1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements execution method of the 13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 14 ** handles housekeeping details such as creating and deleting 15 ** VDBE instances. This file is solely interested in executing 16 ** the VDBE program. 17 ** 18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 19 ** to a VDBE. 20 ** 21 ** The SQL parser generates a program which is then executed by 22 ** the VDBE to do the work of the SQL statement. VDBE programs are 23 ** similar in form to assembly language. The program consists of 24 ** a linear sequence of operations. Each operation has an opcode 25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 26 ** is a null-terminated string. Operand P5 is an unsigned character. 27 ** Few opcodes use all 5 operands. 28 ** 29 ** Computation results are stored on a set of registers numbered beginning 30 ** with 1 and going up to Vdbe.nMem. Each register can store 31 ** either an integer, a null-terminated string, a floating point 32 ** number, or the SQL "NULL" value. An implicit conversion from one 33 ** type to the other occurs as necessary. 34 ** 35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 36 ** function which does the work of interpreting a VDBE program. 37 ** But other routines are also provided to help in building up 38 ** a program instruction by instruction. 39 ** 40 ** Various scripts scan this source file in order to generate HTML 41 ** documentation, headers files, or other derived files. The formatting 42 ** of the code in this file is, therefore, important. See other comments 43 ** in this file for details. If in doubt, do not deviate from existing 44 ** commenting and indentation practices when changing or adding code. 45 */ 46 #include "sqliteInt.h" 47 #include "vdbeInt.h" 48 49 /* 50 ** The following global variable is incremented every time a cursor 51 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 52 ** procedures use this information to make sure that indices are 53 ** working correctly. This variable has no function other than to 54 ** help verify the correct operation of the library. 55 */ 56 #ifdef SQLITE_TEST 57 int sqlite3_search_count = 0; 58 #endif 59 60 /* 61 ** When this global variable is positive, it gets decremented once before 62 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted 63 ** field of the sqlite3 structure is set in order to simulate and interrupt. 64 ** 65 ** This facility is used for testing purposes only. It does not function 66 ** in an ordinary build. 67 */ 68 #ifdef SQLITE_TEST 69 int sqlite3_interrupt_count = 0; 70 #endif 71 72 /* 73 ** The next global variable is incremented each type the OP_Sort opcode 74 ** is executed. The test procedures use this information to make sure that 75 ** sorting is occurring or not occurring at appropriate times. This variable 76 ** has no function other than to help verify the correct operation of the 77 ** library. 78 */ 79 #ifdef SQLITE_TEST 80 int sqlite3_sort_count = 0; 81 #endif 82 83 /* 84 ** The next global variable records the size of the largest MEM_Blob 85 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 86 ** use this information to make sure that the zero-blob functionality 87 ** is working correctly. This variable has no function other than to 88 ** help verify the correct operation of the library. 89 */ 90 #ifdef SQLITE_TEST 91 int sqlite3_max_blobsize = 0; 92 static void updateMaxBlobsize(Mem *p){ 93 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 94 sqlite3_max_blobsize = p->n; 95 } 96 } 97 #endif 98 99 /* 100 ** The next global variable is incremented each type the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Convert the given register into a string if it isn't one 122 ** already. Return non-zero if a malloc() fails. 123 */ 124 #define Stringify(P, enc) \ 125 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 126 { goto no_mem; } 127 128 /* 129 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 130 ** a pointer to a dynamically allocated string where some other entity 131 ** is responsible for deallocating that string. Because the register 132 ** does not control the string, it might be deleted without the register 133 ** knowing it. 134 ** 135 ** This routine converts an ephemeral string into a dynamically allocated 136 ** string that the register itself controls. In other words, it 137 ** converts an MEM_Ephem string into an MEM_Dyn string. 138 */ 139 #define Deephemeralize(P) \ 140 if( ((P)->flags&MEM_Ephem)!=0 \ 141 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 142 143 /* 144 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 145 ** P if required. 146 */ 147 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 148 149 /* 150 ** Argument pMem points at a register that will be passed to a 151 ** user-defined function or returned to the user as the result of a query. 152 ** This routine sets the pMem->type variable used by the sqlite3_value_*() 153 ** routines. 154 */ 155 void sqlite3VdbeMemStoreType(Mem *pMem){ 156 int flags = pMem->flags; 157 if( flags & MEM_Null ){ 158 pMem->type = SQLITE_NULL; 159 } 160 else if( flags & MEM_Int ){ 161 pMem->type = SQLITE_INTEGER; 162 } 163 else if( flags & MEM_Real ){ 164 pMem->type = SQLITE_FLOAT; 165 } 166 else if( flags & MEM_Str ){ 167 pMem->type = SQLITE_TEXT; 168 }else{ 169 pMem->type = SQLITE_BLOB; 170 } 171 } 172 173 /* 174 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 175 ** if we run out of memory. 176 */ 177 static VdbeCursor *allocateCursor( 178 Vdbe *p, /* The virtual machine */ 179 int iCur, /* Index of the new VdbeCursor */ 180 int nField, /* Number of fields in the table or index */ 181 int iDb, /* When database the cursor belongs to, or -1 */ 182 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 183 ){ 184 /* Find the memory cell that will be used to store the blob of memory 185 ** required for this VdbeCursor structure. It is convenient to use a 186 ** vdbe memory cell to manage the memory allocation required for a 187 ** VdbeCursor structure for the following reasons: 188 ** 189 ** * Sometimes cursor numbers are used for a couple of different 190 ** purposes in a vdbe program. The different uses might require 191 ** different sized allocations. Memory cells provide growable 192 ** allocations. 193 ** 194 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 195 ** be freed lazily via the sqlite3_release_memory() API. This 196 ** minimizes the number of malloc calls made by the system. 197 ** 198 ** Memory cells for cursors are allocated at the top of the address 199 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 200 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 201 */ 202 Mem *pMem = &p->aMem[p->nMem-iCur]; 203 204 int nByte; 205 VdbeCursor *pCx = 0; 206 nByte = 207 ROUND8(sizeof(VdbeCursor)) + 208 (isBtreeCursor?sqlite3BtreeCursorSize():0) + 209 2*nField*sizeof(u32); 210 211 assert( iCur<p->nCursor ); 212 if( p->apCsr[iCur] ){ 213 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 214 p->apCsr[iCur] = 0; 215 } 216 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 217 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 218 memset(pCx, 0, sizeof(VdbeCursor)); 219 pCx->iDb = iDb; 220 pCx->nField = nField; 221 if( nField ){ 222 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; 223 } 224 if( isBtreeCursor ){ 225 pCx->pCursor = (BtCursor*) 226 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; 227 sqlite3BtreeCursorZero(pCx->pCursor); 228 } 229 } 230 return pCx; 231 } 232 233 /* 234 ** Try to convert a value into a numeric representation if we can 235 ** do so without loss of information. In other words, if the string 236 ** looks like a number, convert it into a number. If it does not 237 ** look like a number, leave it alone. 238 */ 239 static void applyNumericAffinity(Mem *pRec){ 240 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 241 int realnum; 242 u8 enc = pRec->enc; 243 sqlite3VdbeMemNulTerminate(pRec); 244 if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, enc) ){ 245 i64 value; 246 char *zUtf8 = pRec->z; 247 #ifndef SQLITE_OMIT_UTF16 248 if( enc!=SQLITE_UTF8 ){ 249 assert( pRec->db ); 250 zUtf8 = sqlite3Utf16to8(pRec->db, pRec->z, pRec->n, enc); 251 if( !zUtf8 ) return; 252 } 253 #endif 254 if( !realnum && sqlite3Atoi64(zUtf8, &value) ){ 255 pRec->u.i = value; 256 MemSetTypeFlag(pRec, MEM_Int); 257 }else{ 258 sqlite3AtoF(zUtf8, &pRec->r); 259 MemSetTypeFlag(pRec, MEM_Real); 260 } 261 #ifndef SQLITE_OMIT_UTF16 262 if( enc!=SQLITE_UTF8 ){ 263 sqlite3DbFree(pRec->db, zUtf8); 264 } 265 #endif 266 } 267 } 268 } 269 270 /* 271 ** Processing is determine by the affinity parameter: 272 ** 273 ** SQLITE_AFF_INTEGER: 274 ** SQLITE_AFF_REAL: 275 ** SQLITE_AFF_NUMERIC: 276 ** Try to convert pRec to an integer representation or a 277 ** floating-point representation if an integer representation 278 ** is not possible. Note that the integer representation is 279 ** always preferred, even if the affinity is REAL, because 280 ** an integer representation is more space efficient on disk. 281 ** 282 ** SQLITE_AFF_TEXT: 283 ** Convert pRec to a text representation. 284 ** 285 ** SQLITE_AFF_NONE: 286 ** No-op. pRec is unchanged. 287 */ 288 static void applyAffinity( 289 Mem *pRec, /* The value to apply affinity to */ 290 char affinity, /* The affinity to be applied */ 291 u8 enc /* Use this text encoding */ 292 ){ 293 if( affinity==SQLITE_AFF_TEXT ){ 294 /* Only attempt the conversion to TEXT if there is an integer or real 295 ** representation (blob and NULL do not get converted) but no string 296 ** representation. 297 */ 298 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 299 sqlite3VdbeMemStringify(pRec, enc); 300 } 301 pRec->flags &= ~(MEM_Real|MEM_Int); 302 }else if( affinity!=SQLITE_AFF_NONE ){ 303 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 304 || affinity==SQLITE_AFF_NUMERIC ); 305 applyNumericAffinity(pRec); 306 if( pRec->flags & MEM_Real ){ 307 sqlite3VdbeIntegerAffinity(pRec); 308 } 309 } 310 } 311 312 /* 313 ** Try to convert the type of a function argument or a result column 314 ** into a numeric representation. Use either INTEGER or REAL whichever 315 ** is appropriate. But only do the conversion if it is possible without 316 ** loss of information and return the revised type of the argument. 317 ** 318 ** This is an EXPERIMENTAL api and is subject to change or removal. 319 */ 320 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 321 Mem *pMem = (Mem*)pVal; 322 applyNumericAffinity(pMem); 323 sqlite3VdbeMemStoreType(pMem); 324 return pMem->type; 325 } 326 327 /* 328 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 329 ** not the internal Mem* type. 330 */ 331 void sqlite3ValueApplyAffinity( 332 sqlite3_value *pVal, 333 u8 affinity, 334 u8 enc 335 ){ 336 applyAffinity((Mem *)pVal, affinity, enc); 337 } 338 339 #ifdef SQLITE_DEBUG 340 /* 341 ** Write a nice string representation of the contents of cell pMem 342 ** into buffer zBuf, length nBuf. 343 */ 344 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 345 char *zCsr = zBuf; 346 int f = pMem->flags; 347 348 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 349 350 if( f&MEM_Blob ){ 351 int i; 352 char c; 353 if( f & MEM_Dyn ){ 354 c = 'z'; 355 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 356 }else if( f & MEM_Static ){ 357 c = 't'; 358 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 359 }else if( f & MEM_Ephem ){ 360 c = 'e'; 361 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 362 }else{ 363 c = 's'; 364 } 365 366 sqlite3_snprintf(100, zCsr, "%c", c); 367 zCsr += sqlite3Strlen30(zCsr); 368 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 369 zCsr += sqlite3Strlen30(zCsr); 370 for(i=0; i<16 && i<pMem->n; i++){ 371 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 372 zCsr += sqlite3Strlen30(zCsr); 373 } 374 for(i=0; i<16 && i<pMem->n; i++){ 375 char z = pMem->z[i]; 376 if( z<32 || z>126 ) *zCsr++ = '.'; 377 else *zCsr++ = z; 378 } 379 380 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 381 zCsr += sqlite3Strlen30(zCsr); 382 if( f & MEM_Zero ){ 383 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 384 zCsr += sqlite3Strlen30(zCsr); 385 } 386 *zCsr = '\0'; 387 }else if( f & MEM_Str ){ 388 int j, k; 389 zBuf[0] = ' '; 390 if( f & MEM_Dyn ){ 391 zBuf[1] = 'z'; 392 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 393 }else if( f & MEM_Static ){ 394 zBuf[1] = 't'; 395 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 396 }else if( f & MEM_Ephem ){ 397 zBuf[1] = 'e'; 398 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 399 }else{ 400 zBuf[1] = 's'; 401 } 402 k = 2; 403 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 404 k += sqlite3Strlen30(&zBuf[k]); 405 zBuf[k++] = '['; 406 for(j=0; j<15 && j<pMem->n; j++){ 407 u8 c = pMem->z[j]; 408 if( c>=0x20 && c<0x7f ){ 409 zBuf[k++] = c; 410 }else{ 411 zBuf[k++] = '.'; 412 } 413 } 414 zBuf[k++] = ']'; 415 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 416 k += sqlite3Strlen30(&zBuf[k]); 417 zBuf[k++] = 0; 418 } 419 } 420 #endif 421 422 #ifdef SQLITE_DEBUG 423 /* 424 ** Print the value of a register for tracing purposes: 425 */ 426 static void memTracePrint(FILE *out, Mem *p){ 427 if( p->flags & MEM_Null ){ 428 fprintf(out, " NULL"); 429 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 430 fprintf(out, " si:%lld", p->u.i); 431 }else if( p->flags & MEM_Int ){ 432 fprintf(out, " i:%lld", p->u.i); 433 #ifndef SQLITE_OMIT_FLOATING_POINT 434 }else if( p->flags & MEM_Real ){ 435 fprintf(out, " r:%g", p->r); 436 #endif 437 }else if( p->flags & MEM_RowSet ){ 438 fprintf(out, " (rowset)"); 439 }else{ 440 char zBuf[200]; 441 sqlite3VdbeMemPrettyPrint(p, zBuf); 442 fprintf(out, " "); 443 fprintf(out, "%s", zBuf); 444 } 445 } 446 static void registerTrace(FILE *out, int iReg, Mem *p){ 447 fprintf(out, "REG[%d] = ", iReg); 448 memTracePrint(out, p); 449 fprintf(out, "\n"); 450 } 451 #endif 452 453 #ifdef SQLITE_DEBUG 454 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) 455 #else 456 # define REGISTER_TRACE(R,M) 457 #endif 458 459 460 #ifdef VDBE_PROFILE 461 462 /* 463 ** hwtime.h contains inline assembler code for implementing 464 ** high-performance timing routines. 465 */ 466 #include "hwtime.h" 467 468 #endif 469 470 /* 471 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 472 ** sqlite3_interrupt() routine has been called. If it has been, then 473 ** processing of the VDBE program is interrupted. 474 ** 475 ** This macro added to every instruction that does a jump in order to 476 ** implement a loop. This test used to be on every single instruction, 477 ** but that meant we more testing that we needed. By only testing the 478 ** flag on jump instructions, we get a (small) speed improvement. 479 */ 480 #define CHECK_FOR_INTERRUPT \ 481 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 482 483 484 #ifndef NDEBUG 485 /* 486 ** This function is only called from within an assert() expression. It 487 ** checks that the sqlite3.nTransaction variable is correctly set to 488 ** the number of non-transaction savepoints currently in the 489 ** linked list starting at sqlite3.pSavepoint. 490 ** 491 ** Usage: 492 ** 493 ** assert( checkSavepointCount(db) ); 494 */ 495 static int checkSavepointCount(sqlite3 *db){ 496 int n = 0; 497 Savepoint *p; 498 for(p=db->pSavepoint; p; p=p->pNext) n++; 499 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 500 return 1; 501 } 502 #endif 503 504 /* 505 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 506 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 507 ** in memory obtained from sqlite3DbMalloc). 508 */ 509 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ 510 sqlite3 *db = p->db; 511 sqlite3DbFree(db, p->zErrMsg); 512 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 513 sqlite3_free(pVtab->zErrMsg); 514 pVtab->zErrMsg = 0; 515 } 516 517 518 /* 519 ** Execute as much of a VDBE program as we can then return. 520 ** 521 ** sqlite3VdbeMakeReady() must be called before this routine in order to 522 ** close the program with a final OP_Halt and to set up the callbacks 523 ** and the error message pointer. 524 ** 525 ** Whenever a row or result data is available, this routine will either 526 ** invoke the result callback (if there is one) or return with 527 ** SQLITE_ROW. 528 ** 529 ** If an attempt is made to open a locked database, then this routine 530 ** will either invoke the busy callback (if there is one) or it will 531 ** return SQLITE_BUSY. 532 ** 533 ** If an error occurs, an error message is written to memory obtained 534 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 535 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 536 ** 537 ** If the callback ever returns non-zero, then the program exits 538 ** immediately. There will be no error message but the p->rc field is 539 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 540 ** 541 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 542 ** routine to return SQLITE_ERROR. 543 ** 544 ** Other fatal errors return SQLITE_ERROR. 545 ** 546 ** After this routine has finished, sqlite3VdbeFinalize() should be 547 ** used to clean up the mess that was left behind. 548 */ 549 int sqlite3VdbeExec( 550 Vdbe *p /* The VDBE */ 551 ){ 552 int pc=0; /* The program counter */ 553 Op *aOp = p->aOp; /* Copy of p->aOp */ 554 Op *pOp; /* Current operation */ 555 int rc = SQLITE_OK; /* Value to return */ 556 sqlite3 *db = p->db; /* The database */ 557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if true */ 558 u8 encoding = ENC(db); /* The database encoding */ 559 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 560 int checkProgress; /* True if progress callbacks are enabled */ 561 int nProgressOps = 0; /* Opcodes executed since progress callback. */ 562 #endif 563 Mem *aMem = p->aMem; /* Copy of p->aMem */ 564 Mem *pIn1 = 0; /* 1st input operand */ 565 Mem *pIn2 = 0; /* 2nd input operand */ 566 Mem *pIn3 = 0; /* 3rd input operand */ 567 Mem *pOut = 0; /* Output operand */ 568 int iCompare = 0; /* Result of last OP_Compare operation */ 569 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 570 #ifdef VDBE_PROFILE 571 u64 start; /* CPU clock count at start of opcode */ 572 int origPc; /* Program counter at start of opcode */ 573 #endif 574 /*** INSERT STACK UNION HERE ***/ 575 576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 577 sqlite3VdbeMutexArrayEnter(p); 578 if( p->rc==SQLITE_NOMEM ){ 579 /* This happens if a malloc() inside a call to sqlite3_column_text() or 580 ** sqlite3_column_text16() failed. */ 581 goto no_mem; 582 } 583 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 584 p->rc = SQLITE_OK; 585 assert( p->explain==0 ); 586 p->pResultSet = 0; 587 db->busyHandler.nBusy = 0; 588 CHECK_FOR_INTERRUPT; 589 sqlite3VdbeIOTraceSql(p); 590 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 591 checkProgress = db->xProgress!=0; 592 #endif 593 #ifdef SQLITE_DEBUG 594 sqlite3BeginBenignMalloc(); 595 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ 596 int i; 597 printf("VDBE Program Listing:\n"); 598 sqlite3VdbePrintSql(p); 599 for(i=0; i<p->nOp; i++){ 600 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 601 } 602 } 603 sqlite3EndBenignMalloc(); 604 #endif 605 for(pc=p->pc; rc==SQLITE_OK; pc++){ 606 assert( pc>=0 && pc<p->nOp ); 607 if( db->mallocFailed ) goto no_mem; 608 #ifdef VDBE_PROFILE 609 origPc = pc; 610 start = sqlite3Hwtime(); 611 #endif 612 pOp = &aOp[pc]; 613 614 /* Only allow tracing if SQLITE_DEBUG is defined. 615 */ 616 #ifdef SQLITE_DEBUG 617 if( p->trace ){ 618 if( pc==0 ){ 619 printf("VDBE Execution Trace:\n"); 620 sqlite3VdbePrintSql(p); 621 } 622 sqlite3VdbePrintOp(p->trace, pc, pOp); 623 } 624 #endif 625 626 627 /* Check to see if we need to simulate an interrupt. This only happens 628 ** if we have a special test build. 629 */ 630 #ifdef SQLITE_TEST 631 if( sqlite3_interrupt_count>0 ){ 632 sqlite3_interrupt_count--; 633 if( sqlite3_interrupt_count==0 ){ 634 sqlite3_interrupt(db); 635 } 636 } 637 #endif 638 639 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 640 /* Call the progress callback if it is configured and the required number 641 ** of VDBE ops have been executed (either since this invocation of 642 ** sqlite3VdbeExec() or since last time the progress callback was called). 643 ** If the progress callback returns non-zero, exit the virtual machine with 644 ** a return code SQLITE_ABORT. 645 */ 646 if( checkProgress ){ 647 if( db->nProgressOps==nProgressOps ){ 648 int prc; 649 prc = db->xProgress(db->pProgressArg); 650 if( prc!=0 ){ 651 rc = SQLITE_INTERRUPT; 652 goto vdbe_error_halt; 653 } 654 nProgressOps = 0; 655 } 656 nProgressOps++; 657 } 658 #endif 659 660 /* On any opcode with the "out2-prerelase" tag, free any 661 ** external allocations out of mem[p2] and set mem[p2] to be 662 ** an undefined integer. Opcodes will either fill in the integer 663 ** value or convert mem[p2] to a different type. 664 */ 665 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 666 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 667 assert( pOp->p2>0 ); 668 assert( pOp->p2<=p->nMem ); 669 pOut = &aMem[pOp->p2]; 670 sqlite3VdbeMemReleaseExternal(pOut); 671 pOut->flags = MEM_Int; 672 } 673 674 /* Sanity checking on other operands */ 675 #ifdef SQLITE_DEBUG 676 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 677 assert( pOp->p1>0 ); 678 assert( pOp->p1<=p->nMem ); 679 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 680 } 681 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 682 assert( pOp->p2>0 ); 683 assert( pOp->p2<=p->nMem ); 684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 685 } 686 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 687 assert( pOp->p3>0 ); 688 assert( pOp->p3<=p->nMem ); 689 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 690 } 691 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 692 assert( pOp->p2>0 ); 693 assert( pOp->p2<=p->nMem ); 694 } 695 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 696 assert( pOp->p3>0 ); 697 assert( pOp->p3<=p->nMem ); 698 } 699 #endif 700 701 switch( pOp->opcode ){ 702 703 /***************************************************************************** 704 ** What follows is a massive switch statement where each case implements a 705 ** separate instruction in the virtual machine. If we follow the usual 706 ** indentation conventions, each case should be indented by 6 spaces. But 707 ** that is a lot of wasted space on the left margin. So the code within 708 ** the switch statement will break with convention and be flush-left. Another 709 ** big comment (similar to this one) will mark the point in the code where 710 ** we transition back to normal indentation. 711 ** 712 ** The formatting of each case is important. The makefile for SQLite 713 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 714 ** file looking for lines that begin with "case OP_". The opcodes.h files 715 ** will be filled with #defines that give unique integer values to each 716 ** opcode and the opcodes.c file is filled with an array of strings where 717 ** each string is the symbolic name for the corresponding opcode. If the 718 ** case statement is followed by a comment of the form "/# same as ... #/" 719 ** that comment is used to determine the particular value of the opcode. 720 ** 721 ** Other keywords in the comment that follows each case are used to 722 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 723 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 724 ** the mkopcodeh.awk script for additional information. 725 ** 726 ** Documentation about VDBE opcodes is generated by scanning this file 727 ** for lines of that contain "Opcode:". That line and all subsequent 728 ** comment lines are used in the generation of the opcode.html documentation 729 ** file. 730 ** 731 ** SUMMARY: 732 ** 733 ** Formatting is important to scripts that scan this file. 734 ** Do not deviate from the formatting style currently in use. 735 ** 736 *****************************************************************************/ 737 738 /* Opcode: Goto * P2 * * * 739 ** 740 ** An unconditional jump to address P2. 741 ** The next instruction executed will be 742 ** the one at index P2 from the beginning of 743 ** the program. 744 */ 745 case OP_Goto: { /* jump */ 746 CHECK_FOR_INTERRUPT; 747 pc = pOp->p2 - 1; 748 break; 749 } 750 751 /* Opcode: Gosub P1 P2 * * * 752 ** 753 ** Write the current address onto register P1 754 ** and then jump to address P2. 755 */ 756 case OP_Gosub: { /* jump, in1 */ 757 pIn1 = &aMem[pOp->p1]; 758 assert( (pIn1->flags & MEM_Dyn)==0 ); 759 pIn1->flags = MEM_Int; 760 pIn1->u.i = pc; 761 REGISTER_TRACE(pOp->p1, pIn1); 762 pc = pOp->p2 - 1; 763 break; 764 } 765 766 /* Opcode: Return P1 * * * * 767 ** 768 ** Jump to the next instruction after the address in register P1. 769 */ 770 case OP_Return: { /* in1 */ 771 pIn1 = &aMem[pOp->p1]; 772 assert( pIn1->flags & MEM_Int ); 773 pc = (int)pIn1->u.i; 774 break; 775 } 776 777 /* Opcode: Yield P1 * * * * 778 ** 779 ** Swap the program counter with the value in register P1. 780 */ 781 case OP_Yield: { /* in1 */ 782 int pcDest; 783 pIn1 = &aMem[pOp->p1]; 784 assert( (pIn1->flags & MEM_Dyn)==0 ); 785 pIn1->flags = MEM_Int; 786 pcDest = (int)pIn1->u.i; 787 pIn1->u.i = pc; 788 REGISTER_TRACE(pOp->p1, pIn1); 789 pc = pcDest; 790 break; 791 } 792 793 /* Opcode: HaltIfNull P1 P2 P3 P4 * 794 ** 795 ** Check the value in register P3. If is is NULL then Halt using 796 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 797 ** value in register P3 is not NULL, then this routine is a no-op. 798 */ 799 case OP_HaltIfNull: { /* in3 */ 800 pIn3 = &aMem[pOp->p3]; 801 if( (pIn3->flags & MEM_Null)==0 ) break; 802 /* Fall through into OP_Halt */ 803 } 804 805 /* Opcode: Halt P1 P2 * P4 * 806 ** 807 ** Exit immediately. All open cursors, etc are closed 808 ** automatically. 809 ** 810 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 811 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 812 ** For errors, it can be some other value. If P1!=0 then P2 will determine 813 ** whether or not to rollback the current transaction. Do not rollback 814 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 815 ** then back out all changes that have occurred during this execution of the 816 ** VDBE, but do not rollback the transaction. 817 ** 818 ** If P4 is not null then it is an error message string. 819 ** 820 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 821 ** every program. So a jump past the last instruction of the program 822 ** is the same as executing Halt. 823 */ 824 case OP_Halt: { 825 if( pOp->p1==SQLITE_OK && p->pFrame ){ 826 /* Halt the sub-program. Return control to the parent frame. */ 827 VdbeFrame *pFrame = p->pFrame; 828 p->pFrame = pFrame->pParent; 829 p->nFrame--; 830 sqlite3VdbeSetChanges(db, p->nChange); 831 pc = sqlite3VdbeFrameRestore(pFrame); 832 if( pOp->p2==OE_Ignore ){ 833 /* Instruction pc is the OP_Program that invoked the sub-program 834 ** currently being halted. If the p2 instruction of this OP_Halt 835 ** instruction is set to OE_Ignore, then the sub-program is throwing 836 ** an IGNORE exception. In this case jump to the address specified 837 ** as the p2 of the calling OP_Program. */ 838 pc = p->aOp[pc].p2-1; 839 } 840 aOp = p->aOp; 841 aMem = p->aMem; 842 break; 843 } 844 845 p->rc = pOp->p1; 846 p->errorAction = (u8)pOp->p2; 847 p->pc = pc; 848 if( pOp->p4.z ){ 849 assert( p->rc!=SQLITE_OK ); 850 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 851 testcase( sqlite3GlobalConfig.xLog!=0 ); 852 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); 853 }else if( p->rc ){ 854 testcase( sqlite3GlobalConfig.xLog!=0 ); 855 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); 856 } 857 rc = sqlite3VdbeHalt(p); 858 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 859 if( rc==SQLITE_BUSY ){ 860 p->rc = rc = SQLITE_BUSY; 861 }else{ 862 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ); 863 assert( rc==SQLITE_OK || db->nDeferredCons>0 ); 864 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 865 } 866 goto vdbe_return; 867 } 868 869 /* Opcode: Integer P1 P2 * * * 870 ** 871 ** The 32-bit integer value P1 is written into register P2. 872 */ 873 case OP_Integer: { /* out2-prerelease */ 874 pOut->u.i = pOp->p1; 875 break; 876 } 877 878 /* Opcode: Int64 * P2 * P4 * 879 ** 880 ** P4 is a pointer to a 64-bit integer value. 881 ** Write that value into register P2. 882 */ 883 case OP_Int64: { /* out2-prerelease */ 884 assert( pOp->p4.pI64!=0 ); 885 pOut->u.i = *pOp->p4.pI64; 886 break; 887 } 888 889 #ifndef SQLITE_OMIT_FLOATING_POINT 890 /* Opcode: Real * P2 * P4 * 891 ** 892 ** P4 is a pointer to a 64-bit floating point value. 893 ** Write that value into register P2. 894 */ 895 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 896 pOut->flags = MEM_Real; 897 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 898 pOut->r = *pOp->p4.pReal; 899 break; 900 } 901 #endif 902 903 /* Opcode: String8 * P2 * P4 * 904 ** 905 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 906 ** into an OP_String before it is executed for the first time. 907 */ 908 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 909 assert( pOp->p4.z!=0 ); 910 pOp->opcode = OP_String; 911 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 912 913 #ifndef SQLITE_OMIT_UTF16 914 if( encoding!=SQLITE_UTF8 ){ 915 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 916 if( rc==SQLITE_TOOBIG ) goto too_big; 917 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 918 assert( pOut->zMalloc==pOut->z ); 919 assert( pOut->flags & MEM_Dyn ); 920 pOut->zMalloc = 0; 921 pOut->flags |= MEM_Static; 922 pOut->flags &= ~MEM_Dyn; 923 if( pOp->p4type==P4_DYNAMIC ){ 924 sqlite3DbFree(db, pOp->p4.z); 925 } 926 pOp->p4type = P4_DYNAMIC; 927 pOp->p4.z = pOut->z; 928 pOp->p1 = pOut->n; 929 } 930 #endif 931 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 932 goto too_big; 933 } 934 /* Fall through to the next case, OP_String */ 935 } 936 937 /* Opcode: String P1 P2 * P4 * 938 ** 939 ** The string value P4 of length P1 (bytes) is stored in register P2. 940 */ 941 case OP_String: { /* out2-prerelease */ 942 assert( pOp->p4.z!=0 ); 943 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 944 pOut->z = pOp->p4.z; 945 pOut->n = pOp->p1; 946 pOut->enc = encoding; 947 UPDATE_MAX_BLOBSIZE(pOut); 948 break; 949 } 950 951 /* Opcode: Null * P2 * * * 952 ** 953 ** Write a NULL into register P2. 954 */ 955 case OP_Null: { /* out2-prerelease */ 956 pOut->flags = MEM_Null; 957 break; 958 } 959 960 961 /* Opcode: Blob P1 P2 * P4 962 ** 963 ** P4 points to a blob of data P1 bytes long. Store this 964 ** blob in register P2. 965 */ 966 case OP_Blob: { /* out2-prerelease */ 967 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 968 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 969 pOut->enc = encoding; 970 UPDATE_MAX_BLOBSIZE(pOut); 971 break; 972 } 973 974 /* Opcode: Variable P1 P2 * P4 * 975 ** 976 ** Transfer the values of bound parameter P1 into register P2 977 ** 978 ** If the parameter is named, then its name appears in P4 and P3==1. 979 ** The P4 value is used by sqlite3_bind_parameter_name(). 980 */ 981 case OP_Variable: { /* out2-prerelease */ 982 Mem *pVar; /* Value being transferred */ 983 984 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 985 pVar = &p->aVar[pOp->p1 - 1]; 986 if( sqlite3VdbeMemTooBig(pVar) ){ 987 goto too_big; 988 } 989 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 990 UPDATE_MAX_BLOBSIZE(pOut); 991 break; 992 } 993 994 /* Opcode: Move P1 P2 P3 * * 995 ** 996 ** Move the values in register P1..P1+P3-1 over into 997 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are 998 ** left holding a NULL. It is an error for register ranges 999 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. 1000 */ 1001 case OP_Move: { 1002 char *zMalloc; /* Holding variable for allocated memory */ 1003 int n; /* Number of registers left to copy */ 1004 int p1; /* Register to copy from */ 1005 int p2; /* Register to copy to */ 1006 1007 n = pOp->p3; 1008 p1 = pOp->p1; 1009 p2 = pOp->p2; 1010 assert( n>0 && p1>0 && p2>0 ); 1011 assert( p1+n<=p2 || p2+n<=p1 ); 1012 1013 pIn1 = &aMem[p1]; 1014 pOut = &aMem[p2]; 1015 while( n-- ){ 1016 assert( pOut<=&aMem[p->nMem] ); 1017 assert( pIn1<=&aMem[p->nMem] ); 1018 zMalloc = pOut->zMalloc; 1019 pOut->zMalloc = 0; 1020 sqlite3VdbeMemMove(pOut, pIn1); 1021 pIn1->zMalloc = zMalloc; 1022 REGISTER_TRACE(p2++, pOut); 1023 pIn1++; 1024 pOut++; 1025 } 1026 break; 1027 } 1028 1029 /* Opcode: Copy P1 P2 * * * 1030 ** 1031 ** Make a copy of register P1 into register P2. 1032 ** 1033 ** This instruction makes a deep copy of the value. A duplicate 1034 ** is made of any string or blob constant. See also OP_SCopy. 1035 */ 1036 case OP_Copy: { /* in1, out2 */ 1037 pIn1 = &aMem[pOp->p1]; 1038 pOut = &aMem[pOp->p2]; 1039 assert( pOut!=pIn1 ); 1040 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1041 Deephemeralize(pOut); 1042 REGISTER_TRACE(pOp->p2, pOut); 1043 break; 1044 } 1045 1046 /* Opcode: SCopy P1 P2 * * * 1047 ** 1048 ** Make a shallow copy of register P1 into register P2. 1049 ** 1050 ** This instruction makes a shallow copy of the value. If the value 1051 ** is a string or blob, then the copy is only a pointer to the 1052 ** original and hence if the original changes so will the copy. 1053 ** Worse, if the original is deallocated, the copy becomes invalid. 1054 ** Thus the program must guarantee that the original will not change 1055 ** during the lifetime of the copy. Use OP_Copy to make a complete 1056 ** copy. 1057 */ 1058 case OP_SCopy: { /* in1, out2 */ 1059 pIn1 = &aMem[pOp->p1]; 1060 pOut = &aMem[pOp->p2]; 1061 assert( pOut!=pIn1 ); 1062 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1063 REGISTER_TRACE(pOp->p2, pOut); 1064 break; 1065 } 1066 1067 /* Opcode: ResultRow P1 P2 * * * 1068 ** 1069 ** The registers P1 through P1+P2-1 contain a single row of 1070 ** results. This opcode causes the sqlite3_step() call to terminate 1071 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1072 ** structure to provide access to the top P1 values as the result 1073 ** row. 1074 */ 1075 case OP_ResultRow: { 1076 Mem *pMem; 1077 int i; 1078 assert( p->nResColumn==pOp->p2 ); 1079 assert( pOp->p1>0 ); 1080 assert( pOp->p1+pOp->p2<=p->nMem+1 ); 1081 1082 /* If this statement has violated immediate foreign key constraints, do 1083 ** not return the number of rows modified. And do not RELEASE the statement 1084 ** transaction. It needs to be rolled back. */ 1085 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1086 assert( db->flags&SQLITE_CountRows ); 1087 assert( p->usesStmtJournal ); 1088 break; 1089 } 1090 1091 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1092 ** DML statements invoke this opcode to return the number of rows 1093 ** modified to the user. This is the only way that a VM that 1094 ** opens a statement transaction may invoke this opcode. 1095 ** 1096 ** In case this is such a statement, close any statement transaction 1097 ** opened by this VM before returning control to the user. This is to 1098 ** ensure that statement-transactions are always nested, not overlapping. 1099 ** If the open statement-transaction is not closed here, then the user 1100 ** may step another VM that opens its own statement transaction. This 1101 ** may lead to overlapping statement transactions. 1102 ** 1103 ** The statement transaction is never a top-level transaction. Hence 1104 ** the RELEASE call below can never fail. 1105 */ 1106 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1107 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1108 if( NEVER(rc!=SQLITE_OK) ){ 1109 break; 1110 } 1111 1112 /* Invalidate all ephemeral cursor row caches */ 1113 p->cacheCtr = (p->cacheCtr + 2)|1; 1114 1115 /* Make sure the results of the current row are \000 terminated 1116 ** and have an assigned type. The results are de-ephemeralized as 1117 ** as side effect. 1118 */ 1119 pMem = p->pResultSet = &aMem[pOp->p1]; 1120 for(i=0; i<pOp->p2; i++){ 1121 sqlite3VdbeMemNulTerminate(&pMem[i]); 1122 sqlite3VdbeMemStoreType(&pMem[i]); 1123 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1124 } 1125 if( db->mallocFailed ) goto no_mem; 1126 1127 /* Return SQLITE_ROW 1128 */ 1129 p->pc = pc + 1; 1130 rc = SQLITE_ROW; 1131 goto vdbe_return; 1132 } 1133 1134 /* Opcode: Concat P1 P2 P3 * * 1135 ** 1136 ** Add the text in register P1 onto the end of the text in 1137 ** register P2 and store the result in register P3. 1138 ** If either the P1 or P2 text are NULL then store NULL in P3. 1139 ** 1140 ** P3 = P2 || P1 1141 ** 1142 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1143 ** if P3 is the same register as P2, the implementation is able 1144 ** to avoid a memcpy(). 1145 */ 1146 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1147 i64 nByte; 1148 1149 pIn1 = &aMem[pOp->p1]; 1150 pIn2 = &aMem[pOp->p2]; 1151 pOut = &aMem[pOp->p3]; 1152 assert( pIn1!=pOut ); 1153 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1154 sqlite3VdbeMemSetNull(pOut); 1155 break; 1156 } 1157 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1158 Stringify(pIn1, encoding); 1159 Stringify(pIn2, encoding); 1160 nByte = pIn1->n + pIn2->n; 1161 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1162 goto too_big; 1163 } 1164 MemSetTypeFlag(pOut, MEM_Str); 1165 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1166 goto no_mem; 1167 } 1168 if( pOut!=pIn2 ){ 1169 memcpy(pOut->z, pIn2->z, pIn2->n); 1170 } 1171 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1172 pOut->z[nByte] = 0; 1173 pOut->z[nByte+1] = 0; 1174 pOut->flags |= MEM_Term; 1175 pOut->n = (int)nByte; 1176 pOut->enc = encoding; 1177 UPDATE_MAX_BLOBSIZE(pOut); 1178 break; 1179 } 1180 1181 /* Opcode: Add P1 P2 P3 * * 1182 ** 1183 ** Add the value in register P1 to the value in register P2 1184 ** and store the result in register P3. 1185 ** If either input is NULL, the result is NULL. 1186 */ 1187 /* Opcode: Multiply P1 P2 P3 * * 1188 ** 1189 ** 1190 ** Multiply the value in register P1 by the value in register P2 1191 ** and store the result in register P3. 1192 ** If either input is NULL, the result is NULL. 1193 */ 1194 /* Opcode: Subtract P1 P2 P3 * * 1195 ** 1196 ** Subtract the value in register P1 from the value in register P2 1197 ** and store the result in register P3. 1198 ** If either input is NULL, the result is NULL. 1199 */ 1200 /* Opcode: Divide P1 P2 P3 * * 1201 ** 1202 ** Divide the value in register P1 by the value in register P2 1203 ** and store the result in register P3 (P3=P2/P1). If the value in 1204 ** register P1 is zero, then the result is NULL. If either input is 1205 ** NULL, the result is NULL. 1206 */ 1207 /* Opcode: Remainder P1 P2 P3 * * 1208 ** 1209 ** Compute the remainder after integer division of the value in 1210 ** register P1 by the value in register P2 and store the result in P3. 1211 ** If the value in register P2 is zero the result is NULL. 1212 ** If either operand is NULL, the result is NULL. 1213 */ 1214 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1215 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1216 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1217 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1218 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1219 int flags; /* Combined MEM_* flags from both inputs */ 1220 i64 iA; /* Integer value of left operand */ 1221 i64 iB; /* Integer value of right operand */ 1222 double rA; /* Real value of left operand */ 1223 double rB; /* Real value of right operand */ 1224 1225 pIn1 = &aMem[pOp->p1]; 1226 applyNumericAffinity(pIn1); 1227 pIn2 = &aMem[pOp->p2]; 1228 applyNumericAffinity(pIn2); 1229 pOut = &aMem[pOp->p3]; 1230 flags = pIn1->flags | pIn2->flags; 1231 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1232 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 1233 iA = pIn1->u.i; 1234 iB = pIn2->u.i; 1235 switch( pOp->opcode ){ 1236 case OP_Add: iB += iA; break; 1237 case OP_Subtract: iB -= iA; break; 1238 case OP_Multiply: iB *= iA; break; 1239 case OP_Divide: { 1240 if( iA==0 ) goto arithmetic_result_is_null; 1241 /* Dividing the largest possible negative 64-bit integer (1<<63) by 1242 ** -1 returns an integer too large to store in a 64-bit data-type. On 1243 ** some architectures, the value overflows to (1<<63). On others, 1244 ** a SIGFPE is issued. The following statement normalizes this 1245 ** behavior so that all architectures behave as if integer 1246 ** overflow occurred. 1247 */ 1248 if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1; 1249 iB /= iA; 1250 break; 1251 } 1252 default: { 1253 if( iA==0 ) goto arithmetic_result_is_null; 1254 if( iA==-1 ) iA = 1; 1255 iB %= iA; 1256 break; 1257 } 1258 } 1259 pOut->u.i = iB; 1260 MemSetTypeFlag(pOut, MEM_Int); 1261 }else{ 1262 rA = sqlite3VdbeRealValue(pIn1); 1263 rB = sqlite3VdbeRealValue(pIn2); 1264 switch( pOp->opcode ){ 1265 case OP_Add: rB += rA; break; 1266 case OP_Subtract: rB -= rA; break; 1267 case OP_Multiply: rB *= rA; break; 1268 case OP_Divide: { 1269 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1270 if( rA==(double)0 ) goto arithmetic_result_is_null; 1271 rB /= rA; 1272 break; 1273 } 1274 default: { 1275 iA = (i64)rA; 1276 iB = (i64)rB; 1277 if( iA==0 ) goto arithmetic_result_is_null; 1278 if( iA==-1 ) iA = 1; 1279 rB = (double)(iB % iA); 1280 break; 1281 } 1282 } 1283 #ifdef SQLITE_OMIT_FLOATING_POINT 1284 pOut->u.i = rB; 1285 MemSetTypeFlag(pOut, MEM_Int); 1286 #else 1287 if( sqlite3IsNaN(rB) ){ 1288 goto arithmetic_result_is_null; 1289 } 1290 pOut->r = rB; 1291 MemSetTypeFlag(pOut, MEM_Real); 1292 if( (flags & MEM_Real)==0 ){ 1293 sqlite3VdbeIntegerAffinity(pOut); 1294 } 1295 #endif 1296 } 1297 break; 1298 1299 arithmetic_result_is_null: 1300 sqlite3VdbeMemSetNull(pOut); 1301 break; 1302 } 1303 1304 /* Opcode: CollSeq * * P4 1305 ** 1306 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1307 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1308 ** be returned. This is used by the built-in min(), max() and nullif() 1309 ** functions. 1310 ** 1311 ** The interface used by the implementation of the aforementioned functions 1312 ** to retrieve the collation sequence set by this opcode is not available 1313 ** publicly, only to user functions defined in func.c. 1314 */ 1315 case OP_CollSeq: { 1316 assert( pOp->p4type==P4_COLLSEQ ); 1317 break; 1318 } 1319 1320 /* Opcode: Function P1 P2 P3 P4 P5 1321 ** 1322 ** Invoke a user function (P4 is a pointer to a Function structure that 1323 ** defines the function) with P5 arguments taken from register P2 and 1324 ** successors. The result of the function is stored in register P3. 1325 ** Register P3 must not be one of the function inputs. 1326 ** 1327 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1328 ** function was determined to be constant at compile time. If the first 1329 ** argument was constant then bit 0 of P1 is set. This is used to determine 1330 ** whether meta data associated with a user function argument using the 1331 ** sqlite3_set_auxdata() API may be safely retained until the next 1332 ** invocation of this opcode. 1333 ** 1334 ** See also: AggStep and AggFinal 1335 */ 1336 case OP_Function: { 1337 int i; 1338 Mem *pArg; 1339 sqlite3_context ctx; 1340 sqlite3_value **apVal; 1341 int n; 1342 1343 n = pOp->p5; 1344 apVal = p->apArg; 1345 assert( apVal || n==0 ); 1346 1347 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); 1348 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1349 pArg = &aMem[pOp->p2]; 1350 for(i=0; i<n; i++, pArg++){ 1351 apVal[i] = pArg; 1352 sqlite3VdbeMemStoreType(pArg); 1353 REGISTER_TRACE(pOp->p2+i, pArg); 1354 } 1355 1356 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); 1357 if( pOp->p4type==P4_FUNCDEF ){ 1358 ctx.pFunc = pOp->p4.pFunc; 1359 ctx.pVdbeFunc = 0; 1360 }else{ 1361 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; 1362 ctx.pFunc = ctx.pVdbeFunc->pFunc; 1363 } 1364 1365 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 1366 pOut = &aMem[pOp->p3]; 1367 ctx.s.flags = MEM_Null; 1368 ctx.s.db = db; 1369 ctx.s.xDel = 0; 1370 ctx.s.zMalloc = 0; 1371 1372 /* The output cell may already have a buffer allocated. Move 1373 ** the pointer to ctx.s so in case the user-function can use 1374 ** the already allocated buffer instead of allocating a new one. 1375 */ 1376 sqlite3VdbeMemMove(&ctx.s, pOut); 1377 MemSetTypeFlag(&ctx.s, MEM_Null); 1378 1379 ctx.isError = 0; 1380 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 1381 assert( pOp>aOp ); 1382 assert( pOp[-1].p4type==P4_COLLSEQ ); 1383 assert( pOp[-1].opcode==OP_CollSeq ); 1384 ctx.pColl = pOp[-1].p4.pColl; 1385 } 1386 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1387 if( db->mallocFailed ){ 1388 /* Even though a malloc() has failed, the implementation of the 1389 ** user function may have called an sqlite3_result_XXX() function 1390 ** to return a value. The following call releases any resources 1391 ** associated with such a value. 1392 */ 1393 sqlite3VdbeMemRelease(&ctx.s); 1394 goto no_mem; 1395 } 1396 1397 /* If any auxiliary data functions have been called by this user function, 1398 ** immediately call the destructor for any non-static values. 1399 */ 1400 if( ctx.pVdbeFunc ){ 1401 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); 1402 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; 1403 pOp->p4type = P4_VDBEFUNC; 1404 } 1405 1406 /* If the function returned an error, throw an exception */ 1407 if( ctx.isError ){ 1408 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1409 rc = ctx.isError; 1410 } 1411 1412 /* Copy the result of the function into register P3 */ 1413 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1414 sqlite3VdbeMemMove(pOut, &ctx.s); 1415 if( sqlite3VdbeMemTooBig(pOut) ){ 1416 goto too_big; 1417 } 1418 REGISTER_TRACE(pOp->p3, pOut); 1419 UPDATE_MAX_BLOBSIZE(pOut); 1420 break; 1421 } 1422 1423 /* Opcode: BitAnd P1 P2 P3 * * 1424 ** 1425 ** Take the bit-wise AND of the values in register P1 and P2 and 1426 ** store the result in register P3. 1427 ** If either input is NULL, the result is NULL. 1428 */ 1429 /* Opcode: BitOr P1 P2 P3 * * 1430 ** 1431 ** Take the bit-wise OR of the values in register P1 and P2 and 1432 ** store the result in register P3. 1433 ** If either input is NULL, the result is NULL. 1434 */ 1435 /* Opcode: ShiftLeft P1 P2 P3 * * 1436 ** 1437 ** Shift the integer value in register P2 to the left by the 1438 ** number of bits specified by the integer in register P1. 1439 ** Store the result in register P3. 1440 ** If either input is NULL, the result is NULL. 1441 */ 1442 /* Opcode: ShiftRight P1 P2 P3 * * 1443 ** 1444 ** Shift the integer value in register P2 to the right by the 1445 ** number of bits specified by the integer in register P1. 1446 ** Store the result in register P3. 1447 ** If either input is NULL, the result is NULL. 1448 */ 1449 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1450 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1451 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1452 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1453 i64 a; 1454 i64 b; 1455 1456 pIn1 = &aMem[pOp->p1]; 1457 pIn2 = &aMem[pOp->p2]; 1458 pOut = &aMem[pOp->p3]; 1459 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1460 sqlite3VdbeMemSetNull(pOut); 1461 break; 1462 } 1463 a = sqlite3VdbeIntValue(pIn2); 1464 b = sqlite3VdbeIntValue(pIn1); 1465 switch( pOp->opcode ){ 1466 case OP_BitAnd: a &= b; break; 1467 case OP_BitOr: a |= b; break; 1468 case OP_ShiftLeft: a <<= b; break; 1469 default: assert( pOp->opcode==OP_ShiftRight ); 1470 a >>= b; break; 1471 } 1472 pOut->u.i = a; 1473 MemSetTypeFlag(pOut, MEM_Int); 1474 break; 1475 } 1476 1477 /* Opcode: AddImm P1 P2 * * * 1478 ** 1479 ** Add the constant P2 to the value in register P1. 1480 ** The result is always an integer. 1481 ** 1482 ** To force any register to be an integer, just add 0. 1483 */ 1484 case OP_AddImm: { /* in1 */ 1485 pIn1 = &aMem[pOp->p1]; 1486 sqlite3VdbeMemIntegerify(pIn1); 1487 pIn1->u.i += pOp->p2; 1488 break; 1489 } 1490 1491 /* Opcode: MustBeInt P1 P2 * * * 1492 ** 1493 ** Force the value in register P1 to be an integer. If the value 1494 ** in P1 is not an integer and cannot be converted into an integer 1495 ** without data loss, then jump immediately to P2, or if P2==0 1496 ** raise an SQLITE_MISMATCH exception. 1497 */ 1498 case OP_MustBeInt: { /* jump, in1 */ 1499 pIn1 = &aMem[pOp->p1]; 1500 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1501 if( (pIn1->flags & MEM_Int)==0 ){ 1502 if( pOp->p2==0 ){ 1503 rc = SQLITE_MISMATCH; 1504 goto abort_due_to_error; 1505 }else{ 1506 pc = pOp->p2 - 1; 1507 } 1508 }else{ 1509 MemSetTypeFlag(pIn1, MEM_Int); 1510 } 1511 break; 1512 } 1513 1514 #ifndef SQLITE_OMIT_FLOATING_POINT 1515 /* Opcode: RealAffinity P1 * * * * 1516 ** 1517 ** If register P1 holds an integer convert it to a real value. 1518 ** 1519 ** This opcode is used when extracting information from a column that 1520 ** has REAL affinity. Such column values may still be stored as 1521 ** integers, for space efficiency, but after extraction we want them 1522 ** to have only a real value. 1523 */ 1524 case OP_RealAffinity: { /* in1 */ 1525 pIn1 = &aMem[pOp->p1]; 1526 if( pIn1->flags & MEM_Int ){ 1527 sqlite3VdbeMemRealify(pIn1); 1528 } 1529 break; 1530 } 1531 #endif 1532 1533 #ifndef SQLITE_OMIT_CAST 1534 /* Opcode: ToText P1 * * * * 1535 ** 1536 ** Force the value in register P1 to be text. 1537 ** If the value is numeric, convert it to a string using the 1538 ** equivalent of printf(). Blob values are unchanged and 1539 ** are afterwards simply interpreted as text. 1540 ** 1541 ** A NULL value is not changed by this routine. It remains NULL. 1542 */ 1543 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1544 pIn1 = &aMem[pOp->p1]; 1545 if( pIn1->flags & MEM_Null ) break; 1546 assert( MEM_Str==(MEM_Blob>>3) ); 1547 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1548 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1549 rc = ExpandBlob(pIn1); 1550 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1551 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1552 UPDATE_MAX_BLOBSIZE(pIn1); 1553 break; 1554 } 1555 1556 /* Opcode: ToBlob P1 * * * * 1557 ** 1558 ** Force the value in register P1 to be a BLOB. 1559 ** If the value is numeric, convert it to a string first. 1560 ** Strings are simply reinterpreted as blobs with no change 1561 ** to the underlying data. 1562 ** 1563 ** A NULL value is not changed by this routine. It remains NULL. 1564 */ 1565 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1566 pIn1 = &aMem[pOp->p1]; 1567 if( pIn1->flags & MEM_Null ) break; 1568 if( (pIn1->flags & MEM_Blob)==0 ){ 1569 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1570 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1571 MemSetTypeFlag(pIn1, MEM_Blob); 1572 }else{ 1573 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1574 } 1575 UPDATE_MAX_BLOBSIZE(pIn1); 1576 break; 1577 } 1578 1579 /* Opcode: ToNumeric P1 * * * * 1580 ** 1581 ** Force the value in register P1 to be numeric (either an 1582 ** integer or a floating-point number.) 1583 ** If the value is text or blob, try to convert it to an using the 1584 ** equivalent of atoi() or atof() and store 0 if no such conversion 1585 ** is possible. 1586 ** 1587 ** A NULL value is not changed by this routine. It remains NULL. 1588 */ 1589 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1590 pIn1 = &aMem[pOp->p1]; 1591 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ 1592 sqlite3VdbeMemNumerify(pIn1); 1593 } 1594 break; 1595 } 1596 #endif /* SQLITE_OMIT_CAST */ 1597 1598 /* Opcode: ToInt P1 * * * * 1599 ** 1600 ** Force the value in register P1 to be an integer. If 1601 ** The value is currently a real number, drop its fractional part. 1602 ** If the value is text or blob, try to convert it to an integer using the 1603 ** equivalent of atoi() and store 0 if no such conversion is possible. 1604 ** 1605 ** A NULL value is not changed by this routine. It remains NULL. 1606 */ 1607 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1608 pIn1 = &aMem[pOp->p1]; 1609 if( (pIn1->flags & MEM_Null)==0 ){ 1610 sqlite3VdbeMemIntegerify(pIn1); 1611 } 1612 break; 1613 } 1614 1615 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1616 /* Opcode: ToReal P1 * * * * 1617 ** 1618 ** Force the value in register P1 to be a floating point number. 1619 ** If The value is currently an integer, convert it. 1620 ** If the value is text or blob, try to convert it to an integer using the 1621 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1622 ** 1623 ** A NULL value is not changed by this routine. It remains NULL. 1624 */ 1625 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1626 pIn1 = &aMem[pOp->p1]; 1627 if( (pIn1->flags & MEM_Null)==0 ){ 1628 sqlite3VdbeMemRealify(pIn1); 1629 } 1630 break; 1631 } 1632 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1633 1634 /* Opcode: Lt P1 P2 P3 P4 P5 1635 ** 1636 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1637 ** jump to address P2. 1638 ** 1639 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1640 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1641 ** bit is clear then fall through if either operand is NULL. 1642 ** 1643 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1644 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1645 ** to coerce both inputs according to this affinity before the 1646 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1647 ** affinity is used. Note that the affinity conversions are stored 1648 ** back into the input registers P1 and P3. So this opcode can cause 1649 ** persistent changes to registers P1 and P3. 1650 ** 1651 ** Once any conversions have taken place, and neither value is NULL, 1652 ** the values are compared. If both values are blobs then memcmp() is 1653 ** used to determine the results of the comparison. If both values 1654 ** are text, then the appropriate collating function specified in 1655 ** P4 is used to do the comparison. If P4 is not specified then 1656 ** memcmp() is used to compare text string. If both values are 1657 ** numeric, then a numeric comparison is used. If the two values 1658 ** are of different types, then numbers are considered less than 1659 ** strings and strings are considered less than blobs. 1660 ** 1661 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1662 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1663 */ 1664 /* Opcode: Ne P1 P2 P3 P4 P5 1665 ** 1666 ** This works just like the Lt opcode except that the jump is taken if 1667 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1668 ** additional information. 1669 ** 1670 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1671 ** true or false and is never NULL. If both operands are NULL then the result 1672 ** of comparison is false. If either operand is NULL then the result is true. 1673 ** If neither operand is NULL the the result is the same as it would be if 1674 ** the SQLITE_NULLEQ flag were omitted from P5. 1675 */ 1676 /* Opcode: Eq P1 P2 P3 P4 P5 1677 ** 1678 ** This works just like the Lt opcode except that the jump is taken if 1679 ** the operands in registers P1 and P3 are equal. 1680 ** See the Lt opcode for additional information. 1681 ** 1682 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1683 ** true or false and is never NULL. If both operands are NULL then the result 1684 ** of comparison is true. If either operand is NULL then the result is false. 1685 ** If neither operand is NULL the the result is the same as it would be if 1686 ** the SQLITE_NULLEQ flag were omitted from P5. 1687 */ 1688 /* Opcode: Le P1 P2 P3 P4 P5 1689 ** 1690 ** This works just like the Lt opcode except that the jump is taken if 1691 ** the content of register P3 is less than or equal to the content of 1692 ** register P1. See the Lt opcode for additional information. 1693 */ 1694 /* Opcode: Gt P1 P2 P3 P4 P5 1695 ** 1696 ** This works just like the Lt opcode except that the jump is taken if 1697 ** the content of register P3 is greater than the content of 1698 ** register P1. See the Lt opcode for additional information. 1699 */ 1700 /* Opcode: Ge P1 P2 P3 P4 P5 1701 ** 1702 ** This works just like the Lt opcode except that the jump is taken if 1703 ** the content of register P3 is greater than or equal to the content of 1704 ** register P1. See the Lt opcode for additional information. 1705 */ 1706 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1707 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1708 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1709 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1710 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1711 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1712 int res; /* Result of the comparison of pIn1 against pIn3 */ 1713 char affinity; /* Affinity to use for comparison */ 1714 u16 flags1; /* Copy of initial value of pIn1->flags */ 1715 u16 flags3; /* Copy of initial value of pIn3->flags */ 1716 1717 pIn1 = &aMem[pOp->p1]; 1718 pIn3 = &aMem[pOp->p3]; 1719 flags1 = pIn1->flags; 1720 flags3 = pIn3->flags; 1721 if( (pIn1->flags | pIn3->flags)&MEM_Null ){ 1722 /* One or both operands are NULL */ 1723 if( pOp->p5 & SQLITE_NULLEQ ){ 1724 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1725 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1726 ** or not both operands are null. 1727 */ 1728 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1729 res = (pIn1->flags & pIn3->flags & MEM_Null)==0; 1730 }else{ 1731 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1732 ** then the result is always NULL. 1733 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1734 */ 1735 if( pOp->p5 & SQLITE_STOREP2 ){ 1736 pOut = &aMem[pOp->p2]; 1737 MemSetTypeFlag(pOut, MEM_Null); 1738 REGISTER_TRACE(pOp->p2, pOut); 1739 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1740 pc = pOp->p2-1; 1741 } 1742 break; 1743 } 1744 }else{ 1745 /* Neither operand is NULL. Do a comparison. */ 1746 affinity = pOp->p5 & SQLITE_AFF_MASK; 1747 if( affinity ){ 1748 applyAffinity(pIn1, affinity, encoding); 1749 applyAffinity(pIn3, affinity, encoding); 1750 if( db->mallocFailed ) goto no_mem; 1751 } 1752 1753 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1754 ExpandBlob(pIn1); 1755 ExpandBlob(pIn3); 1756 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1757 } 1758 switch( pOp->opcode ){ 1759 case OP_Eq: res = res==0; break; 1760 case OP_Ne: res = res!=0; break; 1761 case OP_Lt: res = res<0; break; 1762 case OP_Le: res = res<=0; break; 1763 case OP_Gt: res = res>0; break; 1764 default: res = res>=0; break; 1765 } 1766 1767 if( pOp->p5 & SQLITE_STOREP2 ){ 1768 pOut = &aMem[pOp->p2]; 1769 MemSetTypeFlag(pOut, MEM_Int); 1770 pOut->u.i = res; 1771 REGISTER_TRACE(pOp->p2, pOut); 1772 }else if( res ){ 1773 pc = pOp->p2-1; 1774 } 1775 1776 /* Undo any changes made by applyAffinity() to the input registers. */ 1777 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 1778 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 1779 break; 1780 } 1781 1782 /* Opcode: Permutation * * * P4 * 1783 ** 1784 ** Set the permutation used by the OP_Compare operator to be the array 1785 ** of integers in P4. 1786 ** 1787 ** The permutation is only valid until the next OP_Permutation, OP_Compare, 1788 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur 1789 ** immediately prior to the OP_Compare. 1790 */ 1791 case OP_Permutation: { 1792 assert( pOp->p4type==P4_INTARRAY ); 1793 assert( pOp->p4.ai ); 1794 aPermute = pOp->p4.ai; 1795 break; 1796 } 1797 1798 /* Opcode: Compare P1 P2 P3 P4 * 1799 ** 1800 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1801 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1802 ** the comparison for use by the next OP_Jump instruct. 1803 ** 1804 ** P4 is a KeyInfo structure that defines collating sequences and sort 1805 ** orders for the comparison. The permutation applies to registers 1806 ** only. The KeyInfo elements are used sequentially. 1807 ** 1808 ** The comparison is a sort comparison, so NULLs compare equal, 1809 ** NULLs are less than numbers, numbers are less than strings, 1810 ** and strings are less than blobs. 1811 */ 1812 case OP_Compare: { 1813 int n; 1814 int i; 1815 int p1; 1816 int p2; 1817 const KeyInfo *pKeyInfo; 1818 int idx; 1819 CollSeq *pColl; /* Collating sequence to use on this term */ 1820 int bRev; /* True for DESCENDING sort order */ 1821 1822 n = pOp->p3; 1823 pKeyInfo = pOp->p4.pKeyInfo; 1824 assert( n>0 ); 1825 assert( pKeyInfo!=0 ); 1826 p1 = pOp->p1; 1827 p2 = pOp->p2; 1828 #if SQLITE_DEBUG 1829 if( aPermute ){ 1830 int k, mx = 0; 1831 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 1832 assert( p1>0 && p1+mx<=p->nMem+1 ); 1833 assert( p2>0 && p2+mx<=p->nMem+1 ); 1834 }else{ 1835 assert( p1>0 && p1+n<=p->nMem+1 ); 1836 assert( p2>0 && p2+n<=p->nMem+1 ); 1837 } 1838 #endif /* SQLITE_DEBUG */ 1839 for(i=0; i<n; i++){ 1840 idx = aPermute ? aPermute[i] : i; 1841 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 1842 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 1843 assert( i<pKeyInfo->nField ); 1844 pColl = pKeyInfo->aColl[i]; 1845 bRev = pKeyInfo->aSortOrder[i]; 1846 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 1847 if( iCompare ){ 1848 if( bRev ) iCompare = -iCompare; 1849 break; 1850 } 1851 } 1852 aPermute = 0; 1853 break; 1854 } 1855 1856 /* Opcode: Jump P1 P2 P3 * * 1857 ** 1858 ** Jump to the instruction at address P1, P2, or P3 depending on whether 1859 ** in the most recent OP_Compare instruction the P1 vector was less than 1860 ** equal to, or greater than the P2 vector, respectively. 1861 */ 1862 case OP_Jump: { /* jump */ 1863 if( iCompare<0 ){ 1864 pc = pOp->p1 - 1; 1865 }else if( iCompare==0 ){ 1866 pc = pOp->p2 - 1; 1867 }else{ 1868 pc = pOp->p3 - 1; 1869 } 1870 break; 1871 } 1872 1873 /* Opcode: And P1 P2 P3 * * 1874 ** 1875 ** Take the logical AND of the values in registers P1 and P2 and 1876 ** write the result into register P3. 1877 ** 1878 ** If either P1 or P2 is 0 (false) then the result is 0 even if 1879 ** the other input is NULL. A NULL and true or two NULLs give 1880 ** a NULL output. 1881 */ 1882 /* Opcode: Or P1 P2 P3 * * 1883 ** 1884 ** Take the logical OR of the values in register P1 and P2 and 1885 ** store the answer in register P3. 1886 ** 1887 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 1888 ** even if the other input is NULL. A NULL and false or two NULLs 1889 ** give a NULL output. 1890 */ 1891 case OP_And: /* same as TK_AND, in1, in2, out3 */ 1892 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 1893 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1894 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1895 1896 pIn1 = &aMem[pOp->p1]; 1897 if( pIn1->flags & MEM_Null ){ 1898 v1 = 2; 1899 }else{ 1900 v1 = sqlite3VdbeIntValue(pIn1)!=0; 1901 } 1902 pIn2 = &aMem[pOp->p2]; 1903 if( pIn2->flags & MEM_Null ){ 1904 v2 = 2; 1905 }else{ 1906 v2 = sqlite3VdbeIntValue(pIn2)!=0; 1907 } 1908 if( pOp->opcode==OP_And ){ 1909 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 1910 v1 = and_logic[v1*3+v2]; 1911 }else{ 1912 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 1913 v1 = or_logic[v1*3+v2]; 1914 } 1915 pOut = &aMem[pOp->p3]; 1916 if( v1==2 ){ 1917 MemSetTypeFlag(pOut, MEM_Null); 1918 }else{ 1919 pOut->u.i = v1; 1920 MemSetTypeFlag(pOut, MEM_Int); 1921 } 1922 break; 1923 } 1924 1925 /* Opcode: Not P1 P2 * * * 1926 ** 1927 ** Interpret the value in register P1 as a boolean value. Store the 1928 ** boolean complement in register P2. If the value in register P1 is 1929 ** NULL, then a NULL is stored in P2. 1930 */ 1931 case OP_Not: { /* same as TK_NOT, in1, out2 */ 1932 pIn1 = &aMem[pOp->p1]; 1933 pOut = &aMem[pOp->p2]; 1934 if( pIn1->flags & MEM_Null ){ 1935 sqlite3VdbeMemSetNull(pOut); 1936 }else{ 1937 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 1938 } 1939 break; 1940 } 1941 1942 /* Opcode: BitNot P1 P2 * * * 1943 ** 1944 ** Interpret the content of register P1 as an integer. Store the 1945 ** ones-complement of the P1 value into register P2. If P1 holds 1946 ** a NULL then store a NULL in P2. 1947 */ 1948 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 1949 pIn1 = &aMem[pOp->p1]; 1950 pOut = &aMem[pOp->p2]; 1951 if( pIn1->flags & MEM_Null ){ 1952 sqlite3VdbeMemSetNull(pOut); 1953 }else{ 1954 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 1955 } 1956 break; 1957 } 1958 1959 /* Opcode: If P1 P2 P3 * * 1960 ** 1961 ** Jump to P2 if the value in register P1 is true. The value is 1962 ** is considered true if it is numeric and non-zero. If the value 1963 ** in P1 is NULL then take the jump if P3 is true. 1964 */ 1965 /* Opcode: IfNot P1 P2 P3 * * 1966 ** 1967 ** Jump to P2 if the value in register P1 is False. The value is 1968 ** is considered true if it has a numeric value of zero. If the value 1969 ** in P1 is NULL then take the jump if P3 is true. 1970 */ 1971 case OP_If: /* jump, in1 */ 1972 case OP_IfNot: { /* jump, in1 */ 1973 int c; 1974 pIn1 = &aMem[pOp->p1]; 1975 if( pIn1->flags & MEM_Null ){ 1976 c = pOp->p3; 1977 }else{ 1978 #ifdef SQLITE_OMIT_FLOATING_POINT 1979 c = sqlite3VdbeIntValue(pIn1)!=0; 1980 #else 1981 c = sqlite3VdbeRealValue(pIn1)!=0.0; 1982 #endif 1983 if( pOp->opcode==OP_IfNot ) c = !c; 1984 } 1985 if( c ){ 1986 pc = pOp->p2-1; 1987 } 1988 break; 1989 } 1990 1991 /* Opcode: IsNull P1 P2 * * * 1992 ** 1993 ** Jump to P2 if the value in register P1 is NULL. 1994 */ 1995 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 1996 pIn1 = &aMem[pOp->p1]; 1997 if( (pIn1->flags & MEM_Null)!=0 ){ 1998 pc = pOp->p2 - 1; 1999 } 2000 break; 2001 } 2002 2003 /* Opcode: NotNull P1 P2 * * * 2004 ** 2005 ** Jump to P2 if the value in register P1 is not NULL. 2006 */ 2007 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2008 pIn1 = &aMem[pOp->p1]; 2009 if( (pIn1->flags & MEM_Null)==0 ){ 2010 pc = pOp->p2 - 1; 2011 } 2012 break; 2013 } 2014 2015 /* Opcode: Column P1 P2 P3 P4 P5 2016 ** 2017 ** Interpret the data that cursor P1 points to as a structure built using 2018 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2019 ** information about the format of the data.) Extract the P2-th column 2020 ** from this record. If there are less that (P2+1) 2021 ** values in the record, extract a NULL. 2022 ** 2023 ** The value extracted is stored in register P3. 2024 ** 2025 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2026 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2027 ** the result. 2028 ** 2029 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2030 ** then the cache of the cursor is reset prior to extracting the column. 2031 ** The first OP_Column against a pseudo-table after the value of the content 2032 ** register has changed should have this bit set. 2033 */ 2034 case OP_Column: { 2035 u32 payloadSize; /* Number of bytes in the record */ 2036 i64 payloadSize64; /* Number of bytes in the record */ 2037 int p1; /* P1 value of the opcode */ 2038 int p2; /* column number to retrieve */ 2039 VdbeCursor *pC; /* The VDBE cursor */ 2040 char *zRec; /* Pointer to complete record-data */ 2041 BtCursor *pCrsr; /* The BTree cursor */ 2042 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2043 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2044 int nField; /* number of fields in the record */ 2045 int len; /* The length of the serialized data for the column */ 2046 int i; /* Loop counter */ 2047 char *zData; /* Part of the record being decoded */ 2048 Mem *pDest; /* Where to write the extracted value */ 2049 Mem sMem; /* For storing the record being decoded */ 2050 u8 *zIdx; /* Index into header */ 2051 u8 *zEndHdr; /* Pointer to first byte after the header */ 2052 u32 offset; /* Offset into the data */ 2053 u32 szField; /* Number of bytes in the content of a field */ 2054 int szHdr; /* Size of the header size field at start of record */ 2055 int avail; /* Number of bytes of available data */ 2056 Mem *pReg; /* PseudoTable input register */ 2057 2058 2059 p1 = pOp->p1; 2060 p2 = pOp->p2; 2061 pC = 0; 2062 memset(&sMem, 0, sizeof(sMem)); 2063 assert( p1<p->nCursor ); 2064 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2065 pDest = &aMem[pOp->p3]; 2066 MemSetTypeFlag(pDest, MEM_Null); 2067 zRec = 0; 2068 2069 /* This block sets the variable payloadSize to be the total number of 2070 ** bytes in the record. 2071 ** 2072 ** zRec is set to be the complete text of the record if it is available. 2073 ** The complete record text is always available for pseudo-tables 2074 ** If the record is stored in a cursor, the complete record text 2075 ** might be available in the pC->aRow cache. Or it might not be. 2076 ** If the data is unavailable, zRec is set to NULL. 2077 ** 2078 ** We also compute the number of columns in the record. For cursors, 2079 ** the number of columns is stored in the VdbeCursor.nField element. 2080 */ 2081 pC = p->apCsr[p1]; 2082 assert( pC!=0 ); 2083 #ifndef SQLITE_OMIT_VIRTUALTABLE 2084 assert( pC->pVtabCursor==0 ); 2085 #endif 2086 pCrsr = pC->pCursor; 2087 if( pCrsr!=0 ){ 2088 /* The record is stored in a B-Tree */ 2089 rc = sqlite3VdbeCursorMoveto(pC); 2090 if( rc ) goto abort_due_to_error; 2091 if( pC->nullRow ){ 2092 payloadSize = 0; 2093 }else if( pC->cacheStatus==p->cacheCtr ){ 2094 payloadSize = pC->payloadSize; 2095 zRec = (char*)pC->aRow; 2096 }else if( pC->isIndex ){ 2097 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2098 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2099 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2100 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2101 ** payload size, so it is impossible for payloadSize64 to be 2102 ** larger than 32 bits. */ 2103 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2104 payloadSize = (u32)payloadSize64; 2105 }else{ 2106 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2107 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); 2108 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2109 } 2110 }else if( pC->pseudoTableReg>0 ){ 2111 pReg = &aMem[pC->pseudoTableReg]; 2112 assert( pReg->flags & MEM_Blob ); 2113 payloadSize = pReg->n; 2114 zRec = pReg->z; 2115 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; 2116 assert( payloadSize==0 || zRec!=0 ); 2117 }else{ 2118 /* Consider the row to be NULL */ 2119 payloadSize = 0; 2120 } 2121 2122 /* If payloadSize is 0, then just store a NULL */ 2123 if( payloadSize==0 ){ 2124 assert( pDest->flags&MEM_Null ); 2125 goto op_column_out; 2126 } 2127 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); 2128 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2129 goto too_big; 2130 } 2131 2132 nField = pC->nField; 2133 assert( p2<nField ); 2134 2135 /* Read and parse the table header. Store the results of the parse 2136 ** into the record header cache fields of the cursor. 2137 */ 2138 aType = pC->aType; 2139 if( pC->cacheStatus==p->cacheCtr ){ 2140 aOffset = pC->aOffset; 2141 }else{ 2142 assert(aType); 2143 avail = 0; 2144 pC->aOffset = aOffset = &aType[nField]; 2145 pC->payloadSize = payloadSize; 2146 pC->cacheStatus = p->cacheCtr; 2147 2148 /* Figure out how many bytes are in the header */ 2149 if( zRec ){ 2150 zData = zRec; 2151 }else{ 2152 if( pC->isIndex ){ 2153 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); 2154 }else{ 2155 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); 2156 } 2157 /* If KeyFetch()/DataFetch() managed to get the entire payload, 2158 ** save the payload in the pC->aRow cache. That will save us from 2159 ** having to make additional calls to fetch the content portion of 2160 ** the record. 2161 */ 2162 assert( avail>=0 ); 2163 if( payloadSize <= (u32)avail ){ 2164 zRec = zData; 2165 pC->aRow = (u8*)zData; 2166 }else{ 2167 pC->aRow = 0; 2168 } 2169 } 2170 /* The following assert is true in all cases accept when 2171 ** the database file has been corrupted externally. 2172 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ 2173 szHdr = getVarint32((u8*)zData, offset); 2174 2175 /* Make sure a corrupt database has not given us an oversize header. 2176 ** Do this now to avoid an oversize memory allocation. 2177 ** 2178 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2179 ** types use so much data space that there can only be 4096 and 32 of 2180 ** them, respectively. So the maximum header length results from a 2181 ** 3-byte type for each of the maximum of 32768 columns plus three 2182 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2183 */ 2184 if( offset > 98307 ){ 2185 rc = SQLITE_CORRUPT_BKPT; 2186 goto op_column_out; 2187 } 2188 2189 /* Compute in len the number of bytes of data we need to read in order 2190 ** to get nField type values. offset is an upper bound on this. But 2191 ** nField might be significantly less than the true number of columns 2192 ** in the table, and in that case, 5*nField+3 might be smaller than offset. 2193 ** We want to minimize len in order to limit the size of the memory 2194 ** allocation, especially if a corrupt database file has caused offset 2195 ** to be oversized. Offset is limited to 98307 above. But 98307 might 2196 ** still exceed Robson memory allocation limits on some configurations. 2197 ** On systems that cannot tolerate large memory allocations, nField*5+3 2198 ** will likely be much smaller since nField will likely be less than 2199 ** 20 or so. This insures that Robson memory allocation limits are 2200 ** not exceeded even for corrupt database files. 2201 */ 2202 len = nField*5 + 3; 2203 if( len > (int)offset ) len = (int)offset; 2204 2205 /* The KeyFetch() or DataFetch() above are fast and will get the entire 2206 ** record header in most cases. But they will fail to get the complete 2207 ** record header if the record header does not fit on a single page 2208 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to 2209 ** acquire the complete header text. 2210 */ 2211 if( !zRec && avail<len ){ 2212 sMem.flags = 0; 2213 sMem.db = 0; 2214 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); 2215 if( rc!=SQLITE_OK ){ 2216 goto op_column_out; 2217 } 2218 zData = sMem.z; 2219 } 2220 zEndHdr = (u8 *)&zData[len]; 2221 zIdx = (u8 *)&zData[szHdr]; 2222 2223 /* Scan the header and use it to fill in the aType[] and aOffset[] 2224 ** arrays. aType[i] will contain the type integer for the i-th 2225 ** column and aOffset[i] will contain the offset from the beginning 2226 ** of the record to the start of the data for the i-th column 2227 */ 2228 for(i=0; i<nField; i++){ 2229 if( zIdx<zEndHdr ){ 2230 aOffset[i] = offset; 2231 zIdx += getVarint32(zIdx, aType[i]); 2232 szField = sqlite3VdbeSerialTypeLen(aType[i]); 2233 offset += szField; 2234 if( offset<szField ){ /* True if offset overflows */ 2235 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2236 break; 2237 } 2238 }else{ 2239 /* If i is less that nField, then there are less fields in this 2240 ** record than SetNumColumns indicated there are columns in the 2241 ** table. Set the offset for any extra columns not present in 2242 ** the record to 0. This tells code below to store a NULL 2243 ** instead of deserializing a value from the record. 2244 */ 2245 aOffset[i] = 0; 2246 } 2247 } 2248 sqlite3VdbeMemRelease(&sMem); 2249 sMem.flags = MEM_Null; 2250 2251 /* If we have read more header data than was contained in the header, 2252 ** or if the end of the last field appears to be past the end of the 2253 ** record, or if the end of the last field appears to be before the end 2254 ** of the record (when all fields present), then we must be dealing 2255 ** with a corrupt database. 2256 */ 2257 if( (zIdx > zEndHdr) || (offset > payloadSize) 2258 || (zIdx==zEndHdr && offset!=payloadSize) ){ 2259 rc = SQLITE_CORRUPT_BKPT; 2260 goto op_column_out; 2261 } 2262 } 2263 2264 /* Get the column information. If aOffset[p2] is non-zero, then 2265 ** deserialize the value from the record. If aOffset[p2] is zero, 2266 ** then there are not enough fields in the record to satisfy the 2267 ** request. In this case, set the value NULL or to P4 if P4 is 2268 ** a pointer to a Mem object. 2269 */ 2270 if( aOffset[p2] ){ 2271 assert( rc==SQLITE_OK ); 2272 if( zRec ){ 2273 sqlite3VdbeMemReleaseExternal(pDest); 2274 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); 2275 }else{ 2276 len = sqlite3VdbeSerialTypeLen(aType[p2]); 2277 sqlite3VdbeMemMove(&sMem, pDest); 2278 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); 2279 if( rc!=SQLITE_OK ){ 2280 goto op_column_out; 2281 } 2282 zData = sMem.z; 2283 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); 2284 } 2285 pDest->enc = encoding; 2286 }else{ 2287 if( pOp->p4type==P4_MEM ){ 2288 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2289 }else{ 2290 assert( pDest->flags&MEM_Null ); 2291 } 2292 } 2293 2294 /* If we dynamically allocated space to hold the data (in the 2295 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2296 ** dynamically allocated space over to the pDest structure. 2297 ** This prevents a memory copy. 2298 */ 2299 if( sMem.zMalloc ){ 2300 assert( sMem.z==sMem.zMalloc ); 2301 assert( !(pDest->flags & MEM_Dyn) ); 2302 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 2303 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2304 pDest->flags |= MEM_Term; 2305 pDest->z = sMem.z; 2306 pDest->zMalloc = sMem.zMalloc; 2307 } 2308 2309 rc = sqlite3VdbeMemMakeWriteable(pDest); 2310 2311 op_column_out: 2312 UPDATE_MAX_BLOBSIZE(pDest); 2313 REGISTER_TRACE(pOp->p3, pDest); 2314 break; 2315 } 2316 2317 /* Opcode: Affinity P1 P2 * P4 * 2318 ** 2319 ** Apply affinities to a range of P2 registers starting with P1. 2320 ** 2321 ** P4 is a string that is P2 characters long. The nth character of the 2322 ** string indicates the column affinity that should be used for the nth 2323 ** memory cell in the range. 2324 */ 2325 case OP_Affinity: { 2326 const char *zAffinity; /* The affinity to be applied */ 2327 char cAff; /* A single character of affinity */ 2328 2329 zAffinity = pOp->p4.z; 2330 assert( zAffinity!=0 ); 2331 assert( zAffinity[pOp->p2]==0 ); 2332 pIn1 = &aMem[pOp->p1]; 2333 while( (cAff = *(zAffinity++))!=0 ){ 2334 assert( pIn1 <= &p->aMem[p->nMem] ); 2335 ExpandBlob(pIn1); 2336 applyAffinity(pIn1, cAff, encoding); 2337 pIn1++; 2338 } 2339 break; 2340 } 2341 2342 /* Opcode: MakeRecord P1 P2 P3 P4 * 2343 ** 2344 ** Convert P2 registers beginning with P1 into the [record format] 2345 ** use as a data record in a database table or as a key 2346 ** in an index. The OP_Column opcode can decode the record later. 2347 ** 2348 ** P4 may be a string that is P2 characters long. The nth character of the 2349 ** string indicates the column affinity that should be used for the nth 2350 ** field of the index key. 2351 ** 2352 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2353 ** macros defined in sqliteInt.h. 2354 ** 2355 ** If P4 is NULL then all index fields have the affinity NONE. 2356 */ 2357 case OP_MakeRecord: { 2358 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2359 Mem *pRec; /* The new record */ 2360 u64 nData; /* Number of bytes of data space */ 2361 int nHdr; /* Number of bytes of header space */ 2362 i64 nByte; /* Data space required for this record */ 2363 int nZero; /* Number of zero bytes at the end of the record */ 2364 int nVarint; /* Number of bytes in a varint */ 2365 u32 serial_type; /* Type field */ 2366 Mem *pData0; /* First field to be combined into the record */ 2367 Mem *pLast; /* Last field of the record */ 2368 int nField; /* Number of fields in the record */ 2369 char *zAffinity; /* The affinity string for the record */ 2370 int file_format; /* File format to use for encoding */ 2371 int i; /* Space used in zNewRecord[] */ 2372 int len; /* Length of a field */ 2373 2374 /* Assuming the record contains N fields, the record format looks 2375 ** like this: 2376 ** 2377 ** ------------------------------------------------------------------------ 2378 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2379 ** ------------------------------------------------------------------------ 2380 ** 2381 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2382 ** and so froth. 2383 ** 2384 ** Each type field is a varint representing the serial type of the 2385 ** corresponding data element (see sqlite3VdbeSerialType()). The 2386 ** hdr-size field is also a varint which is the offset from the beginning 2387 ** of the record to data0. 2388 */ 2389 nData = 0; /* Number of bytes of data space */ 2390 nHdr = 0; /* Number of bytes of header space */ 2391 nByte = 0; /* Data space required for this record */ 2392 nZero = 0; /* Number of zero bytes at the end of the record */ 2393 nField = pOp->p1; 2394 zAffinity = pOp->p4.z; 2395 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); 2396 pData0 = &aMem[nField]; 2397 nField = pOp->p2; 2398 pLast = &pData0[nField-1]; 2399 file_format = p->minWriteFileFormat; 2400 2401 /* Loop through the elements that will make up the record to figure 2402 ** out how much space is required for the new record. 2403 */ 2404 for(pRec=pData0; pRec<=pLast; pRec++){ 2405 if( zAffinity ){ 2406 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 2407 } 2408 if( pRec->flags&MEM_Zero && pRec->n>0 ){ 2409 sqlite3VdbeMemExpandBlob(pRec); 2410 } 2411 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2412 len = sqlite3VdbeSerialTypeLen(serial_type); 2413 nData += len; 2414 nHdr += sqlite3VarintLen(serial_type); 2415 if( pRec->flags & MEM_Zero ){ 2416 /* Only pure zero-filled BLOBs can be input to this Opcode. 2417 ** We do not allow blobs with a prefix and a zero-filled tail. */ 2418 nZero += pRec->u.nZero; 2419 }else if( len ){ 2420 nZero = 0; 2421 } 2422 } 2423 2424 /* Add the initial header varint and total the size */ 2425 nHdr += nVarint = sqlite3VarintLen(nHdr); 2426 if( nVarint<sqlite3VarintLen(nHdr) ){ 2427 nHdr++; 2428 } 2429 nByte = nHdr+nData-nZero; 2430 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2431 goto too_big; 2432 } 2433 2434 /* Make sure the output register has a buffer large enough to store 2435 ** the new record. The output register (pOp->p3) is not allowed to 2436 ** be one of the input registers (because the following call to 2437 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2438 */ 2439 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2440 pOut = &aMem[pOp->p3]; 2441 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2442 goto no_mem; 2443 } 2444 zNewRecord = (u8 *)pOut->z; 2445 2446 /* Write the record */ 2447 i = putVarint32(zNewRecord, nHdr); 2448 for(pRec=pData0; pRec<=pLast; pRec++){ 2449 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2450 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2451 } 2452 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ 2453 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); 2454 } 2455 assert( i==nByte ); 2456 2457 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2458 pOut->n = (int)nByte; 2459 pOut->flags = MEM_Blob | MEM_Dyn; 2460 pOut->xDel = 0; 2461 if( nZero ){ 2462 pOut->u.nZero = nZero; 2463 pOut->flags |= MEM_Zero; 2464 } 2465 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2466 REGISTER_TRACE(pOp->p3, pOut); 2467 UPDATE_MAX_BLOBSIZE(pOut); 2468 break; 2469 } 2470 2471 /* Opcode: Count P1 P2 * * * 2472 ** 2473 ** Store the number of entries (an integer value) in the table or index 2474 ** opened by cursor P1 in register P2 2475 */ 2476 #ifndef SQLITE_OMIT_BTREECOUNT 2477 case OP_Count: { /* out2-prerelease */ 2478 i64 nEntry; 2479 BtCursor *pCrsr; 2480 2481 pCrsr = p->apCsr[pOp->p1]->pCursor; 2482 if( pCrsr ){ 2483 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2484 }else{ 2485 nEntry = 0; 2486 } 2487 pOut->u.i = nEntry; 2488 break; 2489 } 2490 #endif 2491 2492 /* Opcode: Savepoint P1 * * P4 * 2493 ** 2494 ** Open, release or rollback the savepoint named by parameter P4, depending 2495 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2496 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2497 */ 2498 case OP_Savepoint: { 2499 int p1; /* Value of P1 operand */ 2500 char *zName; /* Name of savepoint */ 2501 int nName; 2502 Savepoint *pNew; 2503 Savepoint *pSavepoint; 2504 Savepoint *pTmp; 2505 int iSavepoint; 2506 int ii; 2507 2508 p1 = pOp->p1; 2509 zName = pOp->p4.z; 2510 2511 /* Assert that the p1 parameter is valid. Also that if there is no open 2512 ** transaction, then there cannot be any savepoints. 2513 */ 2514 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2515 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2516 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2517 assert( checkSavepointCount(db) ); 2518 2519 if( p1==SAVEPOINT_BEGIN ){ 2520 if( db->writeVdbeCnt>0 ){ 2521 /* A new savepoint cannot be created if there are active write 2522 ** statements (i.e. open read/write incremental blob handles). 2523 */ 2524 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2525 "SQL statements in progress"); 2526 rc = SQLITE_BUSY; 2527 }else{ 2528 nName = sqlite3Strlen30(zName); 2529 2530 /* Create a new savepoint structure. */ 2531 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2532 if( pNew ){ 2533 pNew->zName = (char *)&pNew[1]; 2534 memcpy(pNew->zName, zName, nName+1); 2535 2536 /* If there is no open transaction, then mark this as a special 2537 ** "transaction savepoint". */ 2538 if( db->autoCommit ){ 2539 db->autoCommit = 0; 2540 db->isTransactionSavepoint = 1; 2541 }else{ 2542 db->nSavepoint++; 2543 } 2544 2545 /* Link the new savepoint into the database handle's list. */ 2546 pNew->pNext = db->pSavepoint; 2547 db->pSavepoint = pNew; 2548 pNew->nDeferredCons = db->nDeferredCons; 2549 } 2550 } 2551 }else{ 2552 iSavepoint = 0; 2553 2554 /* Find the named savepoint. If there is no such savepoint, then an 2555 ** an error is returned to the user. */ 2556 for( 2557 pSavepoint = db->pSavepoint; 2558 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2559 pSavepoint = pSavepoint->pNext 2560 ){ 2561 iSavepoint++; 2562 } 2563 if( !pSavepoint ){ 2564 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2565 rc = SQLITE_ERROR; 2566 }else if( 2567 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) 2568 ){ 2569 /* It is not possible to release (commit) a savepoint if there are 2570 ** active write statements. It is not possible to rollback a savepoint 2571 ** if there are any active statements at all. 2572 */ 2573 sqlite3SetString(&p->zErrMsg, db, 2574 "cannot %s savepoint - SQL statements in progress", 2575 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release") 2576 ); 2577 rc = SQLITE_BUSY; 2578 }else{ 2579 2580 /* Determine whether or not this is a transaction savepoint. If so, 2581 ** and this is a RELEASE command, then the current transaction 2582 ** is committed. 2583 */ 2584 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2585 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2586 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2587 goto vdbe_return; 2588 } 2589 db->autoCommit = 1; 2590 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2591 p->pc = pc; 2592 db->autoCommit = 0; 2593 p->rc = rc = SQLITE_BUSY; 2594 goto vdbe_return; 2595 } 2596 db->isTransactionSavepoint = 0; 2597 rc = p->rc; 2598 }else{ 2599 iSavepoint = db->nSavepoint - iSavepoint - 1; 2600 for(ii=0; ii<db->nDb; ii++){ 2601 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2602 if( rc!=SQLITE_OK ){ 2603 goto abort_due_to_error; 2604 } 2605 } 2606 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2607 sqlite3ExpirePreparedStatements(db); 2608 sqlite3ResetInternalSchema(db, 0); 2609 db->flags = (db->flags | SQLITE_InternChanges); 2610 } 2611 } 2612 2613 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2614 ** savepoints nested inside of the savepoint being operated on. */ 2615 while( db->pSavepoint!=pSavepoint ){ 2616 pTmp = db->pSavepoint; 2617 db->pSavepoint = pTmp->pNext; 2618 sqlite3DbFree(db, pTmp); 2619 db->nSavepoint--; 2620 } 2621 2622 /* If it is a RELEASE, then destroy the savepoint being operated on 2623 ** too. If it is a ROLLBACK TO, then set the number of deferred 2624 ** constraint violations present in the database to the value stored 2625 ** when the savepoint was created. */ 2626 if( p1==SAVEPOINT_RELEASE ){ 2627 assert( pSavepoint==db->pSavepoint ); 2628 db->pSavepoint = pSavepoint->pNext; 2629 sqlite3DbFree(db, pSavepoint); 2630 if( !isTransaction ){ 2631 db->nSavepoint--; 2632 } 2633 }else{ 2634 db->nDeferredCons = pSavepoint->nDeferredCons; 2635 } 2636 } 2637 } 2638 2639 break; 2640 } 2641 2642 /* Opcode: AutoCommit P1 P2 * * * 2643 ** 2644 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2645 ** back any currently active btree transactions. If there are any active 2646 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2647 ** there are active writing VMs or active VMs that use shared cache. 2648 ** 2649 ** This instruction causes the VM to halt. 2650 */ 2651 case OP_AutoCommit: { 2652 int desiredAutoCommit; 2653 int iRollback; 2654 int turnOnAC; 2655 2656 desiredAutoCommit = pOp->p1; 2657 iRollback = pOp->p2; 2658 turnOnAC = desiredAutoCommit && !db->autoCommit; 2659 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2660 assert( desiredAutoCommit==1 || iRollback==0 ); 2661 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ 2662 2663 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){ 2664 /* If this instruction implements a ROLLBACK and other VMs are 2665 ** still running, and a transaction is active, return an error indicating 2666 ** that the other VMs must complete first. 2667 */ 2668 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2669 "SQL statements in progress"); 2670 rc = SQLITE_BUSY; 2671 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){ 2672 /* If this instruction implements a COMMIT and other VMs are writing 2673 ** return an error indicating that the other VMs must complete first. 2674 */ 2675 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2676 "SQL statements in progress"); 2677 rc = SQLITE_BUSY; 2678 }else if( desiredAutoCommit!=db->autoCommit ){ 2679 if( iRollback ){ 2680 assert( desiredAutoCommit==1 ); 2681 sqlite3RollbackAll(db); 2682 db->autoCommit = 1; 2683 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2684 goto vdbe_return; 2685 }else{ 2686 db->autoCommit = (u8)desiredAutoCommit; 2687 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2688 p->pc = pc; 2689 db->autoCommit = (u8)(1-desiredAutoCommit); 2690 p->rc = rc = SQLITE_BUSY; 2691 goto vdbe_return; 2692 } 2693 } 2694 assert( db->nStatement==0 ); 2695 sqlite3CloseSavepoints(db); 2696 if( p->rc==SQLITE_OK ){ 2697 rc = SQLITE_DONE; 2698 }else{ 2699 rc = SQLITE_ERROR; 2700 } 2701 goto vdbe_return; 2702 }else{ 2703 sqlite3SetString(&p->zErrMsg, db, 2704 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2705 (iRollback)?"cannot rollback - no transaction is active": 2706 "cannot commit - no transaction is active")); 2707 2708 rc = SQLITE_ERROR; 2709 } 2710 break; 2711 } 2712 2713 /* Opcode: Transaction P1 P2 * * * 2714 ** 2715 ** Begin a transaction. The transaction ends when a Commit or Rollback 2716 ** opcode is encountered. Depending on the ON CONFLICT setting, the 2717 ** transaction might also be rolled back if an error is encountered. 2718 ** 2719 ** P1 is the index of the database file on which the transaction is 2720 ** started. Index 0 is the main database file and index 1 is the 2721 ** file used for temporary tables. Indices of 2 or more are used for 2722 ** attached databases. 2723 ** 2724 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 2725 ** obtained on the database file when a write-transaction is started. No 2726 ** other process can start another write transaction while this transaction is 2727 ** underway. Starting a write transaction also creates a rollback journal. A 2728 ** write transaction must be started before any changes can be made to the 2729 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained 2730 ** on the file. 2731 ** 2732 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2733 ** true (this flag is set if the Vdbe may modify more than one row and may 2734 ** throw an ABORT exception), a statement transaction may also be opened. 2735 ** More specifically, a statement transaction is opened iff the database 2736 ** connection is currently not in autocommit mode, or if there are other 2737 ** active statements. A statement transaction allows the affects of this 2738 ** VDBE to be rolled back after an error without having to roll back the 2739 ** entire transaction. If no error is encountered, the statement transaction 2740 ** will automatically commit when the VDBE halts. 2741 ** 2742 ** If P2 is zero, then a read-lock is obtained on the database file. 2743 */ 2744 case OP_Transaction: { 2745 Btree *pBt; 2746 2747 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2748 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2749 pBt = db->aDb[pOp->p1].pBt; 2750 2751 if( pBt ){ 2752 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 2753 if( rc==SQLITE_BUSY ){ 2754 p->pc = pc; 2755 p->rc = rc = SQLITE_BUSY; 2756 goto vdbe_return; 2757 } 2758 if( rc!=SQLITE_OK ){ 2759 goto abort_due_to_error; 2760 } 2761 2762 if( pOp->p2 && p->usesStmtJournal 2763 && (db->autoCommit==0 || db->activeVdbeCnt>1) 2764 ){ 2765 assert( sqlite3BtreeIsInTrans(pBt) ); 2766 if( p->iStatement==0 ){ 2767 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 2768 db->nStatement++; 2769 p->iStatement = db->nSavepoint + db->nStatement; 2770 } 2771 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 2772 2773 /* Store the current value of the database handles deferred constraint 2774 ** counter. If the statement transaction needs to be rolled back, 2775 ** the value of this counter needs to be restored too. */ 2776 p->nStmtDefCons = db->nDeferredCons; 2777 } 2778 } 2779 break; 2780 } 2781 2782 /* Opcode: ReadCookie P1 P2 P3 * * 2783 ** 2784 ** Read cookie number P3 from database P1 and write it into register P2. 2785 ** P3==1 is the schema version. P3==2 is the database format. 2786 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 2787 ** the main database file and P1==1 is the database file used to store 2788 ** temporary tables. 2789 ** 2790 ** There must be a read-lock on the database (either a transaction 2791 ** must be started or there must be an open cursor) before 2792 ** executing this instruction. 2793 */ 2794 case OP_ReadCookie: { /* out2-prerelease */ 2795 int iMeta; 2796 int iDb; 2797 int iCookie; 2798 2799 iDb = pOp->p1; 2800 iCookie = pOp->p3; 2801 assert( pOp->p3<SQLITE_N_BTREE_META ); 2802 assert( iDb>=0 && iDb<db->nDb ); 2803 assert( db->aDb[iDb].pBt!=0 ); 2804 assert( (p->btreeMask & (1<<iDb))!=0 ); 2805 2806 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 2807 pOut->u.i = iMeta; 2808 break; 2809 } 2810 2811 /* Opcode: SetCookie P1 P2 P3 * * 2812 ** 2813 ** Write the content of register P3 (interpreted as an integer) 2814 ** into cookie number P2 of database P1. P2==1 is the schema version. 2815 ** P2==2 is the database format. P2==3 is the recommended pager cache 2816 ** size, and so forth. P1==0 is the main database file and P1==1 is the 2817 ** database file used to store temporary tables. 2818 ** 2819 ** A transaction must be started before executing this opcode. 2820 */ 2821 case OP_SetCookie: { /* in3 */ 2822 Db *pDb; 2823 assert( pOp->p2<SQLITE_N_BTREE_META ); 2824 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2825 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2826 pDb = &db->aDb[pOp->p1]; 2827 assert( pDb->pBt!=0 ); 2828 pIn3 = &aMem[pOp->p3]; 2829 sqlite3VdbeMemIntegerify(pIn3); 2830 /* See note about index shifting on OP_ReadCookie */ 2831 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 2832 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 2833 /* When the schema cookie changes, record the new cookie internally */ 2834 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 2835 db->flags |= SQLITE_InternChanges; 2836 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 2837 /* Record changes in the file format */ 2838 pDb->pSchema->file_format = (u8)pIn3->u.i; 2839 } 2840 if( pOp->p1==1 ){ 2841 /* Invalidate all prepared statements whenever the TEMP database 2842 ** schema is changed. Ticket #1644 */ 2843 sqlite3ExpirePreparedStatements(db); 2844 p->expired = 0; 2845 } 2846 break; 2847 } 2848 2849 /* Opcode: VerifyCookie P1 P2 * 2850 ** 2851 ** Check the value of global database parameter number 0 (the 2852 ** schema version) and make sure it is equal to P2. 2853 ** P1 is the database number which is 0 for the main database file 2854 ** and 1 for the file holding temporary tables and some higher number 2855 ** for auxiliary databases. 2856 ** 2857 ** The cookie changes its value whenever the database schema changes. 2858 ** This operation is used to detect when that the cookie has changed 2859 ** and that the current process needs to reread the schema. 2860 ** 2861 ** Either a transaction needs to have been started or an OP_Open needs 2862 ** to be executed (to establish a read lock) before this opcode is 2863 ** invoked. 2864 */ 2865 case OP_VerifyCookie: { 2866 int iMeta; 2867 Btree *pBt; 2868 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2869 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 2870 pBt = db->aDb[pOp->p1].pBt; 2871 if( pBt ){ 2872 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 2873 }else{ 2874 iMeta = 0; 2875 } 2876 if( iMeta!=pOp->p2 ){ 2877 sqlite3DbFree(db, p->zErrMsg); 2878 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 2879 /* If the schema-cookie from the database file matches the cookie 2880 ** stored with the in-memory representation of the schema, do 2881 ** not reload the schema from the database file. 2882 ** 2883 ** If virtual-tables are in use, this is not just an optimization. 2884 ** Often, v-tables store their data in other SQLite tables, which 2885 ** are queried from within xNext() and other v-table methods using 2886 ** prepared queries. If such a query is out-of-date, we do not want to 2887 ** discard the database schema, as the user code implementing the 2888 ** v-table would have to be ready for the sqlite3_vtab structure itself 2889 ** to be invalidated whenever sqlite3_step() is called from within 2890 ** a v-table method. 2891 */ 2892 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 2893 sqlite3ResetInternalSchema(db, pOp->p1); 2894 } 2895 2896 sqlite3ExpirePreparedStatements(db); 2897 rc = SQLITE_SCHEMA; 2898 } 2899 break; 2900 } 2901 2902 /* Opcode: OpenRead P1 P2 P3 P4 P5 2903 ** 2904 ** Open a read-only cursor for the database table whose root page is 2905 ** P2 in a database file. The database file is determined by P3. 2906 ** P3==0 means the main database, P3==1 means the database used for 2907 ** temporary tables, and P3>1 means used the corresponding attached 2908 ** database. Give the new cursor an identifier of P1. The P1 2909 ** values need not be contiguous but all P1 values should be small integers. 2910 ** It is an error for P1 to be negative. 2911 ** 2912 ** If P5!=0 then use the content of register P2 as the root page, not 2913 ** the value of P2 itself. 2914 ** 2915 ** There will be a read lock on the database whenever there is an 2916 ** open cursor. If the database was unlocked prior to this instruction 2917 ** then a read lock is acquired as part of this instruction. A read 2918 ** lock allows other processes to read the database but prohibits 2919 ** any other process from modifying the database. The read lock is 2920 ** released when all cursors are closed. If this instruction attempts 2921 ** to get a read lock but fails, the script terminates with an 2922 ** SQLITE_BUSY error code. 2923 ** 2924 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2925 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 2926 ** structure, then said structure defines the content and collating 2927 ** sequence of the index being opened. Otherwise, if P4 is an integer 2928 ** value, it is set to the number of columns in the table. 2929 ** 2930 ** See also OpenWrite. 2931 */ 2932 /* Opcode: OpenWrite P1 P2 P3 P4 P5 2933 ** 2934 ** Open a read/write cursor named P1 on the table or index whose root 2935 ** page is P2. Or if P5!=0 use the content of register P2 to find the 2936 ** root page. 2937 ** 2938 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2939 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 2940 ** structure, then said structure defines the content and collating 2941 ** sequence of the index being opened. Otherwise, if P4 is an integer 2942 ** value, it is set to the number of columns in the table, or to the 2943 ** largest index of any column of the table that is actually used. 2944 ** 2945 ** This instruction works just like OpenRead except that it opens the cursor 2946 ** in read/write mode. For a given table, there can be one or more read-only 2947 ** cursors or a single read/write cursor but not both. 2948 ** 2949 ** See also OpenRead. 2950 */ 2951 case OP_OpenRead: 2952 case OP_OpenWrite: { 2953 int nField; 2954 KeyInfo *pKeyInfo; 2955 int p2; 2956 int iDb; 2957 int wrFlag; 2958 Btree *pX; 2959 VdbeCursor *pCur; 2960 Db *pDb; 2961 2962 if( p->expired ){ 2963 rc = SQLITE_ABORT; 2964 break; 2965 } 2966 2967 nField = 0; 2968 pKeyInfo = 0; 2969 p2 = pOp->p2; 2970 iDb = pOp->p3; 2971 assert( iDb>=0 && iDb<db->nDb ); 2972 assert( (p->btreeMask & (1<<iDb))!=0 ); 2973 pDb = &db->aDb[iDb]; 2974 pX = pDb->pBt; 2975 assert( pX!=0 ); 2976 if( pOp->opcode==OP_OpenWrite ){ 2977 wrFlag = 1; 2978 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 2979 p->minWriteFileFormat = pDb->pSchema->file_format; 2980 } 2981 }else{ 2982 wrFlag = 0; 2983 } 2984 if( pOp->p5 ){ 2985 assert( p2>0 ); 2986 assert( p2<=p->nMem ); 2987 pIn2 = &aMem[p2]; 2988 sqlite3VdbeMemIntegerify(pIn2); 2989 p2 = (int)pIn2->u.i; 2990 /* The p2 value always comes from a prior OP_CreateTable opcode and 2991 ** that opcode will always set the p2 value to 2 or more or else fail. 2992 ** If there were a failure, the prepared statement would have halted 2993 ** before reaching this instruction. */ 2994 if( NEVER(p2<2) ) { 2995 rc = SQLITE_CORRUPT_BKPT; 2996 goto abort_due_to_error; 2997 } 2998 } 2999 if( pOp->p4type==P4_KEYINFO ){ 3000 pKeyInfo = pOp->p4.pKeyInfo; 3001 pKeyInfo->enc = ENC(p->db); 3002 nField = pKeyInfo->nField+1; 3003 }else if( pOp->p4type==P4_INT32 ){ 3004 nField = pOp->p4.i; 3005 } 3006 assert( pOp->p1>=0 ); 3007 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3008 if( pCur==0 ) goto no_mem; 3009 pCur->nullRow = 1; 3010 pCur->isOrdered = 1; 3011 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3012 pCur->pKeyInfo = pKeyInfo; 3013 3014 /* Since it performs no memory allocation or IO, the only values that 3015 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 3016 ** SQLITE_EMPTY is only returned when attempting to open the table 3017 ** rooted at page 1 of a zero-byte database. */ 3018 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); 3019 if( rc==SQLITE_EMPTY ){ 3020 pCur->pCursor = 0; 3021 rc = SQLITE_OK; 3022 } 3023 3024 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of 3025 ** SQLite used to check if the root-page flags were sane at this point 3026 ** and report database corruption if they were not, but this check has 3027 ** since moved into the btree layer. */ 3028 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3029 pCur->isIndex = !pCur->isTable; 3030 break; 3031 } 3032 3033 /* Opcode: OpenEphemeral P1 P2 * P4 * 3034 ** 3035 ** Open a new cursor P1 to a transient table. 3036 ** The cursor is always opened read/write even if 3037 ** the main database is read-only. The ephemeral 3038 ** table is deleted automatically when the cursor is closed. 3039 ** 3040 ** P2 is the number of columns in the ephemeral table. 3041 ** The cursor points to a BTree table if P4==0 and to a BTree index 3042 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3043 ** that defines the format of keys in the index. 3044 ** 3045 ** This opcode was once called OpenTemp. But that created 3046 ** confusion because the term "temp table", might refer either 3047 ** to a TEMP table at the SQL level, or to a table opened by 3048 ** this opcode. Then this opcode was call OpenVirtual. But 3049 ** that created confusion with the whole virtual-table idea. 3050 */ 3051 /* Opcode: OpenAutoindex P1 P2 * P4 * 3052 ** 3053 ** This opcode works the same as OP_OpenEphemeral. It has a 3054 ** different name to distinguish its use. Tables created using 3055 ** by this opcode will be used for automatically created transient 3056 ** indices in joins. 3057 */ 3058 case OP_OpenAutoindex: 3059 case OP_OpenEphemeral: { 3060 VdbeCursor *pCx; 3061 static const int vfsFlags = 3062 SQLITE_OPEN_READWRITE | 3063 SQLITE_OPEN_CREATE | 3064 SQLITE_OPEN_EXCLUSIVE | 3065 SQLITE_OPEN_DELETEONCLOSE | 3066 SQLITE_OPEN_TRANSIENT_DB; 3067 3068 assert( pOp->p1>=0 ); 3069 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3070 if( pCx==0 ) goto no_mem; 3071 pCx->nullRow = 1; 3072 rc = sqlite3BtreeOpen(0, db, &pCx->pBt, 3073 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3074 if( rc==SQLITE_OK ){ 3075 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3076 } 3077 if( rc==SQLITE_OK ){ 3078 /* If a transient index is required, create it by calling 3079 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3080 ** opening it. If a transient table is required, just use the 3081 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3082 */ 3083 if( pOp->p4.pKeyInfo ){ 3084 int pgno; 3085 assert( pOp->p4type==P4_KEYINFO ); 3086 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); 3087 if( rc==SQLITE_OK ){ 3088 assert( pgno==MASTER_ROOT+1 ); 3089 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 3090 (KeyInfo*)pOp->p4.z, pCx->pCursor); 3091 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3092 pCx->pKeyInfo->enc = ENC(p->db); 3093 } 3094 pCx->isTable = 0; 3095 }else{ 3096 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3097 pCx->isTable = 1; 3098 } 3099 } 3100 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3101 pCx->isIndex = !pCx->isTable; 3102 break; 3103 } 3104 3105 /* Opcode: OpenPseudo P1 P2 P3 * * 3106 ** 3107 ** Open a new cursor that points to a fake table that contains a single 3108 ** row of data. The content of that one row in the content of memory 3109 ** register P2. In other words, cursor P1 becomes an alias for the 3110 ** MEM_Blob content contained in register P2. 3111 ** 3112 ** A pseudo-table created by this opcode is used to hold a single 3113 ** row output from the sorter so that the row can be decomposed into 3114 ** individual columns using the OP_Column opcode. The OP_Column opcode 3115 ** is the only cursor opcode that works with a pseudo-table. 3116 ** 3117 ** P3 is the number of fields in the records that will be stored by 3118 ** the pseudo-table. 3119 */ 3120 case OP_OpenPseudo: { 3121 VdbeCursor *pCx; 3122 3123 assert( pOp->p1>=0 ); 3124 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3125 if( pCx==0 ) goto no_mem; 3126 pCx->nullRow = 1; 3127 pCx->pseudoTableReg = pOp->p2; 3128 pCx->isTable = 1; 3129 pCx->isIndex = 0; 3130 break; 3131 } 3132 3133 /* Opcode: Close P1 * * * * 3134 ** 3135 ** Close a cursor previously opened as P1. If P1 is not 3136 ** currently open, this instruction is a no-op. 3137 */ 3138 case OP_Close: { 3139 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3140 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3141 p->apCsr[pOp->p1] = 0; 3142 break; 3143 } 3144 3145 /* Opcode: SeekGe P1 P2 P3 P4 * 3146 ** 3147 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3148 ** use the value in register P3 as the key. If cursor P1 refers 3149 ** to an SQL index, then P3 is the first in an array of P4 registers 3150 ** that are used as an unpacked index key. 3151 ** 3152 ** Reposition cursor P1 so that it points to the smallest entry that 3153 ** is greater than or equal to the key value. If there are no records 3154 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3155 ** 3156 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe 3157 */ 3158 /* Opcode: SeekGt P1 P2 P3 P4 * 3159 ** 3160 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3161 ** use the value in register P3 as a key. If cursor P1 refers 3162 ** to an SQL index, then P3 is the first in an array of P4 registers 3163 ** that are used as an unpacked index key. 3164 ** 3165 ** Reposition cursor P1 so that it points to the smallest entry that 3166 ** is greater than the key value. If there are no records greater than 3167 ** the key and P2 is not zero, then jump to P2. 3168 ** 3169 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe 3170 */ 3171 /* Opcode: SeekLt P1 P2 P3 P4 * 3172 ** 3173 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3174 ** use the value in register P3 as a key. If cursor P1 refers 3175 ** to an SQL index, then P3 is the first in an array of P4 registers 3176 ** that are used as an unpacked index key. 3177 ** 3178 ** Reposition cursor P1 so that it points to the largest entry that 3179 ** is less than the key value. If there are no records less than 3180 ** the key and P2 is not zero, then jump to P2. 3181 ** 3182 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe 3183 */ 3184 /* Opcode: SeekLe P1 P2 P3 P4 * 3185 ** 3186 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3187 ** use the value in register P3 as a key. If cursor P1 refers 3188 ** to an SQL index, then P3 is the first in an array of P4 registers 3189 ** that are used as an unpacked index key. 3190 ** 3191 ** Reposition cursor P1 so that it points to the largest entry that 3192 ** is less than or equal to the key value. If there are no records 3193 ** less than or equal to the key and P2 is not zero, then jump to P2. 3194 ** 3195 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt 3196 */ 3197 case OP_SeekLt: /* jump, in3 */ 3198 case OP_SeekLe: /* jump, in3 */ 3199 case OP_SeekGe: /* jump, in3 */ 3200 case OP_SeekGt: { /* jump, in3 */ 3201 int res; 3202 int oc; 3203 VdbeCursor *pC; 3204 UnpackedRecord r; 3205 int nField; 3206 i64 iKey; /* The rowid we are to seek to */ 3207 3208 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3209 assert( pOp->p2!=0 ); 3210 pC = p->apCsr[pOp->p1]; 3211 assert( pC!=0 ); 3212 assert( pC->pseudoTableReg==0 ); 3213 assert( OP_SeekLe == OP_SeekLt+1 ); 3214 assert( OP_SeekGe == OP_SeekLt+2 ); 3215 assert( OP_SeekGt == OP_SeekLt+3 ); 3216 assert( pC->isOrdered ); 3217 if( pC->pCursor!=0 ){ 3218 oc = pOp->opcode; 3219 pC->nullRow = 0; 3220 if( pC->isTable ){ 3221 /* The input value in P3 might be of any type: integer, real, string, 3222 ** blob, or NULL. But it needs to be an integer before we can do 3223 ** the seek, so covert it. */ 3224 pIn3 = &aMem[pOp->p3]; 3225 applyNumericAffinity(pIn3); 3226 iKey = sqlite3VdbeIntValue(pIn3); 3227 pC->rowidIsValid = 0; 3228 3229 /* If the P3 value could not be converted into an integer without 3230 ** loss of information, then special processing is required... */ 3231 if( (pIn3->flags & MEM_Int)==0 ){ 3232 if( (pIn3->flags & MEM_Real)==0 ){ 3233 /* If the P3 value cannot be converted into any kind of a number, 3234 ** then the seek is not possible, so jump to P2 */ 3235 pc = pOp->p2 - 1; 3236 break; 3237 } 3238 /* If we reach this point, then the P3 value must be a floating 3239 ** point number. */ 3240 assert( (pIn3->flags & MEM_Real)!=0 ); 3241 3242 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ 3243 /* The P3 value is too large in magnitude to be expressed as an 3244 ** integer. */ 3245 res = 1; 3246 if( pIn3->r<0 ){ 3247 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3248 rc = sqlite3BtreeFirst(pC->pCursor, &res); 3249 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3250 } 3251 }else{ 3252 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3253 rc = sqlite3BtreeLast(pC->pCursor, &res); 3254 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3255 } 3256 } 3257 if( res ){ 3258 pc = pOp->p2 - 1; 3259 } 3260 break; 3261 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ 3262 /* Use the ceiling() function to convert real->int */ 3263 if( pIn3->r > (double)iKey ) iKey++; 3264 }else{ 3265 /* Use the floor() function to convert real->int */ 3266 assert( oc==OP_SeekLe || oc==OP_SeekGt ); 3267 if( pIn3->r < (double)iKey ) iKey--; 3268 } 3269 } 3270 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3271 if( rc!=SQLITE_OK ){ 3272 goto abort_due_to_error; 3273 } 3274 if( res==0 ){ 3275 pC->rowidIsValid = 1; 3276 pC->lastRowid = iKey; 3277 } 3278 }else{ 3279 nField = pOp->p4.i; 3280 assert( pOp->p4type==P4_INT32 ); 3281 assert( nField>0 ); 3282 r.pKeyInfo = pC->pKeyInfo; 3283 r.nField = (u16)nField; 3284 3285 /* The next line of code computes as follows, only faster: 3286 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ 3287 ** r.flags = UNPACKED_INCRKEY; 3288 ** }else{ 3289 ** r.flags = 0; 3290 ** } 3291 */ 3292 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); 3293 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); 3294 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); 3295 assert( oc!=OP_SeekGe || r.flags==0 ); 3296 assert( oc!=OP_SeekLt || r.flags==0 ); 3297 3298 r.aMem = &aMem[pOp->p3]; 3299 ExpandBlob(r.aMem); 3300 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3301 if( rc!=SQLITE_OK ){ 3302 goto abort_due_to_error; 3303 } 3304 pC->rowidIsValid = 0; 3305 } 3306 pC->deferredMoveto = 0; 3307 pC->cacheStatus = CACHE_STALE; 3308 #ifdef SQLITE_TEST 3309 sqlite3_search_count++; 3310 #endif 3311 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3312 if( res<0 || (res==0 && oc==OP_SeekGt) ){ 3313 rc = sqlite3BtreeNext(pC->pCursor, &res); 3314 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3315 pC->rowidIsValid = 0; 3316 }else{ 3317 res = 0; 3318 } 3319 }else{ 3320 assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3321 if( res>0 || (res==0 && oc==OP_SeekLt) ){ 3322 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3323 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3324 pC->rowidIsValid = 0; 3325 }else{ 3326 /* res might be negative because the table is empty. Check to 3327 ** see if this is the case. 3328 */ 3329 res = sqlite3BtreeEof(pC->pCursor); 3330 } 3331 } 3332 assert( pOp->p2>0 ); 3333 if( res ){ 3334 pc = pOp->p2 - 1; 3335 } 3336 }else{ 3337 /* This happens when attempting to open the sqlite3_master table 3338 ** for read access returns SQLITE_EMPTY. In this case always 3339 ** take the jump (since there are no records in the table). 3340 */ 3341 pc = pOp->p2 - 1; 3342 } 3343 break; 3344 } 3345 3346 /* Opcode: Seek P1 P2 * * * 3347 ** 3348 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3349 ** for P1 to move so that it points to the rowid given by P2. 3350 ** 3351 ** This is actually a deferred seek. Nothing actually happens until 3352 ** the cursor is used to read a record. That way, if no reads 3353 ** occur, no unnecessary I/O happens. 3354 */ 3355 case OP_Seek: { /* in2 */ 3356 VdbeCursor *pC; 3357 3358 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3359 pC = p->apCsr[pOp->p1]; 3360 assert( pC!=0 ); 3361 if( ALWAYS(pC->pCursor!=0) ){ 3362 assert( pC->isTable ); 3363 pC->nullRow = 0; 3364 pIn2 = &aMem[pOp->p2]; 3365 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3366 pC->rowidIsValid = 0; 3367 pC->deferredMoveto = 1; 3368 } 3369 break; 3370 } 3371 3372 3373 /* Opcode: Found P1 P2 P3 P4 * 3374 ** 3375 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3376 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3377 ** record. 3378 ** 3379 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3380 ** is a prefix of any entry in P1 then a jump is made to P2 and 3381 ** P1 is left pointing at the matching entry. 3382 */ 3383 /* Opcode: NotFound P1 P2 P3 P4 * 3384 ** 3385 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3386 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3387 ** record. 3388 ** 3389 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3390 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3391 ** does contain an entry whose prefix matches the P3/P4 record then control 3392 ** falls through to the next instruction and P1 is left pointing at the 3393 ** matching entry. 3394 ** 3395 ** See also: Found, NotExists, IsUnique 3396 */ 3397 case OP_NotFound: /* jump, in3 */ 3398 case OP_Found: { /* jump, in3 */ 3399 int alreadyExists; 3400 VdbeCursor *pC; 3401 int res; 3402 UnpackedRecord *pIdxKey; 3403 UnpackedRecord r; 3404 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; 3405 3406 #ifdef SQLITE_TEST 3407 sqlite3_found_count++; 3408 #endif 3409 3410 alreadyExists = 0; 3411 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3412 assert( pOp->p4type==P4_INT32 ); 3413 pC = p->apCsr[pOp->p1]; 3414 assert( pC!=0 ); 3415 pIn3 = &aMem[pOp->p3]; 3416 if( ALWAYS(pC->pCursor!=0) ){ 3417 3418 assert( pC->isTable==0 ); 3419 if( pOp->p4.i>0 ){ 3420 r.pKeyInfo = pC->pKeyInfo; 3421 r.nField = (u16)pOp->p4.i; 3422 r.aMem = pIn3; 3423 r.flags = UNPACKED_PREFIX_MATCH; 3424 pIdxKey = &r; 3425 }else{ 3426 assert( pIn3->flags & MEM_Blob ); 3427 ExpandBlob(pIn3); 3428 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, 3429 aTempRec, sizeof(aTempRec)); 3430 if( pIdxKey==0 ){ 3431 goto no_mem; 3432 } 3433 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 3434 } 3435 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3436 if( pOp->p4.i==0 ){ 3437 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 3438 } 3439 if( rc!=SQLITE_OK ){ 3440 break; 3441 } 3442 alreadyExists = (res==0); 3443 pC->deferredMoveto = 0; 3444 pC->cacheStatus = CACHE_STALE; 3445 } 3446 if( pOp->opcode==OP_Found ){ 3447 if( alreadyExists ) pc = pOp->p2 - 1; 3448 }else{ 3449 if( !alreadyExists ) pc = pOp->p2 - 1; 3450 } 3451 break; 3452 } 3453 3454 /* Opcode: IsUnique P1 P2 P3 P4 * 3455 ** 3456 ** Cursor P1 is open on an index b-tree - that is to say, a btree which 3457 ** no data and where the key are records generated by OP_MakeRecord with 3458 ** the list field being the integer ROWID of the entry that the index 3459 ** entry refers to. 3460 ** 3461 ** The P3 register contains an integer record number. Call this record 3462 ** number R. Register P4 is the first in a set of N contiguous registers 3463 ** that make up an unpacked index key that can be used with cursor P1. 3464 ** The value of N can be inferred from the cursor. N includes the rowid 3465 ** value appended to the end of the index record. This rowid value may 3466 ** or may not be the same as R. 3467 ** 3468 ** If any of the N registers beginning with register P4 contains a NULL 3469 ** value, jump immediately to P2. 3470 ** 3471 ** Otherwise, this instruction checks if cursor P1 contains an entry 3472 ** where the first (N-1) fields match but the rowid value at the end 3473 ** of the index entry is not R. If there is no such entry, control jumps 3474 ** to instruction P2. Otherwise, the rowid of the conflicting index 3475 ** entry is copied to register P3 and control falls through to the next 3476 ** instruction. 3477 ** 3478 ** See also: NotFound, NotExists, Found 3479 */ 3480 case OP_IsUnique: { /* jump, in3 */ 3481 u16 ii; 3482 VdbeCursor *pCx; 3483 BtCursor *pCrsr; 3484 u16 nField; 3485 Mem *aMx; 3486 UnpackedRecord r; /* B-Tree index search key */ 3487 i64 R; /* Rowid stored in register P3 */ 3488 3489 pIn3 = &aMem[pOp->p3]; 3490 aMx = &aMem[pOp->p4.i]; 3491 /* Assert that the values of parameters P1 and P4 are in range. */ 3492 assert( pOp->p4type==P4_INT32 ); 3493 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); 3494 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3495 3496 /* Find the index cursor. */ 3497 pCx = p->apCsr[pOp->p1]; 3498 assert( pCx->deferredMoveto==0 ); 3499 pCx->seekResult = 0; 3500 pCx->cacheStatus = CACHE_STALE; 3501 pCrsr = pCx->pCursor; 3502 3503 /* If any of the values are NULL, take the jump. */ 3504 nField = pCx->pKeyInfo->nField; 3505 for(ii=0; ii<nField; ii++){ 3506 if( aMx[ii].flags & MEM_Null ){ 3507 pc = pOp->p2 - 1; 3508 pCrsr = 0; 3509 break; 3510 } 3511 } 3512 assert( (aMx[nField].flags & MEM_Null)==0 ); 3513 3514 if( pCrsr!=0 ){ 3515 /* Populate the index search key. */ 3516 r.pKeyInfo = pCx->pKeyInfo; 3517 r.nField = nField + 1; 3518 r.flags = UNPACKED_PREFIX_SEARCH; 3519 r.aMem = aMx; 3520 3521 /* Extract the value of R from register P3. */ 3522 sqlite3VdbeMemIntegerify(pIn3); 3523 R = pIn3->u.i; 3524 3525 /* Search the B-Tree index. If no conflicting record is found, jump 3526 ** to P2. Otherwise, copy the rowid of the conflicting record to 3527 ** register P3 and fall through to the next instruction. */ 3528 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); 3529 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ 3530 pc = pOp->p2 - 1; 3531 }else{ 3532 pIn3->u.i = r.rowid; 3533 } 3534 } 3535 break; 3536 } 3537 3538 /* Opcode: NotExists P1 P2 P3 * * 3539 ** 3540 ** Use the content of register P3 as a integer key. If a record 3541 ** with that key does not exist in table of P1, then jump to P2. 3542 ** If the record does exist, then fall through. The cursor is left 3543 ** pointing to the record if it exists. 3544 ** 3545 ** The difference between this operation and NotFound is that this 3546 ** operation assumes the key is an integer and that P1 is a table whereas 3547 ** NotFound assumes key is a blob constructed from MakeRecord and 3548 ** P1 is an index. 3549 ** 3550 ** See also: Found, NotFound, IsUnique 3551 */ 3552 case OP_NotExists: { /* jump, in3 */ 3553 VdbeCursor *pC; 3554 BtCursor *pCrsr; 3555 int res; 3556 u64 iKey; 3557 3558 pIn3 = &aMem[pOp->p3]; 3559 assert( pIn3->flags & MEM_Int ); 3560 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3561 pC = p->apCsr[pOp->p1]; 3562 assert( pC!=0 ); 3563 assert( pC->isTable ); 3564 assert( pC->pseudoTableReg==0 ); 3565 pCrsr = pC->pCursor; 3566 if( pCrsr!=0 ){ 3567 res = 0; 3568 iKey = pIn3->u.i; 3569 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3570 pC->lastRowid = pIn3->u.i; 3571 pC->rowidIsValid = res==0 ?1:0; 3572 pC->nullRow = 0; 3573 pC->cacheStatus = CACHE_STALE; 3574 pC->deferredMoveto = 0; 3575 if( res!=0 ){ 3576 pc = pOp->p2 - 1; 3577 assert( pC->rowidIsValid==0 ); 3578 } 3579 pC->seekResult = res; 3580 }else{ 3581 /* This happens when an attempt to open a read cursor on the 3582 ** sqlite_master table returns SQLITE_EMPTY. 3583 */ 3584 pc = pOp->p2 - 1; 3585 assert( pC->rowidIsValid==0 ); 3586 pC->seekResult = 0; 3587 } 3588 break; 3589 } 3590 3591 /* Opcode: Sequence P1 P2 * * * 3592 ** 3593 ** Find the next available sequence number for cursor P1. 3594 ** Write the sequence number into register P2. 3595 ** The sequence number on the cursor is incremented after this 3596 ** instruction. 3597 */ 3598 case OP_Sequence: { /* out2-prerelease */ 3599 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3600 assert( p->apCsr[pOp->p1]!=0 ); 3601 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3602 break; 3603 } 3604 3605 3606 /* Opcode: NewRowid P1 P2 P3 * * 3607 ** 3608 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3609 ** The record number is not previously used as a key in the database 3610 ** table that cursor P1 points to. The new record number is written 3611 ** written to register P2. 3612 ** 3613 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3614 ** the largest previously generated record number. No new record numbers are 3615 ** allowed to be less than this value. When this value reaches its maximum, 3616 ** a SQLITE_FULL error is generated. The P3 register is updated with the ' 3617 ** generated record number. This P3 mechanism is used to help implement the 3618 ** AUTOINCREMENT feature. 3619 */ 3620 case OP_NewRowid: { /* out2-prerelease */ 3621 i64 v; /* The new rowid */ 3622 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3623 int res; /* Result of an sqlite3BtreeLast() */ 3624 int cnt; /* Counter to limit the number of searches */ 3625 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3626 VdbeFrame *pFrame; /* Root frame of VDBE */ 3627 3628 v = 0; 3629 res = 0; 3630 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3631 pC = p->apCsr[pOp->p1]; 3632 assert( pC!=0 ); 3633 if( NEVER(pC->pCursor==0) ){ 3634 /* The zero initialization above is all that is needed */ 3635 }else{ 3636 /* The next rowid or record number (different terms for the same 3637 ** thing) is obtained in a two-step algorithm. 3638 ** 3639 ** First we attempt to find the largest existing rowid and add one 3640 ** to that. But if the largest existing rowid is already the maximum 3641 ** positive integer, we have to fall through to the second 3642 ** probabilistic algorithm 3643 ** 3644 ** The second algorithm is to select a rowid at random and see if 3645 ** it already exists in the table. If it does not exist, we have 3646 ** succeeded. If the random rowid does exist, we select a new one 3647 ** and try again, up to 100 times. 3648 */ 3649 assert( pC->isTable ); 3650 cnt = 0; 3651 3652 #ifdef SQLITE_32BIT_ROWID 3653 # define MAX_ROWID 0x7fffffff 3654 #else 3655 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3656 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3657 ** to provide the constant while making all compilers happy. 3658 */ 3659 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3660 #endif 3661 3662 if( !pC->useRandomRowid ){ 3663 v = sqlite3BtreeGetCachedRowid(pC->pCursor); 3664 if( v==0 ){ 3665 rc = sqlite3BtreeLast(pC->pCursor, &res); 3666 if( rc!=SQLITE_OK ){ 3667 goto abort_due_to_error; 3668 } 3669 if( res ){ 3670 v = 1; /* IMP: R-61914-48074 */ 3671 }else{ 3672 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3673 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3674 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3675 if( v==MAX_ROWID ){ 3676 pC->useRandomRowid = 1; 3677 }else{ 3678 v++; /* IMP: R-29538-34987 */ 3679 } 3680 } 3681 } 3682 3683 #ifndef SQLITE_OMIT_AUTOINCREMENT 3684 if( pOp->p3 ){ 3685 /* Assert that P3 is a valid memory cell. */ 3686 assert( pOp->p3>0 ); 3687 if( p->pFrame ){ 3688 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 3689 /* Assert that P3 is a valid memory cell. */ 3690 assert( pOp->p3<=pFrame->nMem ); 3691 pMem = &pFrame->aMem[pOp->p3]; 3692 }else{ 3693 /* Assert that P3 is a valid memory cell. */ 3694 assert( pOp->p3<=p->nMem ); 3695 pMem = &aMem[pOp->p3]; 3696 } 3697 3698 REGISTER_TRACE(pOp->p3, pMem); 3699 sqlite3VdbeMemIntegerify(pMem); 3700 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3701 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3702 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 3703 goto abort_due_to_error; 3704 } 3705 if( v<pMem->u.i+1 ){ 3706 v = pMem->u.i + 1; 3707 } 3708 pMem->u.i = v; 3709 } 3710 #endif 3711 3712 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); 3713 } 3714 if( pC->useRandomRowid ){ 3715 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 3716 ** largest possible integer (9223372036854775807) then the database 3717 ** engine starts picking positive candidate ROWIDs at random until 3718 ** it finds one that is not previously used. */ 3719 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3720 ** an AUTOINCREMENT table. */ 3721 /* on the first attempt, simply do one more than previous */ 3722 v = db->lastRowid; 3723 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3724 v++; /* ensure non-zero */ 3725 cnt = 0; 3726 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 3727 0, &res))==SQLITE_OK) 3728 && (res==0) 3729 && (++cnt<100)){ 3730 /* collision - try another random rowid */ 3731 sqlite3_randomness(sizeof(v), &v); 3732 if( cnt<5 ){ 3733 /* try "small" random rowids for the initial attempts */ 3734 v &= 0xffffff; 3735 }else{ 3736 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3737 } 3738 v++; /* ensure non-zero */ 3739 } 3740 if( rc==SQLITE_OK && res==0 ){ 3741 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 3742 goto abort_due_to_error; 3743 } 3744 assert( v>0 ); /* EV: R-40812-03570 */ 3745 } 3746 pC->rowidIsValid = 0; 3747 pC->deferredMoveto = 0; 3748 pC->cacheStatus = CACHE_STALE; 3749 } 3750 pOut->u.i = v; 3751 break; 3752 } 3753 3754 /* Opcode: Insert P1 P2 P3 P4 P5 3755 ** 3756 ** Write an entry into the table of cursor P1. A new entry is 3757 ** created if it doesn't already exist or the data for an existing 3758 ** entry is overwritten. The data is the value MEM_Blob stored in register 3759 ** number P2. The key is stored in register P3. The key must 3760 ** be a MEM_Int. 3761 ** 3762 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 3763 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 3764 ** then rowid is stored for subsequent return by the 3765 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 3766 ** 3767 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 3768 ** the last seek operation (OP_NotExists) was a success, then this 3769 ** operation will not attempt to find the appropriate row before doing 3770 ** the insert but will instead overwrite the row that the cursor is 3771 ** currently pointing to. Presumably, the prior OP_NotExists opcode 3772 ** has already positioned the cursor correctly. This is an optimization 3773 ** that boosts performance by avoiding redundant seeks. 3774 ** 3775 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 3776 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 3777 ** is part of an INSERT operation. The difference is only important to 3778 ** the update hook. 3779 ** 3780 ** Parameter P4 may point to a string containing the table-name, or 3781 ** may be NULL. If it is not NULL, then the update-hook 3782 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 3783 ** 3784 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 3785 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 3786 ** and register P2 becomes ephemeral. If the cursor is changed, the 3787 ** value of register P2 will then change. Make sure this does not 3788 ** cause any problems.) 3789 ** 3790 ** This instruction only works on tables. The equivalent instruction 3791 ** for indices is OP_IdxInsert. 3792 */ 3793 /* Opcode: InsertInt P1 P2 P3 P4 P5 3794 ** 3795 ** This works exactly like OP_Insert except that the key is the 3796 ** integer value P3, not the value of the integer stored in register P3. 3797 */ 3798 case OP_Insert: 3799 case OP_InsertInt: { 3800 Mem *pData; /* MEM cell holding data for the record to be inserted */ 3801 Mem *pKey; /* MEM cell holding key for the record */ 3802 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 3803 VdbeCursor *pC; /* Cursor to table into which insert is written */ 3804 int nZero; /* Number of zero-bytes to append */ 3805 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 3806 const char *zDb; /* database name - used by the update hook */ 3807 const char *zTbl; /* Table name - used by the opdate hook */ 3808 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 3809 3810 pData = &aMem[pOp->p2]; 3811 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3812 pC = p->apCsr[pOp->p1]; 3813 assert( pC!=0 ); 3814 assert( pC->pCursor!=0 ); 3815 assert( pC->pseudoTableReg==0 ); 3816 assert( pC->isTable ); 3817 REGISTER_TRACE(pOp->p2, pData); 3818 3819 if( pOp->opcode==OP_Insert ){ 3820 pKey = &aMem[pOp->p3]; 3821 assert( pKey->flags & MEM_Int ); 3822 REGISTER_TRACE(pOp->p3, pKey); 3823 iKey = pKey->u.i; 3824 }else{ 3825 assert( pOp->opcode==OP_InsertInt ); 3826 iKey = pOp->p3; 3827 } 3828 3829 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 3830 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey; 3831 if( pData->flags & MEM_Null ){ 3832 pData->z = 0; 3833 pData->n = 0; 3834 }else{ 3835 assert( pData->flags & (MEM_Blob|MEM_Str) ); 3836 } 3837 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 3838 if( pData->flags & MEM_Zero ){ 3839 nZero = pData->u.nZero; 3840 }else{ 3841 nZero = 0; 3842 } 3843 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3844 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 3845 pData->z, pData->n, nZero, 3846 pOp->p5 & OPFLAG_APPEND, seekResult 3847 ); 3848 pC->rowidIsValid = 0; 3849 pC->deferredMoveto = 0; 3850 pC->cacheStatus = CACHE_STALE; 3851 3852 /* Invoke the update-hook if required. */ 3853 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3854 zDb = db->aDb[pC->iDb].zName; 3855 zTbl = pOp->p4.z; 3856 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 3857 assert( pC->isTable ); 3858 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 3859 assert( pC->iDb>=0 ); 3860 } 3861 break; 3862 } 3863 3864 /* Opcode: Delete P1 P2 * P4 * 3865 ** 3866 ** Delete the record at which the P1 cursor is currently pointing. 3867 ** 3868 ** The cursor will be left pointing at either the next or the previous 3869 ** record in the table. If it is left pointing at the next record, then 3870 ** the next Next instruction will be a no-op. Hence it is OK to delete 3871 ** a record from within an Next loop. 3872 ** 3873 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 3874 ** incremented (otherwise not). 3875 ** 3876 ** P1 must not be pseudo-table. It has to be a real table with 3877 ** multiple rows. 3878 ** 3879 ** If P4 is not NULL, then it is the name of the table that P1 is 3880 ** pointing to. The update hook will be invoked, if it exists. 3881 ** If P4 is not NULL then the P1 cursor must have been positioned 3882 ** using OP_NotFound prior to invoking this opcode. 3883 */ 3884 case OP_Delete: { 3885 i64 iKey; 3886 VdbeCursor *pC; 3887 3888 iKey = 0; 3889 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3890 pC = p->apCsr[pOp->p1]; 3891 assert( pC!=0 ); 3892 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 3893 3894 /* If the update-hook will be invoked, set iKey to the rowid of the 3895 ** row being deleted. 3896 */ 3897 if( db->xUpdateCallback && pOp->p4.z ){ 3898 assert( pC->isTable ); 3899 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ 3900 iKey = pC->lastRowid; 3901 } 3902 3903 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 3904 ** OP_Column on the same table without any intervening operations that 3905 ** might move or invalidate the cursor. Hence cursor pC is always pointing 3906 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 3907 ** below is always a no-op and cannot fail. We will run it anyhow, though, 3908 ** to guard against future changes to the code generator. 3909 **/ 3910 assert( pC->deferredMoveto==0 ); 3911 rc = sqlite3VdbeCursorMoveto(pC); 3912 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 3913 3914 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3915 rc = sqlite3BtreeDelete(pC->pCursor); 3916 pC->cacheStatus = CACHE_STALE; 3917 3918 /* Invoke the update-hook if required. */ 3919 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3920 const char *zDb = db->aDb[pC->iDb].zName; 3921 const char *zTbl = pOp->p4.z; 3922 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); 3923 assert( pC->iDb>=0 ); 3924 } 3925 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 3926 break; 3927 } 3928 /* Opcode: ResetCount * * * * * 3929 ** 3930 ** The value of the change counter is copied to the database handle 3931 ** change counter (returned by subsequent calls to sqlite3_changes()). 3932 ** Then the VMs internal change counter resets to 0. 3933 ** This is used by trigger programs. 3934 */ 3935 case OP_ResetCount: { 3936 sqlite3VdbeSetChanges(db, p->nChange); 3937 p->nChange = 0; 3938 break; 3939 } 3940 3941 /* Opcode: RowData P1 P2 * * * 3942 ** 3943 ** Write into register P2 the complete row data for cursor P1. 3944 ** There is no interpretation of the data. 3945 ** It is just copied onto the P2 register exactly as 3946 ** it is found in the database file. 3947 ** 3948 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 3949 ** of a real table, not a pseudo-table. 3950 */ 3951 /* Opcode: RowKey P1 P2 * * * 3952 ** 3953 ** Write into register P2 the complete row key for cursor P1. 3954 ** There is no interpretation of the data. 3955 ** The key is copied onto the P3 register exactly as 3956 ** it is found in the database file. 3957 ** 3958 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 3959 ** of a real table, not a pseudo-table. 3960 */ 3961 case OP_RowKey: 3962 case OP_RowData: { 3963 VdbeCursor *pC; 3964 BtCursor *pCrsr; 3965 u32 n; 3966 i64 n64; 3967 3968 pOut = &aMem[pOp->p2]; 3969 3970 /* Note that RowKey and RowData are really exactly the same instruction */ 3971 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3972 pC = p->apCsr[pOp->p1]; 3973 assert( pC->isTable || pOp->opcode==OP_RowKey ); 3974 assert( pC->isIndex || pOp->opcode==OP_RowData ); 3975 assert( pC!=0 ); 3976 assert( pC->nullRow==0 ); 3977 assert( pC->pseudoTableReg==0 ); 3978 assert( pC->pCursor!=0 ); 3979 pCrsr = pC->pCursor; 3980 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 3981 3982 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 3983 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 3984 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 3985 ** a no-op and can never fail. But we leave it in place as a safety. 3986 */ 3987 assert( pC->deferredMoveto==0 ); 3988 rc = sqlite3VdbeCursorMoveto(pC); 3989 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 3990 3991 if( pC->isIndex ){ 3992 assert( !pC->isTable ); 3993 rc = sqlite3BtreeKeySize(pCrsr, &n64); 3994 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 3995 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3996 goto too_big; 3997 } 3998 n = (u32)n64; 3999 }else{ 4000 rc = sqlite3BtreeDataSize(pCrsr, &n); 4001 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4002 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4003 goto too_big; 4004 } 4005 } 4006 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4007 goto no_mem; 4008 } 4009 pOut->n = n; 4010 MemSetTypeFlag(pOut, MEM_Blob); 4011 if( pC->isIndex ){ 4012 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4013 }else{ 4014 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4015 } 4016 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4017 UPDATE_MAX_BLOBSIZE(pOut); 4018 break; 4019 } 4020 4021 /* Opcode: Rowid P1 P2 * * * 4022 ** 4023 ** Store in register P2 an integer which is the key of the table entry that 4024 ** P1 is currently point to. 4025 ** 4026 ** P1 can be either an ordinary table or a virtual table. There used to 4027 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4028 ** one opcode now works for both table types. 4029 */ 4030 case OP_Rowid: { /* out2-prerelease */ 4031 VdbeCursor *pC; 4032 i64 v; 4033 sqlite3_vtab *pVtab; 4034 const sqlite3_module *pModule; 4035 4036 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4037 pC = p->apCsr[pOp->p1]; 4038 assert( pC!=0 ); 4039 assert( pC->pseudoTableReg==0 ); 4040 if( pC->nullRow ){ 4041 pOut->flags = MEM_Null; 4042 break; 4043 }else if( pC->deferredMoveto ){ 4044 v = pC->movetoTarget; 4045 #ifndef SQLITE_OMIT_VIRTUALTABLE 4046 }else if( pC->pVtabCursor ){ 4047 pVtab = pC->pVtabCursor->pVtab; 4048 pModule = pVtab->pModule; 4049 assert( pModule->xRowid ); 4050 rc = pModule->xRowid(pC->pVtabCursor, &v); 4051 importVtabErrMsg(p, pVtab); 4052 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4053 }else{ 4054 assert( pC->pCursor!=0 ); 4055 rc = sqlite3VdbeCursorMoveto(pC); 4056 if( rc ) goto abort_due_to_error; 4057 if( pC->rowidIsValid ){ 4058 v = pC->lastRowid; 4059 }else{ 4060 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4061 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4062 } 4063 } 4064 pOut->u.i = v; 4065 break; 4066 } 4067 4068 /* Opcode: NullRow P1 * * * * 4069 ** 4070 ** Move the cursor P1 to a null row. Any OP_Column operations 4071 ** that occur while the cursor is on the null row will always 4072 ** write a NULL. 4073 */ 4074 case OP_NullRow: { 4075 VdbeCursor *pC; 4076 4077 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4078 pC = p->apCsr[pOp->p1]; 4079 assert( pC!=0 ); 4080 pC->nullRow = 1; 4081 pC->rowidIsValid = 0; 4082 if( pC->pCursor ){ 4083 sqlite3BtreeClearCursor(pC->pCursor); 4084 } 4085 break; 4086 } 4087 4088 /* Opcode: Last P1 P2 * * * 4089 ** 4090 ** The next use of the Rowid or Column or Next instruction for P1 4091 ** will refer to the last entry in the database table or index. 4092 ** If the table or index is empty and P2>0, then jump immediately to P2. 4093 ** If P2 is 0 or if the table or index is not empty, fall through 4094 ** to the following instruction. 4095 */ 4096 case OP_Last: { /* jump */ 4097 VdbeCursor *pC; 4098 BtCursor *pCrsr; 4099 int res; 4100 4101 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4102 pC = p->apCsr[pOp->p1]; 4103 assert( pC!=0 ); 4104 pCrsr = pC->pCursor; 4105 if( pCrsr==0 ){ 4106 res = 1; 4107 }else{ 4108 rc = sqlite3BtreeLast(pCrsr, &res); 4109 } 4110 pC->nullRow = (u8)res; 4111 pC->deferredMoveto = 0; 4112 pC->rowidIsValid = 0; 4113 pC->cacheStatus = CACHE_STALE; 4114 if( pOp->p2>0 && res ){ 4115 pc = pOp->p2 - 1; 4116 } 4117 break; 4118 } 4119 4120 4121 /* Opcode: Sort P1 P2 * * * 4122 ** 4123 ** This opcode does exactly the same thing as OP_Rewind except that 4124 ** it increments an undocumented global variable used for testing. 4125 ** 4126 ** Sorting is accomplished by writing records into a sorting index, 4127 ** then rewinding that index and playing it back from beginning to 4128 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4129 ** rewinding so that the global variable will be incremented and 4130 ** regression tests can determine whether or not the optimizer is 4131 ** correctly optimizing out sorts. 4132 */ 4133 case OP_Sort: { /* jump */ 4134 #ifdef SQLITE_TEST 4135 sqlite3_sort_count++; 4136 sqlite3_search_count--; 4137 #endif 4138 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; 4139 /* Fall through into OP_Rewind */ 4140 } 4141 /* Opcode: Rewind P1 P2 * * * 4142 ** 4143 ** The next use of the Rowid or Column or Next instruction for P1 4144 ** will refer to the first entry in the database table or index. 4145 ** If the table or index is empty and P2>0, then jump immediately to P2. 4146 ** If P2 is 0 or if the table or index is not empty, fall through 4147 ** to the following instruction. 4148 */ 4149 case OP_Rewind: { /* jump */ 4150 VdbeCursor *pC; 4151 BtCursor *pCrsr; 4152 int res; 4153 4154 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4155 pC = p->apCsr[pOp->p1]; 4156 assert( pC!=0 ); 4157 res = 1; 4158 if( (pCrsr = pC->pCursor)!=0 ){ 4159 rc = sqlite3BtreeFirst(pCrsr, &res); 4160 pC->atFirst = res==0 ?1:0; 4161 pC->deferredMoveto = 0; 4162 pC->cacheStatus = CACHE_STALE; 4163 pC->rowidIsValid = 0; 4164 } 4165 pC->nullRow = (u8)res; 4166 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4167 if( res ){ 4168 pc = pOp->p2 - 1; 4169 } 4170 break; 4171 } 4172 4173 /* Opcode: Next P1 P2 * * P5 4174 ** 4175 ** Advance cursor P1 so that it points to the next key/data pair in its 4176 ** table or index. If there are no more key/value pairs then fall through 4177 ** to the following instruction. But if the cursor advance was successful, 4178 ** jump immediately to P2. 4179 ** 4180 ** The P1 cursor must be for a real table, not a pseudo-table. 4181 ** 4182 ** If P5 is positive and the jump is taken, then event counter 4183 ** number P5-1 in the prepared statement is incremented. 4184 ** 4185 ** See also: Prev 4186 */ 4187 /* Opcode: Prev P1 P2 * * P5 4188 ** 4189 ** Back up cursor P1 so that it points to the previous key/data pair in its 4190 ** table or index. If there is no previous key/value pairs then fall through 4191 ** to the following instruction. But if the cursor backup was successful, 4192 ** jump immediately to P2. 4193 ** 4194 ** The P1 cursor must be for a real table, not a pseudo-table. 4195 ** 4196 ** If P5 is positive and the jump is taken, then event counter 4197 ** number P5-1 in the prepared statement is incremented. 4198 */ 4199 case OP_Prev: /* jump */ 4200 case OP_Next: { /* jump */ 4201 VdbeCursor *pC; 4202 BtCursor *pCrsr; 4203 int res; 4204 4205 CHECK_FOR_INTERRUPT; 4206 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4207 assert( pOp->p5<=ArraySize(p->aCounter) ); 4208 pC = p->apCsr[pOp->p1]; 4209 if( pC==0 ){ 4210 break; /* See ticket #2273 */ 4211 } 4212 pCrsr = pC->pCursor; 4213 if( pCrsr==0 ){ 4214 pC->nullRow = 1; 4215 break; 4216 } 4217 res = 1; 4218 assert( pC->deferredMoveto==0 ); 4219 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : 4220 sqlite3BtreePrevious(pCrsr, &res); 4221 pC->nullRow = (u8)res; 4222 pC->cacheStatus = CACHE_STALE; 4223 if( res==0 ){ 4224 pc = pOp->p2 - 1; 4225 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; 4226 #ifdef SQLITE_TEST 4227 sqlite3_search_count++; 4228 #endif 4229 } 4230 pC->rowidIsValid = 0; 4231 break; 4232 } 4233 4234 /* Opcode: IdxInsert P1 P2 P3 * P5 4235 ** 4236 ** Register P2 holds a SQL index key made using the 4237 ** MakeRecord instructions. This opcode writes that key 4238 ** into the index P1. Data for the entry is nil. 4239 ** 4240 ** P3 is a flag that provides a hint to the b-tree layer that this 4241 ** insert is likely to be an append. 4242 ** 4243 ** This instruction only works for indices. The equivalent instruction 4244 ** for tables is OP_Insert. 4245 */ 4246 case OP_IdxInsert: { /* in2 */ 4247 VdbeCursor *pC; 4248 BtCursor *pCrsr; 4249 int nKey; 4250 const char *zKey; 4251 4252 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4253 pC = p->apCsr[pOp->p1]; 4254 assert( pC!=0 ); 4255 pIn2 = &aMem[pOp->p2]; 4256 assert( pIn2->flags & MEM_Blob ); 4257 pCrsr = pC->pCursor; 4258 if( ALWAYS(pCrsr!=0) ){ 4259 assert( pC->isTable==0 ); 4260 rc = ExpandBlob(pIn2); 4261 if( rc==SQLITE_OK ){ 4262 nKey = pIn2->n; 4263 zKey = pIn2->z; 4264 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4265 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4266 ); 4267 assert( pC->deferredMoveto==0 ); 4268 pC->cacheStatus = CACHE_STALE; 4269 } 4270 } 4271 break; 4272 } 4273 4274 /* Opcode: IdxDelete P1 P2 P3 * * 4275 ** 4276 ** The content of P3 registers starting at register P2 form 4277 ** an unpacked index key. This opcode removes that entry from the 4278 ** index opened by cursor P1. 4279 */ 4280 case OP_IdxDelete: { 4281 VdbeCursor *pC; 4282 BtCursor *pCrsr; 4283 int res; 4284 UnpackedRecord r; 4285 4286 assert( pOp->p3>0 ); 4287 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); 4288 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4289 pC = p->apCsr[pOp->p1]; 4290 assert( pC!=0 ); 4291 pCrsr = pC->pCursor; 4292 if( ALWAYS(pCrsr!=0) ){ 4293 r.pKeyInfo = pC->pKeyInfo; 4294 r.nField = (u16)pOp->p3; 4295 r.flags = 0; 4296 r.aMem = &aMem[pOp->p2]; 4297 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4298 if( rc==SQLITE_OK && res==0 ){ 4299 rc = sqlite3BtreeDelete(pCrsr); 4300 } 4301 assert( pC->deferredMoveto==0 ); 4302 pC->cacheStatus = CACHE_STALE; 4303 } 4304 break; 4305 } 4306 4307 /* Opcode: IdxRowid P1 P2 * * * 4308 ** 4309 ** Write into register P2 an integer which is the last entry in the record at 4310 ** the end of the index key pointed to by cursor P1. This integer should be 4311 ** the rowid of the table entry to which this index entry points. 4312 ** 4313 ** See also: Rowid, MakeRecord. 4314 */ 4315 case OP_IdxRowid: { /* out2-prerelease */ 4316 BtCursor *pCrsr; 4317 VdbeCursor *pC; 4318 i64 rowid; 4319 4320 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4321 pC = p->apCsr[pOp->p1]; 4322 assert( pC!=0 ); 4323 pCrsr = pC->pCursor; 4324 pOut->flags = MEM_Null; 4325 if( ALWAYS(pCrsr!=0) ){ 4326 rc = sqlite3VdbeCursorMoveto(pC); 4327 if( NEVER(rc) ) goto abort_due_to_error; 4328 assert( pC->deferredMoveto==0 ); 4329 assert( pC->isTable==0 ); 4330 if( !pC->nullRow ){ 4331 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4332 if( rc!=SQLITE_OK ){ 4333 goto abort_due_to_error; 4334 } 4335 pOut->u.i = rowid; 4336 pOut->flags = MEM_Int; 4337 } 4338 } 4339 break; 4340 } 4341 4342 /* Opcode: IdxGE P1 P2 P3 P4 P5 4343 ** 4344 ** The P4 register values beginning with P3 form an unpacked index 4345 ** key that omits the ROWID. Compare this key value against the index 4346 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4347 ** 4348 ** If the P1 index entry is greater than or equal to the key value 4349 ** then jump to P2. Otherwise fall through to the next instruction. 4350 ** 4351 ** If P5 is non-zero then the key value is increased by an epsilon 4352 ** prior to the comparison. This make the opcode work like IdxGT except 4353 ** that if the key from register P3 is a prefix of the key in the cursor, 4354 ** the result is false whereas it would be true with IdxGT. 4355 */ 4356 /* Opcode: IdxLT P1 P2 P3 P4 P5 4357 ** 4358 ** The P4 register values beginning with P3 form an unpacked index 4359 ** key that omits the ROWID. Compare this key value against the index 4360 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4361 ** 4362 ** If the P1 index entry is less than the key value then jump to P2. 4363 ** Otherwise fall through to the next instruction. 4364 ** 4365 ** If P5 is non-zero then the key value is increased by an epsilon prior 4366 ** to the comparison. This makes the opcode work like IdxLE. 4367 */ 4368 case OP_IdxLT: /* jump */ 4369 case OP_IdxGE: { /* jump */ 4370 VdbeCursor *pC; 4371 int res; 4372 UnpackedRecord r; 4373 4374 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4375 pC = p->apCsr[pOp->p1]; 4376 assert( pC!=0 ); 4377 assert( pC->isOrdered ); 4378 if( ALWAYS(pC->pCursor!=0) ){ 4379 assert( pC->deferredMoveto==0 ); 4380 assert( pOp->p5==0 || pOp->p5==1 ); 4381 assert( pOp->p4type==P4_INT32 ); 4382 r.pKeyInfo = pC->pKeyInfo; 4383 r.nField = (u16)pOp->p4.i; 4384 if( pOp->p5 ){ 4385 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; 4386 }else{ 4387 r.flags = UNPACKED_IGNORE_ROWID; 4388 } 4389 r.aMem = &aMem[pOp->p3]; 4390 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4391 if( pOp->opcode==OP_IdxLT ){ 4392 res = -res; 4393 }else{ 4394 assert( pOp->opcode==OP_IdxGE ); 4395 res++; 4396 } 4397 if( res>0 ){ 4398 pc = pOp->p2 - 1 ; 4399 } 4400 } 4401 break; 4402 } 4403 4404 /* Opcode: Destroy P1 P2 P3 * * 4405 ** 4406 ** Delete an entire database table or index whose root page in the database 4407 ** file is given by P1. 4408 ** 4409 ** The table being destroyed is in the main database file if P3==0. If 4410 ** P3==1 then the table to be clear is in the auxiliary database file 4411 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4412 ** 4413 ** If AUTOVACUUM is enabled then it is possible that another root page 4414 ** might be moved into the newly deleted root page in order to keep all 4415 ** root pages contiguous at the beginning of the database. The former 4416 ** value of the root page that moved - its value before the move occurred - 4417 ** is stored in register P2. If no page 4418 ** movement was required (because the table being dropped was already 4419 ** the last one in the database) then a zero is stored in register P2. 4420 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4421 ** 4422 ** See also: Clear 4423 */ 4424 case OP_Destroy: { /* out2-prerelease */ 4425 int iMoved; 4426 int iCnt; 4427 Vdbe *pVdbe; 4428 int iDb; 4429 #ifndef SQLITE_OMIT_VIRTUALTABLE 4430 iCnt = 0; 4431 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4432 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ 4433 iCnt++; 4434 } 4435 } 4436 #else 4437 iCnt = db->activeVdbeCnt; 4438 #endif 4439 pOut->flags = MEM_Null; 4440 if( iCnt>1 ){ 4441 rc = SQLITE_LOCKED; 4442 p->errorAction = OE_Abort; 4443 }else{ 4444 iDb = pOp->p3; 4445 assert( iCnt==1 ); 4446 assert( (p->btreeMask & (1<<iDb))!=0 ); 4447 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4448 pOut->flags = MEM_Int; 4449 pOut->u.i = iMoved; 4450 #ifndef SQLITE_OMIT_AUTOVACUUM 4451 if( rc==SQLITE_OK && iMoved!=0 ){ 4452 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); 4453 resetSchemaOnFault = 1; 4454 } 4455 #endif 4456 } 4457 break; 4458 } 4459 4460 /* Opcode: Clear P1 P2 P3 4461 ** 4462 ** Delete all contents of the database table or index whose root page 4463 ** in the database file is given by P1. But, unlike Destroy, do not 4464 ** remove the table or index from the database file. 4465 ** 4466 ** The table being clear is in the main database file if P2==0. If 4467 ** P2==1 then the table to be clear is in the auxiliary database file 4468 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4469 ** 4470 ** If the P3 value is non-zero, then the table referred to must be an 4471 ** intkey table (an SQL table, not an index). In this case the row change 4472 ** count is incremented by the number of rows in the table being cleared. 4473 ** If P3 is greater than zero, then the value stored in register P3 is 4474 ** also incremented by the number of rows in the table being cleared. 4475 ** 4476 ** See also: Destroy 4477 */ 4478 case OP_Clear: { 4479 int nChange; 4480 4481 nChange = 0; 4482 assert( (p->btreeMask & (1<<pOp->p2))!=0 ); 4483 rc = sqlite3BtreeClearTable( 4484 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4485 ); 4486 if( pOp->p3 ){ 4487 p->nChange += nChange; 4488 if( pOp->p3>0 ){ 4489 aMem[pOp->p3].u.i += nChange; 4490 } 4491 } 4492 break; 4493 } 4494 4495 /* Opcode: CreateTable P1 P2 * * * 4496 ** 4497 ** Allocate a new table in the main database file if P1==0 or in the 4498 ** auxiliary database file if P1==1 or in an attached database if 4499 ** P1>1. Write the root page number of the new table into 4500 ** register P2 4501 ** 4502 ** The difference between a table and an index is this: A table must 4503 ** have a 4-byte integer key and can have arbitrary data. An index 4504 ** has an arbitrary key but no data. 4505 ** 4506 ** See also: CreateIndex 4507 */ 4508 /* Opcode: CreateIndex P1 P2 * * * 4509 ** 4510 ** Allocate a new index in the main database file if P1==0 or in the 4511 ** auxiliary database file if P1==1 or in an attached database if 4512 ** P1>1. Write the root page number of the new table into 4513 ** register P2. 4514 ** 4515 ** See documentation on OP_CreateTable for additional information. 4516 */ 4517 case OP_CreateIndex: /* out2-prerelease */ 4518 case OP_CreateTable: { /* out2-prerelease */ 4519 int pgno; 4520 int flags; 4521 Db *pDb; 4522 4523 pgno = 0; 4524 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4525 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 4526 pDb = &db->aDb[pOp->p1]; 4527 assert( pDb->pBt!=0 ); 4528 if( pOp->opcode==OP_CreateTable ){ 4529 /* flags = BTREE_INTKEY; */ 4530 flags = BTREE_INTKEY; 4531 }else{ 4532 flags = BTREE_BLOBKEY; 4533 } 4534 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4535 pOut->u.i = pgno; 4536 break; 4537 } 4538 4539 /* Opcode: ParseSchema P1 P2 * P4 * 4540 ** 4541 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4542 ** that match the WHERE clause P4. P2 is the "force" flag. Always do 4543 ** the parsing if P2 is true. If P2 is false, then this routine is a 4544 ** no-op if the schema is not currently loaded. In other words, if P2 4545 ** is false, the SQLITE_MASTER table is only parsed if the rest of the 4546 ** schema is already loaded into the symbol table. 4547 ** 4548 ** This opcode invokes the parser to create a new virtual machine, 4549 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4550 */ 4551 case OP_ParseSchema: { 4552 int iDb; 4553 const char *zMaster; 4554 char *zSql; 4555 InitData initData; 4556 4557 iDb = pOp->p1; 4558 assert( iDb>=0 && iDb<db->nDb ); 4559 4560 /* If pOp->p2 is 0, then this opcode is being executed to read a 4561 ** single row, for example the row corresponding to a new index 4562 ** created by this VDBE, from the sqlite_master table. It only 4563 ** does this if the corresponding in-memory schema is currently 4564 ** loaded. Otherwise, the new index definition can be loaded along 4565 ** with the rest of the schema when it is required. 4566 ** 4567 ** Although the mutex on the BtShared object that corresponds to 4568 ** database iDb (the database containing the sqlite_master table 4569 ** read by this instruction) is currently held, it is necessary to 4570 ** obtain the mutexes on all attached databases before checking if 4571 ** the schema of iDb is loaded. This is because, at the start of 4572 ** the sqlite3_exec() call below, SQLite will invoke 4573 ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the 4574 ** iDb mutex may be temporarily released to avoid deadlock. If 4575 ** this happens, then some other thread may delete the in-memory 4576 ** schema of database iDb before the SQL statement runs. The schema 4577 ** will not be reloaded becuase the db->init.busy flag is set. This 4578 ** can result in a "no such table: sqlite_master" or "malformed 4579 ** database schema" error being returned to the user. 4580 */ 4581 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4582 sqlite3BtreeEnterAll(db); 4583 if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){ 4584 zMaster = SCHEMA_TABLE(iDb); 4585 initData.db = db; 4586 initData.iDb = pOp->p1; 4587 initData.pzErrMsg = &p->zErrMsg; 4588 zSql = sqlite3MPrintf(db, 4589 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 4590 db->aDb[iDb].zName, zMaster, pOp->p4.z); 4591 if( zSql==0 ){ 4592 rc = SQLITE_NOMEM; 4593 }else{ 4594 assert( db->init.busy==0 ); 4595 db->init.busy = 1; 4596 initData.rc = SQLITE_OK; 4597 assert( !db->mallocFailed ); 4598 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 4599 if( rc==SQLITE_OK ) rc = initData.rc; 4600 sqlite3DbFree(db, zSql); 4601 db->init.busy = 0; 4602 } 4603 } 4604 sqlite3BtreeLeaveAll(db); 4605 if( rc==SQLITE_NOMEM ){ 4606 goto no_mem; 4607 } 4608 break; 4609 } 4610 4611 #if !defined(SQLITE_OMIT_ANALYZE) 4612 /* Opcode: LoadAnalysis P1 * * * * 4613 ** 4614 ** Read the sqlite_stat1 table for database P1 and load the content 4615 ** of that table into the internal index hash table. This will cause 4616 ** the analysis to be used when preparing all subsequent queries. 4617 */ 4618 case OP_LoadAnalysis: { 4619 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4620 rc = sqlite3AnalysisLoad(db, pOp->p1); 4621 break; 4622 } 4623 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 4624 4625 /* Opcode: DropTable P1 * * P4 * 4626 ** 4627 ** Remove the internal (in-memory) data structures that describe 4628 ** the table named P4 in database P1. This is called after a table 4629 ** is dropped in order to keep the internal representation of the 4630 ** schema consistent with what is on disk. 4631 */ 4632 case OP_DropTable: { 4633 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 4634 break; 4635 } 4636 4637 /* Opcode: DropIndex P1 * * P4 * 4638 ** 4639 ** Remove the internal (in-memory) data structures that describe 4640 ** the index named P4 in database P1. This is called after an index 4641 ** is dropped in order to keep the internal representation of the 4642 ** schema consistent with what is on disk. 4643 */ 4644 case OP_DropIndex: { 4645 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 4646 break; 4647 } 4648 4649 /* Opcode: DropTrigger P1 * * P4 * 4650 ** 4651 ** Remove the internal (in-memory) data structures that describe 4652 ** the trigger named P4 in database P1. This is called after a trigger 4653 ** is dropped in order to keep the internal representation of the 4654 ** schema consistent with what is on disk. 4655 */ 4656 case OP_DropTrigger: { 4657 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 4658 break; 4659 } 4660 4661 4662 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 4663 /* Opcode: IntegrityCk P1 P2 P3 * P5 4664 ** 4665 ** Do an analysis of the currently open database. Store in 4666 ** register P1 the text of an error message describing any problems. 4667 ** If no problems are found, store a NULL in register P1. 4668 ** 4669 ** The register P3 contains the maximum number of allowed errors. 4670 ** At most reg(P3) errors will be reported. 4671 ** In other words, the analysis stops as soon as reg(P1) errors are 4672 ** seen. Reg(P1) is updated with the number of errors remaining. 4673 ** 4674 ** The root page numbers of all tables in the database are integer 4675 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 4676 ** total. 4677 ** 4678 ** If P5 is not zero, the check is done on the auxiliary database 4679 ** file, not the main database file. 4680 ** 4681 ** This opcode is used to implement the integrity_check pragma. 4682 */ 4683 case OP_IntegrityCk: { 4684 int nRoot; /* Number of tables to check. (Number of root pages.) */ 4685 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 4686 int j; /* Loop counter */ 4687 int nErr; /* Number of errors reported */ 4688 char *z; /* Text of the error report */ 4689 Mem *pnErr; /* Register keeping track of errors remaining */ 4690 4691 nRoot = pOp->p2; 4692 assert( nRoot>0 ); 4693 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 4694 if( aRoot==0 ) goto no_mem; 4695 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 4696 pnErr = &aMem[pOp->p3]; 4697 assert( (pnErr->flags & MEM_Int)!=0 ); 4698 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 4699 pIn1 = &aMem[pOp->p1]; 4700 for(j=0; j<nRoot; j++){ 4701 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 4702 } 4703 aRoot[j] = 0; 4704 assert( pOp->p5<db->nDb ); 4705 assert( (p->btreeMask & (1<<pOp->p5))!=0 ); 4706 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 4707 (int)pnErr->u.i, &nErr); 4708 sqlite3DbFree(db, aRoot); 4709 pnErr->u.i -= nErr; 4710 sqlite3VdbeMemSetNull(pIn1); 4711 if( nErr==0 ){ 4712 assert( z==0 ); 4713 }else if( z==0 ){ 4714 goto no_mem; 4715 }else{ 4716 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 4717 } 4718 UPDATE_MAX_BLOBSIZE(pIn1); 4719 sqlite3VdbeChangeEncoding(pIn1, encoding); 4720 break; 4721 } 4722 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 4723 4724 /* Opcode: RowSetAdd P1 P2 * * * 4725 ** 4726 ** Insert the integer value held by register P2 into a boolean index 4727 ** held in register P1. 4728 ** 4729 ** An assertion fails if P2 is not an integer. 4730 */ 4731 case OP_RowSetAdd: { /* in1, in2 */ 4732 pIn1 = &aMem[pOp->p1]; 4733 pIn2 = &aMem[pOp->p2]; 4734 assert( (pIn2->flags & MEM_Int)!=0 ); 4735 if( (pIn1->flags & MEM_RowSet)==0 ){ 4736 sqlite3VdbeMemSetRowSet(pIn1); 4737 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 4738 } 4739 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 4740 break; 4741 } 4742 4743 /* Opcode: RowSetRead P1 P2 P3 * * 4744 ** 4745 ** Extract the smallest value from boolean index P1 and put that value into 4746 ** register P3. Or, if boolean index P1 is initially empty, leave P3 4747 ** unchanged and jump to instruction P2. 4748 */ 4749 case OP_RowSetRead: { /* jump, in1, out3 */ 4750 i64 val; 4751 CHECK_FOR_INTERRUPT; 4752 pIn1 = &aMem[pOp->p1]; 4753 if( (pIn1->flags & MEM_RowSet)==0 4754 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 4755 ){ 4756 /* The boolean index is empty */ 4757 sqlite3VdbeMemSetNull(pIn1); 4758 pc = pOp->p2 - 1; 4759 }else{ 4760 /* A value was pulled from the index */ 4761 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 4762 } 4763 break; 4764 } 4765 4766 /* Opcode: RowSetTest P1 P2 P3 P4 4767 ** 4768 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 4769 ** contains a RowSet object and that RowSet object contains 4770 ** the value held in P3, jump to register P2. Otherwise, insert the 4771 ** integer in P3 into the RowSet and continue on to the 4772 ** next opcode. 4773 ** 4774 ** The RowSet object is optimized for the case where successive sets 4775 ** of integers, where each set contains no duplicates. Each set 4776 ** of values is identified by a unique P4 value. The first set 4777 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 4778 ** non-negative. For non-negative values of P4 only the lower 4 4779 ** bits are significant. 4780 ** 4781 ** This allows optimizations: (a) when P4==0 there is no need to test 4782 ** the rowset object for P3, as it is guaranteed not to contain it, 4783 ** (b) when P4==-1 there is no need to insert the value, as it will 4784 ** never be tested for, and (c) when a value that is part of set X is 4785 ** inserted, there is no need to search to see if the same value was 4786 ** previously inserted as part of set X (only if it was previously 4787 ** inserted as part of some other set). 4788 */ 4789 case OP_RowSetTest: { /* jump, in1, in3 */ 4790 int iSet; 4791 int exists; 4792 4793 pIn1 = &aMem[pOp->p1]; 4794 pIn3 = &aMem[pOp->p3]; 4795 iSet = pOp->p4.i; 4796 assert( pIn3->flags&MEM_Int ); 4797 4798 /* If there is anything other than a rowset object in memory cell P1, 4799 ** delete it now and initialize P1 with an empty rowset 4800 */ 4801 if( (pIn1->flags & MEM_RowSet)==0 ){ 4802 sqlite3VdbeMemSetRowSet(pIn1); 4803 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 4804 } 4805 4806 assert( pOp->p4type==P4_INT32 ); 4807 assert( iSet==-1 || iSet>=0 ); 4808 if( iSet ){ 4809 exists = sqlite3RowSetTest(pIn1->u.pRowSet, 4810 (u8)(iSet>=0 ? iSet & 0xf : 0xff), 4811 pIn3->u.i); 4812 if( exists ){ 4813 pc = pOp->p2 - 1; 4814 break; 4815 } 4816 } 4817 if( iSet>=0 ){ 4818 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 4819 } 4820 break; 4821 } 4822 4823 4824 #ifndef SQLITE_OMIT_TRIGGER 4825 4826 /* Opcode: Program P1 P2 P3 P4 * 4827 ** 4828 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 4829 ** 4830 ** P1 contains the address of the memory cell that contains the first memory 4831 ** cell in an array of values used as arguments to the sub-program. P2 4832 ** contains the address to jump to if the sub-program throws an IGNORE 4833 ** exception using the RAISE() function. Register P3 contains the address 4834 ** of a memory cell in this (the parent) VM that is used to allocate the 4835 ** memory required by the sub-vdbe at runtime. 4836 ** 4837 ** P4 is a pointer to the VM containing the trigger program. 4838 */ 4839 case OP_Program: { /* jump */ 4840 int nMem; /* Number of memory registers for sub-program */ 4841 int nByte; /* Bytes of runtime space required for sub-program */ 4842 Mem *pRt; /* Register to allocate runtime space */ 4843 Mem *pMem; /* Used to iterate through memory cells */ 4844 Mem *pEnd; /* Last memory cell in new array */ 4845 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 4846 SubProgram *pProgram; /* Sub-program to execute */ 4847 void *t; /* Token identifying trigger */ 4848 4849 pProgram = pOp->p4.pProgram; 4850 pRt = &aMem[pOp->p3]; 4851 assert( pProgram->nOp>0 ); 4852 4853 /* If the p5 flag is clear, then recursive invocation of triggers is 4854 ** disabled for backwards compatibility (p5 is set if this sub-program 4855 ** is really a trigger, not a foreign key action, and the flag set 4856 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 4857 ** 4858 ** It is recursive invocation of triggers, at the SQL level, that is 4859 ** disabled. In some cases a single trigger may generate more than one 4860 ** SubProgram (if the trigger may be executed with more than one different 4861 ** ON CONFLICT algorithm). SubProgram structures associated with a 4862 ** single trigger all have the same value for the SubProgram.token 4863 ** variable. */ 4864 if( pOp->p5 ){ 4865 t = pProgram->token; 4866 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 4867 if( pFrame ) break; 4868 } 4869 4870 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 4871 rc = SQLITE_ERROR; 4872 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 4873 break; 4874 } 4875 4876 /* Register pRt is used to store the memory required to save the state 4877 ** of the current program, and the memory required at runtime to execute 4878 ** the trigger program. If this trigger has been fired before, then pRt 4879 ** is already allocated. Otherwise, it must be initialized. */ 4880 if( (pRt->flags&MEM_Frame)==0 ){ 4881 /* SubProgram.nMem is set to the number of memory cells used by the 4882 ** program stored in SubProgram.aOp. As well as these, one memory 4883 ** cell is required for each cursor used by the program. Set local 4884 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 4885 */ 4886 nMem = pProgram->nMem + pProgram->nCsr; 4887 nByte = ROUND8(sizeof(VdbeFrame)) 4888 + nMem * sizeof(Mem) 4889 + pProgram->nCsr * sizeof(VdbeCursor *); 4890 pFrame = sqlite3DbMallocZero(db, nByte); 4891 if( !pFrame ){ 4892 goto no_mem; 4893 } 4894 sqlite3VdbeMemRelease(pRt); 4895 pRt->flags = MEM_Frame; 4896 pRt->u.pFrame = pFrame; 4897 4898 pFrame->v = p; 4899 pFrame->nChildMem = nMem; 4900 pFrame->nChildCsr = pProgram->nCsr; 4901 pFrame->pc = pc; 4902 pFrame->aMem = p->aMem; 4903 pFrame->nMem = p->nMem; 4904 pFrame->apCsr = p->apCsr; 4905 pFrame->nCursor = p->nCursor; 4906 pFrame->aOp = p->aOp; 4907 pFrame->nOp = p->nOp; 4908 pFrame->token = pProgram->token; 4909 4910 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 4911 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 4912 pMem->flags = MEM_Null; 4913 pMem->db = db; 4914 } 4915 }else{ 4916 pFrame = pRt->u.pFrame; 4917 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 4918 assert( pProgram->nCsr==pFrame->nChildCsr ); 4919 assert( pc==pFrame->pc ); 4920 } 4921 4922 p->nFrame++; 4923 pFrame->pParent = p->pFrame; 4924 pFrame->lastRowid = db->lastRowid; 4925 pFrame->nChange = p->nChange; 4926 p->nChange = 0; 4927 p->pFrame = pFrame; 4928 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 4929 p->nMem = pFrame->nChildMem; 4930 p->nCursor = (u16)pFrame->nChildCsr; 4931 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 4932 p->aOp = aOp = pProgram->aOp; 4933 p->nOp = pProgram->nOp; 4934 pc = -1; 4935 4936 break; 4937 } 4938 4939 /* Opcode: Param P1 P2 * * * 4940 ** 4941 ** This opcode is only ever present in sub-programs called via the 4942 ** OP_Program instruction. Copy a value currently stored in a memory 4943 ** cell of the calling (parent) frame to cell P2 in the current frames 4944 ** address space. This is used by trigger programs to access the new.* 4945 ** and old.* values. 4946 ** 4947 ** The address of the cell in the parent frame is determined by adding 4948 ** the value of the P1 argument to the value of the P1 argument to the 4949 ** calling OP_Program instruction. 4950 */ 4951 case OP_Param: { /* out2-prerelease */ 4952 VdbeFrame *pFrame; 4953 Mem *pIn; 4954 pFrame = p->pFrame; 4955 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 4956 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 4957 break; 4958 } 4959 4960 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 4961 4962 #ifndef SQLITE_OMIT_FOREIGN_KEY 4963 /* Opcode: FkCounter P1 P2 * * * 4964 ** 4965 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 4966 ** If P1 is non-zero, the database constraint counter is incremented 4967 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 4968 ** statement counter is incremented (immediate foreign key constraints). 4969 */ 4970 case OP_FkCounter: { 4971 if( pOp->p1 ){ 4972 db->nDeferredCons += pOp->p2; 4973 }else{ 4974 p->nFkConstraint += pOp->p2; 4975 } 4976 break; 4977 } 4978 4979 /* Opcode: FkIfZero P1 P2 * * * 4980 ** 4981 ** This opcode tests if a foreign key constraint-counter is currently zero. 4982 ** If so, jump to instruction P2. Otherwise, fall through to the next 4983 ** instruction. 4984 ** 4985 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 4986 ** is zero (the one that counts deferred constraint violations). If P1 is 4987 ** zero, the jump is taken if the statement constraint-counter is zero 4988 ** (immediate foreign key constraint violations). 4989 */ 4990 case OP_FkIfZero: { /* jump */ 4991 if( pOp->p1 ){ 4992 if( db->nDeferredCons==0 ) pc = pOp->p2-1; 4993 }else{ 4994 if( p->nFkConstraint==0 ) pc = pOp->p2-1; 4995 } 4996 break; 4997 } 4998 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 4999 5000 #ifndef SQLITE_OMIT_AUTOINCREMENT 5001 /* Opcode: MemMax P1 P2 * * * 5002 ** 5003 ** P1 is a register in the root frame of this VM (the root frame is 5004 ** different from the current frame if this instruction is being executed 5005 ** within a sub-program). Set the value of register P1 to the maximum of 5006 ** its current value and the value in register P2. 5007 ** 5008 ** This instruction throws an error if the memory cell is not initially 5009 ** an integer. 5010 */ 5011 case OP_MemMax: { /* in2 */ 5012 Mem *pIn1; 5013 VdbeFrame *pFrame; 5014 if( p->pFrame ){ 5015 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5016 pIn1 = &pFrame->aMem[pOp->p1]; 5017 }else{ 5018 pIn1 = &aMem[pOp->p1]; 5019 } 5020 sqlite3VdbeMemIntegerify(pIn1); 5021 pIn2 = &aMem[pOp->p2]; 5022 sqlite3VdbeMemIntegerify(pIn2); 5023 if( pIn1->u.i<pIn2->u.i){ 5024 pIn1->u.i = pIn2->u.i; 5025 } 5026 break; 5027 } 5028 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5029 5030 /* Opcode: IfPos P1 P2 * * * 5031 ** 5032 ** If the value of register P1 is 1 or greater, jump to P2. 5033 ** 5034 ** It is illegal to use this instruction on a register that does 5035 ** not contain an integer. An assertion fault will result if you try. 5036 */ 5037 case OP_IfPos: { /* jump, in1 */ 5038 pIn1 = &aMem[pOp->p1]; 5039 assert( pIn1->flags&MEM_Int ); 5040 if( pIn1->u.i>0 ){ 5041 pc = pOp->p2 - 1; 5042 } 5043 break; 5044 } 5045 5046 /* Opcode: IfNeg P1 P2 * * * 5047 ** 5048 ** If the value of register P1 is less than zero, jump to P2. 5049 ** 5050 ** It is illegal to use this instruction on a register that does 5051 ** not contain an integer. An assertion fault will result if you try. 5052 */ 5053 case OP_IfNeg: { /* jump, in1 */ 5054 pIn1 = &aMem[pOp->p1]; 5055 assert( pIn1->flags&MEM_Int ); 5056 if( pIn1->u.i<0 ){ 5057 pc = pOp->p2 - 1; 5058 } 5059 break; 5060 } 5061 5062 /* Opcode: IfZero P1 P2 P3 * * 5063 ** 5064 ** The register P1 must contain an integer. Add literal P3 to the 5065 ** value in register P1. If the result is exactly 0, jump to P2. 5066 ** 5067 ** It is illegal to use this instruction on a register that does 5068 ** not contain an integer. An assertion fault will result if you try. 5069 */ 5070 case OP_IfZero: { /* jump, in1 */ 5071 pIn1 = &aMem[pOp->p1]; 5072 assert( pIn1->flags&MEM_Int ); 5073 pIn1->u.i += pOp->p3; 5074 if( pIn1->u.i==0 ){ 5075 pc = pOp->p2 - 1; 5076 } 5077 break; 5078 } 5079 5080 /* Opcode: AggStep * P2 P3 P4 P5 5081 ** 5082 ** Execute the step function for an aggregate. The 5083 ** function has P5 arguments. P4 is a pointer to the FuncDef 5084 ** structure that specifies the function. Use register 5085 ** P3 as the accumulator. 5086 ** 5087 ** The P5 arguments are taken from register P2 and its 5088 ** successors. 5089 */ 5090 case OP_AggStep: { 5091 int n; 5092 int i; 5093 Mem *pMem; 5094 Mem *pRec; 5095 sqlite3_context ctx; 5096 sqlite3_value **apVal; 5097 5098 n = pOp->p5; 5099 assert( n>=0 ); 5100 pRec = &aMem[pOp->p2]; 5101 apVal = p->apArg; 5102 assert( apVal || n==0 ); 5103 for(i=0; i<n; i++, pRec++){ 5104 apVal[i] = pRec; 5105 sqlite3VdbeMemStoreType(pRec); 5106 } 5107 ctx.pFunc = pOp->p4.pFunc; 5108 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5109 ctx.pMem = pMem = &aMem[pOp->p3]; 5110 pMem->n++; 5111 ctx.s.flags = MEM_Null; 5112 ctx.s.z = 0; 5113 ctx.s.zMalloc = 0; 5114 ctx.s.xDel = 0; 5115 ctx.s.db = db; 5116 ctx.isError = 0; 5117 ctx.pColl = 0; 5118 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 5119 assert( pOp>p->aOp ); 5120 assert( pOp[-1].p4type==P4_COLLSEQ ); 5121 assert( pOp[-1].opcode==OP_CollSeq ); 5122 ctx.pColl = pOp[-1].p4.pColl; 5123 } 5124 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5125 if( ctx.isError ){ 5126 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5127 rc = ctx.isError; 5128 } 5129 sqlite3VdbeMemRelease(&ctx.s); 5130 break; 5131 } 5132 5133 /* Opcode: AggFinal P1 P2 * P4 * 5134 ** 5135 ** Execute the finalizer function for an aggregate. P1 is 5136 ** the memory location that is the accumulator for the aggregate. 5137 ** 5138 ** P2 is the number of arguments that the step function takes and 5139 ** P4 is a pointer to the FuncDef for this function. The P2 5140 ** argument is not used by this opcode. It is only there to disambiguate 5141 ** functions that can take varying numbers of arguments. The 5142 ** P4 argument is only needed for the degenerate case where 5143 ** the step function was not previously called. 5144 */ 5145 case OP_AggFinal: { 5146 Mem *pMem; 5147 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 5148 pMem = &aMem[pOp->p1]; 5149 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5150 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5151 if( rc ){ 5152 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5153 } 5154 sqlite3VdbeChangeEncoding(pMem, encoding); 5155 UPDATE_MAX_BLOBSIZE(pMem); 5156 if( sqlite3VdbeMemTooBig(pMem) ){ 5157 goto too_big; 5158 } 5159 break; 5160 } 5161 5162 #ifndef SQLITE_OMIT_WAL 5163 /* Opcode: Checkpoint P1 * * * * 5164 ** 5165 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5166 ** WAL mode. 5167 */ 5168 case OP_Checkpoint: { 5169 rc = sqlite3Checkpoint(db, pOp->p1); 5170 break; 5171 }; 5172 #endif 5173 5174 #ifndef SQLITE_OMIT_PRAGMA 5175 /* Opcode: JournalMode P1 P2 P3 * P5 5176 ** 5177 ** Change the journal mode of database P1 to P3. P3 must be one of the 5178 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5179 ** modes (delete, truncate, persist, off and memory), this is a simple 5180 ** operation. No IO is required. 5181 ** 5182 ** If changing into or out of WAL mode the procedure is more complicated. 5183 ** 5184 ** Write a string containing the final journal-mode to register P2. 5185 */ 5186 case OP_JournalMode: { /* out2-prerelease */ 5187 Btree *pBt; /* Btree to change journal mode of */ 5188 Pager *pPager; /* Pager associated with pBt */ 5189 int eNew; /* New journal mode */ 5190 int eOld; /* The old journal mode */ 5191 const char *zFilename; /* Name of database file for pPager */ 5192 5193 eNew = pOp->p3; 5194 assert( eNew==PAGER_JOURNALMODE_DELETE 5195 || eNew==PAGER_JOURNALMODE_TRUNCATE 5196 || eNew==PAGER_JOURNALMODE_PERSIST 5197 || eNew==PAGER_JOURNALMODE_OFF 5198 || eNew==PAGER_JOURNALMODE_MEMORY 5199 || eNew==PAGER_JOURNALMODE_WAL 5200 || eNew==PAGER_JOURNALMODE_QUERY 5201 ); 5202 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5203 5204 /* This opcode is used in two places: PRAGMA journal_mode and ATTACH. 5205 ** In PRAGMA journal_mode, the sqlite3VdbeUsesBtree() routine is called 5206 ** when the statment is prepared and so p->aMutex.nMutex>0. All mutexes 5207 ** are already acquired. But when used in ATTACH, sqlite3VdbeUsesBtree() 5208 ** is not called when the statement is prepared because it requires the 5209 ** iDb index of the database as a parameter, and the database has not 5210 ** yet been attached so that index is unavailable. We have to wait 5211 ** until runtime (now) to get the mutex on the newly attached database. 5212 ** No other mutexes are required by the ATTACH command so this is safe 5213 ** to do. 5214 */ 5215 assert( (p->btreeMask & (1<<pOp->p1))!=0 || p->aMutex.nMutex==0 ); 5216 if( p->aMutex.nMutex==0 ){ 5217 /* This occurs right after ATTACH. Get a mutex on the newly ATTACHed 5218 ** database. */ 5219 sqlite3VdbeUsesBtree(p, pOp->p1); 5220 sqlite3VdbeMutexArrayEnter(p); 5221 } 5222 5223 pBt = db->aDb[pOp->p1].pBt; 5224 pPager = sqlite3BtreePager(pBt); 5225 eOld = sqlite3PagerGetJournalMode(pPager); 5226 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5227 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5228 5229 #ifndef SQLITE_OMIT_WAL 5230 zFilename = sqlite3PagerFilename(pPager); 5231 5232 /* Do not allow a transition to journal_mode=WAL for a database 5233 ** in temporary storage or if the VFS does not support shared memory 5234 */ 5235 if( eNew==PAGER_JOURNALMODE_WAL 5236 && (zFilename[0]==0 /* Temp file */ 5237 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5238 ){ 5239 eNew = eOld; 5240 } 5241 5242 if( (eNew!=eOld) 5243 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5244 ){ 5245 if( !db->autoCommit || db->activeVdbeCnt>1 ){ 5246 rc = SQLITE_ERROR; 5247 sqlite3SetString(&p->zErrMsg, db, 5248 "cannot change %s wal mode from within a transaction", 5249 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5250 ); 5251 break; 5252 }else{ 5253 5254 if( eOld==PAGER_JOURNALMODE_WAL ){ 5255 /* If leaving WAL mode, close the log file. If successful, the call 5256 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5257 ** file. An EXCLUSIVE lock may still be held on the database file 5258 ** after a successful return. 5259 */ 5260 rc = sqlite3PagerCloseWal(pPager); 5261 if( rc==SQLITE_OK ){ 5262 sqlite3PagerSetJournalMode(pPager, eNew); 5263 } 5264 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5265 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5266 ** as an intermediate */ 5267 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5268 } 5269 5270 /* Open a transaction on the database file. Regardless of the journal 5271 ** mode, this transaction always uses a rollback journal. 5272 */ 5273 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5274 if( rc==SQLITE_OK ){ 5275 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5276 } 5277 } 5278 } 5279 #endif /* ifndef SQLITE_OMIT_WAL */ 5280 5281 if( rc ){ 5282 eNew = eOld; 5283 } 5284 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5285 5286 pOut = &aMem[pOp->p2]; 5287 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5288 pOut->z = (char *)sqlite3JournalModename(eNew); 5289 pOut->n = sqlite3Strlen30(pOut->z); 5290 pOut->enc = SQLITE_UTF8; 5291 sqlite3VdbeChangeEncoding(pOut, encoding); 5292 break; 5293 }; 5294 #endif /* SQLITE_OMIT_PRAGMA */ 5295 5296 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5297 /* Opcode: Vacuum * * * * * 5298 ** 5299 ** Vacuum the entire database. This opcode will cause other virtual 5300 ** machines to be created and run. It may not be called from within 5301 ** a transaction. 5302 */ 5303 case OP_Vacuum: { 5304 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5305 break; 5306 } 5307 #endif 5308 5309 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5310 /* Opcode: IncrVacuum P1 P2 * * * 5311 ** 5312 ** Perform a single step of the incremental vacuum procedure on 5313 ** the P1 database. If the vacuum has finished, jump to instruction 5314 ** P2. Otherwise, fall through to the next instruction. 5315 */ 5316 case OP_IncrVacuum: { /* jump */ 5317 Btree *pBt; 5318 5319 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5320 assert( (p->btreeMask & (1<<pOp->p1))!=0 ); 5321 pBt = db->aDb[pOp->p1].pBt; 5322 rc = sqlite3BtreeIncrVacuum(pBt); 5323 if( rc==SQLITE_DONE ){ 5324 pc = pOp->p2 - 1; 5325 rc = SQLITE_OK; 5326 } 5327 break; 5328 } 5329 #endif 5330 5331 /* Opcode: Expire P1 * * * * 5332 ** 5333 ** Cause precompiled statements to become expired. An expired statement 5334 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 5335 ** (via sqlite3_step()). 5336 ** 5337 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5338 ** then only the currently executing statement is affected. 5339 */ 5340 case OP_Expire: { 5341 if( !pOp->p1 ){ 5342 sqlite3ExpirePreparedStatements(db); 5343 }else{ 5344 p->expired = 1; 5345 } 5346 break; 5347 } 5348 5349 #ifndef SQLITE_OMIT_SHARED_CACHE 5350 /* Opcode: TableLock P1 P2 P3 P4 * 5351 ** 5352 ** Obtain a lock on a particular table. This instruction is only used when 5353 ** the shared-cache feature is enabled. 5354 ** 5355 ** P1 is the index of the database in sqlite3.aDb[] of the database 5356 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5357 ** a write lock if P3==1. 5358 ** 5359 ** P2 contains the root-page of the table to lock. 5360 ** 5361 ** P4 contains a pointer to the name of the table being locked. This is only 5362 ** used to generate an error message if the lock cannot be obtained. 5363 */ 5364 case OP_TableLock: { 5365 u8 isWriteLock = (u8)pOp->p3; 5366 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5367 int p1 = pOp->p1; 5368 assert( p1>=0 && p1<db->nDb ); 5369 assert( (p->btreeMask & (1<<p1))!=0 ); 5370 assert( isWriteLock==0 || isWriteLock==1 ); 5371 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5372 if( (rc&0xFF)==SQLITE_LOCKED ){ 5373 const char *z = pOp->p4.z; 5374 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5375 } 5376 } 5377 break; 5378 } 5379 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5380 5381 #ifndef SQLITE_OMIT_VIRTUALTABLE 5382 /* Opcode: VBegin * * * P4 * 5383 ** 5384 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5385 ** xBegin method for that table. 5386 ** 5387 ** Also, whether or not P4 is set, check that this is not being called from 5388 ** within a callback to a virtual table xSync() method. If it is, the error 5389 ** code will be set to SQLITE_LOCKED. 5390 */ 5391 case OP_VBegin: { 5392 VTable *pVTab; 5393 pVTab = pOp->p4.pVtab; 5394 rc = sqlite3VtabBegin(db, pVTab); 5395 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); 5396 break; 5397 } 5398 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5399 5400 #ifndef SQLITE_OMIT_VIRTUALTABLE 5401 /* Opcode: VCreate P1 * * P4 * 5402 ** 5403 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5404 ** for that table. 5405 */ 5406 case OP_VCreate: { 5407 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5408 break; 5409 } 5410 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5411 5412 #ifndef SQLITE_OMIT_VIRTUALTABLE 5413 /* Opcode: VDestroy P1 * * P4 * 5414 ** 5415 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5416 ** of that table. 5417 */ 5418 case OP_VDestroy: { 5419 p->inVtabMethod = 2; 5420 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5421 p->inVtabMethod = 0; 5422 break; 5423 } 5424 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5425 5426 #ifndef SQLITE_OMIT_VIRTUALTABLE 5427 /* Opcode: VOpen P1 * * P4 * 5428 ** 5429 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5430 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5431 ** table and stores that cursor in P1. 5432 */ 5433 case OP_VOpen: { 5434 VdbeCursor *pCur; 5435 sqlite3_vtab_cursor *pVtabCursor; 5436 sqlite3_vtab *pVtab; 5437 sqlite3_module *pModule; 5438 5439 pCur = 0; 5440 pVtabCursor = 0; 5441 pVtab = pOp->p4.pVtab->pVtab; 5442 pModule = (sqlite3_module *)pVtab->pModule; 5443 assert(pVtab && pModule); 5444 rc = pModule->xOpen(pVtab, &pVtabCursor); 5445 importVtabErrMsg(p, pVtab); 5446 if( SQLITE_OK==rc ){ 5447 /* Initialize sqlite3_vtab_cursor base class */ 5448 pVtabCursor->pVtab = pVtab; 5449 5450 /* Initialise vdbe cursor object */ 5451 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5452 if( pCur ){ 5453 pCur->pVtabCursor = pVtabCursor; 5454 pCur->pModule = pVtabCursor->pVtab->pModule; 5455 }else{ 5456 db->mallocFailed = 1; 5457 pModule->xClose(pVtabCursor); 5458 } 5459 } 5460 break; 5461 } 5462 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5463 5464 #ifndef SQLITE_OMIT_VIRTUALTABLE 5465 /* Opcode: VFilter P1 P2 P3 P4 * 5466 ** 5467 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5468 ** the filtered result set is empty. 5469 ** 5470 ** P4 is either NULL or a string that was generated by the xBestIndex 5471 ** method of the module. The interpretation of the P4 string is left 5472 ** to the module implementation. 5473 ** 5474 ** This opcode invokes the xFilter method on the virtual table specified 5475 ** by P1. The integer query plan parameter to xFilter is stored in register 5476 ** P3. Register P3+1 stores the argc parameter to be passed to the 5477 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5478 ** additional parameters which are passed to 5479 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5480 ** 5481 ** A jump is made to P2 if the result set after filtering would be empty. 5482 */ 5483 case OP_VFilter: { /* jump */ 5484 int nArg; 5485 int iQuery; 5486 const sqlite3_module *pModule; 5487 Mem *pQuery; 5488 Mem *pArgc; 5489 sqlite3_vtab_cursor *pVtabCursor; 5490 sqlite3_vtab *pVtab; 5491 VdbeCursor *pCur; 5492 int res; 5493 int i; 5494 Mem **apArg; 5495 5496 pQuery = &aMem[pOp->p3]; 5497 pArgc = &pQuery[1]; 5498 pCur = p->apCsr[pOp->p1]; 5499 REGISTER_TRACE(pOp->p3, pQuery); 5500 assert( pCur->pVtabCursor ); 5501 pVtabCursor = pCur->pVtabCursor; 5502 pVtab = pVtabCursor->pVtab; 5503 pModule = pVtab->pModule; 5504 5505 /* Grab the index number and argc parameters */ 5506 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5507 nArg = (int)pArgc->u.i; 5508 iQuery = (int)pQuery->u.i; 5509 5510 /* Invoke the xFilter method */ 5511 { 5512 res = 0; 5513 apArg = p->apArg; 5514 for(i = 0; i<nArg; i++){ 5515 apArg[i] = &pArgc[i+1]; 5516 sqlite3VdbeMemStoreType(apArg[i]); 5517 } 5518 5519 p->inVtabMethod = 1; 5520 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5521 p->inVtabMethod = 0; 5522 importVtabErrMsg(p, pVtab); 5523 if( rc==SQLITE_OK ){ 5524 res = pModule->xEof(pVtabCursor); 5525 } 5526 5527 if( res ){ 5528 pc = pOp->p2 - 1; 5529 } 5530 } 5531 pCur->nullRow = 0; 5532 5533 break; 5534 } 5535 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5536 5537 #ifndef SQLITE_OMIT_VIRTUALTABLE 5538 /* Opcode: VColumn P1 P2 P3 * * 5539 ** 5540 ** Store the value of the P2-th column of 5541 ** the row of the virtual-table that the 5542 ** P1 cursor is pointing to into register P3. 5543 */ 5544 case OP_VColumn: { 5545 sqlite3_vtab *pVtab; 5546 const sqlite3_module *pModule; 5547 Mem *pDest; 5548 sqlite3_context sContext; 5549 5550 VdbeCursor *pCur = p->apCsr[pOp->p1]; 5551 assert( pCur->pVtabCursor ); 5552 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5553 pDest = &aMem[pOp->p3]; 5554 if( pCur->nullRow ){ 5555 sqlite3VdbeMemSetNull(pDest); 5556 break; 5557 } 5558 pVtab = pCur->pVtabCursor->pVtab; 5559 pModule = pVtab->pModule; 5560 assert( pModule->xColumn ); 5561 memset(&sContext, 0, sizeof(sContext)); 5562 5563 /* The output cell may already have a buffer allocated. Move 5564 ** the current contents to sContext.s so in case the user-function 5565 ** can use the already allocated buffer instead of allocating a 5566 ** new one. 5567 */ 5568 sqlite3VdbeMemMove(&sContext.s, pDest); 5569 MemSetTypeFlag(&sContext.s, MEM_Null); 5570 5571 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 5572 importVtabErrMsg(p, pVtab); 5573 if( sContext.isError ){ 5574 rc = sContext.isError; 5575 } 5576 5577 /* Copy the result of the function to the P3 register. We 5578 ** do this regardless of whether or not an error occurred to ensure any 5579 ** dynamic allocation in sContext.s (a Mem struct) is released. 5580 */ 5581 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 5582 sqlite3VdbeMemMove(pDest, &sContext.s); 5583 REGISTER_TRACE(pOp->p3, pDest); 5584 UPDATE_MAX_BLOBSIZE(pDest); 5585 5586 if( sqlite3VdbeMemTooBig(pDest) ){ 5587 goto too_big; 5588 } 5589 break; 5590 } 5591 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5592 5593 #ifndef SQLITE_OMIT_VIRTUALTABLE 5594 /* Opcode: VNext P1 P2 * * * 5595 ** 5596 ** Advance virtual table P1 to the next row in its result set and 5597 ** jump to instruction P2. Or, if the virtual table has reached 5598 ** the end of its result set, then fall through to the next instruction. 5599 */ 5600 case OP_VNext: { /* jump */ 5601 sqlite3_vtab *pVtab; 5602 const sqlite3_module *pModule; 5603 int res; 5604 VdbeCursor *pCur; 5605 5606 res = 0; 5607 pCur = p->apCsr[pOp->p1]; 5608 assert( pCur->pVtabCursor ); 5609 if( pCur->nullRow ){ 5610 break; 5611 } 5612 pVtab = pCur->pVtabCursor->pVtab; 5613 pModule = pVtab->pModule; 5614 assert( pModule->xNext ); 5615 5616 /* Invoke the xNext() method of the module. There is no way for the 5617 ** underlying implementation to return an error if one occurs during 5618 ** xNext(). Instead, if an error occurs, true is returned (indicating that 5619 ** data is available) and the error code returned when xColumn or 5620 ** some other method is next invoked on the save virtual table cursor. 5621 */ 5622 p->inVtabMethod = 1; 5623 rc = pModule->xNext(pCur->pVtabCursor); 5624 p->inVtabMethod = 0; 5625 importVtabErrMsg(p, pVtab); 5626 if( rc==SQLITE_OK ){ 5627 res = pModule->xEof(pCur->pVtabCursor); 5628 } 5629 5630 if( !res ){ 5631 /* If there is data, jump to P2 */ 5632 pc = pOp->p2 - 1; 5633 } 5634 break; 5635 } 5636 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5637 5638 #ifndef SQLITE_OMIT_VIRTUALTABLE 5639 /* Opcode: VRename P1 * * P4 * 5640 ** 5641 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5642 ** This opcode invokes the corresponding xRename method. The value 5643 ** in register P1 is passed as the zName argument to the xRename method. 5644 */ 5645 case OP_VRename: { 5646 sqlite3_vtab *pVtab; 5647 Mem *pName; 5648 5649 pVtab = pOp->p4.pVtab->pVtab; 5650 pName = &aMem[pOp->p1]; 5651 assert( pVtab->pModule->xRename ); 5652 REGISTER_TRACE(pOp->p1, pName); 5653 assert( pName->flags & MEM_Str ); 5654 rc = pVtab->pModule->xRename(pVtab, pName->z); 5655 importVtabErrMsg(p, pVtab); 5656 p->expired = 0; 5657 5658 break; 5659 } 5660 #endif 5661 5662 #ifndef SQLITE_OMIT_VIRTUALTABLE 5663 /* Opcode: VUpdate P1 P2 P3 P4 * 5664 ** 5665 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5666 ** This opcode invokes the corresponding xUpdate method. P2 values 5667 ** are contiguous memory cells starting at P3 to pass to the xUpdate 5668 ** invocation. The value in register (P3+P2-1) corresponds to the 5669 ** p2th element of the argv array passed to xUpdate. 5670 ** 5671 ** The xUpdate method will do a DELETE or an INSERT or both. 5672 ** The argv[0] element (which corresponds to memory cell P3) 5673 ** is the rowid of a row to delete. If argv[0] is NULL then no 5674 ** deletion occurs. The argv[1] element is the rowid of the new 5675 ** row. This can be NULL to have the virtual table select the new 5676 ** rowid for itself. The subsequent elements in the array are 5677 ** the values of columns in the new row. 5678 ** 5679 ** If P2==1 then no insert is performed. argv[0] is the rowid of 5680 ** a row to delete. 5681 ** 5682 ** P1 is a boolean flag. If it is set to true and the xUpdate call 5683 ** is successful, then the value returned by sqlite3_last_insert_rowid() 5684 ** is set to the value of the rowid for the row just inserted. 5685 */ 5686 case OP_VUpdate: { 5687 sqlite3_vtab *pVtab; 5688 sqlite3_module *pModule; 5689 int nArg; 5690 int i; 5691 sqlite_int64 rowid; 5692 Mem **apArg; 5693 Mem *pX; 5694 5695 pVtab = pOp->p4.pVtab->pVtab; 5696 pModule = (sqlite3_module *)pVtab->pModule; 5697 nArg = pOp->p2; 5698 assert( pOp->p4type==P4_VTAB ); 5699 if( ALWAYS(pModule->xUpdate) ){ 5700 apArg = p->apArg; 5701 pX = &aMem[pOp->p3]; 5702 for(i=0; i<nArg; i++){ 5703 sqlite3VdbeMemStoreType(pX); 5704 apArg[i] = pX; 5705 pX++; 5706 } 5707 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 5708 importVtabErrMsg(p, pVtab); 5709 if( rc==SQLITE_OK && pOp->p1 ){ 5710 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 5711 db->lastRowid = rowid; 5712 } 5713 p->nChange++; 5714 } 5715 break; 5716 } 5717 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5718 5719 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 5720 /* Opcode: Pagecount P1 P2 * * * 5721 ** 5722 ** Write the current number of pages in database P1 to memory cell P2. 5723 */ 5724 case OP_Pagecount: { /* out2-prerelease */ 5725 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 5726 break; 5727 } 5728 #endif 5729 5730 #ifndef SQLITE_OMIT_TRACE 5731 /* Opcode: Trace * * * P4 * 5732 ** 5733 ** If tracing is enabled (by the sqlite3_trace()) interface, then 5734 ** the UTF-8 string contained in P4 is emitted on the trace callback. 5735 */ 5736 case OP_Trace: { 5737 char *zTrace; 5738 5739 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 5740 if( zTrace ){ 5741 if( db->xTrace ){ 5742 char *z = sqlite3VdbeExpandSql(p, zTrace); 5743 db->xTrace(db->pTraceArg, z); 5744 sqlite3DbFree(db, z); 5745 } 5746 #ifdef SQLITE_DEBUG 5747 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 5748 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 5749 } 5750 #endif /* SQLITE_DEBUG */ 5751 } 5752 break; 5753 } 5754 #endif 5755 5756 5757 /* Opcode: Noop * * * * * 5758 ** 5759 ** Do nothing. This instruction is often useful as a jump 5760 ** destination. 5761 */ 5762 /* 5763 ** The magic Explain opcode are only inserted when explain==2 (which 5764 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 5765 ** This opcode records information from the optimizer. It is the 5766 ** the same as a no-op. This opcodesnever appears in a real VM program. 5767 */ 5768 default: { /* This is really OP_Noop and OP_Explain */ 5769 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 5770 break; 5771 } 5772 5773 /***************************************************************************** 5774 ** The cases of the switch statement above this line should all be indented 5775 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 5776 ** readability. From this point on down, the normal indentation rules are 5777 ** restored. 5778 *****************************************************************************/ 5779 } 5780 5781 #ifdef VDBE_PROFILE 5782 { 5783 u64 elapsed = sqlite3Hwtime() - start; 5784 pOp->cycles += elapsed; 5785 pOp->cnt++; 5786 #if 0 5787 fprintf(stdout, "%10llu ", elapsed); 5788 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); 5789 #endif 5790 } 5791 #endif 5792 5793 /* The following code adds nothing to the actual functionality 5794 ** of the program. It is only here for testing and debugging. 5795 ** On the other hand, it does burn CPU cycles every time through 5796 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 5797 */ 5798 #ifndef NDEBUG 5799 assert( pc>=-1 && pc<p->nOp ); 5800 5801 #ifdef SQLITE_DEBUG 5802 if( p->trace ){ 5803 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); 5804 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 5805 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); 5806 } 5807 if( pOp->opflags & OPFLG_OUT3 ){ 5808 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); 5809 } 5810 } 5811 #endif /* SQLITE_DEBUG */ 5812 #endif /* NDEBUG */ 5813 } /* The end of the for(;;) loop the loops through opcodes */ 5814 5815 /* If we reach this point, it means that execution is finished with 5816 ** an error of some kind. 5817 */ 5818 vdbe_error_halt: 5819 assert( rc ); 5820 p->rc = rc; 5821 testcase( sqlite3GlobalConfig.xLog!=0 ); 5822 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 5823 pc, p->zSql, p->zErrMsg); 5824 sqlite3VdbeHalt(p); 5825 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 5826 rc = SQLITE_ERROR; 5827 if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0); 5828 5829 /* This is the only way out of this procedure. We have to 5830 ** release the mutexes on btrees that were acquired at the 5831 ** top. */ 5832 vdbe_return: 5833 sqlite3BtreeMutexArrayLeave(&p->aMutex); 5834 return rc; 5835 5836 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 5837 ** is encountered. 5838 */ 5839 too_big: 5840 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 5841 rc = SQLITE_TOOBIG; 5842 goto vdbe_error_halt; 5843 5844 /* Jump to here if a malloc() fails. 5845 */ 5846 no_mem: 5847 db->mallocFailed = 1; 5848 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 5849 rc = SQLITE_NOMEM; 5850 goto vdbe_error_halt; 5851 5852 /* Jump to here for any other kind of fatal error. The "rc" variable 5853 ** should hold the error number. 5854 */ 5855 abort_due_to_error: 5856 assert( p->zErrMsg==0 ); 5857 if( db->mallocFailed ) rc = SQLITE_NOMEM; 5858 if( rc!=SQLITE_IOERR_NOMEM ){ 5859 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5860 } 5861 goto vdbe_error_halt; 5862 5863 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 5864 ** flag. 5865 */ 5866 abort_due_to_interrupt: 5867 assert( db->u1.isInterrupted ); 5868 rc = SQLITE_INTERRUPT; 5869 p->rc = rc; 5870 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5871 goto vdbe_error_halt; 5872 } 5873