1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is an integer, 2 or 3, that indices how many different ways the 126 ** branch can go. It is usually 2. "I" is the direction the branch 127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 128 ** second alternative branch is taken. 129 ** 130 ** iSrcLine is the source code line (from the __LINE__ macro) that 131 ** generated the VDBE instruction. This instrumentation assumes that all 132 ** source code is in a single file (the amalgamation). Special values 1 133 ** and 2 for the iSrcLine parameter mean that this particular branch is 134 ** always taken or never taken, respectively. 135 */ 136 #if !defined(SQLITE_VDBE_COVERAGE) 137 # define VdbeBranchTaken(I,M) 138 #else 139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 142 M = iSrcLine; 143 /* Assert the truth of VdbeCoverageAlwaysTaken() and 144 ** VdbeCoverageNeverTaken() */ 145 assert( (M & I)==I ); 146 }else{ 147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 149 iSrcLine,I,M); 150 } 151 } 152 #endif 153 154 /* 155 ** Convert the given register into a string if it isn't one 156 ** already. Return non-zero if a malloc() fails. 157 */ 158 #define Stringify(P, enc) \ 159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 160 { goto no_mem; } 161 162 /* 163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 164 ** a pointer to a dynamically allocated string where some other entity 165 ** is responsible for deallocating that string. Because the register 166 ** does not control the string, it might be deleted without the register 167 ** knowing it. 168 ** 169 ** This routine converts an ephemeral string into a dynamically allocated 170 ** string that the register itself controls. In other words, it 171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 172 */ 173 #define Deephemeralize(P) \ 174 if( ((P)->flags&MEM_Ephem)!=0 \ 175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 176 177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 179 180 /* 181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 182 ** if we run out of memory. 183 */ 184 static VdbeCursor *allocateCursor( 185 Vdbe *p, /* The virtual machine */ 186 int iCur, /* Index of the new VdbeCursor */ 187 int nField, /* Number of fields in the table or index */ 188 int iDb, /* Database the cursor belongs to, or -1 */ 189 u8 eCurType /* Type of the new cursor */ 190 ){ 191 /* Find the memory cell that will be used to store the blob of memory 192 ** required for this VdbeCursor structure. It is convenient to use a 193 ** vdbe memory cell to manage the memory allocation required for a 194 ** VdbeCursor structure for the following reasons: 195 ** 196 ** * Sometimes cursor numbers are used for a couple of different 197 ** purposes in a vdbe program. The different uses might require 198 ** different sized allocations. Memory cells provide growable 199 ** allocations. 200 ** 201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 202 ** be freed lazily via the sqlite3_release_memory() API. This 203 ** minimizes the number of malloc calls made by the system. 204 ** 205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 208 */ 209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 210 211 int nByte; 212 VdbeCursor *pCx = 0; 213 nByte = 214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 216 217 assert( iCur>=0 && iCur<p->nCursor ); 218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 220 p->apCsr[iCur] = 0; 221 } 222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 225 pCx->eCurType = eCurType; 226 pCx->iDb = iDb; 227 pCx->nField = nField; 228 pCx->aOffset = &pCx->aType[nField]; 229 if( eCurType==CURTYPE_BTREE ){ 230 pCx->uc.pCursor = (BtCursor*) 231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 232 sqlite3BtreeCursorZero(pCx->uc.pCursor); 233 } 234 } 235 return pCx; 236 } 237 238 /* 239 ** Try to convert a value into a numeric representation if we can 240 ** do so without loss of information. In other words, if the string 241 ** looks like a number, convert it into a number. If it does not 242 ** look like a number, leave it alone. 243 ** 244 ** If the bTryForInt flag is true, then extra effort is made to give 245 ** an integer representation. Strings that look like floating point 246 ** values but which have no fractional component (example: '48.00') 247 ** will have a MEM_Int representation when bTryForInt is true. 248 ** 249 ** If bTryForInt is false, then if the input string contains a decimal 250 ** point or exponential notation, the result is only MEM_Real, even 251 ** if there is an exact integer representation of the quantity. 252 */ 253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 254 double rValue; 255 i64 iValue; 256 u8 enc = pRec->enc; 257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 260 pRec->u.i = iValue; 261 pRec->flags |= MEM_Int; 262 }else{ 263 pRec->u.r = rValue; 264 pRec->flags |= MEM_Real; 265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 266 } 267 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 268 ** string representation after computing a numeric equivalent, because the 269 ** string representation might not be the canonical representation for the 270 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 271 pRec->flags &= ~MEM_Str; 272 } 273 274 /* 275 ** Processing is determine by the affinity parameter: 276 ** 277 ** SQLITE_AFF_INTEGER: 278 ** SQLITE_AFF_REAL: 279 ** SQLITE_AFF_NUMERIC: 280 ** Try to convert pRec to an integer representation or a 281 ** floating-point representation if an integer representation 282 ** is not possible. Note that the integer representation is 283 ** always preferred, even if the affinity is REAL, because 284 ** an integer representation is more space efficient on disk. 285 ** 286 ** SQLITE_AFF_TEXT: 287 ** Convert pRec to a text representation. 288 ** 289 ** SQLITE_AFF_BLOB: 290 ** No-op. pRec is unchanged. 291 */ 292 static void applyAffinity( 293 Mem *pRec, /* The value to apply affinity to */ 294 char affinity, /* The affinity to be applied */ 295 u8 enc /* Use this text encoding */ 296 ){ 297 if( affinity>=SQLITE_AFF_NUMERIC ){ 298 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 299 || affinity==SQLITE_AFF_NUMERIC ); 300 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 301 if( (pRec->flags & MEM_Real)==0 ){ 302 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 303 }else{ 304 sqlite3VdbeIntegerAffinity(pRec); 305 } 306 } 307 }else if( affinity==SQLITE_AFF_TEXT ){ 308 /* Only attempt the conversion to TEXT if there is an integer or real 309 ** representation (blob and NULL do not get converted) but no string 310 ** representation. It would be harmless to repeat the conversion if 311 ** there is already a string rep, but it is pointless to waste those 312 ** CPU cycles. */ 313 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 314 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 315 sqlite3VdbeMemStringify(pRec, enc, 1); 316 } 317 } 318 pRec->flags &= ~(MEM_Real|MEM_Int); 319 } 320 } 321 322 /* 323 ** Try to convert the type of a function argument or a result column 324 ** into a numeric representation. Use either INTEGER or REAL whichever 325 ** is appropriate. But only do the conversion if it is possible without 326 ** loss of information and return the revised type of the argument. 327 */ 328 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 329 int eType = sqlite3_value_type(pVal); 330 if( eType==SQLITE_TEXT ){ 331 Mem *pMem = (Mem*)pVal; 332 applyNumericAffinity(pMem, 0); 333 eType = sqlite3_value_type(pVal); 334 } 335 return eType; 336 } 337 338 /* 339 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 340 ** not the internal Mem* type. 341 */ 342 void sqlite3ValueApplyAffinity( 343 sqlite3_value *pVal, 344 u8 affinity, 345 u8 enc 346 ){ 347 applyAffinity((Mem *)pVal, affinity, enc); 348 } 349 350 /* 351 ** pMem currently only holds a string type (or maybe a BLOB that we can 352 ** interpret as a string if we want to). Compute its corresponding 353 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 354 ** accordingly. 355 */ 356 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 357 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 358 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 359 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 360 return 0; 361 } 362 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ 363 return MEM_Int; 364 } 365 return MEM_Real; 366 } 367 368 /* 369 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 370 ** none. 371 ** 372 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 373 ** But it does set pMem->u.r and pMem->u.i appropriately. 374 */ 375 static u16 numericType(Mem *pMem){ 376 if( pMem->flags & (MEM_Int|MEM_Real) ){ 377 return pMem->flags & (MEM_Int|MEM_Real); 378 } 379 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 380 return computeNumericType(pMem); 381 } 382 return 0; 383 } 384 385 #ifdef SQLITE_DEBUG 386 /* 387 ** Write a nice string representation of the contents of cell pMem 388 ** into buffer zBuf, length nBuf. 389 */ 390 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 391 char *zCsr = zBuf; 392 int f = pMem->flags; 393 394 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 395 396 if( f&MEM_Blob ){ 397 int i; 398 char c; 399 if( f & MEM_Dyn ){ 400 c = 'z'; 401 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 402 }else if( f & MEM_Static ){ 403 c = 't'; 404 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 405 }else if( f & MEM_Ephem ){ 406 c = 'e'; 407 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 408 }else{ 409 c = 's'; 410 } 411 *(zCsr++) = c; 412 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 413 zCsr += sqlite3Strlen30(zCsr); 414 for(i=0; i<16 && i<pMem->n; i++){ 415 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 416 zCsr += sqlite3Strlen30(zCsr); 417 } 418 for(i=0; i<16 && i<pMem->n; i++){ 419 char z = pMem->z[i]; 420 if( z<32 || z>126 ) *zCsr++ = '.'; 421 else *zCsr++ = z; 422 } 423 *(zCsr++) = ']'; 424 if( f & MEM_Zero ){ 425 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 426 zCsr += sqlite3Strlen30(zCsr); 427 } 428 *zCsr = '\0'; 429 }else if( f & MEM_Str ){ 430 int j, k; 431 zBuf[0] = ' '; 432 if( f & MEM_Dyn ){ 433 zBuf[1] = 'z'; 434 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 435 }else if( f & MEM_Static ){ 436 zBuf[1] = 't'; 437 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 438 }else if( f & MEM_Ephem ){ 439 zBuf[1] = 'e'; 440 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 441 }else{ 442 zBuf[1] = 's'; 443 } 444 k = 2; 445 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 446 k += sqlite3Strlen30(&zBuf[k]); 447 zBuf[k++] = '['; 448 for(j=0; j<15 && j<pMem->n; j++){ 449 u8 c = pMem->z[j]; 450 if( c>=0x20 && c<0x7f ){ 451 zBuf[k++] = c; 452 }else{ 453 zBuf[k++] = '.'; 454 } 455 } 456 zBuf[k++] = ']'; 457 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 458 k += sqlite3Strlen30(&zBuf[k]); 459 zBuf[k++] = 0; 460 } 461 } 462 #endif 463 464 #ifdef SQLITE_DEBUG 465 /* 466 ** Print the value of a register for tracing purposes: 467 */ 468 static void memTracePrint(Mem *p){ 469 if( p->flags & MEM_Undefined ){ 470 printf(" undefined"); 471 }else if( p->flags & MEM_Null ){ 472 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 473 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 474 printf(" si:%lld", p->u.i); 475 }else if( p->flags & MEM_Int ){ 476 printf(" i:%lld", p->u.i); 477 #ifndef SQLITE_OMIT_FLOATING_POINT 478 }else if( p->flags & MEM_Real ){ 479 printf(" r:%g", p->u.r); 480 #endif 481 }else if( p->flags & MEM_RowSet ){ 482 printf(" (rowset)"); 483 }else{ 484 char zBuf[200]; 485 sqlite3VdbeMemPrettyPrint(p, zBuf); 486 printf(" %s", zBuf); 487 } 488 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 489 } 490 static void registerTrace(int iReg, Mem *p){ 491 printf("REG[%d] = ", iReg); 492 memTracePrint(p); 493 printf("\n"); 494 sqlite3VdbeCheckMemInvariants(p); 495 } 496 #endif 497 498 #ifdef SQLITE_DEBUG 499 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 500 #else 501 # define REGISTER_TRACE(R,M) 502 #endif 503 504 505 #ifdef VDBE_PROFILE 506 507 /* 508 ** hwtime.h contains inline assembler code for implementing 509 ** high-performance timing routines. 510 */ 511 #include "hwtime.h" 512 513 #endif 514 515 #ifndef NDEBUG 516 /* 517 ** This function is only called from within an assert() expression. It 518 ** checks that the sqlite3.nTransaction variable is correctly set to 519 ** the number of non-transaction savepoints currently in the 520 ** linked list starting at sqlite3.pSavepoint. 521 ** 522 ** Usage: 523 ** 524 ** assert( checkSavepointCount(db) ); 525 */ 526 static int checkSavepointCount(sqlite3 *db){ 527 int n = 0; 528 Savepoint *p; 529 for(p=db->pSavepoint; p; p=p->pNext) n++; 530 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 531 return 1; 532 } 533 #endif 534 535 /* 536 ** Return the register of pOp->p2 after first preparing it to be 537 ** overwritten with an integer value. 538 */ 539 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 540 sqlite3VdbeMemSetNull(pOut); 541 pOut->flags = MEM_Int; 542 return pOut; 543 } 544 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 545 Mem *pOut; 546 assert( pOp->p2>0 ); 547 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 548 pOut = &p->aMem[pOp->p2]; 549 memAboutToChange(p, pOut); 550 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 551 return out2PrereleaseWithClear(pOut); 552 }else{ 553 pOut->flags = MEM_Int; 554 return pOut; 555 } 556 } 557 558 559 /* 560 ** Execute as much of a VDBE program as we can. 561 ** This is the core of sqlite3_step(). 562 */ 563 int sqlite3VdbeExec( 564 Vdbe *p /* The VDBE */ 565 ){ 566 Op *aOp = p->aOp; /* Copy of p->aOp */ 567 Op *pOp = aOp; /* Current operation */ 568 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 569 Op *pOrigOp; /* Value of pOp at the top of the loop */ 570 #endif 571 #ifdef SQLITE_DEBUG 572 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 573 #endif 574 int rc = SQLITE_OK; /* Value to return */ 575 sqlite3 *db = p->db; /* The database */ 576 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 577 u8 encoding = ENC(db); /* The database encoding */ 578 int iCompare = 0; /* Result of last comparison */ 579 unsigned nVmStep = 0; /* Number of virtual machine steps */ 580 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 581 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 582 #endif 583 Mem *aMem = p->aMem; /* Copy of p->aMem */ 584 Mem *pIn1 = 0; /* 1st input operand */ 585 Mem *pIn2 = 0; /* 2nd input operand */ 586 Mem *pIn3 = 0; /* 3rd input operand */ 587 Mem *pOut = 0; /* Output operand */ 588 #ifdef VDBE_PROFILE 589 u64 start; /* CPU clock count at start of opcode */ 590 #endif 591 /*** INSERT STACK UNION HERE ***/ 592 593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 594 sqlite3VdbeEnter(p); 595 if( p->rc==SQLITE_NOMEM ){ 596 /* This happens if a malloc() inside a call to sqlite3_column_text() or 597 ** sqlite3_column_text16() failed. */ 598 goto no_mem; 599 } 600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 601 assert( p->bIsReader || p->readOnly!=0 ); 602 p->iCurrentTime = 0; 603 assert( p->explain==0 ); 604 p->pResultSet = 0; 605 db->busyHandler.nBusy = 0; 606 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 607 sqlite3VdbeIOTraceSql(p); 608 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 609 if( db->xProgress ){ 610 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 611 assert( 0 < db->nProgressOps ); 612 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 613 }else{ 614 nProgressLimit = 0xffffffff; 615 } 616 #endif 617 #ifdef SQLITE_DEBUG 618 sqlite3BeginBenignMalloc(); 619 if( p->pc==0 620 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 621 ){ 622 int i; 623 int once = 1; 624 sqlite3VdbePrintSql(p); 625 if( p->db->flags & SQLITE_VdbeListing ){ 626 printf("VDBE Program Listing:\n"); 627 for(i=0; i<p->nOp; i++){ 628 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 629 } 630 } 631 if( p->db->flags & SQLITE_VdbeEQP ){ 632 for(i=0; i<p->nOp; i++){ 633 if( aOp[i].opcode==OP_Explain ){ 634 if( once ) printf("VDBE Query Plan:\n"); 635 printf("%s\n", aOp[i].p4.z); 636 once = 0; 637 } 638 } 639 } 640 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 641 } 642 sqlite3EndBenignMalloc(); 643 #endif 644 for(pOp=&aOp[p->pc]; 1; pOp++){ 645 /* Errors are detected by individual opcodes, with an immediate 646 ** jumps to abort_due_to_error. */ 647 assert( rc==SQLITE_OK ); 648 649 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 650 #ifdef VDBE_PROFILE 651 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 652 #endif 653 nVmStep++; 654 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 655 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 656 #endif 657 658 /* Only allow tracing if SQLITE_DEBUG is defined. 659 */ 660 #ifdef SQLITE_DEBUG 661 if( db->flags & SQLITE_VdbeTrace ){ 662 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 663 } 664 #endif 665 666 667 /* Check to see if we need to simulate an interrupt. This only happens 668 ** if we have a special test build. 669 */ 670 #ifdef SQLITE_TEST 671 if( sqlite3_interrupt_count>0 ){ 672 sqlite3_interrupt_count--; 673 if( sqlite3_interrupt_count==0 ){ 674 sqlite3_interrupt(db); 675 } 676 } 677 #endif 678 679 /* Sanity checking on other operands */ 680 #ifdef SQLITE_DEBUG 681 { 682 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 683 if( (opProperty & OPFLG_IN1)!=0 ){ 684 assert( pOp->p1>0 ); 685 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 686 assert( memIsValid(&aMem[pOp->p1]) ); 687 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 688 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 689 } 690 if( (opProperty & OPFLG_IN2)!=0 ){ 691 assert( pOp->p2>0 ); 692 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 693 assert( memIsValid(&aMem[pOp->p2]) ); 694 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 695 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 696 } 697 if( (opProperty & OPFLG_IN3)!=0 ){ 698 assert( pOp->p3>0 ); 699 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 700 assert( memIsValid(&aMem[pOp->p3]) ); 701 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 702 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 703 } 704 if( (opProperty & OPFLG_OUT2)!=0 ){ 705 assert( pOp->p2>0 ); 706 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 707 memAboutToChange(p, &aMem[pOp->p2]); 708 } 709 if( (opProperty & OPFLG_OUT3)!=0 ){ 710 assert( pOp->p3>0 ); 711 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 712 memAboutToChange(p, &aMem[pOp->p3]); 713 } 714 } 715 #endif 716 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 717 pOrigOp = pOp; 718 #endif 719 720 switch( pOp->opcode ){ 721 722 /***************************************************************************** 723 ** What follows is a massive switch statement where each case implements a 724 ** separate instruction in the virtual machine. If we follow the usual 725 ** indentation conventions, each case should be indented by 6 spaces. But 726 ** that is a lot of wasted space on the left margin. So the code within 727 ** the switch statement will break with convention and be flush-left. Another 728 ** big comment (similar to this one) will mark the point in the code where 729 ** we transition back to normal indentation. 730 ** 731 ** The formatting of each case is important. The makefile for SQLite 732 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 733 ** file looking for lines that begin with "case OP_". The opcodes.h files 734 ** will be filled with #defines that give unique integer values to each 735 ** opcode and the opcodes.c file is filled with an array of strings where 736 ** each string is the symbolic name for the corresponding opcode. If the 737 ** case statement is followed by a comment of the form "/# same as ... #/" 738 ** that comment is used to determine the particular value of the opcode. 739 ** 740 ** Other keywords in the comment that follows each case are used to 741 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 742 ** Keywords include: in1, in2, in3, out2, out3. See 743 ** the mkopcodeh.awk script for additional information. 744 ** 745 ** Documentation about VDBE opcodes is generated by scanning this file 746 ** for lines of that contain "Opcode:". That line and all subsequent 747 ** comment lines are used in the generation of the opcode.html documentation 748 ** file. 749 ** 750 ** SUMMARY: 751 ** 752 ** Formatting is important to scripts that scan this file. 753 ** Do not deviate from the formatting style currently in use. 754 ** 755 *****************************************************************************/ 756 757 /* Opcode: Goto * P2 * * * 758 ** 759 ** An unconditional jump to address P2. 760 ** The next instruction executed will be 761 ** the one at index P2 from the beginning of 762 ** the program. 763 ** 764 ** The P1 parameter is not actually used by this opcode. However, it 765 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 766 ** that this Goto is the bottom of a loop and that the lines from P2 down 767 ** to the current line should be indented for EXPLAIN output. 768 */ 769 case OP_Goto: { /* jump */ 770 jump_to_p2_and_check_for_interrupt: 771 pOp = &aOp[pOp->p2 - 1]; 772 773 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 774 ** OP_VNext, or OP_SorterNext) all jump here upon 775 ** completion. Check to see if sqlite3_interrupt() has been called 776 ** or if the progress callback needs to be invoked. 777 ** 778 ** This code uses unstructured "goto" statements and does not look clean. 779 ** But that is not due to sloppy coding habits. The code is written this 780 ** way for performance, to avoid having to run the interrupt and progress 781 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 782 ** faster according to "valgrind --tool=cachegrind" */ 783 check_for_interrupt: 784 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 785 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 786 /* Call the progress callback if it is configured and the required number 787 ** of VDBE ops have been executed (either since this invocation of 788 ** sqlite3VdbeExec() or since last time the progress callback was called). 789 ** If the progress callback returns non-zero, exit the virtual machine with 790 ** a return code SQLITE_ABORT. 791 */ 792 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 793 assert( db->nProgressOps!=0 ); 794 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 795 if( db->xProgress(db->pProgressArg) ){ 796 rc = SQLITE_INTERRUPT; 797 goto abort_due_to_error; 798 } 799 } 800 #endif 801 802 break; 803 } 804 805 /* Opcode: Gosub P1 P2 * * * 806 ** 807 ** Write the current address onto register P1 808 ** and then jump to address P2. 809 */ 810 case OP_Gosub: { /* jump */ 811 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 812 pIn1 = &aMem[pOp->p1]; 813 assert( VdbeMemDynamic(pIn1)==0 ); 814 memAboutToChange(p, pIn1); 815 pIn1->flags = MEM_Int; 816 pIn1->u.i = (int)(pOp-aOp); 817 REGISTER_TRACE(pOp->p1, pIn1); 818 819 /* Most jump operations do a goto to this spot in order to update 820 ** the pOp pointer. */ 821 jump_to_p2: 822 pOp = &aOp[pOp->p2 - 1]; 823 break; 824 } 825 826 /* Opcode: Return P1 * * * * 827 ** 828 ** Jump to the next instruction after the address in register P1. After 829 ** the jump, register P1 becomes undefined. 830 */ 831 case OP_Return: { /* in1 */ 832 pIn1 = &aMem[pOp->p1]; 833 assert( pIn1->flags==MEM_Int ); 834 pOp = &aOp[pIn1->u.i]; 835 pIn1->flags = MEM_Undefined; 836 break; 837 } 838 839 /* Opcode: InitCoroutine P1 P2 P3 * * 840 ** 841 ** Set up register P1 so that it will Yield to the coroutine 842 ** located at address P3. 843 ** 844 ** If P2!=0 then the coroutine implementation immediately follows 845 ** this opcode. So jump over the coroutine implementation to 846 ** address P2. 847 ** 848 ** See also: EndCoroutine 849 */ 850 case OP_InitCoroutine: { /* jump */ 851 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 852 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 853 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 854 pOut = &aMem[pOp->p1]; 855 assert( !VdbeMemDynamic(pOut) ); 856 pOut->u.i = pOp->p3 - 1; 857 pOut->flags = MEM_Int; 858 if( pOp->p2 ) goto jump_to_p2; 859 break; 860 } 861 862 /* Opcode: EndCoroutine P1 * * * * 863 ** 864 ** The instruction at the address in register P1 is a Yield. 865 ** Jump to the P2 parameter of that Yield. 866 ** After the jump, register P1 becomes undefined. 867 ** 868 ** See also: InitCoroutine 869 */ 870 case OP_EndCoroutine: { /* in1 */ 871 VdbeOp *pCaller; 872 pIn1 = &aMem[pOp->p1]; 873 assert( pIn1->flags==MEM_Int ); 874 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 875 pCaller = &aOp[pIn1->u.i]; 876 assert( pCaller->opcode==OP_Yield ); 877 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 878 pOp = &aOp[pCaller->p2 - 1]; 879 pIn1->flags = MEM_Undefined; 880 break; 881 } 882 883 /* Opcode: Yield P1 P2 * * * 884 ** 885 ** Swap the program counter with the value in register P1. This 886 ** has the effect of yielding to a coroutine. 887 ** 888 ** If the coroutine that is launched by this instruction ends with 889 ** Yield or Return then continue to the next instruction. But if 890 ** the coroutine launched by this instruction ends with 891 ** EndCoroutine, then jump to P2 rather than continuing with the 892 ** next instruction. 893 ** 894 ** See also: InitCoroutine 895 */ 896 case OP_Yield: { /* in1, jump */ 897 int pcDest; 898 pIn1 = &aMem[pOp->p1]; 899 assert( VdbeMemDynamic(pIn1)==0 ); 900 pIn1->flags = MEM_Int; 901 pcDest = (int)pIn1->u.i; 902 pIn1->u.i = (int)(pOp - aOp); 903 REGISTER_TRACE(pOp->p1, pIn1); 904 pOp = &aOp[pcDest]; 905 break; 906 } 907 908 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 909 ** Synopsis: if r[P3]=null halt 910 ** 911 ** Check the value in register P3. If it is NULL then Halt using 912 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 913 ** value in register P3 is not NULL, then this routine is a no-op. 914 ** The P5 parameter should be 1. 915 */ 916 case OP_HaltIfNull: { /* in3 */ 917 pIn3 = &aMem[pOp->p3]; 918 if( (pIn3->flags & MEM_Null)==0 ) break; 919 /* Fall through into OP_Halt */ 920 } 921 922 /* Opcode: Halt P1 P2 * P4 P5 923 ** 924 ** Exit immediately. All open cursors, etc are closed 925 ** automatically. 926 ** 927 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 928 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 929 ** For errors, it can be some other value. If P1!=0 then P2 will determine 930 ** whether or not to rollback the current transaction. Do not rollback 931 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 932 ** then back out all changes that have occurred during this execution of the 933 ** VDBE, but do not rollback the transaction. 934 ** 935 ** If P4 is not null then it is an error message string. 936 ** 937 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 938 ** 939 ** 0: (no change) 940 ** 1: NOT NULL contraint failed: P4 941 ** 2: UNIQUE constraint failed: P4 942 ** 3: CHECK constraint failed: P4 943 ** 4: FOREIGN KEY constraint failed: P4 944 ** 945 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 946 ** omitted. 947 ** 948 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 949 ** every program. So a jump past the last instruction of the program 950 ** is the same as executing Halt. 951 */ 952 case OP_Halt: { 953 VdbeFrame *pFrame; 954 int pcx; 955 956 pcx = (int)(pOp - aOp); 957 if( pOp->p1==SQLITE_OK && p->pFrame ){ 958 /* Halt the sub-program. Return control to the parent frame. */ 959 pFrame = p->pFrame; 960 p->pFrame = pFrame->pParent; 961 p->nFrame--; 962 sqlite3VdbeSetChanges(db, p->nChange); 963 pcx = sqlite3VdbeFrameRestore(pFrame); 964 if( pOp->p2==OE_Ignore ){ 965 /* Instruction pcx is the OP_Program that invoked the sub-program 966 ** currently being halted. If the p2 instruction of this OP_Halt 967 ** instruction is set to OE_Ignore, then the sub-program is throwing 968 ** an IGNORE exception. In this case jump to the address specified 969 ** as the p2 of the calling OP_Program. */ 970 pcx = p->aOp[pcx].p2-1; 971 } 972 aOp = p->aOp; 973 aMem = p->aMem; 974 pOp = &aOp[pcx]; 975 break; 976 } 977 p->rc = pOp->p1; 978 p->errorAction = (u8)pOp->p2; 979 p->pc = pcx; 980 assert( pOp->p5<=4 ); 981 if( p->rc ){ 982 if( pOp->p5 ){ 983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 984 "FOREIGN KEY" }; 985 testcase( pOp->p5==1 ); 986 testcase( pOp->p5==2 ); 987 testcase( pOp->p5==3 ); 988 testcase( pOp->p5==4 ); 989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 990 if( pOp->p4.z ){ 991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 992 } 993 }else{ 994 sqlite3VdbeError(p, "%s", pOp->p4.z); 995 } 996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 997 } 998 rc = sqlite3VdbeHalt(p); 999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1000 if( rc==SQLITE_BUSY ){ 1001 p->rc = SQLITE_BUSY; 1002 }else{ 1003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1006 } 1007 goto vdbe_return; 1008 } 1009 1010 /* Opcode: Integer P1 P2 * * * 1011 ** Synopsis: r[P2]=P1 1012 ** 1013 ** The 32-bit integer value P1 is written into register P2. 1014 */ 1015 case OP_Integer: { /* out2 */ 1016 pOut = out2Prerelease(p, pOp); 1017 pOut->u.i = pOp->p1; 1018 break; 1019 } 1020 1021 /* Opcode: Int64 * P2 * P4 * 1022 ** Synopsis: r[P2]=P4 1023 ** 1024 ** P4 is a pointer to a 64-bit integer value. 1025 ** Write that value into register P2. 1026 */ 1027 case OP_Int64: { /* out2 */ 1028 pOut = out2Prerelease(p, pOp); 1029 assert( pOp->p4.pI64!=0 ); 1030 pOut->u.i = *pOp->p4.pI64; 1031 break; 1032 } 1033 1034 #ifndef SQLITE_OMIT_FLOATING_POINT 1035 /* Opcode: Real * P2 * P4 * 1036 ** Synopsis: r[P2]=P4 1037 ** 1038 ** P4 is a pointer to a 64-bit floating point value. 1039 ** Write that value into register P2. 1040 */ 1041 case OP_Real: { /* same as TK_FLOAT, out2 */ 1042 pOut = out2Prerelease(p, pOp); 1043 pOut->flags = MEM_Real; 1044 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1045 pOut->u.r = *pOp->p4.pReal; 1046 break; 1047 } 1048 #endif 1049 1050 /* Opcode: String8 * P2 * P4 * 1051 ** Synopsis: r[P2]='P4' 1052 ** 1053 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1054 ** into a String opcode before it is executed for the first time. During 1055 ** this transformation, the length of string P4 is computed and stored 1056 ** as the P1 parameter. 1057 */ 1058 case OP_String8: { /* same as TK_STRING, out2 */ 1059 assert( pOp->p4.z!=0 ); 1060 pOut = out2Prerelease(p, pOp); 1061 pOp->opcode = OP_String; 1062 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1063 1064 #ifndef SQLITE_OMIT_UTF16 1065 if( encoding!=SQLITE_UTF8 ){ 1066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1070 assert( VdbeMemDynamic(pOut)==0 ); 1071 pOut->szMalloc = 0; 1072 pOut->flags |= MEM_Static; 1073 if( pOp->p4type==P4_DYNAMIC ){ 1074 sqlite3DbFree(db, pOp->p4.z); 1075 } 1076 pOp->p4type = P4_DYNAMIC; 1077 pOp->p4.z = pOut->z; 1078 pOp->p1 = pOut->n; 1079 } 1080 testcase( rc==SQLITE_TOOBIG ); 1081 #endif 1082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1083 goto too_big; 1084 } 1085 assert( rc==SQLITE_OK ); 1086 /* Fall through to the next case, OP_String */ 1087 } 1088 1089 /* Opcode: String P1 P2 P3 P4 P5 1090 ** Synopsis: r[P2]='P4' (len=P1) 1091 ** 1092 ** The string value P4 of length P1 (bytes) is stored in register P2. 1093 ** 1094 ** If P3 is not zero and the content of register P3 is equal to P5, then 1095 ** the datatype of the register P2 is converted to BLOB. The content is 1096 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1097 ** of a string, as if it had been CAST. In other words: 1098 ** 1099 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1100 */ 1101 case OP_String: { /* out2 */ 1102 assert( pOp->p4.z!=0 ); 1103 pOut = out2Prerelease(p, pOp); 1104 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1105 pOut->z = pOp->p4.z; 1106 pOut->n = pOp->p1; 1107 pOut->enc = encoding; 1108 UPDATE_MAX_BLOBSIZE(pOut); 1109 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1110 if( pOp->p3>0 ){ 1111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1112 pIn3 = &aMem[pOp->p3]; 1113 assert( pIn3->flags & MEM_Int ); 1114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1115 } 1116 #endif 1117 break; 1118 } 1119 1120 /* Opcode: Null P1 P2 P3 * * 1121 ** Synopsis: r[P2..P3]=NULL 1122 ** 1123 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1124 ** NULL into register P3 and every register in between P2 and P3. If P3 1125 ** is less than P2 (typically P3 is zero) then only register P2 is 1126 ** set to NULL. 1127 ** 1128 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1129 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1130 ** OP_Ne or OP_Eq. 1131 */ 1132 case OP_Null: { /* out2 */ 1133 int cnt; 1134 u16 nullFlag; 1135 pOut = out2Prerelease(p, pOp); 1136 cnt = pOp->p3-pOp->p2; 1137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1139 pOut->n = 0; 1140 while( cnt>0 ){ 1141 pOut++; 1142 memAboutToChange(p, pOut); 1143 sqlite3VdbeMemSetNull(pOut); 1144 pOut->flags = nullFlag; 1145 pOut->n = 0; 1146 cnt--; 1147 } 1148 break; 1149 } 1150 1151 /* Opcode: SoftNull P1 * * * * 1152 ** Synopsis: r[P1]=NULL 1153 ** 1154 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1155 ** instruction, but do not free any string or blob memory associated with 1156 ** the register, so that if the value was a string or blob that was 1157 ** previously copied using OP_SCopy, the copies will continue to be valid. 1158 */ 1159 case OP_SoftNull: { 1160 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1161 pOut = &aMem[pOp->p1]; 1162 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1163 break; 1164 } 1165 1166 /* Opcode: Blob P1 P2 * P4 * 1167 ** Synopsis: r[P2]=P4 (len=P1) 1168 ** 1169 ** P4 points to a blob of data P1 bytes long. Store this 1170 ** blob in register P2. 1171 */ 1172 case OP_Blob: { /* out2 */ 1173 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1174 pOut = out2Prerelease(p, pOp); 1175 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1176 pOut->enc = encoding; 1177 UPDATE_MAX_BLOBSIZE(pOut); 1178 break; 1179 } 1180 1181 /* Opcode: Variable P1 P2 * P4 * 1182 ** Synopsis: r[P2]=parameter(P1,P4) 1183 ** 1184 ** Transfer the values of bound parameter P1 into register P2 1185 ** 1186 ** If the parameter is named, then its name appears in P4. 1187 ** The P4 value is used by sqlite3_bind_parameter_name(). 1188 */ 1189 case OP_Variable: { /* out2 */ 1190 Mem *pVar; /* Value being transferred */ 1191 1192 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1193 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1194 pVar = &p->aVar[pOp->p1 - 1]; 1195 if( sqlite3VdbeMemTooBig(pVar) ){ 1196 goto too_big; 1197 } 1198 pOut = &aMem[pOp->p2]; 1199 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1200 UPDATE_MAX_BLOBSIZE(pOut); 1201 break; 1202 } 1203 1204 /* Opcode: Move P1 P2 P3 * * 1205 ** Synopsis: r[P2@P3]=r[P1@P3] 1206 ** 1207 ** Move the P3 values in register P1..P1+P3-1 over into 1208 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1209 ** left holding a NULL. It is an error for register ranges 1210 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1211 ** for P3 to be less than 1. 1212 */ 1213 case OP_Move: { 1214 int n; /* Number of registers left to copy */ 1215 int p1; /* Register to copy from */ 1216 int p2; /* Register to copy to */ 1217 1218 n = pOp->p3; 1219 p1 = pOp->p1; 1220 p2 = pOp->p2; 1221 assert( n>0 && p1>0 && p2>0 ); 1222 assert( p1+n<=p2 || p2+n<=p1 ); 1223 1224 pIn1 = &aMem[p1]; 1225 pOut = &aMem[p2]; 1226 do{ 1227 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1228 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1229 assert( memIsValid(pIn1) ); 1230 memAboutToChange(p, pOut); 1231 sqlite3VdbeMemMove(pOut, pIn1); 1232 #ifdef SQLITE_DEBUG 1233 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1234 pOut->pScopyFrom += pOp->p2 - p1; 1235 } 1236 #endif 1237 Deephemeralize(pOut); 1238 REGISTER_TRACE(p2++, pOut); 1239 pIn1++; 1240 pOut++; 1241 }while( --n ); 1242 break; 1243 } 1244 1245 /* Opcode: Copy P1 P2 P3 * * 1246 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1247 ** 1248 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1249 ** 1250 ** This instruction makes a deep copy of the value. A duplicate 1251 ** is made of any string or blob constant. See also OP_SCopy. 1252 */ 1253 case OP_Copy: { 1254 int n; 1255 1256 n = pOp->p3; 1257 pIn1 = &aMem[pOp->p1]; 1258 pOut = &aMem[pOp->p2]; 1259 assert( pOut!=pIn1 ); 1260 while( 1 ){ 1261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1262 Deephemeralize(pOut); 1263 #ifdef SQLITE_DEBUG 1264 pOut->pScopyFrom = 0; 1265 #endif 1266 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1267 if( (n--)==0 ) break; 1268 pOut++; 1269 pIn1++; 1270 } 1271 break; 1272 } 1273 1274 /* Opcode: SCopy P1 P2 * * * 1275 ** Synopsis: r[P2]=r[P1] 1276 ** 1277 ** Make a shallow copy of register P1 into register P2. 1278 ** 1279 ** This instruction makes a shallow copy of the value. If the value 1280 ** is a string or blob, then the copy is only a pointer to the 1281 ** original and hence if the original changes so will the copy. 1282 ** Worse, if the original is deallocated, the copy becomes invalid. 1283 ** Thus the program must guarantee that the original will not change 1284 ** during the lifetime of the copy. Use OP_Copy to make a complete 1285 ** copy. 1286 */ 1287 case OP_SCopy: { /* out2 */ 1288 pIn1 = &aMem[pOp->p1]; 1289 pOut = &aMem[pOp->p2]; 1290 assert( pOut!=pIn1 ); 1291 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1292 #ifdef SQLITE_DEBUG 1293 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1294 #endif 1295 break; 1296 } 1297 1298 /* Opcode: IntCopy P1 P2 * * * 1299 ** Synopsis: r[P2]=r[P1] 1300 ** 1301 ** Transfer the integer value held in register P1 into register P2. 1302 ** 1303 ** This is an optimized version of SCopy that works only for integer 1304 ** values. 1305 */ 1306 case OP_IntCopy: { /* out2 */ 1307 pIn1 = &aMem[pOp->p1]; 1308 assert( (pIn1->flags & MEM_Int)!=0 ); 1309 pOut = &aMem[pOp->p2]; 1310 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1311 break; 1312 } 1313 1314 /* Opcode: ResultRow P1 P2 * * * 1315 ** Synopsis: output=r[P1@P2] 1316 ** 1317 ** The registers P1 through P1+P2-1 contain a single row of 1318 ** results. This opcode causes the sqlite3_step() call to terminate 1319 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1320 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1321 ** the result row. 1322 */ 1323 case OP_ResultRow: { 1324 Mem *pMem; 1325 int i; 1326 assert( p->nResColumn==pOp->p2 ); 1327 assert( pOp->p1>0 ); 1328 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1329 1330 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1331 /* Run the progress counter just before returning. 1332 */ 1333 if( db->xProgress!=0 1334 && nVmStep>=nProgressLimit 1335 && db->xProgress(db->pProgressArg)!=0 1336 ){ 1337 rc = SQLITE_INTERRUPT; 1338 goto abort_due_to_error; 1339 } 1340 #endif 1341 1342 /* If this statement has violated immediate foreign key constraints, do 1343 ** not return the number of rows modified. And do not RELEASE the statement 1344 ** transaction. It needs to be rolled back. */ 1345 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1346 assert( db->flags&SQLITE_CountRows ); 1347 assert( p->usesStmtJournal ); 1348 goto abort_due_to_error; 1349 } 1350 1351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1352 ** DML statements invoke this opcode to return the number of rows 1353 ** modified to the user. This is the only way that a VM that 1354 ** opens a statement transaction may invoke this opcode. 1355 ** 1356 ** In case this is such a statement, close any statement transaction 1357 ** opened by this VM before returning control to the user. This is to 1358 ** ensure that statement-transactions are always nested, not overlapping. 1359 ** If the open statement-transaction is not closed here, then the user 1360 ** may step another VM that opens its own statement transaction. This 1361 ** may lead to overlapping statement transactions. 1362 ** 1363 ** The statement transaction is never a top-level transaction. Hence 1364 ** the RELEASE call below can never fail. 1365 */ 1366 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1367 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1368 assert( rc==SQLITE_OK ); 1369 1370 /* Invalidate all ephemeral cursor row caches */ 1371 p->cacheCtr = (p->cacheCtr + 2)|1; 1372 1373 /* Make sure the results of the current row are \000 terminated 1374 ** and have an assigned type. The results are de-ephemeralized as 1375 ** a side effect. 1376 */ 1377 pMem = p->pResultSet = &aMem[pOp->p1]; 1378 for(i=0; i<pOp->p2; i++){ 1379 assert( memIsValid(&pMem[i]) ); 1380 Deephemeralize(&pMem[i]); 1381 assert( (pMem[i].flags & MEM_Ephem)==0 1382 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1383 sqlite3VdbeMemNulTerminate(&pMem[i]); 1384 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1385 } 1386 if( db->mallocFailed ) goto no_mem; 1387 1388 if( db->mTrace & SQLITE_TRACE_ROW ){ 1389 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1390 } 1391 1392 /* Return SQLITE_ROW 1393 */ 1394 p->pc = (int)(pOp - aOp) + 1; 1395 rc = SQLITE_ROW; 1396 goto vdbe_return; 1397 } 1398 1399 /* Opcode: Concat P1 P2 P3 * * 1400 ** Synopsis: r[P3]=r[P2]+r[P1] 1401 ** 1402 ** Add the text in register P1 onto the end of the text in 1403 ** register P2 and store the result in register P3. 1404 ** If either the P1 or P2 text are NULL then store NULL in P3. 1405 ** 1406 ** P3 = P2 || P1 1407 ** 1408 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1409 ** if P3 is the same register as P2, the implementation is able 1410 ** to avoid a memcpy(). 1411 */ 1412 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1413 i64 nByte; 1414 1415 pIn1 = &aMem[pOp->p1]; 1416 pIn2 = &aMem[pOp->p2]; 1417 pOut = &aMem[pOp->p3]; 1418 assert( pIn1!=pOut ); 1419 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1420 sqlite3VdbeMemSetNull(pOut); 1421 break; 1422 } 1423 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1424 Stringify(pIn1, encoding); 1425 Stringify(pIn2, encoding); 1426 nByte = pIn1->n + pIn2->n; 1427 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1428 goto too_big; 1429 } 1430 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1431 goto no_mem; 1432 } 1433 MemSetTypeFlag(pOut, MEM_Str); 1434 if( pOut!=pIn2 ){ 1435 memcpy(pOut->z, pIn2->z, pIn2->n); 1436 } 1437 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1438 pOut->z[nByte]=0; 1439 pOut->z[nByte+1] = 0; 1440 pOut->flags |= MEM_Term; 1441 pOut->n = (int)nByte; 1442 pOut->enc = encoding; 1443 UPDATE_MAX_BLOBSIZE(pOut); 1444 break; 1445 } 1446 1447 /* Opcode: Add P1 P2 P3 * * 1448 ** Synopsis: r[P3]=r[P1]+r[P2] 1449 ** 1450 ** Add the value in register P1 to the value in register P2 1451 ** and store the result in register P3. 1452 ** If either input is NULL, the result is NULL. 1453 */ 1454 /* Opcode: Multiply P1 P2 P3 * * 1455 ** Synopsis: r[P3]=r[P1]*r[P2] 1456 ** 1457 ** 1458 ** Multiply the value in register P1 by the value in register P2 1459 ** and store the result in register P3. 1460 ** If either input is NULL, the result is NULL. 1461 */ 1462 /* Opcode: Subtract P1 P2 P3 * * 1463 ** Synopsis: r[P3]=r[P2]-r[P1] 1464 ** 1465 ** Subtract the value in register P1 from the value in register P2 1466 ** and store the result in register P3. 1467 ** If either input is NULL, the result is NULL. 1468 */ 1469 /* Opcode: Divide P1 P2 P3 * * 1470 ** Synopsis: r[P3]=r[P2]/r[P1] 1471 ** 1472 ** Divide the value in register P1 by the value in register P2 1473 ** and store the result in register P3 (P3=P2/P1). If the value in 1474 ** register P1 is zero, then the result is NULL. If either input is 1475 ** NULL, the result is NULL. 1476 */ 1477 /* Opcode: Remainder P1 P2 P3 * * 1478 ** Synopsis: r[P3]=r[P2]%r[P1] 1479 ** 1480 ** Compute the remainder after integer register P2 is divided by 1481 ** register P1 and store the result in register P3. 1482 ** If the value in register P1 is zero the result is NULL. 1483 ** If either operand is NULL, the result is NULL. 1484 */ 1485 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1486 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1487 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1488 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1489 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1490 char bIntint; /* Started out as two integer operands */ 1491 u16 flags; /* Combined MEM_* flags from both inputs */ 1492 u16 type1; /* Numeric type of left operand */ 1493 u16 type2; /* Numeric type of right operand */ 1494 i64 iA; /* Integer value of left operand */ 1495 i64 iB; /* Integer value of right operand */ 1496 double rA; /* Real value of left operand */ 1497 double rB; /* Real value of right operand */ 1498 1499 pIn1 = &aMem[pOp->p1]; 1500 type1 = numericType(pIn1); 1501 pIn2 = &aMem[pOp->p2]; 1502 type2 = numericType(pIn2); 1503 pOut = &aMem[pOp->p3]; 1504 flags = pIn1->flags | pIn2->flags; 1505 if( (type1 & type2 & MEM_Int)!=0 ){ 1506 iA = pIn1->u.i; 1507 iB = pIn2->u.i; 1508 bIntint = 1; 1509 switch( pOp->opcode ){ 1510 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1511 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1512 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1513 case OP_Divide: { 1514 if( iA==0 ) goto arithmetic_result_is_null; 1515 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1516 iB /= iA; 1517 break; 1518 } 1519 default: { 1520 if( iA==0 ) goto arithmetic_result_is_null; 1521 if( iA==-1 ) iA = 1; 1522 iB %= iA; 1523 break; 1524 } 1525 } 1526 pOut->u.i = iB; 1527 MemSetTypeFlag(pOut, MEM_Int); 1528 }else if( (flags & MEM_Null)!=0 ){ 1529 goto arithmetic_result_is_null; 1530 }else{ 1531 bIntint = 0; 1532 fp_math: 1533 rA = sqlite3VdbeRealValue(pIn1); 1534 rB = sqlite3VdbeRealValue(pIn2); 1535 switch( pOp->opcode ){ 1536 case OP_Add: rB += rA; break; 1537 case OP_Subtract: rB -= rA; break; 1538 case OP_Multiply: rB *= rA; break; 1539 case OP_Divide: { 1540 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1541 if( rA==(double)0 ) goto arithmetic_result_is_null; 1542 rB /= rA; 1543 break; 1544 } 1545 default: { 1546 iA = (i64)rA; 1547 iB = (i64)rB; 1548 if( iA==0 ) goto arithmetic_result_is_null; 1549 if( iA==-1 ) iA = 1; 1550 rB = (double)(iB % iA); 1551 break; 1552 } 1553 } 1554 #ifdef SQLITE_OMIT_FLOATING_POINT 1555 pOut->u.i = rB; 1556 MemSetTypeFlag(pOut, MEM_Int); 1557 #else 1558 if( sqlite3IsNaN(rB) ){ 1559 goto arithmetic_result_is_null; 1560 } 1561 pOut->u.r = rB; 1562 MemSetTypeFlag(pOut, MEM_Real); 1563 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1564 sqlite3VdbeIntegerAffinity(pOut); 1565 } 1566 #endif 1567 } 1568 break; 1569 1570 arithmetic_result_is_null: 1571 sqlite3VdbeMemSetNull(pOut); 1572 break; 1573 } 1574 1575 /* Opcode: CollSeq P1 * * P4 1576 ** 1577 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1578 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1579 ** be returned. This is used by the built-in min(), max() and nullif() 1580 ** functions. 1581 ** 1582 ** If P1 is not zero, then it is a register that a subsequent min() or 1583 ** max() aggregate will set to 1 if the current row is not the minimum or 1584 ** maximum. The P1 register is initialized to 0 by this instruction. 1585 ** 1586 ** The interface used by the implementation of the aforementioned functions 1587 ** to retrieve the collation sequence set by this opcode is not available 1588 ** publicly. Only built-in functions have access to this feature. 1589 */ 1590 case OP_CollSeq: { 1591 assert( pOp->p4type==P4_COLLSEQ ); 1592 if( pOp->p1 ){ 1593 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1594 } 1595 break; 1596 } 1597 1598 /* Opcode: BitAnd P1 P2 P3 * * 1599 ** Synopsis: r[P3]=r[P1]&r[P2] 1600 ** 1601 ** Take the bit-wise AND of the values in register P1 and P2 and 1602 ** store the result in register P3. 1603 ** If either input is NULL, the result is NULL. 1604 */ 1605 /* Opcode: BitOr P1 P2 P3 * * 1606 ** Synopsis: r[P3]=r[P1]|r[P2] 1607 ** 1608 ** Take the bit-wise OR of the values in register P1 and P2 and 1609 ** store the result in register P3. 1610 ** If either input is NULL, the result is NULL. 1611 */ 1612 /* Opcode: ShiftLeft P1 P2 P3 * * 1613 ** Synopsis: r[P3]=r[P2]<<r[P1] 1614 ** 1615 ** Shift the integer value in register P2 to the left by the 1616 ** number of bits specified by the integer in register P1. 1617 ** Store the result in register P3. 1618 ** If either input is NULL, the result is NULL. 1619 */ 1620 /* Opcode: ShiftRight P1 P2 P3 * * 1621 ** Synopsis: r[P3]=r[P2]>>r[P1] 1622 ** 1623 ** Shift the integer value in register P2 to the right by the 1624 ** number of bits specified by the integer in register P1. 1625 ** Store the result in register P3. 1626 ** If either input is NULL, the result is NULL. 1627 */ 1628 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1629 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1630 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1631 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1632 i64 iA; 1633 u64 uA; 1634 i64 iB; 1635 u8 op; 1636 1637 pIn1 = &aMem[pOp->p1]; 1638 pIn2 = &aMem[pOp->p2]; 1639 pOut = &aMem[pOp->p3]; 1640 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1641 sqlite3VdbeMemSetNull(pOut); 1642 break; 1643 } 1644 iA = sqlite3VdbeIntValue(pIn2); 1645 iB = sqlite3VdbeIntValue(pIn1); 1646 op = pOp->opcode; 1647 if( op==OP_BitAnd ){ 1648 iA &= iB; 1649 }else if( op==OP_BitOr ){ 1650 iA |= iB; 1651 }else if( iB!=0 ){ 1652 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1653 1654 /* If shifting by a negative amount, shift in the other direction */ 1655 if( iB<0 ){ 1656 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1657 op = 2*OP_ShiftLeft + 1 - op; 1658 iB = iB>(-64) ? -iB : 64; 1659 } 1660 1661 if( iB>=64 ){ 1662 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1663 }else{ 1664 memcpy(&uA, &iA, sizeof(uA)); 1665 if( op==OP_ShiftLeft ){ 1666 uA <<= iB; 1667 }else{ 1668 uA >>= iB; 1669 /* Sign-extend on a right shift of a negative number */ 1670 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1671 } 1672 memcpy(&iA, &uA, sizeof(iA)); 1673 } 1674 } 1675 pOut->u.i = iA; 1676 MemSetTypeFlag(pOut, MEM_Int); 1677 break; 1678 } 1679 1680 /* Opcode: AddImm P1 P2 * * * 1681 ** Synopsis: r[P1]=r[P1]+P2 1682 ** 1683 ** Add the constant P2 to the value in register P1. 1684 ** The result is always an integer. 1685 ** 1686 ** To force any register to be an integer, just add 0. 1687 */ 1688 case OP_AddImm: { /* in1 */ 1689 pIn1 = &aMem[pOp->p1]; 1690 memAboutToChange(p, pIn1); 1691 sqlite3VdbeMemIntegerify(pIn1); 1692 pIn1->u.i += pOp->p2; 1693 break; 1694 } 1695 1696 /* Opcode: MustBeInt P1 P2 * * * 1697 ** 1698 ** Force the value in register P1 to be an integer. If the value 1699 ** in P1 is not an integer and cannot be converted into an integer 1700 ** without data loss, then jump immediately to P2, or if P2==0 1701 ** raise an SQLITE_MISMATCH exception. 1702 */ 1703 case OP_MustBeInt: { /* jump, in1 */ 1704 pIn1 = &aMem[pOp->p1]; 1705 if( (pIn1->flags & MEM_Int)==0 ){ 1706 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1707 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1708 if( (pIn1->flags & MEM_Int)==0 ){ 1709 if( pOp->p2==0 ){ 1710 rc = SQLITE_MISMATCH; 1711 goto abort_due_to_error; 1712 }else{ 1713 goto jump_to_p2; 1714 } 1715 } 1716 } 1717 MemSetTypeFlag(pIn1, MEM_Int); 1718 break; 1719 } 1720 1721 #ifndef SQLITE_OMIT_FLOATING_POINT 1722 /* Opcode: RealAffinity P1 * * * * 1723 ** 1724 ** If register P1 holds an integer convert it to a real value. 1725 ** 1726 ** This opcode is used when extracting information from a column that 1727 ** has REAL affinity. Such column values may still be stored as 1728 ** integers, for space efficiency, but after extraction we want them 1729 ** to have only a real value. 1730 */ 1731 case OP_RealAffinity: { /* in1 */ 1732 pIn1 = &aMem[pOp->p1]; 1733 if( pIn1->flags & MEM_Int ){ 1734 sqlite3VdbeMemRealify(pIn1); 1735 } 1736 break; 1737 } 1738 #endif 1739 1740 #ifndef SQLITE_OMIT_CAST 1741 /* Opcode: Cast P1 P2 * * * 1742 ** Synopsis: affinity(r[P1]) 1743 ** 1744 ** Force the value in register P1 to be the type defined by P2. 1745 ** 1746 ** <ul> 1747 ** <li> P2=='A' → BLOB 1748 ** <li> P2=='B' → TEXT 1749 ** <li> P2=='C' → NUMERIC 1750 ** <li> P2=='D' → INTEGER 1751 ** <li> P2=='E' → REAL 1752 ** </ul> 1753 ** 1754 ** A NULL value is not changed by this routine. It remains NULL. 1755 */ 1756 case OP_Cast: { /* in1 */ 1757 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1758 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1759 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1760 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1761 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1762 testcase( pOp->p2==SQLITE_AFF_REAL ); 1763 pIn1 = &aMem[pOp->p1]; 1764 memAboutToChange(p, pIn1); 1765 rc = ExpandBlob(pIn1); 1766 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1767 UPDATE_MAX_BLOBSIZE(pIn1); 1768 if( rc ) goto abort_due_to_error; 1769 break; 1770 } 1771 #endif /* SQLITE_OMIT_CAST */ 1772 1773 /* Opcode: Eq P1 P2 P3 P4 P5 1774 ** Synopsis: IF r[P3]==r[P1] 1775 ** 1776 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1777 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1778 ** store the result of comparison in register P2. 1779 ** 1780 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1781 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1782 ** to coerce both inputs according to this affinity before the 1783 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1784 ** affinity is used. Note that the affinity conversions are stored 1785 ** back into the input registers P1 and P3. So this opcode can cause 1786 ** persistent changes to registers P1 and P3. 1787 ** 1788 ** Once any conversions have taken place, and neither value is NULL, 1789 ** the values are compared. If both values are blobs then memcmp() is 1790 ** used to determine the results of the comparison. If both values 1791 ** are text, then the appropriate collating function specified in 1792 ** P4 is used to do the comparison. If P4 is not specified then 1793 ** memcmp() is used to compare text string. If both values are 1794 ** numeric, then a numeric comparison is used. If the two values 1795 ** are of different types, then numbers are considered less than 1796 ** strings and strings are considered less than blobs. 1797 ** 1798 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1799 ** true or false and is never NULL. If both operands are NULL then the result 1800 ** of comparison is true. If either operand is NULL then the result is false. 1801 ** If neither operand is NULL the result is the same as it would be if 1802 ** the SQLITE_NULLEQ flag were omitted from P5. 1803 ** 1804 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1805 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1806 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1807 */ 1808 /* Opcode: Ne P1 P2 P3 P4 P5 1809 ** Synopsis: IF r[P3]!=r[P1] 1810 ** 1811 ** This works just like the Eq opcode except that the jump is taken if 1812 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1813 ** additional information. 1814 ** 1815 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1816 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1817 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1818 */ 1819 /* Opcode: Lt P1 P2 P3 P4 P5 1820 ** Synopsis: IF r[P3]<r[P1] 1821 ** 1822 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1823 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1824 ** the result of comparison (0 or 1 or NULL) into register P2. 1825 ** 1826 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1827 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1828 ** bit is clear then fall through if either operand is NULL. 1829 ** 1830 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1831 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1832 ** to coerce both inputs according to this affinity before the 1833 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1834 ** affinity is used. Note that the affinity conversions are stored 1835 ** back into the input registers P1 and P3. So this opcode can cause 1836 ** persistent changes to registers P1 and P3. 1837 ** 1838 ** Once any conversions have taken place, and neither value is NULL, 1839 ** the values are compared. If both values are blobs then memcmp() is 1840 ** used to determine the results of the comparison. If both values 1841 ** are text, then the appropriate collating function specified in 1842 ** P4 is used to do the comparison. If P4 is not specified then 1843 ** memcmp() is used to compare text string. If both values are 1844 ** numeric, then a numeric comparison is used. If the two values 1845 ** are of different types, then numbers are considered less than 1846 ** strings and strings are considered less than blobs. 1847 */ 1848 /* Opcode: Le P1 P2 P3 P4 P5 1849 ** Synopsis: IF r[P3]<=r[P1] 1850 ** 1851 ** This works just like the Lt opcode except that the jump is taken if 1852 ** the content of register P3 is less than or equal to the content of 1853 ** register P1. See the Lt opcode for additional information. 1854 */ 1855 /* Opcode: Gt P1 P2 P3 P4 P5 1856 ** Synopsis: IF r[P3]>r[P1] 1857 ** 1858 ** This works just like the Lt opcode except that the jump is taken if 1859 ** the content of register P3 is greater than the content of 1860 ** register P1. See the Lt opcode for additional information. 1861 */ 1862 /* Opcode: Ge P1 P2 P3 P4 P5 1863 ** Synopsis: IF r[P3]>=r[P1] 1864 ** 1865 ** This works just like the Lt opcode except that the jump is taken if 1866 ** the content of register P3 is greater than or equal to the content of 1867 ** register P1. See the Lt opcode for additional information. 1868 */ 1869 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1870 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1871 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1872 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1873 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1874 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1875 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1876 char affinity; /* Affinity to use for comparison */ 1877 u16 flags1; /* Copy of initial value of pIn1->flags */ 1878 u16 flags3; /* Copy of initial value of pIn3->flags */ 1879 1880 pIn1 = &aMem[pOp->p1]; 1881 pIn3 = &aMem[pOp->p3]; 1882 flags1 = pIn1->flags; 1883 flags3 = pIn3->flags; 1884 if( (flags1 | flags3)&MEM_Null ){ 1885 /* One or both operands are NULL */ 1886 if( pOp->p5 & SQLITE_NULLEQ ){ 1887 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1888 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1889 ** or not both operands are null. 1890 */ 1891 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1892 assert( (flags1 & MEM_Cleared)==0 ); 1893 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1894 if( (flags1&flags3&MEM_Null)!=0 1895 && (flags3&MEM_Cleared)==0 1896 ){ 1897 res = 0; /* Operands are equal */ 1898 }else{ 1899 res = 1; /* Operands are not equal */ 1900 } 1901 }else{ 1902 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1903 ** then the result is always NULL. 1904 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1905 */ 1906 if( pOp->p5 & SQLITE_STOREP2 ){ 1907 pOut = &aMem[pOp->p2]; 1908 iCompare = 1; /* Operands are not equal */ 1909 memAboutToChange(p, pOut); 1910 MemSetTypeFlag(pOut, MEM_Null); 1911 REGISTER_TRACE(pOp->p2, pOut); 1912 }else{ 1913 VdbeBranchTaken(2,3); 1914 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1915 goto jump_to_p2; 1916 } 1917 } 1918 break; 1919 } 1920 }else{ 1921 /* Neither operand is NULL. Do a comparison. */ 1922 affinity = pOp->p5 & SQLITE_AFF_MASK; 1923 if( affinity>=SQLITE_AFF_NUMERIC ){ 1924 if( (flags1 | flags3)&MEM_Str ){ 1925 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1926 applyNumericAffinity(pIn1,0); 1927 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ 1928 flags3 = pIn3->flags; 1929 } 1930 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1931 applyNumericAffinity(pIn3,0); 1932 } 1933 } 1934 /* Handle the common case of integer comparison here, as an 1935 ** optimization, to avoid a call to sqlite3MemCompare() */ 1936 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 1937 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 1938 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 1939 res = 0; 1940 goto compare_op; 1941 } 1942 }else if( affinity==SQLITE_AFF_TEXT ){ 1943 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 1944 testcase( pIn1->flags & MEM_Int ); 1945 testcase( pIn1->flags & MEM_Real ); 1946 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1947 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 1948 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 1949 assert( pIn1!=pIn3 ); 1950 } 1951 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 1952 testcase( pIn3->flags & MEM_Int ); 1953 testcase( pIn3->flags & MEM_Real ); 1954 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1955 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 1956 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 1957 } 1958 } 1959 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1960 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1961 } 1962 compare_op: 1963 /* At this point, res is negative, zero, or positive if reg[P1] is 1964 ** less than, equal to, or greater than reg[P3], respectively. Compute 1965 ** the answer to this operator in res2, depending on what the comparison 1966 ** operator actually is. The next block of code depends on the fact 1967 ** that the 6 comparison operators are consecutive integers in this 1968 ** order: NE, EQ, GT, LE, LT, GE */ 1969 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 1970 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 1971 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 1972 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 1973 res2 = aLTb[pOp->opcode - OP_Ne]; 1974 }else if( res==0 ){ 1975 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 1976 res2 = aEQb[pOp->opcode - OP_Ne]; 1977 }else{ 1978 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 1979 res2 = aGTb[pOp->opcode - OP_Ne]; 1980 } 1981 1982 /* Undo any changes made by applyAffinity() to the input registers. */ 1983 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1984 pIn1->flags = flags1; 1985 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 1986 pIn3->flags = flags3; 1987 1988 if( pOp->p5 & SQLITE_STOREP2 ){ 1989 pOut = &aMem[pOp->p2]; 1990 iCompare = res; 1991 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 1992 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 1993 ** and prevents OP_Ne from overwriting NULL with 0. This flag 1994 ** is only used in contexts where either: 1995 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 1996 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 1997 ** Therefore it is not necessary to check the content of r[P2] for 1998 ** NULL. */ 1999 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2000 assert( res2==0 || res2==1 ); 2001 testcase( res2==0 && pOp->opcode==OP_Eq ); 2002 testcase( res2==1 && pOp->opcode==OP_Eq ); 2003 testcase( res2==0 && pOp->opcode==OP_Ne ); 2004 testcase( res2==1 && pOp->opcode==OP_Ne ); 2005 if( (pOp->opcode==OP_Eq)==res2 ) break; 2006 } 2007 memAboutToChange(p, pOut); 2008 MemSetTypeFlag(pOut, MEM_Int); 2009 pOut->u.i = res2; 2010 REGISTER_TRACE(pOp->p2, pOut); 2011 }else{ 2012 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2013 if( res2 ){ 2014 goto jump_to_p2; 2015 } 2016 } 2017 break; 2018 } 2019 2020 /* Opcode: ElseNotEq * P2 * * * 2021 ** 2022 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2023 ** If result of an OP_Eq comparison on the same two operands 2024 ** would have be NULL or false (0), then then jump to P2. 2025 ** If the result of an OP_Eq comparison on the two previous operands 2026 ** would have been true (1), then fall through. 2027 */ 2028 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2029 assert( pOp>aOp ); 2030 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2031 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2032 VdbeBranchTaken(iCompare!=0, 2); 2033 if( iCompare!=0 ) goto jump_to_p2; 2034 break; 2035 } 2036 2037 2038 /* Opcode: Permutation * * * P4 * 2039 ** 2040 ** Set the permutation used by the OP_Compare operator in the next 2041 ** instruction. The permutation is stored in the P4 operand. 2042 ** 2043 ** The permutation is only valid until the next OP_Compare that has 2044 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2045 ** occur immediately prior to the OP_Compare. 2046 ** 2047 ** The first integer in the P4 integer array is the length of the array 2048 ** and does not become part of the permutation. 2049 */ 2050 case OP_Permutation: { 2051 assert( pOp->p4type==P4_INTARRAY ); 2052 assert( pOp->p4.ai ); 2053 assert( pOp[1].opcode==OP_Compare ); 2054 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2055 break; 2056 } 2057 2058 /* Opcode: Compare P1 P2 P3 P4 P5 2059 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2060 ** 2061 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2062 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2063 ** the comparison for use by the next OP_Jump instruct. 2064 ** 2065 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2066 ** determined by the most recent OP_Permutation operator. If the 2067 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2068 ** order. 2069 ** 2070 ** P4 is a KeyInfo structure that defines collating sequences and sort 2071 ** orders for the comparison. The permutation applies to registers 2072 ** only. The KeyInfo elements are used sequentially. 2073 ** 2074 ** The comparison is a sort comparison, so NULLs compare equal, 2075 ** NULLs are less than numbers, numbers are less than strings, 2076 ** and strings are less than blobs. 2077 */ 2078 case OP_Compare: { 2079 int n; 2080 int i; 2081 int p1; 2082 int p2; 2083 const KeyInfo *pKeyInfo; 2084 int idx; 2085 CollSeq *pColl; /* Collating sequence to use on this term */ 2086 int bRev; /* True for DESCENDING sort order */ 2087 int *aPermute; /* The permutation */ 2088 2089 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2090 aPermute = 0; 2091 }else{ 2092 assert( pOp>aOp ); 2093 assert( pOp[-1].opcode==OP_Permutation ); 2094 assert( pOp[-1].p4type==P4_INTARRAY ); 2095 aPermute = pOp[-1].p4.ai + 1; 2096 assert( aPermute!=0 ); 2097 } 2098 n = pOp->p3; 2099 pKeyInfo = pOp->p4.pKeyInfo; 2100 assert( n>0 ); 2101 assert( pKeyInfo!=0 ); 2102 p1 = pOp->p1; 2103 p2 = pOp->p2; 2104 #ifdef SQLITE_DEBUG 2105 if( aPermute ){ 2106 int k, mx = 0; 2107 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2108 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2109 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2110 }else{ 2111 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2112 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2113 } 2114 #endif /* SQLITE_DEBUG */ 2115 for(i=0; i<n; i++){ 2116 idx = aPermute ? aPermute[i] : i; 2117 assert( memIsValid(&aMem[p1+idx]) ); 2118 assert( memIsValid(&aMem[p2+idx]) ); 2119 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2120 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2121 assert( i<pKeyInfo->nKeyField ); 2122 pColl = pKeyInfo->aColl[i]; 2123 bRev = pKeyInfo->aSortOrder[i]; 2124 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2125 if( iCompare ){ 2126 if( bRev ) iCompare = -iCompare; 2127 break; 2128 } 2129 } 2130 break; 2131 } 2132 2133 /* Opcode: Jump P1 P2 P3 * * 2134 ** 2135 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2136 ** in the most recent OP_Compare instruction the P1 vector was less than 2137 ** equal to, or greater than the P2 vector, respectively. 2138 */ 2139 case OP_Jump: { /* jump */ 2140 if( iCompare<0 ){ 2141 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2142 }else if( iCompare==0 ){ 2143 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2144 }else{ 2145 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2146 } 2147 break; 2148 } 2149 2150 /* Opcode: And P1 P2 P3 * * 2151 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2152 ** 2153 ** Take the logical AND of the values in registers P1 and P2 and 2154 ** write the result into register P3. 2155 ** 2156 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2157 ** the other input is NULL. A NULL and true or two NULLs give 2158 ** a NULL output. 2159 */ 2160 /* Opcode: Or P1 P2 P3 * * 2161 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2162 ** 2163 ** Take the logical OR of the values in register P1 and P2 and 2164 ** store the answer in register P3. 2165 ** 2166 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2167 ** even if the other input is NULL. A NULL and false or two NULLs 2168 ** give a NULL output. 2169 */ 2170 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2171 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2172 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2173 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2174 2175 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2176 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2177 if( pOp->opcode==OP_And ){ 2178 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2179 v1 = and_logic[v1*3+v2]; 2180 }else{ 2181 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2182 v1 = or_logic[v1*3+v2]; 2183 } 2184 pOut = &aMem[pOp->p3]; 2185 if( v1==2 ){ 2186 MemSetTypeFlag(pOut, MEM_Null); 2187 }else{ 2188 pOut->u.i = v1; 2189 MemSetTypeFlag(pOut, MEM_Int); 2190 } 2191 break; 2192 } 2193 2194 /* Opcode: IsTrue P1 P2 P3 P4 * 2195 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2196 ** 2197 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2198 ** IS NOT FALSE operators. 2199 ** 2200 ** Interpret the value in register P1 as a boolean value. Store that 2201 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2202 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2203 ** is 1. 2204 ** 2205 ** The logic is summarized like this: 2206 ** 2207 ** <ul> 2208 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2209 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2210 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2211 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2212 ** </ul> 2213 */ 2214 case OP_IsTrue: { /* in1, out2 */ 2215 assert( pOp->p4type==P4_INT32 ); 2216 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2217 assert( pOp->p3==0 || pOp->p3==1 ); 2218 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2219 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2220 break; 2221 } 2222 2223 /* Opcode: Not P1 P2 * * * 2224 ** Synopsis: r[P2]= !r[P1] 2225 ** 2226 ** Interpret the value in register P1 as a boolean value. Store the 2227 ** boolean complement in register P2. If the value in register P1 is 2228 ** NULL, then a NULL is stored in P2. 2229 */ 2230 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2231 pIn1 = &aMem[pOp->p1]; 2232 pOut = &aMem[pOp->p2]; 2233 if( (pIn1->flags & MEM_Null)==0 ){ 2234 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2235 }else{ 2236 sqlite3VdbeMemSetNull(pOut); 2237 } 2238 break; 2239 } 2240 2241 /* Opcode: BitNot P1 P2 * * * 2242 ** Synopsis: r[P1]= ~r[P1] 2243 ** 2244 ** Interpret the content of register P1 as an integer. Store the 2245 ** ones-complement of the P1 value into register P2. If P1 holds 2246 ** a NULL then store a NULL in P2. 2247 */ 2248 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2249 pIn1 = &aMem[pOp->p1]; 2250 pOut = &aMem[pOp->p2]; 2251 sqlite3VdbeMemSetNull(pOut); 2252 if( (pIn1->flags & MEM_Null)==0 ){ 2253 pOut->flags = MEM_Int; 2254 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2255 } 2256 break; 2257 } 2258 2259 /* Opcode: Once P1 P2 * * * 2260 ** 2261 ** Fall through to the next instruction the first time this opcode is 2262 ** encountered on each invocation of the byte-code program. Jump to P2 2263 ** on the second and all subsequent encounters during the same invocation. 2264 ** 2265 ** Top-level programs determine first invocation by comparing the P1 2266 ** operand against the P1 operand on the OP_Init opcode at the beginning 2267 ** of the program. If the P1 values differ, then fall through and make 2268 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2269 ** the same then take the jump. 2270 ** 2271 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2272 ** whether or not the jump should be taken. The bitmask is necessary 2273 ** because the self-altering code trick does not work for recursive 2274 ** triggers. 2275 */ 2276 case OP_Once: { /* jump */ 2277 u32 iAddr; /* Address of this instruction */ 2278 assert( p->aOp[0].opcode==OP_Init ); 2279 if( p->pFrame ){ 2280 iAddr = (int)(pOp - p->aOp); 2281 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2282 VdbeBranchTaken(1, 2); 2283 goto jump_to_p2; 2284 } 2285 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2286 }else{ 2287 if( p->aOp[0].p1==pOp->p1 ){ 2288 VdbeBranchTaken(1, 2); 2289 goto jump_to_p2; 2290 } 2291 } 2292 VdbeBranchTaken(0, 2); 2293 pOp->p1 = p->aOp[0].p1; 2294 break; 2295 } 2296 2297 /* Opcode: If P1 P2 P3 * * 2298 ** 2299 ** Jump to P2 if the value in register P1 is true. The value 2300 ** is considered true if it is numeric and non-zero. If the value 2301 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2302 */ 2303 case OP_If: { /* jump, in1 */ 2304 int c; 2305 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2306 VdbeBranchTaken(c!=0, 2); 2307 if( c ) goto jump_to_p2; 2308 break; 2309 } 2310 2311 /* Opcode: IfNot P1 P2 P3 * * 2312 ** 2313 ** Jump to P2 if the value in register P1 is False. The value 2314 ** is considered false if it has a numeric value of zero. If the value 2315 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2316 */ 2317 case OP_IfNot: { /* jump, in1 */ 2318 int c; 2319 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2320 VdbeBranchTaken(c!=0, 2); 2321 if( c ) goto jump_to_p2; 2322 break; 2323 } 2324 2325 /* Opcode: IsNull P1 P2 * * * 2326 ** Synopsis: if r[P1]==NULL goto P2 2327 ** 2328 ** Jump to P2 if the value in register P1 is NULL. 2329 */ 2330 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2331 pIn1 = &aMem[pOp->p1]; 2332 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2333 if( (pIn1->flags & MEM_Null)!=0 ){ 2334 goto jump_to_p2; 2335 } 2336 break; 2337 } 2338 2339 /* Opcode: NotNull P1 P2 * * * 2340 ** Synopsis: if r[P1]!=NULL goto P2 2341 ** 2342 ** Jump to P2 if the value in register P1 is not NULL. 2343 */ 2344 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2345 pIn1 = &aMem[pOp->p1]; 2346 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2347 if( (pIn1->flags & MEM_Null)==0 ){ 2348 goto jump_to_p2; 2349 } 2350 break; 2351 } 2352 2353 /* Opcode: IfNullRow P1 P2 P3 * * 2354 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2355 ** 2356 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2357 ** If it is, then set register P3 to NULL and jump immediately to P2. 2358 ** If P1 is not on a NULL row, then fall through without making any 2359 ** changes. 2360 */ 2361 case OP_IfNullRow: { /* jump */ 2362 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2363 assert( p->apCsr[pOp->p1]!=0 ); 2364 if( p->apCsr[pOp->p1]->nullRow ){ 2365 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2366 goto jump_to_p2; 2367 } 2368 break; 2369 } 2370 2371 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2372 /* Opcode: Offset P1 P2 P3 * * 2373 ** Synopsis: r[P3] = sqlite_offset(P1) 2374 ** 2375 ** Store in register r[P3] the byte offset into the database file that is the 2376 ** start of the payload for the record at which that cursor P1 is currently 2377 ** pointing. 2378 ** 2379 ** P2 is the column number for the argument to the sqlite_offset() function. 2380 ** This opcode does not use P2 itself, but the P2 value is used by the 2381 ** code generator. The P1, P2, and P3 operands to this opcode are the 2382 ** same as for OP_Column. 2383 ** 2384 ** This opcode is only available if SQLite is compiled with the 2385 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2386 */ 2387 case OP_Offset: { /* out3 */ 2388 VdbeCursor *pC; /* The VDBE cursor */ 2389 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2390 pC = p->apCsr[pOp->p1]; 2391 pOut = &p->aMem[pOp->p3]; 2392 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2393 sqlite3VdbeMemSetNull(pOut); 2394 }else{ 2395 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2396 } 2397 break; 2398 } 2399 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2400 2401 /* Opcode: Column P1 P2 P3 P4 P5 2402 ** Synopsis: r[P3]=PX 2403 ** 2404 ** Interpret the data that cursor P1 points to as a structure built using 2405 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2406 ** information about the format of the data.) Extract the P2-th column 2407 ** from this record. If there are less that (P2+1) 2408 ** values in the record, extract a NULL. 2409 ** 2410 ** The value extracted is stored in register P3. 2411 ** 2412 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2413 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2414 ** the result. 2415 ** 2416 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2417 ** then the cache of the cursor is reset prior to extracting the column. 2418 ** The first OP_Column against a pseudo-table after the value of the content 2419 ** register has changed should have this bit set. 2420 ** 2421 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2422 ** the result is guaranteed to only be used as the argument of a length() 2423 ** or typeof() function, respectively. The loading of large blobs can be 2424 ** skipped for length() and all content loading can be skipped for typeof(). 2425 */ 2426 case OP_Column: { 2427 int p2; /* column number to retrieve */ 2428 VdbeCursor *pC; /* The VDBE cursor */ 2429 BtCursor *pCrsr; /* The BTree cursor */ 2430 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2431 int len; /* The length of the serialized data for the column */ 2432 int i; /* Loop counter */ 2433 Mem *pDest; /* Where to write the extracted value */ 2434 Mem sMem; /* For storing the record being decoded */ 2435 const u8 *zData; /* Part of the record being decoded */ 2436 const u8 *zHdr; /* Next unparsed byte of the header */ 2437 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2438 u64 offset64; /* 64-bit offset */ 2439 u32 t; /* A type code from the record header */ 2440 Mem *pReg; /* PseudoTable input register */ 2441 2442 pC = p->apCsr[pOp->p1]; 2443 p2 = pOp->p2; 2444 2445 /* If the cursor cache is stale (meaning it is not currently point at 2446 ** the correct row) then bring it up-to-date by doing the necessary 2447 ** B-Tree seek. */ 2448 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2449 if( rc ) goto abort_due_to_error; 2450 2451 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2452 pDest = &aMem[pOp->p3]; 2453 memAboutToChange(p, pDest); 2454 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2455 assert( pC!=0 ); 2456 assert( p2<pC->nField ); 2457 aOffset = pC->aOffset; 2458 assert( pC->eCurType!=CURTYPE_VTAB ); 2459 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2460 assert( pC->eCurType!=CURTYPE_SORTER ); 2461 2462 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2463 if( pC->nullRow ){ 2464 if( pC->eCurType==CURTYPE_PSEUDO ){ 2465 /* For the special case of as pseudo-cursor, the seekResult field 2466 ** identifies the register that holds the record */ 2467 assert( pC->seekResult>0 ); 2468 pReg = &aMem[pC->seekResult]; 2469 assert( pReg->flags & MEM_Blob ); 2470 assert( memIsValid(pReg) ); 2471 pC->payloadSize = pC->szRow = pReg->n; 2472 pC->aRow = (u8*)pReg->z; 2473 }else{ 2474 sqlite3VdbeMemSetNull(pDest); 2475 goto op_column_out; 2476 } 2477 }else{ 2478 pCrsr = pC->uc.pCursor; 2479 assert( pC->eCurType==CURTYPE_BTREE ); 2480 assert( pCrsr ); 2481 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2482 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2483 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2484 assert( pC->szRow<=pC->payloadSize ); 2485 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2486 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2487 goto too_big; 2488 } 2489 } 2490 pC->cacheStatus = p->cacheCtr; 2491 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2492 pC->nHdrParsed = 0; 2493 2494 2495 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2496 /* pC->aRow does not have to hold the entire row, but it does at least 2497 ** need to cover the header of the record. If pC->aRow does not contain 2498 ** the complete header, then set it to zero, forcing the header to be 2499 ** dynamically allocated. */ 2500 pC->aRow = 0; 2501 pC->szRow = 0; 2502 2503 /* Make sure a corrupt database has not given us an oversize header. 2504 ** Do this now to avoid an oversize memory allocation. 2505 ** 2506 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2507 ** types use so much data space that there can only be 4096 and 32 of 2508 ** them, respectively. So the maximum header length results from a 2509 ** 3-byte type for each of the maximum of 32768 columns plus three 2510 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2511 */ 2512 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2513 goto op_column_corrupt; 2514 } 2515 }else{ 2516 /* This is an optimization. By skipping over the first few tests 2517 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2518 ** measurable performance gain. 2519 ** 2520 ** This branch is taken even if aOffset[0]==0. Such a record is never 2521 ** generated by SQLite, and could be considered corruption, but we 2522 ** accept it for historical reasons. When aOffset[0]==0, the code this 2523 ** branch jumps to reads past the end of the record, but never more 2524 ** than a few bytes. Even if the record occurs at the end of the page 2525 ** content area, the "page header" comes after the page content and so 2526 ** this overread is harmless. Similar overreads can occur for a corrupt 2527 ** database file. 2528 */ 2529 zData = pC->aRow; 2530 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2531 testcase( aOffset[0]==0 ); 2532 goto op_column_read_header; 2533 } 2534 } 2535 2536 /* Make sure at least the first p2+1 entries of the header have been 2537 ** parsed and valid information is in aOffset[] and pC->aType[]. 2538 */ 2539 if( pC->nHdrParsed<=p2 ){ 2540 /* If there is more header available for parsing in the record, try 2541 ** to extract additional fields up through the p2+1-th field 2542 */ 2543 if( pC->iHdrOffset<aOffset[0] ){ 2544 /* Make sure zData points to enough of the record to cover the header. */ 2545 if( pC->aRow==0 ){ 2546 memset(&sMem, 0, sizeof(sMem)); 2547 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2548 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2549 zData = (u8*)sMem.z; 2550 }else{ 2551 zData = pC->aRow; 2552 } 2553 2554 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2555 op_column_read_header: 2556 i = pC->nHdrParsed; 2557 offset64 = aOffset[i]; 2558 zHdr = zData + pC->iHdrOffset; 2559 zEndHdr = zData + aOffset[0]; 2560 testcase( zHdr>=zEndHdr ); 2561 do{ 2562 if( (t = zHdr[0])<0x80 ){ 2563 zHdr++; 2564 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2565 }else{ 2566 zHdr += sqlite3GetVarint32(zHdr, &t); 2567 offset64 += sqlite3VdbeSerialTypeLen(t); 2568 } 2569 pC->aType[i++] = t; 2570 aOffset[i] = (u32)(offset64 & 0xffffffff); 2571 }while( i<=p2 && zHdr<zEndHdr ); 2572 2573 /* The record is corrupt if any of the following are true: 2574 ** (1) the bytes of the header extend past the declared header size 2575 ** (2) the entire header was used but not all data was used 2576 ** (3) the end of the data extends beyond the end of the record. 2577 */ 2578 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2579 || (offset64 > pC->payloadSize) 2580 ){ 2581 if( aOffset[0]==0 ){ 2582 i = 0; 2583 zHdr = zEndHdr; 2584 }else{ 2585 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2586 goto op_column_corrupt; 2587 } 2588 } 2589 2590 pC->nHdrParsed = i; 2591 pC->iHdrOffset = (u32)(zHdr - zData); 2592 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2593 }else{ 2594 t = 0; 2595 } 2596 2597 /* If after trying to extract new entries from the header, nHdrParsed is 2598 ** still not up to p2, that means that the record has fewer than p2 2599 ** columns. So the result will be either the default value or a NULL. 2600 */ 2601 if( pC->nHdrParsed<=p2 ){ 2602 if( pOp->p4type==P4_MEM ){ 2603 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2604 }else{ 2605 sqlite3VdbeMemSetNull(pDest); 2606 } 2607 goto op_column_out; 2608 } 2609 }else{ 2610 t = pC->aType[p2]; 2611 } 2612 2613 /* Extract the content for the p2+1-th column. Control can only 2614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2615 ** all valid. 2616 */ 2617 assert( p2<pC->nHdrParsed ); 2618 assert( rc==SQLITE_OK ); 2619 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2620 if( VdbeMemDynamic(pDest) ){ 2621 sqlite3VdbeMemSetNull(pDest); 2622 } 2623 assert( t==pC->aType[p2] ); 2624 if( pC->szRow>=aOffset[p2+1] ){ 2625 /* This is the common case where the desired content fits on the original 2626 ** page - where the content is not on an overflow page */ 2627 zData = pC->aRow + aOffset[p2]; 2628 if( t<12 ){ 2629 sqlite3VdbeSerialGet(zData, t, pDest); 2630 }else{ 2631 /* If the column value is a string, we need a persistent value, not 2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2634 */ 2635 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2636 pDest->n = len = (t-12)/2; 2637 pDest->enc = encoding; 2638 if( pDest->szMalloc < len+2 ){ 2639 pDest->flags = MEM_Null; 2640 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2641 }else{ 2642 pDest->z = pDest->zMalloc; 2643 } 2644 memcpy(pDest->z, zData, len); 2645 pDest->z[len] = 0; 2646 pDest->z[len+1] = 0; 2647 pDest->flags = aFlag[t&1]; 2648 } 2649 }else{ 2650 pDest->enc = encoding; 2651 /* This branch happens only when content is on overflow pages */ 2652 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2653 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2654 || (len = sqlite3VdbeSerialTypeLen(t))==0 2655 ){ 2656 /* Content is irrelevant for 2657 ** 1. the typeof() function, 2658 ** 2. the length(X) function if X is a blob, and 2659 ** 3. if the content length is zero. 2660 ** So we might as well use bogus content rather than reading 2661 ** content from disk. 2662 ** 2663 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2664 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2665 ** read up to 16. So 16 bytes of bogus content is supplied. 2666 */ 2667 static u8 aZero[16]; /* This is the bogus content */ 2668 sqlite3VdbeSerialGet(aZero, t, pDest); 2669 }else{ 2670 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2671 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2672 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2673 pDest->flags &= ~MEM_Ephem; 2674 } 2675 } 2676 2677 op_column_out: 2678 UPDATE_MAX_BLOBSIZE(pDest); 2679 REGISTER_TRACE(pOp->p3, pDest); 2680 break; 2681 2682 op_column_corrupt: 2683 if( aOp[0].p3>0 ){ 2684 pOp = &aOp[aOp[0].p3-1]; 2685 break; 2686 }else{ 2687 rc = SQLITE_CORRUPT_BKPT; 2688 goto abort_due_to_error; 2689 } 2690 } 2691 2692 /* Opcode: Affinity P1 P2 * P4 * 2693 ** Synopsis: affinity(r[P1@P2]) 2694 ** 2695 ** Apply affinities to a range of P2 registers starting with P1. 2696 ** 2697 ** P4 is a string that is P2 characters long. The N-th character of the 2698 ** string indicates the column affinity that should be used for the N-th 2699 ** memory cell in the range. 2700 */ 2701 case OP_Affinity: { 2702 const char *zAffinity; /* The affinity to be applied */ 2703 2704 zAffinity = pOp->p4.z; 2705 assert( zAffinity!=0 ); 2706 assert( pOp->p2>0 ); 2707 assert( zAffinity[pOp->p2]==0 ); 2708 pIn1 = &aMem[pOp->p1]; 2709 do{ 2710 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2711 assert( memIsValid(pIn1) ); 2712 applyAffinity(pIn1, *(zAffinity++), encoding); 2713 pIn1++; 2714 }while( zAffinity[0] ); 2715 break; 2716 } 2717 2718 /* Opcode: MakeRecord P1 P2 P3 P4 * 2719 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2720 ** 2721 ** Convert P2 registers beginning with P1 into the [record format] 2722 ** use as a data record in a database table or as a key 2723 ** in an index. The OP_Column opcode can decode the record later. 2724 ** 2725 ** P4 may be a string that is P2 characters long. The N-th character of the 2726 ** string indicates the column affinity that should be used for the N-th 2727 ** field of the index key. 2728 ** 2729 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2730 ** macros defined in sqliteInt.h. 2731 ** 2732 ** If P4 is NULL then all index fields have the affinity BLOB. 2733 */ 2734 case OP_MakeRecord: { 2735 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2736 Mem *pRec; /* The new record */ 2737 u64 nData; /* Number of bytes of data space */ 2738 int nHdr; /* Number of bytes of header space */ 2739 i64 nByte; /* Data space required for this record */ 2740 i64 nZero; /* Number of zero bytes at the end of the record */ 2741 int nVarint; /* Number of bytes in a varint */ 2742 u32 serial_type; /* Type field */ 2743 Mem *pData0; /* First field to be combined into the record */ 2744 Mem *pLast; /* Last field of the record */ 2745 int nField; /* Number of fields in the record */ 2746 char *zAffinity; /* The affinity string for the record */ 2747 int file_format; /* File format to use for encoding */ 2748 int i; /* Space used in zNewRecord[] header */ 2749 int j; /* Space used in zNewRecord[] content */ 2750 u32 len; /* Length of a field */ 2751 2752 /* Assuming the record contains N fields, the record format looks 2753 ** like this: 2754 ** 2755 ** ------------------------------------------------------------------------ 2756 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2757 ** ------------------------------------------------------------------------ 2758 ** 2759 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2760 ** and so forth. 2761 ** 2762 ** Each type field is a varint representing the serial type of the 2763 ** corresponding data element (see sqlite3VdbeSerialType()). The 2764 ** hdr-size field is also a varint which is the offset from the beginning 2765 ** of the record to data0. 2766 */ 2767 nData = 0; /* Number of bytes of data space */ 2768 nHdr = 0; /* Number of bytes of header space */ 2769 nZero = 0; /* Number of zero bytes at the end of the record */ 2770 nField = pOp->p1; 2771 zAffinity = pOp->p4.z; 2772 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2773 pData0 = &aMem[nField]; 2774 nField = pOp->p2; 2775 pLast = &pData0[nField-1]; 2776 file_format = p->minWriteFileFormat; 2777 2778 /* Identify the output register */ 2779 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2780 pOut = &aMem[pOp->p3]; 2781 memAboutToChange(p, pOut); 2782 2783 /* Apply the requested affinity to all inputs 2784 */ 2785 assert( pData0<=pLast ); 2786 if( zAffinity ){ 2787 pRec = pData0; 2788 do{ 2789 applyAffinity(pRec++, *(zAffinity++), encoding); 2790 assert( zAffinity[0]==0 || pRec<=pLast ); 2791 }while( zAffinity[0] ); 2792 } 2793 2794 #ifdef SQLITE_ENABLE_NULL_TRIM 2795 /* NULLs can be safely trimmed from the end of the record, as long as 2796 ** as the schema format is 2 or more and none of the omitted columns 2797 ** have a non-NULL default value. Also, the record must be left with 2798 ** at least one field. If P5>0 then it will be one more than the 2799 ** index of the right-most column with a non-NULL default value */ 2800 if( pOp->p5 ){ 2801 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2802 pLast--; 2803 nField--; 2804 } 2805 } 2806 #endif 2807 2808 /* Loop through the elements that will make up the record to figure 2809 ** out how much space is required for the new record. 2810 */ 2811 pRec = pLast; 2812 do{ 2813 assert( memIsValid(pRec) ); 2814 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2815 if( pRec->flags & MEM_Zero ){ 2816 if( serial_type==0 ){ 2817 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2818 ** table methods that never invoke sqlite3_result_xxxxx() while 2819 ** computing an unchanging column value in an UPDATE statement. 2820 ** Give such values a special internal-use-only serial-type of 10 2821 ** so that they can be passed through to xUpdate and have 2822 ** a true sqlite3_value_nochange(). */ 2823 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2824 serial_type = 10; 2825 }else if( nData ){ 2826 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2827 }else{ 2828 nZero += pRec->u.nZero; 2829 len -= pRec->u.nZero; 2830 } 2831 } 2832 nData += len; 2833 testcase( serial_type==127 ); 2834 testcase( serial_type==128 ); 2835 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2836 pRec->uTemp = serial_type; 2837 if( pRec==pData0 ) break; 2838 pRec--; 2839 }while(1); 2840 2841 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2842 ** which determines the total number of bytes in the header. The varint 2843 ** value is the size of the header in bytes including the size varint 2844 ** itself. */ 2845 testcase( nHdr==126 ); 2846 testcase( nHdr==127 ); 2847 if( nHdr<=126 ){ 2848 /* The common case */ 2849 nHdr += 1; 2850 }else{ 2851 /* Rare case of a really large header */ 2852 nVarint = sqlite3VarintLen(nHdr); 2853 nHdr += nVarint; 2854 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2855 } 2856 nByte = nHdr+nData; 2857 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2858 goto too_big; 2859 } 2860 2861 /* Make sure the output register has a buffer large enough to store 2862 ** the new record. The output register (pOp->p3) is not allowed to 2863 ** be one of the input registers (because the following call to 2864 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2865 */ 2866 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2867 goto no_mem; 2868 } 2869 zNewRecord = (u8 *)pOut->z; 2870 2871 /* Write the record */ 2872 i = putVarint32(zNewRecord, nHdr); 2873 j = nHdr; 2874 assert( pData0<=pLast ); 2875 pRec = pData0; 2876 do{ 2877 serial_type = pRec->uTemp; 2878 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2879 ** additional varints, one per column. */ 2880 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2881 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2882 ** immediately follow the header. */ 2883 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2884 }while( (++pRec)<=pLast ); 2885 assert( i==nHdr ); 2886 assert( j==nByte ); 2887 2888 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2889 pOut->n = (int)nByte; 2890 pOut->flags = MEM_Blob; 2891 if( nZero ){ 2892 pOut->u.nZero = nZero; 2893 pOut->flags |= MEM_Zero; 2894 } 2895 REGISTER_TRACE(pOp->p3, pOut); 2896 UPDATE_MAX_BLOBSIZE(pOut); 2897 break; 2898 } 2899 2900 /* Opcode: Count P1 P2 * * * 2901 ** Synopsis: r[P2]=count() 2902 ** 2903 ** Store the number of entries (an integer value) in the table or index 2904 ** opened by cursor P1 in register P2 2905 */ 2906 #ifndef SQLITE_OMIT_BTREECOUNT 2907 case OP_Count: { /* out2 */ 2908 i64 nEntry; 2909 BtCursor *pCrsr; 2910 2911 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2912 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2913 assert( pCrsr ); 2914 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2915 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2916 if( rc ) goto abort_due_to_error; 2917 pOut = out2Prerelease(p, pOp); 2918 pOut->u.i = nEntry; 2919 break; 2920 } 2921 #endif 2922 2923 /* Opcode: Savepoint P1 * * P4 * 2924 ** 2925 ** Open, release or rollback the savepoint named by parameter P4, depending 2926 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2927 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2928 */ 2929 case OP_Savepoint: { 2930 int p1; /* Value of P1 operand */ 2931 char *zName; /* Name of savepoint */ 2932 int nName; 2933 Savepoint *pNew; 2934 Savepoint *pSavepoint; 2935 Savepoint *pTmp; 2936 int iSavepoint; 2937 int ii; 2938 2939 p1 = pOp->p1; 2940 zName = pOp->p4.z; 2941 2942 /* Assert that the p1 parameter is valid. Also that if there is no open 2943 ** transaction, then there cannot be any savepoints. 2944 */ 2945 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2946 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2947 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2948 assert( checkSavepointCount(db) ); 2949 assert( p->bIsReader ); 2950 2951 if( p1==SAVEPOINT_BEGIN ){ 2952 if( db->nVdbeWrite>0 ){ 2953 /* A new savepoint cannot be created if there are active write 2954 ** statements (i.e. open read/write incremental blob handles). 2955 */ 2956 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2957 rc = SQLITE_BUSY; 2958 }else{ 2959 nName = sqlite3Strlen30(zName); 2960 2961 #ifndef SQLITE_OMIT_VIRTUALTABLE 2962 /* This call is Ok even if this savepoint is actually a transaction 2963 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2964 ** If this is a transaction savepoint being opened, it is guaranteed 2965 ** that the db->aVTrans[] array is empty. */ 2966 assert( db->autoCommit==0 || db->nVTrans==0 ); 2967 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2968 db->nStatement+db->nSavepoint); 2969 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2970 #endif 2971 2972 /* Create a new savepoint structure. */ 2973 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 2974 if( pNew ){ 2975 pNew->zName = (char *)&pNew[1]; 2976 memcpy(pNew->zName, zName, nName+1); 2977 2978 /* If there is no open transaction, then mark this as a special 2979 ** "transaction savepoint". */ 2980 if( db->autoCommit ){ 2981 db->autoCommit = 0; 2982 db->isTransactionSavepoint = 1; 2983 }else{ 2984 db->nSavepoint++; 2985 } 2986 2987 /* Link the new savepoint into the database handle's list. */ 2988 pNew->pNext = db->pSavepoint; 2989 db->pSavepoint = pNew; 2990 pNew->nDeferredCons = db->nDeferredCons; 2991 pNew->nDeferredImmCons = db->nDeferredImmCons; 2992 } 2993 } 2994 }else{ 2995 iSavepoint = 0; 2996 2997 /* Find the named savepoint. If there is no such savepoint, then an 2998 ** an error is returned to the user. */ 2999 for( 3000 pSavepoint = db->pSavepoint; 3001 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3002 pSavepoint = pSavepoint->pNext 3003 ){ 3004 iSavepoint++; 3005 } 3006 if( !pSavepoint ){ 3007 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3008 rc = SQLITE_ERROR; 3009 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3010 /* It is not possible to release (commit) a savepoint if there are 3011 ** active write statements. 3012 */ 3013 sqlite3VdbeError(p, "cannot release savepoint - " 3014 "SQL statements in progress"); 3015 rc = SQLITE_BUSY; 3016 }else{ 3017 3018 /* Determine whether or not this is a transaction savepoint. If so, 3019 ** and this is a RELEASE command, then the current transaction 3020 ** is committed. 3021 */ 3022 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3023 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3024 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3025 goto vdbe_return; 3026 } 3027 db->autoCommit = 1; 3028 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3029 p->pc = (int)(pOp - aOp); 3030 db->autoCommit = 0; 3031 p->rc = rc = SQLITE_BUSY; 3032 goto vdbe_return; 3033 } 3034 db->isTransactionSavepoint = 0; 3035 rc = p->rc; 3036 }else{ 3037 int isSchemaChange; 3038 iSavepoint = db->nSavepoint - iSavepoint - 1; 3039 if( p1==SAVEPOINT_ROLLBACK ){ 3040 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3041 for(ii=0; ii<db->nDb; ii++){ 3042 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3043 SQLITE_ABORT_ROLLBACK, 3044 isSchemaChange==0); 3045 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3046 } 3047 }else{ 3048 isSchemaChange = 0; 3049 } 3050 for(ii=0; ii<db->nDb; ii++){ 3051 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3052 if( rc!=SQLITE_OK ){ 3053 goto abort_due_to_error; 3054 } 3055 } 3056 if( isSchemaChange ){ 3057 sqlite3ExpirePreparedStatements(db); 3058 sqlite3ResetAllSchemasOfConnection(db); 3059 db->mDbFlags |= DBFLAG_SchemaChange; 3060 } 3061 } 3062 3063 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3064 ** savepoints nested inside of the savepoint being operated on. */ 3065 while( db->pSavepoint!=pSavepoint ){ 3066 pTmp = db->pSavepoint; 3067 db->pSavepoint = pTmp->pNext; 3068 sqlite3DbFree(db, pTmp); 3069 db->nSavepoint--; 3070 } 3071 3072 /* If it is a RELEASE, then destroy the savepoint being operated on 3073 ** too. If it is a ROLLBACK TO, then set the number of deferred 3074 ** constraint violations present in the database to the value stored 3075 ** when the savepoint was created. */ 3076 if( p1==SAVEPOINT_RELEASE ){ 3077 assert( pSavepoint==db->pSavepoint ); 3078 db->pSavepoint = pSavepoint->pNext; 3079 sqlite3DbFree(db, pSavepoint); 3080 if( !isTransaction ){ 3081 db->nSavepoint--; 3082 } 3083 }else{ 3084 db->nDeferredCons = pSavepoint->nDeferredCons; 3085 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3086 } 3087 3088 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3089 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3090 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3091 } 3092 } 3093 } 3094 if( rc ) goto abort_due_to_error; 3095 3096 break; 3097 } 3098 3099 /* Opcode: AutoCommit P1 P2 * * * 3100 ** 3101 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3102 ** back any currently active btree transactions. If there are any active 3103 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3104 ** there are active writing VMs or active VMs that use shared cache. 3105 ** 3106 ** This instruction causes the VM to halt. 3107 */ 3108 case OP_AutoCommit: { 3109 int desiredAutoCommit; 3110 int iRollback; 3111 3112 desiredAutoCommit = pOp->p1; 3113 iRollback = pOp->p2; 3114 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3115 assert( desiredAutoCommit==1 || iRollback==0 ); 3116 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3117 assert( p->bIsReader ); 3118 3119 if( desiredAutoCommit!=db->autoCommit ){ 3120 if( iRollback ){ 3121 assert( desiredAutoCommit==1 ); 3122 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3123 db->autoCommit = 1; 3124 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3125 /* If this instruction implements a COMMIT and other VMs are writing 3126 ** return an error indicating that the other VMs must complete first. 3127 */ 3128 sqlite3VdbeError(p, "cannot commit transaction - " 3129 "SQL statements in progress"); 3130 rc = SQLITE_BUSY; 3131 goto abort_due_to_error; 3132 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3133 goto vdbe_return; 3134 }else{ 3135 db->autoCommit = (u8)desiredAutoCommit; 3136 } 3137 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3138 p->pc = (int)(pOp - aOp); 3139 db->autoCommit = (u8)(1-desiredAutoCommit); 3140 p->rc = rc = SQLITE_BUSY; 3141 goto vdbe_return; 3142 } 3143 assert( db->nStatement==0 ); 3144 sqlite3CloseSavepoints(db); 3145 if( p->rc==SQLITE_OK ){ 3146 rc = SQLITE_DONE; 3147 }else{ 3148 rc = SQLITE_ERROR; 3149 } 3150 goto vdbe_return; 3151 }else{ 3152 sqlite3VdbeError(p, 3153 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3154 (iRollback)?"cannot rollback - no transaction is active": 3155 "cannot commit - no transaction is active")); 3156 3157 rc = SQLITE_ERROR; 3158 goto abort_due_to_error; 3159 } 3160 break; 3161 } 3162 3163 /* Opcode: Transaction P1 P2 P3 P4 P5 3164 ** 3165 ** Begin a transaction on database P1 if a transaction is not already 3166 ** active. 3167 ** If P2 is non-zero, then a write-transaction is started, or if a 3168 ** read-transaction is already active, it is upgraded to a write-transaction. 3169 ** If P2 is zero, then a read-transaction is started. 3170 ** 3171 ** P1 is the index of the database file on which the transaction is 3172 ** started. Index 0 is the main database file and index 1 is the 3173 ** file used for temporary tables. Indices of 2 or more are used for 3174 ** attached databases. 3175 ** 3176 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3177 ** true (this flag is set if the Vdbe may modify more than one row and may 3178 ** throw an ABORT exception), a statement transaction may also be opened. 3179 ** More specifically, a statement transaction is opened iff the database 3180 ** connection is currently not in autocommit mode, or if there are other 3181 ** active statements. A statement transaction allows the changes made by this 3182 ** VDBE to be rolled back after an error without having to roll back the 3183 ** entire transaction. If no error is encountered, the statement transaction 3184 ** will automatically commit when the VDBE halts. 3185 ** 3186 ** If P5!=0 then this opcode also checks the schema cookie against P3 3187 ** and the schema generation counter against P4. 3188 ** The cookie changes its value whenever the database schema changes. 3189 ** This operation is used to detect when that the cookie has changed 3190 ** and that the current process needs to reread the schema. If the schema 3191 ** cookie in P3 differs from the schema cookie in the database header or 3192 ** if the schema generation counter in P4 differs from the current 3193 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3194 ** halts. The sqlite3_step() wrapper function might then reprepare the 3195 ** statement and rerun it from the beginning. 3196 */ 3197 case OP_Transaction: { 3198 Btree *pBt; 3199 int iMeta; 3200 int iGen; 3201 3202 assert( p->bIsReader ); 3203 assert( p->readOnly==0 || pOp->p2==0 ); 3204 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3205 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3206 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3207 rc = SQLITE_READONLY; 3208 goto abort_due_to_error; 3209 } 3210 pBt = db->aDb[pOp->p1].pBt; 3211 3212 if( pBt ){ 3213 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3214 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3215 testcase( rc==SQLITE_BUSY_RECOVERY ); 3216 if( rc!=SQLITE_OK ){ 3217 if( (rc&0xff)==SQLITE_BUSY ){ 3218 p->pc = (int)(pOp - aOp); 3219 p->rc = rc; 3220 goto vdbe_return; 3221 } 3222 goto abort_due_to_error; 3223 } 3224 3225 if( pOp->p2 && p->usesStmtJournal 3226 && (db->autoCommit==0 || db->nVdbeRead>1) 3227 ){ 3228 assert( sqlite3BtreeIsInTrans(pBt) ); 3229 if( p->iStatement==0 ){ 3230 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3231 db->nStatement++; 3232 p->iStatement = db->nSavepoint + db->nStatement; 3233 } 3234 3235 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3236 if( rc==SQLITE_OK ){ 3237 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3238 } 3239 3240 /* Store the current value of the database handles deferred constraint 3241 ** counter. If the statement transaction needs to be rolled back, 3242 ** the value of this counter needs to be restored too. */ 3243 p->nStmtDefCons = db->nDeferredCons; 3244 p->nStmtDefImmCons = db->nDeferredImmCons; 3245 } 3246 3247 /* Gather the schema version number for checking: 3248 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3249 ** version is checked to ensure that the schema has not changed since the 3250 ** SQL statement was prepared. 3251 */ 3252 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3253 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3254 }else{ 3255 iGen = iMeta = 0; 3256 } 3257 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3258 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3259 sqlite3DbFree(db, p->zErrMsg); 3260 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3261 /* If the schema-cookie from the database file matches the cookie 3262 ** stored with the in-memory representation of the schema, do 3263 ** not reload the schema from the database file. 3264 ** 3265 ** If virtual-tables are in use, this is not just an optimization. 3266 ** Often, v-tables store their data in other SQLite tables, which 3267 ** are queried from within xNext() and other v-table methods using 3268 ** prepared queries. If such a query is out-of-date, we do not want to 3269 ** discard the database schema, as the user code implementing the 3270 ** v-table would have to be ready for the sqlite3_vtab structure itself 3271 ** to be invalidated whenever sqlite3_step() is called from within 3272 ** a v-table method. 3273 */ 3274 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3275 sqlite3ResetOneSchema(db, pOp->p1); 3276 } 3277 p->expired = 1; 3278 rc = SQLITE_SCHEMA; 3279 } 3280 if( rc ) goto abort_due_to_error; 3281 break; 3282 } 3283 3284 /* Opcode: ReadCookie P1 P2 P3 * * 3285 ** 3286 ** Read cookie number P3 from database P1 and write it into register P2. 3287 ** P3==1 is the schema version. P3==2 is the database format. 3288 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3289 ** the main database file and P1==1 is the database file used to store 3290 ** temporary tables. 3291 ** 3292 ** There must be a read-lock on the database (either a transaction 3293 ** must be started or there must be an open cursor) before 3294 ** executing this instruction. 3295 */ 3296 case OP_ReadCookie: { /* out2 */ 3297 int iMeta; 3298 int iDb; 3299 int iCookie; 3300 3301 assert( p->bIsReader ); 3302 iDb = pOp->p1; 3303 iCookie = pOp->p3; 3304 assert( pOp->p3<SQLITE_N_BTREE_META ); 3305 assert( iDb>=0 && iDb<db->nDb ); 3306 assert( db->aDb[iDb].pBt!=0 ); 3307 assert( DbMaskTest(p->btreeMask, iDb) ); 3308 3309 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3310 pOut = out2Prerelease(p, pOp); 3311 pOut->u.i = iMeta; 3312 break; 3313 } 3314 3315 /* Opcode: SetCookie P1 P2 P3 * * 3316 ** 3317 ** Write the integer value P3 into cookie number P2 of database P1. 3318 ** P2==1 is the schema version. P2==2 is the database format. 3319 ** P2==3 is the recommended pager cache 3320 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3321 ** database file used to store temporary tables. 3322 ** 3323 ** A transaction must be started before executing this opcode. 3324 */ 3325 case OP_SetCookie: { 3326 Db *pDb; 3327 assert( pOp->p2<SQLITE_N_BTREE_META ); 3328 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3329 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3330 assert( p->readOnly==0 ); 3331 pDb = &db->aDb[pOp->p1]; 3332 assert( pDb->pBt!=0 ); 3333 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3334 /* See note about index shifting on OP_ReadCookie */ 3335 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3336 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3337 /* When the schema cookie changes, record the new cookie internally */ 3338 pDb->pSchema->schema_cookie = pOp->p3; 3339 db->mDbFlags |= DBFLAG_SchemaChange; 3340 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3341 /* Record changes in the file format */ 3342 pDb->pSchema->file_format = pOp->p3; 3343 } 3344 if( pOp->p1==1 ){ 3345 /* Invalidate all prepared statements whenever the TEMP database 3346 ** schema is changed. Ticket #1644 */ 3347 sqlite3ExpirePreparedStatements(db); 3348 p->expired = 0; 3349 } 3350 if( rc ) goto abort_due_to_error; 3351 break; 3352 } 3353 3354 /* Opcode: OpenRead P1 P2 P3 P4 P5 3355 ** Synopsis: root=P2 iDb=P3 3356 ** 3357 ** Open a read-only cursor for the database table whose root page is 3358 ** P2 in a database file. The database file is determined by P3. 3359 ** P3==0 means the main database, P3==1 means the database used for 3360 ** temporary tables, and P3>1 means used the corresponding attached 3361 ** database. Give the new cursor an identifier of P1. The P1 3362 ** values need not be contiguous but all P1 values should be small integers. 3363 ** It is an error for P1 to be negative. 3364 ** 3365 ** If P5!=0 then use the content of register P2 as the root page, not 3366 ** the value of P2 itself. 3367 ** 3368 ** There will be a read lock on the database whenever there is an 3369 ** open cursor. If the database was unlocked prior to this instruction 3370 ** then a read lock is acquired as part of this instruction. A read 3371 ** lock allows other processes to read the database but prohibits 3372 ** any other process from modifying the database. The read lock is 3373 ** released when all cursors are closed. If this instruction attempts 3374 ** to get a read lock but fails, the script terminates with an 3375 ** SQLITE_BUSY error code. 3376 ** 3377 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3378 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3379 ** structure, then said structure defines the content and collating 3380 ** sequence of the index being opened. Otherwise, if P4 is an integer 3381 ** value, it is set to the number of columns in the table. 3382 ** 3383 ** See also: OpenWrite, ReopenIdx 3384 */ 3385 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3386 ** Synopsis: root=P2 iDb=P3 3387 ** 3388 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3389 ** checks to see if the cursor on P1 is already open with a root page 3390 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3391 ** if the cursor is already open, do not reopen it. 3392 ** 3393 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3394 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3395 ** every other ReopenIdx or OpenRead for the same cursor number. 3396 ** 3397 ** See the OpenRead opcode documentation for additional information. 3398 */ 3399 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3400 ** Synopsis: root=P2 iDb=P3 3401 ** 3402 ** Open a read/write cursor named P1 on the table or index whose root 3403 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3404 ** root page. 3405 ** 3406 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3407 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3408 ** structure, then said structure defines the content and collating 3409 ** sequence of the index being opened. Otherwise, if P4 is an integer 3410 ** value, it is set to the number of columns in the table, or to the 3411 ** largest index of any column of the table that is actually used. 3412 ** 3413 ** This instruction works just like OpenRead except that it opens the cursor 3414 ** in read/write mode. For a given table, there can be one or more read-only 3415 ** cursors or a single read/write cursor but not both. 3416 ** 3417 ** See also OpenRead. 3418 */ 3419 case OP_ReopenIdx: { 3420 int nField; 3421 KeyInfo *pKeyInfo; 3422 int p2; 3423 int iDb; 3424 int wrFlag; 3425 Btree *pX; 3426 VdbeCursor *pCur; 3427 Db *pDb; 3428 3429 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3430 assert( pOp->p4type==P4_KEYINFO ); 3431 pCur = p->apCsr[pOp->p1]; 3432 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3433 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3434 goto open_cursor_set_hints; 3435 } 3436 /* If the cursor is not currently open or is open on a different 3437 ** index, then fall through into OP_OpenRead to force a reopen */ 3438 case OP_OpenRead: 3439 case OP_OpenWrite: 3440 3441 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3442 assert( p->bIsReader ); 3443 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3444 || p->readOnly==0 ); 3445 3446 if( p->expired ){ 3447 rc = SQLITE_ABORT_ROLLBACK; 3448 goto abort_due_to_error; 3449 } 3450 3451 nField = 0; 3452 pKeyInfo = 0; 3453 p2 = pOp->p2; 3454 iDb = pOp->p3; 3455 assert( iDb>=0 && iDb<db->nDb ); 3456 assert( DbMaskTest(p->btreeMask, iDb) ); 3457 pDb = &db->aDb[iDb]; 3458 pX = pDb->pBt; 3459 assert( pX!=0 ); 3460 if( pOp->opcode==OP_OpenWrite ){ 3461 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3462 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3463 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3464 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3465 p->minWriteFileFormat = pDb->pSchema->file_format; 3466 } 3467 }else{ 3468 wrFlag = 0; 3469 } 3470 if( pOp->p5 & OPFLAG_P2ISREG ){ 3471 assert( p2>0 ); 3472 assert( p2<=(p->nMem+1 - p->nCursor) ); 3473 pIn2 = &aMem[p2]; 3474 assert( memIsValid(pIn2) ); 3475 assert( (pIn2->flags & MEM_Int)!=0 ); 3476 sqlite3VdbeMemIntegerify(pIn2); 3477 p2 = (int)pIn2->u.i; 3478 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3479 ** that opcode will always set the p2 value to 2 or more or else fail. 3480 ** If there were a failure, the prepared statement would have halted 3481 ** before reaching this instruction. */ 3482 assert( p2>=2 ); 3483 } 3484 if( pOp->p4type==P4_KEYINFO ){ 3485 pKeyInfo = pOp->p4.pKeyInfo; 3486 assert( pKeyInfo->enc==ENC(db) ); 3487 assert( pKeyInfo->db==db ); 3488 nField = pKeyInfo->nAllField; 3489 }else if( pOp->p4type==P4_INT32 ){ 3490 nField = pOp->p4.i; 3491 } 3492 assert( pOp->p1>=0 ); 3493 assert( nField>=0 ); 3494 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3495 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3496 if( pCur==0 ) goto no_mem; 3497 pCur->nullRow = 1; 3498 pCur->isOrdered = 1; 3499 pCur->pgnoRoot = p2; 3500 #ifdef SQLITE_DEBUG 3501 pCur->wrFlag = wrFlag; 3502 #endif 3503 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3504 pCur->pKeyInfo = pKeyInfo; 3505 /* Set the VdbeCursor.isTable variable. Previous versions of 3506 ** SQLite used to check if the root-page flags were sane at this point 3507 ** and report database corruption if they were not, but this check has 3508 ** since moved into the btree layer. */ 3509 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3510 3511 open_cursor_set_hints: 3512 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3513 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3514 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3515 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3516 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3517 #endif 3518 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3519 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3520 if( rc ) goto abort_due_to_error; 3521 break; 3522 } 3523 3524 /* Opcode: OpenDup P1 P2 * * * 3525 ** 3526 ** Open a new cursor P1 that points to the same ephemeral table as 3527 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3528 ** opcode. Only ephemeral cursors may be duplicated. 3529 ** 3530 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3531 */ 3532 case OP_OpenDup: { 3533 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3534 VdbeCursor *pCx; /* The new cursor */ 3535 3536 pOrig = p->apCsr[pOp->p2]; 3537 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3538 3539 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3540 if( pCx==0 ) goto no_mem; 3541 pCx->nullRow = 1; 3542 pCx->isEphemeral = 1; 3543 pCx->pKeyInfo = pOrig->pKeyInfo; 3544 pCx->isTable = pOrig->isTable; 3545 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR, 3546 pCx->pKeyInfo, pCx->uc.pCursor); 3547 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3548 ** opened for a database. Since there is already an open cursor when this 3549 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3550 assert( rc==SQLITE_OK ); 3551 break; 3552 } 3553 3554 3555 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3556 ** Synopsis: nColumn=P2 3557 ** 3558 ** Open a new cursor P1 to a transient table. 3559 ** The cursor is always opened read/write even if 3560 ** the main database is read-only. The ephemeral 3561 ** table is deleted automatically when the cursor is closed. 3562 ** 3563 ** P2 is the number of columns in the ephemeral table. 3564 ** The cursor points to a BTree table if P4==0 and to a BTree index 3565 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3566 ** that defines the format of keys in the index. 3567 ** 3568 ** The P5 parameter can be a mask of the BTREE_* flags defined 3569 ** in btree.h. These flags control aspects of the operation of 3570 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3571 ** added automatically. 3572 */ 3573 /* Opcode: OpenAutoindex P1 P2 * P4 * 3574 ** Synopsis: nColumn=P2 3575 ** 3576 ** This opcode works the same as OP_OpenEphemeral. It has a 3577 ** different name to distinguish its use. Tables created using 3578 ** by this opcode will be used for automatically created transient 3579 ** indices in joins. 3580 */ 3581 case OP_OpenAutoindex: 3582 case OP_OpenEphemeral: { 3583 VdbeCursor *pCx; 3584 KeyInfo *pKeyInfo; 3585 3586 static const int vfsFlags = 3587 SQLITE_OPEN_READWRITE | 3588 SQLITE_OPEN_CREATE | 3589 SQLITE_OPEN_EXCLUSIVE | 3590 SQLITE_OPEN_DELETEONCLOSE | 3591 SQLITE_OPEN_TRANSIENT_DB; 3592 assert( pOp->p1>=0 ); 3593 assert( pOp->p2>=0 ); 3594 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3595 if( pCx==0 ) goto no_mem; 3596 pCx->nullRow = 1; 3597 pCx->isEphemeral = 1; 3598 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3599 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3600 if( rc==SQLITE_OK ){ 3601 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1); 3602 } 3603 if( rc==SQLITE_OK ){ 3604 /* If a transient index is required, create it by calling 3605 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3606 ** opening it. If a transient table is required, just use the 3607 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3608 */ 3609 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3610 int pgno; 3611 assert( pOp->p4type==P4_KEYINFO ); 3612 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3613 if( rc==SQLITE_OK ){ 3614 assert( pgno==MASTER_ROOT+1 ); 3615 assert( pKeyInfo->db==db ); 3616 assert( pKeyInfo->enc==ENC(db) ); 3617 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3618 pKeyInfo, pCx->uc.pCursor); 3619 } 3620 pCx->isTable = 0; 3621 }else{ 3622 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3623 0, pCx->uc.pCursor); 3624 pCx->isTable = 1; 3625 } 3626 } 3627 if( rc ) goto abort_due_to_error; 3628 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3629 break; 3630 } 3631 3632 /* Opcode: SorterOpen P1 P2 P3 P4 * 3633 ** 3634 ** This opcode works like OP_OpenEphemeral except that it opens 3635 ** a transient index that is specifically designed to sort large 3636 ** tables using an external merge-sort algorithm. 3637 ** 3638 ** If argument P3 is non-zero, then it indicates that the sorter may 3639 ** assume that a stable sort considering the first P3 fields of each 3640 ** key is sufficient to produce the required results. 3641 */ 3642 case OP_SorterOpen: { 3643 VdbeCursor *pCx; 3644 3645 assert( pOp->p1>=0 ); 3646 assert( pOp->p2>=0 ); 3647 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3648 if( pCx==0 ) goto no_mem; 3649 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3650 assert( pCx->pKeyInfo->db==db ); 3651 assert( pCx->pKeyInfo->enc==ENC(db) ); 3652 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3653 if( rc ) goto abort_due_to_error; 3654 break; 3655 } 3656 3657 /* Opcode: SequenceTest P1 P2 * * * 3658 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3659 ** 3660 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3661 ** to P2. Regardless of whether or not the jump is taken, increment the 3662 ** the sequence value. 3663 */ 3664 case OP_SequenceTest: { 3665 VdbeCursor *pC; 3666 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3667 pC = p->apCsr[pOp->p1]; 3668 assert( isSorter(pC) ); 3669 if( (pC->seqCount++)==0 ){ 3670 goto jump_to_p2; 3671 } 3672 break; 3673 } 3674 3675 /* Opcode: OpenPseudo P1 P2 P3 * * 3676 ** Synopsis: P3 columns in r[P2] 3677 ** 3678 ** Open a new cursor that points to a fake table that contains a single 3679 ** row of data. The content of that one row is the content of memory 3680 ** register P2. In other words, cursor P1 becomes an alias for the 3681 ** MEM_Blob content contained in register P2. 3682 ** 3683 ** A pseudo-table created by this opcode is used to hold a single 3684 ** row output from the sorter so that the row can be decomposed into 3685 ** individual columns using the OP_Column opcode. The OP_Column opcode 3686 ** is the only cursor opcode that works with a pseudo-table. 3687 ** 3688 ** P3 is the number of fields in the records that will be stored by 3689 ** the pseudo-table. 3690 */ 3691 case OP_OpenPseudo: { 3692 VdbeCursor *pCx; 3693 3694 assert( pOp->p1>=0 ); 3695 assert( pOp->p3>=0 ); 3696 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3697 if( pCx==0 ) goto no_mem; 3698 pCx->nullRow = 1; 3699 pCx->seekResult = pOp->p2; 3700 pCx->isTable = 1; 3701 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3702 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3703 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3704 ** which is a performance optimization */ 3705 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3706 assert( pOp->p5==0 ); 3707 break; 3708 } 3709 3710 /* Opcode: Close P1 * * * * 3711 ** 3712 ** Close a cursor previously opened as P1. If P1 is not 3713 ** currently open, this instruction is a no-op. 3714 */ 3715 case OP_Close: { 3716 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3717 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3718 p->apCsr[pOp->p1] = 0; 3719 break; 3720 } 3721 3722 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3723 /* Opcode: ColumnsUsed P1 * * P4 * 3724 ** 3725 ** This opcode (which only exists if SQLite was compiled with 3726 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3727 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3728 ** (P4_INT64) in which the first 63 bits are one for each of the 3729 ** first 63 columns of the table or index that are actually used 3730 ** by the cursor. The high-order bit is set if any column after 3731 ** the 64th is used. 3732 */ 3733 case OP_ColumnsUsed: { 3734 VdbeCursor *pC; 3735 pC = p->apCsr[pOp->p1]; 3736 assert( pC->eCurType==CURTYPE_BTREE ); 3737 pC->maskUsed = *(u64*)pOp->p4.pI64; 3738 break; 3739 } 3740 #endif 3741 3742 /* Opcode: SeekGE P1 P2 P3 P4 * 3743 ** Synopsis: key=r[P3@P4] 3744 ** 3745 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3746 ** use the value in register P3 as the key. If cursor P1 refers 3747 ** to an SQL index, then P3 is the first in an array of P4 registers 3748 ** that are used as an unpacked index key. 3749 ** 3750 ** Reposition cursor P1 so that it points to the smallest entry that 3751 ** is greater than or equal to the key value. If there are no records 3752 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3753 ** 3754 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3755 ** opcode will always land on a record that equally equals the key, or 3756 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3757 ** opcode must be followed by an IdxLE opcode with the same arguments. 3758 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3759 ** IdxLE opcode will be used on subsequent loop iterations. 3760 ** 3761 ** This opcode leaves the cursor configured to move in forward order, 3762 ** from the beginning toward the end. In other words, the cursor is 3763 ** configured to use Next, not Prev. 3764 ** 3765 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3766 */ 3767 /* Opcode: SeekGT P1 P2 P3 P4 * 3768 ** Synopsis: key=r[P3@P4] 3769 ** 3770 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3771 ** use the value in register P3 as a key. If cursor P1 refers 3772 ** to an SQL index, then P3 is the first in an array of P4 registers 3773 ** that are used as an unpacked index key. 3774 ** 3775 ** Reposition cursor P1 so that it points to the smallest entry that 3776 ** is greater than the key value. If there are no records greater than 3777 ** the key and P2 is not zero, then jump to P2. 3778 ** 3779 ** This opcode leaves the cursor configured to move in forward order, 3780 ** from the beginning toward the end. In other words, the cursor is 3781 ** configured to use Next, not Prev. 3782 ** 3783 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3784 */ 3785 /* Opcode: SeekLT P1 P2 P3 P4 * 3786 ** Synopsis: key=r[P3@P4] 3787 ** 3788 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3789 ** use the value in register P3 as a key. If cursor P1 refers 3790 ** to an SQL index, then P3 is the first in an array of P4 registers 3791 ** that are used as an unpacked index key. 3792 ** 3793 ** Reposition cursor P1 so that it points to the largest entry that 3794 ** is less than the key value. If there are no records less than 3795 ** the key and P2 is not zero, then jump to P2. 3796 ** 3797 ** This opcode leaves the cursor configured to move in reverse order, 3798 ** from the end toward the beginning. In other words, the cursor is 3799 ** configured to use Prev, not Next. 3800 ** 3801 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3802 */ 3803 /* Opcode: SeekLE P1 P2 P3 P4 * 3804 ** Synopsis: key=r[P3@P4] 3805 ** 3806 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3807 ** use the value in register P3 as a key. If cursor P1 refers 3808 ** to an SQL index, then P3 is the first in an array of P4 registers 3809 ** that are used as an unpacked index key. 3810 ** 3811 ** Reposition cursor P1 so that it points to the largest entry that 3812 ** is less than or equal to the key value. If there are no records 3813 ** less than or equal to the key and P2 is not zero, then jump to P2. 3814 ** 3815 ** This opcode leaves the cursor configured to move in reverse order, 3816 ** from the end toward the beginning. In other words, the cursor is 3817 ** configured to use Prev, not Next. 3818 ** 3819 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3820 ** opcode will always land on a record that equally equals the key, or 3821 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3822 ** opcode must be followed by an IdxGE opcode with the same arguments. 3823 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3824 ** IdxGE opcode will be used on subsequent loop iterations. 3825 ** 3826 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3827 */ 3828 case OP_SeekLT: /* jump, in3 */ 3829 case OP_SeekLE: /* jump, in3 */ 3830 case OP_SeekGE: /* jump, in3 */ 3831 case OP_SeekGT: { /* jump, in3 */ 3832 int res; /* Comparison result */ 3833 int oc; /* Opcode */ 3834 VdbeCursor *pC; /* The cursor to seek */ 3835 UnpackedRecord r; /* The key to seek for */ 3836 int nField; /* Number of columns or fields in the key */ 3837 i64 iKey; /* The rowid we are to seek to */ 3838 int eqOnly; /* Only interested in == results */ 3839 3840 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3841 assert( pOp->p2!=0 ); 3842 pC = p->apCsr[pOp->p1]; 3843 assert( pC!=0 ); 3844 assert( pC->eCurType==CURTYPE_BTREE ); 3845 assert( OP_SeekLE == OP_SeekLT+1 ); 3846 assert( OP_SeekGE == OP_SeekLT+2 ); 3847 assert( OP_SeekGT == OP_SeekLT+3 ); 3848 assert( pC->isOrdered ); 3849 assert( pC->uc.pCursor!=0 ); 3850 oc = pOp->opcode; 3851 eqOnly = 0; 3852 pC->nullRow = 0; 3853 #ifdef SQLITE_DEBUG 3854 pC->seekOp = pOp->opcode; 3855 #endif 3856 3857 if( pC->isTable ){ 3858 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3859 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3860 || CORRUPT_DB ); 3861 3862 /* The input value in P3 might be of any type: integer, real, string, 3863 ** blob, or NULL. But it needs to be an integer before we can do 3864 ** the seek, so convert it. */ 3865 pIn3 = &aMem[pOp->p3]; 3866 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3867 applyNumericAffinity(pIn3, 0); 3868 } 3869 iKey = sqlite3VdbeIntValue(pIn3); 3870 3871 /* If the P3 value could not be converted into an integer without 3872 ** loss of information, then special processing is required... */ 3873 if( (pIn3->flags & MEM_Int)==0 ){ 3874 if( (pIn3->flags & MEM_Real)==0 ){ 3875 /* If the P3 value cannot be converted into any kind of a number, 3876 ** then the seek is not possible, so jump to P2 */ 3877 VdbeBranchTaken(1,2); goto jump_to_p2; 3878 break; 3879 } 3880 3881 /* If the approximation iKey is larger than the actual real search 3882 ** term, substitute >= for > and < for <=. e.g. if the search term 3883 ** is 4.9 and the integer approximation 5: 3884 ** 3885 ** (x > 4.9) -> (x >= 5) 3886 ** (x <= 4.9) -> (x < 5) 3887 */ 3888 if( pIn3->u.r<(double)iKey ){ 3889 assert( OP_SeekGE==(OP_SeekGT-1) ); 3890 assert( OP_SeekLT==(OP_SeekLE-1) ); 3891 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3892 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3893 } 3894 3895 /* If the approximation iKey is smaller than the actual real search 3896 ** term, substitute <= for < and > for >=. */ 3897 else if( pIn3->u.r>(double)iKey ){ 3898 assert( OP_SeekLE==(OP_SeekLT+1) ); 3899 assert( OP_SeekGT==(OP_SeekGE+1) ); 3900 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3901 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3902 } 3903 } 3904 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3905 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3906 if( rc!=SQLITE_OK ){ 3907 goto abort_due_to_error; 3908 } 3909 }else{ 3910 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3911 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3912 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3913 */ 3914 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3915 eqOnly = 1; 3916 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3917 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3918 assert( pOp[1].p1==pOp[0].p1 ); 3919 assert( pOp[1].p2==pOp[0].p2 ); 3920 assert( pOp[1].p3==pOp[0].p3 ); 3921 assert( pOp[1].p4.i==pOp[0].p4.i ); 3922 } 3923 3924 nField = pOp->p4.i; 3925 assert( pOp->p4type==P4_INT32 ); 3926 assert( nField>0 ); 3927 r.pKeyInfo = pC->pKeyInfo; 3928 r.nField = (u16)nField; 3929 3930 /* The next line of code computes as follows, only faster: 3931 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3932 ** r.default_rc = -1; 3933 ** }else{ 3934 ** r.default_rc = +1; 3935 ** } 3936 */ 3937 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3938 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3939 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3940 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3941 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3942 3943 r.aMem = &aMem[pOp->p3]; 3944 #ifdef SQLITE_DEBUG 3945 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3946 #endif 3947 r.eqSeen = 0; 3948 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3949 if( rc!=SQLITE_OK ){ 3950 goto abort_due_to_error; 3951 } 3952 if( eqOnly && r.eqSeen==0 ){ 3953 assert( res!=0 ); 3954 goto seek_not_found; 3955 } 3956 } 3957 pC->deferredMoveto = 0; 3958 pC->cacheStatus = CACHE_STALE; 3959 #ifdef SQLITE_TEST 3960 sqlite3_search_count++; 3961 #endif 3962 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3963 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3964 res = 0; 3965 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 3966 if( rc!=SQLITE_OK ){ 3967 if( rc==SQLITE_DONE ){ 3968 rc = SQLITE_OK; 3969 res = 1; 3970 }else{ 3971 goto abort_due_to_error; 3972 } 3973 } 3974 }else{ 3975 res = 0; 3976 } 3977 }else{ 3978 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3979 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3980 res = 0; 3981 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 3982 if( rc!=SQLITE_OK ){ 3983 if( rc==SQLITE_DONE ){ 3984 rc = SQLITE_OK; 3985 res = 1; 3986 }else{ 3987 goto abort_due_to_error; 3988 } 3989 } 3990 }else{ 3991 /* res might be negative because the table is empty. Check to 3992 ** see if this is the case. 3993 */ 3994 res = sqlite3BtreeEof(pC->uc.pCursor); 3995 } 3996 } 3997 seek_not_found: 3998 assert( pOp->p2>0 ); 3999 VdbeBranchTaken(res!=0,2); 4000 if( res ){ 4001 goto jump_to_p2; 4002 }else if( eqOnly ){ 4003 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4004 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4005 } 4006 break; 4007 } 4008 4009 /* Opcode: Found P1 P2 P3 P4 * 4010 ** Synopsis: key=r[P3@P4] 4011 ** 4012 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4013 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4014 ** record. 4015 ** 4016 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4017 ** is a prefix of any entry in P1 then a jump is made to P2 and 4018 ** P1 is left pointing at the matching entry. 4019 ** 4020 ** This operation leaves the cursor in a state where it can be 4021 ** advanced in the forward direction. The Next instruction will work, 4022 ** but not the Prev instruction. 4023 ** 4024 ** See also: NotFound, NoConflict, NotExists. SeekGe 4025 */ 4026 /* Opcode: NotFound P1 P2 P3 P4 * 4027 ** Synopsis: key=r[P3@P4] 4028 ** 4029 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4030 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4031 ** record. 4032 ** 4033 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4034 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4035 ** does contain an entry whose prefix matches the P3/P4 record then control 4036 ** falls through to the next instruction and P1 is left pointing at the 4037 ** matching entry. 4038 ** 4039 ** This operation leaves the cursor in a state where it cannot be 4040 ** advanced in either direction. In other words, the Next and Prev 4041 ** opcodes do not work after this operation. 4042 ** 4043 ** See also: Found, NotExists, NoConflict 4044 */ 4045 /* Opcode: NoConflict P1 P2 P3 P4 * 4046 ** Synopsis: key=r[P3@P4] 4047 ** 4048 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4049 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4050 ** record. 4051 ** 4052 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4053 ** contains any NULL value, jump immediately to P2. If all terms of the 4054 ** record are not-NULL then a check is done to determine if any row in the 4055 ** P1 index btree has a matching key prefix. If there are no matches, jump 4056 ** immediately to P2. If there is a match, fall through and leave the P1 4057 ** cursor pointing to the matching row. 4058 ** 4059 ** This opcode is similar to OP_NotFound with the exceptions that the 4060 ** branch is always taken if any part of the search key input is NULL. 4061 ** 4062 ** This operation leaves the cursor in a state where it cannot be 4063 ** advanced in either direction. In other words, the Next and Prev 4064 ** opcodes do not work after this operation. 4065 ** 4066 ** See also: NotFound, Found, NotExists 4067 */ 4068 case OP_NoConflict: /* jump, in3 */ 4069 case OP_NotFound: /* jump, in3 */ 4070 case OP_Found: { /* jump, in3 */ 4071 int alreadyExists; 4072 int takeJump; 4073 int ii; 4074 VdbeCursor *pC; 4075 int res; 4076 UnpackedRecord *pFree; 4077 UnpackedRecord *pIdxKey; 4078 UnpackedRecord r; 4079 4080 #ifdef SQLITE_TEST 4081 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4082 #endif 4083 4084 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4085 assert( pOp->p4type==P4_INT32 ); 4086 pC = p->apCsr[pOp->p1]; 4087 assert( pC!=0 ); 4088 #ifdef SQLITE_DEBUG 4089 pC->seekOp = pOp->opcode; 4090 #endif 4091 pIn3 = &aMem[pOp->p3]; 4092 assert( pC->eCurType==CURTYPE_BTREE ); 4093 assert( pC->uc.pCursor!=0 ); 4094 assert( pC->isTable==0 ); 4095 if( pOp->p4.i>0 ){ 4096 r.pKeyInfo = pC->pKeyInfo; 4097 r.nField = (u16)pOp->p4.i; 4098 r.aMem = pIn3; 4099 #ifdef SQLITE_DEBUG 4100 for(ii=0; ii<r.nField; ii++){ 4101 assert( memIsValid(&r.aMem[ii]) ); 4102 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4103 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4104 } 4105 #endif 4106 pIdxKey = &r; 4107 pFree = 0; 4108 }else{ 4109 assert( pIn3->flags & MEM_Blob ); 4110 rc = ExpandBlob(pIn3); 4111 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4112 if( rc ) goto no_mem; 4113 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4114 if( pIdxKey==0 ) goto no_mem; 4115 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4116 } 4117 pIdxKey->default_rc = 0; 4118 takeJump = 0; 4119 if( pOp->opcode==OP_NoConflict ){ 4120 /* For the OP_NoConflict opcode, take the jump if any of the 4121 ** input fields are NULL, since any key with a NULL will not 4122 ** conflict */ 4123 for(ii=0; ii<pIdxKey->nField; ii++){ 4124 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4125 takeJump = 1; 4126 break; 4127 } 4128 } 4129 } 4130 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4131 if( pFree ) sqlite3DbFreeNN(db, pFree); 4132 if( rc!=SQLITE_OK ){ 4133 goto abort_due_to_error; 4134 } 4135 pC->seekResult = res; 4136 alreadyExists = (res==0); 4137 pC->nullRow = 1-alreadyExists; 4138 pC->deferredMoveto = 0; 4139 pC->cacheStatus = CACHE_STALE; 4140 if( pOp->opcode==OP_Found ){ 4141 VdbeBranchTaken(alreadyExists!=0,2); 4142 if( alreadyExists ) goto jump_to_p2; 4143 }else{ 4144 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4145 if( takeJump || !alreadyExists ) goto jump_to_p2; 4146 } 4147 break; 4148 } 4149 4150 /* Opcode: SeekRowid P1 P2 P3 * * 4151 ** Synopsis: intkey=r[P3] 4152 ** 4153 ** P1 is the index of a cursor open on an SQL table btree (with integer 4154 ** keys). If register P3 does not contain an integer or if P1 does not 4155 ** contain a record with rowid P3 then jump immediately to P2. 4156 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4157 ** a record with rowid P3 then 4158 ** leave the cursor pointing at that record and fall through to the next 4159 ** instruction. 4160 ** 4161 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4162 ** the P3 register must be guaranteed to contain an integer value. With this 4163 ** opcode, register P3 might not contain an integer. 4164 ** 4165 ** The OP_NotFound opcode performs the same operation on index btrees 4166 ** (with arbitrary multi-value keys). 4167 ** 4168 ** This opcode leaves the cursor in a state where it cannot be advanced 4169 ** in either direction. In other words, the Next and Prev opcodes will 4170 ** not work following this opcode. 4171 ** 4172 ** See also: Found, NotFound, NoConflict, SeekRowid 4173 */ 4174 /* Opcode: NotExists P1 P2 P3 * * 4175 ** Synopsis: intkey=r[P3] 4176 ** 4177 ** P1 is the index of a cursor open on an SQL table btree (with integer 4178 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4179 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4180 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4181 ** leave the cursor pointing at that record and fall through to the next 4182 ** instruction. 4183 ** 4184 ** The OP_SeekRowid opcode performs the same operation but also allows the 4185 ** P3 register to contain a non-integer value, in which case the jump is 4186 ** always taken. This opcode requires that P3 always contain an integer. 4187 ** 4188 ** The OP_NotFound opcode performs the same operation on index btrees 4189 ** (with arbitrary multi-value keys). 4190 ** 4191 ** This opcode leaves the cursor in a state where it cannot be advanced 4192 ** in either direction. In other words, the Next and Prev opcodes will 4193 ** not work following this opcode. 4194 ** 4195 ** See also: Found, NotFound, NoConflict, SeekRowid 4196 */ 4197 case OP_SeekRowid: { /* jump, in3 */ 4198 VdbeCursor *pC; 4199 BtCursor *pCrsr; 4200 int res; 4201 u64 iKey; 4202 4203 pIn3 = &aMem[pOp->p3]; 4204 if( (pIn3->flags & MEM_Int)==0 ){ 4205 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4206 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; 4207 } 4208 /* Fall through into OP_NotExists */ 4209 case OP_NotExists: /* jump, in3 */ 4210 pIn3 = &aMem[pOp->p3]; 4211 assert( pIn3->flags & MEM_Int ); 4212 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4213 pC = p->apCsr[pOp->p1]; 4214 assert( pC!=0 ); 4215 #ifdef SQLITE_DEBUG 4216 pC->seekOp = 0; 4217 #endif 4218 assert( pC->isTable ); 4219 assert( pC->eCurType==CURTYPE_BTREE ); 4220 pCrsr = pC->uc.pCursor; 4221 assert( pCrsr!=0 ); 4222 res = 0; 4223 iKey = pIn3->u.i; 4224 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4225 assert( rc==SQLITE_OK || res==0 ); 4226 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4227 pC->nullRow = 0; 4228 pC->cacheStatus = CACHE_STALE; 4229 pC->deferredMoveto = 0; 4230 VdbeBranchTaken(res!=0,2); 4231 pC->seekResult = res; 4232 if( res!=0 ){ 4233 assert( rc==SQLITE_OK ); 4234 if( pOp->p2==0 ){ 4235 rc = SQLITE_CORRUPT_BKPT; 4236 }else{ 4237 goto jump_to_p2; 4238 } 4239 } 4240 if( rc ) goto abort_due_to_error; 4241 break; 4242 } 4243 4244 /* Opcode: Sequence P1 P2 * * * 4245 ** Synopsis: r[P2]=cursor[P1].ctr++ 4246 ** 4247 ** Find the next available sequence number for cursor P1. 4248 ** Write the sequence number into register P2. 4249 ** The sequence number on the cursor is incremented after this 4250 ** instruction. 4251 */ 4252 case OP_Sequence: { /* out2 */ 4253 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4254 assert( p->apCsr[pOp->p1]!=0 ); 4255 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4256 pOut = out2Prerelease(p, pOp); 4257 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4258 break; 4259 } 4260 4261 4262 /* Opcode: NewRowid P1 P2 P3 * * 4263 ** Synopsis: r[P2]=rowid 4264 ** 4265 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4266 ** The record number is not previously used as a key in the database 4267 ** table that cursor P1 points to. The new record number is written 4268 ** written to register P2. 4269 ** 4270 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4271 ** the largest previously generated record number. No new record numbers are 4272 ** allowed to be less than this value. When this value reaches its maximum, 4273 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4274 ** generated record number. This P3 mechanism is used to help implement the 4275 ** AUTOINCREMENT feature. 4276 */ 4277 case OP_NewRowid: { /* out2 */ 4278 i64 v; /* The new rowid */ 4279 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4280 int res; /* Result of an sqlite3BtreeLast() */ 4281 int cnt; /* Counter to limit the number of searches */ 4282 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4283 VdbeFrame *pFrame; /* Root frame of VDBE */ 4284 4285 v = 0; 4286 res = 0; 4287 pOut = out2Prerelease(p, pOp); 4288 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4289 pC = p->apCsr[pOp->p1]; 4290 if( !pC->isTable ){ 4291 rc = SQLITE_CORRUPT_BKPT; 4292 goto abort_due_to_error; 4293 } 4294 assert( pC!=0 ); 4295 assert( pC->eCurType==CURTYPE_BTREE ); 4296 assert( pC->uc.pCursor!=0 ); 4297 { 4298 /* The next rowid or record number (different terms for the same 4299 ** thing) is obtained in a two-step algorithm. 4300 ** 4301 ** First we attempt to find the largest existing rowid and add one 4302 ** to that. But if the largest existing rowid is already the maximum 4303 ** positive integer, we have to fall through to the second 4304 ** probabilistic algorithm 4305 ** 4306 ** The second algorithm is to select a rowid at random and see if 4307 ** it already exists in the table. If it does not exist, we have 4308 ** succeeded. If the random rowid does exist, we select a new one 4309 ** and try again, up to 100 times. 4310 */ 4311 assert( pC->isTable ); 4312 4313 #ifdef SQLITE_32BIT_ROWID 4314 # define MAX_ROWID 0x7fffffff 4315 #else 4316 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4317 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4318 ** to provide the constant while making all compilers happy. 4319 */ 4320 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4321 #endif 4322 4323 if( !pC->useRandomRowid ){ 4324 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4325 if( rc!=SQLITE_OK ){ 4326 goto abort_due_to_error; 4327 } 4328 if( res ){ 4329 v = 1; /* IMP: R-61914-48074 */ 4330 }else{ 4331 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4332 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4333 if( v>=MAX_ROWID ){ 4334 pC->useRandomRowid = 1; 4335 }else{ 4336 v++; /* IMP: R-29538-34987 */ 4337 } 4338 } 4339 } 4340 4341 #ifndef SQLITE_OMIT_AUTOINCREMENT 4342 if( pOp->p3 ){ 4343 /* Assert that P3 is a valid memory cell. */ 4344 assert( pOp->p3>0 ); 4345 if( p->pFrame ){ 4346 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4347 /* Assert that P3 is a valid memory cell. */ 4348 assert( pOp->p3<=pFrame->nMem ); 4349 pMem = &pFrame->aMem[pOp->p3]; 4350 }else{ 4351 /* Assert that P3 is a valid memory cell. */ 4352 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4353 pMem = &aMem[pOp->p3]; 4354 memAboutToChange(p, pMem); 4355 } 4356 assert( memIsValid(pMem) ); 4357 4358 REGISTER_TRACE(pOp->p3, pMem); 4359 sqlite3VdbeMemIntegerify(pMem); 4360 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4361 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4362 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4363 goto abort_due_to_error; 4364 } 4365 if( v<pMem->u.i+1 ){ 4366 v = pMem->u.i + 1; 4367 } 4368 pMem->u.i = v; 4369 } 4370 #endif 4371 if( pC->useRandomRowid ){ 4372 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4373 ** largest possible integer (9223372036854775807) then the database 4374 ** engine starts picking positive candidate ROWIDs at random until 4375 ** it finds one that is not previously used. */ 4376 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4377 ** an AUTOINCREMENT table. */ 4378 cnt = 0; 4379 do{ 4380 sqlite3_randomness(sizeof(v), &v); 4381 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4382 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4383 0, &res))==SQLITE_OK) 4384 && (res==0) 4385 && (++cnt<100)); 4386 if( rc ) goto abort_due_to_error; 4387 if( res==0 ){ 4388 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4389 goto abort_due_to_error; 4390 } 4391 assert( v>0 ); /* EV: R-40812-03570 */ 4392 } 4393 pC->deferredMoveto = 0; 4394 pC->cacheStatus = CACHE_STALE; 4395 } 4396 pOut->u.i = v; 4397 break; 4398 } 4399 4400 /* Opcode: Insert P1 P2 P3 P4 P5 4401 ** Synopsis: intkey=r[P3] data=r[P2] 4402 ** 4403 ** Write an entry into the table of cursor P1. A new entry is 4404 ** created if it doesn't already exist or the data for an existing 4405 ** entry is overwritten. The data is the value MEM_Blob stored in register 4406 ** number P2. The key is stored in register P3. The key must 4407 ** be a MEM_Int. 4408 ** 4409 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4410 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4411 ** then rowid is stored for subsequent return by the 4412 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4413 ** 4414 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4415 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4416 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4417 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4418 ** 4419 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4420 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4421 ** is part of an INSERT operation. The difference is only important to 4422 ** the update hook. 4423 ** 4424 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4425 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4426 ** following a successful insert. 4427 ** 4428 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4429 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4430 ** and register P2 becomes ephemeral. If the cursor is changed, the 4431 ** value of register P2 will then change. Make sure this does not 4432 ** cause any problems.) 4433 ** 4434 ** This instruction only works on tables. The equivalent instruction 4435 ** for indices is OP_IdxInsert. 4436 */ 4437 /* Opcode: InsertInt P1 P2 P3 P4 P5 4438 ** Synopsis: intkey=P3 data=r[P2] 4439 ** 4440 ** This works exactly like OP_Insert except that the key is the 4441 ** integer value P3, not the value of the integer stored in register P3. 4442 */ 4443 case OP_Insert: 4444 case OP_InsertInt: { 4445 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4446 Mem *pKey; /* MEM cell holding key for the record */ 4447 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4448 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4449 const char *zDb; /* database name - used by the update hook */ 4450 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4451 BtreePayload x; /* Payload to be inserted */ 4452 4453 pData = &aMem[pOp->p2]; 4454 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4455 assert( memIsValid(pData) ); 4456 pC = p->apCsr[pOp->p1]; 4457 assert( pC!=0 ); 4458 assert( pC->eCurType==CURTYPE_BTREE ); 4459 assert( pC->uc.pCursor!=0 ); 4460 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4461 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4462 REGISTER_TRACE(pOp->p2, pData); 4463 4464 if( pOp->opcode==OP_Insert ){ 4465 pKey = &aMem[pOp->p3]; 4466 assert( pKey->flags & MEM_Int ); 4467 assert( memIsValid(pKey) ); 4468 REGISTER_TRACE(pOp->p3, pKey); 4469 x.nKey = pKey->u.i; 4470 }else{ 4471 assert( pOp->opcode==OP_InsertInt ); 4472 x.nKey = pOp->p3; 4473 } 4474 4475 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4476 assert( pC->iDb>=0 ); 4477 zDb = db->aDb[pC->iDb].zDbSName; 4478 pTab = pOp->p4.pTab; 4479 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4480 }else{ 4481 pTab = 0; 4482 zDb = 0; /* Not needed. Silence a compiler warning. */ 4483 } 4484 4485 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4486 /* Invoke the pre-update hook, if any */ 4487 if( pTab ){ 4488 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4489 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4490 } 4491 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4492 /* Prevent post-update hook from running in cases when it should not */ 4493 pTab = 0; 4494 } 4495 } 4496 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4497 #endif 4498 4499 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4500 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4501 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4502 x.pData = pData->z; 4503 x.nData = pData->n; 4504 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4505 if( pData->flags & MEM_Zero ){ 4506 x.nZero = pData->u.nZero; 4507 }else{ 4508 x.nZero = 0; 4509 } 4510 x.pKey = 0; 4511 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4512 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4513 ); 4514 pC->deferredMoveto = 0; 4515 pC->cacheStatus = CACHE_STALE; 4516 4517 /* Invoke the update-hook if required. */ 4518 if( rc ) goto abort_due_to_error; 4519 if( pTab ){ 4520 assert( db->xUpdateCallback!=0 ); 4521 assert( pTab->aCol!=0 ); 4522 db->xUpdateCallback(db->pUpdateArg, 4523 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4524 zDb, pTab->zName, x.nKey); 4525 } 4526 break; 4527 } 4528 4529 /* Opcode: Delete P1 P2 P3 P4 P5 4530 ** 4531 ** Delete the record at which the P1 cursor is currently pointing. 4532 ** 4533 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4534 ** the cursor will be left pointing at either the next or the previous 4535 ** record in the table. If it is left pointing at the next record, then 4536 ** the next Next instruction will be a no-op. As a result, in this case 4537 ** it is ok to delete a record from within a Next loop. If 4538 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4539 ** left in an undefined state. 4540 ** 4541 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4542 ** delete one of several associated with deleting a table row and all its 4543 ** associated index entries. Exactly one of those deletes is the "primary" 4544 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4545 ** marked with the AUXDELETE flag. 4546 ** 4547 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4548 ** change count is incremented (otherwise not). 4549 ** 4550 ** P1 must not be pseudo-table. It has to be a real table with 4551 ** multiple rows. 4552 ** 4553 ** If P4 is not NULL then it points to a Table object. In this case either 4554 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4555 ** have been positioned using OP_NotFound prior to invoking this opcode in 4556 ** this case. Specifically, if one is configured, the pre-update hook is 4557 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4558 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4559 ** 4560 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4561 ** of the memory cell that contains the value that the rowid of the row will 4562 ** be set to by the update. 4563 */ 4564 case OP_Delete: { 4565 VdbeCursor *pC; 4566 const char *zDb; 4567 Table *pTab; 4568 int opflags; 4569 4570 opflags = pOp->p2; 4571 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4572 pC = p->apCsr[pOp->p1]; 4573 assert( pC!=0 ); 4574 assert( pC->eCurType==CURTYPE_BTREE ); 4575 assert( pC->uc.pCursor!=0 ); 4576 assert( pC->deferredMoveto==0 ); 4577 4578 #ifdef SQLITE_DEBUG 4579 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4580 /* If p5 is zero, the seek operation that positioned the cursor prior to 4581 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4582 ** the row that is being deleted */ 4583 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4584 assert( pC->movetoTarget==iKey ); 4585 } 4586 #endif 4587 4588 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4589 ** the name of the db to pass as to it. Also set local pTab to a copy 4590 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4591 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4592 ** VdbeCursor.movetoTarget to the current rowid. */ 4593 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4594 assert( pC->iDb>=0 ); 4595 assert( pOp->p4.pTab!=0 ); 4596 zDb = db->aDb[pC->iDb].zDbSName; 4597 pTab = pOp->p4.pTab; 4598 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4599 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4600 } 4601 }else{ 4602 zDb = 0; /* Not needed. Silence a compiler warning. */ 4603 pTab = 0; /* Not needed. Silence a compiler warning. */ 4604 } 4605 4606 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4607 /* Invoke the pre-update-hook if required. */ 4608 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4609 assert( !(opflags & OPFLAG_ISUPDATE) 4610 || HasRowid(pTab)==0 4611 || (aMem[pOp->p3].flags & MEM_Int) 4612 ); 4613 sqlite3VdbePreUpdateHook(p, pC, 4614 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4615 zDb, pTab, pC->movetoTarget, 4616 pOp->p3 4617 ); 4618 } 4619 if( opflags & OPFLAG_ISNOOP ) break; 4620 #endif 4621 4622 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4623 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4624 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4625 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4626 4627 #ifdef SQLITE_DEBUG 4628 if( p->pFrame==0 ){ 4629 if( pC->isEphemeral==0 4630 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4631 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4632 ){ 4633 nExtraDelete++; 4634 } 4635 if( pOp->p2 & OPFLAG_NCHANGE ){ 4636 nExtraDelete--; 4637 } 4638 } 4639 #endif 4640 4641 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4642 pC->cacheStatus = CACHE_STALE; 4643 pC->seekResult = 0; 4644 if( rc ) goto abort_due_to_error; 4645 4646 /* Invoke the update-hook if required. */ 4647 if( opflags & OPFLAG_NCHANGE ){ 4648 p->nChange++; 4649 if( db->xUpdateCallback && HasRowid(pTab) ){ 4650 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4651 pC->movetoTarget); 4652 assert( pC->iDb>=0 ); 4653 } 4654 } 4655 4656 break; 4657 } 4658 /* Opcode: ResetCount * * * * * 4659 ** 4660 ** The value of the change counter is copied to the database handle 4661 ** change counter (returned by subsequent calls to sqlite3_changes()). 4662 ** Then the VMs internal change counter resets to 0. 4663 ** This is used by trigger programs. 4664 */ 4665 case OP_ResetCount: { 4666 sqlite3VdbeSetChanges(db, p->nChange); 4667 p->nChange = 0; 4668 break; 4669 } 4670 4671 /* Opcode: SorterCompare P1 P2 P3 P4 4672 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4673 ** 4674 ** P1 is a sorter cursor. This instruction compares a prefix of the 4675 ** record blob in register P3 against a prefix of the entry that 4676 ** the sorter cursor currently points to. Only the first P4 fields 4677 ** of r[P3] and the sorter record are compared. 4678 ** 4679 ** If either P3 or the sorter contains a NULL in one of their significant 4680 ** fields (not counting the P4 fields at the end which are ignored) then 4681 ** the comparison is assumed to be equal. 4682 ** 4683 ** Fall through to next instruction if the two records compare equal to 4684 ** each other. Jump to P2 if they are different. 4685 */ 4686 case OP_SorterCompare: { 4687 VdbeCursor *pC; 4688 int res; 4689 int nKeyCol; 4690 4691 pC = p->apCsr[pOp->p1]; 4692 assert( isSorter(pC) ); 4693 assert( pOp->p4type==P4_INT32 ); 4694 pIn3 = &aMem[pOp->p3]; 4695 nKeyCol = pOp->p4.i; 4696 res = 0; 4697 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4698 VdbeBranchTaken(res!=0,2); 4699 if( rc ) goto abort_due_to_error; 4700 if( res ) goto jump_to_p2; 4701 break; 4702 }; 4703 4704 /* Opcode: SorterData P1 P2 P3 * * 4705 ** Synopsis: r[P2]=data 4706 ** 4707 ** Write into register P2 the current sorter data for sorter cursor P1. 4708 ** Then clear the column header cache on cursor P3. 4709 ** 4710 ** This opcode is normally use to move a record out of the sorter and into 4711 ** a register that is the source for a pseudo-table cursor created using 4712 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4713 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4714 ** us from having to issue a separate NullRow instruction to clear that cache. 4715 */ 4716 case OP_SorterData: { 4717 VdbeCursor *pC; 4718 4719 pOut = &aMem[pOp->p2]; 4720 pC = p->apCsr[pOp->p1]; 4721 assert( isSorter(pC) ); 4722 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4723 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4724 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4725 if( rc ) goto abort_due_to_error; 4726 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4727 break; 4728 } 4729 4730 /* Opcode: RowData P1 P2 P3 * * 4731 ** Synopsis: r[P2]=data 4732 ** 4733 ** Write into register P2 the complete row content for the row at 4734 ** which cursor P1 is currently pointing. 4735 ** There is no interpretation of the data. 4736 ** It is just copied onto the P2 register exactly as 4737 ** it is found in the database file. 4738 ** 4739 ** If cursor P1 is an index, then the content is the key of the row. 4740 ** If cursor P2 is a table, then the content extracted is the data. 4741 ** 4742 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4743 ** of a real table, not a pseudo-table. 4744 ** 4745 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer 4746 ** into the database page. That means that the content of the output 4747 ** register will be invalidated as soon as the cursor moves - including 4748 ** moves caused by other cursors that "save" the the current cursors 4749 ** position in order that they can write to the same table. If P3==0 4750 ** then a copy of the data is made into memory. P3!=0 is faster, but 4751 ** P3==0 is safer. 4752 ** 4753 ** If P3!=0 then the content of the P2 register is unsuitable for use 4754 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4755 ** The P2 register content is invalidated by opcodes like OP_Function or 4756 ** by any use of another cursor pointing to the same table. 4757 */ 4758 case OP_RowData: { 4759 VdbeCursor *pC; 4760 BtCursor *pCrsr; 4761 u32 n; 4762 4763 pOut = out2Prerelease(p, pOp); 4764 4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4766 pC = p->apCsr[pOp->p1]; 4767 assert( pC!=0 ); 4768 assert( pC->eCurType==CURTYPE_BTREE ); 4769 assert( isSorter(pC)==0 ); 4770 assert( pC->nullRow==0 ); 4771 assert( pC->uc.pCursor!=0 ); 4772 pCrsr = pC->uc.pCursor; 4773 4774 /* The OP_RowData opcodes always follow OP_NotExists or 4775 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4776 ** that might invalidate the cursor. 4777 ** If this where not the case, on of the following assert()s 4778 ** would fail. Should this ever change (because of changes in the code 4779 ** generator) then the fix would be to insert a call to 4780 ** sqlite3VdbeCursorMoveto(). 4781 */ 4782 assert( pC->deferredMoveto==0 ); 4783 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4784 #if 0 /* Not required due to the previous to assert() statements */ 4785 rc = sqlite3VdbeCursorMoveto(pC); 4786 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4787 #endif 4788 4789 n = sqlite3BtreePayloadSize(pCrsr); 4790 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4791 goto too_big; 4792 } 4793 testcase( n==0 ); 4794 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4795 if( rc ) goto abort_due_to_error; 4796 if( !pOp->p3 ) Deephemeralize(pOut); 4797 UPDATE_MAX_BLOBSIZE(pOut); 4798 REGISTER_TRACE(pOp->p2, pOut); 4799 break; 4800 } 4801 4802 /* Opcode: Rowid P1 P2 * * * 4803 ** Synopsis: r[P2]=rowid 4804 ** 4805 ** Store in register P2 an integer which is the key of the table entry that 4806 ** P1 is currently point to. 4807 ** 4808 ** P1 can be either an ordinary table or a virtual table. There used to 4809 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4810 ** one opcode now works for both table types. 4811 */ 4812 case OP_Rowid: { /* out2 */ 4813 VdbeCursor *pC; 4814 i64 v; 4815 sqlite3_vtab *pVtab; 4816 const sqlite3_module *pModule; 4817 4818 pOut = out2Prerelease(p, pOp); 4819 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4820 pC = p->apCsr[pOp->p1]; 4821 assert( pC!=0 ); 4822 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4823 if( pC->nullRow ){ 4824 pOut->flags = MEM_Null; 4825 break; 4826 }else if( pC->deferredMoveto ){ 4827 v = pC->movetoTarget; 4828 #ifndef SQLITE_OMIT_VIRTUALTABLE 4829 }else if( pC->eCurType==CURTYPE_VTAB ){ 4830 assert( pC->uc.pVCur!=0 ); 4831 pVtab = pC->uc.pVCur->pVtab; 4832 pModule = pVtab->pModule; 4833 assert( pModule->xRowid ); 4834 rc = pModule->xRowid(pC->uc.pVCur, &v); 4835 sqlite3VtabImportErrmsg(p, pVtab); 4836 if( rc ) goto abort_due_to_error; 4837 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4838 }else{ 4839 assert( pC->eCurType==CURTYPE_BTREE ); 4840 assert( pC->uc.pCursor!=0 ); 4841 rc = sqlite3VdbeCursorRestore(pC); 4842 if( rc ) goto abort_due_to_error; 4843 if( pC->nullRow ){ 4844 pOut->flags = MEM_Null; 4845 break; 4846 } 4847 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4848 } 4849 pOut->u.i = v; 4850 break; 4851 } 4852 4853 /* Opcode: NullRow P1 * * * * 4854 ** 4855 ** Move the cursor P1 to a null row. Any OP_Column operations 4856 ** that occur while the cursor is on the null row will always 4857 ** write a NULL. 4858 */ 4859 case OP_NullRow: { 4860 VdbeCursor *pC; 4861 4862 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4863 pC = p->apCsr[pOp->p1]; 4864 assert( pC!=0 ); 4865 pC->nullRow = 1; 4866 pC->cacheStatus = CACHE_STALE; 4867 if( pC->eCurType==CURTYPE_BTREE ){ 4868 assert( pC->uc.pCursor!=0 ); 4869 sqlite3BtreeClearCursor(pC->uc.pCursor); 4870 } 4871 break; 4872 } 4873 4874 /* Opcode: SeekEnd P1 * * * * 4875 ** 4876 ** Position cursor P1 at the end of the btree for the purpose of 4877 ** appending a new entry onto the btree. 4878 ** 4879 ** It is assumed that the cursor is used only for appending and so 4880 ** if the cursor is valid, then the cursor must already be pointing 4881 ** at the end of the btree and so no changes are made to 4882 ** the cursor. 4883 */ 4884 /* Opcode: Last P1 P2 * * * 4885 ** 4886 ** The next use of the Rowid or Column or Prev instruction for P1 4887 ** will refer to the last entry in the database table or index. 4888 ** If the table or index is empty and P2>0, then jump immediately to P2. 4889 ** If P2 is 0 or if the table or index is not empty, fall through 4890 ** to the following instruction. 4891 ** 4892 ** This opcode leaves the cursor configured to move in reverse order, 4893 ** from the end toward the beginning. In other words, the cursor is 4894 ** configured to use Prev, not Next. 4895 */ 4896 case OP_SeekEnd: 4897 case OP_Last: { /* jump */ 4898 VdbeCursor *pC; 4899 BtCursor *pCrsr; 4900 int res; 4901 4902 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4903 pC = p->apCsr[pOp->p1]; 4904 assert( pC!=0 ); 4905 assert( pC->eCurType==CURTYPE_BTREE ); 4906 pCrsr = pC->uc.pCursor; 4907 res = 0; 4908 assert( pCrsr!=0 ); 4909 #ifdef SQLITE_DEBUG 4910 pC->seekOp = pOp->opcode; 4911 #endif 4912 if( pOp->opcode==OP_SeekEnd ){ 4913 assert( pOp->p2==0 ); 4914 pC->seekResult = -1; 4915 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 4916 break; 4917 } 4918 } 4919 rc = sqlite3BtreeLast(pCrsr, &res); 4920 pC->nullRow = (u8)res; 4921 pC->deferredMoveto = 0; 4922 pC->cacheStatus = CACHE_STALE; 4923 if( rc ) goto abort_due_to_error; 4924 if( pOp->p2>0 ){ 4925 VdbeBranchTaken(res!=0,2); 4926 if( res ) goto jump_to_p2; 4927 } 4928 break; 4929 } 4930 4931 /* Opcode: IfSmaller P1 P2 P3 * * 4932 ** 4933 ** Estimate the number of rows in the table P1. Jump to P2 if that 4934 ** estimate is less than approximately 2**(0.1*P3). 4935 */ 4936 case OP_IfSmaller: { /* jump */ 4937 VdbeCursor *pC; 4938 BtCursor *pCrsr; 4939 int res; 4940 i64 sz; 4941 4942 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4943 pC = p->apCsr[pOp->p1]; 4944 assert( pC!=0 ); 4945 pCrsr = pC->uc.pCursor; 4946 assert( pCrsr ); 4947 rc = sqlite3BtreeFirst(pCrsr, &res); 4948 if( rc ) goto abort_due_to_error; 4949 if( res==0 ){ 4950 sz = sqlite3BtreeRowCountEst(pCrsr); 4951 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 4952 } 4953 VdbeBranchTaken(res!=0,2); 4954 if( res ) goto jump_to_p2; 4955 break; 4956 } 4957 4958 4959 /* Opcode: SorterSort P1 P2 * * * 4960 ** 4961 ** After all records have been inserted into the Sorter object 4962 ** identified by P1, invoke this opcode to actually do the sorting. 4963 ** Jump to P2 if there are no records to be sorted. 4964 ** 4965 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 4966 ** for Sorter objects. 4967 */ 4968 /* Opcode: Sort P1 P2 * * * 4969 ** 4970 ** This opcode does exactly the same thing as OP_Rewind except that 4971 ** it increments an undocumented global variable used for testing. 4972 ** 4973 ** Sorting is accomplished by writing records into a sorting index, 4974 ** then rewinding that index and playing it back from beginning to 4975 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4976 ** rewinding so that the global variable will be incremented and 4977 ** regression tests can determine whether or not the optimizer is 4978 ** correctly optimizing out sorts. 4979 */ 4980 case OP_SorterSort: /* jump */ 4981 case OP_Sort: { /* jump */ 4982 #ifdef SQLITE_TEST 4983 sqlite3_sort_count++; 4984 sqlite3_search_count--; 4985 #endif 4986 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4987 /* Fall through into OP_Rewind */ 4988 } 4989 /* Opcode: Rewind P1 P2 * * * 4990 ** 4991 ** The next use of the Rowid or Column or Next instruction for P1 4992 ** will refer to the first entry in the database table or index. 4993 ** If the table or index is empty, jump immediately to P2. 4994 ** If the table or index is not empty, fall through to the following 4995 ** instruction. 4996 ** 4997 ** This opcode leaves the cursor configured to move in forward order, 4998 ** from the beginning toward the end. In other words, the cursor is 4999 ** configured to use Next, not Prev. 5000 */ 5001 case OP_Rewind: { /* jump */ 5002 VdbeCursor *pC; 5003 BtCursor *pCrsr; 5004 int res; 5005 5006 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5007 pC = p->apCsr[pOp->p1]; 5008 assert( pC!=0 ); 5009 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5010 res = 1; 5011 #ifdef SQLITE_DEBUG 5012 pC->seekOp = OP_Rewind; 5013 #endif 5014 if( isSorter(pC) ){ 5015 rc = sqlite3VdbeSorterRewind(pC, &res); 5016 }else{ 5017 assert( pC->eCurType==CURTYPE_BTREE ); 5018 pCrsr = pC->uc.pCursor; 5019 assert( pCrsr ); 5020 rc = sqlite3BtreeFirst(pCrsr, &res); 5021 pC->deferredMoveto = 0; 5022 pC->cacheStatus = CACHE_STALE; 5023 } 5024 if( rc ) goto abort_due_to_error; 5025 pC->nullRow = (u8)res; 5026 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5027 VdbeBranchTaken(res!=0,2); 5028 if( res ) goto jump_to_p2; 5029 break; 5030 } 5031 5032 /* Opcode: Next P1 P2 P3 P4 P5 5033 ** 5034 ** Advance cursor P1 so that it points to the next key/data pair in its 5035 ** table or index. If there are no more key/value pairs then fall through 5036 ** to the following instruction. But if the cursor advance was successful, 5037 ** jump immediately to P2. 5038 ** 5039 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5040 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5041 ** to follow SeekLT, SeekLE, or OP_Last. 5042 ** 5043 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5044 ** been opened prior to this opcode or the program will segfault. 5045 ** 5046 ** The P3 value is a hint to the btree implementation. If P3==1, that 5047 ** means P1 is an SQL index and that this instruction could have been 5048 ** omitted if that index had been unique. P3 is usually 0. P3 is 5049 ** always either 0 or 1. 5050 ** 5051 ** P4 is always of type P4_ADVANCE. The function pointer points to 5052 ** sqlite3BtreeNext(). 5053 ** 5054 ** If P5 is positive and the jump is taken, then event counter 5055 ** number P5-1 in the prepared statement is incremented. 5056 ** 5057 ** See also: Prev, NextIfOpen 5058 */ 5059 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 5060 ** 5061 ** This opcode works just like Next except that if cursor P1 is not 5062 ** open it behaves a no-op. 5063 */ 5064 /* Opcode: Prev P1 P2 P3 P4 P5 5065 ** 5066 ** Back up cursor P1 so that it points to the previous key/data pair in its 5067 ** table or index. If there is no previous key/value pairs then fall through 5068 ** to the following instruction. But if the cursor backup was successful, 5069 ** jump immediately to P2. 5070 ** 5071 ** 5072 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5073 ** OP_Last opcode used to position the cursor. Prev is not allowed 5074 ** to follow SeekGT, SeekGE, or OP_Rewind. 5075 ** 5076 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5077 ** not open then the behavior is undefined. 5078 ** 5079 ** The P3 value is a hint to the btree implementation. If P3==1, that 5080 ** means P1 is an SQL index and that this instruction could have been 5081 ** omitted if that index had been unique. P3 is usually 0. P3 is 5082 ** always either 0 or 1. 5083 ** 5084 ** P4 is always of type P4_ADVANCE. The function pointer points to 5085 ** sqlite3BtreePrevious(). 5086 ** 5087 ** If P5 is positive and the jump is taken, then event counter 5088 ** number P5-1 in the prepared statement is incremented. 5089 */ 5090 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 5091 ** 5092 ** This opcode works just like Prev except that if cursor P1 is not 5093 ** open it behaves a no-op. 5094 */ 5095 /* Opcode: SorterNext P1 P2 * * P5 5096 ** 5097 ** This opcode works just like OP_Next except that P1 must be a 5098 ** sorter object for which the OP_SorterSort opcode has been 5099 ** invoked. This opcode advances the cursor to the next sorted 5100 ** record, or jumps to P2 if there are no more sorted records. 5101 */ 5102 case OP_SorterNext: { /* jump */ 5103 VdbeCursor *pC; 5104 5105 pC = p->apCsr[pOp->p1]; 5106 assert( isSorter(pC) ); 5107 rc = sqlite3VdbeSorterNext(db, pC); 5108 goto next_tail; 5109 case OP_PrevIfOpen: /* jump */ 5110 case OP_NextIfOpen: /* jump */ 5111 if( p->apCsr[pOp->p1]==0 ) break; 5112 /* Fall through */ 5113 case OP_Prev: /* jump */ 5114 case OP_Next: /* jump */ 5115 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5116 assert( pOp->p5<ArraySize(p->aCounter) ); 5117 pC = p->apCsr[pOp->p1]; 5118 assert( pC!=0 ); 5119 assert( pC->deferredMoveto==0 ); 5120 assert( pC->eCurType==CURTYPE_BTREE ); 5121 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5122 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5123 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 5124 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 5125 5126 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 5127 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5128 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 5129 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5130 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 5131 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 5132 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5133 || pC->seekOp==OP_Last ); 5134 5135 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5136 next_tail: 5137 pC->cacheStatus = CACHE_STALE; 5138 VdbeBranchTaken(rc==SQLITE_OK,2); 5139 if( rc==SQLITE_OK ){ 5140 pC->nullRow = 0; 5141 p->aCounter[pOp->p5]++; 5142 #ifdef SQLITE_TEST 5143 sqlite3_search_count++; 5144 #endif 5145 goto jump_to_p2_and_check_for_interrupt; 5146 } 5147 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5148 rc = SQLITE_OK; 5149 pC->nullRow = 1; 5150 goto check_for_interrupt; 5151 } 5152 5153 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5154 ** Synopsis: key=r[P2] 5155 ** 5156 ** Register P2 holds an SQL index key made using the 5157 ** MakeRecord instructions. This opcode writes that key 5158 ** into the index P1. Data for the entry is nil. 5159 ** 5160 ** If P4 is not zero, then it is the number of values in the unpacked 5161 ** key of reg(P2). In that case, P3 is the index of the first register 5162 ** for the unpacked key. The availability of the unpacked key can sometimes 5163 ** be an optimization. 5164 ** 5165 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5166 ** that this insert is likely to be an append. 5167 ** 5168 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5169 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5170 ** then the change counter is unchanged. 5171 ** 5172 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5173 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5174 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5175 ** seeks on the cursor or if the most recent seek used a key equivalent 5176 ** to P2. 5177 ** 5178 ** This instruction only works for indices. The equivalent instruction 5179 ** for tables is OP_Insert. 5180 */ 5181 /* Opcode: SorterInsert P1 P2 * * * 5182 ** Synopsis: key=r[P2] 5183 ** 5184 ** Register P2 holds an SQL index key made using the 5185 ** MakeRecord instructions. This opcode writes that key 5186 ** into the sorter P1. Data for the entry is nil. 5187 */ 5188 case OP_SorterInsert: /* in2 */ 5189 case OP_IdxInsert: { /* in2 */ 5190 VdbeCursor *pC; 5191 BtreePayload x; 5192 5193 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5194 pC = p->apCsr[pOp->p1]; 5195 assert( pC!=0 ); 5196 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5197 pIn2 = &aMem[pOp->p2]; 5198 assert( pIn2->flags & MEM_Blob ); 5199 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5200 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5201 assert( pC->isTable==0 ); 5202 rc = ExpandBlob(pIn2); 5203 if( rc ) goto abort_due_to_error; 5204 if( pOp->opcode==OP_SorterInsert ){ 5205 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5206 }else{ 5207 x.nKey = pIn2->n; 5208 x.pKey = pIn2->z; 5209 x.aMem = aMem + pOp->p3; 5210 x.nMem = (u16)pOp->p4.i; 5211 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5212 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5213 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5214 ); 5215 assert( pC->deferredMoveto==0 ); 5216 pC->cacheStatus = CACHE_STALE; 5217 } 5218 if( rc) goto abort_due_to_error; 5219 break; 5220 } 5221 5222 /* Opcode: IdxDelete P1 P2 P3 * * 5223 ** Synopsis: key=r[P2@P3] 5224 ** 5225 ** The content of P3 registers starting at register P2 form 5226 ** an unpacked index key. This opcode removes that entry from the 5227 ** index opened by cursor P1. 5228 */ 5229 case OP_IdxDelete: { 5230 VdbeCursor *pC; 5231 BtCursor *pCrsr; 5232 int res; 5233 UnpackedRecord r; 5234 5235 assert( pOp->p3>0 ); 5236 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5237 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5238 pC = p->apCsr[pOp->p1]; 5239 assert( pC!=0 ); 5240 assert( pC->eCurType==CURTYPE_BTREE ); 5241 pCrsr = pC->uc.pCursor; 5242 assert( pCrsr!=0 ); 5243 assert( pOp->p5==0 ); 5244 r.pKeyInfo = pC->pKeyInfo; 5245 r.nField = (u16)pOp->p3; 5246 r.default_rc = 0; 5247 r.aMem = &aMem[pOp->p2]; 5248 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5249 if( rc ) goto abort_due_to_error; 5250 if( res==0 ){ 5251 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5252 if( rc ) goto abort_due_to_error; 5253 } 5254 assert( pC->deferredMoveto==0 ); 5255 pC->cacheStatus = CACHE_STALE; 5256 pC->seekResult = 0; 5257 break; 5258 } 5259 5260 /* Opcode: DeferredSeek P1 * P3 P4 * 5261 ** Synopsis: Move P3 to P1.rowid if needed 5262 ** 5263 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5264 ** table. This opcode does a deferred seek of the P3 table cursor 5265 ** to the row that corresponds to the current row of P1. 5266 ** 5267 ** This is a deferred seek. Nothing actually happens until 5268 ** the cursor is used to read a record. That way, if no reads 5269 ** occur, no unnecessary I/O happens. 5270 ** 5271 ** P4 may be an array of integers (type P4_INTARRAY) containing 5272 ** one entry for each column in the P3 table. If array entry a(i) 5273 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5274 ** equivalent to performing the deferred seek and then reading column i 5275 ** from P1. This information is stored in P3 and used to redirect 5276 ** reads against P3 over to P1, thus possibly avoiding the need to 5277 ** seek and read cursor P3. 5278 */ 5279 /* Opcode: IdxRowid P1 P2 * * * 5280 ** Synopsis: r[P2]=rowid 5281 ** 5282 ** Write into register P2 an integer which is the last entry in the record at 5283 ** the end of the index key pointed to by cursor P1. This integer should be 5284 ** the rowid of the table entry to which this index entry points. 5285 ** 5286 ** See also: Rowid, MakeRecord. 5287 */ 5288 case OP_DeferredSeek: 5289 case OP_IdxRowid: { /* out2 */ 5290 VdbeCursor *pC; /* The P1 index cursor */ 5291 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5292 i64 rowid; /* Rowid that P1 current points to */ 5293 5294 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5295 pC = p->apCsr[pOp->p1]; 5296 assert( pC!=0 ); 5297 assert( pC->eCurType==CURTYPE_BTREE ); 5298 assert( pC->uc.pCursor!=0 ); 5299 assert( pC->isTable==0 ); 5300 assert( pC->deferredMoveto==0 ); 5301 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5302 5303 /* The IdxRowid and Seek opcodes are combined because of the commonality 5304 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5305 rc = sqlite3VdbeCursorRestore(pC); 5306 5307 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5308 ** out from under the cursor. That will never happens for an IdxRowid 5309 ** or Seek opcode */ 5310 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5311 5312 if( !pC->nullRow ){ 5313 rowid = 0; /* Not needed. Only used to silence a warning. */ 5314 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5315 if( rc!=SQLITE_OK ){ 5316 goto abort_due_to_error; 5317 } 5318 if( pOp->opcode==OP_DeferredSeek ){ 5319 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5320 pTabCur = p->apCsr[pOp->p3]; 5321 assert( pTabCur!=0 ); 5322 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5323 assert( pTabCur->uc.pCursor!=0 ); 5324 assert( pTabCur->isTable ); 5325 pTabCur->nullRow = 0; 5326 pTabCur->movetoTarget = rowid; 5327 pTabCur->deferredMoveto = 1; 5328 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5329 pTabCur->aAltMap = pOp->p4.ai; 5330 pTabCur->pAltCursor = pC; 5331 }else{ 5332 pOut = out2Prerelease(p, pOp); 5333 pOut->u.i = rowid; 5334 } 5335 }else{ 5336 assert( pOp->opcode==OP_IdxRowid ); 5337 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5338 } 5339 break; 5340 } 5341 5342 /* Opcode: IdxGE P1 P2 P3 P4 P5 5343 ** Synopsis: key=r[P3@P4] 5344 ** 5345 ** The P4 register values beginning with P3 form an unpacked index 5346 ** key that omits the PRIMARY KEY. Compare this key value against the index 5347 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5348 ** fields at the end. 5349 ** 5350 ** If the P1 index entry is greater than or equal to the key value 5351 ** then jump to P2. Otherwise fall through to the next instruction. 5352 */ 5353 /* Opcode: IdxGT P1 P2 P3 P4 P5 5354 ** Synopsis: key=r[P3@P4] 5355 ** 5356 ** The P4 register values beginning with P3 form an unpacked index 5357 ** key that omits the PRIMARY KEY. Compare this key value against the index 5358 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5359 ** fields at the end. 5360 ** 5361 ** If the P1 index entry is greater than the key value 5362 ** then jump to P2. Otherwise fall through to the next instruction. 5363 */ 5364 /* Opcode: IdxLT P1 P2 P3 P4 P5 5365 ** Synopsis: key=r[P3@P4] 5366 ** 5367 ** The P4 register values beginning with P3 form an unpacked index 5368 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5369 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5370 ** ROWID on the P1 index. 5371 ** 5372 ** If the P1 index entry is less than the key value then jump to P2. 5373 ** Otherwise fall through to the next instruction. 5374 */ 5375 /* Opcode: IdxLE P1 P2 P3 P4 P5 5376 ** Synopsis: key=r[P3@P4] 5377 ** 5378 ** The P4 register values beginning with P3 form an unpacked index 5379 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5380 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5381 ** ROWID on the P1 index. 5382 ** 5383 ** If the P1 index entry is less than or equal to the key value then jump 5384 ** to P2. Otherwise fall through to the next instruction. 5385 */ 5386 case OP_IdxLE: /* jump */ 5387 case OP_IdxGT: /* jump */ 5388 case OP_IdxLT: /* jump */ 5389 case OP_IdxGE: { /* jump */ 5390 VdbeCursor *pC; 5391 int res; 5392 UnpackedRecord r; 5393 5394 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5395 pC = p->apCsr[pOp->p1]; 5396 assert( pC!=0 ); 5397 assert( pC->isOrdered ); 5398 assert( pC->eCurType==CURTYPE_BTREE ); 5399 assert( pC->uc.pCursor!=0); 5400 assert( pC->deferredMoveto==0 ); 5401 assert( pOp->p5==0 || pOp->p5==1 ); 5402 assert( pOp->p4type==P4_INT32 ); 5403 r.pKeyInfo = pC->pKeyInfo; 5404 r.nField = (u16)pOp->p4.i; 5405 if( pOp->opcode<OP_IdxLT ){ 5406 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5407 r.default_rc = -1; 5408 }else{ 5409 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5410 r.default_rc = 0; 5411 } 5412 r.aMem = &aMem[pOp->p3]; 5413 #ifdef SQLITE_DEBUG 5414 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5415 #endif 5416 res = 0; /* Not needed. Only used to silence a warning. */ 5417 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5418 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5419 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5420 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5421 res = -res; 5422 }else{ 5423 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5424 res++; 5425 } 5426 VdbeBranchTaken(res>0,2); 5427 if( rc ) goto abort_due_to_error; 5428 if( res>0 ) goto jump_to_p2; 5429 break; 5430 } 5431 5432 /* Opcode: Destroy P1 P2 P3 * * 5433 ** 5434 ** Delete an entire database table or index whose root page in the database 5435 ** file is given by P1. 5436 ** 5437 ** The table being destroyed is in the main database file if P3==0. If 5438 ** P3==1 then the table to be clear is in the auxiliary database file 5439 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5440 ** 5441 ** If AUTOVACUUM is enabled then it is possible that another root page 5442 ** might be moved into the newly deleted root page in order to keep all 5443 ** root pages contiguous at the beginning of the database. The former 5444 ** value of the root page that moved - its value before the move occurred - 5445 ** is stored in register P2. If no page movement was required (because the 5446 ** table being dropped was already the last one in the database) then a 5447 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5448 ** is stored in register P2. 5449 ** 5450 ** This opcode throws an error if there are any active reader VMs when 5451 ** it is invoked. This is done to avoid the difficulty associated with 5452 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5453 ** database. This error is thrown even if the database is not an AUTOVACUUM 5454 ** db in order to avoid introducing an incompatibility between autovacuum 5455 ** and non-autovacuum modes. 5456 ** 5457 ** See also: Clear 5458 */ 5459 case OP_Destroy: { /* out2 */ 5460 int iMoved; 5461 int iDb; 5462 5463 assert( p->readOnly==0 ); 5464 assert( pOp->p1>1 ); 5465 pOut = out2Prerelease(p, pOp); 5466 pOut->flags = MEM_Null; 5467 if( db->nVdbeRead > db->nVDestroy+1 ){ 5468 rc = SQLITE_LOCKED; 5469 p->errorAction = OE_Abort; 5470 goto abort_due_to_error; 5471 }else{ 5472 iDb = pOp->p3; 5473 assert( DbMaskTest(p->btreeMask, iDb) ); 5474 iMoved = 0; /* Not needed. Only to silence a warning. */ 5475 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5476 pOut->flags = MEM_Int; 5477 pOut->u.i = iMoved; 5478 if( rc ) goto abort_due_to_error; 5479 #ifndef SQLITE_OMIT_AUTOVACUUM 5480 if( iMoved!=0 ){ 5481 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5482 /* All OP_Destroy operations occur on the same btree */ 5483 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5484 resetSchemaOnFault = iDb+1; 5485 } 5486 #endif 5487 } 5488 break; 5489 } 5490 5491 /* Opcode: Clear P1 P2 P3 5492 ** 5493 ** Delete all contents of the database table or index whose root page 5494 ** in the database file is given by P1. But, unlike Destroy, do not 5495 ** remove the table or index from the database file. 5496 ** 5497 ** The table being clear is in the main database file if P2==0. If 5498 ** P2==1 then the table to be clear is in the auxiliary database file 5499 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5500 ** 5501 ** If the P3 value is non-zero, then the table referred to must be an 5502 ** intkey table (an SQL table, not an index). In this case the row change 5503 ** count is incremented by the number of rows in the table being cleared. 5504 ** If P3 is greater than zero, then the value stored in register P3 is 5505 ** also incremented by the number of rows in the table being cleared. 5506 ** 5507 ** See also: Destroy 5508 */ 5509 case OP_Clear: { 5510 int nChange; 5511 5512 nChange = 0; 5513 assert( p->readOnly==0 ); 5514 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5515 rc = sqlite3BtreeClearTable( 5516 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5517 ); 5518 if( pOp->p3 ){ 5519 p->nChange += nChange; 5520 if( pOp->p3>0 ){ 5521 assert( memIsValid(&aMem[pOp->p3]) ); 5522 memAboutToChange(p, &aMem[pOp->p3]); 5523 aMem[pOp->p3].u.i += nChange; 5524 } 5525 } 5526 if( rc ) goto abort_due_to_error; 5527 break; 5528 } 5529 5530 /* Opcode: ResetSorter P1 * * * * 5531 ** 5532 ** Delete all contents from the ephemeral table or sorter 5533 ** that is open on cursor P1. 5534 ** 5535 ** This opcode only works for cursors used for sorting and 5536 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5537 */ 5538 case OP_ResetSorter: { 5539 VdbeCursor *pC; 5540 5541 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5542 pC = p->apCsr[pOp->p1]; 5543 assert( pC!=0 ); 5544 if( isSorter(pC) ){ 5545 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5546 }else{ 5547 assert( pC->eCurType==CURTYPE_BTREE ); 5548 assert( pC->isEphemeral ); 5549 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5550 if( rc ) goto abort_due_to_error; 5551 } 5552 break; 5553 } 5554 5555 /* Opcode: CreateBtree P1 P2 P3 * * 5556 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5557 ** 5558 ** Allocate a new b-tree in the main database file if P1==0 or in the 5559 ** TEMP database file if P1==1 or in an attached database if 5560 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5561 ** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table. 5562 ** The root page number of the new b-tree is stored in register P2. 5563 */ 5564 case OP_CreateBtree: { /* out2 */ 5565 int pgno; 5566 Db *pDb; 5567 5568 pOut = out2Prerelease(p, pOp); 5569 pgno = 0; 5570 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5571 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5572 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5573 assert( p->readOnly==0 ); 5574 pDb = &db->aDb[pOp->p1]; 5575 assert( pDb->pBt!=0 ); 5576 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5577 if( rc ) goto abort_due_to_error; 5578 pOut->u.i = pgno; 5579 break; 5580 } 5581 5582 /* Opcode: SqlExec * * * P4 * 5583 ** 5584 ** Run the SQL statement or statements specified in the P4 string. 5585 */ 5586 case OP_SqlExec: { 5587 db->nSqlExec++; 5588 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5589 db->nSqlExec--; 5590 if( rc ) goto abort_due_to_error; 5591 break; 5592 } 5593 5594 /* Opcode: ParseSchema P1 * * P4 * 5595 ** 5596 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5597 ** that match the WHERE clause P4. 5598 ** 5599 ** This opcode invokes the parser to create a new virtual machine, 5600 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5601 */ 5602 case OP_ParseSchema: { 5603 int iDb; 5604 const char *zMaster; 5605 char *zSql; 5606 InitData initData; 5607 5608 /* Any prepared statement that invokes this opcode will hold mutexes 5609 ** on every btree. This is a prerequisite for invoking 5610 ** sqlite3InitCallback(). 5611 */ 5612 #ifdef SQLITE_DEBUG 5613 for(iDb=0; iDb<db->nDb; iDb++){ 5614 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5615 } 5616 #endif 5617 5618 iDb = pOp->p1; 5619 assert( iDb>=0 && iDb<db->nDb ); 5620 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5621 /* Used to be a conditional */ { 5622 zMaster = MASTER_NAME; 5623 initData.db = db; 5624 initData.iDb = pOp->p1; 5625 initData.pzErrMsg = &p->zErrMsg; 5626 zSql = sqlite3MPrintf(db, 5627 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5628 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5629 if( zSql==0 ){ 5630 rc = SQLITE_NOMEM_BKPT; 5631 }else{ 5632 assert( db->init.busy==0 ); 5633 db->init.busy = 1; 5634 initData.rc = SQLITE_OK; 5635 assert( !db->mallocFailed ); 5636 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5637 if( rc==SQLITE_OK ) rc = initData.rc; 5638 sqlite3DbFreeNN(db, zSql); 5639 db->init.busy = 0; 5640 } 5641 } 5642 if( rc ){ 5643 sqlite3ResetAllSchemasOfConnection(db); 5644 if( rc==SQLITE_NOMEM ){ 5645 goto no_mem; 5646 } 5647 goto abort_due_to_error; 5648 } 5649 break; 5650 } 5651 5652 #if !defined(SQLITE_OMIT_ANALYZE) 5653 /* Opcode: LoadAnalysis P1 * * * * 5654 ** 5655 ** Read the sqlite_stat1 table for database P1 and load the content 5656 ** of that table into the internal index hash table. This will cause 5657 ** the analysis to be used when preparing all subsequent queries. 5658 */ 5659 case OP_LoadAnalysis: { 5660 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5661 rc = sqlite3AnalysisLoad(db, pOp->p1); 5662 if( rc ) goto abort_due_to_error; 5663 break; 5664 } 5665 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5666 5667 /* Opcode: DropTable P1 * * P4 * 5668 ** 5669 ** Remove the internal (in-memory) data structures that describe 5670 ** the table named P4 in database P1. This is called after a table 5671 ** is dropped from disk (using the Destroy opcode) in order to keep 5672 ** the internal representation of the 5673 ** schema consistent with what is on disk. 5674 */ 5675 case OP_DropTable: { 5676 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5677 break; 5678 } 5679 5680 /* Opcode: DropIndex P1 * * P4 * 5681 ** 5682 ** Remove the internal (in-memory) data structures that describe 5683 ** the index named P4 in database P1. This is called after an index 5684 ** is dropped from disk (using the Destroy opcode) 5685 ** in order to keep the internal representation of the 5686 ** schema consistent with what is on disk. 5687 */ 5688 case OP_DropIndex: { 5689 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5690 break; 5691 } 5692 5693 /* Opcode: DropTrigger P1 * * P4 * 5694 ** 5695 ** Remove the internal (in-memory) data structures that describe 5696 ** the trigger named P4 in database P1. This is called after a trigger 5697 ** is dropped from disk (using the Destroy opcode) in order to keep 5698 ** the internal representation of the 5699 ** schema consistent with what is on disk. 5700 */ 5701 case OP_DropTrigger: { 5702 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5703 break; 5704 } 5705 5706 5707 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5708 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5709 ** 5710 ** Do an analysis of the currently open database. Store in 5711 ** register P1 the text of an error message describing any problems. 5712 ** If no problems are found, store a NULL in register P1. 5713 ** 5714 ** The register P3 contains one less than the maximum number of allowed errors. 5715 ** At most reg(P3) errors will be reported. 5716 ** In other words, the analysis stops as soon as reg(P1) errors are 5717 ** seen. Reg(P1) is updated with the number of errors remaining. 5718 ** 5719 ** The root page numbers of all tables in the database are integers 5720 ** stored in P4_INTARRAY argument. 5721 ** 5722 ** If P5 is not zero, the check is done on the auxiliary database 5723 ** file, not the main database file. 5724 ** 5725 ** This opcode is used to implement the integrity_check pragma. 5726 */ 5727 case OP_IntegrityCk: { 5728 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5729 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5730 int nErr; /* Number of errors reported */ 5731 char *z; /* Text of the error report */ 5732 Mem *pnErr; /* Register keeping track of errors remaining */ 5733 5734 assert( p->bIsReader ); 5735 nRoot = pOp->p2; 5736 aRoot = pOp->p4.ai; 5737 assert( nRoot>0 ); 5738 assert( aRoot[0]==nRoot ); 5739 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5740 pnErr = &aMem[pOp->p3]; 5741 assert( (pnErr->flags & MEM_Int)!=0 ); 5742 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5743 pIn1 = &aMem[pOp->p1]; 5744 assert( pOp->p5<db->nDb ); 5745 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5746 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 5747 (int)pnErr->u.i+1, &nErr); 5748 sqlite3VdbeMemSetNull(pIn1); 5749 if( nErr==0 ){ 5750 assert( z==0 ); 5751 }else if( z==0 ){ 5752 goto no_mem; 5753 }else{ 5754 pnErr->u.i -= nErr-1; 5755 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5756 } 5757 UPDATE_MAX_BLOBSIZE(pIn1); 5758 sqlite3VdbeChangeEncoding(pIn1, encoding); 5759 break; 5760 } 5761 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5762 5763 /* Opcode: RowSetAdd P1 P2 * * * 5764 ** Synopsis: rowset(P1)=r[P2] 5765 ** 5766 ** Insert the integer value held by register P2 into a RowSet object 5767 ** held in register P1. 5768 ** 5769 ** An assertion fails if P2 is not an integer. 5770 */ 5771 case OP_RowSetAdd: { /* in1, in2 */ 5772 pIn1 = &aMem[pOp->p1]; 5773 pIn2 = &aMem[pOp->p2]; 5774 assert( (pIn2->flags & MEM_Int)!=0 ); 5775 if( (pIn1->flags & MEM_RowSet)==0 ){ 5776 sqlite3VdbeMemSetRowSet(pIn1); 5777 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5778 } 5779 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5780 break; 5781 } 5782 5783 /* Opcode: RowSetRead P1 P2 P3 * * 5784 ** Synopsis: r[P3]=rowset(P1) 5785 ** 5786 ** Extract the smallest value from the RowSet object in P1 5787 ** and put that value into register P3. 5788 ** Or, if RowSet object P1 is initially empty, leave P3 5789 ** unchanged and jump to instruction P2. 5790 */ 5791 case OP_RowSetRead: { /* jump, in1, out3 */ 5792 i64 val; 5793 5794 pIn1 = &aMem[pOp->p1]; 5795 if( (pIn1->flags & MEM_RowSet)==0 5796 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5797 ){ 5798 /* The boolean index is empty */ 5799 sqlite3VdbeMemSetNull(pIn1); 5800 VdbeBranchTaken(1,2); 5801 goto jump_to_p2_and_check_for_interrupt; 5802 }else{ 5803 /* A value was pulled from the index */ 5804 VdbeBranchTaken(0,2); 5805 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5806 } 5807 goto check_for_interrupt; 5808 } 5809 5810 /* Opcode: RowSetTest P1 P2 P3 P4 5811 ** Synopsis: if r[P3] in rowset(P1) goto P2 5812 ** 5813 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5814 ** contains a RowSet object and that RowSet object contains 5815 ** the value held in P3, jump to register P2. Otherwise, insert the 5816 ** integer in P3 into the RowSet and continue on to the 5817 ** next opcode. 5818 ** 5819 ** The RowSet object is optimized for the case where sets of integers 5820 ** are inserted in distinct phases, which each set contains no duplicates. 5821 ** Each set is identified by a unique P4 value. The first set 5822 ** must have P4==0, the final set must have P4==-1, and for all other sets 5823 ** must have P4>0. 5824 ** 5825 ** This allows optimizations: (a) when P4==0 there is no need to test 5826 ** the RowSet object for P3, as it is guaranteed not to contain it, 5827 ** (b) when P4==-1 there is no need to insert the value, as it will 5828 ** never be tested for, and (c) when a value that is part of set X is 5829 ** inserted, there is no need to search to see if the same value was 5830 ** previously inserted as part of set X (only if it was previously 5831 ** inserted as part of some other set). 5832 */ 5833 case OP_RowSetTest: { /* jump, in1, in3 */ 5834 int iSet; 5835 int exists; 5836 5837 pIn1 = &aMem[pOp->p1]; 5838 pIn3 = &aMem[pOp->p3]; 5839 iSet = pOp->p4.i; 5840 assert( pIn3->flags&MEM_Int ); 5841 5842 /* If there is anything other than a rowset object in memory cell P1, 5843 ** delete it now and initialize P1 with an empty rowset 5844 */ 5845 if( (pIn1->flags & MEM_RowSet)==0 ){ 5846 sqlite3VdbeMemSetRowSet(pIn1); 5847 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5848 } 5849 5850 assert( pOp->p4type==P4_INT32 ); 5851 assert( iSet==-1 || iSet>=0 ); 5852 if( iSet ){ 5853 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5854 VdbeBranchTaken(exists!=0,2); 5855 if( exists ) goto jump_to_p2; 5856 } 5857 if( iSet>=0 ){ 5858 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5859 } 5860 break; 5861 } 5862 5863 5864 #ifndef SQLITE_OMIT_TRIGGER 5865 5866 /* Opcode: Program P1 P2 P3 P4 P5 5867 ** 5868 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5869 ** 5870 ** P1 contains the address of the memory cell that contains the first memory 5871 ** cell in an array of values used as arguments to the sub-program. P2 5872 ** contains the address to jump to if the sub-program throws an IGNORE 5873 ** exception using the RAISE() function. Register P3 contains the address 5874 ** of a memory cell in this (the parent) VM that is used to allocate the 5875 ** memory required by the sub-vdbe at runtime. 5876 ** 5877 ** P4 is a pointer to the VM containing the trigger program. 5878 ** 5879 ** If P5 is non-zero, then recursive program invocation is enabled. 5880 */ 5881 case OP_Program: { /* jump */ 5882 int nMem; /* Number of memory registers for sub-program */ 5883 int nByte; /* Bytes of runtime space required for sub-program */ 5884 Mem *pRt; /* Register to allocate runtime space */ 5885 Mem *pMem; /* Used to iterate through memory cells */ 5886 Mem *pEnd; /* Last memory cell in new array */ 5887 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5888 SubProgram *pProgram; /* Sub-program to execute */ 5889 void *t; /* Token identifying trigger */ 5890 5891 pProgram = pOp->p4.pProgram; 5892 pRt = &aMem[pOp->p3]; 5893 assert( pProgram->nOp>0 ); 5894 5895 /* If the p5 flag is clear, then recursive invocation of triggers is 5896 ** disabled for backwards compatibility (p5 is set if this sub-program 5897 ** is really a trigger, not a foreign key action, and the flag set 5898 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5899 ** 5900 ** It is recursive invocation of triggers, at the SQL level, that is 5901 ** disabled. In some cases a single trigger may generate more than one 5902 ** SubProgram (if the trigger may be executed with more than one different 5903 ** ON CONFLICT algorithm). SubProgram structures associated with a 5904 ** single trigger all have the same value for the SubProgram.token 5905 ** variable. */ 5906 if( pOp->p5 ){ 5907 t = pProgram->token; 5908 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5909 if( pFrame ) break; 5910 } 5911 5912 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5913 rc = SQLITE_ERROR; 5914 sqlite3VdbeError(p, "too many levels of trigger recursion"); 5915 goto abort_due_to_error; 5916 } 5917 5918 /* Register pRt is used to store the memory required to save the state 5919 ** of the current program, and the memory required at runtime to execute 5920 ** the trigger program. If this trigger has been fired before, then pRt 5921 ** is already allocated. Otherwise, it must be initialized. */ 5922 if( (pRt->flags&MEM_Frame)==0 ){ 5923 /* SubProgram.nMem is set to the number of memory cells used by the 5924 ** program stored in SubProgram.aOp. As well as these, one memory 5925 ** cell is required for each cursor used by the program. Set local 5926 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5927 */ 5928 nMem = pProgram->nMem + pProgram->nCsr; 5929 assert( nMem>0 ); 5930 if( pProgram->nCsr==0 ) nMem++; 5931 nByte = ROUND8(sizeof(VdbeFrame)) 5932 + nMem * sizeof(Mem) 5933 + pProgram->nCsr * sizeof(VdbeCursor*) 5934 + (pProgram->nOp + 7)/8; 5935 pFrame = sqlite3DbMallocZero(db, nByte); 5936 if( !pFrame ){ 5937 goto no_mem; 5938 } 5939 sqlite3VdbeMemRelease(pRt); 5940 pRt->flags = MEM_Frame; 5941 pRt->u.pFrame = pFrame; 5942 5943 pFrame->v = p; 5944 pFrame->nChildMem = nMem; 5945 pFrame->nChildCsr = pProgram->nCsr; 5946 pFrame->pc = (int)(pOp - aOp); 5947 pFrame->aMem = p->aMem; 5948 pFrame->nMem = p->nMem; 5949 pFrame->apCsr = p->apCsr; 5950 pFrame->nCursor = p->nCursor; 5951 pFrame->aOp = p->aOp; 5952 pFrame->nOp = p->nOp; 5953 pFrame->token = pProgram->token; 5954 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5955 pFrame->anExec = p->anExec; 5956 #endif 5957 5958 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5959 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5960 pMem->flags = MEM_Undefined; 5961 pMem->db = db; 5962 } 5963 }else{ 5964 pFrame = pRt->u.pFrame; 5965 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 5966 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 5967 assert( pProgram->nCsr==pFrame->nChildCsr ); 5968 assert( (int)(pOp - aOp)==pFrame->pc ); 5969 } 5970 5971 p->nFrame++; 5972 pFrame->pParent = p->pFrame; 5973 pFrame->lastRowid = db->lastRowid; 5974 pFrame->nChange = p->nChange; 5975 pFrame->nDbChange = p->db->nChange; 5976 assert( pFrame->pAuxData==0 ); 5977 pFrame->pAuxData = p->pAuxData; 5978 p->pAuxData = 0; 5979 p->nChange = 0; 5980 p->pFrame = pFrame; 5981 p->aMem = aMem = VdbeFrameMem(pFrame); 5982 p->nMem = pFrame->nChildMem; 5983 p->nCursor = (u16)pFrame->nChildCsr; 5984 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 5985 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 5986 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 5987 p->aOp = aOp = pProgram->aOp; 5988 p->nOp = pProgram->nOp; 5989 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5990 p->anExec = 0; 5991 #endif 5992 pOp = &aOp[-1]; 5993 5994 break; 5995 } 5996 5997 /* Opcode: Param P1 P2 * * * 5998 ** 5999 ** This opcode is only ever present in sub-programs called via the 6000 ** OP_Program instruction. Copy a value currently stored in a memory 6001 ** cell of the calling (parent) frame to cell P2 in the current frames 6002 ** address space. This is used by trigger programs to access the new.* 6003 ** and old.* values. 6004 ** 6005 ** The address of the cell in the parent frame is determined by adding 6006 ** the value of the P1 argument to the value of the P1 argument to the 6007 ** calling OP_Program instruction. 6008 */ 6009 case OP_Param: { /* out2 */ 6010 VdbeFrame *pFrame; 6011 Mem *pIn; 6012 pOut = out2Prerelease(p, pOp); 6013 pFrame = p->pFrame; 6014 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6015 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6016 break; 6017 } 6018 6019 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6020 6021 #ifndef SQLITE_OMIT_FOREIGN_KEY 6022 /* Opcode: FkCounter P1 P2 * * * 6023 ** Synopsis: fkctr[P1]+=P2 6024 ** 6025 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6026 ** If P1 is non-zero, the database constraint counter is incremented 6027 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6028 ** statement counter is incremented (immediate foreign key constraints). 6029 */ 6030 case OP_FkCounter: { 6031 if( db->flags & SQLITE_DeferFKs ){ 6032 db->nDeferredImmCons += pOp->p2; 6033 }else if( pOp->p1 ){ 6034 db->nDeferredCons += pOp->p2; 6035 }else{ 6036 p->nFkConstraint += pOp->p2; 6037 } 6038 break; 6039 } 6040 6041 /* Opcode: FkIfZero P1 P2 * * * 6042 ** Synopsis: if fkctr[P1]==0 goto P2 6043 ** 6044 ** This opcode tests if a foreign key constraint-counter is currently zero. 6045 ** If so, jump to instruction P2. Otherwise, fall through to the next 6046 ** instruction. 6047 ** 6048 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6049 ** is zero (the one that counts deferred constraint violations). If P1 is 6050 ** zero, the jump is taken if the statement constraint-counter is zero 6051 ** (immediate foreign key constraint violations). 6052 */ 6053 case OP_FkIfZero: { /* jump */ 6054 if( pOp->p1 ){ 6055 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6056 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6057 }else{ 6058 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6059 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6060 } 6061 break; 6062 } 6063 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6064 6065 #ifndef SQLITE_OMIT_AUTOINCREMENT 6066 /* Opcode: MemMax P1 P2 * * * 6067 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6068 ** 6069 ** P1 is a register in the root frame of this VM (the root frame is 6070 ** different from the current frame if this instruction is being executed 6071 ** within a sub-program). Set the value of register P1 to the maximum of 6072 ** its current value and the value in register P2. 6073 ** 6074 ** This instruction throws an error if the memory cell is not initially 6075 ** an integer. 6076 */ 6077 case OP_MemMax: { /* in2 */ 6078 VdbeFrame *pFrame; 6079 if( p->pFrame ){ 6080 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6081 pIn1 = &pFrame->aMem[pOp->p1]; 6082 }else{ 6083 pIn1 = &aMem[pOp->p1]; 6084 } 6085 assert( memIsValid(pIn1) ); 6086 sqlite3VdbeMemIntegerify(pIn1); 6087 pIn2 = &aMem[pOp->p2]; 6088 sqlite3VdbeMemIntegerify(pIn2); 6089 if( pIn1->u.i<pIn2->u.i){ 6090 pIn1->u.i = pIn2->u.i; 6091 } 6092 break; 6093 } 6094 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6095 6096 /* Opcode: IfPos P1 P2 P3 * * 6097 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6098 ** 6099 ** Register P1 must contain an integer. 6100 ** If the value of register P1 is 1 or greater, subtract P3 from the 6101 ** value in P1 and jump to P2. 6102 ** 6103 ** If the initial value of register P1 is less than 1, then the 6104 ** value is unchanged and control passes through to the next instruction. 6105 */ 6106 case OP_IfPos: { /* jump, in1 */ 6107 pIn1 = &aMem[pOp->p1]; 6108 assert( pIn1->flags&MEM_Int ); 6109 VdbeBranchTaken( pIn1->u.i>0, 2); 6110 if( pIn1->u.i>0 ){ 6111 pIn1->u.i -= pOp->p3; 6112 goto jump_to_p2; 6113 } 6114 break; 6115 } 6116 6117 /* Opcode: OffsetLimit P1 P2 P3 * * 6118 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6119 ** 6120 ** This opcode performs a commonly used computation associated with 6121 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6122 ** holds the offset counter. The opcode computes the combined value 6123 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6124 ** value computed is the total number of rows that will need to be 6125 ** visited in order to complete the query. 6126 ** 6127 ** If r[P3] is zero or negative, that means there is no OFFSET 6128 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6129 ** 6130 ** if r[P1] is zero or negative, that means there is no LIMIT 6131 ** and r[P2] is set to -1. 6132 ** 6133 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6134 */ 6135 case OP_OffsetLimit: { /* in1, out2, in3 */ 6136 i64 x; 6137 pIn1 = &aMem[pOp->p1]; 6138 pIn3 = &aMem[pOp->p3]; 6139 pOut = out2Prerelease(p, pOp); 6140 assert( pIn1->flags & MEM_Int ); 6141 assert( pIn3->flags & MEM_Int ); 6142 x = pIn1->u.i; 6143 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6144 /* If the LIMIT is less than or equal to zero, loop forever. This 6145 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6146 ** also loop forever. This is undocumented. In fact, one could argue 6147 ** that the loop should terminate. But assuming 1 billion iterations 6148 ** per second (far exceeding the capabilities of any current hardware) 6149 ** it would take nearly 300 years to actually reach the limit. So 6150 ** looping forever is a reasonable approximation. */ 6151 pOut->u.i = -1; 6152 }else{ 6153 pOut->u.i = x; 6154 } 6155 break; 6156 } 6157 6158 /* Opcode: IfNotZero P1 P2 * * * 6159 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6160 ** 6161 ** Register P1 must contain an integer. If the content of register P1 is 6162 ** initially greater than zero, then decrement the value in register P1. 6163 ** If it is non-zero (negative or positive) and then also jump to P2. 6164 ** If register P1 is initially zero, leave it unchanged and fall through. 6165 */ 6166 case OP_IfNotZero: { /* jump, in1 */ 6167 pIn1 = &aMem[pOp->p1]; 6168 assert( pIn1->flags&MEM_Int ); 6169 VdbeBranchTaken(pIn1->u.i<0, 2); 6170 if( pIn1->u.i ){ 6171 if( pIn1->u.i>0 ) pIn1->u.i--; 6172 goto jump_to_p2; 6173 } 6174 break; 6175 } 6176 6177 /* Opcode: DecrJumpZero P1 P2 * * * 6178 ** Synopsis: if (--r[P1])==0 goto P2 6179 ** 6180 ** Register P1 must hold an integer. Decrement the value in P1 6181 ** and jump to P2 if the new value is exactly zero. 6182 */ 6183 case OP_DecrJumpZero: { /* jump, in1 */ 6184 pIn1 = &aMem[pOp->p1]; 6185 assert( pIn1->flags&MEM_Int ); 6186 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6187 VdbeBranchTaken(pIn1->u.i==0, 2); 6188 if( pIn1->u.i==0 ) goto jump_to_p2; 6189 break; 6190 } 6191 6192 6193 /* Opcode: AggStep0 * P2 P3 P4 P5 6194 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6195 ** 6196 ** Execute the step function for an aggregate. The 6197 ** function has P5 arguments. P4 is a pointer to the FuncDef 6198 ** structure that specifies the function. Register P3 is the 6199 ** accumulator. 6200 ** 6201 ** The P5 arguments are taken from register P2 and its 6202 ** successors. 6203 */ 6204 /* Opcode: AggStep * P2 P3 P4 P5 6205 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6206 ** 6207 ** Execute the step function for an aggregate. The 6208 ** function has P5 arguments. P4 is a pointer to an sqlite3_context 6209 ** object that is used to run the function. Register P3 is 6210 ** as the accumulator. 6211 ** 6212 ** The P5 arguments are taken from register P2 and its 6213 ** successors. 6214 ** 6215 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6216 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6217 ** the opcode is changed. In this way, the initialization of the 6218 ** sqlite3_context only happens once, instead of on each call to the 6219 ** step function. 6220 */ 6221 case OP_AggStep0: { 6222 int n; 6223 sqlite3_context *pCtx; 6224 6225 assert( pOp->p4type==P4_FUNCDEF ); 6226 n = pOp->p5; 6227 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6228 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6229 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6230 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6231 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6232 if( pCtx==0 ) goto no_mem; 6233 pCtx->pMem = 0; 6234 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6235 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6236 pCtx->pFunc = pOp->p4.pFunc; 6237 pCtx->iOp = (int)(pOp - aOp); 6238 pCtx->pVdbe = p; 6239 pCtx->skipFlag = 0; 6240 pCtx->isError = 0; 6241 pCtx->argc = n; 6242 pOp->p4type = P4_FUNCCTX; 6243 pOp->p4.pCtx = pCtx; 6244 pOp->opcode = OP_AggStep; 6245 /* Fall through into OP_AggStep */ 6246 } 6247 case OP_AggStep: { 6248 int i; 6249 sqlite3_context *pCtx; 6250 Mem *pMem; 6251 6252 assert( pOp->p4type==P4_FUNCCTX ); 6253 pCtx = pOp->p4.pCtx; 6254 pMem = &aMem[pOp->p3]; 6255 6256 /* If this function is inside of a trigger, the register array in aMem[] 6257 ** might change from one evaluation to the next. The next block of code 6258 ** checks to see if the register array has changed, and if so it 6259 ** reinitializes the relavant parts of the sqlite3_context object */ 6260 if( pCtx->pMem != pMem ){ 6261 pCtx->pMem = pMem; 6262 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6263 } 6264 6265 #ifdef SQLITE_DEBUG 6266 for(i=0; i<pCtx->argc; i++){ 6267 assert( memIsValid(pCtx->argv[i]) ); 6268 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6269 } 6270 #endif 6271 6272 pMem->n++; 6273 assert( pCtx->pOut->flags==MEM_Null ); 6274 assert( pCtx->isError==0 ); 6275 assert( pCtx->skipFlag==0 ); 6276 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6277 if( pCtx->isError ){ 6278 if( pCtx->isError>0 ){ 6279 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6280 rc = pCtx->isError; 6281 } 6282 if( pCtx->skipFlag ){ 6283 assert( pOp[-1].opcode==OP_CollSeq ); 6284 i = pOp[-1].p1; 6285 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6286 pCtx->skipFlag = 0; 6287 } 6288 sqlite3VdbeMemRelease(pCtx->pOut); 6289 pCtx->pOut->flags = MEM_Null; 6290 pCtx->isError = 0; 6291 if( rc ) goto abort_due_to_error; 6292 } 6293 assert( pCtx->pOut->flags==MEM_Null ); 6294 assert( pCtx->skipFlag==0 ); 6295 break; 6296 } 6297 6298 /* Opcode: AggFinal P1 P2 * P4 * 6299 ** Synopsis: accum=r[P1] N=P2 6300 ** 6301 ** Execute the finalizer function for an aggregate. P1 is 6302 ** the memory location that is the accumulator for the aggregate. 6303 ** 6304 ** P2 is the number of arguments that the step function takes and 6305 ** P4 is a pointer to the FuncDef for this function. The P2 6306 ** argument is not used by this opcode. It is only there to disambiguate 6307 ** functions that can take varying numbers of arguments. The 6308 ** P4 argument is only needed for the degenerate case where 6309 ** the step function was not previously called. 6310 */ 6311 case OP_AggFinal: { 6312 Mem *pMem; 6313 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6314 pMem = &aMem[pOp->p1]; 6315 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6316 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6317 if( rc ){ 6318 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6319 goto abort_due_to_error; 6320 } 6321 sqlite3VdbeChangeEncoding(pMem, encoding); 6322 UPDATE_MAX_BLOBSIZE(pMem); 6323 if( sqlite3VdbeMemTooBig(pMem) ){ 6324 goto too_big; 6325 } 6326 break; 6327 } 6328 6329 #ifndef SQLITE_OMIT_WAL 6330 /* Opcode: Checkpoint P1 P2 P3 * * 6331 ** 6332 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6333 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6334 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6335 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6336 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6337 ** in the WAL that have been checkpointed after the checkpoint 6338 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6339 ** mem[P3+2] are initialized to -1. 6340 */ 6341 case OP_Checkpoint: { 6342 int i; /* Loop counter */ 6343 int aRes[3]; /* Results */ 6344 Mem *pMem; /* Write results here */ 6345 6346 assert( p->readOnly==0 ); 6347 aRes[0] = 0; 6348 aRes[1] = aRes[2] = -1; 6349 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6350 || pOp->p2==SQLITE_CHECKPOINT_FULL 6351 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6352 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6353 ); 6354 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6355 if( rc ){ 6356 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6357 rc = SQLITE_OK; 6358 aRes[0] = 1; 6359 } 6360 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6361 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6362 } 6363 break; 6364 }; 6365 #endif 6366 6367 #ifndef SQLITE_OMIT_PRAGMA 6368 /* Opcode: JournalMode P1 P2 P3 * * 6369 ** 6370 ** Change the journal mode of database P1 to P3. P3 must be one of the 6371 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6372 ** modes (delete, truncate, persist, off and memory), this is a simple 6373 ** operation. No IO is required. 6374 ** 6375 ** If changing into or out of WAL mode the procedure is more complicated. 6376 ** 6377 ** Write a string containing the final journal-mode to register P2. 6378 */ 6379 case OP_JournalMode: { /* out2 */ 6380 Btree *pBt; /* Btree to change journal mode of */ 6381 Pager *pPager; /* Pager associated with pBt */ 6382 int eNew; /* New journal mode */ 6383 int eOld; /* The old journal mode */ 6384 #ifndef SQLITE_OMIT_WAL 6385 const char *zFilename; /* Name of database file for pPager */ 6386 #endif 6387 6388 pOut = out2Prerelease(p, pOp); 6389 eNew = pOp->p3; 6390 assert( eNew==PAGER_JOURNALMODE_DELETE 6391 || eNew==PAGER_JOURNALMODE_TRUNCATE 6392 || eNew==PAGER_JOURNALMODE_PERSIST 6393 || eNew==PAGER_JOURNALMODE_OFF 6394 || eNew==PAGER_JOURNALMODE_MEMORY 6395 || eNew==PAGER_JOURNALMODE_WAL 6396 || eNew==PAGER_JOURNALMODE_QUERY 6397 ); 6398 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6399 assert( p->readOnly==0 ); 6400 6401 pBt = db->aDb[pOp->p1].pBt; 6402 pPager = sqlite3BtreePager(pBt); 6403 eOld = sqlite3PagerGetJournalMode(pPager); 6404 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6405 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6406 6407 #ifndef SQLITE_OMIT_WAL 6408 zFilename = sqlite3PagerFilename(pPager, 1); 6409 6410 /* Do not allow a transition to journal_mode=WAL for a database 6411 ** in temporary storage or if the VFS does not support shared memory 6412 */ 6413 if( eNew==PAGER_JOURNALMODE_WAL 6414 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6415 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6416 ){ 6417 eNew = eOld; 6418 } 6419 6420 if( (eNew!=eOld) 6421 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6422 ){ 6423 if( !db->autoCommit || db->nVdbeRead>1 ){ 6424 rc = SQLITE_ERROR; 6425 sqlite3VdbeError(p, 6426 "cannot change %s wal mode from within a transaction", 6427 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6428 ); 6429 goto abort_due_to_error; 6430 }else{ 6431 6432 if( eOld==PAGER_JOURNALMODE_WAL ){ 6433 /* If leaving WAL mode, close the log file. If successful, the call 6434 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6435 ** file. An EXCLUSIVE lock may still be held on the database file 6436 ** after a successful return. 6437 */ 6438 rc = sqlite3PagerCloseWal(pPager, db); 6439 if( rc==SQLITE_OK ){ 6440 sqlite3PagerSetJournalMode(pPager, eNew); 6441 } 6442 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6443 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6444 ** as an intermediate */ 6445 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6446 } 6447 6448 /* Open a transaction on the database file. Regardless of the journal 6449 ** mode, this transaction always uses a rollback journal. 6450 */ 6451 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6452 if( rc==SQLITE_OK ){ 6453 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6454 } 6455 } 6456 } 6457 #endif /* ifndef SQLITE_OMIT_WAL */ 6458 6459 if( rc ) eNew = eOld; 6460 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6461 6462 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6463 pOut->z = (char *)sqlite3JournalModename(eNew); 6464 pOut->n = sqlite3Strlen30(pOut->z); 6465 pOut->enc = SQLITE_UTF8; 6466 sqlite3VdbeChangeEncoding(pOut, encoding); 6467 if( rc ) goto abort_due_to_error; 6468 break; 6469 }; 6470 #endif /* SQLITE_OMIT_PRAGMA */ 6471 6472 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6473 /* Opcode: Vacuum P1 * * * * 6474 ** 6475 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6476 ** for an attached database. The "temp" database may not be vacuumed. 6477 */ 6478 case OP_Vacuum: { 6479 assert( p->readOnly==0 ); 6480 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6481 if( rc ) goto abort_due_to_error; 6482 break; 6483 } 6484 #endif 6485 6486 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6487 /* Opcode: IncrVacuum P1 P2 * * * 6488 ** 6489 ** Perform a single step of the incremental vacuum procedure on 6490 ** the P1 database. If the vacuum has finished, jump to instruction 6491 ** P2. Otherwise, fall through to the next instruction. 6492 */ 6493 case OP_IncrVacuum: { /* jump */ 6494 Btree *pBt; 6495 6496 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6497 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6498 assert( p->readOnly==0 ); 6499 pBt = db->aDb[pOp->p1].pBt; 6500 rc = sqlite3BtreeIncrVacuum(pBt); 6501 VdbeBranchTaken(rc==SQLITE_DONE,2); 6502 if( rc ){ 6503 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6504 rc = SQLITE_OK; 6505 goto jump_to_p2; 6506 } 6507 break; 6508 } 6509 #endif 6510 6511 /* Opcode: Expire P1 * * * * 6512 ** 6513 ** Cause precompiled statements to expire. When an expired statement 6514 ** is executed using sqlite3_step() it will either automatically 6515 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6516 ** or it will fail with SQLITE_SCHEMA. 6517 ** 6518 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6519 ** then only the currently executing statement is expired. 6520 */ 6521 case OP_Expire: { 6522 if( !pOp->p1 ){ 6523 sqlite3ExpirePreparedStatements(db); 6524 }else{ 6525 p->expired = 1; 6526 } 6527 break; 6528 } 6529 6530 #ifndef SQLITE_OMIT_SHARED_CACHE 6531 /* Opcode: TableLock P1 P2 P3 P4 * 6532 ** Synopsis: iDb=P1 root=P2 write=P3 6533 ** 6534 ** Obtain a lock on a particular table. This instruction is only used when 6535 ** the shared-cache feature is enabled. 6536 ** 6537 ** P1 is the index of the database in sqlite3.aDb[] of the database 6538 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6539 ** a write lock if P3==1. 6540 ** 6541 ** P2 contains the root-page of the table to lock. 6542 ** 6543 ** P4 contains a pointer to the name of the table being locked. This is only 6544 ** used to generate an error message if the lock cannot be obtained. 6545 */ 6546 case OP_TableLock: { 6547 u8 isWriteLock = (u8)pOp->p3; 6548 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6549 int p1 = pOp->p1; 6550 assert( p1>=0 && p1<db->nDb ); 6551 assert( DbMaskTest(p->btreeMask, p1) ); 6552 assert( isWriteLock==0 || isWriteLock==1 ); 6553 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6554 if( rc ){ 6555 if( (rc&0xFF)==SQLITE_LOCKED ){ 6556 const char *z = pOp->p4.z; 6557 sqlite3VdbeError(p, "database table is locked: %s", z); 6558 } 6559 goto abort_due_to_error; 6560 } 6561 } 6562 break; 6563 } 6564 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6565 6566 #ifndef SQLITE_OMIT_VIRTUALTABLE 6567 /* Opcode: VBegin * * * P4 * 6568 ** 6569 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6570 ** xBegin method for that table. 6571 ** 6572 ** Also, whether or not P4 is set, check that this is not being called from 6573 ** within a callback to a virtual table xSync() method. If it is, the error 6574 ** code will be set to SQLITE_LOCKED. 6575 */ 6576 case OP_VBegin: { 6577 VTable *pVTab; 6578 pVTab = pOp->p4.pVtab; 6579 rc = sqlite3VtabBegin(db, pVTab); 6580 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6581 if( rc ) goto abort_due_to_error; 6582 break; 6583 } 6584 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6585 6586 #ifndef SQLITE_OMIT_VIRTUALTABLE 6587 /* Opcode: VCreate P1 P2 * * * 6588 ** 6589 ** P2 is a register that holds the name of a virtual table in database 6590 ** P1. Call the xCreate method for that table. 6591 */ 6592 case OP_VCreate: { 6593 Mem sMem; /* For storing the record being decoded */ 6594 const char *zTab; /* Name of the virtual table */ 6595 6596 memset(&sMem, 0, sizeof(sMem)); 6597 sMem.db = db; 6598 /* Because P2 is always a static string, it is impossible for the 6599 ** sqlite3VdbeMemCopy() to fail */ 6600 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6601 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6602 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6603 assert( rc==SQLITE_OK ); 6604 zTab = (const char*)sqlite3_value_text(&sMem); 6605 assert( zTab || db->mallocFailed ); 6606 if( zTab ){ 6607 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6608 } 6609 sqlite3VdbeMemRelease(&sMem); 6610 if( rc ) goto abort_due_to_error; 6611 break; 6612 } 6613 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6614 6615 #ifndef SQLITE_OMIT_VIRTUALTABLE 6616 /* Opcode: VDestroy P1 * * P4 * 6617 ** 6618 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6619 ** of that table. 6620 */ 6621 case OP_VDestroy: { 6622 db->nVDestroy++; 6623 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6624 db->nVDestroy--; 6625 if( rc ) goto abort_due_to_error; 6626 break; 6627 } 6628 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6629 6630 #ifndef SQLITE_OMIT_VIRTUALTABLE 6631 /* Opcode: VOpen P1 * * P4 * 6632 ** 6633 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6634 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6635 ** table and stores that cursor in P1. 6636 */ 6637 case OP_VOpen: { 6638 VdbeCursor *pCur; 6639 sqlite3_vtab_cursor *pVCur; 6640 sqlite3_vtab *pVtab; 6641 const sqlite3_module *pModule; 6642 6643 assert( p->bIsReader ); 6644 pCur = 0; 6645 pVCur = 0; 6646 pVtab = pOp->p4.pVtab->pVtab; 6647 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6648 rc = SQLITE_LOCKED; 6649 goto abort_due_to_error; 6650 } 6651 pModule = pVtab->pModule; 6652 rc = pModule->xOpen(pVtab, &pVCur); 6653 sqlite3VtabImportErrmsg(p, pVtab); 6654 if( rc ) goto abort_due_to_error; 6655 6656 /* Initialize sqlite3_vtab_cursor base class */ 6657 pVCur->pVtab = pVtab; 6658 6659 /* Initialize vdbe cursor object */ 6660 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6661 if( pCur ){ 6662 pCur->uc.pVCur = pVCur; 6663 pVtab->nRef++; 6664 }else{ 6665 assert( db->mallocFailed ); 6666 pModule->xClose(pVCur); 6667 goto no_mem; 6668 } 6669 break; 6670 } 6671 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6672 6673 #ifndef SQLITE_OMIT_VIRTUALTABLE 6674 /* Opcode: VFilter P1 P2 P3 P4 * 6675 ** Synopsis: iplan=r[P3] zplan='P4' 6676 ** 6677 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6678 ** the filtered result set is empty. 6679 ** 6680 ** P4 is either NULL or a string that was generated by the xBestIndex 6681 ** method of the module. The interpretation of the P4 string is left 6682 ** to the module implementation. 6683 ** 6684 ** This opcode invokes the xFilter method on the virtual table specified 6685 ** by P1. The integer query plan parameter to xFilter is stored in register 6686 ** P3. Register P3+1 stores the argc parameter to be passed to the 6687 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6688 ** additional parameters which are passed to 6689 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6690 ** 6691 ** A jump is made to P2 if the result set after filtering would be empty. 6692 */ 6693 case OP_VFilter: { /* jump */ 6694 int nArg; 6695 int iQuery; 6696 const sqlite3_module *pModule; 6697 Mem *pQuery; 6698 Mem *pArgc; 6699 sqlite3_vtab_cursor *pVCur; 6700 sqlite3_vtab *pVtab; 6701 VdbeCursor *pCur; 6702 int res; 6703 int i; 6704 Mem **apArg; 6705 6706 pQuery = &aMem[pOp->p3]; 6707 pArgc = &pQuery[1]; 6708 pCur = p->apCsr[pOp->p1]; 6709 assert( memIsValid(pQuery) ); 6710 REGISTER_TRACE(pOp->p3, pQuery); 6711 assert( pCur->eCurType==CURTYPE_VTAB ); 6712 pVCur = pCur->uc.pVCur; 6713 pVtab = pVCur->pVtab; 6714 pModule = pVtab->pModule; 6715 6716 /* Grab the index number and argc parameters */ 6717 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6718 nArg = (int)pArgc->u.i; 6719 iQuery = (int)pQuery->u.i; 6720 6721 /* Invoke the xFilter method */ 6722 res = 0; 6723 apArg = p->apArg; 6724 for(i = 0; i<nArg; i++){ 6725 apArg[i] = &pArgc[i+1]; 6726 } 6727 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6728 sqlite3VtabImportErrmsg(p, pVtab); 6729 if( rc ) goto abort_due_to_error; 6730 res = pModule->xEof(pVCur); 6731 pCur->nullRow = 0; 6732 VdbeBranchTaken(res!=0,2); 6733 if( res ) goto jump_to_p2; 6734 break; 6735 } 6736 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6737 6738 #ifndef SQLITE_OMIT_VIRTUALTABLE 6739 /* Opcode: VColumn P1 P2 P3 * P5 6740 ** Synopsis: r[P3]=vcolumn(P2) 6741 ** 6742 ** Store in register P3 the value of the P2-th column of 6743 ** the current row of the virtual-table of cursor P1. 6744 ** 6745 ** If the VColumn opcode is being used to fetch the value of 6746 ** an unchanging column during an UPDATE operation, then the P5 6747 ** value is 1. Otherwise, P5 is 0. The P5 value is returned 6748 ** by sqlite3_vtab_nochange() routine can can be used 6749 ** by virtual table implementations to return special "no-change" 6750 ** marks which can be more efficient, depending on the virtual table. 6751 */ 6752 case OP_VColumn: { 6753 sqlite3_vtab *pVtab; 6754 const sqlite3_module *pModule; 6755 Mem *pDest; 6756 sqlite3_context sContext; 6757 6758 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6759 assert( pCur->eCurType==CURTYPE_VTAB ); 6760 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6761 pDest = &aMem[pOp->p3]; 6762 memAboutToChange(p, pDest); 6763 if( pCur->nullRow ){ 6764 sqlite3VdbeMemSetNull(pDest); 6765 break; 6766 } 6767 pVtab = pCur->uc.pVCur->pVtab; 6768 pModule = pVtab->pModule; 6769 assert( pModule->xColumn ); 6770 memset(&sContext, 0, sizeof(sContext)); 6771 sContext.pOut = pDest; 6772 if( pOp->p5 ){ 6773 sqlite3VdbeMemSetNull(pDest); 6774 pDest->flags = MEM_Null|MEM_Zero; 6775 pDest->u.nZero = 0; 6776 }else{ 6777 MemSetTypeFlag(pDest, MEM_Null); 6778 } 6779 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6780 sqlite3VtabImportErrmsg(p, pVtab); 6781 if( sContext.isError>0 ){ 6782 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 6783 rc = sContext.isError; 6784 } 6785 sqlite3VdbeChangeEncoding(pDest, encoding); 6786 REGISTER_TRACE(pOp->p3, pDest); 6787 UPDATE_MAX_BLOBSIZE(pDest); 6788 6789 if( sqlite3VdbeMemTooBig(pDest) ){ 6790 goto too_big; 6791 } 6792 if( rc ) goto abort_due_to_error; 6793 break; 6794 } 6795 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6796 6797 #ifndef SQLITE_OMIT_VIRTUALTABLE 6798 /* Opcode: VNext P1 P2 * * * 6799 ** 6800 ** Advance virtual table P1 to the next row in its result set and 6801 ** jump to instruction P2. Or, if the virtual table has reached 6802 ** the end of its result set, then fall through to the next instruction. 6803 */ 6804 case OP_VNext: { /* jump */ 6805 sqlite3_vtab *pVtab; 6806 const sqlite3_module *pModule; 6807 int res; 6808 VdbeCursor *pCur; 6809 6810 res = 0; 6811 pCur = p->apCsr[pOp->p1]; 6812 assert( pCur->eCurType==CURTYPE_VTAB ); 6813 if( pCur->nullRow ){ 6814 break; 6815 } 6816 pVtab = pCur->uc.pVCur->pVtab; 6817 pModule = pVtab->pModule; 6818 assert( pModule->xNext ); 6819 6820 /* Invoke the xNext() method of the module. There is no way for the 6821 ** underlying implementation to return an error if one occurs during 6822 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6823 ** data is available) and the error code returned when xColumn or 6824 ** some other method is next invoked on the save virtual table cursor. 6825 */ 6826 rc = pModule->xNext(pCur->uc.pVCur); 6827 sqlite3VtabImportErrmsg(p, pVtab); 6828 if( rc ) goto abort_due_to_error; 6829 res = pModule->xEof(pCur->uc.pVCur); 6830 VdbeBranchTaken(!res,2); 6831 if( !res ){ 6832 /* If there is data, jump to P2 */ 6833 goto jump_to_p2_and_check_for_interrupt; 6834 } 6835 goto check_for_interrupt; 6836 } 6837 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6838 6839 #ifndef SQLITE_OMIT_VIRTUALTABLE 6840 /* Opcode: VRename P1 * * P4 * 6841 ** 6842 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6843 ** This opcode invokes the corresponding xRename method. The value 6844 ** in register P1 is passed as the zName argument to the xRename method. 6845 */ 6846 case OP_VRename: { 6847 sqlite3_vtab *pVtab; 6848 Mem *pName; 6849 6850 pVtab = pOp->p4.pVtab->pVtab; 6851 pName = &aMem[pOp->p1]; 6852 assert( pVtab->pModule->xRename ); 6853 assert( memIsValid(pName) ); 6854 assert( p->readOnly==0 ); 6855 REGISTER_TRACE(pOp->p1, pName); 6856 assert( pName->flags & MEM_Str ); 6857 testcase( pName->enc==SQLITE_UTF8 ); 6858 testcase( pName->enc==SQLITE_UTF16BE ); 6859 testcase( pName->enc==SQLITE_UTF16LE ); 6860 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6861 if( rc ) goto abort_due_to_error; 6862 rc = pVtab->pModule->xRename(pVtab, pName->z); 6863 sqlite3VtabImportErrmsg(p, pVtab); 6864 p->expired = 0; 6865 if( rc ) goto abort_due_to_error; 6866 break; 6867 } 6868 #endif 6869 6870 #ifndef SQLITE_OMIT_VIRTUALTABLE 6871 /* Opcode: VUpdate P1 P2 P3 P4 P5 6872 ** Synopsis: data=r[P3@P2] 6873 ** 6874 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6875 ** This opcode invokes the corresponding xUpdate method. P2 values 6876 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6877 ** invocation. The value in register (P3+P2-1) corresponds to the 6878 ** p2th element of the argv array passed to xUpdate. 6879 ** 6880 ** The xUpdate method will do a DELETE or an INSERT or both. 6881 ** The argv[0] element (which corresponds to memory cell P3) 6882 ** is the rowid of a row to delete. If argv[0] is NULL then no 6883 ** deletion occurs. The argv[1] element is the rowid of the new 6884 ** row. This can be NULL to have the virtual table select the new 6885 ** rowid for itself. The subsequent elements in the array are 6886 ** the values of columns in the new row. 6887 ** 6888 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6889 ** a row to delete. 6890 ** 6891 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6892 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6893 ** is set to the value of the rowid for the row just inserted. 6894 ** 6895 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6896 ** apply in the case of a constraint failure on an insert or update. 6897 */ 6898 case OP_VUpdate: { 6899 sqlite3_vtab *pVtab; 6900 const sqlite3_module *pModule; 6901 int nArg; 6902 int i; 6903 sqlite_int64 rowid; 6904 Mem **apArg; 6905 Mem *pX; 6906 6907 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6908 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6909 ); 6910 assert( p->readOnly==0 ); 6911 pVtab = pOp->p4.pVtab->pVtab; 6912 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6913 rc = SQLITE_LOCKED; 6914 goto abort_due_to_error; 6915 } 6916 pModule = pVtab->pModule; 6917 nArg = pOp->p2; 6918 assert( pOp->p4type==P4_VTAB ); 6919 if( ALWAYS(pModule->xUpdate) ){ 6920 u8 vtabOnConflict = db->vtabOnConflict; 6921 apArg = p->apArg; 6922 pX = &aMem[pOp->p3]; 6923 for(i=0; i<nArg; i++){ 6924 assert( memIsValid(pX) ); 6925 memAboutToChange(p, pX); 6926 apArg[i] = pX; 6927 pX++; 6928 } 6929 db->vtabOnConflict = pOp->p5; 6930 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6931 db->vtabOnConflict = vtabOnConflict; 6932 sqlite3VtabImportErrmsg(p, pVtab); 6933 if( rc==SQLITE_OK && pOp->p1 ){ 6934 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6935 db->lastRowid = rowid; 6936 } 6937 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6938 if( pOp->p5==OE_Ignore ){ 6939 rc = SQLITE_OK; 6940 }else{ 6941 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6942 } 6943 }else{ 6944 p->nChange++; 6945 } 6946 if( rc ) goto abort_due_to_error; 6947 } 6948 break; 6949 } 6950 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6951 6952 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6953 /* Opcode: Pagecount P1 P2 * * * 6954 ** 6955 ** Write the current number of pages in database P1 to memory cell P2. 6956 */ 6957 case OP_Pagecount: { /* out2 */ 6958 pOut = out2Prerelease(p, pOp); 6959 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6960 break; 6961 } 6962 #endif 6963 6964 6965 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6966 /* Opcode: MaxPgcnt P1 P2 P3 * * 6967 ** 6968 ** Try to set the maximum page count for database P1 to the value in P3. 6969 ** Do not let the maximum page count fall below the current page count and 6970 ** do not change the maximum page count value if P3==0. 6971 ** 6972 ** Store the maximum page count after the change in register P2. 6973 */ 6974 case OP_MaxPgcnt: { /* out2 */ 6975 unsigned int newMax; 6976 Btree *pBt; 6977 6978 pOut = out2Prerelease(p, pOp); 6979 pBt = db->aDb[pOp->p1].pBt; 6980 newMax = 0; 6981 if( pOp->p3 ){ 6982 newMax = sqlite3BtreeLastPage(pBt); 6983 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6984 } 6985 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6986 break; 6987 } 6988 #endif 6989 6990 /* Opcode: Function0 P1 P2 P3 P4 P5 6991 ** Synopsis: r[P3]=func(r[P2@P5]) 6992 ** 6993 ** Invoke a user function (P4 is a pointer to a FuncDef object that 6994 ** defines the function) with P5 arguments taken from register P2 and 6995 ** successors. The result of the function is stored in register P3. 6996 ** Register P3 must not be one of the function inputs. 6997 ** 6998 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 6999 ** function was determined to be constant at compile time. If the first 7000 ** argument was constant then bit 0 of P1 is set. This is used to determine 7001 ** whether meta data associated with a user function argument using the 7002 ** sqlite3_set_auxdata() API may be safely retained until the next 7003 ** invocation of this opcode. 7004 ** 7005 ** See also: Function, AggStep, AggFinal 7006 */ 7007 /* Opcode: Function P1 P2 P3 P4 P5 7008 ** Synopsis: r[P3]=func(r[P2@P5]) 7009 ** 7010 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7011 ** contains a pointer to the function to be run) with P5 arguments taken 7012 ** from register P2 and successors. The result of the function is stored 7013 ** in register P3. Register P3 must not be one of the function inputs. 7014 ** 7015 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7016 ** function was determined to be constant at compile time. If the first 7017 ** argument was constant then bit 0 of P1 is set. This is used to determine 7018 ** whether meta data associated with a user function argument using the 7019 ** sqlite3_set_auxdata() API may be safely retained until the next 7020 ** invocation of this opcode. 7021 ** 7022 ** SQL functions are initially coded as OP_Function0 with P4 pointing 7023 ** to a FuncDef object. But on first evaluation, the P4 operand is 7024 ** automatically converted into an sqlite3_context object and the operation 7025 ** changed to this OP_Function opcode. In this way, the initialization of 7026 ** the sqlite3_context object occurs only once, rather than once for each 7027 ** evaluation of the function. 7028 ** 7029 ** See also: Function0, AggStep, AggFinal 7030 */ 7031 case OP_PureFunc0: 7032 case OP_Function0: { 7033 int n; 7034 sqlite3_context *pCtx; 7035 7036 assert( pOp->p4type==P4_FUNCDEF ); 7037 n = pOp->p5; 7038 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7039 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7040 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7041 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 7042 if( pCtx==0 ) goto no_mem; 7043 pCtx->pOut = 0; 7044 pCtx->pFunc = pOp->p4.pFunc; 7045 pCtx->iOp = (int)(pOp - aOp); 7046 pCtx->pVdbe = p; 7047 pCtx->isError = 0; 7048 pCtx->argc = n; 7049 pOp->p4type = P4_FUNCCTX; 7050 pOp->p4.pCtx = pCtx; 7051 assert( OP_PureFunc == OP_PureFunc0+2 ); 7052 assert( OP_Function == OP_Function0+2 ); 7053 pOp->opcode += 2; 7054 /* Fall through into OP_Function */ 7055 } 7056 case OP_PureFunc: 7057 case OP_Function: { 7058 int i; 7059 sqlite3_context *pCtx; 7060 7061 assert( pOp->p4type==P4_FUNCCTX ); 7062 pCtx = pOp->p4.pCtx; 7063 7064 /* If this function is inside of a trigger, the register array in aMem[] 7065 ** might change from one evaluation to the next. The next block of code 7066 ** checks to see if the register array has changed, and if so it 7067 ** reinitializes the relavant parts of the sqlite3_context object */ 7068 pOut = &aMem[pOp->p3]; 7069 if( pCtx->pOut != pOut ){ 7070 pCtx->pOut = pOut; 7071 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7072 } 7073 7074 memAboutToChange(p, pOut); 7075 #ifdef SQLITE_DEBUG 7076 for(i=0; i<pCtx->argc; i++){ 7077 assert( memIsValid(pCtx->argv[i]) ); 7078 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7079 } 7080 #endif 7081 MemSetTypeFlag(pOut, MEM_Null); 7082 assert( pCtx->isError==0 ); 7083 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7084 7085 /* If the function returned an error, throw an exception */ 7086 if( pCtx->isError ){ 7087 if( pCtx->isError>0 ){ 7088 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7089 rc = pCtx->isError; 7090 } 7091 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7092 pCtx->isError = 0; 7093 if( rc ) goto abort_due_to_error; 7094 } 7095 7096 /* Copy the result of the function into register P3 */ 7097 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7098 sqlite3VdbeChangeEncoding(pOut, encoding); 7099 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7100 } 7101 7102 REGISTER_TRACE(pOp->p3, pOut); 7103 UPDATE_MAX_BLOBSIZE(pOut); 7104 break; 7105 } 7106 7107 /* Opcode: Trace P1 P2 * P4 * 7108 ** 7109 ** Write P4 on the statement trace output if statement tracing is 7110 ** enabled. 7111 ** 7112 ** Operand P1 must be 0x7fffffff and P2 must positive. 7113 */ 7114 /* Opcode: Init P1 P2 P3 P4 * 7115 ** Synopsis: Start at P2 7116 ** 7117 ** Programs contain a single instance of this opcode as the very first 7118 ** opcode. 7119 ** 7120 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7121 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7122 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7123 ** 7124 ** If P2 is not zero, jump to instruction P2. 7125 ** 7126 ** Increment the value of P1 so that OP_Once opcodes will jump the 7127 ** first time they are evaluated for this run. 7128 ** 7129 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7130 ** error is encountered. 7131 */ 7132 case OP_Trace: 7133 case OP_Init: { /* jump */ 7134 int i; 7135 #ifndef SQLITE_OMIT_TRACE 7136 char *zTrace; 7137 #endif 7138 7139 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7140 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7141 ** 7142 ** This assert() provides evidence for: 7143 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7144 ** would have been returned by the legacy sqlite3_trace() interface by 7145 ** using the X argument when X begins with "--" and invoking 7146 ** sqlite3_expanded_sql(P) otherwise. 7147 */ 7148 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7149 7150 /* OP_Init is always instruction 0 */ 7151 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7152 7153 #ifndef SQLITE_OMIT_TRACE 7154 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7155 && !p->doingRerun 7156 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7157 ){ 7158 #ifndef SQLITE_OMIT_DEPRECATED 7159 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7160 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7161 char *z = sqlite3VdbeExpandSql(p, zTrace); 7162 x(db->pTraceArg, z); 7163 sqlite3_free(z); 7164 }else 7165 #endif 7166 if( db->nVdbeExec>1 ){ 7167 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7168 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7169 sqlite3DbFree(db, z); 7170 }else{ 7171 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7172 } 7173 } 7174 #ifdef SQLITE_USE_FCNTL_TRACE 7175 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7176 if( zTrace ){ 7177 int j; 7178 for(j=0; j<db->nDb; j++){ 7179 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7180 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7181 } 7182 } 7183 #endif /* SQLITE_USE_FCNTL_TRACE */ 7184 #ifdef SQLITE_DEBUG 7185 if( (db->flags & SQLITE_SqlTrace)!=0 7186 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7187 ){ 7188 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7189 } 7190 #endif /* SQLITE_DEBUG */ 7191 #endif /* SQLITE_OMIT_TRACE */ 7192 assert( pOp->p2>0 ); 7193 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7194 if( pOp->opcode==OP_Trace ) break; 7195 for(i=1; i<p->nOp; i++){ 7196 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7197 } 7198 pOp->p1 = 0; 7199 } 7200 pOp->p1++; 7201 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7202 goto jump_to_p2; 7203 } 7204 7205 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7206 /* Opcode: CursorHint P1 * * P4 * 7207 ** 7208 ** Provide a hint to cursor P1 that it only needs to return rows that 7209 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7210 ** to values currently held in registers. TK_COLUMN terms in the P4 7211 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7212 */ 7213 case OP_CursorHint: { 7214 VdbeCursor *pC; 7215 7216 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7217 assert( pOp->p4type==P4_EXPR ); 7218 pC = p->apCsr[pOp->p1]; 7219 if( pC ){ 7220 assert( pC->eCurType==CURTYPE_BTREE ); 7221 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7222 pOp->p4.pExpr, aMem); 7223 } 7224 break; 7225 } 7226 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7227 7228 /* Opcode: Noop * * * * * 7229 ** 7230 ** Do nothing. This instruction is often useful as a jump 7231 ** destination. 7232 */ 7233 /* 7234 ** The magic Explain opcode are only inserted when explain==2 (which 7235 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7236 ** This opcode records information from the optimizer. It is the 7237 ** the same as a no-op. This opcodesnever appears in a real VM program. 7238 */ 7239 default: { /* This is really OP_Noop and OP_Explain */ 7240 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7241 break; 7242 } 7243 7244 /***************************************************************************** 7245 ** The cases of the switch statement above this line should all be indented 7246 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7247 ** readability. From this point on down, the normal indentation rules are 7248 ** restored. 7249 *****************************************************************************/ 7250 } 7251 7252 #ifdef VDBE_PROFILE 7253 { 7254 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7255 if( endTime>start ) pOrigOp->cycles += endTime - start; 7256 pOrigOp->cnt++; 7257 } 7258 #endif 7259 7260 /* The following code adds nothing to the actual functionality 7261 ** of the program. It is only here for testing and debugging. 7262 ** On the other hand, it does burn CPU cycles every time through 7263 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7264 */ 7265 #ifndef NDEBUG 7266 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7267 7268 #ifdef SQLITE_DEBUG 7269 if( db->flags & SQLITE_VdbeTrace ){ 7270 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7271 if( rc!=0 ) printf("rc=%d\n",rc); 7272 if( opProperty & (OPFLG_OUT2) ){ 7273 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7274 } 7275 if( opProperty & OPFLG_OUT3 ){ 7276 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7277 } 7278 } 7279 #endif /* SQLITE_DEBUG */ 7280 #endif /* NDEBUG */ 7281 } /* The end of the for(;;) loop the loops through opcodes */ 7282 7283 /* If we reach this point, it means that execution is finished with 7284 ** an error of some kind. 7285 */ 7286 abort_due_to_error: 7287 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7288 assert( rc ); 7289 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7290 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7291 } 7292 p->rc = rc; 7293 sqlite3SystemError(db, rc); 7294 testcase( sqlite3GlobalConfig.xLog!=0 ); 7295 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7296 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7297 sqlite3VdbeHalt(p); 7298 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7299 rc = SQLITE_ERROR; 7300 if( resetSchemaOnFault>0 ){ 7301 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7302 } 7303 7304 /* This is the only way out of this procedure. We have to 7305 ** release the mutexes on btrees that were acquired at the 7306 ** top. */ 7307 vdbe_return: 7308 testcase( nVmStep>0 ); 7309 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7310 sqlite3VdbeLeave(p); 7311 assert( rc!=SQLITE_OK || nExtraDelete==0 7312 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7313 ); 7314 return rc; 7315 7316 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7317 ** is encountered. 7318 */ 7319 too_big: 7320 sqlite3VdbeError(p, "string or blob too big"); 7321 rc = SQLITE_TOOBIG; 7322 goto abort_due_to_error; 7323 7324 /* Jump to here if a malloc() fails. 7325 */ 7326 no_mem: 7327 sqlite3OomFault(db); 7328 sqlite3VdbeError(p, "out of memory"); 7329 rc = SQLITE_NOMEM_BKPT; 7330 goto abort_due_to_error; 7331 7332 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7333 ** flag. 7334 */ 7335 abort_due_to_interrupt: 7336 assert( db->u1.isInterrupted ); 7337 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7338 p->rc = rc; 7339 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7340 goto abort_due_to_error; 7341 } 7342