xref: /sqlite-3.40.0/src/vdbe.c (revision f2c9229f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances.  This file is solely interested in executing
16 ** the VDBE program.
17 **
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
20 **
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement.  VDBE programs are
23 ** similar in form to assembly language.  The program consists of
24 ** a linear sequence of operations.  Each operation has an opcode
25 ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4
26 ** is a null-terminated string.  Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
28 **
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem.  Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value.  An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
39 **
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files.  The formatting
42 ** of the code in this file is, therefore, important.  See other comments
43 ** in this file for details.  If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
45 */
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
48 
49 /*
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell.  This macro verifies that shallow copies are
52 ** not misused.
53 */
54 #ifdef SQLITE_DEBUG
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
56 #else
57 # define memAboutToChange(P,M)
58 #endif
59 
60 /*
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly.  This variable has no function other than to
65 ** help verify the correct operation of the library.
66 */
67 #ifdef SQLITE_TEST
68 int sqlite3_search_count = 0;
69 #endif
70 
71 /*
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
75 **
76 ** This facility is used for testing purposes only.  It does not function
77 ** in an ordinary build.
78 */
79 #ifdef SQLITE_TEST
80 int sqlite3_interrupt_count = 0;
81 #endif
82 
83 /*
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed.  The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times.   This variable
87 ** has no function other than to help verify the correct operation of the
88 ** library.
89 */
90 #ifdef SQLITE_TEST
91 int sqlite3_sort_count = 0;
92 #endif
93 
94 /*
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly.   This variable has no function other than to
99 ** help verify the correct operation of the library.
100 */
101 #ifdef SQLITE_TEST
102 int sqlite3_max_blobsize = 0;
103 static void updateMaxBlobsize(Mem *p){
104   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105     sqlite3_max_blobsize = p->n;
106   }
107 }
108 #endif
109 
110 /*
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
115 ** library.
116 */
117 #ifdef SQLITE_TEST
118 int sqlite3_found_count = 0;
119 #endif
120 
121 /*
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
124 */
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
127 #else
128 # define UPDATE_MAX_BLOBSIZE(P)
129 #endif
130 
131 /*
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
134 */
135 #define Stringify(P, enc) \
136    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137      { goto no_mem; }
138 
139 /*
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string.  Because the register
143 ** does not control the string, it might be deleted without the register
144 ** knowing it.
145 **
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls.  In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
149 */
150 #define Deephemeralize(P) \
151    if( ((P)->flags&MEM_Ephem)!=0 \
152        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
153 
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 # define isSorter(x) ((x)->pSorter!=0)
156 
157 /*
158 ** Argument pMem points at a register that will be passed to a
159 ** user-defined function or returned to the user as the result of a query.
160 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
161 ** routines.
162 */
163 void sqlite3VdbeMemStoreType(Mem *pMem){
164   int flags = pMem->flags;
165   if( flags & MEM_Null ){
166     pMem->type = SQLITE_NULL;
167   }
168   else if( flags & MEM_Int ){
169     pMem->type = SQLITE_INTEGER;
170   }
171   else if( flags & MEM_Real ){
172     pMem->type = SQLITE_FLOAT;
173   }
174   else if( flags & MEM_Str ){
175     pMem->type = SQLITE_TEXT;
176   }else{
177     pMem->type = SQLITE_BLOB;
178   }
179 }
180 
181 /*
182 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
183 ** if we run out of memory.
184 */
185 static VdbeCursor *allocateCursor(
186   Vdbe *p,              /* The virtual machine */
187   int iCur,             /* Index of the new VdbeCursor */
188   int nField,           /* Number of fields in the table or index */
189   int iDb,              /* Database the cursor belongs to, or -1 */
190   int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
191 ){
192   /* Find the memory cell that will be used to store the blob of memory
193   ** required for this VdbeCursor structure. It is convenient to use a
194   ** vdbe memory cell to manage the memory allocation required for a
195   ** VdbeCursor structure for the following reasons:
196   **
197   **   * Sometimes cursor numbers are used for a couple of different
198   **     purposes in a vdbe program. The different uses might require
199   **     different sized allocations. Memory cells provide growable
200   **     allocations.
201   **
202   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203   **     be freed lazily via the sqlite3_release_memory() API. This
204   **     minimizes the number of malloc calls made by the system.
205   **
206   ** Memory cells for cursors are allocated at the top of the address
207   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
209   */
210   Mem *pMem = &p->aMem[p->nMem-iCur];
211 
212   int nByte;
213   VdbeCursor *pCx = 0;
214   nByte =
215       ROUND8(sizeof(VdbeCursor)) +
216       (isBtreeCursor?sqlite3BtreeCursorSize():0) +
217       2*nField*sizeof(u32);
218 
219   assert( iCur<p->nCursor );
220   if( p->apCsr[iCur] ){
221     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
222     p->apCsr[iCur] = 0;
223   }
224   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
225     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
226     memset(pCx, 0, sizeof(VdbeCursor));
227     pCx->iDb = iDb;
228     pCx->nField = nField;
229     if( nField ){
230       pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
231     }
232     if( isBtreeCursor ){
233       pCx->pCursor = (BtCursor*)
234           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
235       sqlite3BtreeCursorZero(pCx->pCursor);
236     }
237   }
238   return pCx;
239 }
240 
241 /*
242 ** Try to convert a value into a numeric representation if we can
243 ** do so without loss of information.  In other words, if the string
244 ** looks like a number, convert it into a number.  If it does not
245 ** look like a number, leave it alone.
246 */
247 static void applyNumericAffinity(Mem *pRec){
248   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
249     double rValue;
250     i64 iValue;
251     u8 enc = pRec->enc;
252     if( (pRec->flags&MEM_Str)==0 ) return;
253     if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
254     if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
255       pRec->u.i = iValue;
256       pRec->flags |= MEM_Int;
257     }else{
258       pRec->r = rValue;
259       pRec->flags |= MEM_Real;
260     }
261   }
262 }
263 
264 /*
265 ** Processing is determine by the affinity parameter:
266 **
267 ** SQLITE_AFF_INTEGER:
268 ** SQLITE_AFF_REAL:
269 ** SQLITE_AFF_NUMERIC:
270 **    Try to convert pRec to an integer representation or a
271 **    floating-point representation if an integer representation
272 **    is not possible.  Note that the integer representation is
273 **    always preferred, even if the affinity is REAL, because
274 **    an integer representation is more space efficient on disk.
275 **
276 ** SQLITE_AFF_TEXT:
277 **    Convert pRec to a text representation.
278 **
279 ** SQLITE_AFF_NONE:
280 **    No-op.  pRec is unchanged.
281 */
282 static void applyAffinity(
283   Mem *pRec,          /* The value to apply affinity to */
284   char affinity,      /* The affinity to be applied */
285   u8 enc              /* Use this text encoding */
286 ){
287   if( affinity==SQLITE_AFF_TEXT ){
288     /* Only attempt the conversion to TEXT if there is an integer or real
289     ** representation (blob and NULL do not get converted) but no string
290     ** representation.
291     */
292     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
293       sqlite3VdbeMemStringify(pRec, enc);
294     }
295     pRec->flags &= ~(MEM_Real|MEM_Int);
296   }else if( affinity!=SQLITE_AFF_NONE ){
297     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
298              || affinity==SQLITE_AFF_NUMERIC );
299     applyNumericAffinity(pRec);
300     if( pRec->flags & MEM_Real ){
301       sqlite3VdbeIntegerAffinity(pRec);
302     }
303   }
304 }
305 
306 /*
307 ** Try to convert the type of a function argument or a result column
308 ** into a numeric representation.  Use either INTEGER or REAL whichever
309 ** is appropriate.  But only do the conversion if it is possible without
310 ** loss of information and return the revised type of the argument.
311 */
312 int sqlite3_value_numeric_type(sqlite3_value *pVal){
313   Mem *pMem = (Mem*)pVal;
314   if( pMem->type==SQLITE_TEXT ){
315     applyNumericAffinity(pMem);
316     sqlite3VdbeMemStoreType(pMem);
317   }
318   return pMem->type;
319 }
320 
321 /*
322 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
323 ** not the internal Mem* type.
324 */
325 void sqlite3ValueApplyAffinity(
326   sqlite3_value *pVal,
327   u8 affinity,
328   u8 enc
329 ){
330   applyAffinity((Mem *)pVal, affinity, enc);
331 }
332 
333 #ifdef SQLITE_DEBUG
334 /*
335 ** Write a nice string representation of the contents of cell pMem
336 ** into buffer zBuf, length nBuf.
337 */
338 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
339   char *zCsr = zBuf;
340   int f = pMem->flags;
341 
342   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
343 
344   if( f&MEM_Blob ){
345     int i;
346     char c;
347     if( f & MEM_Dyn ){
348       c = 'z';
349       assert( (f & (MEM_Static|MEM_Ephem))==0 );
350     }else if( f & MEM_Static ){
351       c = 't';
352       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
353     }else if( f & MEM_Ephem ){
354       c = 'e';
355       assert( (f & (MEM_Static|MEM_Dyn))==0 );
356     }else{
357       c = 's';
358     }
359 
360     sqlite3_snprintf(100, zCsr, "%c", c);
361     zCsr += sqlite3Strlen30(zCsr);
362     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
363     zCsr += sqlite3Strlen30(zCsr);
364     for(i=0; i<16 && i<pMem->n; i++){
365       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
366       zCsr += sqlite3Strlen30(zCsr);
367     }
368     for(i=0; i<16 && i<pMem->n; i++){
369       char z = pMem->z[i];
370       if( z<32 || z>126 ) *zCsr++ = '.';
371       else *zCsr++ = z;
372     }
373 
374     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
375     zCsr += sqlite3Strlen30(zCsr);
376     if( f & MEM_Zero ){
377       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
378       zCsr += sqlite3Strlen30(zCsr);
379     }
380     *zCsr = '\0';
381   }else if( f & MEM_Str ){
382     int j, k;
383     zBuf[0] = ' ';
384     if( f & MEM_Dyn ){
385       zBuf[1] = 'z';
386       assert( (f & (MEM_Static|MEM_Ephem))==0 );
387     }else if( f & MEM_Static ){
388       zBuf[1] = 't';
389       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
390     }else if( f & MEM_Ephem ){
391       zBuf[1] = 'e';
392       assert( (f & (MEM_Static|MEM_Dyn))==0 );
393     }else{
394       zBuf[1] = 's';
395     }
396     k = 2;
397     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
398     k += sqlite3Strlen30(&zBuf[k]);
399     zBuf[k++] = '[';
400     for(j=0; j<15 && j<pMem->n; j++){
401       u8 c = pMem->z[j];
402       if( c>=0x20 && c<0x7f ){
403         zBuf[k++] = c;
404       }else{
405         zBuf[k++] = '.';
406       }
407     }
408     zBuf[k++] = ']';
409     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
410     k += sqlite3Strlen30(&zBuf[k]);
411     zBuf[k++] = 0;
412   }
413 }
414 #endif
415 
416 #ifdef SQLITE_DEBUG
417 /*
418 ** Print the value of a register for tracing purposes:
419 */
420 static void memTracePrint(FILE *out, Mem *p){
421   if( p->flags & MEM_Invalid ){
422     fprintf(out, " undefined");
423   }else if( p->flags & MEM_Null ){
424     fprintf(out, " NULL");
425   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
426     fprintf(out, " si:%lld", p->u.i);
427   }else if( p->flags & MEM_Int ){
428     fprintf(out, " i:%lld", p->u.i);
429 #ifndef SQLITE_OMIT_FLOATING_POINT
430   }else if( p->flags & MEM_Real ){
431     fprintf(out, " r:%g", p->r);
432 #endif
433   }else if( p->flags & MEM_RowSet ){
434     fprintf(out, " (rowset)");
435   }else{
436     char zBuf[200];
437     sqlite3VdbeMemPrettyPrint(p, zBuf);
438     fprintf(out, " ");
439     fprintf(out, "%s", zBuf);
440   }
441 }
442 static void registerTrace(FILE *out, int iReg, Mem *p){
443   fprintf(out, "REG[%d] = ", iReg);
444   memTracePrint(out, p);
445   fprintf(out, "\n");
446 }
447 #endif
448 
449 #ifdef SQLITE_DEBUG
450 #  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
451 #else
452 #  define REGISTER_TRACE(R,M)
453 #endif
454 
455 
456 #ifdef VDBE_PROFILE
457 
458 /*
459 ** hwtime.h contains inline assembler code for implementing
460 ** high-performance timing routines.
461 */
462 #include "hwtime.h"
463 
464 #endif
465 
466 /*
467 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
468 ** sqlite3_interrupt() routine has been called.  If it has been, then
469 ** processing of the VDBE program is interrupted.
470 **
471 ** This macro added to every instruction that does a jump in order to
472 ** implement a loop.  This test used to be on every single instruction,
473 ** but that meant we more testing than we needed.  By only testing the
474 ** flag on jump instructions, we get a (small) speed improvement.
475 */
476 #define CHECK_FOR_INTERRUPT \
477    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
478 
479 
480 #ifndef NDEBUG
481 /*
482 ** This function is only called from within an assert() expression. It
483 ** checks that the sqlite3.nTransaction variable is correctly set to
484 ** the number of non-transaction savepoints currently in the
485 ** linked list starting at sqlite3.pSavepoint.
486 **
487 ** Usage:
488 **
489 **     assert( checkSavepointCount(db) );
490 */
491 static int checkSavepointCount(sqlite3 *db){
492   int n = 0;
493   Savepoint *p;
494   for(p=db->pSavepoint; p; p=p->pNext) n++;
495   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
496   return 1;
497 }
498 #endif
499 
500 /*
501 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
502 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
503 ** in memory obtained from sqlite3DbMalloc).
504 */
505 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
506   sqlite3 *db = p->db;
507   sqlite3DbFree(db, p->zErrMsg);
508   p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
509   sqlite3_free(pVtab->zErrMsg);
510   pVtab->zErrMsg = 0;
511 }
512 
513 
514 /*
515 ** Execute as much of a VDBE program as we can then return.
516 **
517 ** sqlite3VdbeMakeReady() must be called before this routine in order to
518 ** close the program with a final OP_Halt and to set up the callbacks
519 ** and the error message pointer.
520 **
521 ** Whenever a row or result data is available, this routine will either
522 ** invoke the result callback (if there is one) or return with
523 ** SQLITE_ROW.
524 **
525 ** If an attempt is made to open a locked database, then this routine
526 ** will either invoke the busy callback (if there is one) or it will
527 ** return SQLITE_BUSY.
528 **
529 ** If an error occurs, an error message is written to memory obtained
530 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
531 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
532 **
533 ** If the callback ever returns non-zero, then the program exits
534 ** immediately.  There will be no error message but the p->rc field is
535 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
536 **
537 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
538 ** routine to return SQLITE_ERROR.
539 **
540 ** Other fatal errors return SQLITE_ERROR.
541 **
542 ** After this routine has finished, sqlite3VdbeFinalize() should be
543 ** used to clean up the mess that was left behind.
544 */
545 int sqlite3VdbeExec(
546   Vdbe *p                    /* The VDBE */
547 ){
548   int pc=0;                  /* The program counter */
549   Op *aOp = p->aOp;          /* Copy of p->aOp */
550   Op *pOp;                   /* Current operation */
551   int rc = SQLITE_OK;        /* Value to return */
552   sqlite3 *db = p->db;       /* The database */
553   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
554   u8 encoding = ENC(db);     /* The database encoding */
555 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
556   int checkProgress;         /* True if progress callbacks are enabled */
557   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
558 #endif
559   Mem *aMem = p->aMem;       /* Copy of p->aMem */
560   Mem *pIn1 = 0;             /* 1st input operand */
561   Mem *pIn2 = 0;             /* 2nd input operand */
562   Mem *pIn3 = 0;             /* 3rd input operand */
563   Mem *pOut = 0;             /* Output operand */
564   int iCompare = 0;          /* Result of last OP_Compare operation */
565   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
566   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
567 #ifdef VDBE_PROFILE
568   u64 start;                 /* CPU clock count at start of opcode */
569   int origPc;                /* Program counter at start of opcode */
570 #endif
571   /*** INSERT STACK UNION HERE ***/
572 
573   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
574   sqlite3VdbeEnter(p);
575   if( p->rc==SQLITE_NOMEM ){
576     /* This happens if a malloc() inside a call to sqlite3_column_text() or
577     ** sqlite3_column_text16() failed.  */
578     goto no_mem;
579   }
580   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
581   p->rc = SQLITE_OK;
582   assert( p->explain==0 );
583   p->pResultSet = 0;
584   db->busyHandler.nBusy = 0;
585   CHECK_FOR_INTERRUPT;
586   sqlite3VdbeIOTraceSql(p);
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588   checkProgress = db->xProgress!=0;
589 #endif
590 #ifdef SQLITE_DEBUG
591   sqlite3BeginBenignMalloc();
592   if( p->pc==0  && (p->db->flags & SQLITE_VdbeListing)!=0 ){
593     int i;
594     printf("VDBE Program Listing:\n");
595     sqlite3VdbePrintSql(p);
596     for(i=0; i<p->nOp; i++){
597       sqlite3VdbePrintOp(stdout, i, &aOp[i]);
598     }
599   }
600   sqlite3EndBenignMalloc();
601 #endif
602   for(pc=p->pc; rc==SQLITE_OK; pc++){
603     assert( pc>=0 && pc<p->nOp );
604     if( db->mallocFailed ) goto no_mem;
605 #ifdef VDBE_PROFILE
606     origPc = pc;
607     start = sqlite3Hwtime();
608 #endif
609     pOp = &aOp[pc];
610 
611     /* Only allow tracing if SQLITE_DEBUG is defined.
612     */
613 #ifdef SQLITE_DEBUG
614     if( p->trace ){
615       if( pc==0 ){
616         printf("VDBE Execution Trace:\n");
617         sqlite3VdbePrintSql(p);
618       }
619       sqlite3VdbePrintOp(p->trace, pc, pOp);
620     }
621 #endif
622 
623 
624     /* Check to see if we need to simulate an interrupt.  This only happens
625     ** if we have a special test build.
626     */
627 #ifdef SQLITE_TEST
628     if( sqlite3_interrupt_count>0 ){
629       sqlite3_interrupt_count--;
630       if( sqlite3_interrupt_count==0 ){
631         sqlite3_interrupt(db);
632       }
633     }
634 #endif
635 
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637     /* Call the progress callback if it is configured and the required number
638     ** of VDBE ops have been executed (either since this invocation of
639     ** sqlite3VdbeExec() or since last time the progress callback was called).
640     ** If the progress callback returns non-zero, exit the virtual machine with
641     ** a return code SQLITE_ABORT.
642     */
643     if( checkProgress ){
644       if( db->nProgressOps==nProgressOps ){
645         int prc;
646         prc = db->xProgress(db->pProgressArg);
647         if( prc!=0 ){
648           rc = SQLITE_INTERRUPT;
649           goto vdbe_error_halt;
650         }
651         nProgressOps = 0;
652       }
653       nProgressOps++;
654     }
655 #endif
656 
657     /* On any opcode with the "out2-prerelease" tag, free any
658     ** external allocations out of mem[p2] and set mem[p2] to be
659     ** an undefined integer.  Opcodes will either fill in the integer
660     ** value or convert mem[p2] to a different type.
661     */
662     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
663     if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
664       assert( pOp->p2>0 );
665       assert( pOp->p2<=p->nMem );
666       pOut = &aMem[pOp->p2];
667       memAboutToChange(p, pOut);
668       VdbeMemRelease(pOut);
669       pOut->flags = MEM_Int;
670     }
671 
672     /* Sanity checking on other operands */
673 #ifdef SQLITE_DEBUG
674     if( (pOp->opflags & OPFLG_IN1)!=0 ){
675       assert( pOp->p1>0 );
676       assert( pOp->p1<=p->nMem );
677       assert( memIsValid(&aMem[pOp->p1]) );
678       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
679     }
680     if( (pOp->opflags & OPFLG_IN2)!=0 ){
681       assert( pOp->p2>0 );
682       assert( pOp->p2<=p->nMem );
683       assert( memIsValid(&aMem[pOp->p2]) );
684       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
685     }
686     if( (pOp->opflags & OPFLG_IN3)!=0 ){
687       assert( pOp->p3>0 );
688       assert( pOp->p3<=p->nMem );
689       assert( memIsValid(&aMem[pOp->p3]) );
690       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
691     }
692     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
693       assert( pOp->p2>0 );
694       assert( pOp->p2<=p->nMem );
695       memAboutToChange(p, &aMem[pOp->p2]);
696     }
697     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
698       assert( pOp->p3>0 );
699       assert( pOp->p3<=p->nMem );
700       memAboutToChange(p, &aMem[pOp->p3]);
701     }
702 #endif
703 
704     switch( pOp->opcode ){
705 
706 /*****************************************************************************
707 ** What follows is a massive switch statement where each case implements a
708 ** separate instruction in the virtual machine.  If we follow the usual
709 ** indentation conventions, each case should be indented by 6 spaces.  But
710 ** that is a lot of wasted space on the left margin.  So the code within
711 ** the switch statement will break with convention and be flush-left. Another
712 ** big comment (similar to this one) will mark the point in the code where
713 ** we transition back to normal indentation.
714 **
715 ** The formatting of each case is important.  The makefile for SQLite
716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717 ** file looking for lines that begin with "case OP_".  The opcodes.h files
718 ** will be filled with #defines that give unique integer values to each
719 ** opcode and the opcodes.c file is filled with an array of strings where
720 ** each string is the symbolic name for the corresponding opcode.  If the
721 ** case statement is followed by a comment of the form "/# same as ... #/"
722 ** that comment is used to determine the particular value of the opcode.
723 **
724 ** Other keywords in the comment that follows each case are used to
725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
727 ** the mkopcodeh.awk script for additional information.
728 **
729 ** Documentation about VDBE opcodes is generated by scanning this file
730 ** for lines of that contain "Opcode:".  That line and all subsequent
731 ** comment lines are used in the generation of the opcode.html documentation
732 ** file.
733 **
734 ** SUMMARY:
735 **
736 **     Formatting is important to scripts that scan this file.
737 **     Do not deviate from the formatting style currently in use.
738 **
739 *****************************************************************************/
740 
741 /* Opcode:  Goto * P2 * * *
742 **
743 ** An unconditional jump to address P2.
744 ** The next instruction executed will be
745 ** the one at index P2 from the beginning of
746 ** the program.
747 */
748 case OP_Goto: {             /* jump */
749   CHECK_FOR_INTERRUPT;
750   pc = pOp->p2 - 1;
751   break;
752 }
753 
754 /* Opcode:  Gosub P1 P2 * * *
755 **
756 ** Write the current address onto register P1
757 ** and then jump to address P2.
758 */
759 case OP_Gosub: {            /* jump */
760   assert( pOp->p1>0 && pOp->p1<=p->nMem );
761   pIn1 = &aMem[pOp->p1];
762   assert( (pIn1->flags & MEM_Dyn)==0 );
763   memAboutToChange(p, pIn1);
764   pIn1->flags = MEM_Int;
765   pIn1->u.i = pc;
766   REGISTER_TRACE(pOp->p1, pIn1);
767   pc = pOp->p2 - 1;
768   break;
769 }
770 
771 /* Opcode:  Return P1 * * * *
772 **
773 ** Jump to the next instruction after the address in register P1.
774 */
775 case OP_Return: {           /* in1 */
776   pIn1 = &aMem[pOp->p1];
777   assert( pIn1->flags & MEM_Int );
778   pc = (int)pIn1->u.i;
779   break;
780 }
781 
782 /* Opcode:  Yield P1 * * * *
783 **
784 ** Swap the program counter with the value in register P1.
785 */
786 case OP_Yield: {            /* in1 */
787   int pcDest;
788   pIn1 = &aMem[pOp->p1];
789   assert( (pIn1->flags & MEM_Dyn)==0 );
790   pIn1->flags = MEM_Int;
791   pcDest = (int)pIn1->u.i;
792   pIn1->u.i = pc;
793   REGISTER_TRACE(pOp->p1, pIn1);
794   pc = pcDest;
795   break;
796 }
797 
798 /* Opcode:  HaltIfNull  P1 P2 P3 P4 *
799 **
800 ** Check the value in register P3.  If it is NULL then Halt using
801 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
802 ** value in register P3 is not NULL, then this routine is a no-op.
803 */
804 case OP_HaltIfNull: {      /* in3 */
805   pIn3 = &aMem[pOp->p3];
806   if( (pIn3->flags & MEM_Null)==0 ) break;
807   /* Fall through into OP_Halt */
808 }
809 
810 /* Opcode:  Halt P1 P2 * P4 *
811 **
812 ** Exit immediately.  All open cursors, etc are closed
813 ** automatically.
814 **
815 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
816 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
817 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
818 ** whether or not to rollback the current transaction.  Do not rollback
819 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
820 ** then back out all changes that have occurred during this execution of the
821 ** VDBE, but do not rollback the transaction.
822 **
823 ** If P4 is not null then it is an error message string.
824 **
825 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
826 ** every program.  So a jump past the last instruction of the program
827 ** is the same as executing Halt.
828 */
829 case OP_Halt: {
830   if( pOp->p1==SQLITE_OK && p->pFrame ){
831     /* Halt the sub-program. Return control to the parent frame. */
832     VdbeFrame *pFrame = p->pFrame;
833     p->pFrame = pFrame->pParent;
834     p->nFrame--;
835     sqlite3VdbeSetChanges(db, p->nChange);
836     pc = sqlite3VdbeFrameRestore(pFrame);
837     lastRowid = db->lastRowid;
838     if( pOp->p2==OE_Ignore ){
839       /* Instruction pc is the OP_Program that invoked the sub-program
840       ** currently being halted. If the p2 instruction of this OP_Halt
841       ** instruction is set to OE_Ignore, then the sub-program is throwing
842       ** an IGNORE exception. In this case jump to the address specified
843       ** as the p2 of the calling OP_Program.  */
844       pc = p->aOp[pc].p2-1;
845     }
846     aOp = p->aOp;
847     aMem = p->aMem;
848     break;
849   }
850 
851   p->rc = pOp->p1;
852   p->errorAction = (u8)pOp->p2;
853   p->pc = pc;
854   if( pOp->p4.z ){
855     assert( p->rc!=SQLITE_OK );
856     sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
857     testcase( sqlite3GlobalConfig.xLog!=0 );
858     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
859   }else if( p->rc ){
860     testcase( sqlite3GlobalConfig.xLog!=0 );
861     sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
862   }
863   rc = sqlite3VdbeHalt(p);
864   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
865   if( rc==SQLITE_BUSY ){
866     p->rc = rc = SQLITE_BUSY;
867   }else{
868     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
869     assert( rc==SQLITE_OK || db->nDeferredCons>0 );
870     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
871   }
872   goto vdbe_return;
873 }
874 
875 /* Opcode: Integer P1 P2 * * *
876 **
877 ** The 32-bit integer value P1 is written into register P2.
878 */
879 case OP_Integer: {         /* out2-prerelease */
880   pOut->u.i = pOp->p1;
881   break;
882 }
883 
884 /* Opcode: Int64 * P2 * P4 *
885 **
886 ** P4 is a pointer to a 64-bit integer value.
887 ** Write that value into register P2.
888 */
889 case OP_Int64: {           /* out2-prerelease */
890   assert( pOp->p4.pI64!=0 );
891   pOut->u.i = *pOp->p4.pI64;
892   break;
893 }
894 
895 #ifndef SQLITE_OMIT_FLOATING_POINT
896 /* Opcode: Real * P2 * P4 *
897 **
898 ** P4 is a pointer to a 64-bit floating point value.
899 ** Write that value into register P2.
900 */
901 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
902   pOut->flags = MEM_Real;
903   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
904   pOut->r = *pOp->p4.pReal;
905   break;
906 }
907 #endif
908 
909 /* Opcode: String8 * P2 * P4 *
910 **
911 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
912 ** into an OP_String before it is executed for the first time.
913 */
914 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
915   assert( pOp->p4.z!=0 );
916   pOp->opcode = OP_String;
917   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
918 
919 #ifndef SQLITE_OMIT_UTF16
920   if( encoding!=SQLITE_UTF8 ){
921     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
922     if( rc==SQLITE_TOOBIG ) goto too_big;
923     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
924     assert( pOut->zMalloc==pOut->z );
925     assert( pOut->flags & MEM_Dyn );
926     pOut->zMalloc = 0;
927     pOut->flags |= MEM_Static;
928     pOut->flags &= ~MEM_Dyn;
929     if( pOp->p4type==P4_DYNAMIC ){
930       sqlite3DbFree(db, pOp->p4.z);
931     }
932     pOp->p4type = P4_DYNAMIC;
933     pOp->p4.z = pOut->z;
934     pOp->p1 = pOut->n;
935   }
936 #endif
937   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
938     goto too_big;
939   }
940   /* Fall through to the next case, OP_String */
941 }
942 
943 /* Opcode: String P1 P2 * P4 *
944 **
945 ** The string value P4 of length P1 (bytes) is stored in register P2.
946 */
947 case OP_String: {          /* out2-prerelease */
948   assert( pOp->p4.z!=0 );
949   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
950   pOut->z = pOp->p4.z;
951   pOut->n = pOp->p1;
952   pOut->enc = encoding;
953   UPDATE_MAX_BLOBSIZE(pOut);
954   break;
955 }
956 
957 /* Opcode: Null P1 P2 P3 * *
958 **
959 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
960 ** NULL into register P3 and every register in between P2 and P3.  If P3
961 ** is less than P2 (typically P3 is zero) then only register P2 is
962 ** set to NULL.
963 **
964 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
965 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
966 ** OP_Ne or OP_Eq.
967 */
968 case OP_Null: {           /* out2-prerelease */
969   int cnt;
970   u16 nullFlag;
971   cnt = pOp->p3-pOp->p2;
972   assert( pOp->p3<=p->nMem );
973   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
974   while( cnt>0 ){
975     pOut++;
976     memAboutToChange(p, pOut);
977     VdbeMemRelease(pOut);
978     pOut->flags = nullFlag;
979     cnt--;
980   }
981   break;
982 }
983 
984 
985 /* Opcode: Blob P1 P2 * P4
986 **
987 ** P4 points to a blob of data P1 bytes long.  Store this
988 ** blob in register P2.
989 */
990 case OP_Blob: {                /* out2-prerelease */
991   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
992   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
993   pOut->enc = encoding;
994   UPDATE_MAX_BLOBSIZE(pOut);
995   break;
996 }
997 
998 /* Opcode: Variable P1 P2 * P4 *
999 **
1000 ** Transfer the values of bound parameter P1 into register P2
1001 **
1002 ** If the parameter is named, then its name appears in P4 and P3==1.
1003 ** The P4 value is used by sqlite3_bind_parameter_name().
1004 */
1005 case OP_Variable: {            /* out2-prerelease */
1006   Mem *pVar;       /* Value being transferred */
1007 
1008   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1009   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1010   pVar = &p->aVar[pOp->p1 - 1];
1011   if( sqlite3VdbeMemTooBig(pVar) ){
1012     goto too_big;
1013   }
1014   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1015   UPDATE_MAX_BLOBSIZE(pOut);
1016   break;
1017 }
1018 
1019 /* Opcode: Move P1 P2 P3 * *
1020 **
1021 ** Move the values in register P1..P1+P3 over into
1022 ** registers P2..P2+P3.  Registers P1..P1+P3 are
1023 ** left holding a NULL.  It is an error for register ranges
1024 ** P1..P1+P3 and P2..P2+P3 to overlap.
1025 */
1026 case OP_Move: {
1027   char *zMalloc;   /* Holding variable for allocated memory */
1028   int n;           /* Number of registers left to copy */
1029   int p1;          /* Register to copy from */
1030   int p2;          /* Register to copy to */
1031 
1032   n = pOp->p3 + 1;
1033   p1 = pOp->p1;
1034   p2 = pOp->p2;
1035   assert( n>0 && p1>0 && p2>0 );
1036   assert( p1+n<=p2 || p2+n<=p1 );
1037 
1038   pIn1 = &aMem[p1];
1039   pOut = &aMem[p2];
1040   while( n-- ){
1041     assert( pOut<=&aMem[p->nMem] );
1042     assert( pIn1<=&aMem[p->nMem] );
1043     assert( memIsValid(pIn1) );
1044     memAboutToChange(p, pOut);
1045     zMalloc = pOut->zMalloc;
1046     pOut->zMalloc = 0;
1047     sqlite3VdbeMemMove(pOut, pIn1);
1048 #ifdef SQLITE_DEBUG
1049     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1050       pOut->pScopyFrom += p1 - pOp->p2;
1051     }
1052 #endif
1053     pIn1->zMalloc = zMalloc;
1054     REGISTER_TRACE(p2++, pOut);
1055     pIn1++;
1056     pOut++;
1057   }
1058   break;
1059 }
1060 
1061 /* Opcode: Copy P1 P2 P3 * *
1062 **
1063 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1064 **
1065 ** This instruction makes a deep copy of the value.  A duplicate
1066 ** is made of any string or blob constant.  See also OP_SCopy.
1067 */
1068 case OP_Copy: {
1069   int n;
1070 
1071   n = pOp->p3;
1072   pIn1 = &aMem[pOp->p1];
1073   pOut = &aMem[pOp->p2];
1074   assert( pOut!=pIn1 );
1075   while( 1 ){
1076     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1077     Deephemeralize(pOut);
1078 #ifdef SQLITE_DEBUG
1079     pOut->pScopyFrom = 0;
1080 #endif
1081     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1082     if( (n--)==0 ) break;
1083     pOut++;
1084     pIn1++;
1085   }
1086   break;
1087 }
1088 
1089 /* Opcode: SCopy P1 P2 * * *
1090 **
1091 ** Make a shallow copy of register P1 into register P2.
1092 **
1093 ** This instruction makes a shallow copy of the value.  If the value
1094 ** is a string or blob, then the copy is only a pointer to the
1095 ** original and hence if the original changes so will the copy.
1096 ** Worse, if the original is deallocated, the copy becomes invalid.
1097 ** Thus the program must guarantee that the original will not change
1098 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1099 ** copy.
1100 */
1101 case OP_SCopy: {            /* in1, out2 */
1102   pIn1 = &aMem[pOp->p1];
1103   pOut = &aMem[pOp->p2];
1104   assert( pOut!=pIn1 );
1105   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1106 #ifdef SQLITE_DEBUG
1107   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1108 #endif
1109   REGISTER_TRACE(pOp->p2, pOut);
1110   break;
1111 }
1112 
1113 /* Opcode: ResultRow P1 P2 * * *
1114 **
1115 ** The registers P1 through P1+P2-1 contain a single row of
1116 ** results. This opcode causes the sqlite3_step() call to terminate
1117 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1118 ** structure to provide access to the top P1 values as the result
1119 ** row.
1120 */
1121 case OP_ResultRow: {
1122   Mem *pMem;
1123   int i;
1124   assert( p->nResColumn==pOp->p2 );
1125   assert( pOp->p1>0 );
1126   assert( pOp->p1+pOp->p2<=p->nMem+1 );
1127 
1128   /* If this statement has violated immediate foreign key constraints, do
1129   ** not return the number of rows modified. And do not RELEASE the statement
1130   ** transaction. It needs to be rolled back.  */
1131   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1132     assert( db->flags&SQLITE_CountRows );
1133     assert( p->usesStmtJournal );
1134     break;
1135   }
1136 
1137   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1138   ** DML statements invoke this opcode to return the number of rows
1139   ** modified to the user. This is the only way that a VM that
1140   ** opens a statement transaction may invoke this opcode.
1141   **
1142   ** In case this is such a statement, close any statement transaction
1143   ** opened by this VM before returning control to the user. This is to
1144   ** ensure that statement-transactions are always nested, not overlapping.
1145   ** If the open statement-transaction is not closed here, then the user
1146   ** may step another VM that opens its own statement transaction. This
1147   ** may lead to overlapping statement transactions.
1148   **
1149   ** The statement transaction is never a top-level transaction.  Hence
1150   ** the RELEASE call below can never fail.
1151   */
1152   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1153   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1154   if( NEVER(rc!=SQLITE_OK) ){
1155     break;
1156   }
1157 
1158   /* Invalidate all ephemeral cursor row caches */
1159   p->cacheCtr = (p->cacheCtr + 2)|1;
1160 
1161   /* Make sure the results of the current row are \000 terminated
1162   ** and have an assigned type.  The results are de-ephemeralized as
1163   ** a side effect.
1164   */
1165   pMem = p->pResultSet = &aMem[pOp->p1];
1166   for(i=0; i<pOp->p2; i++){
1167     assert( memIsValid(&pMem[i]) );
1168     Deephemeralize(&pMem[i]);
1169     assert( (pMem[i].flags & MEM_Ephem)==0
1170             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1171     sqlite3VdbeMemNulTerminate(&pMem[i]);
1172     sqlite3VdbeMemStoreType(&pMem[i]);
1173     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1174   }
1175   if( db->mallocFailed ) goto no_mem;
1176 
1177   /* Return SQLITE_ROW
1178   */
1179   p->pc = pc + 1;
1180   rc = SQLITE_ROW;
1181   goto vdbe_return;
1182 }
1183 
1184 /* Opcode: Concat P1 P2 P3 * *
1185 **
1186 ** Add the text in register P1 onto the end of the text in
1187 ** register P2 and store the result in register P3.
1188 ** If either the P1 or P2 text are NULL then store NULL in P3.
1189 **
1190 **   P3 = P2 || P1
1191 **
1192 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1193 ** if P3 is the same register as P2, the implementation is able
1194 ** to avoid a memcpy().
1195 */
1196 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1197   i64 nByte;
1198 
1199   pIn1 = &aMem[pOp->p1];
1200   pIn2 = &aMem[pOp->p2];
1201   pOut = &aMem[pOp->p3];
1202   assert( pIn1!=pOut );
1203   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1204     sqlite3VdbeMemSetNull(pOut);
1205     break;
1206   }
1207   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1208   Stringify(pIn1, encoding);
1209   Stringify(pIn2, encoding);
1210   nByte = pIn1->n + pIn2->n;
1211   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1212     goto too_big;
1213   }
1214   MemSetTypeFlag(pOut, MEM_Str);
1215   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1216     goto no_mem;
1217   }
1218   if( pOut!=pIn2 ){
1219     memcpy(pOut->z, pIn2->z, pIn2->n);
1220   }
1221   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1222   pOut->z[nByte] = 0;
1223   pOut->z[nByte+1] = 0;
1224   pOut->flags |= MEM_Term;
1225   pOut->n = (int)nByte;
1226   pOut->enc = encoding;
1227   UPDATE_MAX_BLOBSIZE(pOut);
1228   break;
1229 }
1230 
1231 /* Opcode: Add P1 P2 P3 * *
1232 **
1233 ** Add the value in register P1 to the value in register P2
1234 ** and store the result in register P3.
1235 ** If either input is NULL, the result is NULL.
1236 */
1237 /* Opcode: Multiply P1 P2 P3 * *
1238 **
1239 **
1240 ** Multiply the value in register P1 by the value in register P2
1241 ** and store the result in register P3.
1242 ** If either input is NULL, the result is NULL.
1243 */
1244 /* Opcode: Subtract P1 P2 P3 * *
1245 **
1246 ** Subtract the value in register P1 from the value in register P2
1247 ** and store the result in register P3.
1248 ** If either input is NULL, the result is NULL.
1249 */
1250 /* Opcode: Divide P1 P2 P3 * *
1251 **
1252 ** Divide the value in register P1 by the value in register P2
1253 ** and store the result in register P3 (P3=P2/P1). If the value in
1254 ** register P1 is zero, then the result is NULL. If either input is
1255 ** NULL, the result is NULL.
1256 */
1257 /* Opcode: Remainder P1 P2 P3 * *
1258 **
1259 ** Compute the remainder after integer division of the value in
1260 ** register P1 by the value in register P2 and store the result in P3.
1261 ** If the value in register P2 is zero the result is NULL.
1262 ** If either operand is NULL, the result is NULL.
1263 */
1264 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1265 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1266 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1267 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1268 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1269   char bIntint;   /* Started out as two integer operands */
1270   int flags;      /* Combined MEM_* flags from both inputs */
1271   i64 iA;         /* Integer value of left operand */
1272   i64 iB;         /* Integer value of right operand */
1273   double rA;      /* Real value of left operand */
1274   double rB;      /* Real value of right operand */
1275 
1276   pIn1 = &aMem[pOp->p1];
1277   applyNumericAffinity(pIn1);
1278   pIn2 = &aMem[pOp->p2];
1279   applyNumericAffinity(pIn2);
1280   pOut = &aMem[pOp->p3];
1281   flags = pIn1->flags | pIn2->flags;
1282   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1283   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1284     iA = pIn1->u.i;
1285     iB = pIn2->u.i;
1286     bIntint = 1;
1287     switch( pOp->opcode ){
1288       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1289       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1290       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1291       case OP_Divide: {
1292         if( iA==0 ) goto arithmetic_result_is_null;
1293         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1294         iB /= iA;
1295         break;
1296       }
1297       default: {
1298         if( iA==0 ) goto arithmetic_result_is_null;
1299         if( iA==-1 ) iA = 1;
1300         iB %= iA;
1301         break;
1302       }
1303     }
1304     pOut->u.i = iB;
1305     MemSetTypeFlag(pOut, MEM_Int);
1306   }else{
1307     bIntint = 0;
1308 fp_math:
1309     rA = sqlite3VdbeRealValue(pIn1);
1310     rB = sqlite3VdbeRealValue(pIn2);
1311     switch( pOp->opcode ){
1312       case OP_Add:         rB += rA;       break;
1313       case OP_Subtract:    rB -= rA;       break;
1314       case OP_Multiply:    rB *= rA;       break;
1315       case OP_Divide: {
1316         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1317         if( rA==(double)0 ) goto arithmetic_result_is_null;
1318         rB /= rA;
1319         break;
1320       }
1321       default: {
1322         iA = (i64)rA;
1323         iB = (i64)rB;
1324         if( iA==0 ) goto arithmetic_result_is_null;
1325         if( iA==-1 ) iA = 1;
1326         rB = (double)(iB % iA);
1327         break;
1328       }
1329     }
1330 #ifdef SQLITE_OMIT_FLOATING_POINT
1331     pOut->u.i = rB;
1332     MemSetTypeFlag(pOut, MEM_Int);
1333 #else
1334     if( sqlite3IsNaN(rB) ){
1335       goto arithmetic_result_is_null;
1336     }
1337     pOut->r = rB;
1338     MemSetTypeFlag(pOut, MEM_Real);
1339     if( (flags & MEM_Real)==0 && !bIntint ){
1340       sqlite3VdbeIntegerAffinity(pOut);
1341     }
1342 #endif
1343   }
1344   break;
1345 
1346 arithmetic_result_is_null:
1347   sqlite3VdbeMemSetNull(pOut);
1348   break;
1349 }
1350 
1351 /* Opcode: CollSeq P1 * * P4
1352 **
1353 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1354 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1355 ** be returned. This is used by the built-in min(), max() and nullif()
1356 ** functions.
1357 **
1358 ** If P1 is not zero, then it is a register that a subsequent min() or
1359 ** max() aggregate will set to 1 if the current row is not the minimum or
1360 ** maximum.  The P1 register is initialized to 0 by this instruction.
1361 **
1362 ** The interface used by the implementation of the aforementioned functions
1363 ** to retrieve the collation sequence set by this opcode is not available
1364 ** publicly, only to user functions defined in func.c.
1365 */
1366 case OP_CollSeq: {
1367   assert( pOp->p4type==P4_COLLSEQ );
1368   if( pOp->p1 ){
1369     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1370   }
1371   break;
1372 }
1373 
1374 /* Opcode: Function P1 P2 P3 P4 P5
1375 **
1376 ** Invoke a user function (P4 is a pointer to a Function structure that
1377 ** defines the function) with P5 arguments taken from register P2 and
1378 ** successors.  The result of the function is stored in register P3.
1379 ** Register P3 must not be one of the function inputs.
1380 **
1381 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1382 ** function was determined to be constant at compile time. If the first
1383 ** argument was constant then bit 0 of P1 is set. This is used to determine
1384 ** whether meta data associated with a user function argument using the
1385 ** sqlite3_set_auxdata() API may be safely retained until the next
1386 ** invocation of this opcode.
1387 **
1388 ** See also: AggStep and AggFinal
1389 */
1390 case OP_Function: {
1391   int i;
1392   Mem *pArg;
1393   sqlite3_context ctx;
1394   sqlite3_value **apVal;
1395   int n;
1396 
1397   n = pOp->p5;
1398   apVal = p->apArg;
1399   assert( apVal || n==0 );
1400   assert( pOp->p3>0 && pOp->p3<=p->nMem );
1401   pOut = &aMem[pOp->p3];
1402   memAboutToChange(p, pOut);
1403 
1404   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1405   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1406   pArg = &aMem[pOp->p2];
1407   for(i=0; i<n; i++, pArg++){
1408     assert( memIsValid(pArg) );
1409     apVal[i] = pArg;
1410     Deephemeralize(pArg);
1411     sqlite3VdbeMemStoreType(pArg);
1412     REGISTER_TRACE(pOp->p2+i, pArg);
1413   }
1414 
1415   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1416   if( pOp->p4type==P4_FUNCDEF ){
1417     ctx.pFunc = pOp->p4.pFunc;
1418     ctx.pVdbeFunc = 0;
1419   }else{
1420     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1421     ctx.pFunc = ctx.pVdbeFunc->pFunc;
1422   }
1423 
1424   ctx.s.flags = MEM_Null;
1425   ctx.s.db = db;
1426   ctx.s.xDel = 0;
1427   ctx.s.zMalloc = 0;
1428 
1429   /* The output cell may already have a buffer allocated. Move
1430   ** the pointer to ctx.s so in case the user-function can use
1431   ** the already allocated buffer instead of allocating a new one.
1432   */
1433   sqlite3VdbeMemMove(&ctx.s, pOut);
1434   MemSetTypeFlag(&ctx.s, MEM_Null);
1435 
1436   ctx.isError = 0;
1437   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1438     assert( pOp>aOp );
1439     assert( pOp[-1].p4type==P4_COLLSEQ );
1440     assert( pOp[-1].opcode==OP_CollSeq );
1441     ctx.pColl = pOp[-1].p4.pColl;
1442   }
1443   db->lastRowid = lastRowid;
1444   (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1445   lastRowid = db->lastRowid;
1446 
1447   /* If any auxiliary data functions have been called by this user function,
1448   ** immediately call the destructor for any non-static values.
1449   */
1450   if( ctx.pVdbeFunc ){
1451     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1452     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1453     pOp->p4type = P4_VDBEFUNC;
1454   }
1455 
1456   if( db->mallocFailed ){
1457     /* Even though a malloc() has failed, the implementation of the
1458     ** user function may have called an sqlite3_result_XXX() function
1459     ** to return a value. The following call releases any resources
1460     ** associated with such a value.
1461     */
1462     sqlite3VdbeMemRelease(&ctx.s);
1463     goto no_mem;
1464   }
1465 
1466   /* If the function returned an error, throw an exception */
1467   if( ctx.isError ){
1468     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1469     rc = ctx.isError;
1470   }
1471 
1472   /* Copy the result of the function into register P3 */
1473   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1474   sqlite3VdbeMemMove(pOut, &ctx.s);
1475   if( sqlite3VdbeMemTooBig(pOut) ){
1476     goto too_big;
1477   }
1478 
1479 #if 0
1480   /* The app-defined function has done something that as caused this
1481   ** statement to expire.  (Perhaps the function called sqlite3_exec()
1482   ** with a CREATE TABLE statement.)
1483   */
1484   if( p->expired ) rc = SQLITE_ABORT;
1485 #endif
1486 
1487   REGISTER_TRACE(pOp->p3, pOut);
1488   UPDATE_MAX_BLOBSIZE(pOut);
1489   break;
1490 }
1491 
1492 /* Opcode: BitAnd P1 P2 P3 * *
1493 **
1494 ** Take the bit-wise AND of the values in register P1 and P2 and
1495 ** store the result in register P3.
1496 ** If either input is NULL, the result is NULL.
1497 */
1498 /* Opcode: BitOr P1 P2 P3 * *
1499 **
1500 ** Take the bit-wise OR of the values in register P1 and P2 and
1501 ** store the result in register P3.
1502 ** If either input is NULL, the result is NULL.
1503 */
1504 /* Opcode: ShiftLeft P1 P2 P3 * *
1505 **
1506 ** Shift the integer value in register P2 to the left by the
1507 ** number of bits specified by the integer in register P1.
1508 ** Store the result in register P3.
1509 ** If either input is NULL, the result is NULL.
1510 */
1511 /* Opcode: ShiftRight P1 P2 P3 * *
1512 **
1513 ** Shift the integer value in register P2 to the right by the
1514 ** number of bits specified by the integer in register P1.
1515 ** Store the result in register P3.
1516 ** If either input is NULL, the result is NULL.
1517 */
1518 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1519 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1520 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1521 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1522   i64 iA;
1523   u64 uA;
1524   i64 iB;
1525   u8 op;
1526 
1527   pIn1 = &aMem[pOp->p1];
1528   pIn2 = &aMem[pOp->p2];
1529   pOut = &aMem[pOp->p3];
1530   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1531     sqlite3VdbeMemSetNull(pOut);
1532     break;
1533   }
1534   iA = sqlite3VdbeIntValue(pIn2);
1535   iB = sqlite3VdbeIntValue(pIn1);
1536   op = pOp->opcode;
1537   if( op==OP_BitAnd ){
1538     iA &= iB;
1539   }else if( op==OP_BitOr ){
1540     iA |= iB;
1541   }else if( iB!=0 ){
1542     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1543 
1544     /* If shifting by a negative amount, shift in the other direction */
1545     if( iB<0 ){
1546       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1547       op = 2*OP_ShiftLeft + 1 - op;
1548       iB = iB>(-64) ? -iB : 64;
1549     }
1550 
1551     if( iB>=64 ){
1552       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1553     }else{
1554       memcpy(&uA, &iA, sizeof(uA));
1555       if( op==OP_ShiftLeft ){
1556         uA <<= iB;
1557       }else{
1558         uA >>= iB;
1559         /* Sign-extend on a right shift of a negative number */
1560         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1561       }
1562       memcpy(&iA, &uA, sizeof(iA));
1563     }
1564   }
1565   pOut->u.i = iA;
1566   MemSetTypeFlag(pOut, MEM_Int);
1567   break;
1568 }
1569 
1570 /* Opcode: AddImm  P1 P2 * * *
1571 **
1572 ** Add the constant P2 to the value in register P1.
1573 ** The result is always an integer.
1574 **
1575 ** To force any register to be an integer, just add 0.
1576 */
1577 case OP_AddImm: {            /* in1 */
1578   pIn1 = &aMem[pOp->p1];
1579   memAboutToChange(p, pIn1);
1580   sqlite3VdbeMemIntegerify(pIn1);
1581   pIn1->u.i += pOp->p2;
1582   break;
1583 }
1584 
1585 /* Opcode: MustBeInt P1 P2 * * *
1586 **
1587 ** Force the value in register P1 to be an integer.  If the value
1588 ** in P1 is not an integer and cannot be converted into an integer
1589 ** without data loss, then jump immediately to P2, or if P2==0
1590 ** raise an SQLITE_MISMATCH exception.
1591 */
1592 case OP_MustBeInt: {            /* jump, in1 */
1593   pIn1 = &aMem[pOp->p1];
1594   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1595   if( (pIn1->flags & MEM_Int)==0 ){
1596     if( pOp->p2==0 ){
1597       rc = SQLITE_MISMATCH;
1598       goto abort_due_to_error;
1599     }else{
1600       pc = pOp->p2 - 1;
1601     }
1602   }else{
1603     MemSetTypeFlag(pIn1, MEM_Int);
1604   }
1605   break;
1606 }
1607 
1608 #ifndef SQLITE_OMIT_FLOATING_POINT
1609 /* Opcode: RealAffinity P1 * * * *
1610 **
1611 ** If register P1 holds an integer convert it to a real value.
1612 **
1613 ** This opcode is used when extracting information from a column that
1614 ** has REAL affinity.  Such column values may still be stored as
1615 ** integers, for space efficiency, but after extraction we want them
1616 ** to have only a real value.
1617 */
1618 case OP_RealAffinity: {                  /* in1 */
1619   pIn1 = &aMem[pOp->p1];
1620   if( pIn1->flags & MEM_Int ){
1621     sqlite3VdbeMemRealify(pIn1);
1622   }
1623   break;
1624 }
1625 #endif
1626 
1627 #ifndef SQLITE_OMIT_CAST
1628 /* Opcode: ToText P1 * * * *
1629 **
1630 ** Force the value in register P1 to be text.
1631 ** If the value is numeric, convert it to a string using the
1632 ** equivalent of printf().  Blob values are unchanged and
1633 ** are afterwards simply interpreted as text.
1634 **
1635 ** A NULL value is not changed by this routine.  It remains NULL.
1636 */
1637 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
1638   pIn1 = &aMem[pOp->p1];
1639   memAboutToChange(p, pIn1);
1640   if( pIn1->flags & MEM_Null ) break;
1641   assert( MEM_Str==(MEM_Blob>>3) );
1642   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1643   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1644   rc = ExpandBlob(pIn1);
1645   assert( pIn1->flags & MEM_Str || db->mallocFailed );
1646   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1647   UPDATE_MAX_BLOBSIZE(pIn1);
1648   break;
1649 }
1650 
1651 /* Opcode: ToBlob P1 * * * *
1652 **
1653 ** Force the value in register P1 to be a BLOB.
1654 ** If the value is numeric, convert it to a string first.
1655 ** Strings are simply reinterpreted as blobs with no change
1656 ** to the underlying data.
1657 **
1658 ** A NULL value is not changed by this routine.  It remains NULL.
1659 */
1660 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
1661   pIn1 = &aMem[pOp->p1];
1662   if( pIn1->flags & MEM_Null ) break;
1663   if( (pIn1->flags & MEM_Blob)==0 ){
1664     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1665     assert( pIn1->flags & MEM_Str || db->mallocFailed );
1666     MemSetTypeFlag(pIn1, MEM_Blob);
1667   }else{
1668     pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1669   }
1670   UPDATE_MAX_BLOBSIZE(pIn1);
1671   break;
1672 }
1673 
1674 /* Opcode: ToNumeric P1 * * * *
1675 **
1676 ** Force the value in register P1 to be numeric (either an
1677 ** integer or a floating-point number.)
1678 ** If the value is text or blob, try to convert it to an using the
1679 ** equivalent of atoi() or atof() and store 0 if no such conversion
1680 ** is possible.
1681 **
1682 ** A NULL value is not changed by this routine.  It remains NULL.
1683 */
1684 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
1685   pIn1 = &aMem[pOp->p1];
1686   sqlite3VdbeMemNumerify(pIn1);
1687   break;
1688 }
1689 #endif /* SQLITE_OMIT_CAST */
1690 
1691 /* Opcode: ToInt P1 * * * *
1692 **
1693 ** Force the value in register P1 to be an integer.  If
1694 ** The value is currently a real number, drop its fractional part.
1695 ** If the value is text or blob, try to convert it to an integer using the
1696 ** equivalent of atoi() and store 0 if no such conversion is possible.
1697 **
1698 ** A NULL value is not changed by this routine.  It remains NULL.
1699 */
1700 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
1701   pIn1 = &aMem[pOp->p1];
1702   if( (pIn1->flags & MEM_Null)==0 ){
1703     sqlite3VdbeMemIntegerify(pIn1);
1704   }
1705   break;
1706 }
1707 
1708 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1709 /* Opcode: ToReal P1 * * * *
1710 **
1711 ** Force the value in register P1 to be a floating point number.
1712 ** If The value is currently an integer, convert it.
1713 ** If the value is text or blob, try to convert it to an integer using the
1714 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1715 **
1716 ** A NULL value is not changed by this routine.  It remains NULL.
1717 */
1718 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
1719   pIn1 = &aMem[pOp->p1];
1720   memAboutToChange(p, pIn1);
1721   if( (pIn1->flags & MEM_Null)==0 ){
1722     sqlite3VdbeMemRealify(pIn1);
1723   }
1724   break;
1725 }
1726 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1727 
1728 /* Opcode: Lt P1 P2 P3 P4 P5
1729 **
1730 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1731 ** jump to address P2.
1732 **
1733 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1734 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1735 ** bit is clear then fall through if either operand is NULL.
1736 **
1737 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1738 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1739 ** to coerce both inputs according to this affinity before the
1740 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1741 ** affinity is used. Note that the affinity conversions are stored
1742 ** back into the input registers P1 and P3.  So this opcode can cause
1743 ** persistent changes to registers P1 and P3.
1744 **
1745 ** Once any conversions have taken place, and neither value is NULL,
1746 ** the values are compared. If both values are blobs then memcmp() is
1747 ** used to determine the results of the comparison.  If both values
1748 ** are text, then the appropriate collating function specified in
1749 ** P4 is  used to do the comparison.  If P4 is not specified then
1750 ** memcmp() is used to compare text string.  If both values are
1751 ** numeric, then a numeric comparison is used. If the two values
1752 ** are of different types, then numbers are considered less than
1753 ** strings and strings are considered less than blobs.
1754 **
1755 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1756 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1757 **
1758 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1759 ** equal to one another, provided that they do not have their MEM_Cleared
1760 ** bit set.
1761 */
1762 /* Opcode: Ne P1 P2 P3 P4 P5
1763 **
1764 ** This works just like the Lt opcode except that the jump is taken if
1765 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1766 ** additional information.
1767 **
1768 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1769 ** true or false and is never NULL.  If both operands are NULL then the result
1770 ** of comparison is false.  If either operand is NULL then the result is true.
1771 ** If neither operand is NULL the result is the same as it would be if
1772 ** the SQLITE_NULLEQ flag were omitted from P5.
1773 */
1774 /* Opcode: Eq P1 P2 P3 P4 P5
1775 **
1776 ** This works just like the Lt opcode except that the jump is taken if
1777 ** the operands in registers P1 and P3 are equal.
1778 ** See the Lt opcode for additional information.
1779 **
1780 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1781 ** true or false and is never NULL.  If both operands are NULL then the result
1782 ** of comparison is true.  If either operand is NULL then the result is false.
1783 ** If neither operand is NULL the result is the same as it would be if
1784 ** the SQLITE_NULLEQ flag were omitted from P5.
1785 */
1786 /* Opcode: Le P1 P2 P3 P4 P5
1787 **
1788 ** This works just like the Lt opcode except that the jump is taken if
1789 ** the content of register P3 is less than or equal to the content of
1790 ** register P1.  See the Lt opcode for additional information.
1791 */
1792 /* Opcode: Gt P1 P2 P3 P4 P5
1793 **
1794 ** This works just like the Lt opcode except that the jump is taken if
1795 ** the content of register P3 is greater than the content of
1796 ** register P1.  See the Lt opcode for additional information.
1797 */
1798 /* Opcode: Ge P1 P2 P3 P4 P5
1799 **
1800 ** This works just like the Lt opcode except that the jump is taken if
1801 ** the content of register P3 is greater than or equal to the content of
1802 ** register P1.  See the Lt opcode for additional information.
1803 */
1804 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1805 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1806 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1807 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1808 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1809 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1810   int res;            /* Result of the comparison of pIn1 against pIn3 */
1811   char affinity;      /* Affinity to use for comparison */
1812   u16 flags1;         /* Copy of initial value of pIn1->flags */
1813   u16 flags3;         /* Copy of initial value of pIn3->flags */
1814 
1815   pIn1 = &aMem[pOp->p1];
1816   pIn3 = &aMem[pOp->p3];
1817   flags1 = pIn1->flags;
1818   flags3 = pIn3->flags;
1819   if( (flags1 | flags3)&MEM_Null ){
1820     /* One or both operands are NULL */
1821     if( pOp->p5 & SQLITE_NULLEQ ){
1822       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1823       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1824       ** or not both operands are null.
1825       */
1826       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1827       assert( (flags1 & MEM_Cleared)==0 );
1828       if( (flags1&MEM_Null)!=0
1829        && (flags3&MEM_Null)!=0
1830        && (flags3&MEM_Cleared)==0
1831       ){
1832         res = 0;  /* Results are equal */
1833       }else{
1834         res = 1;  /* Results are not equal */
1835       }
1836     }else{
1837       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1838       ** then the result is always NULL.
1839       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1840       */
1841       if( pOp->p5 & SQLITE_STOREP2 ){
1842         pOut = &aMem[pOp->p2];
1843         MemSetTypeFlag(pOut, MEM_Null);
1844         REGISTER_TRACE(pOp->p2, pOut);
1845       }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1846         pc = pOp->p2-1;
1847       }
1848       break;
1849     }
1850   }else{
1851     /* Neither operand is NULL.  Do a comparison. */
1852     affinity = pOp->p5 & SQLITE_AFF_MASK;
1853     if( affinity ){
1854       applyAffinity(pIn1, affinity, encoding);
1855       applyAffinity(pIn3, affinity, encoding);
1856       if( db->mallocFailed ) goto no_mem;
1857     }
1858 
1859     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1860     ExpandBlob(pIn1);
1861     ExpandBlob(pIn3);
1862     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1863   }
1864   switch( pOp->opcode ){
1865     case OP_Eq:    res = res==0;     break;
1866     case OP_Ne:    res = res!=0;     break;
1867     case OP_Lt:    res = res<0;      break;
1868     case OP_Le:    res = res<=0;     break;
1869     case OP_Gt:    res = res>0;      break;
1870     default:       res = res>=0;     break;
1871   }
1872 
1873   if( pOp->p5 & SQLITE_STOREP2 ){
1874     pOut = &aMem[pOp->p2];
1875     memAboutToChange(p, pOut);
1876     MemSetTypeFlag(pOut, MEM_Int);
1877     pOut->u.i = res;
1878     REGISTER_TRACE(pOp->p2, pOut);
1879   }else if( res ){
1880     pc = pOp->p2-1;
1881   }
1882 
1883   /* Undo any changes made by applyAffinity() to the input registers. */
1884   pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1885   pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1886   break;
1887 }
1888 
1889 /* Opcode: Permutation * * * P4 *
1890 **
1891 ** Set the permutation used by the OP_Compare operator to be the array
1892 ** of integers in P4.
1893 **
1894 ** The permutation is only valid until the next OP_Compare that has
1895 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1896 ** occur immediately prior to the OP_Compare.
1897 */
1898 case OP_Permutation: {
1899   assert( pOp->p4type==P4_INTARRAY );
1900   assert( pOp->p4.ai );
1901   aPermute = pOp->p4.ai;
1902   break;
1903 }
1904 
1905 /* Opcode: Compare P1 P2 P3 P4 P5
1906 **
1907 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1908 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
1909 ** the comparison for use by the next OP_Jump instruct.
1910 **
1911 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1912 ** determined by the most recent OP_Permutation operator.  If the
1913 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1914 ** order.
1915 **
1916 ** P4 is a KeyInfo structure that defines collating sequences and sort
1917 ** orders for the comparison.  The permutation applies to registers
1918 ** only.  The KeyInfo elements are used sequentially.
1919 **
1920 ** The comparison is a sort comparison, so NULLs compare equal,
1921 ** NULLs are less than numbers, numbers are less than strings,
1922 ** and strings are less than blobs.
1923 */
1924 case OP_Compare: {
1925   int n;
1926   int i;
1927   int p1;
1928   int p2;
1929   const KeyInfo *pKeyInfo;
1930   int idx;
1931   CollSeq *pColl;    /* Collating sequence to use on this term */
1932   int bRev;          /* True for DESCENDING sort order */
1933 
1934   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
1935   n = pOp->p3;
1936   pKeyInfo = pOp->p4.pKeyInfo;
1937   assert( n>0 );
1938   assert( pKeyInfo!=0 );
1939   p1 = pOp->p1;
1940   p2 = pOp->p2;
1941 #if SQLITE_DEBUG
1942   if( aPermute ){
1943     int k, mx = 0;
1944     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1945     assert( p1>0 && p1+mx<=p->nMem+1 );
1946     assert( p2>0 && p2+mx<=p->nMem+1 );
1947   }else{
1948     assert( p1>0 && p1+n<=p->nMem+1 );
1949     assert( p2>0 && p2+n<=p->nMem+1 );
1950   }
1951 #endif /* SQLITE_DEBUG */
1952   for(i=0; i<n; i++){
1953     idx = aPermute ? aPermute[i] : i;
1954     assert( memIsValid(&aMem[p1+idx]) );
1955     assert( memIsValid(&aMem[p2+idx]) );
1956     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1957     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1958     assert( i<pKeyInfo->nField );
1959     pColl = pKeyInfo->aColl[i];
1960     bRev = pKeyInfo->aSortOrder[i];
1961     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1962     if( iCompare ){
1963       if( bRev ) iCompare = -iCompare;
1964       break;
1965     }
1966   }
1967   aPermute = 0;
1968   break;
1969 }
1970 
1971 /* Opcode: Jump P1 P2 P3 * *
1972 **
1973 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1974 ** in the most recent OP_Compare instruction the P1 vector was less than
1975 ** equal to, or greater than the P2 vector, respectively.
1976 */
1977 case OP_Jump: {             /* jump */
1978   if( iCompare<0 ){
1979     pc = pOp->p1 - 1;
1980   }else if( iCompare==0 ){
1981     pc = pOp->p2 - 1;
1982   }else{
1983     pc = pOp->p3 - 1;
1984   }
1985   break;
1986 }
1987 
1988 /* Opcode: And P1 P2 P3 * *
1989 **
1990 ** Take the logical AND of the values in registers P1 and P2 and
1991 ** write the result into register P3.
1992 **
1993 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1994 ** the other input is NULL.  A NULL and true or two NULLs give
1995 ** a NULL output.
1996 */
1997 /* Opcode: Or P1 P2 P3 * *
1998 **
1999 ** Take the logical OR of the values in register P1 and P2 and
2000 ** store the answer in register P3.
2001 **
2002 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2003 ** even if the other input is NULL.  A NULL and false or two NULLs
2004 ** give a NULL output.
2005 */
2006 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2007 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2008   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2009   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2010 
2011   pIn1 = &aMem[pOp->p1];
2012   if( pIn1->flags & MEM_Null ){
2013     v1 = 2;
2014   }else{
2015     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2016   }
2017   pIn2 = &aMem[pOp->p2];
2018   if( pIn2->flags & MEM_Null ){
2019     v2 = 2;
2020   }else{
2021     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2022   }
2023   if( pOp->opcode==OP_And ){
2024     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2025     v1 = and_logic[v1*3+v2];
2026   }else{
2027     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2028     v1 = or_logic[v1*3+v2];
2029   }
2030   pOut = &aMem[pOp->p3];
2031   if( v1==2 ){
2032     MemSetTypeFlag(pOut, MEM_Null);
2033   }else{
2034     pOut->u.i = v1;
2035     MemSetTypeFlag(pOut, MEM_Int);
2036   }
2037   break;
2038 }
2039 
2040 /* Opcode: Not P1 P2 * * *
2041 **
2042 ** Interpret the value in register P1 as a boolean value.  Store the
2043 ** boolean complement in register P2.  If the value in register P1 is
2044 ** NULL, then a NULL is stored in P2.
2045 */
2046 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2047   pIn1 = &aMem[pOp->p1];
2048   pOut = &aMem[pOp->p2];
2049   if( pIn1->flags & MEM_Null ){
2050     sqlite3VdbeMemSetNull(pOut);
2051   }else{
2052     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2053   }
2054   break;
2055 }
2056 
2057 /* Opcode: BitNot P1 P2 * * *
2058 **
2059 ** Interpret the content of register P1 as an integer.  Store the
2060 ** ones-complement of the P1 value into register P2.  If P1 holds
2061 ** a NULL then store a NULL in P2.
2062 */
2063 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2064   pIn1 = &aMem[pOp->p1];
2065   pOut = &aMem[pOp->p2];
2066   if( pIn1->flags & MEM_Null ){
2067     sqlite3VdbeMemSetNull(pOut);
2068   }else{
2069     sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2070   }
2071   break;
2072 }
2073 
2074 /* Opcode: Once P1 P2 * * *
2075 **
2076 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2077 ** set the flag and fall through to the next instruction.
2078 */
2079 case OP_Once: {             /* jump */
2080   assert( pOp->p1<p->nOnceFlag );
2081   if( p->aOnceFlag[pOp->p1] ){
2082     pc = pOp->p2-1;
2083   }else{
2084     p->aOnceFlag[pOp->p1] = 1;
2085   }
2086   break;
2087 }
2088 
2089 /* Opcode: If P1 P2 P3 * *
2090 **
2091 ** Jump to P2 if the value in register P1 is true.  The value
2092 ** is considered true if it is numeric and non-zero.  If the value
2093 ** in P1 is NULL then take the jump if P3 is non-zero.
2094 */
2095 /* Opcode: IfNot P1 P2 P3 * *
2096 **
2097 ** Jump to P2 if the value in register P1 is False.  The value
2098 ** is considered false if it has a numeric value of zero.  If the value
2099 ** in P1 is NULL then take the jump if P3 is zero.
2100 */
2101 case OP_If:                 /* jump, in1 */
2102 case OP_IfNot: {            /* jump, in1 */
2103   int c;
2104   pIn1 = &aMem[pOp->p1];
2105   if( pIn1->flags & MEM_Null ){
2106     c = pOp->p3;
2107   }else{
2108 #ifdef SQLITE_OMIT_FLOATING_POINT
2109     c = sqlite3VdbeIntValue(pIn1)!=0;
2110 #else
2111     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2112 #endif
2113     if( pOp->opcode==OP_IfNot ) c = !c;
2114   }
2115   if( c ){
2116     pc = pOp->p2-1;
2117   }
2118   break;
2119 }
2120 
2121 /* Opcode: IsNull P1 P2 * * *
2122 **
2123 ** Jump to P2 if the value in register P1 is NULL.
2124 */
2125 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2126   pIn1 = &aMem[pOp->p1];
2127   if( (pIn1->flags & MEM_Null)!=0 ){
2128     pc = pOp->p2 - 1;
2129   }
2130   break;
2131 }
2132 
2133 /* Opcode: NotNull P1 P2 * * *
2134 **
2135 ** Jump to P2 if the value in register P1 is not NULL.
2136 */
2137 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2138   pIn1 = &aMem[pOp->p1];
2139   if( (pIn1->flags & MEM_Null)==0 ){
2140     pc = pOp->p2 - 1;
2141   }
2142   break;
2143 }
2144 
2145 /* Opcode: Column P1 P2 P3 P4 P5
2146 **
2147 ** Interpret the data that cursor P1 points to as a structure built using
2148 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2149 ** information about the format of the data.)  Extract the P2-th column
2150 ** from this record.  If there are less that (P2+1)
2151 ** values in the record, extract a NULL.
2152 **
2153 ** The value extracted is stored in register P3.
2154 **
2155 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2156 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2157 ** the result.
2158 **
2159 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2160 ** then the cache of the cursor is reset prior to extracting the column.
2161 ** The first OP_Column against a pseudo-table after the value of the content
2162 ** register has changed should have this bit set.
2163 **
2164 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2165 ** the result is guaranteed to only be used as the argument of a length()
2166 ** or typeof() function, respectively.  The loading of large blobs can be
2167 ** skipped for length() and all content loading can be skipped for typeof().
2168 */
2169 case OP_Column: {
2170   u32 payloadSize;   /* Number of bytes in the record */
2171   i64 payloadSize64; /* Number of bytes in the record */
2172   int p1;            /* P1 value of the opcode */
2173   int p2;            /* column number to retrieve */
2174   VdbeCursor *pC;    /* The VDBE cursor */
2175   char *zRec;        /* Pointer to complete record-data */
2176   BtCursor *pCrsr;   /* The BTree cursor */
2177   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
2178   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2179   int nField;        /* number of fields in the record */
2180   int len;           /* The length of the serialized data for the column */
2181   int i;             /* Loop counter */
2182   char *zData;       /* Part of the record being decoded */
2183   Mem *pDest;        /* Where to write the extracted value */
2184   Mem sMem;          /* For storing the record being decoded */
2185   u8 *zIdx;          /* Index into header */
2186   u8 *zEndHdr;       /* Pointer to first byte after the header */
2187   u32 offset;        /* Offset into the data */
2188   u32 szField;       /* Number of bytes in the content of a field */
2189   int szHdr;         /* Size of the header size field at start of record */
2190   int avail;         /* Number of bytes of available data */
2191   u32 t;             /* A type code from the record header */
2192   Mem *pReg;         /* PseudoTable input register */
2193 
2194 
2195   p1 = pOp->p1;
2196   p2 = pOp->p2;
2197   pC = 0;
2198   memset(&sMem, 0, sizeof(sMem));
2199   assert( p1<p->nCursor );
2200   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2201   pDest = &aMem[pOp->p3];
2202   memAboutToChange(p, pDest);
2203   zRec = 0;
2204 
2205   /* This block sets the variable payloadSize to be the total number of
2206   ** bytes in the record.
2207   **
2208   ** zRec is set to be the complete text of the record if it is available.
2209   ** The complete record text is always available for pseudo-tables
2210   ** If the record is stored in a cursor, the complete record text
2211   ** might be available in the  pC->aRow cache.  Or it might not be.
2212   ** If the data is unavailable,  zRec is set to NULL.
2213   **
2214   ** We also compute the number of columns in the record.  For cursors,
2215   ** the number of columns is stored in the VdbeCursor.nField element.
2216   */
2217   pC = p->apCsr[p1];
2218   assert( pC!=0 );
2219 #ifndef SQLITE_OMIT_VIRTUALTABLE
2220   assert( pC->pVtabCursor==0 );
2221 #endif
2222   pCrsr = pC->pCursor;
2223   if( pCrsr!=0 ){
2224     /* The record is stored in a B-Tree */
2225     rc = sqlite3VdbeCursorMoveto(pC);
2226     if( rc ) goto abort_due_to_error;
2227     if( pC->nullRow ){
2228       payloadSize = 0;
2229     }else if( pC->cacheStatus==p->cacheCtr ){
2230       payloadSize = pC->payloadSize;
2231       zRec = (char*)pC->aRow;
2232     }else if( pC->isIndex ){
2233       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2234       VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2235       assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
2236       /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2237       ** payload size, so it is impossible for payloadSize64 to be
2238       ** larger than 32 bits. */
2239       assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2240       payloadSize = (u32)payloadSize64;
2241     }else{
2242       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2243       VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
2244       assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2245     }
2246   }else if( ALWAYS(pC->pseudoTableReg>0) ){
2247     pReg = &aMem[pC->pseudoTableReg];
2248     if( pC->multiPseudo ){
2249       sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2250       Deephemeralize(pDest);
2251       goto op_column_out;
2252     }
2253     assert( pReg->flags & MEM_Blob );
2254     assert( memIsValid(pReg) );
2255     payloadSize = pReg->n;
2256     zRec = pReg->z;
2257     pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2258     assert( payloadSize==0 || zRec!=0 );
2259   }else{
2260     /* Consider the row to be NULL */
2261     payloadSize = 0;
2262   }
2263 
2264   /* If payloadSize is 0, then just store a NULL.  This can happen because of
2265   ** nullRow or because of a corrupt database. */
2266   if( payloadSize==0 ){
2267     MemSetTypeFlag(pDest, MEM_Null);
2268     goto op_column_out;
2269   }
2270   assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2271   if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2272     goto too_big;
2273   }
2274 
2275   nField = pC->nField;
2276   assert( p2<nField );
2277 
2278   /* Read and parse the table header.  Store the results of the parse
2279   ** into the record header cache fields of the cursor.
2280   */
2281   aType = pC->aType;
2282   if( pC->cacheStatus==p->cacheCtr ){
2283     aOffset = pC->aOffset;
2284   }else{
2285     assert(aType);
2286     avail = 0;
2287     pC->aOffset = aOffset = &aType[nField];
2288     pC->payloadSize = payloadSize;
2289     pC->cacheStatus = p->cacheCtr;
2290 
2291     /* Figure out how many bytes are in the header */
2292     if( zRec ){
2293       zData = zRec;
2294     }else{
2295       if( pC->isIndex ){
2296         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2297       }else{
2298         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2299       }
2300       /* If KeyFetch()/DataFetch() managed to get the entire payload,
2301       ** save the payload in the pC->aRow cache.  That will save us from
2302       ** having to make additional calls to fetch the content portion of
2303       ** the record.
2304       */
2305       assert( avail>=0 );
2306       if( payloadSize <= (u32)avail ){
2307         zRec = zData;
2308         pC->aRow = (u8*)zData;
2309       }else{
2310         pC->aRow = 0;
2311       }
2312     }
2313     /* The following assert is true in all cases except when
2314     ** the database file has been corrupted externally.
2315     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2316     szHdr = getVarint32((u8*)zData, offset);
2317 
2318     /* Make sure a corrupt database has not given us an oversize header.
2319     ** Do this now to avoid an oversize memory allocation.
2320     **
2321     ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2322     ** types use so much data space that there can only be 4096 and 32 of
2323     ** them, respectively.  So the maximum header length results from a
2324     ** 3-byte type for each of the maximum of 32768 columns plus three
2325     ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2326     */
2327     if( offset > 98307 ){
2328       rc = SQLITE_CORRUPT_BKPT;
2329       goto op_column_out;
2330     }
2331 
2332     /* Compute in len the number of bytes of data we need to read in order
2333     ** to get nField type values.  offset is an upper bound on this.  But
2334     ** nField might be significantly less than the true number of columns
2335     ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2336     ** We want to minimize len in order to limit the size of the memory
2337     ** allocation, especially if a corrupt database file has caused offset
2338     ** to be oversized. Offset is limited to 98307 above.  But 98307 might
2339     ** still exceed Robson memory allocation limits on some configurations.
2340     ** On systems that cannot tolerate large memory allocations, nField*5+3
2341     ** will likely be much smaller since nField will likely be less than
2342     ** 20 or so.  This insures that Robson memory allocation limits are
2343     ** not exceeded even for corrupt database files.
2344     */
2345     len = nField*5 + 3;
2346     if( len > (int)offset ) len = (int)offset;
2347 
2348     /* The KeyFetch() or DataFetch() above are fast and will get the entire
2349     ** record header in most cases.  But they will fail to get the complete
2350     ** record header if the record header does not fit on a single page
2351     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
2352     ** acquire the complete header text.
2353     */
2354     if( !zRec && avail<len ){
2355       sMem.flags = 0;
2356       sMem.db = 0;
2357       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2358       if( rc!=SQLITE_OK ){
2359         goto op_column_out;
2360       }
2361       zData = sMem.z;
2362     }
2363     zEndHdr = (u8 *)&zData[len];
2364     zIdx = (u8 *)&zData[szHdr];
2365 
2366     /* Scan the header and use it to fill in the aType[] and aOffset[]
2367     ** arrays.  aType[i] will contain the type integer for the i-th
2368     ** column and aOffset[i] will contain the offset from the beginning
2369     ** of the record to the start of the data for the i-th column
2370     */
2371     for(i=0; i<nField; i++){
2372       if( zIdx<zEndHdr ){
2373         aOffset[i] = offset;
2374         if( zIdx[0]<0x80 ){
2375           t = zIdx[0];
2376           zIdx++;
2377         }else{
2378           zIdx += sqlite3GetVarint32(zIdx, &t);
2379         }
2380         aType[i] = t;
2381         szField = sqlite3VdbeSerialTypeLen(t);
2382         offset += szField;
2383         if( offset<szField ){  /* True if offset overflows */
2384           zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
2385           break;
2386         }
2387       }else{
2388         /* If i is less that nField, then there are fewer fields in this
2389         ** record than SetNumColumns indicated there are columns in the
2390         ** table. Set the offset for any extra columns not present in
2391         ** the record to 0. This tells code below to store the default value
2392         ** for the column instead of deserializing a value from the record.
2393         */
2394         aOffset[i] = 0;
2395       }
2396     }
2397     sqlite3VdbeMemRelease(&sMem);
2398     sMem.flags = MEM_Null;
2399 
2400     /* If we have read more header data than was contained in the header,
2401     ** or if the end of the last field appears to be past the end of the
2402     ** record, or if the end of the last field appears to be before the end
2403     ** of the record (when all fields present), then we must be dealing
2404     ** with a corrupt database.
2405     */
2406     if( (zIdx > zEndHdr) || (offset > payloadSize)
2407          || (zIdx==zEndHdr && offset!=payloadSize) ){
2408       rc = SQLITE_CORRUPT_BKPT;
2409       goto op_column_out;
2410     }
2411   }
2412 
2413   /* Get the column information. If aOffset[p2] is non-zero, then
2414   ** deserialize the value from the record. If aOffset[p2] is zero,
2415   ** then there are not enough fields in the record to satisfy the
2416   ** request.  In this case, set the value NULL or to P4 if P4 is
2417   ** a pointer to a Mem object.
2418   */
2419   if( aOffset[p2] ){
2420     assert( rc==SQLITE_OK );
2421     if( zRec ){
2422       /* This is the common case where the whole row fits on a single page */
2423       VdbeMemRelease(pDest);
2424       sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2425     }else{
2426       /* This branch happens only when the row overflows onto multiple pages */
2427       t = aType[p2];
2428       if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2429        && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
2430       ){
2431         /* Content is irrelevant for the typeof() function and for
2432         ** the length(X) function if X is a blob.  So we might as well use
2433         ** bogus content rather than reading content from disk.  NULL works
2434         ** for text and blob and whatever is in the payloadSize64 variable
2435         ** will work for everything else. */
2436         zData = t<12 ? (char*)&payloadSize64 : 0;
2437       }else{
2438         len = sqlite3VdbeSerialTypeLen(t);
2439         sqlite3VdbeMemMove(&sMem, pDest);
2440         rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len,  pC->isIndex,
2441                                      &sMem);
2442         if( rc!=SQLITE_OK ){
2443           goto op_column_out;
2444         }
2445         zData = sMem.z;
2446       }
2447       sqlite3VdbeSerialGet((u8*)zData, t, pDest);
2448     }
2449     pDest->enc = encoding;
2450   }else{
2451     if( pOp->p4type==P4_MEM ){
2452       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2453     }else{
2454       MemSetTypeFlag(pDest, MEM_Null);
2455     }
2456   }
2457 
2458   /* If we dynamically allocated space to hold the data (in the
2459   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2460   ** dynamically allocated space over to the pDest structure.
2461   ** This prevents a memory copy.
2462   */
2463   if( sMem.zMalloc ){
2464     assert( sMem.z==sMem.zMalloc );
2465     assert( !(pDest->flags & MEM_Dyn) );
2466     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2467     pDest->flags &= ~(MEM_Ephem|MEM_Static);
2468     pDest->flags |= MEM_Term;
2469     pDest->z = sMem.z;
2470     pDest->zMalloc = sMem.zMalloc;
2471   }
2472 
2473   rc = sqlite3VdbeMemMakeWriteable(pDest);
2474 
2475 op_column_out:
2476   UPDATE_MAX_BLOBSIZE(pDest);
2477   REGISTER_TRACE(pOp->p3, pDest);
2478   break;
2479 }
2480 
2481 /* Opcode: Affinity P1 P2 * P4 *
2482 **
2483 ** Apply affinities to a range of P2 registers starting with P1.
2484 **
2485 ** P4 is a string that is P2 characters long. The nth character of the
2486 ** string indicates the column affinity that should be used for the nth
2487 ** memory cell in the range.
2488 */
2489 case OP_Affinity: {
2490   const char *zAffinity;   /* The affinity to be applied */
2491   char cAff;               /* A single character of affinity */
2492 
2493   zAffinity = pOp->p4.z;
2494   assert( zAffinity!=0 );
2495   assert( zAffinity[pOp->p2]==0 );
2496   pIn1 = &aMem[pOp->p1];
2497   while( (cAff = *(zAffinity++))!=0 ){
2498     assert( pIn1 <= &p->aMem[p->nMem] );
2499     assert( memIsValid(pIn1) );
2500     ExpandBlob(pIn1);
2501     applyAffinity(pIn1, cAff, encoding);
2502     pIn1++;
2503   }
2504   break;
2505 }
2506 
2507 /* Opcode: MakeRecord P1 P2 P3 P4 *
2508 **
2509 ** Convert P2 registers beginning with P1 into the [record format]
2510 ** use as a data record in a database table or as a key
2511 ** in an index.  The OP_Column opcode can decode the record later.
2512 **
2513 ** P4 may be a string that is P2 characters long.  The nth character of the
2514 ** string indicates the column affinity that should be used for the nth
2515 ** field of the index key.
2516 **
2517 ** The mapping from character to affinity is given by the SQLITE_AFF_
2518 ** macros defined in sqliteInt.h.
2519 **
2520 ** If P4 is NULL then all index fields have the affinity NONE.
2521 */
2522 case OP_MakeRecord: {
2523   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2524   Mem *pRec;             /* The new record */
2525   u64 nData;             /* Number of bytes of data space */
2526   int nHdr;              /* Number of bytes of header space */
2527   i64 nByte;             /* Data space required for this record */
2528   int nZero;             /* Number of zero bytes at the end of the record */
2529   int nVarint;           /* Number of bytes in a varint */
2530   u32 serial_type;       /* Type field */
2531   Mem *pData0;           /* First field to be combined into the record */
2532   Mem *pLast;            /* Last field of the record */
2533   int nField;            /* Number of fields in the record */
2534   char *zAffinity;       /* The affinity string for the record */
2535   int file_format;       /* File format to use for encoding */
2536   int i;                 /* Space used in zNewRecord[] */
2537   int len;               /* Length of a field */
2538 
2539   /* Assuming the record contains N fields, the record format looks
2540   ** like this:
2541   **
2542   ** ------------------------------------------------------------------------
2543   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2544   ** ------------------------------------------------------------------------
2545   **
2546   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2547   ** and so froth.
2548   **
2549   ** Each type field is a varint representing the serial type of the
2550   ** corresponding data element (see sqlite3VdbeSerialType()). The
2551   ** hdr-size field is also a varint which is the offset from the beginning
2552   ** of the record to data0.
2553   */
2554   nData = 0;         /* Number of bytes of data space */
2555   nHdr = 0;          /* Number of bytes of header space */
2556   nZero = 0;         /* Number of zero bytes at the end of the record */
2557   nField = pOp->p1;
2558   zAffinity = pOp->p4.z;
2559   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2560   pData0 = &aMem[nField];
2561   nField = pOp->p2;
2562   pLast = &pData0[nField-1];
2563   file_format = p->minWriteFileFormat;
2564 
2565   /* Identify the output register */
2566   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2567   pOut = &aMem[pOp->p3];
2568   memAboutToChange(p, pOut);
2569 
2570   /* Loop through the elements that will make up the record to figure
2571   ** out how much space is required for the new record.
2572   */
2573   for(pRec=pData0; pRec<=pLast; pRec++){
2574     assert( memIsValid(pRec) );
2575     if( zAffinity ){
2576       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2577     }
2578     if( pRec->flags&MEM_Zero && pRec->n>0 ){
2579       sqlite3VdbeMemExpandBlob(pRec);
2580     }
2581     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2582     len = sqlite3VdbeSerialTypeLen(serial_type);
2583     nData += len;
2584     nHdr += sqlite3VarintLen(serial_type);
2585     if( pRec->flags & MEM_Zero ){
2586       /* Only pure zero-filled BLOBs can be input to this Opcode.
2587       ** We do not allow blobs with a prefix and a zero-filled tail. */
2588       nZero += pRec->u.nZero;
2589     }else if( len ){
2590       nZero = 0;
2591     }
2592   }
2593 
2594   /* Add the initial header varint and total the size */
2595   nHdr += nVarint = sqlite3VarintLen(nHdr);
2596   if( nVarint<sqlite3VarintLen(nHdr) ){
2597     nHdr++;
2598   }
2599   nByte = nHdr+nData-nZero;
2600   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2601     goto too_big;
2602   }
2603 
2604   /* Make sure the output register has a buffer large enough to store
2605   ** the new record. The output register (pOp->p3) is not allowed to
2606   ** be one of the input registers (because the following call to
2607   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2608   */
2609   if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2610     goto no_mem;
2611   }
2612   zNewRecord = (u8 *)pOut->z;
2613 
2614   /* Write the record */
2615   i = putVarint32(zNewRecord, nHdr);
2616   for(pRec=pData0; pRec<=pLast; pRec++){
2617     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2618     i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
2619   }
2620   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
2621     i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2622   }
2623   assert( i==nByte );
2624 
2625   assert( pOp->p3>0 && pOp->p3<=p->nMem );
2626   pOut->n = (int)nByte;
2627   pOut->flags = MEM_Blob | MEM_Dyn;
2628   pOut->xDel = 0;
2629   if( nZero ){
2630     pOut->u.nZero = nZero;
2631     pOut->flags |= MEM_Zero;
2632   }
2633   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2634   REGISTER_TRACE(pOp->p3, pOut);
2635   UPDATE_MAX_BLOBSIZE(pOut);
2636   break;
2637 }
2638 
2639 /* Opcode: Count P1 P2 * * *
2640 **
2641 ** Store the number of entries (an integer value) in the table or index
2642 ** opened by cursor P1 in register P2
2643 */
2644 #ifndef SQLITE_OMIT_BTREECOUNT
2645 case OP_Count: {         /* out2-prerelease */
2646   i64 nEntry;
2647   BtCursor *pCrsr;
2648 
2649   pCrsr = p->apCsr[pOp->p1]->pCursor;
2650   if( ALWAYS(pCrsr) ){
2651     rc = sqlite3BtreeCount(pCrsr, &nEntry);
2652   }else{
2653     nEntry = 0;
2654   }
2655   pOut->u.i = nEntry;
2656   break;
2657 }
2658 #endif
2659 
2660 /* Opcode: Savepoint P1 * * P4 *
2661 **
2662 ** Open, release or rollback the savepoint named by parameter P4, depending
2663 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2664 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2665 */
2666 case OP_Savepoint: {
2667   int p1;                         /* Value of P1 operand */
2668   char *zName;                    /* Name of savepoint */
2669   int nName;
2670   Savepoint *pNew;
2671   Savepoint *pSavepoint;
2672   Savepoint *pTmp;
2673   int iSavepoint;
2674   int ii;
2675 
2676   p1 = pOp->p1;
2677   zName = pOp->p4.z;
2678 
2679   /* Assert that the p1 parameter is valid. Also that if there is no open
2680   ** transaction, then there cannot be any savepoints.
2681   */
2682   assert( db->pSavepoint==0 || db->autoCommit==0 );
2683   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2684   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2685   assert( checkSavepointCount(db) );
2686 
2687   if( p1==SAVEPOINT_BEGIN ){
2688     if( db->writeVdbeCnt>0 ){
2689       /* A new savepoint cannot be created if there are active write
2690       ** statements (i.e. open read/write incremental blob handles).
2691       */
2692       sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2693         "SQL statements in progress");
2694       rc = SQLITE_BUSY;
2695     }else{
2696       nName = sqlite3Strlen30(zName);
2697 
2698 #ifndef SQLITE_OMIT_VIRTUALTABLE
2699       /* This call is Ok even if this savepoint is actually a transaction
2700       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2701       ** If this is a transaction savepoint being opened, it is guaranteed
2702       ** that the db->aVTrans[] array is empty.  */
2703       assert( db->autoCommit==0 || db->nVTrans==0 );
2704       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2705                                 db->nStatement+db->nSavepoint);
2706       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2707 #endif
2708 
2709       /* Create a new savepoint structure. */
2710       pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2711       if( pNew ){
2712         pNew->zName = (char *)&pNew[1];
2713         memcpy(pNew->zName, zName, nName+1);
2714 
2715         /* If there is no open transaction, then mark this as a special
2716         ** "transaction savepoint". */
2717         if( db->autoCommit ){
2718           db->autoCommit = 0;
2719           db->isTransactionSavepoint = 1;
2720         }else{
2721           db->nSavepoint++;
2722         }
2723 
2724         /* Link the new savepoint into the database handle's list. */
2725         pNew->pNext = db->pSavepoint;
2726         db->pSavepoint = pNew;
2727         pNew->nDeferredCons = db->nDeferredCons;
2728       }
2729     }
2730   }else{
2731     iSavepoint = 0;
2732 
2733     /* Find the named savepoint. If there is no such savepoint, then an
2734     ** an error is returned to the user.  */
2735     for(
2736       pSavepoint = db->pSavepoint;
2737       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2738       pSavepoint = pSavepoint->pNext
2739     ){
2740       iSavepoint++;
2741     }
2742     if( !pSavepoint ){
2743       sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2744       rc = SQLITE_ERROR;
2745     }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
2746       /* It is not possible to release (commit) a savepoint if there are
2747       ** active write statements.
2748       */
2749       sqlite3SetString(&p->zErrMsg, db,
2750         "cannot release savepoint - SQL statements in progress"
2751       );
2752       rc = SQLITE_BUSY;
2753     }else{
2754 
2755       /* Determine whether or not this is a transaction savepoint. If so,
2756       ** and this is a RELEASE command, then the current transaction
2757       ** is committed.
2758       */
2759       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2760       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2761         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2762           goto vdbe_return;
2763         }
2764         db->autoCommit = 1;
2765         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2766           p->pc = pc;
2767           db->autoCommit = 0;
2768           p->rc = rc = SQLITE_BUSY;
2769           goto vdbe_return;
2770         }
2771         db->isTransactionSavepoint = 0;
2772         rc = p->rc;
2773       }else{
2774         iSavepoint = db->nSavepoint - iSavepoint - 1;
2775         if( p1==SAVEPOINT_ROLLBACK ){
2776           for(ii=0; ii<db->nDb; ii++){
2777             sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2778           }
2779         }
2780         for(ii=0; ii<db->nDb; ii++){
2781           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2782           if( rc!=SQLITE_OK ){
2783             goto abort_due_to_error;
2784           }
2785         }
2786         if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2787           sqlite3ExpirePreparedStatements(db);
2788           sqlite3ResetAllSchemasOfConnection(db);
2789           db->flags = (db->flags | SQLITE_InternChanges);
2790         }
2791       }
2792 
2793       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2794       ** savepoints nested inside of the savepoint being operated on. */
2795       while( db->pSavepoint!=pSavepoint ){
2796         pTmp = db->pSavepoint;
2797         db->pSavepoint = pTmp->pNext;
2798         sqlite3DbFree(db, pTmp);
2799         db->nSavepoint--;
2800       }
2801 
2802       /* If it is a RELEASE, then destroy the savepoint being operated on
2803       ** too. If it is a ROLLBACK TO, then set the number of deferred
2804       ** constraint violations present in the database to the value stored
2805       ** when the savepoint was created.  */
2806       if( p1==SAVEPOINT_RELEASE ){
2807         assert( pSavepoint==db->pSavepoint );
2808         db->pSavepoint = pSavepoint->pNext;
2809         sqlite3DbFree(db, pSavepoint);
2810         if( !isTransaction ){
2811           db->nSavepoint--;
2812         }
2813       }else{
2814         db->nDeferredCons = pSavepoint->nDeferredCons;
2815       }
2816 
2817       if( !isTransaction ){
2818         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2819         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2820       }
2821     }
2822   }
2823 
2824   break;
2825 }
2826 
2827 /* Opcode: AutoCommit P1 P2 * * *
2828 **
2829 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2830 ** back any currently active btree transactions. If there are any active
2831 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
2832 ** there are active writing VMs or active VMs that use shared cache.
2833 **
2834 ** This instruction causes the VM to halt.
2835 */
2836 case OP_AutoCommit: {
2837   int desiredAutoCommit;
2838   int iRollback;
2839   int turnOnAC;
2840 
2841   desiredAutoCommit = pOp->p1;
2842   iRollback = pOp->p2;
2843   turnOnAC = desiredAutoCommit && !db->autoCommit;
2844   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2845   assert( desiredAutoCommit==1 || iRollback==0 );
2846   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2847 
2848 #if 0
2849   if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2850     /* If this instruction implements a ROLLBACK and other VMs are
2851     ** still running, and a transaction is active, return an error indicating
2852     ** that the other VMs must complete first.
2853     */
2854     sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2855         "SQL statements in progress");
2856     rc = SQLITE_BUSY;
2857   }else
2858 #endif
2859   if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2860     /* If this instruction implements a COMMIT and other VMs are writing
2861     ** return an error indicating that the other VMs must complete first.
2862     */
2863     sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2864         "SQL statements in progress");
2865     rc = SQLITE_BUSY;
2866   }else if( desiredAutoCommit!=db->autoCommit ){
2867     if( iRollback ){
2868       assert( desiredAutoCommit==1 );
2869       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2870       db->autoCommit = 1;
2871     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2872       goto vdbe_return;
2873     }else{
2874       db->autoCommit = (u8)desiredAutoCommit;
2875       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2876         p->pc = pc;
2877         db->autoCommit = (u8)(1-desiredAutoCommit);
2878         p->rc = rc = SQLITE_BUSY;
2879         goto vdbe_return;
2880       }
2881     }
2882     assert( db->nStatement==0 );
2883     sqlite3CloseSavepoints(db);
2884     if( p->rc==SQLITE_OK ){
2885       rc = SQLITE_DONE;
2886     }else{
2887       rc = SQLITE_ERROR;
2888     }
2889     goto vdbe_return;
2890   }else{
2891     sqlite3SetString(&p->zErrMsg, db,
2892         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2893         (iRollback)?"cannot rollback - no transaction is active":
2894                    "cannot commit - no transaction is active"));
2895 
2896     rc = SQLITE_ERROR;
2897   }
2898   break;
2899 }
2900 
2901 /* Opcode: Transaction P1 P2 * * *
2902 **
2903 ** Begin a transaction.  The transaction ends when a Commit or Rollback
2904 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
2905 ** transaction might also be rolled back if an error is encountered.
2906 **
2907 ** P1 is the index of the database file on which the transaction is
2908 ** started.  Index 0 is the main database file and index 1 is the
2909 ** file used for temporary tables.  Indices of 2 or more are used for
2910 ** attached databases.
2911 **
2912 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
2913 ** obtained on the database file when a write-transaction is started.  No
2914 ** other process can start another write transaction while this transaction is
2915 ** underway.  Starting a write transaction also creates a rollback journal. A
2916 ** write transaction must be started before any changes can be made to the
2917 ** database.  If P2 is greater than or equal to 2 then an EXCLUSIVE lock is
2918 ** also obtained on the file.
2919 **
2920 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2921 ** true (this flag is set if the Vdbe may modify more than one row and may
2922 ** throw an ABORT exception), a statement transaction may also be opened.
2923 ** More specifically, a statement transaction is opened iff the database
2924 ** connection is currently not in autocommit mode, or if there are other
2925 ** active statements. A statement transaction allows the changes made by this
2926 ** VDBE to be rolled back after an error without having to roll back the
2927 ** entire transaction. If no error is encountered, the statement transaction
2928 ** will automatically commit when the VDBE halts.
2929 **
2930 ** If P2 is zero, then a read-lock is obtained on the database file.
2931 */
2932 case OP_Transaction: {
2933   Btree *pBt;
2934 
2935   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2936   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2937   pBt = db->aDb[pOp->p1].pBt;
2938 
2939   if( pBt ){
2940     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2941     if( rc==SQLITE_BUSY ){
2942       p->pc = pc;
2943       p->rc = rc = SQLITE_BUSY;
2944       goto vdbe_return;
2945     }
2946     if( rc!=SQLITE_OK ){
2947       goto abort_due_to_error;
2948     }
2949 
2950     if( pOp->p2 && p->usesStmtJournal
2951      && (db->autoCommit==0 || db->activeVdbeCnt>1)
2952     ){
2953       assert( sqlite3BtreeIsInTrans(pBt) );
2954       if( p->iStatement==0 ){
2955         assert( db->nStatement>=0 && db->nSavepoint>=0 );
2956         db->nStatement++;
2957         p->iStatement = db->nSavepoint + db->nStatement;
2958       }
2959 
2960       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
2961       if( rc==SQLITE_OK ){
2962         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2963       }
2964 
2965       /* Store the current value of the database handles deferred constraint
2966       ** counter. If the statement transaction needs to be rolled back,
2967       ** the value of this counter needs to be restored too.  */
2968       p->nStmtDefCons = db->nDeferredCons;
2969     }
2970   }
2971   break;
2972 }
2973 
2974 /* Opcode: ReadCookie P1 P2 P3 * *
2975 **
2976 ** Read cookie number P3 from database P1 and write it into register P2.
2977 ** P3==1 is the schema version.  P3==2 is the database format.
2978 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
2979 ** the main database file and P1==1 is the database file used to store
2980 ** temporary tables.
2981 **
2982 ** There must be a read-lock on the database (either a transaction
2983 ** must be started or there must be an open cursor) before
2984 ** executing this instruction.
2985 */
2986 case OP_ReadCookie: {               /* out2-prerelease */
2987   int iMeta;
2988   int iDb;
2989   int iCookie;
2990 
2991   iDb = pOp->p1;
2992   iCookie = pOp->p3;
2993   assert( pOp->p3<SQLITE_N_BTREE_META );
2994   assert( iDb>=0 && iDb<db->nDb );
2995   assert( db->aDb[iDb].pBt!=0 );
2996   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
2997 
2998   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2999   pOut->u.i = iMeta;
3000   break;
3001 }
3002 
3003 /* Opcode: SetCookie P1 P2 P3 * *
3004 **
3005 ** Write the content of register P3 (interpreted as an integer)
3006 ** into cookie number P2 of database P1.  P2==1 is the schema version.
3007 ** P2==2 is the database format. P2==3 is the recommended pager cache
3008 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3009 ** database file used to store temporary tables.
3010 **
3011 ** A transaction must be started before executing this opcode.
3012 */
3013 case OP_SetCookie: {       /* in3 */
3014   Db *pDb;
3015   assert( pOp->p2<SQLITE_N_BTREE_META );
3016   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3017   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3018   pDb = &db->aDb[pOp->p1];
3019   assert( pDb->pBt!=0 );
3020   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3021   pIn3 = &aMem[pOp->p3];
3022   sqlite3VdbeMemIntegerify(pIn3);
3023   /* See note about index shifting on OP_ReadCookie */
3024   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3025   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3026     /* When the schema cookie changes, record the new cookie internally */
3027     pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3028     db->flags |= SQLITE_InternChanges;
3029   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3030     /* Record changes in the file format */
3031     pDb->pSchema->file_format = (u8)pIn3->u.i;
3032   }
3033   if( pOp->p1==1 ){
3034     /* Invalidate all prepared statements whenever the TEMP database
3035     ** schema is changed.  Ticket #1644 */
3036     sqlite3ExpirePreparedStatements(db);
3037     p->expired = 0;
3038   }
3039   break;
3040 }
3041 
3042 /* Opcode: VerifyCookie P1 P2 P3 * *
3043 **
3044 ** Check the value of global database parameter number 0 (the
3045 ** schema version) and make sure it is equal to P2 and that the
3046 ** generation counter on the local schema parse equals P3.
3047 **
3048 ** P1 is the database number which is 0 for the main database file
3049 ** and 1 for the file holding temporary tables and some higher number
3050 ** for auxiliary databases.
3051 **
3052 ** The cookie changes its value whenever the database schema changes.
3053 ** This operation is used to detect when that the cookie has changed
3054 ** and that the current process needs to reread the schema.
3055 **
3056 ** Either a transaction needs to have been started or an OP_Open needs
3057 ** to be executed (to establish a read lock) before this opcode is
3058 ** invoked.
3059 */
3060 case OP_VerifyCookie: {
3061   int iMeta;
3062   int iGen;
3063   Btree *pBt;
3064 
3065   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3066   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3067   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3068   pBt = db->aDb[pOp->p1].pBt;
3069   if( pBt ){
3070     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3071     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3072   }else{
3073     iGen = iMeta = 0;
3074   }
3075   if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
3076     sqlite3DbFree(db, p->zErrMsg);
3077     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3078     /* If the schema-cookie from the database file matches the cookie
3079     ** stored with the in-memory representation of the schema, do
3080     ** not reload the schema from the database file.
3081     **
3082     ** If virtual-tables are in use, this is not just an optimization.
3083     ** Often, v-tables store their data in other SQLite tables, which
3084     ** are queried from within xNext() and other v-table methods using
3085     ** prepared queries. If such a query is out-of-date, we do not want to
3086     ** discard the database schema, as the user code implementing the
3087     ** v-table would have to be ready for the sqlite3_vtab structure itself
3088     ** to be invalidated whenever sqlite3_step() is called from within
3089     ** a v-table method.
3090     */
3091     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3092       sqlite3ResetOneSchema(db, pOp->p1);
3093     }
3094 
3095     p->expired = 1;
3096     rc = SQLITE_SCHEMA;
3097   }
3098   break;
3099 }
3100 
3101 /* Opcode: OpenRead P1 P2 P3 P4 P5
3102 **
3103 ** Open a read-only cursor for the database table whose root page is
3104 ** P2 in a database file.  The database file is determined by P3.
3105 ** P3==0 means the main database, P3==1 means the database used for
3106 ** temporary tables, and P3>1 means used the corresponding attached
3107 ** database.  Give the new cursor an identifier of P1.  The P1
3108 ** values need not be contiguous but all P1 values should be small integers.
3109 ** It is an error for P1 to be negative.
3110 **
3111 ** If P5!=0 then use the content of register P2 as the root page, not
3112 ** the value of P2 itself.
3113 **
3114 ** There will be a read lock on the database whenever there is an
3115 ** open cursor.  If the database was unlocked prior to this instruction
3116 ** then a read lock is acquired as part of this instruction.  A read
3117 ** lock allows other processes to read the database but prohibits
3118 ** any other process from modifying the database.  The read lock is
3119 ** released when all cursors are closed.  If this instruction attempts
3120 ** to get a read lock but fails, the script terminates with an
3121 ** SQLITE_BUSY error code.
3122 **
3123 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3124 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3125 ** structure, then said structure defines the content and collating
3126 ** sequence of the index being opened. Otherwise, if P4 is an integer
3127 ** value, it is set to the number of columns in the table.
3128 **
3129 ** See also OpenWrite.
3130 */
3131 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3132 **
3133 ** Open a read/write cursor named P1 on the table or index whose root
3134 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3135 ** root page.
3136 **
3137 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3138 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3139 ** structure, then said structure defines the content and collating
3140 ** sequence of the index being opened. Otherwise, if P4 is an integer
3141 ** value, it is set to the number of columns in the table, or to the
3142 ** largest index of any column of the table that is actually used.
3143 **
3144 ** This instruction works just like OpenRead except that it opens the cursor
3145 ** in read/write mode.  For a given table, there can be one or more read-only
3146 ** cursors or a single read/write cursor but not both.
3147 **
3148 ** See also OpenRead.
3149 */
3150 case OP_OpenRead:
3151 case OP_OpenWrite: {
3152   int nField;
3153   KeyInfo *pKeyInfo;
3154   int p2;
3155   int iDb;
3156   int wrFlag;
3157   Btree *pX;
3158   VdbeCursor *pCur;
3159   Db *pDb;
3160 
3161   assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3162   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3163 
3164   if( p->expired ){
3165     rc = SQLITE_ABORT;
3166     break;
3167   }
3168 
3169   nField = 0;
3170   pKeyInfo = 0;
3171   p2 = pOp->p2;
3172   iDb = pOp->p3;
3173   assert( iDb>=0 && iDb<db->nDb );
3174   assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3175   pDb = &db->aDb[iDb];
3176   pX = pDb->pBt;
3177   assert( pX!=0 );
3178   if( pOp->opcode==OP_OpenWrite ){
3179     wrFlag = 1;
3180     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3181     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3182       p->minWriteFileFormat = pDb->pSchema->file_format;
3183     }
3184   }else{
3185     wrFlag = 0;
3186   }
3187   if( pOp->p5 & OPFLAG_P2ISREG ){
3188     assert( p2>0 );
3189     assert( p2<=p->nMem );
3190     pIn2 = &aMem[p2];
3191     assert( memIsValid(pIn2) );
3192     assert( (pIn2->flags & MEM_Int)!=0 );
3193     sqlite3VdbeMemIntegerify(pIn2);
3194     p2 = (int)pIn2->u.i;
3195     /* The p2 value always comes from a prior OP_CreateTable opcode and
3196     ** that opcode will always set the p2 value to 2 or more or else fail.
3197     ** If there were a failure, the prepared statement would have halted
3198     ** before reaching this instruction. */
3199     if( NEVER(p2<2) ) {
3200       rc = SQLITE_CORRUPT_BKPT;
3201       goto abort_due_to_error;
3202     }
3203   }
3204   if( pOp->p4type==P4_KEYINFO ){
3205     pKeyInfo = pOp->p4.pKeyInfo;
3206     pKeyInfo->enc = ENC(p->db);
3207     nField = pKeyInfo->nField+1;
3208   }else if( pOp->p4type==P4_INT32 ){
3209     nField = pOp->p4.i;
3210   }
3211   assert( pOp->p1>=0 );
3212   pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3213   if( pCur==0 ) goto no_mem;
3214   pCur->nullRow = 1;
3215   pCur->isOrdered = 1;
3216   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3217   pCur->pKeyInfo = pKeyInfo;
3218   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3219   sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
3220 
3221   /* Since it performs no memory allocation or IO, the only value that
3222   ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3223   assert( rc==SQLITE_OK );
3224 
3225   /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3226   ** SQLite used to check if the root-page flags were sane at this point
3227   ** and report database corruption if they were not, but this check has
3228   ** since moved into the btree layer.  */
3229   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3230   pCur->isIndex = !pCur->isTable;
3231   break;
3232 }
3233 
3234 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3235 **
3236 ** Open a new cursor P1 to a transient table.
3237 ** The cursor is always opened read/write even if
3238 ** the main database is read-only.  The ephemeral
3239 ** table is deleted automatically when the cursor is closed.
3240 **
3241 ** P2 is the number of columns in the ephemeral table.
3242 ** The cursor points to a BTree table if P4==0 and to a BTree index
3243 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3244 ** that defines the format of keys in the index.
3245 **
3246 ** This opcode was once called OpenTemp.  But that created
3247 ** confusion because the term "temp table", might refer either
3248 ** to a TEMP table at the SQL level, or to a table opened by
3249 ** this opcode.  Then this opcode was call OpenVirtual.  But
3250 ** that created confusion with the whole virtual-table idea.
3251 **
3252 ** The P5 parameter can be a mask of the BTREE_* flags defined
3253 ** in btree.h.  These flags control aspects of the operation of
3254 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3255 ** added automatically.
3256 */
3257 /* Opcode: OpenAutoindex P1 P2 * P4 *
3258 **
3259 ** This opcode works the same as OP_OpenEphemeral.  It has a
3260 ** different name to distinguish its use.  Tables created using
3261 ** by this opcode will be used for automatically created transient
3262 ** indices in joins.
3263 */
3264 case OP_OpenAutoindex:
3265 case OP_OpenEphemeral: {
3266   VdbeCursor *pCx;
3267   static const int vfsFlags =
3268       SQLITE_OPEN_READWRITE |
3269       SQLITE_OPEN_CREATE |
3270       SQLITE_OPEN_EXCLUSIVE |
3271       SQLITE_OPEN_DELETEONCLOSE |
3272       SQLITE_OPEN_TRANSIENT_DB;
3273 
3274   assert( pOp->p1>=0 );
3275   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3276   if( pCx==0 ) goto no_mem;
3277   pCx->nullRow = 1;
3278   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3279                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3280   if( rc==SQLITE_OK ){
3281     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3282   }
3283   if( rc==SQLITE_OK ){
3284     /* If a transient index is required, create it by calling
3285     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3286     ** opening it. If a transient table is required, just use the
3287     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3288     */
3289     if( pOp->p4.pKeyInfo ){
3290       int pgno;
3291       assert( pOp->p4type==P4_KEYINFO );
3292       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3293       if( rc==SQLITE_OK ){
3294         assert( pgno==MASTER_ROOT+1 );
3295         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3296                                 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3297         pCx->pKeyInfo = pOp->p4.pKeyInfo;
3298         pCx->pKeyInfo->enc = ENC(p->db);
3299       }
3300       pCx->isTable = 0;
3301     }else{
3302       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3303       pCx->isTable = 1;
3304     }
3305   }
3306   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3307   pCx->isIndex = !pCx->isTable;
3308   break;
3309 }
3310 
3311 /* Opcode: SorterOpen P1 P2 * P4 *
3312 **
3313 ** This opcode works like OP_OpenEphemeral except that it opens
3314 ** a transient index that is specifically designed to sort large
3315 ** tables using an external merge-sort algorithm.
3316 */
3317 case OP_SorterOpen: {
3318   VdbeCursor *pCx;
3319 
3320   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3321   if( pCx==0 ) goto no_mem;
3322   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3323   pCx->pKeyInfo->enc = ENC(p->db);
3324   pCx->isSorter = 1;
3325   rc = sqlite3VdbeSorterInit(db, pCx);
3326   break;
3327 }
3328 
3329 /* Opcode: OpenPseudo P1 P2 P3 * P5
3330 **
3331 ** Open a new cursor that points to a fake table that contains a single
3332 ** row of data.  The content of that one row in the content of memory
3333 ** register P2 when P5==0.  In other words, cursor P1 becomes an alias for the
3334 ** MEM_Blob content contained in register P2.  When P5==1, then the
3335 ** row is represented by P3 consecutive registers beginning with P2.
3336 **
3337 ** A pseudo-table created by this opcode is used to hold a single
3338 ** row output from the sorter so that the row can be decomposed into
3339 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3340 ** is the only cursor opcode that works with a pseudo-table.
3341 **
3342 ** P3 is the number of fields in the records that will be stored by
3343 ** the pseudo-table.
3344 */
3345 case OP_OpenPseudo: {
3346   VdbeCursor *pCx;
3347 
3348   assert( pOp->p1>=0 );
3349   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3350   if( pCx==0 ) goto no_mem;
3351   pCx->nullRow = 1;
3352   pCx->pseudoTableReg = pOp->p2;
3353   pCx->isTable = 1;
3354   pCx->isIndex = 0;
3355   pCx->multiPseudo = pOp->p5;
3356   break;
3357 }
3358 
3359 /* Opcode: Close P1 * * * *
3360 **
3361 ** Close a cursor previously opened as P1.  If P1 is not
3362 ** currently open, this instruction is a no-op.
3363 */
3364 case OP_Close: {
3365   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3366   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3367   p->apCsr[pOp->p1] = 0;
3368   break;
3369 }
3370 
3371 /* Opcode: SeekGe P1 P2 P3 P4 *
3372 **
3373 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3374 ** use the value in register P3 as the key.  If cursor P1 refers
3375 ** to an SQL index, then P3 is the first in an array of P4 registers
3376 ** that are used as an unpacked index key.
3377 **
3378 ** Reposition cursor P1 so that  it points to the smallest entry that
3379 ** is greater than or equal to the key value. If there are no records
3380 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3381 **
3382 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3383 */
3384 /* Opcode: SeekGt P1 P2 P3 P4 *
3385 **
3386 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3387 ** use the value in register P3 as a key. If cursor P1 refers
3388 ** to an SQL index, then P3 is the first in an array of P4 registers
3389 ** that are used as an unpacked index key.
3390 **
3391 ** Reposition cursor P1 so that  it points to the smallest entry that
3392 ** is greater than the key value. If there are no records greater than
3393 ** the key and P2 is not zero, then jump to P2.
3394 **
3395 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3396 */
3397 /* Opcode: SeekLt P1 P2 P3 P4 *
3398 **
3399 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3400 ** use the value in register P3 as a key. If cursor P1 refers
3401 ** to an SQL index, then P3 is the first in an array of P4 registers
3402 ** that are used as an unpacked index key.
3403 **
3404 ** Reposition cursor P1 so that  it points to the largest entry that
3405 ** is less than the key value. If there are no records less than
3406 ** the key and P2 is not zero, then jump to P2.
3407 **
3408 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3409 */
3410 /* Opcode: SeekLe P1 P2 P3 P4 *
3411 **
3412 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3413 ** use the value in register P3 as a key. If cursor P1 refers
3414 ** to an SQL index, then P3 is the first in an array of P4 registers
3415 ** that are used as an unpacked index key.
3416 **
3417 ** Reposition cursor P1 so that it points to the largest entry that
3418 ** is less than or equal to the key value. If there are no records
3419 ** less than or equal to the key and P2 is not zero, then jump to P2.
3420 **
3421 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3422 */
3423 case OP_SeekLt:         /* jump, in3 */
3424 case OP_SeekLe:         /* jump, in3 */
3425 case OP_SeekGe:         /* jump, in3 */
3426 case OP_SeekGt: {       /* jump, in3 */
3427   int res;
3428   int oc;
3429   VdbeCursor *pC;
3430   UnpackedRecord r;
3431   int nField;
3432   i64 iKey;      /* The rowid we are to seek to */
3433 
3434   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3435   assert( pOp->p2!=0 );
3436   pC = p->apCsr[pOp->p1];
3437   assert( pC!=0 );
3438   assert( pC->pseudoTableReg==0 );
3439   assert( OP_SeekLe == OP_SeekLt+1 );
3440   assert( OP_SeekGe == OP_SeekLt+2 );
3441   assert( OP_SeekGt == OP_SeekLt+3 );
3442   assert( pC->isOrdered );
3443   if( ALWAYS(pC->pCursor!=0) ){
3444     oc = pOp->opcode;
3445     pC->nullRow = 0;
3446     if( pC->isTable ){
3447       /* The input value in P3 might be of any type: integer, real, string,
3448       ** blob, or NULL.  But it needs to be an integer before we can do
3449       ** the seek, so covert it. */
3450       pIn3 = &aMem[pOp->p3];
3451       applyNumericAffinity(pIn3);
3452       iKey = sqlite3VdbeIntValue(pIn3);
3453       pC->rowidIsValid = 0;
3454 
3455       /* If the P3 value could not be converted into an integer without
3456       ** loss of information, then special processing is required... */
3457       if( (pIn3->flags & MEM_Int)==0 ){
3458         if( (pIn3->flags & MEM_Real)==0 ){
3459           /* If the P3 value cannot be converted into any kind of a number,
3460           ** then the seek is not possible, so jump to P2 */
3461           pc = pOp->p2 - 1;
3462           break;
3463         }
3464         /* If we reach this point, then the P3 value must be a floating
3465         ** point number. */
3466         assert( (pIn3->flags & MEM_Real)!=0 );
3467 
3468         if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3469           /* The P3 value is too large in magnitude to be expressed as an
3470           ** integer. */
3471           res = 1;
3472           if( pIn3->r<0 ){
3473             if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3474               rc = sqlite3BtreeFirst(pC->pCursor, &res);
3475               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3476             }
3477           }else{
3478             if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
3479               rc = sqlite3BtreeLast(pC->pCursor, &res);
3480               if( rc!=SQLITE_OK ) goto abort_due_to_error;
3481             }
3482           }
3483           if( res ){
3484             pc = pOp->p2 - 1;
3485           }
3486           break;
3487         }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3488           /* Use the ceiling() function to convert real->int */
3489           if( pIn3->r > (double)iKey ) iKey++;
3490         }else{
3491           /* Use the floor() function to convert real->int */
3492           assert( oc==OP_SeekLe || oc==OP_SeekGt );
3493           if( pIn3->r < (double)iKey ) iKey--;
3494         }
3495       }
3496       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3497       if( rc!=SQLITE_OK ){
3498         goto abort_due_to_error;
3499       }
3500       if( res==0 ){
3501         pC->rowidIsValid = 1;
3502         pC->lastRowid = iKey;
3503       }
3504     }else{
3505       nField = pOp->p4.i;
3506       assert( pOp->p4type==P4_INT32 );
3507       assert( nField>0 );
3508       r.pKeyInfo = pC->pKeyInfo;
3509       r.nField = (u16)nField;
3510 
3511       /* The next line of code computes as follows, only faster:
3512       **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
3513       **     r.flags = UNPACKED_INCRKEY;
3514       **   }else{
3515       **     r.flags = 0;
3516       **   }
3517       */
3518       r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3519       assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3520       assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3521       assert( oc!=OP_SeekGe || r.flags==0 );
3522       assert( oc!=OP_SeekLt || r.flags==0 );
3523 
3524       r.aMem = &aMem[pOp->p3];
3525 #ifdef SQLITE_DEBUG
3526       { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3527 #endif
3528       ExpandBlob(r.aMem);
3529       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3530       if( rc!=SQLITE_OK ){
3531         goto abort_due_to_error;
3532       }
3533       pC->rowidIsValid = 0;
3534     }
3535     pC->deferredMoveto = 0;
3536     pC->cacheStatus = CACHE_STALE;
3537 #ifdef SQLITE_TEST
3538     sqlite3_search_count++;
3539 #endif
3540     if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
3541       if( res<0 || (res==0 && oc==OP_SeekGt) ){
3542         rc = sqlite3BtreeNext(pC->pCursor, &res);
3543         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3544         pC->rowidIsValid = 0;
3545       }else{
3546         res = 0;
3547       }
3548     }else{
3549       assert( oc==OP_SeekLt || oc==OP_SeekLe );
3550       if( res>0 || (res==0 && oc==OP_SeekLt) ){
3551         rc = sqlite3BtreePrevious(pC->pCursor, &res);
3552         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3553         pC->rowidIsValid = 0;
3554       }else{
3555         /* res might be negative because the table is empty.  Check to
3556         ** see if this is the case.
3557         */
3558         res = sqlite3BtreeEof(pC->pCursor);
3559       }
3560     }
3561     assert( pOp->p2>0 );
3562     if( res ){
3563       pc = pOp->p2 - 1;
3564     }
3565   }else{
3566     /* This happens when attempting to open the sqlite3_master table
3567     ** for read access returns SQLITE_EMPTY. In this case always
3568     ** take the jump (since there are no records in the table).
3569     */
3570     pc = pOp->p2 - 1;
3571   }
3572   break;
3573 }
3574 
3575 /* Opcode: Seek P1 P2 * * *
3576 **
3577 ** P1 is an open table cursor and P2 is a rowid integer.  Arrange
3578 ** for P1 to move so that it points to the rowid given by P2.
3579 **
3580 ** This is actually a deferred seek.  Nothing actually happens until
3581 ** the cursor is used to read a record.  That way, if no reads
3582 ** occur, no unnecessary I/O happens.
3583 */
3584 case OP_Seek: {    /* in2 */
3585   VdbeCursor *pC;
3586 
3587   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3588   pC = p->apCsr[pOp->p1];
3589   assert( pC!=0 );
3590   if( ALWAYS(pC->pCursor!=0) ){
3591     assert( pC->isTable );
3592     pC->nullRow = 0;
3593     pIn2 = &aMem[pOp->p2];
3594     pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3595     pC->rowidIsValid = 0;
3596     pC->deferredMoveto = 1;
3597   }
3598   break;
3599 }
3600 
3601 
3602 /* Opcode: Found P1 P2 P3 P4 *
3603 **
3604 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3605 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3606 ** record.
3607 **
3608 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3609 ** is a prefix of any entry in P1 then a jump is made to P2 and
3610 ** P1 is left pointing at the matching entry.
3611 */
3612 /* Opcode: NotFound P1 P2 P3 P4 *
3613 **
3614 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3615 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3616 ** record.
3617 **
3618 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3619 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3620 ** does contain an entry whose prefix matches the P3/P4 record then control
3621 ** falls through to the next instruction and P1 is left pointing at the
3622 ** matching entry.
3623 **
3624 ** See also: Found, NotExists, IsUnique
3625 */
3626 case OP_NotFound:       /* jump, in3 */
3627 case OP_Found: {        /* jump, in3 */
3628   int alreadyExists;
3629   VdbeCursor *pC;
3630   int res;
3631   char *pFree;
3632   UnpackedRecord *pIdxKey;
3633   UnpackedRecord r;
3634   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3635 
3636 #ifdef SQLITE_TEST
3637   sqlite3_found_count++;
3638 #endif
3639 
3640   alreadyExists = 0;
3641   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3642   assert( pOp->p4type==P4_INT32 );
3643   pC = p->apCsr[pOp->p1];
3644   assert( pC!=0 );
3645   pIn3 = &aMem[pOp->p3];
3646   if( ALWAYS(pC->pCursor!=0) ){
3647 
3648     assert( pC->isTable==0 );
3649     if( pOp->p4.i>0 ){
3650       r.pKeyInfo = pC->pKeyInfo;
3651       r.nField = (u16)pOp->p4.i;
3652       r.aMem = pIn3;
3653 #ifdef SQLITE_DEBUG
3654       { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3655 #endif
3656       r.flags = UNPACKED_PREFIX_MATCH;
3657       pIdxKey = &r;
3658     }else{
3659       pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3660           pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3661       );
3662       if( pIdxKey==0 ) goto no_mem;
3663       assert( pIn3->flags & MEM_Blob );
3664       assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
3665       sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3666       pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3667     }
3668     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3669     if( pOp->p4.i==0 ){
3670       sqlite3DbFree(db, pFree);
3671     }
3672     if( rc!=SQLITE_OK ){
3673       break;
3674     }
3675     alreadyExists = (res==0);
3676     pC->deferredMoveto = 0;
3677     pC->cacheStatus = CACHE_STALE;
3678   }
3679   if( pOp->opcode==OP_Found ){
3680     if( alreadyExists ) pc = pOp->p2 - 1;
3681   }else{
3682     if( !alreadyExists ) pc = pOp->p2 - 1;
3683   }
3684   break;
3685 }
3686 
3687 /* Opcode: IsUnique P1 P2 P3 P4 *
3688 **
3689 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3690 ** no data and where the key are records generated by OP_MakeRecord with
3691 ** the list field being the integer ROWID of the entry that the index
3692 ** entry refers to.
3693 **
3694 ** The P3 register contains an integer record number. Call this record
3695 ** number R. Register P4 is the first in a set of N contiguous registers
3696 ** that make up an unpacked index key that can be used with cursor P1.
3697 ** The value of N can be inferred from the cursor. N includes the rowid
3698 ** value appended to the end of the index record. This rowid value may
3699 ** or may not be the same as R.
3700 **
3701 ** If any of the N registers beginning with register P4 contains a NULL
3702 ** value, jump immediately to P2.
3703 **
3704 ** Otherwise, this instruction checks if cursor P1 contains an entry
3705 ** where the first (N-1) fields match but the rowid value at the end
3706 ** of the index entry is not R. If there is no such entry, control jumps
3707 ** to instruction P2. Otherwise, the rowid of the conflicting index
3708 ** entry is copied to register P3 and control falls through to the next
3709 ** instruction.
3710 **
3711 ** See also: NotFound, NotExists, Found
3712 */
3713 case OP_IsUnique: {        /* jump, in3 */
3714   u16 ii;
3715   VdbeCursor *pCx;
3716   BtCursor *pCrsr;
3717   u16 nField;
3718   Mem *aMx;
3719   UnpackedRecord r;                  /* B-Tree index search key */
3720   i64 R;                             /* Rowid stored in register P3 */
3721 
3722   pIn3 = &aMem[pOp->p3];
3723   aMx = &aMem[pOp->p4.i];
3724   /* Assert that the values of parameters P1 and P4 are in range. */
3725   assert( pOp->p4type==P4_INT32 );
3726   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3727   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3728 
3729   /* Find the index cursor. */
3730   pCx = p->apCsr[pOp->p1];
3731   assert( pCx->deferredMoveto==0 );
3732   pCx->seekResult = 0;
3733   pCx->cacheStatus = CACHE_STALE;
3734   pCrsr = pCx->pCursor;
3735 
3736   /* If any of the values are NULL, take the jump. */
3737   nField = pCx->pKeyInfo->nField;
3738   for(ii=0; ii<nField; ii++){
3739     if( aMx[ii].flags & MEM_Null ){
3740       pc = pOp->p2 - 1;
3741       pCrsr = 0;
3742       break;
3743     }
3744   }
3745   assert( (aMx[nField].flags & MEM_Null)==0 );
3746 
3747   if( pCrsr!=0 ){
3748     /* Populate the index search key. */
3749     r.pKeyInfo = pCx->pKeyInfo;
3750     r.nField = nField + 1;
3751     r.flags = UNPACKED_PREFIX_SEARCH;
3752     r.aMem = aMx;
3753 #ifdef SQLITE_DEBUG
3754     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3755 #endif
3756 
3757     /* Extract the value of R from register P3. */
3758     sqlite3VdbeMemIntegerify(pIn3);
3759     R = pIn3->u.i;
3760 
3761     /* Search the B-Tree index. If no conflicting record is found, jump
3762     ** to P2. Otherwise, copy the rowid of the conflicting record to
3763     ** register P3 and fall through to the next instruction.  */
3764     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3765     if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3766       pc = pOp->p2 - 1;
3767     }else{
3768       pIn3->u.i = r.rowid;
3769     }
3770   }
3771   break;
3772 }
3773 
3774 /* Opcode: NotExists P1 P2 P3 * *
3775 **
3776 ** Use the content of register P3 as an integer key.  If a record
3777 ** with that key does not exist in table of P1, then jump to P2.
3778 ** If the record does exist, then fall through.  The cursor is left
3779 ** pointing to the record if it exists.
3780 **
3781 ** The difference between this operation and NotFound is that this
3782 ** operation assumes the key is an integer and that P1 is a table whereas
3783 ** NotFound assumes key is a blob constructed from MakeRecord and
3784 ** P1 is an index.
3785 **
3786 ** See also: Found, NotFound, IsUnique
3787 */
3788 case OP_NotExists: {        /* jump, in3 */
3789   VdbeCursor *pC;
3790   BtCursor *pCrsr;
3791   int res;
3792   u64 iKey;
3793 
3794   pIn3 = &aMem[pOp->p3];
3795   assert( pIn3->flags & MEM_Int );
3796   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3797   pC = p->apCsr[pOp->p1];
3798   assert( pC!=0 );
3799   assert( pC->isTable );
3800   assert( pC->pseudoTableReg==0 );
3801   pCrsr = pC->pCursor;
3802   if( ALWAYS(pCrsr!=0) ){
3803     res = 0;
3804     iKey = pIn3->u.i;
3805     rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3806     pC->lastRowid = pIn3->u.i;
3807     pC->rowidIsValid = res==0 ?1:0;
3808     pC->nullRow = 0;
3809     pC->cacheStatus = CACHE_STALE;
3810     pC->deferredMoveto = 0;
3811     if( res!=0 ){
3812       pc = pOp->p2 - 1;
3813       assert( pC->rowidIsValid==0 );
3814     }
3815     pC->seekResult = res;
3816   }else{
3817     /* This happens when an attempt to open a read cursor on the
3818     ** sqlite_master table returns SQLITE_EMPTY.
3819     */
3820     pc = pOp->p2 - 1;
3821     assert( pC->rowidIsValid==0 );
3822     pC->seekResult = 0;
3823   }
3824   break;
3825 }
3826 
3827 /* Opcode: Sequence P1 P2 * * *
3828 **
3829 ** Find the next available sequence number for cursor P1.
3830 ** Write the sequence number into register P2.
3831 ** The sequence number on the cursor is incremented after this
3832 ** instruction.
3833 */
3834 case OP_Sequence: {           /* out2-prerelease */
3835   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3836   assert( p->apCsr[pOp->p1]!=0 );
3837   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3838   break;
3839 }
3840 
3841 
3842 /* Opcode: NewRowid P1 P2 P3 * *
3843 **
3844 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3845 ** The record number is not previously used as a key in the database
3846 ** table that cursor P1 points to.  The new record number is written
3847 ** written to register P2.
3848 **
3849 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3850 ** the largest previously generated record number. No new record numbers are
3851 ** allowed to be less than this value. When this value reaches its maximum,
3852 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3853 ** generated record number. This P3 mechanism is used to help implement the
3854 ** AUTOINCREMENT feature.
3855 */
3856 case OP_NewRowid: {           /* out2-prerelease */
3857   i64 v;                 /* The new rowid */
3858   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
3859   int res;               /* Result of an sqlite3BtreeLast() */
3860   int cnt;               /* Counter to limit the number of searches */
3861   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
3862   VdbeFrame *pFrame;     /* Root frame of VDBE */
3863 
3864   v = 0;
3865   res = 0;
3866   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3867   pC = p->apCsr[pOp->p1];
3868   assert( pC!=0 );
3869   if( NEVER(pC->pCursor==0) ){
3870     /* The zero initialization above is all that is needed */
3871   }else{
3872     /* The next rowid or record number (different terms for the same
3873     ** thing) is obtained in a two-step algorithm.
3874     **
3875     ** First we attempt to find the largest existing rowid and add one
3876     ** to that.  But if the largest existing rowid is already the maximum
3877     ** positive integer, we have to fall through to the second
3878     ** probabilistic algorithm
3879     **
3880     ** The second algorithm is to select a rowid at random and see if
3881     ** it already exists in the table.  If it does not exist, we have
3882     ** succeeded.  If the random rowid does exist, we select a new one
3883     ** and try again, up to 100 times.
3884     */
3885     assert( pC->isTable );
3886 
3887 #ifdef SQLITE_32BIT_ROWID
3888 #   define MAX_ROWID 0x7fffffff
3889 #else
3890     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3891     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
3892     ** to provide the constant while making all compilers happy.
3893     */
3894 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3895 #endif
3896 
3897     if( !pC->useRandomRowid ){
3898       v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3899       if( v==0 ){
3900         rc = sqlite3BtreeLast(pC->pCursor, &res);
3901         if( rc!=SQLITE_OK ){
3902           goto abort_due_to_error;
3903         }
3904         if( res ){
3905           v = 1;   /* IMP: R-61914-48074 */
3906         }else{
3907           assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3908           rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3909           assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
3910           if( v>=MAX_ROWID ){
3911             pC->useRandomRowid = 1;
3912           }else{
3913             v++;   /* IMP: R-29538-34987 */
3914           }
3915         }
3916       }
3917 
3918 #ifndef SQLITE_OMIT_AUTOINCREMENT
3919       if( pOp->p3 ){
3920         /* Assert that P3 is a valid memory cell. */
3921         assert( pOp->p3>0 );
3922         if( p->pFrame ){
3923           for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3924           /* Assert that P3 is a valid memory cell. */
3925           assert( pOp->p3<=pFrame->nMem );
3926           pMem = &pFrame->aMem[pOp->p3];
3927         }else{
3928           /* Assert that P3 is a valid memory cell. */
3929           assert( pOp->p3<=p->nMem );
3930           pMem = &aMem[pOp->p3];
3931           memAboutToChange(p, pMem);
3932         }
3933         assert( memIsValid(pMem) );
3934 
3935         REGISTER_TRACE(pOp->p3, pMem);
3936         sqlite3VdbeMemIntegerify(pMem);
3937         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
3938         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3939           rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
3940           goto abort_due_to_error;
3941         }
3942         if( v<pMem->u.i+1 ){
3943           v = pMem->u.i + 1;
3944         }
3945         pMem->u.i = v;
3946       }
3947 #endif
3948 
3949       sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3950     }
3951     if( pC->useRandomRowid ){
3952       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3953       ** largest possible integer (9223372036854775807) then the database
3954       ** engine starts picking positive candidate ROWIDs at random until
3955       ** it finds one that is not previously used. */
3956       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
3957                              ** an AUTOINCREMENT table. */
3958       /* on the first attempt, simply do one more than previous */
3959       v = lastRowid;
3960       v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3961       v++; /* ensure non-zero */
3962       cnt = 0;
3963       while(   ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3964                                                  0, &res))==SQLITE_OK)
3965             && (res==0)
3966             && (++cnt<100)){
3967         /* collision - try another random rowid */
3968         sqlite3_randomness(sizeof(v), &v);
3969         if( cnt<5 ){
3970           /* try "small" random rowids for the initial attempts */
3971           v &= 0xffffff;
3972         }else{
3973           v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3974         }
3975         v++; /* ensure non-zero */
3976       }
3977       if( rc==SQLITE_OK && res==0 ){
3978         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
3979         goto abort_due_to_error;
3980       }
3981       assert( v>0 );  /* EV: R-40812-03570 */
3982     }
3983     pC->rowidIsValid = 0;
3984     pC->deferredMoveto = 0;
3985     pC->cacheStatus = CACHE_STALE;
3986   }
3987   pOut->u.i = v;
3988   break;
3989 }
3990 
3991 /* Opcode: Insert P1 P2 P3 P4 P5
3992 **
3993 ** Write an entry into the table of cursor P1.  A new entry is
3994 ** created if it doesn't already exist or the data for an existing
3995 ** entry is overwritten.  The data is the value MEM_Blob stored in register
3996 ** number P2. The key is stored in register P3. The key must
3997 ** be a MEM_Int.
3998 **
3999 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4000 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4001 ** then rowid is stored for subsequent return by the
4002 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4003 **
4004 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4005 ** the last seek operation (OP_NotExists) was a success, then this
4006 ** operation will not attempt to find the appropriate row before doing
4007 ** the insert but will instead overwrite the row that the cursor is
4008 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4009 ** has already positioned the cursor correctly.  This is an optimization
4010 ** that boosts performance by avoiding redundant seeks.
4011 **
4012 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4013 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4014 ** is part of an INSERT operation.  The difference is only important to
4015 ** the update hook.
4016 **
4017 ** Parameter P4 may point to a string containing the table-name, or
4018 ** may be NULL. If it is not NULL, then the update-hook
4019 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4020 **
4021 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4022 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4023 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4024 ** value of register P2 will then change.  Make sure this does not
4025 ** cause any problems.)
4026 **
4027 ** This instruction only works on tables.  The equivalent instruction
4028 ** for indices is OP_IdxInsert.
4029 */
4030 /* Opcode: InsertInt P1 P2 P3 P4 P5
4031 **
4032 ** This works exactly like OP_Insert except that the key is the
4033 ** integer value P3, not the value of the integer stored in register P3.
4034 */
4035 case OP_Insert:
4036 case OP_InsertInt: {
4037   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4038   Mem *pKey;        /* MEM cell holding key  for the record */
4039   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4040   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4041   int nZero;        /* Number of zero-bytes to append */
4042   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4043   const char *zDb;  /* database name - used by the update hook */
4044   const char *zTbl; /* Table name - used by the opdate hook */
4045   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4046 
4047   pData = &aMem[pOp->p2];
4048   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4049   assert( memIsValid(pData) );
4050   pC = p->apCsr[pOp->p1];
4051   assert( pC!=0 );
4052   assert( pC->pCursor!=0 );
4053   assert( pC->pseudoTableReg==0 );
4054   assert( pC->isTable );
4055   REGISTER_TRACE(pOp->p2, pData);
4056 
4057   if( pOp->opcode==OP_Insert ){
4058     pKey = &aMem[pOp->p3];
4059     assert( pKey->flags & MEM_Int );
4060     assert( memIsValid(pKey) );
4061     REGISTER_TRACE(pOp->p3, pKey);
4062     iKey = pKey->u.i;
4063   }else{
4064     assert( pOp->opcode==OP_InsertInt );
4065     iKey = pOp->p3;
4066   }
4067 
4068   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4069   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4070   if( pData->flags & MEM_Null ){
4071     pData->z = 0;
4072     pData->n = 0;
4073   }else{
4074     assert( pData->flags & (MEM_Blob|MEM_Str) );
4075   }
4076   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4077   if( pData->flags & MEM_Zero ){
4078     nZero = pData->u.nZero;
4079   }else{
4080     nZero = 0;
4081   }
4082   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4083   rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4084                           pData->z, pData->n, nZero,
4085                           pOp->p5 & OPFLAG_APPEND, seekResult
4086   );
4087   pC->rowidIsValid = 0;
4088   pC->deferredMoveto = 0;
4089   pC->cacheStatus = CACHE_STALE;
4090 
4091   /* Invoke the update-hook if required. */
4092   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4093     zDb = db->aDb[pC->iDb].zName;
4094     zTbl = pOp->p4.z;
4095     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4096     assert( pC->isTable );
4097     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4098     assert( pC->iDb>=0 );
4099   }
4100   break;
4101 }
4102 
4103 /* Opcode: Delete P1 P2 * P4 *
4104 **
4105 ** Delete the record at which the P1 cursor is currently pointing.
4106 **
4107 ** The cursor will be left pointing at either the next or the previous
4108 ** record in the table. If it is left pointing at the next record, then
4109 ** the next Next instruction will be a no-op.  Hence it is OK to delete
4110 ** a record from within an Next loop.
4111 **
4112 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4113 ** incremented (otherwise not).
4114 **
4115 ** P1 must not be pseudo-table.  It has to be a real table with
4116 ** multiple rows.
4117 **
4118 ** If P4 is not NULL, then it is the name of the table that P1 is
4119 ** pointing to.  The update hook will be invoked, if it exists.
4120 ** If P4 is not NULL then the P1 cursor must have been positioned
4121 ** using OP_NotFound prior to invoking this opcode.
4122 */
4123 case OP_Delete: {
4124   i64 iKey;
4125   VdbeCursor *pC;
4126 
4127   iKey = 0;
4128   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4129   pC = p->apCsr[pOp->p1];
4130   assert( pC!=0 );
4131   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
4132 
4133   /* If the update-hook will be invoked, set iKey to the rowid of the
4134   ** row being deleted.
4135   */
4136   if( db->xUpdateCallback && pOp->p4.z ){
4137     assert( pC->isTable );
4138     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
4139     iKey = pC->lastRowid;
4140   }
4141 
4142   /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4143   ** OP_Column on the same table without any intervening operations that
4144   ** might move or invalidate the cursor.  Hence cursor pC is always pointing
4145   ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4146   ** below is always a no-op and cannot fail.  We will run it anyhow, though,
4147   ** to guard against future changes to the code generator.
4148   **/
4149   assert( pC->deferredMoveto==0 );
4150   rc = sqlite3VdbeCursorMoveto(pC);
4151   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4152 
4153   sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4154   rc = sqlite3BtreeDelete(pC->pCursor);
4155   pC->cacheStatus = CACHE_STALE;
4156 
4157   /* Invoke the update-hook if required. */
4158   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4159     const char *zDb = db->aDb[pC->iDb].zName;
4160     const char *zTbl = pOp->p4.z;
4161     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4162     assert( pC->iDb>=0 );
4163   }
4164   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4165   break;
4166 }
4167 /* Opcode: ResetCount * * * * *
4168 **
4169 ** The value of the change counter is copied to the database handle
4170 ** change counter (returned by subsequent calls to sqlite3_changes()).
4171 ** Then the VMs internal change counter resets to 0.
4172 ** This is used by trigger programs.
4173 */
4174 case OP_ResetCount: {
4175   sqlite3VdbeSetChanges(db, p->nChange);
4176   p->nChange = 0;
4177   break;
4178 }
4179 
4180 /* Opcode: SorterCompare P1 P2 P3
4181 **
4182 ** P1 is a sorter cursor. This instruction compares the record blob in
4183 ** register P3 with the entry that the sorter cursor currently points to.
4184 ** If, excluding the rowid fields at the end, the two records are a match,
4185 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4186 */
4187 case OP_SorterCompare: {
4188   VdbeCursor *pC;
4189   int res;
4190 
4191   pC = p->apCsr[pOp->p1];
4192   assert( isSorter(pC) );
4193   pIn3 = &aMem[pOp->p3];
4194   rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4195   if( res ){
4196     pc = pOp->p2-1;
4197   }
4198   break;
4199 };
4200 
4201 /* Opcode: SorterData P1 P2 * * *
4202 **
4203 ** Write into register P2 the current sorter data for sorter cursor P1.
4204 */
4205 case OP_SorterData: {
4206   VdbeCursor *pC;
4207 
4208   pOut = &aMem[pOp->p2];
4209   pC = p->apCsr[pOp->p1];
4210   assert( pC->isSorter );
4211   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4212   break;
4213 }
4214 
4215 /* Opcode: RowData P1 P2 * * *
4216 **
4217 ** Write into register P2 the complete row data for cursor P1.
4218 ** There is no interpretation of the data.
4219 ** It is just copied onto the P2 register exactly as
4220 ** it is found in the database file.
4221 **
4222 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4223 ** of a real table, not a pseudo-table.
4224 */
4225 /* Opcode: RowKey P1 P2 * * *
4226 **
4227 ** Write into register P2 the complete row key for cursor P1.
4228 ** There is no interpretation of the data.
4229 ** The key is copied onto the P3 register exactly as
4230 ** it is found in the database file.
4231 **
4232 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4233 ** of a real table, not a pseudo-table.
4234 */
4235 case OP_RowKey:
4236 case OP_RowData: {
4237   VdbeCursor *pC;
4238   BtCursor *pCrsr;
4239   u32 n;
4240   i64 n64;
4241 
4242   pOut = &aMem[pOp->p2];
4243   memAboutToChange(p, pOut);
4244 
4245   /* Note that RowKey and RowData are really exactly the same instruction */
4246   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4247   pC = p->apCsr[pOp->p1];
4248   assert( pC->isSorter==0 );
4249   assert( pC->isTable || pOp->opcode!=OP_RowData );
4250   assert( pC->isIndex || pOp->opcode==OP_RowData );
4251   assert( pC!=0 );
4252   assert( pC->nullRow==0 );
4253   assert( pC->pseudoTableReg==0 );
4254   assert( pC->pCursor!=0 );
4255   pCrsr = pC->pCursor;
4256   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4257 
4258   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4259   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4260   ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
4261   ** a no-op and can never fail.  But we leave it in place as a safety.
4262   */
4263   assert( pC->deferredMoveto==0 );
4264   rc = sqlite3VdbeCursorMoveto(pC);
4265   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4266 
4267   if( pC->isIndex ){
4268     assert( !pC->isTable );
4269     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4270     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4271     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4272       goto too_big;
4273     }
4274     n = (u32)n64;
4275   }else{
4276     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4277     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4278     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4279       goto too_big;
4280     }
4281   }
4282   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4283     goto no_mem;
4284   }
4285   pOut->n = n;
4286   MemSetTypeFlag(pOut, MEM_Blob);
4287   if( pC->isIndex ){
4288     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4289   }else{
4290     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4291   }
4292   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4293   UPDATE_MAX_BLOBSIZE(pOut);
4294   break;
4295 }
4296 
4297 /* Opcode: Rowid P1 P2 * * *
4298 **
4299 ** Store in register P2 an integer which is the key of the table entry that
4300 ** P1 is currently point to.
4301 **
4302 ** P1 can be either an ordinary table or a virtual table.  There used to
4303 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4304 ** one opcode now works for both table types.
4305 */
4306 case OP_Rowid: {                 /* out2-prerelease */
4307   VdbeCursor *pC;
4308   i64 v;
4309   sqlite3_vtab *pVtab;
4310   const sqlite3_module *pModule;
4311 
4312   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4313   pC = p->apCsr[pOp->p1];
4314   assert( pC!=0 );
4315   assert( pC->pseudoTableReg==0 || pC->nullRow );
4316   if( pC->nullRow ){
4317     pOut->flags = MEM_Null;
4318     break;
4319   }else if( pC->deferredMoveto ){
4320     v = pC->movetoTarget;
4321 #ifndef SQLITE_OMIT_VIRTUALTABLE
4322   }else if( pC->pVtabCursor ){
4323     pVtab = pC->pVtabCursor->pVtab;
4324     pModule = pVtab->pModule;
4325     assert( pModule->xRowid );
4326     rc = pModule->xRowid(pC->pVtabCursor, &v);
4327     importVtabErrMsg(p, pVtab);
4328 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4329   }else{
4330     assert( pC->pCursor!=0 );
4331     rc = sqlite3VdbeCursorMoveto(pC);
4332     if( rc ) goto abort_due_to_error;
4333     if( pC->rowidIsValid ){
4334       v = pC->lastRowid;
4335     }else{
4336       rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4337       assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
4338     }
4339   }
4340   pOut->u.i = v;
4341   break;
4342 }
4343 
4344 /* Opcode: NullRow P1 * * * *
4345 **
4346 ** Move the cursor P1 to a null row.  Any OP_Column operations
4347 ** that occur while the cursor is on the null row will always
4348 ** write a NULL.
4349 */
4350 case OP_NullRow: {
4351   VdbeCursor *pC;
4352 
4353   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4354   pC = p->apCsr[pOp->p1];
4355   assert( pC!=0 );
4356   pC->nullRow = 1;
4357   pC->rowidIsValid = 0;
4358   assert( pC->pCursor || pC->pVtabCursor );
4359   if( pC->pCursor ){
4360     sqlite3BtreeClearCursor(pC->pCursor);
4361   }
4362   break;
4363 }
4364 
4365 /* Opcode: Last P1 P2 * * *
4366 **
4367 ** The next use of the Rowid or Column or Next instruction for P1
4368 ** will refer to the last entry in the database table or index.
4369 ** If the table or index is empty and P2>0, then jump immediately to P2.
4370 ** If P2 is 0 or if the table or index is not empty, fall through
4371 ** to the following instruction.
4372 */
4373 case OP_Last: {        /* jump */
4374   VdbeCursor *pC;
4375   BtCursor *pCrsr;
4376   int res;
4377 
4378   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4379   pC = p->apCsr[pOp->p1];
4380   assert( pC!=0 );
4381   pCrsr = pC->pCursor;
4382   res = 0;
4383   if( ALWAYS(pCrsr!=0) ){
4384     rc = sqlite3BtreeLast(pCrsr, &res);
4385   }
4386   pC->nullRow = (u8)res;
4387   pC->deferredMoveto = 0;
4388   pC->rowidIsValid = 0;
4389   pC->cacheStatus = CACHE_STALE;
4390   if( pOp->p2>0 && res ){
4391     pc = pOp->p2 - 1;
4392   }
4393   break;
4394 }
4395 
4396 
4397 /* Opcode: Sort P1 P2 * * *
4398 **
4399 ** This opcode does exactly the same thing as OP_Rewind except that
4400 ** it increments an undocumented global variable used for testing.
4401 **
4402 ** Sorting is accomplished by writing records into a sorting index,
4403 ** then rewinding that index and playing it back from beginning to
4404 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4405 ** rewinding so that the global variable will be incremented and
4406 ** regression tests can determine whether or not the optimizer is
4407 ** correctly optimizing out sorts.
4408 */
4409 case OP_SorterSort:    /* jump */
4410 case OP_Sort: {        /* jump */
4411 #ifdef SQLITE_TEST
4412   sqlite3_sort_count++;
4413   sqlite3_search_count--;
4414 #endif
4415   p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4416   /* Fall through into OP_Rewind */
4417 }
4418 /* Opcode: Rewind P1 P2 * * *
4419 **
4420 ** The next use of the Rowid or Column or Next instruction for P1
4421 ** will refer to the first entry in the database table or index.
4422 ** If the table or index is empty and P2>0, then jump immediately to P2.
4423 ** If P2 is 0 or if the table or index is not empty, fall through
4424 ** to the following instruction.
4425 */
4426 case OP_Rewind: {        /* jump */
4427   VdbeCursor *pC;
4428   BtCursor *pCrsr;
4429   int res;
4430 
4431   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4432   pC = p->apCsr[pOp->p1];
4433   assert( pC!=0 );
4434   assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
4435   res = 1;
4436   if( isSorter(pC) ){
4437     rc = sqlite3VdbeSorterRewind(db, pC, &res);
4438   }else{
4439     pCrsr = pC->pCursor;
4440     assert( pCrsr );
4441     rc = sqlite3BtreeFirst(pCrsr, &res);
4442     pC->atFirst = res==0 ?1:0;
4443     pC->deferredMoveto = 0;
4444     pC->cacheStatus = CACHE_STALE;
4445     pC->rowidIsValid = 0;
4446   }
4447   pC->nullRow = (u8)res;
4448   assert( pOp->p2>0 && pOp->p2<p->nOp );
4449   if( res ){
4450     pc = pOp->p2 - 1;
4451   }
4452   break;
4453 }
4454 
4455 /* Opcode: Next P1 P2 * P4 P5
4456 **
4457 ** Advance cursor P1 so that it points to the next key/data pair in its
4458 ** table or index.  If there are no more key/value pairs then fall through
4459 ** to the following instruction.  But if the cursor advance was successful,
4460 ** jump immediately to P2.
4461 **
4462 ** The P1 cursor must be for a real table, not a pseudo-table.
4463 **
4464 ** P4 is always of type P4_ADVANCE. The function pointer points to
4465 ** sqlite3BtreeNext().
4466 **
4467 ** If P5 is positive and the jump is taken, then event counter
4468 ** number P5-1 in the prepared statement is incremented.
4469 **
4470 ** See also: Prev
4471 */
4472 /* Opcode: Prev P1 P2 * * P5
4473 **
4474 ** Back up cursor P1 so that it points to the previous key/data pair in its
4475 ** table or index.  If there is no previous key/value pairs then fall through
4476 ** to the following instruction.  But if the cursor backup was successful,
4477 ** jump immediately to P2.
4478 **
4479 ** The P1 cursor must be for a real table, not a pseudo-table.
4480 **
4481 ** P4 is always of type P4_ADVANCE. The function pointer points to
4482 ** sqlite3BtreePrevious().
4483 **
4484 ** If P5 is positive and the jump is taken, then event counter
4485 ** number P5-1 in the prepared statement is incremented.
4486 */
4487 case OP_SorterNext:    /* jump */
4488 case OP_Prev:          /* jump */
4489 case OP_Next: {        /* jump */
4490   VdbeCursor *pC;
4491   int res;
4492 
4493   CHECK_FOR_INTERRUPT;
4494   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4495   assert( pOp->p5<=ArraySize(p->aCounter) );
4496   pC = p->apCsr[pOp->p1];
4497   if( pC==0 ){
4498     break;  /* See ticket #2273 */
4499   }
4500   assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
4501   if( isSorter(pC) ){
4502     assert( pOp->opcode==OP_SorterNext );
4503     rc = sqlite3VdbeSorterNext(db, pC, &res);
4504   }else{
4505     res = 1;
4506     assert( pC->deferredMoveto==0 );
4507     assert( pC->pCursor );
4508     assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4509     assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4510     rc = pOp->p4.xAdvance(pC->pCursor, &res);
4511   }
4512   pC->nullRow = (u8)res;
4513   pC->cacheStatus = CACHE_STALE;
4514   if( res==0 ){
4515     pc = pOp->p2 - 1;
4516     if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4517 #ifdef SQLITE_TEST
4518     sqlite3_search_count++;
4519 #endif
4520   }
4521   pC->rowidIsValid = 0;
4522   break;
4523 }
4524 
4525 /* Opcode: IdxInsert P1 P2 P3 * P5
4526 **
4527 ** Register P2 holds an SQL index key made using the
4528 ** MakeRecord instructions.  This opcode writes that key
4529 ** into the index P1.  Data for the entry is nil.
4530 **
4531 ** P3 is a flag that provides a hint to the b-tree layer that this
4532 ** insert is likely to be an append.
4533 **
4534 ** This instruction only works for indices.  The equivalent instruction
4535 ** for tables is OP_Insert.
4536 */
4537 case OP_SorterInsert:       /* in2 */
4538 case OP_IdxInsert: {        /* in2 */
4539   VdbeCursor *pC;
4540   BtCursor *pCrsr;
4541   int nKey;
4542   const char *zKey;
4543 
4544   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4545   pC = p->apCsr[pOp->p1];
4546   assert( pC!=0 );
4547   assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
4548   pIn2 = &aMem[pOp->p2];
4549   assert( pIn2->flags & MEM_Blob );
4550   pCrsr = pC->pCursor;
4551   if( ALWAYS(pCrsr!=0) ){
4552     assert( pC->isTable==0 );
4553     rc = ExpandBlob(pIn2);
4554     if( rc==SQLITE_OK ){
4555       if( isSorter(pC) ){
4556         rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4557       }else{
4558         nKey = pIn2->n;
4559         zKey = pIn2->z;
4560         rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4561             ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4562             );
4563         assert( pC->deferredMoveto==0 );
4564         pC->cacheStatus = CACHE_STALE;
4565       }
4566     }
4567   }
4568   break;
4569 }
4570 
4571 /* Opcode: IdxDelete P1 P2 P3 * *
4572 **
4573 ** The content of P3 registers starting at register P2 form
4574 ** an unpacked index key. This opcode removes that entry from the
4575 ** index opened by cursor P1.
4576 */
4577 case OP_IdxDelete: {
4578   VdbeCursor *pC;
4579   BtCursor *pCrsr;
4580   int res;
4581   UnpackedRecord r;
4582 
4583   assert( pOp->p3>0 );
4584   assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4585   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4586   pC = p->apCsr[pOp->p1];
4587   assert( pC!=0 );
4588   pCrsr = pC->pCursor;
4589   if( ALWAYS(pCrsr!=0) ){
4590     r.pKeyInfo = pC->pKeyInfo;
4591     r.nField = (u16)pOp->p3;
4592     r.flags = 0;
4593     r.aMem = &aMem[pOp->p2];
4594 #ifdef SQLITE_DEBUG
4595     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4596 #endif
4597     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4598     if( rc==SQLITE_OK && res==0 ){
4599       rc = sqlite3BtreeDelete(pCrsr);
4600     }
4601     assert( pC->deferredMoveto==0 );
4602     pC->cacheStatus = CACHE_STALE;
4603   }
4604   break;
4605 }
4606 
4607 /* Opcode: IdxRowid P1 P2 * * *
4608 **
4609 ** Write into register P2 an integer which is the last entry in the record at
4610 ** the end of the index key pointed to by cursor P1.  This integer should be
4611 ** the rowid of the table entry to which this index entry points.
4612 **
4613 ** See also: Rowid, MakeRecord.
4614 */
4615 case OP_IdxRowid: {              /* out2-prerelease */
4616   BtCursor *pCrsr;
4617   VdbeCursor *pC;
4618   i64 rowid;
4619 
4620   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4621   pC = p->apCsr[pOp->p1];
4622   assert( pC!=0 );
4623   pCrsr = pC->pCursor;
4624   pOut->flags = MEM_Null;
4625   if( ALWAYS(pCrsr!=0) ){
4626     rc = sqlite3VdbeCursorMoveto(pC);
4627     if( NEVER(rc) ) goto abort_due_to_error;
4628     assert( pC->deferredMoveto==0 );
4629     assert( pC->isTable==0 );
4630     if( !pC->nullRow ){
4631       rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4632       if( rc!=SQLITE_OK ){
4633         goto abort_due_to_error;
4634       }
4635       pOut->u.i = rowid;
4636       pOut->flags = MEM_Int;
4637     }
4638   }
4639   break;
4640 }
4641 
4642 /* Opcode: IdxGE P1 P2 P3 P4 P5
4643 **
4644 ** The P4 register values beginning with P3 form an unpacked index
4645 ** key that omits the ROWID.  Compare this key value against the index
4646 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4647 **
4648 ** If the P1 index entry is greater than or equal to the key value
4649 ** then jump to P2.  Otherwise fall through to the next instruction.
4650 **
4651 ** If P5 is non-zero then the key value is increased by an epsilon
4652 ** prior to the comparison.  This make the opcode work like IdxGT except
4653 ** that if the key from register P3 is a prefix of the key in the cursor,
4654 ** the result is false whereas it would be true with IdxGT.
4655 */
4656 /* Opcode: IdxLT P1 P2 P3 P4 P5
4657 **
4658 ** The P4 register values beginning with P3 form an unpacked index
4659 ** key that omits the ROWID.  Compare this key value against the index
4660 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4661 **
4662 ** If the P1 index entry is less than the key value then jump to P2.
4663 ** Otherwise fall through to the next instruction.
4664 **
4665 ** If P5 is non-zero then the key value is increased by an epsilon prior
4666 ** to the comparison.  This makes the opcode work like IdxLE.
4667 */
4668 case OP_IdxLT:          /* jump */
4669 case OP_IdxGE: {        /* jump */
4670   VdbeCursor *pC;
4671   int res;
4672   UnpackedRecord r;
4673 
4674   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4675   pC = p->apCsr[pOp->p1];
4676   assert( pC!=0 );
4677   assert( pC->isOrdered );
4678   if( ALWAYS(pC->pCursor!=0) ){
4679     assert( pC->deferredMoveto==0 );
4680     assert( pOp->p5==0 || pOp->p5==1 );
4681     assert( pOp->p4type==P4_INT32 );
4682     r.pKeyInfo = pC->pKeyInfo;
4683     r.nField = (u16)pOp->p4.i;
4684     if( pOp->p5 ){
4685       r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
4686     }else{
4687       r.flags = UNPACKED_PREFIX_MATCH;
4688     }
4689     r.aMem = &aMem[pOp->p3];
4690 #ifdef SQLITE_DEBUG
4691     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4692 #endif
4693     rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4694     if( pOp->opcode==OP_IdxLT ){
4695       res = -res;
4696     }else{
4697       assert( pOp->opcode==OP_IdxGE );
4698       res++;
4699     }
4700     if( res>0 ){
4701       pc = pOp->p2 - 1 ;
4702     }
4703   }
4704   break;
4705 }
4706 
4707 /* Opcode: Destroy P1 P2 P3 * *
4708 **
4709 ** Delete an entire database table or index whose root page in the database
4710 ** file is given by P1.
4711 **
4712 ** The table being destroyed is in the main database file if P3==0.  If
4713 ** P3==1 then the table to be clear is in the auxiliary database file
4714 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4715 **
4716 ** If AUTOVACUUM is enabled then it is possible that another root page
4717 ** might be moved into the newly deleted root page in order to keep all
4718 ** root pages contiguous at the beginning of the database.  The former
4719 ** value of the root page that moved - its value before the move occurred -
4720 ** is stored in register P2.  If no page
4721 ** movement was required (because the table being dropped was already
4722 ** the last one in the database) then a zero is stored in register P2.
4723 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4724 **
4725 ** See also: Clear
4726 */
4727 case OP_Destroy: {     /* out2-prerelease */
4728   int iMoved;
4729   int iCnt;
4730   Vdbe *pVdbe;
4731   int iDb;
4732 
4733 #ifndef SQLITE_OMIT_VIRTUALTABLE
4734   iCnt = 0;
4735   for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4736     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4737       iCnt++;
4738     }
4739   }
4740 #else
4741   iCnt = db->activeVdbeCnt;
4742 #endif
4743   pOut->flags = MEM_Null;
4744   if( iCnt>1 ){
4745     rc = SQLITE_LOCKED;
4746     p->errorAction = OE_Abort;
4747   }else{
4748     iDb = pOp->p3;
4749     assert( iCnt==1 );
4750     assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4751     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4752     pOut->flags = MEM_Int;
4753     pOut->u.i = iMoved;
4754 #ifndef SQLITE_OMIT_AUTOVACUUM
4755     if( rc==SQLITE_OK && iMoved!=0 ){
4756       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4757       /* All OP_Destroy operations occur on the same btree */
4758       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4759       resetSchemaOnFault = iDb+1;
4760     }
4761 #endif
4762   }
4763   break;
4764 }
4765 
4766 /* Opcode: Clear P1 P2 P3
4767 **
4768 ** Delete all contents of the database table or index whose root page
4769 ** in the database file is given by P1.  But, unlike Destroy, do not
4770 ** remove the table or index from the database file.
4771 **
4772 ** The table being clear is in the main database file if P2==0.  If
4773 ** P2==1 then the table to be clear is in the auxiliary database file
4774 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4775 **
4776 ** If the P3 value is non-zero, then the table referred to must be an
4777 ** intkey table (an SQL table, not an index). In this case the row change
4778 ** count is incremented by the number of rows in the table being cleared.
4779 ** If P3 is greater than zero, then the value stored in register P3 is
4780 ** also incremented by the number of rows in the table being cleared.
4781 **
4782 ** See also: Destroy
4783 */
4784 case OP_Clear: {
4785   int nChange;
4786 
4787   nChange = 0;
4788   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4789   rc = sqlite3BtreeClearTable(
4790       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4791   );
4792   if( pOp->p3 ){
4793     p->nChange += nChange;
4794     if( pOp->p3>0 ){
4795       assert( memIsValid(&aMem[pOp->p3]) );
4796       memAboutToChange(p, &aMem[pOp->p3]);
4797       aMem[pOp->p3].u.i += nChange;
4798     }
4799   }
4800   break;
4801 }
4802 
4803 /* Opcode: CreateTable P1 P2 * * *
4804 **
4805 ** Allocate a new table in the main database file if P1==0 or in the
4806 ** auxiliary database file if P1==1 or in an attached database if
4807 ** P1>1.  Write the root page number of the new table into
4808 ** register P2
4809 **
4810 ** The difference between a table and an index is this:  A table must
4811 ** have a 4-byte integer key and can have arbitrary data.  An index
4812 ** has an arbitrary key but no data.
4813 **
4814 ** See also: CreateIndex
4815 */
4816 /* Opcode: CreateIndex P1 P2 * * *
4817 **
4818 ** Allocate a new index in the main database file if P1==0 or in the
4819 ** auxiliary database file if P1==1 or in an attached database if
4820 ** P1>1.  Write the root page number of the new table into
4821 ** register P2.
4822 **
4823 ** See documentation on OP_CreateTable for additional information.
4824 */
4825 case OP_CreateIndex:            /* out2-prerelease */
4826 case OP_CreateTable: {          /* out2-prerelease */
4827   int pgno;
4828   int flags;
4829   Db *pDb;
4830 
4831   pgno = 0;
4832   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4833   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4834   pDb = &db->aDb[pOp->p1];
4835   assert( pDb->pBt!=0 );
4836   if( pOp->opcode==OP_CreateTable ){
4837     /* flags = BTREE_INTKEY; */
4838     flags = BTREE_INTKEY;
4839   }else{
4840     flags = BTREE_BLOBKEY;
4841   }
4842   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4843   pOut->u.i = pgno;
4844   break;
4845 }
4846 
4847 /* Opcode: ParseSchema P1 * * P4 *
4848 **
4849 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4850 ** that match the WHERE clause P4.
4851 **
4852 ** This opcode invokes the parser to create a new virtual machine,
4853 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
4854 */
4855 case OP_ParseSchema: {
4856   int iDb;
4857   const char *zMaster;
4858   char *zSql;
4859   InitData initData;
4860 
4861   /* Any prepared statement that invokes this opcode will hold mutexes
4862   ** on every btree.  This is a prerequisite for invoking
4863   ** sqlite3InitCallback().
4864   */
4865 #ifdef SQLITE_DEBUG
4866   for(iDb=0; iDb<db->nDb; iDb++){
4867     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4868   }
4869 #endif
4870 
4871   iDb = pOp->p1;
4872   assert( iDb>=0 && iDb<db->nDb );
4873   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4874   /* Used to be a conditional */ {
4875     zMaster = SCHEMA_TABLE(iDb);
4876     initData.db = db;
4877     initData.iDb = pOp->p1;
4878     initData.pzErrMsg = &p->zErrMsg;
4879     zSql = sqlite3MPrintf(db,
4880        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4881        db->aDb[iDb].zName, zMaster, pOp->p4.z);
4882     if( zSql==0 ){
4883       rc = SQLITE_NOMEM;
4884     }else{
4885       assert( db->init.busy==0 );
4886       db->init.busy = 1;
4887       initData.rc = SQLITE_OK;
4888       assert( !db->mallocFailed );
4889       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4890       if( rc==SQLITE_OK ) rc = initData.rc;
4891       sqlite3DbFree(db, zSql);
4892       db->init.busy = 0;
4893     }
4894   }
4895   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
4896   if( rc==SQLITE_NOMEM ){
4897     goto no_mem;
4898   }
4899   break;
4900 }
4901 
4902 #if !defined(SQLITE_OMIT_ANALYZE)
4903 /* Opcode: LoadAnalysis P1 * * * *
4904 **
4905 ** Read the sqlite_stat1 table for database P1 and load the content
4906 ** of that table into the internal index hash table.  This will cause
4907 ** the analysis to be used when preparing all subsequent queries.
4908 */
4909 case OP_LoadAnalysis: {
4910   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4911   rc = sqlite3AnalysisLoad(db, pOp->p1);
4912   break;
4913 }
4914 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4915 
4916 /* Opcode: DropTable P1 * * P4 *
4917 **
4918 ** Remove the internal (in-memory) data structures that describe
4919 ** the table named P4 in database P1.  This is called after a table
4920 ** is dropped in order to keep the internal representation of the
4921 ** schema consistent with what is on disk.
4922 */
4923 case OP_DropTable: {
4924   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4925   break;
4926 }
4927 
4928 /* Opcode: DropIndex P1 * * P4 *
4929 **
4930 ** Remove the internal (in-memory) data structures that describe
4931 ** the index named P4 in database P1.  This is called after an index
4932 ** is dropped in order to keep the internal representation of the
4933 ** schema consistent with what is on disk.
4934 */
4935 case OP_DropIndex: {
4936   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4937   break;
4938 }
4939 
4940 /* Opcode: DropTrigger P1 * * P4 *
4941 **
4942 ** Remove the internal (in-memory) data structures that describe
4943 ** the trigger named P4 in database P1.  This is called after a trigger
4944 ** is dropped in order to keep the internal representation of the
4945 ** schema consistent with what is on disk.
4946 */
4947 case OP_DropTrigger: {
4948   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4949   break;
4950 }
4951 
4952 
4953 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4954 /* Opcode: IntegrityCk P1 P2 P3 * P5
4955 **
4956 ** Do an analysis of the currently open database.  Store in
4957 ** register P1 the text of an error message describing any problems.
4958 ** If no problems are found, store a NULL in register P1.
4959 **
4960 ** The register P3 contains the maximum number of allowed errors.
4961 ** At most reg(P3) errors will be reported.
4962 ** In other words, the analysis stops as soon as reg(P1) errors are
4963 ** seen.  Reg(P1) is updated with the number of errors remaining.
4964 **
4965 ** The root page numbers of all tables in the database are integer
4966 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
4967 ** total.
4968 **
4969 ** If P5 is not zero, the check is done on the auxiliary database
4970 ** file, not the main database file.
4971 **
4972 ** This opcode is used to implement the integrity_check pragma.
4973 */
4974 case OP_IntegrityCk: {
4975   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
4976   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
4977   int j;          /* Loop counter */
4978   int nErr;       /* Number of errors reported */
4979   char *z;        /* Text of the error report */
4980   Mem *pnErr;     /* Register keeping track of errors remaining */
4981 
4982   nRoot = pOp->p2;
4983   assert( nRoot>0 );
4984   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4985   if( aRoot==0 ) goto no_mem;
4986   assert( pOp->p3>0 && pOp->p3<=p->nMem );
4987   pnErr = &aMem[pOp->p3];
4988   assert( (pnErr->flags & MEM_Int)!=0 );
4989   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4990   pIn1 = &aMem[pOp->p1];
4991   for(j=0; j<nRoot; j++){
4992     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4993   }
4994   aRoot[j] = 0;
4995   assert( pOp->p5<db->nDb );
4996   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
4997   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4998                                  (int)pnErr->u.i, &nErr);
4999   sqlite3DbFree(db, aRoot);
5000   pnErr->u.i -= nErr;
5001   sqlite3VdbeMemSetNull(pIn1);
5002   if( nErr==0 ){
5003     assert( z==0 );
5004   }else if( z==0 ){
5005     goto no_mem;
5006   }else{
5007     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5008   }
5009   UPDATE_MAX_BLOBSIZE(pIn1);
5010   sqlite3VdbeChangeEncoding(pIn1, encoding);
5011   break;
5012 }
5013 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5014 
5015 /* Opcode: RowSetAdd P1 P2 * * *
5016 **
5017 ** Insert the integer value held by register P2 into a boolean index
5018 ** held in register P1.
5019 **
5020 ** An assertion fails if P2 is not an integer.
5021 */
5022 case OP_RowSetAdd: {       /* in1, in2 */
5023   pIn1 = &aMem[pOp->p1];
5024   pIn2 = &aMem[pOp->p2];
5025   assert( (pIn2->flags & MEM_Int)!=0 );
5026   if( (pIn1->flags & MEM_RowSet)==0 ){
5027     sqlite3VdbeMemSetRowSet(pIn1);
5028     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5029   }
5030   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5031   break;
5032 }
5033 
5034 /* Opcode: RowSetRead P1 P2 P3 * *
5035 **
5036 ** Extract the smallest value from boolean index P1 and put that value into
5037 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5038 ** unchanged and jump to instruction P2.
5039 */
5040 case OP_RowSetRead: {       /* jump, in1, out3 */
5041   i64 val;
5042   CHECK_FOR_INTERRUPT;
5043   pIn1 = &aMem[pOp->p1];
5044   if( (pIn1->flags & MEM_RowSet)==0
5045    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5046   ){
5047     /* The boolean index is empty */
5048     sqlite3VdbeMemSetNull(pIn1);
5049     pc = pOp->p2 - 1;
5050   }else{
5051     /* A value was pulled from the index */
5052     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5053   }
5054   break;
5055 }
5056 
5057 /* Opcode: RowSetTest P1 P2 P3 P4
5058 **
5059 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5060 ** contains a RowSet object and that RowSet object contains
5061 ** the value held in P3, jump to register P2. Otherwise, insert the
5062 ** integer in P3 into the RowSet and continue on to the
5063 ** next opcode.
5064 **
5065 ** The RowSet object is optimized for the case where successive sets
5066 ** of integers, where each set contains no duplicates. Each set
5067 ** of values is identified by a unique P4 value. The first set
5068 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5069 ** non-negative.  For non-negative values of P4 only the lower 4
5070 ** bits are significant.
5071 **
5072 ** This allows optimizations: (a) when P4==0 there is no need to test
5073 ** the rowset object for P3, as it is guaranteed not to contain it,
5074 ** (b) when P4==-1 there is no need to insert the value, as it will
5075 ** never be tested for, and (c) when a value that is part of set X is
5076 ** inserted, there is no need to search to see if the same value was
5077 ** previously inserted as part of set X (only if it was previously
5078 ** inserted as part of some other set).
5079 */
5080 case OP_RowSetTest: {                     /* jump, in1, in3 */
5081   int iSet;
5082   int exists;
5083 
5084   pIn1 = &aMem[pOp->p1];
5085   pIn3 = &aMem[pOp->p3];
5086   iSet = pOp->p4.i;
5087   assert( pIn3->flags&MEM_Int );
5088 
5089   /* If there is anything other than a rowset object in memory cell P1,
5090   ** delete it now and initialize P1 with an empty rowset
5091   */
5092   if( (pIn1->flags & MEM_RowSet)==0 ){
5093     sqlite3VdbeMemSetRowSet(pIn1);
5094     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5095   }
5096 
5097   assert( pOp->p4type==P4_INT32 );
5098   assert( iSet==-1 || iSet>=0 );
5099   if( iSet ){
5100     exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5101                                (u8)(iSet>=0 ? iSet & 0xf : 0xff),
5102                                pIn3->u.i);
5103     if( exists ){
5104       pc = pOp->p2 - 1;
5105       break;
5106     }
5107   }
5108   if( iSet>=0 ){
5109     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5110   }
5111   break;
5112 }
5113 
5114 
5115 #ifndef SQLITE_OMIT_TRIGGER
5116 
5117 /* Opcode: Program P1 P2 P3 P4 *
5118 **
5119 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5120 **
5121 ** P1 contains the address of the memory cell that contains the first memory
5122 ** cell in an array of values used as arguments to the sub-program. P2
5123 ** contains the address to jump to if the sub-program throws an IGNORE
5124 ** exception using the RAISE() function. Register P3 contains the address
5125 ** of a memory cell in this (the parent) VM that is used to allocate the
5126 ** memory required by the sub-vdbe at runtime.
5127 **
5128 ** P4 is a pointer to the VM containing the trigger program.
5129 */
5130 case OP_Program: {        /* jump */
5131   int nMem;               /* Number of memory registers for sub-program */
5132   int nByte;              /* Bytes of runtime space required for sub-program */
5133   Mem *pRt;               /* Register to allocate runtime space */
5134   Mem *pMem;              /* Used to iterate through memory cells */
5135   Mem *pEnd;              /* Last memory cell in new array */
5136   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5137   SubProgram *pProgram;   /* Sub-program to execute */
5138   void *t;                /* Token identifying trigger */
5139 
5140   pProgram = pOp->p4.pProgram;
5141   pRt = &aMem[pOp->p3];
5142   assert( pProgram->nOp>0 );
5143 
5144   /* If the p5 flag is clear, then recursive invocation of triggers is
5145   ** disabled for backwards compatibility (p5 is set if this sub-program
5146   ** is really a trigger, not a foreign key action, and the flag set
5147   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5148   **
5149   ** It is recursive invocation of triggers, at the SQL level, that is
5150   ** disabled. In some cases a single trigger may generate more than one
5151   ** SubProgram (if the trigger may be executed with more than one different
5152   ** ON CONFLICT algorithm). SubProgram structures associated with a
5153   ** single trigger all have the same value for the SubProgram.token
5154   ** variable.  */
5155   if( pOp->p5 ){
5156     t = pProgram->token;
5157     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5158     if( pFrame ) break;
5159   }
5160 
5161   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5162     rc = SQLITE_ERROR;
5163     sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5164     break;
5165   }
5166 
5167   /* Register pRt is used to store the memory required to save the state
5168   ** of the current program, and the memory required at runtime to execute
5169   ** the trigger program. If this trigger has been fired before, then pRt
5170   ** is already allocated. Otherwise, it must be initialized.  */
5171   if( (pRt->flags&MEM_Frame)==0 ){
5172     /* SubProgram.nMem is set to the number of memory cells used by the
5173     ** program stored in SubProgram.aOp. As well as these, one memory
5174     ** cell is required for each cursor used by the program. Set local
5175     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5176     */
5177     nMem = pProgram->nMem + pProgram->nCsr;
5178     nByte = ROUND8(sizeof(VdbeFrame))
5179               + nMem * sizeof(Mem)
5180               + pProgram->nCsr * sizeof(VdbeCursor *)
5181               + pProgram->nOnce * sizeof(u8);
5182     pFrame = sqlite3DbMallocZero(db, nByte);
5183     if( !pFrame ){
5184       goto no_mem;
5185     }
5186     sqlite3VdbeMemRelease(pRt);
5187     pRt->flags = MEM_Frame;
5188     pRt->u.pFrame = pFrame;
5189 
5190     pFrame->v = p;
5191     pFrame->nChildMem = nMem;
5192     pFrame->nChildCsr = pProgram->nCsr;
5193     pFrame->pc = pc;
5194     pFrame->aMem = p->aMem;
5195     pFrame->nMem = p->nMem;
5196     pFrame->apCsr = p->apCsr;
5197     pFrame->nCursor = p->nCursor;
5198     pFrame->aOp = p->aOp;
5199     pFrame->nOp = p->nOp;
5200     pFrame->token = pProgram->token;
5201     pFrame->aOnceFlag = p->aOnceFlag;
5202     pFrame->nOnceFlag = p->nOnceFlag;
5203 
5204     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5205     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5206       pMem->flags = MEM_Invalid;
5207       pMem->db = db;
5208     }
5209   }else{
5210     pFrame = pRt->u.pFrame;
5211     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5212     assert( pProgram->nCsr==pFrame->nChildCsr );
5213     assert( pc==pFrame->pc );
5214   }
5215 
5216   p->nFrame++;
5217   pFrame->pParent = p->pFrame;
5218   pFrame->lastRowid = lastRowid;
5219   pFrame->nChange = p->nChange;
5220   p->nChange = 0;
5221   p->pFrame = pFrame;
5222   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5223   p->nMem = pFrame->nChildMem;
5224   p->nCursor = (u16)pFrame->nChildCsr;
5225   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5226   p->aOp = aOp = pProgram->aOp;
5227   p->nOp = pProgram->nOp;
5228   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5229   p->nOnceFlag = pProgram->nOnce;
5230   pc = -1;
5231   memset(p->aOnceFlag, 0, p->nOnceFlag);
5232 
5233   break;
5234 }
5235 
5236 /* Opcode: Param P1 P2 * * *
5237 **
5238 ** This opcode is only ever present in sub-programs called via the
5239 ** OP_Program instruction. Copy a value currently stored in a memory
5240 ** cell of the calling (parent) frame to cell P2 in the current frames
5241 ** address space. This is used by trigger programs to access the new.*
5242 ** and old.* values.
5243 **
5244 ** The address of the cell in the parent frame is determined by adding
5245 ** the value of the P1 argument to the value of the P1 argument to the
5246 ** calling OP_Program instruction.
5247 */
5248 case OP_Param: {           /* out2-prerelease */
5249   VdbeFrame *pFrame;
5250   Mem *pIn;
5251   pFrame = p->pFrame;
5252   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5253   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5254   break;
5255 }
5256 
5257 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5258 
5259 #ifndef SQLITE_OMIT_FOREIGN_KEY
5260 /* Opcode: FkCounter P1 P2 * * *
5261 **
5262 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5263 ** If P1 is non-zero, the database constraint counter is incremented
5264 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5265 ** statement counter is incremented (immediate foreign key constraints).
5266 */
5267 case OP_FkCounter: {
5268   if( pOp->p1 ){
5269     db->nDeferredCons += pOp->p2;
5270   }else{
5271     p->nFkConstraint += pOp->p2;
5272   }
5273   break;
5274 }
5275 
5276 /* Opcode: FkIfZero P1 P2 * * *
5277 **
5278 ** This opcode tests if a foreign key constraint-counter is currently zero.
5279 ** If so, jump to instruction P2. Otherwise, fall through to the next
5280 ** instruction.
5281 **
5282 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5283 ** is zero (the one that counts deferred constraint violations). If P1 is
5284 ** zero, the jump is taken if the statement constraint-counter is zero
5285 ** (immediate foreign key constraint violations).
5286 */
5287 case OP_FkIfZero: {         /* jump */
5288   if( pOp->p1 ){
5289     if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5290   }else{
5291     if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5292   }
5293   break;
5294 }
5295 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5296 
5297 #ifndef SQLITE_OMIT_AUTOINCREMENT
5298 /* Opcode: MemMax P1 P2 * * *
5299 **
5300 ** P1 is a register in the root frame of this VM (the root frame is
5301 ** different from the current frame if this instruction is being executed
5302 ** within a sub-program). Set the value of register P1 to the maximum of
5303 ** its current value and the value in register P2.
5304 **
5305 ** This instruction throws an error if the memory cell is not initially
5306 ** an integer.
5307 */
5308 case OP_MemMax: {        /* in2 */
5309   Mem *pIn1;
5310   VdbeFrame *pFrame;
5311   if( p->pFrame ){
5312     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5313     pIn1 = &pFrame->aMem[pOp->p1];
5314   }else{
5315     pIn1 = &aMem[pOp->p1];
5316   }
5317   assert( memIsValid(pIn1) );
5318   sqlite3VdbeMemIntegerify(pIn1);
5319   pIn2 = &aMem[pOp->p2];
5320   sqlite3VdbeMemIntegerify(pIn2);
5321   if( pIn1->u.i<pIn2->u.i){
5322     pIn1->u.i = pIn2->u.i;
5323   }
5324   break;
5325 }
5326 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5327 
5328 /* Opcode: IfPos P1 P2 * * *
5329 **
5330 ** If the value of register P1 is 1 or greater, jump to P2.
5331 **
5332 ** It is illegal to use this instruction on a register that does
5333 ** not contain an integer.  An assertion fault will result if you try.
5334 */
5335 case OP_IfPos: {        /* jump, in1 */
5336   pIn1 = &aMem[pOp->p1];
5337   assert( pIn1->flags&MEM_Int );
5338   if( pIn1->u.i>0 ){
5339      pc = pOp->p2 - 1;
5340   }
5341   break;
5342 }
5343 
5344 /* Opcode: IfNeg P1 P2 * * *
5345 **
5346 ** If the value of register P1 is less than zero, jump to P2.
5347 **
5348 ** It is illegal to use this instruction on a register that does
5349 ** not contain an integer.  An assertion fault will result if you try.
5350 */
5351 case OP_IfNeg: {        /* jump, in1 */
5352   pIn1 = &aMem[pOp->p1];
5353   assert( pIn1->flags&MEM_Int );
5354   if( pIn1->u.i<0 ){
5355      pc = pOp->p2 - 1;
5356   }
5357   break;
5358 }
5359 
5360 /* Opcode: IfZero P1 P2 P3 * *
5361 **
5362 ** The register P1 must contain an integer.  Add literal P3 to the
5363 ** value in register P1.  If the result is exactly 0, jump to P2.
5364 **
5365 ** It is illegal to use this instruction on a register that does
5366 ** not contain an integer.  An assertion fault will result if you try.
5367 */
5368 case OP_IfZero: {        /* jump, in1 */
5369   pIn1 = &aMem[pOp->p1];
5370   assert( pIn1->flags&MEM_Int );
5371   pIn1->u.i += pOp->p3;
5372   if( pIn1->u.i==0 ){
5373      pc = pOp->p2 - 1;
5374   }
5375   break;
5376 }
5377 
5378 /* Opcode: AggStep * P2 P3 P4 P5
5379 **
5380 ** Execute the step function for an aggregate.  The
5381 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5382 ** structure that specifies the function.  Use register
5383 ** P3 as the accumulator.
5384 **
5385 ** The P5 arguments are taken from register P2 and its
5386 ** successors.
5387 */
5388 case OP_AggStep: {
5389   int n;
5390   int i;
5391   Mem *pMem;
5392   Mem *pRec;
5393   sqlite3_context ctx;
5394   sqlite3_value **apVal;
5395 
5396   n = pOp->p5;
5397   assert( n>=0 );
5398   pRec = &aMem[pOp->p2];
5399   apVal = p->apArg;
5400   assert( apVal || n==0 );
5401   for(i=0; i<n; i++, pRec++){
5402     assert( memIsValid(pRec) );
5403     apVal[i] = pRec;
5404     memAboutToChange(p, pRec);
5405     sqlite3VdbeMemStoreType(pRec);
5406   }
5407   ctx.pFunc = pOp->p4.pFunc;
5408   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5409   ctx.pMem = pMem = &aMem[pOp->p3];
5410   pMem->n++;
5411   ctx.s.flags = MEM_Null;
5412   ctx.s.z = 0;
5413   ctx.s.zMalloc = 0;
5414   ctx.s.xDel = 0;
5415   ctx.s.db = db;
5416   ctx.isError = 0;
5417   ctx.pColl = 0;
5418   ctx.skipFlag = 0;
5419   if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5420     assert( pOp>p->aOp );
5421     assert( pOp[-1].p4type==P4_COLLSEQ );
5422     assert( pOp[-1].opcode==OP_CollSeq );
5423     ctx.pColl = pOp[-1].p4.pColl;
5424   }
5425   (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5426   if( ctx.isError ){
5427     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5428     rc = ctx.isError;
5429   }
5430   if( ctx.skipFlag ){
5431     assert( pOp[-1].opcode==OP_CollSeq );
5432     i = pOp[-1].p1;
5433     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5434   }
5435 
5436   sqlite3VdbeMemRelease(&ctx.s);
5437 
5438   break;
5439 }
5440 
5441 /* Opcode: AggFinal P1 P2 * P4 *
5442 **
5443 ** Execute the finalizer function for an aggregate.  P1 is
5444 ** the memory location that is the accumulator for the aggregate.
5445 **
5446 ** P2 is the number of arguments that the step function takes and
5447 ** P4 is a pointer to the FuncDef for this function.  The P2
5448 ** argument is not used by this opcode.  It is only there to disambiguate
5449 ** functions that can take varying numbers of arguments.  The
5450 ** P4 argument is only needed for the degenerate case where
5451 ** the step function was not previously called.
5452 */
5453 case OP_AggFinal: {
5454   Mem *pMem;
5455   assert( pOp->p1>0 && pOp->p1<=p->nMem );
5456   pMem = &aMem[pOp->p1];
5457   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5458   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5459   if( rc ){
5460     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5461   }
5462   sqlite3VdbeChangeEncoding(pMem, encoding);
5463   UPDATE_MAX_BLOBSIZE(pMem);
5464   if( sqlite3VdbeMemTooBig(pMem) ){
5465     goto too_big;
5466   }
5467   break;
5468 }
5469 
5470 #ifndef SQLITE_OMIT_WAL
5471 /* Opcode: Checkpoint P1 P2 P3 * *
5472 **
5473 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5474 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5475 ** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
5476 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
5477 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5478 ** in the WAL that have been checkpointed after the checkpoint
5479 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
5480 ** mem[P3+2] are initialized to -1.
5481 */
5482 case OP_Checkpoint: {
5483   int i;                          /* Loop counter */
5484   int aRes[3];                    /* Results */
5485   Mem *pMem;                      /* Write results here */
5486 
5487   aRes[0] = 0;
5488   aRes[1] = aRes[2] = -1;
5489   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5490        || pOp->p2==SQLITE_CHECKPOINT_FULL
5491        || pOp->p2==SQLITE_CHECKPOINT_RESTART
5492   );
5493   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5494   if( rc==SQLITE_BUSY ){
5495     rc = SQLITE_OK;
5496     aRes[0] = 1;
5497   }
5498   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5499     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5500   }
5501   break;
5502 };
5503 #endif
5504 
5505 #ifndef SQLITE_OMIT_PRAGMA
5506 /* Opcode: JournalMode P1 P2 P3 * P5
5507 **
5508 ** Change the journal mode of database P1 to P3. P3 must be one of the
5509 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5510 ** modes (delete, truncate, persist, off and memory), this is a simple
5511 ** operation. No IO is required.
5512 **
5513 ** If changing into or out of WAL mode the procedure is more complicated.
5514 **
5515 ** Write a string containing the final journal-mode to register P2.
5516 */
5517 case OP_JournalMode: {    /* out2-prerelease */
5518   Btree *pBt;                     /* Btree to change journal mode of */
5519   Pager *pPager;                  /* Pager associated with pBt */
5520   int eNew;                       /* New journal mode */
5521   int eOld;                       /* The old journal mode */
5522 #ifndef SQLITE_OMIT_WAL
5523   const char *zFilename;          /* Name of database file for pPager */
5524 #endif
5525 
5526   eNew = pOp->p3;
5527   assert( eNew==PAGER_JOURNALMODE_DELETE
5528        || eNew==PAGER_JOURNALMODE_TRUNCATE
5529        || eNew==PAGER_JOURNALMODE_PERSIST
5530        || eNew==PAGER_JOURNALMODE_OFF
5531        || eNew==PAGER_JOURNALMODE_MEMORY
5532        || eNew==PAGER_JOURNALMODE_WAL
5533        || eNew==PAGER_JOURNALMODE_QUERY
5534   );
5535   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5536 
5537   pBt = db->aDb[pOp->p1].pBt;
5538   pPager = sqlite3BtreePager(pBt);
5539   eOld = sqlite3PagerGetJournalMode(pPager);
5540   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5541   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5542 
5543 #ifndef SQLITE_OMIT_WAL
5544   zFilename = sqlite3PagerFilename(pPager, 1);
5545 
5546   /* Do not allow a transition to journal_mode=WAL for a database
5547   ** in temporary storage or if the VFS does not support shared memory
5548   */
5549   if( eNew==PAGER_JOURNALMODE_WAL
5550    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
5551        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
5552   ){
5553     eNew = eOld;
5554   }
5555 
5556   if( (eNew!=eOld)
5557    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5558   ){
5559     if( !db->autoCommit || db->activeVdbeCnt>1 ){
5560       rc = SQLITE_ERROR;
5561       sqlite3SetString(&p->zErrMsg, db,
5562           "cannot change %s wal mode from within a transaction",
5563           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5564       );
5565       break;
5566     }else{
5567 
5568       if( eOld==PAGER_JOURNALMODE_WAL ){
5569         /* If leaving WAL mode, close the log file. If successful, the call
5570         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5571         ** file. An EXCLUSIVE lock may still be held on the database file
5572         ** after a successful return.
5573         */
5574         rc = sqlite3PagerCloseWal(pPager);
5575         if( rc==SQLITE_OK ){
5576           sqlite3PagerSetJournalMode(pPager, eNew);
5577         }
5578       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5579         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
5580         ** as an intermediate */
5581         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5582       }
5583 
5584       /* Open a transaction on the database file. Regardless of the journal
5585       ** mode, this transaction always uses a rollback journal.
5586       */
5587       assert( sqlite3BtreeIsInTrans(pBt)==0 );
5588       if( rc==SQLITE_OK ){
5589         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5590       }
5591     }
5592   }
5593 #endif /* ifndef SQLITE_OMIT_WAL */
5594 
5595   if( rc ){
5596     eNew = eOld;
5597   }
5598   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5599 
5600   pOut = &aMem[pOp->p2];
5601   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5602   pOut->z = (char *)sqlite3JournalModename(eNew);
5603   pOut->n = sqlite3Strlen30(pOut->z);
5604   pOut->enc = SQLITE_UTF8;
5605   sqlite3VdbeChangeEncoding(pOut, encoding);
5606   break;
5607 };
5608 #endif /* SQLITE_OMIT_PRAGMA */
5609 
5610 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5611 /* Opcode: Vacuum * * * * *
5612 **
5613 ** Vacuum the entire database.  This opcode will cause other virtual
5614 ** machines to be created and run.  It may not be called from within
5615 ** a transaction.
5616 */
5617 case OP_Vacuum: {
5618   rc = sqlite3RunVacuum(&p->zErrMsg, db);
5619   break;
5620 }
5621 #endif
5622 
5623 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5624 /* Opcode: IncrVacuum P1 P2 * * *
5625 **
5626 ** Perform a single step of the incremental vacuum procedure on
5627 ** the P1 database. If the vacuum has finished, jump to instruction
5628 ** P2. Otherwise, fall through to the next instruction.
5629 */
5630 case OP_IncrVacuum: {        /* jump */
5631   Btree *pBt;
5632 
5633   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5634   assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5635   pBt = db->aDb[pOp->p1].pBt;
5636   rc = sqlite3BtreeIncrVacuum(pBt);
5637   if( rc==SQLITE_DONE ){
5638     pc = pOp->p2 - 1;
5639     rc = SQLITE_OK;
5640   }
5641   break;
5642 }
5643 #endif
5644 
5645 /* Opcode: Expire P1 * * * *
5646 **
5647 ** Cause precompiled statements to become expired. An expired statement
5648 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5649 ** (via sqlite3_step()).
5650 **
5651 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5652 ** then only the currently executing statement is affected.
5653 */
5654 case OP_Expire: {
5655   if( !pOp->p1 ){
5656     sqlite3ExpirePreparedStatements(db);
5657   }else{
5658     p->expired = 1;
5659   }
5660   break;
5661 }
5662 
5663 #ifndef SQLITE_OMIT_SHARED_CACHE
5664 /* Opcode: TableLock P1 P2 P3 P4 *
5665 **
5666 ** Obtain a lock on a particular table. This instruction is only used when
5667 ** the shared-cache feature is enabled.
5668 **
5669 ** P1 is the index of the database in sqlite3.aDb[] of the database
5670 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
5671 ** a write lock if P3==1.
5672 **
5673 ** P2 contains the root-page of the table to lock.
5674 **
5675 ** P4 contains a pointer to the name of the table being locked. This is only
5676 ** used to generate an error message if the lock cannot be obtained.
5677 */
5678 case OP_TableLock: {
5679   u8 isWriteLock = (u8)pOp->p3;
5680   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5681     int p1 = pOp->p1;
5682     assert( p1>=0 && p1<db->nDb );
5683     assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5684     assert( isWriteLock==0 || isWriteLock==1 );
5685     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5686     if( (rc&0xFF)==SQLITE_LOCKED ){
5687       const char *z = pOp->p4.z;
5688       sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5689     }
5690   }
5691   break;
5692 }
5693 #endif /* SQLITE_OMIT_SHARED_CACHE */
5694 
5695 #ifndef SQLITE_OMIT_VIRTUALTABLE
5696 /* Opcode: VBegin * * * P4 *
5697 **
5698 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5699 ** xBegin method for that table.
5700 **
5701 ** Also, whether or not P4 is set, check that this is not being called from
5702 ** within a callback to a virtual table xSync() method. If it is, the error
5703 ** code will be set to SQLITE_LOCKED.
5704 */
5705 case OP_VBegin: {
5706   VTable *pVTab;
5707   pVTab = pOp->p4.pVtab;
5708   rc = sqlite3VtabBegin(db, pVTab);
5709   if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5710   break;
5711 }
5712 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5713 
5714 #ifndef SQLITE_OMIT_VIRTUALTABLE
5715 /* Opcode: VCreate P1 * * P4 *
5716 **
5717 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5718 ** for that table.
5719 */
5720 case OP_VCreate: {
5721   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5722   break;
5723 }
5724 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5725 
5726 #ifndef SQLITE_OMIT_VIRTUALTABLE
5727 /* Opcode: VDestroy P1 * * P4 *
5728 **
5729 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
5730 ** of that table.
5731 */
5732 case OP_VDestroy: {
5733   p->inVtabMethod = 2;
5734   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5735   p->inVtabMethod = 0;
5736   break;
5737 }
5738 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5739 
5740 #ifndef SQLITE_OMIT_VIRTUALTABLE
5741 /* Opcode: VOpen P1 * * P4 *
5742 **
5743 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5744 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
5745 ** table and stores that cursor in P1.
5746 */
5747 case OP_VOpen: {
5748   VdbeCursor *pCur;
5749   sqlite3_vtab_cursor *pVtabCursor;
5750   sqlite3_vtab *pVtab;
5751   sqlite3_module *pModule;
5752 
5753   pCur = 0;
5754   pVtabCursor = 0;
5755   pVtab = pOp->p4.pVtab->pVtab;
5756   pModule = (sqlite3_module *)pVtab->pModule;
5757   assert(pVtab && pModule);
5758   rc = pModule->xOpen(pVtab, &pVtabCursor);
5759   importVtabErrMsg(p, pVtab);
5760   if( SQLITE_OK==rc ){
5761     /* Initialize sqlite3_vtab_cursor base class */
5762     pVtabCursor->pVtab = pVtab;
5763 
5764     /* Initialize vdbe cursor object */
5765     pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5766     if( pCur ){
5767       pCur->pVtabCursor = pVtabCursor;
5768       pCur->pModule = pVtabCursor->pVtab->pModule;
5769     }else{
5770       db->mallocFailed = 1;
5771       pModule->xClose(pVtabCursor);
5772     }
5773   }
5774   break;
5775 }
5776 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5777 
5778 #ifndef SQLITE_OMIT_VIRTUALTABLE
5779 /* Opcode: VFilter P1 P2 P3 P4 *
5780 **
5781 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
5782 ** the filtered result set is empty.
5783 **
5784 ** P4 is either NULL or a string that was generated by the xBestIndex
5785 ** method of the module.  The interpretation of the P4 string is left
5786 ** to the module implementation.
5787 **
5788 ** This opcode invokes the xFilter method on the virtual table specified
5789 ** by P1.  The integer query plan parameter to xFilter is stored in register
5790 ** P3. Register P3+1 stores the argc parameter to be passed to the
5791 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5792 ** additional parameters which are passed to
5793 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5794 **
5795 ** A jump is made to P2 if the result set after filtering would be empty.
5796 */
5797 case OP_VFilter: {   /* jump */
5798   int nArg;
5799   int iQuery;
5800   const sqlite3_module *pModule;
5801   Mem *pQuery;
5802   Mem *pArgc;
5803   sqlite3_vtab_cursor *pVtabCursor;
5804   sqlite3_vtab *pVtab;
5805   VdbeCursor *pCur;
5806   int res;
5807   int i;
5808   Mem **apArg;
5809 
5810   pQuery = &aMem[pOp->p3];
5811   pArgc = &pQuery[1];
5812   pCur = p->apCsr[pOp->p1];
5813   assert( memIsValid(pQuery) );
5814   REGISTER_TRACE(pOp->p3, pQuery);
5815   assert( pCur->pVtabCursor );
5816   pVtabCursor = pCur->pVtabCursor;
5817   pVtab = pVtabCursor->pVtab;
5818   pModule = pVtab->pModule;
5819 
5820   /* Grab the index number and argc parameters */
5821   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5822   nArg = (int)pArgc->u.i;
5823   iQuery = (int)pQuery->u.i;
5824 
5825   /* Invoke the xFilter method */
5826   {
5827     res = 0;
5828     apArg = p->apArg;
5829     for(i = 0; i<nArg; i++){
5830       apArg[i] = &pArgc[i+1];
5831       sqlite3VdbeMemStoreType(apArg[i]);
5832     }
5833 
5834     p->inVtabMethod = 1;
5835     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5836     p->inVtabMethod = 0;
5837     importVtabErrMsg(p, pVtab);
5838     if( rc==SQLITE_OK ){
5839       res = pModule->xEof(pVtabCursor);
5840     }
5841 
5842     if( res ){
5843       pc = pOp->p2 - 1;
5844     }
5845   }
5846   pCur->nullRow = 0;
5847 
5848   break;
5849 }
5850 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5851 
5852 #ifndef SQLITE_OMIT_VIRTUALTABLE
5853 /* Opcode: VColumn P1 P2 P3 * *
5854 **
5855 ** Store the value of the P2-th column of
5856 ** the row of the virtual-table that the
5857 ** P1 cursor is pointing to into register P3.
5858 */
5859 case OP_VColumn: {
5860   sqlite3_vtab *pVtab;
5861   const sqlite3_module *pModule;
5862   Mem *pDest;
5863   sqlite3_context sContext;
5864 
5865   VdbeCursor *pCur = p->apCsr[pOp->p1];
5866   assert( pCur->pVtabCursor );
5867   assert( pOp->p3>0 && pOp->p3<=p->nMem );
5868   pDest = &aMem[pOp->p3];
5869   memAboutToChange(p, pDest);
5870   if( pCur->nullRow ){
5871     sqlite3VdbeMemSetNull(pDest);
5872     break;
5873   }
5874   pVtab = pCur->pVtabCursor->pVtab;
5875   pModule = pVtab->pModule;
5876   assert( pModule->xColumn );
5877   memset(&sContext, 0, sizeof(sContext));
5878 
5879   /* The output cell may already have a buffer allocated. Move
5880   ** the current contents to sContext.s so in case the user-function
5881   ** can use the already allocated buffer instead of allocating a
5882   ** new one.
5883   */
5884   sqlite3VdbeMemMove(&sContext.s, pDest);
5885   MemSetTypeFlag(&sContext.s, MEM_Null);
5886 
5887   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5888   importVtabErrMsg(p, pVtab);
5889   if( sContext.isError ){
5890     rc = sContext.isError;
5891   }
5892 
5893   /* Copy the result of the function to the P3 register. We
5894   ** do this regardless of whether or not an error occurred to ensure any
5895   ** dynamic allocation in sContext.s (a Mem struct) is  released.
5896   */
5897   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5898   sqlite3VdbeMemMove(pDest, &sContext.s);
5899   REGISTER_TRACE(pOp->p3, pDest);
5900   UPDATE_MAX_BLOBSIZE(pDest);
5901 
5902   if( sqlite3VdbeMemTooBig(pDest) ){
5903     goto too_big;
5904   }
5905   break;
5906 }
5907 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5908 
5909 #ifndef SQLITE_OMIT_VIRTUALTABLE
5910 /* Opcode: VNext P1 P2 * * *
5911 **
5912 ** Advance virtual table P1 to the next row in its result set and
5913 ** jump to instruction P2.  Or, if the virtual table has reached
5914 ** the end of its result set, then fall through to the next instruction.
5915 */
5916 case OP_VNext: {   /* jump */
5917   sqlite3_vtab *pVtab;
5918   const sqlite3_module *pModule;
5919   int res;
5920   VdbeCursor *pCur;
5921 
5922   res = 0;
5923   pCur = p->apCsr[pOp->p1];
5924   assert( pCur->pVtabCursor );
5925   if( pCur->nullRow ){
5926     break;
5927   }
5928   pVtab = pCur->pVtabCursor->pVtab;
5929   pModule = pVtab->pModule;
5930   assert( pModule->xNext );
5931 
5932   /* Invoke the xNext() method of the module. There is no way for the
5933   ** underlying implementation to return an error if one occurs during
5934   ** xNext(). Instead, if an error occurs, true is returned (indicating that
5935   ** data is available) and the error code returned when xColumn or
5936   ** some other method is next invoked on the save virtual table cursor.
5937   */
5938   p->inVtabMethod = 1;
5939   rc = pModule->xNext(pCur->pVtabCursor);
5940   p->inVtabMethod = 0;
5941   importVtabErrMsg(p, pVtab);
5942   if( rc==SQLITE_OK ){
5943     res = pModule->xEof(pCur->pVtabCursor);
5944   }
5945 
5946   if( !res ){
5947     /* If there is data, jump to P2 */
5948     pc = pOp->p2 - 1;
5949   }
5950   break;
5951 }
5952 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5953 
5954 #ifndef SQLITE_OMIT_VIRTUALTABLE
5955 /* Opcode: VRename P1 * * P4 *
5956 **
5957 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5958 ** This opcode invokes the corresponding xRename method. The value
5959 ** in register P1 is passed as the zName argument to the xRename method.
5960 */
5961 case OP_VRename: {
5962   sqlite3_vtab *pVtab;
5963   Mem *pName;
5964 
5965   pVtab = pOp->p4.pVtab->pVtab;
5966   pName = &aMem[pOp->p1];
5967   assert( pVtab->pModule->xRename );
5968   assert( memIsValid(pName) );
5969   REGISTER_TRACE(pOp->p1, pName);
5970   assert( pName->flags & MEM_Str );
5971   testcase( pName->enc==SQLITE_UTF8 );
5972   testcase( pName->enc==SQLITE_UTF16BE );
5973   testcase( pName->enc==SQLITE_UTF16LE );
5974   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5975   if( rc==SQLITE_OK ){
5976     rc = pVtab->pModule->xRename(pVtab, pName->z);
5977     importVtabErrMsg(p, pVtab);
5978     p->expired = 0;
5979   }
5980   break;
5981 }
5982 #endif
5983 
5984 #ifndef SQLITE_OMIT_VIRTUALTABLE
5985 /* Opcode: VUpdate P1 P2 P3 P4 *
5986 **
5987 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5988 ** This opcode invokes the corresponding xUpdate method. P2 values
5989 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5990 ** invocation. The value in register (P3+P2-1) corresponds to the
5991 ** p2th element of the argv array passed to xUpdate.
5992 **
5993 ** The xUpdate method will do a DELETE or an INSERT or both.
5994 ** The argv[0] element (which corresponds to memory cell P3)
5995 ** is the rowid of a row to delete.  If argv[0] is NULL then no
5996 ** deletion occurs.  The argv[1] element is the rowid of the new
5997 ** row.  This can be NULL to have the virtual table select the new
5998 ** rowid for itself.  The subsequent elements in the array are
5999 ** the values of columns in the new row.
6000 **
6001 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6002 ** a row to delete.
6003 **
6004 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6005 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6006 ** is set to the value of the rowid for the row just inserted.
6007 */
6008 case OP_VUpdate: {
6009   sqlite3_vtab *pVtab;
6010   sqlite3_module *pModule;
6011   int nArg;
6012   int i;
6013   sqlite_int64 rowid;
6014   Mem **apArg;
6015   Mem *pX;
6016 
6017   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6018        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6019   );
6020   pVtab = pOp->p4.pVtab->pVtab;
6021   pModule = (sqlite3_module *)pVtab->pModule;
6022   nArg = pOp->p2;
6023   assert( pOp->p4type==P4_VTAB );
6024   if( ALWAYS(pModule->xUpdate) ){
6025     u8 vtabOnConflict = db->vtabOnConflict;
6026     apArg = p->apArg;
6027     pX = &aMem[pOp->p3];
6028     for(i=0; i<nArg; i++){
6029       assert( memIsValid(pX) );
6030       memAboutToChange(p, pX);
6031       sqlite3VdbeMemStoreType(pX);
6032       apArg[i] = pX;
6033       pX++;
6034     }
6035     db->vtabOnConflict = pOp->p5;
6036     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6037     db->vtabOnConflict = vtabOnConflict;
6038     importVtabErrMsg(p, pVtab);
6039     if( rc==SQLITE_OK && pOp->p1 ){
6040       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6041       db->lastRowid = lastRowid = rowid;
6042     }
6043     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6044       if( pOp->p5==OE_Ignore ){
6045         rc = SQLITE_OK;
6046       }else{
6047         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6048       }
6049     }else{
6050       p->nChange++;
6051     }
6052   }
6053   break;
6054 }
6055 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6056 
6057 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6058 /* Opcode: Pagecount P1 P2 * * *
6059 **
6060 ** Write the current number of pages in database P1 to memory cell P2.
6061 */
6062 case OP_Pagecount: {            /* out2-prerelease */
6063   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6064   break;
6065 }
6066 #endif
6067 
6068 
6069 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6070 /* Opcode: MaxPgcnt P1 P2 P3 * *
6071 **
6072 ** Try to set the maximum page count for database P1 to the value in P3.
6073 ** Do not let the maximum page count fall below the current page count and
6074 ** do not change the maximum page count value if P3==0.
6075 **
6076 ** Store the maximum page count after the change in register P2.
6077 */
6078 case OP_MaxPgcnt: {            /* out2-prerelease */
6079   unsigned int newMax;
6080   Btree *pBt;
6081 
6082   pBt = db->aDb[pOp->p1].pBt;
6083   newMax = 0;
6084   if( pOp->p3 ){
6085     newMax = sqlite3BtreeLastPage(pBt);
6086     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6087   }
6088   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6089   break;
6090 }
6091 #endif
6092 
6093 
6094 #ifndef SQLITE_OMIT_TRACE
6095 /* Opcode: Trace * * * P4 *
6096 **
6097 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6098 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6099 */
6100 case OP_Trace: {
6101   char *zTrace;
6102   char *z;
6103 
6104   if( db->xTrace
6105    && !p->doingRerun
6106    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6107   ){
6108     z = sqlite3VdbeExpandSql(p, zTrace);
6109     db->xTrace(db->pTraceArg, z);
6110     sqlite3DbFree(db, z);
6111   }
6112 #ifdef SQLITE_DEBUG
6113   if( (db->flags & SQLITE_SqlTrace)!=0
6114    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6115   ){
6116     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6117   }
6118 #endif /* SQLITE_DEBUG */
6119   break;
6120 }
6121 #endif
6122 
6123 
6124 /* Opcode: Noop * * * * *
6125 **
6126 ** Do nothing.  This instruction is often useful as a jump
6127 ** destination.
6128 */
6129 /*
6130 ** The magic Explain opcode are only inserted when explain==2 (which
6131 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6132 ** This opcode records information from the optimizer.  It is the
6133 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6134 */
6135 default: {          /* This is really OP_Noop and OP_Explain */
6136   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6137   break;
6138 }
6139 
6140 /*****************************************************************************
6141 ** The cases of the switch statement above this line should all be indented
6142 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6143 ** readability.  From this point on down, the normal indentation rules are
6144 ** restored.
6145 *****************************************************************************/
6146     }
6147 
6148 #ifdef VDBE_PROFILE
6149     {
6150       u64 elapsed = sqlite3Hwtime() - start;
6151       pOp->cycles += elapsed;
6152       pOp->cnt++;
6153 #if 0
6154         fprintf(stdout, "%10llu ", elapsed);
6155         sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
6156 #endif
6157     }
6158 #endif
6159 
6160     /* The following code adds nothing to the actual functionality
6161     ** of the program.  It is only here for testing and debugging.
6162     ** On the other hand, it does burn CPU cycles every time through
6163     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6164     */
6165 #ifndef NDEBUG
6166     assert( pc>=-1 && pc<p->nOp );
6167 
6168 #ifdef SQLITE_DEBUG
6169     if( p->trace ){
6170       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
6171       if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6172         registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
6173       }
6174       if( pOp->opflags & OPFLG_OUT3 ){
6175         registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
6176       }
6177     }
6178 #endif  /* SQLITE_DEBUG */
6179 #endif  /* NDEBUG */
6180   }  /* The end of the for(;;) loop the loops through opcodes */
6181 
6182   /* If we reach this point, it means that execution is finished with
6183   ** an error of some kind.
6184   */
6185 vdbe_error_halt:
6186   assert( rc );
6187   p->rc = rc;
6188   testcase( sqlite3GlobalConfig.xLog!=0 );
6189   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6190                    pc, p->zSql, p->zErrMsg);
6191   sqlite3VdbeHalt(p);
6192   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6193   rc = SQLITE_ERROR;
6194   if( resetSchemaOnFault>0 ){
6195     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6196   }
6197 
6198   /* This is the only way out of this procedure.  We have to
6199   ** release the mutexes on btrees that were acquired at the
6200   ** top. */
6201 vdbe_return:
6202   db->lastRowid = lastRowid;
6203   sqlite3VdbeLeave(p);
6204   return rc;
6205 
6206   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6207   ** is encountered.
6208   */
6209 too_big:
6210   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
6211   rc = SQLITE_TOOBIG;
6212   goto vdbe_error_halt;
6213 
6214   /* Jump to here if a malloc() fails.
6215   */
6216 no_mem:
6217   db->mallocFailed = 1;
6218   sqlite3SetString(&p->zErrMsg, db, "out of memory");
6219   rc = SQLITE_NOMEM;
6220   goto vdbe_error_halt;
6221 
6222   /* Jump to here for any other kind of fatal error.  The "rc" variable
6223   ** should hold the error number.
6224   */
6225 abort_due_to_error:
6226   assert( p->zErrMsg==0 );
6227   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6228   if( rc!=SQLITE_IOERR_NOMEM ){
6229     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6230   }
6231   goto vdbe_error_halt;
6232 
6233   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6234   ** flag.
6235   */
6236 abort_due_to_interrupt:
6237   assert( db->u1.isInterrupted );
6238   rc = SQLITE_INTERRUPT;
6239   p->rc = rc;
6240   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6241   goto vdbe_error_halt;
6242 }
6243