for each open cursor */
300   int nVar;           /* Number of entries in aVar[] */
301   Mem *aVar;          /* Values for the OP_Variable opcode. */
302   char **azVar;       /* Name of variables */
303   int okVar;          /* True if azVar[] has been initialized */
304   int magic;              /* Magic number for sanity checking */
305   int nMem;               /* Number of memory locations currently allocated */
306   Mem *aMem;              /* The memory locations */
307   int nCallback;          /* Number of callbacks invoked so far */
308   int cacheCtr;           /* Cursor row cache generation counter */
309   Fifo sFifo;             /* A list of ROWIDs */
310   int contextStackTop;    /* Index of top element in the context stack */
311   int contextStackDepth;  /* The size of the "context" stack */
312   Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
313   int pc;                 /* The program counter */
314   int rc;                 /* Value to return */
315   unsigned uniqueCnt;     /* Used by OP_MakeRecord when P2!=0 */
316   int errorAction;        /* Recovery action to do in case of an error */
317   int inTempTrans;        /* True if temp database is transactioned */
318   int returnStack[100];   /* Return address stack for OP_Gosub & OP_Return */
319   int returnDepth;        /* Next unused element in returnStack[] */
320   int nResColumn;         /* Number of columns in one row of the result set */
321   char **azResColumn;     /* Values for one row of result */
322   int popStack;           /* Pop the stack this much on entry to VdbeExec() */
323   char *zErrMsg;          /* Error message written here */
324   u8 resOnStack;          /* True if there are result values on the stack */
325   u8 explain;             /* True if EXPLAIN present on SQL command */
326   u8 changeCntOn;         /* True to update the change-counter */
327   u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
328   u8 expired;             /* True if the VM needs to be recompiled */
329   u8 minWriteFileFormat;  /* Minimum file format for writable database files */
330   u8 inVtabMethod;        /* See comments above */
331   int nChange;            /* Number of db changes made since last reset */
332   i64 startTime;          /* Time when query started - used for profiling */
333   int nSql;             /* Number of bytes in zSql */
334   char *zSql;           /* Text of the SQL statement that generated this */
335 #ifdef SQLITE_SSE
336   int fetchId;          /* Statement number used by sqlite3_fetch_statement */
337   int lru;              /* Counter used for LRU cache replacement */
338 #endif
339 };
340 
341 /*
342 ** The following are allowed values for Vdbe.magic
343 */
344 #define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
345 #define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
346 #define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
347 #define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
348 
349 /*
350 ** Function prototypes
351 */
352 void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
353 void sqliteVdbePopStack(Vdbe*,int);
354 int sqlite3VdbeCursorMoveto(Cursor*);
355 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
356 void sqlite3VdbePrintOp(FILE*, int, Op*);
357 #endif
358 #ifdef SQLITE_DEBUG
359 void sqlite3VdbePrintSql(Vdbe*);
360 #endif
361 int sqlite3VdbeSerialTypeLen(u32);
362 u32 sqlite3VdbeSerialType(Mem*, int);
363 int sqlite3VdbeSerialPut(unsigned char*, Mem*, int);
364 int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
365 void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
366 
367 int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
368 int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
369 int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
370 int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
371 int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
372 int sqlite3VdbeIdxRowidLen(const u8*);
373 int sqlite3VdbeExec(Vdbe*);
374 int sqlite3VdbeList(Vdbe*);
375 int sqlite3VdbeHalt(Vdbe*);
376 int sqlite3VdbeChangeEncoding(Mem *, int);
377 int sqlite3VdbeMemCopy(Mem*, const Mem*);
378 void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
379 int sqlite3VdbeMemMove(Mem*, Mem*);
380 int sqlite3VdbeMemNulTerminate(Mem*);
381 int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
382 void sqlite3VdbeMemSetInt64(Mem*, i64);
383 void sqlite3VdbeMemSetDouble(Mem*, double);
384 void sqlite3VdbeMemSetNull(Mem*);
385 int sqlite3VdbeMemMakeWriteable(Mem*);
386 int sqlite3VdbeMemDynamicify(Mem*);
387 int sqlite3VdbeMemStringify(Mem*, int);
388 i64 sqlite3VdbeIntValue(Mem*);
389 int sqlite3VdbeMemIntegerify(Mem*);
390 double sqlite3VdbeRealValue(Mem*);
391 void sqlite3VdbeIntegerAffinity(Mem*);
392 int sqlite3VdbeMemRealify(Mem*);
393 int sqlite3VdbeMemNumerify(Mem*);
394 int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
395 void sqlite3VdbeMemRelease(Mem *p);
396 int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
397 #ifndef NDEBUG
398 void sqlite3VdbeMemSanity(Mem*);
399 int sqlite3VdbeOpcodeNoPush(u8);
400 #endif
401 int sqlite3VdbeMemTranslate(Mem*, u8);
402 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
403 int sqlite3VdbeMemHandleBom(Mem *pMem);
404 void sqlite3VdbeFifoInit(Fifo*);
405 int sqlite3VdbeFifoPush(Fifo*, i64);
406 int sqlite3VdbeFifoPop(Fifo*, i64*);
407 void sqlite3VdbeFifoClear(Fifo*);
408 
409 #endif /* !defined(_VDBEINT_H_) */
410