xref: /sqlite-3.40.0/src/vdbe.c (revision f71a243a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 /*
121 ** Invoke the VDBE coverage callback, if that callback is defined.  This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
124 **
125 ** M is the type of branch.  I is the direction taken for this instance of
126 ** the branch.
127 **
128 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
129 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
130 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
131 **
132 ** In other words, if M is 2, then I is either 0 (for fall-through) or
133 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
134 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
135 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
136 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
137 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
138 ** depending on if the operands are less than, equal, or greater than.
139 **
140 ** iSrcLine is the source code line (from the __LINE__ macro) that
141 ** generated the VDBE instruction combined with flag bits.  The source
142 ** code line number is in the lower 24 bits of iSrcLine and the upper
143 ** 8 bytes are flags.  The lower three bits of the flags indicate
144 ** values for I that should never occur.  For example, if the branch is
145 ** always taken, the flags should be 0x05 since the fall-through and
146 ** alternate branch are never taken.  If a branch is never taken then
147 ** flags should be 0x06 since only the fall-through approach is allowed.
148 **
149 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
150 ** interested in equal or not-equal.  In other words, I==0 and I==2
151 ** should be treated as equivalent
152 **
153 ** Since only a line number is retained, not the filename, this macro
154 ** only works for amalgamation builds.  But that is ok, since these macros
155 ** should be no-ops except for special builds used to measure test coverage.
156 */
157 #if !defined(SQLITE_VDBE_COVERAGE)
158 # define VdbeBranchTaken(I,M)
159 #else
160 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
161   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
162     u8 mNever;
163     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
164     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
165     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
166     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
167     I = 1<<I;
168     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
169     ** the flags indicate directions that the branch can never go.  If
170     ** a branch really does go in one of those directions, assert right
171     ** away. */
172     mNever = iSrcLine >> 24;
173     assert( (I & mNever)==0 );
174     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
175     /* Invoke the branch coverage callback with three arguments:
176     **    iSrcLine - the line number of the VdbeCoverage() macro, with
177     **               flags removed.
178     **    I        - Mask of bits 0x07 indicating which cases are are
179     **               fulfilled by this instance of the jump.  0x01 means
180     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
181     **               impossible cases (ex: if the comparison is never NULL)
182     **               are filled in automatically so that the coverage
183     **               measurement logic does not flag those impossible cases
184     **               as missed coverage.
185     **    M        - Type of jump.  Same as M argument above
186     */
187     I |= mNever;
188     if( M==2 ) I |= 0x04;
189     if( M==4 ){
190       I |= 0x08;
191       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
192     }
193     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
194                                     iSrcLine&0xffffff, I, M);
195   }
196 #endif
197 
198 /*
199 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
200 ** a pointer to a dynamically allocated string where some other entity
201 ** is responsible for deallocating that string.  Because the register
202 ** does not control the string, it might be deleted without the register
203 ** knowing it.
204 **
205 ** This routine converts an ephemeral string into a dynamically allocated
206 ** string that the register itself controls.  In other words, it
207 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
208 */
209 #define Deephemeralize(P) \
210    if( ((P)->flags&MEM_Ephem)!=0 \
211        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
212 
213 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
214 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
215 
216 /*
217 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
218 ** if we run out of memory.
219 */
220 static VdbeCursor *allocateCursor(
221   Vdbe *p,              /* The virtual machine */
222   int iCur,             /* Index of the new VdbeCursor */
223   int nField,           /* Number of fields in the table or index */
224   int iDb,              /* Database the cursor belongs to, or -1 */
225   u8 eCurType           /* Type of the new cursor */
226 ){
227   /* Find the memory cell that will be used to store the blob of memory
228   ** required for this VdbeCursor structure. It is convenient to use a
229   ** vdbe memory cell to manage the memory allocation required for a
230   ** VdbeCursor structure for the following reasons:
231   **
232   **   * Sometimes cursor numbers are used for a couple of different
233   **     purposes in a vdbe program. The different uses might require
234   **     different sized allocations. Memory cells provide growable
235   **     allocations.
236   **
237   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
238   **     be freed lazily via the sqlite3_release_memory() API. This
239   **     minimizes the number of malloc calls made by the system.
240   **
241   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
242   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
243   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
244   */
245   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
246 
247   int nByte;
248   VdbeCursor *pCx = 0;
249   nByte =
250       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
251       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
252 
253   assert( iCur>=0 && iCur<p->nCursor );
254   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
255     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
256     ** is clear. Otherwise, if this is an ephemeral cursor created by
257     ** OP_OpenDup, the cursor will not be closed and will still be part
258     ** of a BtShared.pCursor list.  */
259     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
260     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
261     p->apCsr[iCur] = 0;
262   }
263   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
264     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
265     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
266     pCx->eCurType = eCurType;
267     pCx->iDb = iDb;
268     pCx->nField = nField;
269     pCx->aOffset = &pCx->aType[nField];
270     if( eCurType==CURTYPE_BTREE ){
271       pCx->uc.pCursor = (BtCursor*)
272           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
273       sqlite3BtreeCursorZero(pCx->uc.pCursor);
274     }
275   }
276   return pCx;
277 }
278 
279 /*
280 ** The string in pRec is known to look like an integer and to have a
281 ** floating point value of rValue.  Return true and set *piValue to the
282 ** integer value if the string is in range to be an integer.  Otherwise,
283 ** return false.
284 */
285 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
286   i64 iValue = (double)rValue;
287   if( sqlite3RealSameAsInt(rValue,iValue) ){
288     *piValue = iValue;
289     return 1;
290   }
291   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
292 }
293 
294 /*
295 ** Try to convert a value into a numeric representation if we can
296 ** do so without loss of information.  In other words, if the string
297 ** looks like a number, convert it into a number.  If it does not
298 ** look like a number, leave it alone.
299 **
300 ** If the bTryForInt flag is true, then extra effort is made to give
301 ** an integer representation.  Strings that look like floating point
302 ** values but which have no fractional component (example: '48.00')
303 ** will have a MEM_Int representation when bTryForInt is true.
304 **
305 ** If bTryForInt is false, then if the input string contains a decimal
306 ** point or exponential notation, the result is only MEM_Real, even
307 ** if there is an exact integer representation of the quantity.
308 */
309 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
310   double rValue;
311   u8 enc = pRec->enc;
312   int rc;
313   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
314   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
315   if( rc<=0 ) return;
316   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
317     pRec->flags |= MEM_Int;
318   }else{
319     pRec->u.r = rValue;
320     pRec->flags |= MEM_Real;
321     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
322   }
323   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
324   ** string representation after computing a numeric equivalent, because the
325   ** string representation might not be the canonical representation for the
326   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
327   pRec->flags &= ~MEM_Str;
328 }
329 
330 /*
331 ** Processing is determine by the affinity parameter:
332 **
333 ** SQLITE_AFF_INTEGER:
334 ** SQLITE_AFF_REAL:
335 ** SQLITE_AFF_NUMERIC:
336 **    Try to convert pRec to an integer representation or a
337 **    floating-point representation if an integer representation
338 **    is not possible.  Note that the integer representation is
339 **    always preferred, even if the affinity is REAL, because
340 **    an integer representation is more space efficient on disk.
341 **
342 ** SQLITE_AFF_TEXT:
343 **    Convert pRec to a text representation.
344 **
345 ** SQLITE_AFF_BLOB:
346 **    No-op.  pRec is unchanged.
347 */
348 static void applyAffinity(
349   Mem *pRec,          /* The value to apply affinity to */
350   char affinity,      /* The affinity to be applied */
351   u8 enc              /* Use this text encoding */
352 ){
353   if( affinity>=SQLITE_AFF_NUMERIC ){
354     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
355              || affinity==SQLITE_AFF_NUMERIC );
356     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
357       if( (pRec->flags & MEM_Real)==0 ){
358         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
359       }else{
360         sqlite3VdbeIntegerAffinity(pRec);
361       }
362     }
363   }else if( affinity==SQLITE_AFF_TEXT ){
364     /* Only attempt the conversion to TEXT if there is an integer or real
365     ** representation (blob and NULL do not get converted) but no string
366     ** representation.  It would be harmless to repeat the conversion if
367     ** there is already a string rep, but it is pointless to waste those
368     ** CPU cycles. */
369     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
370       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
371         testcase( pRec->flags & MEM_Int );
372         testcase( pRec->flags & MEM_Real );
373         testcase( pRec->flags & MEM_IntReal );
374         sqlite3VdbeMemStringify(pRec, enc, 1);
375       }
376     }
377     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
378   }
379 }
380 
381 /*
382 ** Try to convert the type of a function argument or a result column
383 ** into a numeric representation.  Use either INTEGER or REAL whichever
384 ** is appropriate.  But only do the conversion if it is possible without
385 ** loss of information and return the revised type of the argument.
386 */
387 int sqlite3_value_numeric_type(sqlite3_value *pVal){
388   int eType = sqlite3_value_type(pVal);
389   if( eType==SQLITE_TEXT ){
390     Mem *pMem = (Mem*)pVal;
391     applyNumericAffinity(pMem, 0);
392     eType = sqlite3_value_type(pVal);
393   }
394   return eType;
395 }
396 
397 /*
398 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
399 ** not the internal Mem* type.
400 */
401 void sqlite3ValueApplyAffinity(
402   sqlite3_value *pVal,
403   u8 affinity,
404   u8 enc
405 ){
406   applyAffinity((Mem *)pVal, affinity, enc);
407 }
408 
409 /*
410 ** pMem currently only holds a string type (or maybe a BLOB that we can
411 ** interpret as a string if we want to).  Compute its corresponding
412 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
413 ** accordingly.
414 */
415 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
416   int rc;
417   sqlite3_int64 ix;
418   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
419   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
420   ExpandBlob(pMem);
421   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
422   if( rc<=0 ){
423     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
424       pMem->u.i = ix;
425       return MEM_Int;
426     }else{
427       return MEM_Real;
428     }
429   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
430     pMem->u.i = ix;
431     return MEM_Int;
432   }
433   return MEM_Real;
434 }
435 
436 /*
437 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
438 ** none.
439 **
440 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
441 ** But it does set pMem->u.r and pMem->u.i appropriately.
442 */
443 static u16 numericType(Mem *pMem){
444   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
445     testcase( pMem->flags & MEM_Int );
446     testcase( pMem->flags & MEM_Real );
447     testcase( pMem->flags & MEM_IntReal );
448     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
449   }
450   if( pMem->flags & (MEM_Str|MEM_Blob) ){
451     testcase( pMem->flags & MEM_Str );
452     testcase( pMem->flags & MEM_Blob );
453     return computeNumericType(pMem);
454   }
455   return 0;
456 }
457 
458 #ifdef SQLITE_DEBUG
459 /*
460 ** Write a nice string representation of the contents of cell pMem
461 ** into buffer zBuf, length nBuf.
462 */
463 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
464   char *zCsr = zBuf;
465   int f = pMem->flags;
466 
467   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
468 
469   if( f&MEM_Blob ){
470     int i;
471     char c;
472     if( f & MEM_Dyn ){
473       c = 'z';
474       assert( (f & (MEM_Static|MEM_Ephem))==0 );
475     }else if( f & MEM_Static ){
476       c = 't';
477       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
478     }else if( f & MEM_Ephem ){
479       c = 'e';
480       assert( (f & (MEM_Static|MEM_Dyn))==0 );
481     }else{
482       c = 's';
483     }
484     *(zCsr++) = c;
485     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
486     zCsr += sqlite3Strlen30(zCsr);
487     for(i=0; i<16 && i<pMem->n; i++){
488       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
489       zCsr += sqlite3Strlen30(zCsr);
490     }
491     for(i=0; i<16 && i<pMem->n; i++){
492       char z = pMem->z[i];
493       if( z<32 || z>126 ) *zCsr++ = '.';
494       else *zCsr++ = z;
495     }
496     *(zCsr++) = ']';
497     if( f & MEM_Zero ){
498       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
499       zCsr += sqlite3Strlen30(zCsr);
500     }
501     *zCsr = '\0';
502   }else if( f & MEM_Str ){
503     int j, k;
504     zBuf[0] = ' ';
505     if( f & MEM_Dyn ){
506       zBuf[1] = 'z';
507       assert( (f & (MEM_Static|MEM_Ephem))==0 );
508     }else if( f & MEM_Static ){
509       zBuf[1] = 't';
510       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
511     }else if( f & MEM_Ephem ){
512       zBuf[1] = 'e';
513       assert( (f & (MEM_Static|MEM_Dyn))==0 );
514     }else{
515       zBuf[1] = 's';
516     }
517     k = 2;
518     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
519     k += sqlite3Strlen30(&zBuf[k]);
520     zBuf[k++] = '[';
521     for(j=0; j<15 && j<pMem->n; j++){
522       u8 c = pMem->z[j];
523       if( c>=0x20 && c<0x7f ){
524         zBuf[k++] = c;
525       }else{
526         zBuf[k++] = '.';
527       }
528     }
529     zBuf[k++] = ']';
530     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
531     k += sqlite3Strlen30(&zBuf[k]);
532     zBuf[k++] = 0;
533   }
534 }
535 #endif
536 
537 #ifdef SQLITE_DEBUG
538 /*
539 ** Print the value of a register for tracing purposes:
540 */
541 static void memTracePrint(Mem *p){
542   if( p->flags & MEM_Undefined ){
543     printf(" undefined");
544   }else if( p->flags & MEM_Null ){
545     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
546   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
547     printf(" si:%lld", p->u.i);
548   }else if( (p->flags & (MEM_IntReal))!=0 ){
549     printf(" ir:%lld", p->u.i);
550   }else if( p->flags & MEM_Int ){
551     printf(" i:%lld", p->u.i);
552 #ifndef SQLITE_OMIT_FLOATING_POINT
553   }else if( p->flags & MEM_Real ){
554     printf(" r:%g", p->u.r);
555 #endif
556   }else if( sqlite3VdbeMemIsRowSet(p) ){
557     printf(" (rowset)");
558   }else{
559     char zBuf[200];
560     sqlite3VdbeMemPrettyPrint(p, zBuf);
561     printf(" %s", zBuf);
562   }
563   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
564 }
565 static void registerTrace(int iReg, Mem *p){
566   printf("REG[%d] = ", iReg);
567   memTracePrint(p);
568   printf("\n");
569   sqlite3VdbeCheckMemInvariants(p);
570 }
571 #endif
572 
573 #ifdef SQLITE_DEBUG
574 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
575 #else
576 #  define REGISTER_TRACE(R,M)
577 #endif
578 
579 
580 #ifdef VDBE_PROFILE
581 
582 /*
583 ** hwtime.h contains inline assembler code for implementing
584 ** high-performance timing routines.
585 */
586 #include "hwtime.h"
587 
588 #endif
589 
590 #ifndef NDEBUG
591 /*
592 ** This function is only called from within an assert() expression. It
593 ** checks that the sqlite3.nTransaction variable is correctly set to
594 ** the number of non-transaction savepoints currently in the
595 ** linked list starting at sqlite3.pSavepoint.
596 **
597 ** Usage:
598 **
599 **     assert( checkSavepointCount(db) );
600 */
601 static int checkSavepointCount(sqlite3 *db){
602   int n = 0;
603   Savepoint *p;
604   for(p=db->pSavepoint; p; p=p->pNext) n++;
605   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
606   return 1;
607 }
608 #endif
609 
610 /*
611 ** Return the register of pOp->p2 after first preparing it to be
612 ** overwritten with an integer value.
613 */
614 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
615   sqlite3VdbeMemSetNull(pOut);
616   pOut->flags = MEM_Int;
617   return pOut;
618 }
619 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
620   Mem *pOut;
621   assert( pOp->p2>0 );
622   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
623   pOut = &p->aMem[pOp->p2];
624   memAboutToChange(p, pOut);
625   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
626     return out2PrereleaseWithClear(pOut);
627   }else{
628     pOut->flags = MEM_Int;
629     return pOut;
630   }
631 }
632 
633 
634 /*
635 ** Execute as much of a VDBE program as we can.
636 ** This is the core of sqlite3_step().
637 */
638 int sqlite3VdbeExec(
639   Vdbe *p                    /* The VDBE */
640 ){
641   Op *aOp = p->aOp;          /* Copy of p->aOp */
642   Op *pOp = aOp;             /* Current operation */
643 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
644   Op *pOrigOp;               /* Value of pOp at the top of the loop */
645 #endif
646 #ifdef SQLITE_DEBUG
647   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
648 #endif
649   int rc = SQLITE_OK;        /* Value to return */
650   sqlite3 *db = p->db;       /* The database */
651   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
652   u8 encoding = ENC(db);     /* The database encoding */
653   int iCompare = 0;          /* Result of last comparison */
654   unsigned nVmStep = 0;      /* Number of virtual machine steps */
655 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
656   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
657 #endif
658   Mem *aMem = p->aMem;       /* Copy of p->aMem */
659   Mem *pIn1 = 0;             /* 1st input operand */
660   Mem *pIn2 = 0;             /* 2nd input operand */
661   Mem *pIn3 = 0;             /* 3rd input operand */
662   Mem *pOut = 0;             /* Output operand */
663 #ifdef VDBE_PROFILE
664   u64 start;                 /* CPU clock count at start of opcode */
665 #endif
666   /*** INSERT STACK UNION HERE ***/
667 
668   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
669   sqlite3VdbeEnter(p);
670 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
671   if( db->xProgress ){
672     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
673     assert( 0 < db->nProgressOps );
674     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
675   }else{
676     nProgressLimit = 0xffffffff;
677   }
678 #endif
679   if( p->rc==SQLITE_NOMEM ){
680     /* This happens if a malloc() inside a call to sqlite3_column_text() or
681     ** sqlite3_column_text16() failed.  */
682     goto no_mem;
683   }
684   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
685   assert( p->bIsReader || p->readOnly!=0 );
686   p->iCurrentTime = 0;
687   assert( p->explain==0 );
688   p->pResultSet = 0;
689   db->busyHandler.nBusy = 0;
690   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
691   sqlite3VdbeIOTraceSql(p);
692 #ifdef SQLITE_DEBUG
693   sqlite3BeginBenignMalloc();
694   if( p->pc==0
695    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
696   ){
697     int i;
698     int once = 1;
699     sqlite3VdbePrintSql(p);
700     if( p->db->flags & SQLITE_VdbeListing ){
701       printf("VDBE Program Listing:\n");
702       for(i=0; i<p->nOp; i++){
703         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
704       }
705     }
706     if( p->db->flags & SQLITE_VdbeEQP ){
707       for(i=0; i<p->nOp; i++){
708         if( aOp[i].opcode==OP_Explain ){
709           if( once ) printf("VDBE Query Plan:\n");
710           printf("%s\n", aOp[i].p4.z);
711           once = 0;
712         }
713       }
714     }
715     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
716   }
717   sqlite3EndBenignMalloc();
718 #endif
719   for(pOp=&aOp[p->pc]; 1; pOp++){
720     /* Errors are detected by individual opcodes, with an immediate
721     ** jumps to abort_due_to_error. */
722     assert( rc==SQLITE_OK );
723 
724     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
725 #ifdef VDBE_PROFILE
726     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
727 #endif
728     nVmStep++;
729 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
730     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
731 #endif
732 
733     /* Only allow tracing if SQLITE_DEBUG is defined.
734     */
735 #ifdef SQLITE_DEBUG
736     if( db->flags & SQLITE_VdbeTrace ){
737       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
738     }
739 #endif
740 
741 
742     /* Check to see if we need to simulate an interrupt.  This only happens
743     ** if we have a special test build.
744     */
745 #ifdef SQLITE_TEST
746     if( sqlite3_interrupt_count>0 ){
747       sqlite3_interrupt_count--;
748       if( sqlite3_interrupt_count==0 ){
749         sqlite3_interrupt(db);
750       }
751     }
752 #endif
753 
754     /* Sanity checking on other operands */
755 #ifdef SQLITE_DEBUG
756     {
757       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
758       if( (opProperty & OPFLG_IN1)!=0 ){
759         assert( pOp->p1>0 );
760         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
761         assert( memIsValid(&aMem[pOp->p1]) );
762         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
763         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
764       }
765       if( (opProperty & OPFLG_IN2)!=0 ){
766         assert( pOp->p2>0 );
767         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
768         assert( memIsValid(&aMem[pOp->p2]) );
769         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
770         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
771       }
772       if( (opProperty & OPFLG_IN3)!=0 ){
773         assert( pOp->p3>0 );
774         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
775         assert( memIsValid(&aMem[pOp->p3]) );
776         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
777         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
778       }
779       if( (opProperty & OPFLG_OUT2)!=0 ){
780         assert( pOp->p2>0 );
781         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
782         memAboutToChange(p, &aMem[pOp->p2]);
783       }
784       if( (opProperty & OPFLG_OUT3)!=0 ){
785         assert( pOp->p3>0 );
786         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
787         memAboutToChange(p, &aMem[pOp->p3]);
788       }
789     }
790 #endif
791 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
792     pOrigOp = pOp;
793 #endif
794 
795     switch( pOp->opcode ){
796 
797 /*****************************************************************************
798 ** What follows is a massive switch statement where each case implements a
799 ** separate instruction in the virtual machine.  If we follow the usual
800 ** indentation conventions, each case should be indented by 6 spaces.  But
801 ** that is a lot of wasted space on the left margin.  So the code within
802 ** the switch statement will break with convention and be flush-left. Another
803 ** big comment (similar to this one) will mark the point in the code where
804 ** we transition back to normal indentation.
805 **
806 ** The formatting of each case is important.  The makefile for SQLite
807 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
808 ** file looking for lines that begin with "case OP_".  The opcodes.h files
809 ** will be filled with #defines that give unique integer values to each
810 ** opcode and the opcodes.c file is filled with an array of strings where
811 ** each string is the symbolic name for the corresponding opcode.  If the
812 ** case statement is followed by a comment of the form "/# same as ... #/"
813 ** that comment is used to determine the particular value of the opcode.
814 **
815 ** Other keywords in the comment that follows each case are used to
816 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
817 ** Keywords include: in1, in2, in3, out2, out3.  See
818 ** the mkopcodeh.awk script for additional information.
819 **
820 ** Documentation about VDBE opcodes is generated by scanning this file
821 ** for lines of that contain "Opcode:".  That line and all subsequent
822 ** comment lines are used in the generation of the opcode.html documentation
823 ** file.
824 **
825 ** SUMMARY:
826 **
827 **     Formatting is important to scripts that scan this file.
828 **     Do not deviate from the formatting style currently in use.
829 **
830 *****************************************************************************/
831 
832 /* Opcode:  Goto * P2 * * *
833 **
834 ** An unconditional jump to address P2.
835 ** The next instruction executed will be
836 ** the one at index P2 from the beginning of
837 ** the program.
838 **
839 ** The P1 parameter is not actually used by this opcode.  However, it
840 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
841 ** that this Goto is the bottom of a loop and that the lines from P2 down
842 ** to the current line should be indented for EXPLAIN output.
843 */
844 case OP_Goto: {             /* jump */
845 jump_to_p2_and_check_for_interrupt:
846   pOp = &aOp[pOp->p2 - 1];
847 
848   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
849   ** OP_VNext, or OP_SorterNext) all jump here upon
850   ** completion.  Check to see if sqlite3_interrupt() has been called
851   ** or if the progress callback needs to be invoked.
852   **
853   ** This code uses unstructured "goto" statements and does not look clean.
854   ** But that is not due to sloppy coding habits. The code is written this
855   ** way for performance, to avoid having to run the interrupt and progress
856   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
857   ** faster according to "valgrind --tool=cachegrind" */
858 check_for_interrupt:
859   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
860 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
861   /* Call the progress callback if it is configured and the required number
862   ** of VDBE ops have been executed (either since this invocation of
863   ** sqlite3VdbeExec() or since last time the progress callback was called).
864   ** If the progress callback returns non-zero, exit the virtual machine with
865   ** a return code SQLITE_ABORT.
866   */
867   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
868     assert( db->nProgressOps!=0 );
869     nProgressLimit += db->nProgressOps;
870     if( db->xProgress(db->pProgressArg) ){
871       nProgressLimit = 0xffffffff;
872       rc = SQLITE_INTERRUPT;
873       goto abort_due_to_error;
874     }
875   }
876 #endif
877 
878   break;
879 }
880 
881 /* Opcode:  Gosub P1 P2 * * *
882 **
883 ** Write the current address onto register P1
884 ** and then jump to address P2.
885 */
886 case OP_Gosub: {            /* jump */
887   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
888   pIn1 = &aMem[pOp->p1];
889   assert( VdbeMemDynamic(pIn1)==0 );
890   memAboutToChange(p, pIn1);
891   pIn1->flags = MEM_Int;
892   pIn1->u.i = (int)(pOp-aOp);
893   REGISTER_TRACE(pOp->p1, pIn1);
894 
895   /* Most jump operations do a goto to this spot in order to update
896   ** the pOp pointer. */
897 jump_to_p2:
898   pOp = &aOp[pOp->p2 - 1];
899   break;
900 }
901 
902 /* Opcode:  Return P1 * * * *
903 **
904 ** Jump to the next instruction after the address in register P1.  After
905 ** the jump, register P1 becomes undefined.
906 */
907 case OP_Return: {           /* in1 */
908   pIn1 = &aMem[pOp->p1];
909   assert( pIn1->flags==MEM_Int );
910   pOp = &aOp[pIn1->u.i];
911   pIn1->flags = MEM_Undefined;
912   break;
913 }
914 
915 /* Opcode: InitCoroutine P1 P2 P3 * *
916 **
917 ** Set up register P1 so that it will Yield to the coroutine
918 ** located at address P3.
919 **
920 ** If P2!=0 then the coroutine implementation immediately follows
921 ** this opcode.  So jump over the coroutine implementation to
922 ** address P2.
923 **
924 ** See also: EndCoroutine
925 */
926 case OP_InitCoroutine: {     /* jump */
927   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
928   assert( pOp->p2>=0 && pOp->p2<p->nOp );
929   assert( pOp->p3>=0 && pOp->p3<p->nOp );
930   pOut = &aMem[pOp->p1];
931   assert( !VdbeMemDynamic(pOut) );
932   pOut->u.i = pOp->p3 - 1;
933   pOut->flags = MEM_Int;
934   if( pOp->p2 ) goto jump_to_p2;
935   break;
936 }
937 
938 /* Opcode:  EndCoroutine P1 * * * *
939 **
940 ** The instruction at the address in register P1 is a Yield.
941 ** Jump to the P2 parameter of that Yield.
942 ** After the jump, register P1 becomes undefined.
943 **
944 ** See also: InitCoroutine
945 */
946 case OP_EndCoroutine: {           /* in1 */
947   VdbeOp *pCaller;
948   pIn1 = &aMem[pOp->p1];
949   assert( pIn1->flags==MEM_Int );
950   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
951   pCaller = &aOp[pIn1->u.i];
952   assert( pCaller->opcode==OP_Yield );
953   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
954   pOp = &aOp[pCaller->p2 - 1];
955   pIn1->flags = MEM_Undefined;
956   break;
957 }
958 
959 /* Opcode:  Yield P1 P2 * * *
960 **
961 ** Swap the program counter with the value in register P1.  This
962 ** has the effect of yielding to a coroutine.
963 **
964 ** If the coroutine that is launched by this instruction ends with
965 ** Yield or Return then continue to the next instruction.  But if
966 ** the coroutine launched by this instruction ends with
967 ** EndCoroutine, then jump to P2 rather than continuing with the
968 ** next instruction.
969 **
970 ** See also: InitCoroutine
971 */
972 case OP_Yield: {            /* in1, jump */
973   int pcDest;
974   pIn1 = &aMem[pOp->p1];
975   assert( VdbeMemDynamic(pIn1)==0 );
976   pIn1->flags = MEM_Int;
977   pcDest = (int)pIn1->u.i;
978   pIn1->u.i = (int)(pOp - aOp);
979   REGISTER_TRACE(pOp->p1, pIn1);
980   pOp = &aOp[pcDest];
981   break;
982 }
983 
984 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
985 ** Synopsis: if r[P3]=null halt
986 **
987 ** Check the value in register P3.  If it is NULL then Halt using
988 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
989 ** value in register P3 is not NULL, then this routine is a no-op.
990 ** The P5 parameter should be 1.
991 */
992 case OP_HaltIfNull: {      /* in3 */
993   pIn3 = &aMem[pOp->p3];
994 #ifdef SQLITE_DEBUG
995   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
996 #endif
997   if( (pIn3->flags & MEM_Null)==0 ) break;
998   /* Fall through into OP_Halt */
999 }
1000 
1001 /* Opcode:  Halt P1 P2 * P4 P5
1002 **
1003 ** Exit immediately.  All open cursors, etc are closed
1004 ** automatically.
1005 **
1006 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1007 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1008 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1009 ** whether or not to rollback the current transaction.  Do not rollback
1010 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1011 ** then back out all changes that have occurred during this execution of the
1012 ** VDBE, but do not rollback the transaction.
1013 **
1014 ** If P4 is not null then it is an error message string.
1015 **
1016 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1017 **
1018 **    0:  (no change)
1019 **    1:  NOT NULL contraint failed: P4
1020 **    2:  UNIQUE constraint failed: P4
1021 **    3:  CHECK constraint failed: P4
1022 **    4:  FOREIGN KEY constraint failed: P4
1023 **
1024 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1025 ** omitted.
1026 **
1027 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1028 ** every program.  So a jump past the last instruction of the program
1029 ** is the same as executing Halt.
1030 */
1031 case OP_Halt: {
1032   VdbeFrame *pFrame;
1033   int pcx;
1034 
1035   pcx = (int)(pOp - aOp);
1036 #ifdef SQLITE_DEBUG
1037   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1038 #endif
1039   if( pOp->p1==SQLITE_OK && p->pFrame ){
1040     /* Halt the sub-program. Return control to the parent frame. */
1041     pFrame = p->pFrame;
1042     p->pFrame = pFrame->pParent;
1043     p->nFrame--;
1044     sqlite3VdbeSetChanges(db, p->nChange);
1045     pcx = sqlite3VdbeFrameRestore(pFrame);
1046     if( pOp->p2==OE_Ignore ){
1047       /* Instruction pcx is the OP_Program that invoked the sub-program
1048       ** currently being halted. If the p2 instruction of this OP_Halt
1049       ** instruction is set to OE_Ignore, then the sub-program is throwing
1050       ** an IGNORE exception. In this case jump to the address specified
1051       ** as the p2 of the calling OP_Program.  */
1052       pcx = p->aOp[pcx].p2-1;
1053     }
1054     aOp = p->aOp;
1055     aMem = p->aMem;
1056     pOp = &aOp[pcx];
1057     break;
1058   }
1059   p->rc = pOp->p1;
1060   p->errorAction = (u8)pOp->p2;
1061   p->pc = pcx;
1062   assert( pOp->p5<=4 );
1063   if( p->rc ){
1064     if( pOp->p5 ){
1065       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1066                                              "FOREIGN KEY" };
1067       testcase( pOp->p5==1 );
1068       testcase( pOp->p5==2 );
1069       testcase( pOp->p5==3 );
1070       testcase( pOp->p5==4 );
1071       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1072       if( pOp->p4.z ){
1073         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1074       }
1075     }else{
1076       sqlite3VdbeError(p, "%s", pOp->p4.z);
1077     }
1078     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1079   }
1080   rc = sqlite3VdbeHalt(p);
1081   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1082   if( rc==SQLITE_BUSY ){
1083     p->rc = SQLITE_BUSY;
1084   }else{
1085     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1086     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1087     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1088   }
1089   goto vdbe_return;
1090 }
1091 
1092 /* Opcode: Integer P1 P2 * * *
1093 ** Synopsis: r[P2]=P1
1094 **
1095 ** The 32-bit integer value P1 is written into register P2.
1096 */
1097 case OP_Integer: {         /* out2 */
1098   pOut = out2Prerelease(p, pOp);
1099   pOut->u.i = pOp->p1;
1100   break;
1101 }
1102 
1103 /* Opcode: Int64 * P2 * P4 *
1104 ** Synopsis: r[P2]=P4
1105 **
1106 ** P4 is a pointer to a 64-bit integer value.
1107 ** Write that value into register P2.
1108 */
1109 case OP_Int64: {           /* out2 */
1110   pOut = out2Prerelease(p, pOp);
1111   assert( pOp->p4.pI64!=0 );
1112   pOut->u.i = *pOp->p4.pI64;
1113   break;
1114 }
1115 
1116 #ifndef SQLITE_OMIT_FLOATING_POINT
1117 /* Opcode: Real * P2 * P4 *
1118 ** Synopsis: r[P2]=P4
1119 **
1120 ** P4 is a pointer to a 64-bit floating point value.
1121 ** Write that value into register P2.
1122 */
1123 case OP_Real: {            /* same as TK_FLOAT, out2 */
1124   pOut = out2Prerelease(p, pOp);
1125   pOut->flags = MEM_Real;
1126   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1127   pOut->u.r = *pOp->p4.pReal;
1128   break;
1129 }
1130 #endif
1131 
1132 /* Opcode: String8 * P2 * P4 *
1133 ** Synopsis: r[P2]='P4'
1134 **
1135 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1136 ** into a String opcode before it is executed for the first time.  During
1137 ** this transformation, the length of string P4 is computed and stored
1138 ** as the P1 parameter.
1139 */
1140 case OP_String8: {         /* same as TK_STRING, out2 */
1141   assert( pOp->p4.z!=0 );
1142   pOut = out2Prerelease(p, pOp);
1143   pOp->opcode = OP_String;
1144   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1145 
1146 #ifndef SQLITE_OMIT_UTF16
1147   if( encoding!=SQLITE_UTF8 ){
1148     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1149     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1150     if( rc ) goto too_big;
1151     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1152     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1153     assert( VdbeMemDynamic(pOut)==0 );
1154     pOut->szMalloc = 0;
1155     pOut->flags |= MEM_Static;
1156     if( pOp->p4type==P4_DYNAMIC ){
1157       sqlite3DbFree(db, pOp->p4.z);
1158     }
1159     pOp->p4type = P4_DYNAMIC;
1160     pOp->p4.z = pOut->z;
1161     pOp->p1 = pOut->n;
1162   }
1163 #endif
1164   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1165     goto too_big;
1166   }
1167   assert( rc==SQLITE_OK );
1168   /* Fall through to the next case, OP_String */
1169 }
1170 
1171 /* Opcode: String P1 P2 P3 P4 P5
1172 ** Synopsis: r[P2]='P4' (len=P1)
1173 **
1174 ** The string value P4 of length P1 (bytes) is stored in register P2.
1175 **
1176 ** If P3 is not zero and the content of register P3 is equal to P5, then
1177 ** the datatype of the register P2 is converted to BLOB.  The content is
1178 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1179 ** of a string, as if it had been CAST.  In other words:
1180 **
1181 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1182 */
1183 case OP_String: {          /* out2 */
1184   assert( pOp->p4.z!=0 );
1185   pOut = out2Prerelease(p, pOp);
1186   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1187   pOut->z = pOp->p4.z;
1188   pOut->n = pOp->p1;
1189   pOut->enc = encoding;
1190   UPDATE_MAX_BLOBSIZE(pOut);
1191 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1192   if( pOp->p3>0 ){
1193     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1194     pIn3 = &aMem[pOp->p3];
1195     assert( pIn3->flags & MEM_Int );
1196     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1197   }
1198 #endif
1199   break;
1200 }
1201 
1202 /* Opcode: Null P1 P2 P3 * *
1203 ** Synopsis: r[P2..P3]=NULL
1204 **
1205 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1206 ** NULL into register P3 and every register in between P2 and P3.  If P3
1207 ** is less than P2 (typically P3 is zero) then only register P2 is
1208 ** set to NULL.
1209 **
1210 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1211 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1212 ** OP_Ne or OP_Eq.
1213 */
1214 case OP_Null: {           /* out2 */
1215   int cnt;
1216   u16 nullFlag;
1217   pOut = out2Prerelease(p, pOp);
1218   cnt = pOp->p3-pOp->p2;
1219   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1220   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1221   pOut->n = 0;
1222 #ifdef SQLITE_DEBUG
1223   pOut->uTemp = 0;
1224 #endif
1225   while( cnt>0 ){
1226     pOut++;
1227     memAboutToChange(p, pOut);
1228     sqlite3VdbeMemSetNull(pOut);
1229     pOut->flags = nullFlag;
1230     pOut->n = 0;
1231     cnt--;
1232   }
1233   break;
1234 }
1235 
1236 /* Opcode: SoftNull P1 * * * *
1237 ** Synopsis: r[P1]=NULL
1238 **
1239 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1240 ** instruction, but do not free any string or blob memory associated with
1241 ** the register, so that if the value was a string or blob that was
1242 ** previously copied using OP_SCopy, the copies will continue to be valid.
1243 */
1244 case OP_SoftNull: {
1245   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1246   pOut = &aMem[pOp->p1];
1247   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1248   break;
1249 }
1250 
1251 /* Opcode: Blob P1 P2 * P4 *
1252 ** Synopsis: r[P2]=P4 (len=P1)
1253 **
1254 ** P4 points to a blob of data P1 bytes long.  Store this
1255 ** blob in register P2.
1256 */
1257 case OP_Blob: {                /* out2 */
1258   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1259   pOut = out2Prerelease(p, pOp);
1260   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1261   pOut->enc = encoding;
1262   UPDATE_MAX_BLOBSIZE(pOut);
1263   break;
1264 }
1265 
1266 /* Opcode: Variable P1 P2 * P4 *
1267 ** Synopsis: r[P2]=parameter(P1,P4)
1268 **
1269 ** Transfer the values of bound parameter P1 into register P2
1270 **
1271 ** If the parameter is named, then its name appears in P4.
1272 ** The P4 value is used by sqlite3_bind_parameter_name().
1273 */
1274 case OP_Variable: {            /* out2 */
1275   Mem *pVar;       /* Value being transferred */
1276 
1277   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1278   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1279   pVar = &p->aVar[pOp->p1 - 1];
1280   if( sqlite3VdbeMemTooBig(pVar) ){
1281     goto too_big;
1282   }
1283   pOut = &aMem[pOp->p2];
1284   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1285   memcpy(pOut, pVar, MEMCELLSIZE);
1286   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1287   pOut->flags |= MEM_Static|MEM_FromBind;
1288   UPDATE_MAX_BLOBSIZE(pOut);
1289   break;
1290 }
1291 
1292 /* Opcode: Move P1 P2 P3 * *
1293 ** Synopsis: r[P2@P3]=r[P1@P3]
1294 **
1295 ** Move the P3 values in register P1..P1+P3-1 over into
1296 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1297 ** left holding a NULL.  It is an error for register ranges
1298 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1299 ** for P3 to be less than 1.
1300 */
1301 case OP_Move: {
1302   int n;           /* Number of registers left to copy */
1303   int p1;          /* Register to copy from */
1304   int p2;          /* Register to copy to */
1305 
1306   n = pOp->p3;
1307   p1 = pOp->p1;
1308   p2 = pOp->p2;
1309   assert( n>0 && p1>0 && p2>0 );
1310   assert( p1+n<=p2 || p2+n<=p1 );
1311 
1312   pIn1 = &aMem[p1];
1313   pOut = &aMem[p2];
1314   do{
1315     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1316     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1317     assert( memIsValid(pIn1) );
1318     memAboutToChange(p, pOut);
1319     sqlite3VdbeMemMove(pOut, pIn1);
1320 #ifdef SQLITE_DEBUG
1321     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1322       pOut->pScopyFrom += pOp->p2 - p1;
1323     }
1324 #endif
1325     Deephemeralize(pOut);
1326     REGISTER_TRACE(p2++, pOut);
1327     pIn1++;
1328     pOut++;
1329   }while( --n );
1330   break;
1331 }
1332 
1333 /* Opcode: Copy P1 P2 P3 * *
1334 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1335 **
1336 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1337 **
1338 ** This instruction makes a deep copy of the value.  A duplicate
1339 ** is made of any string or blob constant.  See also OP_SCopy.
1340 */
1341 case OP_Copy: {
1342   int n;
1343 
1344   n = pOp->p3;
1345   pIn1 = &aMem[pOp->p1];
1346   pOut = &aMem[pOp->p2];
1347   assert( pOut!=pIn1 );
1348   while( 1 ){
1349     memAboutToChange(p, pOut);
1350     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1351     Deephemeralize(pOut);
1352 #ifdef SQLITE_DEBUG
1353     pOut->pScopyFrom = 0;
1354 #endif
1355     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1356     if( (n--)==0 ) break;
1357     pOut++;
1358     pIn1++;
1359   }
1360   break;
1361 }
1362 
1363 /* Opcode: SCopy P1 P2 * * *
1364 ** Synopsis: r[P2]=r[P1]
1365 **
1366 ** Make a shallow copy of register P1 into register P2.
1367 **
1368 ** This instruction makes a shallow copy of the value.  If the value
1369 ** is a string or blob, then the copy is only a pointer to the
1370 ** original and hence if the original changes so will the copy.
1371 ** Worse, if the original is deallocated, the copy becomes invalid.
1372 ** Thus the program must guarantee that the original will not change
1373 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1374 ** copy.
1375 */
1376 case OP_SCopy: {            /* out2 */
1377   pIn1 = &aMem[pOp->p1];
1378   pOut = &aMem[pOp->p2];
1379   assert( pOut!=pIn1 );
1380   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1381 #ifdef SQLITE_DEBUG
1382   pOut->pScopyFrom = pIn1;
1383   pOut->mScopyFlags = pIn1->flags;
1384 #endif
1385   break;
1386 }
1387 
1388 /* Opcode: IntCopy P1 P2 * * *
1389 ** Synopsis: r[P2]=r[P1]
1390 **
1391 ** Transfer the integer value held in register P1 into register P2.
1392 **
1393 ** This is an optimized version of SCopy that works only for integer
1394 ** values.
1395 */
1396 case OP_IntCopy: {            /* out2 */
1397   pIn1 = &aMem[pOp->p1];
1398   assert( (pIn1->flags & MEM_Int)!=0 );
1399   pOut = &aMem[pOp->p2];
1400   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1401   break;
1402 }
1403 
1404 /* Opcode: ResultRow P1 P2 * * *
1405 ** Synopsis: output=r[P1@P2]
1406 **
1407 ** The registers P1 through P1+P2-1 contain a single row of
1408 ** results. This opcode causes the sqlite3_step() call to terminate
1409 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1410 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1411 ** the result row.
1412 */
1413 case OP_ResultRow: {
1414   Mem *pMem;
1415   int i;
1416   assert( p->nResColumn==pOp->p2 );
1417   assert( pOp->p1>0 );
1418   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1419 
1420   /* If this statement has violated immediate foreign key constraints, do
1421   ** not return the number of rows modified. And do not RELEASE the statement
1422   ** transaction. It needs to be rolled back.  */
1423   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1424     assert( db->flags&SQLITE_CountRows );
1425     assert( p->usesStmtJournal );
1426     goto abort_due_to_error;
1427   }
1428 
1429   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1430   ** DML statements invoke this opcode to return the number of rows
1431   ** modified to the user. This is the only way that a VM that
1432   ** opens a statement transaction may invoke this opcode.
1433   **
1434   ** In case this is such a statement, close any statement transaction
1435   ** opened by this VM before returning control to the user. This is to
1436   ** ensure that statement-transactions are always nested, not overlapping.
1437   ** If the open statement-transaction is not closed here, then the user
1438   ** may step another VM that opens its own statement transaction. This
1439   ** may lead to overlapping statement transactions.
1440   **
1441   ** The statement transaction is never a top-level transaction.  Hence
1442   ** the RELEASE call below can never fail.
1443   */
1444   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1445   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1446   assert( rc==SQLITE_OK );
1447 
1448   /* Invalidate all ephemeral cursor row caches */
1449   p->cacheCtr = (p->cacheCtr + 2)|1;
1450 
1451   /* Make sure the results of the current row are \000 terminated
1452   ** and have an assigned type.  The results are de-ephemeralized as
1453   ** a side effect.
1454   */
1455   pMem = p->pResultSet = &aMem[pOp->p1];
1456   for(i=0; i<pOp->p2; i++){
1457     assert( memIsValid(&pMem[i]) );
1458     Deephemeralize(&pMem[i]);
1459     assert( (pMem[i].flags & MEM_Ephem)==0
1460             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1461     sqlite3VdbeMemNulTerminate(&pMem[i]);
1462     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1463   }
1464   if( db->mallocFailed ) goto no_mem;
1465 
1466   if( db->mTrace & SQLITE_TRACE_ROW ){
1467     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1468   }
1469 
1470   /* Return SQLITE_ROW
1471   */
1472   p->pc = (int)(pOp - aOp) + 1;
1473   rc = SQLITE_ROW;
1474   goto vdbe_return;
1475 }
1476 
1477 /* Opcode: Concat P1 P2 P3 * *
1478 ** Synopsis: r[P3]=r[P2]+r[P1]
1479 **
1480 ** Add the text in register P1 onto the end of the text in
1481 ** register P2 and store the result in register P3.
1482 ** If either the P1 or P2 text are NULL then store NULL in P3.
1483 **
1484 **   P3 = P2 || P1
1485 **
1486 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1487 ** if P3 is the same register as P2, the implementation is able
1488 ** to avoid a memcpy().
1489 */
1490 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1491   i64 nByte;          /* Total size of the output string or blob */
1492   u16 flags1;         /* Initial flags for P1 */
1493   u16 flags2;         /* Initial flags for P2 */
1494 
1495   pIn1 = &aMem[pOp->p1];
1496   pIn2 = &aMem[pOp->p2];
1497   pOut = &aMem[pOp->p3];
1498   testcase( pIn1==pIn2 );
1499   testcase( pOut==pIn2 );
1500   assert( pIn1!=pOut );
1501   flags1 = pIn1->flags;
1502   testcase( flags1 & MEM_Null );
1503   testcase( pIn2->flags & MEM_Null );
1504   if( (flags1 | pIn2->flags) & MEM_Null ){
1505     sqlite3VdbeMemSetNull(pOut);
1506     break;
1507   }
1508   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1509     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1510     flags1 = pIn1->flags & ~MEM_Str;
1511   }else if( (flags1 & MEM_Zero)!=0 ){
1512     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1513     flags1 = pIn1->flags & ~MEM_Str;
1514   }
1515   flags2 = pIn2->flags;
1516   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1517     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1518     flags2 = pIn2->flags & ~MEM_Str;
1519   }else if( (flags2 & MEM_Zero)!=0 ){
1520     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1521     flags2 = pIn2->flags & ~MEM_Str;
1522   }
1523   nByte = pIn1->n + pIn2->n;
1524   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1525     goto too_big;
1526   }
1527   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1528     goto no_mem;
1529   }
1530   MemSetTypeFlag(pOut, MEM_Str);
1531   if( pOut!=pIn2 ){
1532     memcpy(pOut->z, pIn2->z, pIn2->n);
1533     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1534     pIn2->flags = flags2;
1535   }
1536   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1537   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1538   pIn1->flags = flags1;
1539   pOut->z[nByte]=0;
1540   pOut->z[nByte+1] = 0;
1541   pOut->z[nByte+2] = 0;
1542   pOut->flags |= MEM_Term;
1543   pOut->n = (int)nByte;
1544   pOut->enc = encoding;
1545   UPDATE_MAX_BLOBSIZE(pOut);
1546   break;
1547 }
1548 
1549 /* Opcode: Add P1 P2 P3 * *
1550 ** Synopsis: r[P3]=r[P1]+r[P2]
1551 **
1552 ** Add the value in register P1 to the value in register P2
1553 ** and store the result in register P3.
1554 ** If either input is NULL, the result is NULL.
1555 */
1556 /* Opcode: Multiply P1 P2 P3 * *
1557 ** Synopsis: r[P3]=r[P1]*r[P2]
1558 **
1559 **
1560 ** Multiply the value in register P1 by the value in register P2
1561 ** and store the result in register P3.
1562 ** If either input is NULL, the result is NULL.
1563 */
1564 /* Opcode: Subtract P1 P2 P3 * *
1565 ** Synopsis: r[P3]=r[P2]-r[P1]
1566 **
1567 ** Subtract the value in register P1 from the value in register P2
1568 ** and store the result in register P3.
1569 ** If either input is NULL, the result is NULL.
1570 */
1571 /* Opcode: Divide P1 P2 P3 * *
1572 ** Synopsis: r[P3]=r[P2]/r[P1]
1573 **
1574 ** Divide the value in register P1 by the value in register P2
1575 ** and store the result in register P3 (P3=P2/P1). If the value in
1576 ** register P1 is zero, then the result is NULL. If either input is
1577 ** NULL, the result is NULL.
1578 */
1579 /* Opcode: Remainder P1 P2 P3 * *
1580 ** Synopsis: r[P3]=r[P2]%r[P1]
1581 **
1582 ** Compute the remainder after integer register P2 is divided by
1583 ** register P1 and store the result in register P3.
1584 ** If the value in register P1 is zero the result is NULL.
1585 ** If either operand is NULL, the result is NULL.
1586 */
1587 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1588 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1589 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1590 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1591 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1592   u16 flags;      /* Combined MEM_* flags from both inputs */
1593   u16 type1;      /* Numeric type of left operand */
1594   u16 type2;      /* Numeric type of right operand */
1595   i64 iA;         /* Integer value of left operand */
1596   i64 iB;         /* Integer value of right operand */
1597   double rA;      /* Real value of left operand */
1598   double rB;      /* Real value of right operand */
1599 
1600   pIn1 = &aMem[pOp->p1];
1601   type1 = numericType(pIn1);
1602   pIn2 = &aMem[pOp->p2];
1603   type2 = numericType(pIn2);
1604   pOut = &aMem[pOp->p3];
1605   flags = pIn1->flags | pIn2->flags;
1606   if( (type1 & type2 & MEM_Int)!=0 ){
1607     iA = pIn1->u.i;
1608     iB = pIn2->u.i;
1609     switch( pOp->opcode ){
1610       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1611       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1612       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1613       case OP_Divide: {
1614         if( iA==0 ) goto arithmetic_result_is_null;
1615         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1616         iB /= iA;
1617         break;
1618       }
1619       default: {
1620         if( iA==0 ) goto arithmetic_result_is_null;
1621         if( iA==-1 ) iA = 1;
1622         iB %= iA;
1623         break;
1624       }
1625     }
1626     pOut->u.i = iB;
1627     MemSetTypeFlag(pOut, MEM_Int);
1628   }else if( (flags & MEM_Null)!=0 ){
1629     goto arithmetic_result_is_null;
1630   }else{
1631 fp_math:
1632     rA = sqlite3VdbeRealValue(pIn1);
1633     rB = sqlite3VdbeRealValue(pIn2);
1634     switch( pOp->opcode ){
1635       case OP_Add:         rB += rA;       break;
1636       case OP_Subtract:    rB -= rA;       break;
1637       case OP_Multiply:    rB *= rA;       break;
1638       case OP_Divide: {
1639         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1640         if( rA==(double)0 ) goto arithmetic_result_is_null;
1641         rB /= rA;
1642         break;
1643       }
1644       default: {
1645         iA = sqlite3VdbeIntValue(pIn1);
1646         iB = sqlite3VdbeIntValue(pIn2);
1647         if( iA==0 ) goto arithmetic_result_is_null;
1648         if( iA==-1 ) iA = 1;
1649         rB = (double)(iB % iA);
1650         break;
1651       }
1652     }
1653 #ifdef SQLITE_OMIT_FLOATING_POINT
1654     pOut->u.i = rB;
1655     MemSetTypeFlag(pOut, MEM_Int);
1656 #else
1657     if( sqlite3IsNaN(rB) ){
1658       goto arithmetic_result_is_null;
1659     }
1660     pOut->u.r = rB;
1661     MemSetTypeFlag(pOut, MEM_Real);
1662 #endif
1663   }
1664   break;
1665 
1666 arithmetic_result_is_null:
1667   sqlite3VdbeMemSetNull(pOut);
1668   break;
1669 }
1670 
1671 /* Opcode: CollSeq P1 * * P4
1672 **
1673 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1674 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1675 ** be returned. This is used by the built-in min(), max() and nullif()
1676 ** functions.
1677 **
1678 ** If P1 is not zero, then it is a register that a subsequent min() or
1679 ** max() aggregate will set to 1 if the current row is not the minimum or
1680 ** maximum.  The P1 register is initialized to 0 by this instruction.
1681 **
1682 ** The interface used by the implementation of the aforementioned functions
1683 ** to retrieve the collation sequence set by this opcode is not available
1684 ** publicly.  Only built-in functions have access to this feature.
1685 */
1686 case OP_CollSeq: {
1687   assert( pOp->p4type==P4_COLLSEQ );
1688   if( pOp->p1 ){
1689     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1690   }
1691   break;
1692 }
1693 
1694 /* Opcode: BitAnd P1 P2 P3 * *
1695 ** Synopsis: r[P3]=r[P1]&r[P2]
1696 **
1697 ** Take the bit-wise AND of the values in register P1 and P2 and
1698 ** store the result in register P3.
1699 ** If either input is NULL, the result is NULL.
1700 */
1701 /* Opcode: BitOr P1 P2 P3 * *
1702 ** Synopsis: r[P3]=r[P1]|r[P2]
1703 **
1704 ** Take the bit-wise OR of the values in register P1 and P2 and
1705 ** store the result in register P3.
1706 ** If either input is NULL, the result is NULL.
1707 */
1708 /* Opcode: ShiftLeft P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P2]<<r[P1]
1710 **
1711 ** Shift the integer value in register P2 to the left by the
1712 ** number of bits specified by the integer in register P1.
1713 ** Store the result in register P3.
1714 ** If either input is NULL, the result is NULL.
1715 */
1716 /* Opcode: ShiftRight P1 P2 P3 * *
1717 ** Synopsis: r[P3]=r[P2]>>r[P1]
1718 **
1719 ** Shift the integer value in register P2 to the right by the
1720 ** number of bits specified by the integer in register P1.
1721 ** Store the result in register P3.
1722 ** If either input is NULL, the result is NULL.
1723 */
1724 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1725 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1726 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1727 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1728   i64 iA;
1729   u64 uA;
1730   i64 iB;
1731   u8 op;
1732 
1733   pIn1 = &aMem[pOp->p1];
1734   pIn2 = &aMem[pOp->p2];
1735   pOut = &aMem[pOp->p3];
1736   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1737     sqlite3VdbeMemSetNull(pOut);
1738     break;
1739   }
1740   iA = sqlite3VdbeIntValue(pIn2);
1741   iB = sqlite3VdbeIntValue(pIn1);
1742   op = pOp->opcode;
1743   if( op==OP_BitAnd ){
1744     iA &= iB;
1745   }else if( op==OP_BitOr ){
1746     iA |= iB;
1747   }else if( iB!=0 ){
1748     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1749 
1750     /* If shifting by a negative amount, shift in the other direction */
1751     if( iB<0 ){
1752       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1753       op = 2*OP_ShiftLeft + 1 - op;
1754       iB = iB>(-64) ? -iB : 64;
1755     }
1756 
1757     if( iB>=64 ){
1758       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1759     }else{
1760       memcpy(&uA, &iA, sizeof(uA));
1761       if( op==OP_ShiftLeft ){
1762         uA <<= iB;
1763       }else{
1764         uA >>= iB;
1765         /* Sign-extend on a right shift of a negative number */
1766         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1767       }
1768       memcpy(&iA, &uA, sizeof(iA));
1769     }
1770   }
1771   pOut->u.i = iA;
1772   MemSetTypeFlag(pOut, MEM_Int);
1773   break;
1774 }
1775 
1776 /* Opcode: AddImm  P1 P2 * * *
1777 ** Synopsis: r[P1]=r[P1]+P2
1778 **
1779 ** Add the constant P2 to the value in register P1.
1780 ** The result is always an integer.
1781 **
1782 ** To force any register to be an integer, just add 0.
1783 */
1784 case OP_AddImm: {            /* in1 */
1785   pIn1 = &aMem[pOp->p1];
1786   memAboutToChange(p, pIn1);
1787   sqlite3VdbeMemIntegerify(pIn1);
1788   pIn1->u.i += pOp->p2;
1789   break;
1790 }
1791 
1792 /* Opcode: MustBeInt P1 P2 * * *
1793 **
1794 ** Force the value in register P1 to be an integer.  If the value
1795 ** in P1 is not an integer and cannot be converted into an integer
1796 ** without data loss, then jump immediately to P2, or if P2==0
1797 ** raise an SQLITE_MISMATCH exception.
1798 */
1799 case OP_MustBeInt: {            /* jump, in1 */
1800   pIn1 = &aMem[pOp->p1];
1801   if( (pIn1->flags & MEM_Int)==0 ){
1802     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1803     if( (pIn1->flags & MEM_Int)==0 ){
1804       VdbeBranchTaken(1, 2);
1805       if( pOp->p2==0 ){
1806         rc = SQLITE_MISMATCH;
1807         goto abort_due_to_error;
1808       }else{
1809         goto jump_to_p2;
1810       }
1811     }
1812   }
1813   VdbeBranchTaken(0, 2);
1814   MemSetTypeFlag(pIn1, MEM_Int);
1815   break;
1816 }
1817 
1818 #ifndef SQLITE_OMIT_FLOATING_POINT
1819 /* Opcode: RealAffinity P1 * * * *
1820 **
1821 ** If register P1 holds an integer convert it to a real value.
1822 **
1823 ** This opcode is used when extracting information from a column that
1824 ** has REAL affinity.  Such column values may still be stored as
1825 ** integers, for space efficiency, but after extraction we want them
1826 ** to have only a real value.
1827 */
1828 case OP_RealAffinity: {                  /* in1 */
1829   pIn1 = &aMem[pOp->p1];
1830   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1831     testcase( pIn1->flags & MEM_Int );
1832     testcase( pIn1->flags & MEM_IntReal );
1833     sqlite3VdbeMemRealify(pIn1);
1834   }
1835   break;
1836 }
1837 #endif
1838 
1839 #ifndef SQLITE_OMIT_CAST
1840 /* Opcode: Cast P1 P2 * * *
1841 ** Synopsis: affinity(r[P1])
1842 **
1843 ** Force the value in register P1 to be the type defined by P2.
1844 **
1845 ** <ul>
1846 ** <li> P2=='A' &rarr; BLOB
1847 ** <li> P2=='B' &rarr; TEXT
1848 ** <li> P2=='C' &rarr; NUMERIC
1849 ** <li> P2=='D' &rarr; INTEGER
1850 ** <li> P2=='E' &rarr; REAL
1851 ** </ul>
1852 **
1853 ** A NULL value is not changed by this routine.  It remains NULL.
1854 */
1855 case OP_Cast: {                  /* in1 */
1856   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1857   testcase( pOp->p2==SQLITE_AFF_TEXT );
1858   testcase( pOp->p2==SQLITE_AFF_BLOB );
1859   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1860   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1861   testcase( pOp->p2==SQLITE_AFF_REAL );
1862   pIn1 = &aMem[pOp->p1];
1863   memAboutToChange(p, pIn1);
1864   rc = ExpandBlob(pIn1);
1865   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1866   UPDATE_MAX_BLOBSIZE(pIn1);
1867   if( rc ) goto abort_due_to_error;
1868   break;
1869 }
1870 #endif /* SQLITE_OMIT_CAST */
1871 
1872 /* Opcode: Eq P1 P2 P3 P4 P5
1873 ** Synopsis: IF r[P3]==r[P1]
1874 **
1875 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1876 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1877 ** store the result of comparison in register P2.
1878 **
1879 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1880 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1881 ** to coerce both inputs according to this affinity before the
1882 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1883 ** affinity is used. Note that the affinity conversions are stored
1884 ** back into the input registers P1 and P3.  So this opcode can cause
1885 ** persistent changes to registers P1 and P3.
1886 **
1887 ** Once any conversions have taken place, and neither value is NULL,
1888 ** the values are compared. If both values are blobs then memcmp() is
1889 ** used to determine the results of the comparison.  If both values
1890 ** are text, then the appropriate collating function specified in
1891 ** P4 is used to do the comparison.  If P4 is not specified then
1892 ** memcmp() is used to compare text string.  If both values are
1893 ** numeric, then a numeric comparison is used. If the two values
1894 ** are of different types, then numbers are considered less than
1895 ** strings and strings are considered less than blobs.
1896 **
1897 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1898 ** true or false and is never NULL.  If both operands are NULL then the result
1899 ** of comparison is true.  If either operand is NULL then the result is false.
1900 ** If neither operand is NULL the result is the same as it would be if
1901 ** the SQLITE_NULLEQ flag were omitted from P5.
1902 **
1903 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1904 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1905 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1906 */
1907 /* Opcode: Ne P1 P2 P3 P4 P5
1908 ** Synopsis: IF r[P3]!=r[P1]
1909 **
1910 ** This works just like the Eq opcode except that the jump is taken if
1911 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1912 ** additional information.
1913 **
1914 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1915 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1916 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1917 */
1918 /* Opcode: Lt P1 P2 P3 P4 P5
1919 ** Synopsis: IF r[P3]<r[P1]
1920 **
1921 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1922 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1923 ** the result of comparison (0 or 1 or NULL) into register P2.
1924 **
1925 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1926 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1927 ** bit is clear then fall through if either operand is NULL.
1928 **
1929 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1930 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1931 ** to coerce both inputs according to this affinity before the
1932 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1933 ** affinity is used. Note that the affinity conversions are stored
1934 ** back into the input registers P1 and P3.  So this opcode can cause
1935 ** persistent changes to registers P1 and P3.
1936 **
1937 ** Once any conversions have taken place, and neither value is NULL,
1938 ** the values are compared. If both values are blobs then memcmp() is
1939 ** used to determine the results of the comparison.  If both values
1940 ** are text, then the appropriate collating function specified in
1941 ** P4 is  used to do the comparison.  If P4 is not specified then
1942 ** memcmp() is used to compare text string.  If both values are
1943 ** numeric, then a numeric comparison is used. If the two values
1944 ** are of different types, then numbers are considered less than
1945 ** strings and strings are considered less than blobs.
1946 */
1947 /* Opcode: Le P1 P2 P3 P4 P5
1948 ** Synopsis: IF r[P3]<=r[P1]
1949 **
1950 ** This works just like the Lt opcode except that the jump is taken if
1951 ** the content of register P3 is less than or equal to the content of
1952 ** register P1.  See the Lt opcode for additional information.
1953 */
1954 /* Opcode: Gt P1 P2 P3 P4 P5
1955 ** Synopsis: IF r[P3]>r[P1]
1956 **
1957 ** This works just like the Lt opcode except that the jump is taken if
1958 ** the content of register P3 is greater than the content of
1959 ** register P1.  See the Lt opcode for additional information.
1960 */
1961 /* Opcode: Ge P1 P2 P3 P4 P5
1962 ** Synopsis: IF r[P3]>=r[P1]
1963 **
1964 ** This works just like the Lt opcode except that the jump is taken if
1965 ** the content of register P3 is greater than or equal to the content of
1966 ** register P1.  See the Lt opcode for additional information.
1967 */
1968 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1969 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1970 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1971 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1972 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1973 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1974   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1975   char affinity;      /* Affinity to use for comparison */
1976   u16 flags1;         /* Copy of initial value of pIn1->flags */
1977   u16 flags3;         /* Copy of initial value of pIn3->flags */
1978 
1979   pIn1 = &aMem[pOp->p1];
1980   pIn3 = &aMem[pOp->p3];
1981   flags1 = pIn1->flags;
1982   flags3 = pIn3->flags;
1983   if( (flags1 | flags3)&MEM_Null ){
1984     /* One or both operands are NULL */
1985     if( pOp->p5 & SQLITE_NULLEQ ){
1986       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1987       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1988       ** or not both operands are null.
1989       */
1990       assert( (flags1 & MEM_Cleared)==0 );
1991       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
1992       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
1993       if( (flags1&flags3&MEM_Null)!=0
1994        && (flags3&MEM_Cleared)==0
1995       ){
1996         res = 0;  /* Operands are equal */
1997       }else{
1998         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
1999       }
2000     }else{
2001       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2002       ** then the result is always NULL.
2003       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2004       */
2005       if( pOp->p5 & SQLITE_STOREP2 ){
2006         pOut = &aMem[pOp->p2];
2007         iCompare = 1;    /* Operands are not equal */
2008         memAboutToChange(p, pOut);
2009         MemSetTypeFlag(pOut, MEM_Null);
2010         REGISTER_TRACE(pOp->p2, pOut);
2011       }else{
2012         VdbeBranchTaken(2,3);
2013         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2014           goto jump_to_p2;
2015         }
2016       }
2017       break;
2018     }
2019   }else{
2020     /* Neither operand is NULL.  Do a comparison. */
2021     affinity = pOp->p5 & SQLITE_AFF_MASK;
2022     if( affinity>=SQLITE_AFF_NUMERIC ){
2023       if( (flags1 | flags3)&MEM_Str ){
2024         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2025           applyNumericAffinity(pIn1,0);
2026           assert( flags3==pIn3->flags );
2027           /* testcase( flags3!=pIn3->flags );
2028           ** this used to be possible with pIn1==pIn3, but not since
2029           ** the column cache was removed.  The following assignment
2030           ** is essentially a no-op.  But, it provides defense-in-depth
2031           ** in case our analysis is incorrect, so it is left in. */
2032           flags3 = pIn3->flags;
2033         }
2034         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2035           applyNumericAffinity(pIn3,0);
2036         }
2037       }
2038       /* Handle the common case of integer comparison here, as an
2039       ** optimization, to avoid a call to sqlite3MemCompare() */
2040       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2041         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2042         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2043         res = 0;
2044         goto compare_op;
2045       }
2046     }else if( affinity==SQLITE_AFF_TEXT ){
2047       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2048         testcase( pIn1->flags & MEM_Int );
2049         testcase( pIn1->flags & MEM_Real );
2050         testcase( pIn1->flags & MEM_IntReal );
2051         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2052         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2053         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2054         assert( pIn1!=pIn3 );
2055       }
2056       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2057         testcase( pIn3->flags & MEM_Int );
2058         testcase( pIn3->flags & MEM_Real );
2059         testcase( pIn3->flags & MEM_IntReal );
2060         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2061         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2062         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2063       }
2064     }
2065     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2066     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2067   }
2068 compare_op:
2069   /* At this point, res is negative, zero, or positive if reg[P1] is
2070   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2071   ** the answer to this operator in res2, depending on what the comparison
2072   ** operator actually is.  The next block of code depends on the fact
2073   ** that the 6 comparison operators are consecutive integers in this
2074   ** order:  NE, EQ, GT, LE, LT, GE */
2075   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2076   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2077   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2078     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2079     res2 = aLTb[pOp->opcode - OP_Ne];
2080   }else if( res==0 ){
2081     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2082     res2 = aEQb[pOp->opcode - OP_Ne];
2083   }else{
2084     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2085     res2 = aGTb[pOp->opcode - OP_Ne];
2086   }
2087 
2088   /* Undo any changes made by applyAffinity() to the input registers. */
2089   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2090   pIn1->flags = flags1;
2091   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2092   pIn3->flags = flags3;
2093 
2094   if( pOp->p5 & SQLITE_STOREP2 ){
2095     pOut = &aMem[pOp->p2];
2096     iCompare = res;
2097     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2098       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2099       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2100       ** is only used in contexts where either:
2101       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2102       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2103       ** Therefore it is not necessary to check the content of r[P2] for
2104       ** NULL. */
2105       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2106       assert( res2==0 || res2==1 );
2107       testcase( res2==0 && pOp->opcode==OP_Eq );
2108       testcase( res2==1 && pOp->opcode==OP_Eq );
2109       testcase( res2==0 && pOp->opcode==OP_Ne );
2110       testcase( res2==1 && pOp->opcode==OP_Ne );
2111       if( (pOp->opcode==OP_Eq)==res2 ) break;
2112     }
2113     memAboutToChange(p, pOut);
2114     MemSetTypeFlag(pOut, MEM_Int);
2115     pOut->u.i = res2;
2116     REGISTER_TRACE(pOp->p2, pOut);
2117   }else{
2118     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2119     if( res2 ){
2120       goto jump_to_p2;
2121     }
2122   }
2123   break;
2124 }
2125 
2126 /* Opcode: ElseNotEq * P2 * * *
2127 **
2128 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2129 ** If result of an OP_Eq comparison on the same two operands
2130 ** would have be NULL or false (0), then then jump to P2.
2131 ** If the result of an OP_Eq comparison on the two previous operands
2132 ** would have been true (1), then fall through.
2133 */
2134 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2135   assert( pOp>aOp );
2136   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2137   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2138   VdbeBranchTaken(iCompare!=0, 2);
2139   if( iCompare!=0 ) goto jump_to_p2;
2140   break;
2141 }
2142 
2143 
2144 /* Opcode: Permutation * * * P4 *
2145 **
2146 ** Set the permutation used by the OP_Compare operator in the next
2147 ** instruction.  The permutation is stored in the P4 operand.
2148 **
2149 ** The permutation is only valid until the next OP_Compare that has
2150 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2151 ** occur immediately prior to the OP_Compare.
2152 **
2153 ** The first integer in the P4 integer array is the length of the array
2154 ** and does not become part of the permutation.
2155 */
2156 case OP_Permutation: {
2157   assert( pOp->p4type==P4_INTARRAY );
2158   assert( pOp->p4.ai );
2159   assert( pOp[1].opcode==OP_Compare );
2160   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2161   break;
2162 }
2163 
2164 /* Opcode: Compare P1 P2 P3 P4 P5
2165 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2166 **
2167 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2168 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2169 ** the comparison for use by the next OP_Jump instruct.
2170 **
2171 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2172 ** determined by the most recent OP_Permutation operator.  If the
2173 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2174 ** order.
2175 **
2176 ** P4 is a KeyInfo structure that defines collating sequences and sort
2177 ** orders for the comparison.  The permutation applies to registers
2178 ** only.  The KeyInfo elements are used sequentially.
2179 **
2180 ** The comparison is a sort comparison, so NULLs compare equal,
2181 ** NULLs are less than numbers, numbers are less than strings,
2182 ** and strings are less than blobs.
2183 */
2184 case OP_Compare: {
2185   int n;
2186   int i;
2187   int p1;
2188   int p2;
2189   const KeyInfo *pKeyInfo;
2190   int idx;
2191   CollSeq *pColl;    /* Collating sequence to use on this term */
2192   int bRev;          /* True for DESCENDING sort order */
2193   int *aPermute;     /* The permutation */
2194 
2195   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2196     aPermute = 0;
2197   }else{
2198     assert( pOp>aOp );
2199     assert( pOp[-1].opcode==OP_Permutation );
2200     assert( pOp[-1].p4type==P4_INTARRAY );
2201     aPermute = pOp[-1].p4.ai + 1;
2202     assert( aPermute!=0 );
2203   }
2204   n = pOp->p3;
2205   pKeyInfo = pOp->p4.pKeyInfo;
2206   assert( n>0 );
2207   assert( pKeyInfo!=0 );
2208   p1 = pOp->p1;
2209   p2 = pOp->p2;
2210 #ifdef SQLITE_DEBUG
2211   if( aPermute ){
2212     int k, mx = 0;
2213     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2214     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2215     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2216   }else{
2217     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2218     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2219   }
2220 #endif /* SQLITE_DEBUG */
2221   for(i=0; i<n; i++){
2222     idx = aPermute ? aPermute[i] : i;
2223     assert( memIsValid(&aMem[p1+idx]) );
2224     assert( memIsValid(&aMem[p2+idx]) );
2225     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2226     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2227     assert( i<pKeyInfo->nKeyField );
2228     pColl = pKeyInfo->aColl[i];
2229     bRev = pKeyInfo->aSortOrder[i];
2230     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2231     if( iCompare ){
2232       if( bRev ) iCompare = -iCompare;
2233       break;
2234     }
2235   }
2236   break;
2237 }
2238 
2239 /* Opcode: Jump P1 P2 P3 * *
2240 **
2241 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2242 ** in the most recent OP_Compare instruction the P1 vector was less than
2243 ** equal to, or greater than the P2 vector, respectively.
2244 */
2245 case OP_Jump: {             /* jump */
2246   if( iCompare<0 ){
2247     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2248   }else if( iCompare==0 ){
2249     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2250   }else{
2251     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2252   }
2253   break;
2254 }
2255 
2256 /* Opcode: And P1 P2 P3 * *
2257 ** Synopsis: r[P3]=(r[P1] && r[P2])
2258 **
2259 ** Take the logical AND of the values in registers P1 and P2 and
2260 ** write the result into register P3.
2261 **
2262 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2263 ** the other input is NULL.  A NULL and true or two NULLs give
2264 ** a NULL output.
2265 */
2266 /* Opcode: Or P1 P2 P3 * *
2267 ** Synopsis: r[P3]=(r[P1] || r[P2])
2268 **
2269 ** Take the logical OR of the values in register P1 and P2 and
2270 ** store the answer in register P3.
2271 **
2272 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2273 ** even if the other input is NULL.  A NULL and false or two NULLs
2274 ** give a NULL output.
2275 */
2276 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2277 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2278   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2279   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2280 
2281   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2282   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2283   if( pOp->opcode==OP_And ){
2284     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2285     v1 = and_logic[v1*3+v2];
2286   }else{
2287     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2288     v1 = or_logic[v1*3+v2];
2289   }
2290   pOut = &aMem[pOp->p3];
2291   if( v1==2 ){
2292     MemSetTypeFlag(pOut, MEM_Null);
2293   }else{
2294     pOut->u.i = v1;
2295     MemSetTypeFlag(pOut, MEM_Int);
2296   }
2297   break;
2298 }
2299 
2300 /* Opcode: IsTrue P1 P2 P3 P4 *
2301 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2302 **
2303 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2304 ** IS NOT FALSE operators.
2305 **
2306 ** Interpret the value in register P1 as a boolean value.  Store that
2307 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2308 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2309 ** is 1.
2310 **
2311 ** The logic is summarized like this:
2312 **
2313 ** <ul>
2314 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2315 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2316 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2317 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2318 ** </ul>
2319 */
2320 case OP_IsTrue: {               /* in1, out2 */
2321   assert( pOp->p4type==P4_INT32 );
2322   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2323   assert( pOp->p3==0 || pOp->p3==1 );
2324   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2325       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2326   break;
2327 }
2328 
2329 /* Opcode: Not P1 P2 * * *
2330 ** Synopsis: r[P2]= !r[P1]
2331 **
2332 ** Interpret the value in register P1 as a boolean value.  Store the
2333 ** boolean complement in register P2.  If the value in register P1 is
2334 ** NULL, then a NULL is stored in P2.
2335 */
2336 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2337   pIn1 = &aMem[pOp->p1];
2338   pOut = &aMem[pOp->p2];
2339   if( (pIn1->flags & MEM_Null)==0 ){
2340     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2341   }else{
2342     sqlite3VdbeMemSetNull(pOut);
2343   }
2344   break;
2345 }
2346 
2347 /* Opcode: BitNot P1 P2 * * *
2348 ** Synopsis: r[P2]= ~r[P1]
2349 **
2350 ** Interpret the content of register P1 as an integer.  Store the
2351 ** ones-complement of the P1 value into register P2.  If P1 holds
2352 ** a NULL then store a NULL in P2.
2353 */
2354 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2355   pIn1 = &aMem[pOp->p1];
2356   pOut = &aMem[pOp->p2];
2357   sqlite3VdbeMemSetNull(pOut);
2358   if( (pIn1->flags & MEM_Null)==0 ){
2359     pOut->flags = MEM_Int;
2360     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2361   }
2362   break;
2363 }
2364 
2365 /* Opcode: Once P1 P2 * * *
2366 **
2367 ** Fall through to the next instruction the first time this opcode is
2368 ** encountered on each invocation of the byte-code program.  Jump to P2
2369 ** on the second and all subsequent encounters during the same invocation.
2370 **
2371 ** Top-level programs determine first invocation by comparing the P1
2372 ** operand against the P1 operand on the OP_Init opcode at the beginning
2373 ** of the program.  If the P1 values differ, then fall through and make
2374 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2375 ** the same then take the jump.
2376 **
2377 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2378 ** whether or not the jump should be taken.  The bitmask is necessary
2379 ** because the self-altering code trick does not work for recursive
2380 ** triggers.
2381 */
2382 case OP_Once: {             /* jump */
2383   u32 iAddr;                /* Address of this instruction */
2384   assert( p->aOp[0].opcode==OP_Init );
2385   if( p->pFrame ){
2386     iAddr = (int)(pOp - p->aOp);
2387     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2388       VdbeBranchTaken(1, 2);
2389       goto jump_to_p2;
2390     }
2391     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2392   }else{
2393     if( p->aOp[0].p1==pOp->p1 ){
2394       VdbeBranchTaken(1, 2);
2395       goto jump_to_p2;
2396     }
2397   }
2398   VdbeBranchTaken(0, 2);
2399   pOp->p1 = p->aOp[0].p1;
2400   break;
2401 }
2402 
2403 /* Opcode: If P1 P2 P3 * *
2404 **
2405 ** Jump to P2 if the value in register P1 is true.  The value
2406 ** is considered true if it is numeric and non-zero.  If the value
2407 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2408 */
2409 case OP_If:  {               /* jump, in1 */
2410   int c;
2411   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2412   VdbeBranchTaken(c!=0, 2);
2413   if( c ) goto jump_to_p2;
2414   break;
2415 }
2416 
2417 /* Opcode: IfNot P1 P2 P3 * *
2418 **
2419 ** Jump to P2 if the value in register P1 is False.  The value
2420 ** is considered false if it has a numeric value of zero.  If the value
2421 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2422 */
2423 case OP_IfNot: {            /* jump, in1 */
2424   int c;
2425   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2426   VdbeBranchTaken(c!=0, 2);
2427   if( c ) goto jump_to_p2;
2428   break;
2429 }
2430 
2431 /* Opcode: IsNull P1 P2 * * *
2432 ** Synopsis: if r[P1]==NULL goto P2
2433 **
2434 ** Jump to P2 if the value in register P1 is NULL.
2435 */
2436 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2437   pIn1 = &aMem[pOp->p1];
2438   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2439   if( (pIn1->flags & MEM_Null)!=0 ){
2440     goto jump_to_p2;
2441   }
2442   break;
2443 }
2444 
2445 /* Opcode: NotNull P1 P2 * * *
2446 ** Synopsis: if r[P1]!=NULL goto P2
2447 **
2448 ** Jump to P2 if the value in register P1 is not NULL.
2449 */
2450 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2451   pIn1 = &aMem[pOp->p1];
2452   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2453   if( (pIn1->flags & MEM_Null)==0 ){
2454     goto jump_to_p2;
2455   }
2456   break;
2457 }
2458 
2459 /* Opcode: IfNullRow P1 P2 P3 * *
2460 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2461 **
2462 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2463 ** If it is, then set register P3 to NULL and jump immediately to P2.
2464 ** If P1 is not on a NULL row, then fall through without making any
2465 ** changes.
2466 */
2467 case OP_IfNullRow: {         /* jump */
2468   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2469   assert( p->apCsr[pOp->p1]!=0 );
2470   if( p->apCsr[pOp->p1]->nullRow ){
2471     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2472     goto jump_to_p2;
2473   }
2474   break;
2475 }
2476 
2477 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2478 /* Opcode: Offset P1 P2 P3 * *
2479 ** Synopsis: r[P3] = sqlite_offset(P1)
2480 **
2481 ** Store in register r[P3] the byte offset into the database file that is the
2482 ** start of the payload for the record at which that cursor P1 is currently
2483 ** pointing.
2484 **
2485 ** P2 is the column number for the argument to the sqlite_offset() function.
2486 ** This opcode does not use P2 itself, but the P2 value is used by the
2487 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2488 ** same as for OP_Column.
2489 **
2490 ** This opcode is only available if SQLite is compiled with the
2491 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2492 */
2493 case OP_Offset: {          /* out3 */
2494   VdbeCursor *pC;    /* The VDBE cursor */
2495   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2496   pC = p->apCsr[pOp->p1];
2497   pOut = &p->aMem[pOp->p3];
2498   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2499     sqlite3VdbeMemSetNull(pOut);
2500   }else{
2501     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2502   }
2503   break;
2504 }
2505 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2506 
2507 /* Opcode: Column P1 P2 P3 P4 P5
2508 ** Synopsis: r[P3]=PX
2509 **
2510 ** Interpret the data that cursor P1 points to as a structure built using
2511 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2512 ** information about the format of the data.)  Extract the P2-th column
2513 ** from this record.  If there are less that (P2+1)
2514 ** values in the record, extract a NULL.
2515 **
2516 ** The value extracted is stored in register P3.
2517 **
2518 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2519 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2520 ** the result.
2521 **
2522 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2523 ** then the cache of the cursor is reset prior to extracting the column.
2524 ** The first OP_Column against a pseudo-table after the value of the content
2525 ** register has changed should have this bit set.
2526 **
2527 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2528 ** the result is guaranteed to only be used as the argument of a length()
2529 ** or typeof() function, respectively.  The loading of large blobs can be
2530 ** skipped for length() and all content loading can be skipped for typeof().
2531 */
2532 case OP_Column: {
2533   int p2;            /* column number to retrieve */
2534   VdbeCursor *pC;    /* The VDBE cursor */
2535   BtCursor *pCrsr;   /* The BTree cursor */
2536   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2537   int len;           /* The length of the serialized data for the column */
2538   int i;             /* Loop counter */
2539   Mem *pDest;        /* Where to write the extracted value */
2540   Mem sMem;          /* For storing the record being decoded */
2541   const u8 *zData;   /* Part of the record being decoded */
2542   const u8 *zHdr;    /* Next unparsed byte of the header */
2543   const u8 *zEndHdr; /* Pointer to first byte after the header */
2544   u64 offset64;      /* 64-bit offset */
2545   u32 t;             /* A type code from the record header */
2546   Mem *pReg;         /* PseudoTable input register */
2547 
2548   pC = p->apCsr[pOp->p1];
2549   p2 = pOp->p2;
2550 
2551   /* If the cursor cache is stale (meaning it is not currently point at
2552   ** the correct row) then bring it up-to-date by doing the necessary
2553   ** B-Tree seek. */
2554   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2555   if( rc ) goto abort_due_to_error;
2556 
2557   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2558   pDest = &aMem[pOp->p3];
2559   memAboutToChange(p, pDest);
2560   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2561   assert( pC!=0 );
2562   assert( p2<pC->nField );
2563   aOffset = pC->aOffset;
2564   assert( pC->eCurType!=CURTYPE_VTAB );
2565   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2566   assert( pC->eCurType!=CURTYPE_SORTER );
2567 
2568   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2569     if( pC->nullRow ){
2570       if( pC->eCurType==CURTYPE_PSEUDO ){
2571         /* For the special case of as pseudo-cursor, the seekResult field
2572         ** identifies the register that holds the record */
2573         assert( pC->seekResult>0 );
2574         pReg = &aMem[pC->seekResult];
2575         assert( pReg->flags & MEM_Blob );
2576         assert( memIsValid(pReg) );
2577         pC->payloadSize = pC->szRow = pReg->n;
2578         pC->aRow = (u8*)pReg->z;
2579       }else{
2580         sqlite3VdbeMemSetNull(pDest);
2581         goto op_column_out;
2582       }
2583     }else{
2584       pCrsr = pC->uc.pCursor;
2585       assert( pC->eCurType==CURTYPE_BTREE );
2586       assert( pCrsr );
2587       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2588       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2589       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2590       assert( pC->szRow<=pC->payloadSize );
2591       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2592       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2593         goto too_big;
2594       }
2595     }
2596     pC->cacheStatus = p->cacheCtr;
2597     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2598     pC->nHdrParsed = 0;
2599 
2600 
2601     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2602       /* pC->aRow does not have to hold the entire row, but it does at least
2603       ** need to cover the header of the record.  If pC->aRow does not contain
2604       ** the complete header, then set it to zero, forcing the header to be
2605       ** dynamically allocated. */
2606       pC->aRow = 0;
2607       pC->szRow = 0;
2608 
2609       /* Make sure a corrupt database has not given us an oversize header.
2610       ** Do this now to avoid an oversize memory allocation.
2611       **
2612       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2613       ** types use so much data space that there can only be 4096 and 32 of
2614       ** them, respectively.  So the maximum header length results from a
2615       ** 3-byte type for each of the maximum of 32768 columns plus three
2616       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2617       */
2618       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2619         goto op_column_corrupt;
2620       }
2621     }else{
2622       /* This is an optimization.  By skipping over the first few tests
2623       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2624       ** measurable performance gain.
2625       **
2626       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2627       ** generated by SQLite, and could be considered corruption, but we
2628       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2629       ** branch jumps to reads past the end of the record, but never more
2630       ** than a few bytes.  Even if the record occurs at the end of the page
2631       ** content area, the "page header" comes after the page content and so
2632       ** this overread is harmless.  Similar overreads can occur for a corrupt
2633       ** database file.
2634       */
2635       zData = pC->aRow;
2636       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2637       testcase( aOffset[0]==0 );
2638       goto op_column_read_header;
2639     }
2640   }
2641 
2642   /* Make sure at least the first p2+1 entries of the header have been
2643   ** parsed and valid information is in aOffset[] and pC->aType[].
2644   */
2645   if( pC->nHdrParsed<=p2 ){
2646     /* If there is more header available for parsing in the record, try
2647     ** to extract additional fields up through the p2+1-th field
2648     */
2649     if( pC->iHdrOffset<aOffset[0] ){
2650       /* Make sure zData points to enough of the record to cover the header. */
2651       if( pC->aRow==0 ){
2652         memset(&sMem, 0, sizeof(sMem));
2653         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2654         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2655         zData = (u8*)sMem.z;
2656       }else{
2657         zData = pC->aRow;
2658       }
2659 
2660       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2661     op_column_read_header:
2662       i = pC->nHdrParsed;
2663       offset64 = aOffset[i];
2664       zHdr = zData + pC->iHdrOffset;
2665       zEndHdr = zData + aOffset[0];
2666       testcase( zHdr>=zEndHdr );
2667       do{
2668         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2669           zHdr++;
2670           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2671         }else{
2672           zHdr += sqlite3GetVarint32(zHdr, &t);
2673           pC->aType[i] = t;
2674           offset64 += sqlite3VdbeSerialTypeLen(t);
2675         }
2676         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2677       }while( i<=p2 && zHdr<zEndHdr );
2678 
2679       /* The record is corrupt if any of the following are true:
2680       ** (1) the bytes of the header extend past the declared header size
2681       ** (2) the entire header was used but not all data was used
2682       ** (3) the end of the data extends beyond the end of the record.
2683       */
2684       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2685        || (offset64 > pC->payloadSize)
2686       ){
2687         if( aOffset[0]==0 ){
2688           i = 0;
2689           zHdr = zEndHdr;
2690         }else{
2691           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2692           goto op_column_corrupt;
2693         }
2694       }
2695 
2696       pC->nHdrParsed = i;
2697       pC->iHdrOffset = (u32)(zHdr - zData);
2698       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2699     }else{
2700       t = 0;
2701     }
2702 
2703     /* If after trying to extract new entries from the header, nHdrParsed is
2704     ** still not up to p2, that means that the record has fewer than p2
2705     ** columns.  So the result will be either the default value or a NULL.
2706     */
2707     if( pC->nHdrParsed<=p2 ){
2708       if( pOp->p4type==P4_MEM ){
2709         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2710       }else{
2711         sqlite3VdbeMemSetNull(pDest);
2712       }
2713       goto op_column_out;
2714     }
2715   }else{
2716     t = pC->aType[p2];
2717   }
2718 
2719   /* Extract the content for the p2+1-th column.  Control can only
2720   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2721   ** all valid.
2722   */
2723   assert( p2<pC->nHdrParsed );
2724   assert( rc==SQLITE_OK );
2725   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2726   if( VdbeMemDynamic(pDest) ){
2727     sqlite3VdbeMemSetNull(pDest);
2728   }
2729   assert( t==pC->aType[p2] );
2730   if( pC->szRow>=aOffset[p2+1] ){
2731     /* This is the common case where the desired content fits on the original
2732     ** page - where the content is not on an overflow page */
2733     zData = pC->aRow + aOffset[p2];
2734     if( t<12 ){
2735       sqlite3VdbeSerialGet(zData, t, pDest);
2736     }else{
2737       /* If the column value is a string, we need a persistent value, not
2738       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2739       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2740       */
2741       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2742       pDest->n = len = (t-12)/2;
2743       pDest->enc = encoding;
2744       if( pDest->szMalloc < len+2 ){
2745         pDest->flags = MEM_Null;
2746         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2747       }else{
2748         pDest->z = pDest->zMalloc;
2749       }
2750       memcpy(pDest->z, zData, len);
2751       pDest->z[len] = 0;
2752       pDest->z[len+1] = 0;
2753       pDest->flags = aFlag[t&1];
2754     }
2755   }else{
2756     pDest->enc = encoding;
2757     /* This branch happens only when content is on overflow pages */
2758     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2759           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2760      || (len = sqlite3VdbeSerialTypeLen(t))==0
2761     ){
2762       /* Content is irrelevant for
2763       **    1. the typeof() function,
2764       **    2. the length(X) function if X is a blob, and
2765       **    3. if the content length is zero.
2766       ** So we might as well use bogus content rather than reading
2767       ** content from disk.
2768       **
2769       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2770       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2771       ** read up to 16. So 16 bytes of bogus content is supplied.
2772       */
2773       static u8 aZero[16];  /* This is the bogus content */
2774       sqlite3VdbeSerialGet(aZero, t, pDest);
2775     }else{
2776       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2777       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2778       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2779       pDest->flags &= ~MEM_Ephem;
2780     }
2781   }
2782 
2783 op_column_out:
2784   UPDATE_MAX_BLOBSIZE(pDest);
2785   REGISTER_TRACE(pOp->p3, pDest);
2786   break;
2787 
2788 op_column_corrupt:
2789   if( aOp[0].p3>0 ){
2790     pOp = &aOp[aOp[0].p3-1];
2791     break;
2792   }else{
2793     rc = SQLITE_CORRUPT_BKPT;
2794     goto abort_due_to_error;
2795   }
2796 }
2797 
2798 /* Opcode: Affinity P1 P2 * P4 *
2799 ** Synopsis: affinity(r[P1@P2])
2800 **
2801 ** Apply affinities to a range of P2 registers starting with P1.
2802 **
2803 ** P4 is a string that is P2 characters long. The N-th character of the
2804 ** string indicates the column affinity that should be used for the N-th
2805 ** memory cell in the range.
2806 */
2807 case OP_Affinity: {
2808   const char *zAffinity;   /* The affinity to be applied */
2809 
2810   zAffinity = pOp->p4.z;
2811   assert( zAffinity!=0 );
2812   assert( pOp->p2>0 );
2813   assert( zAffinity[pOp->p2]==0 );
2814   pIn1 = &aMem[pOp->p1];
2815   while( 1 /*edit-by-break*/ ){
2816     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2817     assert( memIsValid(pIn1) );
2818     applyAffinity(pIn1, zAffinity[0], encoding);
2819     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2820       /* When applying REAL affinity, if the result is still MEM_Int,
2821       ** indicate that REAL is actually desired */
2822       pIn1->flags |= MEM_IntReal;
2823       pIn1->flags &= ~MEM_Int;
2824     }
2825     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2826     zAffinity++;
2827     if( zAffinity[0]==0 ) break;
2828     pIn1++;
2829   }
2830   break;
2831 }
2832 
2833 /* Opcode: MakeRecord P1 P2 P3 P4 *
2834 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2835 **
2836 ** Convert P2 registers beginning with P1 into the [record format]
2837 ** use as a data record in a database table or as a key
2838 ** in an index.  The OP_Column opcode can decode the record later.
2839 **
2840 ** P4 may be a string that is P2 characters long.  The N-th character of the
2841 ** string indicates the column affinity that should be used for the N-th
2842 ** field of the index key.
2843 **
2844 ** The mapping from character to affinity is given by the SQLITE_AFF_
2845 ** macros defined in sqliteInt.h.
2846 **
2847 ** If P4 is NULL then all index fields have the affinity BLOB.
2848 */
2849 case OP_MakeRecord: {
2850   Mem *pRec;             /* The new record */
2851   u64 nData;             /* Number of bytes of data space */
2852   int nHdr;              /* Number of bytes of header space */
2853   i64 nByte;             /* Data space required for this record */
2854   i64 nZero;             /* Number of zero bytes at the end of the record */
2855   int nVarint;           /* Number of bytes in a varint */
2856   u32 serial_type;       /* Type field */
2857   Mem *pData0;           /* First field to be combined into the record */
2858   Mem *pLast;            /* Last field of the record */
2859   int nField;            /* Number of fields in the record */
2860   char *zAffinity;       /* The affinity string for the record */
2861   int file_format;       /* File format to use for encoding */
2862   u32 len;               /* Length of a field */
2863   u8 *zHdr;              /* Where to write next byte of the header */
2864   u8 *zPayload;          /* Where to write next byte of the payload */
2865 
2866   /* Assuming the record contains N fields, the record format looks
2867   ** like this:
2868   **
2869   ** ------------------------------------------------------------------------
2870   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2871   ** ------------------------------------------------------------------------
2872   **
2873   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2874   ** and so forth.
2875   **
2876   ** Each type field is a varint representing the serial type of the
2877   ** corresponding data element (see sqlite3VdbeSerialType()). The
2878   ** hdr-size field is also a varint which is the offset from the beginning
2879   ** of the record to data0.
2880   */
2881   nData = 0;         /* Number of bytes of data space */
2882   nHdr = 0;          /* Number of bytes of header space */
2883   nZero = 0;         /* Number of zero bytes at the end of the record */
2884   nField = pOp->p1;
2885   zAffinity = pOp->p4.z;
2886   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2887   pData0 = &aMem[nField];
2888   nField = pOp->p2;
2889   pLast = &pData0[nField-1];
2890   file_format = p->minWriteFileFormat;
2891 
2892   /* Identify the output register */
2893   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2894   pOut = &aMem[pOp->p3];
2895   memAboutToChange(p, pOut);
2896 
2897   /* Apply the requested affinity to all inputs
2898   */
2899   assert( pData0<=pLast );
2900   if( zAffinity ){
2901     pRec = pData0;
2902     do{
2903       applyAffinity(pRec, zAffinity[0], encoding);
2904       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2905         pRec->flags |= MEM_IntReal;
2906         pRec->flags &= ~(MEM_Int);
2907       }
2908       REGISTER_TRACE((int)(pRec-aMem), pRec);
2909       zAffinity++;
2910       pRec++;
2911       assert( zAffinity[0]==0 || pRec<=pLast );
2912     }while( zAffinity[0] );
2913   }
2914 
2915 #ifdef SQLITE_ENABLE_NULL_TRIM
2916   /* NULLs can be safely trimmed from the end of the record, as long as
2917   ** as the schema format is 2 or more and none of the omitted columns
2918   ** have a non-NULL default value.  Also, the record must be left with
2919   ** at least one field.  If P5>0 then it will be one more than the
2920   ** index of the right-most column with a non-NULL default value */
2921   if( pOp->p5 ){
2922     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2923       pLast--;
2924       nField--;
2925     }
2926   }
2927 #endif
2928 
2929   /* Loop through the elements that will make up the record to figure
2930   ** out how much space is required for the new record.  After this loop,
2931   ** the Mem.uTemp field of each term should hold the serial-type that will
2932   ** be used for that term in the generated record:
2933   **
2934   **   Mem.uTemp value    type
2935   **   ---------------    ---------------
2936   **      0               NULL
2937   **      1               1-byte signed integer
2938   **      2               2-byte signed integer
2939   **      3               3-byte signed integer
2940   **      4               4-byte signed integer
2941   **      5               6-byte signed integer
2942   **      6               8-byte signed integer
2943   **      7               IEEE float
2944   **      8               Integer constant 0
2945   **      9               Integer constant 1
2946   **     10,11            reserved for expansion
2947   **    N>=12 and even    BLOB
2948   **    N>=13 and odd     text
2949   **
2950   ** The following additional values are computed:
2951   **     nHdr        Number of bytes needed for the record header
2952   **     nData       Number of bytes of data space needed for the record
2953   **     nZero       Zero bytes at the end of the record
2954   */
2955   pRec = pLast;
2956   do{
2957     assert( memIsValid(pRec) );
2958     if( pRec->flags & MEM_Null ){
2959       if( pRec->flags & MEM_Zero ){
2960         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2961         ** table methods that never invoke sqlite3_result_xxxxx() while
2962         ** computing an unchanging column value in an UPDATE statement.
2963         ** Give such values a special internal-use-only serial-type of 10
2964         ** so that they can be passed through to xUpdate and have
2965         ** a true sqlite3_value_nochange(). */
2966         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
2967         pRec->uTemp = 10;
2968       }else{
2969         pRec->uTemp = 0;
2970       }
2971       nHdr++;
2972     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
2973       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2974       i64 i = pRec->u.i;
2975       u64 u;
2976       testcase( pRec->flags & MEM_Int );
2977       testcase( pRec->flags & MEM_IntReal );
2978       if( i<0 ){
2979         u = ~i;
2980       }else{
2981         u = i;
2982       }
2983       nHdr++;
2984       testcase( u==127 );               testcase( u==128 );
2985       testcase( u==32767 );             testcase( u==32768 );
2986       testcase( u==8388607 );           testcase( u==8388608 );
2987       testcase( u==2147483647 );        testcase( u==2147483648 );
2988       testcase( u==140737488355327LL ); testcase( u==140737488355328LL );
2989       if( u<=127 ){
2990         if( (i&1)==i && file_format>=4 ){
2991           pRec->uTemp = 8+(u32)u;
2992         }else{
2993           nData++;
2994           pRec->uTemp = 1;
2995         }
2996       }else if( u<=32767 ){
2997         nData += 2;
2998         pRec->uTemp = 2;
2999       }else if( u<=8388607 ){
3000         nData += 3;
3001         pRec->uTemp = 3;
3002       }else if( u<=2147483647 ){
3003         nData += 4;
3004         pRec->uTemp = 4;
3005       }else if( u<=140737488355327LL ){
3006         nData += 6;
3007         pRec->uTemp = 5;
3008       }else{
3009         nData += 8;
3010         if( pRec->flags & MEM_IntReal ){
3011           /* If the value is IntReal and is going to take up 8 bytes to store
3012           ** as an integer, then we might as well make it an 8-byte floating
3013           ** point value */
3014           pRec->u.r = (double)pRec->u.i;
3015           pRec->flags &= ~MEM_IntReal;
3016           pRec->flags |= MEM_Real;
3017           pRec->uTemp = 7;
3018         }else{
3019           pRec->uTemp = 6;
3020         }
3021       }
3022     }else if( pRec->flags & MEM_Real ){
3023       nHdr++;
3024       nData += 8;
3025       pRec->uTemp = 7;
3026     }else{
3027       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3028       assert( pRec->n>=0 );
3029       len = (u32)pRec->n;
3030       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3031       if( pRec->flags & MEM_Zero ){
3032         serial_type += pRec->u.nZero*2;
3033         if( nData ){
3034           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3035           len += pRec->u.nZero;
3036         }else{
3037           nZero += pRec->u.nZero;
3038         }
3039       }
3040       nData += len;
3041       nHdr += sqlite3VarintLen(serial_type);
3042       pRec->uTemp = serial_type;
3043     }
3044     if( pRec==pData0 ) break;
3045     pRec--;
3046   }while(1);
3047 
3048   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3049   ** which determines the total number of bytes in the header. The varint
3050   ** value is the size of the header in bytes including the size varint
3051   ** itself. */
3052   testcase( nHdr==126 );
3053   testcase( nHdr==127 );
3054   if( nHdr<=126 ){
3055     /* The common case */
3056     nHdr += 1;
3057   }else{
3058     /* Rare case of a really large header */
3059     nVarint = sqlite3VarintLen(nHdr);
3060     nHdr += nVarint;
3061     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3062   }
3063   nByte = nHdr+nData;
3064 
3065   /* Make sure the output register has a buffer large enough to store
3066   ** the new record. The output register (pOp->p3) is not allowed to
3067   ** be one of the input registers (because the following call to
3068   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3069   */
3070   if( nByte+nZero<=pOut->szMalloc ){
3071     /* The output register is already large enough to hold the record.
3072     ** No error checks or buffer enlargement is required */
3073     pOut->z = pOut->zMalloc;
3074   }else{
3075     /* Need to make sure that the output is not too big and then enlarge
3076     ** the output register to hold the full result */
3077     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3078       goto too_big;
3079     }
3080     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3081       goto no_mem;
3082     }
3083   }
3084   pOut->n = (int)nByte;
3085   pOut->flags = MEM_Blob;
3086   if( nZero ){
3087     pOut->u.nZero = nZero;
3088     pOut->flags |= MEM_Zero;
3089   }
3090   UPDATE_MAX_BLOBSIZE(pOut);
3091   zHdr = (u8 *)pOut->z;
3092   zPayload = zHdr + nHdr;
3093 
3094   /* Write the record */
3095   zHdr += putVarint32(zHdr, nHdr);
3096   assert( pData0<=pLast );
3097   pRec = pData0;
3098   do{
3099     serial_type = pRec->uTemp;
3100     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3101     ** additional varints, one per column. */
3102     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3103     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3104     ** immediately follow the header. */
3105     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3106   }while( (++pRec)<=pLast );
3107   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3108   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3109 
3110   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3111   REGISTER_TRACE(pOp->p3, pOut);
3112   break;
3113 }
3114 
3115 /* Opcode: Count P1 P2 * * *
3116 ** Synopsis: r[P2]=count()
3117 **
3118 ** Store the number of entries (an integer value) in the table or index
3119 ** opened by cursor P1 in register P2
3120 */
3121 #ifndef SQLITE_OMIT_BTREECOUNT
3122 case OP_Count: {         /* out2 */
3123   i64 nEntry;
3124   BtCursor *pCrsr;
3125 
3126   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3127   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3128   assert( pCrsr );
3129   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3130   rc = sqlite3BtreeCount(pCrsr, &nEntry);
3131   if( rc ) goto abort_due_to_error;
3132   pOut = out2Prerelease(p, pOp);
3133   pOut->u.i = nEntry;
3134   break;
3135 }
3136 #endif
3137 
3138 /* Opcode: Savepoint P1 * * P4 *
3139 **
3140 ** Open, release or rollback the savepoint named by parameter P4, depending
3141 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3142 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3143 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3144 */
3145 case OP_Savepoint: {
3146   int p1;                         /* Value of P1 operand */
3147   char *zName;                    /* Name of savepoint */
3148   int nName;
3149   Savepoint *pNew;
3150   Savepoint *pSavepoint;
3151   Savepoint *pTmp;
3152   int iSavepoint;
3153   int ii;
3154 
3155   p1 = pOp->p1;
3156   zName = pOp->p4.z;
3157 
3158   /* Assert that the p1 parameter is valid. Also that if there is no open
3159   ** transaction, then there cannot be any savepoints.
3160   */
3161   assert( db->pSavepoint==0 || db->autoCommit==0 );
3162   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3163   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3164   assert( checkSavepointCount(db) );
3165   assert( p->bIsReader );
3166 
3167   if( p1==SAVEPOINT_BEGIN ){
3168     if( db->nVdbeWrite>0 ){
3169       /* A new savepoint cannot be created if there are active write
3170       ** statements (i.e. open read/write incremental blob handles).
3171       */
3172       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3173       rc = SQLITE_BUSY;
3174     }else{
3175       nName = sqlite3Strlen30(zName);
3176 
3177 #ifndef SQLITE_OMIT_VIRTUALTABLE
3178       /* This call is Ok even if this savepoint is actually a transaction
3179       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3180       ** If this is a transaction savepoint being opened, it is guaranteed
3181       ** that the db->aVTrans[] array is empty.  */
3182       assert( db->autoCommit==0 || db->nVTrans==0 );
3183       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3184                                 db->nStatement+db->nSavepoint);
3185       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3186 #endif
3187 
3188       /* Create a new savepoint structure. */
3189       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3190       if( pNew ){
3191         pNew->zName = (char *)&pNew[1];
3192         memcpy(pNew->zName, zName, nName+1);
3193 
3194         /* If there is no open transaction, then mark this as a special
3195         ** "transaction savepoint". */
3196         if( db->autoCommit ){
3197           db->autoCommit = 0;
3198           db->isTransactionSavepoint = 1;
3199         }else{
3200           db->nSavepoint++;
3201         }
3202 
3203         /* Link the new savepoint into the database handle's list. */
3204         pNew->pNext = db->pSavepoint;
3205         db->pSavepoint = pNew;
3206         pNew->nDeferredCons = db->nDeferredCons;
3207         pNew->nDeferredImmCons = db->nDeferredImmCons;
3208       }
3209     }
3210   }else{
3211     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3212     iSavepoint = 0;
3213 
3214     /* Find the named savepoint. If there is no such savepoint, then an
3215     ** an error is returned to the user.  */
3216     for(
3217       pSavepoint = db->pSavepoint;
3218       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3219       pSavepoint = pSavepoint->pNext
3220     ){
3221       iSavepoint++;
3222     }
3223     if( !pSavepoint ){
3224       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3225       rc = SQLITE_ERROR;
3226     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3227       /* It is not possible to release (commit) a savepoint if there are
3228       ** active write statements.
3229       */
3230       sqlite3VdbeError(p, "cannot release savepoint - "
3231                           "SQL statements in progress");
3232       rc = SQLITE_BUSY;
3233     }else{
3234 
3235       /* Determine whether or not this is a transaction savepoint. If so,
3236       ** and this is a RELEASE command, then the current transaction
3237       ** is committed.
3238       */
3239       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3240       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3241         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3242           goto vdbe_return;
3243         }
3244         db->autoCommit = 1;
3245         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3246           p->pc = (int)(pOp - aOp);
3247           db->autoCommit = 0;
3248           p->rc = rc = SQLITE_BUSY;
3249           goto vdbe_return;
3250         }
3251         db->isTransactionSavepoint = 0;
3252         rc = p->rc;
3253       }else{
3254         int isSchemaChange;
3255         iSavepoint = db->nSavepoint - iSavepoint - 1;
3256         if( p1==SAVEPOINT_ROLLBACK ){
3257           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3258           for(ii=0; ii<db->nDb; ii++){
3259             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3260                                        SQLITE_ABORT_ROLLBACK,
3261                                        isSchemaChange==0);
3262             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3263           }
3264         }else{
3265           assert( p1==SAVEPOINT_RELEASE );
3266           isSchemaChange = 0;
3267         }
3268         for(ii=0; ii<db->nDb; ii++){
3269           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3270           if( rc!=SQLITE_OK ){
3271             goto abort_due_to_error;
3272           }
3273         }
3274         if( isSchemaChange ){
3275           sqlite3ExpirePreparedStatements(db, 0);
3276           sqlite3ResetAllSchemasOfConnection(db);
3277           db->mDbFlags |= DBFLAG_SchemaChange;
3278         }
3279       }
3280 
3281       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3282       ** savepoints nested inside of the savepoint being operated on. */
3283       while( db->pSavepoint!=pSavepoint ){
3284         pTmp = db->pSavepoint;
3285         db->pSavepoint = pTmp->pNext;
3286         sqlite3DbFree(db, pTmp);
3287         db->nSavepoint--;
3288       }
3289 
3290       /* If it is a RELEASE, then destroy the savepoint being operated on
3291       ** too. If it is a ROLLBACK TO, then set the number of deferred
3292       ** constraint violations present in the database to the value stored
3293       ** when the savepoint was created.  */
3294       if( p1==SAVEPOINT_RELEASE ){
3295         assert( pSavepoint==db->pSavepoint );
3296         db->pSavepoint = pSavepoint->pNext;
3297         sqlite3DbFree(db, pSavepoint);
3298         if( !isTransaction ){
3299           db->nSavepoint--;
3300         }
3301       }else{
3302         assert( p1==SAVEPOINT_ROLLBACK );
3303         db->nDeferredCons = pSavepoint->nDeferredCons;
3304         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3305       }
3306 
3307       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3308         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3309         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3310       }
3311     }
3312   }
3313   if( rc ) goto abort_due_to_error;
3314 
3315   break;
3316 }
3317 
3318 /* Opcode: AutoCommit P1 P2 * * *
3319 **
3320 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3321 ** back any currently active btree transactions. If there are any active
3322 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3323 ** there are active writing VMs or active VMs that use shared cache.
3324 **
3325 ** This instruction causes the VM to halt.
3326 */
3327 case OP_AutoCommit: {
3328   int desiredAutoCommit;
3329   int iRollback;
3330 
3331   desiredAutoCommit = pOp->p1;
3332   iRollback = pOp->p2;
3333   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3334   assert( desiredAutoCommit==1 || iRollback==0 );
3335   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3336   assert( p->bIsReader );
3337 
3338   if( desiredAutoCommit!=db->autoCommit ){
3339     if( iRollback ){
3340       assert( desiredAutoCommit==1 );
3341       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3342       db->autoCommit = 1;
3343     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3344       /* If this instruction implements a COMMIT and other VMs are writing
3345       ** return an error indicating that the other VMs must complete first.
3346       */
3347       sqlite3VdbeError(p, "cannot commit transaction - "
3348                           "SQL statements in progress");
3349       rc = SQLITE_BUSY;
3350       goto abort_due_to_error;
3351     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3352       goto vdbe_return;
3353     }else{
3354       db->autoCommit = (u8)desiredAutoCommit;
3355     }
3356     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3357       p->pc = (int)(pOp - aOp);
3358       db->autoCommit = (u8)(1-desiredAutoCommit);
3359       p->rc = rc = SQLITE_BUSY;
3360       goto vdbe_return;
3361     }
3362     assert( db->nStatement==0 );
3363     sqlite3CloseSavepoints(db);
3364     if( p->rc==SQLITE_OK ){
3365       rc = SQLITE_DONE;
3366     }else{
3367       rc = SQLITE_ERROR;
3368     }
3369     goto vdbe_return;
3370   }else{
3371     sqlite3VdbeError(p,
3372         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3373         (iRollback)?"cannot rollback - no transaction is active":
3374                    "cannot commit - no transaction is active"));
3375 
3376     rc = SQLITE_ERROR;
3377     goto abort_due_to_error;
3378   }
3379   /*NOTREACHED*/ assert(0);
3380 }
3381 
3382 /* Opcode: Transaction P1 P2 P3 P4 P5
3383 **
3384 ** Begin a transaction on database P1 if a transaction is not already
3385 ** active.
3386 ** If P2 is non-zero, then a write-transaction is started, or if a
3387 ** read-transaction is already active, it is upgraded to a write-transaction.
3388 ** If P2 is zero, then a read-transaction is started.
3389 **
3390 ** P1 is the index of the database file on which the transaction is
3391 ** started.  Index 0 is the main database file and index 1 is the
3392 ** file used for temporary tables.  Indices of 2 or more are used for
3393 ** attached databases.
3394 **
3395 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3396 ** true (this flag is set if the Vdbe may modify more than one row and may
3397 ** throw an ABORT exception), a statement transaction may also be opened.
3398 ** More specifically, a statement transaction is opened iff the database
3399 ** connection is currently not in autocommit mode, or if there are other
3400 ** active statements. A statement transaction allows the changes made by this
3401 ** VDBE to be rolled back after an error without having to roll back the
3402 ** entire transaction. If no error is encountered, the statement transaction
3403 ** will automatically commit when the VDBE halts.
3404 **
3405 ** If P5!=0 then this opcode also checks the schema cookie against P3
3406 ** and the schema generation counter against P4.
3407 ** The cookie changes its value whenever the database schema changes.
3408 ** This operation is used to detect when that the cookie has changed
3409 ** and that the current process needs to reread the schema.  If the schema
3410 ** cookie in P3 differs from the schema cookie in the database header or
3411 ** if the schema generation counter in P4 differs from the current
3412 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3413 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3414 ** statement and rerun it from the beginning.
3415 */
3416 case OP_Transaction: {
3417   Btree *pBt;
3418   int iMeta = 0;
3419 
3420   assert( p->bIsReader );
3421   assert( p->readOnly==0 || pOp->p2==0 );
3422   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3423   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3424   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3425     rc = SQLITE_READONLY;
3426     goto abort_due_to_error;
3427   }
3428   pBt = db->aDb[pOp->p1].pBt;
3429 
3430   if( pBt ){
3431     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3432     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3433     testcase( rc==SQLITE_BUSY_RECOVERY );
3434     if( rc!=SQLITE_OK ){
3435       if( (rc&0xff)==SQLITE_BUSY ){
3436         p->pc = (int)(pOp - aOp);
3437         p->rc = rc;
3438         goto vdbe_return;
3439       }
3440       goto abort_due_to_error;
3441     }
3442 
3443     if( pOp->p2 && p->usesStmtJournal
3444      && (db->autoCommit==0 || db->nVdbeRead>1)
3445     ){
3446       assert( sqlite3BtreeIsInTrans(pBt) );
3447       if( p->iStatement==0 ){
3448         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3449         db->nStatement++;
3450         p->iStatement = db->nSavepoint + db->nStatement;
3451       }
3452 
3453       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3454       if( rc==SQLITE_OK ){
3455         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3456       }
3457 
3458       /* Store the current value of the database handles deferred constraint
3459       ** counter. If the statement transaction needs to be rolled back,
3460       ** the value of this counter needs to be restored too.  */
3461       p->nStmtDefCons = db->nDeferredCons;
3462       p->nStmtDefImmCons = db->nDeferredImmCons;
3463     }
3464   }
3465   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3466   if( pOp->p5
3467    && (iMeta!=pOp->p3
3468       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3469   ){
3470     /*
3471     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3472     ** version is checked to ensure that the schema has not changed since the
3473     ** SQL statement was prepared.
3474     */
3475     sqlite3DbFree(db, p->zErrMsg);
3476     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3477     /* If the schema-cookie from the database file matches the cookie
3478     ** stored with the in-memory representation of the schema, do
3479     ** not reload the schema from the database file.
3480     **
3481     ** If virtual-tables are in use, this is not just an optimization.
3482     ** Often, v-tables store their data in other SQLite tables, which
3483     ** are queried from within xNext() and other v-table methods using
3484     ** prepared queries. If such a query is out-of-date, we do not want to
3485     ** discard the database schema, as the user code implementing the
3486     ** v-table would have to be ready for the sqlite3_vtab structure itself
3487     ** to be invalidated whenever sqlite3_step() is called from within
3488     ** a v-table method.
3489     */
3490     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3491       sqlite3ResetOneSchema(db, pOp->p1);
3492     }
3493     p->expired = 1;
3494     rc = SQLITE_SCHEMA;
3495   }
3496   if( rc ) goto abort_due_to_error;
3497   break;
3498 }
3499 
3500 /* Opcode: ReadCookie P1 P2 P3 * *
3501 **
3502 ** Read cookie number P3 from database P1 and write it into register P2.
3503 ** P3==1 is the schema version.  P3==2 is the database format.
3504 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3505 ** the main database file and P1==1 is the database file used to store
3506 ** temporary tables.
3507 **
3508 ** There must be a read-lock on the database (either a transaction
3509 ** must be started or there must be an open cursor) before
3510 ** executing this instruction.
3511 */
3512 case OP_ReadCookie: {               /* out2 */
3513   int iMeta;
3514   int iDb;
3515   int iCookie;
3516 
3517   assert( p->bIsReader );
3518   iDb = pOp->p1;
3519   iCookie = pOp->p3;
3520   assert( pOp->p3<SQLITE_N_BTREE_META );
3521   assert( iDb>=0 && iDb<db->nDb );
3522   assert( db->aDb[iDb].pBt!=0 );
3523   assert( DbMaskTest(p->btreeMask, iDb) );
3524 
3525   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3526   pOut = out2Prerelease(p, pOp);
3527   pOut->u.i = iMeta;
3528   break;
3529 }
3530 
3531 /* Opcode: SetCookie P1 P2 P3 * *
3532 **
3533 ** Write the integer value P3 into cookie number P2 of database P1.
3534 ** P2==1 is the schema version.  P2==2 is the database format.
3535 ** P2==3 is the recommended pager cache
3536 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3537 ** database file used to store temporary tables.
3538 **
3539 ** A transaction must be started before executing this opcode.
3540 */
3541 case OP_SetCookie: {
3542   Db *pDb;
3543 
3544   sqlite3VdbeIncrWriteCounter(p, 0);
3545   assert( pOp->p2<SQLITE_N_BTREE_META );
3546   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3547   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3548   assert( p->readOnly==0 );
3549   pDb = &db->aDb[pOp->p1];
3550   assert( pDb->pBt!=0 );
3551   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3552   /* See note about index shifting on OP_ReadCookie */
3553   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3554   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3555     /* When the schema cookie changes, record the new cookie internally */
3556     pDb->pSchema->schema_cookie = pOp->p3;
3557     db->mDbFlags |= DBFLAG_SchemaChange;
3558   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3559     /* Record changes in the file format */
3560     pDb->pSchema->file_format = pOp->p3;
3561   }
3562   if( pOp->p1==1 ){
3563     /* Invalidate all prepared statements whenever the TEMP database
3564     ** schema is changed.  Ticket #1644 */
3565     sqlite3ExpirePreparedStatements(db, 0);
3566     p->expired = 0;
3567   }
3568   if( rc ) goto abort_due_to_error;
3569   break;
3570 }
3571 
3572 /* Opcode: OpenRead P1 P2 P3 P4 P5
3573 ** Synopsis: root=P2 iDb=P3
3574 **
3575 ** Open a read-only cursor for the database table whose root page is
3576 ** P2 in a database file.  The database file is determined by P3.
3577 ** P3==0 means the main database, P3==1 means the database used for
3578 ** temporary tables, and P3>1 means used the corresponding attached
3579 ** database.  Give the new cursor an identifier of P1.  The P1
3580 ** values need not be contiguous but all P1 values should be small integers.
3581 ** It is an error for P1 to be negative.
3582 **
3583 ** Allowed P5 bits:
3584 ** <ul>
3585 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3586 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3587 **       of OP_SeekLE/OP_IdxGT)
3588 ** </ul>
3589 **
3590 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3591 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3592 ** object, then table being opened must be an [index b-tree] where the
3593 ** KeyInfo object defines the content and collating
3594 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3595 ** value, then the table being opened must be a [table b-tree] with a
3596 ** number of columns no less than the value of P4.
3597 **
3598 ** See also: OpenWrite, ReopenIdx
3599 */
3600 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3601 ** Synopsis: root=P2 iDb=P3
3602 **
3603 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3604 ** checks to see if the cursor on P1 is already open on the same
3605 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3606 ** if the cursor is already open, do not reopen it.
3607 **
3608 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3609 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3610 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3611 ** number.
3612 **
3613 ** Allowed P5 bits:
3614 ** <ul>
3615 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3616 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3617 **       of OP_SeekLE/OP_IdxGT)
3618 ** </ul>
3619 **
3620 ** See also: OP_OpenRead, OP_OpenWrite
3621 */
3622 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3623 ** Synopsis: root=P2 iDb=P3
3624 **
3625 ** Open a read/write cursor named P1 on the table or index whose root
3626 ** page is P2 (or whose root page is held in register P2 if the
3627 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3628 **
3629 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3630 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3631 ** object, then table being opened must be an [index b-tree] where the
3632 ** KeyInfo object defines the content and collating
3633 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3634 ** value, then the table being opened must be a [table b-tree] with a
3635 ** number of columns no less than the value of P4.
3636 **
3637 ** Allowed P5 bits:
3638 ** <ul>
3639 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3640 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3641 **       of OP_SeekLE/OP_IdxGT)
3642 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3643 **       and subsequently delete entries in an index btree.  This is a
3644 **       hint to the storage engine that the storage engine is allowed to
3645 **       ignore.  The hint is not used by the official SQLite b*tree storage
3646 **       engine, but is used by COMDB2.
3647 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3648 **       as the root page, not the value of P2 itself.
3649 ** </ul>
3650 **
3651 ** This instruction works like OpenRead except that it opens the cursor
3652 ** in read/write mode.
3653 **
3654 ** See also: OP_OpenRead, OP_ReopenIdx
3655 */
3656 case OP_ReopenIdx: {
3657   int nField;
3658   KeyInfo *pKeyInfo;
3659   int p2;
3660   int iDb;
3661   int wrFlag;
3662   Btree *pX;
3663   VdbeCursor *pCur;
3664   Db *pDb;
3665 
3666   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3667   assert( pOp->p4type==P4_KEYINFO );
3668   pCur = p->apCsr[pOp->p1];
3669   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3670     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3671     goto open_cursor_set_hints;
3672   }
3673   /* If the cursor is not currently open or is open on a different
3674   ** index, then fall through into OP_OpenRead to force a reopen */
3675 case OP_OpenRead:
3676 case OP_OpenWrite:
3677 
3678   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3679   assert( p->bIsReader );
3680   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3681           || p->readOnly==0 );
3682 
3683   if( p->expired==1 ){
3684     rc = SQLITE_ABORT_ROLLBACK;
3685     goto abort_due_to_error;
3686   }
3687 
3688   nField = 0;
3689   pKeyInfo = 0;
3690   p2 = pOp->p2;
3691   iDb = pOp->p3;
3692   assert( iDb>=0 && iDb<db->nDb );
3693   assert( DbMaskTest(p->btreeMask, iDb) );
3694   pDb = &db->aDb[iDb];
3695   pX = pDb->pBt;
3696   assert( pX!=0 );
3697   if( pOp->opcode==OP_OpenWrite ){
3698     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3699     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3700     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3701     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3702       p->minWriteFileFormat = pDb->pSchema->file_format;
3703     }
3704   }else{
3705     wrFlag = 0;
3706   }
3707   if( pOp->p5 & OPFLAG_P2ISREG ){
3708     assert( p2>0 );
3709     assert( p2<=(p->nMem+1 - p->nCursor) );
3710     assert( pOp->opcode==OP_OpenWrite );
3711     pIn2 = &aMem[p2];
3712     assert( memIsValid(pIn2) );
3713     assert( (pIn2->flags & MEM_Int)!=0 );
3714     sqlite3VdbeMemIntegerify(pIn2);
3715     p2 = (int)pIn2->u.i;
3716     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3717     ** that opcode will always set the p2 value to 2 or more or else fail.
3718     ** If there were a failure, the prepared statement would have halted
3719     ** before reaching this instruction. */
3720     assert( p2>=2 );
3721   }
3722   if( pOp->p4type==P4_KEYINFO ){
3723     pKeyInfo = pOp->p4.pKeyInfo;
3724     assert( pKeyInfo->enc==ENC(db) );
3725     assert( pKeyInfo->db==db );
3726     nField = pKeyInfo->nAllField;
3727   }else if( pOp->p4type==P4_INT32 ){
3728     nField = pOp->p4.i;
3729   }
3730   assert( pOp->p1>=0 );
3731   assert( nField>=0 );
3732   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3733   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3734   if( pCur==0 ) goto no_mem;
3735   pCur->nullRow = 1;
3736   pCur->isOrdered = 1;
3737   pCur->pgnoRoot = p2;
3738 #ifdef SQLITE_DEBUG
3739   pCur->wrFlag = wrFlag;
3740 #endif
3741   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3742   pCur->pKeyInfo = pKeyInfo;
3743   /* Set the VdbeCursor.isTable variable. Previous versions of
3744   ** SQLite used to check if the root-page flags were sane at this point
3745   ** and report database corruption if they were not, but this check has
3746   ** since moved into the btree layer.  */
3747   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3748 
3749 open_cursor_set_hints:
3750   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3751   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3752   testcase( pOp->p5 & OPFLAG_BULKCSR );
3753 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3754   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3755 #endif
3756   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3757                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3758   if( rc ) goto abort_due_to_error;
3759   break;
3760 }
3761 
3762 /* Opcode: OpenDup P1 P2 * * *
3763 **
3764 ** Open a new cursor P1 that points to the same ephemeral table as
3765 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3766 ** opcode.  Only ephemeral cursors may be duplicated.
3767 **
3768 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3769 */
3770 case OP_OpenDup: {
3771   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3772   VdbeCursor *pCx;      /* The new cursor */
3773 
3774   pOrig = p->apCsr[pOp->p2];
3775   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3776 
3777   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3778   if( pCx==0 ) goto no_mem;
3779   pCx->nullRow = 1;
3780   pCx->isEphemeral = 1;
3781   pCx->pKeyInfo = pOrig->pKeyInfo;
3782   pCx->isTable = pOrig->isTable;
3783   pCx->pgnoRoot = pOrig->pgnoRoot;
3784   pCx->isOrdered = pOrig->isOrdered;
3785   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3786                           pCx->pKeyInfo, pCx->uc.pCursor);
3787   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3788   ** opened for a database.  Since there is already an open cursor when this
3789   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3790   assert( rc==SQLITE_OK );
3791   break;
3792 }
3793 
3794 
3795 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3796 ** Synopsis: nColumn=P2
3797 **
3798 ** Open a new cursor P1 to a transient table.
3799 ** The cursor is always opened read/write even if
3800 ** the main database is read-only.  The ephemeral
3801 ** table is deleted automatically when the cursor is closed.
3802 **
3803 ** If the cursor P1 is already opened on an ephemeral table, the table
3804 ** is cleared (all content is erased).
3805 **
3806 ** P2 is the number of columns in the ephemeral table.
3807 ** The cursor points to a BTree table if P4==0 and to a BTree index
3808 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3809 ** that defines the format of keys in the index.
3810 **
3811 ** The P5 parameter can be a mask of the BTREE_* flags defined
3812 ** in btree.h.  These flags control aspects of the operation of
3813 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3814 ** added automatically.
3815 */
3816 /* Opcode: OpenAutoindex P1 P2 * P4 *
3817 ** Synopsis: nColumn=P2
3818 **
3819 ** This opcode works the same as OP_OpenEphemeral.  It has a
3820 ** different name to distinguish its use.  Tables created using
3821 ** by this opcode will be used for automatically created transient
3822 ** indices in joins.
3823 */
3824 case OP_OpenAutoindex:
3825 case OP_OpenEphemeral: {
3826   VdbeCursor *pCx;
3827   KeyInfo *pKeyInfo;
3828 
3829   static const int vfsFlags =
3830       SQLITE_OPEN_READWRITE |
3831       SQLITE_OPEN_CREATE |
3832       SQLITE_OPEN_EXCLUSIVE |
3833       SQLITE_OPEN_DELETEONCLOSE |
3834       SQLITE_OPEN_TRANSIENT_DB;
3835   assert( pOp->p1>=0 );
3836   assert( pOp->p2>=0 );
3837   pCx = p->apCsr[pOp->p1];
3838   if( pCx ){
3839     /* If the ephermeral table is already open, erase all existing content
3840     ** so that the table is empty again, rather than creating a new table. */
3841     assert( pCx->isEphemeral );
3842     pCx->seqCount = 0;
3843     pCx->cacheStatus = CACHE_STALE;
3844     if( pCx->pBtx ){
3845       rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3846     }
3847   }else{
3848     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3849     if( pCx==0 ) goto no_mem;
3850     pCx->isEphemeral = 1;
3851     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3852                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3853                           vfsFlags);
3854     if( rc==SQLITE_OK ){
3855       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3856     }
3857     if( rc==SQLITE_OK ){
3858       /* If a transient index is required, create it by calling
3859       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3860       ** opening it. If a transient table is required, just use the
3861       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3862       */
3863       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3864         assert( pOp->p4type==P4_KEYINFO );
3865         rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3866                                      BTREE_BLOBKEY | pOp->p5);
3867         if( rc==SQLITE_OK ){
3868           assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3869           assert( pKeyInfo->db==db );
3870           assert( pKeyInfo->enc==ENC(db) );
3871           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3872                                   pKeyInfo, pCx->uc.pCursor);
3873         }
3874         pCx->isTable = 0;
3875       }else{
3876         pCx->pgnoRoot = MASTER_ROOT;
3877         rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3878                                 0, pCx->uc.pCursor);
3879         pCx->isTable = 1;
3880       }
3881     }
3882     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3883   }
3884   if( rc ) goto abort_due_to_error;
3885   pCx->nullRow = 1;
3886   break;
3887 }
3888 
3889 /* Opcode: SorterOpen P1 P2 P3 P4 *
3890 **
3891 ** This opcode works like OP_OpenEphemeral except that it opens
3892 ** a transient index that is specifically designed to sort large
3893 ** tables using an external merge-sort algorithm.
3894 **
3895 ** If argument P3 is non-zero, then it indicates that the sorter may
3896 ** assume that a stable sort considering the first P3 fields of each
3897 ** key is sufficient to produce the required results.
3898 */
3899 case OP_SorterOpen: {
3900   VdbeCursor *pCx;
3901 
3902   assert( pOp->p1>=0 );
3903   assert( pOp->p2>=0 );
3904   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3905   if( pCx==0 ) goto no_mem;
3906   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3907   assert( pCx->pKeyInfo->db==db );
3908   assert( pCx->pKeyInfo->enc==ENC(db) );
3909   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3910   if( rc ) goto abort_due_to_error;
3911   break;
3912 }
3913 
3914 /* Opcode: SequenceTest P1 P2 * * *
3915 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3916 **
3917 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3918 ** to P2. Regardless of whether or not the jump is taken, increment the
3919 ** the sequence value.
3920 */
3921 case OP_SequenceTest: {
3922   VdbeCursor *pC;
3923   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3924   pC = p->apCsr[pOp->p1];
3925   assert( isSorter(pC) );
3926   if( (pC->seqCount++)==0 ){
3927     goto jump_to_p2;
3928   }
3929   break;
3930 }
3931 
3932 /* Opcode: OpenPseudo P1 P2 P3 * *
3933 ** Synopsis: P3 columns in r[P2]
3934 **
3935 ** Open a new cursor that points to a fake table that contains a single
3936 ** row of data.  The content of that one row is the content of memory
3937 ** register P2.  In other words, cursor P1 becomes an alias for the
3938 ** MEM_Blob content contained in register P2.
3939 **
3940 ** A pseudo-table created by this opcode is used to hold a single
3941 ** row output from the sorter so that the row can be decomposed into
3942 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3943 ** is the only cursor opcode that works with a pseudo-table.
3944 **
3945 ** P3 is the number of fields in the records that will be stored by
3946 ** the pseudo-table.
3947 */
3948 case OP_OpenPseudo: {
3949   VdbeCursor *pCx;
3950 
3951   assert( pOp->p1>=0 );
3952   assert( pOp->p3>=0 );
3953   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3954   if( pCx==0 ) goto no_mem;
3955   pCx->nullRow = 1;
3956   pCx->seekResult = pOp->p2;
3957   pCx->isTable = 1;
3958   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3959   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
3960   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3961   ** which is a performance optimization */
3962   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
3963   assert( pOp->p5==0 );
3964   break;
3965 }
3966 
3967 /* Opcode: Close P1 * * * *
3968 **
3969 ** Close a cursor previously opened as P1.  If P1 is not
3970 ** currently open, this instruction is a no-op.
3971 */
3972 case OP_Close: {
3973   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3974   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3975   p->apCsr[pOp->p1] = 0;
3976   break;
3977 }
3978 
3979 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3980 /* Opcode: ColumnsUsed P1 * * P4 *
3981 **
3982 ** This opcode (which only exists if SQLite was compiled with
3983 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3984 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3985 ** (P4_INT64) in which the first 63 bits are one for each of the
3986 ** first 63 columns of the table or index that are actually used
3987 ** by the cursor.  The high-order bit is set if any column after
3988 ** the 64th is used.
3989 */
3990 case OP_ColumnsUsed: {
3991   VdbeCursor *pC;
3992   pC = p->apCsr[pOp->p1];
3993   assert( pC->eCurType==CURTYPE_BTREE );
3994   pC->maskUsed = *(u64*)pOp->p4.pI64;
3995   break;
3996 }
3997 #endif
3998 
3999 /* Opcode: SeekGE P1 P2 P3 P4 *
4000 ** Synopsis: key=r[P3@P4]
4001 **
4002 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4003 ** use the value in register P3 as the key.  If cursor P1 refers
4004 ** to an SQL index, then P3 is the first in an array of P4 registers
4005 ** that are used as an unpacked index key.
4006 **
4007 ** Reposition cursor P1 so that  it points to the smallest entry that
4008 ** is greater than or equal to the key value. If there are no records
4009 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4010 **
4011 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4012 ** opcode will always land on a record that equally equals the key, or
4013 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4014 ** opcode must be followed by an IdxLE opcode with the same arguments.
4015 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
4016 ** IdxLE opcode will be used on subsequent loop iterations.
4017 **
4018 ** This opcode leaves the cursor configured to move in forward order,
4019 ** from the beginning toward the end.  In other words, the cursor is
4020 ** configured to use Next, not Prev.
4021 **
4022 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4023 */
4024 /* Opcode: SeekGT P1 P2 P3 P4 *
4025 ** Synopsis: key=r[P3@P4]
4026 **
4027 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4028 ** use the value in register P3 as a key. If cursor P1 refers
4029 ** to an SQL index, then P3 is the first in an array of P4 registers
4030 ** that are used as an unpacked index key.
4031 **
4032 ** Reposition cursor P1 so that  it points to the smallest entry that
4033 ** is greater than the key value. If there are no records greater than
4034 ** the key and P2 is not zero, then jump to P2.
4035 **
4036 ** This opcode leaves the cursor configured to move in forward order,
4037 ** from the beginning toward the end.  In other words, the cursor is
4038 ** configured to use Next, not Prev.
4039 **
4040 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4041 */
4042 /* Opcode: SeekLT P1 P2 P3 P4 *
4043 ** Synopsis: key=r[P3@P4]
4044 **
4045 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4046 ** use the value in register P3 as a key. If cursor P1 refers
4047 ** to an SQL index, then P3 is the first in an array of P4 registers
4048 ** that are used as an unpacked index key.
4049 **
4050 ** Reposition cursor P1 so that  it points to the largest entry that
4051 ** is less than the key value. If there are no records less than
4052 ** the key and P2 is not zero, then jump to P2.
4053 **
4054 ** This opcode leaves the cursor configured to move in reverse order,
4055 ** from the end toward the beginning.  In other words, the cursor is
4056 ** configured to use Prev, not Next.
4057 **
4058 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4059 */
4060 /* Opcode: SeekLE P1 P2 P3 P4 *
4061 ** Synopsis: key=r[P3@P4]
4062 **
4063 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4064 ** use the value in register P3 as a key. If cursor P1 refers
4065 ** to an SQL index, then P3 is the first in an array of P4 registers
4066 ** that are used as an unpacked index key.
4067 **
4068 ** Reposition cursor P1 so that it points to the largest entry that
4069 ** is less than or equal to the key value. If there are no records
4070 ** less than or equal to the key and P2 is not zero, then jump to P2.
4071 **
4072 ** This opcode leaves the cursor configured to move in reverse order,
4073 ** from the end toward the beginning.  In other words, the cursor is
4074 ** configured to use Prev, not Next.
4075 **
4076 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4077 ** opcode will always land on a record that equally equals the key, or
4078 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4079 ** opcode must be followed by an IdxGE opcode with the same arguments.
4080 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4081 ** IdxGE opcode will be used on subsequent loop iterations.
4082 **
4083 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4084 */
4085 case OP_SeekLT:         /* jump, in3, group */
4086 case OP_SeekLE:         /* jump, in3, group */
4087 case OP_SeekGE:         /* jump, in3, group */
4088 case OP_SeekGT: {       /* jump, in3, group */
4089   int res;           /* Comparison result */
4090   int oc;            /* Opcode */
4091   VdbeCursor *pC;    /* The cursor to seek */
4092   UnpackedRecord r;  /* The key to seek for */
4093   int nField;        /* Number of columns or fields in the key */
4094   i64 iKey;          /* The rowid we are to seek to */
4095   int eqOnly;        /* Only interested in == results */
4096 
4097   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4098   assert( pOp->p2!=0 );
4099   pC = p->apCsr[pOp->p1];
4100   assert( pC!=0 );
4101   assert( pC->eCurType==CURTYPE_BTREE );
4102   assert( OP_SeekLE == OP_SeekLT+1 );
4103   assert( OP_SeekGE == OP_SeekLT+2 );
4104   assert( OP_SeekGT == OP_SeekLT+3 );
4105   assert( pC->isOrdered );
4106   assert( pC->uc.pCursor!=0 );
4107   oc = pOp->opcode;
4108   eqOnly = 0;
4109   pC->nullRow = 0;
4110 #ifdef SQLITE_DEBUG
4111   pC->seekOp = pOp->opcode;
4112 #endif
4113 
4114   pC->deferredMoveto = 0;
4115   pC->cacheStatus = CACHE_STALE;
4116   if( pC->isTable ){
4117     /* The BTREE_SEEK_EQ flag is only set on index cursors */
4118     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4119               || CORRUPT_DB );
4120 
4121     /* The input value in P3 might be of any type: integer, real, string,
4122     ** blob, or NULL.  But it needs to be an integer before we can do
4123     ** the seek, so convert it. */
4124     pIn3 = &aMem[pOp->p3];
4125     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4126       applyNumericAffinity(pIn3, 0);
4127     }
4128     iKey = sqlite3VdbeIntValue(pIn3);
4129 
4130     /* If the P3 value could not be converted into an integer without
4131     ** loss of information, then special processing is required... */
4132     if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4133       if( (pIn3->flags & MEM_Real)==0 ){
4134         if( (pIn3->flags & MEM_Null) || oc>=OP_SeekGE ){
4135           VdbeBranchTaken(1,2);
4136           goto jump_to_p2;
4137         }else{
4138           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4139           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4140           goto seek_not_found;
4141         }
4142       }else
4143 
4144       /* If the approximation iKey is larger than the actual real search
4145       ** term, substitute >= for > and < for <=. e.g. if the search term
4146       ** is 4.9 and the integer approximation 5:
4147       **
4148       **        (x >  4.9)    ->     (x >= 5)
4149       **        (x <= 4.9)    ->     (x <  5)
4150       */
4151       if( pIn3->u.r<(double)iKey ){
4152         assert( OP_SeekGE==(OP_SeekGT-1) );
4153         assert( OP_SeekLT==(OP_SeekLE-1) );
4154         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4155         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4156       }
4157 
4158       /* If the approximation iKey is smaller than the actual real search
4159       ** term, substitute <= for < and > for >=.  */
4160       else if( pIn3->u.r>(double)iKey ){
4161         assert( OP_SeekLE==(OP_SeekLT+1) );
4162         assert( OP_SeekGT==(OP_SeekGE+1) );
4163         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4164         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4165       }
4166     }
4167     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4168     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4169     if( rc!=SQLITE_OK ){
4170       goto abort_due_to_error;
4171     }
4172   }else{
4173     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
4174     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
4175     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
4176     */
4177     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4178       eqOnly = 1;
4179       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4180       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4181       assert( pOp[1].p1==pOp[0].p1 );
4182       assert( pOp[1].p2==pOp[0].p2 );
4183       assert( pOp[1].p3==pOp[0].p3 );
4184       assert( pOp[1].p4.i==pOp[0].p4.i );
4185     }
4186 
4187     nField = pOp->p4.i;
4188     assert( pOp->p4type==P4_INT32 );
4189     assert( nField>0 );
4190     r.pKeyInfo = pC->pKeyInfo;
4191     r.nField = (u16)nField;
4192 
4193     /* The next line of code computes as follows, only faster:
4194     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4195     **     r.default_rc = -1;
4196     **   }else{
4197     **     r.default_rc = +1;
4198     **   }
4199     */
4200     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4201     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4202     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4203     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4204     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4205 
4206     r.aMem = &aMem[pOp->p3];
4207 #ifdef SQLITE_DEBUG
4208     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4209 #endif
4210     r.eqSeen = 0;
4211     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4212     if( rc!=SQLITE_OK ){
4213       goto abort_due_to_error;
4214     }
4215     if( eqOnly && r.eqSeen==0 ){
4216       assert( res!=0 );
4217       goto seek_not_found;
4218     }
4219   }
4220 #ifdef SQLITE_TEST
4221   sqlite3_search_count++;
4222 #endif
4223   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4224     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4225       res = 0;
4226       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4227       if( rc!=SQLITE_OK ){
4228         if( rc==SQLITE_DONE ){
4229           rc = SQLITE_OK;
4230           res = 1;
4231         }else{
4232           goto abort_due_to_error;
4233         }
4234       }
4235     }else{
4236       res = 0;
4237     }
4238   }else{
4239     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4240     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4241       res = 0;
4242       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4243       if( rc!=SQLITE_OK ){
4244         if( rc==SQLITE_DONE ){
4245           rc = SQLITE_OK;
4246           res = 1;
4247         }else{
4248           goto abort_due_to_error;
4249         }
4250       }
4251     }else{
4252       /* res might be negative because the table is empty.  Check to
4253       ** see if this is the case.
4254       */
4255       res = sqlite3BtreeEof(pC->uc.pCursor);
4256     }
4257   }
4258 seek_not_found:
4259   assert( pOp->p2>0 );
4260   VdbeBranchTaken(res!=0,2);
4261   if( res ){
4262     goto jump_to_p2;
4263   }else if( eqOnly ){
4264     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4265     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4266   }
4267   break;
4268 }
4269 
4270 /* Opcode: SeekHit P1 P2 * * *
4271 ** Synopsis: seekHit=P2
4272 **
4273 ** Set the seekHit flag on cursor P1 to the value in P2.
4274 ** The seekHit flag is used by the IfNoHope opcode.
4275 **
4276 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4277 ** either 0 or 1.
4278 */
4279 case OP_SeekHit: {
4280   VdbeCursor *pC;
4281   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4282   pC = p->apCsr[pOp->p1];
4283   assert( pC!=0 );
4284   assert( pOp->p2==0 || pOp->p2==1 );
4285   pC->seekHit = pOp->p2 & 1;
4286   break;
4287 }
4288 
4289 /* Opcode: Found P1 P2 P3 P4 *
4290 ** Synopsis: key=r[P3@P4]
4291 **
4292 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4293 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4294 ** record.
4295 **
4296 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4297 ** is a prefix of any entry in P1 then a jump is made to P2 and
4298 ** P1 is left pointing at the matching entry.
4299 **
4300 ** This operation leaves the cursor in a state where it can be
4301 ** advanced in the forward direction.  The Next instruction will work,
4302 ** but not the Prev instruction.
4303 **
4304 ** See also: NotFound, NoConflict, NotExists. SeekGe
4305 */
4306 /* Opcode: NotFound P1 P2 P3 P4 *
4307 ** Synopsis: key=r[P3@P4]
4308 **
4309 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4310 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4311 ** record.
4312 **
4313 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4314 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4315 ** does contain an entry whose prefix matches the P3/P4 record then control
4316 ** falls through to the next instruction and P1 is left pointing at the
4317 ** matching entry.
4318 **
4319 ** This operation leaves the cursor in a state where it cannot be
4320 ** advanced in either direction.  In other words, the Next and Prev
4321 ** opcodes do not work after this operation.
4322 **
4323 ** See also: Found, NotExists, NoConflict, IfNoHope
4324 */
4325 /* Opcode: IfNoHope P1 P2 P3 P4 *
4326 ** Synopsis: key=r[P3@P4]
4327 **
4328 ** Register P3 is the first of P4 registers that form an unpacked
4329 ** record.
4330 **
4331 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4332 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4333 ** check to see if there is any entry in P1 that matches the
4334 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4335 ** jump to P2.  Otherwise fall through.
4336 **
4337 ** This opcode behaves like OP_NotFound if the seekHit
4338 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4339 **
4340 ** This opcode is used in IN clause processing for a multi-column key.
4341 ** If an IN clause is attached to an element of the key other than the
4342 ** left-most element, and if there are no matches on the most recent
4343 ** seek over the whole key, then it might be that one of the key element
4344 ** to the left is prohibiting a match, and hence there is "no hope" of
4345 ** any match regardless of how many IN clause elements are checked.
4346 ** In such a case, we abandon the IN clause search early, using this
4347 ** opcode.  The opcode name comes from the fact that the
4348 ** jump is taken if there is "no hope" of achieving a match.
4349 **
4350 ** See also: NotFound, SeekHit
4351 */
4352 /* Opcode: NoConflict P1 P2 P3 P4 *
4353 ** Synopsis: key=r[P3@P4]
4354 **
4355 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4356 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4357 ** record.
4358 **
4359 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4360 ** contains any NULL value, jump immediately to P2.  If all terms of the
4361 ** record are not-NULL then a check is done to determine if any row in the
4362 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4363 ** immediately to P2.  If there is a match, fall through and leave the P1
4364 ** cursor pointing to the matching row.
4365 **
4366 ** This opcode is similar to OP_NotFound with the exceptions that the
4367 ** branch is always taken if any part of the search key input is NULL.
4368 **
4369 ** This operation leaves the cursor in a state where it cannot be
4370 ** advanced in either direction.  In other words, the Next and Prev
4371 ** opcodes do not work after this operation.
4372 **
4373 ** See also: NotFound, Found, NotExists
4374 */
4375 case OP_IfNoHope: {     /* jump, in3 */
4376   VdbeCursor *pC;
4377   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4378   pC = p->apCsr[pOp->p1];
4379   assert( pC!=0 );
4380   if( pC->seekHit ) break;
4381   /* Fall through into OP_NotFound */
4382 }
4383 case OP_NoConflict:     /* jump, in3 */
4384 case OP_NotFound:       /* jump, in3 */
4385 case OP_Found: {        /* jump, in3 */
4386   int alreadyExists;
4387   int takeJump;
4388   int ii;
4389   VdbeCursor *pC;
4390   int res;
4391   UnpackedRecord *pFree;
4392   UnpackedRecord *pIdxKey;
4393   UnpackedRecord r;
4394 
4395 #ifdef SQLITE_TEST
4396   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4397 #endif
4398 
4399   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4400   assert( pOp->p4type==P4_INT32 );
4401   pC = p->apCsr[pOp->p1];
4402   assert( pC!=0 );
4403 #ifdef SQLITE_DEBUG
4404   pC->seekOp = pOp->opcode;
4405 #endif
4406   pIn3 = &aMem[pOp->p3];
4407   assert( pC->eCurType==CURTYPE_BTREE );
4408   assert( pC->uc.pCursor!=0 );
4409   assert( pC->isTable==0 );
4410   if( pOp->p4.i>0 ){
4411     r.pKeyInfo = pC->pKeyInfo;
4412     r.nField = (u16)pOp->p4.i;
4413     r.aMem = pIn3;
4414 #ifdef SQLITE_DEBUG
4415     for(ii=0; ii<r.nField; ii++){
4416       assert( memIsValid(&r.aMem[ii]) );
4417       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4418       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4419     }
4420 #endif
4421     pIdxKey = &r;
4422     pFree = 0;
4423   }else{
4424     assert( pIn3->flags & MEM_Blob );
4425     rc = ExpandBlob(pIn3);
4426     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4427     if( rc ) goto no_mem;
4428     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4429     if( pIdxKey==0 ) goto no_mem;
4430     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4431   }
4432   pIdxKey->default_rc = 0;
4433   takeJump = 0;
4434   if( pOp->opcode==OP_NoConflict ){
4435     /* For the OP_NoConflict opcode, take the jump if any of the
4436     ** input fields are NULL, since any key with a NULL will not
4437     ** conflict */
4438     for(ii=0; ii<pIdxKey->nField; ii++){
4439       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4440         takeJump = 1;
4441         break;
4442       }
4443     }
4444   }
4445   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4446   if( pFree ) sqlite3DbFreeNN(db, pFree);
4447   if( rc!=SQLITE_OK ){
4448     goto abort_due_to_error;
4449   }
4450   pC->seekResult = res;
4451   alreadyExists = (res==0);
4452   pC->nullRow = 1-alreadyExists;
4453   pC->deferredMoveto = 0;
4454   pC->cacheStatus = CACHE_STALE;
4455   if( pOp->opcode==OP_Found ){
4456     VdbeBranchTaken(alreadyExists!=0,2);
4457     if( alreadyExists ) goto jump_to_p2;
4458   }else{
4459     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4460     if( takeJump || !alreadyExists ) goto jump_to_p2;
4461   }
4462   break;
4463 }
4464 
4465 /* Opcode: SeekRowid P1 P2 P3 * *
4466 ** Synopsis: intkey=r[P3]
4467 **
4468 ** P1 is the index of a cursor open on an SQL table btree (with integer
4469 ** keys).  If register P3 does not contain an integer or if P1 does not
4470 ** contain a record with rowid P3 then jump immediately to P2.
4471 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4472 ** a record with rowid P3 then
4473 ** leave the cursor pointing at that record and fall through to the next
4474 ** instruction.
4475 **
4476 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4477 ** the P3 register must be guaranteed to contain an integer value.  With this
4478 ** opcode, register P3 might not contain an integer.
4479 **
4480 ** The OP_NotFound opcode performs the same operation on index btrees
4481 ** (with arbitrary multi-value keys).
4482 **
4483 ** This opcode leaves the cursor in a state where it cannot be advanced
4484 ** in either direction.  In other words, the Next and Prev opcodes will
4485 ** not work following this opcode.
4486 **
4487 ** See also: Found, NotFound, NoConflict, SeekRowid
4488 */
4489 /* Opcode: NotExists P1 P2 P3 * *
4490 ** Synopsis: intkey=r[P3]
4491 **
4492 ** P1 is the index of a cursor open on an SQL table btree (with integer
4493 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4494 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4495 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4496 ** leave the cursor pointing at that record and fall through to the next
4497 ** instruction.
4498 **
4499 ** The OP_SeekRowid opcode performs the same operation but also allows the
4500 ** P3 register to contain a non-integer value, in which case the jump is
4501 ** always taken.  This opcode requires that P3 always contain an integer.
4502 **
4503 ** The OP_NotFound opcode performs the same operation on index btrees
4504 ** (with arbitrary multi-value keys).
4505 **
4506 ** This opcode leaves the cursor in a state where it cannot be advanced
4507 ** in either direction.  In other words, the Next and Prev opcodes will
4508 ** not work following this opcode.
4509 **
4510 ** See also: Found, NotFound, NoConflict, SeekRowid
4511 */
4512 case OP_SeekRowid: {        /* jump, in3 */
4513   VdbeCursor *pC;
4514   BtCursor *pCrsr;
4515   int res;
4516   u64 iKey;
4517 
4518   pIn3 = &aMem[pOp->p3];
4519   testcase( pIn3->flags & MEM_Int );
4520   testcase( pIn3->flags & MEM_IntReal );
4521   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4522     /* Make sure pIn3->u.i contains a valid integer representation of
4523     ** the key value, but do not change the datatype of the register, as
4524     ** other parts of the perpared statement might be depending on the
4525     ** current datatype. */
4526     u16 origFlags = pIn3->flags;
4527     int isNotInt;
4528     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4529     isNotInt = (pIn3->flags & MEM_Int)==0;
4530     pIn3->flags = origFlags;
4531     if( isNotInt ) goto jump_to_p2;
4532   }
4533   /* Fall through into OP_NotExists */
4534 case OP_NotExists:          /* jump, in3 */
4535   pIn3 = &aMem[pOp->p3];
4536   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4537   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4538   pC = p->apCsr[pOp->p1];
4539   assert( pC!=0 );
4540 #ifdef SQLITE_DEBUG
4541   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4542 #endif
4543   assert( pC->isTable );
4544   assert( pC->eCurType==CURTYPE_BTREE );
4545   pCrsr = pC->uc.pCursor;
4546   assert( pCrsr!=0 );
4547   res = 0;
4548   iKey = pIn3->u.i;
4549   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4550   assert( rc==SQLITE_OK || res==0 );
4551   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4552   pC->nullRow = 0;
4553   pC->cacheStatus = CACHE_STALE;
4554   pC->deferredMoveto = 0;
4555   VdbeBranchTaken(res!=0,2);
4556   pC->seekResult = res;
4557   if( res!=0 ){
4558     assert( rc==SQLITE_OK );
4559     if( pOp->p2==0 ){
4560       rc = SQLITE_CORRUPT_BKPT;
4561     }else{
4562       goto jump_to_p2;
4563     }
4564   }
4565   if( rc ) goto abort_due_to_error;
4566   break;
4567 }
4568 
4569 /* Opcode: Sequence P1 P2 * * *
4570 ** Synopsis: r[P2]=cursor[P1].ctr++
4571 **
4572 ** Find the next available sequence number for cursor P1.
4573 ** Write the sequence number into register P2.
4574 ** The sequence number on the cursor is incremented after this
4575 ** instruction.
4576 */
4577 case OP_Sequence: {           /* out2 */
4578   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4579   assert( p->apCsr[pOp->p1]!=0 );
4580   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4581   pOut = out2Prerelease(p, pOp);
4582   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4583   break;
4584 }
4585 
4586 
4587 /* Opcode: NewRowid P1 P2 P3 * *
4588 ** Synopsis: r[P2]=rowid
4589 **
4590 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4591 ** The record number is not previously used as a key in the database
4592 ** table that cursor P1 points to.  The new record number is written
4593 ** written to register P2.
4594 **
4595 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4596 ** the largest previously generated record number. No new record numbers are
4597 ** allowed to be less than this value. When this value reaches its maximum,
4598 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4599 ** generated record number. This P3 mechanism is used to help implement the
4600 ** AUTOINCREMENT feature.
4601 */
4602 case OP_NewRowid: {           /* out2 */
4603   i64 v;                 /* The new rowid */
4604   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4605   int res;               /* Result of an sqlite3BtreeLast() */
4606   int cnt;               /* Counter to limit the number of searches */
4607   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4608   VdbeFrame *pFrame;     /* Root frame of VDBE */
4609 
4610   v = 0;
4611   res = 0;
4612   pOut = out2Prerelease(p, pOp);
4613   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4614   pC = p->apCsr[pOp->p1];
4615   assert( pC!=0 );
4616   assert( pC->isTable );
4617   assert( pC->eCurType==CURTYPE_BTREE );
4618   assert( pC->uc.pCursor!=0 );
4619   {
4620     /* The next rowid or record number (different terms for the same
4621     ** thing) is obtained in a two-step algorithm.
4622     **
4623     ** First we attempt to find the largest existing rowid and add one
4624     ** to that.  But if the largest existing rowid is already the maximum
4625     ** positive integer, we have to fall through to the second
4626     ** probabilistic algorithm
4627     **
4628     ** The second algorithm is to select a rowid at random and see if
4629     ** it already exists in the table.  If it does not exist, we have
4630     ** succeeded.  If the random rowid does exist, we select a new one
4631     ** and try again, up to 100 times.
4632     */
4633     assert( pC->isTable );
4634 
4635 #ifdef SQLITE_32BIT_ROWID
4636 #   define MAX_ROWID 0x7fffffff
4637 #else
4638     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4639     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4640     ** to provide the constant while making all compilers happy.
4641     */
4642 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4643 #endif
4644 
4645     if( !pC->useRandomRowid ){
4646       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4647       if( rc!=SQLITE_OK ){
4648         goto abort_due_to_error;
4649       }
4650       if( res ){
4651         v = 1;   /* IMP: R-61914-48074 */
4652       }else{
4653         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4654         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4655         if( v>=MAX_ROWID ){
4656           pC->useRandomRowid = 1;
4657         }else{
4658           v++;   /* IMP: R-29538-34987 */
4659         }
4660       }
4661     }
4662 
4663 #ifndef SQLITE_OMIT_AUTOINCREMENT
4664     if( pOp->p3 ){
4665       /* Assert that P3 is a valid memory cell. */
4666       assert( pOp->p3>0 );
4667       if( p->pFrame ){
4668         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4669         /* Assert that P3 is a valid memory cell. */
4670         assert( pOp->p3<=pFrame->nMem );
4671         pMem = &pFrame->aMem[pOp->p3];
4672       }else{
4673         /* Assert that P3 is a valid memory cell. */
4674         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4675         pMem = &aMem[pOp->p3];
4676         memAboutToChange(p, pMem);
4677       }
4678       assert( memIsValid(pMem) );
4679 
4680       REGISTER_TRACE(pOp->p3, pMem);
4681       sqlite3VdbeMemIntegerify(pMem);
4682       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4683       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4684         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4685         goto abort_due_to_error;
4686       }
4687       if( v<pMem->u.i+1 ){
4688         v = pMem->u.i + 1;
4689       }
4690       pMem->u.i = v;
4691     }
4692 #endif
4693     if( pC->useRandomRowid ){
4694       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4695       ** largest possible integer (9223372036854775807) then the database
4696       ** engine starts picking positive candidate ROWIDs at random until
4697       ** it finds one that is not previously used. */
4698       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4699                              ** an AUTOINCREMENT table. */
4700       cnt = 0;
4701       do{
4702         sqlite3_randomness(sizeof(v), &v);
4703         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4704       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4705                                                  0, &res))==SQLITE_OK)
4706             && (res==0)
4707             && (++cnt<100));
4708       if( rc ) goto abort_due_to_error;
4709       if( res==0 ){
4710         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4711         goto abort_due_to_error;
4712       }
4713       assert( v>0 );  /* EV: R-40812-03570 */
4714     }
4715     pC->deferredMoveto = 0;
4716     pC->cacheStatus = CACHE_STALE;
4717   }
4718   pOut->u.i = v;
4719   break;
4720 }
4721 
4722 /* Opcode: Insert P1 P2 P3 P4 P5
4723 ** Synopsis: intkey=r[P3] data=r[P2]
4724 **
4725 ** Write an entry into the table of cursor P1.  A new entry is
4726 ** created if it doesn't already exist or the data for an existing
4727 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4728 ** number P2. The key is stored in register P3. The key must
4729 ** be a MEM_Int.
4730 **
4731 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4732 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4733 ** then rowid is stored for subsequent return by the
4734 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4735 **
4736 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4737 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4738 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4739 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4740 **
4741 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4742 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4743 ** is part of an INSERT operation.  The difference is only important to
4744 ** the update hook.
4745 **
4746 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4747 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4748 ** following a successful insert.
4749 **
4750 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4751 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4752 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4753 ** value of register P2 will then change.  Make sure this does not
4754 ** cause any problems.)
4755 **
4756 ** This instruction only works on tables.  The equivalent instruction
4757 ** for indices is OP_IdxInsert.
4758 */
4759 case OP_Insert: {
4760   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4761   Mem *pKey;        /* MEM cell holding key  for the record */
4762   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4763   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4764   const char *zDb;  /* database name - used by the update hook */
4765   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4766   BtreePayload x;   /* Payload to be inserted */
4767 
4768   pData = &aMem[pOp->p2];
4769   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4770   assert( memIsValid(pData) );
4771   pC = p->apCsr[pOp->p1];
4772   assert( pC!=0 );
4773   assert( pC->eCurType==CURTYPE_BTREE );
4774   assert( pC->uc.pCursor!=0 );
4775   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4776   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4777   REGISTER_TRACE(pOp->p2, pData);
4778   sqlite3VdbeIncrWriteCounter(p, pC);
4779 
4780   pKey = &aMem[pOp->p3];
4781   assert( pKey->flags & MEM_Int );
4782   assert( memIsValid(pKey) );
4783   REGISTER_TRACE(pOp->p3, pKey);
4784   x.nKey = pKey->u.i;
4785 
4786   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4787     assert( pC->iDb>=0 );
4788     zDb = db->aDb[pC->iDb].zDbSName;
4789     pTab = pOp->p4.pTab;
4790     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4791   }else{
4792     pTab = 0;
4793     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4794   }
4795 
4796 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4797   /* Invoke the pre-update hook, if any */
4798   if( pTab ){
4799     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4800       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4801     }
4802     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4803       /* Prevent post-update hook from running in cases when it should not */
4804       pTab = 0;
4805     }
4806   }
4807   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4808 #endif
4809 
4810   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4811   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4812   assert( pData->flags & (MEM_Blob|MEM_Str) );
4813   x.pData = pData->z;
4814   x.nData = pData->n;
4815   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4816   if( pData->flags & MEM_Zero ){
4817     x.nZero = pData->u.nZero;
4818   }else{
4819     x.nZero = 0;
4820   }
4821   x.pKey = 0;
4822   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4823       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4824   );
4825   pC->deferredMoveto = 0;
4826   pC->cacheStatus = CACHE_STALE;
4827 
4828   /* Invoke the update-hook if required. */
4829   if( rc ) goto abort_due_to_error;
4830   if( pTab ){
4831     assert( db->xUpdateCallback!=0 );
4832     assert( pTab->aCol!=0 );
4833     db->xUpdateCallback(db->pUpdateArg,
4834            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4835            zDb, pTab->zName, x.nKey);
4836   }
4837   break;
4838 }
4839 
4840 /* Opcode: Delete P1 P2 P3 P4 P5
4841 **
4842 ** Delete the record at which the P1 cursor is currently pointing.
4843 **
4844 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4845 ** the cursor will be left pointing at  either the next or the previous
4846 ** record in the table. If it is left pointing at the next record, then
4847 ** the next Next instruction will be a no-op. As a result, in this case
4848 ** it is ok to delete a record from within a Next loop. If
4849 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4850 ** left in an undefined state.
4851 **
4852 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4853 ** delete one of several associated with deleting a table row and all its
4854 ** associated index entries.  Exactly one of those deletes is the "primary"
4855 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4856 ** marked with the AUXDELETE flag.
4857 **
4858 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4859 ** change count is incremented (otherwise not).
4860 **
4861 ** P1 must not be pseudo-table.  It has to be a real table with
4862 ** multiple rows.
4863 **
4864 ** If P4 is not NULL then it points to a Table object. In this case either
4865 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4866 ** have been positioned using OP_NotFound prior to invoking this opcode in
4867 ** this case. Specifically, if one is configured, the pre-update hook is
4868 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4869 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4870 **
4871 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4872 ** of the memory cell that contains the value that the rowid of the row will
4873 ** be set to by the update.
4874 */
4875 case OP_Delete: {
4876   VdbeCursor *pC;
4877   const char *zDb;
4878   Table *pTab;
4879   int opflags;
4880 
4881   opflags = pOp->p2;
4882   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4883   pC = p->apCsr[pOp->p1];
4884   assert( pC!=0 );
4885   assert( pC->eCurType==CURTYPE_BTREE );
4886   assert( pC->uc.pCursor!=0 );
4887   assert( pC->deferredMoveto==0 );
4888   sqlite3VdbeIncrWriteCounter(p, pC);
4889 
4890 #ifdef SQLITE_DEBUG
4891   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4892     /* If p5 is zero, the seek operation that positioned the cursor prior to
4893     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4894     ** the row that is being deleted */
4895     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4896     assert( CORRUPT_DB || pC->movetoTarget==iKey );
4897   }
4898 #endif
4899 
4900   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4901   ** the name of the db to pass as to it. Also set local pTab to a copy
4902   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4903   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4904   ** VdbeCursor.movetoTarget to the current rowid.  */
4905   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4906     assert( pC->iDb>=0 );
4907     assert( pOp->p4.pTab!=0 );
4908     zDb = db->aDb[pC->iDb].zDbSName;
4909     pTab = pOp->p4.pTab;
4910     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4911       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4912     }
4913   }else{
4914     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4915     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4916   }
4917 
4918 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4919   /* Invoke the pre-update-hook if required. */
4920   if( db->xPreUpdateCallback && pOp->p4.pTab ){
4921     assert( !(opflags & OPFLAG_ISUPDATE)
4922          || HasRowid(pTab)==0
4923          || (aMem[pOp->p3].flags & MEM_Int)
4924     );
4925     sqlite3VdbePreUpdateHook(p, pC,
4926         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4927         zDb, pTab, pC->movetoTarget,
4928         pOp->p3
4929     );
4930   }
4931   if( opflags & OPFLAG_ISNOOP ) break;
4932 #endif
4933 
4934   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4935   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4936   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4937   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4938 
4939 #ifdef SQLITE_DEBUG
4940   if( p->pFrame==0 ){
4941     if( pC->isEphemeral==0
4942         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4943         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4944       ){
4945       nExtraDelete++;
4946     }
4947     if( pOp->p2 & OPFLAG_NCHANGE ){
4948       nExtraDelete--;
4949     }
4950   }
4951 #endif
4952 
4953   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4954   pC->cacheStatus = CACHE_STALE;
4955   pC->seekResult = 0;
4956   if( rc ) goto abort_due_to_error;
4957 
4958   /* Invoke the update-hook if required. */
4959   if( opflags & OPFLAG_NCHANGE ){
4960     p->nChange++;
4961     if( db->xUpdateCallback && HasRowid(pTab) ){
4962       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4963           pC->movetoTarget);
4964       assert( pC->iDb>=0 );
4965     }
4966   }
4967 
4968   break;
4969 }
4970 /* Opcode: ResetCount * * * * *
4971 **
4972 ** The value of the change counter is copied to the database handle
4973 ** change counter (returned by subsequent calls to sqlite3_changes()).
4974 ** Then the VMs internal change counter resets to 0.
4975 ** This is used by trigger programs.
4976 */
4977 case OP_ResetCount: {
4978   sqlite3VdbeSetChanges(db, p->nChange);
4979   p->nChange = 0;
4980   break;
4981 }
4982 
4983 /* Opcode: SorterCompare P1 P2 P3 P4
4984 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4985 **
4986 ** P1 is a sorter cursor. This instruction compares a prefix of the
4987 ** record blob in register P3 against a prefix of the entry that
4988 ** the sorter cursor currently points to.  Only the first P4 fields
4989 ** of r[P3] and the sorter record are compared.
4990 **
4991 ** If either P3 or the sorter contains a NULL in one of their significant
4992 ** fields (not counting the P4 fields at the end which are ignored) then
4993 ** the comparison is assumed to be equal.
4994 **
4995 ** Fall through to next instruction if the two records compare equal to
4996 ** each other.  Jump to P2 if they are different.
4997 */
4998 case OP_SorterCompare: {
4999   VdbeCursor *pC;
5000   int res;
5001   int nKeyCol;
5002 
5003   pC = p->apCsr[pOp->p1];
5004   assert( isSorter(pC) );
5005   assert( pOp->p4type==P4_INT32 );
5006   pIn3 = &aMem[pOp->p3];
5007   nKeyCol = pOp->p4.i;
5008   res = 0;
5009   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5010   VdbeBranchTaken(res!=0,2);
5011   if( rc ) goto abort_due_to_error;
5012   if( res ) goto jump_to_p2;
5013   break;
5014 };
5015 
5016 /* Opcode: SorterData P1 P2 P3 * *
5017 ** Synopsis: r[P2]=data
5018 **
5019 ** Write into register P2 the current sorter data for sorter cursor P1.
5020 ** Then clear the column header cache on cursor P3.
5021 **
5022 ** This opcode is normally use to move a record out of the sorter and into
5023 ** a register that is the source for a pseudo-table cursor created using
5024 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5025 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5026 ** us from having to issue a separate NullRow instruction to clear that cache.
5027 */
5028 case OP_SorterData: {
5029   VdbeCursor *pC;
5030 
5031   pOut = &aMem[pOp->p2];
5032   pC = p->apCsr[pOp->p1];
5033   assert( isSorter(pC) );
5034   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5035   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5036   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5037   if( rc ) goto abort_due_to_error;
5038   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5039   break;
5040 }
5041 
5042 /* Opcode: RowData P1 P2 P3 * *
5043 ** Synopsis: r[P2]=data
5044 **
5045 ** Write into register P2 the complete row content for the row at
5046 ** which cursor P1 is currently pointing.
5047 ** There is no interpretation of the data.
5048 ** It is just copied onto the P2 register exactly as
5049 ** it is found in the database file.
5050 **
5051 ** If cursor P1 is an index, then the content is the key of the row.
5052 ** If cursor P2 is a table, then the content extracted is the data.
5053 **
5054 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5055 ** of a real table, not a pseudo-table.
5056 **
5057 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5058 ** into the database page.  That means that the content of the output
5059 ** register will be invalidated as soon as the cursor moves - including
5060 ** moves caused by other cursors that "save" the current cursors
5061 ** position in order that they can write to the same table.  If P3==0
5062 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5063 ** P3==0 is safer.
5064 **
5065 ** If P3!=0 then the content of the P2 register is unsuitable for use
5066 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5067 ** The P2 register content is invalidated by opcodes like OP_Function or
5068 ** by any use of another cursor pointing to the same table.
5069 */
5070 case OP_RowData: {
5071   VdbeCursor *pC;
5072   BtCursor *pCrsr;
5073   u32 n;
5074 
5075   pOut = out2Prerelease(p, pOp);
5076 
5077   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5078   pC = p->apCsr[pOp->p1];
5079   assert( pC!=0 );
5080   assert( pC->eCurType==CURTYPE_BTREE );
5081   assert( isSorter(pC)==0 );
5082   assert( pC->nullRow==0 );
5083   assert( pC->uc.pCursor!=0 );
5084   pCrsr = pC->uc.pCursor;
5085 
5086   /* The OP_RowData opcodes always follow OP_NotExists or
5087   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5088   ** that might invalidate the cursor.
5089   ** If this where not the case, on of the following assert()s
5090   ** would fail.  Should this ever change (because of changes in the code
5091   ** generator) then the fix would be to insert a call to
5092   ** sqlite3VdbeCursorMoveto().
5093   */
5094   assert( pC->deferredMoveto==0 );
5095   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5096 #if 0  /* Not required due to the previous to assert() statements */
5097   rc = sqlite3VdbeCursorMoveto(pC);
5098   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5099 #endif
5100 
5101   n = sqlite3BtreePayloadSize(pCrsr);
5102   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5103     goto too_big;
5104   }
5105   testcase( n==0 );
5106   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
5107   if( rc ) goto abort_due_to_error;
5108   if( !pOp->p3 ) Deephemeralize(pOut);
5109   UPDATE_MAX_BLOBSIZE(pOut);
5110   REGISTER_TRACE(pOp->p2, pOut);
5111   break;
5112 }
5113 
5114 /* Opcode: Rowid P1 P2 * * *
5115 ** Synopsis: r[P2]=rowid
5116 **
5117 ** Store in register P2 an integer which is the key of the table entry that
5118 ** P1 is currently point to.
5119 **
5120 ** P1 can be either an ordinary table or a virtual table.  There used to
5121 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5122 ** one opcode now works for both table types.
5123 */
5124 case OP_Rowid: {                 /* out2 */
5125   VdbeCursor *pC;
5126   i64 v;
5127   sqlite3_vtab *pVtab;
5128   const sqlite3_module *pModule;
5129 
5130   pOut = out2Prerelease(p, pOp);
5131   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5132   pC = p->apCsr[pOp->p1];
5133   assert( pC!=0 );
5134   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5135   if( pC->nullRow ){
5136     pOut->flags = MEM_Null;
5137     break;
5138   }else if( pC->deferredMoveto ){
5139     v = pC->movetoTarget;
5140 #ifndef SQLITE_OMIT_VIRTUALTABLE
5141   }else if( pC->eCurType==CURTYPE_VTAB ){
5142     assert( pC->uc.pVCur!=0 );
5143     pVtab = pC->uc.pVCur->pVtab;
5144     pModule = pVtab->pModule;
5145     assert( pModule->xRowid );
5146     rc = pModule->xRowid(pC->uc.pVCur, &v);
5147     sqlite3VtabImportErrmsg(p, pVtab);
5148     if( rc ) goto abort_due_to_error;
5149 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5150   }else{
5151     assert( pC->eCurType==CURTYPE_BTREE );
5152     assert( pC->uc.pCursor!=0 );
5153     rc = sqlite3VdbeCursorRestore(pC);
5154     if( rc ) goto abort_due_to_error;
5155     if( pC->nullRow ){
5156       pOut->flags = MEM_Null;
5157       break;
5158     }
5159     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5160   }
5161   pOut->u.i = v;
5162   break;
5163 }
5164 
5165 /* Opcode: NullRow P1 * * * *
5166 **
5167 ** Move the cursor P1 to a null row.  Any OP_Column operations
5168 ** that occur while the cursor is on the null row will always
5169 ** write a NULL.
5170 */
5171 case OP_NullRow: {
5172   VdbeCursor *pC;
5173 
5174   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5175   pC = p->apCsr[pOp->p1];
5176   assert( pC!=0 );
5177   pC->nullRow = 1;
5178   pC->cacheStatus = CACHE_STALE;
5179   if( pC->eCurType==CURTYPE_BTREE ){
5180     assert( pC->uc.pCursor!=0 );
5181     sqlite3BtreeClearCursor(pC->uc.pCursor);
5182   }
5183 #ifdef SQLITE_DEBUG
5184   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5185 #endif
5186   break;
5187 }
5188 
5189 /* Opcode: SeekEnd P1 * * * *
5190 **
5191 ** Position cursor P1 at the end of the btree for the purpose of
5192 ** appending a new entry onto the btree.
5193 **
5194 ** It is assumed that the cursor is used only for appending and so
5195 ** if the cursor is valid, then the cursor must already be pointing
5196 ** at the end of the btree and so no changes are made to
5197 ** the cursor.
5198 */
5199 /* Opcode: Last P1 P2 * * *
5200 **
5201 ** The next use of the Rowid or Column or Prev instruction for P1
5202 ** will refer to the last entry in the database table or index.
5203 ** If the table or index is empty and P2>0, then jump immediately to P2.
5204 ** If P2 is 0 or if the table or index is not empty, fall through
5205 ** to the following instruction.
5206 **
5207 ** This opcode leaves the cursor configured to move in reverse order,
5208 ** from the end toward the beginning.  In other words, the cursor is
5209 ** configured to use Prev, not Next.
5210 */
5211 case OP_SeekEnd:
5212 case OP_Last: {        /* jump */
5213   VdbeCursor *pC;
5214   BtCursor *pCrsr;
5215   int res;
5216 
5217   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5218   pC = p->apCsr[pOp->p1];
5219   assert( pC!=0 );
5220   assert( pC->eCurType==CURTYPE_BTREE );
5221   pCrsr = pC->uc.pCursor;
5222   res = 0;
5223   assert( pCrsr!=0 );
5224 #ifdef SQLITE_DEBUG
5225   pC->seekOp = pOp->opcode;
5226 #endif
5227   if( pOp->opcode==OP_SeekEnd ){
5228     assert( pOp->p2==0 );
5229     pC->seekResult = -1;
5230     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5231       break;
5232     }
5233   }
5234   rc = sqlite3BtreeLast(pCrsr, &res);
5235   pC->nullRow = (u8)res;
5236   pC->deferredMoveto = 0;
5237   pC->cacheStatus = CACHE_STALE;
5238   if( rc ) goto abort_due_to_error;
5239   if( pOp->p2>0 ){
5240     VdbeBranchTaken(res!=0,2);
5241     if( res ) goto jump_to_p2;
5242   }
5243   break;
5244 }
5245 
5246 /* Opcode: IfSmaller P1 P2 P3 * *
5247 **
5248 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5249 ** estimate is less than approximately 2**(0.1*P3).
5250 */
5251 case OP_IfSmaller: {        /* jump */
5252   VdbeCursor *pC;
5253   BtCursor *pCrsr;
5254   int res;
5255   i64 sz;
5256 
5257   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5258   pC = p->apCsr[pOp->p1];
5259   assert( pC!=0 );
5260   pCrsr = pC->uc.pCursor;
5261   assert( pCrsr );
5262   rc = sqlite3BtreeFirst(pCrsr, &res);
5263   if( rc ) goto abort_due_to_error;
5264   if( res==0 ){
5265     sz = sqlite3BtreeRowCountEst(pCrsr);
5266     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5267   }
5268   VdbeBranchTaken(res!=0,2);
5269   if( res ) goto jump_to_p2;
5270   break;
5271 }
5272 
5273 
5274 /* Opcode: SorterSort P1 P2 * * *
5275 **
5276 ** After all records have been inserted into the Sorter object
5277 ** identified by P1, invoke this opcode to actually do the sorting.
5278 ** Jump to P2 if there are no records to be sorted.
5279 **
5280 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5281 ** for Sorter objects.
5282 */
5283 /* Opcode: Sort P1 P2 * * *
5284 **
5285 ** This opcode does exactly the same thing as OP_Rewind except that
5286 ** it increments an undocumented global variable used for testing.
5287 **
5288 ** Sorting is accomplished by writing records into a sorting index,
5289 ** then rewinding that index and playing it back from beginning to
5290 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5291 ** rewinding so that the global variable will be incremented and
5292 ** regression tests can determine whether or not the optimizer is
5293 ** correctly optimizing out sorts.
5294 */
5295 case OP_SorterSort:    /* jump */
5296 case OP_Sort: {        /* jump */
5297 #ifdef SQLITE_TEST
5298   sqlite3_sort_count++;
5299   sqlite3_search_count--;
5300 #endif
5301   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5302   /* Fall through into OP_Rewind */
5303 }
5304 /* Opcode: Rewind P1 P2 * * *
5305 **
5306 ** The next use of the Rowid or Column or Next instruction for P1
5307 ** will refer to the first entry in the database table or index.
5308 ** If the table or index is empty, jump immediately to P2.
5309 ** If the table or index is not empty, fall through to the following
5310 ** instruction.
5311 **
5312 ** This opcode leaves the cursor configured to move in forward order,
5313 ** from the beginning toward the end.  In other words, the cursor is
5314 ** configured to use Next, not Prev.
5315 */
5316 case OP_Rewind: {        /* jump */
5317   VdbeCursor *pC;
5318   BtCursor *pCrsr;
5319   int res;
5320 
5321   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5322   assert( pOp->p5==0 );
5323   pC = p->apCsr[pOp->p1];
5324   assert( pC!=0 );
5325   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5326   res = 1;
5327 #ifdef SQLITE_DEBUG
5328   pC->seekOp = OP_Rewind;
5329 #endif
5330   if( isSorter(pC) ){
5331     rc = sqlite3VdbeSorterRewind(pC, &res);
5332   }else{
5333     assert( pC->eCurType==CURTYPE_BTREE );
5334     pCrsr = pC->uc.pCursor;
5335     assert( pCrsr );
5336     rc = sqlite3BtreeFirst(pCrsr, &res);
5337     pC->deferredMoveto = 0;
5338     pC->cacheStatus = CACHE_STALE;
5339   }
5340   if( rc ) goto abort_due_to_error;
5341   pC->nullRow = (u8)res;
5342   assert( pOp->p2>0 && pOp->p2<p->nOp );
5343   VdbeBranchTaken(res!=0,2);
5344   if( res ) goto jump_to_p2;
5345   break;
5346 }
5347 
5348 /* Opcode: Next P1 P2 P3 P4 P5
5349 **
5350 ** Advance cursor P1 so that it points to the next key/data pair in its
5351 ** table or index.  If there are no more key/value pairs then fall through
5352 ** to the following instruction.  But if the cursor advance was successful,
5353 ** jump immediately to P2.
5354 **
5355 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5356 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5357 ** to follow SeekLT, SeekLE, or OP_Last.
5358 **
5359 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5360 ** been opened prior to this opcode or the program will segfault.
5361 **
5362 ** The P3 value is a hint to the btree implementation. If P3==1, that
5363 ** means P1 is an SQL index and that this instruction could have been
5364 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5365 ** always either 0 or 1.
5366 **
5367 ** P4 is always of type P4_ADVANCE. The function pointer points to
5368 ** sqlite3BtreeNext().
5369 **
5370 ** If P5 is positive and the jump is taken, then event counter
5371 ** number P5-1 in the prepared statement is incremented.
5372 **
5373 ** See also: Prev
5374 */
5375 /* Opcode: Prev P1 P2 P3 P4 P5
5376 **
5377 ** Back up cursor P1 so that it points to the previous key/data pair in its
5378 ** table or index.  If there is no previous key/value pairs then fall through
5379 ** to the following instruction.  But if the cursor backup was successful,
5380 ** jump immediately to P2.
5381 **
5382 **
5383 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5384 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5385 ** to follow SeekGT, SeekGE, or OP_Rewind.
5386 **
5387 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5388 ** not open then the behavior is undefined.
5389 **
5390 ** The P3 value is a hint to the btree implementation. If P3==1, that
5391 ** means P1 is an SQL index and that this instruction could have been
5392 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5393 ** always either 0 or 1.
5394 **
5395 ** P4 is always of type P4_ADVANCE. The function pointer points to
5396 ** sqlite3BtreePrevious().
5397 **
5398 ** If P5 is positive and the jump is taken, then event counter
5399 ** number P5-1 in the prepared statement is incremented.
5400 */
5401 /* Opcode: SorterNext P1 P2 * * P5
5402 **
5403 ** This opcode works just like OP_Next except that P1 must be a
5404 ** sorter object for which the OP_SorterSort opcode has been
5405 ** invoked.  This opcode advances the cursor to the next sorted
5406 ** record, or jumps to P2 if there are no more sorted records.
5407 */
5408 case OP_SorterNext: {  /* jump */
5409   VdbeCursor *pC;
5410 
5411   pC = p->apCsr[pOp->p1];
5412   assert( isSorter(pC) );
5413   rc = sqlite3VdbeSorterNext(db, pC);
5414   goto next_tail;
5415 case OP_Prev:          /* jump */
5416 case OP_Next:          /* jump */
5417   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5418   assert( pOp->p5<ArraySize(p->aCounter) );
5419   pC = p->apCsr[pOp->p1];
5420   assert( pC!=0 );
5421   assert( pC->deferredMoveto==0 );
5422   assert( pC->eCurType==CURTYPE_BTREE );
5423   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5424   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5425 
5426   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5427   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5428   assert( pOp->opcode!=OP_Next
5429        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5430        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5431        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid);
5432   assert( pOp->opcode!=OP_Prev
5433        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5434        || pC->seekOp==OP_Last
5435        || pC->seekOp==OP_NullRow);
5436 
5437   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5438 next_tail:
5439   pC->cacheStatus = CACHE_STALE;
5440   VdbeBranchTaken(rc==SQLITE_OK,2);
5441   if( rc==SQLITE_OK ){
5442     pC->nullRow = 0;
5443     p->aCounter[pOp->p5]++;
5444 #ifdef SQLITE_TEST
5445     sqlite3_search_count++;
5446 #endif
5447     goto jump_to_p2_and_check_for_interrupt;
5448   }
5449   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5450   rc = SQLITE_OK;
5451   pC->nullRow = 1;
5452   goto check_for_interrupt;
5453 }
5454 
5455 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5456 ** Synopsis: key=r[P2]
5457 **
5458 ** Register P2 holds an SQL index key made using the
5459 ** MakeRecord instructions.  This opcode writes that key
5460 ** into the index P1.  Data for the entry is nil.
5461 **
5462 ** If P4 is not zero, then it is the number of values in the unpacked
5463 ** key of reg(P2).  In that case, P3 is the index of the first register
5464 ** for the unpacked key.  The availability of the unpacked key can sometimes
5465 ** be an optimization.
5466 **
5467 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5468 ** that this insert is likely to be an append.
5469 **
5470 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5471 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5472 ** then the change counter is unchanged.
5473 **
5474 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5475 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5476 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5477 ** seeks on the cursor or if the most recent seek used a key equivalent
5478 ** to P2.
5479 **
5480 ** This instruction only works for indices.  The equivalent instruction
5481 ** for tables is OP_Insert.
5482 */
5483 /* Opcode: SorterInsert P1 P2 * * *
5484 ** Synopsis: key=r[P2]
5485 **
5486 ** Register P2 holds an SQL index key made using the
5487 ** MakeRecord instructions.  This opcode writes that key
5488 ** into the sorter P1.  Data for the entry is nil.
5489 */
5490 case OP_SorterInsert:       /* in2 */
5491 case OP_IdxInsert: {        /* in2 */
5492   VdbeCursor *pC;
5493   BtreePayload x;
5494 
5495   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5496   pC = p->apCsr[pOp->p1];
5497   sqlite3VdbeIncrWriteCounter(p, pC);
5498   assert( pC!=0 );
5499   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5500   pIn2 = &aMem[pOp->p2];
5501   assert( pIn2->flags & MEM_Blob );
5502   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5503   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5504   assert( pC->isTable==0 );
5505   rc = ExpandBlob(pIn2);
5506   if( rc ) goto abort_due_to_error;
5507   if( pOp->opcode==OP_SorterInsert ){
5508     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5509   }else{
5510     x.nKey = pIn2->n;
5511     x.pKey = pIn2->z;
5512     x.aMem = aMem + pOp->p3;
5513     x.nMem = (u16)pOp->p4.i;
5514     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5515          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5516         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5517         );
5518     assert( pC->deferredMoveto==0 );
5519     pC->cacheStatus = CACHE_STALE;
5520   }
5521   if( rc) goto abort_due_to_error;
5522   break;
5523 }
5524 
5525 /* Opcode: IdxDelete P1 P2 P3 * *
5526 ** Synopsis: key=r[P2@P3]
5527 **
5528 ** The content of P3 registers starting at register P2 form
5529 ** an unpacked index key. This opcode removes that entry from the
5530 ** index opened by cursor P1.
5531 */
5532 case OP_IdxDelete: {
5533   VdbeCursor *pC;
5534   BtCursor *pCrsr;
5535   int res;
5536   UnpackedRecord r;
5537 
5538   assert( pOp->p3>0 );
5539   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5540   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5541   pC = p->apCsr[pOp->p1];
5542   assert( pC!=0 );
5543   assert( pC->eCurType==CURTYPE_BTREE );
5544   sqlite3VdbeIncrWriteCounter(p, pC);
5545   pCrsr = pC->uc.pCursor;
5546   assert( pCrsr!=0 );
5547   assert( pOp->p5==0 );
5548   r.pKeyInfo = pC->pKeyInfo;
5549   r.nField = (u16)pOp->p3;
5550   r.default_rc = 0;
5551   r.aMem = &aMem[pOp->p2];
5552   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5553   if( rc ) goto abort_due_to_error;
5554   if( res==0 ){
5555     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5556     if( rc ) goto abort_due_to_error;
5557   }
5558   assert( pC->deferredMoveto==0 );
5559   pC->cacheStatus = CACHE_STALE;
5560   pC->seekResult = 0;
5561   break;
5562 }
5563 
5564 /* Opcode: DeferredSeek P1 * P3 P4 *
5565 ** Synopsis: Move P3 to P1.rowid if needed
5566 **
5567 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5568 ** table.  This opcode does a deferred seek of the P3 table cursor
5569 ** to the row that corresponds to the current row of P1.
5570 **
5571 ** This is a deferred seek.  Nothing actually happens until
5572 ** the cursor is used to read a record.  That way, if no reads
5573 ** occur, no unnecessary I/O happens.
5574 **
5575 ** P4 may be an array of integers (type P4_INTARRAY) containing
5576 ** one entry for each column in the P3 table.  If array entry a(i)
5577 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5578 ** equivalent to performing the deferred seek and then reading column i
5579 ** from P1.  This information is stored in P3 and used to redirect
5580 ** reads against P3 over to P1, thus possibly avoiding the need to
5581 ** seek and read cursor P3.
5582 */
5583 /* Opcode: IdxRowid P1 P2 * * *
5584 ** Synopsis: r[P2]=rowid
5585 **
5586 ** Write into register P2 an integer which is the last entry in the record at
5587 ** the end of the index key pointed to by cursor P1.  This integer should be
5588 ** the rowid of the table entry to which this index entry points.
5589 **
5590 ** See also: Rowid, MakeRecord.
5591 */
5592 case OP_DeferredSeek:
5593 case OP_IdxRowid: {           /* out2 */
5594   VdbeCursor *pC;             /* The P1 index cursor */
5595   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5596   i64 rowid;                  /* Rowid that P1 current points to */
5597 
5598   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5599   pC = p->apCsr[pOp->p1];
5600   assert( pC!=0 );
5601   assert( pC->eCurType==CURTYPE_BTREE );
5602   assert( pC->uc.pCursor!=0 );
5603   assert( pC->isTable==0 );
5604   assert( pC->deferredMoveto==0 );
5605   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5606 
5607   /* The IdxRowid and Seek opcodes are combined because of the commonality
5608   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5609   rc = sqlite3VdbeCursorRestore(pC);
5610 
5611   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5612   ** out from under the cursor.  That will never happens for an IdxRowid
5613   ** or Seek opcode */
5614   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5615 
5616   if( !pC->nullRow ){
5617     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5618     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5619     if( rc!=SQLITE_OK ){
5620       goto abort_due_to_error;
5621     }
5622     if( pOp->opcode==OP_DeferredSeek ){
5623       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5624       pTabCur = p->apCsr[pOp->p3];
5625       assert( pTabCur!=0 );
5626       assert( pTabCur->eCurType==CURTYPE_BTREE );
5627       assert( pTabCur->uc.pCursor!=0 );
5628       assert( pTabCur->isTable );
5629       pTabCur->nullRow = 0;
5630       pTabCur->movetoTarget = rowid;
5631       pTabCur->deferredMoveto = 1;
5632       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5633       pTabCur->aAltMap = pOp->p4.ai;
5634       pTabCur->pAltCursor = pC;
5635     }else{
5636       pOut = out2Prerelease(p, pOp);
5637       pOut->u.i = rowid;
5638     }
5639   }else{
5640     assert( pOp->opcode==OP_IdxRowid );
5641     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5642   }
5643   break;
5644 }
5645 
5646 /* Opcode: IdxGE P1 P2 P3 P4 P5
5647 ** Synopsis: key=r[P3@P4]
5648 **
5649 ** The P4 register values beginning with P3 form an unpacked index
5650 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5651 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5652 ** fields at the end.
5653 **
5654 ** If the P1 index entry is greater than or equal to the key value
5655 ** then jump to P2.  Otherwise fall through to the next instruction.
5656 */
5657 /* Opcode: IdxGT P1 P2 P3 P4 P5
5658 ** Synopsis: key=r[P3@P4]
5659 **
5660 ** The P4 register values beginning with P3 form an unpacked index
5661 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5662 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5663 ** fields at the end.
5664 **
5665 ** If the P1 index entry is greater than the key value
5666 ** then jump to P2.  Otherwise fall through to the next instruction.
5667 */
5668 /* Opcode: IdxLT P1 P2 P3 P4 P5
5669 ** Synopsis: key=r[P3@P4]
5670 **
5671 ** The P4 register values beginning with P3 form an unpacked index
5672 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5673 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5674 ** ROWID on the P1 index.
5675 **
5676 ** If the P1 index entry is less than the key value then jump to P2.
5677 ** Otherwise fall through to the next instruction.
5678 */
5679 /* Opcode: IdxLE P1 P2 P3 P4 P5
5680 ** Synopsis: key=r[P3@P4]
5681 **
5682 ** The P4 register values beginning with P3 form an unpacked index
5683 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5684 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5685 ** ROWID on the P1 index.
5686 **
5687 ** If the P1 index entry is less than or equal to the key value then jump
5688 ** to P2. Otherwise fall through to the next instruction.
5689 */
5690 case OP_IdxLE:          /* jump */
5691 case OP_IdxGT:          /* jump */
5692 case OP_IdxLT:          /* jump */
5693 case OP_IdxGE:  {       /* jump */
5694   VdbeCursor *pC;
5695   int res;
5696   UnpackedRecord r;
5697 
5698   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5699   pC = p->apCsr[pOp->p1];
5700   assert( pC!=0 );
5701   assert( pC->isOrdered );
5702   assert( pC->eCurType==CURTYPE_BTREE );
5703   assert( pC->uc.pCursor!=0);
5704   assert( pC->deferredMoveto==0 );
5705   assert( pOp->p5==0 || pOp->p5==1 );
5706   assert( pOp->p4type==P4_INT32 );
5707   r.pKeyInfo = pC->pKeyInfo;
5708   r.nField = (u16)pOp->p4.i;
5709   if( pOp->opcode<OP_IdxLT ){
5710     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5711     r.default_rc = -1;
5712   }else{
5713     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5714     r.default_rc = 0;
5715   }
5716   r.aMem = &aMem[pOp->p3];
5717 #ifdef SQLITE_DEBUG
5718   {
5719     int i;
5720     for(i=0; i<r.nField; i++){
5721       assert( memIsValid(&r.aMem[i]) );
5722       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5723     }
5724   }
5725 #endif
5726   res = 0;  /* Not needed.  Only used to silence a warning. */
5727   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5728   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5729   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5730     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5731     res = -res;
5732   }else{
5733     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5734     res++;
5735   }
5736   VdbeBranchTaken(res>0,2);
5737   if( rc ) goto abort_due_to_error;
5738   if( res>0 ) goto jump_to_p2;
5739   break;
5740 }
5741 
5742 /* Opcode: Destroy P1 P2 P3 * *
5743 **
5744 ** Delete an entire database table or index whose root page in the database
5745 ** file is given by P1.
5746 **
5747 ** The table being destroyed is in the main database file if P3==0.  If
5748 ** P3==1 then the table to be clear is in the auxiliary database file
5749 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5750 **
5751 ** If AUTOVACUUM is enabled then it is possible that another root page
5752 ** might be moved into the newly deleted root page in order to keep all
5753 ** root pages contiguous at the beginning of the database.  The former
5754 ** value of the root page that moved - its value before the move occurred -
5755 ** is stored in register P2. If no page movement was required (because the
5756 ** table being dropped was already the last one in the database) then a
5757 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5758 ** is stored in register P2.
5759 **
5760 ** This opcode throws an error if there are any active reader VMs when
5761 ** it is invoked. This is done to avoid the difficulty associated with
5762 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5763 ** database. This error is thrown even if the database is not an AUTOVACUUM
5764 ** db in order to avoid introducing an incompatibility between autovacuum
5765 ** and non-autovacuum modes.
5766 **
5767 ** See also: Clear
5768 */
5769 case OP_Destroy: {     /* out2 */
5770   int iMoved;
5771   int iDb;
5772 
5773   sqlite3VdbeIncrWriteCounter(p, 0);
5774   assert( p->readOnly==0 );
5775   assert( pOp->p1>1 );
5776   pOut = out2Prerelease(p, pOp);
5777   pOut->flags = MEM_Null;
5778   if( db->nVdbeRead > db->nVDestroy+1 ){
5779     rc = SQLITE_LOCKED;
5780     p->errorAction = OE_Abort;
5781     goto abort_due_to_error;
5782   }else{
5783     iDb = pOp->p3;
5784     assert( DbMaskTest(p->btreeMask, iDb) );
5785     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5786     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5787     pOut->flags = MEM_Int;
5788     pOut->u.i = iMoved;
5789     if( rc ) goto abort_due_to_error;
5790 #ifndef SQLITE_OMIT_AUTOVACUUM
5791     if( iMoved!=0 ){
5792       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5793       /* All OP_Destroy operations occur on the same btree */
5794       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5795       resetSchemaOnFault = iDb+1;
5796     }
5797 #endif
5798   }
5799   break;
5800 }
5801 
5802 /* Opcode: Clear P1 P2 P3
5803 **
5804 ** Delete all contents of the database table or index whose root page
5805 ** in the database file is given by P1.  But, unlike Destroy, do not
5806 ** remove the table or index from the database file.
5807 **
5808 ** The table being clear is in the main database file if P2==0.  If
5809 ** P2==1 then the table to be clear is in the auxiliary database file
5810 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5811 **
5812 ** If the P3 value is non-zero, then the table referred to must be an
5813 ** intkey table (an SQL table, not an index). In this case the row change
5814 ** count is incremented by the number of rows in the table being cleared.
5815 ** If P3 is greater than zero, then the value stored in register P3 is
5816 ** also incremented by the number of rows in the table being cleared.
5817 **
5818 ** See also: Destroy
5819 */
5820 case OP_Clear: {
5821   int nChange;
5822 
5823   sqlite3VdbeIncrWriteCounter(p, 0);
5824   nChange = 0;
5825   assert( p->readOnly==0 );
5826   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5827   rc = sqlite3BtreeClearTable(
5828       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5829   );
5830   if( pOp->p3 ){
5831     p->nChange += nChange;
5832     if( pOp->p3>0 ){
5833       assert( memIsValid(&aMem[pOp->p3]) );
5834       memAboutToChange(p, &aMem[pOp->p3]);
5835       aMem[pOp->p3].u.i += nChange;
5836     }
5837   }
5838   if( rc ) goto abort_due_to_error;
5839   break;
5840 }
5841 
5842 /* Opcode: ResetSorter P1 * * * *
5843 **
5844 ** Delete all contents from the ephemeral table or sorter
5845 ** that is open on cursor P1.
5846 **
5847 ** This opcode only works for cursors used for sorting and
5848 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5849 */
5850 case OP_ResetSorter: {
5851   VdbeCursor *pC;
5852 
5853   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5854   pC = p->apCsr[pOp->p1];
5855   assert( pC!=0 );
5856   if( isSorter(pC) ){
5857     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5858   }else{
5859     assert( pC->eCurType==CURTYPE_BTREE );
5860     assert( pC->isEphemeral );
5861     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5862     if( rc ) goto abort_due_to_error;
5863   }
5864   break;
5865 }
5866 
5867 /* Opcode: CreateBtree P1 P2 P3 * *
5868 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5869 **
5870 ** Allocate a new b-tree in the main database file if P1==0 or in the
5871 ** TEMP database file if P1==1 or in an attached database if
5872 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5873 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
5874 ** The root page number of the new b-tree is stored in register P2.
5875 */
5876 case OP_CreateBtree: {          /* out2 */
5877   int pgno;
5878   Db *pDb;
5879 
5880   sqlite3VdbeIncrWriteCounter(p, 0);
5881   pOut = out2Prerelease(p, pOp);
5882   pgno = 0;
5883   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
5884   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5885   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5886   assert( p->readOnly==0 );
5887   pDb = &db->aDb[pOp->p1];
5888   assert( pDb->pBt!=0 );
5889   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
5890   if( rc ) goto abort_due_to_error;
5891   pOut->u.i = pgno;
5892   break;
5893 }
5894 
5895 /* Opcode: SqlExec * * * P4 *
5896 **
5897 ** Run the SQL statement or statements specified in the P4 string.
5898 */
5899 case OP_SqlExec: {
5900   sqlite3VdbeIncrWriteCounter(p, 0);
5901   db->nSqlExec++;
5902   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
5903   db->nSqlExec--;
5904   if( rc ) goto abort_due_to_error;
5905   break;
5906 }
5907 
5908 /* Opcode: ParseSchema P1 * * P4 *
5909 **
5910 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5911 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
5912 ** entire schema for P1 is reparsed.
5913 **
5914 ** This opcode invokes the parser to create a new virtual machine,
5915 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5916 */
5917 case OP_ParseSchema: {
5918   int iDb;
5919   const char *zMaster;
5920   char *zSql;
5921   InitData initData;
5922 
5923   /* Any prepared statement that invokes this opcode will hold mutexes
5924   ** on every btree.  This is a prerequisite for invoking
5925   ** sqlite3InitCallback().
5926   */
5927 #ifdef SQLITE_DEBUG
5928   for(iDb=0; iDb<db->nDb; iDb++){
5929     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5930   }
5931 #endif
5932 
5933   iDb = pOp->p1;
5934   assert( iDb>=0 && iDb<db->nDb );
5935   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5936 
5937 #ifndef SQLITE_OMIT_ALTERTABLE
5938   if( pOp->p4.z==0 ){
5939     sqlite3SchemaClear(db->aDb[iDb].pSchema);
5940     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
5941     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
5942     db->mDbFlags |= DBFLAG_SchemaChange;
5943     p->expired = 0;
5944   }else
5945 #endif
5946   {
5947     zMaster = MASTER_NAME;
5948     initData.db = db;
5949     initData.iDb = iDb;
5950     initData.pzErrMsg = &p->zErrMsg;
5951     initData.mInitFlags = 0;
5952     zSql = sqlite3MPrintf(db,
5953        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5954        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5955     if( zSql==0 ){
5956       rc = SQLITE_NOMEM_BKPT;
5957     }else{
5958       assert( db->init.busy==0 );
5959       db->init.busy = 1;
5960       initData.rc = SQLITE_OK;
5961       initData.nInitRow = 0;
5962       assert( !db->mallocFailed );
5963       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5964       if( rc==SQLITE_OK ) rc = initData.rc;
5965       if( rc==SQLITE_OK && initData.nInitRow==0 ){
5966         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
5967         ** at least one SQL statement. Any less than that indicates that
5968         ** the sqlite_master table is corrupt. */
5969         rc = SQLITE_CORRUPT_BKPT;
5970       }
5971       sqlite3DbFreeNN(db, zSql);
5972       db->init.busy = 0;
5973     }
5974   }
5975   if( rc ){
5976     sqlite3ResetAllSchemasOfConnection(db);
5977     if( rc==SQLITE_NOMEM ){
5978       goto no_mem;
5979     }
5980     goto abort_due_to_error;
5981   }
5982   break;
5983 }
5984 
5985 #if !defined(SQLITE_OMIT_ANALYZE)
5986 /* Opcode: LoadAnalysis P1 * * * *
5987 **
5988 ** Read the sqlite_stat1 table for database P1 and load the content
5989 ** of that table into the internal index hash table.  This will cause
5990 ** the analysis to be used when preparing all subsequent queries.
5991 */
5992 case OP_LoadAnalysis: {
5993   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5994   rc = sqlite3AnalysisLoad(db, pOp->p1);
5995   if( rc ) goto abort_due_to_error;
5996   break;
5997 }
5998 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5999 
6000 /* Opcode: DropTable P1 * * P4 *
6001 **
6002 ** Remove the internal (in-memory) data structures that describe
6003 ** the table named P4 in database P1.  This is called after a table
6004 ** is dropped from disk (using the Destroy opcode) in order to keep
6005 ** the internal representation of the
6006 ** schema consistent with what is on disk.
6007 */
6008 case OP_DropTable: {
6009   sqlite3VdbeIncrWriteCounter(p, 0);
6010   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6011   break;
6012 }
6013 
6014 /* Opcode: DropIndex P1 * * P4 *
6015 **
6016 ** Remove the internal (in-memory) data structures that describe
6017 ** the index named P4 in database P1.  This is called after an index
6018 ** is dropped from disk (using the Destroy opcode)
6019 ** in order to keep the internal representation of the
6020 ** schema consistent with what is on disk.
6021 */
6022 case OP_DropIndex: {
6023   sqlite3VdbeIncrWriteCounter(p, 0);
6024   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6025   break;
6026 }
6027 
6028 /* Opcode: DropTrigger P1 * * P4 *
6029 **
6030 ** Remove the internal (in-memory) data structures that describe
6031 ** the trigger named P4 in database P1.  This is called after a trigger
6032 ** is dropped from disk (using the Destroy opcode) in order to keep
6033 ** the internal representation of the
6034 ** schema consistent with what is on disk.
6035 */
6036 case OP_DropTrigger: {
6037   sqlite3VdbeIncrWriteCounter(p, 0);
6038   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6039   break;
6040 }
6041 
6042 
6043 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6044 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6045 **
6046 ** Do an analysis of the currently open database.  Store in
6047 ** register P1 the text of an error message describing any problems.
6048 ** If no problems are found, store a NULL in register P1.
6049 **
6050 ** The register P3 contains one less than the maximum number of allowed errors.
6051 ** At most reg(P3) errors will be reported.
6052 ** In other words, the analysis stops as soon as reg(P1) errors are
6053 ** seen.  Reg(P1) is updated with the number of errors remaining.
6054 **
6055 ** The root page numbers of all tables in the database are integers
6056 ** stored in P4_INTARRAY argument.
6057 **
6058 ** If P5 is not zero, the check is done on the auxiliary database
6059 ** file, not the main database file.
6060 **
6061 ** This opcode is used to implement the integrity_check pragma.
6062 */
6063 case OP_IntegrityCk: {
6064   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6065   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
6066   int nErr;       /* Number of errors reported */
6067   char *z;        /* Text of the error report */
6068   Mem *pnErr;     /* Register keeping track of errors remaining */
6069 
6070   assert( p->bIsReader );
6071   nRoot = pOp->p2;
6072   aRoot = pOp->p4.ai;
6073   assert( nRoot>0 );
6074   assert( aRoot[0]==nRoot );
6075   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6076   pnErr = &aMem[pOp->p3];
6077   assert( (pnErr->flags & MEM_Int)!=0 );
6078   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6079   pIn1 = &aMem[pOp->p1];
6080   assert( pOp->p5<db->nDb );
6081   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6082   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6083                                  (int)pnErr->u.i+1, &nErr);
6084   sqlite3VdbeMemSetNull(pIn1);
6085   if( nErr==0 ){
6086     assert( z==0 );
6087   }else if( z==0 ){
6088     goto no_mem;
6089   }else{
6090     pnErr->u.i -= nErr-1;
6091     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6092   }
6093   UPDATE_MAX_BLOBSIZE(pIn1);
6094   sqlite3VdbeChangeEncoding(pIn1, encoding);
6095   break;
6096 }
6097 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6098 
6099 /* Opcode: RowSetAdd P1 P2 * * *
6100 ** Synopsis: rowset(P1)=r[P2]
6101 **
6102 ** Insert the integer value held by register P2 into a RowSet object
6103 ** held in register P1.
6104 **
6105 ** An assertion fails if P2 is not an integer.
6106 */
6107 case OP_RowSetAdd: {       /* in1, in2 */
6108   pIn1 = &aMem[pOp->p1];
6109   pIn2 = &aMem[pOp->p2];
6110   assert( (pIn2->flags & MEM_Int)!=0 );
6111   if( (pIn1->flags & MEM_Blob)==0 ){
6112     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6113   }
6114   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6115   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6116   break;
6117 }
6118 
6119 /* Opcode: RowSetRead P1 P2 P3 * *
6120 ** Synopsis: r[P3]=rowset(P1)
6121 **
6122 ** Extract the smallest value from the RowSet object in P1
6123 ** and put that value into register P3.
6124 ** Or, if RowSet object P1 is initially empty, leave P3
6125 ** unchanged and jump to instruction P2.
6126 */
6127 case OP_RowSetRead: {       /* jump, in1, out3 */
6128   i64 val;
6129 
6130   pIn1 = &aMem[pOp->p1];
6131   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6132   if( (pIn1->flags & MEM_Blob)==0
6133    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6134   ){
6135     /* The boolean index is empty */
6136     sqlite3VdbeMemSetNull(pIn1);
6137     VdbeBranchTaken(1,2);
6138     goto jump_to_p2_and_check_for_interrupt;
6139   }else{
6140     /* A value was pulled from the index */
6141     VdbeBranchTaken(0,2);
6142     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6143   }
6144   goto check_for_interrupt;
6145 }
6146 
6147 /* Opcode: RowSetTest P1 P2 P3 P4
6148 ** Synopsis: if r[P3] in rowset(P1) goto P2
6149 **
6150 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6151 ** contains a RowSet object and that RowSet object contains
6152 ** the value held in P3, jump to register P2. Otherwise, insert the
6153 ** integer in P3 into the RowSet and continue on to the
6154 ** next opcode.
6155 **
6156 ** The RowSet object is optimized for the case where sets of integers
6157 ** are inserted in distinct phases, which each set contains no duplicates.
6158 ** Each set is identified by a unique P4 value. The first set
6159 ** must have P4==0, the final set must have P4==-1, and for all other sets
6160 ** must have P4>0.
6161 **
6162 ** This allows optimizations: (a) when P4==0 there is no need to test
6163 ** the RowSet object for P3, as it is guaranteed not to contain it,
6164 ** (b) when P4==-1 there is no need to insert the value, as it will
6165 ** never be tested for, and (c) when a value that is part of set X is
6166 ** inserted, there is no need to search to see if the same value was
6167 ** previously inserted as part of set X (only if it was previously
6168 ** inserted as part of some other set).
6169 */
6170 case OP_RowSetTest: {                     /* jump, in1, in3 */
6171   int iSet;
6172   int exists;
6173 
6174   pIn1 = &aMem[pOp->p1];
6175   pIn3 = &aMem[pOp->p3];
6176   iSet = pOp->p4.i;
6177   assert( pIn3->flags&MEM_Int );
6178 
6179   /* If there is anything other than a rowset object in memory cell P1,
6180   ** delete it now and initialize P1 with an empty rowset
6181   */
6182   if( (pIn1->flags & MEM_Blob)==0 ){
6183     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6184   }
6185   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6186   assert( pOp->p4type==P4_INT32 );
6187   assert( iSet==-1 || iSet>=0 );
6188   if( iSet ){
6189     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6190     VdbeBranchTaken(exists!=0,2);
6191     if( exists ) goto jump_to_p2;
6192   }
6193   if( iSet>=0 ){
6194     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6195   }
6196   break;
6197 }
6198 
6199 
6200 #ifndef SQLITE_OMIT_TRIGGER
6201 
6202 /* Opcode: Program P1 P2 P3 P4 P5
6203 **
6204 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6205 **
6206 ** P1 contains the address of the memory cell that contains the first memory
6207 ** cell in an array of values used as arguments to the sub-program. P2
6208 ** contains the address to jump to if the sub-program throws an IGNORE
6209 ** exception using the RAISE() function. Register P3 contains the address
6210 ** of a memory cell in this (the parent) VM that is used to allocate the
6211 ** memory required by the sub-vdbe at runtime.
6212 **
6213 ** P4 is a pointer to the VM containing the trigger program.
6214 **
6215 ** If P5 is non-zero, then recursive program invocation is enabled.
6216 */
6217 case OP_Program: {        /* jump */
6218   int nMem;               /* Number of memory registers for sub-program */
6219   int nByte;              /* Bytes of runtime space required for sub-program */
6220   Mem *pRt;               /* Register to allocate runtime space */
6221   Mem *pMem;              /* Used to iterate through memory cells */
6222   Mem *pEnd;              /* Last memory cell in new array */
6223   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6224   SubProgram *pProgram;   /* Sub-program to execute */
6225   void *t;                /* Token identifying trigger */
6226 
6227   pProgram = pOp->p4.pProgram;
6228   pRt = &aMem[pOp->p3];
6229   assert( pProgram->nOp>0 );
6230 
6231   /* If the p5 flag is clear, then recursive invocation of triggers is
6232   ** disabled for backwards compatibility (p5 is set if this sub-program
6233   ** is really a trigger, not a foreign key action, and the flag set
6234   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6235   **
6236   ** It is recursive invocation of triggers, at the SQL level, that is
6237   ** disabled. In some cases a single trigger may generate more than one
6238   ** SubProgram (if the trigger may be executed with more than one different
6239   ** ON CONFLICT algorithm). SubProgram structures associated with a
6240   ** single trigger all have the same value for the SubProgram.token
6241   ** variable.  */
6242   if( pOp->p5 ){
6243     t = pProgram->token;
6244     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6245     if( pFrame ) break;
6246   }
6247 
6248   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6249     rc = SQLITE_ERROR;
6250     sqlite3VdbeError(p, "too many levels of trigger recursion");
6251     goto abort_due_to_error;
6252   }
6253 
6254   /* Register pRt is used to store the memory required to save the state
6255   ** of the current program, and the memory required at runtime to execute
6256   ** the trigger program. If this trigger has been fired before, then pRt
6257   ** is already allocated. Otherwise, it must be initialized.  */
6258   if( (pRt->flags&MEM_Blob)==0 ){
6259     /* SubProgram.nMem is set to the number of memory cells used by the
6260     ** program stored in SubProgram.aOp. As well as these, one memory
6261     ** cell is required for each cursor used by the program. Set local
6262     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6263     */
6264     nMem = pProgram->nMem + pProgram->nCsr;
6265     assert( nMem>0 );
6266     if( pProgram->nCsr==0 ) nMem++;
6267     nByte = ROUND8(sizeof(VdbeFrame))
6268               + nMem * sizeof(Mem)
6269               + pProgram->nCsr * sizeof(VdbeCursor*)
6270               + (pProgram->nOp + 7)/8;
6271     pFrame = sqlite3DbMallocZero(db, nByte);
6272     if( !pFrame ){
6273       goto no_mem;
6274     }
6275     sqlite3VdbeMemRelease(pRt);
6276     pRt->flags = MEM_Blob|MEM_Dyn;
6277     pRt->z = (char*)pFrame;
6278     pRt->n = nByte;
6279     pRt->xDel = sqlite3VdbeFrameMemDel;
6280 
6281     pFrame->v = p;
6282     pFrame->nChildMem = nMem;
6283     pFrame->nChildCsr = pProgram->nCsr;
6284     pFrame->pc = (int)(pOp - aOp);
6285     pFrame->aMem = p->aMem;
6286     pFrame->nMem = p->nMem;
6287     pFrame->apCsr = p->apCsr;
6288     pFrame->nCursor = p->nCursor;
6289     pFrame->aOp = p->aOp;
6290     pFrame->nOp = p->nOp;
6291     pFrame->token = pProgram->token;
6292 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6293     pFrame->anExec = p->anExec;
6294 #endif
6295 #ifdef SQLITE_DEBUG
6296     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6297 #endif
6298 
6299     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6300     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6301       pMem->flags = MEM_Undefined;
6302       pMem->db = db;
6303     }
6304   }else{
6305     pFrame = (VdbeFrame*)pRt->z;
6306     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6307     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6308         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6309     assert( pProgram->nCsr==pFrame->nChildCsr );
6310     assert( (int)(pOp - aOp)==pFrame->pc );
6311   }
6312 
6313   p->nFrame++;
6314   pFrame->pParent = p->pFrame;
6315   pFrame->lastRowid = db->lastRowid;
6316   pFrame->nChange = p->nChange;
6317   pFrame->nDbChange = p->db->nChange;
6318   assert( pFrame->pAuxData==0 );
6319   pFrame->pAuxData = p->pAuxData;
6320   p->pAuxData = 0;
6321   p->nChange = 0;
6322   p->pFrame = pFrame;
6323   p->aMem = aMem = VdbeFrameMem(pFrame);
6324   p->nMem = pFrame->nChildMem;
6325   p->nCursor = (u16)pFrame->nChildCsr;
6326   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6327   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6328   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6329   p->aOp = aOp = pProgram->aOp;
6330   p->nOp = pProgram->nOp;
6331 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6332   p->anExec = 0;
6333 #endif
6334 #ifdef SQLITE_DEBUG
6335   /* Verify that second and subsequent executions of the same trigger do not
6336   ** try to reuse register values from the first use. */
6337   {
6338     int i;
6339     for(i=0; i<p->nMem; i++){
6340       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6341       aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
6342     }
6343   }
6344 #endif
6345   pOp = &aOp[-1];
6346   goto check_for_interrupt;
6347 }
6348 
6349 /* Opcode: Param P1 P2 * * *
6350 **
6351 ** This opcode is only ever present in sub-programs called via the
6352 ** OP_Program instruction. Copy a value currently stored in a memory
6353 ** cell of the calling (parent) frame to cell P2 in the current frames
6354 ** address space. This is used by trigger programs to access the new.*
6355 ** and old.* values.
6356 **
6357 ** The address of the cell in the parent frame is determined by adding
6358 ** the value of the P1 argument to the value of the P1 argument to the
6359 ** calling OP_Program instruction.
6360 */
6361 case OP_Param: {           /* out2 */
6362   VdbeFrame *pFrame;
6363   Mem *pIn;
6364   pOut = out2Prerelease(p, pOp);
6365   pFrame = p->pFrame;
6366   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6367   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6368   break;
6369 }
6370 
6371 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6372 
6373 #ifndef SQLITE_OMIT_FOREIGN_KEY
6374 /* Opcode: FkCounter P1 P2 * * *
6375 ** Synopsis: fkctr[P1]+=P2
6376 **
6377 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6378 ** If P1 is non-zero, the database constraint counter is incremented
6379 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6380 ** statement counter is incremented (immediate foreign key constraints).
6381 */
6382 case OP_FkCounter: {
6383   if( db->flags & SQLITE_DeferFKs ){
6384     db->nDeferredImmCons += pOp->p2;
6385   }else if( pOp->p1 ){
6386     db->nDeferredCons += pOp->p2;
6387   }else{
6388     p->nFkConstraint += pOp->p2;
6389   }
6390   break;
6391 }
6392 
6393 /* Opcode: FkIfZero P1 P2 * * *
6394 ** Synopsis: if fkctr[P1]==0 goto P2
6395 **
6396 ** This opcode tests if a foreign key constraint-counter is currently zero.
6397 ** If so, jump to instruction P2. Otherwise, fall through to the next
6398 ** instruction.
6399 **
6400 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6401 ** is zero (the one that counts deferred constraint violations). If P1 is
6402 ** zero, the jump is taken if the statement constraint-counter is zero
6403 ** (immediate foreign key constraint violations).
6404 */
6405 case OP_FkIfZero: {         /* jump */
6406   if( pOp->p1 ){
6407     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6408     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6409   }else{
6410     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6411     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6412   }
6413   break;
6414 }
6415 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6416 
6417 #ifndef SQLITE_OMIT_AUTOINCREMENT
6418 /* Opcode: MemMax P1 P2 * * *
6419 ** Synopsis: r[P1]=max(r[P1],r[P2])
6420 **
6421 ** P1 is a register in the root frame of this VM (the root frame is
6422 ** different from the current frame if this instruction is being executed
6423 ** within a sub-program). Set the value of register P1 to the maximum of
6424 ** its current value and the value in register P2.
6425 **
6426 ** This instruction throws an error if the memory cell is not initially
6427 ** an integer.
6428 */
6429 case OP_MemMax: {        /* in2 */
6430   VdbeFrame *pFrame;
6431   if( p->pFrame ){
6432     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6433     pIn1 = &pFrame->aMem[pOp->p1];
6434   }else{
6435     pIn1 = &aMem[pOp->p1];
6436   }
6437   assert( memIsValid(pIn1) );
6438   sqlite3VdbeMemIntegerify(pIn1);
6439   pIn2 = &aMem[pOp->p2];
6440   sqlite3VdbeMemIntegerify(pIn2);
6441   if( pIn1->u.i<pIn2->u.i){
6442     pIn1->u.i = pIn2->u.i;
6443   }
6444   break;
6445 }
6446 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6447 
6448 /* Opcode: IfPos P1 P2 P3 * *
6449 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6450 **
6451 ** Register P1 must contain an integer.
6452 ** If the value of register P1 is 1 or greater, subtract P3 from the
6453 ** value in P1 and jump to P2.
6454 **
6455 ** If the initial value of register P1 is less than 1, then the
6456 ** value is unchanged and control passes through to the next instruction.
6457 */
6458 case OP_IfPos: {        /* jump, in1 */
6459   pIn1 = &aMem[pOp->p1];
6460   assert( pIn1->flags&MEM_Int );
6461   VdbeBranchTaken( pIn1->u.i>0, 2);
6462   if( pIn1->u.i>0 ){
6463     pIn1->u.i -= pOp->p3;
6464     goto jump_to_p2;
6465   }
6466   break;
6467 }
6468 
6469 /* Opcode: OffsetLimit P1 P2 P3 * *
6470 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6471 **
6472 ** This opcode performs a commonly used computation associated with
6473 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6474 ** holds the offset counter.  The opcode computes the combined value
6475 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6476 ** value computed is the total number of rows that will need to be
6477 ** visited in order to complete the query.
6478 **
6479 ** If r[P3] is zero or negative, that means there is no OFFSET
6480 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6481 **
6482 ** if r[P1] is zero or negative, that means there is no LIMIT
6483 ** and r[P2] is set to -1.
6484 **
6485 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6486 */
6487 case OP_OffsetLimit: {    /* in1, out2, in3 */
6488   i64 x;
6489   pIn1 = &aMem[pOp->p1];
6490   pIn3 = &aMem[pOp->p3];
6491   pOut = out2Prerelease(p, pOp);
6492   assert( pIn1->flags & MEM_Int );
6493   assert( pIn3->flags & MEM_Int );
6494   x = pIn1->u.i;
6495   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6496     /* If the LIMIT is less than or equal to zero, loop forever.  This
6497     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6498     ** also loop forever.  This is undocumented.  In fact, one could argue
6499     ** that the loop should terminate.  But assuming 1 billion iterations
6500     ** per second (far exceeding the capabilities of any current hardware)
6501     ** it would take nearly 300 years to actually reach the limit.  So
6502     ** looping forever is a reasonable approximation. */
6503     pOut->u.i = -1;
6504   }else{
6505     pOut->u.i = x;
6506   }
6507   break;
6508 }
6509 
6510 /* Opcode: IfNotZero P1 P2 * * *
6511 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6512 **
6513 ** Register P1 must contain an integer.  If the content of register P1 is
6514 ** initially greater than zero, then decrement the value in register P1.
6515 ** If it is non-zero (negative or positive) and then also jump to P2.
6516 ** If register P1 is initially zero, leave it unchanged and fall through.
6517 */
6518 case OP_IfNotZero: {        /* jump, in1 */
6519   pIn1 = &aMem[pOp->p1];
6520   assert( pIn1->flags&MEM_Int );
6521   VdbeBranchTaken(pIn1->u.i<0, 2);
6522   if( pIn1->u.i ){
6523      if( pIn1->u.i>0 ) pIn1->u.i--;
6524      goto jump_to_p2;
6525   }
6526   break;
6527 }
6528 
6529 /* Opcode: DecrJumpZero P1 P2 * * *
6530 ** Synopsis: if (--r[P1])==0 goto P2
6531 **
6532 ** Register P1 must hold an integer.  Decrement the value in P1
6533 ** and jump to P2 if the new value is exactly zero.
6534 */
6535 case OP_DecrJumpZero: {      /* jump, in1 */
6536   pIn1 = &aMem[pOp->p1];
6537   assert( pIn1->flags&MEM_Int );
6538   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6539   VdbeBranchTaken(pIn1->u.i==0, 2);
6540   if( pIn1->u.i==0 ) goto jump_to_p2;
6541   break;
6542 }
6543 
6544 
6545 /* Opcode: AggStep * P2 P3 P4 P5
6546 ** Synopsis: accum=r[P3] step(r[P2@P5])
6547 **
6548 ** Execute the xStep function for an aggregate.
6549 ** The function has P5 arguments.  P4 is a pointer to the
6550 ** FuncDef structure that specifies the function.  Register P3 is the
6551 ** accumulator.
6552 **
6553 ** The P5 arguments are taken from register P2 and its
6554 ** successors.
6555 */
6556 /* Opcode: AggInverse * P2 P3 P4 P5
6557 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6558 **
6559 ** Execute the xInverse function for an aggregate.
6560 ** The function has P5 arguments.  P4 is a pointer to the
6561 ** FuncDef structure that specifies the function.  Register P3 is the
6562 ** accumulator.
6563 **
6564 ** The P5 arguments are taken from register P2 and its
6565 ** successors.
6566 */
6567 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6568 ** Synopsis: accum=r[P3] step(r[P2@P5])
6569 **
6570 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6571 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6572 ** FuncDef structure that specifies the function.  Register P3 is the
6573 ** accumulator.
6574 **
6575 ** The P5 arguments are taken from register P2 and its
6576 ** successors.
6577 **
6578 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6579 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6580 ** the opcode is changed.  In this way, the initialization of the
6581 ** sqlite3_context only happens once, instead of on each call to the
6582 ** step function.
6583 */
6584 case OP_AggInverse:
6585 case OP_AggStep: {
6586   int n;
6587   sqlite3_context *pCtx;
6588 
6589   assert( pOp->p4type==P4_FUNCDEF );
6590   n = pOp->p5;
6591   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6592   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6593   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6594   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6595                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6596   if( pCtx==0 ) goto no_mem;
6597   pCtx->pMem = 0;
6598   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6599   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6600   pCtx->pFunc = pOp->p4.pFunc;
6601   pCtx->iOp = (int)(pOp - aOp);
6602   pCtx->pVdbe = p;
6603   pCtx->skipFlag = 0;
6604   pCtx->isError = 0;
6605   pCtx->argc = n;
6606   pOp->p4type = P4_FUNCCTX;
6607   pOp->p4.pCtx = pCtx;
6608 
6609   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6610   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6611 
6612   pOp->opcode = OP_AggStep1;
6613   /* Fall through into OP_AggStep */
6614 }
6615 case OP_AggStep1: {
6616   int i;
6617   sqlite3_context *pCtx;
6618   Mem *pMem;
6619 
6620   assert( pOp->p4type==P4_FUNCCTX );
6621   pCtx = pOp->p4.pCtx;
6622   pMem = &aMem[pOp->p3];
6623 
6624 #ifdef SQLITE_DEBUG
6625   if( pOp->p1 ){
6626     /* This is an OP_AggInverse call.  Verify that xStep has always
6627     ** been called at least once prior to any xInverse call. */
6628     assert( pMem->uTemp==0x1122e0e3 );
6629   }else{
6630     /* This is an OP_AggStep call.  Mark it as such. */
6631     pMem->uTemp = 0x1122e0e3;
6632   }
6633 #endif
6634 
6635   /* If this function is inside of a trigger, the register array in aMem[]
6636   ** might change from one evaluation to the next.  The next block of code
6637   ** checks to see if the register array has changed, and if so it
6638   ** reinitializes the relavant parts of the sqlite3_context object */
6639   if( pCtx->pMem != pMem ){
6640     pCtx->pMem = pMem;
6641     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6642   }
6643 
6644 #ifdef SQLITE_DEBUG
6645   for(i=0; i<pCtx->argc; i++){
6646     assert( memIsValid(pCtx->argv[i]) );
6647     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6648   }
6649 #endif
6650 
6651   pMem->n++;
6652   assert( pCtx->pOut->flags==MEM_Null );
6653   assert( pCtx->isError==0 );
6654   assert( pCtx->skipFlag==0 );
6655 #ifndef SQLITE_OMIT_WINDOWFUNC
6656   if( pOp->p1 ){
6657     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6658   }else
6659 #endif
6660   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6661 
6662   if( pCtx->isError ){
6663     if( pCtx->isError>0 ){
6664       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6665       rc = pCtx->isError;
6666     }
6667     if( pCtx->skipFlag ){
6668       assert( pOp[-1].opcode==OP_CollSeq );
6669       i = pOp[-1].p1;
6670       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6671       pCtx->skipFlag = 0;
6672     }
6673     sqlite3VdbeMemRelease(pCtx->pOut);
6674     pCtx->pOut->flags = MEM_Null;
6675     pCtx->isError = 0;
6676     if( rc ) goto abort_due_to_error;
6677   }
6678   assert( pCtx->pOut->flags==MEM_Null );
6679   assert( pCtx->skipFlag==0 );
6680   break;
6681 }
6682 
6683 /* Opcode: AggFinal P1 P2 * P4 *
6684 ** Synopsis: accum=r[P1] N=P2
6685 **
6686 ** P1 is the memory location that is the accumulator for an aggregate
6687 ** or window function.  Execute the finalizer function
6688 ** for an aggregate and store the result in P1.
6689 **
6690 ** P2 is the number of arguments that the step function takes and
6691 ** P4 is a pointer to the FuncDef for this function.  The P2
6692 ** argument is not used by this opcode.  It is only there to disambiguate
6693 ** functions that can take varying numbers of arguments.  The
6694 ** P4 argument is only needed for the case where
6695 ** the step function was not previously called.
6696 */
6697 /* Opcode: AggValue * P2 P3 P4 *
6698 ** Synopsis: r[P3]=value N=P2
6699 **
6700 ** Invoke the xValue() function and store the result in register P3.
6701 **
6702 ** P2 is the number of arguments that the step function takes and
6703 ** P4 is a pointer to the FuncDef for this function.  The P2
6704 ** argument is not used by this opcode.  It is only there to disambiguate
6705 ** functions that can take varying numbers of arguments.  The
6706 ** P4 argument is only needed for the case where
6707 ** the step function was not previously called.
6708 */
6709 case OP_AggValue:
6710 case OP_AggFinal: {
6711   Mem *pMem;
6712   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6713   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6714   pMem = &aMem[pOp->p1];
6715   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6716 #ifndef SQLITE_OMIT_WINDOWFUNC
6717   if( pOp->p3 ){
6718     memAboutToChange(p, &aMem[pOp->p3]);
6719     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6720     pMem = &aMem[pOp->p3];
6721   }else
6722 #endif
6723   {
6724     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6725   }
6726 
6727   if( rc ){
6728     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6729     goto abort_due_to_error;
6730   }
6731   sqlite3VdbeChangeEncoding(pMem, encoding);
6732   UPDATE_MAX_BLOBSIZE(pMem);
6733   if( sqlite3VdbeMemTooBig(pMem) ){
6734     goto too_big;
6735   }
6736   break;
6737 }
6738 
6739 #ifndef SQLITE_OMIT_WAL
6740 /* Opcode: Checkpoint P1 P2 P3 * *
6741 **
6742 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6743 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6744 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6745 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6746 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6747 ** in the WAL that have been checkpointed after the checkpoint
6748 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6749 ** mem[P3+2] are initialized to -1.
6750 */
6751 case OP_Checkpoint: {
6752   int i;                          /* Loop counter */
6753   int aRes[3];                    /* Results */
6754   Mem *pMem;                      /* Write results here */
6755 
6756   assert( p->readOnly==0 );
6757   aRes[0] = 0;
6758   aRes[1] = aRes[2] = -1;
6759   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6760        || pOp->p2==SQLITE_CHECKPOINT_FULL
6761        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6762        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6763   );
6764   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6765   if( rc ){
6766     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6767     rc = SQLITE_OK;
6768     aRes[0] = 1;
6769   }
6770   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6771     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6772   }
6773   break;
6774 };
6775 #endif
6776 
6777 #ifndef SQLITE_OMIT_PRAGMA
6778 /* Opcode: JournalMode P1 P2 P3 * *
6779 **
6780 ** Change the journal mode of database P1 to P3. P3 must be one of the
6781 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6782 ** modes (delete, truncate, persist, off and memory), this is a simple
6783 ** operation. No IO is required.
6784 **
6785 ** If changing into or out of WAL mode the procedure is more complicated.
6786 **
6787 ** Write a string containing the final journal-mode to register P2.
6788 */
6789 case OP_JournalMode: {    /* out2 */
6790   Btree *pBt;                     /* Btree to change journal mode of */
6791   Pager *pPager;                  /* Pager associated with pBt */
6792   int eNew;                       /* New journal mode */
6793   int eOld;                       /* The old journal mode */
6794 #ifndef SQLITE_OMIT_WAL
6795   const char *zFilename;          /* Name of database file for pPager */
6796 #endif
6797 
6798   pOut = out2Prerelease(p, pOp);
6799   eNew = pOp->p3;
6800   assert( eNew==PAGER_JOURNALMODE_DELETE
6801        || eNew==PAGER_JOURNALMODE_TRUNCATE
6802        || eNew==PAGER_JOURNALMODE_PERSIST
6803        || eNew==PAGER_JOURNALMODE_OFF
6804        || eNew==PAGER_JOURNALMODE_MEMORY
6805        || eNew==PAGER_JOURNALMODE_WAL
6806        || eNew==PAGER_JOURNALMODE_QUERY
6807   );
6808   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6809   assert( p->readOnly==0 );
6810 
6811   pBt = db->aDb[pOp->p1].pBt;
6812   pPager = sqlite3BtreePager(pBt);
6813   eOld = sqlite3PagerGetJournalMode(pPager);
6814   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6815   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6816 
6817 #ifndef SQLITE_OMIT_WAL
6818   zFilename = sqlite3PagerFilename(pPager, 1);
6819 
6820   /* Do not allow a transition to journal_mode=WAL for a database
6821   ** in temporary storage or if the VFS does not support shared memory
6822   */
6823   if( eNew==PAGER_JOURNALMODE_WAL
6824    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6825        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6826   ){
6827     eNew = eOld;
6828   }
6829 
6830   if( (eNew!=eOld)
6831    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6832   ){
6833     if( !db->autoCommit || db->nVdbeRead>1 ){
6834       rc = SQLITE_ERROR;
6835       sqlite3VdbeError(p,
6836           "cannot change %s wal mode from within a transaction",
6837           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6838       );
6839       goto abort_due_to_error;
6840     }else{
6841 
6842       if( eOld==PAGER_JOURNALMODE_WAL ){
6843         /* If leaving WAL mode, close the log file. If successful, the call
6844         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6845         ** file. An EXCLUSIVE lock may still be held on the database file
6846         ** after a successful return.
6847         */
6848         rc = sqlite3PagerCloseWal(pPager, db);
6849         if( rc==SQLITE_OK ){
6850           sqlite3PagerSetJournalMode(pPager, eNew);
6851         }
6852       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6853         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6854         ** as an intermediate */
6855         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6856       }
6857 
6858       /* Open a transaction on the database file. Regardless of the journal
6859       ** mode, this transaction always uses a rollback journal.
6860       */
6861       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6862       if( rc==SQLITE_OK ){
6863         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6864       }
6865     }
6866   }
6867 #endif /* ifndef SQLITE_OMIT_WAL */
6868 
6869   if( rc ) eNew = eOld;
6870   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6871 
6872   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6873   pOut->z = (char *)sqlite3JournalModename(eNew);
6874   pOut->n = sqlite3Strlen30(pOut->z);
6875   pOut->enc = SQLITE_UTF8;
6876   sqlite3VdbeChangeEncoding(pOut, encoding);
6877   if( rc ) goto abort_due_to_error;
6878   break;
6879 };
6880 #endif /* SQLITE_OMIT_PRAGMA */
6881 
6882 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6883 /* Opcode: Vacuum P1 P2 * * *
6884 **
6885 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6886 ** for an attached database.  The "temp" database may not be vacuumed.
6887 **
6888 ** If P2 is not zero, then it is a register holding a string which is
6889 ** the file into which the result of vacuum should be written.  When
6890 ** P2 is zero, the vacuum overwrites the original database.
6891 */
6892 case OP_Vacuum: {
6893   assert( p->readOnly==0 );
6894   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
6895                         pOp->p2 ? &aMem[pOp->p2] : 0);
6896   if( rc ) goto abort_due_to_error;
6897   break;
6898 }
6899 #endif
6900 
6901 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6902 /* Opcode: IncrVacuum P1 P2 * * *
6903 **
6904 ** Perform a single step of the incremental vacuum procedure on
6905 ** the P1 database. If the vacuum has finished, jump to instruction
6906 ** P2. Otherwise, fall through to the next instruction.
6907 */
6908 case OP_IncrVacuum: {        /* jump */
6909   Btree *pBt;
6910 
6911   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6912   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6913   assert( p->readOnly==0 );
6914   pBt = db->aDb[pOp->p1].pBt;
6915   rc = sqlite3BtreeIncrVacuum(pBt);
6916   VdbeBranchTaken(rc==SQLITE_DONE,2);
6917   if( rc ){
6918     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6919     rc = SQLITE_OK;
6920     goto jump_to_p2;
6921   }
6922   break;
6923 }
6924 #endif
6925 
6926 /* Opcode: Expire P1 P2 * * *
6927 **
6928 ** Cause precompiled statements to expire.  When an expired statement
6929 ** is executed using sqlite3_step() it will either automatically
6930 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6931 ** or it will fail with SQLITE_SCHEMA.
6932 **
6933 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6934 ** then only the currently executing statement is expired.
6935 **
6936 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
6937 ** then running SQL statements are allowed to continue to run to completion.
6938 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
6939 ** that might help the statement run faster but which does not affect the
6940 ** correctness of operation.
6941 */
6942 case OP_Expire: {
6943   assert( pOp->p2==0 || pOp->p2==1 );
6944   if( !pOp->p1 ){
6945     sqlite3ExpirePreparedStatements(db, pOp->p2);
6946   }else{
6947     p->expired = pOp->p2+1;
6948   }
6949   break;
6950 }
6951 
6952 #ifndef SQLITE_OMIT_SHARED_CACHE
6953 /* Opcode: TableLock P1 P2 P3 P4 *
6954 ** Synopsis: iDb=P1 root=P2 write=P3
6955 **
6956 ** Obtain a lock on a particular table. This instruction is only used when
6957 ** the shared-cache feature is enabled.
6958 **
6959 ** P1 is the index of the database in sqlite3.aDb[] of the database
6960 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6961 ** a write lock if P3==1.
6962 **
6963 ** P2 contains the root-page of the table to lock.
6964 **
6965 ** P4 contains a pointer to the name of the table being locked. This is only
6966 ** used to generate an error message if the lock cannot be obtained.
6967 */
6968 case OP_TableLock: {
6969   u8 isWriteLock = (u8)pOp->p3;
6970   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
6971     int p1 = pOp->p1;
6972     assert( p1>=0 && p1<db->nDb );
6973     assert( DbMaskTest(p->btreeMask, p1) );
6974     assert( isWriteLock==0 || isWriteLock==1 );
6975     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6976     if( rc ){
6977       if( (rc&0xFF)==SQLITE_LOCKED ){
6978         const char *z = pOp->p4.z;
6979         sqlite3VdbeError(p, "database table is locked: %s", z);
6980       }
6981       goto abort_due_to_error;
6982     }
6983   }
6984   break;
6985 }
6986 #endif /* SQLITE_OMIT_SHARED_CACHE */
6987 
6988 #ifndef SQLITE_OMIT_VIRTUALTABLE
6989 /* Opcode: VBegin * * * P4 *
6990 **
6991 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6992 ** xBegin method for that table.
6993 **
6994 ** Also, whether or not P4 is set, check that this is not being called from
6995 ** within a callback to a virtual table xSync() method. If it is, the error
6996 ** code will be set to SQLITE_LOCKED.
6997 */
6998 case OP_VBegin: {
6999   VTable *pVTab;
7000   pVTab = pOp->p4.pVtab;
7001   rc = sqlite3VtabBegin(db, pVTab);
7002   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7003   if( rc ) goto abort_due_to_error;
7004   break;
7005 }
7006 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7007 
7008 #ifndef SQLITE_OMIT_VIRTUALTABLE
7009 /* Opcode: VCreate P1 P2 * * *
7010 **
7011 ** P2 is a register that holds the name of a virtual table in database
7012 ** P1. Call the xCreate method for that table.
7013 */
7014 case OP_VCreate: {
7015   Mem sMem;          /* For storing the record being decoded */
7016   const char *zTab;  /* Name of the virtual table */
7017 
7018   memset(&sMem, 0, sizeof(sMem));
7019   sMem.db = db;
7020   /* Because P2 is always a static string, it is impossible for the
7021   ** sqlite3VdbeMemCopy() to fail */
7022   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7023   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7024   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7025   assert( rc==SQLITE_OK );
7026   zTab = (const char*)sqlite3_value_text(&sMem);
7027   assert( zTab || db->mallocFailed );
7028   if( zTab ){
7029     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7030   }
7031   sqlite3VdbeMemRelease(&sMem);
7032   if( rc ) goto abort_due_to_error;
7033   break;
7034 }
7035 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7036 
7037 #ifndef SQLITE_OMIT_VIRTUALTABLE
7038 /* Opcode: VDestroy P1 * * P4 *
7039 **
7040 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7041 ** of that table.
7042 */
7043 case OP_VDestroy: {
7044   db->nVDestroy++;
7045   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7046   db->nVDestroy--;
7047   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7048   if( rc ) goto abort_due_to_error;
7049   break;
7050 }
7051 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7052 
7053 #ifndef SQLITE_OMIT_VIRTUALTABLE
7054 /* Opcode: VOpen P1 * * P4 *
7055 **
7056 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7057 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7058 ** table and stores that cursor in P1.
7059 */
7060 case OP_VOpen: {
7061   VdbeCursor *pCur;
7062   sqlite3_vtab_cursor *pVCur;
7063   sqlite3_vtab *pVtab;
7064   const sqlite3_module *pModule;
7065 
7066   assert( p->bIsReader );
7067   pCur = 0;
7068   pVCur = 0;
7069   pVtab = pOp->p4.pVtab->pVtab;
7070   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7071     rc = SQLITE_LOCKED;
7072     goto abort_due_to_error;
7073   }
7074   pModule = pVtab->pModule;
7075   rc = pModule->xOpen(pVtab, &pVCur);
7076   sqlite3VtabImportErrmsg(p, pVtab);
7077   if( rc ) goto abort_due_to_error;
7078 
7079   /* Initialize sqlite3_vtab_cursor base class */
7080   pVCur->pVtab = pVtab;
7081 
7082   /* Initialize vdbe cursor object */
7083   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7084   if( pCur ){
7085     pCur->uc.pVCur = pVCur;
7086     pVtab->nRef++;
7087   }else{
7088     assert( db->mallocFailed );
7089     pModule->xClose(pVCur);
7090     goto no_mem;
7091   }
7092   break;
7093 }
7094 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7095 
7096 #ifndef SQLITE_OMIT_VIRTUALTABLE
7097 /* Opcode: VFilter P1 P2 P3 P4 *
7098 ** Synopsis: iplan=r[P3] zplan='P4'
7099 **
7100 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7101 ** the filtered result set is empty.
7102 **
7103 ** P4 is either NULL or a string that was generated by the xBestIndex
7104 ** method of the module.  The interpretation of the P4 string is left
7105 ** to the module implementation.
7106 **
7107 ** This opcode invokes the xFilter method on the virtual table specified
7108 ** by P1.  The integer query plan parameter to xFilter is stored in register
7109 ** P3. Register P3+1 stores the argc parameter to be passed to the
7110 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7111 ** additional parameters which are passed to
7112 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7113 **
7114 ** A jump is made to P2 if the result set after filtering would be empty.
7115 */
7116 case OP_VFilter: {   /* jump */
7117   int nArg;
7118   int iQuery;
7119   const sqlite3_module *pModule;
7120   Mem *pQuery;
7121   Mem *pArgc;
7122   sqlite3_vtab_cursor *pVCur;
7123   sqlite3_vtab *pVtab;
7124   VdbeCursor *pCur;
7125   int res;
7126   int i;
7127   Mem **apArg;
7128 
7129   pQuery = &aMem[pOp->p3];
7130   pArgc = &pQuery[1];
7131   pCur = p->apCsr[pOp->p1];
7132   assert( memIsValid(pQuery) );
7133   REGISTER_TRACE(pOp->p3, pQuery);
7134   assert( pCur->eCurType==CURTYPE_VTAB );
7135   pVCur = pCur->uc.pVCur;
7136   pVtab = pVCur->pVtab;
7137   pModule = pVtab->pModule;
7138 
7139   /* Grab the index number and argc parameters */
7140   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7141   nArg = (int)pArgc->u.i;
7142   iQuery = (int)pQuery->u.i;
7143 
7144   /* Invoke the xFilter method */
7145   res = 0;
7146   apArg = p->apArg;
7147   for(i = 0; i<nArg; i++){
7148     apArg[i] = &pArgc[i+1];
7149   }
7150   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7151   sqlite3VtabImportErrmsg(p, pVtab);
7152   if( rc ) goto abort_due_to_error;
7153   res = pModule->xEof(pVCur);
7154   pCur->nullRow = 0;
7155   VdbeBranchTaken(res!=0,2);
7156   if( res ) goto jump_to_p2;
7157   break;
7158 }
7159 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7160 
7161 #ifndef SQLITE_OMIT_VIRTUALTABLE
7162 /* Opcode: VColumn P1 P2 P3 * P5
7163 ** Synopsis: r[P3]=vcolumn(P2)
7164 **
7165 ** Store in register P3 the value of the P2-th column of
7166 ** the current row of the virtual-table of cursor P1.
7167 **
7168 ** If the VColumn opcode is being used to fetch the value of
7169 ** an unchanging column during an UPDATE operation, then the P5
7170 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7171 ** function to return true inside the xColumn method of the virtual
7172 ** table implementation.  The P5 column might also contain other
7173 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7174 ** unused by OP_VColumn.
7175 */
7176 case OP_VColumn: {
7177   sqlite3_vtab *pVtab;
7178   const sqlite3_module *pModule;
7179   Mem *pDest;
7180   sqlite3_context sContext;
7181 
7182   VdbeCursor *pCur = p->apCsr[pOp->p1];
7183   assert( pCur->eCurType==CURTYPE_VTAB );
7184   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7185   pDest = &aMem[pOp->p3];
7186   memAboutToChange(p, pDest);
7187   if( pCur->nullRow ){
7188     sqlite3VdbeMemSetNull(pDest);
7189     break;
7190   }
7191   pVtab = pCur->uc.pVCur->pVtab;
7192   pModule = pVtab->pModule;
7193   assert( pModule->xColumn );
7194   memset(&sContext, 0, sizeof(sContext));
7195   sContext.pOut = pDest;
7196   testcase( (pOp->p5 & OPFLAG_NOCHNG)==0 && pOp->p5!=0 );
7197   if( pOp->p5 & OPFLAG_NOCHNG ){
7198     sqlite3VdbeMemSetNull(pDest);
7199     pDest->flags = MEM_Null|MEM_Zero;
7200     pDest->u.nZero = 0;
7201   }else{
7202     MemSetTypeFlag(pDest, MEM_Null);
7203   }
7204   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7205   sqlite3VtabImportErrmsg(p, pVtab);
7206   if( sContext.isError>0 ){
7207     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7208     rc = sContext.isError;
7209   }
7210   sqlite3VdbeChangeEncoding(pDest, encoding);
7211   REGISTER_TRACE(pOp->p3, pDest);
7212   UPDATE_MAX_BLOBSIZE(pDest);
7213 
7214   if( sqlite3VdbeMemTooBig(pDest) ){
7215     goto too_big;
7216   }
7217   if( rc ) goto abort_due_to_error;
7218   break;
7219 }
7220 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7221 
7222 #ifndef SQLITE_OMIT_VIRTUALTABLE
7223 /* Opcode: VNext P1 P2 * * *
7224 **
7225 ** Advance virtual table P1 to the next row in its result set and
7226 ** jump to instruction P2.  Or, if the virtual table has reached
7227 ** the end of its result set, then fall through to the next instruction.
7228 */
7229 case OP_VNext: {   /* jump */
7230   sqlite3_vtab *pVtab;
7231   const sqlite3_module *pModule;
7232   int res;
7233   VdbeCursor *pCur;
7234 
7235   res = 0;
7236   pCur = p->apCsr[pOp->p1];
7237   assert( pCur->eCurType==CURTYPE_VTAB );
7238   if( pCur->nullRow ){
7239     break;
7240   }
7241   pVtab = pCur->uc.pVCur->pVtab;
7242   pModule = pVtab->pModule;
7243   assert( pModule->xNext );
7244 
7245   /* Invoke the xNext() method of the module. There is no way for the
7246   ** underlying implementation to return an error if one occurs during
7247   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7248   ** data is available) and the error code returned when xColumn or
7249   ** some other method is next invoked on the save virtual table cursor.
7250   */
7251   rc = pModule->xNext(pCur->uc.pVCur);
7252   sqlite3VtabImportErrmsg(p, pVtab);
7253   if( rc ) goto abort_due_to_error;
7254   res = pModule->xEof(pCur->uc.pVCur);
7255   VdbeBranchTaken(!res,2);
7256   if( !res ){
7257     /* If there is data, jump to P2 */
7258     goto jump_to_p2_and_check_for_interrupt;
7259   }
7260   goto check_for_interrupt;
7261 }
7262 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7263 
7264 #ifndef SQLITE_OMIT_VIRTUALTABLE
7265 /* Opcode: VRename P1 * * P4 *
7266 **
7267 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7268 ** This opcode invokes the corresponding xRename method. The value
7269 ** in register P1 is passed as the zName argument to the xRename method.
7270 */
7271 case OP_VRename: {
7272   sqlite3_vtab *pVtab;
7273   Mem *pName;
7274   int isLegacy;
7275 
7276   isLegacy = (db->flags & SQLITE_LegacyAlter);
7277   db->flags |= SQLITE_LegacyAlter;
7278   pVtab = pOp->p4.pVtab->pVtab;
7279   pName = &aMem[pOp->p1];
7280   assert( pVtab->pModule->xRename );
7281   assert( memIsValid(pName) );
7282   assert( p->readOnly==0 );
7283   REGISTER_TRACE(pOp->p1, pName);
7284   assert( pName->flags & MEM_Str );
7285   testcase( pName->enc==SQLITE_UTF8 );
7286   testcase( pName->enc==SQLITE_UTF16BE );
7287   testcase( pName->enc==SQLITE_UTF16LE );
7288   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7289   if( rc ) goto abort_due_to_error;
7290   rc = pVtab->pModule->xRename(pVtab, pName->z);
7291   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7292   sqlite3VtabImportErrmsg(p, pVtab);
7293   p->expired = 0;
7294   if( rc ) goto abort_due_to_error;
7295   break;
7296 }
7297 #endif
7298 
7299 #ifndef SQLITE_OMIT_VIRTUALTABLE
7300 /* Opcode: VUpdate P1 P2 P3 P4 P5
7301 ** Synopsis: data=r[P3@P2]
7302 **
7303 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7304 ** This opcode invokes the corresponding xUpdate method. P2 values
7305 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7306 ** invocation. The value in register (P3+P2-1) corresponds to the
7307 ** p2th element of the argv array passed to xUpdate.
7308 **
7309 ** The xUpdate method will do a DELETE or an INSERT or both.
7310 ** The argv[0] element (which corresponds to memory cell P3)
7311 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7312 ** deletion occurs.  The argv[1] element is the rowid of the new
7313 ** row.  This can be NULL to have the virtual table select the new
7314 ** rowid for itself.  The subsequent elements in the array are
7315 ** the values of columns in the new row.
7316 **
7317 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7318 ** a row to delete.
7319 **
7320 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7321 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7322 ** is set to the value of the rowid for the row just inserted.
7323 **
7324 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7325 ** apply in the case of a constraint failure on an insert or update.
7326 */
7327 case OP_VUpdate: {
7328   sqlite3_vtab *pVtab;
7329   const sqlite3_module *pModule;
7330   int nArg;
7331   int i;
7332   sqlite_int64 rowid;
7333   Mem **apArg;
7334   Mem *pX;
7335 
7336   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7337        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7338   );
7339   assert( p->readOnly==0 );
7340   if( db->mallocFailed ) goto no_mem;
7341   sqlite3VdbeIncrWriteCounter(p, 0);
7342   pVtab = pOp->p4.pVtab->pVtab;
7343   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7344     rc = SQLITE_LOCKED;
7345     goto abort_due_to_error;
7346   }
7347   pModule = pVtab->pModule;
7348   nArg = pOp->p2;
7349   assert( pOp->p4type==P4_VTAB );
7350   if( ALWAYS(pModule->xUpdate) ){
7351     u8 vtabOnConflict = db->vtabOnConflict;
7352     apArg = p->apArg;
7353     pX = &aMem[pOp->p3];
7354     for(i=0; i<nArg; i++){
7355       assert( memIsValid(pX) );
7356       memAboutToChange(p, pX);
7357       apArg[i] = pX;
7358       pX++;
7359     }
7360     db->vtabOnConflict = pOp->p5;
7361     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7362     db->vtabOnConflict = vtabOnConflict;
7363     sqlite3VtabImportErrmsg(p, pVtab);
7364     if( rc==SQLITE_OK && pOp->p1 ){
7365       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7366       db->lastRowid = rowid;
7367     }
7368     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7369       if( pOp->p5==OE_Ignore ){
7370         rc = SQLITE_OK;
7371       }else{
7372         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7373       }
7374     }else{
7375       p->nChange++;
7376     }
7377     if( rc ) goto abort_due_to_error;
7378   }
7379   break;
7380 }
7381 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7382 
7383 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7384 /* Opcode: Pagecount P1 P2 * * *
7385 **
7386 ** Write the current number of pages in database P1 to memory cell P2.
7387 */
7388 case OP_Pagecount: {            /* out2 */
7389   pOut = out2Prerelease(p, pOp);
7390   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7391   break;
7392 }
7393 #endif
7394 
7395 
7396 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7397 /* Opcode: MaxPgcnt P1 P2 P3 * *
7398 **
7399 ** Try to set the maximum page count for database P1 to the value in P3.
7400 ** Do not let the maximum page count fall below the current page count and
7401 ** do not change the maximum page count value if P3==0.
7402 **
7403 ** Store the maximum page count after the change in register P2.
7404 */
7405 case OP_MaxPgcnt: {            /* out2 */
7406   unsigned int newMax;
7407   Btree *pBt;
7408 
7409   pOut = out2Prerelease(p, pOp);
7410   pBt = db->aDb[pOp->p1].pBt;
7411   newMax = 0;
7412   if( pOp->p3 ){
7413     newMax = sqlite3BtreeLastPage(pBt);
7414     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7415   }
7416   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7417   break;
7418 }
7419 #endif
7420 
7421 /* Opcode: Function0 P1 P2 P3 P4 P5
7422 ** Synopsis: r[P3]=func(r[P2@P5])
7423 **
7424 ** Invoke a user function (P4 is a pointer to a FuncDef object that
7425 ** defines the function) with P5 arguments taken from register P2 and
7426 ** successors.  The result of the function is stored in register P3.
7427 ** Register P3 must not be one of the function inputs.
7428 **
7429 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7430 ** function was determined to be constant at compile time. If the first
7431 ** argument was constant then bit 0 of P1 is set. This is used to determine
7432 ** whether meta data associated with a user function argument using the
7433 ** sqlite3_set_auxdata() API may be safely retained until the next
7434 ** invocation of this opcode.
7435 **
7436 ** See also: Function, AggStep, AggFinal
7437 */
7438 /* Opcode: Function P1 P2 P3 P4 P5
7439 ** Synopsis: r[P3]=func(r[P2@P5])
7440 **
7441 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7442 ** contains a pointer to the function to be run) with P5 arguments taken
7443 ** from register P2 and successors.  The result of the function is stored
7444 ** in register P3.  Register P3 must not be one of the function inputs.
7445 **
7446 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7447 ** function was determined to be constant at compile time. If the first
7448 ** argument was constant then bit 0 of P1 is set. This is used to determine
7449 ** whether meta data associated with a user function argument using the
7450 ** sqlite3_set_auxdata() API may be safely retained until the next
7451 ** invocation of this opcode.
7452 **
7453 ** SQL functions are initially coded as OP_Function0 with P4 pointing
7454 ** to a FuncDef object.  But on first evaluation, the P4 operand is
7455 ** automatically converted into an sqlite3_context object and the operation
7456 ** changed to this OP_Function opcode.  In this way, the initialization of
7457 ** the sqlite3_context object occurs only once, rather than once for each
7458 ** evaluation of the function.
7459 **
7460 ** See also: Function0, AggStep, AggFinal
7461 */
7462 case OP_PureFunc0:              /* group */
7463 case OP_Function0: {            /* group */
7464   int n;
7465   sqlite3_context *pCtx;
7466 
7467   assert( pOp->p4type==P4_FUNCDEF );
7468   n = pOp->p5;
7469   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7470   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7471   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7472   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
7473   if( pCtx==0 ) goto no_mem;
7474   pCtx->pOut = 0;
7475   pCtx->pFunc = pOp->p4.pFunc;
7476   pCtx->iOp = (int)(pOp - aOp);
7477   pCtx->pVdbe = p;
7478   pCtx->isError = 0;
7479   pCtx->argc = n;
7480   pOp->p4type = P4_FUNCCTX;
7481   pOp->p4.pCtx = pCtx;
7482   assert( OP_PureFunc == OP_PureFunc0+2 );
7483   assert( OP_Function == OP_Function0+2 );
7484   pOp->opcode += 2;
7485   /* Fall through into OP_Function */
7486 }
7487 case OP_PureFunc:              /* group */
7488 case OP_Function: {            /* group */
7489   int i;
7490   sqlite3_context *pCtx;
7491 
7492   assert( pOp->p4type==P4_FUNCCTX );
7493   pCtx = pOp->p4.pCtx;
7494 
7495   /* If this function is inside of a trigger, the register array in aMem[]
7496   ** might change from one evaluation to the next.  The next block of code
7497   ** checks to see if the register array has changed, and if so it
7498   ** reinitializes the relavant parts of the sqlite3_context object */
7499   pOut = &aMem[pOp->p3];
7500   if( pCtx->pOut != pOut ){
7501     pCtx->pOut = pOut;
7502     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7503   }
7504 
7505   memAboutToChange(p, pOut);
7506 #ifdef SQLITE_DEBUG
7507   for(i=0; i<pCtx->argc; i++){
7508     assert( memIsValid(pCtx->argv[i]) );
7509     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7510   }
7511 #endif
7512   MemSetTypeFlag(pOut, MEM_Null);
7513   assert( pCtx->isError==0 );
7514   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7515 
7516   /* If the function returned an error, throw an exception */
7517   if( pCtx->isError ){
7518     if( pCtx->isError>0 ){
7519       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7520       rc = pCtx->isError;
7521     }
7522     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7523     pCtx->isError = 0;
7524     if( rc ) goto abort_due_to_error;
7525   }
7526 
7527   /* Copy the result of the function into register P3 */
7528   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7529     sqlite3VdbeChangeEncoding(pOut, encoding);
7530     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7531   }
7532 
7533   REGISTER_TRACE(pOp->p3, pOut);
7534   UPDATE_MAX_BLOBSIZE(pOut);
7535   break;
7536 }
7537 
7538 /* Opcode: Trace P1 P2 * P4 *
7539 **
7540 ** Write P4 on the statement trace output if statement tracing is
7541 ** enabled.
7542 **
7543 ** Operand P1 must be 0x7fffffff and P2 must positive.
7544 */
7545 /* Opcode: Init P1 P2 P3 P4 *
7546 ** Synopsis: Start at P2
7547 **
7548 ** Programs contain a single instance of this opcode as the very first
7549 ** opcode.
7550 **
7551 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7552 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7553 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7554 **
7555 ** If P2 is not zero, jump to instruction P2.
7556 **
7557 ** Increment the value of P1 so that OP_Once opcodes will jump the
7558 ** first time they are evaluated for this run.
7559 **
7560 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7561 ** error is encountered.
7562 */
7563 case OP_Trace:
7564 case OP_Init: {          /* jump */
7565   int i;
7566 #ifndef SQLITE_OMIT_TRACE
7567   char *zTrace;
7568 #endif
7569 
7570   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7571   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7572   **
7573   ** This assert() provides evidence for:
7574   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7575   ** would have been returned by the legacy sqlite3_trace() interface by
7576   ** using the X argument when X begins with "--" and invoking
7577   ** sqlite3_expanded_sql(P) otherwise.
7578   */
7579   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7580 
7581   /* OP_Init is always instruction 0 */
7582   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7583 
7584 #ifndef SQLITE_OMIT_TRACE
7585   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7586    && !p->doingRerun
7587    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7588   ){
7589 #ifndef SQLITE_OMIT_DEPRECATED
7590     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7591       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7592       char *z = sqlite3VdbeExpandSql(p, zTrace);
7593       x(db->pTraceArg, z);
7594       sqlite3_free(z);
7595     }else
7596 #endif
7597     if( db->nVdbeExec>1 ){
7598       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7599       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7600       sqlite3DbFree(db, z);
7601     }else{
7602       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7603     }
7604   }
7605 #ifdef SQLITE_USE_FCNTL_TRACE
7606   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7607   if( zTrace ){
7608     int j;
7609     for(j=0; j<db->nDb; j++){
7610       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7611       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7612     }
7613   }
7614 #endif /* SQLITE_USE_FCNTL_TRACE */
7615 #ifdef SQLITE_DEBUG
7616   if( (db->flags & SQLITE_SqlTrace)!=0
7617    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7618   ){
7619     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7620   }
7621 #endif /* SQLITE_DEBUG */
7622 #endif /* SQLITE_OMIT_TRACE */
7623   assert( pOp->p2>0 );
7624   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7625     if( pOp->opcode==OP_Trace ) break;
7626     for(i=1; i<p->nOp; i++){
7627       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7628     }
7629     pOp->p1 = 0;
7630   }
7631   pOp->p1++;
7632   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7633   goto jump_to_p2;
7634 }
7635 
7636 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7637 /* Opcode: CursorHint P1 * * P4 *
7638 **
7639 ** Provide a hint to cursor P1 that it only needs to return rows that
7640 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7641 ** to values currently held in registers.  TK_COLUMN terms in the P4
7642 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7643 */
7644 case OP_CursorHint: {
7645   VdbeCursor *pC;
7646 
7647   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7648   assert( pOp->p4type==P4_EXPR );
7649   pC = p->apCsr[pOp->p1];
7650   if( pC ){
7651     assert( pC->eCurType==CURTYPE_BTREE );
7652     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7653                            pOp->p4.pExpr, aMem);
7654   }
7655   break;
7656 }
7657 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7658 
7659 #ifdef SQLITE_DEBUG
7660 /* Opcode:  Abortable   * * * * *
7661 **
7662 ** Verify that an Abort can happen.  Assert if an Abort at this point
7663 ** might cause database corruption.  This opcode only appears in debugging
7664 ** builds.
7665 **
7666 ** An Abort is safe if either there have been no writes, or if there is
7667 ** an active statement journal.
7668 */
7669 case OP_Abortable: {
7670   sqlite3VdbeAssertAbortable(p);
7671   break;
7672 }
7673 #endif
7674 
7675 /* Opcode: Noop * * * * *
7676 **
7677 ** Do nothing.  This instruction is often useful as a jump
7678 ** destination.
7679 */
7680 /*
7681 ** The magic Explain opcode are only inserted when explain==2 (which
7682 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7683 ** This opcode records information from the optimizer.  It is the
7684 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7685 */
7686 default: {          /* This is really OP_Noop, OP_Explain */
7687   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7688 
7689   break;
7690 }
7691 
7692 /*****************************************************************************
7693 ** The cases of the switch statement above this line should all be indented
7694 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7695 ** readability.  From this point on down, the normal indentation rules are
7696 ** restored.
7697 *****************************************************************************/
7698     }
7699 
7700 #ifdef VDBE_PROFILE
7701     {
7702       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7703       if( endTime>start ) pOrigOp->cycles += endTime - start;
7704       pOrigOp->cnt++;
7705     }
7706 #endif
7707 
7708     /* The following code adds nothing to the actual functionality
7709     ** of the program.  It is only here for testing and debugging.
7710     ** On the other hand, it does burn CPU cycles every time through
7711     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7712     */
7713 #ifndef NDEBUG
7714     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7715 
7716 #ifdef SQLITE_DEBUG
7717     if( db->flags & SQLITE_VdbeTrace ){
7718       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7719       if( rc!=0 ) printf("rc=%d\n",rc);
7720       if( opProperty & (OPFLG_OUT2) ){
7721         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7722       }
7723       if( opProperty & OPFLG_OUT3 ){
7724         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7725       }
7726     }
7727 #endif  /* SQLITE_DEBUG */
7728 #endif  /* NDEBUG */
7729   }  /* The end of the for(;;) loop the loops through opcodes */
7730 
7731   /* If we reach this point, it means that execution is finished with
7732   ** an error of some kind.
7733   */
7734 abort_due_to_error:
7735   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7736   assert( rc );
7737   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7738     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7739   }
7740   p->rc = rc;
7741   sqlite3SystemError(db, rc);
7742   testcase( sqlite3GlobalConfig.xLog!=0 );
7743   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7744                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7745   sqlite3VdbeHalt(p);
7746   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7747   rc = SQLITE_ERROR;
7748   if( resetSchemaOnFault>0 ){
7749     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7750   }
7751 
7752   /* This is the only way out of this procedure.  We have to
7753   ** release the mutexes on btrees that were acquired at the
7754   ** top. */
7755 vdbe_return:
7756 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
7757   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7758     nProgressLimit += db->nProgressOps;
7759     if( db->xProgress(db->pProgressArg) ){
7760       nProgressLimit = 0xffffffff;
7761       rc = SQLITE_INTERRUPT;
7762       goto abort_due_to_error;
7763     }
7764   }
7765 #endif
7766   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7767   sqlite3VdbeLeave(p);
7768   assert( rc!=SQLITE_OK || nExtraDelete==0
7769        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7770   );
7771   return rc;
7772 
7773   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7774   ** is encountered.
7775   */
7776 too_big:
7777   sqlite3VdbeError(p, "string or blob too big");
7778   rc = SQLITE_TOOBIG;
7779   goto abort_due_to_error;
7780 
7781   /* Jump to here if a malloc() fails.
7782   */
7783 no_mem:
7784   sqlite3OomFault(db);
7785   sqlite3VdbeError(p, "out of memory");
7786   rc = SQLITE_NOMEM_BKPT;
7787   goto abort_due_to_error;
7788 
7789   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7790   ** flag.
7791   */
7792 abort_due_to_interrupt:
7793   assert( db->u1.isInterrupted );
7794   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7795   p->rc = rc;
7796   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7797   goto abort_due_to_error;
7798 }
7799