xref: /sqlite-3.40.0/src/vdbe.c (revision fbf0f488)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue;
318   iValue = sqlite3RealToI64(rValue);
319   if( sqlite3RealSameAsInt(rValue,iValue) ){
320     *piValue = iValue;
321     return 1;
322   }
323   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
324 }
325 
326 /*
327 ** Try to convert a value into a numeric representation if we can
328 ** do so without loss of information.  In other words, if the string
329 ** looks like a number, convert it into a number.  If it does not
330 ** look like a number, leave it alone.
331 **
332 ** If the bTryForInt flag is true, then extra effort is made to give
333 ** an integer representation.  Strings that look like floating point
334 ** values but which have no fractional component (example: '48.00')
335 ** will have a MEM_Int representation when bTryForInt is true.
336 **
337 ** If bTryForInt is false, then if the input string contains a decimal
338 ** point or exponential notation, the result is only MEM_Real, even
339 ** if there is an exact integer representation of the quantity.
340 */
341 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
342   double rValue;
343   u8 enc = pRec->enc;
344   int rc;
345   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
346   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
347   if( rc<=0 ) return;
348   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
349     pRec->flags |= MEM_Int;
350   }else{
351     pRec->u.r = rValue;
352     pRec->flags |= MEM_Real;
353     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
354   }
355   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
356   ** string representation after computing a numeric equivalent, because the
357   ** string representation might not be the canonical representation for the
358   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
359   pRec->flags &= ~MEM_Str;
360 }
361 
362 /*
363 ** Processing is determine by the affinity parameter:
364 **
365 ** SQLITE_AFF_INTEGER:
366 ** SQLITE_AFF_REAL:
367 ** SQLITE_AFF_NUMERIC:
368 **    Try to convert pRec to an integer representation or a
369 **    floating-point representation if an integer representation
370 **    is not possible.  Note that the integer representation is
371 **    always preferred, even if the affinity is REAL, because
372 **    an integer representation is more space efficient on disk.
373 **
374 ** SQLITE_AFF_TEXT:
375 **    Convert pRec to a text representation.
376 **
377 ** SQLITE_AFF_BLOB:
378 ** SQLITE_AFF_NONE:
379 **    No-op.  pRec is unchanged.
380 */
381 static void applyAffinity(
382   Mem *pRec,          /* The value to apply affinity to */
383   char affinity,      /* The affinity to be applied */
384   u8 enc              /* Use this text encoding */
385 ){
386   if( affinity>=SQLITE_AFF_NUMERIC ){
387     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
388              || affinity==SQLITE_AFF_NUMERIC );
389     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
390       if( (pRec->flags & MEM_Real)==0 ){
391         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
392       }else{
393         sqlite3VdbeIntegerAffinity(pRec);
394       }
395     }
396   }else if( affinity==SQLITE_AFF_TEXT ){
397     /* Only attempt the conversion to TEXT if there is an integer or real
398     ** representation (blob and NULL do not get converted) but no string
399     ** representation.  It would be harmless to repeat the conversion if
400     ** there is already a string rep, but it is pointless to waste those
401     ** CPU cycles. */
402     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
403       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
404         testcase( pRec->flags & MEM_Int );
405         testcase( pRec->flags & MEM_Real );
406         testcase( pRec->flags & MEM_IntReal );
407         sqlite3VdbeMemStringify(pRec, enc, 1);
408       }
409     }
410     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
411   }
412 }
413 
414 /*
415 ** Try to convert the type of a function argument or a result column
416 ** into a numeric representation.  Use either INTEGER or REAL whichever
417 ** is appropriate.  But only do the conversion if it is possible without
418 ** loss of information and return the revised type of the argument.
419 */
420 int sqlite3_value_numeric_type(sqlite3_value *pVal){
421   int eType = sqlite3_value_type(pVal);
422   if( eType==SQLITE_TEXT ){
423     Mem *pMem = (Mem*)pVal;
424     applyNumericAffinity(pMem, 0);
425     eType = sqlite3_value_type(pVal);
426   }
427   return eType;
428 }
429 
430 /*
431 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
432 ** not the internal Mem* type.
433 */
434 void sqlite3ValueApplyAffinity(
435   sqlite3_value *pVal,
436   u8 affinity,
437   u8 enc
438 ){
439   applyAffinity((Mem *)pVal, affinity, enc);
440 }
441 
442 /*
443 ** pMem currently only holds a string type (or maybe a BLOB that we can
444 ** interpret as a string if we want to).  Compute its corresponding
445 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
446 ** accordingly.
447 */
448 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
449   int rc;
450   sqlite3_int64 ix;
451   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
452   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
453   if( ExpandBlob(pMem) ){
454     pMem->u.i = 0;
455     return MEM_Int;
456   }
457   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
458   if( rc<=0 ){
459     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
460       pMem->u.i = ix;
461       return MEM_Int;
462     }else{
463       return MEM_Real;
464     }
465   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
466     pMem->u.i = ix;
467     return MEM_Int;
468   }
469   return MEM_Real;
470 }
471 
472 /*
473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
474 ** none.
475 **
476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
477 ** But it does set pMem->u.r and pMem->u.i appropriately.
478 */
479 static u16 numericType(Mem *pMem){
480   assert( (pMem->flags & MEM_Null)==0
481        || pMem->db==0 || pMem->db->mallocFailed );
482   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
483     testcase( pMem->flags & MEM_Int );
484     testcase( pMem->flags & MEM_Real );
485     testcase( pMem->flags & MEM_IntReal );
486     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
487   }
488   assert( pMem->flags & (MEM_Str|MEM_Blob) );
489   testcase( pMem->flags & MEM_Str );
490   testcase( pMem->flags & MEM_Blob );
491   return computeNumericType(pMem);
492   return 0;
493 }
494 
495 #ifdef SQLITE_DEBUG
496 /*
497 ** Write a nice string representation of the contents of cell pMem
498 ** into buffer zBuf, length nBuf.
499 */
500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
501   int f = pMem->flags;
502   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
503   if( f&MEM_Blob ){
504     int i;
505     char c;
506     if( f & MEM_Dyn ){
507       c = 'z';
508       assert( (f & (MEM_Static|MEM_Ephem))==0 );
509     }else if( f & MEM_Static ){
510       c = 't';
511       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
512     }else if( f & MEM_Ephem ){
513       c = 'e';
514       assert( (f & (MEM_Static|MEM_Dyn))==0 );
515     }else{
516       c = 's';
517     }
518     sqlite3_str_appendf(pStr, "%cx[", c);
519     for(i=0; i<25 && i<pMem->n; i++){
520       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
521     }
522     sqlite3_str_appendf(pStr, "|");
523     for(i=0; i<25 && i<pMem->n; i++){
524       char z = pMem->z[i];
525       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
526     }
527     sqlite3_str_appendf(pStr,"]");
528     if( f & MEM_Zero ){
529       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
530     }
531   }else if( f & MEM_Str ){
532     int j;
533     u8 c;
534     if( f & MEM_Dyn ){
535       c = 'z';
536       assert( (f & (MEM_Static|MEM_Ephem))==0 );
537     }else if( f & MEM_Static ){
538       c = 't';
539       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
540     }else if( f & MEM_Ephem ){
541       c = 'e';
542       assert( (f & (MEM_Static|MEM_Dyn))==0 );
543     }else{
544       c = 's';
545     }
546     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
547     for(j=0; j<25 && j<pMem->n; j++){
548       c = pMem->z[j];
549       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
550     }
551     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
552   }
553 }
554 #endif
555 
556 #ifdef SQLITE_DEBUG
557 /*
558 ** Print the value of a register for tracing purposes:
559 */
560 static void memTracePrint(Mem *p){
561   if( p->flags & MEM_Undefined ){
562     printf(" undefined");
563   }else if( p->flags & MEM_Null ){
564     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
565   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
566     printf(" si:%lld", p->u.i);
567   }else if( (p->flags & (MEM_IntReal))!=0 ){
568     printf(" ir:%lld", p->u.i);
569   }else if( p->flags & MEM_Int ){
570     printf(" i:%lld", p->u.i);
571 #ifndef SQLITE_OMIT_FLOATING_POINT
572   }else if( p->flags & MEM_Real ){
573     printf(" r:%.17g", p->u.r);
574 #endif
575   }else if( sqlite3VdbeMemIsRowSet(p) ){
576     printf(" (rowset)");
577   }else{
578     StrAccum acc;
579     char zBuf[1000];
580     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
581     sqlite3VdbeMemPrettyPrint(p, &acc);
582     printf(" %s", sqlite3StrAccumFinish(&acc));
583   }
584   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
585 }
586 static void registerTrace(int iReg, Mem *p){
587   printf("R[%d] = ", iReg);
588   memTracePrint(p);
589   if( p->pScopyFrom ){
590     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
591   }
592   printf("\n");
593   sqlite3VdbeCheckMemInvariants(p);
594 }
595 /**/ void sqlite3PrintMem(Mem *pMem){
596   memTracePrint(pMem);
597   printf("\n");
598   fflush(stdout);
599 }
600 #endif
601 
602 #ifdef SQLITE_DEBUG
603 /*
604 ** Show the values of all registers in the virtual machine.  Used for
605 ** interactive debugging.
606 */
607 void sqlite3VdbeRegisterDump(Vdbe *v){
608   int i;
609   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
610 }
611 #endif /* SQLITE_DEBUG */
612 
613 
614 #ifdef SQLITE_DEBUG
615 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
616 #else
617 #  define REGISTER_TRACE(R,M)
618 #endif
619 
620 
621 #ifdef VDBE_PROFILE
622 
623 /*
624 ** hwtime.h contains inline assembler code for implementing
625 ** high-performance timing routines.
626 */
627 #include "hwtime.h"
628 
629 #endif
630 
631 #ifndef NDEBUG
632 /*
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
637 **
638 ** Usage:
639 **
640 **     assert( checkSavepointCount(db) );
641 */
642 static int checkSavepointCount(sqlite3 *db){
643   int n = 0;
644   Savepoint *p;
645   for(p=db->pSavepoint; p; p=p->pNext) n++;
646   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
647   return 1;
648 }
649 #endif
650 
651 /*
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
654 */
655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
656   sqlite3VdbeMemSetNull(pOut);
657   pOut->flags = MEM_Int;
658   return pOut;
659 }
660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
661   Mem *pOut;
662   assert( pOp->p2>0 );
663   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
664   pOut = &p->aMem[pOp->p2];
665   memAboutToChange(p, pOut);
666   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
667     return out2PrereleaseWithClear(pOut);
668   }else{
669     pOut->flags = MEM_Int;
670     return pOut;
671   }
672 }
673 
674 /*
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3.  Return the hash.
677 */
678 static u64 filterHash(const Mem *aMem, const Op *pOp){
679   int i, mx;
680   u64 h = 0;
681 
682   assert( pOp->p4type==P4_INT32 );
683   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
684     const Mem *p = &aMem[i];
685     if( p->flags & (MEM_Int|MEM_IntReal) ){
686       h += p->u.i;
687     }else if( p->flags & MEM_Real ){
688       h += sqlite3VdbeIntValue(p);
689     }else if( p->flags & (MEM_Str|MEM_Blob) ){
690       h += p->n;
691       if( p->flags & MEM_Zero ) h += p->u.nZero;
692     }
693   }
694   return h;
695 }
696 
697 /*
698 ** Return the symbolic name for the data type of a pMem
699 */
700 static const char *vdbeMemTypeName(Mem *pMem){
701   static const char *azTypes[] = {
702       /* SQLITE_INTEGER */ "INT",
703       /* SQLITE_FLOAT   */ "REAL",
704       /* SQLITE_TEXT    */ "TEXT",
705       /* SQLITE_BLOB    */ "BLOB",
706       /* SQLITE_NULL    */ "NULL"
707   };
708   return azTypes[sqlite3_value_type(pMem)-1];
709 }
710 
711 /*
712 ** Execute as much of a VDBE program as we can.
713 ** This is the core of sqlite3_step().
714 */
715 int sqlite3VdbeExec(
716   Vdbe *p                    /* The VDBE */
717 ){
718   Op *aOp = p->aOp;          /* Copy of p->aOp */
719   Op *pOp = aOp;             /* Current operation */
720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
721   Op *pOrigOp;               /* Value of pOp at the top of the loop */
722 #endif
723 #ifdef SQLITE_DEBUG
724   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
725 #endif
726   int rc = SQLITE_OK;        /* Value to return */
727   sqlite3 *db = p->db;       /* The database */
728   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
729   u8 encoding = ENC(db);     /* The database encoding */
730   int iCompare = 0;          /* Result of last comparison */
731   u64 nVmStep = 0;           /* Number of virtual machine steps */
732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
733   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
734 #endif
735   Mem *aMem = p->aMem;       /* Copy of p->aMem */
736   Mem *pIn1 = 0;             /* 1st input operand */
737   Mem *pIn2 = 0;             /* 2nd input operand */
738   Mem *pIn3 = 0;             /* 3rd input operand */
739   Mem *pOut = 0;             /* Output operand */
740 #ifdef VDBE_PROFILE
741   u64 start;                 /* CPU clock count at start of opcode */
742 #endif
743   /*** INSERT STACK UNION HERE ***/
744 
745   assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
746   sqlite3VdbeEnter(p);
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748   if( db->xProgress ){
749     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
750     assert( 0 < db->nProgressOps );
751     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
752   }else{
753     nProgressLimit = LARGEST_UINT64;
754   }
755 #endif
756   if( p->rc==SQLITE_NOMEM ){
757     /* This happens if a malloc() inside a call to sqlite3_column_text() or
758     ** sqlite3_column_text16() failed.  */
759     goto no_mem;
760   }
761   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
762   testcase( p->rc!=SQLITE_OK );
763   p->rc = SQLITE_OK;
764   assert( p->bIsReader || p->readOnly!=0 );
765   p->iCurrentTime = 0;
766   assert( p->explain==0 );
767   p->pResultSet = 0;
768   db->busyHandler.nBusy = 0;
769   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
770   sqlite3VdbeIOTraceSql(p);
771 #ifdef SQLITE_DEBUG
772   sqlite3BeginBenignMalloc();
773   if( p->pc==0
774    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
775   ){
776     int i;
777     int once = 1;
778     sqlite3VdbePrintSql(p);
779     if( p->db->flags & SQLITE_VdbeListing ){
780       printf("VDBE Program Listing:\n");
781       for(i=0; i<p->nOp; i++){
782         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
783       }
784     }
785     if( p->db->flags & SQLITE_VdbeEQP ){
786       for(i=0; i<p->nOp; i++){
787         if( aOp[i].opcode==OP_Explain ){
788           if( once ) printf("VDBE Query Plan:\n");
789           printf("%s\n", aOp[i].p4.z);
790           once = 0;
791         }
792       }
793     }
794     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
795   }
796   sqlite3EndBenignMalloc();
797 #endif
798   for(pOp=&aOp[p->pc]; 1; pOp++){
799     /* Errors are detected by individual opcodes, with an immediate
800     ** jumps to abort_due_to_error. */
801     assert( rc==SQLITE_OK );
802 
803     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
804 #ifdef VDBE_PROFILE
805     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
806 #endif
807     nVmStep++;
808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
809     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
810 #endif
811 
812     /* Only allow tracing if SQLITE_DEBUG is defined.
813     */
814 #ifdef SQLITE_DEBUG
815     if( db->flags & SQLITE_VdbeTrace ){
816       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
817       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
818     }
819 #endif
820 
821 
822     /* Check to see if we need to simulate an interrupt.  This only happens
823     ** if we have a special test build.
824     */
825 #ifdef SQLITE_TEST
826     if( sqlite3_interrupt_count>0 ){
827       sqlite3_interrupt_count--;
828       if( sqlite3_interrupt_count==0 ){
829         sqlite3_interrupt(db);
830       }
831     }
832 #endif
833 
834     /* Sanity checking on other operands */
835 #ifdef SQLITE_DEBUG
836     {
837       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
838       if( (opProperty & OPFLG_IN1)!=0 ){
839         assert( pOp->p1>0 );
840         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
841         assert( memIsValid(&aMem[pOp->p1]) );
842         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
843         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
844       }
845       if( (opProperty & OPFLG_IN2)!=0 ){
846         assert( pOp->p2>0 );
847         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
848         assert( memIsValid(&aMem[pOp->p2]) );
849         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
850         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
851       }
852       if( (opProperty & OPFLG_IN3)!=0 ){
853         assert( pOp->p3>0 );
854         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
855         assert( memIsValid(&aMem[pOp->p3]) );
856         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
857         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
858       }
859       if( (opProperty & OPFLG_OUT2)!=0 ){
860         assert( pOp->p2>0 );
861         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
862         memAboutToChange(p, &aMem[pOp->p2]);
863       }
864       if( (opProperty & OPFLG_OUT3)!=0 ){
865         assert( pOp->p3>0 );
866         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
867         memAboutToChange(p, &aMem[pOp->p3]);
868       }
869     }
870 #endif
871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
872     pOrigOp = pOp;
873 #endif
874 
875     switch( pOp->opcode ){
876 
877 /*****************************************************************************
878 ** What follows is a massive switch statement where each case implements a
879 ** separate instruction in the virtual machine.  If we follow the usual
880 ** indentation conventions, each case should be indented by 6 spaces.  But
881 ** that is a lot of wasted space on the left margin.  So the code within
882 ** the switch statement will break with convention and be flush-left. Another
883 ** big comment (similar to this one) will mark the point in the code where
884 ** we transition back to normal indentation.
885 **
886 ** The formatting of each case is important.  The makefile for SQLite
887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
888 ** file looking for lines that begin with "case OP_".  The opcodes.h files
889 ** will be filled with #defines that give unique integer values to each
890 ** opcode and the opcodes.c file is filled with an array of strings where
891 ** each string is the symbolic name for the corresponding opcode.  If the
892 ** case statement is followed by a comment of the form "/# same as ... #/"
893 ** that comment is used to determine the particular value of the opcode.
894 **
895 ** Other keywords in the comment that follows each case are used to
896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
897 ** Keywords include: in1, in2, in3, out2, out3.  See
898 ** the mkopcodeh.awk script for additional information.
899 **
900 ** Documentation about VDBE opcodes is generated by scanning this file
901 ** for lines of that contain "Opcode:".  That line and all subsequent
902 ** comment lines are used in the generation of the opcode.html documentation
903 ** file.
904 **
905 ** SUMMARY:
906 **
907 **     Formatting is important to scripts that scan this file.
908 **     Do not deviate from the formatting style currently in use.
909 **
910 *****************************************************************************/
911 
912 /* Opcode:  Goto * P2 * * *
913 **
914 ** An unconditional jump to address P2.
915 ** The next instruction executed will be
916 ** the one at index P2 from the beginning of
917 ** the program.
918 **
919 ** The P1 parameter is not actually used by this opcode.  However, it
920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
921 ** that this Goto is the bottom of a loop and that the lines from P2 down
922 ** to the current line should be indented for EXPLAIN output.
923 */
924 case OP_Goto: {             /* jump */
925 
926 #ifdef SQLITE_DEBUG
927   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
928   ** means we should really jump back to the preceeding OP_ReleaseReg
929   ** instruction. */
930   if( pOp->p5 ){
931     assert( pOp->p2 < (int)(pOp - aOp) );
932     assert( pOp->p2 > 1 );
933     pOp = &aOp[pOp->p2 - 2];
934     assert( pOp[1].opcode==OP_ReleaseReg );
935     goto check_for_interrupt;
936   }
937 #endif
938 
939 jump_to_p2_and_check_for_interrupt:
940   pOp = &aOp[pOp->p2 - 1];
941 
942   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
943   ** OP_VNext, or OP_SorterNext) all jump here upon
944   ** completion.  Check to see if sqlite3_interrupt() has been called
945   ** or if the progress callback needs to be invoked.
946   **
947   ** This code uses unstructured "goto" statements and does not look clean.
948   ** But that is not due to sloppy coding habits. The code is written this
949   ** way for performance, to avoid having to run the interrupt and progress
950   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
951   ** faster according to "valgrind --tool=cachegrind" */
952 check_for_interrupt:
953   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
955   /* Call the progress callback if it is configured and the required number
956   ** of VDBE ops have been executed (either since this invocation of
957   ** sqlite3VdbeExec() or since last time the progress callback was called).
958   ** If the progress callback returns non-zero, exit the virtual machine with
959   ** a return code SQLITE_ABORT.
960   */
961   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
962     assert( db->nProgressOps!=0 );
963     nProgressLimit += db->nProgressOps;
964     if( db->xProgress(db->pProgressArg) ){
965       nProgressLimit = LARGEST_UINT64;
966       rc = SQLITE_INTERRUPT;
967       goto abort_due_to_error;
968     }
969   }
970 #endif
971 
972   break;
973 }
974 
975 /* Opcode:  Gosub P1 P2 * * *
976 **
977 ** Write the current address onto register P1
978 ** and then jump to address P2.
979 */
980 case OP_Gosub: {            /* jump */
981   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
982   pIn1 = &aMem[pOp->p1];
983   assert( VdbeMemDynamic(pIn1)==0 );
984   memAboutToChange(p, pIn1);
985   pIn1->flags = MEM_Int;
986   pIn1->u.i = (int)(pOp-aOp);
987   REGISTER_TRACE(pOp->p1, pIn1);
988   goto jump_to_p2_and_check_for_interrupt;
989 }
990 
991 /* Opcode:  Return P1 P2 P3 * *
992 **
993 ** Jump to the address stored in register P1.  If P1 is a return address
994 ** register, then this accomplishes a return from a subroutine.
995 **
996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
997 ** values, otherwise execution falls through to the next opcode, and the
998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
999 ** integer or else an assert() is raised.  P3 should be set to 1 when
1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1001 ** otherwise.
1002 **
1003 ** The value in register P1 is unchanged by this opcode.
1004 **
1005 ** P2 is not used by the byte-code engine.  However, if P2 is positive
1006 ** and also less than the current address, then the "EXPLAIN" output
1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1008 ** to be not including the current Return.   P2 should be the first opcode
1009 ** in the subroutine from which this opcode is returning.  Thus the P2
1010 ** value is a byte-code indentation hint.  See tag-20220407a in
1011 ** wherecode.c and shell.c.
1012 */
1013 case OP_Return: {           /* in1 */
1014   pIn1 = &aMem[pOp->p1];
1015   if( pIn1->flags & MEM_Int ){
1016     if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1017     pOp = &aOp[pIn1->u.i];
1018   }else if( ALWAYS(pOp->p3) ){
1019     VdbeBranchTaken(0, 2);
1020   }
1021   break;
1022 }
1023 
1024 /* Opcode: InitCoroutine P1 P2 P3 * *
1025 **
1026 ** Set up register P1 so that it will Yield to the coroutine
1027 ** located at address P3.
1028 **
1029 ** If P2!=0 then the coroutine implementation immediately follows
1030 ** this opcode.  So jump over the coroutine implementation to
1031 ** address P2.
1032 **
1033 ** See also: EndCoroutine
1034 */
1035 case OP_InitCoroutine: {     /* jump */
1036   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1037   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1038   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1039   pOut = &aMem[pOp->p1];
1040   assert( !VdbeMemDynamic(pOut) );
1041   pOut->u.i = pOp->p3 - 1;
1042   pOut->flags = MEM_Int;
1043   if( pOp->p2==0 ) break;
1044 
1045   /* Most jump operations do a goto to this spot in order to update
1046   ** the pOp pointer. */
1047 jump_to_p2:
1048   assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
1049   assert( pOp->p2<p->nOp );  /* Jumps must be in range */
1050   pOp = &aOp[pOp->p2 - 1];
1051   break;
1052 }
1053 
1054 /* Opcode:  EndCoroutine P1 * * * *
1055 **
1056 ** The instruction at the address in register P1 is a Yield.
1057 ** Jump to the P2 parameter of that Yield.
1058 ** After the jump, register P1 becomes undefined.
1059 **
1060 ** See also: InitCoroutine
1061 */
1062 case OP_EndCoroutine: {           /* in1 */
1063   VdbeOp *pCaller;
1064   pIn1 = &aMem[pOp->p1];
1065   assert( pIn1->flags==MEM_Int );
1066   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1067   pCaller = &aOp[pIn1->u.i];
1068   assert( pCaller->opcode==OP_Yield );
1069   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1070   pOp = &aOp[pCaller->p2 - 1];
1071   pIn1->flags = MEM_Undefined;
1072   break;
1073 }
1074 
1075 /* Opcode:  Yield P1 P2 * * *
1076 **
1077 ** Swap the program counter with the value in register P1.  This
1078 ** has the effect of yielding to a coroutine.
1079 **
1080 ** If the coroutine that is launched by this instruction ends with
1081 ** Yield or Return then continue to the next instruction.  But if
1082 ** the coroutine launched by this instruction ends with
1083 ** EndCoroutine, then jump to P2 rather than continuing with the
1084 ** next instruction.
1085 **
1086 ** See also: InitCoroutine
1087 */
1088 case OP_Yield: {            /* in1, jump */
1089   int pcDest;
1090   pIn1 = &aMem[pOp->p1];
1091   assert( VdbeMemDynamic(pIn1)==0 );
1092   pIn1->flags = MEM_Int;
1093   pcDest = (int)pIn1->u.i;
1094   pIn1->u.i = (int)(pOp - aOp);
1095   REGISTER_TRACE(pOp->p1, pIn1);
1096   pOp = &aOp[pcDest];
1097   break;
1098 }
1099 
1100 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1101 ** Synopsis: if r[P3]=null halt
1102 **
1103 ** Check the value in register P3.  If it is NULL then Halt using
1104 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1105 ** value in register P3 is not NULL, then this routine is a no-op.
1106 ** The P5 parameter should be 1.
1107 */
1108 case OP_HaltIfNull: {      /* in3 */
1109   pIn3 = &aMem[pOp->p3];
1110 #ifdef SQLITE_DEBUG
1111   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1112 #endif
1113   if( (pIn3->flags & MEM_Null)==0 ) break;
1114   /* Fall through into OP_Halt */
1115   /* no break */ deliberate_fall_through
1116 }
1117 
1118 /* Opcode:  Halt P1 P2 * P4 P5
1119 **
1120 ** Exit immediately.  All open cursors, etc are closed
1121 ** automatically.
1122 **
1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1124 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1125 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1126 ** whether or not to rollback the current transaction.  Do not rollback
1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1128 ** then back out all changes that have occurred during this execution of the
1129 ** VDBE, but do not rollback the transaction.
1130 **
1131 ** If P4 is not null then it is an error message string.
1132 **
1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1134 **
1135 **    0:  (no change)
1136 **    1:  NOT NULL contraint failed: P4
1137 **    2:  UNIQUE constraint failed: P4
1138 **    3:  CHECK constraint failed: P4
1139 **    4:  FOREIGN KEY constraint failed: P4
1140 **
1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1142 ** omitted.
1143 **
1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1145 ** every program.  So a jump past the last instruction of the program
1146 ** is the same as executing Halt.
1147 */
1148 case OP_Halt: {
1149   VdbeFrame *pFrame;
1150   int pcx;
1151 
1152 #ifdef SQLITE_DEBUG
1153   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1154 #endif
1155   if( p->pFrame && pOp->p1==SQLITE_OK ){
1156     /* Halt the sub-program. Return control to the parent frame. */
1157     pFrame = p->pFrame;
1158     p->pFrame = pFrame->pParent;
1159     p->nFrame--;
1160     sqlite3VdbeSetChanges(db, p->nChange);
1161     pcx = sqlite3VdbeFrameRestore(pFrame);
1162     if( pOp->p2==OE_Ignore ){
1163       /* Instruction pcx is the OP_Program that invoked the sub-program
1164       ** currently being halted. If the p2 instruction of this OP_Halt
1165       ** instruction is set to OE_Ignore, then the sub-program is throwing
1166       ** an IGNORE exception. In this case jump to the address specified
1167       ** as the p2 of the calling OP_Program.  */
1168       pcx = p->aOp[pcx].p2-1;
1169     }
1170     aOp = p->aOp;
1171     aMem = p->aMem;
1172     pOp = &aOp[pcx];
1173     break;
1174   }
1175   p->rc = pOp->p1;
1176   p->errorAction = (u8)pOp->p2;
1177   assert( pOp->p5<=4 );
1178   if( p->rc ){
1179     if( pOp->p5 ){
1180       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1181                                              "FOREIGN KEY" };
1182       testcase( pOp->p5==1 );
1183       testcase( pOp->p5==2 );
1184       testcase( pOp->p5==3 );
1185       testcase( pOp->p5==4 );
1186       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1187       if( pOp->p4.z ){
1188         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1189       }
1190     }else{
1191       sqlite3VdbeError(p, "%s", pOp->p4.z);
1192     }
1193     pcx = (int)(pOp - aOp);
1194     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1195   }
1196   rc = sqlite3VdbeHalt(p);
1197   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1198   if( rc==SQLITE_BUSY ){
1199     p->rc = SQLITE_BUSY;
1200   }else{
1201     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1202     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1203     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1204   }
1205   goto vdbe_return;
1206 }
1207 
1208 /* Opcode: Integer P1 P2 * * *
1209 ** Synopsis: r[P2]=P1
1210 **
1211 ** The 32-bit integer value P1 is written into register P2.
1212 */
1213 case OP_Integer: {         /* out2 */
1214   pOut = out2Prerelease(p, pOp);
1215   pOut->u.i = pOp->p1;
1216   break;
1217 }
1218 
1219 /* Opcode: Int64 * P2 * P4 *
1220 ** Synopsis: r[P2]=P4
1221 **
1222 ** P4 is a pointer to a 64-bit integer value.
1223 ** Write that value into register P2.
1224 */
1225 case OP_Int64: {           /* out2 */
1226   pOut = out2Prerelease(p, pOp);
1227   assert( pOp->p4.pI64!=0 );
1228   pOut->u.i = *pOp->p4.pI64;
1229   break;
1230 }
1231 
1232 #ifndef SQLITE_OMIT_FLOATING_POINT
1233 /* Opcode: Real * P2 * P4 *
1234 ** Synopsis: r[P2]=P4
1235 **
1236 ** P4 is a pointer to a 64-bit floating point value.
1237 ** Write that value into register P2.
1238 */
1239 case OP_Real: {            /* same as TK_FLOAT, out2 */
1240   pOut = out2Prerelease(p, pOp);
1241   pOut->flags = MEM_Real;
1242   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1243   pOut->u.r = *pOp->p4.pReal;
1244   break;
1245 }
1246 #endif
1247 
1248 /* Opcode: String8 * P2 * P4 *
1249 ** Synopsis: r[P2]='P4'
1250 **
1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1252 ** into a String opcode before it is executed for the first time.  During
1253 ** this transformation, the length of string P4 is computed and stored
1254 ** as the P1 parameter.
1255 */
1256 case OP_String8: {         /* same as TK_STRING, out2 */
1257   assert( pOp->p4.z!=0 );
1258   pOut = out2Prerelease(p, pOp);
1259   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1260 
1261 #ifndef SQLITE_OMIT_UTF16
1262   if( encoding!=SQLITE_UTF8 ){
1263     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1264     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1265     if( rc ) goto too_big;
1266     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1267     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1268     assert( VdbeMemDynamic(pOut)==0 );
1269     pOut->szMalloc = 0;
1270     pOut->flags |= MEM_Static;
1271     if( pOp->p4type==P4_DYNAMIC ){
1272       sqlite3DbFree(db, pOp->p4.z);
1273     }
1274     pOp->p4type = P4_DYNAMIC;
1275     pOp->p4.z = pOut->z;
1276     pOp->p1 = pOut->n;
1277   }
1278 #endif
1279   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1280     goto too_big;
1281   }
1282   pOp->opcode = OP_String;
1283   assert( rc==SQLITE_OK );
1284   /* Fall through to the next case, OP_String */
1285   /* no break */ deliberate_fall_through
1286 }
1287 
1288 /* Opcode: String P1 P2 P3 P4 P5
1289 ** Synopsis: r[P2]='P4' (len=P1)
1290 **
1291 ** The string value P4 of length P1 (bytes) is stored in register P2.
1292 **
1293 ** If P3 is not zero and the content of register P3 is equal to P5, then
1294 ** the datatype of the register P2 is converted to BLOB.  The content is
1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1296 ** of a string, as if it had been CAST.  In other words:
1297 **
1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1299 */
1300 case OP_String: {          /* out2 */
1301   assert( pOp->p4.z!=0 );
1302   pOut = out2Prerelease(p, pOp);
1303   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1304   pOut->z = pOp->p4.z;
1305   pOut->n = pOp->p1;
1306   pOut->enc = encoding;
1307   UPDATE_MAX_BLOBSIZE(pOut);
1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1309   if( pOp->p3>0 ){
1310     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1311     pIn3 = &aMem[pOp->p3];
1312     assert( pIn3->flags & MEM_Int );
1313     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1314   }
1315 #endif
1316   break;
1317 }
1318 
1319 /* Opcode: BeginSubrtn * P2 * * *
1320 ** Synopsis: r[P2]=NULL
1321 **
1322 ** Mark the beginning of a subroutine that can be entered in-line
1323 ** or that can be called using OP_Gosub.  The subroutine should
1324 ** be terminated by an OP_Return instruction that has a P1 operand that
1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1326 ** If the subroutine is entered in-line, then the OP_Return will simply
1327 ** fall through.  But if the subroutine is entered using OP_Gosub, then
1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1329 **
1330 ** This routine works by loading a NULL into the P2 register.  When the
1331 ** return address register contains a NULL, the OP_Return instruction is
1332 ** a no-op that simply falls through to the next instruction (assuming that
1333 ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
1334 ** entered in-line, then the OP_Return will cause in-line execution to
1335 ** continue.  But if the subroutine is entered via OP_Gosub, then the
1336 ** OP_Return will cause a return to the address following the OP_Gosub.
1337 **
1338 ** This opcode is identical to OP_Null.  It has a different name
1339 ** only to make the byte code easier to read and verify.
1340 */
1341 /* Opcode: Null P1 P2 P3 * *
1342 ** Synopsis: r[P2..P3]=NULL
1343 **
1344 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1345 ** NULL into register P3 and every register in between P2 and P3.  If P3
1346 ** is less than P2 (typically P3 is zero) then only register P2 is
1347 ** set to NULL.
1348 **
1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1351 ** OP_Ne or OP_Eq.
1352 */
1353 case OP_BeginSubrtn:
1354 case OP_Null: {           /* out2 */
1355   int cnt;
1356   u16 nullFlag;
1357   pOut = out2Prerelease(p, pOp);
1358   cnt = pOp->p3-pOp->p2;
1359   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1360   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1361   pOut->n = 0;
1362 #ifdef SQLITE_DEBUG
1363   pOut->uTemp = 0;
1364 #endif
1365   while( cnt>0 ){
1366     pOut++;
1367     memAboutToChange(p, pOut);
1368     sqlite3VdbeMemSetNull(pOut);
1369     pOut->flags = nullFlag;
1370     pOut->n = 0;
1371     cnt--;
1372   }
1373   break;
1374 }
1375 
1376 /* Opcode: SoftNull P1 * * * *
1377 ** Synopsis: r[P1]=NULL
1378 **
1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1380 ** instruction, but do not free any string or blob memory associated with
1381 ** the register, so that if the value was a string or blob that was
1382 ** previously copied using OP_SCopy, the copies will continue to be valid.
1383 */
1384 case OP_SoftNull: {
1385   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1386   pOut = &aMem[pOp->p1];
1387   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1388   break;
1389 }
1390 
1391 /* Opcode: Blob P1 P2 * P4 *
1392 ** Synopsis: r[P2]=P4 (len=P1)
1393 **
1394 ** P4 points to a blob of data P1 bytes long.  Store this
1395 ** blob in register P2.  If P4 is a NULL pointer, then construct
1396 ** a zero-filled blob that is P1 bytes long in P2.
1397 */
1398 case OP_Blob: {                /* out2 */
1399   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1400   pOut = out2Prerelease(p, pOp);
1401   if( pOp->p4.z==0 ){
1402     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1403     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1404   }else{
1405     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1406   }
1407   pOut->enc = encoding;
1408   UPDATE_MAX_BLOBSIZE(pOut);
1409   break;
1410 }
1411 
1412 /* Opcode: Variable P1 P2 * P4 *
1413 ** Synopsis: r[P2]=parameter(P1,P4)
1414 **
1415 ** Transfer the values of bound parameter P1 into register P2
1416 **
1417 ** If the parameter is named, then its name appears in P4.
1418 ** The P4 value is used by sqlite3_bind_parameter_name().
1419 */
1420 case OP_Variable: {            /* out2 */
1421   Mem *pVar;       /* Value being transferred */
1422 
1423   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1424   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1425   pVar = &p->aVar[pOp->p1 - 1];
1426   if( sqlite3VdbeMemTooBig(pVar) ){
1427     goto too_big;
1428   }
1429   pOut = &aMem[pOp->p2];
1430   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1431   memcpy(pOut, pVar, MEMCELLSIZE);
1432   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1433   pOut->flags |= MEM_Static|MEM_FromBind;
1434   UPDATE_MAX_BLOBSIZE(pOut);
1435   break;
1436 }
1437 
1438 /* Opcode: Move P1 P2 P3 * *
1439 ** Synopsis: r[P2@P3]=r[P1@P3]
1440 **
1441 ** Move the P3 values in register P1..P1+P3-1 over into
1442 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1443 ** left holding a NULL.  It is an error for register ranges
1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1445 ** for P3 to be less than 1.
1446 */
1447 case OP_Move: {
1448   int n;           /* Number of registers left to copy */
1449   int p1;          /* Register to copy from */
1450   int p2;          /* Register to copy to */
1451 
1452   n = pOp->p3;
1453   p1 = pOp->p1;
1454   p2 = pOp->p2;
1455   assert( n>0 && p1>0 && p2>0 );
1456   assert( p1+n<=p2 || p2+n<=p1 );
1457 
1458   pIn1 = &aMem[p1];
1459   pOut = &aMem[p2];
1460   do{
1461     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1462     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1463     assert( memIsValid(pIn1) );
1464     memAboutToChange(p, pOut);
1465     sqlite3VdbeMemMove(pOut, pIn1);
1466 #ifdef SQLITE_DEBUG
1467     pIn1->pScopyFrom = 0;
1468     { int i;
1469       for(i=1; i<p->nMem; i++){
1470         if( aMem[i].pScopyFrom==pIn1 ){
1471           aMem[i].pScopyFrom = pOut;
1472         }
1473       }
1474     }
1475 #endif
1476     Deephemeralize(pOut);
1477     REGISTER_TRACE(p2++, pOut);
1478     pIn1++;
1479     pOut++;
1480   }while( --n );
1481   break;
1482 }
1483 
1484 /* Opcode: Copy P1 P2 P3 * P5
1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1486 **
1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1488 **
1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1490 ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
1491 ** be merged.  The 0x0001 bit is used by the query planner and does not
1492 ** come into play during query execution.
1493 **
1494 ** This instruction makes a deep copy of the value.  A duplicate
1495 ** is made of any string or blob constant.  See also OP_SCopy.
1496 */
1497 case OP_Copy: {
1498   int n;
1499 
1500   n = pOp->p3;
1501   pIn1 = &aMem[pOp->p1];
1502   pOut = &aMem[pOp->p2];
1503   assert( pOut!=pIn1 );
1504   while( 1 ){
1505     memAboutToChange(p, pOut);
1506     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1507     Deephemeralize(pOut);
1508     if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
1509       pOut->flags &= ~MEM_Subtype;
1510     }
1511 #ifdef SQLITE_DEBUG
1512     pOut->pScopyFrom = 0;
1513 #endif
1514     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1515     if( (n--)==0 ) break;
1516     pOut++;
1517     pIn1++;
1518   }
1519   break;
1520 }
1521 
1522 /* Opcode: SCopy P1 P2 * * *
1523 ** Synopsis: r[P2]=r[P1]
1524 **
1525 ** Make a shallow copy of register P1 into register P2.
1526 **
1527 ** This instruction makes a shallow copy of the value.  If the value
1528 ** is a string or blob, then the copy is only a pointer to the
1529 ** original and hence if the original changes so will the copy.
1530 ** Worse, if the original is deallocated, the copy becomes invalid.
1531 ** Thus the program must guarantee that the original will not change
1532 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1533 ** copy.
1534 */
1535 case OP_SCopy: {            /* out2 */
1536   pIn1 = &aMem[pOp->p1];
1537   pOut = &aMem[pOp->p2];
1538   assert( pOut!=pIn1 );
1539   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1540 #ifdef SQLITE_DEBUG
1541   pOut->pScopyFrom = pIn1;
1542   pOut->mScopyFlags = pIn1->flags;
1543 #endif
1544   break;
1545 }
1546 
1547 /* Opcode: IntCopy P1 P2 * * *
1548 ** Synopsis: r[P2]=r[P1]
1549 **
1550 ** Transfer the integer value held in register P1 into register P2.
1551 **
1552 ** This is an optimized version of SCopy that works only for integer
1553 ** values.
1554 */
1555 case OP_IntCopy: {            /* out2 */
1556   pIn1 = &aMem[pOp->p1];
1557   assert( (pIn1->flags & MEM_Int)!=0 );
1558   pOut = &aMem[pOp->p2];
1559   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1560   break;
1561 }
1562 
1563 /* Opcode: FkCheck * * * * *
1564 **
1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1566 ** foreign key constraint violations.  If there are no foreign key
1567 ** constraint violations, this is a no-op.
1568 **
1569 ** FK constraint violations are also checked when the prepared statement
1570 ** exits.  This opcode is used to raise foreign key constraint errors prior
1571 ** to returning results such as a row change count or the result of a
1572 ** RETURNING clause.
1573 */
1574 case OP_FkCheck: {
1575   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1576     goto abort_due_to_error;
1577   }
1578   break;
1579 }
1580 
1581 /* Opcode: ResultRow P1 P2 * * *
1582 ** Synopsis: output=r[P1@P2]
1583 **
1584 ** The registers P1 through P1+P2-1 contain a single row of
1585 ** results. This opcode causes the sqlite3_step() call to terminate
1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1588 ** the result row.
1589 */
1590 case OP_ResultRow: {
1591   assert( p->nResColumn==pOp->p2 );
1592   assert( pOp->p1>0 || CORRUPT_DB );
1593   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1594 
1595   p->cacheCtr = (p->cacheCtr + 2)|1;
1596   p->pResultSet = &aMem[pOp->p1];
1597 #ifdef SQLITE_DEBUG
1598   {
1599     Mem *pMem = p->pResultSet;
1600     int i;
1601     for(i=0; i<pOp->p2; i++){
1602       assert( memIsValid(&pMem[i]) );
1603       REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1604       /* The registers in the result will not be used again when the
1605       ** prepared statement restarts.  This is because sqlite3_column()
1606       ** APIs might have caused type conversions of made other changes to
1607       ** the register values.  Therefore, we can go ahead and break any
1608       ** OP_SCopy dependencies. */
1609       pMem[i].pScopyFrom = 0;
1610     }
1611   }
1612 #endif
1613   if( db->mallocFailed ) goto no_mem;
1614   if( db->mTrace & SQLITE_TRACE_ROW ){
1615     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1616   }
1617   p->pc = (int)(pOp - aOp) + 1;
1618   rc = SQLITE_ROW;
1619   goto vdbe_return;
1620 }
1621 
1622 /* Opcode: Concat P1 P2 P3 * *
1623 ** Synopsis: r[P3]=r[P2]+r[P1]
1624 **
1625 ** Add the text in register P1 onto the end of the text in
1626 ** register P2 and store the result in register P3.
1627 ** If either the P1 or P2 text are NULL then store NULL in P3.
1628 **
1629 **   P3 = P2 || P1
1630 **
1631 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1632 ** if P3 is the same register as P2, the implementation is able
1633 ** to avoid a memcpy().
1634 */
1635 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1636   i64 nByte;          /* Total size of the output string or blob */
1637   u16 flags1;         /* Initial flags for P1 */
1638   u16 flags2;         /* Initial flags for P2 */
1639 
1640   pIn1 = &aMem[pOp->p1];
1641   pIn2 = &aMem[pOp->p2];
1642   pOut = &aMem[pOp->p3];
1643   testcase( pOut==pIn2 );
1644   assert( pIn1!=pOut );
1645   flags1 = pIn1->flags;
1646   testcase( flags1 & MEM_Null );
1647   testcase( pIn2->flags & MEM_Null );
1648   if( (flags1 | pIn2->flags) & MEM_Null ){
1649     sqlite3VdbeMemSetNull(pOut);
1650     break;
1651   }
1652   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1653     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1654     flags1 = pIn1->flags & ~MEM_Str;
1655   }else if( (flags1 & MEM_Zero)!=0 ){
1656     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1657     flags1 = pIn1->flags & ~MEM_Str;
1658   }
1659   flags2 = pIn2->flags;
1660   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1661     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1662     flags2 = pIn2->flags & ~MEM_Str;
1663   }else if( (flags2 & MEM_Zero)!=0 ){
1664     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1665     flags2 = pIn2->flags & ~MEM_Str;
1666   }
1667   nByte = pIn1->n + pIn2->n;
1668   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1669     goto too_big;
1670   }
1671   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1672     goto no_mem;
1673   }
1674   MemSetTypeFlag(pOut, MEM_Str);
1675   if( pOut!=pIn2 ){
1676     memcpy(pOut->z, pIn2->z, pIn2->n);
1677     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1678     pIn2->flags = flags2;
1679   }
1680   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1681   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1682   pIn1->flags = flags1;
1683   if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1684   pOut->z[nByte]=0;
1685   pOut->z[nByte+1] = 0;
1686   pOut->flags |= MEM_Term;
1687   pOut->n = (int)nByte;
1688   pOut->enc = encoding;
1689   UPDATE_MAX_BLOBSIZE(pOut);
1690   break;
1691 }
1692 
1693 /* Opcode: Add P1 P2 P3 * *
1694 ** Synopsis: r[P3]=r[P1]+r[P2]
1695 **
1696 ** Add the value in register P1 to the value in register P2
1697 ** and store the result in register P3.
1698 ** If either input is NULL, the result is NULL.
1699 */
1700 /* Opcode: Multiply P1 P2 P3 * *
1701 ** Synopsis: r[P3]=r[P1]*r[P2]
1702 **
1703 **
1704 ** Multiply the value in register P1 by the value in register P2
1705 ** and store the result in register P3.
1706 ** If either input is NULL, the result is NULL.
1707 */
1708 /* Opcode: Subtract P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P2]-r[P1]
1710 **
1711 ** Subtract the value in register P1 from the value in register P2
1712 ** and store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1714 */
1715 /* Opcode: Divide P1 P2 P3 * *
1716 ** Synopsis: r[P3]=r[P2]/r[P1]
1717 **
1718 ** Divide the value in register P1 by the value in register P2
1719 ** and store the result in register P3 (P3=P2/P1). If the value in
1720 ** register P1 is zero, then the result is NULL. If either input is
1721 ** NULL, the result is NULL.
1722 */
1723 /* Opcode: Remainder P1 P2 P3 * *
1724 ** Synopsis: r[P3]=r[P2]%r[P1]
1725 **
1726 ** Compute the remainder after integer register P2 is divided by
1727 ** register P1 and store the result in register P3.
1728 ** If the value in register P1 is zero the result is NULL.
1729 ** If either operand is NULL, the result is NULL.
1730 */
1731 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1732 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1733 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1734 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1735 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1736   u16 type1;      /* Numeric type of left operand */
1737   u16 type2;      /* Numeric type of right operand */
1738   i64 iA;         /* Integer value of left operand */
1739   i64 iB;         /* Integer value of right operand */
1740   double rA;      /* Real value of left operand */
1741   double rB;      /* Real value of right operand */
1742 
1743   pIn1 = &aMem[pOp->p1];
1744   type1 = pIn1->flags;
1745   pIn2 = &aMem[pOp->p2];
1746   type2 = pIn2->flags;
1747   pOut = &aMem[pOp->p3];
1748   if( (type1 & type2 & MEM_Int)!=0 ){
1749 int_math:
1750     iA = pIn1->u.i;
1751     iB = pIn2->u.i;
1752     switch( pOp->opcode ){
1753       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1754       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1755       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1756       case OP_Divide: {
1757         if( iA==0 ) goto arithmetic_result_is_null;
1758         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1759         iB /= iA;
1760         break;
1761       }
1762       default: {
1763         if( iA==0 ) goto arithmetic_result_is_null;
1764         if( iA==-1 ) iA = 1;
1765         iB %= iA;
1766         break;
1767       }
1768     }
1769     pOut->u.i = iB;
1770     MemSetTypeFlag(pOut, MEM_Int);
1771   }else if( ((type1 | type2) & MEM_Null)!=0 ){
1772     goto arithmetic_result_is_null;
1773   }else{
1774     type1 = numericType(pIn1);
1775     type2 = numericType(pIn2);
1776     if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1777 fp_math:
1778     rA = sqlite3VdbeRealValue(pIn1);
1779     rB = sqlite3VdbeRealValue(pIn2);
1780     switch( pOp->opcode ){
1781       case OP_Add:         rB += rA;       break;
1782       case OP_Subtract:    rB -= rA;       break;
1783       case OP_Multiply:    rB *= rA;       break;
1784       case OP_Divide: {
1785         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1786         if( rA==(double)0 ) goto arithmetic_result_is_null;
1787         rB /= rA;
1788         break;
1789       }
1790       default: {
1791         iA = sqlite3VdbeIntValue(pIn1);
1792         iB = sqlite3VdbeIntValue(pIn2);
1793         if( iA==0 ) goto arithmetic_result_is_null;
1794         if( iA==-1 ) iA = 1;
1795         rB = (double)(iB % iA);
1796         break;
1797       }
1798     }
1799 #ifdef SQLITE_OMIT_FLOATING_POINT
1800     pOut->u.i = rB;
1801     MemSetTypeFlag(pOut, MEM_Int);
1802 #else
1803     if( sqlite3IsNaN(rB) ){
1804       goto arithmetic_result_is_null;
1805     }
1806     pOut->u.r = rB;
1807     MemSetTypeFlag(pOut, MEM_Real);
1808 #endif
1809   }
1810   break;
1811 
1812 arithmetic_result_is_null:
1813   sqlite3VdbeMemSetNull(pOut);
1814   break;
1815 }
1816 
1817 /* Opcode: CollSeq P1 * * P4
1818 **
1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1821 ** be returned. This is used by the built-in min(), max() and nullif()
1822 ** functions.
1823 **
1824 ** If P1 is not zero, then it is a register that a subsequent min() or
1825 ** max() aggregate will set to 1 if the current row is not the minimum or
1826 ** maximum.  The P1 register is initialized to 0 by this instruction.
1827 **
1828 ** The interface used by the implementation of the aforementioned functions
1829 ** to retrieve the collation sequence set by this opcode is not available
1830 ** publicly.  Only built-in functions have access to this feature.
1831 */
1832 case OP_CollSeq: {
1833   assert( pOp->p4type==P4_COLLSEQ );
1834   if( pOp->p1 ){
1835     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1836   }
1837   break;
1838 }
1839 
1840 /* Opcode: BitAnd P1 P2 P3 * *
1841 ** Synopsis: r[P3]=r[P1]&r[P2]
1842 **
1843 ** Take the bit-wise AND of the values in register P1 and P2 and
1844 ** store the result in register P3.
1845 ** If either input is NULL, the result is NULL.
1846 */
1847 /* Opcode: BitOr P1 P2 P3 * *
1848 ** Synopsis: r[P3]=r[P1]|r[P2]
1849 **
1850 ** Take the bit-wise OR of the values in register P1 and P2 and
1851 ** store the result in register P3.
1852 ** If either input is NULL, the result is NULL.
1853 */
1854 /* Opcode: ShiftLeft P1 P2 P3 * *
1855 ** Synopsis: r[P3]=r[P2]<<r[P1]
1856 **
1857 ** Shift the integer value in register P2 to the left by the
1858 ** number of bits specified by the integer in register P1.
1859 ** Store the result in register P3.
1860 ** If either input is NULL, the result is NULL.
1861 */
1862 /* Opcode: ShiftRight P1 P2 P3 * *
1863 ** Synopsis: r[P3]=r[P2]>>r[P1]
1864 **
1865 ** Shift the integer value in register P2 to the right by the
1866 ** number of bits specified by the integer in register P1.
1867 ** Store the result in register P3.
1868 ** If either input is NULL, the result is NULL.
1869 */
1870 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1871 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1872 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1873 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1874   i64 iA;
1875   u64 uA;
1876   i64 iB;
1877   u8 op;
1878 
1879   pIn1 = &aMem[pOp->p1];
1880   pIn2 = &aMem[pOp->p2];
1881   pOut = &aMem[pOp->p3];
1882   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1883     sqlite3VdbeMemSetNull(pOut);
1884     break;
1885   }
1886   iA = sqlite3VdbeIntValue(pIn2);
1887   iB = sqlite3VdbeIntValue(pIn1);
1888   op = pOp->opcode;
1889   if( op==OP_BitAnd ){
1890     iA &= iB;
1891   }else if( op==OP_BitOr ){
1892     iA |= iB;
1893   }else if( iB!=0 ){
1894     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1895 
1896     /* If shifting by a negative amount, shift in the other direction */
1897     if( iB<0 ){
1898       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1899       op = 2*OP_ShiftLeft + 1 - op;
1900       iB = iB>(-64) ? -iB : 64;
1901     }
1902 
1903     if( iB>=64 ){
1904       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1905     }else{
1906       memcpy(&uA, &iA, sizeof(uA));
1907       if( op==OP_ShiftLeft ){
1908         uA <<= iB;
1909       }else{
1910         uA >>= iB;
1911         /* Sign-extend on a right shift of a negative number */
1912         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1913       }
1914       memcpy(&iA, &uA, sizeof(iA));
1915     }
1916   }
1917   pOut->u.i = iA;
1918   MemSetTypeFlag(pOut, MEM_Int);
1919   break;
1920 }
1921 
1922 /* Opcode: AddImm  P1 P2 * * *
1923 ** Synopsis: r[P1]=r[P1]+P2
1924 **
1925 ** Add the constant P2 to the value in register P1.
1926 ** The result is always an integer.
1927 **
1928 ** To force any register to be an integer, just add 0.
1929 */
1930 case OP_AddImm: {            /* in1 */
1931   pIn1 = &aMem[pOp->p1];
1932   memAboutToChange(p, pIn1);
1933   sqlite3VdbeMemIntegerify(pIn1);
1934   pIn1->u.i += pOp->p2;
1935   break;
1936 }
1937 
1938 /* Opcode: MustBeInt P1 P2 * * *
1939 **
1940 ** Force the value in register P1 to be an integer.  If the value
1941 ** in P1 is not an integer and cannot be converted into an integer
1942 ** without data loss, then jump immediately to P2, or if P2==0
1943 ** raise an SQLITE_MISMATCH exception.
1944 */
1945 case OP_MustBeInt: {            /* jump, in1 */
1946   pIn1 = &aMem[pOp->p1];
1947   if( (pIn1->flags & MEM_Int)==0 ){
1948     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1949     if( (pIn1->flags & MEM_Int)==0 ){
1950       VdbeBranchTaken(1, 2);
1951       if( pOp->p2==0 ){
1952         rc = SQLITE_MISMATCH;
1953         goto abort_due_to_error;
1954       }else{
1955         goto jump_to_p2;
1956       }
1957     }
1958   }
1959   VdbeBranchTaken(0, 2);
1960   MemSetTypeFlag(pIn1, MEM_Int);
1961   break;
1962 }
1963 
1964 #ifndef SQLITE_OMIT_FLOATING_POINT
1965 /* Opcode: RealAffinity P1 * * * *
1966 **
1967 ** If register P1 holds an integer convert it to a real value.
1968 **
1969 ** This opcode is used when extracting information from a column that
1970 ** has REAL affinity.  Such column values may still be stored as
1971 ** integers, for space efficiency, but after extraction we want them
1972 ** to have only a real value.
1973 */
1974 case OP_RealAffinity: {                  /* in1 */
1975   pIn1 = &aMem[pOp->p1];
1976   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1977     testcase( pIn1->flags & MEM_Int );
1978     testcase( pIn1->flags & MEM_IntReal );
1979     sqlite3VdbeMemRealify(pIn1);
1980     REGISTER_TRACE(pOp->p1, pIn1);
1981   }
1982   break;
1983 }
1984 #endif
1985 
1986 #ifndef SQLITE_OMIT_CAST
1987 /* Opcode: Cast P1 P2 * * *
1988 ** Synopsis: affinity(r[P1])
1989 **
1990 ** Force the value in register P1 to be the type defined by P2.
1991 **
1992 ** <ul>
1993 ** <li> P2=='A' &rarr; BLOB
1994 ** <li> P2=='B' &rarr; TEXT
1995 ** <li> P2=='C' &rarr; NUMERIC
1996 ** <li> P2=='D' &rarr; INTEGER
1997 ** <li> P2=='E' &rarr; REAL
1998 ** </ul>
1999 **
2000 ** A NULL value is not changed by this routine.  It remains NULL.
2001 */
2002 case OP_Cast: {                  /* in1 */
2003   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2004   testcase( pOp->p2==SQLITE_AFF_TEXT );
2005   testcase( pOp->p2==SQLITE_AFF_BLOB );
2006   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2007   testcase( pOp->p2==SQLITE_AFF_INTEGER );
2008   testcase( pOp->p2==SQLITE_AFF_REAL );
2009   pIn1 = &aMem[pOp->p1];
2010   memAboutToChange(p, pIn1);
2011   rc = ExpandBlob(pIn1);
2012   if( rc ) goto abort_due_to_error;
2013   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2014   if( rc ) goto abort_due_to_error;
2015   UPDATE_MAX_BLOBSIZE(pIn1);
2016   REGISTER_TRACE(pOp->p1, pIn1);
2017   break;
2018 }
2019 #endif /* SQLITE_OMIT_CAST */
2020 
2021 /* Opcode: Eq P1 P2 P3 P4 P5
2022 ** Synopsis: IF r[P3]==r[P1]
2023 **
2024 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
2025 ** jump to address P2.
2026 **
2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2029 ** to coerce both inputs according to this affinity before the
2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2031 ** affinity is used. Note that the affinity conversions are stored
2032 ** back into the input registers P1 and P3.  So this opcode can cause
2033 ** persistent changes to registers P1 and P3.
2034 **
2035 ** Once any conversions have taken place, and neither value is NULL,
2036 ** the values are compared. If both values are blobs then memcmp() is
2037 ** used to determine the results of the comparison.  If both values
2038 ** are text, then the appropriate collating function specified in
2039 ** P4 is used to do the comparison.  If P4 is not specified then
2040 ** memcmp() is used to compare text string.  If both values are
2041 ** numeric, then a numeric comparison is used. If the two values
2042 ** are of different types, then numbers are considered less than
2043 ** strings and strings are considered less than blobs.
2044 **
2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2046 ** true or false and is never NULL.  If both operands are NULL then the result
2047 ** of comparison is true.  If either operand is NULL then the result is false.
2048 ** If neither operand is NULL the result is the same as it would be if
2049 ** the SQLITE_NULLEQ flag were omitted from P5.
2050 **
2051 ** This opcode saves the result of comparison for use by the new
2052 ** OP_Jump opcode.
2053 */
2054 /* Opcode: Ne P1 P2 P3 P4 P5
2055 ** Synopsis: IF r[P3]!=r[P1]
2056 **
2057 ** This works just like the Eq opcode except that the jump is taken if
2058 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2059 ** additional information.
2060 */
2061 /* Opcode: Lt P1 P2 P3 P4 P5
2062 ** Synopsis: IF r[P3]<r[P1]
2063 **
2064 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2065 ** jump to address P2.
2066 **
2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2068 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2069 ** bit is clear then fall through if either operand is NULL.
2070 **
2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2073 ** to coerce both inputs according to this affinity before the
2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2075 ** affinity is used. Note that the affinity conversions are stored
2076 ** back into the input registers P1 and P3.  So this opcode can cause
2077 ** persistent changes to registers P1 and P3.
2078 **
2079 ** Once any conversions have taken place, and neither value is NULL,
2080 ** the values are compared. If both values are blobs then memcmp() is
2081 ** used to determine the results of the comparison.  If both values
2082 ** are text, then the appropriate collating function specified in
2083 ** P4 is  used to do the comparison.  If P4 is not specified then
2084 ** memcmp() is used to compare text string.  If both values are
2085 ** numeric, then a numeric comparison is used. If the two values
2086 ** are of different types, then numbers are considered less than
2087 ** strings and strings are considered less than blobs.
2088 **
2089 ** This opcode saves the result of comparison for use by the new
2090 ** OP_Jump opcode.
2091 */
2092 /* Opcode: Le P1 P2 P3 P4 P5
2093 ** Synopsis: IF r[P3]<=r[P1]
2094 **
2095 ** This works just like the Lt opcode except that the jump is taken if
2096 ** the content of register P3 is less than or equal to the content of
2097 ** register P1.  See the Lt opcode for additional information.
2098 */
2099 /* Opcode: Gt P1 P2 P3 P4 P5
2100 ** Synopsis: IF r[P3]>r[P1]
2101 **
2102 ** This works just like the Lt opcode except that the jump is taken if
2103 ** the content of register P3 is greater than the content of
2104 ** register P1.  See the Lt opcode for additional information.
2105 */
2106 /* Opcode: Ge P1 P2 P3 P4 P5
2107 ** Synopsis: IF r[P3]>=r[P1]
2108 **
2109 ** This works just like the Lt opcode except that the jump is taken if
2110 ** the content of register P3 is greater than or equal to the content of
2111 ** register P1.  See the Lt opcode for additional information.
2112 */
2113 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2114 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2115 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2116 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2117 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2118 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2119   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2120   char affinity;      /* Affinity to use for comparison */
2121   u16 flags1;         /* Copy of initial value of pIn1->flags */
2122   u16 flags3;         /* Copy of initial value of pIn3->flags */
2123 
2124   pIn1 = &aMem[pOp->p1];
2125   pIn3 = &aMem[pOp->p3];
2126   flags1 = pIn1->flags;
2127   flags3 = pIn3->flags;
2128   if( (flags1 & flags3 & MEM_Int)!=0 ){
2129     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2130     /* Common case of comparison of two integers */
2131     if( pIn3->u.i > pIn1->u.i ){
2132       if( sqlite3aGTb[pOp->opcode] ){
2133         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2134         goto jump_to_p2;
2135       }
2136       iCompare = +1;
2137     }else if( pIn3->u.i < pIn1->u.i ){
2138       if( sqlite3aLTb[pOp->opcode] ){
2139         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2140         goto jump_to_p2;
2141       }
2142       iCompare = -1;
2143     }else{
2144       if( sqlite3aEQb[pOp->opcode] ){
2145         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2146         goto jump_to_p2;
2147       }
2148       iCompare = 0;
2149     }
2150     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2151     break;
2152   }
2153   if( (flags1 | flags3)&MEM_Null ){
2154     /* One or both operands are NULL */
2155     if( pOp->p5 & SQLITE_NULLEQ ){
2156       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2157       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2158       ** or not both operands are null.
2159       */
2160       assert( (flags1 & MEM_Cleared)==0 );
2161       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2162       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2163       if( (flags1&flags3&MEM_Null)!=0
2164        && (flags3&MEM_Cleared)==0
2165       ){
2166         res = 0;  /* Operands are equal */
2167       }else{
2168         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2169       }
2170     }else{
2171       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2172       ** then the result is always NULL.
2173       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2174       */
2175       VdbeBranchTaken(2,3);
2176       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2177         goto jump_to_p2;
2178       }
2179       iCompare = 1;    /* Operands are not equal */
2180       break;
2181     }
2182   }else{
2183     /* Neither operand is NULL and we couldn't do the special high-speed
2184     ** integer comparison case.  So do a general-case comparison. */
2185     affinity = pOp->p5 & SQLITE_AFF_MASK;
2186     if( affinity>=SQLITE_AFF_NUMERIC ){
2187       if( (flags1 | flags3)&MEM_Str ){
2188         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2189           applyNumericAffinity(pIn1,0);
2190           testcase( flags3==pIn3->flags );
2191           flags3 = pIn3->flags;
2192         }
2193         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2194           applyNumericAffinity(pIn3,0);
2195         }
2196       }
2197     }else if( affinity==SQLITE_AFF_TEXT ){
2198       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2199         testcase( pIn1->flags & MEM_Int );
2200         testcase( pIn1->flags & MEM_Real );
2201         testcase( pIn1->flags & MEM_IntReal );
2202         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2203         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2204         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2205         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2206       }
2207       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2208         testcase( pIn3->flags & MEM_Int );
2209         testcase( pIn3->flags & MEM_Real );
2210         testcase( pIn3->flags & MEM_IntReal );
2211         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2212         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2213         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2214       }
2215     }
2216     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2217     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2218   }
2219 
2220   /* At this point, res is negative, zero, or positive if reg[P1] is
2221   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2222   ** the answer to this operator in res2, depending on what the comparison
2223   ** operator actually is.  The next block of code depends on the fact
2224   ** that the 6 comparison operators are consecutive integers in this
2225   ** order:  NE, EQ, GT, LE, LT, GE */
2226   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2227   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2228   if( res<0 ){
2229     res2 = sqlite3aLTb[pOp->opcode];
2230   }else if( res==0 ){
2231     res2 = sqlite3aEQb[pOp->opcode];
2232   }else{
2233     res2 = sqlite3aGTb[pOp->opcode];
2234   }
2235   iCompare = res;
2236 
2237   /* Undo any changes made by applyAffinity() to the input registers. */
2238   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2239   pIn3->flags = flags3;
2240   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2241   pIn1->flags = flags1;
2242 
2243   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2244   if( res2 ){
2245     goto jump_to_p2;
2246   }
2247   break;
2248 }
2249 
2250 /* Opcode: ElseEq * P2 * * *
2251 **
2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2254 ** opcodes are allowed to occur between this instruction and the previous
2255 ** OP_Lt or OP_Gt.
2256 **
2257 ** If result of an OP_Eq comparison on the same two operands as the
2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2259 ** If the result of an OP_Eq comparison on the two previous
2260 ** operands would have been false or NULL, then fall through.
2261 */
2262 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2263 
2264 #ifdef SQLITE_DEBUG
2265   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2266   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2267   int iAddr;
2268   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2269     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2270     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2271     break;
2272   }
2273 #endif /* SQLITE_DEBUG */
2274   VdbeBranchTaken(iCompare==0, 2);
2275   if( iCompare==0 ) goto jump_to_p2;
2276   break;
2277 }
2278 
2279 
2280 /* Opcode: Permutation * * * P4 *
2281 **
2282 ** Set the permutation used by the OP_Compare operator in the next
2283 ** instruction.  The permutation is stored in the P4 operand.
2284 **
2285 ** The permutation is only valid for the next opcode which must be
2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2287 **
2288 ** The first integer in the P4 integer array is the length of the array
2289 ** and does not become part of the permutation.
2290 */
2291 case OP_Permutation: {
2292   assert( pOp->p4type==P4_INTARRAY );
2293   assert( pOp->p4.ai );
2294   assert( pOp[1].opcode==OP_Compare );
2295   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2296   break;
2297 }
2298 
2299 /* Opcode: Compare P1 P2 P3 P4 P5
2300 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2301 **
2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2304 ** the comparison for use by the next OP_Jump instruct.
2305 **
2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2307 ** determined by the most recent OP_Permutation operator.  If the
2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2309 ** order.
2310 **
2311 ** P4 is a KeyInfo structure that defines collating sequences and sort
2312 ** orders for the comparison.  The permutation applies to registers
2313 ** only.  The KeyInfo elements are used sequentially.
2314 **
2315 ** The comparison is a sort comparison, so NULLs compare equal,
2316 ** NULLs are less than numbers, numbers are less than strings,
2317 ** and strings are less than blobs.
2318 **
2319 ** This opcode must be immediately followed by an OP_Jump opcode.
2320 */
2321 case OP_Compare: {
2322   int n;
2323   int i;
2324   int p1;
2325   int p2;
2326   const KeyInfo *pKeyInfo;
2327   u32 idx;
2328   CollSeq *pColl;    /* Collating sequence to use on this term */
2329   int bRev;          /* True for DESCENDING sort order */
2330   u32 *aPermute;     /* The permutation */
2331 
2332   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2333     aPermute = 0;
2334   }else{
2335     assert( pOp>aOp );
2336     assert( pOp[-1].opcode==OP_Permutation );
2337     assert( pOp[-1].p4type==P4_INTARRAY );
2338     aPermute = pOp[-1].p4.ai + 1;
2339     assert( aPermute!=0 );
2340   }
2341   n = pOp->p3;
2342   pKeyInfo = pOp->p4.pKeyInfo;
2343   assert( n>0 );
2344   assert( pKeyInfo!=0 );
2345   p1 = pOp->p1;
2346   p2 = pOp->p2;
2347 #ifdef SQLITE_DEBUG
2348   if( aPermute ){
2349     int k, mx = 0;
2350     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2351     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2352     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2353   }else{
2354     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2355     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2356   }
2357 #endif /* SQLITE_DEBUG */
2358   for(i=0; i<n; i++){
2359     idx = aPermute ? aPermute[i] : (u32)i;
2360     assert( memIsValid(&aMem[p1+idx]) );
2361     assert( memIsValid(&aMem[p2+idx]) );
2362     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2363     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2364     assert( i<pKeyInfo->nKeyField );
2365     pColl = pKeyInfo->aColl[i];
2366     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2367     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2368     if( iCompare ){
2369       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2370        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2371       ){
2372         iCompare = -iCompare;
2373       }
2374       if( bRev ) iCompare = -iCompare;
2375       break;
2376     }
2377   }
2378   assert( pOp[1].opcode==OP_Jump );
2379   break;
2380 }
2381 
2382 /* Opcode: Jump P1 P2 P3 * *
2383 **
2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2385 ** in the most recent OP_Compare instruction the P1 vector was less than
2386 ** equal to, or greater than the P2 vector, respectively.
2387 **
2388 ** This opcode must immediately follow an OP_Compare opcode.
2389 */
2390 case OP_Jump: {             /* jump */
2391   assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2392   if( iCompare<0 ){
2393     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2394   }else if( iCompare==0 ){
2395     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2396   }else{
2397     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2398   }
2399   break;
2400 }
2401 
2402 /* Opcode: And P1 P2 P3 * *
2403 ** Synopsis: r[P3]=(r[P1] && r[P2])
2404 **
2405 ** Take the logical AND of the values in registers P1 and P2 and
2406 ** write the result into register P3.
2407 **
2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2409 ** the other input is NULL.  A NULL and true or two NULLs give
2410 ** a NULL output.
2411 */
2412 /* Opcode: Or P1 P2 P3 * *
2413 ** Synopsis: r[P3]=(r[P1] || r[P2])
2414 **
2415 ** Take the logical OR of the values in register P1 and P2 and
2416 ** store the answer in register P3.
2417 **
2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2419 ** even if the other input is NULL.  A NULL and false or two NULLs
2420 ** give a NULL output.
2421 */
2422 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2423 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2424   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2425   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2426 
2427   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2428   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2429   if( pOp->opcode==OP_And ){
2430     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2431     v1 = and_logic[v1*3+v2];
2432   }else{
2433     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2434     v1 = or_logic[v1*3+v2];
2435   }
2436   pOut = &aMem[pOp->p3];
2437   if( v1==2 ){
2438     MemSetTypeFlag(pOut, MEM_Null);
2439   }else{
2440     pOut->u.i = v1;
2441     MemSetTypeFlag(pOut, MEM_Int);
2442   }
2443   break;
2444 }
2445 
2446 /* Opcode: IsTrue P1 P2 P3 P4 *
2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2448 **
2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2450 ** IS NOT FALSE operators.
2451 **
2452 ** Interpret the value in register P1 as a boolean value.  Store that
2453 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2454 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2455 ** is 1.
2456 **
2457 ** The logic is summarized like this:
2458 **
2459 ** <ul>
2460 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2461 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2462 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2463 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2464 ** </ul>
2465 */
2466 case OP_IsTrue: {               /* in1, out2 */
2467   assert( pOp->p4type==P4_INT32 );
2468   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2469   assert( pOp->p3==0 || pOp->p3==1 );
2470   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2471       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2472   break;
2473 }
2474 
2475 /* Opcode: Not P1 P2 * * *
2476 ** Synopsis: r[P2]= !r[P1]
2477 **
2478 ** Interpret the value in register P1 as a boolean value.  Store the
2479 ** boolean complement in register P2.  If the value in register P1 is
2480 ** NULL, then a NULL is stored in P2.
2481 */
2482 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2483   pIn1 = &aMem[pOp->p1];
2484   pOut = &aMem[pOp->p2];
2485   if( (pIn1->flags & MEM_Null)==0 ){
2486     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2487   }else{
2488     sqlite3VdbeMemSetNull(pOut);
2489   }
2490   break;
2491 }
2492 
2493 /* Opcode: BitNot P1 P2 * * *
2494 ** Synopsis: r[P2]= ~r[P1]
2495 **
2496 ** Interpret the content of register P1 as an integer.  Store the
2497 ** ones-complement of the P1 value into register P2.  If P1 holds
2498 ** a NULL then store a NULL in P2.
2499 */
2500 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2501   pIn1 = &aMem[pOp->p1];
2502   pOut = &aMem[pOp->p2];
2503   sqlite3VdbeMemSetNull(pOut);
2504   if( (pIn1->flags & MEM_Null)==0 ){
2505     pOut->flags = MEM_Int;
2506     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2507   }
2508   break;
2509 }
2510 
2511 /* Opcode: Once P1 P2 * * *
2512 **
2513 ** Fall through to the next instruction the first time this opcode is
2514 ** encountered on each invocation of the byte-code program.  Jump to P2
2515 ** on the second and all subsequent encounters during the same invocation.
2516 **
2517 ** Top-level programs determine first invocation by comparing the P1
2518 ** operand against the P1 operand on the OP_Init opcode at the beginning
2519 ** of the program.  If the P1 values differ, then fall through and make
2520 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2521 ** the same then take the jump.
2522 **
2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2524 ** whether or not the jump should be taken.  The bitmask is necessary
2525 ** because the self-altering code trick does not work for recursive
2526 ** triggers.
2527 */
2528 case OP_Once: {             /* jump */
2529   u32 iAddr;                /* Address of this instruction */
2530   assert( p->aOp[0].opcode==OP_Init );
2531   if( p->pFrame ){
2532     iAddr = (int)(pOp - p->aOp);
2533     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2534       VdbeBranchTaken(1, 2);
2535       goto jump_to_p2;
2536     }
2537     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2538   }else{
2539     if( p->aOp[0].p1==pOp->p1 ){
2540       VdbeBranchTaken(1, 2);
2541       goto jump_to_p2;
2542     }
2543   }
2544   VdbeBranchTaken(0, 2);
2545   pOp->p1 = p->aOp[0].p1;
2546   break;
2547 }
2548 
2549 /* Opcode: If P1 P2 P3 * *
2550 **
2551 ** Jump to P2 if the value in register P1 is true.  The value
2552 ** is considered true if it is numeric and non-zero.  If the value
2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2554 */
2555 case OP_If:  {               /* jump, in1 */
2556   int c;
2557   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2558   VdbeBranchTaken(c!=0, 2);
2559   if( c ) goto jump_to_p2;
2560   break;
2561 }
2562 
2563 /* Opcode: IfNot P1 P2 P3 * *
2564 **
2565 ** Jump to P2 if the value in register P1 is False.  The value
2566 ** is considered false if it has a numeric value of zero.  If the value
2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2568 */
2569 case OP_IfNot: {            /* jump, in1 */
2570   int c;
2571   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2572   VdbeBranchTaken(c!=0, 2);
2573   if( c ) goto jump_to_p2;
2574   break;
2575 }
2576 
2577 /* Opcode: IsNull P1 P2 * * *
2578 ** Synopsis: if r[P1]==NULL goto P2
2579 **
2580 ** Jump to P2 if the value in register P1 is NULL.
2581 */
2582 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2583   pIn1 = &aMem[pOp->p1];
2584   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2585   if( (pIn1->flags & MEM_Null)!=0 ){
2586     goto jump_to_p2;
2587   }
2588   break;
2589 }
2590 
2591 /* Opcode: IsNullOrType P1 P2 P3 * *
2592 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2593 **
2594 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2595 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2596 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2597 */
2598 case OP_IsNullOrType: {      /* jump, in1 */
2599   int doTheJump;
2600   pIn1 = &aMem[pOp->p1];
2601   doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
2602   VdbeBranchTaken( doTheJump, 2);
2603   if( doTheJump ) goto jump_to_p2;
2604   break;
2605 }
2606 
2607 /* Opcode: ZeroOrNull P1 P2 P3 * *
2608 ** Synopsis: r[P2] = 0 OR NULL
2609 **
2610 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2611 ** register P2.  If either registers P1 or P3 are NULL then put
2612 ** a NULL in register P2.
2613 */
2614 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2615   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2616    || (aMem[pOp->p3].flags & MEM_Null)!=0
2617   ){
2618     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2619   }else{
2620     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2621   }
2622   break;
2623 }
2624 
2625 /* Opcode: NotNull P1 P2 * * *
2626 ** Synopsis: if r[P1]!=NULL goto P2
2627 **
2628 ** Jump to P2 if the value in register P1 is not NULL.
2629 */
2630 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2631   pIn1 = &aMem[pOp->p1];
2632   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2633   if( (pIn1->flags & MEM_Null)==0 ){
2634     goto jump_to_p2;
2635   }
2636   break;
2637 }
2638 
2639 /* Opcode: IfNullRow P1 P2 P3 * *
2640 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2641 **
2642 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2643 ** If it is, then set register P3 to NULL and jump immediately to P2.
2644 ** If P1 is not on a NULL row, then fall through without making any
2645 ** changes.
2646 **
2647 ** If P1 is not an open cursor, then this opcode is a no-op.
2648 */
2649 case OP_IfNullRow: {         /* jump */
2650   VdbeCursor *pC;
2651   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2652   pC = p->apCsr[pOp->p1];
2653   if( ALWAYS(pC) && pC->nullRow ){
2654     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2655     goto jump_to_p2;
2656   }
2657   break;
2658 }
2659 
2660 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2661 /* Opcode: Offset P1 P2 P3 * *
2662 ** Synopsis: r[P3] = sqlite_offset(P1)
2663 **
2664 ** Store in register r[P3] the byte offset into the database file that is the
2665 ** start of the payload for the record at which that cursor P1 is currently
2666 ** pointing.
2667 **
2668 ** P2 is the column number for the argument to the sqlite_offset() function.
2669 ** This opcode does not use P2 itself, but the P2 value is used by the
2670 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2671 ** same as for OP_Column.
2672 **
2673 ** This opcode is only available if SQLite is compiled with the
2674 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2675 */
2676 case OP_Offset: {          /* out3 */
2677   VdbeCursor *pC;    /* The VDBE cursor */
2678   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2679   pC = p->apCsr[pOp->p1];
2680   pOut = &p->aMem[pOp->p3];
2681   if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2682     sqlite3VdbeMemSetNull(pOut);
2683   }else{
2684     if( pC->deferredMoveto ){
2685       rc = sqlite3VdbeFinishMoveto(pC);
2686       if( rc ) goto abort_due_to_error;
2687     }
2688     if( sqlite3BtreeEof(pC->uc.pCursor) ){
2689       sqlite3VdbeMemSetNull(pOut);
2690     }else{
2691       sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2692     }
2693   }
2694   break;
2695 }
2696 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2697 
2698 /* Opcode: Column P1 P2 P3 P4 P5
2699 ** Synopsis: r[P3]=PX cursor P1 column P2
2700 **
2701 ** Interpret the data that cursor P1 points to as a structure built using
2702 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2703 ** information about the format of the data.)  Extract the P2-th column
2704 ** from this record.  If there are less that (P2+1)
2705 ** values in the record, extract a NULL.
2706 **
2707 ** The value extracted is stored in register P3.
2708 **
2709 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2710 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2711 ** the result.
2712 **
2713 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2714 ** the result is guaranteed to only be used as the argument of a length()
2715 ** or typeof() function, respectively.  The loading of large blobs can be
2716 ** skipped for length() and all content loading can be skipped for typeof().
2717 */
2718 case OP_Column: {
2719   u32 p2;            /* column number to retrieve */
2720   VdbeCursor *pC;    /* The VDBE cursor */
2721   BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
2722   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2723   int len;           /* The length of the serialized data for the column */
2724   int i;             /* Loop counter */
2725   Mem *pDest;        /* Where to write the extracted value */
2726   Mem sMem;          /* For storing the record being decoded */
2727   const u8 *zData;   /* Part of the record being decoded */
2728   const u8 *zHdr;    /* Next unparsed byte of the header */
2729   const u8 *zEndHdr; /* Pointer to first byte after the header */
2730   u64 offset64;      /* 64-bit offset */
2731   u32 t;             /* A type code from the record header */
2732   Mem *pReg;         /* PseudoTable input register */
2733 
2734   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2735   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2736   pC = p->apCsr[pOp->p1];
2737   p2 = (u32)pOp->p2;
2738 
2739 op_column_restart:
2740   assert( pC!=0 );
2741   assert( p2<(u32)pC->nField
2742        || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2743   aOffset = pC->aOffset;
2744   assert( aOffset==pC->aType+pC->nField );
2745   assert( pC->eCurType!=CURTYPE_VTAB );
2746   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2747   assert( pC->eCurType!=CURTYPE_SORTER );
2748 
2749   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2750     if( pC->nullRow ){
2751       if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2752         /* For the special case of as pseudo-cursor, the seekResult field
2753         ** identifies the register that holds the record */
2754         pReg = &aMem[pC->seekResult];
2755         assert( pReg->flags & MEM_Blob );
2756         assert( memIsValid(pReg) );
2757         pC->payloadSize = pC->szRow = pReg->n;
2758         pC->aRow = (u8*)pReg->z;
2759       }else{
2760         pDest = &aMem[pOp->p3];
2761         memAboutToChange(p, pDest);
2762         sqlite3VdbeMemSetNull(pDest);
2763         goto op_column_out;
2764       }
2765     }else{
2766       pCrsr = pC->uc.pCursor;
2767       if( pC->deferredMoveto ){
2768         u32 iMap;
2769         assert( !pC->isEphemeral );
2770         if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
2771           pC = pC->pAltCursor;
2772           p2 = iMap - 1;
2773           goto op_column_restart;
2774         }
2775         rc = sqlite3VdbeFinishMoveto(pC);
2776         if( rc ) goto abort_due_to_error;
2777       }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2778         rc = sqlite3VdbeHandleMovedCursor(pC);
2779         if( rc ) goto abort_due_to_error;
2780         goto op_column_restart;
2781       }
2782       assert( pC->eCurType==CURTYPE_BTREE );
2783       assert( pCrsr );
2784       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2785       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2786       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2787       assert( pC->szRow<=pC->payloadSize );
2788       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2789     }
2790     pC->cacheStatus = p->cacheCtr;
2791     if( (aOffset[0] = pC->aRow[0])<0x80 ){
2792       pC->iHdrOffset = 1;
2793     }else{
2794       pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2795     }
2796     pC->nHdrParsed = 0;
2797 
2798     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2799       /* pC->aRow does not have to hold the entire row, but it does at least
2800       ** need to cover the header of the record.  If pC->aRow does not contain
2801       ** the complete header, then set it to zero, forcing the header to be
2802       ** dynamically allocated. */
2803       pC->aRow = 0;
2804       pC->szRow = 0;
2805 
2806       /* Make sure a corrupt database has not given us an oversize header.
2807       ** Do this now to avoid an oversize memory allocation.
2808       **
2809       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2810       ** types use so much data space that there can only be 4096 and 32 of
2811       ** them, respectively.  So the maximum header length results from a
2812       ** 3-byte type for each of the maximum of 32768 columns plus three
2813       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2814       */
2815       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2816         goto op_column_corrupt;
2817       }
2818     }else{
2819       /* This is an optimization.  By skipping over the first few tests
2820       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2821       ** measurable performance gain.
2822       **
2823       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2824       ** generated by SQLite, and could be considered corruption, but we
2825       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2826       ** branch jumps to reads past the end of the record, but never more
2827       ** than a few bytes.  Even if the record occurs at the end of the page
2828       ** content area, the "page header" comes after the page content and so
2829       ** this overread is harmless.  Similar overreads can occur for a corrupt
2830       ** database file.
2831       */
2832       zData = pC->aRow;
2833       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2834       testcase( aOffset[0]==0 );
2835       goto op_column_read_header;
2836     }
2837   }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2838     rc = sqlite3VdbeHandleMovedCursor(pC);
2839     if( rc ) goto abort_due_to_error;
2840     goto op_column_restart;
2841   }
2842 
2843   /* Make sure at least the first p2+1 entries of the header have been
2844   ** parsed and valid information is in aOffset[] and pC->aType[].
2845   */
2846   if( pC->nHdrParsed<=p2 ){
2847     /* If there is more header available for parsing in the record, try
2848     ** to extract additional fields up through the p2+1-th field
2849     */
2850     if( pC->iHdrOffset<aOffset[0] ){
2851       /* Make sure zData points to enough of the record to cover the header. */
2852       if( pC->aRow==0 ){
2853         memset(&sMem, 0, sizeof(sMem));
2854         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2855         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2856         zData = (u8*)sMem.z;
2857       }else{
2858         zData = pC->aRow;
2859       }
2860 
2861       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2862     op_column_read_header:
2863       i = pC->nHdrParsed;
2864       offset64 = aOffset[i];
2865       zHdr = zData + pC->iHdrOffset;
2866       zEndHdr = zData + aOffset[0];
2867       testcase( zHdr>=zEndHdr );
2868       do{
2869         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2870           zHdr++;
2871           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2872         }else{
2873           zHdr += sqlite3GetVarint32(zHdr, &t);
2874           pC->aType[i] = t;
2875           offset64 += sqlite3VdbeSerialTypeLen(t);
2876         }
2877         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2878       }while( (u32)i<=p2 && zHdr<zEndHdr );
2879 
2880       /* The record is corrupt if any of the following are true:
2881       ** (1) the bytes of the header extend past the declared header size
2882       ** (2) the entire header was used but not all data was used
2883       ** (3) the end of the data extends beyond the end of the record.
2884       */
2885       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2886        || (offset64 > pC->payloadSize)
2887       ){
2888         if( aOffset[0]==0 ){
2889           i = 0;
2890           zHdr = zEndHdr;
2891         }else{
2892           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2893           goto op_column_corrupt;
2894         }
2895       }
2896 
2897       pC->nHdrParsed = i;
2898       pC->iHdrOffset = (u32)(zHdr - zData);
2899       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2900     }else{
2901       t = 0;
2902     }
2903 
2904     /* If after trying to extract new entries from the header, nHdrParsed is
2905     ** still not up to p2, that means that the record has fewer than p2
2906     ** columns.  So the result will be either the default value or a NULL.
2907     */
2908     if( pC->nHdrParsed<=p2 ){
2909       pDest = &aMem[pOp->p3];
2910       memAboutToChange(p, pDest);
2911       if( pOp->p4type==P4_MEM ){
2912         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2913       }else{
2914         sqlite3VdbeMemSetNull(pDest);
2915       }
2916       goto op_column_out;
2917     }
2918   }else{
2919     t = pC->aType[p2];
2920   }
2921 
2922   /* Extract the content for the p2+1-th column.  Control can only
2923   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2924   ** all valid.
2925   */
2926   assert( p2<pC->nHdrParsed );
2927   assert( rc==SQLITE_OK );
2928   pDest = &aMem[pOp->p3];
2929   memAboutToChange(p, pDest);
2930   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2931   if( VdbeMemDynamic(pDest) ){
2932     sqlite3VdbeMemSetNull(pDest);
2933   }
2934   assert( t==pC->aType[p2] );
2935   if( pC->szRow>=aOffset[p2+1] ){
2936     /* This is the common case where the desired content fits on the original
2937     ** page - where the content is not on an overflow page */
2938     zData = pC->aRow + aOffset[p2];
2939     if( t<12 ){
2940       sqlite3VdbeSerialGet(zData, t, pDest);
2941     }else{
2942       /* If the column value is a string, we need a persistent value, not
2943       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2944       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2945       */
2946       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2947       pDest->n = len = (t-12)/2;
2948       pDest->enc = encoding;
2949       if( pDest->szMalloc < len+2 ){
2950         if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2951         pDest->flags = MEM_Null;
2952         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2953       }else{
2954         pDest->z = pDest->zMalloc;
2955       }
2956       memcpy(pDest->z, zData, len);
2957       pDest->z[len] = 0;
2958       pDest->z[len+1] = 0;
2959       pDest->flags = aFlag[t&1];
2960     }
2961   }else{
2962     pDest->enc = encoding;
2963     /* This branch happens only when content is on overflow pages */
2964     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2965           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2966      || (len = sqlite3VdbeSerialTypeLen(t))==0
2967     ){
2968       /* Content is irrelevant for
2969       **    1. the typeof() function,
2970       **    2. the length(X) function if X is a blob, and
2971       **    3. if the content length is zero.
2972       ** So we might as well use bogus content rather than reading
2973       ** content from disk.
2974       **
2975       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2976       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2977       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2978       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2979       ** and it begins with a bunch of zeros.
2980       */
2981       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2982     }else{
2983       if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2984       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2985       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2986       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2987       pDest->flags &= ~MEM_Ephem;
2988     }
2989   }
2990 
2991 op_column_out:
2992   UPDATE_MAX_BLOBSIZE(pDest);
2993   REGISTER_TRACE(pOp->p3, pDest);
2994   break;
2995 
2996 op_column_corrupt:
2997   if( aOp[0].p3>0 ){
2998     pOp = &aOp[aOp[0].p3-1];
2999     break;
3000   }else{
3001     rc = SQLITE_CORRUPT_BKPT;
3002     goto abort_due_to_error;
3003   }
3004 }
3005 
3006 /* Opcode: TypeCheck P1 P2 P3 P4 *
3007 ** Synopsis: typecheck(r[P1@P2])
3008 **
3009 ** Apply affinities to the range of P2 registers beginning with P1.
3010 ** Take the affinities from the Table object in P4.  If any value
3011 ** cannot be coerced into the correct type, then raise an error.
3012 **
3013 ** This opcode is similar to OP_Affinity except that this opcode
3014 ** forces the register type to the Table column type.  This is used
3015 ** to implement "strict affinity".
3016 **
3017 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3018 ** is zero.  When P3 is non-zero, no type checking occurs for
3019 ** static generated columns.  Virtual columns are computed at query time
3020 ** and so they are never checked.
3021 **
3022 ** Preconditions:
3023 **
3024 ** <ul>
3025 ** <li> P2 should be the number of non-virtual columns in the
3026 **      table of P4.
3027 ** <li> Table P4 should be a STRICT table.
3028 ** </ul>
3029 **
3030 ** If any precondition is false, an assertion fault occurs.
3031 */
3032 case OP_TypeCheck: {
3033   Table *pTab;
3034   Column *aCol;
3035   int i;
3036 
3037   assert( pOp->p4type==P4_TABLE );
3038   pTab = pOp->p4.pTab;
3039   assert( pTab->tabFlags & TF_Strict );
3040   assert( pTab->nNVCol==pOp->p2 );
3041   aCol = pTab->aCol;
3042   pIn1 = &aMem[pOp->p1];
3043   for(i=0; i<pTab->nCol; i++){
3044     if( aCol[i].colFlags & COLFLAG_GENERATED ){
3045       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3046       if( pOp->p3 ){ pIn1++; continue; }
3047     }
3048     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3049     applyAffinity(pIn1, aCol[i].affinity, encoding);
3050     if( (pIn1->flags & MEM_Null)==0 ){
3051       switch( aCol[i].eCType ){
3052         case COLTYPE_BLOB: {
3053           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3054           break;
3055         }
3056         case COLTYPE_INTEGER:
3057         case COLTYPE_INT: {
3058           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3059           break;
3060         }
3061         case COLTYPE_TEXT: {
3062           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3063           break;
3064         }
3065         case COLTYPE_REAL: {
3066           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3067           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3068           if( pIn1->flags & MEM_Int ){
3069             /* When applying REAL affinity, if the result is still an MEM_Int
3070             ** that will fit in 6 bytes, then change the type to MEM_IntReal
3071             ** so that we keep the high-resolution integer value but know that
3072             ** the type really wants to be REAL. */
3073             testcase( pIn1->u.i==140737488355328LL );
3074             testcase( pIn1->u.i==140737488355327LL );
3075             testcase( pIn1->u.i==-140737488355328LL );
3076             testcase( pIn1->u.i==-140737488355329LL );
3077             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3078               pIn1->flags |= MEM_IntReal;
3079               pIn1->flags &= ~MEM_Int;
3080             }else{
3081               pIn1->u.r = (double)pIn1->u.i;
3082               pIn1->flags |= MEM_Real;
3083               pIn1->flags &= ~MEM_Int;
3084             }
3085           }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3086             goto vdbe_type_error;
3087           }
3088           break;
3089         }
3090         default: {
3091           /* COLTYPE_ANY.  Accept anything. */
3092           break;
3093         }
3094       }
3095     }
3096     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3097     pIn1++;
3098   }
3099   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3100   break;
3101 
3102 vdbe_type_error:
3103   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3104      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3105      pTab->zName, aCol[i].zCnName);
3106   rc = SQLITE_CONSTRAINT_DATATYPE;
3107   goto abort_due_to_error;
3108 }
3109 
3110 /* Opcode: Affinity P1 P2 * P4 *
3111 ** Synopsis: affinity(r[P1@P2])
3112 **
3113 ** Apply affinities to a range of P2 registers starting with P1.
3114 **
3115 ** P4 is a string that is P2 characters long. The N-th character of the
3116 ** string indicates the column affinity that should be used for the N-th
3117 ** memory cell in the range.
3118 */
3119 case OP_Affinity: {
3120   const char *zAffinity;   /* The affinity to be applied */
3121 
3122   zAffinity = pOp->p4.z;
3123   assert( zAffinity!=0 );
3124   assert( pOp->p2>0 );
3125   assert( zAffinity[pOp->p2]==0 );
3126   pIn1 = &aMem[pOp->p1];
3127   while( 1 /*exit-by-break*/ ){
3128     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3129     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3130     applyAffinity(pIn1, zAffinity[0], encoding);
3131     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3132       /* When applying REAL affinity, if the result is still an MEM_Int
3133       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3134       ** so that we keep the high-resolution integer value but know that
3135       ** the type really wants to be REAL. */
3136       testcase( pIn1->u.i==140737488355328LL );
3137       testcase( pIn1->u.i==140737488355327LL );
3138       testcase( pIn1->u.i==-140737488355328LL );
3139       testcase( pIn1->u.i==-140737488355329LL );
3140       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3141         pIn1->flags |= MEM_IntReal;
3142         pIn1->flags &= ~MEM_Int;
3143       }else{
3144         pIn1->u.r = (double)pIn1->u.i;
3145         pIn1->flags |= MEM_Real;
3146         pIn1->flags &= ~MEM_Int;
3147       }
3148     }
3149     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3150     zAffinity++;
3151     if( zAffinity[0]==0 ) break;
3152     pIn1++;
3153   }
3154   break;
3155 }
3156 
3157 /* Opcode: MakeRecord P1 P2 P3 P4 *
3158 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3159 **
3160 ** Convert P2 registers beginning with P1 into the [record format]
3161 ** use as a data record in a database table or as a key
3162 ** in an index.  The OP_Column opcode can decode the record later.
3163 **
3164 ** P4 may be a string that is P2 characters long.  The N-th character of the
3165 ** string indicates the column affinity that should be used for the N-th
3166 ** field of the index key.
3167 **
3168 ** The mapping from character to affinity is given by the SQLITE_AFF_
3169 ** macros defined in sqliteInt.h.
3170 **
3171 ** If P4 is NULL then all index fields have the affinity BLOB.
3172 **
3173 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3174 ** compile-time option is enabled:
3175 **
3176 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3177 **     of the right-most table that can be null-trimmed.
3178 **
3179 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3180 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3181 **     accept no-change records with serial_type 10.  This value is
3182 **     only used inside an assert() and does not affect the end result.
3183 */
3184 case OP_MakeRecord: {
3185   Mem *pRec;             /* The new record */
3186   u64 nData;             /* Number of bytes of data space */
3187   int nHdr;              /* Number of bytes of header space */
3188   i64 nByte;             /* Data space required for this record */
3189   i64 nZero;             /* Number of zero bytes at the end of the record */
3190   int nVarint;           /* Number of bytes in a varint */
3191   u32 serial_type;       /* Type field */
3192   Mem *pData0;           /* First field to be combined into the record */
3193   Mem *pLast;            /* Last field of the record */
3194   int nField;            /* Number of fields in the record */
3195   char *zAffinity;       /* The affinity string for the record */
3196   u32 len;               /* Length of a field */
3197   u8 *zHdr;              /* Where to write next byte of the header */
3198   u8 *zPayload;          /* Where to write next byte of the payload */
3199 
3200   /* Assuming the record contains N fields, the record format looks
3201   ** like this:
3202   **
3203   ** ------------------------------------------------------------------------
3204   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3205   ** ------------------------------------------------------------------------
3206   **
3207   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3208   ** and so forth.
3209   **
3210   ** Each type field is a varint representing the serial type of the
3211   ** corresponding data element (see sqlite3VdbeSerialType()). The
3212   ** hdr-size field is also a varint which is the offset from the beginning
3213   ** of the record to data0.
3214   */
3215   nData = 0;         /* Number of bytes of data space */
3216   nHdr = 0;          /* Number of bytes of header space */
3217   nZero = 0;         /* Number of zero bytes at the end of the record */
3218   nField = pOp->p1;
3219   zAffinity = pOp->p4.z;
3220   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3221   pData0 = &aMem[nField];
3222   nField = pOp->p2;
3223   pLast = &pData0[nField-1];
3224 
3225   /* Identify the output register */
3226   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3227   pOut = &aMem[pOp->p3];
3228   memAboutToChange(p, pOut);
3229 
3230   /* Apply the requested affinity to all inputs
3231   */
3232   assert( pData0<=pLast );
3233   if( zAffinity ){
3234     pRec = pData0;
3235     do{
3236       applyAffinity(pRec, zAffinity[0], encoding);
3237       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3238         pRec->flags |= MEM_IntReal;
3239         pRec->flags &= ~(MEM_Int);
3240       }
3241       REGISTER_TRACE((int)(pRec-aMem), pRec);
3242       zAffinity++;
3243       pRec++;
3244       assert( zAffinity[0]==0 || pRec<=pLast );
3245     }while( zAffinity[0] );
3246   }
3247 
3248 #ifdef SQLITE_ENABLE_NULL_TRIM
3249   /* NULLs can be safely trimmed from the end of the record, as long as
3250   ** as the schema format is 2 or more and none of the omitted columns
3251   ** have a non-NULL default value.  Also, the record must be left with
3252   ** at least one field.  If P5>0 then it will be one more than the
3253   ** index of the right-most column with a non-NULL default value */
3254   if( pOp->p5 ){
3255     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3256       pLast--;
3257       nField--;
3258     }
3259   }
3260 #endif
3261 
3262   /* Loop through the elements that will make up the record to figure
3263   ** out how much space is required for the new record.  After this loop,
3264   ** the Mem.uTemp field of each term should hold the serial-type that will
3265   ** be used for that term in the generated record:
3266   **
3267   **   Mem.uTemp value    type
3268   **   ---------------    ---------------
3269   **      0               NULL
3270   **      1               1-byte signed integer
3271   **      2               2-byte signed integer
3272   **      3               3-byte signed integer
3273   **      4               4-byte signed integer
3274   **      5               6-byte signed integer
3275   **      6               8-byte signed integer
3276   **      7               IEEE float
3277   **      8               Integer constant 0
3278   **      9               Integer constant 1
3279   **     10,11            reserved for expansion
3280   **    N>=12 and even    BLOB
3281   **    N>=13 and odd     text
3282   **
3283   ** The following additional values are computed:
3284   **     nHdr        Number of bytes needed for the record header
3285   **     nData       Number of bytes of data space needed for the record
3286   **     nZero       Zero bytes at the end of the record
3287   */
3288   pRec = pLast;
3289   do{
3290     assert( memIsValid(pRec) );
3291     if( pRec->flags & MEM_Null ){
3292       if( pRec->flags & MEM_Zero ){
3293         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3294         ** table methods that never invoke sqlite3_result_xxxxx() while
3295         ** computing an unchanging column value in an UPDATE statement.
3296         ** Give such values a special internal-use-only serial-type of 10
3297         ** so that they can be passed through to xUpdate and have
3298         ** a true sqlite3_value_nochange(). */
3299 #ifndef SQLITE_ENABLE_NULL_TRIM
3300         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3301 #endif
3302         pRec->uTemp = 10;
3303       }else{
3304         pRec->uTemp = 0;
3305       }
3306       nHdr++;
3307     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3308       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3309       i64 i = pRec->u.i;
3310       u64 uu;
3311       testcase( pRec->flags & MEM_Int );
3312       testcase( pRec->flags & MEM_IntReal );
3313       if( i<0 ){
3314         uu = ~i;
3315       }else{
3316         uu = i;
3317       }
3318       nHdr++;
3319       testcase( uu==127 );               testcase( uu==128 );
3320       testcase( uu==32767 );             testcase( uu==32768 );
3321       testcase( uu==8388607 );           testcase( uu==8388608 );
3322       testcase( uu==2147483647 );        testcase( uu==2147483648LL );
3323       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3324       if( uu<=127 ){
3325         if( (i&1)==i && p->minWriteFileFormat>=4 ){
3326           pRec->uTemp = 8+(u32)uu;
3327         }else{
3328           nData++;
3329           pRec->uTemp = 1;
3330         }
3331       }else if( uu<=32767 ){
3332         nData += 2;
3333         pRec->uTemp = 2;
3334       }else if( uu<=8388607 ){
3335         nData += 3;
3336         pRec->uTemp = 3;
3337       }else if( uu<=2147483647 ){
3338         nData += 4;
3339         pRec->uTemp = 4;
3340       }else if( uu<=140737488355327LL ){
3341         nData += 6;
3342         pRec->uTemp = 5;
3343       }else{
3344         nData += 8;
3345         if( pRec->flags & MEM_IntReal ){
3346           /* If the value is IntReal and is going to take up 8 bytes to store
3347           ** as an integer, then we might as well make it an 8-byte floating
3348           ** point value */
3349           pRec->u.r = (double)pRec->u.i;
3350           pRec->flags &= ~MEM_IntReal;
3351           pRec->flags |= MEM_Real;
3352           pRec->uTemp = 7;
3353         }else{
3354           pRec->uTemp = 6;
3355         }
3356       }
3357     }else if( pRec->flags & MEM_Real ){
3358       nHdr++;
3359       nData += 8;
3360       pRec->uTemp = 7;
3361     }else{
3362       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3363       assert( pRec->n>=0 );
3364       len = (u32)pRec->n;
3365       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3366       if( pRec->flags & MEM_Zero ){
3367         serial_type += pRec->u.nZero*2;
3368         if( nData ){
3369           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3370           len += pRec->u.nZero;
3371         }else{
3372           nZero += pRec->u.nZero;
3373         }
3374       }
3375       nData += len;
3376       nHdr += sqlite3VarintLen(serial_type);
3377       pRec->uTemp = serial_type;
3378     }
3379     if( pRec==pData0 ) break;
3380     pRec--;
3381   }while(1);
3382 
3383   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3384   ** which determines the total number of bytes in the header. The varint
3385   ** value is the size of the header in bytes including the size varint
3386   ** itself. */
3387   testcase( nHdr==126 );
3388   testcase( nHdr==127 );
3389   if( nHdr<=126 ){
3390     /* The common case */
3391     nHdr += 1;
3392   }else{
3393     /* Rare case of a really large header */
3394     nVarint = sqlite3VarintLen(nHdr);
3395     nHdr += nVarint;
3396     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3397   }
3398   nByte = nHdr+nData;
3399 
3400   /* Make sure the output register has a buffer large enough to store
3401   ** the new record. The output register (pOp->p3) is not allowed to
3402   ** be one of the input registers (because the following call to
3403   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3404   */
3405   if( nByte+nZero<=pOut->szMalloc ){
3406     /* The output register is already large enough to hold the record.
3407     ** No error checks or buffer enlargement is required */
3408     pOut->z = pOut->zMalloc;
3409   }else{
3410     /* Need to make sure that the output is not too big and then enlarge
3411     ** the output register to hold the full result */
3412     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3413       goto too_big;
3414     }
3415     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3416       goto no_mem;
3417     }
3418   }
3419   pOut->n = (int)nByte;
3420   pOut->flags = MEM_Blob;
3421   if( nZero ){
3422     pOut->u.nZero = nZero;
3423     pOut->flags |= MEM_Zero;
3424   }
3425   UPDATE_MAX_BLOBSIZE(pOut);
3426   zHdr = (u8 *)pOut->z;
3427   zPayload = zHdr + nHdr;
3428 
3429   /* Write the record */
3430   if( nHdr<0x80 ){
3431     *(zHdr++) = nHdr;
3432   }else{
3433     zHdr += sqlite3PutVarint(zHdr,nHdr);
3434   }
3435   assert( pData0<=pLast );
3436   pRec = pData0;
3437   while( 1 /*exit-by-break*/ ){
3438     serial_type = pRec->uTemp;
3439     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3440     ** additional varints, one per column.
3441     ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3442     ** immediately follow the header. */
3443     if( serial_type<=7 ){
3444       *(zHdr++) = serial_type;
3445       if( serial_type==0 ){
3446         /* NULL value.  No change in zPayload */
3447       }else{
3448         u64 v;
3449         u32 i;
3450         if( serial_type==7 ){
3451           assert( sizeof(v)==sizeof(pRec->u.r) );
3452           memcpy(&v, &pRec->u.r, sizeof(v));
3453           swapMixedEndianFloat(v);
3454         }else{
3455           v = pRec->u.i;
3456         }
3457         len = i = sqlite3SmallTypeSizes[serial_type];
3458         assert( i>0 );
3459         while( 1 /*exit-by-break*/ ){
3460           zPayload[--i] = (u8)(v&0xFF);
3461           if( i==0 ) break;
3462           v >>= 8;
3463         }
3464         zPayload += len;
3465       }
3466     }else if( serial_type<0x80 ){
3467       *(zHdr++) = serial_type;
3468       if( serial_type>=14 && pRec->n>0 ){
3469         assert( pRec->z!=0 );
3470         memcpy(zPayload, pRec->z, pRec->n);
3471         zPayload += pRec->n;
3472       }
3473     }else{
3474       zHdr += sqlite3PutVarint(zHdr, serial_type);
3475       if( pRec->n ){
3476         assert( pRec->z!=0 );
3477         memcpy(zPayload, pRec->z, pRec->n);
3478         zPayload += pRec->n;
3479       }
3480     }
3481     if( pRec==pLast ) break;
3482     pRec++;
3483   }
3484   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3485   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3486 
3487   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3488   REGISTER_TRACE(pOp->p3, pOut);
3489   break;
3490 }
3491 
3492 /* Opcode: Count P1 P2 P3 * *
3493 ** Synopsis: r[P2]=count()
3494 **
3495 ** Store the number of entries (an integer value) in the table or index
3496 ** opened by cursor P1 in register P2.
3497 **
3498 ** If P3==0, then an exact count is obtained, which involves visiting
3499 ** every btree page of the table.  But if P3 is non-zero, an estimate
3500 ** is returned based on the current cursor position.
3501 */
3502 case OP_Count: {         /* out2 */
3503   i64 nEntry;
3504   BtCursor *pCrsr;
3505 
3506   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3507   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3508   assert( pCrsr );
3509   if( pOp->p3 ){
3510     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3511   }else{
3512     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3513     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3514     if( rc ) goto abort_due_to_error;
3515   }
3516   pOut = out2Prerelease(p, pOp);
3517   pOut->u.i = nEntry;
3518   goto check_for_interrupt;
3519 }
3520 
3521 /* Opcode: Savepoint P1 * * P4 *
3522 **
3523 ** Open, release or rollback the savepoint named by parameter P4, depending
3524 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3525 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3526 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3527 */
3528 case OP_Savepoint: {
3529   int p1;                         /* Value of P1 operand */
3530   char *zName;                    /* Name of savepoint */
3531   int nName;
3532   Savepoint *pNew;
3533   Savepoint *pSavepoint;
3534   Savepoint *pTmp;
3535   int iSavepoint;
3536   int ii;
3537 
3538   p1 = pOp->p1;
3539   zName = pOp->p4.z;
3540 
3541   /* Assert that the p1 parameter is valid. Also that if there is no open
3542   ** transaction, then there cannot be any savepoints.
3543   */
3544   assert( db->pSavepoint==0 || db->autoCommit==0 );
3545   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3546   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3547   assert( checkSavepointCount(db) );
3548   assert( p->bIsReader );
3549 
3550   if( p1==SAVEPOINT_BEGIN ){
3551     if( db->nVdbeWrite>0 ){
3552       /* A new savepoint cannot be created if there are active write
3553       ** statements (i.e. open read/write incremental blob handles).
3554       */
3555       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3556       rc = SQLITE_BUSY;
3557     }else{
3558       nName = sqlite3Strlen30(zName);
3559 
3560 #ifndef SQLITE_OMIT_VIRTUALTABLE
3561       /* This call is Ok even if this savepoint is actually a transaction
3562       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3563       ** If this is a transaction savepoint being opened, it is guaranteed
3564       ** that the db->aVTrans[] array is empty.  */
3565       assert( db->autoCommit==0 || db->nVTrans==0 );
3566       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3567                                 db->nStatement+db->nSavepoint);
3568       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3569 #endif
3570 
3571       /* Create a new savepoint structure. */
3572       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3573       if( pNew ){
3574         pNew->zName = (char *)&pNew[1];
3575         memcpy(pNew->zName, zName, nName+1);
3576 
3577         /* If there is no open transaction, then mark this as a special
3578         ** "transaction savepoint". */
3579         if( db->autoCommit ){
3580           db->autoCommit = 0;
3581           db->isTransactionSavepoint = 1;
3582         }else{
3583           db->nSavepoint++;
3584         }
3585 
3586         /* Link the new savepoint into the database handle's list. */
3587         pNew->pNext = db->pSavepoint;
3588         db->pSavepoint = pNew;
3589         pNew->nDeferredCons = db->nDeferredCons;
3590         pNew->nDeferredImmCons = db->nDeferredImmCons;
3591       }
3592     }
3593   }else{
3594     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3595     iSavepoint = 0;
3596 
3597     /* Find the named savepoint. If there is no such savepoint, then an
3598     ** an error is returned to the user.  */
3599     for(
3600       pSavepoint = db->pSavepoint;
3601       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3602       pSavepoint = pSavepoint->pNext
3603     ){
3604       iSavepoint++;
3605     }
3606     if( !pSavepoint ){
3607       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3608       rc = SQLITE_ERROR;
3609     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3610       /* It is not possible to release (commit) a savepoint if there are
3611       ** active write statements.
3612       */
3613       sqlite3VdbeError(p, "cannot release savepoint - "
3614                           "SQL statements in progress");
3615       rc = SQLITE_BUSY;
3616     }else{
3617 
3618       /* Determine whether or not this is a transaction savepoint. If so,
3619       ** and this is a RELEASE command, then the current transaction
3620       ** is committed.
3621       */
3622       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3623       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3624         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3625           goto vdbe_return;
3626         }
3627         db->autoCommit = 1;
3628         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3629           p->pc = (int)(pOp - aOp);
3630           db->autoCommit = 0;
3631           p->rc = rc = SQLITE_BUSY;
3632           goto vdbe_return;
3633         }
3634         rc = p->rc;
3635         if( rc ){
3636           db->autoCommit = 0;
3637         }else{
3638           db->isTransactionSavepoint = 0;
3639         }
3640       }else{
3641         int isSchemaChange;
3642         iSavepoint = db->nSavepoint - iSavepoint - 1;
3643         if( p1==SAVEPOINT_ROLLBACK ){
3644           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3645           for(ii=0; ii<db->nDb; ii++){
3646             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3647                                        SQLITE_ABORT_ROLLBACK,
3648                                        isSchemaChange==0);
3649             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3650           }
3651         }else{
3652           assert( p1==SAVEPOINT_RELEASE );
3653           isSchemaChange = 0;
3654         }
3655         for(ii=0; ii<db->nDb; ii++){
3656           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3657           if( rc!=SQLITE_OK ){
3658             goto abort_due_to_error;
3659           }
3660         }
3661         if( isSchemaChange ){
3662           sqlite3ExpirePreparedStatements(db, 0);
3663           sqlite3ResetAllSchemasOfConnection(db);
3664           db->mDbFlags |= DBFLAG_SchemaChange;
3665         }
3666       }
3667       if( rc ) goto abort_due_to_error;
3668 
3669       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3670       ** savepoints nested inside of the savepoint being operated on. */
3671       while( db->pSavepoint!=pSavepoint ){
3672         pTmp = db->pSavepoint;
3673         db->pSavepoint = pTmp->pNext;
3674         sqlite3DbFree(db, pTmp);
3675         db->nSavepoint--;
3676       }
3677 
3678       /* If it is a RELEASE, then destroy the savepoint being operated on
3679       ** too. If it is a ROLLBACK TO, then set the number of deferred
3680       ** constraint violations present in the database to the value stored
3681       ** when the savepoint was created.  */
3682       if( p1==SAVEPOINT_RELEASE ){
3683         assert( pSavepoint==db->pSavepoint );
3684         db->pSavepoint = pSavepoint->pNext;
3685         sqlite3DbFree(db, pSavepoint);
3686         if( !isTransaction ){
3687           db->nSavepoint--;
3688         }
3689       }else{
3690         assert( p1==SAVEPOINT_ROLLBACK );
3691         db->nDeferredCons = pSavepoint->nDeferredCons;
3692         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3693       }
3694 
3695       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3696         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3697         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3698       }
3699     }
3700   }
3701   if( rc ) goto abort_due_to_error;
3702   if( p->eVdbeState==VDBE_HALT_STATE ){
3703     rc = SQLITE_DONE;
3704     goto vdbe_return;
3705   }
3706   break;
3707 }
3708 
3709 /* Opcode: AutoCommit P1 P2 * * *
3710 **
3711 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3712 ** back any currently active btree transactions. If there are any active
3713 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3714 ** there are active writing VMs or active VMs that use shared cache.
3715 **
3716 ** This instruction causes the VM to halt.
3717 */
3718 case OP_AutoCommit: {
3719   int desiredAutoCommit;
3720   int iRollback;
3721 
3722   desiredAutoCommit = pOp->p1;
3723   iRollback = pOp->p2;
3724   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3725   assert( desiredAutoCommit==1 || iRollback==0 );
3726   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3727   assert( p->bIsReader );
3728 
3729   if( desiredAutoCommit!=db->autoCommit ){
3730     if( iRollback ){
3731       assert( desiredAutoCommit==1 );
3732       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3733       db->autoCommit = 1;
3734     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3735       /* If this instruction implements a COMMIT and other VMs are writing
3736       ** return an error indicating that the other VMs must complete first.
3737       */
3738       sqlite3VdbeError(p, "cannot commit transaction - "
3739                           "SQL statements in progress");
3740       rc = SQLITE_BUSY;
3741       goto abort_due_to_error;
3742     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3743       goto vdbe_return;
3744     }else{
3745       db->autoCommit = (u8)desiredAutoCommit;
3746     }
3747     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3748       p->pc = (int)(pOp - aOp);
3749       db->autoCommit = (u8)(1-desiredAutoCommit);
3750       p->rc = rc = SQLITE_BUSY;
3751       goto vdbe_return;
3752     }
3753     sqlite3CloseSavepoints(db);
3754     if( p->rc==SQLITE_OK ){
3755       rc = SQLITE_DONE;
3756     }else{
3757       rc = SQLITE_ERROR;
3758     }
3759     goto vdbe_return;
3760   }else{
3761     sqlite3VdbeError(p,
3762         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3763         (iRollback)?"cannot rollback - no transaction is active":
3764                    "cannot commit - no transaction is active"));
3765 
3766     rc = SQLITE_ERROR;
3767     goto abort_due_to_error;
3768   }
3769   /*NOTREACHED*/ assert(0);
3770 }
3771 
3772 /* Opcode: Transaction P1 P2 P3 P4 P5
3773 **
3774 ** Begin a transaction on database P1 if a transaction is not already
3775 ** active.
3776 ** If P2 is non-zero, then a write-transaction is started, or if a
3777 ** read-transaction is already active, it is upgraded to a write-transaction.
3778 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3779 ** then an exclusive transaction is started.
3780 **
3781 ** P1 is the index of the database file on which the transaction is
3782 ** started.  Index 0 is the main database file and index 1 is the
3783 ** file used for temporary tables.  Indices of 2 or more are used for
3784 ** attached databases.
3785 **
3786 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3787 ** true (this flag is set if the Vdbe may modify more than one row and may
3788 ** throw an ABORT exception), a statement transaction may also be opened.
3789 ** More specifically, a statement transaction is opened iff the database
3790 ** connection is currently not in autocommit mode, or if there are other
3791 ** active statements. A statement transaction allows the changes made by this
3792 ** VDBE to be rolled back after an error without having to roll back the
3793 ** entire transaction. If no error is encountered, the statement transaction
3794 ** will automatically commit when the VDBE halts.
3795 **
3796 ** If P5!=0 then this opcode also checks the schema cookie against P3
3797 ** and the schema generation counter against P4.
3798 ** The cookie changes its value whenever the database schema changes.
3799 ** This operation is used to detect when that the cookie has changed
3800 ** and that the current process needs to reread the schema.  If the schema
3801 ** cookie in P3 differs from the schema cookie in the database header or
3802 ** if the schema generation counter in P4 differs from the current
3803 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3804 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3805 ** statement and rerun it from the beginning.
3806 */
3807 case OP_Transaction: {
3808   Btree *pBt;
3809   Db *pDb;
3810   int iMeta = 0;
3811 
3812   assert( p->bIsReader );
3813   assert( p->readOnly==0 || pOp->p2==0 );
3814   assert( pOp->p2>=0 && pOp->p2<=2 );
3815   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3816   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3817   assert( rc==SQLITE_OK );
3818   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3819     if( db->flags & SQLITE_QueryOnly ){
3820       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3821       rc = SQLITE_READONLY;
3822     }else{
3823       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3824       ** transaction */
3825       rc = SQLITE_CORRUPT;
3826     }
3827     goto abort_due_to_error;
3828   }
3829   pDb = &db->aDb[pOp->p1];
3830   pBt = pDb->pBt;
3831 
3832   if( pBt ){
3833     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3834     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3835     testcase( rc==SQLITE_BUSY_RECOVERY );
3836     if( rc!=SQLITE_OK ){
3837       if( (rc&0xff)==SQLITE_BUSY ){
3838         p->pc = (int)(pOp - aOp);
3839         p->rc = rc;
3840         goto vdbe_return;
3841       }
3842       goto abort_due_to_error;
3843     }
3844 
3845     if( p->usesStmtJournal
3846      && pOp->p2
3847      && (db->autoCommit==0 || db->nVdbeRead>1)
3848     ){
3849       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3850       if( p->iStatement==0 ){
3851         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3852         db->nStatement++;
3853         p->iStatement = db->nSavepoint + db->nStatement;
3854       }
3855 
3856       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3857       if( rc==SQLITE_OK ){
3858         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3859       }
3860 
3861       /* Store the current value of the database handles deferred constraint
3862       ** counter. If the statement transaction needs to be rolled back,
3863       ** the value of this counter needs to be restored too.  */
3864       p->nStmtDefCons = db->nDeferredCons;
3865       p->nStmtDefImmCons = db->nDeferredImmCons;
3866     }
3867   }
3868   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3869   if( rc==SQLITE_OK
3870    && pOp->p5
3871    && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3872   ){
3873     /*
3874     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3875     ** version is checked to ensure that the schema has not changed since the
3876     ** SQL statement was prepared.
3877     */
3878     sqlite3DbFree(db, p->zErrMsg);
3879     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3880     /* If the schema-cookie from the database file matches the cookie
3881     ** stored with the in-memory representation of the schema, do
3882     ** not reload the schema from the database file.
3883     **
3884     ** If virtual-tables are in use, this is not just an optimization.
3885     ** Often, v-tables store their data in other SQLite tables, which
3886     ** are queried from within xNext() and other v-table methods using
3887     ** prepared queries. If such a query is out-of-date, we do not want to
3888     ** discard the database schema, as the user code implementing the
3889     ** v-table would have to be ready for the sqlite3_vtab structure itself
3890     ** to be invalidated whenever sqlite3_step() is called from within
3891     ** a v-table method.
3892     */
3893     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3894       sqlite3ResetOneSchema(db, pOp->p1);
3895     }
3896     p->expired = 1;
3897     rc = SQLITE_SCHEMA;
3898 
3899     /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3900     ** from being modified in sqlite3VdbeHalt(). If this statement is
3901     ** reprepared, changeCntOn will be set again. */
3902     p->changeCntOn = 0;
3903   }
3904   if( rc ) goto abort_due_to_error;
3905   break;
3906 }
3907 
3908 /* Opcode: ReadCookie P1 P2 P3 * *
3909 **
3910 ** Read cookie number P3 from database P1 and write it into register P2.
3911 ** P3==1 is the schema version.  P3==2 is the database format.
3912 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3913 ** the main database file and P1==1 is the database file used to store
3914 ** temporary tables.
3915 **
3916 ** There must be a read-lock on the database (either a transaction
3917 ** must be started or there must be an open cursor) before
3918 ** executing this instruction.
3919 */
3920 case OP_ReadCookie: {               /* out2 */
3921   int iMeta;
3922   int iDb;
3923   int iCookie;
3924 
3925   assert( p->bIsReader );
3926   iDb = pOp->p1;
3927   iCookie = pOp->p3;
3928   assert( pOp->p3<SQLITE_N_BTREE_META );
3929   assert( iDb>=0 && iDb<db->nDb );
3930   assert( db->aDb[iDb].pBt!=0 );
3931   assert( DbMaskTest(p->btreeMask, iDb) );
3932 
3933   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3934   pOut = out2Prerelease(p, pOp);
3935   pOut->u.i = iMeta;
3936   break;
3937 }
3938 
3939 /* Opcode: SetCookie P1 P2 P3 * P5
3940 **
3941 ** Write the integer value P3 into cookie number P2 of database P1.
3942 ** P2==1 is the schema version.  P2==2 is the database format.
3943 ** P2==3 is the recommended pager cache
3944 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3945 ** database file used to store temporary tables.
3946 **
3947 ** A transaction must be started before executing this opcode.
3948 **
3949 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3950 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3951 ** has P5 set to 1, so that the internal schema version will be different
3952 ** from the database schema version, resulting in a schema reset.
3953 */
3954 case OP_SetCookie: {
3955   Db *pDb;
3956 
3957   sqlite3VdbeIncrWriteCounter(p, 0);
3958   assert( pOp->p2<SQLITE_N_BTREE_META );
3959   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3960   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3961   assert( p->readOnly==0 );
3962   pDb = &db->aDb[pOp->p1];
3963   assert( pDb->pBt!=0 );
3964   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3965   /* See note about index shifting on OP_ReadCookie */
3966   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3967   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3968     /* When the schema cookie changes, record the new cookie internally */
3969     *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
3970     db->mDbFlags |= DBFLAG_SchemaChange;
3971     sqlite3FkClearTriggerCache(db, pOp->p1);
3972   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3973     /* Record changes in the file format */
3974     pDb->pSchema->file_format = pOp->p3;
3975   }
3976   if( pOp->p1==1 ){
3977     /* Invalidate all prepared statements whenever the TEMP database
3978     ** schema is changed.  Ticket #1644 */
3979     sqlite3ExpirePreparedStatements(db, 0);
3980     p->expired = 0;
3981   }
3982   if( rc ) goto abort_due_to_error;
3983   break;
3984 }
3985 
3986 /* Opcode: OpenRead P1 P2 P3 P4 P5
3987 ** Synopsis: root=P2 iDb=P3
3988 **
3989 ** Open a read-only cursor for the database table whose root page is
3990 ** P2 in a database file.  The database file is determined by P3.
3991 ** P3==0 means the main database, P3==1 means the database used for
3992 ** temporary tables, and P3>1 means used the corresponding attached
3993 ** database.  Give the new cursor an identifier of P1.  The P1
3994 ** values need not be contiguous but all P1 values should be small integers.
3995 ** It is an error for P1 to be negative.
3996 **
3997 ** Allowed P5 bits:
3998 ** <ul>
3999 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4000 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4001 **       of OP_SeekLE/OP_IdxLT)
4002 ** </ul>
4003 **
4004 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4005 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4006 ** object, then table being opened must be an [index b-tree] where the
4007 ** KeyInfo object defines the content and collating
4008 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4009 ** value, then the table being opened must be a [table b-tree] with a
4010 ** number of columns no less than the value of P4.
4011 **
4012 ** See also: OpenWrite, ReopenIdx
4013 */
4014 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4015 ** Synopsis: root=P2 iDb=P3
4016 **
4017 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4018 ** checks to see if the cursor on P1 is already open on the same
4019 ** b-tree and if it is this opcode becomes a no-op.  In other words,
4020 ** if the cursor is already open, do not reopen it.
4021 **
4022 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4023 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
4024 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4025 ** number.
4026 **
4027 ** Allowed P5 bits:
4028 ** <ul>
4029 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4030 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4031 **       of OP_SeekLE/OP_IdxLT)
4032 ** </ul>
4033 **
4034 ** See also: OP_OpenRead, OP_OpenWrite
4035 */
4036 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4037 ** Synopsis: root=P2 iDb=P3
4038 **
4039 ** Open a read/write cursor named P1 on the table or index whose root
4040 ** page is P2 (or whose root page is held in register P2 if the
4041 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4042 **
4043 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4044 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4045 ** object, then table being opened must be an [index b-tree] where the
4046 ** KeyInfo object defines the content and collating
4047 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4048 ** value, then the table being opened must be a [table b-tree] with a
4049 ** number of columns no less than the value of P4.
4050 **
4051 ** Allowed P5 bits:
4052 ** <ul>
4053 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4054 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4055 **       of OP_SeekLE/OP_IdxLT)
4056 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4057 **       and subsequently delete entries in an index btree.  This is a
4058 **       hint to the storage engine that the storage engine is allowed to
4059 **       ignore.  The hint is not used by the official SQLite b*tree storage
4060 **       engine, but is used by COMDB2.
4061 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4062 **       as the root page, not the value of P2 itself.
4063 ** </ul>
4064 **
4065 ** This instruction works like OpenRead except that it opens the cursor
4066 ** in read/write mode.
4067 **
4068 ** See also: OP_OpenRead, OP_ReopenIdx
4069 */
4070 case OP_ReopenIdx: {
4071   int nField;
4072   KeyInfo *pKeyInfo;
4073   u32 p2;
4074   int iDb;
4075   int wrFlag;
4076   Btree *pX;
4077   VdbeCursor *pCur;
4078   Db *pDb;
4079 
4080   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4081   assert( pOp->p4type==P4_KEYINFO );
4082   pCur = p->apCsr[pOp->p1];
4083   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4084     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
4085     assert( pCur->eCurType==CURTYPE_BTREE );
4086     sqlite3BtreeClearCursor(pCur->uc.pCursor);
4087     goto open_cursor_set_hints;
4088   }
4089   /* If the cursor is not currently open or is open on a different
4090   ** index, then fall through into OP_OpenRead to force a reopen */
4091 case OP_OpenRead:
4092 case OP_OpenWrite:
4093 
4094   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4095   assert( p->bIsReader );
4096   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4097           || p->readOnly==0 );
4098 
4099   if( p->expired==1 ){
4100     rc = SQLITE_ABORT_ROLLBACK;
4101     goto abort_due_to_error;
4102   }
4103 
4104   nField = 0;
4105   pKeyInfo = 0;
4106   p2 = (u32)pOp->p2;
4107   iDb = pOp->p3;
4108   assert( iDb>=0 && iDb<db->nDb );
4109   assert( DbMaskTest(p->btreeMask, iDb) );
4110   pDb = &db->aDb[iDb];
4111   pX = pDb->pBt;
4112   assert( pX!=0 );
4113   if( pOp->opcode==OP_OpenWrite ){
4114     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4115     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4116     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4117     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4118       p->minWriteFileFormat = pDb->pSchema->file_format;
4119     }
4120   }else{
4121     wrFlag = 0;
4122   }
4123   if( pOp->p5 & OPFLAG_P2ISREG ){
4124     assert( p2>0 );
4125     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4126     assert( pOp->opcode==OP_OpenWrite );
4127     pIn2 = &aMem[p2];
4128     assert( memIsValid(pIn2) );
4129     assert( (pIn2->flags & MEM_Int)!=0 );
4130     sqlite3VdbeMemIntegerify(pIn2);
4131     p2 = (int)pIn2->u.i;
4132     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4133     ** that opcode will always set the p2 value to 2 or more or else fail.
4134     ** If there were a failure, the prepared statement would have halted
4135     ** before reaching this instruction. */
4136     assert( p2>=2 );
4137   }
4138   if( pOp->p4type==P4_KEYINFO ){
4139     pKeyInfo = pOp->p4.pKeyInfo;
4140     assert( pKeyInfo->enc==ENC(db) );
4141     assert( pKeyInfo->db==db );
4142     nField = pKeyInfo->nAllField;
4143   }else if( pOp->p4type==P4_INT32 ){
4144     nField = pOp->p4.i;
4145   }
4146   assert( pOp->p1>=0 );
4147   assert( nField>=0 );
4148   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4149   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4150   if( pCur==0 ) goto no_mem;
4151   pCur->iDb = iDb;
4152   pCur->nullRow = 1;
4153   pCur->isOrdered = 1;
4154   pCur->pgnoRoot = p2;
4155 #ifdef SQLITE_DEBUG
4156   pCur->wrFlag = wrFlag;
4157 #endif
4158   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4159   pCur->pKeyInfo = pKeyInfo;
4160   /* Set the VdbeCursor.isTable variable. Previous versions of
4161   ** SQLite used to check if the root-page flags were sane at this point
4162   ** and report database corruption if they were not, but this check has
4163   ** since moved into the btree layer.  */
4164   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4165 
4166 open_cursor_set_hints:
4167   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4168   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4169   testcase( pOp->p5 & OPFLAG_BULKCSR );
4170   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4171   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4172                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4173   if( rc ) goto abort_due_to_error;
4174   break;
4175 }
4176 
4177 /* Opcode: OpenDup P1 P2 * * *
4178 **
4179 ** Open a new cursor P1 that points to the same ephemeral table as
4180 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4181 ** opcode.  Only ephemeral cursors may be duplicated.
4182 **
4183 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4184 */
4185 case OP_OpenDup: {
4186   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4187   VdbeCursor *pCx;      /* The new cursor */
4188 
4189   pOrig = p->apCsr[pOp->p2];
4190   assert( pOrig );
4191   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4192 
4193   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4194   if( pCx==0 ) goto no_mem;
4195   pCx->nullRow = 1;
4196   pCx->isEphemeral = 1;
4197   pCx->pKeyInfo = pOrig->pKeyInfo;
4198   pCx->isTable = pOrig->isTable;
4199   pCx->pgnoRoot = pOrig->pgnoRoot;
4200   pCx->isOrdered = pOrig->isOrdered;
4201   pCx->ub.pBtx = pOrig->ub.pBtx;
4202   pCx->noReuse = 1;
4203   pOrig->noReuse = 1;
4204   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4205                           pCx->pKeyInfo, pCx->uc.pCursor);
4206   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4207   ** opened for a database.  Since there is already an open cursor when this
4208   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4209   assert( rc==SQLITE_OK );
4210   break;
4211 }
4212 
4213 
4214 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4215 ** Synopsis: nColumn=P2
4216 **
4217 ** Open a new cursor P1 to a transient table.
4218 ** The cursor is always opened read/write even if
4219 ** the main database is read-only.  The ephemeral
4220 ** table is deleted automatically when the cursor is closed.
4221 **
4222 ** If the cursor P1 is already opened on an ephemeral table, the table
4223 ** is cleared (all content is erased).
4224 **
4225 ** P2 is the number of columns in the ephemeral table.
4226 ** The cursor points to a BTree table if P4==0 and to a BTree index
4227 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4228 ** that defines the format of keys in the index.
4229 **
4230 ** The P5 parameter can be a mask of the BTREE_* flags defined
4231 ** in btree.h.  These flags control aspects of the operation of
4232 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4233 ** added automatically.
4234 **
4235 ** If P3 is positive, then reg[P3] is modified slightly so that it
4236 ** can be used as zero-length data for OP_Insert.  This is an optimization
4237 ** that avoids an extra OP_Blob opcode to initialize that register.
4238 */
4239 /* Opcode: OpenAutoindex P1 P2 * P4 *
4240 ** Synopsis: nColumn=P2
4241 **
4242 ** This opcode works the same as OP_OpenEphemeral.  It has a
4243 ** different name to distinguish its use.  Tables created using
4244 ** by this opcode will be used for automatically created transient
4245 ** indices in joins.
4246 */
4247 case OP_OpenAutoindex:
4248 case OP_OpenEphemeral: {
4249   VdbeCursor *pCx;
4250   KeyInfo *pKeyInfo;
4251 
4252   static const int vfsFlags =
4253       SQLITE_OPEN_READWRITE |
4254       SQLITE_OPEN_CREATE |
4255       SQLITE_OPEN_EXCLUSIVE |
4256       SQLITE_OPEN_DELETEONCLOSE |
4257       SQLITE_OPEN_TRANSIENT_DB;
4258   assert( pOp->p1>=0 );
4259   assert( pOp->p2>=0 );
4260   if( pOp->p3>0 ){
4261     /* Make register reg[P3] into a value that can be used as the data
4262     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4263     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4264     assert( pOp->opcode==OP_OpenEphemeral );
4265     assert( aMem[pOp->p3].flags & MEM_Null );
4266     aMem[pOp->p3].n = 0;
4267     aMem[pOp->p3].z = "";
4268   }
4269   pCx = p->apCsr[pOp->p1];
4270   if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
4271     /* If the ephermeral table is already open and has no duplicates from
4272     ** OP_OpenDup, then erase all existing content so that the table is
4273     ** empty again, rather than creating a new table. */
4274     assert( pCx->isEphemeral );
4275     pCx->seqCount = 0;
4276     pCx->cacheStatus = CACHE_STALE;
4277     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4278   }else{
4279     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4280     if( pCx==0 ) goto no_mem;
4281     pCx->isEphemeral = 1;
4282     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4283                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4284                           vfsFlags);
4285     if( rc==SQLITE_OK ){
4286       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4287       if( rc==SQLITE_OK ){
4288         /* If a transient index is required, create it by calling
4289         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4290         ** opening it. If a transient table is required, just use the
4291         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4292         */
4293         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4294           assert( pOp->p4type==P4_KEYINFO );
4295           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4296               BTREE_BLOBKEY | pOp->p5);
4297           if( rc==SQLITE_OK ){
4298             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4299             assert( pKeyInfo->db==db );
4300             assert( pKeyInfo->enc==ENC(db) );
4301             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4302                 pKeyInfo, pCx->uc.pCursor);
4303           }
4304           pCx->isTable = 0;
4305         }else{
4306           pCx->pgnoRoot = SCHEMA_ROOT;
4307           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4308               0, pCx->uc.pCursor);
4309           pCx->isTable = 1;
4310         }
4311       }
4312       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4313       if( rc ){
4314         sqlite3BtreeClose(pCx->ub.pBtx);
4315       }
4316     }
4317   }
4318   if( rc ) goto abort_due_to_error;
4319   pCx->nullRow = 1;
4320   break;
4321 }
4322 
4323 /* Opcode: SorterOpen P1 P2 P3 P4 *
4324 **
4325 ** This opcode works like OP_OpenEphemeral except that it opens
4326 ** a transient index that is specifically designed to sort large
4327 ** tables using an external merge-sort algorithm.
4328 **
4329 ** If argument P3 is non-zero, then it indicates that the sorter may
4330 ** assume that a stable sort considering the first P3 fields of each
4331 ** key is sufficient to produce the required results.
4332 */
4333 case OP_SorterOpen: {
4334   VdbeCursor *pCx;
4335 
4336   assert( pOp->p1>=0 );
4337   assert( pOp->p2>=0 );
4338   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4339   if( pCx==0 ) goto no_mem;
4340   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4341   assert( pCx->pKeyInfo->db==db );
4342   assert( pCx->pKeyInfo->enc==ENC(db) );
4343   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4344   if( rc ) goto abort_due_to_error;
4345   break;
4346 }
4347 
4348 /* Opcode: SequenceTest P1 P2 * * *
4349 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4350 **
4351 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4352 ** to P2. Regardless of whether or not the jump is taken, increment the
4353 ** the sequence value.
4354 */
4355 case OP_SequenceTest: {
4356   VdbeCursor *pC;
4357   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4358   pC = p->apCsr[pOp->p1];
4359   assert( isSorter(pC) );
4360   if( (pC->seqCount++)==0 ){
4361     goto jump_to_p2;
4362   }
4363   break;
4364 }
4365 
4366 /* Opcode: OpenPseudo P1 P2 P3 * *
4367 ** Synopsis: P3 columns in r[P2]
4368 **
4369 ** Open a new cursor that points to a fake table that contains a single
4370 ** row of data.  The content of that one row is the content of memory
4371 ** register P2.  In other words, cursor P1 becomes an alias for the
4372 ** MEM_Blob content contained in register P2.
4373 **
4374 ** A pseudo-table created by this opcode is used to hold a single
4375 ** row output from the sorter so that the row can be decomposed into
4376 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4377 ** is the only cursor opcode that works with a pseudo-table.
4378 **
4379 ** P3 is the number of fields in the records that will be stored by
4380 ** the pseudo-table.
4381 */
4382 case OP_OpenPseudo: {
4383   VdbeCursor *pCx;
4384 
4385   assert( pOp->p1>=0 );
4386   assert( pOp->p3>=0 );
4387   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4388   if( pCx==0 ) goto no_mem;
4389   pCx->nullRow = 1;
4390   pCx->seekResult = pOp->p2;
4391   pCx->isTable = 1;
4392   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4393   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4394   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4395   ** which is a performance optimization */
4396   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4397   assert( pOp->p5==0 );
4398   break;
4399 }
4400 
4401 /* Opcode: Close P1 * * * *
4402 **
4403 ** Close a cursor previously opened as P1.  If P1 is not
4404 ** currently open, this instruction is a no-op.
4405 */
4406 case OP_Close: {
4407   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4408   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4409   p->apCsr[pOp->p1] = 0;
4410   break;
4411 }
4412 
4413 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4414 /* Opcode: ColumnsUsed P1 * * P4 *
4415 **
4416 ** This opcode (which only exists if SQLite was compiled with
4417 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4418 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4419 ** (P4_INT64) in which the first 63 bits are one for each of the
4420 ** first 63 columns of the table or index that are actually used
4421 ** by the cursor.  The high-order bit is set if any column after
4422 ** the 64th is used.
4423 */
4424 case OP_ColumnsUsed: {
4425   VdbeCursor *pC;
4426   pC = p->apCsr[pOp->p1];
4427   assert( pC->eCurType==CURTYPE_BTREE );
4428   pC->maskUsed = *(u64*)pOp->p4.pI64;
4429   break;
4430 }
4431 #endif
4432 
4433 /* Opcode: SeekGE P1 P2 P3 P4 *
4434 ** Synopsis: key=r[P3@P4]
4435 **
4436 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4437 ** use the value in register P3 as the key.  If cursor P1 refers
4438 ** to an SQL index, then P3 is the first in an array of P4 registers
4439 ** that are used as an unpacked index key.
4440 **
4441 ** Reposition cursor P1 so that  it points to the smallest entry that
4442 ** is greater than or equal to the key value. If there are no records
4443 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4444 **
4445 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4446 ** opcode will either land on a record that exactly matches the key, or
4447 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4448 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4449 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4450 ** IdxGT opcode will be used on subsequent loop iterations.  The
4451 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4452 ** is an equality search.
4453 **
4454 ** This opcode leaves the cursor configured to move in forward order,
4455 ** from the beginning toward the end.  In other words, the cursor is
4456 ** configured to use Next, not Prev.
4457 **
4458 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4459 */
4460 /* Opcode: SeekGT P1 P2 P3 P4 *
4461 ** Synopsis: key=r[P3@P4]
4462 **
4463 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4464 ** use the value in register P3 as a key. If cursor P1 refers
4465 ** to an SQL index, then P3 is the first in an array of P4 registers
4466 ** that are used as an unpacked index key.
4467 **
4468 ** Reposition cursor P1 so that it points to the smallest entry that
4469 ** is greater than the key value. If there are no records greater than
4470 ** the key and P2 is not zero, then jump to P2.
4471 **
4472 ** This opcode leaves the cursor configured to move in forward order,
4473 ** from the beginning toward the end.  In other words, the cursor is
4474 ** configured to use Next, not Prev.
4475 **
4476 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4477 */
4478 /* Opcode: SeekLT P1 P2 P3 P4 *
4479 ** Synopsis: key=r[P3@P4]
4480 **
4481 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4482 ** use the value in register P3 as a key. If cursor P1 refers
4483 ** to an SQL index, then P3 is the first in an array of P4 registers
4484 ** that are used as an unpacked index key.
4485 **
4486 ** Reposition cursor P1 so that  it points to the largest entry that
4487 ** is less than the key value. If there are no records less than
4488 ** the key and P2 is not zero, then jump to P2.
4489 **
4490 ** This opcode leaves the cursor configured to move in reverse order,
4491 ** from the end toward the beginning.  In other words, the cursor is
4492 ** configured to use Prev, not Next.
4493 **
4494 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4495 */
4496 /* Opcode: SeekLE P1 P2 P3 P4 *
4497 ** Synopsis: key=r[P3@P4]
4498 **
4499 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4500 ** use the value in register P3 as a key. If cursor P1 refers
4501 ** to an SQL index, then P3 is the first in an array of P4 registers
4502 ** that are used as an unpacked index key.
4503 **
4504 ** Reposition cursor P1 so that it points to the largest entry that
4505 ** is less than or equal to the key value. If there are no records
4506 ** less than or equal to the key and P2 is not zero, then jump to P2.
4507 **
4508 ** This opcode leaves the cursor configured to move in reverse order,
4509 ** from the end toward the beginning.  In other words, the cursor is
4510 ** configured to use Prev, not Next.
4511 **
4512 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4513 ** opcode will either land on a record that exactly matches the key, or
4514 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4515 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4516 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4517 ** IdxGE opcode will be used on subsequent loop iterations.  The
4518 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4519 ** is an equality search.
4520 **
4521 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4522 */
4523 case OP_SeekLT:         /* jump, in3, group */
4524 case OP_SeekLE:         /* jump, in3, group */
4525 case OP_SeekGE:         /* jump, in3, group */
4526 case OP_SeekGT: {       /* jump, in3, group */
4527   int res;           /* Comparison result */
4528   int oc;            /* Opcode */
4529   VdbeCursor *pC;    /* The cursor to seek */
4530   UnpackedRecord r;  /* The key to seek for */
4531   int nField;        /* Number of columns or fields in the key */
4532   i64 iKey;          /* The rowid we are to seek to */
4533   int eqOnly;        /* Only interested in == results */
4534 
4535   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4536   assert( pOp->p2!=0 );
4537   pC = p->apCsr[pOp->p1];
4538   assert( pC!=0 );
4539   assert( pC->eCurType==CURTYPE_BTREE );
4540   assert( OP_SeekLE == OP_SeekLT+1 );
4541   assert( OP_SeekGE == OP_SeekLT+2 );
4542   assert( OP_SeekGT == OP_SeekLT+3 );
4543   assert( pC->isOrdered );
4544   assert( pC->uc.pCursor!=0 );
4545   oc = pOp->opcode;
4546   eqOnly = 0;
4547   pC->nullRow = 0;
4548 #ifdef SQLITE_DEBUG
4549   pC->seekOp = pOp->opcode;
4550 #endif
4551 
4552   pC->deferredMoveto = 0;
4553   pC->cacheStatus = CACHE_STALE;
4554   if( pC->isTable ){
4555     u16 flags3, newType;
4556     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4557     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4558               || CORRUPT_DB );
4559 
4560     /* The input value in P3 might be of any type: integer, real, string,
4561     ** blob, or NULL.  But it needs to be an integer before we can do
4562     ** the seek, so convert it. */
4563     pIn3 = &aMem[pOp->p3];
4564     flags3 = pIn3->flags;
4565     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4566       applyNumericAffinity(pIn3, 0);
4567     }
4568     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4569     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4570     pIn3->flags = flags3;  /* But convert the type back to its original */
4571 
4572     /* If the P3 value could not be converted into an integer without
4573     ** loss of information, then special processing is required... */
4574     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4575       int c;
4576       if( (newType & MEM_Real)==0 ){
4577         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4578           VdbeBranchTaken(1,2);
4579           goto jump_to_p2;
4580         }else{
4581           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4582           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4583           goto seek_not_found;
4584         }
4585       }
4586       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4587 
4588       /* If the approximation iKey is larger than the actual real search
4589       ** term, substitute >= for > and < for <=. e.g. if the search term
4590       ** is 4.9 and the integer approximation 5:
4591       **
4592       **        (x >  4.9)    ->     (x >= 5)
4593       **        (x <= 4.9)    ->     (x <  5)
4594       */
4595       if( c>0 ){
4596         assert( OP_SeekGE==(OP_SeekGT-1) );
4597         assert( OP_SeekLT==(OP_SeekLE-1) );
4598         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4599         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4600       }
4601 
4602       /* If the approximation iKey is smaller than the actual real search
4603       ** term, substitute <= for < and > for >=.  */
4604       else if( c<0 ){
4605         assert( OP_SeekLE==(OP_SeekLT+1) );
4606         assert( OP_SeekGT==(OP_SeekGE+1) );
4607         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4608         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4609       }
4610     }
4611     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4612     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4613     if( rc!=SQLITE_OK ){
4614       goto abort_due_to_error;
4615     }
4616   }else{
4617     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4618     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4619     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4620     ** with the same key.
4621     */
4622     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4623       eqOnly = 1;
4624       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4625       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4626       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4627       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4628       assert( pOp[1].p1==pOp[0].p1 );
4629       assert( pOp[1].p2==pOp[0].p2 );
4630       assert( pOp[1].p3==pOp[0].p3 );
4631       assert( pOp[1].p4.i==pOp[0].p4.i );
4632     }
4633 
4634     nField = pOp->p4.i;
4635     assert( pOp->p4type==P4_INT32 );
4636     assert( nField>0 );
4637     r.pKeyInfo = pC->pKeyInfo;
4638     r.nField = (u16)nField;
4639 
4640     /* The next line of code computes as follows, only faster:
4641     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4642     **     r.default_rc = -1;
4643     **   }else{
4644     **     r.default_rc = +1;
4645     **   }
4646     */
4647     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4648     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4649     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4650     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4651     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4652 
4653     r.aMem = &aMem[pOp->p3];
4654 #ifdef SQLITE_DEBUG
4655     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4656 #endif
4657     r.eqSeen = 0;
4658     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4659     if( rc!=SQLITE_OK ){
4660       goto abort_due_to_error;
4661     }
4662     if( eqOnly && r.eqSeen==0 ){
4663       assert( res!=0 );
4664       goto seek_not_found;
4665     }
4666   }
4667 #ifdef SQLITE_TEST
4668   sqlite3_search_count++;
4669 #endif
4670   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4671     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4672       res = 0;
4673       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4674       if( rc!=SQLITE_OK ){
4675         if( rc==SQLITE_DONE ){
4676           rc = SQLITE_OK;
4677           res = 1;
4678         }else{
4679           goto abort_due_to_error;
4680         }
4681       }
4682     }else{
4683       res = 0;
4684     }
4685   }else{
4686     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4687     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4688       res = 0;
4689       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4690       if( rc!=SQLITE_OK ){
4691         if( rc==SQLITE_DONE ){
4692           rc = SQLITE_OK;
4693           res = 1;
4694         }else{
4695           goto abort_due_to_error;
4696         }
4697       }
4698     }else{
4699       /* res might be negative because the table is empty.  Check to
4700       ** see if this is the case.
4701       */
4702       res = sqlite3BtreeEof(pC->uc.pCursor);
4703     }
4704   }
4705 seek_not_found:
4706   assert( pOp->p2>0 );
4707   VdbeBranchTaken(res!=0,2);
4708   if( res ){
4709     goto jump_to_p2;
4710   }else if( eqOnly ){
4711     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4712     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4713   }
4714   break;
4715 }
4716 
4717 
4718 /* Opcode: SeekScan  P1 P2 * * *
4719 ** Synopsis: Scan-ahead up to P1 rows
4720 **
4721 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4722 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4723 ** checked by assert() statements.
4724 **
4725 ** This opcode uses the P1 through P4 operands of the subsequent
4726 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4727 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4728 ** the P1 and P2 operands of this opcode are also used, and  are called
4729 ** This.P1 and This.P2.
4730 **
4731 ** This opcode helps to optimize IN operators on a multi-column index
4732 ** where the IN operator is on the later terms of the index by avoiding
4733 ** unnecessary seeks on the btree, substituting steps to the next row
4734 ** of the b-tree instead.  A correct answer is obtained if this opcode
4735 ** is omitted or is a no-op.
4736 **
4737 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4738 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4739 ** to.  Call this SeekGE.P4/P5 row the "target".
4740 **
4741 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4742 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4743 **
4744 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4745 ** might be the target row, or it might be near and slightly before the
4746 ** target row.  This opcode attempts to position the cursor on the target
4747 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4748 ** between 0 and This.P1 times.
4749 **
4750 ** There are three possible outcomes from this opcode:<ol>
4751 **
4752 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4753 **      is earlier in the btree than the target row, then fall through
4754 **      into the subsquence OP_SeekGE opcode.
4755 **
4756 ** <li> If the cursor is successfully moved to the target row by 0 or more
4757 **      sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4758 **      past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4759 **
4760 ** <li> If the cursor ends up past the target row (indicating that the target
4761 **      row does not exist in the btree) then jump to SeekOP.P2.
4762 ** </ol>
4763 */
4764 case OP_SeekScan: {
4765   VdbeCursor *pC;
4766   int res;
4767   int nStep;
4768   UnpackedRecord r;
4769 
4770   assert( pOp[1].opcode==OP_SeekGE );
4771 
4772   /* pOp->p2 points to the first instruction past the OP_IdxGT that
4773   ** follows the OP_SeekGE.  */
4774   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4775   assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
4776   testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4777   assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4778   assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4779   assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4780 
4781   assert( pOp->p1>0 );
4782   pC = p->apCsr[pOp[1].p1];
4783   assert( pC!=0 );
4784   assert( pC->eCurType==CURTYPE_BTREE );
4785   assert( !pC->isTable );
4786   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4787 #ifdef SQLITE_DEBUG
4788      if( db->flags&SQLITE_VdbeTrace ){
4789        printf("... cursor not valid - fall through\n");
4790      }
4791 #endif
4792     break;
4793   }
4794   nStep = pOp->p1;
4795   assert( nStep>=1 );
4796   r.pKeyInfo = pC->pKeyInfo;
4797   r.nField = (u16)pOp[1].p4.i;
4798   r.default_rc = 0;
4799   r.aMem = &aMem[pOp[1].p3];
4800 #ifdef SQLITE_DEBUG
4801   {
4802     int i;
4803     for(i=0; i<r.nField; i++){
4804       assert( memIsValid(&r.aMem[i]) );
4805       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4806     }
4807   }
4808 #endif
4809   res = 0;  /* Not needed.  Only used to silence a warning. */
4810   while(1){
4811     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4812     if( rc ) goto abort_due_to_error;
4813     if( res>0 ){
4814       seekscan_search_fail:
4815 #ifdef SQLITE_DEBUG
4816       if( db->flags&SQLITE_VdbeTrace ){
4817         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4818       }
4819 #endif
4820       VdbeBranchTaken(1,3);
4821       pOp++;
4822       goto jump_to_p2;
4823     }
4824     if( res==0 ){
4825 #ifdef SQLITE_DEBUG
4826       if( db->flags&SQLITE_VdbeTrace ){
4827         printf("... %d steps and then success\n", pOp->p1 - nStep);
4828       }
4829 #endif
4830       VdbeBranchTaken(2,3);
4831       goto jump_to_p2;
4832       break;
4833     }
4834     if( nStep<=0 ){
4835 #ifdef SQLITE_DEBUG
4836       if( db->flags&SQLITE_VdbeTrace ){
4837         printf("... fall through after %d steps\n", pOp->p1);
4838       }
4839 #endif
4840       VdbeBranchTaken(0,3);
4841       break;
4842     }
4843     nStep--;
4844     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4845     if( rc ){
4846       if( rc==SQLITE_DONE ){
4847         rc = SQLITE_OK;
4848         goto seekscan_search_fail;
4849       }else{
4850         goto abort_due_to_error;
4851       }
4852     }
4853   }
4854 
4855   break;
4856 }
4857 
4858 
4859 /* Opcode: SeekHit P1 P2 P3 * *
4860 ** Synopsis: set P2<=seekHit<=P3
4861 **
4862 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4863 ** so that it is no less than P2 and no greater than P3.
4864 **
4865 ** The seekHit integer represents the maximum of terms in an index for which
4866 ** there is known to be at least one match.  If the seekHit value is smaller
4867 ** than the total number of equality terms in an index lookup, then the
4868 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4869 ** early, thus saving work.  This is part of the IN-early-out optimization.
4870 **
4871 ** P1 must be a valid b-tree cursor.
4872 */
4873 case OP_SeekHit: {
4874   VdbeCursor *pC;
4875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4876   pC = p->apCsr[pOp->p1];
4877   assert( pC!=0 );
4878   assert( pOp->p3>=pOp->p2 );
4879   if( pC->seekHit<pOp->p2 ){
4880 #ifdef SQLITE_DEBUG
4881     if( db->flags&SQLITE_VdbeTrace ){
4882       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4883     }
4884 #endif
4885     pC->seekHit = pOp->p2;
4886   }else if( pC->seekHit>pOp->p3 ){
4887 #ifdef SQLITE_DEBUG
4888     if( db->flags&SQLITE_VdbeTrace ){
4889       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4890     }
4891 #endif
4892     pC->seekHit = pOp->p3;
4893   }
4894   break;
4895 }
4896 
4897 /* Opcode: IfNotOpen P1 P2 * * *
4898 ** Synopsis: if( !csr[P1] ) goto P2
4899 **
4900 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4901 */
4902 case OP_IfNotOpen: {        /* jump */
4903   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4904   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4905   if( !p->apCsr[pOp->p1] ){
4906     goto jump_to_p2_and_check_for_interrupt;
4907   }
4908   break;
4909 }
4910 
4911 /* Opcode: Found P1 P2 P3 P4 *
4912 ** Synopsis: key=r[P3@P4]
4913 **
4914 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4915 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4916 ** record.
4917 **
4918 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4919 ** is a prefix of any entry in P1 then a jump is made to P2 and
4920 ** P1 is left pointing at the matching entry.
4921 **
4922 ** This operation leaves the cursor in a state where it can be
4923 ** advanced in the forward direction.  The Next instruction will work,
4924 ** but not the Prev instruction.
4925 **
4926 ** See also: NotFound, NoConflict, NotExists. SeekGe
4927 */
4928 /* Opcode: NotFound P1 P2 P3 P4 *
4929 ** Synopsis: key=r[P3@P4]
4930 **
4931 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4932 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4933 ** record.
4934 **
4935 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4936 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4937 ** does contain an entry whose prefix matches the P3/P4 record then control
4938 ** falls through to the next instruction and P1 is left pointing at the
4939 ** matching entry.
4940 **
4941 ** This operation leaves the cursor in a state where it cannot be
4942 ** advanced in either direction.  In other words, the Next and Prev
4943 ** opcodes do not work after this operation.
4944 **
4945 ** See also: Found, NotExists, NoConflict, IfNoHope
4946 */
4947 /* Opcode: IfNoHope P1 P2 P3 P4 *
4948 ** Synopsis: key=r[P3@P4]
4949 **
4950 ** Register P3 is the first of P4 registers that form an unpacked
4951 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
4952 ** In other words, the operands to this opcode are the same as the
4953 ** operands to OP_NotFound and OP_IdxGT.
4954 **
4955 ** This opcode is an optimization attempt only.  If this opcode always
4956 ** falls through, the correct answer is still obtained, but extra works
4957 ** is performed.
4958 **
4959 ** A value of N in the seekHit flag of cursor P1 means that there exists
4960 ** a key P3:N that will match some record in the index.  We want to know
4961 ** if it is possible for a record P3:P4 to match some record in the
4962 ** index.  If it is not possible, we can skips some work.  So if seekHit
4963 ** is less than P4, attempt to find out if a match is possible by running
4964 ** OP_NotFound.
4965 **
4966 ** This opcode is used in IN clause processing for a multi-column key.
4967 ** If an IN clause is attached to an element of the key other than the
4968 ** left-most element, and if there are no matches on the most recent
4969 ** seek over the whole key, then it might be that one of the key element
4970 ** to the left is prohibiting a match, and hence there is "no hope" of
4971 ** any match regardless of how many IN clause elements are checked.
4972 ** In such a case, we abandon the IN clause search early, using this
4973 ** opcode.  The opcode name comes from the fact that the
4974 ** jump is taken if there is "no hope" of achieving a match.
4975 **
4976 ** See also: NotFound, SeekHit
4977 */
4978 /* Opcode: NoConflict P1 P2 P3 P4 *
4979 ** Synopsis: key=r[P3@P4]
4980 **
4981 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4982 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4983 ** record.
4984 **
4985 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4986 ** contains any NULL value, jump immediately to P2.  If all terms of the
4987 ** record are not-NULL then a check is done to determine if any row in the
4988 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4989 ** immediately to P2.  If there is a match, fall through and leave the P1
4990 ** cursor pointing to the matching row.
4991 **
4992 ** This opcode is similar to OP_NotFound with the exceptions that the
4993 ** branch is always taken if any part of the search key input is NULL.
4994 **
4995 ** This operation leaves the cursor in a state where it cannot be
4996 ** advanced in either direction.  In other words, the Next and Prev
4997 ** opcodes do not work after this operation.
4998 **
4999 ** See also: NotFound, Found, NotExists
5000 */
5001 case OP_IfNoHope: {     /* jump, in3 */
5002   VdbeCursor *pC;
5003   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5004   pC = p->apCsr[pOp->p1];
5005   assert( pC!=0 );
5006 #ifdef SQLITE_DEBUG
5007   if( db->flags&SQLITE_VdbeTrace ){
5008     printf("seekHit is %d\n", pC->seekHit);
5009   }
5010 #endif
5011   if( pC->seekHit>=pOp->p4.i ) break;
5012   /* Fall through into OP_NotFound */
5013   /* no break */ deliberate_fall_through
5014 }
5015 case OP_NoConflict:     /* jump, in3 */
5016 case OP_NotFound:       /* jump, in3 */
5017 case OP_Found: {        /* jump, in3 */
5018   int alreadyExists;
5019   int ii;
5020   VdbeCursor *pC;
5021   UnpackedRecord *pIdxKey;
5022   UnpackedRecord r;
5023 
5024 #ifdef SQLITE_TEST
5025   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5026 #endif
5027 
5028   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5029   assert( pOp->p4type==P4_INT32 );
5030   pC = p->apCsr[pOp->p1];
5031   assert( pC!=0 );
5032 #ifdef SQLITE_DEBUG
5033   pC->seekOp = pOp->opcode;
5034 #endif
5035   r.aMem = &aMem[pOp->p3];
5036   assert( pC->eCurType==CURTYPE_BTREE );
5037   assert( pC->uc.pCursor!=0 );
5038   assert( pC->isTable==0 );
5039   r.nField = (u16)pOp->p4.i;
5040   if( r.nField>0 ){
5041     /* Key values in an array of registers */
5042     r.pKeyInfo = pC->pKeyInfo;
5043     r.default_rc = 0;
5044 #ifdef SQLITE_DEBUG
5045     for(ii=0; ii<r.nField; ii++){
5046       assert( memIsValid(&r.aMem[ii]) );
5047       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5048       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5049     }
5050 #endif
5051     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5052   }else{
5053     /* Composite key generated by OP_MakeRecord */
5054     assert( r.aMem->flags & MEM_Blob );
5055     assert( pOp->opcode!=OP_NoConflict );
5056     rc = ExpandBlob(r.aMem);
5057     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5058     if( rc ) goto no_mem;
5059     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5060     if( pIdxKey==0 ) goto no_mem;
5061     sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5062     pIdxKey->default_rc = 0;
5063     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5064     sqlite3DbFreeNN(db, pIdxKey);
5065   }
5066   if( rc!=SQLITE_OK ){
5067     goto abort_due_to_error;
5068   }
5069   alreadyExists = (pC->seekResult==0);
5070   pC->nullRow = 1-alreadyExists;
5071   pC->deferredMoveto = 0;
5072   pC->cacheStatus = CACHE_STALE;
5073   if( pOp->opcode==OP_Found ){
5074     VdbeBranchTaken(alreadyExists!=0,2);
5075     if( alreadyExists ) goto jump_to_p2;
5076   }else{
5077     if( !alreadyExists ){
5078       VdbeBranchTaken(1,2);
5079       goto jump_to_p2;
5080     }
5081     if( pOp->opcode==OP_NoConflict ){
5082       /* For the OP_NoConflict opcode, take the jump if any of the
5083       ** input fields are NULL, since any key with a NULL will not
5084       ** conflict */
5085       for(ii=0; ii<r.nField; ii++){
5086         if( r.aMem[ii].flags & MEM_Null ){
5087           VdbeBranchTaken(1,2);
5088           goto jump_to_p2;
5089         }
5090       }
5091     }
5092     VdbeBranchTaken(0,2);
5093     if( pOp->opcode==OP_IfNoHope ){
5094       pC->seekHit = pOp->p4.i;
5095     }
5096   }
5097   break;
5098 }
5099 
5100 /* Opcode: SeekRowid P1 P2 P3 * *
5101 ** Synopsis: intkey=r[P3]
5102 **
5103 ** P1 is the index of a cursor open on an SQL table btree (with integer
5104 ** keys).  If register P3 does not contain an integer or if P1 does not
5105 ** contain a record with rowid P3 then jump immediately to P2.
5106 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5107 ** a record with rowid P3 then
5108 ** leave the cursor pointing at that record and fall through to the next
5109 ** instruction.
5110 **
5111 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5112 ** the P3 register must be guaranteed to contain an integer value.  With this
5113 ** opcode, register P3 might not contain an integer.
5114 **
5115 ** The OP_NotFound opcode performs the same operation on index btrees
5116 ** (with arbitrary multi-value keys).
5117 **
5118 ** This opcode leaves the cursor in a state where it cannot be advanced
5119 ** in either direction.  In other words, the Next and Prev opcodes will
5120 ** not work following this opcode.
5121 **
5122 ** See also: Found, NotFound, NoConflict, SeekRowid
5123 */
5124 /* Opcode: NotExists P1 P2 P3 * *
5125 ** Synopsis: intkey=r[P3]
5126 **
5127 ** P1 is the index of a cursor open on an SQL table btree (with integer
5128 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
5129 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5130 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5131 ** leave the cursor pointing at that record and fall through to the next
5132 ** instruction.
5133 **
5134 ** The OP_SeekRowid opcode performs the same operation but also allows the
5135 ** P3 register to contain a non-integer value, in which case the jump is
5136 ** always taken.  This opcode requires that P3 always contain an integer.
5137 **
5138 ** The OP_NotFound opcode performs the same operation on index btrees
5139 ** (with arbitrary multi-value keys).
5140 **
5141 ** This opcode leaves the cursor in a state where it cannot be advanced
5142 ** in either direction.  In other words, the Next and Prev opcodes will
5143 ** not work following this opcode.
5144 **
5145 ** See also: Found, NotFound, NoConflict, SeekRowid
5146 */
5147 case OP_SeekRowid: {        /* jump, in3 */
5148   VdbeCursor *pC;
5149   BtCursor *pCrsr;
5150   int res;
5151   u64 iKey;
5152 
5153   pIn3 = &aMem[pOp->p3];
5154   testcase( pIn3->flags & MEM_Int );
5155   testcase( pIn3->flags & MEM_IntReal );
5156   testcase( pIn3->flags & MEM_Real );
5157   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5158   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5159     /* If pIn3->u.i does not contain an integer, compute iKey as the
5160     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5161     ** into an integer without loss of information.  Take care to avoid
5162     ** changing the datatype of pIn3, however, as it is used by other
5163     ** parts of the prepared statement. */
5164     Mem x = pIn3[0];
5165     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5166     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5167     iKey = x.u.i;
5168     goto notExistsWithKey;
5169   }
5170   /* Fall through into OP_NotExists */
5171   /* no break */ deliberate_fall_through
5172 case OP_NotExists:          /* jump, in3 */
5173   pIn3 = &aMem[pOp->p3];
5174   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5175   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5176   iKey = pIn3->u.i;
5177 notExistsWithKey:
5178   pC = p->apCsr[pOp->p1];
5179   assert( pC!=0 );
5180 #ifdef SQLITE_DEBUG
5181   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5182 #endif
5183   assert( pC->isTable );
5184   assert( pC->eCurType==CURTYPE_BTREE );
5185   pCrsr = pC->uc.pCursor;
5186   assert( pCrsr!=0 );
5187   res = 0;
5188   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5189   assert( rc==SQLITE_OK || res==0 );
5190   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5191   pC->nullRow = 0;
5192   pC->cacheStatus = CACHE_STALE;
5193   pC->deferredMoveto = 0;
5194   VdbeBranchTaken(res!=0,2);
5195   pC->seekResult = res;
5196   if( res!=0 ){
5197     assert( rc==SQLITE_OK );
5198     if( pOp->p2==0 ){
5199       rc = SQLITE_CORRUPT_BKPT;
5200     }else{
5201       goto jump_to_p2;
5202     }
5203   }
5204   if( rc ) goto abort_due_to_error;
5205   break;
5206 }
5207 
5208 /* Opcode: Sequence P1 P2 * * *
5209 ** Synopsis: r[P2]=cursor[P1].ctr++
5210 **
5211 ** Find the next available sequence number for cursor P1.
5212 ** Write the sequence number into register P2.
5213 ** The sequence number on the cursor is incremented after this
5214 ** instruction.
5215 */
5216 case OP_Sequence: {           /* out2 */
5217   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5218   assert( p->apCsr[pOp->p1]!=0 );
5219   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5220   pOut = out2Prerelease(p, pOp);
5221   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5222   break;
5223 }
5224 
5225 
5226 /* Opcode: NewRowid P1 P2 P3 * *
5227 ** Synopsis: r[P2]=rowid
5228 **
5229 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5230 ** The record number is not previously used as a key in the database
5231 ** table that cursor P1 points to.  The new record number is written
5232 ** written to register P2.
5233 **
5234 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5235 ** the largest previously generated record number. No new record numbers are
5236 ** allowed to be less than this value. When this value reaches its maximum,
5237 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5238 ** generated record number. This P3 mechanism is used to help implement the
5239 ** AUTOINCREMENT feature.
5240 */
5241 case OP_NewRowid: {           /* out2 */
5242   i64 v;                 /* The new rowid */
5243   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5244   int res;               /* Result of an sqlite3BtreeLast() */
5245   int cnt;               /* Counter to limit the number of searches */
5246 #ifndef SQLITE_OMIT_AUTOINCREMENT
5247   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5248   VdbeFrame *pFrame;     /* Root frame of VDBE */
5249 #endif
5250 
5251   v = 0;
5252   res = 0;
5253   pOut = out2Prerelease(p, pOp);
5254   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5255   pC = p->apCsr[pOp->p1];
5256   assert( pC!=0 );
5257   assert( pC->isTable );
5258   assert( pC->eCurType==CURTYPE_BTREE );
5259   assert( pC->uc.pCursor!=0 );
5260   {
5261     /* The next rowid or record number (different terms for the same
5262     ** thing) is obtained in a two-step algorithm.
5263     **
5264     ** First we attempt to find the largest existing rowid and add one
5265     ** to that.  But if the largest existing rowid is already the maximum
5266     ** positive integer, we have to fall through to the second
5267     ** probabilistic algorithm
5268     **
5269     ** The second algorithm is to select a rowid at random and see if
5270     ** it already exists in the table.  If it does not exist, we have
5271     ** succeeded.  If the random rowid does exist, we select a new one
5272     ** and try again, up to 100 times.
5273     */
5274     assert( pC->isTable );
5275 
5276 #ifdef SQLITE_32BIT_ROWID
5277 #   define MAX_ROWID 0x7fffffff
5278 #else
5279     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5280     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5281     ** to provide the constant while making all compilers happy.
5282     */
5283 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5284 #endif
5285 
5286     if( !pC->useRandomRowid ){
5287       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5288       if( rc!=SQLITE_OK ){
5289         goto abort_due_to_error;
5290       }
5291       if( res ){
5292         v = 1;   /* IMP: R-61914-48074 */
5293       }else{
5294         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5295         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5296         if( v>=MAX_ROWID ){
5297           pC->useRandomRowid = 1;
5298         }else{
5299           v++;   /* IMP: R-29538-34987 */
5300         }
5301       }
5302     }
5303 
5304 #ifndef SQLITE_OMIT_AUTOINCREMENT
5305     if( pOp->p3 ){
5306       /* Assert that P3 is a valid memory cell. */
5307       assert( pOp->p3>0 );
5308       if( p->pFrame ){
5309         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5310         /* Assert that P3 is a valid memory cell. */
5311         assert( pOp->p3<=pFrame->nMem );
5312         pMem = &pFrame->aMem[pOp->p3];
5313       }else{
5314         /* Assert that P3 is a valid memory cell. */
5315         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5316         pMem = &aMem[pOp->p3];
5317         memAboutToChange(p, pMem);
5318       }
5319       assert( memIsValid(pMem) );
5320 
5321       REGISTER_TRACE(pOp->p3, pMem);
5322       sqlite3VdbeMemIntegerify(pMem);
5323       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5324       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5325         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5326         goto abort_due_to_error;
5327       }
5328       if( v<pMem->u.i+1 ){
5329         v = pMem->u.i + 1;
5330       }
5331       pMem->u.i = v;
5332     }
5333 #endif
5334     if( pC->useRandomRowid ){
5335       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5336       ** largest possible integer (9223372036854775807) then the database
5337       ** engine starts picking positive candidate ROWIDs at random until
5338       ** it finds one that is not previously used. */
5339       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5340                              ** an AUTOINCREMENT table. */
5341       cnt = 0;
5342       do{
5343         sqlite3_randomness(sizeof(v), &v);
5344         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5345       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5346                                                  0, &res))==SQLITE_OK)
5347             && (res==0)
5348             && (++cnt<100));
5349       if( rc ) goto abort_due_to_error;
5350       if( res==0 ){
5351         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5352         goto abort_due_to_error;
5353       }
5354       assert( v>0 );  /* EV: R-40812-03570 */
5355     }
5356     pC->deferredMoveto = 0;
5357     pC->cacheStatus = CACHE_STALE;
5358   }
5359   pOut->u.i = v;
5360   break;
5361 }
5362 
5363 /* Opcode: Insert P1 P2 P3 P4 P5
5364 ** Synopsis: intkey=r[P3] data=r[P2]
5365 **
5366 ** Write an entry into the table of cursor P1.  A new entry is
5367 ** created if it doesn't already exist or the data for an existing
5368 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5369 ** number P2. The key is stored in register P3. The key must
5370 ** be a MEM_Int.
5371 **
5372 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5373 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5374 ** then rowid is stored for subsequent return by the
5375 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5376 **
5377 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5378 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5379 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5380 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5381 **
5382 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5383 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5384 ** is part of an INSERT operation.  The difference is only important to
5385 ** the update hook.
5386 **
5387 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5388 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5389 ** following a successful insert.
5390 **
5391 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5392 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5393 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5394 ** value of register P2 will then change.  Make sure this does not
5395 ** cause any problems.)
5396 **
5397 ** This instruction only works on tables.  The equivalent instruction
5398 ** for indices is OP_IdxInsert.
5399 */
5400 case OP_Insert: {
5401   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5402   Mem *pKey;        /* MEM cell holding key  for the record */
5403   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5404   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5405   const char *zDb;  /* database name - used by the update hook */
5406   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5407   BtreePayload x;   /* Payload to be inserted */
5408 
5409   pData = &aMem[pOp->p2];
5410   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5411   assert( memIsValid(pData) );
5412   pC = p->apCsr[pOp->p1];
5413   assert( pC!=0 );
5414   assert( pC->eCurType==CURTYPE_BTREE );
5415   assert( pC->deferredMoveto==0 );
5416   assert( pC->uc.pCursor!=0 );
5417   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5418   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5419   REGISTER_TRACE(pOp->p2, pData);
5420   sqlite3VdbeIncrWriteCounter(p, pC);
5421 
5422   pKey = &aMem[pOp->p3];
5423   assert( pKey->flags & MEM_Int );
5424   assert( memIsValid(pKey) );
5425   REGISTER_TRACE(pOp->p3, pKey);
5426   x.nKey = pKey->u.i;
5427 
5428   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5429     assert( pC->iDb>=0 );
5430     zDb = db->aDb[pC->iDb].zDbSName;
5431     pTab = pOp->p4.pTab;
5432     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5433   }else{
5434     pTab = 0;
5435     zDb = 0;
5436   }
5437 
5438 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5439   /* Invoke the pre-update hook, if any */
5440   if( pTab ){
5441     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5442       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5443     }
5444     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5445       /* Prevent post-update hook from running in cases when it should not */
5446       pTab = 0;
5447     }
5448   }
5449   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5450 #endif
5451 
5452   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5453   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5454   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5455   x.pData = pData->z;
5456   x.nData = pData->n;
5457   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5458   if( pData->flags & MEM_Zero ){
5459     x.nZero = pData->u.nZero;
5460   }else{
5461     x.nZero = 0;
5462   }
5463   x.pKey = 0;
5464   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5465       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5466       seekResult
5467   );
5468   pC->deferredMoveto = 0;
5469   pC->cacheStatus = CACHE_STALE;
5470 
5471   /* Invoke the update-hook if required. */
5472   if( rc ) goto abort_due_to_error;
5473   if( pTab ){
5474     assert( db->xUpdateCallback!=0 );
5475     assert( pTab->aCol!=0 );
5476     db->xUpdateCallback(db->pUpdateArg,
5477            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5478            zDb, pTab->zName, x.nKey);
5479   }
5480   break;
5481 }
5482 
5483 /* Opcode: RowCell P1 P2 P3 * *
5484 **
5485 ** P1 and P2 are both open cursors. Both must be opened on the same type
5486 ** of table - intkey or index. This opcode is used as part of copying
5487 ** the current row from P2 into P1. If the cursors are opened on intkey
5488 ** tables, register P3 contains the rowid to use with the new record in
5489 ** P1. If they are opened on index tables, P3 is not used.
5490 **
5491 ** This opcode must be followed by either an Insert or InsertIdx opcode
5492 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5493 */
5494 case OP_RowCell: {
5495   VdbeCursor *pDest;              /* Cursor to write to */
5496   VdbeCursor *pSrc;               /* Cursor to read from */
5497   i64 iKey;                       /* Rowid value to insert with */
5498   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5499   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5500   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5501   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5502   pDest = p->apCsr[pOp->p1];
5503   pSrc = p->apCsr[pOp->p2];
5504   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5505   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5506   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5507   break;
5508 };
5509 
5510 /* Opcode: Delete P1 P2 P3 P4 P5
5511 **
5512 ** Delete the record at which the P1 cursor is currently pointing.
5513 **
5514 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5515 ** the cursor will be left pointing at  either the next or the previous
5516 ** record in the table. If it is left pointing at the next record, then
5517 ** the next Next instruction will be a no-op. As a result, in this case
5518 ** it is ok to delete a record from within a Next loop. If
5519 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5520 ** left in an undefined state.
5521 **
5522 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5523 ** delete one of several associated with deleting a table row and all its
5524 ** associated index entries.  Exactly one of those deletes is the "primary"
5525 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5526 ** marked with the AUXDELETE flag.
5527 **
5528 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5529 ** change count is incremented (otherwise not).
5530 **
5531 ** P1 must not be pseudo-table.  It has to be a real table with
5532 ** multiple rows.
5533 **
5534 ** If P4 is not NULL then it points to a Table object. In this case either
5535 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5536 ** have been positioned using OP_NotFound prior to invoking this opcode in
5537 ** this case. Specifically, if one is configured, the pre-update hook is
5538 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5539 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5540 **
5541 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5542 ** of the memory cell that contains the value that the rowid of the row will
5543 ** be set to by the update.
5544 */
5545 case OP_Delete: {
5546   VdbeCursor *pC;
5547   const char *zDb;
5548   Table *pTab;
5549   int opflags;
5550 
5551   opflags = pOp->p2;
5552   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5553   pC = p->apCsr[pOp->p1];
5554   assert( pC!=0 );
5555   assert( pC->eCurType==CURTYPE_BTREE );
5556   assert( pC->uc.pCursor!=0 );
5557   assert( pC->deferredMoveto==0 );
5558   sqlite3VdbeIncrWriteCounter(p, pC);
5559 
5560 #ifdef SQLITE_DEBUG
5561   if( pOp->p4type==P4_TABLE
5562    && HasRowid(pOp->p4.pTab)
5563    && pOp->p5==0
5564    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5565   ){
5566     /* If p5 is zero, the seek operation that positioned the cursor prior to
5567     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5568     ** the row that is being deleted */
5569     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5570     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5571   }
5572 #endif
5573 
5574   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5575   ** the name of the db to pass as to it. Also set local pTab to a copy
5576   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5577   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5578   ** VdbeCursor.movetoTarget to the current rowid.  */
5579   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5580     assert( pC->iDb>=0 );
5581     assert( pOp->p4.pTab!=0 );
5582     zDb = db->aDb[pC->iDb].zDbSName;
5583     pTab = pOp->p4.pTab;
5584     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5585       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5586     }
5587   }else{
5588     zDb = 0;
5589     pTab = 0;
5590   }
5591 
5592 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5593   /* Invoke the pre-update-hook if required. */
5594   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5595   if( db->xPreUpdateCallback && pTab ){
5596     assert( !(opflags & OPFLAG_ISUPDATE)
5597          || HasRowid(pTab)==0
5598          || (aMem[pOp->p3].flags & MEM_Int)
5599     );
5600     sqlite3VdbePreUpdateHook(p, pC,
5601         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5602         zDb, pTab, pC->movetoTarget,
5603         pOp->p3, -1
5604     );
5605   }
5606   if( opflags & OPFLAG_ISNOOP ) break;
5607 #endif
5608 
5609   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5610   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5611   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5612   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5613 
5614 #ifdef SQLITE_DEBUG
5615   if( p->pFrame==0 ){
5616     if( pC->isEphemeral==0
5617         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5618         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5619       ){
5620       nExtraDelete++;
5621     }
5622     if( pOp->p2 & OPFLAG_NCHANGE ){
5623       nExtraDelete--;
5624     }
5625   }
5626 #endif
5627 
5628   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5629   pC->cacheStatus = CACHE_STALE;
5630   pC->seekResult = 0;
5631   if( rc ) goto abort_due_to_error;
5632 
5633   /* Invoke the update-hook if required. */
5634   if( opflags & OPFLAG_NCHANGE ){
5635     p->nChange++;
5636     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5637       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5638           pC->movetoTarget);
5639       assert( pC->iDb>=0 );
5640     }
5641   }
5642 
5643   break;
5644 }
5645 /* Opcode: ResetCount * * * * *
5646 **
5647 ** The value of the change counter is copied to the database handle
5648 ** change counter (returned by subsequent calls to sqlite3_changes()).
5649 ** Then the VMs internal change counter resets to 0.
5650 ** This is used by trigger programs.
5651 */
5652 case OP_ResetCount: {
5653   sqlite3VdbeSetChanges(db, p->nChange);
5654   p->nChange = 0;
5655   break;
5656 }
5657 
5658 /* Opcode: SorterCompare P1 P2 P3 P4
5659 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5660 **
5661 ** P1 is a sorter cursor. This instruction compares a prefix of the
5662 ** record blob in register P3 against a prefix of the entry that
5663 ** the sorter cursor currently points to.  Only the first P4 fields
5664 ** of r[P3] and the sorter record are compared.
5665 **
5666 ** If either P3 or the sorter contains a NULL in one of their significant
5667 ** fields (not counting the P4 fields at the end which are ignored) then
5668 ** the comparison is assumed to be equal.
5669 **
5670 ** Fall through to next instruction if the two records compare equal to
5671 ** each other.  Jump to P2 if they are different.
5672 */
5673 case OP_SorterCompare: {
5674   VdbeCursor *pC;
5675   int res;
5676   int nKeyCol;
5677 
5678   pC = p->apCsr[pOp->p1];
5679   assert( isSorter(pC) );
5680   assert( pOp->p4type==P4_INT32 );
5681   pIn3 = &aMem[pOp->p3];
5682   nKeyCol = pOp->p4.i;
5683   res = 0;
5684   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5685   VdbeBranchTaken(res!=0,2);
5686   if( rc ) goto abort_due_to_error;
5687   if( res ) goto jump_to_p2;
5688   break;
5689 };
5690 
5691 /* Opcode: SorterData P1 P2 P3 * *
5692 ** Synopsis: r[P2]=data
5693 **
5694 ** Write into register P2 the current sorter data for sorter cursor P1.
5695 ** Then clear the column header cache on cursor P3.
5696 **
5697 ** This opcode is normally use to move a record out of the sorter and into
5698 ** a register that is the source for a pseudo-table cursor created using
5699 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5700 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5701 ** us from having to issue a separate NullRow instruction to clear that cache.
5702 */
5703 case OP_SorterData: {
5704   VdbeCursor *pC;
5705 
5706   pOut = &aMem[pOp->p2];
5707   pC = p->apCsr[pOp->p1];
5708   assert( isSorter(pC) );
5709   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5710   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5711   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5712   if( rc ) goto abort_due_to_error;
5713   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5714   break;
5715 }
5716 
5717 /* Opcode: RowData P1 P2 P3 * *
5718 ** Synopsis: r[P2]=data
5719 **
5720 ** Write into register P2 the complete row content for the row at
5721 ** which cursor P1 is currently pointing.
5722 ** There is no interpretation of the data.
5723 ** It is just copied onto the P2 register exactly as
5724 ** it is found in the database file.
5725 **
5726 ** If cursor P1 is an index, then the content is the key of the row.
5727 ** If cursor P2 is a table, then the content extracted is the data.
5728 **
5729 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5730 ** of a real table, not a pseudo-table.
5731 **
5732 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5733 ** into the database page.  That means that the content of the output
5734 ** register will be invalidated as soon as the cursor moves - including
5735 ** moves caused by other cursors that "save" the current cursors
5736 ** position in order that they can write to the same table.  If P3==0
5737 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5738 ** P3==0 is safer.
5739 **
5740 ** If P3!=0 then the content of the P2 register is unsuitable for use
5741 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5742 ** The P2 register content is invalidated by opcodes like OP_Function or
5743 ** by any use of another cursor pointing to the same table.
5744 */
5745 case OP_RowData: {
5746   VdbeCursor *pC;
5747   BtCursor *pCrsr;
5748   u32 n;
5749 
5750   pOut = out2Prerelease(p, pOp);
5751 
5752   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5753   pC = p->apCsr[pOp->p1];
5754   assert( pC!=0 );
5755   assert( pC->eCurType==CURTYPE_BTREE );
5756   assert( isSorter(pC)==0 );
5757   assert( pC->nullRow==0 );
5758   assert( pC->uc.pCursor!=0 );
5759   pCrsr = pC->uc.pCursor;
5760 
5761   /* The OP_RowData opcodes always follow OP_NotExists or
5762   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5763   ** that might invalidate the cursor.
5764   ** If this where not the case, on of the following assert()s
5765   ** would fail.  Should this ever change (because of changes in the code
5766   ** generator) then the fix would be to insert a call to
5767   ** sqlite3VdbeCursorMoveto().
5768   */
5769   assert( pC->deferredMoveto==0 );
5770   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5771 
5772   n = sqlite3BtreePayloadSize(pCrsr);
5773   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5774     goto too_big;
5775   }
5776   testcase( n==0 );
5777   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5778   if( rc ) goto abort_due_to_error;
5779   if( !pOp->p3 ) Deephemeralize(pOut);
5780   UPDATE_MAX_BLOBSIZE(pOut);
5781   REGISTER_TRACE(pOp->p2, pOut);
5782   break;
5783 }
5784 
5785 /* Opcode: Rowid P1 P2 * * *
5786 ** Synopsis: r[P2]=PX rowid of P1
5787 **
5788 ** Store in register P2 an integer which is the key of the table entry that
5789 ** P1 is currently point to.
5790 **
5791 ** P1 can be either an ordinary table or a virtual table.  There used to
5792 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5793 ** one opcode now works for both table types.
5794 */
5795 case OP_Rowid: {                 /* out2 */
5796   VdbeCursor *pC;
5797   i64 v;
5798   sqlite3_vtab *pVtab;
5799   const sqlite3_module *pModule;
5800 
5801   pOut = out2Prerelease(p, pOp);
5802   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5803   pC = p->apCsr[pOp->p1];
5804   assert( pC!=0 );
5805   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5806   if( pC->nullRow ){
5807     pOut->flags = MEM_Null;
5808     break;
5809   }else if( pC->deferredMoveto ){
5810     v = pC->movetoTarget;
5811 #ifndef SQLITE_OMIT_VIRTUALTABLE
5812   }else if( pC->eCurType==CURTYPE_VTAB ){
5813     assert( pC->uc.pVCur!=0 );
5814     pVtab = pC->uc.pVCur->pVtab;
5815     pModule = pVtab->pModule;
5816     assert( pModule->xRowid );
5817     rc = pModule->xRowid(pC->uc.pVCur, &v);
5818     sqlite3VtabImportErrmsg(p, pVtab);
5819     if( rc ) goto abort_due_to_error;
5820 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5821   }else{
5822     assert( pC->eCurType==CURTYPE_BTREE );
5823     assert( pC->uc.pCursor!=0 );
5824     rc = sqlite3VdbeCursorRestore(pC);
5825     if( rc ) goto abort_due_to_error;
5826     if( pC->nullRow ){
5827       pOut->flags = MEM_Null;
5828       break;
5829     }
5830     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5831   }
5832   pOut->u.i = v;
5833   break;
5834 }
5835 
5836 /* Opcode: NullRow P1 * * * *
5837 **
5838 ** Move the cursor P1 to a null row.  Any OP_Column operations
5839 ** that occur while the cursor is on the null row will always
5840 ** write a NULL.
5841 **
5842 ** If cursor P1 is not previously opened, open it now to a special
5843 ** pseudo-cursor that always returns NULL for every column.
5844 */
5845 case OP_NullRow: {
5846   VdbeCursor *pC;
5847 
5848   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5849   pC = p->apCsr[pOp->p1];
5850   if( pC==0 ){
5851     /* If the cursor is not already open, create a special kind of
5852     ** pseudo-cursor that always gives null rows. */
5853     pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5854     if( pC==0 ) goto no_mem;
5855     pC->seekResult = 0;
5856     pC->isTable = 1;
5857     pC->noReuse = 1;
5858     pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5859   }
5860   pC->nullRow = 1;
5861   pC->cacheStatus = CACHE_STALE;
5862   if( pC->eCurType==CURTYPE_BTREE ){
5863     assert( pC->uc.pCursor!=0 );
5864     sqlite3BtreeClearCursor(pC->uc.pCursor);
5865   }
5866 #ifdef SQLITE_DEBUG
5867   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5868 #endif
5869   break;
5870 }
5871 
5872 /* Opcode: SeekEnd P1 * * * *
5873 **
5874 ** Position cursor P1 at the end of the btree for the purpose of
5875 ** appending a new entry onto the btree.
5876 **
5877 ** It is assumed that the cursor is used only for appending and so
5878 ** if the cursor is valid, then the cursor must already be pointing
5879 ** at the end of the btree and so no changes are made to
5880 ** the cursor.
5881 */
5882 /* Opcode: Last P1 P2 * * *
5883 **
5884 ** The next use of the Rowid or Column or Prev instruction for P1
5885 ** will refer to the last entry in the database table or index.
5886 ** If the table or index is empty and P2>0, then jump immediately to P2.
5887 ** If P2 is 0 or if the table or index is not empty, fall through
5888 ** to the following instruction.
5889 **
5890 ** This opcode leaves the cursor configured to move in reverse order,
5891 ** from the end toward the beginning.  In other words, the cursor is
5892 ** configured to use Prev, not Next.
5893 */
5894 case OP_SeekEnd:
5895 case OP_Last: {        /* jump */
5896   VdbeCursor *pC;
5897   BtCursor *pCrsr;
5898   int res;
5899 
5900   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5901   pC = p->apCsr[pOp->p1];
5902   assert( pC!=0 );
5903   assert( pC->eCurType==CURTYPE_BTREE );
5904   pCrsr = pC->uc.pCursor;
5905   res = 0;
5906   assert( pCrsr!=0 );
5907 #ifdef SQLITE_DEBUG
5908   pC->seekOp = pOp->opcode;
5909 #endif
5910   if( pOp->opcode==OP_SeekEnd ){
5911     assert( pOp->p2==0 );
5912     pC->seekResult = -1;
5913     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5914       break;
5915     }
5916   }
5917   rc = sqlite3BtreeLast(pCrsr, &res);
5918   pC->nullRow = (u8)res;
5919   pC->deferredMoveto = 0;
5920   pC->cacheStatus = CACHE_STALE;
5921   if( rc ) goto abort_due_to_error;
5922   if( pOp->p2>0 ){
5923     VdbeBranchTaken(res!=0,2);
5924     if( res ) goto jump_to_p2;
5925   }
5926   break;
5927 }
5928 
5929 /* Opcode: IfSmaller P1 P2 P3 * *
5930 **
5931 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5932 ** estimate is less than approximately 2**(0.1*P3).
5933 */
5934 case OP_IfSmaller: {        /* jump */
5935   VdbeCursor *pC;
5936   BtCursor *pCrsr;
5937   int res;
5938   i64 sz;
5939 
5940   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5941   pC = p->apCsr[pOp->p1];
5942   assert( pC!=0 );
5943   pCrsr = pC->uc.pCursor;
5944   assert( pCrsr );
5945   rc = sqlite3BtreeFirst(pCrsr, &res);
5946   if( rc ) goto abort_due_to_error;
5947   if( res==0 ){
5948     sz = sqlite3BtreeRowCountEst(pCrsr);
5949     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5950   }
5951   VdbeBranchTaken(res!=0,2);
5952   if( res ) goto jump_to_p2;
5953   break;
5954 }
5955 
5956 
5957 /* Opcode: SorterSort P1 P2 * * *
5958 **
5959 ** After all records have been inserted into the Sorter object
5960 ** identified by P1, invoke this opcode to actually do the sorting.
5961 ** Jump to P2 if there are no records to be sorted.
5962 **
5963 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5964 ** for Sorter objects.
5965 */
5966 /* Opcode: Sort P1 P2 * * *
5967 **
5968 ** This opcode does exactly the same thing as OP_Rewind except that
5969 ** it increments an undocumented global variable used for testing.
5970 **
5971 ** Sorting is accomplished by writing records into a sorting index,
5972 ** then rewinding that index and playing it back from beginning to
5973 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5974 ** rewinding so that the global variable will be incremented and
5975 ** regression tests can determine whether or not the optimizer is
5976 ** correctly optimizing out sorts.
5977 */
5978 case OP_SorterSort:    /* jump */
5979 case OP_Sort: {        /* jump */
5980 #ifdef SQLITE_TEST
5981   sqlite3_sort_count++;
5982   sqlite3_search_count--;
5983 #endif
5984   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5985   /* Fall through into OP_Rewind */
5986   /* no break */ deliberate_fall_through
5987 }
5988 /* Opcode: Rewind P1 P2 * * *
5989 **
5990 ** The next use of the Rowid or Column or Next instruction for P1
5991 ** will refer to the first entry in the database table or index.
5992 ** If the table or index is empty, jump immediately to P2.
5993 ** If the table or index is not empty, fall through to the following
5994 ** instruction.
5995 **
5996 ** This opcode leaves the cursor configured to move in forward order,
5997 ** from the beginning toward the end.  In other words, the cursor is
5998 ** configured to use Next, not Prev.
5999 */
6000 case OP_Rewind: {        /* jump */
6001   VdbeCursor *pC;
6002   BtCursor *pCrsr;
6003   int res;
6004 
6005   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6006   assert( pOp->p5==0 );
6007   pC = p->apCsr[pOp->p1];
6008   assert( pC!=0 );
6009   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6010   res = 1;
6011 #ifdef SQLITE_DEBUG
6012   pC->seekOp = OP_Rewind;
6013 #endif
6014   if( isSorter(pC) ){
6015     rc = sqlite3VdbeSorterRewind(pC, &res);
6016   }else{
6017     assert( pC->eCurType==CURTYPE_BTREE );
6018     pCrsr = pC->uc.pCursor;
6019     assert( pCrsr );
6020     rc = sqlite3BtreeFirst(pCrsr, &res);
6021     pC->deferredMoveto = 0;
6022     pC->cacheStatus = CACHE_STALE;
6023   }
6024   if( rc ) goto abort_due_to_error;
6025   pC->nullRow = (u8)res;
6026   assert( pOp->p2>0 && pOp->p2<p->nOp );
6027   VdbeBranchTaken(res!=0,2);
6028   if( res ) goto jump_to_p2;
6029   break;
6030 }
6031 
6032 /* Opcode: Next P1 P2 P3 * P5
6033 **
6034 ** Advance cursor P1 so that it points to the next key/data pair in its
6035 ** table or index.  If there are no more key/value pairs then fall through
6036 ** to the following instruction.  But if the cursor advance was successful,
6037 ** jump immediately to P2.
6038 **
6039 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6040 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
6041 ** to follow SeekLT, SeekLE, or OP_Last.
6042 **
6043 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
6044 ** been opened prior to this opcode or the program will segfault.
6045 **
6046 ** The P3 value is a hint to the btree implementation. If P3==1, that
6047 ** means P1 is an SQL index and that this instruction could have been
6048 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6049 ** always either 0 or 1.
6050 **
6051 ** If P5 is positive and the jump is taken, then event counter
6052 ** number P5-1 in the prepared statement is incremented.
6053 **
6054 ** See also: Prev
6055 */
6056 /* Opcode: Prev P1 P2 P3 * P5
6057 **
6058 ** Back up cursor P1 so that it points to the previous key/data pair in its
6059 ** table or index.  If there is no previous key/value pairs then fall through
6060 ** to the following instruction.  But if the cursor backup was successful,
6061 ** jump immediately to P2.
6062 **
6063 **
6064 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6065 ** OP_Last opcode used to position the cursor.  Prev is not allowed
6066 ** to follow SeekGT, SeekGE, or OP_Rewind.
6067 **
6068 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
6069 ** not open then the behavior is undefined.
6070 **
6071 ** The P3 value is a hint to the btree implementation. If P3==1, that
6072 ** means P1 is an SQL index and that this instruction could have been
6073 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6074 ** always either 0 or 1.
6075 **
6076 ** If P5 is positive and the jump is taken, then event counter
6077 ** number P5-1 in the prepared statement is incremented.
6078 */
6079 /* Opcode: SorterNext P1 P2 * * P5
6080 **
6081 ** This opcode works just like OP_Next except that P1 must be a
6082 ** sorter object for which the OP_SorterSort opcode has been
6083 ** invoked.  This opcode advances the cursor to the next sorted
6084 ** record, or jumps to P2 if there are no more sorted records.
6085 */
6086 case OP_SorterNext: {  /* jump */
6087   VdbeCursor *pC;
6088 
6089   pC = p->apCsr[pOp->p1];
6090   assert( isSorter(pC) );
6091   rc = sqlite3VdbeSorterNext(db, pC);
6092   goto next_tail;
6093 
6094 case OP_Prev:          /* jump */
6095   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6096   assert( pOp->p5==0
6097        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6098        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6099   pC = p->apCsr[pOp->p1];
6100   assert( pC!=0 );
6101   assert( pC->deferredMoveto==0 );
6102   assert( pC->eCurType==CURTYPE_BTREE );
6103   assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6104        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
6105        || pC->seekOp==OP_NullRow);
6106   rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6107   goto next_tail;
6108 
6109 case OP_Next:          /* jump */
6110   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6111   assert( pOp->p5==0
6112        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6113        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6114   pC = p->apCsr[pOp->p1];
6115   assert( pC!=0 );
6116   assert( pC->deferredMoveto==0 );
6117   assert( pC->eCurType==CURTYPE_BTREE );
6118   assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6119        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6120        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6121        || pC->seekOp==OP_IfNoHope);
6122   rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6123 
6124 next_tail:
6125   pC->cacheStatus = CACHE_STALE;
6126   VdbeBranchTaken(rc==SQLITE_OK,2);
6127   if( rc==SQLITE_OK ){
6128     pC->nullRow = 0;
6129     p->aCounter[pOp->p5]++;
6130 #ifdef SQLITE_TEST
6131     sqlite3_search_count++;
6132 #endif
6133     goto jump_to_p2_and_check_for_interrupt;
6134   }
6135   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6136   rc = SQLITE_OK;
6137   pC->nullRow = 1;
6138   goto check_for_interrupt;
6139 }
6140 
6141 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6142 ** Synopsis: key=r[P2]
6143 **
6144 ** Register P2 holds an SQL index key made using the
6145 ** MakeRecord instructions.  This opcode writes that key
6146 ** into the index P1.  Data for the entry is nil.
6147 **
6148 ** If P4 is not zero, then it is the number of values in the unpacked
6149 ** key of reg(P2).  In that case, P3 is the index of the first register
6150 ** for the unpacked key.  The availability of the unpacked key can sometimes
6151 ** be an optimization.
6152 **
6153 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6154 ** that this insert is likely to be an append.
6155 **
6156 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6157 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6158 ** then the change counter is unchanged.
6159 **
6160 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6161 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6162 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6163 ** seeks on the cursor or if the most recent seek used a key equivalent
6164 ** to P2.
6165 **
6166 ** This instruction only works for indices.  The equivalent instruction
6167 ** for tables is OP_Insert.
6168 */
6169 case OP_IdxInsert: {        /* in2 */
6170   VdbeCursor *pC;
6171   BtreePayload x;
6172 
6173   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6174   pC = p->apCsr[pOp->p1];
6175   sqlite3VdbeIncrWriteCounter(p, pC);
6176   assert( pC!=0 );
6177   assert( !isSorter(pC) );
6178   pIn2 = &aMem[pOp->p2];
6179   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6180   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6181   assert( pC->eCurType==CURTYPE_BTREE );
6182   assert( pC->isTable==0 );
6183   rc = ExpandBlob(pIn2);
6184   if( rc ) goto abort_due_to_error;
6185   x.nKey = pIn2->n;
6186   x.pKey = pIn2->z;
6187   x.aMem = aMem + pOp->p3;
6188   x.nMem = (u16)pOp->p4.i;
6189   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6190        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6191       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6192       );
6193   assert( pC->deferredMoveto==0 );
6194   pC->cacheStatus = CACHE_STALE;
6195   if( rc) goto abort_due_to_error;
6196   break;
6197 }
6198 
6199 /* Opcode: SorterInsert P1 P2 * * *
6200 ** Synopsis: key=r[P2]
6201 **
6202 ** Register P2 holds an SQL index key made using the
6203 ** MakeRecord instructions.  This opcode writes that key
6204 ** into the sorter P1.  Data for the entry is nil.
6205 */
6206 case OP_SorterInsert: {     /* in2 */
6207   VdbeCursor *pC;
6208 
6209   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6210   pC = p->apCsr[pOp->p1];
6211   sqlite3VdbeIncrWriteCounter(p, pC);
6212   assert( pC!=0 );
6213   assert( isSorter(pC) );
6214   pIn2 = &aMem[pOp->p2];
6215   assert( pIn2->flags & MEM_Blob );
6216   assert( pC->isTable==0 );
6217   rc = ExpandBlob(pIn2);
6218   if( rc ) goto abort_due_to_error;
6219   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6220   if( rc) goto abort_due_to_error;
6221   break;
6222 }
6223 
6224 /* Opcode: IdxDelete P1 P2 P3 * P5
6225 ** Synopsis: key=r[P2@P3]
6226 **
6227 ** The content of P3 registers starting at register P2 form
6228 ** an unpacked index key. This opcode removes that entry from the
6229 ** index opened by cursor P1.
6230 **
6231 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6232 ** if no matching index entry is found.  This happens when running
6233 ** an UPDATE or DELETE statement and the index entry to be updated
6234 ** or deleted is not found.  For some uses of IdxDelete
6235 ** (example:  the EXCEPT operator) it does not matter that no matching
6236 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6237 ** this (self-correcting and non-critical) error if in writable_schema mode.
6238 */
6239 case OP_IdxDelete: {
6240   VdbeCursor *pC;
6241   BtCursor *pCrsr;
6242   int res;
6243   UnpackedRecord r;
6244 
6245   assert( pOp->p3>0 );
6246   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6247   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6248   pC = p->apCsr[pOp->p1];
6249   assert( pC!=0 );
6250   assert( pC->eCurType==CURTYPE_BTREE );
6251   sqlite3VdbeIncrWriteCounter(p, pC);
6252   pCrsr = pC->uc.pCursor;
6253   assert( pCrsr!=0 );
6254   r.pKeyInfo = pC->pKeyInfo;
6255   r.nField = (u16)pOp->p3;
6256   r.default_rc = 0;
6257   r.aMem = &aMem[pOp->p2];
6258   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6259   if( rc ) goto abort_due_to_error;
6260   if( res==0 ){
6261     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6262     if( rc ) goto abort_due_to_error;
6263   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6264     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6265     goto abort_due_to_error;
6266   }
6267   assert( pC->deferredMoveto==0 );
6268   pC->cacheStatus = CACHE_STALE;
6269   pC->seekResult = 0;
6270   break;
6271 }
6272 
6273 /* Opcode: DeferredSeek P1 * P3 P4 *
6274 ** Synopsis: Move P3 to P1.rowid if needed
6275 **
6276 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6277 ** table.  This opcode does a deferred seek of the P3 table cursor
6278 ** to the row that corresponds to the current row of P1.
6279 **
6280 ** This is a deferred seek.  Nothing actually happens until
6281 ** the cursor is used to read a record.  That way, if no reads
6282 ** occur, no unnecessary I/O happens.
6283 **
6284 ** P4 may be an array of integers (type P4_INTARRAY) containing
6285 ** one entry for each column in the P3 table.  If array entry a(i)
6286 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6287 ** equivalent to performing the deferred seek and then reading column i
6288 ** from P1.  This information is stored in P3 and used to redirect
6289 ** reads against P3 over to P1, thus possibly avoiding the need to
6290 ** seek and read cursor P3.
6291 */
6292 /* Opcode: IdxRowid P1 P2 * * *
6293 ** Synopsis: r[P2]=rowid
6294 **
6295 ** Write into register P2 an integer which is the last entry in the record at
6296 ** the end of the index key pointed to by cursor P1.  This integer should be
6297 ** the rowid of the table entry to which this index entry points.
6298 **
6299 ** See also: Rowid, MakeRecord.
6300 */
6301 case OP_DeferredSeek:
6302 case OP_IdxRowid: {           /* out2 */
6303   VdbeCursor *pC;             /* The P1 index cursor */
6304   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6305   i64 rowid;                  /* Rowid that P1 current points to */
6306 
6307   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6308   pC = p->apCsr[pOp->p1];
6309   assert( pC!=0 );
6310   assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6311   assert( pC->uc.pCursor!=0 );
6312   assert( pC->isTable==0 || IsNullCursor(pC) );
6313   assert( pC->deferredMoveto==0 );
6314   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6315 
6316   /* The IdxRowid and Seek opcodes are combined because of the commonality
6317   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6318   rc = sqlite3VdbeCursorRestore(pC);
6319 
6320   /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6321   ** since it was last positioned and an error (e.g. OOM or an IO error)
6322   ** occurs while trying to reposition it. */
6323   if( rc!=SQLITE_OK ) goto abort_due_to_error;
6324 
6325   if( !pC->nullRow ){
6326     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6327     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6328     if( rc!=SQLITE_OK ){
6329       goto abort_due_to_error;
6330     }
6331     if( pOp->opcode==OP_DeferredSeek ){
6332       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6333       pTabCur = p->apCsr[pOp->p3];
6334       assert( pTabCur!=0 );
6335       assert( pTabCur->eCurType==CURTYPE_BTREE );
6336       assert( pTabCur->uc.pCursor!=0 );
6337       assert( pTabCur->isTable );
6338       pTabCur->nullRow = 0;
6339       pTabCur->movetoTarget = rowid;
6340       pTabCur->deferredMoveto = 1;
6341       pTabCur->cacheStatus = CACHE_STALE;
6342       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6343       assert( !pTabCur->isEphemeral );
6344       pTabCur->ub.aAltMap = pOp->p4.ai;
6345       assert( !pC->isEphemeral );
6346       pTabCur->pAltCursor = pC;
6347     }else{
6348       pOut = out2Prerelease(p, pOp);
6349       pOut->u.i = rowid;
6350     }
6351   }else{
6352     assert( pOp->opcode==OP_IdxRowid );
6353     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6354   }
6355   break;
6356 }
6357 
6358 /* Opcode: FinishSeek P1 * * * *
6359 **
6360 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6361 ** seek operation now, without further delay.  If the cursor seek has
6362 ** already occurred, this instruction is a no-op.
6363 */
6364 case OP_FinishSeek: {
6365   VdbeCursor *pC;             /* The P1 index cursor */
6366 
6367   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6368   pC = p->apCsr[pOp->p1];
6369   if( pC->deferredMoveto ){
6370     rc = sqlite3VdbeFinishMoveto(pC);
6371     if( rc ) goto abort_due_to_error;
6372   }
6373   break;
6374 }
6375 
6376 /* Opcode: IdxGE P1 P2 P3 P4 *
6377 ** Synopsis: key=r[P3@P4]
6378 **
6379 ** The P4 register values beginning with P3 form an unpacked index
6380 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6381 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6382 ** fields at the end.
6383 **
6384 ** If the P1 index entry is greater than or equal to the key value
6385 ** then jump to P2.  Otherwise fall through to the next instruction.
6386 */
6387 /* Opcode: IdxGT P1 P2 P3 P4 *
6388 ** Synopsis: key=r[P3@P4]
6389 **
6390 ** The P4 register values beginning with P3 form an unpacked index
6391 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6392 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6393 ** fields at the end.
6394 **
6395 ** If the P1 index entry is greater than the key value
6396 ** then jump to P2.  Otherwise fall through to the next instruction.
6397 */
6398 /* Opcode: IdxLT P1 P2 P3 P4 *
6399 ** Synopsis: key=r[P3@P4]
6400 **
6401 ** The P4 register values beginning with P3 form an unpacked index
6402 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6403 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6404 ** ROWID on the P1 index.
6405 **
6406 ** If the P1 index entry is less than the key value then jump to P2.
6407 ** Otherwise fall through to the next instruction.
6408 */
6409 /* Opcode: IdxLE P1 P2 P3 P4 *
6410 ** Synopsis: key=r[P3@P4]
6411 **
6412 ** The P4 register values beginning with P3 form an unpacked index
6413 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6414 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6415 ** ROWID on the P1 index.
6416 **
6417 ** If the P1 index entry is less than or equal to the key value then jump
6418 ** to P2. Otherwise fall through to the next instruction.
6419 */
6420 case OP_IdxLE:          /* jump */
6421 case OP_IdxGT:          /* jump */
6422 case OP_IdxLT:          /* jump */
6423 case OP_IdxGE:  {       /* jump */
6424   VdbeCursor *pC;
6425   int res;
6426   UnpackedRecord r;
6427 
6428   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6429   pC = p->apCsr[pOp->p1];
6430   assert( pC!=0 );
6431   assert( pC->isOrdered );
6432   assert( pC->eCurType==CURTYPE_BTREE );
6433   assert( pC->uc.pCursor!=0);
6434   assert( pC->deferredMoveto==0 );
6435   assert( pOp->p4type==P4_INT32 );
6436   r.pKeyInfo = pC->pKeyInfo;
6437   r.nField = (u16)pOp->p4.i;
6438   if( pOp->opcode<OP_IdxLT ){
6439     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6440     r.default_rc = -1;
6441   }else{
6442     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6443     r.default_rc = 0;
6444   }
6445   r.aMem = &aMem[pOp->p3];
6446 #ifdef SQLITE_DEBUG
6447   {
6448     int i;
6449     for(i=0; i<r.nField; i++){
6450       assert( memIsValid(&r.aMem[i]) );
6451       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6452     }
6453   }
6454 #endif
6455 
6456   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6457   {
6458     i64 nCellKey = 0;
6459     BtCursor *pCur;
6460     Mem m;
6461 
6462     assert( pC->eCurType==CURTYPE_BTREE );
6463     pCur = pC->uc.pCursor;
6464     assert( sqlite3BtreeCursorIsValid(pCur) );
6465     nCellKey = sqlite3BtreePayloadSize(pCur);
6466     /* nCellKey will always be between 0 and 0xffffffff because of the way
6467     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6468     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6469       rc = SQLITE_CORRUPT_BKPT;
6470       goto abort_due_to_error;
6471     }
6472     sqlite3VdbeMemInit(&m, db, 0);
6473     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6474     if( rc ) goto abort_due_to_error;
6475     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6476     sqlite3VdbeMemReleaseMalloc(&m);
6477   }
6478   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6479 
6480   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6481   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6482     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6483     res = -res;
6484   }else{
6485     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6486     res++;
6487   }
6488   VdbeBranchTaken(res>0,2);
6489   assert( rc==SQLITE_OK );
6490   if( res>0 ) goto jump_to_p2;
6491   break;
6492 }
6493 
6494 /* Opcode: Destroy P1 P2 P3 * *
6495 **
6496 ** Delete an entire database table or index whose root page in the database
6497 ** file is given by P1.
6498 **
6499 ** The table being destroyed is in the main database file if P3==0.  If
6500 ** P3==1 then the table to be clear is in the auxiliary database file
6501 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6502 **
6503 ** If AUTOVACUUM is enabled then it is possible that another root page
6504 ** might be moved into the newly deleted root page in order to keep all
6505 ** root pages contiguous at the beginning of the database.  The former
6506 ** value of the root page that moved - its value before the move occurred -
6507 ** is stored in register P2. If no page movement was required (because the
6508 ** table being dropped was already the last one in the database) then a
6509 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6510 ** is stored in register P2.
6511 **
6512 ** This opcode throws an error if there are any active reader VMs when
6513 ** it is invoked. This is done to avoid the difficulty associated with
6514 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6515 ** database. This error is thrown even if the database is not an AUTOVACUUM
6516 ** db in order to avoid introducing an incompatibility between autovacuum
6517 ** and non-autovacuum modes.
6518 **
6519 ** See also: Clear
6520 */
6521 case OP_Destroy: {     /* out2 */
6522   int iMoved;
6523   int iDb;
6524 
6525   sqlite3VdbeIncrWriteCounter(p, 0);
6526   assert( p->readOnly==0 );
6527   assert( pOp->p1>1 );
6528   pOut = out2Prerelease(p, pOp);
6529   pOut->flags = MEM_Null;
6530   if( db->nVdbeRead > db->nVDestroy+1 ){
6531     rc = SQLITE_LOCKED;
6532     p->errorAction = OE_Abort;
6533     goto abort_due_to_error;
6534   }else{
6535     iDb = pOp->p3;
6536     assert( DbMaskTest(p->btreeMask, iDb) );
6537     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6538     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6539     pOut->flags = MEM_Int;
6540     pOut->u.i = iMoved;
6541     if( rc ) goto abort_due_to_error;
6542 #ifndef SQLITE_OMIT_AUTOVACUUM
6543     if( iMoved!=0 ){
6544       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6545       /* All OP_Destroy operations occur on the same btree */
6546       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6547       resetSchemaOnFault = iDb+1;
6548     }
6549 #endif
6550   }
6551   break;
6552 }
6553 
6554 /* Opcode: Clear P1 P2 P3
6555 **
6556 ** Delete all contents of the database table or index whose root page
6557 ** in the database file is given by P1.  But, unlike Destroy, do not
6558 ** remove the table or index from the database file.
6559 **
6560 ** The table being clear is in the main database file if P2==0.  If
6561 ** P2==1 then the table to be clear is in the auxiliary database file
6562 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6563 **
6564 ** If the P3 value is non-zero, then the row change count is incremented
6565 ** by the number of rows in the table being cleared. If P3 is greater
6566 ** than zero, then the value stored in register P3 is also incremented
6567 ** by the number of rows in the table being cleared.
6568 **
6569 ** See also: Destroy
6570 */
6571 case OP_Clear: {
6572   i64 nChange;
6573 
6574   sqlite3VdbeIncrWriteCounter(p, 0);
6575   nChange = 0;
6576   assert( p->readOnly==0 );
6577   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6578   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6579   if( pOp->p3 ){
6580     p->nChange += nChange;
6581     if( pOp->p3>0 ){
6582       assert( memIsValid(&aMem[pOp->p3]) );
6583       memAboutToChange(p, &aMem[pOp->p3]);
6584       aMem[pOp->p3].u.i += nChange;
6585     }
6586   }
6587   if( rc ) goto abort_due_to_error;
6588   break;
6589 }
6590 
6591 /* Opcode: ResetSorter P1 * * * *
6592 **
6593 ** Delete all contents from the ephemeral table or sorter
6594 ** that is open on cursor P1.
6595 **
6596 ** This opcode only works for cursors used for sorting and
6597 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6598 */
6599 case OP_ResetSorter: {
6600   VdbeCursor *pC;
6601 
6602   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6603   pC = p->apCsr[pOp->p1];
6604   assert( pC!=0 );
6605   if( isSorter(pC) ){
6606     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6607   }else{
6608     assert( pC->eCurType==CURTYPE_BTREE );
6609     assert( pC->isEphemeral );
6610     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6611     if( rc ) goto abort_due_to_error;
6612   }
6613   break;
6614 }
6615 
6616 /* Opcode: CreateBtree P1 P2 P3 * *
6617 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6618 **
6619 ** Allocate a new b-tree in the main database file if P1==0 or in the
6620 ** TEMP database file if P1==1 or in an attached database if
6621 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6622 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6623 ** The root page number of the new b-tree is stored in register P2.
6624 */
6625 case OP_CreateBtree: {          /* out2 */
6626   Pgno pgno;
6627   Db *pDb;
6628 
6629   sqlite3VdbeIncrWriteCounter(p, 0);
6630   pOut = out2Prerelease(p, pOp);
6631   pgno = 0;
6632   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6633   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6634   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6635   assert( p->readOnly==0 );
6636   pDb = &db->aDb[pOp->p1];
6637   assert( pDb->pBt!=0 );
6638   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6639   if( rc ) goto abort_due_to_error;
6640   pOut->u.i = pgno;
6641   break;
6642 }
6643 
6644 /* Opcode: SqlExec * * * P4 *
6645 **
6646 ** Run the SQL statement or statements specified in the P4 string.
6647 */
6648 case OP_SqlExec: {
6649   sqlite3VdbeIncrWriteCounter(p, 0);
6650   db->nSqlExec++;
6651   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6652   db->nSqlExec--;
6653   if( rc ) goto abort_due_to_error;
6654   break;
6655 }
6656 
6657 /* Opcode: ParseSchema P1 * * P4 *
6658 **
6659 ** Read and parse all entries from the schema table of database P1
6660 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6661 ** entire schema for P1 is reparsed.
6662 **
6663 ** This opcode invokes the parser to create a new virtual machine,
6664 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6665 */
6666 case OP_ParseSchema: {
6667   int iDb;
6668   const char *zSchema;
6669   char *zSql;
6670   InitData initData;
6671 
6672   /* Any prepared statement that invokes this opcode will hold mutexes
6673   ** on every btree.  This is a prerequisite for invoking
6674   ** sqlite3InitCallback().
6675   */
6676 #ifdef SQLITE_DEBUG
6677   for(iDb=0; iDb<db->nDb; iDb++){
6678     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6679   }
6680 #endif
6681 
6682   iDb = pOp->p1;
6683   assert( iDb>=0 && iDb<db->nDb );
6684   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6685            || db->mallocFailed
6686            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6687 
6688 #ifndef SQLITE_OMIT_ALTERTABLE
6689   if( pOp->p4.z==0 ){
6690     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6691     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6692     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6693     db->mDbFlags |= DBFLAG_SchemaChange;
6694     p->expired = 0;
6695   }else
6696 #endif
6697   {
6698     zSchema = LEGACY_SCHEMA_TABLE;
6699     initData.db = db;
6700     initData.iDb = iDb;
6701     initData.pzErrMsg = &p->zErrMsg;
6702     initData.mInitFlags = 0;
6703     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6704     zSql = sqlite3MPrintf(db,
6705        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6706        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6707     if( zSql==0 ){
6708       rc = SQLITE_NOMEM_BKPT;
6709     }else{
6710       assert( db->init.busy==0 );
6711       db->init.busy = 1;
6712       initData.rc = SQLITE_OK;
6713       initData.nInitRow = 0;
6714       assert( !db->mallocFailed );
6715       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6716       if( rc==SQLITE_OK ) rc = initData.rc;
6717       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6718         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6719         ** at least one SQL statement. Any less than that indicates that
6720         ** the sqlite_schema table is corrupt. */
6721         rc = SQLITE_CORRUPT_BKPT;
6722       }
6723       sqlite3DbFreeNN(db, zSql);
6724       db->init.busy = 0;
6725     }
6726   }
6727   if( rc ){
6728     sqlite3ResetAllSchemasOfConnection(db);
6729     if( rc==SQLITE_NOMEM ){
6730       goto no_mem;
6731     }
6732     goto abort_due_to_error;
6733   }
6734   break;
6735 }
6736 
6737 #if !defined(SQLITE_OMIT_ANALYZE)
6738 /* Opcode: LoadAnalysis P1 * * * *
6739 **
6740 ** Read the sqlite_stat1 table for database P1 and load the content
6741 ** of that table into the internal index hash table.  This will cause
6742 ** the analysis to be used when preparing all subsequent queries.
6743 */
6744 case OP_LoadAnalysis: {
6745   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6746   rc = sqlite3AnalysisLoad(db, pOp->p1);
6747   if( rc ) goto abort_due_to_error;
6748   break;
6749 }
6750 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6751 
6752 /* Opcode: DropTable P1 * * P4 *
6753 **
6754 ** Remove the internal (in-memory) data structures that describe
6755 ** the table named P4 in database P1.  This is called after a table
6756 ** is dropped from disk (using the Destroy opcode) in order to keep
6757 ** the internal representation of the
6758 ** schema consistent with what is on disk.
6759 */
6760 case OP_DropTable: {
6761   sqlite3VdbeIncrWriteCounter(p, 0);
6762   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6763   break;
6764 }
6765 
6766 /* Opcode: DropIndex P1 * * P4 *
6767 **
6768 ** Remove the internal (in-memory) data structures that describe
6769 ** the index named P4 in database P1.  This is called after an index
6770 ** is dropped from disk (using the Destroy opcode)
6771 ** in order to keep the internal representation of the
6772 ** schema consistent with what is on disk.
6773 */
6774 case OP_DropIndex: {
6775   sqlite3VdbeIncrWriteCounter(p, 0);
6776   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6777   break;
6778 }
6779 
6780 /* Opcode: DropTrigger P1 * * P4 *
6781 **
6782 ** Remove the internal (in-memory) data structures that describe
6783 ** the trigger named P4 in database P1.  This is called after a trigger
6784 ** is dropped from disk (using the Destroy opcode) in order to keep
6785 ** the internal representation of the
6786 ** schema consistent with what is on disk.
6787 */
6788 case OP_DropTrigger: {
6789   sqlite3VdbeIncrWriteCounter(p, 0);
6790   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6791   break;
6792 }
6793 
6794 
6795 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6796 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6797 **
6798 ** Do an analysis of the currently open database.  Store in
6799 ** register P1 the text of an error message describing any problems.
6800 ** If no problems are found, store a NULL in register P1.
6801 **
6802 ** The register P3 contains one less than the maximum number of allowed errors.
6803 ** At most reg(P3) errors will be reported.
6804 ** In other words, the analysis stops as soon as reg(P1) errors are
6805 ** seen.  Reg(P1) is updated with the number of errors remaining.
6806 **
6807 ** The root page numbers of all tables in the database are integers
6808 ** stored in P4_INTARRAY argument.
6809 **
6810 ** If P5 is not zero, the check is done on the auxiliary database
6811 ** file, not the main database file.
6812 **
6813 ** This opcode is used to implement the integrity_check pragma.
6814 */
6815 case OP_IntegrityCk: {
6816   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6817   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6818   int nErr;       /* Number of errors reported */
6819   char *z;        /* Text of the error report */
6820   Mem *pnErr;     /* Register keeping track of errors remaining */
6821 
6822   assert( p->bIsReader );
6823   nRoot = pOp->p2;
6824   aRoot = pOp->p4.ai;
6825   assert( nRoot>0 );
6826   assert( aRoot[0]==(Pgno)nRoot );
6827   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6828   pnErr = &aMem[pOp->p3];
6829   assert( (pnErr->flags & MEM_Int)!=0 );
6830   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6831   pIn1 = &aMem[pOp->p1];
6832   assert( pOp->p5<db->nDb );
6833   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6834   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6835                                  (int)pnErr->u.i+1, &nErr);
6836   sqlite3VdbeMemSetNull(pIn1);
6837   if( nErr==0 ){
6838     assert( z==0 );
6839   }else if( z==0 ){
6840     goto no_mem;
6841   }else{
6842     pnErr->u.i -= nErr-1;
6843     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6844   }
6845   UPDATE_MAX_BLOBSIZE(pIn1);
6846   sqlite3VdbeChangeEncoding(pIn1, encoding);
6847   goto check_for_interrupt;
6848 }
6849 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6850 
6851 /* Opcode: RowSetAdd P1 P2 * * *
6852 ** Synopsis: rowset(P1)=r[P2]
6853 **
6854 ** Insert the integer value held by register P2 into a RowSet object
6855 ** held in register P1.
6856 **
6857 ** An assertion fails if P2 is not an integer.
6858 */
6859 case OP_RowSetAdd: {       /* in1, in2 */
6860   pIn1 = &aMem[pOp->p1];
6861   pIn2 = &aMem[pOp->p2];
6862   assert( (pIn2->flags & MEM_Int)!=0 );
6863   if( (pIn1->flags & MEM_Blob)==0 ){
6864     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6865   }
6866   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6867   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6868   break;
6869 }
6870 
6871 /* Opcode: RowSetRead P1 P2 P3 * *
6872 ** Synopsis: r[P3]=rowset(P1)
6873 **
6874 ** Extract the smallest value from the RowSet object in P1
6875 ** and put that value into register P3.
6876 ** Or, if RowSet object P1 is initially empty, leave P3
6877 ** unchanged and jump to instruction P2.
6878 */
6879 case OP_RowSetRead: {       /* jump, in1, out3 */
6880   i64 val;
6881 
6882   pIn1 = &aMem[pOp->p1];
6883   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6884   if( (pIn1->flags & MEM_Blob)==0
6885    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6886   ){
6887     /* The boolean index is empty */
6888     sqlite3VdbeMemSetNull(pIn1);
6889     VdbeBranchTaken(1,2);
6890     goto jump_to_p2_and_check_for_interrupt;
6891   }else{
6892     /* A value was pulled from the index */
6893     VdbeBranchTaken(0,2);
6894     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6895   }
6896   goto check_for_interrupt;
6897 }
6898 
6899 /* Opcode: RowSetTest P1 P2 P3 P4
6900 ** Synopsis: if r[P3] in rowset(P1) goto P2
6901 **
6902 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6903 ** contains a RowSet object and that RowSet object contains
6904 ** the value held in P3, jump to register P2. Otherwise, insert the
6905 ** integer in P3 into the RowSet and continue on to the
6906 ** next opcode.
6907 **
6908 ** The RowSet object is optimized for the case where sets of integers
6909 ** are inserted in distinct phases, which each set contains no duplicates.
6910 ** Each set is identified by a unique P4 value. The first set
6911 ** must have P4==0, the final set must have P4==-1, and for all other sets
6912 ** must have P4>0.
6913 **
6914 ** This allows optimizations: (a) when P4==0 there is no need to test
6915 ** the RowSet object for P3, as it is guaranteed not to contain it,
6916 ** (b) when P4==-1 there is no need to insert the value, as it will
6917 ** never be tested for, and (c) when a value that is part of set X is
6918 ** inserted, there is no need to search to see if the same value was
6919 ** previously inserted as part of set X (only if it was previously
6920 ** inserted as part of some other set).
6921 */
6922 case OP_RowSetTest: {                     /* jump, in1, in3 */
6923   int iSet;
6924   int exists;
6925 
6926   pIn1 = &aMem[pOp->p1];
6927   pIn3 = &aMem[pOp->p3];
6928   iSet = pOp->p4.i;
6929   assert( pIn3->flags&MEM_Int );
6930 
6931   /* If there is anything other than a rowset object in memory cell P1,
6932   ** delete it now and initialize P1 with an empty rowset
6933   */
6934   if( (pIn1->flags & MEM_Blob)==0 ){
6935     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6936   }
6937   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6938   assert( pOp->p4type==P4_INT32 );
6939   assert( iSet==-1 || iSet>=0 );
6940   if( iSet ){
6941     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6942     VdbeBranchTaken(exists!=0,2);
6943     if( exists ) goto jump_to_p2;
6944   }
6945   if( iSet>=0 ){
6946     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6947   }
6948   break;
6949 }
6950 
6951 
6952 #ifndef SQLITE_OMIT_TRIGGER
6953 
6954 /* Opcode: Program P1 P2 P3 P4 P5
6955 **
6956 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6957 **
6958 ** P1 contains the address of the memory cell that contains the first memory
6959 ** cell in an array of values used as arguments to the sub-program. P2
6960 ** contains the address to jump to if the sub-program throws an IGNORE
6961 ** exception using the RAISE() function. Register P3 contains the address
6962 ** of a memory cell in this (the parent) VM that is used to allocate the
6963 ** memory required by the sub-vdbe at runtime.
6964 **
6965 ** P4 is a pointer to the VM containing the trigger program.
6966 **
6967 ** If P5 is non-zero, then recursive program invocation is enabled.
6968 */
6969 case OP_Program: {        /* jump */
6970   int nMem;               /* Number of memory registers for sub-program */
6971   int nByte;              /* Bytes of runtime space required for sub-program */
6972   Mem *pRt;               /* Register to allocate runtime space */
6973   Mem *pMem;              /* Used to iterate through memory cells */
6974   Mem *pEnd;              /* Last memory cell in new array */
6975   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6976   SubProgram *pProgram;   /* Sub-program to execute */
6977   void *t;                /* Token identifying trigger */
6978 
6979   pProgram = pOp->p4.pProgram;
6980   pRt = &aMem[pOp->p3];
6981   assert( pProgram->nOp>0 );
6982 
6983   /* If the p5 flag is clear, then recursive invocation of triggers is
6984   ** disabled for backwards compatibility (p5 is set if this sub-program
6985   ** is really a trigger, not a foreign key action, and the flag set
6986   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6987   **
6988   ** It is recursive invocation of triggers, at the SQL level, that is
6989   ** disabled. In some cases a single trigger may generate more than one
6990   ** SubProgram (if the trigger may be executed with more than one different
6991   ** ON CONFLICT algorithm). SubProgram structures associated with a
6992   ** single trigger all have the same value for the SubProgram.token
6993   ** variable.  */
6994   if( pOp->p5 ){
6995     t = pProgram->token;
6996     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6997     if( pFrame ) break;
6998   }
6999 
7000   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7001     rc = SQLITE_ERROR;
7002     sqlite3VdbeError(p, "too many levels of trigger recursion");
7003     goto abort_due_to_error;
7004   }
7005 
7006   /* Register pRt is used to store the memory required to save the state
7007   ** of the current program, and the memory required at runtime to execute
7008   ** the trigger program. If this trigger has been fired before, then pRt
7009   ** is already allocated. Otherwise, it must be initialized.  */
7010   if( (pRt->flags&MEM_Blob)==0 ){
7011     /* SubProgram.nMem is set to the number of memory cells used by the
7012     ** program stored in SubProgram.aOp. As well as these, one memory
7013     ** cell is required for each cursor used by the program. Set local
7014     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7015     */
7016     nMem = pProgram->nMem + pProgram->nCsr;
7017     assert( nMem>0 );
7018     if( pProgram->nCsr==0 ) nMem++;
7019     nByte = ROUND8(sizeof(VdbeFrame))
7020               + nMem * sizeof(Mem)
7021               + pProgram->nCsr * sizeof(VdbeCursor*)
7022               + (pProgram->nOp + 7)/8;
7023     pFrame = sqlite3DbMallocZero(db, nByte);
7024     if( !pFrame ){
7025       goto no_mem;
7026     }
7027     sqlite3VdbeMemRelease(pRt);
7028     pRt->flags = MEM_Blob|MEM_Dyn;
7029     pRt->z = (char*)pFrame;
7030     pRt->n = nByte;
7031     pRt->xDel = sqlite3VdbeFrameMemDel;
7032 
7033     pFrame->v = p;
7034     pFrame->nChildMem = nMem;
7035     pFrame->nChildCsr = pProgram->nCsr;
7036     pFrame->pc = (int)(pOp - aOp);
7037     pFrame->aMem = p->aMem;
7038     pFrame->nMem = p->nMem;
7039     pFrame->apCsr = p->apCsr;
7040     pFrame->nCursor = p->nCursor;
7041     pFrame->aOp = p->aOp;
7042     pFrame->nOp = p->nOp;
7043     pFrame->token = pProgram->token;
7044 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7045     pFrame->anExec = p->anExec;
7046 #endif
7047 #ifdef SQLITE_DEBUG
7048     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7049 #endif
7050 
7051     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7052     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7053       pMem->flags = MEM_Undefined;
7054       pMem->db = db;
7055     }
7056   }else{
7057     pFrame = (VdbeFrame*)pRt->z;
7058     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7059     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7060         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7061     assert( pProgram->nCsr==pFrame->nChildCsr );
7062     assert( (int)(pOp - aOp)==pFrame->pc );
7063   }
7064 
7065   p->nFrame++;
7066   pFrame->pParent = p->pFrame;
7067   pFrame->lastRowid = db->lastRowid;
7068   pFrame->nChange = p->nChange;
7069   pFrame->nDbChange = p->db->nChange;
7070   assert( pFrame->pAuxData==0 );
7071   pFrame->pAuxData = p->pAuxData;
7072   p->pAuxData = 0;
7073   p->nChange = 0;
7074   p->pFrame = pFrame;
7075   p->aMem = aMem = VdbeFrameMem(pFrame);
7076   p->nMem = pFrame->nChildMem;
7077   p->nCursor = (u16)pFrame->nChildCsr;
7078   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7079   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7080   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7081   p->aOp = aOp = pProgram->aOp;
7082   p->nOp = pProgram->nOp;
7083 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7084   p->anExec = 0;
7085 #endif
7086 #ifdef SQLITE_DEBUG
7087   /* Verify that second and subsequent executions of the same trigger do not
7088   ** try to reuse register values from the first use. */
7089   {
7090     int i;
7091     for(i=0; i<p->nMem; i++){
7092       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
7093       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7094     }
7095   }
7096 #endif
7097   pOp = &aOp[-1];
7098   goto check_for_interrupt;
7099 }
7100 
7101 /* Opcode: Param P1 P2 * * *
7102 **
7103 ** This opcode is only ever present in sub-programs called via the
7104 ** OP_Program instruction. Copy a value currently stored in a memory
7105 ** cell of the calling (parent) frame to cell P2 in the current frames
7106 ** address space. This is used by trigger programs to access the new.*
7107 ** and old.* values.
7108 **
7109 ** The address of the cell in the parent frame is determined by adding
7110 ** the value of the P1 argument to the value of the P1 argument to the
7111 ** calling OP_Program instruction.
7112 */
7113 case OP_Param: {           /* out2 */
7114   VdbeFrame *pFrame;
7115   Mem *pIn;
7116   pOut = out2Prerelease(p, pOp);
7117   pFrame = p->pFrame;
7118   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7119   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7120   break;
7121 }
7122 
7123 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7124 
7125 #ifndef SQLITE_OMIT_FOREIGN_KEY
7126 /* Opcode: FkCounter P1 P2 * * *
7127 ** Synopsis: fkctr[P1]+=P2
7128 **
7129 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7130 ** If P1 is non-zero, the database constraint counter is incremented
7131 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7132 ** statement counter is incremented (immediate foreign key constraints).
7133 */
7134 case OP_FkCounter: {
7135   if( db->flags & SQLITE_DeferFKs ){
7136     db->nDeferredImmCons += pOp->p2;
7137   }else if( pOp->p1 ){
7138     db->nDeferredCons += pOp->p2;
7139   }else{
7140     p->nFkConstraint += pOp->p2;
7141   }
7142   break;
7143 }
7144 
7145 /* Opcode: FkIfZero P1 P2 * * *
7146 ** Synopsis: if fkctr[P1]==0 goto P2
7147 **
7148 ** This opcode tests if a foreign key constraint-counter is currently zero.
7149 ** If so, jump to instruction P2. Otherwise, fall through to the next
7150 ** instruction.
7151 **
7152 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7153 ** is zero (the one that counts deferred constraint violations). If P1 is
7154 ** zero, the jump is taken if the statement constraint-counter is zero
7155 ** (immediate foreign key constraint violations).
7156 */
7157 case OP_FkIfZero: {         /* jump */
7158   if( pOp->p1 ){
7159     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7160     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7161   }else{
7162     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7163     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7164   }
7165   break;
7166 }
7167 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7168 
7169 #ifndef SQLITE_OMIT_AUTOINCREMENT
7170 /* Opcode: MemMax P1 P2 * * *
7171 ** Synopsis: r[P1]=max(r[P1],r[P2])
7172 **
7173 ** P1 is a register in the root frame of this VM (the root frame is
7174 ** different from the current frame if this instruction is being executed
7175 ** within a sub-program). Set the value of register P1 to the maximum of
7176 ** its current value and the value in register P2.
7177 **
7178 ** This instruction throws an error if the memory cell is not initially
7179 ** an integer.
7180 */
7181 case OP_MemMax: {        /* in2 */
7182   VdbeFrame *pFrame;
7183   if( p->pFrame ){
7184     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7185     pIn1 = &pFrame->aMem[pOp->p1];
7186   }else{
7187     pIn1 = &aMem[pOp->p1];
7188   }
7189   assert( memIsValid(pIn1) );
7190   sqlite3VdbeMemIntegerify(pIn1);
7191   pIn2 = &aMem[pOp->p2];
7192   sqlite3VdbeMemIntegerify(pIn2);
7193   if( pIn1->u.i<pIn2->u.i){
7194     pIn1->u.i = pIn2->u.i;
7195   }
7196   break;
7197 }
7198 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7199 
7200 /* Opcode: IfPos P1 P2 P3 * *
7201 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7202 **
7203 ** Register P1 must contain an integer.
7204 ** If the value of register P1 is 1 or greater, subtract P3 from the
7205 ** value in P1 and jump to P2.
7206 **
7207 ** If the initial value of register P1 is less than 1, then the
7208 ** value is unchanged and control passes through to the next instruction.
7209 */
7210 case OP_IfPos: {        /* jump, in1 */
7211   pIn1 = &aMem[pOp->p1];
7212   assert( pIn1->flags&MEM_Int );
7213   VdbeBranchTaken( pIn1->u.i>0, 2);
7214   if( pIn1->u.i>0 ){
7215     pIn1->u.i -= pOp->p3;
7216     goto jump_to_p2;
7217   }
7218   break;
7219 }
7220 
7221 /* Opcode: OffsetLimit P1 P2 P3 * *
7222 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7223 **
7224 ** This opcode performs a commonly used computation associated with
7225 ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
7226 ** holds the offset counter.  The opcode computes the combined value
7227 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7228 ** value computed is the total number of rows that will need to be
7229 ** visited in order to complete the query.
7230 **
7231 ** If r[P3] is zero or negative, that means there is no OFFSET
7232 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7233 **
7234 ** if r[P1] is zero or negative, that means there is no LIMIT
7235 ** and r[P2] is set to -1.
7236 **
7237 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7238 */
7239 case OP_OffsetLimit: {    /* in1, out2, in3 */
7240   i64 x;
7241   pIn1 = &aMem[pOp->p1];
7242   pIn3 = &aMem[pOp->p3];
7243   pOut = out2Prerelease(p, pOp);
7244   assert( pIn1->flags & MEM_Int );
7245   assert( pIn3->flags & MEM_Int );
7246   x = pIn1->u.i;
7247   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7248     /* If the LIMIT is less than or equal to zero, loop forever.  This
7249     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7250     ** also loop forever.  This is undocumented.  In fact, one could argue
7251     ** that the loop should terminate.  But assuming 1 billion iterations
7252     ** per second (far exceeding the capabilities of any current hardware)
7253     ** it would take nearly 300 years to actually reach the limit.  So
7254     ** looping forever is a reasonable approximation. */
7255     pOut->u.i = -1;
7256   }else{
7257     pOut->u.i = x;
7258   }
7259   break;
7260 }
7261 
7262 /* Opcode: IfNotZero P1 P2 * * *
7263 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7264 **
7265 ** Register P1 must contain an integer.  If the content of register P1 is
7266 ** initially greater than zero, then decrement the value in register P1.
7267 ** If it is non-zero (negative or positive) and then also jump to P2.
7268 ** If register P1 is initially zero, leave it unchanged and fall through.
7269 */
7270 case OP_IfNotZero: {        /* jump, in1 */
7271   pIn1 = &aMem[pOp->p1];
7272   assert( pIn1->flags&MEM_Int );
7273   VdbeBranchTaken(pIn1->u.i<0, 2);
7274   if( pIn1->u.i ){
7275      if( pIn1->u.i>0 ) pIn1->u.i--;
7276      goto jump_to_p2;
7277   }
7278   break;
7279 }
7280 
7281 /* Opcode: DecrJumpZero P1 P2 * * *
7282 ** Synopsis: if (--r[P1])==0 goto P2
7283 **
7284 ** Register P1 must hold an integer.  Decrement the value in P1
7285 ** and jump to P2 if the new value is exactly zero.
7286 */
7287 case OP_DecrJumpZero: {      /* jump, in1 */
7288   pIn1 = &aMem[pOp->p1];
7289   assert( pIn1->flags&MEM_Int );
7290   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7291   VdbeBranchTaken(pIn1->u.i==0, 2);
7292   if( pIn1->u.i==0 ) goto jump_to_p2;
7293   break;
7294 }
7295 
7296 
7297 /* Opcode: AggStep * P2 P3 P4 P5
7298 ** Synopsis: accum=r[P3] step(r[P2@P5])
7299 **
7300 ** Execute the xStep function for an aggregate.
7301 ** The function has P5 arguments.  P4 is a pointer to the
7302 ** FuncDef structure that specifies the function.  Register P3 is the
7303 ** accumulator.
7304 **
7305 ** The P5 arguments are taken from register P2 and its
7306 ** successors.
7307 */
7308 /* Opcode: AggInverse * P2 P3 P4 P5
7309 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7310 **
7311 ** Execute the xInverse function for an aggregate.
7312 ** The function has P5 arguments.  P4 is a pointer to the
7313 ** FuncDef structure that specifies the function.  Register P3 is the
7314 ** accumulator.
7315 **
7316 ** The P5 arguments are taken from register P2 and its
7317 ** successors.
7318 */
7319 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7320 ** Synopsis: accum=r[P3] step(r[P2@P5])
7321 **
7322 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7323 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7324 ** FuncDef structure that specifies the function.  Register P3 is the
7325 ** accumulator.
7326 **
7327 ** The P5 arguments are taken from register P2 and its
7328 ** successors.
7329 **
7330 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7331 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7332 ** the opcode is changed.  In this way, the initialization of the
7333 ** sqlite3_context only happens once, instead of on each call to the
7334 ** step function.
7335 */
7336 case OP_AggInverse:
7337 case OP_AggStep: {
7338   int n;
7339   sqlite3_context *pCtx;
7340 
7341   assert( pOp->p4type==P4_FUNCDEF );
7342   n = pOp->p5;
7343   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7344   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7345   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7346   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7347                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7348   if( pCtx==0 ) goto no_mem;
7349   pCtx->pMem = 0;
7350   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7351   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7352   pCtx->pFunc = pOp->p4.pFunc;
7353   pCtx->iOp = (int)(pOp - aOp);
7354   pCtx->pVdbe = p;
7355   pCtx->skipFlag = 0;
7356   pCtx->isError = 0;
7357   pCtx->enc = encoding;
7358   pCtx->argc = n;
7359   pOp->p4type = P4_FUNCCTX;
7360   pOp->p4.pCtx = pCtx;
7361 
7362   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7363   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7364 
7365   pOp->opcode = OP_AggStep1;
7366   /* Fall through into OP_AggStep */
7367   /* no break */ deliberate_fall_through
7368 }
7369 case OP_AggStep1: {
7370   int i;
7371   sqlite3_context *pCtx;
7372   Mem *pMem;
7373 
7374   assert( pOp->p4type==P4_FUNCCTX );
7375   pCtx = pOp->p4.pCtx;
7376   pMem = &aMem[pOp->p3];
7377 
7378 #ifdef SQLITE_DEBUG
7379   if( pOp->p1 ){
7380     /* This is an OP_AggInverse call.  Verify that xStep has always
7381     ** been called at least once prior to any xInverse call. */
7382     assert( pMem->uTemp==0x1122e0e3 );
7383   }else{
7384     /* This is an OP_AggStep call.  Mark it as such. */
7385     pMem->uTemp = 0x1122e0e3;
7386   }
7387 #endif
7388 
7389   /* If this function is inside of a trigger, the register array in aMem[]
7390   ** might change from one evaluation to the next.  The next block of code
7391   ** checks to see if the register array has changed, and if so it
7392   ** reinitializes the relavant parts of the sqlite3_context object */
7393   if( pCtx->pMem != pMem ){
7394     pCtx->pMem = pMem;
7395     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7396   }
7397 
7398 #ifdef SQLITE_DEBUG
7399   for(i=0; i<pCtx->argc; i++){
7400     assert( memIsValid(pCtx->argv[i]) );
7401     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7402   }
7403 #endif
7404 
7405   pMem->n++;
7406   assert( pCtx->pOut->flags==MEM_Null );
7407   assert( pCtx->isError==0 );
7408   assert( pCtx->skipFlag==0 );
7409 #ifndef SQLITE_OMIT_WINDOWFUNC
7410   if( pOp->p1 ){
7411     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7412   }else
7413 #endif
7414   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7415 
7416   if( pCtx->isError ){
7417     if( pCtx->isError>0 ){
7418       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7419       rc = pCtx->isError;
7420     }
7421     if( pCtx->skipFlag ){
7422       assert( pOp[-1].opcode==OP_CollSeq );
7423       i = pOp[-1].p1;
7424       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7425       pCtx->skipFlag = 0;
7426     }
7427     sqlite3VdbeMemRelease(pCtx->pOut);
7428     pCtx->pOut->flags = MEM_Null;
7429     pCtx->isError = 0;
7430     if( rc ) goto abort_due_to_error;
7431   }
7432   assert( pCtx->pOut->flags==MEM_Null );
7433   assert( pCtx->skipFlag==0 );
7434   break;
7435 }
7436 
7437 /* Opcode: AggFinal P1 P2 * P4 *
7438 ** Synopsis: accum=r[P1] N=P2
7439 **
7440 ** P1 is the memory location that is the accumulator for an aggregate
7441 ** or window function.  Execute the finalizer function
7442 ** for an aggregate and store the result in P1.
7443 **
7444 ** P2 is the number of arguments that the step function takes and
7445 ** P4 is a pointer to the FuncDef for this function.  The P2
7446 ** argument is not used by this opcode.  It is only there to disambiguate
7447 ** functions that can take varying numbers of arguments.  The
7448 ** P4 argument is only needed for the case where
7449 ** the step function was not previously called.
7450 */
7451 /* Opcode: AggValue * P2 P3 P4 *
7452 ** Synopsis: r[P3]=value N=P2
7453 **
7454 ** Invoke the xValue() function and store the result in register P3.
7455 **
7456 ** P2 is the number of arguments that the step function takes and
7457 ** P4 is a pointer to the FuncDef for this function.  The P2
7458 ** argument is not used by this opcode.  It is only there to disambiguate
7459 ** functions that can take varying numbers of arguments.  The
7460 ** P4 argument is only needed for the case where
7461 ** the step function was not previously called.
7462 */
7463 case OP_AggValue:
7464 case OP_AggFinal: {
7465   Mem *pMem;
7466   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7467   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7468   pMem = &aMem[pOp->p1];
7469   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7470 #ifndef SQLITE_OMIT_WINDOWFUNC
7471   if( pOp->p3 ){
7472     memAboutToChange(p, &aMem[pOp->p3]);
7473     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7474     pMem = &aMem[pOp->p3];
7475   }else
7476 #endif
7477   {
7478     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7479   }
7480 
7481   if( rc ){
7482     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7483     goto abort_due_to_error;
7484   }
7485   sqlite3VdbeChangeEncoding(pMem, encoding);
7486   UPDATE_MAX_BLOBSIZE(pMem);
7487   break;
7488 }
7489 
7490 #ifndef SQLITE_OMIT_WAL
7491 /* Opcode: Checkpoint P1 P2 P3 * *
7492 **
7493 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7494 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7495 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7496 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7497 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7498 ** in the WAL that have been checkpointed after the checkpoint
7499 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7500 ** mem[P3+2] are initialized to -1.
7501 */
7502 case OP_Checkpoint: {
7503   int i;                          /* Loop counter */
7504   int aRes[3];                    /* Results */
7505   Mem *pMem;                      /* Write results here */
7506 
7507   assert( p->readOnly==0 );
7508   aRes[0] = 0;
7509   aRes[1] = aRes[2] = -1;
7510   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7511        || pOp->p2==SQLITE_CHECKPOINT_FULL
7512        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7513        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7514   );
7515   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7516   if( rc ){
7517     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7518     rc = SQLITE_OK;
7519     aRes[0] = 1;
7520   }
7521   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7522     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7523   }
7524   break;
7525 };
7526 #endif
7527 
7528 #ifndef SQLITE_OMIT_PRAGMA
7529 /* Opcode: JournalMode P1 P2 P3 * *
7530 **
7531 ** Change the journal mode of database P1 to P3. P3 must be one of the
7532 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7533 ** modes (delete, truncate, persist, off and memory), this is a simple
7534 ** operation. No IO is required.
7535 **
7536 ** If changing into or out of WAL mode the procedure is more complicated.
7537 **
7538 ** Write a string containing the final journal-mode to register P2.
7539 */
7540 case OP_JournalMode: {    /* out2 */
7541   Btree *pBt;                     /* Btree to change journal mode of */
7542   Pager *pPager;                  /* Pager associated with pBt */
7543   int eNew;                       /* New journal mode */
7544   int eOld;                       /* The old journal mode */
7545 #ifndef SQLITE_OMIT_WAL
7546   const char *zFilename;          /* Name of database file for pPager */
7547 #endif
7548 
7549   pOut = out2Prerelease(p, pOp);
7550   eNew = pOp->p3;
7551   assert( eNew==PAGER_JOURNALMODE_DELETE
7552        || eNew==PAGER_JOURNALMODE_TRUNCATE
7553        || eNew==PAGER_JOURNALMODE_PERSIST
7554        || eNew==PAGER_JOURNALMODE_OFF
7555        || eNew==PAGER_JOURNALMODE_MEMORY
7556        || eNew==PAGER_JOURNALMODE_WAL
7557        || eNew==PAGER_JOURNALMODE_QUERY
7558   );
7559   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7560   assert( p->readOnly==0 );
7561 
7562   pBt = db->aDb[pOp->p1].pBt;
7563   pPager = sqlite3BtreePager(pBt);
7564   eOld = sqlite3PagerGetJournalMode(pPager);
7565   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7566   assert( sqlite3BtreeHoldsMutex(pBt) );
7567   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7568 
7569 #ifndef SQLITE_OMIT_WAL
7570   zFilename = sqlite3PagerFilename(pPager, 1);
7571 
7572   /* Do not allow a transition to journal_mode=WAL for a database
7573   ** in temporary storage or if the VFS does not support shared memory
7574   */
7575   if( eNew==PAGER_JOURNALMODE_WAL
7576    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7577        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7578   ){
7579     eNew = eOld;
7580   }
7581 
7582   if( (eNew!=eOld)
7583    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7584   ){
7585     if( !db->autoCommit || db->nVdbeRead>1 ){
7586       rc = SQLITE_ERROR;
7587       sqlite3VdbeError(p,
7588           "cannot change %s wal mode from within a transaction",
7589           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7590       );
7591       goto abort_due_to_error;
7592     }else{
7593 
7594       if( eOld==PAGER_JOURNALMODE_WAL ){
7595         /* If leaving WAL mode, close the log file. If successful, the call
7596         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7597         ** file. An EXCLUSIVE lock may still be held on the database file
7598         ** after a successful return.
7599         */
7600         rc = sqlite3PagerCloseWal(pPager, db);
7601         if( rc==SQLITE_OK ){
7602           sqlite3PagerSetJournalMode(pPager, eNew);
7603         }
7604       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7605         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7606         ** as an intermediate */
7607         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7608       }
7609 
7610       /* Open a transaction on the database file. Regardless of the journal
7611       ** mode, this transaction always uses a rollback journal.
7612       */
7613       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7614       if( rc==SQLITE_OK ){
7615         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7616       }
7617     }
7618   }
7619 #endif /* ifndef SQLITE_OMIT_WAL */
7620 
7621   if( rc ) eNew = eOld;
7622   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7623 
7624   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7625   pOut->z = (char *)sqlite3JournalModename(eNew);
7626   pOut->n = sqlite3Strlen30(pOut->z);
7627   pOut->enc = SQLITE_UTF8;
7628   sqlite3VdbeChangeEncoding(pOut, encoding);
7629   if( rc ) goto abort_due_to_error;
7630   break;
7631 };
7632 #endif /* SQLITE_OMIT_PRAGMA */
7633 
7634 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7635 /* Opcode: Vacuum P1 P2 * * *
7636 **
7637 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7638 ** for an attached database.  The "temp" database may not be vacuumed.
7639 **
7640 ** If P2 is not zero, then it is a register holding a string which is
7641 ** the file into which the result of vacuum should be written.  When
7642 ** P2 is zero, the vacuum overwrites the original database.
7643 */
7644 case OP_Vacuum: {
7645   assert( p->readOnly==0 );
7646   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7647                         pOp->p2 ? &aMem[pOp->p2] : 0);
7648   if( rc ) goto abort_due_to_error;
7649   break;
7650 }
7651 #endif
7652 
7653 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7654 /* Opcode: IncrVacuum P1 P2 * * *
7655 **
7656 ** Perform a single step of the incremental vacuum procedure on
7657 ** the P1 database. If the vacuum has finished, jump to instruction
7658 ** P2. Otherwise, fall through to the next instruction.
7659 */
7660 case OP_IncrVacuum: {        /* jump */
7661   Btree *pBt;
7662 
7663   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7664   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7665   assert( p->readOnly==0 );
7666   pBt = db->aDb[pOp->p1].pBt;
7667   rc = sqlite3BtreeIncrVacuum(pBt);
7668   VdbeBranchTaken(rc==SQLITE_DONE,2);
7669   if( rc ){
7670     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7671     rc = SQLITE_OK;
7672     goto jump_to_p2;
7673   }
7674   break;
7675 }
7676 #endif
7677 
7678 /* Opcode: Expire P1 P2 * * *
7679 **
7680 ** Cause precompiled statements to expire.  When an expired statement
7681 ** is executed using sqlite3_step() it will either automatically
7682 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7683 ** or it will fail with SQLITE_SCHEMA.
7684 **
7685 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7686 ** then only the currently executing statement is expired.
7687 **
7688 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7689 ** then running SQL statements are allowed to continue to run to completion.
7690 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7691 ** that might help the statement run faster but which does not affect the
7692 ** correctness of operation.
7693 */
7694 case OP_Expire: {
7695   assert( pOp->p2==0 || pOp->p2==1 );
7696   if( !pOp->p1 ){
7697     sqlite3ExpirePreparedStatements(db, pOp->p2);
7698   }else{
7699     p->expired = pOp->p2+1;
7700   }
7701   break;
7702 }
7703 
7704 /* Opcode: CursorLock P1 * * * *
7705 **
7706 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7707 ** written by an other cursor.
7708 */
7709 case OP_CursorLock: {
7710   VdbeCursor *pC;
7711   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7712   pC = p->apCsr[pOp->p1];
7713   assert( pC!=0 );
7714   assert( pC->eCurType==CURTYPE_BTREE );
7715   sqlite3BtreeCursorPin(pC->uc.pCursor);
7716   break;
7717 }
7718 
7719 /* Opcode: CursorUnlock P1 * * * *
7720 **
7721 ** Unlock the btree to which cursor P1 is pointing so that it can be
7722 ** written by other cursors.
7723 */
7724 case OP_CursorUnlock: {
7725   VdbeCursor *pC;
7726   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7727   pC = p->apCsr[pOp->p1];
7728   assert( pC!=0 );
7729   assert( pC->eCurType==CURTYPE_BTREE );
7730   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7731   break;
7732 }
7733 
7734 #ifndef SQLITE_OMIT_SHARED_CACHE
7735 /* Opcode: TableLock P1 P2 P3 P4 *
7736 ** Synopsis: iDb=P1 root=P2 write=P3
7737 **
7738 ** Obtain a lock on a particular table. This instruction is only used when
7739 ** the shared-cache feature is enabled.
7740 **
7741 ** P1 is the index of the database in sqlite3.aDb[] of the database
7742 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7743 ** a write lock if P3==1.
7744 **
7745 ** P2 contains the root-page of the table to lock.
7746 **
7747 ** P4 contains a pointer to the name of the table being locked. This is only
7748 ** used to generate an error message if the lock cannot be obtained.
7749 */
7750 case OP_TableLock: {
7751   u8 isWriteLock = (u8)pOp->p3;
7752   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7753     int p1 = pOp->p1;
7754     assert( p1>=0 && p1<db->nDb );
7755     assert( DbMaskTest(p->btreeMask, p1) );
7756     assert( isWriteLock==0 || isWriteLock==1 );
7757     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7758     if( rc ){
7759       if( (rc&0xFF)==SQLITE_LOCKED ){
7760         const char *z = pOp->p4.z;
7761         sqlite3VdbeError(p, "database table is locked: %s", z);
7762       }
7763       goto abort_due_to_error;
7764     }
7765   }
7766   break;
7767 }
7768 #endif /* SQLITE_OMIT_SHARED_CACHE */
7769 
7770 #ifndef SQLITE_OMIT_VIRTUALTABLE
7771 /* Opcode: VBegin * * * P4 *
7772 **
7773 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7774 ** xBegin method for that table.
7775 **
7776 ** Also, whether or not P4 is set, check that this is not being called from
7777 ** within a callback to a virtual table xSync() method. If it is, the error
7778 ** code will be set to SQLITE_LOCKED.
7779 */
7780 case OP_VBegin: {
7781   VTable *pVTab;
7782   pVTab = pOp->p4.pVtab;
7783   rc = sqlite3VtabBegin(db, pVTab);
7784   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7785   if( rc ) goto abort_due_to_error;
7786   break;
7787 }
7788 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7789 
7790 #ifndef SQLITE_OMIT_VIRTUALTABLE
7791 /* Opcode: VCreate P1 P2 * * *
7792 **
7793 ** P2 is a register that holds the name of a virtual table in database
7794 ** P1. Call the xCreate method for that table.
7795 */
7796 case OP_VCreate: {
7797   Mem sMem;          /* For storing the record being decoded */
7798   const char *zTab;  /* Name of the virtual table */
7799 
7800   memset(&sMem, 0, sizeof(sMem));
7801   sMem.db = db;
7802   /* Because P2 is always a static string, it is impossible for the
7803   ** sqlite3VdbeMemCopy() to fail */
7804   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7805   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7806   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7807   assert( rc==SQLITE_OK );
7808   zTab = (const char*)sqlite3_value_text(&sMem);
7809   assert( zTab || db->mallocFailed );
7810   if( zTab ){
7811     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7812   }
7813   sqlite3VdbeMemRelease(&sMem);
7814   if( rc ) goto abort_due_to_error;
7815   break;
7816 }
7817 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7818 
7819 #ifndef SQLITE_OMIT_VIRTUALTABLE
7820 /* Opcode: VDestroy P1 * * P4 *
7821 **
7822 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7823 ** of that table.
7824 */
7825 case OP_VDestroy: {
7826   db->nVDestroy++;
7827   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7828   db->nVDestroy--;
7829   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7830   if( rc ) goto abort_due_to_error;
7831   break;
7832 }
7833 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7834 
7835 #ifndef SQLITE_OMIT_VIRTUALTABLE
7836 /* Opcode: VOpen P1 * * P4 *
7837 **
7838 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7839 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7840 ** table and stores that cursor in P1.
7841 */
7842 case OP_VOpen: {
7843   VdbeCursor *pCur;
7844   sqlite3_vtab_cursor *pVCur;
7845   sqlite3_vtab *pVtab;
7846   const sqlite3_module *pModule;
7847 
7848   assert( p->bIsReader );
7849   pCur = 0;
7850   pVCur = 0;
7851   pVtab = pOp->p4.pVtab->pVtab;
7852   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7853     rc = SQLITE_LOCKED;
7854     goto abort_due_to_error;
7855   }
7856   pModule = pVtab->pModule;
7857   rc = pModule->xOpen(pVtab, &pVCur);
7858   sqlite3VtabImportErrmsg(p, pVtab);
7859   if( rc ) goto abort_due_to_error;
7860 
7861   /* Initialize sqlite3_vtab_cursor base class */
7862   pVCur->pVtab = pVtab;
7863 
7864   /* Initialize vdbe cursor object */
7865   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7866   if( pCur ){
7867     pCur->uc.pVCur = pVCur;
7868     pVtab->nRef++;
7869   }else{
7870     assert( db->mallocFailed );
7871     pModule->xClose(pVCur);
7872     goto no_mem;
7873   }
7874   break;
7875 }
7876 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7877 
7878 #ifndef SQLITE_OMIT_VIRTUALTABLE
7879 /* Opcode: VInitIn P1 P2 P3 * *
7880 ** Synopsis: r[P2]=ValueList(P1,P3)
7881 **
7882 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7883 ** with cache register P3 and output register P3+1.  This ValueList object
7884 ** can be used as the first argument to sqlite3_vtab_in_first() and
7885 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7886 ** cursor.  Register P3 is used to hold the values returned by
7887 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7888 */
7889 case OP_VInitIn: {        /* out2 */
7890   VdbeCursor *pC;         /* The cursor containing the RHS values */
7891   ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
7892 
7893   pC = p->apCsr[pOp->p1];
7894   pRhs = sqlite3_malloc64( sizeof(*pRhs) );
7895   if( pRhs==0 ) goto no_mem;
7896   pRhs->pCsr = pC->uc.pCursor;
7897   pRhs->pOut = &aMem[pOp->p3];
7898   pOut = out2Prerelease(p, pOp);
7899   pOut->flags = MEM_Null;
7900   sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
7901   break;
7902 }
7903 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7904 
7905 
7906 #ifndef SQLITE_OMIT_VIRTUALTABLE
7907 /* Opcode: VFilter P1 P2 P3 P4 *
7908 ** Synopsis: iplan=r[P3] zplan='P4'
7909 **
7910 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7911 ** the filtered result set is empty.
7912 **
7913 ** P4 is either NULL or a string that was generated by the xBestIndex
7914 ** method of the module.  The interpretation of the P4 string is left
7915 ** to the module implementation.
7916 **
7917 ** This opcode invokes the xFilter method on the virtual table specified
7918 ** by P1.  The integer query plan parameter to xFilter is stored in register
7919 ** P3. Register P3+1 stores the argc parameter to be passed to the
7920 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7921 ** additional parameters which are passed to
7922 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7923 **
7924 ** A jump is made to P2 if the result set after filtering would be empty.
7925 */
7926 case OP_VFilter: {   /* jump */
7927   int nArg;
7928   int iQuery;
7929   const sqlite3_module *pModule;
7930   Mem *pQuery;
7931   Mem *pArgc;
7932   sqlite3_vtab_cursor *pVCur;
7933   sqlite3_vtab *pVtab;
7934   VdbeCursor *pCur;
7935   int res;
7936   int i;
7937   Mem **apArg;
7938 
7939   pQuery = &aMem[pOp->p3];
7940   pArgc = &pQuery[1];
7941   pCur = p->apCsr[pOp->p1];
7942   assert( memIsValid(pQuery) );
7943   REGISTER_TRACE(pOp->p3, pQuery);
7944   assert( pCur!=0 );
7945   assert( pCur->eCurType==CURTYPE_VTAB );
7946   pVCur = pCur->uc.pVCur;
7947   pVtab = pVCur->pVtab;
7948   pModule = pVtab->pModule;
7949 
7950   /* Grab the index number and argc parameters */
7951   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7952   nArg = (int)pArgc->u.i;
7953   iQuery = (int)pQuery->u.i;
7954 
7955   /* Invoke the xFilter method */
7956   apArg = p->apArg;
7957   for(i = 0; i<nArg; i++){
7958     apArg[i] = &pArgc[i+1];
7959   }
7960   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7961   sqlite3VtabImportErrmsg(p, pVtab);
7962   if( rc ) goto abort_due_to_error;
7963   res = pModule->xEof(pVCur);
7964   pCur->nullRow = 0;
7965   VdbeBranchTaken(res!=0,2);
7966   if( res ) goto jump_to_p2;
7967   break;
7968 }
7969 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7970 
7971 #ifndef SQLITE_OMIT_VIRTUALTABLE
7972 /* Opcode: VColumn P1 P2 P3 * P5
7973 ** Synopsis: r[P3]=vcolumn(P2)
7974 **
7975 ** Store in register P3 the value of the P2-th column of
7976 ** the current row of the virtual-table of cursor P1.
7977 **
7978 ** If the VColumn opcode is being used to fetch the value of
7979 ** an unchanging column during an UPDATE operation, then the P5
7980 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7981 ** function to return true inside the xColumn method of the virtual
7982 ** table implementation.  The P5 column might also contain other
7983 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7984 ** unused by OP_VColumn.
7985 */
7986 case OP_VColumn: {
7987   sqlite3_vtab *pVtab;
7988   const sqlite3_module *pModule;
7989   Mem *pDest;
7990   sqlite3_context sContext;
7991 
7992   VdbeCursor *pCur = p->apCsr[pOp->p1];
7993   assert( pCur!=0 );
7994   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7995   pDest = &aMem[pOp->p3];
7996   memAboutToChange(p, pDest);
7997   if( pCur->nullRow ){
7998     sqlite3VdbeMemSetNull(pDest);
7999     break;
8000   }
8001   assert( pCur->eCurType==CURTYPE_VTAB );
8002   pVtab = pCur->uc.pVCur->pVtab;
8003   pModule = pVtab->pModule;
8004   assert( pModule->xColumn );
8005   memset(&sContext, 0, sizeof(sContext));
8006   sContext.pOut = pDest;
8007   sContext.enc = encoding;
8008   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8009   if( pOp->p5 & OPFLAG_NOCHNG ){
8010     sqlite3VdbeMemSetNull(pDest);
8011     pDest->flags = MEM_Null|MEM_Zero;
8012     pDest->u.nZero = 0;
8013   }else{
8014     MemSetTypeFlag(pDest, MEM_Null);
8015   }
8016   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8017   sqlite3VtabImportErrmsg(p, pVtab);
8018   if( sContext.isError>0 ){
8019     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8020     rc = sContext.isError;
8021   }
8022   sqlite3VdbeChangeEncoding(pDest, encoding);
8023   REGISTER_TRACE(pOp->p3, pDest);
8024   UPDATE_MAX_BLOBSIZE(pDest);
8025 
8026   if( rc ) goto abort_due_to_error;
8027   break;
8028 }
8029 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8030 
8031 #ifndef SQLITE_OMIT_VIRTUALTABLE
8032 /* Opcode: VNext P1 P2 * * *
8033 **
8034 ** Advance virtual table P1 to the next row in its result set and
8035 ** jump to instruction P2.  Or, if the virtual table has reached
8036 ** the end of its result set, then fall through to the next instruction.
8037 */
8038 case OP_VNext: {   /* jump */
8039   sqlite3_vtab *pVtab;
8040   const sqlite3_module *pModule;
8041   int res;
8042   VdbeCursor *pCur;
8043 
8044   pCur = p->apCsr[pOp->p1];
8045   assert( pCur!=0 );
8046   assert( pCur->eCurType==CURTYPE_VTAB );
8047   if( pCur->nullRow ){
8048     break;
8049   }
8050   pVtab = pCur->uc.pVCur->pVtab;
8051   pModule = pVtab->pModule;
8052   assert( pModule->xNext );
8053 
8054   /* Invoke the xNext() method of the module. There is no way for the
8055   ** underlying implementation to return an error if one occurs during
8056   ** xNext(). Instead, if an error occurs, true is returned (indicating that
8057   ** data is available) and the error code returned when xColumn or
8058   ** some other method is next invoked on the save virtual table cursor.
8059   */
8060   rc = pModule->xNext(pCur->uc.pVCur);
8061   sqlite3VtabImportErrmsg(p, pVtab);
8062   if( rc ) goto abort_due_to_error;
8063   res = pModule->xEof(pCur->uc.pVCur);
8064   VdbeBranchTaken(!res,2);
8065   if( !res ){
8066     /* If there is data, jump to P2 */
8067     goto jump_to_p2_and_check_for_interrupt;
8068   }
8069   goto check_for_interrupt;
8070 }
8071 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8072 
8073 #ifndef SQLITE_OMIT_VIRTUALTABLE
8074 /* Opcode: VRename P1 * * P4 *
8075 **
8076 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8077 ** This opcode invokes the corresponding xRename method. The value
8078 ** in register P1 is passed as the zName argument to the xRename method.
8079 */
8080 case OP_VRename: {
8081   sqlite3_vtab *pVtab;
8082   Mem *pName;
8083   int isLegacy;
8084 
8085   isLegacy = (db->flags & SQLITE_LegacyAlter);
8086   db->flags |= SQLITE_LegacyAlter;
8087   pVtab = pOp->p4.pVtab->pVtab;
8088   pName = &aMem[pOp->p1];
8089   assert( pVtab->pModule->xRename );
8090   assert( memIsValid(pName) );
8091   assert( p->readOnly==0 );
8092   REGISTER_TRACE(pOp->p1, pName);
8093   assert( pName->flags & MEM_Str );
8094   testcase( pName->enc==SQLITE_UTF8 );
8095   testcase( pName->enc==SQLITE_UTF16BE );
8096   testcase( pName->enc==SQLITE_UTF16LE );
8097   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8098   if( rc ) goto abort_due_to_error;
8099   rc = pVtab->pModule->xRename(pVtab, pName->z);
8100   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8101   sqlite3VtabImportErrmsg(p, pVtab);
8102   p->expired = 0;
8103   if( rc ) goto abort_due_to_error;
8104   break;
8105 }
8106 #endif
8107 
8108 #ifndef SQLITE_OMIT_VIRTUALTABLE
8109 /* Opcode: VUpdate P1 P2 P3 P4 P5
8110 ** Synopsis: data=r[P3@P2]
8111 **
8112 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8113 ** This opcode invokes the corresponding xUpdate method. P2 values
8114 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8115 ** invocation. The value in register (P3+P2-1) corresponds to the
8116 ** p2th element of the argv array passed to xUpdate.
8117 **
8118 ** The xUpdate method will do a DELETE or an INSERT or both.
8119 ** The argv[0] element (which corresponds to memory cell P3)
8120 ** is the rowid of a row to delete.  If argv[0] is NULL then no
8121 ** deletion occurs.  The argv[1] element is the rowid of the new
8122 ** row.  This can be NULL to have the virtual table select the new
8123 ** rowid for itself.  The subsequent elements in the array are
8124 ** the values of columns in the new row.
8125 **
8126 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
8127 ** a row to delete.
8128 **
8129 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8130 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8131 ** is set to the value of the rowid for the row just inserted.
8132 **
8133 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8134 ** apply in the case of a constraint failure on an insert or update.
8135 */
8136 case OP_VUpdate: {
8137   sqlite3_vtab *pVtab;
8138   const sqlite3_module *pModule;
8139   int nArg;
8140   int i;
8141   sqlite_int64 rowid = 0;
8142   Mem **apArg;
8143   Mem *pX;
8144 
8145   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
8146        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8147   );
8148   assert( p->readOnly==0 );
8149   if( db->mallocFailed ) goto no_mem;
8150   sqlite3VdbeIncrWriteCounter(p, 0);
8151   pVtab = pOp->p4.pVtab->pVtab;
8152   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8153     rc = SQLITE_LOCKED;
8154     goto abort_due_to_error;
8155   }
8156   pModule = pVtab->pModule;
8157   nArg = pOp->p2;
8158   assert( pOp->p4type==P4_VTAB );
8159   if( ALWAYS(pModule->xUpdate) ){
8160     u8 vtabOnConflict = db->vtabOnConflict;
8161     apArg = p->apArg;
8162     pX = &aMem[pOp->p3];
8163     for(i=0; i<nArg; i++){
8164       assert( memIsValid(pX) );
8165       memAboutToChange(p, pX);
8166       apArg[i] = pX;
8167       pX++;
8168     }
8169     db->vtabOnConflict = pOp->p5;
8170     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8171     db->vtabOnConflict = vtabOnConflict;
8172     sqlite3VtabImportErrmsg(p, pVtab);
8173     if( rc==SQLITE_OK && pOp->p1 ){
8174       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8175       db->lastRowid = rowid;
8176     }
8177     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8178       if( pOp->p5==OE_Ignore ){
8179         rc = SQLITE_OK;
8180       }else{
8181         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8182       }
8183     }else{
8184       p->nChange++;
8185     }
8186     if( rc ) goto abort_due_to_error;
8187   }
8188   break;
8189 }
8190 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8191 
8192 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8193 /* Opcode: Pagecount P1 P2 * * *
8194 **
8195 ** Write the current number of pages in database P1 to memory cell P2.
8196 */
8197 case OP_Pagecount: {            /* out2 */
8198   pOut = out2Prerelease(p, pOp);
8199   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8200   break;
8201 }
8202 #endif
8203 
8204 
8205 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8206 /* Opcode: MaxPgcnt P1 P2 P3 * *
8207 **
8208 ** Try to set the maximum page count for database P1 to the value in P3.
8209 ** Do not let the maximum page count fall below the current page count and
8210 ** do not change the maximum page count value if P3==0.
8211 **
8212 ** Store the maximum page count after the change in register P2.
8213 */
8214 case OP_MaxPgcnt: {            /* out2 */
8215   unsigned int newMax;
8216   Btree *pBt;
8217 
8218   pOut = out2Prerelease(p, pOp);
8219   pBt = db->aDb[pOp->p1].pBt;
8220   newMax = 0;
8221   if( pOp->p3 ){
8222     newMax = sqlite3BtreeLastPage(pBt);
8223     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8224   }
8225   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8226   break;
8227 }
8228 #endif
8229 
8230 /* Opcode: Function P1 P2 P3 P4 *
8231 ** Synopsis: r[P3]=func(r[P2@NP])
8232 **
8233 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8234 ** contains a pointer to the function to be run) with arguments taken
8235 ** from register P2 and successors.  The number of arguments is in
8236 ** the sqlite3_context object that P4 points to.
8237 ** The result of the function is stored
8238 ** in register P3.  Register P3 must not be one of the function inputs.
8239 **
8240 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8241 ** function was determined to be constant at compile time. If the first
8242 ** argument was constant then bit 0 of P1 is set. This is used to determine
8243 ** whether meta data associated with a user function argument using the
8244 ** sqlite3_set_auxdata() API may be safely retained until the next
8245 ** invocation of this opcode.
8246 **
8247 ** See also: AggStep, AggFinal, PureFunc
8248 */
8249 /* Opcode: PureFunc P1 P2 P3 P4 *
8250 ** Synopsis: r[P3]=func(r[P2@NP])
8251 **
8252 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8253 ** contains a pointer to the function to be run) with arguments taken
8254 ** from register P2 and successors.  The number of arguments is in
8255 ** the sqlite3_context object that P4 points to.
8256 ** The result of the function is stored
8257 ** in register P3.  Register P3 must not be one of the function inputs.
8258 **
8259 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8260 ** function was determined to be constant at compile time. If the first
8261 ** argument was constant then bit 0 of P1 is set. This is used to determine
8262 ** whether meta data associated with a user function argument using the
8263 ** sqlite3_set_auxdata() API may be safely retained until the next
8264 ** invocation of this opcode.
8265 **
8266 ** This opcode works exactly like OP_Function.  The only difference is in
8267 ** its name.  This opcode is used in places where the function must be
8268 ** purely non-deterministic.  Some built-in date/time functions can be
8269 ** either determinitic of non-deterministic, depending on their arguments.
8270 ** When those function are used in a non-deterministic way, they will check
8271 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8272 ** if they were, they throw an error.
8273 **
8274 ** See also: AggStep, AggFinal, Function
8275 */
8276 case OP_PureFunc:              /* group */
8277 case OP_Function: {            /* group */
8278   int i;
8279   sqlite3_context *pCtx;
8280 
8281   assert( pOp->p4type==P4_FUNCCTX );
8282   pCtx = pOp->p4.pCtx;
8283 
8284   /* If this function is inside of a trigger, the register array in aMem[]
8285   ** might change from one evaluation to the next.  The next block of code
8286   ** checks to see if the register array has changed, and if so it
8287   ** reinitializes the relavant parts of the sqlite3_context object */
8288   pOut = &aMem[pOp->p3];
8289   if( pCtx->pOut != pOut ){
8290     pCtx->pVdbe = p;
8291     pCtx->pOut = pOut;
8292     pCtx->enc = encoding;
8293     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8294   }
8295   assert( pCtx->pVdbe==p );
8296 
8297   memAboutToChange(p, pOut);
8298 #ifdef SQLITE_DEBUG
8299   for(i=0; i<pCtx->argc; i++){
8300     assert( memIsValid(pCtx->argv[i]) );
8301     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8302   }
8303 #endif
8304   MemSetTypeFlag(pOut, MEM_Null);
8305   assert( pCtx->isError==0 );
8306   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8307 
8308   /* If the function returned an error, throw an exception */
8309   if( pCtx->isError ){
8310     if( pCtx->isError>0 ){
8311       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8312       rc = pCtx->isError;
8313     }
8314     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8315     pCtx->isError = 0;
8316     if( rc ) goto abort_due_to_error;
8317   }
8318 
8319   assert( (pOut->flags&MEM_Str)==0
8320        || pOut->enc==encoding
8321        || db->mallocFailed );
8322   assert( !sqlite3VdbeMemTooBig(pOut) );
8323 
8324   REGISTER_TRACE(pOp->p3, pOut);
8325   UPDATE_MAX_BLOBSIZE(pOut);
8326   break;
8327 }
8328 
8329 /* Opcode: ClrSubtype P1 * * * *
8330 ** Synopsis:  r[P1].subtype = 0
8331 **
8332 ** Clear the subtype from register P1.
8333 */
8334 case OP_ClrSubtype: {   /* in1 */
8335   pIn1 = &aMem[pOp->p1];
8336   pIn1->flags &= ~MEM_Subtype;
8337   break;
8338 }
8339 
8340 /* Opcode: FilterAdd P1 * P3 P4 *
8341 ** Synopsis: filter(P1) += key(P3@P4)
8342 **
8343 ** Compute a hash on the P4 registers starting with r[P3] and
8344 ** add that hash to the bloom filter contained in r[P1].
8345 */
8346 case OP_FilterAdd: {
8347   u64 h;
8348 
8349   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8350   pIn1 = &aMem[pOp->p1];
8351   assert( pIn1->flags & MEM_Blob );
8352   assert( pIn1->n>0 );
8353   h = filterHash(aMem, pOp);
8354 #ifdef SQLITE_DEBUG
8355   if( db->flags&SQLITE_VdbeTrace ){
8356     int ii;
8357     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8358       registerTrace(ii, &aMem[ii]);
8359     }
8360     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8361   }
8362 #endif
8363   h %= pIn1->n;
8364   pIn1->z[h/8] |= 1<<(h&7);
8365   break;
8366 }
8367 
8368 /* Opcode: Filter P1 P2 P3 P4 *
8369 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8370 **
8371 ** Compute a hash on the key contained in the P4 registers starting
8372 ** with r[P3].  Check to see if that hash is found in the
8373 ** bloom filter hosted by register P1.  If it is not present then
8374 ** maybe jump to P2.  Otherwise fall through.
8375 **
8376 ** False negatives are harmless.  It is always safe to fall through,
8377 ** even if the value is in the bloom filter.  A false negative causes
8378 ** more CPU cycles to be used, but it should still yield the correct
8379 ** answer.  However, an incorrect answer may well arise from a
8380 ** false positive - if the jump is taken when it should fall through.
8381 */
8382 case OP_Filter: {          /* jump */
8383   u64 h;
8384 
8385   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8386   pIn1 = &aMem[pOp->p1];
8387   assert( (pIn1->flags & MEM_Blob)!=0 );
8388   assert( pIn1->n >= 1 );
8389   h = filterHash(aMem, pOp);
8390 #ifdef SQLITE_DEBUG
8391   if( db->flags&SQLITE_VdbeTrace ){
8392     int ii;
8393     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8394       registerTrace(ii, &aMem[ii]);
8395     }
8396     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8397   }
8398 #endif
8399   h %= pIn1->n;
8400   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8401     VdbeBranchTaken(1, 2);
8402     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8403     goto jump_to_p2;
8404   }else{
8405     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8406     VdbeBranchTaken(0, 2);
8407   }
8408   break;
8409 }
8410 
8411 /* Opcode: Trace P1 P2 * P4 *
8412 **
8413 ** Write P4 on the statement trace output if statement tracing is
8414 ** enabled.
8415 **
8416 ** Operand P1 must be 0x7fffffff and P2 must positive.
8417 */
8418 /* Opcode: Init P1 P2 P3 P4 *
8419 ** Synopsis: Start at P2
8420 **
8421 ** Programs contain a single instance of this opcode as the very first
8422 ** opcode.
8423 **
8424 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8425 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8426 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8427 **
8428 ** If P2 is not zero, jump to instruction P2.
8429 **
8430 ** Increment the value of P1 so that OP_Once opcodes will jump the
8431 ** first time they are evaluated for this run.
8432 **
8433 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8434 ** error is encountered.
8435 */
8436 case OP_Trace:
8437 case OP_Init: {          /* jump */
8438   int i;
8439 #ifndef SQLITE_OMIT_TRACE
8440   char *zTrace;
8441 #endif
8442 
8443   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8444   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8445   **
8446   ** This assert() provides evidence for:
8447   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8448   ** would have been returned by the legacy sqlite3_trace() interface by
8449   ** using the X argument when X begins with "--" and invoking
8450   ** sqlite3_expanded_sql(P) otherwise.
8451   */
8452   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8453 
8454   /* OP_Init is always instruction 0 */
8455   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8456 
8457 #ifndef SQLITE_OMIT_TRACE
8458   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8459    && p->minWriteFileFormat!=254  /* tag-20220401a */
8460    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8461   ){
8462 #ifndef SQLITE_OMIT_DEPRECATED
8463     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8464       char *z = sqlite3VdbeExpandSql(p, zTrace);
8465       db->trace.xLegacy(db->pTraceArg, z);
8466       sqlite3_free(z);
8467     }else
8468 #endif
8469     if( db->nVdbeExec>1 ){
8470       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8471       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8472       sqlite3DbFree(db, z);
8473     }else{
8474       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8475     }
8476   }
8477 #ifdef SQLITE_USE_FCNTL_TRACE
8478   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8479   if( zTrace ){
8480     int j;
8481     for(j=0; j<db->nDb; j++){
8482       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8483       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8484     }
8485   }
8486 #endif /* SQLITE_USE_FCNTL_TRACE */
8487 #ifdef SQLITE_DEBUG
8488   if( (db->flags & SQLITE_SqlTrace)!=0
8489    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8490   ){
8491     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8492   }
8493 #endif /* SQLITE_DEBUG */
8494 #endif /* SQLITE_OMIT_TRACE */
8495   assert( pOp->p2>0 );
8496   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8497     if( pOp->opcode==OP_Trace ) break;
8498     for(i=1; i<p->nOp; i++){
8499       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8500     }
8501     pOp->p1 = 0;
8502   }
8503   pOp->p1++;
8504   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8505   goto jump_to_p2;
8506 }
8507 
8508 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8509 /* Opcode: CursorHint P1 * * P4 *
8510 **
8511 ** Provide a hint to cursor P1 that it only needs to return rows that
8512 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8513 ** to values currently held in registers.  TK_COLUMN terms in the P4
8514 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8515 */
8516 case OP_CursorHint: {
8517   VdbeCursor *pC;
8518 
8519   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8520   assert( pOp->p4type==P4_EXPR );
8521   pC = p->apCsr[pOp->p1];
8522   if( pC ){
8523     assert( pC->eCurType==CURTYPE_BTREE );
8524     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8525                            pOp->p4.pExpr, aMem);
8526   }
8527   break;
8528 }
8529 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8530 
8531 #ifdef SQLITE_DEBUG
8532 /* Opcode:  Abortable   * * * * *
8533 **
8534 ** Verify that an Abort can happen.  Assert if an Abort at this point
8535 ** might cause database corruption.  This opcode only appears in debugging
8536 ** builds.
8537 **
8538 ** An Abort is safe if either there have been no writes, or if there is
8539 ** an active statement journal.
8540 */
8541 case OP_Abortable: {
8542   sqlite3VdbeAssertAbortable(p);
8543   break;
8544 }
8545 #endif
8546 
8547 #ifdef SQLITE_DEBUG
8548 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8549 ** Synopsis: release r[P1@P2] mask P3
8550 **
8551 ** Release registers from service.  Any content that was in the
8552 ** the registers is unreliable after this opcode completes.
8553 **
8554 ** The registers released will be the P2 registers starting at P1,
8555 ** except if bit ii of P3 set, then do not release register P1+ii.
8556 ** In other words, P3 is a mask of registers to preserve.
8557 **
8558 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8559 ** that if the content of the released register was set using OP_SCopy,
8560 ** a change to the value of the source register for the OP_SCopy will no longer
8561 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8562 **
8563 ** If P5 is set, then all released registers have their type set
8564 ** to MEM_Undefined so that any subsequent attempt to read the released
8565 ** register (before it is reinitialized) will generate an assertion fault.
8566 **
8567 ** P5 ought to be set on every call to this opcode.
8568 ** However, there are places in the code generator will release registers
8569 ** before their are used, under the (valid) assumption that the registers
8570 ** will not be reallocated for some other purpose before they are used and
8571 ** hence are safe to release.
8572 **
8573 ** This opcode is only available in testing and debugging builds.  It is
8574 ** not generated for release builds.  The purpose of this opcode is to help
8575 ** validate the generated bytecode.  This opcode does not actually contribute
8576 ** to computing an answer.
8577 */
8578 case OP_ReleaseReg: {
8579   Mem *pMem;
8580   int i;
8581   u32 constMask;
8582   assert( pOp->p1>0 );
8583   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8584   pMem = &aMem[pOp->p1];
8585   constMask = pOp->p3;
8586   for(i=0; i<pOp->p2; i++, pMem++){
8587     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8588       pMem->pScopyFrom = 0;
8589       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8590     }
8591   }
8592   break;
8593 }
8594 #endif
8595 
8596 /* Opcode: Noop * * * * *
8597 **
8598 ** Do nothing.  This instruction is often useful as a jump
8599 ** destination.
8600 */
8601 /*
8602 ** The magic Explain opcode are only inserted when explain==2 (which
8603 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8604 ** This opcode records information from the optimizer.  It is the
8605 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8606 */
8607 default: {          /* This is really OP_Noop, OP_Explain */
8608   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8609 
8610   break;
8611 }
8612 
8613 /*****************************************************************************
8614 ** The cases of the switch statement above this line should all be indented
8615 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8616 ** readability.  From this point on down, the normal indentation rules are
8617 ** restored.
8618 *****************************************************************************/
8619     }
8620 
8621 #ifdef VDBE_PROFILE
8622     {
8623       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8624       if( endTime>start ) pOrigOp->cycles += endTime - start;
8625       pOrigOp->cnt++;
8626     }
8627 #endif
8628 
8629     /* The following code adds nothing to the actual functionality
8630     ** of the program.  It is only here for testing and debugging.
8631     ** On the other hand, it does burn CPU cycles every time through
8632     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8633     */
8634 #ifndef NDEBUG
8635     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8636 
8637 #ifdef SQLITE_DEBUG
8638     if( db->flags & SQLITE_VdbeTrace ){
8639       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8640       if( rc!=0 ) printf("rc=%d\n",rc);
8641       if( opProperty & (OPFLG_OUT2) ){
8642         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8643       }
8644       if( opProperty & OPFLG_OUT3 ){
8645         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8646       }
8647       if( opProperty==0xff ){
8648         /* Never happens.  This code exists to avoid a harmless linkage
8649         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8650         ** used. */
8651         sqlite3VdbeRegisterDump(p);
8652       }
8653     }
8654 #endif  /* SQLITE_DEBUG */
8655 #endif  /* NDEBUG */
8656   }  /* The end of the for(;;) loop the loops through opcodes */
8657 
8658   /* If we reach this point, it means that execution is finished with
8659   ** an error of some kind.
8660   */
8661 abort_due_to_error:
8662   if( db->mallocFailed ){
8663     rc = SQLITE_NOMEM_BKPT;
8664   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8665     rc = SQLITE_CORRUPT_BKPT;
8666   }
8667   assert( rc );
8668 #ifdef SQLITE_DEBUG
8669   if( db->flags & SQLITE_VdbeTrace ){
8670     const char *zTrace = p->zSql;
8671     if( zTrace==0 ){
8672       if( aOp[0].opcode==OP_Trace ){
8673         zTrace = aOp[0].p4.z;
8674       }
8675       if( zTrace==0 ) zTrace = "???";
8676     }
8677     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8678   }
8679 #endif
8680   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8681     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8682   }
8683   p->rc = rc;
8684   sqlite3SystemError(db, rc);
8685   testcase( sqlite3GlobalConfig.xLog!=0 );
8686   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8687                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8688   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8689   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8690   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8691     db->flags |= SQLITE_CorruptRdOnly;
8692   }
8693   rc = SQLITE_ERROR;
8694   if( resetSchemaOnFault>0 ){
8695     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8696   }
8697 
8698   /* This is the only way out of this procedure.  We have to
8699   ** release the mutexes on btrees that were acquired at the
8700   ** top. */
8701 vdbe_return:
8702 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8703   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8704     nProgressLimit += db->nProgressOps;
8705     if( db->xProgress(db->pProgressArg) ){
8706       nProgressLimit = LARGEST_UINT64;
8707       rc = SQLITE_INTERRUPT;
8708       goto abort_due_to_error;
8709     }
8710   }
8711 #endif
8712   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8713   sqlite3VdbeLeave(p);
8714   assert( rc!=SQLITE_OK || nExtraDelete==0
8715        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8716   );
8717   return rc;
8718 
8719   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8720   ** is encountered.
8721   */
8722 too_big:
8723   sqlite3VdbeError(p, "string or blob too big");
8724   rc = SQLITE_TOOBIG;
8725   goto abort_due_to_error;
8726 
8727   /* Jump to here if a malloc() fails.
8728   */
8729 no_mem:
8730   sqlite3OomFault(db);
8731   sqlite3VdbeError(p, "out of memory");
8732   rc = SQLITE_NOMEM_BKPT;
8733   goto abort_due_to_error;
8734 
8735   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8736   ** flag.
8737   */
8738 abort_due_to_interrupt:
8739   assert( AtomicLoad(&db->u1.isInterrupted) );
8740   rc = SQLITE_INTERRUPT;
8741   goto abort_due_to_error;
8742 }
8743