1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is the type of branch. I is the direction taken for this instance of 126 ** the branch. 127 ** 128 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 129 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 130 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 131 ** 132 ** In other words, if M is 2, then I is either 0 (for fall-through) or 133 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 134 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 135 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 136 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 137 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 138 ** depending on if the operands are less than, equal, or greater than. 139 ** 140 ** iSrcLine is the source code line (from the __LINE__ macro) that 141 ** generated the VDBE instruction combined with flag bits. The source 142 ** code line number is in the lower 24 bits of iSrcLine and the upper 143 ** 8 bytes are flags. The lower three bits of the flags indicate 144 ** values for I that should never occur. For example, if the branch is 145 ** always taken, the flags should be 0x05 since the fall-through and 146 ** alternate branch are never taken. If a branch is never taken then 147 ** flags should be 0x06 since only the fall-through approach is allowed. 148 ** 149 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 150 ** interested in equal or not-equal. In other words, I==0 and I==2 151 ** should be treated as equivalent 152 ** 153 ** Since only a line number is retained, not the filename, this macro 154 ** only works for amalgamation builds. But that is ok, since these macros 155 ** should be no-ops except for special builds used to measure test coverage. 156 */ 157 #if !defined(SQLITE_VDBE_COVERAGE) 158 # define VdbeBranchTaken(I,M) 159 #else 160 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 161 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 162 u8 mNever; 163 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 164 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 165 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 166 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 167 I = 1<<I; 168 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 169 ** the flags indicate directions that the branch can never go. If 170 ** a branch really does go in one of those directions, assert right 171 ** away. */ 172 mNever = iSrcLine >> 24; 173 assert( (I & mNever)==0 ); 174 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 175 /* Invoke the branch coverage callback with three arguments: 176 ** iSrcLine - the line number of the VdbeCoverage() macro, with 177 ** flags removed. 178 ** I - Mask of bits 0x07 indicating which cases are are 179 ** fulfilled by this instance of the jump. 0x01 means 180 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 181 ** impossible cases (ex: if the comparison is never NULL) 182 ** are filled in automatically so that the coverage 183 ** measurement logic does not flag those impossible cases 184 ** as missed coverage. 185 ** M - Type of jump. Same as M argument above 186 */ 187 I |= mNever; 188 if( M==2 ) I |= 0x04; 189 if( M==4 ){ 190 I |= 0x08; 191 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 192 } 193 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 194 iSrcLine&0xffffff, I, M); 195 } 196 #endif 197 198 /* 199 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 200 ** a pointer to a dynamically allocated string where some other entity 201 ** is responsible for deallocating that string. Because the register 202 ** does not control the string, it might be deleted without the register 203 ** knowing it. 204 ** 205 ** This routine converts an ephemeral string into a dynamically allocated 206 ** string that the register itself controls. In other words, it 207 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 208 */ 209 #define Deephemeralize(P) \ 210 if( ((P)->flags&MEM_Ephem)!=0 \ 211 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 212 213 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 214 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 215 216 /* 217 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 218 ** if we run out of memory. 219 */ 220 static VdbeCursor *allocateCursor( 221 Vdbe *p, /* The virtual machine */ 222 int iCur, /* Index of the new VdbeCursor */ 223 int nField, /* Number of fields in the table or index */ 224 int iDb, /* Database the cursor belongs to, or -1 */ 225 u8 eCurType /* Type of the new cursor */ 226 ){ 227 /* Find the memory cell that will be used to store the blob of memory 228 ** required for this VdbeCursor structure. It is convenient to use a 229 ** vdbe memory cell to manage the memory allocation required for a 230 ** VdbeCursor structure for the following reasons: 231 ** 232 ** * Sometimes cursor numbers are used for a couple of different 233 ** purposes in a vdbe program. The different uses might require 234 ** different sized allocations. Memory cells provide growable 235 ** allocations. 236 ** 237 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 238 ** be freed lazily via the sqlite3_release_memory() API. This 239 ** minimizes the number of malloc calls made by the system. 240 ** 241 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 242 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 243 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 244 */ 245 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 246 247 int nByte; 248 VdbeCursor *pCx = 0; 249 nByte = 250 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 251 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 252 253 assert( iCur>=0 && iCur<p->nCursor ); 254 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 255 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag 256 ** is clear. Otherwise, if this is an ephemeral cursor created by 257 ** OP_OpenDup, the cursor will not be closed and will still be part 258 ** of a BtShared.pCursor list. */ 259 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0; 260 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 261 p->apCsr[iCur] = 0; 262 } 263 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 264 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 265 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 266 pCx->eCurType = eCurType; 267 pCx->iDb = iDb; 268 pCx->nField = nField; 269 pCx->aOffset = &pCx->aType[nField]; 270 if( eCurType==CURTYPE_BTREE ){ 271 pCx->uc.pCursor = (BtCursor*) 272 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 273 sqlite3BtreeCursorZero(pCx->uc.pCursor); 274 } 275 } 276 return pCx; 277 } 278 279 /* 280 ** The string in pRec is known to look like an integer and to have a 281 ** floating point value of rValue. Return true and set *piValue to the 282 ** integer value if the string is in range to be an integer. Otherwise, 283 ** return false. 284 */ 285 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 286 i64 iValue = (double)rValue; 287 if( sqlite3RealSameAsInt(rValue,iValue) ){ 288 *piValue = iValue; 289 return 1; 290 } 291 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 292 } 293 294 /* 295 ** Try to convert a value into a numeric representation if we can 296 ** do so without loss of information. In other words, if the string 297 ** looks like a number, convert it into a number. If it does not 298 ** look like a number, leave it alone. 299 ** 300 ** If the bTryForInt flag is true, then extra effort is made to give 301 ** an integer representation. Strings that look like floating point 302 ** values but which have no fractional component (example: '48.00') 303 ** will have a MEM_Int representation when bTryForInt is true. 304 ** 305 ** If bTryForInt is false, then if the input string contains a decimal 306 ** point or exponential notation, the result is only MEM_Real, even 307 ** if there is an exact integer representation of the quantity. 308 */ 309 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 310 double rValue; 311 u8 enc = pRec->enc; 312 int rc; 313 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 314 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 315 if( rc<=0 ) return; 316 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 317 pRec->flags |= MEM_Int; 318 }else{ 319 pRec->u.r = rValue; 320 pRec->flags |= MEM_Real; 321 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 322 } 323 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 324 ** string representation after computing a numeric equivalent, because the 325 ** string representation might not be the canonical representation for the 326 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 327 pRec->flags &= ~MEM_Str; 328 } 329 330 /* 331 ** Processing is determine by the affinity parameter: 332 ** 333 ** SQLITE_AFF_INTEGER: 334 ** SQLITE_AFF_REAL: 335 ** SQLITE_AFF_NUMERIC: 336 ** Try to convert pRec to an integer representation or a 337 ** floating-point representation if an integer representation 338 ** is not possible. Note that the integer representation is 339 ** always preferred, even if the affinity is REAL, because 340 ** an integer representation is more space efficient on disk. 341 ** 342 ** SQLITE_AFF_TEXT: 343 ** Convert pRec to a text representation. 344 ** 345 ** SQLITE_AFF_BLOB: 346 ** SQLITE_AFF_NONE: 347 ** No-op. pRec is unchanged. 348 */ 349 static void applyAffinity( 350 Mem *pRec, /* The value to apply affinity to */ 351 char affinity, /* The affinity to be applied */ 352 u8 enc /* Use this text encoding */ 353 ){ 354 if( affinity>=SQLITE_AFF_NUMERIC ){ 355 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 356 || affinity==SQLITE_AFF_NUMERIC ); 357 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 358 if( (pRec->flags & MEM_Real)==0 ){ 359 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 360 }else{ 361 sqlite3VdbeIntegerAffinity(pRec); 362 } 363 } 364 }else if( affinity==SQLITE_AFF_TEXT ){ 365 /* Only attempt the conversion to TEXT if there is an integer or real 366 ** representation (blob and NULL do not get converted) but no string 367 ** representation. It would be harmless to repeat the conversion if 368 ** there is already a string rep, but it is pointless to waste those 369 ** CPU cycles. */ 370 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 371 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 372 testcase( pRec->flags & MEM_Int ); 373 testcase( pRec->flags & MEM_Real ); 374 testcase( pRec->flags & MEM_IntReal ); 375 sqlite3VdbeMemStringify(pRec, enc, 1); 376 } 377 } 378 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 379 } 380 } 381 382 /* 383 ** Try to convert the type of a function argument or a result column 384 ** into a numeric representation. Use either INTEGER or REAL whichever 385 ** is appropriate. But only do the conversion if it is possible without 386 ** loss of information and return the revised type of the argument. 387 */ 388 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 389 int eType = sqlite3_value_type(pVal); 390 if( eType==SQLITE_TEXT ){ 391 Mem *pMem = (Mem*)pVal; 392 applyNumericAffinity(pMem, 0); 393 eType = sqlite3_value_type(pVal); 394 } 395 return eType; 396 } 397 398 /* 399 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 400 ** not the internal Mem* type. 401 */ 402 void sqlite3ValueApplyAffinity( 403 sqlite3_value *pVal, 404 u8 affinity, 405 u8 enc 406 ){ 407 applyAffinity((Mem *)pVal, affinity, enc); 408 } 409 410 /* 411 ** pMem currently only holds a string type (or maybe a BLOB that we can 412 ** interpret as a string if we want to). Compute its corresponding 413 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 414 ** accordingly. 415 */ 416 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 417 int rc; 418 sqlite3_int64 ix; 419 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 420 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 421 ExpandBlob(pMem); 422 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 423 if( rc<=0 ){ 424 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 425 pMem->u.i = ix; 426 return MEM_Int; 427 }else{ 428 return MEM_Real; 429 } 430 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 431 pMem->u.i = ix; 432 return MEM_Int; 433 } 434 return MEM_Real; 435 } 436 437 /* 438 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 439 ** none. 440 ** 441 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 442 ** But it does set pMem->u.r and pMem->u.i appropriately. 443 */ 444 static u16 numericType(Mem *pMem){ 445 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 446 testcase( pMem->flags & MEM_Int ); 447 testcase( pMem->flags & MEM_Real ); 448 testcase( pMem->flags & MEM_IntReal ); 449 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 450 } 451 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 452 testcase( pMem->flags & MEM_Str ); 453 testcase( pMem->flags & MEM_Blob ); 454 return computeNumericType(pMem); 455 } 456 return 0; 457 } 458 459 #ifdef SQLITE_DEBUG 460 /* 461 ** Write a nice string representation of the contents of cell pMem 462 ** into buffer zBuf, length nBuf. 463 */ 464 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 465 char *zCsr = zBuf; 466 int f = pMem->flags; 467 468 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 469 470 if( f&MEM_Blob ){ 471 int i; 472 char c; 473 if( f & MEM_Dyn ){ 474 c = 'z'; 475 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 476 }else if( f & MEM_Static ){ 477 c = 't'; 478 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 479 }else if( f & MEM_Ephem ){ 480 c = 'e'; 481 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 482 }else{ 483 c = 's'; 484 } 485 *(zCsr++) = c; 486 *(zCsr++) = 'x'; 487 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 488 zCsr += sqlite3Strlen30(zCsr); 489 for(i=0; i<25 && i<pMem->n; i++){ 490 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 491 zCsr += sqlite3Strlen30(zCsr); 492 } 493 *zCsr++ = '|'; 494 for(i=0; i<25 && i<pMem->n; i++){ 495 char z = pMem->z[i]; 496 if( z<32 || z>126 ) *zCsr++ = '.'; 497 else *zCsr++ = z; 498 } 499 *(zCsr++) = ']'; 500 if( f & MEM_Zero ){ 501 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 502 zCsr += sqlite3Strlen30(zCsr); 503 } 504 *zCsr = '\0'; 505 }else if( f & MEM_Str ){ 506 int j, k; 507 zBuf[0] = ' '; 508 if( f & MEM_Dyn ){ 509 zBuf[1] = 'z'; 510 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 511 }else if( f & MEM_Static ){ 512 zBuf[1] = 't'; 513 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 514 }else if( f & MEM_Ephem ){ 515 zBuf[1] = 'e'; 516 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 517 }else{ 518 zBuf[1] = 's'; 519 } 520 k = 2; 521 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 522 k += sqlite3Strlen30(&zBuf[k]); 523 zBuf[k++] = '['; 524 for(j=0; j<25 && j<pMem->n; j++){ 525 u8 c = pMem->z[j]; 526 if( c>=0x20 && c<0x7f ){ 527 zBuf[k++] = c; 528 }else{ 529 zBuf[k++] = '.'; 530 } 531 } 532 zBuf[k++] = ']'; 533 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 534 k += sqlite3Strlen30(&zBuf[k]); 535 zBuf[k++] = 0; 536 } 537 } 538 #endif 539 540 #ifdef SQLITE_DEBUG 541 /* 542 ** Print the value of a register for tracing purposes: 543 */ 544 static void memTracePrint(Mem *p){ 545 if( p->flags & MEM_Undefined ){ 546 printf(" undefined"); 547 }else if( p->flags & MEM_Null ){ 548 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 549 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 550 printf(" si:%lld", p->u.i); 551 }else if( (p->flags & (MEM_IntReal))!=0 ){ 552 printf(" ir:%lld", p->u.i); 553 }else if( p->flags & MEM_Int ){ 554 printf(" i:%lld", p->u.i); 555 #ifndef SQLITE_OMIT_FLOATING_POINT 556 }else if( p->flags & MEM_Real ){ 557 printf(" r:%.17g", p->u.r); 558 #endif 559 }else if( sqlite3VdbeMemIsRowSet(p) ){ 560 printf(" (rowset)"); 561 }else{ 562 char zBuf[200]; 563 sqlite3VdbeMemPrettyPrint(p, zBuf); 564 printf(" %s", zBuf); 565 } 566 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 567 } 568 static void registerTrace(int iReg, Mem *p){ 569 printf("REG[%d] = ", iReg); 570 memTracePrint(p); 571 printf("\n"); 572 sqlite3VdbeCheckMemInvariants(p); 573 } 574 #endif 575 576 #ifdef SQLITE_DEBUG 577 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 578 #else 579 # define REGISTER_TRACE(R,M) 580 #endif 581 582 583 #ifdef VDBE_PROFILE 584 585 /* 586 ** hwtime.h contains inline assembler code for implementing 587 ** high-performance timing routines. 588 */ 589 #include "hwtime.h" 590 591 #endif 592 593 #ifndef NDEBUG 594 /* 595 ** This function is only called from within an assert() expression. It 596 ** checks that the sqlite3.nTransaction variable is correctly set to 597 ** the number of non-transaction savepoints currently in the 598 ** linked list starting at sqlite3.pSavepoint. 599 ** 600 ** Usage: 601 ** 602 ** assert( checkSavepointCount(db) ); 603 */ 604 static int checkSavepointCount(sqlite3 *db){ 605 int n = 0; 606 Savepoint *p; 607 for(p=db->pSavepoint; p; p=p->pNext) n++; 608 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 609 return 1; 610 } 611 #endif 612 613 /* 614 ** Return the register of pOp->p2 after first preparing it to be 615 ** overwritten with an integer value. 616 */ 617 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 618 sqlite3VdbeMemSetNull(pOut); 619 pOut->flags = MEM_Int; 620 return pOut; 621 } 622 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 623 Mem *pOut; 624 assert( pOp->p2>0 ); 625 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 626 pOut = &p->aMem[pOp->p2]; 627 memAboutToChange(p, pOut); 628 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 629 return out2PrereleaseWithClear(pOut); 630 }else{ 631 pOut->flags = MEM_Int; 632 return pOut; 633 } 634 } 635 636 637 /* 638 ** Execute as much of a VDBE program as we can. 639 ** This is the core of sqlite3_step(). 640 */ 641 int sqlite3VdbeExec( 642 Vdbe *p /* The VDBE */ 643 ){ 644 Op *aOp = p->aOp; /* Copy of p->aOp */ 645 Op *pOp = aOp; /* Current operation */ 646 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 647 Op *pOrigOp; /* Value of pOp at the top of the loop */ 648 #endif 649 #ifdef SQLITE_DEBUG 650 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 651 #endif 652 int rc = SQLITE_OK; /* Value to return */ 653 sqlite3 *db = p->db; /* The database */ 654 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 655 u8 encoding = ENC(db); /* The database encoding */ 656 int iCompare = 0; /* Result of last comparison */ 657 unsigned nVmStep = 0; /* Number of virtual machine steps */ 658 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 659 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 660 #endif 661 Mem *aMem = p->aMem; /* Copy of p->aMem */ 662 Mem *pIn1 = 0; /* 1st input operand */ 663 Mem *pIn2 = 0; /* 2nd input operand */ 664 Mem *pIn3 = 0; /* 3rd input operand */ 665 Mem *pOut = 0; /* Output operand */ 666 #ifdef VDBE_PROFILE 667 u64 start; /* CPU clock count at start of opcode */ 668 #endif 669 /*** INSERT STACK UNION HERE ***/ 670 671 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 672 sqlite3VdbeEnter(p); 673 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 674 if( db->xProgress ){ 675 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 676 assert( 0 < db->nProgressOps ); 677 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 678 }else{ 679 nProgressLimit = 0xffffffff; 680 } 681 #endif 682 if( p->rc==SQLITE_NOMEM ){ 683 /* This happens if a malloc() inside a call to sqlite3_column_text() or 684 ** sqlite3_column_text16() failed. */ 685 goto no_mem; 686 } 687 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 688 assert( p->bIsReader || p->readOnly!=0 ); 689 p->iCurrentTime = 0; 690 assert( p->explain==0 ); 691 p->pResultSet = 0; 692 db->busyHandler.nBusy = 0; 693 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 694 sqlite3VdbeIOTraceSql(p); 695 #ifdef SQLITE_DEBUG 696 sqlite3BeginBenignMalloc(); 697 if( p->pc==0 698 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 699 ){ 700 int i; 701 int once = 1; 702 sqlite3VdbePrintSql(p); 703 if( p->db->flags & SQLITE_VdbeListing ){ 704 printf("VDBE Program Listing:\n"); 705 for(i=0; i<p->nOp; i++){ 706 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 707 } 708 } 709 if( p->db->flags & SQLITE_VdbeEQP ){ 710 for(i=0; i<p->nOp; i++){ 711 if( aOp[i].opcode==OP_Explain ){ 712 if( once ) printf("VDBE Query Plan:\n"); 713 printf("%s\n", aOp[i].p4.z); 714 once = 0; 715 } 716 } 717 } 718 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 719 } 720 sqlite3EndBenignMalloc(); 721 #endif 722 for(pOp=&aOp[p->pc]; 1; pOp++){ 723 /* Errors are detected by individual opcodes, with an immediate 724 ** jumps to abort_due_to_error. */ 725 assert( rc==SQLITE_OK ); 726 727 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 728 #ifdef VDBE_PROFILE 729 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 730 #endif 731 nVmStep++; 732 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 733 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 734 #endif 735 736 /* Only allow tracing if SQLITE_DEBUG is defined. 737 */ 738 #ifdef SQLITE_DEBUG 739 if( db->flags & SQLITE_VdbeTrace ){ 740 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 741 } 742 #endif 743 744 745 /* Check to see if we need to simulate an interrupt. This only happens 746 ** if we have a special test build. 747 */ 748 #ifdef SQLITE_TEST 749 if( sqlite3_interrupt_count>0 ){ 750 sqlite3_interrupt_count--; 751 if( sqlite3_interrupt_count==0 ){ 752 sqlite3_interrupt(db); 753 } 754 } 755 #endif 756 757 /* Sanity checking on other operands */ 758 #ifdef SQLITE_DEBUG 759 { 760 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 761 if( (opProperty & OPFLG_IN1)!=0 ){ 762 assert( pOp->p1>0 ); 763 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 764 assert( memIsValid(&aMem[pOp->p1]) ); 765 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 766 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 767 } 768 if( (opProperty & OPFLG_IN2)!=0 ){ 769 assert( pOp->p2>0 ); 770 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 771 assert( memIsValid(&aMem[pOp->p2]) ); 772 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 773 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 774 } 775 if( (opProperty & OPFLG_IN3)!=0 ){ 776 assert( pOp->p3>0 ); 777 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 778 assert( memIsValid(&aMem[pOp->p3]) ); 779 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 780 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 781 } 782 if( (opProperty & OPFLG_OUT2)!=0 ){ 783 assert( pOp->p2>0 ); 784 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 785 memAboutToChange(p, &aMem[pOp->p2]); 786 } 787 if( (opProperty & OPFLG_OUT3)!=0 ){ 788 assert( pOp->p3>0 ); 789 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 790 memAboutToChange(p, &aMem[pOp->p3]); 791 } 792 } 793 #endif 794 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 795 pOrigOp = pOp; 796 #endif 797 798 switch( pOp->opcode ){ 799 800 /***************************************************************************** 801 ** What follows is a massive switch statement where each case implements a 802 ** separate instruction in the virtual machine. If we follow the usual 803 ** indentation conventions, each case should be indented by 6 spaces. But 804 ** that is a lot of wasted space on the left margin. So the code within 805 ** the switch statement will break with convention and be flush-left. Another 806 ** big comment (similar to this one) will mark the point in the code where 807 ** we transition back to normal indentation. 808 ** 809 ** The formatting of each case is important. The makefile for SQLite 810 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 811 ** file looking for lines that begin with "case OP_". The opcodes.h files 812 ** will be filled with #defines that give unique integer values to each 813 ** opcode and the opcodes.c file is filled with an array of strings where 814 ** each string is the symbolic name for the corresponding opcode. If the 815 ** case statement is followed by a comment of the form "/# same as ... #/" 816 ** that comment is used to determine the particular value of the opcode. 817 ** 818 ** Other keywords in the comment that follows each case are used to 819 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 820 ** Keywords include: in1, in2, in3, out2, out3. See 821 ** the mkopcodeh.awk script for additional information. 822 ** 823 ** Documentation about VDBE opcodes is generated by scanning this file 824 ** for lines of that contain "Opcode:". That line and all subsequent 825 ** comment lines are used in the generation of the opcode.html documentation 826 ** file. 827 ** 828 ** SUMMARY: 829 ** 830 ** Formatting is important to scripts that scan this file. 831 ** Do not deviate from the formatting style currently in use. 832 ** 833 *****************************************************************************/ 834 835 /* Opcode: Goto * P2 * * * 836 ** 837 ** An unconditional jump to address P2. 838 ** The next instruction executed will be 839 ** the one at index P2 from the beginning of 840 ** the program. 841 ** 842 ** The P1 parameter is not actually used by this opcode. However, it 843 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 844 ** that this Goto is the bottom of a loop and that the lines from P2 down 845 ** to the current line should be indented for EXPLAIN output. 846 */ 847 case OP_Goto: { /* jump */ 848 jump_to_p2_and_check_for_interrupt: 849 pOp = &aOp[pOp->p2 - 1]; 850 851 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 852 ** OP_VNext, or OP_SorterNext) all jump here upon 853 ** completion. Check to see if sqlite3_interrupt() has been called 854 ** or if the progress callback needs to be invoked. 855 ** 856 ** This code uses unstructured "goto" statements and does not look clean. 857 ** But that is not due to sloppy coding habits. The code is written this 858 ** way for performance, to avoid having to run the interrupt and progress 859 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 860 ** faster according to "valgrind --tool=cachegrind" */ 861 check_for_interrupt: 862 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 863 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 864 /* Call the progress callback if it is configured and the required number 865 ** of VDBE ops have been executed (either since this invocation of 866 ** sqlite3VdbeExec() or since last time the progress callback was called). 867 ** If the progress callback returns non-zero, exit the virtual machine with 868 ** a return code SQLITE_ABORT. 869 */ 870 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 871 assert( db->nProgressOps!=0 ); 872 nProgressLimit += db->nProgressOps; 873 if( db->xProgress(db->pProgressArg) ){ 874 nProgressLimit = 0xffffffff; 875 rc = SQLITE_INTERRUPT; 876 goto abort_due_to_error; 877 } 878 } 879 #endif 880 881 break; 882 } 883 884 /* Opcode: Gosub P1 P2 * * * 885 ** 886 ** Write the current address onto register P1 887 ** and then jump to address P2. 888 */ 889 case OP_Gosub: { /* jump */ 890 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 891 pIn1 = &aMem[pOp->p1]; 892 assert( VdbeMemDynamic(pIn1)==0 ); 893 memAboutToChange(p, pIn1); 894 pIn1->flags = MEM_Int; 895 pIn1->u.i = (int)(pOp-aOp); 896 REGISTER_TRACE(pOp->p1, pIn1); 897 898 /* Most jump operations do a goto to this spot in order to update 899 ** the pOp pointer. */ 900 jump_to_p2: 901 pOp = &aOp[pOp->p2 - 1]; 902 break; 903 } 904 905 /* Opcode: Return P1 * * * * 906 ** 907 ** Jump to the next instruction after the address in register P1. After 908 ** the jump, register P1 becomes undefined. 909 */ 910 case OP_Return: { /* in1 */ 911 pIn1 = &aMem[pOp->p1]; 912 assert( pIn1->flags==MEM_Int ); 913 pOp = &aOp[pIn1->u.i]; 914 pIn1->flags = MEM_Undefined; 915 break; 916 } 917 918 /* Opcode: InitCoroutine P1 P2 P3 * * 919 ** 920 ** Set up register P1 so that it will Yield to the coroutine 921 ** located at address P3. 922 ** 923 ** If P2!=0 then the coroutine implementation immediately follows 924 ** this opcode. So jump over the coroutine implementation to 925 ** address P2. 926 ** 927 ** See also: EndCoroutine 928 */ 929 case OP_InitCoroutine: { /* jump */ 930 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 931 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 932 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 933 pOut = &aMem[pOp->p1]; 934 assert( !VdbeMemDynamic(pOut) ); 935 pOut->u.i = pOp->p3 - 1; 936 pOut->flags = MEM_Int; 937 if( pOp->p2 ) goto jump_to_p2; 938 break; 939 } 940 941 /* Opcode: EndCoroutine P1 * * * * 942 ** 943 ** The instruction at the address in register P1 is a Yield. 944 ** Jump to the P2 parameter of that Yield. 945 ** After the jump, register P1 becomes undefined. 946 ** 947 ** See also: InitCoroutine 948 */ 949 case OP_EndCoroutine: { /* in1 */ 950 VdbeOp *pCaller; 951 pIn1 = &aMem[pOp->p1]; 952 assert( pIn1->flags==MEM_Int ); 953 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 954 pCaller = &aOp[pIn1->u.i]; 955 assert( pCaller->opcode==OP_Yield ); 956 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 957 pOp = &aOp[pCaller->p2 - 1]; 958 pIn1->flags = MEM_Undefined; 959 break; 960 } 961 962 /* Opcode: Yield P1 P2 * * * 963 ** 964 ** Swap the program counter with the value in register P1. This 965 ** has the effect of yielding to a coroutine. 966 ** 967 ** If the coroutine that is launched by this instruction ends with 968 ** Yield or Return then continue to the next instruction. But if 969 ** the coroutine launched by this instruction ends with 970 ** EndCoroutine, then jump to P2 rather than continuing with the 971 ** next instruction. 972 ** 973 ** See also: InitCoroutine 974 */ 975 case OP_Yield: { /* in1, jump */ 976 int pcDest; 977 pIn1 = &aMem[pOp->p1]; 978 assert( VdbeMemDynamic(pIn1)==0 ); 979 pIn1->flags = MEM_Int; 980 pcDest = (int)pIn1->u.i; 981 pIn1->u.i = (int)(pOp - aOp); 982 REGISTER_TRACE(pOp->p1, pIn1); 983 pOp = &aOp[pcDest]; 984 break; 985 } 986 987 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 988 ** Synopsis: if r[P3]=null halt 989 ** 990 ** Check the value in register P3. If it is NULL then Halt using 991 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 992 ** value in register P3 is not NULL, then this routine is a no-op. 993 ** The P5 parameter should be 1. 994 */ 995 case OP_HaltIfNull: { /* in3 */ 996 pIn3 = &aMem[pOp->p3]; 997 #ifdef SQLITE_DEBUG 998 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 999 #endif 1000 if( (pIn3->flags & MEM_Null)==0 ) break; 1001 /* Fall through into OP_Halt */ 1002 } 1003 1004 /* Opcode: Halt P1 P2 * P4 P5 1005 ** 1006 ** Exit immediately. All open cursors, etc are closed 1007 ** automatically. 1008 ** 1009 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1010 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1011 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1012 ** whether or not to rollback the current transaction. Do not rollback 1013 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1014 ** then back out all changes that have occurred during this execution of the 1015 ** VDBE, but do not rollback the transaction. 1016 ** 1017 ** If P4 is not null then it is an error message string. 1018 ** 1019 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1020 ** 1021 ** 0: (no change) 1022 ** 1: NOT NULL contraint failed: P4 1023 ** 2: UNIQUE constraint failed: P4 1024 ** 3: CHECK constraint failed: P4 1025 ** 4: FOREIGN KEY constraint failed: P4 1026 ** 1027 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1028 ** omitted. 1029 ** 1030 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1031 ** every program. So a jump past the last instruction of the program 1032 ** is the same as executing Halt. 1033 */ 1034 case OP_Halt: { 1035 VdbeFrame *pFrame; 1036 int pcx; 1037 1038 pcx = (int)(pOp - aOp); 1039 #ifdef SQLITE_DEBUG 1040 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1041 #endif 1042 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1043 /* Halt the sub-program. Return control to the parent frame. */ 1044 pFrame = p->pFrame; 1045 p->pFrame = pFrame->pParent; 1046 p->nFrame--; 1047 sqlite3VdbeSetChanges(db, p->nChange); 1048 pcx = sqlite3VdbeFrameRestore(pFrame); 1049 if( pOp->p2==OE_Ignore ){ 1050 /* Instruction pcx is the OP_Program that invoked the sub-program 1051 ** currently being halted. If the p2 instruction of this OP_Halt 1052 ** instruction is set to OE_Ignore, then the sub-program is throwing 1053 ** an IGNORE exception. In this case jump to the address specified 1054 ** as the p2 of the calling OP_Program. */ 1055 pcx = p->aOp[pcx].p2-1; 1056 } 1057 aOp = p->aOp; 1058 aMem = p->aMem; 1059 pOp = &aOp[pcx]; 1060 break; 1061 } 1062 p->rc = pOp->p1; 1063 p->errorAction = (u8)pOp->p2; 1064 p->pc = pcx; 1065 assert( pOp->p5<=4 ); 1066 if( p->rc ){ 1067 if( pOp->p5 ){ 1068 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1069 "FOREIGN KEY" }; 1070 testcase( pOp->p5==1 ); 1071 testcase( pOp->p5==2 ); 1072 testcase( pOp->p5==3 ); 1073 testcase( pOp->p5==4 ); 1074 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1075 if( pOp->p4.z ){ 1076 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1077 } 1078 }else{ 1079 sqlite3VdbeError(p, "%s", pOp->p4.z); 1080 } 1081 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1082 } 1083 rc = sqlite3VdbeHalt(p); 1084 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1085 if( rc==SQLITE_BUSY ){ 1086 p->rc = SQLITE_BUSY; 1087 }else{ 1088 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1089 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1090 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1091 } 1092 goto vdbe_return; 1093 } 1094 1095 /* Opcode: Integer P1 P2 * * * 1096 ** Synopsis: r[P2]=P1 1097 ** 1098 ** The 32-bit integer value P1 is written into register P2. 1099 */ 1100 case OP_Integer: { /* out2 */ 1101 pOut = out2Prerelease(p, pOp); 1102 pOut->u.i = pOp->p1; 1103 break; 1104 } 1105 1106 /* Opcode: Int64 * P2 * P4 * 1107 ** Synopsis: r[P2]=P4 1108 ** 1109 ** P4 is a pointer to a 64-bit integer value. 1110 ** Write that value into register P2. 1111 */ 1112 case OP_Int64: { /* out2 */ 1113 pOut = out2Prerelease(p, pOp); 1114 assert( pOp->p4.pI64!=0 ); 1115 pOut->u.i = *pOp->p4.pI64; 1116 break; 1117 } 1118 1119 #ifndef SQLITE_OMIT_FLOATING_POINT 1120 /* Opcode: Real * P2 * P4 * 1121 ** Synopsis: r[P2]=P4 1122 ** 1123 ** P4 is a pointer to a 64-bit floating point value. 1124 ** Write that value into register P2. 1125 */ 1126 case OP_Real: { /* same as TK_FLOAT, out2 */ 1127 pOut = out2Prerelease(p, pOp); 1128 pOut->flags = MEM_Real; 1129 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1130 pOut->u.r = *pOp->p4.pReal; 1131 break; 1132 } 1133 #endif 1134 1135 /* Opcode: String8 * P2 * P4 * 1136 ** Synopsis: r[P2]='P4' 1137 ** 1138 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1139 ** into a String opcode before it is executed for the first time. During 1140 ** this transformation, the length of string P4 is computed and stored 1141 ** as the P1 parameter. 1142 */ 1143 case OP_String8: { /* same as TK_STRING, out2 */ 1144 assert( pOp->p4.z!=0 ); 1145 pOut = out2Prerelease(p, pOp); 1146 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1147 1148 #ifndef SQLITE_OMIT_UTF16 1149 if( encoding!=SQLITE_UTF8 ){ 1150 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1151 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1152 if( rc ) goto too_big; 1153 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1154 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1155 assert( VdbeMemDynamic(pOut)==0 ); 1156 pOut->szMalloc = 0; 1157 pOut->flags |= MEM_Static; 1158 if( pOp->p4type==P4_DYNAMIC ){ 1159 sqlite3DbFree(db, pOp->p4.z); 1160 } 1161 pOp->p4type = P4_DYNAMIC; 1162 pOp->p4.z = pOut->z; 1163 pOp->p1 = pOut->n; 1164 } 1165 #endif 1166 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1167 goto too_big; 1168 } 1169 pOp->opcode = OP_String; 1170 assert( rc==SQLITE_OK ); 1171 /* Fall through to the next case, OP_String */ 1172 } 1173 1174 /* Opcode: String P1 P2 P3 P4 P5 1175 ** Synopsis: r[P2]='P4' (len=P1) 1176 ** 1177 ** The string value P4 of length P1 (bytes) is stored in register P2. 1178 ** 1179 ** If P3 is not zero and the content of register P3 is equal to P5, then 1180 ** the datatype of the register P2 is converted to BLOB. The content is 1181 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1182 ** of a string, as if it had been CAST. In other words: 1183 ** 1184 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1185 */ 1186 case OP_String: { /* out2 */ 1187 assert( pOp->p4.z!=0 ); 1188 pOut = out2Prerelease(p, pOp); 1189 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1190 pOut->z = pOp->p4.z; 1191 pOut->n = pOp->p1; 1192 pOut->enc = encoding; 1193 UPDATE_MAX_BLOBSIZE(pOut); 1194 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1195 if( pOp->p3>0 ){ 1196 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1197 pIn3 = &aMem[pOp->p3]; 1198 assert( pIn3->flags & MEM_Int ); 1199 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1200 } 1201 #endif 1202 break; 1203 } 1204 1205 /* Opcode: Null P1 P2 P3 * * 1206 ** Synopsis: r[P2..P3]=NULL 1207 ** 1208 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1209 ** NULL into register P3 and every register in between P2 and P3. If P3 1210 ** is less than P2 (typically P3 is zero) then only register P2 is 1211 ** set to NULL. 1212 ** 1213 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1214 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1215 ** OP_Ne or OP_Eq. 1216 */ 1217 case OP_Null: { /* out2 */ 1218 int cnt; 1219 u16 nullFlag; 1220 pOut = out2Prerelease(p, pOp); 1221 cnt = pOp->p3-pOp->p2; 1222 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1223 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1224 pOut->n = 0; 1225 #ifdef SQLITE_DEBUG 1226 pOut->uTemp = 0; 1227 #endif 1228 while( cnt>0 ){ 1229 pOut++; 1230 memAboutToChange(p, pOut); 1231 sqlite3VdbeMemSetNull(pOut); 1232 pOut->flags = nullFlag; 1233 pOut->n = 0; 1234 cnt--; 1235 } 1236 break; 1237 } 1238 1239 /* Opcode: SoftNull P1 * * * * 1240 ** Synopsis: r[P1]=NULL 1241 ** 1242 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1243 ** instruction, but do not free any string or blob memory associated with 1244 ** the register, so that if the value was a string or blob that was 1245 ** previously copied using OP_SCopy, the copies will continue to be valid. 1246 */ 1247 case OP_SoftNull: { 1248 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1249 pOut = &aMem[pOp->p1]; 1250 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1251 break; 1252 } 1253 1254 /* Opcode: Blob P1 P2 * P4 * 1255 ** Synopsis: r[P2]=P4 (len=P1) 1256 ** 1257 ** P4 points to a blob of data P1 bytes long. Store this 1258 ** blob in register P2. 1259 */ 1260 case OP_Blob: { /* out2 */ 1261 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1262 pOut = out2Prerelease(p, pOp); 1263 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1264 pOut->enc = encoding; 1265 UPDATE_MAX_BLOBSIZE(pOut); 1266 break; 1267 } 1268 1269 /* Opcode: Variable P1 P2 * P4 * 1270 ** Synopsis: r[P2]=parameter(P1,P4) 1271 ** 1272 ** Transfer the values of bound parameter P1 into register P2 1273 ** 1274 ** If the parameter is named, then its name appears in P4. 1275 ** The P4 value is used by sqlite3_bind_parameter_name(). 1276 */ 1277 case OP_Variable: { /* out2 */ 1278 Mem *pVar; /* Value being transferred */ 1279 1280 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1281 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1282 pVar = &p->aVar[pOp->p1 - 1]; 1283 if( sqlite3VdbeMemTooBig(pVar) ){ 1284 goto too_big; 1285 } 1286 pOut = &aMem[pOp->p2]; 1287 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1288 memcpy(pOut, pVar, MEMCELLSIZE); 1289 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1290 pOut->flags |= MEM_Static|MEM_FromBind; 1291 UPDATE_MAX_BLOBSIZE(pOut); 1292 break; 1293 } 1294 1295 /* Opcode: Move P1 P2 P3 * * 1296 ** Synopsis: r[P2@P3]=r[P1@P3] 1297 ** 1298 ** Move the P3 values in register P1..P1+P3-1 over into 1299 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1300 ** left holding a NULL. It is an error for register ranges 1301 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1302 ** for P3 to be less than 1. 1303 */ 1304 case OP_Move: { 1305 int n; /* Number of registers left to copy */ 1306 int p1; /* Register to copy from */ 1307 int p2; /* Register to copy to */ 1308 1309 n = pOp->p3; 1310 p1 = pOp->p1; 1311 p2 = pOp->p2; 1312 assert( n>0 && p1>0 && p2>0 ); 1313 assert( p1+n<=p2 || p2+n<=p1 ); 1314 1315 pIn1 = &aMem[p1]; 1316 pOut = &aMem[p2]; 1317 do{ 1318 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1319 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1320 assert( memIsValid(pIn1) ); 1321 memAboutToChange(p, pOut); 1322 sqlite3VdbeMemMove(pOut, pIn1); 1323 #ifdef SQLITE_DEBUG 1324 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1325 pOut->pScopyFrom += pOp->p2 - p1; 1326 } 1327 #endif 1328 Deephemeralize(pOut); 1329 REGISTER_TRACE(p2++, pOut); 1330 pIn1++; 1331 pOut++; 1332 }while( --n ); 1333 break; 1334 } 1335 1336 /* Opcode: Copy P1 P2 P3 * * 1337 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1338 ** 1339 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1340 ** 1341 ** This instruction makes a deep copy of the value. A duplicate 1342 ** is made of any string or blob constant. See also OP_SCopy. 1343 */ 1344 case OP_Copy: { 1345 int n; 1346 1347 n = pOp->p3; 1348 pIn1 = &aMem[pOp->p1]; 1349 pOut = &aMem[pOp->p2]; 1350 assert( pOut!=pIn1 ); 1351 while( 1 ){ 1352 memAboutToChange(p, pOut); 1353 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1354 Deephemeralize(pOut); 1355 #ifdef SQLITE_DEBUG 1356 pOut->pScopyFrom = 0; 1357 #endif 1358 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1359 if( (n--)==0 ) break; 1360 pOut++; 1361 pIn1++; 1362 } 1363 break; 1364 } 1365 1366 /* Opcode: SCopy P1 P2 * * * 1367 ** Synopsis: r[P2]=r[P1] 1368 ** 1369 ** Make a shallow copy of register P1 into register P2. 1370 ** 1371 ** This instruction makes a shallow copy of the value. If the value 1372 ** is a string or blob, then the copy is only a pointer to the 1373 ** original and hence if the original changes so will the copy. 1374 ** Worse, if the original is deallocated, the copy becomes invalid. 1375 ** Thus the program must guarantee that the original will not change 1376 ** during the lifetime of the copy. Use OP_Copy to make a complete 1377 ** copy. 1378 */ 1379 case OP_SCopy: { /* out2 */ 1380 pIn1 = &aMem[pOp->p1]; 1381 pOut = &aMem[pOp->p2]; 1382 assert( pOut!=pIn1 ); 1383 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1384 #ifdef SQLITE_DEBUG 1385 pOut->pScopyFrom = pIn1; 1386 pOut->mScopyFlags = pIn1->flags; 1387 #endif 1388 break; 1389 } 1390 1391 /* Opcode: IntCopy P1 P2 * * * 1392 ** Synopsis: r[P2]=r[P1] 1393 ** 1394 ** Transfer the integer value held in register P1 into register P2. 1395 ** 1396 ** This is an optimized version of SCopy that works only for integer 1397 ** values. 1398 */ 1399 case OP_IntCopy: { /* out2 */ 1400 pIn1 = &aMem[pOp->p1]; 1401 assert( (pIn1->flags & MEM_Int)!=0 ); 1402 pOut = &aMem[pOp->p2]; 1403 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1404 break; 1405 } 1406 1407 /* Opcode: ResultRow P1 P2 * * * 1408 ** Synopsis: output=r[P1@P2] 1409 ** 1410 ** The registers P1 through P1+P2-1 contain a single row of 1411 ** results. This opcode causes the sqlite3_step() call to terminate 1412 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1413 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1414 ** the result row. 1415 */ 1416 case OP_ResultRow: { 1417 Mem *pMem; 1418 int i; 1419 assert( p->nResColumn==pOp->p2 ); 1420 assert( pOp->p1>0 ); 1421 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1422 1423 /* If this statement has violated immediate foreign key constraints, do 1424 ** not return the number of rows modified. And do not RELEASE the statement 1425 ** transaction. It needs to be rolled back. */ 1426 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1427 assert( db->flags&SQLITE_CountRows ); 1428 assert( p->usesStmtJournal ); 1429 goto abort_due_to_error; 1430 } 1431 1432 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1433 ** DML statements invoke this opcode to return the number of rows 1434 ** modified to the user. This is the only way that a VM that 1435 ** opens a statement transaction may invoke this opcode. 1436 ** 1437 ** In case this is such a statement, close any statement transaction 1438 ** opened by this VM before returning control to the user. This is to 1439 ** ensure that statement-transactions are always nested, not overlapping. 1440 ** If the open statement-transaction is not closed here, then the user 1441 ** may step another VM that opens its own statement transaction. This 1442 ** may lead to overlapping statement transactions. 1443 ** 1444 ** The statement transaction is never a top-level transaction. Hence 1445 ** the RELEASE call below can never fail. 1446 */ 1447 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1448 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1449 assert( rc==SQLITE_OK ); 1450 1451 /* Invalidate all ephemeral cursor row caches */ 1452 p->cacheCtr = (p->cacheCtr + 2)|1; 1453 1454 /* Make sure the results of the current row are \000 terminated 1455 ** and have an assigned type. The results are de-ephemeralized as 1456 ** a side effect. 1457 */ 1458 pMem = p->pResultSet = &aMem[pOp->p1]; 1459 for(i=0; i<pOp->p2; i++){ 1460 assert( memIsValid(&pMem[i]) ); 1461 Deephemeralize(&pMem[i]); 1462 assert( (pMem[i].flags & MEM_Ephem)==0 1463 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1464 sqlite3VdbeMemNulTerminate(&pMem[i]); 1465 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1466 } 1467 if( db->mallocFailed ) goto no_mem; 1468 1469 if( db->mTrace & SQLITE_TRACE_ROW ){ 1470 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1471 } 1472 1473 /* Return SQLITE_ROW 1474 */ 1475 p->pc = (int)(pOp - aOp) + 1; 1476 rc = SQLITE_ROW; 1477 goto vdbe_return; 1478 } 1479 1480 /* Opcode: Concat P1 P2 P3 * * 1481 ** Synopsis: r[P3]=r[P2]+r[P1] 1482 ** 1483 ** Add the text in register P1 onto the end of the text in 1484 ** register P2 and store the result in register P3. 1485 ** If either the P1 or P2 text are NULL then store NULL in P3. 1486 ** 1487 ** P3 = P2 || P1 1488 ** 1489 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1490 ** if P3 is the same register as P2, the implementation is able 1491 ** to avoid a memcpy(). 1492 */ 1493 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1494 i64 nByte; /* Total size of the output string or blob */ 1495 u16 flags1; /* Initial flags for P1 */ 1496 u16 flags2; /* Initial flags for P2 */ 1497 1498 pIn1 = &aMem[pOp->p1]; 1499 pIn2 = &aMem[pOp->p2]; 1500 pOut = &aMem[pOp->p3]; 1501 testcase( pIn1==pIn2 ); 1502 testcase( pOut==pIn2 ); 1503 assert( pIn1!=pOut ); 1504 flags1 = pIn1->flags; 1505 testcase( flags1 & MEM_Null ); 1506 testcase( pIn2->flags & MEM_Null ); 1507 if( (flags1 | pIn2->flags) & MEM_Null ){ 1508 sqlite3VdbeMemSetNull(pOut); 1509 break; 1510 } 1511 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1512 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1513 flags1 = pIn1->flags & ~MEM_Str; 1514 }else if( (flags1 & MEM_Zero)!=0 ){ 1515 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1516 flags1 = pIn1->flags & ~MEM_Str; 1517 } 1518 flags2 = pIn2->flags; 1519 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1520 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1521 flags2 = pIn2->flags & ~MEM_Str; 1522 }else if( (flags2 & MEM_Zero)!=0 ){ 1523 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1524 flags2 = pIn2->flags & ~MEM_Str; 1525 } 1526 nByte = pIn1->n + pIn2->n; 1527 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1528 goto too_big; 1529 } 1530 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1531 goto no_mem; 1532 } 1533 MemSetTypeFlag(pOut, MEM_Str); 1534 if( pOut!=pIn2 ){ 1535 memcpy(pOut->z, pIn2->z, pIn2->n); 1536 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1537 pIn2->flags = flags2; 1538 } 1539 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1540 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1541 pIn1->flags = flags1; 1542 pOut->z[nByte]=0; 1543 pOut->z[nByte+1] = 0; 1544 pOut->z[nByte+2] = 0; 1545 pOut->flags |= MEM_Term; 1546 pOut->n = (int)nByte; 1547 pOut->enc = encoding; 1548 UPDATE_MAX_BLOBSIZE(pOut); 1549 break; 1550 } 1551 1552 /* Opcode: Add P1 P2 P3 * * 1553 ** Synopsis: r[P3]=r[P1]+r[P2] 1554 ** 1555 ** Add the value in register P1 to the value in register P2 1556 ** and store the result in register P3. 1557 ** If either input is NULL, the result is NULL. 1558 */ 1559 /* Opcode: Multiply P1 P2 P3 * * 1560 ** Synopsis: r[P3]=r[P1]*r[P2] 1561 ** 1562 ** 1563 ** Multiply the value in register P1 by the value in register P2 1564 ** and store the result in register P3. 1565 ** If either input is NULL, the result is NULL. 1566 */ 1567 /* Opcode: Subtract P1 P2 P3 * * 1568 ** Synopsis: r[P3]=r[P2]-r[P1] 1569 ** 1570 ** Subtract the value in register P1 from the value in register P2 1571 ** and store the result in register P3. 1572 ** If either input is NULL, the result is NULL. 1573 */ 1574 /* Opcode: Divide P1 P2 P3 * * 1575 ** Synopsis: r[P3]=r[P2]/r[P1] 1576 ** 1577 ** Divide the value in register P1 by the value in register P2 1578 ** and store the result in register P3 (P3=P2/P1). If the value in 1579 ** register P1 is zero, then the result is NULL. If either input is 1580 ** NULL, the result is NULL. 1581 */ 1582 /* Opcode: Remainder P1 P2 P3 * * 1583 ** Synopsis: r[P3]=r[P2]%r[P1] 1584 ** 1585 ** Compute the remainder after integer register P2 is divided by 1586 ** register P1 and store the result in register P3. 1587 ** If the value in register P1 is zero the result is NULL. 1588 ** If either operand is NULL, the result is NULL. 1589 */ 1590 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1591 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1592 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1593 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1594 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1595 u16 flags; /* Combined MEM_* flags from both inputs */ 1596 u16 type1; /* Numeric type of left operand */ 1597 u16 type2; /* Numeric type of right operand */ 1598 i64 iA; /* Integer value of left operand */ 1599 i64 iB; /* Integer value of right operand */ 1600 double rA; /* Real value of left operand */ 1601 double rB; /* Real value of right operand */ 1602 1603 pIn1 = &aMem[pOp->p1]; 1604 type1 = numericType(pIn1); 1605 pIn2 = &aMem[pOp->p2]; 1606 type2 = numericType(pIn2); 1607 pOut = &aMem[pOp->p3]; 1608 flags = pIn1->flags | pIn2->flags; 1609 if( (type1 & type2 & MEM_Int)!=0 ){ 1610 iA = pIn1->u.i; 1611 iB = pIn2->u.i; 1612 switch( pOp->opcode ){ 1613 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1614 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1615 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1616 case OP_Divide: { 1617 if( iA==0 ) goto arithmetic_result_is_null; 1618 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1619 iB /= iA; 1620 break; 1621 } 1622 default: { 1623 if( iA==0 ) goto arithmetic_result_is_null; 1624 if( iA==-1 ) iA = 1; 1625 iB %= iA; 1626 break; 1627 } 1628 } 1629 pOut->u.i = iB; 1630 MemSetTypeFlag(pOut, MEM_Int); 1631 }else if( (flags & MEM_Null)!=0 ){ 1632 goto arithmetic_result_is_null; 1633 }else{ 1634 fp_math: 1635 rA = sqlite3VdbeRealValue(pIn1); 1636 rB = sqlite3VdbeRealValue(pIn2); 1637 switch( pOp->opcode ){ 1638 case OP_Add: rB += rA; break; 1639 case OP_Subtract: rB -= rA; break; 1640 case OP_Multiply: rB *= rA; break; 1641 case OP_Divide: { 1642 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1643 if( rA==(double)0 ) goto arithmetic_result_is_null; 1644 rB /= rA; 1645 break; 1646 } 1647 default: { 1648 iA = sqlite3VdbeIntValue(pIn1); 1649 iB = sqlite3VdbeIntValue(pIn2); 1650 if( iA==0 ) goto arithmetic_result_is_null; 1651 if( iA==-1 ) iA = 1; 1652 rB = (double)(iB % iA); 1653 break; 1654 } 1655 } 1656 #ifdef SQLITE_OMIT_FLOATING_POINT 1657 pOut->u.i = rB; 1658 MemSetTypeFlag(pOut, MEM_Int); 1659 #else 1660 if( sqlite3IsNaN(rB) ){ 1661 goto arithmetic_result_is_null; 1662 } 1663 pOut->u.r = rB; 1664 MemSetTypeFlag(pOut, MEM_Real); 1665 #endif 1666 } 1667 break; 1668 1669 arithmetic_result_is_null: 1670 sqlite3VdbeMemSetNull(pOut); 1671 break; 1672 } 1673 1674 /* Opcode: CollSeq P1 * * P4 1675 ** 1676 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1677 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1678 ** be returned. This is used by the built-in min(), max() and nullif() 1679 ** functions. 1680 ** 1681 ** If P1 is not zero, then it is a register that a subsequent min() or 1682 ** max() aggregate will set to 1 if the current row is not the minimum or 1683 ** maximum. The P1 register is initialized to 0 by this instruction. 1684 ** 1685 ** The interface used by the implementation of the aforementioned functions 1686 ** to retrieve the collation sequence set by this opcode is not available 1687 ** publicly. Only built-in functions have access to this feature. 1688 */ 1689 case OP_CollSeq: { 1690 assert( pOp->p4type==P4_COLLSEQ ); 1691 if( pOp->p1 ){ 1692 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1693 } 1694 break; 1695 } 1696 1697 /* Opcode: BitAnd P1 P2 P3 * * 1698 ** Synopsis: r[P3]=r[P1]&r[P2] 1699 ** 1700 ** Take the bit-wise AND of the values in register P1 and P2 and 1701 ** store the result in register P3. 1702 ** If either input is NULL, the result is NULL. 1703 */ 1704 /* Opcode: BitOr P1 P2 P3 * * 1705 ** Synopsis: r[P3]=r[P1]|r[P2] 1706 ** 1707 ** Take the bit-wise OR of the values in register P1 and P2 and 1708 ** store the result in register P3. 1709 ** If either input is NULL, the result is NULL. 1710 */ 1711 /* Opcode: ShiftLeft P1 P2 P3 * * 1712 ** Synopsis: r[P3]=r[P2]<<r[P1] 1713 ** 1714 ** Shift the integer value in register P2 to the left by the 1715 ** number of bits specified by the integer in register P1. 1716 ** Store the result in register P3. 1717 ** If either input is NULL, the result is NULL. 1718 */ 1719 /* Opcode: ShiftRight P1 P2 P3 * * 1720 ** Synopsis: r[P3]=r[P2]>>r[P1] 1721 ** 1722 ** Shift the integer value in register P2 to the right by the 1723 ** number of bits specified by the integer in register P1. 1724 ** Store the result in register P3. 1725 ** If either input is NULL, the result is NULL. 1726 */ 1727 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1728 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1729 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1730 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1731 i64 iA; 1732 u64 uA; 1733 i64 iB; 1734 u8 op; 1735 1736 pIn1 = &aMem[pOp->p1]; 1737 pIn2 = &aMem[pOp->p2]; 1738 pOut = &aMem[pOp->p3]; 1739 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1740 sqlite3VdbeMemSetNull(pOut); 1741 break; 1742 } 1743 iA = sqlite3VdbeIntValue(pIn2); 1744 iB = sqlite3VdbeIntValue(pIn1); 1745 op = pOp->opcode; 1746 if( op==OP_BitAnd ){ 1747 iA &= iB; 1748 }else if( op==OP_BitOr ){ 1749 iA |= iB; 1750 }else if( iB!=0 ){ 1751 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1752 1753 /* If shifting by a negative amount, shift in the other direction */ 1754 if( iB<0 ){ 1755 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1756 op = 2*OP_ShiftLeft + 1 - op; 1757 iB = iB>(-64) ? -iB : 64; 1758 } 1759 1760 if( iB>=64 ){ 1761 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1762 }else{ 1763 memcpy(&uA, &iA, sizeof(uA)); 1764 if( op==OP_ShiftLeft ){ 1765 uA <<= iB; 1766 }else{ 1767 uA >>= iB; 1768 /* Sign-extend on a right shift of a negative number */ 1769 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1770 } 1771 memcpy(&iA, &uA, sizeof(iA)); 1772 } 1773 } 1774 pOut->u.i = iA; 1775 MemSetTypeFlag(pOut, MEM_Int); 1776 break; 1777 } 1778 1779 /* Opcode: AddImm P1 P2 * * * 1780 ** Synopsis: r[P1]=r[P1]+P2 1781 ** 1782 ** Add the constant P2 to the value in register P1. 1783 ** The result is always an integer. 1784 ** 1785 ** To force any register to be an integer, just add 0. 1786 */ 1787 case OP_AddImm: { /* in1 */ 1788 pIn1 = &aMem[pOp->p1]; 1789 memAboutToChange(p, pIn1); 1790 sqlite3VdbeMemIntegerify(pIn1); 1791 pIn1->u.i += pOp->p2; 1792 break; 1793 } 1794 1795 /* Opcode: MustBeInt P1 P2 * * * 1796 ** 1797 ** Force the value in register P1 to be an integer. If the value 1798 ** in P1 is not an integer and cannot be converted into an integer 1799 ** without data loss, then jump immediately to P2, or if P2==0 1800 ** raise an SQLITE_MISMATCH exception. 1801 */ 1802 case OP_MustBeInt: { /* jump, in1 */ 1803 pIn1 = &aMem[pOp->p1]; 1804 if( (pIn1->flags & MEM_Int)==0 ){ 1805 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1806 if( (pIn1->flags & MEM_Int)==0 ){ 1807 VdbeBranchTaken(1, 2); 1808 if( pOp->p2==0 ){ 1809 rc = SQLITE_MISMATCH; 1810 goto abort_due_to_error; 1811 }else{ 1812 goto jump_to_p2; 1813 } 1814 } 1815 } 1816 VdbeBranchTaken(0, 2); 1817 MemSetTypeFlag(pIn1, MEM_Int); 1818 break; 1819 } 1820 1821 #ifndef SQLITE_OMIT_FLOATING_POINT 1822 /* Opcode: RealAffinity P1 * * * * 1823 ** 1824 ** If register P1 holds an integer convert it to a real value. 1825 ** 1826 ** This opcode is used when extracting information from a column that 1827 ** has REAL affinity. Such column values may still be stored as 1828 ** integers, for space efficiency, but after extraction we want them 1829 ** to have only a real value. 1830 */ 1831 case OP_RealAffinity: { /* in1 */ 1832 pIn1 = &aMem[pOp->p1]; 1833 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1834 testcase( pIn1->flags & MEM_Int ); 1835 testcase( pIn1->flags & MEM_IntReal ); 1836 sqlite3VdbeMemRealify(pIn1); 1837 REGISTER_TRACE(pOp->p1, pIn1); 1838 } 1839 break; 1840 } 1841 #endif 1842 1843 #ifndef SQLITE_OMIT_CAST 1844 /* Opcode: Cast P1 P2 * * * 1845 ** Synopsis: affinity(r[P1]) 1846 ** 1847 ** Force the value in register P1 to be the type defined by P2. 1848 ** 1849 ** <ul> 1850 ** <li> P2=='A' → BLOB 1851 ** <li> P2=='B' → TEXT 1852 ** <li> P2=='C' → NUMERIC 1853 ** <li> P2=='D' → INTEGER 1854 ** <li> P2=='E' → REAL 1855 ** </ul> 1856 ** 1857 ** A NULL value is not changed by this routine. It remains NULL. 1858 */ 1859 case OP_Cast: { /* in1 */ 1860 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1861 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1862 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1863 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1864 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1865 testcase( pOp->p2==SQLITE_AFF_REAL ); 1866 pIn1 = &aMem[pOp->p1]; 1867 memAboutToChange(p, pIn1); 1868 rc = ExpandBlob(pIn1); 1869 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1870 UPDATE_MAX_BLOBSIZE(pIn1); 1871 if( rc ) goto abort_due_to_error; 1872 REGISTER_TRACE(pOp->p1, pIn1); 1873 break; 1874 } 1875 #endif /* SQLITE_OMIT_CAST */ 1876 1877 /* Opcode: Eq P1 P2 P3 P4 P5 1878 ** Synopsis: IF r[P3]==r[P1] 1879 ** 1880 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1881 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1882 ** store the result of comparison in register P2. 1883 ** 1884 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1885 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1886 ** to coerce both inputs according to this affinity before the 1887 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1888 ** affinity is used. Note that the affinity conversions are stored 1889 ** back into the input registers P1 and P3. So this opcode can cause 1890 ** persistent changes to registers P1 and P3. 1891 ** 1892 ** Once any conversions have taken place, and neither value is NULL, 1893 ** the values are compared. If both values are blobs then memcmp() is 1894 ** used to determine the results of the comparison. If both values 1895 ** are text, then the appropriate collating function specified in 1896 ** P4 is used to do the comparison. If P4 is not specified then 1897 ** memcmp() is used to compare text string. If both values are 1898 ** numeric, then a numeric comparison is used. If the two values 1899 ** are of different types, then numbers are considered less than 1900 ** strings and strings are considered less than blobs. 1901 ** 1902 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1903 ** true or false and is never NULL. If both operands are NULL then the result 1904 ** of comparison is true. If either operand is NULL then the result is false. 1905 ** If neither operand is NULL the result is the same as it would be if 1906 ** the SQLITE_NULLEQ flag were omitted from P5. 1907 ** 1908 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1909 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1910 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1911 */ 1912 /* Opcode: Ne P1 P2 P3 P4 P5 1913 ** Synopsis: IF r[P3]!=r[P1] 1914 ** 1915 ** This works just like the Eq opcode except that the jump is taken if 1916 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1917 ** additional information. 1918 ** 1919 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1920 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1921 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1922 */ 1923 /* Opcode: Lt P1 P2 P3 P4 P5 1924 ** Synopsis: IF r[P3]<r[P1] 1925 ** 1926 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1927 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1928 ** the result of comparison (0 or 1 or NULL) into register P2. 1929 ** 1930 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1931 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1932 ** bit is clear then fall through if either operand is NULL. 1933 ** 1934 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1935 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1936 ** to coerce both inputs according to this affinity before the 1937 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1938 ** affinity is used. Note that the affinity conversions are stored 1939 ** back into the input registers P1 and P3. So this opcode can cause 1940 ** persistent changes to registers P1 and P3. 1941 ** 1942 ** Once any conversions have taken place, and neither value is NULL, 1943 ** the values are compared. If both values are blobs then memcmp() is 1944 ** used to determine the results of the comparison. If both values 1945 ** are text, then the appropriate collating function specified in 1946 ** P4 is used to do the comparison. If P4 is not specified then 1947 ** memcmp() is used to compare text string. If both values are 1948 ** numeric, then a numeric comparison is used. If the two values 1949 ** are of different types, then numbers are considered less than 1950 ** strings and strings are considered less than blobs. 1951 */ 1952 /* Opcode: Le P1 P2 P3 P4 P5 1953 ** Synopsis: IF r[P3]<=r[P1] 1954 ** 1955 ** This works just like the Lt opcode except that the jump is taken if 1956 ** the content of register P3 is less than or equal to the content of 1957 ** register P1. See the Lt opcode for additional information. 1958 */ 1959 /* Opcode: Gt P1 P2 P3 P4 P5 1960 ** Synopsis: IF r[P3]>r[P1] 1961 ** 1962 ** This works just like the Lt opcode except that the jump is taken if 1963 ** the content of register P3 is greater than the content of 1964 ** register P1. See the Lt opcode for additional information. 1965 */ 1966 /* Opcode: Ge P1 P2 P3 P4 P5 1967 ** Synopsis: IF r[P3]>=r[P1] 1968 ** 1969 ** This works just like the Lt opcode except that the jump is taken if 1970 ** the content of register P3 is greater than or equal to the content of 1971 ** register P1. See the Lt opcode for additional information. 1972 */ 1973 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1974 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1975 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1976 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1977 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1978 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1979 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1980 char affinity; /* Affinity to use for comparison */ 1981 u16 flags1; /* Copy of initial value of pIn1->flags */ 1982 u16 flags3; /* Copy of initial value of pIn3->flags */ 1983 1984 pIn1 = &aMem[pOp->p1]; 1985 pIn3 = &aMem[pOp->p3]; 1986 flags1 = pIn1->flags; 1987 flags3 = pIn3->flags; 1988 if( (flags1 | flags3)&MEM_Null ){ 1989 /* One or both operands are NULL */ 1990 if( pOp->p5 & SQLITE_NULLEQ ){ 1991 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1992 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1993 ** or not both operands are null. 1994 */ 1995 assert( (flags1 & MEM_Cleared)==0 ); 1996 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 1997 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 1998 if( (flags1&flags3&MEM_Null)!=0 1999 && (flags3&MEM_Cleared)==0 2000 ){ 2001 res = 0; /* Operands are equal */ 2002 }else{ 2003 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2004 } 2005 }else{ 2006 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2007 ** then the result is always NULL. 2008 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2009 */ 2010 if( pOp->p5 & SQLITE_STOREP2 ){ 2011 pOut = &aMem[pOp->p2]; 2012 iCompare = 1; /* Operands are not equal */ 2013 memAboutToChange(p, pOut); 2014 MemSetTypeFlag(pOut, MEM_Null); 2015 REGISTER_TRACE(pOp->p2, pOut); 2016 }else{ 2017 VdbeBranchTaken(2,3); 2018 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2019 goto jump_to_p2; 2020 } 2021 } 2022 break; 2023 } 2024 }else{ 2025 /* Neither operand is NULL. Do a comparison. */ 2026 affinity = pOp->p5 & SQLITE_AFF_MASK; 2027 if( affinity>=SQLITE_AFF_NUMERIC ){ 2028 if( (flags1 | flags3)&MEM_Str ){ 2029 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2030 applyNumericAffinity(pIn1,0); 2031 assert( flags3==pIn3->flags ); 2032 /* testcase( flags3!=pIn3->flags ); 2033 ** this used to be possible with pIn1==pIn3, but not since 2034 ** the column cache was removed. The following assignment 2035 ** is essentially a no-op. But, it provides defense-in-depth 2036 ** in case our analysis is incorrect, so it is left in. */ 2037 flags3 = pIn3->flags; 2038 } 2039 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2040 applyNumericAffinity(pIn3,0); 2041 } 2042 } 2043 /* Handle the common case of integer comparison here, as an 2044 ** optimization, to avoid a call to sqlite3MemCompare() */ 2045 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2046 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2047 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2048 res = 0; 2049 goto compare_op; 2050 } 2051 }else if( affinity==SQLITE_AFF_TEXT ){ 2052 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2053 testcase( pIn1->flags & MEM_Int ); 2054 testcase( pIn1->flags & MEM_Real ); 2055 testcase( pIn1->flags & MEM_IntReal ); 2056 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2057 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2058 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2059 assert( pIn1!=pIn3 ); 2060 } 2061 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2062 testcase( pIn3->flags & MEM_Int ); 2063 testcase( pIn3->flags & MEM_Real ); 2064 testcase( pIn3->flags & MEM_IntReal ); 2065 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2066 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2067 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2068 } 2069 } 2070 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2071 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2072 } 2073 compare_op: 2074 /* At this point, res is negative, zero, or positive if reg[P1] is 2075 ** less than, equal to, or greater than reg[P3], respectively. Compute 2076 ** the answer to this operator in res2, depending on what the comparison 2077 ** operator actually is. The next block of code depends on the fact 2078 ** that the 6 comparison operators are consecutive integers in this 2079 ** order: NE, EQ, GT, LE, LT, GE */ 2080 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2081 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2082 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2083 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2084 res2 = aLTb[pOp->opcode - OP_Ne]; 2085 }else if( res==0 ){ 2086 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2087 res2 = aEQb[pOp->opcode - OP_Ne]; 2088 }else{ 2089 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2090 res2 = aGTb[pOp->opcode - OP_Ne]; 2091 } 2092 2093 /* Undo any changes made by applyAffinity() to the input registers. */ 2094 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2095 pIn1->flags = flags1; 2096 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2097 pIn3->flags = flags3; 2098 2099 if( pOp->p5 & SQLITE_STOREP2 ){ 2100 pOut = &aMem[pOp->p2]; 2101 iCompare = res; 2102 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2103 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2104 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2105 ** is only used in contexts where either: 2106 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2107 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2108 ** Therefore it is not necessary to check the content of r[P2] for 2109 ** NULL. */ 2110 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2111 assert( res2==0 || res2==1 ); 2112 testcase( res2==0 && pOp->opcode==OP_Eq ); 2113 testcase( res2==1 && pOp->opcode==OP_Eq ); 2114 testcase( res2==0 && pOp->opcode==OP_Ne ); 2115 testcase( res2==1 && pOp->opcode==OP_Ne ); 2116 if( (pOp->opcode==OP_Eq)==res2 ) break; 2117 } 2118 memAboutToChange(p, pOut); 2119 MemSetTypeFlag(pOut, MEM_Int); 2120 pOut->u.i = res2; 2121 REGISTER_TRACE(pOp->p2, pOut); 2122 }else{ 2123 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2124 if( res2 ){ 2125 goto jump_to_p2; 2126 } 2127 } 2128 break; 2129 } 2130 2131 /* Opcode: ElseNotEq * P2 * * * 2132 ** 2133 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2134 ** If result of an OP_Eq comparison on the same two operands 2135 ** would have be NULL or false (0), then then jump to P2. 2136 ** If the result of an OP_Eq comparison on the two previous operands 2137 ** would have been true (1), then fall through. 2138 */ 2139 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2140 assert( pOp>aOp ); 2141 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2142 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2143 VdbeBranchTaken(iCompare!=0, 2); 2144 if( iCompare!=0 ) goto jump_to_p2; 2145 break; 2146 } 2147 2148 2149 /* Opcode: Permutation * * * P4 * 2150 ** 2151 ** Set the permutation used by the OP_Compare operator in the next 2152 ** instruction. The permutation is stored in the P4 operand. 2153 ** 2154 ** The permutation is only valid until the next OP_Compare that has 2155 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2156 ** occur immediately prior to the OP_Compare. 2157 ** 2158 ** The first integer in the P4 integer array is the length of the array 2159 ** and does not become part of the permutation. 2160 */ 2161 case OP_Permutation: { 2162 assert( pOp->p4type==P4_INTARRAY ); 2163 assert( pOp->p4.ai ); 2164 assert( pOp[1].opcode==OP_Compare ); 2165 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2166 break; 2167 } 2168 2169 /* Opcode: Compare P1 P2 P3 P4 P5 2170 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2171 ** 2172 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2173 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2174 ** the comparison for use by the next OP_Jump instruct. 2175 ** 2176 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2177 ** determined by the most recent OP_Permutation operator. If the 2178 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2179 ** order. 2180 ** 2181 ** P4 is a KeyInfo structure that defines collating sequences and sort 2182 ** orders for the comparison. The permutation applies to registers 2183 ** only. The KeyInfo elements are used sequentially. 2184 ** 2185 ** The comparison is a sort comparison, so NULLs compare equal, 2186 ** NULLs are less than numbers, numbers are less than strings, 2187 ** and strings are less than blobs. 2188 */ 2189 case OP_Compare: { 2190 int n; 2191 int i; 2192 int p1; 2193 int p2; 2194 const KeyInfo *pKeyInfo; 2195 int idx; 2196 CollSeq *pColl; /* Collating sequence to use on this term */ 2197 int bRev; /* True for DESCENDING sort order */ 2198 int *aPermute; /* The permutation */ 2199 2200 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2201 aPermute = 0; 2202 }else{ 2203 assert( pOp>aOp ); 2204 assert( pOp[-1].opcode==OP_Permutation ); 2205 assert( pOp[-1].p4type==P4_INTARRAY ); 2206 aPermute = pOp[-1].p4.ai + 1; 2207 assert( aPermute!=0 ); 2208 } 2209 n = pOp->p3; 2210 pKeyInfo = pOp->p4.pKeyInfo; 2211 assert( n>0 ); 2212 assert( pKeyInfo!=0 ); 2213 p1 = pOp->p1; 2214 p2 = pOp->p2; 2215 #ifdef SQLITE_DEBUG 2216 if( aPermute ){ 2217 int k, mx = 0; 2218 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2219 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2220 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2221 }else{ 2222 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2223 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2224 } 2225 #endif /* SQLITE_DEBUG */ 2226 for(i=0; i<n; i++){ 2227 idx = aPermute ? aPermute[i] : i; 2228 assert( memIsValid(&aMem[p1+idx]) ); 2229 assert( memIsValid(&aMem[p2+idx]) ); 2230 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2231 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2232 assert( i<pKeyInfo->nKeyField ); 2233 pColl = pKeyInfo->aColl[i]; 2234 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2235 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2236 if( iCompare ){ 2237 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2238 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2239 ){ 2240 iCompare = -iCompare; 2241 } 2242 if( bRev ) iCompare = -iCompare; 2243 break; 2244 } 2245 } 2246 break; 2247 } 2248 2249 /* Opcode: Jump P1 P2 P3 * * 2250 ** 2251 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2252 ** in the most recent OP_Compare instruction the P1 vector was less than 2253 ** equal to, or greater than the P2 vector, respectively. 2254 */ 2255 case OP_Jump: { /* jump */ 2256 if( iCompare<0 ){ 2257 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2258 }else if( iCompare==0 ){ 2259 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2260 }else{ 2261 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2262 } 2263 break; 2264 } 2265 2266 /* Opcode: And P1 P2 P3 * * 2267 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2268 ** 2269 ** Take the logical AND of the values in registers P1 and P2 and 2270 ** write the result into register P3. 2271 ** 2272 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2273 ** the other input is NULL. A NULL and true or two NULLs give 2274 ** a NULL output. 2275 */ 2276 /* Opcode: Or P1 P2 P3 * * 2277 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2278 ** 2279 ** Take the logical OR of the values in register P1 and P2 and 2280 ** store the answer in register P3. 2281 ** 2282 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2283 ** even if the other input is NULL. A NULL and false or two NULLs 2284 ** give a NULL output. 2285 */ 2286 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2287 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2288 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2289 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2290 2291 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2292 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2293 if( pOp->opcode==OP_And ){ 2294 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2295 v1 = and_logic[v1*3+v2]; 2296 }else{ 2297 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2298 v1 = or_logic[v1*3+v2]; 2299 } 2300 pOut = &aMem[pOp->p3]; 2301 if( v1==2 ){ 2302 MemSetTypeFlag(pOut, MEM_Null); 2303 }else{ 2304 pOut->u.i = v1; 2305 MemSetTypeFlag(pOut, MEM_Int); 2306 } 2307 break; 2308 } 2309 2310 /* Opcode: IsTrue P1 P2 P3 P4 * 2311 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2312 ** 2313 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2314 ** IS NOT FALSE operators. 2315 ** 2316 ** Interpret the value in register P1 as a boolean value. Store that 2317 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2318 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2319 ** is 1. 2320 ** 2321 ** The logic is summarized like this: 2322 ** 2323 ** <ul> 2324 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2325 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2326 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2327 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2328 ** </ul> 2329 */ 2330 case OP_IsTrue: { /* in1, out2 */ 2331 assert( pOp->p4type==P4_INT32 ); 2332 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2333 assert( pOp->p3==0 || pOp->p3==1 ); 2334 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2335 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2336 break; 2337 } 2338 2339 /* Opcode: Not P1 P2 * * * 2340 ** Synopsis: r[P2]= !r[P1] 2341 ** 2342 ** Interpret the value in register P1 as a boolean value. Store the 2343 ** boolean complement in register P2. If the value in register P1 is 2344 ** NULL, then a NULL is stored in P2. 2345 */ 2346 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2347 pIn1 = &aMem[pOp->p1]; 2348 pOut = &aMem[pOp->p2]; 2349 if( (pIn1->flags & MEM_Null)==0 ){ 2350 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2351 }else{ 2352 sqlite3VdbeMemSetNull(pOut); 2353 } 2354 break; 2355 } 2356 2357 /* Opcode: BitNot P1 P2 * * * 2358 ** Synopsis: r[P2]= ~r[P1] 2359 ** 2360 ** Interpret the content of register P1 as an integer. Store the 2361 ** ones-complement of the P1 value into register P2. If P1 holds 2362 ** a NULL then store a NULL in P2. 2363 */ 2364 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2365 pIn1 = &aMem[pOp->p1]; 2366 pOut = &aMem[pOp->p2]; 2367 sqlite3VdbeMemSetNull(pOut); 2368 if( (pIn1->flags & MEM_Null)==0 ){ 2369 pOut->flags = MEM_Int; 2370 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2371 } 2372 break; 2373 } 2374 2375 /* Opcode: Once P1 P2 * * * 2376 ** 2377 ** Fall through to the next instruction the first time this opcode is 2378 ** encountered on each invocation of the byte-code program. Jump to P2 2379 ** on the second and all subsequent encounters during the same invocation. 2380 ** 2381 ** Top-level programs determine first invocation by comparing the P1 2382 ** operand against the P1 operand on the OP_Init opcode at the beginning 2383 ** of the program. If the P1 values differ, then fall through and make 2384 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2385 ** the same then take the jump. 2386 ** 2387 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2388 ** whether or not the jump should be taken. The bitmask is necessary 2389 ** because the self-altering code trick does not work for recursive 2390 ** triggers. 2391 */ 2392 case OP_Once: { /* jump */ 2393 u32 iAddr; /* Address of this instruction */ 2394 assert( p->aOp[0].opcode==OP_Init ); 2395 if( p->pFrame ){ 2396 iAddr = (int)(pOp - p->aOp); 2397 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2398 VdbeBranchTaken(1, 2); 2399 goto jump_to_p2; 2400 } 2401 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2402 }else{ 2403 if( p->aOp[0].p1==pOp->p1 ){ 2404 VdbeBranchTaken(1, 2); 2405 goto jump_to_p2; 2406 } 2407 } 2408 VdbeBranchTaken(0, 2); 2409 pOp->p1 = p->aOp[0].p1; 2410 break; 2411 } 2412 2413 /* Opcode: If P1 P2 P3 * * 2414 ** 2415 ** Jump to P2 if the value in register P1 is true. The value 2416 ** is considered true if it is numeric and non-zero. If the value 2417 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2418 */ 2419 case OP_If: { /* jump, in1 */ 2420 int c; 2421 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2422 VdbeBranchTaken(c!=0, 2); 2423 if( c ) goto jump_to_p2; 2424 break; 2425 } 2426 2427 /* Opcode: IfNot P1 P2 P3 * * 2428 ** 2429 ** Jump to P2 if the value in register P1 is False. The value 2430 ** is considered false if it has a numeric value of zero. If the value 2431 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2432 */ 2433 case OP_IfNot: { /* jump, in1 */ 2434 int c; 2435 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2436 VdbeBranchTaken(c!=0, 2); 2437 if( c ) goto jump_to_p2; 2438 break; 2439 } 2440 2441 /* Opcode: IsNull P1 P2 * * * 2442 ** Synopsis: if r[P1]==NULL goto P2 2443 ** 2444 ** Jump to P2 if the value in register P1 is NULL. 2445 */ 2446 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2447 pIn1 = &aMem[pOp->p1]; 2448 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2449 if( (pIn1->flags & MEM_Null)!=0 ){ 2450 goto jump_to_p2; 2451 } 2452 break; 2453 } 2454 2455 /* Opcode: NotNull P1 P2 * * * 2456 ** Synopsis: if r[P1]!=NULL goto P2 2457 ** 2458 ** Jump to P2 if the value in register P1 is not NULL. 2459 */ 2460 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2461 pIn1 = &aMem[pOp->p1]; 2462 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2463 if( (pIn1->flags & MEM_Null)==0 ){ 2464 goto jump_to_p2; 2465 } 2466 break; 2467 } 2468 2469 /* Opcode: IfNullRow P1 P2 P3 * * 2470 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2471 ** 2472 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2473 ** If it is, then set register P3 to NULL and jump immediately to P2. 2474 ** If P1 is not on a NULL row, then fall through without making any 2475 ** changes. 2476 */ 2477 case OP_IfNullRow: { /* jump */ 2478 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2479 assert( p->apCsr[pOp->p1]!=0 ); 2480 if( p->apCsr[pOp->p1]->nullRow ){ 2481 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2482 goto jump_to_p2; 2483 } 2484 break; 2485 } 2486 2487 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2488 /* Opcode: Offset P1 P2 P3 * * 2489 ** Synopsis: r[P3] = sqlite_offset(P1) 2490 ** 2491 ** Store in register r[P3] the byte offset into the database file that is the 2492 ** start of the payload for the record at which that cursor P1 is currently 2493 ** pointing. 2494 ** 2495 ** P2 is the column number for the argument to the sqlite_offset() function. 2496 ** This opcode does not use P2 itself, but the P2 value is used by the 2497 ** code generator. The P1, P2, and P3 operands to this opcode are the 2498 ** same as for OP_Column. 2499 ** 2500 ** This opcode is only available if SQLite is compiled with the 2501 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2502 */ 2503 case OP_Offset: { /* out3 */ 2504 VdbeCursor *pC; /* The VDBE cursor */ 2505 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2506 pC = p->apCsr[pOp->p1]; 2507 pOut = &p->aMem[pOp->p3]; 2508 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2509 sqlite3VdbeMemSetNull(pOut); 2510 }else{ 2511 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2512 } 2513 break; 2514 } 2515 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2516 2517 /* Opcode: Column P1 P2 P3 P4 P5 2518 ** Synopsis: r[P3]=PX 2519 ** 2520 ** Interpret the data that cursor P1 points to as a structure built using 2521 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2522 ** information about the format of the data.) Extract the P2-th column 2523 ** from this record. If there are less that (P2+1) 2524 ** values in the record, extract a NULL. 2525 ** 2526 ** The value extracted is stored in register P3. 2527 ** 2528 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2529 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2530 ** the result. 2531 ** 2532 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2533 ** the result is guaranteed to only be used as the argument of a length() 2534 ** or typeof() function, respectively. The loading of large blobs can be 2535 ** skipped for length() and all content loading can be skipped for typeof(). 2536 */ 2537 case OP_Column: { 2538 int p2; /* column number to retrieve */ 2539 VdbeCursor *pC; /* The VDBE cursor */ 2540 BtCursor *pCrsr; /* The BTree cursor */ 2541 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2542 int len; /* The length of the serialized data for the column */ 2543 int i; /* Loop counter */ 2544 Mem *pDest; /* Where to write the extracted value */ 2545 Mem sMem; /* For storing the record being decoded */ 2546 const u8 *zData; /* Part of the record being decoded */ 2547 const u8 *zHdr; /* Next unparsed byte of the header */ 2548 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2549 u64 offset64; /* 64-bit offset */ 2550 u32 t; /* A type code from the record header */ 2551 Mem *pReg; /* PseudoTable input register */ 2552 2553 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2554 pC = p->apCsr[pOp->p1]; 2555 assert( pC!=0 ); 2556 p2 = pOp->p2; 2557 2558 /* If the cursor cache is stale (meaning it is not currently point at 2559 ** the correct row) then bring it up-to-date by doing the necessary 2560 ** B-Tree seek. */ 2561 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2562 if( rc ) goto abort_due_to_error; 2563 2564 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2565 pDest = &aMem[pOp->p3]; 2566 memAboutToChange(p, pDest); 2567 assert( pC!=0 ); 2568 assert( p2<pC->nField ); 2569 aOffset = pC->aOffset; 2570 assert( pC->eCurType!=CURTYPE_VTAB ); 2571 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2572 assert( pC->eCurType!=CURTYPE_SORTER ); 2573 2574 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2575 if( pC->nullRow ){ 2576 if( pC->eCurType==CURTYPE_PSEUDO ){ 2577 /* For the special case of as pseudo-cursor, the seekResult field 2578 ** identifies the register that holds the record */ 2579 assert( pC->seekResult>0 ); 2580 pReg = &aMem[pC->seekResult]; 2581 assert( pReg->flags & MEM_Blob ); 2582 assert( memIsValid(pReg) ); 2583 pC->payloadSize = pC->szRow = pReg->n; 2584 pC->aRow = (u8*)pReg->z; 2585 }else{ 2586 sqlite3VdbeMemSetNull(pDest); 2587 goto op_column_out; 2588 } 2589 }else{ 2590 pCrsr = pC->uc.pCursor; 2591 assert( pC->eCurType==CURTYPE_BTREE ); 2592 assert( pCrsr ); 2593 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2594 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2595 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2596 assert( pC->szRow<=pC->payloadSize ); 2597 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2598 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2599 goto too_big; 2600 } 2601 } 2602 pC->cacheStatus = p->cacheCtr; 2603 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2604 pC->nHdrParsed = 0; 2605 2606 2607 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2608 /* pC->aRow does not have to hold the entire row, but it does at least 2609 ** need to cover the header of the record. If pC->aRow does not contain 2610 ** the complete header, then set it to zero, forcing the header to be 2611 ** dynamically allocated. */ 2612 pC->aRow = 0; 2613 pC->szRow = 0; 2614 2615 /* Make sure a corrupt database has not given us an oversize header. 2616 ** Do this now to avoid an oversize memory allocation. 2617 ** 2618 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2619 ** types use so much data space that there can only be 4096 and 32 of 2620 ** them, respectively. So the maximum header length results from a 2621 ** 3-byte type for each of the maximum of 32768 columns plus three 2622 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2623 */ 2624 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2625 goto op_column_corrupt; 2626 } 2627 }else{ 2628 /* This is an optimization. By skipping over the first few tests 2629 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2630 ** measurable performance gain. 2631 ** 2632 ** This branch is taken even if aOffset[0]==0. Such a record is never 2633 ** generated by SQLite, and could be considered corruption, but we 2634 ** accept it for historical reasons. When aOffset[0]==0, the code this 2635 ** branch jumps to reads past the end of the record, but never more 2636 ** than a few bytes. Even if the record occurs at the end of the page 2637 ** content area, the "page header" comes after the page content and so 2638 ** this overread is harmless. Similar overreads can occur for a corrupt 2639 ** database file. 2640 */ 2641 zData = pC->aRow; 2642 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2643 testcase( aOffset[0]==0 ); 2644 goto op_column_read_header; 2645 } 2646 } 2647 2648 /* Make sure at least the first p2+1 entries of the header have been 2649 ** parsed and valid information is in aOffset[] and pC->aType[]. 2650 */ 2651 if( pC->nHdrParsed<=p2 ){ 2652 /* If there is more header available for parsing in the record, try 2653 ** to extract additional fields up through the p2+1-th field 2654 */ 2655 if( pC->iHdrOffset<aOffset[0] ){ 2656 /* Make sure zData points to enough of the record to cover the header. */ 2657 if( pC->aRow==0 ){ 2658 memset(&sMem, 0, sizeof(sMem)); 2659 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2660 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2661 zData = (u8*)sMem.z; 2662 }else{ 2663 zData = pC->aRow; 2664 } 2665 2666 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2667 op_column_read_header: 2668 i = pC->nHdrParsed; 2669 offset64 = aOffset[i]; 2670 zHdr = zData + pC->iHdrOffset; 2671 zEndHdr = zData + aOffset[0]; 2672 testcase( zHdr>=zEndHdr ); 2673 do{ 2674 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2675 zHdr++; 2676 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2677 }else{ 2678 zHdr += sqlite3GetVarint32(zHdr, &t); 2679 pC->aType[i] = t; 2680 offset64 += sqlite3VdbeSerialTypeLen(t); 2681 } 2682 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2683 }while( i<=p2 && zHdr<zEndHdr ); 2684 2685 /* The record is corrupt if any of the following are true: 2686 ** (1) the bytes of the header extend past the declared header size 2687 ** (2) the entire header was used but not all data was used 2688 ** (3) the end of the data extends beyond the end of the record. 2689 */ 2690 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2691 || (offset64 > pC->payloadSize) 2692 ){ 2693 if( aOffset[0]==0 ){ 2694 i = 0; 2695 zHdr = zEndHdr; 2696 }else{ 2697 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2698 goto op_column_corrupt; 2699 } 2700 } 2701 2702 pC->nHdrParsed = i; 2703 pC->iHdrOffset = (u32)(zHdr - zData); 2704 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2705 }else{ 2706 t = 0; 2707 } 2708 2709 /* If after trying to extract new entries from the header, nHdrParsed is 2710 ** still not up to p2, that means that the record has fewer than p2 2711 ** columns. So the result will be either the default value or a NULL. 2712 */ 2713 if( pC->nHdrParsed<=p2 ){ 2714 if( pOp->p4type==P4_MEM ){ 2715 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2716 }else{ 2717 sqlite3VdbeMemSetNull(pDest); 2718 } 2719 goto op_column_out; 2720 } 2721 }else{ 2722 t = pC->aType[p2]; 2723 } 2724 2725 /* Extract the content for the p2+1-th column. Control can only 2726 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2727 ** all valid. 2728 */ 2729 assert( p2<pC->nHdrParsed ); 2730 assert( rc==SQLITE_OK ); 2731 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2732 if( VdbeMemDynamic(pDest) ){ 2733 sqlite3VdbeMemSetNull(pDest); 2734 } 2735 assert( t==pC->aType[p2] ); 2736 if( pC->szRow>=aOffset[p2+1] ){ 2737 /* This is the common case where the desired content fits on the original 2738 ** page - where the content is not on an overflow page */ 2739 zData = pC->aRow + aOffset[p2]; 2740 if( t<12 ){ 2741 sqlite3VdbeSerialGet(zData, t, pDest); 2742 }else{ 2743 /* If the column value is a string, we need a persistent value, not 2744 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2745 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2746 */ 2747 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2748 pDest->n = len = (t-12)/2; 2749 pDest->enc = encoding; 2750 if( pDest->szMalloc < len+2 ){ 2751 pDest->flags = MEM_Null; 2752 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2753 }else{ 2754 pDest->z = pDest->zMalloc; 2755 } 2756 memcpy(pDest->z, zData, len); 2757 pDest->z[len] = 0; 2758 pDest->z[len+1] = 0; 2759 pDest->flags = aFlag[t&1]; 2760 } 2761 }else{ 2762 pDest->enc = encoding; 2763 /* This branch happens only when content is on overflow pages */ 2764 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2765 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2766 || (len = sqlite3VdbeSerialTypeLen(t))==0 2767 ){ 2768 /* Content is irrelevant for 2769 ** 1. the typeof() function, 2770 ** 2. the length(X) function if X is a blob, and 2771 ** 3. if the content length is zero. 2772 ** So we might as well use bogus content rather than reading 2773 ** content from disk. 2774 ** 2775 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2776 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2777 ** read up to 16. So 16 bytes of bogus content is supplied. 2778 */ 2779 static u8 aZero[16]; /* This is the bogus content */ 2780 sqlite3VdbeSerialGet(aZero, t, pDest); 2781 }else{ 2782 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2783 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2784 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2785 pDest->flags &= ~MEM_Ephem; 2786 } 2787 } 2788 2789 op_column_out: 2790 UPDATE_MAX_BLOBSIZE(pDest); 2791 REGISTER_TRACE(pOp->p3, pDest); 2792 break; 2793 2794 op_column_corrupt: 2795 if( aOp[0].p3>0 ){ 2796 pOp = &aOp[aOp[0].p3-1]; 2797 break; 2798 }else{ 2799 rc = SQLITE_CORRUPT_BKPT; 2800 goto abort_due_to_error; 2801 } 2802 } 2803 2804 /* Opcode: Affinity P1 P2 * P4 * 2805 ** Synopsis: affinity(r[P1@P2]) 2806 ** 2807 ** Apply affinities to a range of P2 registers starting with P1. 2808 ** 2809 ** P4 is a string that is P2 characters long. The N-th character of the 2810 ** string indicates the column affinity that should be used for the N-th 2811 ** memory cell in the range. 2812 */ 2813 case OP_Affinity: { 2814 const char *zAffinity; /* The affinity to be applied */ 2815 2816 zAffinity = pOp->p4.z; 2817 assert( zAffinity!=0 ); 2818 assert( pOp->p2>0 ); 2819 assert( zAffinity[pOp->p2]==0 ); 2820 pIn1 = &aMem[pOp->p1]; 2821 while( 1 /*exit-by-break*/ ){ 2822 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2823 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2824 applyAffinity(pIn1, zAffinity[0], encoding); 2825 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2826 /* When applying REAL affinity, if the result is still an MEM_Int 2827 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2828 ** so that we keep the high-resolution integer value but know that 2829 ** the type really wants to be REAL. */ 2830 testcase( pIn1->u.i==140737488355328LL ); 2831 testcase( pIn1->u.i==140737488355327LL ); 2832 testcase( pIn1->u.i==-140737488355328LL ); 2833 testcase( pIn1->u.i==-140737488355329LL ); 2834 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2835 pIn1->flags |= MEM_IntReal; 2836 pIn1->flags &= ~MEM_Int; 2837 }else{ 2838 pIn1->u.r = (double)pIn1->u.i; 2839 pIn1->flags |= MEM_Real; 2840 pIn1->flags &= ~MEM_Int; 2841 } 2842 } 2843 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2844 zAffinity++; 2845 if( zAffinity[0]==0 ) break; 2846 pIn1++; 2847 } 2848 break; 2849 } 2850 2851 /* Opcode: MakeRecord P1 P2 P3 P4 * 2852 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2853 ** 2854 ** Convert P2 registers beginning with P1 into the [record format] 2855 ** use as a data record in a database table or as a key 2856 ** in an index. The OP_Column opcode can decode the record later. 2857 ** 2858 ** P4 may be a string that is P2 characters long. The N-th character of the 2859 ** string indicates the column affinity that should be used for the N-th 2860 ** field of the index key. 2861 ** 2862 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2863 ** macros defined in sqliteInt.h. 2864 ** 2865 ** If P4 is NULL then all index fields have the affinity BLOB. 2866 */ 2867 case OP_MakeRecord: { 2868 Mem *pRec; /* The new record */ 2869 u64 nData; /* Number of bytes of data space */ 2870 int nHdr; /* Number of bytes of header space */ 2871 i64 nByte; /* Data space required for this record */ 2872 i64 nZero; /* Number of zero bytes at the end of the record */ 2873 int nVarint; /* Number of bytes in a varint */ 2874 u32 serial_type; /* Type field */ 2875 Mem *pData0; /* First field to be combined into the record */ 2876 Mem *pLast; /* Last field of the record */ 2877 int nField; /* Number of fields in the record */ 2878 char *zAffinity; /* The affinity string for the record */ 2879 int file_format; /* File format to use for encoding */ 2880 u32 len; /* Length of a field */ 2881 u8 *zHdr; /* Where to write next byte of the header */ 2882 u8 *zPayload; /* Where to write next byte of the payload */ 2883 2884 /* Assuming the record contains N fields, the record format looks 2885 ** like this: 2886 ** 2887 ** ------------------------------------------------------------------------ 2888 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2889 ** ------------------------------------------------------------------------ 2890 ** 2891 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2892 ** and so forth. 2893 ** 2894 ** Each type field is a varint representing the serial type of the 2895 ** corresponding data element (see sqlite3VdbeSerialType()). The 2896 ** hdr-size field is also a varint which is the offset from the beginning 2897 ** of the record to data0. 2898 */ 2899 nData = 0; /* Number of bytes of data space */ 2900 nHdr = 0; /* Number of bytes of header space */ 2901 nZero = 0; /* Number of zero bytes at the end of the record */ 2902 nField = pOp->p1; 2903 zAffinity = pOp->p4.z; 2904 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2905 pData0 = &aMem[nField]; 2906 nField = pOp->p2; 2907 pLast = &pData0[nField-1]; 2908 file_format = p->minWriteFileFormat; 2909 2910 /* Identify the output register */ 2911 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2912 pOut = &aMem[pOp->p3]; 2913 memAboutToChange(p, pOut); 2914 2915 /* Apply the requested affinity to all inputs 2916 */ 2917 assert( pData0<=pLast ); 2918 if( zAffinity ){ 2919 pRec = pData0; 2920 do{ 2921 applyAffinity(pRec, zAffinity[0], encoding); 2922 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2923 pRec->flags |= MEM_IntReal; 2924 pRec->flags &= ~(MEM_Int); 2925 } 2926 REGISTER_TRACE((int)(pRec-aMem), pRec); 2927 zAffinity++; 2928 pRec++; 2929 assert( zAffinity[0]==0 || pRec<=pLast ); 2930 }while( zAffinity[0] ); 2931 } 2932 2933 #ifdef SQLITE_ENABLE_NULL_TRIM 2934 /* NULLs can be safely trimmed from the end of the record, as long as 2935 ** as the schema format is 2 or more and none of the omitted columns 2936 ** have a non-NULL default value. Also, the record must be left with 2937 ** at least one field. If P5>0 then it will be one more than the 2938 ** index of the right-most column with a non-NULL default value */ 2939 if( pOp->p5 ){ 2940 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2941 pLast--; 2942 nField--; 2943 } 2944 } 2945 #endif 2946 2947 /* Loop through the elements that will make up the record to figure 2948 ** out how much space is required for the new record. After this loop, 2949 ** the Mem.uTemp field of each term should hold the serial-type that will 2950 ** be used for that term in the generated record: 2951 ** 2952 ** Mem.uTemp value type 2953 ** --------------- --------------- 2954 ** 0 NULL 2955 ** 1 1-byte signed integer 2956 ** 2 2-byte signed integer 2957 ** 3 3-byte signed integer 2958 ** 4 4-byte signed integer 2959 ** 5 6-byte signed integer 2960 ** 6 8-byte signed integer 2961 ** 7 IEEE float 2962 ** 8 Integer constant 0 2963 ** 9 Integer constant 1 2964 ** 10,11 reserved for expansion 2965 ** N>=12 and even BLOB 2966 ** N>=13 and odd text 2967 ** 2968 ** The following additional values are computed: 2969 ** nHdr Number of bytes needed for the record header 2970 ** nData Number of bytes of data space needed for the record 2971 ** nZero Zero bytes at the end of the record 2972 */ 2973 pRec = pLast; 2974 do{ 2975 assert( memIsValid(pRec) ); 2976 if( pRec->flags & MEM_Null ){ 2977 if( pRec->flags & MEM_Zero ){ 2978 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2979 ** table methods that never invoke sqlite3_result_xxxxx() while 2980 ** computing an unchanging column value in an UPDATE statement. 2981 ** Give such values a special internal-use-only serial-type of 10 2982 ** so that they can be passed through to xUpdate and have 2983 ** a true sqlite3_value_nochange(). */ 2984 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2985 pRec->uTemp = 10; 2986 }else{ 2987 pRec->uTemp = 0; 2988 } 2989 nHdr++; 2990 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 2991 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 2992 i64 i = pRec->u.i; 2993 u64 uu; 2994 testcase( pRec->flags & MEM_Int ); 2995 testcase( pRec->flags & MEM_IntReal ); 2996 if( i<0 ){ 2997 uu = ~i; 2998 }else{ 2999 uu = i; 3000 } 3001 nHdr++; 3002 testcase( uu==127 ); testcase( uu==128 ); 3003 testcase( uu==32767 ); testcase( uu==32768 ); 3004 testcase( uu==8388607 ); testcase( uu==8388608 ); 3005 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3006 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3007 if( uu<=127 ){ 3008 if( (i&1)==i && file_format>=4 ){ 3009 pRec->uTemp = 8+(u32)uu; 3010 }else{ 3011 nData++; 3012 pRec->uTemp = 1; 3013 } 3014 }else if( uu<=32767 ){ 3015 nData += 2; 3016 pRec->uTemp = 2; 3017 }else if( uu<=8388607 ){ 3018 nData += 3; 3019 pRec->uTemp = 3; 3020 }else if( uu<=2147483647 ){ 3021 nData += 4; 3022 pRec->uTemp = 4; 3023 }else if( uu<=140737488355327LL ){ 3024 nData += 6; 3025 pRec->uTemp = 5; 3026 }else{ 3027 nData += 8; 3028 if( pRec->flags & MEM_IntReal ){ 3029 /* If the value is IntReal and is going to take up 8 bytes to store 3030 ** as an integer, then we might as well make it an 8-byte floating 3031 ** point value */ 3032 pRec->u.r = (double)pRec->u.i; 3033 pRec->flags &= ~MEM_IntReal; 3034 pRec->flags |= MEM_Real; 3035 pRec->uTemp = 7; 3036 }else{ 3037 pRec->uTemp = 6; 3038 } 3039 } 3040 }else if( pRec->flags & MEM_Real ){ 3041 nHdr++; 3042 nData += 8; 3043 pRec->uTemp = 7; 3044 }else{ 3045 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3046 assert( pRec->n>=0 ); 3047 len = (u32)pRec->n; 3048 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3049 if( pRec->flags & MEM_Zero ){ 3050 serial_type += pRec->u.nZero*2; 3051 if( nData ){ 3052 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3053 len += pRec->u.nZero; 3054 }else{ 3055 nZero += pRec->u.nZero; 3056 } 3057 } 3058 nData += len; 3059 nHdr += sqlite3VarintLen(serial_type); 3060 pRec->uTemp = serial_type; 3061 } 3062 if( pRec==pData0 ) break; 3063 pRec--; 3064 }while(1); 3065 3066 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3067 ** which determines the total number of bytes in the header. The varint 3068 ** value is the size of the header in bytes including the size varint 3069 ** itself. */ 3070 testcase( nHdr==126 ); 3071 testcase( nHdr==127 ); 3072 if( nHdr<=126 ){ 3073 /* The common case */ 3074 nHdr += 1; 3075 }else{ 3076 /* Rare case of a really large header */ 3077 nVarint = sqlite3VarintLen(nHdr); 3078 nHdr += nVarint; 3079 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3080 } 3081 nByte = nHdr+nData; 3082 3083 /* Make sure the output register has a buffer large enough to store 3084 ** the new record. The output register (pOp->p3) is not allowed to 3085 ** be one of the input registers (because the following call to 3086 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3087 */ 3088 if( nByte+nZero<=pOut->szMalloc ){ 3089 /* The output register is already large enough to hold the record. 3090 ** No error checks or buffer enlargement is required */ 3091 pOut->z = pOut->zMalloc; 3092 }else{ 3093 /* Need to make sure that the output is not too big and then enlarge 3094 ** the output register to hold the full result */ 3095 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3096 goto too_big; 3097 } 3098 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3099 goto no_mem; 3100 } 3101 } 3102 pOut->n = (int)nByte; 3103 pOut->flags = MEM_Blob; 3104 if( nZero ){ 3105 pOut->u.nZero = nZero; 3106 pOut->flags |= MEM_Zero; 3107 } 3108 UPDATE_MAX_BLOBSIZE(pOut); 3109 zHdr = (u8 *)pOut->z; 3110 zPayload = zHdr + nHdr; 3111 3112 /* Write the record */ 3113 zHdr += putVarint32(zHdr, nHdr); 3114 assert( pData0<=pLast ); 3115 pRec = pData0; 3116 do{ 3117 serial_type = pRec->uTemp; 3118 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3119 ** additional varints, one per column. */ 3120 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3121 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3122 ** immediately follow the header. */ 3123 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3124 }while( (++pRec)<=pLast ); 3125 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3126 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3127 3128 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3129 REGISTER_TRACE(pOp->p3, pOut); 3130 break; 3131 } 3132 3133 /* Opcode: Count P1 P2 * * * 3134 ** Synopsis: r[P2]=count() 3135 ** 3136 ** Store the number of entries (an integer value) in the table or index 3137 ** opened by cursor P1 in register P2 3138 */ 3139 #ifndef SQLITE_OMIT_BTREECOUNT 3140 case OP_Count: { /* out2 */ 3141 i64 nEntry; 3142 BtCursor *pCrsr; 3143 3144 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3145 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3146 assert( pCrsr ); 3147 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3148 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3149 if( rc ) goto abort_due_to_error; 3150 pOut = out2Prerelease(p, pOp); 3151 pOut->u.i = nEntry; 3152 goto check_for_interrupt; 3153 } 3154 #endif 3155 3156 /* Opcode: Savepoint P1 * * P4 * 3157 ** 3158 ** Open, release or rollback the savepoint named by parameter P4, depending 3159 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3160 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3161 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3162 */ 3163 case OP_Savepoint: { 3164 int p1; /* Value of P1 operand */ 3165 char *zName; /* Name of savepoint */ 3166 int nName; 3167 Savepoint *pNew; 3168 Savepoint *pSavepoint; 3169 Savepoint *pTmp; 3170 int iSavepoint; 3171 int ii; 3172 3173 p1 = pOp->p1; 3174 zName = pOp->p4.z; 3175 3176 /* Assert that the p1 parameter is valid. Also that if there is no open 3177 ** transaction, then there cannot be any savepoints. 3178 */ 3179 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3180 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3181 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3182 assert( checkSavepointCount(db) ); 3183 assert( p->bIsReader ); 3184 3185 if( p1==SAVEPOINT_BEGIN ){ 3186 if( db->nVdbeWrite>0 ){ 3187 /* A new savepoint cannot be created if there are active write 3188 ** statements (i.e. open read/write incremental blob handles). 3189 */ 3190 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3191 rc = SQLITE_BUSY; 3192 }else{ 3193 nName = sqlite3Strlen30(zName); 3194 3195 #ifndef SQLITE_OMIT_VIRTUALTABLE 3196 /* This call is Ok even if this savepoint is actually a transaction 3197 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3198 ** If this is a transaction savepoint being opened, it is guaranteed 3199 ** that the db->aVTrans[] array is empty. */ 3200 assert( db->autoCommit==0 || db->nVTrans==0 ); 3201 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3202 db->nStatement+db->nSavepoint); 3203 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3204 #endif 3205 3206 /* Create a new savepoint structure. */ 3207 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3208 if( pNew ){ 3209 pNew->zName = (char *)&pNew[1]; 3210 memcpy(pNew->zName, zName, nName+1); 3211 3212 /* If there is no open transaction, then mark this as a special 3213 ** "transaction savepoint". */ 3214 if( db->autoCommit ){ 3215 db->autoCommit = 0; 3216 db->isTransactionSavepoint = 1; 3217 }else{ 3218 db->nSavepoint++; 3219 } 3220 3221 /* Link the new savepoint into the database handle's list. */ 3222 pNew->pNext = db->pSavepoint; 3223 db->pSavepoint = pNew; 3224 pNew->nDeferredCons = db->nDeferredCons; 3225 pNew->nDeferredImmCons = db->nDeferredImmCons; 3226 } 3227 } 3228 }else{ 3229 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3230 iSavepoint = 0; 3231 3232 /* Find the named savepoint. If there is no such savepoint, then an 3233 ** an error is returned to the user. */ 3234 for( 3235 pSavepoint = db->pSavepoint; 3236 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3237 pSavepoint = pSavepoint->pNext 3238 ){ 3239 iSavepoint++; 3240 } 3241 if( !pSavepoint ){ 3242 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3243 rc = SQLITE_ERROR; 3244 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3245 /* It is not possible to release (commit) a savepoint if there are 3246 ** active write statements. 3247 */ 3248 sqlite3VdbeError(p, "cannot release savepoint - " 3249 "SQL statements in progress"); 3250 rc = SQLITE_BUSY; 3251 }else{ 3252 3253 /* Determine whether or not this is a transaction savepoint. If so, 3254 ** and this is a RELEASE command, then the current transaction 3255 ** is committed. 3256 */ 3257 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3258 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3259 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3260 goto vdbe_return; 3261 } 3262 db->autoCommit = 1; 3263 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3264 p->pc = (int)(pOp - aOp); 3265 db->autoCommit = 0; 3266 p->rc = rc = SQLITE_BUSY; 3267 goto vdbe_return; 3268 } 3269 rc = p->rc; 3270 if( rc ){ 3271 db->autoCommit = 0; 3272 }else{ 3273 db->isTransactionSavepoint = 0; 3274 } 3275 }else{ 3276 int isSchemaChange; 3277 iSavepoint = db->nSavepoint - iSavepoint - 1; 3278 if( p1==SAVEPOINT_ROLLBACK ){ 3279 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3280 for(ii=0; ii<db->nDb; ii++){ 3281 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3282 SQLITE_ABORT_ROLLBACK, 3283 isSchemaChange==0); 3284 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3285 } 3286 }else{ 3287 assert( p1==SAVEPOINT_RELEASE ); 3288 isSchemaChange = 0; 3289 } 3290 for(ii=0; ii<db->nDb; ii++){ 3291 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3292 if( rc!=SQLITE_OK ){ 3293 goto abort_due_to_error; 3294 } 3295 } 3296 if( isSchemaChange ){ 3297 sqlite3ExpirePreparedStatements(db, 0); 3298 sqlite3ResetAllSchemasOfConnection(db); 3299 db->mDbFlags |= DBFLAG_SchemaChange; 3300 } 3301 } 3302 if( rc ) goto abort_due_to_error; 3303 3304 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3305 ** savepoints nested inside of the savepoint being operated on. */ 3306 while( db->pSavepoint!=pSavepoint ){ 3307 pTmp = db->pSavepoint; 3308 db->pSavepoint = pTmp->pNext; 3309 sqlite3DbFree(db, pTmp); 3310 db->nSavepoint--; 3311 } 3312 3313 /* If it is a RELEASE, then destroy the savepoint being operated on 3314 ** too. If it is a ROLLBACK TO, then set the number of deferred 3315 ** constraint violations present in the database to the value stored 3316 ** when the savepoint was created. */ 3317 if( p1==SAVEPOINT_RELEASE ){ 3318 assert( pSavepoint==db->pSavepoint ); 3319 db->pSavepoint = pSavepoint->pNext; 3320 sqlite3DbFree(db, pSavepoint); 3321 if( !isTransaction ){ 3322 db->nSavepoint--; 3323 } 3324 }else{ 3325 assert( p1==SAVEPOINT_ROLLBACK ); 3326 db->nDeferredCons = pSavepoint->nDeferredCons; 3327 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3328 } 3329 3330 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3331 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3332 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3333 } 3334 } 3335 } 3336 if( rc ) goto abort_due_to_error; 3337 3338 break; 3339 } 3340 3341 /* Opcode: AutoCommit P1 P2 * * * 3342 ** 3343 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3344 ** back any currently active btree transactions. If there are any active 3345 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3346 ** there are active writing VMs or active VMs that use shared cache. 3347 ** 3348 ** This instruction causes the VM to halt. 3349 */ 3350 case OP_AutoCommit: { 3351 int desiredAutoCommit; 3352 int iRollback; 3353 3354 desiredAutoCommit = pOp->p1; 3355 iRollback = pOp->p2; 3356 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3357 assert( desiredAutoCommit==1 || iRollback==0 ); 3358 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3359 assert( p->bIsReader ); 3360 3361 if( desiredAutoCommit!=db->autoCommit ){ 3362 if( iRollback ){ 3363 assert( desiredAutoCommit==1 ); 3364 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3365 db->autoCommit = 1; 3366 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3367 /* If this instruction implements a COMMIT and other VMs are writing 3368 ** return an error indicating that the other VMs must complete first. 3369 */ 3370 sqlite3VdbeError(p, "cannot commit transaction - " 3371 "SQL statements in progress"); 3372 rc = SQLITE_BUSY; 3373 goto abort_due_to_error; 3374 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3375 goto vdbe_return; 3376 }else{ 3377 db->autoCommit = (u8)desiredAutoCommit; 3378 } 3379 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3380 p->pc = (int)(pOp - aOp); 3381 db->autoCommit = (u8)(1-desiredAutoCommit); 3382 p->rc = rc = SQLITE_BUSY; 3383 goto vdbe_return; 3384 } 3385 sqlite3CloseSavepoints(db); 3386 if( p->rc==SQLITE_OK ){ 3387 rc = SQLITE_DONE; 3388 }else{ 3389 rc = SQLITE_ERROR; 3390 } 3391 goto vdbe_return; 3392 }else{ 3393 sqlite3VdbeError(p, 3394 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3395 (iRollback)?"cannot rollback - no transaction is active": 3396 "cannot commit - no transaction is active")); 3397 3398 rc = SQLITE_ERROR; 3399 goto abort_due_to_error; 3400 } 3401 /*NOTREACHED*/ assert(0); 3402 } 3403 3404 /* Opcode: Transaction P1 P2 P3 P4 P5 3405 ** 3406 ** Begin a transaction on database P1 if a transaction is not already 3407 ** active. 3408 ** If P2 is non-zero, then a write-transaction is started, or if a 3409 ** read-transaction is already active, it is upgraded to a write-transaction. 3410 ** If P2 is zero, then a read-transaction is started. 3411 ** 3412 ** P1 is the index of the database file on which the transaction is 3413 ** started. Index 0 is the main database file and index 1 is the 3414 ** file used for temporary tables. Indices of 2 or more are used for 3415 ** attached databases. 3416 ** 3417 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3418 ** true (this flag is set if the Vdbe may modify more than one row and may 3419 ** throw an ABORT exception), a statement transaction may also be opened. 3420 ** More specifically, a statement transaction is opened iff the database 3421 ** connection is currently not in autocommit mode, or if there are other 3422 ** active statements. A statement transaction allows the changes made by this 3423 ** VDBE to be rolled back after an error without having to roll back the 3424 ** entire transaction. If no error is encountered, the statement transaction 3425 ** will automatically commit when the VDBE halts. 3426 ** 3427 ** If P5!=0 then this opcode also checks the schema cookie against P3 3428 ** and the schema generation counter against P4. 3429 ** The cookie changes its value whenever the database schema changes. 3430 ** This operation is used to detect when that the cookie has changed 3431 ** and that the current process needs to reread the schema. If the schema 3432 ** cookie in P3 differs from the schema cookie in the database header or 3433 ** if the schema generation counter in P4 differs from the current 3434 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3435 ** halts. The sqlite3_step() wrapper function might then reprepare the 3436 ** statement and rerun it from the beginning. 3437 */ 3438 case OP_Transaction: { 3439 Btree *pBt; 3440 int iMeta = 0; 3441 3442 assert( p->bIsReader ); 3443 assert( p->readOnly==0 || pOp->p2==0 ); 3444 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3445 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3446 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3447 rc = SQLITE_READONLY; 3448 goto abort_due_to_error; 3449 } 3450 pBt = db->aDb[pOp->p1].pBt; 3451 3452 if( pBt ){ 3453 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3454 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3455 testcase( rc==SQLITE_BUSY_RECOVERY ); 3456 if( rc!=SQLITE_OK ){ 3457 if( (rc&0xff)==SQLITE_BUSY ){ 3458 p->pc = (int)(pOp - aOp); 3459 p->rc = rc; 3460 goto vdbe_return; 3461 } 3462 goto abort_due_to_error; 3463 } 3464 3465 if( p->usesStmtJournal 3466 && pOp->p2 3467 && (db->autoCommit==0 || db->nVdbeRead>1) 3468 ){ 3469 assert( sqlite3BtreeIsInTrans(pBt) ); 3470 if( p->iStatement==0 ){ 3471 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3472 db->nStatement++; 3473 p->iStatement = db->nSavepoint + db->nStatement; 3474 } 3475 3476 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3477 if( rc==SQLITE_OK ){ 3478 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3479 } 3480 3481 /* Store the current value of the database handles deferred constraint 3482 ** counter. If the statement transaction needs to be rolled back, 3483 ** the value of this counter needs to be restored too. */ 3484 p->nStmtDefCons = db->nDeferredCons; 3485 p->nStmtDefImmCons = db->nDeferredImmCons; 3486 } 3487 } 3488 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3489 if( pOp->p5 3490 && (iMeta!=pOp->p3 3491 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3492 ){ 3493 /* 3494 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3495 ** version is checked to ensure that the schema has not changed since the 3496 ** SQL statement was prepared. 3497 */ 3498 sqlite3DbFree(db, p->zErrMsg); 3499 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3500 /* If the schema-cookie from the database file matches the cookie 3501 ** stored with the in-memory representation of the schema, do 3502 ** not reload the schema from the database file. 3503 ** 3504 ** If virtual-tables are in use, this is not just an optimization. 3505 ** Often, v-tables store their data in other SQLite tables, which 3506 ** are queried from within xNext() and other v-table methods using 3507 ** prepared queries. If such a query is out-of-date, we do not want to 3508 ** discard the database schema, as the user code implementing the 3509 ** v-table would have to be ready for the sqlite3_vtab structure itself 3510 ** to be invalidated whenever sqlite3_step() is called from within 3511 ** a v-table method. 3512 */ 3513 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3514 sqlite3ResetOneSchema(db, pOp->p1); 3515 } 3516 p->expired = 1; 3517 rc = SQLITE_SCHEMA; 3518 } 3519 if( rc ) goto abort_due_to_error; 3520 break; 3521 } 3522 3523 /* Opcode: ReadCookie P1 P2 P3 * * 3524 ** 3525 ** Read cookie number P3 from database P1 and write it into register P2. 3526 ** P3==1 is the schema version. P3==2 is the database format. 3527 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3528 ** the main database file and P1==1 is the database file used to store 3529 ** temporary tables. 3530 ** 3531 ** There must be a read-lock on the database (either a transaction 3532 ** must be started or there must be an open cursor) before 3533 ** executing this instruction. 3534 */ 3535 case OP_ReadCookie: { /* out2 */ 3536 int iMeta; 3537 int iDb; 3538 int iCookie; 3539 3540 assert( p->bIsReader ); 3541 iDb = pOp->p1; 3542 iCookie = pOp->p3; 3543 assert( pOp->p3<SQLITE_N_BTREE_META ); 3544 assert( iDb>=0 && iDb<db->nDb ); 3545 assert( db->aDb[iDb].pBt!=0 ); 3546 assert( DbMaskTest(p->btreeMask, iDb) ); 3547 3548 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3549 pOut = out2Prerelease(p, pOp); 3550 pOut->u.i = iMeta; 3551 break; 3552 } 3553 3554 /* Opcode: SetCookie P1 P2 P3 * * 3555 ** 3556 ** Write the integer value P3 into cookie number P2 of database P1. 3557 ** P2==1 is the schema version. P2==2 is the database format. 3558 ** P2==3 is the recommended pager cache 3559 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3560 ** database file used to store temporary tables. 3561 ** 3562 ** A transaction must be started before executing this opcode. 3563 */ 3564 case OP_SetCookie: { 3565 Db *pDb; 3566 3567 sqlite3VdbeIncrWriteCounter(p, 0); 3568 assert( pOp->p2<SQLITE_N_BTREE_META ); 3569 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3570 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3571 assert( p->readOnly==0 ); 3572 pDb = &db->aDb[pOp->p1]; 3573 assert( pDb->pBt!=0 ); 3574 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3575 /* See note about index shifting on OP_ReadCookie */ 3576 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3577 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3578 /* When the schema cookie changes, record the new cookie internally */ 3579 pDb->pSchema->schema_cookie = pOp->p3; 3580 db->mDbFlags |= DBFLAG_SchemaChange; 3581 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3582 /* Record changes in the file format */ 3583 pDb->pSchema->file_format = pOp->p3; 3584 } 3585 if( pOp->p1==1 ){ 3586 /* Invalidate all prepared statements whenever the TEMP database 3587 ** schema is changed. Ticket #1644 */ 3588 sqlite3ExpirePreparedStatements(db, 0); 3589 p->expired = 0; 3590 } 3591 if( rc ) goto abort_due_to_error; 3592 break; 3593 } 3594 3595 /* Opcode: OpenRead P1 P2 P3 P4 P5 3596 ** Synopsis: root=P2 iDb=P3 3597 ** 3598 ** Open a read-only cursor for the database table whose root page is 3599 ** P2 in a database file. The database file is determined by P3. 3600 ** P3==0 means the main database, P3==1 means the database used for 3601 ** temporary tables, and P3>1 means used the corresponding attached 3602 ** database. Give the new cursor an identifier of P1. The P1 3603 ** values need not be contiguous but all P1 values should be small integers. 3604 ** It is an error for P1 to be negative. 3605 ** 3606 ** Allowed P5 bits: 3607 ** <ul> 3608 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3609 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3610 ** of OP_SeekLE/OP_IdxGT) 3611 ** </ul> 3612 ** 3613 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3614 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3615 ** object, then table being opened must be an [index b-tree] where the 3616 ** KeyInfo object defines the content and collating 3617 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3618 ** value, then the table being opened must be a [table b-tree] with a 3619 ** number of columns no less than the value of P4. 3620 ** 3621 ** See also: OpenWrite, ReopenIdx 3622 */ 3623 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3624 ** Synopsis: root=P2 iDb=P3 3625 ** 3626 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3627 ** checks to see if the cursor on P1 is already open on the same 3628 ** b-tree and if it is this opcode becomes a no-op. In other words, 3629 ** if the cursor is already open, do not reopen it. 3630 ** 3631 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3632 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3633 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3634 ** number. 3635 ** 3636 ** Allowed P5 bits: 3637 ** <ul> 3638 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3639 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3640 ** of OP_SeekLE/OP_IdxGT) 3641 ** </ul> 3642 ** 3643 ** See also: OP_OpenRead, OP_OpenWrite 3644 */ 3645 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3646 ** Synopsis: root=P2 iDb=P3 3647 ** 3648 ** Open a read/write cursor named P1 on the table or index whose root 3649 ** page is P2 (or whose root page is held in register P2 if the 3650 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3651 ** 3652 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3653 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3654 ** object, then table being opened must be an [index b-tree] where the 3655 ** KeyInfo object defines the content and collating 3656 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3657 ** value, then the table being opened must be a [table b-tree] with a 3658 ** number of columns no less than the value of P4. 3659 ** 3660 ** Allowed P5 bits: 3661 ** <ul> 3662 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3663 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3664 ** of OP_SeekLE/OP_IdxGT) 3665 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3666 ** and subsequently delete entries in an index btree. This is a 3667 ** hint to the storage engine that the storage engine is allowed to 3668 ** ignore. The hint is not used by the official SQLite b*tree storage 3669 ** engine, but is used by COMDB2. 3670 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3671 ** as the root page, not the value of P2 itself. 3672 ** </ul> 3673 ** 3674 ** This instruction works like OpenRead except that it opens the cursor 3675 ** in read/write mode. 3676 ** 3677 ** See also: OP_OpenRead, OP_ReopenIdx 3678 */ 3679 case OP_ReopenIdx: { 3680 int nField; 3681 KeyInfo *pKeyInfo; 3682 int p2; 3683 int iDb; 3684 int wrFlag; 3685 Btree *pX; 3686 VdbeCursor *pCur; 3687 Db *pDb; 3688 3689 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3690 assert( pOp->p4type==P4_KEYINFO ); 3691 pCur = p->apCsr[pOp->p1]; 3692 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3693 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3694 goto open_cursor_set_hints; 3695 } 3696 /* If the cursor is not currently open or is open on a different 3697 ** index, then fall through into OP_OpenRead to force a reopen */ 3698 case OP_OpenRead: 3699 case OP_OpenWrite: 3700 3701 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3702 assert( p->bIsReader ); 3703 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3704 || p->readOnly==0 ); 3705 3706 if( p->expired==1 ){ 3707 rc = SQLITE_ABORT_ROLLBACK; 3708 goto abort_due_to_error; 3709 } 3710 3711 nField = 0; 3712 pKeyInfo = 0; 3713 p2 = pOp->p2; 3714 iDb = pOp->p3; 3715 assert( iDb>=0 && iDb<db->nDb ); 3716 assert( DbMaskTest(p->btreeMask, iDb) ); 3717 pDb = &db->aDb[iDb]; 3718 pX = pDb->pBt; 3719 assert( pX!=0 ); 3720 if( pOp->opcode==OP_OpenWrite ){ 3721 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3722 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3723 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3724 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3725 p->minWriteFileFormat = pDb->pSchema->file_format; 3726 } 3727 }else{ 3728 wrFlag = 0; 3729 } 3730 if( pOp->p5 & OPFLAG_P2ISREG ){ 3731 assert( p2>0 ); 3732 assert( p2<=(p->nMem+1 - p->nCursor) ); 3733 assert( pOp->opcode==OP_OpenWrite ); 3734 pIn2 = &aMem[p2]; 3735 assert( memIsValid(pIn2) ); 3736 assert( (pIn2->flags & MEM_Int)!=0 ); 3737 sqlite3VdbeMemIntegerify(pIn2); 3738 p2 = (int)pIn2->u.i; 3739 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3740 ** that opcode will always set the p2 value to 2 or more or else fail. 3741 ** If there were a failure, the prepared statement would have halted 3742 ** before reaching this instruction. */ 3743 assert( p2>=2 ); 3744 } 3745 if( pOp->p4type==P4_KEYINFO ){ 3746 pKeyInfo = pOp->p4.pKeyInfo; 3747 assert( pKeyInfo->enc==ENC(db) ); 3748 assert( pKeyInfo->db==db ); 3749 nField = pKeyInfo->nAllField; 3750 }else if( pOp->p4type==P4_INT32 ){ 3751 nField = pOp->p4.i; 3752 } 3753 assert( pOp->p1>=0 ); 3754 assert( nField>=0 ); 3755 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3756 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3757 if( pCur==0 ) goto no_mem; 3758 pCur->nullRow = 1; 3759 pCur->isOrdered = 1; 3760 pCur->pgnoRoot = p2; 3761 #ifdef SQLITE_DEBUG 3762 pCur->wrFlag = wrFlag; 3763 #endif 3764 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3765 pCur->pKeyInfo = pKeyInfo; 3766 /* Set the VdbeCursor.isTable variable. Previous versions of 3767 ** SQLite used to check if the root-page flags were sane at this point 3768 ** and report database corruption if they were not, but this check has 3769 ** since moved into the btree layer. */ 3770 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3771 3772 open_cursor_set_hints: 3773 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3774 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3775 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3776 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3777 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3778 #endif 3779 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3780 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3781 if( rc ) goto abort_due_to_error; 3782 break; 3783 } 3784 3785 /* Opcode: OpenDup P1 P2 * * * 3786 ** 3787 ** Open a new cursor P1 that points to the same ephemeral table as 3788 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3789 ** opcode. Only ephemeral cursors may be duplicated. 3790 ** 3791 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3792 */ 3793 case OP_OpenDup: { 3794 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3795 VdbeCursor *pCx; /* The new cursor */ 3796 3797 pOrig = p->apCsr[pOp->p2]; 3798 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3799 3800 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3801 if( pCx==0 ) goto no_mem; 3802 pCx->nullRow = 1; 3803 pCx->isEphemeral = 1; 3804 pCx->pKeyInfo = pOrig->pKeyInfo; 3805 pCx->isTable = pOrig->isTable; 3806 pCx->pgnoRoot = pOrig->pgnoRoot; 3807 pCx->isOrdered = pOrig->isOrdered; 3808 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3809 pCx->pKeyInfo, pCx->uc.pCursor); 3810 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3811 ** opened for a database. Since there is already an open cursor when this 3812 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3813 assert( rc==SQLITE_OK ); 3814 break; 3815 } 3816 3817 3818 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3819 ** Synopsis: nColumn=P2 3820 ** 3821 ** Open a new cursor P1 to a transient table. 3822 ** The cursor is always opened read/write even if 3823 ** the main database is read-only. The ephemeral 3824 ** table is deleted automatically when the cursor is closed. 3825 ** 3826 ** If the cursor P1 is already opened on an ephemeral table, the table 3827 ** is cleared (all content is erased). 3828 ** 3829 ** P2 is the number of columns in the ephemeral table. 3830 ** The cursor points to a BTree table if P4==0 and to a BTree index 3831 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3832 ** that defines the format of keys in the index. 3833 ** 3834 ** The P5 parameter can be a mask of the BTREE_* flags defined 3835 ** in btree.h. These flags control aspects of the operation of 3836 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3837 ** added automatically. 3838 */ 3839 /* Opcode: OpenAutoindex P1 P2 * P4 * 3840 ** Synopsis: nColumn=P2 3841 ** 3842 ** This opcode works the same as OP_OpenEphemeral. It has a 3843 ** different name to distinguish its use. Tables created using 3844 ** by this opcode will be used for automatically created transient 3845 ** indices in joins. 3846 */ 3847 case OP_OpenAutoindex: 3848 case OP_OpenEphemeral: { 3849 VdbeCursor *pCx; 3850 KeyInfo *pKeyInfo; 3851 3852 static const int vfsFlags = 3853 SQLITE_OPEN_READWRITE | 3854 SQLITE_OPEN_CREATE | 3855 SQLITE_OPEN_EXCLUSIVE | 3856 SQLITE_OPEN_DELETEONCLOSE | 3857 SQLITE_OPEN_TRANSIENT_DB; 3858 assert( pOp->p1>=0 ); 3859 assert( pOp->p2>=0 ); 3860 pCx = p->apCsr[pOp->p1]; 3861 if( pCx ){ 3862 /* If the ephermeral table is already open, erase all existing content 3863 ** so that the table is empty again, rather than creating a new table. */ 3864 assert( pCx->isEphemeral ); 3865 pCx->seqCount = 0; 3866 pCx->cacheStatus = CACHE_STALE; 3867 if( pCx->pBtx ){ 3868 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3869 } 3870 }else{ 3871 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3872 if( pCx==0 ) goto no_mem; 3873 pCx->isEphemeral = 1; 3874 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3875 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3876 vfsFlags); 3877 if( rc==SQLITE_OK ){ 3878 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3879 } 3880 if( rc==SQLITE_OK ){ 3881 /* If a transient index is required, create it by calling 3882 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3883 ** opening it. If a transient table is required, just use the 3884 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3885 */ 3886 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3887 assert( pOp->p4type==P4_KEYINFO ); 3888 rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot, 3889 BTREE_BLOBKEY | pOp->p5); 3890 if( rc==SQLITE_OK ){ 3891 assert( pCx->pgnoRoot==MASTER_ROOT+1 ); 3892 assert( pKeyInfo->db==db ); 3893 assert( pKeyInfo->enc==ENC(db) ); 3894 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3895 pKeyInfo, pCx->uc.pCursor); 3896 } 3897 pCx->isTable = 0; 3898 }else{ 3899 pCx->pgnoRoot = MASTER_ROOT; 3900 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3901 0, pCx->uc.pCursor); 3902 pCx->isTable = 1; 3903 } 3904 } 3905 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3906 } 3907 if( rc ) goto abort_due_to_error; 3908 pCx->nullRow = 1; 3909 break; 3910 } 3911 3912 /* Opcode: SorterOpen P1 P2 P3 P4 * 3913 ** 3914 ** This opcode works like OP_OpenEphemeral except that it opens 3915 ** a transient index that is specifically designed to sort large 3916 ** tables using an external merge-sort algorithm. 3917 ** 3918 ** If argument P3 is non-zero, then it indicates that the sorter may 3919 ** assume that a stable sort considering the first P3 fields of each 3920 ** key is sufficient to produce the required results. 3921 */ 3922 case OP_SorterOpen: { 3923 VdbeCursor *pCx; 3924 3925 assert( pOp->p1>=0 ); 3926 assert( pOp->p2>=0 ); 3927 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3928 if( pCx==0 ) goto no_mem; 3929 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3930 assert( pCx->pKeyInfo->db==db ); 3931 assert( pCx->pKeyInfo->enc==ENC(db) ); 3932 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3933 if( rc ) goto abort_due_to_error; 3934 break; 3935 } 3936 3937 /* Opcode: SequenceTest P1 P2 * * * 3938 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3939 ** 3940 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3941 ** to P2. Regardless of whether or not the jump is taken, increment the 3942 ** the sequence value. 3943 */ 3944 case OP_SequenceTest: { 3945 VdbeCursor *pC; 3946 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3947 pC = p->apCsr[pOp->p1]; 3948 assert( isSorter(pC) ); 3949 if( (pC->seqCount++)==0 ){ 3950 goto jump_to_p2; 3951 } 3952 break; 3953 } 3954 3955 /* Opcode: OpenPseudo P1 P2 P3 * * 3956 ** Synopsis: P3 columns in r[P2] 3957 ** 3958 ** Open a new cursor that points to a fake table that contains a single 3959 ** row of data. The content of that one row is the content of memory 3960 ** register P2. In other words, cursor P1 becomes an alias for the 3961 ** MEM_Blob content contained in register P2. 3962 ** 3963 ** A pseudo-table created by this opcode is used to hold a single 3964 ** row output from the sorter so that the row can be decomposed into 3965 ** individual columns using the OP_Column opcode. The OP_Column opcode 3966 ** is the only cursor opcode that works with a pseudo-table. 3967 ** 3968 ** P3 is the number of fields in the records that will be stored by 3969 ** the pseudo-table. 3970 */ 3971 case OP_OpenPseudo: { 3972 VdbeCursor *pCx; 3973 3974 assert( pOp->p1>=0 ); 3975 assert( pOp->p3>=0 ); 3976 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3977 if( pCx==0 ) goto no_mem; 3978 pCx->nullRow = 1; 3979 pCx->seekResult = pOp->p2; 3980 pCx->isTable = 1; 3981 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3982 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3983 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3984 ** which is a performance optimization */ 3985 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3986 assert( pOp->p5==0 ); 3987 break; 3988 } 3989 3990 /* Opcode: Close P1 * * * * 3991 ** 3992 ** Close a cursor previously opened as P1. If P1 is not 3993 ** currently open, this instruction is a no-op. 3994 */ 3995 case OP_Close: { 3996 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3997 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3998 p->apCsr[pOp->p1] = 0; 3999 break; 4000 } 4001 4002 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4003 /* Opcode: ColumnsUsed P1 * * P4 * 4004 ** 4005 ** This opcode (which only exists if SQLite was compiled with 4006 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4007 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4008 ** (P4_INT64) in which the first 63 bits are one for each of the 4009 ** first 63 columns of the table or index that are actually used 4010 ** by the cursor. The high-order bit is set if any column after 4011 ** the 64th is used. 4012 */ 4013 case OP_ColumnsUsed: { 4014 VdbeCursor *pC; 4015 pC = p->apCsr[pOp->p1]; 4016 assert( pC->eCurType==CURTYPE_BTREE ); 4017 pC->maskUsed = *(u64*)pOp->p4.pI64; 4018 break; 4019 } 4020 #endif 4021 4022 /* Opcode: SeekGE P1 P2 P3 P4 * 4023 ** Synopsis: key=r[P3@P4] 4024 ** 4025 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4026 ** use the value in register P3 as the key. If cursor P1 refers 4027 ** to an SQL index, then P3 is the first in an array of P4 registers 4028 ** that are used as an unpacked index key. 4029 ** 4030 ** Reposition cursor P1 so that it points to the smallest entry that 4031 ** is greater than or equal to the key value. If there are no records 4032 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4033 ** 4034 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4035 ** opcode will always land on a record that equally equals the key, or 4036 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 4037 ** opcode must be followed by an IdxLE opcode with the same arguments. 4038 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 4039 ** IdxLE opcode will be used on subsequent loop iterations. 4040 ** 4041 ** This opcode leaves the cursor configured to move in forward order, 4042 ** from the beginning toward the end. In other words, the cursor is 4043 ** configured to use Next, not Prev. 4044 ** 4045 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4046 */ 4047 /* Opcode: SeekGT P1 P2 P3 P4 * 4048 ** Synopsis: key=r[P3@P4] 4049 ** 4050 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4051 ** use the value in register P3 as a key. If cursor P1 refers 4052 ** to an SQL index, then P3 is the first in an array of P4 registers 4053 ** that are used as an unpacked index key. 4054 ** 4055 ** Reposition cursor P1 so that it points to the smallest entry that 4056 ** is greater than the key value. If there are no records greater than 4057 ** the key and P2 is not zero, then jump to P2. 4058 ** 4059 ** This opcode leaves the cursor configured to move in forward order, 4060 ** from the beginning toward the end. In other words, the cursor is 4061 ** configured to use Next, not Prev. 4062 ** 4063 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4064 */ 4065 /* Opcode: SeekLT P1 P2 P3 P4 * 4066 ** Synopsis: key=r[P3@P4] 4067 ** 4068 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4069 ** use the value in register P3 as a key. If cursor P1 refers 4070 ** to an SQL index, then P3 is the first in an array of P4 registers 4071 ** that are used as an unpacked index key. 4072 ** 4073 ** Reposition cursor P1 so that it points to the largest entry that 4074 ** is less than the key value. If there are no records less than 4075 ** the key and P2 is not zero, then jump to P2. 4076 ** 4077 ** This opcode leaves the cursor configured to move in reverse order, 4078 ** from the end toward the beginning. In other words, the cursor is 4079 ** configured to use Prev, not Next. 4080 ** 4081 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4082 */ 4083 /* Opcode: SeekLE P1 P2 P3 P4 * 4084 ** Synopsis: key=r[P3@P4] 4085 ** 4086 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4087 ** use the value in register P3 as a key. If cursor P1 refers 4088 ** to an SQL index, then P3 is the first in an array of P4 registers 4089 ** that are used as an unpacked index key. 4090 ** 4091 ** Reposition cursor P1 so that it points to the largest entry that 4092 ** is less than or equal to the key value. If there are no records 4093 ** less than or equal to the key and P2 is not zero, then jump to P2. 4094 ** 4095 ** This opcode leaves the cursor configured to move in reverse order, 4096 ** from the end toward the beginning. In other words, the cursor is 4097 ** configured to use Prev, not Next. 4098 ** 4099 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4100 ** opcode will always land on a record that equally equals the key, or 4101 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 4102 ** opcode must be followed by an IdxGE opcode with the same arguments. 4103 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4104 ** IdxGE opcode will be used on subsequent loop iterations. 4105 ** 4106 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4107 */ 4108 case OP_SeekLT: /* jump, in3, group */ 4109 case OP_SeekLE: /* jump, in3, group */ 4110 case OP_SeekGE: /* jump, in3, group */ 4111 case OP_SeekGT: { /* jump, in3, group */ 4112 int res; /* Comparison result */ 4113 int oc; /* Opcode */ 4114 VdbeCursor *pC; /* The cursor to seek */ 4115 UnpackedRecord r; /* The key to seek for */ 4116 int nField; /* Number of columns or fields in the key */ 4117 i64 iKey; /* The rowid we are to seek to */ 4118 int eqOnly; /* Only interested in == results */ 4119 4120 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4121 assert( pOp->p2!=0 ); 4122 pC = p->apCsr[pOp->p1]; 4123 assert( pC!=0 ); 4124 assert( pC->eCurType==CURTYPE_BTREE ); 4125 assert( OP_SeekLE == OP_SeekLT+1 ); 4126 assert( OP_SeekGE == OP_SeekLT+2 ); 4127 assert( OP_SeekGT == OP_SeekLT+3 ); 4128 assert( pC->isOrdered ); 4129 assert( pC->uc.pCursor!=0 ); 4130 oc = pOp->opcode; 4131 eqOnly = 0; 4132 pC->nullRow = 0; 4133 #ifdef SQLITE_DEBUG 4134 pC->seekOp = pOp->opcode; 4135 #endif 4136 4137 pC->deferredMoveto = 0; 4138 pC->cacheStatus = CACHE_STALE; 4139 if( pC->isTable ){ 4140 u16 flags3, newType; 4141 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 4142 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4143 || CORRUPT_DB ); 4144 4145 /* The input value in P3 might be of any type: integer, real, string, 4146 ** blob, or NULL. But it needs to be an integer before we can do 4147 ** the seek, so convert it. */ 4148 pIn3 = &aMem[pOp->p3]; 4149 flags3 = pIn3->flags; 4150 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4151 applyNumericAffinity(pIn3, 0); 4152 } 4153 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4154 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4155 pIn3->flags = flags3; /* But convert the type back to its original */ 4156 4157 /* If the P3 value could not be converted into an integer without 4158 ** loss of information, then special processing is required... */ 4159 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4160 if( (newType & MEM_Real)==0 ){ 4161 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4162 VdbeBranchTaken(1,2); 4163 goto jump_to_p2; 4164 }else{ 4165 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4166 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4167 goto seek_not_found; 4168 } 4169 }else 4170 4171 /* If the approximation iKey is larger than the actual real search 4172 ** term, substitute >= for > and < for <=. e.g. if the search term 4173 ** is 4.9 and the integer approximation 5: 4174 ** 4175 ** (x > 4.9) -> (x >= 5) 4176 ** (x <= 4.9) -> (x < 5) 4177 */ 4178 if( pIn3->u.r<(double)iKey ){ 4179 assert( OP_SeekGE==(OP_SeekGT-1) ); 4180 assert( OP_SeekLT==(OP_SeekLE-1) ); 4181 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4182 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4183 } 4184 4185 /* If the approximation iKey is smaller than the actual real search 4186 ** term, substitute <= for < and > for >=. */ 4187 else if( pIn3->u.r>(double)iKey ){ 4188 assert( OP_SeekLE==(OP_SeekLT+1) ); 4189 assert( OP_SeekGT==(OP_SeekGE+1) ); 4190 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4191 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4192 } 4193 } 4194 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4195 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4196 if( rc!=SQLITE_OK ){ 4197 goto abort_due_to_error; 4198 } 4199 }else{ 4200 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 4201 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 4202 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 4203 */ 4204 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4205 eqOnly = 1; 4206 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4207 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4208 assert( pOp[1].p1==pOp[0].p1 ); 4209 assert( pOp[1].p2==pOp[0].p2 ); 4210 assert( pOp[1].p3==pOp[0].p3 ); 4211 assert( pOp[1].p4.i==pOp[0].p4.i ); 4212 } 4213 4214 nField = pOp->p4.i; 4215 assert( pOp->p4type==P4_INT32 ); 4216 assert( nField>0 ); 4217 r.pKeyInfo = pC->pKeyInfo; 4218 r.nField = (u16)nField; 4219 4220 /* The next line of code computes as follows, only faster: 4221 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4222 ** r.default_rc = -1; 4223 ** }else{ 4224 ** r.default_rc = +1; 4225 ** } 4226 */ 4227 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4228 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4229 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4230 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4231 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4232 4233 r.aMem = &aMem[pOp->p3]; 4234 #ifdef SQLITE_DEBUG 4235 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4236 #endif 4237 r.eqSeen = 0; 4238 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4239 if( rc!=SQLITE_OK ){ 4240 goto abort_due_to_error; 4241 } 4242 if( eqOnly && r.eqSeen==0 ){ 4243 assert( res!=0 ); 4244 goto seek_not_found; 4245 } 4246 } 4247 #ifdef SQLITE_TEST 4248 sqlite3_search_count++; 4249 #endif 4250 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4251 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4252 res = 0; 4253 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4254 if( rc!=SQLITE_OK ){ 4255 if( rc==SQLITE_DONE ){ 4256 rc = SQLITE_OK; 4257 res = 1; 4258 }else{ 4259 goto abort_due_to_error; 4260 } 4261 } 4262 }else{ 4263 res = 0; 4264 } 4265 }else{ 4266 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4267 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4268 res = 0; 4269 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4270 if( rc!=SQLITE_OK ){ 4271 if( rc==SQLITE_DONE ){ 4272 rc = SQLITE_OK; 4273 res = 1; 4274 }else{ 4275 goto abort_due_to_error; 4276 } 4277 } 4278 }else{ 4279 /* res might be negative because the table is empty. Check to 4280 ** see if this is the case. 4281 */ 4282 res = sqlite3BtreeEof(pC->uc.pCursor); 4283 } 4284 } 4285 seek_not_found: 4286 assert( pOp->p2>0 ); 4287 VdbeBranchTaken(res!=0,2); 4288 if( res ){ 4289 goto jump_to_p2; 4290 }else if( eqOnly ){ 4291 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4292 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4293 } 4294 break; 4295 } 4296 4297 /* Opcode: SeekHit P1 P2 * * * 4298 ** Synopsis: seekHit=P2 4299 ** 4300 ** Set the seekHit flag on cursor P1 to the value in P2. 4301 ** The seekHit flag is used by the IfNoHope opcode. 4302 ** 4303 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4304 ** either 0 or 1. 4305 */ 4306 case OP_SeekHit: { 4307 VdbeCursor *pC; 4308 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4309 pC = p->apCsr[pOp->p1]; 4310 assert( pC!=0 ); 4311 assert( pOp->p2==0 || pOp->p2==1 ); 4312 pC->seekHit = pOp->p2 & 1; 4313 break; 4314 } 4315 4316 /* Opcode: Found P1 P2 P3 P4 * 4317 ** Synopsis: key=r[P3@P4] 4318 ** 4319 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4320 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4321 ** record. 4322 ** 4323 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4324 ** is a prefix of any entry in P1 then a jump is made to P2 and 4325 ** P1 is left pointing at the matching entry. 4326 ** 4327 ** This operation leaves the cursor in a state where it can be 4328 ** advanced in the forward direction. The Next instruction will work, 4329 ** but not the Prev instruction. 4330 ** 4331 ** See also: NotFound, NoConflict, NotExists. SeekGe 4332 */ 4333 /* Opcode: NotFound P1 P2 P3 P4 * 4334 ** Synopsis: key=r[P3@P4] 4335 ** 4336 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4337 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4338 ** record. 4339 ** 4340 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4341 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4342 ** does contain an entry whose prefix matches the P3/P4 record then control 4343 ** falls through to the next instruction and P1 is left pointing at the 4344 ** matching entry. 4345 ** 4346 ** This operation leaves the cursor in a state where it cannot be 4347 ** advanced in either direction. In other words, the Next and Prev 4348 ** opcodes do not work after this operation. 4349 ** 4350 ** See also: Found, NotExists, NoConflict, IfNoHope 4351 */ 4352 /* Opcode: IfNoHope P1 P2 P3 P4 * 4353 ** Synopsis: key=r[P3@P4] 4354 ** 4355 ** Register P3 is the first of P4 registers that form an unpacked 4356 ** record. 4357 ** 4358 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4359 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4360 ** check to see if there is any entry in P1 that matches the 4361 ** prefix identified by P3 and P4. If no entry matches the prefix, 4362 ** jump to P2. Otherwise fall through. 4363 ** 4364 ** This opcode behaves like OP_NotFound if the seekHit 4365 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4366 ** 4367 ** This opcode is used in IN clause processing for a multi-column key. 4368 ** If an IN clause is attached to an element of the key other than the 4369 ** left-most element, and if there are no matches on the most recent 4370 ** seek over the whole key, then it might be that one of the key element 4371 ** to the left is prohibiting a match, and hence there is "no hope" of 4372 ** any match regardless of how many IN clause elements are checked. 4373 ** In such a case, we abandon the IN clause search early, using this 4374 ** opcode. The opcode name comes from the fact that the 4375 ** jump is taken if there is "no hope" of achieving a match. 4376 ** 4377 ** See also: NotFound, SeekHit 4378 */ 4379 /* Opcode: NoConflict P1 P2 P3 P4 * 4380 ** Synopsis: key=r[P3@P4] 4381 ** 4382 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4383 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4384 ** record. 4385 ** 4386 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4387 ** contains any NULL value, jump immediately to P2. If all terms of the 4388 ** record are not-NULL then a check is done to determine if any row in the 4389 ** P1 index btree has a matching key prefix. If there are no matches, jump 4390 ** immediately to P2. If there is a match, fall through and leave the P1 4391 ** cursor pointing to the matching row. 4392 ** 4393 ** This opcode is similar to OP_NotFound with the exceptions that the 4394 ** branch is always taken if any part of the search key input is NULL. 4395 ** 4396 ** This operation leaves the cursor in a state where it cannot be 4397 ** advanced in either direction. In other words, the Next and Prev 4398 ** opcodes do not work after this operation. 4399 ** 4400 ** See also: NotFound, Found, NotExists 4401 */ 4402 case OP_IfNoHope: { /* jump, in3 */ 4403 VdbeCursor *pC; 4404 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4405 pC = p->apCsr[pOp->p1]; 4406 assert( pC!=0 ); 4407 if( pC->seekHit ) break; 4408 /* Fall through into OP_NotFound */ 4409 } 4410 case OP_NoConflict: /* jump, in3 */ 4411 case OP_NotFound: /* jump, in3 */ 4412 case OP_Found: { /* jump, in3 */ 4413 int alreadyExists; 4414 int takeJump; 4415 int ii; 4416 VdbeCursor *pC; 4417 int res; 4418 UnpackedRecord *pFree; 4419 UnpackedRecord *pIdxKey; 4420 UnpackedRecord r; 4421 4422 #ifdef SQLITE_TEST 4423 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4424 #endif 4425 4426 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4427 assert( pOp->p4type==P4_INT32 ); 4428 pC = p->apCsr[pOp->p1]; 4429 assert( pC!=0 ); 4430 #ifdef SQLITE_DEBUG 4431 pC->seekOp = pOp->opcode; 4432 #endif 4433 pIn3 = &aMem[pOp->p3]; 4434 assert( pC->eCurType==CURTYPE_BTREE ); 4435 assert( pC->uc.pCursor!=0 ); 4436 assert( pC->isTable==0 ); 4437 if( pOp->p4.i>0 ){ 4438 r.pKeyInfo = pC->pKeyInfo; 4439 r.nField = (u16)pOp->p4.i; 4440 r.aMem = pIn3; 4441 #ifdef SQLITE_DEBUG 4442 for(ii=0; ii<r.nField; ii++){ 4443 assert( memIsValid(&r.aMem[ii]) ); 4444 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4445 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4446 } 4447 #endif 4448 pIdxKey = &r; 4449 pFree = 0; 4450 }else{ 4451 assert( pIn3->flags & MEM_Blob ); 4452 rc = ExpandBlob(pIn3); 4453 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4454 if( rc ) goto no_mem; 4455 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4456 if( pIdxKey==0 ) goto no_mem; 4457 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4458 } 4459 pIdxKey->default_rc = 0; 4460 takeJump = 0; 4461 if( pOp->opcode==OP_NoConflict ){ 4462 /* For the OP_NoConflict opcode, take the jump if any of the 4463 ** input fields are NULL, since any key with a NULL will not 4464 ** conflict */ 4465 for(ii=0; ii<pIdxKey->nField; ii++){ 4466 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4467 takeJump = 1; 4468 break; 4469 } 4470 } 4471 } 4472 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4473 if( pFree ) sqlite3DbFreeNN(db, pFree); 4474 if( rc!=SQLITE_OK ){ 4475 goto abort_due_to_error; 4476 } 4477 pC->seekResult = res; 4478 alreadyExists = (res==0); 4479 pC->nullRow = 1-alreadyExists; 4480 pC->deferredMoveto = 0; 4481 pC->cacheStatus = CACHE_STALE; 4482 if( pOp->opcode==OP_Found ){ 4483 VdbeBranchTaken(alreadyExists!=0,2); 4484 if( alreadyExists ) goto jump_to_p2; 4485 }else{ 4486 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4487 if( takeJump || !alreadyExists ) goto jump_to_p2; 4488 } 4489 break; 4490 } 4491 4492 /* Opcode: SeekRowid P1 P2 P3 * * 4493 ** Synopsis: intkey=r[P3] 4494 ** 4495 ** P1 is the index of a cursor open on an SQL table btree (with integer 4496 ** keys). If register P3 does not contain an integer or if P1 does not 4497 ** contain a record with rowid P3 then jump immediately to P2. 4498 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4499 ** a record with rowid P3 then 4500 ** leave the cursor pointing at that record and fall through to the next 4501 ** instruction. 4502 ** 4503 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4504 ** the P3 register must be guaranteed to contain an integer value. With this 4505 ** opcode, register P3 might not contain an integer. 4506 ** 4507 ** The OP_NotFound opcode performs the same operation on index btrees 4508 ** (with arbitrary multi-value keys). 4509 ** 4510 ** This opcode leaves the cursor in a state where it cannot be advanced 4511 ** in either direction. In other words, the Next and Prev opcodes will 4512 ** not work following this opcode. 4513 ** 4514 ** See also: Found, NotFound, NoConflict, SeekRowid 4515 */ 4516 /* Opcode: NotExists P1 P2 P3 * * 4517 ** Synopsis: intkey=r[P3] 4518 ** 4519 ** P1 is the index of a cursor open on an SQL table btree (with integer 4520 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4521 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4522 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4523 ** leave the cursor pointing at that record and fall through to the next 4524 ** instruction. 4525 ** 4526 ** The OP_SeekRowid opcode performs the same operation but also allows the 4527 ** P3 register to contain a non-integer value, in which case the jump is 4528 ** always taken. This opcode requires that P3 always contain an integer. 4529 ** 4530 ** The OP_NotFound opcode performs the same operation on index btrees 4531 ** (with arbitrary multi-value keys). 4532 ** 4533 ** This opcode leaves the cursor in a state where it cannot be advanced 4534 ** in either direction. In other words, the Next and Prev opcodes will 4535 ** not work following this opcode. 4536 ** 4537 ** See also: Found, NotFound, NoConflict, SeekRowid 4538 */ 4539 case OP_SeekRowid: { /* jump, in3 */ 4540 VdbeCursor *pC; 4541 BtCursor *pCrsr; 4542 int res; 4543 u64 iKey; 4544 4545 pIn3 = &aMem[pOp->p3]; 4546 testcase( pIn3->flags & MEM_Int ); 4547 testcase( pIn3->flags & MEM_IntReal ); 4548 testcase( pIn3->flags & MEM_Real ); 4549 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4550 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4551 /* If pIn3->u.i does not contain an integer, compute iKey as the 4552 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4553 ** into an integer without loss of information. Take care to avoid 4554 ** changing the datatype of pIn3, however, as it is used by other 4555 ** parts of the prepared statement. */ 4556 Mem x = pIn3[0]; 4557 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4558 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4559 iKey = x.u.i; 4560 goto notExistsWithKey; 4561 } 4562 /* Fall through into OP_NotExists */ 4563 case OP_NotExists: /* jump, in3 */ 4564 pIn3 = &aMem[pOp->p3]; 4565 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4566 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4567 iKey = pIn3->u.i; 4568 notExistsWithKey: 4569 pC = p->apCsr[pOp->p1]; 4570 assert( pC!=0 ); 4571 #ifdef SQLITE_DEBUG 4572 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4573 #endif 4574 assert( pC->isTable ); 4575 assert( pC->eCurType==CURTYPE_BTREE ); 4576 pCrsr = pC->uc.pCursor; 4577 assert( pCrsr!=0 ); 4578 res = 0; 4579 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4580 assert( rc==SQLITE_OK || res==0 ); 4581 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4582 pC->nullRow = 0; 4583 pC->cacheStatus = CACHE_STALE; 4584 pC->deferredMoveto = 0; 4585 VdbeBranchTaken(res!=0,2); 4586 pC->seekResult = res; 4587 if( res!=0 ){ 4588 assert( rc==SQLITE_OK ); 4589 if( pOp->p2==0 ){ 4590 rc = SQLITE_CORRUPT_BKPT; 4591 }else{ 4592 goto jump_to_p2; 4593 } 4594 } 4595 if( rc ) goto abort_due_to_error; 4596 break; 4597 } 4598 4599 /* Opcode: Sequence P1 P2 * * * 4600 ** Synopsis: r[P2]=cursor[P1].ctr++ 4601 ** 4602 ** Find the next available sequence number for cursor P1. 4603 ** Write the sequence number into register P2. 4604 ** The sequence number on the cursor is incremented after this 4605 ** instruction. 4606 */ 4607 case OP_Sequence: { /* out2 */ 4608 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4609 assert( p->apCsr[pOp->p1]!=0 ); 4610 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4611 pOut = out2Prerelease(p, pOp); 4612 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4613 break; 4614 } 4615 4616 4617 /* Opcode: NewRowid P1 P2 P3 * * 4618 ** Synopsis: r[P2]=rowid 4619 ** 4620 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4621 ** The record number is not previously used as a key in the database 4622 ** table that cursor P1 points to. The new record number is written 4623 ** written to register P2. 4624 ** 4625 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4626 ** the largest previously generated record number. No new record numbers are 4627 ** allowed to be less than this value. When this value reaches its maximum, 4628 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4629 ** generated record number. This P3 mechanism is used to help implement the 4630 ** AUTOINCREMENT feature. 4631 */ 4632 case OP_NewRowid: { /* out2 */ 4633 i64 v; /* The new rowid */ 4634 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4635 int res; /* Result of an sqlite3BtreeLast() */ 4636 int cnt; /* Counter to limit the number of searches */ 4637 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4638 VdbeFrame *pFrame; /* Root frame of VDBE */ 4639 4640 v = 0; 4641 res = 0; 4642 pOut = out2Prerelease(p, pOp); 4643 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4644 pC = p->apCsr[pOp->p1]; 4645 assert( pC!=0 ); 4646 assert( pC->isTable ); 4647 assert( pC->eCurType==CURTYPE_BTREE ); 4648 assert( pC->uc.pCursor!=0 ); 4649 { 4650 /* The next rowid or record number (different terms for the same 4651 ** thing) is obtained in a two-step algorithm. 4652 ** 4653 ** First we attempt to find the largest existing rowid and add one 4654 ** to that. But if the largest existing rowid is already the maximum 4655 ** positive integer, we have to fall through to the second 4656 ** probabilistic algorithm 4657 ** 4658 ** The second algorithm is to select a rowid at random and see if 4659 ** it already exists in the table. If it does not exist, we have 4660 ** succeeded. If the random rowid does exist, we select a new one 4661 ** and try again, up to 100 times. 4662 */ 4663 assert( pC->isTable ); 4664 4665 #ifdef SQLITE_32BIT_ROWID 4666 # define MAX_ROWID 0x7fffffff 4667 #else 4668 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4669 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4670 ** to provide the constant while making all compilers happy. 4671 */ 4672 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4673 #endif 4674 4675 if( !pC->useRandomRowid ){ 4676 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4677 if( rc!=SQLITE_OK ){ 4678 goto abort_due_to_error; 4679 } 4680 if( res ){ 4681 v = 1; /* IMP: R-61914-48074 */ 4682 }else{ 4683 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4684 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4685 if( v>=MAX_ROWID ){ 4686 pC->useRandomRowid = 1; 4687 }else{ 4688 v++; /* IMP: R-29538-34987 */ 4689 } 4690 } 4691 } 4692 4693 #ifndef SQLITE_OMIT_AUTOINCREMENT 4694 if( pOp->p3 ){ 4695 /* Assert that P3 is a valid memory cell. */ 4696 assert( pOp->p3>0 ); 4697 if( p->pFrame ){ 4698 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4699 /* Assert that P3 is a valid memory cell. */ 4700 assert( pOp->p3<=pFrame->nMem ); 4701 pMem = &pFrame->aMem[pOp->p3]; 4702 }else{ 4703 /* Assert that P3 is a valid memory cell. */ 4704 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4705 pMem = &aMem[pOp->p3]; 4706 memAboutToChange(p, pMem); 4707 } 4708 assert( memIsValid(pMem) ); 4709 4710 REGISTER_TRACE(pOp->p3, pMem); 4711 sqlite3VdbeMemIntegerify(pMem); 4712 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4713 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4714 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4715 goto abort_due_to_error; 4716 } 4717 if( v<pMem->u.i+1 ){ 4718 v = pMem->u.i + 1; 4719 } 4720 pMem->u.i = v; 4721 } 4722 #endif 4723 if( pC->useRandomRowid ){ 4724 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4725 ** largest possible integer (9223372036854775807) then the database 4726 ** engine starts picking positive candidate ROWIDs at random until 4727 ** it finds one that is not previously used. */ 4728 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4729 ** an AUTOINCREMENT table. */ 4730 cnt = 0; 4731 do{ 4732 sqlite3_randomness(sizeof(v), &v); 4733 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4734 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4735 0, &res))==SQLITE_OK) 4736 && (res==0) 4737 && (++cnt<100)); 4738 if( rc ) goto abort_due_to_error; 4739 if( res==0 ){ 4740 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4741 goto abort_due_to_error; 4742 } 4743 assert( v>0 ); /* EV: R-40812-03570 */ 4744 } 4745 pC->deferredMoveto = 0; 4746 pC->cacheStatus = CACHE_STALE; 4747 } 4748 pOut->u.i = v; 4749 break; 4750 } 4751 4752 /* Opcode: Insert P1 P2 P3 P4 P5 4753 ** Synopsis: intkey=r[P3] data=r[P2] 4754 ** 4755 ** Write an entry into the table of cursor P1. A new entry is 4756 ** created if it doesn't already exist or the data for an existing 4757 ** entry is overwritten. The data is the value MEM_Blob stored in register 4758 ** number P2. The key is stored in register P3. The key must 4759 ** be a MEM_Int. 4760 ** 4761 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4762 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4763 ** then rowid is stored for subsequent return by the 4764 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4765 ** 4766 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4767 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4768 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4769 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4770 ** 4771 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4772 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4773 ** is part of an INSERT operation. The difference is only important to 4774 ** the update hook. 4775 ** 4776 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4777 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4778 ** following a successful insert. 4779 ** 4780 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4781 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4782 ** and register P2 becomes ephemeral. If the cursor is changed, the 4783 ** value of register P2 will then change. Make sure this does not 4784 ** cause any problems.) 4785 ** 4786 ** This instruction only works on tables. The equivalent instruction 4787 ** for indices is OP_IdxInsert. 4788 */ 4789 case OP_Insert: { 4790 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4791 Mem *pKey; /* MEM cell holding key for the record */ 4792 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4793 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4794 const char *zDb; /* database name - used by the update hook */ 4795 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4796 BtreePayload x; /* Payload to be inserted */ 4797 4798 pData = &aMem[pOp->p2]; 4799 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4800 assert( memIsValid(pData) ); 4801 pC = p->apCsr[pOp->p1]; 4802 assert( pC!=0 ); 4803 assert( pC->eCurType==CURTYPE_BTREE ); 4804 assert( pC->uc.pCursor!=0 ); 4805 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4806 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4807 REGISTER_TRACE(pOp->p2, pData); 4808 sqlite3VdbeIncrWriteCounter(p, pC); 4809 4810 pKey = &aMem[pOp->p3]; 4811 assert( pKey->flags & MEM_Int ); 4812 assert( memIsValid(pKey) ); 4813 REGISTER_TRACE(pOp->p3, pKey); 4814 x.nKey = pKey->u.i; 4815 4816 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4817 assert( pC->iDb>=0 ); 4818 zDb = db->aDb[pC->iDb].zDbSName; 4819 pTab = pOp->p4.pTab; 4820 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4821 }else{ 4822 pTab = 0; 4823 zDb = 0; /* Not needed. Silence a compiler warning. */ 4824 } 4825 4826 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4827 /* Invoke the pre-update hook, if any */ 4828 if( pTab ){ 4829 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4830 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4831 } 4832 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4833 /* Prevent post-update hook from running in cases when it should not */ 4834 pTab = 0; 4835 } 4836 } 4837 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4838 #endif 4839 4840 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4841 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4842 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4843 x.pData = pData->z; 4844 x.nData = pData->n; 4845 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4846 if( pData->flags & MEM_Zero ){ 4847 x.nZero = pData->u.nZero; 4848 }else{ 4849 x.nZero = 0; 4850 } 4851 x.pKey = 0; 4852 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4853 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4854 ); 4855 pC->deferredMoveto = 0; 4856 pC->cacheStatus = CACHE_STALE; 4857 4858 /* Invoke the update-hook if required. */ 4859 if( rc ) goto abort_due_to_error; 4860 if( pTab ){ 4861 assert( db->xUpdateCallback!=0 ); 4862 assert( pTab->aCol!=0 ); 4863 db->xUpdateCallback(db->pUpdateArg, 4864 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4865 zDb, pTab->zName, x.nKey); 4866 } 4867 break; 4868 } 4869 4870 /* Opcode: Delete P1 P2 P3 P4 P5 4871 ** 4872 ** Delete the record at which the P1 cursor is currently pointing. 4873 ** 4874 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4875 ** the cursor will be left pointing at either the next or the previous 4876 ** record in the table. If it is left pointing at the next record, then 4877 ** the next Next instruction will be a no-op. As a result, in this case 4878 ** it is ok to delete a record from within a Next loop. If 4879 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4880 ** left in an undefined state. 4881 ** 4882 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4883 ** delete one of several associated with deleting a table row and all its 4884 ** associated index entries. Exactly one of those deletes is the "primary" 4885 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4886 ** marked with the AUXDELETE flag. 4887 ** 4888 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4889 ** change count is incremented (otherwise not). 4890 ** 4891 ** P1 must not be pseudo-table. It has to be a real table with 4892 ** multiple rows. 4893 ** 4894 ** If P4 is not NULL then it points to a Table object. In this case either 4895 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4896 ** have been positioned using OP_NotFound prior to invoking this opcode in 4897 ** this case. Specifically, if one is configured, the pre-update hook is 4898 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4899 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4900 ** 4901 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4902 ** of the memory cell that contains the value that the rowid of the row will 4903 ** be set to by the update. 4904 */ 4905 case OP_Delete: { 4906 VdbeCursor *pC; 4907 const char *zDb; 4908 Table *pTab; 4909 int opflags; 4910 4911 opflags = pOp->p2; 4912 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4913 pC = p->apCsr[pOp->p1]; 4914 assert( pC!=0 ); 4915 assert( pC->eCurType==CURTYPE_BTREE ); 4916 assert( pC->uc.pCursor!=0 ); 4917 assert( pC->deferredMoveto==0 ); 4918 sqlite3VdbeIncrWriteCounter(p, pC); 4919 4920 #ifdef SQLITE_DEBUG 4921 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4922 /* If p5 is zero, the seek operation that positioned the cursor prior to 4923 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4924 ** the row that is being deleted */ 4925 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4926 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 4927 } 4928 #endif 4929 4930 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4931 ** the name of the db to pass as to it. Also set local pTab to a copy 4932 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4933 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4934 ** VdbeCursor.movetoTarget to the current rowid. */ 4935 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4936 assert( pC->iDb>=0 ); 4937 assert( pOp->p4.pTab!=0 ); 4938 zDb = db->aDb[pC->iDb].zDbSName; 4939 pTab = pOp->p4.pTab; 4940 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4941 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4942 } 4943 }else{ 4944 zDb = 0; /* Not needed. Silence a compiler warning. */ 4945 pTab = 0; /* Not needed. Silence a compiler warning. */ 4946 } 4947 4948 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4949 /* Invoke the pre-update-hook if required. */ 4950 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4951 assert( !(opflags & OPFLAG_ISUPDATE) 4952 || HasRowid(pTab)==0 4953 || (aMem[pOp->p3].flags & MEM_Int) 4954 ); 4955 sqlite3VdbePreUpdateHook(p, pC, 4956 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4957 zDb, pTab, pC->movetoTarget, 4958 pOp->p3 4959 ); 4960 } 4961 if( opflags & OPFLAG_ISNOOP ) break; 4962 #endif 4963 4964 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4965 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4966 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4967 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4968 4969 #ifdef SQLITE_DEBUG 4970 if( p->pFrame==0 ){ 4971 if( pC->isEphemeral==0 4972 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4973 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4974 ){ 4975 nExtraDelete++; 4976 } 4977 if( pOp->p2 & OPFLAG_NCHANGE ){ 4978 nExtraDelete--; 4979 } 4980 } 4981 #endif 4982 4983 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4984 pC->cacheStatus = CACHE_STALE; 4985 pC->seekResult = 0; 4986 if( rc ) goto abort_due_to_error; 4987 4988 /* Invoke the update-hook if required. */ 4989 if( opflags & OPFLAG_NCHANGE ){ 4990 p->nChange++; 4991 if( db->xUpdateCallback && HasRowid(pTab) ){ 4992 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4993 pC->movetoTarget); 4994 assert( pC->iDb>=0 ); 4995 } 4996 } 4997 4998 break; 4999 } 5000 /* Opcode: ResetCount * * * * * 5001 ** 5002 ** The value of the change counter is copied to the database handle 5003 ** change counter (returned by subsequent calls to sqlite3_changes()). 5004 ** Then the VMs internal change counter resets to 0. 5005 ** This is used by trigger programs. 5006 */ 5007 case OP_ResetCount: { 5008 sqlite3VdbeSetChanges(db, p->nChange); 5009 p->nChange = 0; 5010 break; 5011 } 5012 5013 /* Opcode: SorterCompare P1 P2 P3 P4 5014 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5015 ** 5016 ** P1 is a sorter cursor. This instruction compares a prefix of the 5017 ** record blob in register P3 against a prefix of the entry that 5018 ** the sorter cursor currently points to. Only the first P4 fields 5019 ** of r[P3] and the sorter record are compared. 5020 ** 5021 ** If either P3 or the sorter contains a NULL in one of their significant 5022 ** fields (not counting the P4 fields at the end which are ignored) then 5023 ** the comparison is assumed to be equal. 5024 ** 5025 ** Fall through to next instruction if the two records compare equal to 5026 ** each other. Jump to P2 if they are different. 5027 */ 5028 case OP_SorterCompare: { 5029 VdbeCursor *pC; 5030 int res; 5031 int nKeyCol; 5032 5033 pC = p->apCsr[pOp->p1]; 5034 assert( isSorter(pC) ); 5035 assert( pOp->p4type==P4_INT32 ); 5036 pIn3 = &aMem[pOp->p3]; 5037 nKeyCol = pOp->p4.i; 5038 res = 0; 5039 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5040 VdbeBranchTaken(res!=0,2); 5041 if( rc ) goto abort_due_to_error; 5042 if( res ) goto jump_to_p2; 5043 break; 5044 }; 5045 5046 /* Opcode: SorterData P1 P2 P3 * * 5047 ** Synopsis: r[P2]=data 5048 ** 5049 ** Write into register P2 the current sorter data for sorter cursor P1. 5050 ** Then clear the column header cache on cursor P3. 5051 ** 5052 ** This opcode is normally use to move a record out of the sorter and into 5053 ** a register that is the source for a pseudo-table cursor created using 5054 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5055 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5056 ** us from having to issue a separate NullRow instruction to clear that cache. 5057 */ 5058 case OP_SorterData: { 5059 VdbeCursor *pC; 5060 5061 pOut = &aMem[pOp->p2]; 5062 pC = p->apCsr[pOp->p1]; 5063 assert( isSorter(pC) ); 5064 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5065 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5066 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5067 if( rc ) goto abort_due_to_error; 5068 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5069 break; 5070 } 5071 5072 /* Opcode: RowData P1 P2 P3 * * 5073 ** Synopsis: r[P2]=data 5074 ** 5075 ** Write into register P2 the complete row content for the row at 5076 ** which cursor P1 is currently pointing. 5077 ** There is no interpretation of the data. 5078 ** It is just copied onto the P2 register exactly as 5079 ** it is found in the database file. 5080 ** 5081 ** If cursor P1 is an index, then the content is the key of the row. 5082 ** If cursor P2 is a table, then the content extracted is the data. 5083 ** 5084 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5085 ** of a real table, not a pseudo-table. 5086 ** 5087 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5088 ** into the database page. That means that the content of the output 5089 ** register will be invalidated as soon as the cursor moves - including 5090 ** moves caused by other cursors that "save" the current cursors 5091 ** position in order that they can write to the same table. If P3==0 5092 ** then a copy of the data is made into memory. P3!=0 is faster, but 5093 ** P3==0 is safer. 5094 ** 5095 ** If P3!=0 then the content of the P2 register is unsuitable for use 5096 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5097 ** The P2 register content is invalidated by opcodes like OP_Function or 5098 ** by any use of another cursor pointing to the same table. 5099 */ 5100 case OP_RowData: { 5101 VdbeCursor *pC; 5102 BtCursor *pCrsr; 5103 u32 n; 5104 5105 pOut = out2Prerelease(p, pOp); 5106 5107 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5108 pC = p->apCsr[pOp->p1]; 5109 assert( pC!=0 ); 5110 assert( pC->eCurType==CURTYPE_BTREE ); 5111 assert( isSorter(pC)==0 ); 5112 assert( pC->nullRow==0 ); 5113 assert( pC->uc.pCursor!=0 ); 5114 pCrsr = pC->uc.pCursor; 5115 5116 /* The OP_RowData opcodes always follow OP_NotExists or 5117 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5118 ** that might invalidate the cursor. 5119 ** If this where not the case, on of the following assert()s 5120 ** would fail. Should this ever change (because of changes in the code 5121 ** generator) then the fix would be to insert a call to 5122 ** sqlite3VdbeCursorMoveto(). 5123 */ 5124 assert( pC->deferredMoveto==0 ); 5125 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5126 #if 0 /* Not required due to the previous to assert() statements */ 5127 rc = sqlite3VdbeCursorMoveto(pC); 5128 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5129 #endif 5130 5131 n = sqlite3BtreePayloadSize(pCrsr); 5132 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5133 goto too_big; 5134 } 5135 testcase( n==0 ); 5136 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 5137 if( rc ) goto abort_due_to_error; 5138 if( !pOp->p3 ) Deephemeralize(pOut); 5139 UPDATE_MAX_BLOBSIZE(pOut); 5140 REGISTER_TRACE(pOp->p2, pOut); 5141 break; 5142 } 5143 5144 /* Opcode: Rowid P1 P2 * * * 5145 ** Synopsis: r[P2]=rowid 5146 ** 5147 ** Store in register P2 an integer which is the key of the table entry that 5148 ** P1 is currently point to. 5149 ** 5150 ** P1 can be either an ordinary table or a virtual table. There used to 5151 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5152 ** one opcode now works for both table types. 5153 */ 5154 case OP_Rowid: { /* out2 */ 5155 VdbeCursor *pC; 5156 i64 v; 5157 sqlite3_vtab *pVtab; 5158 const sqlite3_module *pModule; 5159 5160 pOut = out2Prerelease(p, pOp); 5161 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5162 pC = p->apCsr[pOp->p1]; 5163 assert( pC!=0 ); 5164 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5165 if( pC->nullRow ){ 5166 pOut->flags = MEM_Null; 5167 break; 5168 }else if( pC->deferredMoveto ){ 5169 v = pC->movetoTarget; 5170 #ifndef SQLITE_OMIT_VIRTUALTABLE 5171 }else if( pC->eCurType==CURTYPE_VTAB ){ 5172 assert( pC->uc.pVCur!=0 ); 5173 pVtab = pC->uc.pVCur->pVtab; 5174 pModule = pVtab->pModule; 5175 assert( pModule->xRowid ); 5176 rc = pModule->xRowid(pC->uc.pVCur, &v); 5177 sqlite3VtabImportErrmsg(p, pVtab); 5178 if( rc ) goto abort_due_to_error; 5179 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5180 }else{ 5181 assert( pC->eCurType==CURTYPE_BTREE ); 5182 assert( pC->uc.pCursor!=0 ); 5183 rc = sqlite3VdbeCursorRestore(pC); 5184 if( rc ) goto abort_due_to_error; 5185 if( pC->nullRow ){ 5186 pOut->flags = MEM_Null; 5187 break; 5188 } 5189 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5190 } 5191 pOut->u.i = v; 5192 break; 5193 } 5194 5195 /* Opcode: NullRow P1 * * * * 5196 ** 5197 ** Move the cursor P1 to a null row. Any OP_Column operations 5198 ** that occur while the cursor is on the null row will always 5199 ** write a NULL. 5200 */ 5201 case OP_NullRow: { 5202 VdbeCursor *pC; 5203 5204 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5205 pC = p->apCsr[pOp->p1]; 5206 assert( pC!=0 ); 5207 pC->nullRow = 1; 5208 pC->cacheStatus = CACHE_STALE; 5209 if( pC->eCurType==CURTYPE_BTREE ){ 5210 assert( pC->uc.pCursor!=0 ); 5211 sqlite3BtreeClearCursor(pC->uc.pCursor); 5212 } 5213 #ifdef SQLITE_DEBUG 5214 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5215 #endif 5216 break; 5217 } 5218 5219 /* Opcode: SeekEnd P1 * * * * 5220 ** 5221 ** Position cursor P1 at the end of the btree for the purpose of 5222 ** appending a new entry onto the btree. 5223 ** 5224 ** It is assumed that the cursor is used only for appending and so 5225 ** if the cursor is valid, then the cursor must already be pointing 5226 ** at the end of the btree and so no changes are made to 5227 ** the cursor. 5228 */ 5229 /* Opcode: Last P1 P2 * * * 5230 ** 5231 ** The next use of the Rowid or Column or Prev instruction for P1 5232 ** will refer to the last entry in the database table or index. 5233 ** If the table or index is empty and P2>0, then jump immediately to P2. 5234 ** If P2 is 0 or if the table or index is not empty, fall through 5235 ** to the following instruction. 5236 ** 5237 ** This opcode leaves the cursor configured to move in reverse order, 5238 ** from the end toward the beginning. In other words, the cursor is 5239 ** configured to use Prev, not Next. 5240 */ 5241 case OP_SeekEnd: 5242 case OP_Last: { /* jump */ 5243 VdbeCursor *pC; 5244 BtCursor *pCrsr; 5245 int res; 5246 5247 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5248 pC = p->apCsr[pOp->p1]; 5249 assert( pC!=0 ); 5250 assert( pC->eCurType==CURTYPE_BTREE ); 5251 pCrsr = pC->uc.pCursor; 5252 res = 0; 5253 assert( pCrsr!=0 ); 5254 #ifdef SQLITE_DEBUG 5255 pC->seekOp = pOp->opcode; 5256 #endif 5257 if( pOp->opcode==OP_SeekEnd ){ 5258 assert( pOp->p2==0 ); 5259 pC->seekResult = -1; 5260 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5261 break; 5262 } 5263 } 5264 rc = sqlite3BtreeLast(pCrsr, &res); 5265 pC->nullRow = (u8)res; 5266 pC->deferredMoveto = 0; 5267 pC->cacheStatus = CACHE_STALE; 5268 if( rc ) goto abort_due_to_error; 5269 if( pOp->p2>0 ){ 5270 VdbeBranchTaken(res!=0,2); 5271 if( res ) goto jump_to_p2; 5272 } 5273 break; 5274 } 5275 5276 /* Opcode: IfSmaller P1 P2 P3 * * 5277 ** 5278 ** Estimate the number of rows in the table P1. Jump to P2 if that 5279 ** estimate is less than approximately 2**(0.1*P3). 5280 */ 5281 case OP_IfSmaller: { /* jump */ 5282 VdbeCursor *pC; 5283 BtCursor *pCrsr; 5284 int res; 5285 i64 sz; 5286 5287 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5288 pC = p->apCsr[pOp->p1]; 5289 assert( pC!=0 ); 5290 pCrsr = pC->uc.pCursor; 5291 assert( pCrsr ); 5292 rc = sqlite3BtreeFirst(pCrsr, &res); 5293 if( rc ) goto abort_due_to_error; 5294 if( res==0 ){ 5295 sz = sqlite3BtreeRowCountEst(pCrsr); 5296 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5297 } 5298 VdbeBranchTaken(res!=0,2); 5299 if( res ) goto jump_to_p2; 5300 break; 5301 } 5302 5303 5304 /* Opcode: SorterSort P1 P2 * * * 5305 ** 5306 ** After all records have been inserted into the Sorter object 5307 ** identified by P1, invoke this opcode to actually do the sorting. 5308 ** Jump to P2 if there are no records to be sorted. 5309 ** 5310 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5311 ** for Sorter objects. 5312 */ 5313 /* Opcode: Sort P1 P2 * * * 5314 ** 5315 ** This opcode does exactly the same thing as OP_Rewind except that 5316 ** it increments an undocumented global variable used for testing. 5317 ** 5318 ** Sorting is accomplished by writing records into a sorting index, 5319 ** then rewinding that index and playing it back from beginning to 5320 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5321 ** rewinding so that the global variable will be incremented and 5322 ** regression tests can determine whether or not the optimizer is 5323 ** correctly optimizing out sorts. 5324 */ 5325 case OP_SorterSort: /* jump */ 5326 case OP_Sort: { /* jump */ 5327 #ifdef SQLITE_TEST 5328 sqlite3_sort_count++; 5329 sqlite3_search_count--; 5330 #endif 5331 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5332 /* Fall through into OP_Rewind */ 5333 } 5334 /* Opcode: Rewind P1 P2 * * * 5335 ** 5336 ** The next use of the Rowid or Column or Next instruction for P1 5337 ** will refer to the first entry in the database table or index. 5338 ** If the table or index is empty, jump immediately to P2. 5339 ** If the table or index is not empty, fall through to the following 5340 ** instruction. 5341 ** 5342 ** This opcode leaves the cursor configured to move in forward order, 5343 ** from the beginning toward the end. In other words, the cursor is 5344 ** configured to use Next, not Prev. 5345 */ 5346 case OP_Rewind: { /* jump */ 5347 VdbeCursor *pC; 5348 BtCursor *pCrsr; 5349 int res; 5350 5351 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5352 assert( pOp->p5==0 ); 5353 pC = p->apCsr[pOp->p1]; 5354 assert( pC!=0 ); 5355 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5356 res = 1; 5357 #ifdef SQLITE_DEBUG 5358 pC->seekOp = OP_Rewind; 5359 #endif 5360 if( isSorter(pC) ){ 5361 rc = sqlite3VdbeSorterRewind(pC, &res); 5362 }else{ 5363 assert( pC->eCurType==CURTYPE_BTREE ); 5364 pCrsr = pC->uc.pCursor; 5365 assert( pCrsr ); 5366 rc = sqlite3BtreeFirst(pCrsr, &res); 5367 pC->deferredMoveto = 0; 5368 pC->cacheStatus = CACHE_STALE; 5369 } 5370 if( rc ) goto abort_due_to_error; 5371 pC->nullRow = (u8)res; 5372 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5373 VdbeBranchTaken(res!=0,2); 5374 if( res ) goto jump_to_p2; 5375 break; 5376 } 5377 5378 /* Opcode: Next P1 P2 P3 P4 P5 5379 ** 5380 ** Advance cursor P1 so that it points to the next key/data pair in its 5381 ** table or index. If there are no more key/value pairs then fall through 5382 ** to the following instruction. But if the cursor advance was successful, 5383 ** jump immediately to P2. 5384 ** 5385 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5386 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5387 ** to follow SeekLT, SeekLE, or OP_Last. 5388 ** 5389 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5390 ** been opened prior to this opcode or the program will segfault. 5391 ** 5392 ** The P3 value is a hint to the btree implementation. If P3==1, that 5393 ** means P1 is an SQL index and that this instruction could have been 5394 ** omitted if that index had been unique. P3 is usually 0. P3 is 5395 ** always either 0 or 1. 5396 ** 5397 ** P4 is always of type P4_ADVANCE. The function pointer points to 5398 ** sqlite3BtreeNext(). 5399 ** 5400 ** If P5 is positive and the jump is taken, then event counter 5401 ** number P5-1 in the prepared statement is incremented. 5402 ** 5403 ** See also: Prev 5404 */ 5405 /* Opcode: Prev P1 P2 P3 P4 P5 5406 ** 5407 ** Back up cursor P1 so that it points to the previous key/data pair in its 5408 ** table or index. If there is no previous key/value pairs then fall through 5409 ** to the following instruction. But if the cursor backup was successful, 5410 ** jump immediately to P2. 5411 ** 5412 ** 5413 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5414 ** OP_Last opcode used to position the cursor. Prev is not allowed 5415 ** to follow SeekGT, SeekGE, or OP_Rewind. 5416 ** 5417 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5418 ** not open then the behavior is undefined. 5419 ** 5420 ** The P3 value is a hint to the btree implementation. If P3==1, that 5421 ** means P1 is an SQL index and that this instruction could have been 5422 ** omitted if that index had been unique. P3 is usually 0. P3 is 5423 ** always either 0 or 1. 5424 ** 5425 ** P4 is always of type P4_ADVANCE. The function pointer points to 5426 ** sqlite3BtreePrevious(). 5427 ** 5428 ** If P5 is positive and the jump is taken, then event counter 5429 ** number P5-1 in the prepared statement is incremented. 5430 */ 5431 /* Opcode: SorterNext P1 P2 * * P5 5432 ** 5433 ** This opcode works just like OP_Next except that P1 must be a 5434 ** sorter object for which the OP_SorterSort opcode has been 5435 ** invoked. This opcode advances the cursor to the next sorted 5436 ** record, or jumps to P2 if there are no more sorted records. 5437 */ 5438 case OP_SorterNext: { /* jump */ 5439 VdbeCursor *pC; 5440 5441 pC = p->apCsr[pOp->p1]; 5442 assert( isSorter(pC) ); 5443 rc = sqlite3VdbeSorterNext(db, pC); 5444 goto next_tail; 5445 case OP_Prev: /* jump */ 5446 case OP_Next: /* jump */ 5447 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5448 assert( pOp->p5<ArraySize(p->aCounter) ); 5449 pC = p->apCsr[pOp->p1]; 5450 assert( pC!=0 ); 5451 assert( pC->deferredMoveto==0 ); 5452 assert( pC->eCurType==CURTYPE_BTREE ); 5453 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5454 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5455 5456 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5457 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5458 assert( pOp->opcode!=OP_Next 5459 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5460 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5461 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5462 || pC->seekOp==OP_IfNoHope); 5463 assert( pOp->opcode!=OP_Prev 5464 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5465 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5466 || pC->seekOp==OP_NullRow); 5467 5468 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5469 next_tail: 5470 pC->cacheStatus = CACHE_STALE; 5471 VdbeBranchTaken(rc==SQLITE_OK,2); 5472 if( rc==SQLITE_OK ){ 5473 pC->nullRow = 0; 5474 p->aCounter[pOp->p5]++; 5475 #ifdef SQLITE_TEST 5476 sqlite3_search_count++; 5477 #endif 5478 goto jump_to_p2_and_check_for_interrupt; 5479 } 5480 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5481 rc = SQLITE_OK; 5482 pC->nullRow = 1; 5483 goto check_for_interrupt; 5484 } 5485 5486 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5487 ** Synopsis: key=r[P2] 5488 ** 5489 ** Register P2 holds an SQL index key made using the 5490 ** MakeRecord instructions. This opcode writes that key 5491 ** into the index P1. Data for the entry is nil. 5492 ** 5493 ** If P4 is not zero, then it is the number of values in the unpacked 5494 ** key of reg(P2). In that case, P3 is the index of the first register 5495 ** for the unpacked key. The availability of the unpacked key can sometimes 5496 ** be an optimization. 5497 ** 5498 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5499 ** that this insert is likely to be an append. 5500 ** 5501 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5502 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5503 ** then the change counter is unchanged. 5504 ** 5505 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5506 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5507 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5508 ** seeks on the cursor or if the most recent seek used a key equivalent 5509 ** to P2. 5510 ** 5511 ** This instruction only works for indices. The equivalent instruction 5512 ** for tables is OP_Insert. 5513 */ 5514 /* Opcode: SorterInsert P1 P2 * * * 5515 ** Synopsis: key=r[P2] 5516 ** 5517 ** Register P2 holds an SQL index key made using the 5518 ** MakeRecord instructions. This opcode writes that key 5519 ** into the sorter P1. Data for the entry is nil. 5520 */ 5521 case OP_SorterInsert: /* in2 */ 5522 case OP_IdxInsert: { /* in2 */ 5523 VdbeCursor *pC; 5524 BtreePayload x; 5525 5526 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5527 pC = p->apCsr[pOp->p1]; 5528 sqlite3VdbeIncrWriteCounter(p, pC); 5529 assert( pC!=0 ); 5530 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5531 pIn2 = &aMem[pOp->p2]; 5532 assert( pIn2->flags & MEM_Blob ); 5533 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5534 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5535 assert( pC->isTable==0 ); 5536 rc = ExpandBlob(pIn2); 5537 if( rc ) goto abort_due_to_error; 5538 if( pOp->opcode==OP_SorterInsert ){ 5539 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5540 }else{ 5541 x.nKey = pIn2->n; 5542 x.pKey = pIn2->z; 5543 x.aMem = aMem + pOp->p3; 5544 x.nMem = (u16)pOp->p4.i; 5545 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5546 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5547 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5548 ); 5549 assert( pC->deferredMoveto==0 ); 5550 pC->cacheStatus = CACHE_STALE; 5551 } 5552 if( rc) goto abort_due_to_error; 5553 break; 5554 } 5555 5556 /* Opcode: IdxDelete P1 P2 P3 * * 5557 ** Synopsis: key=r[P2@P3] 5558 ** 5559 ** The content of P3 registers starting at register P2 form 5560 ** an unpacked index key. This opcode removes that entry from the 5561 ** index opened by cursor P1. 5562 */ 5563 case OP_IdxDelete: { 5564 VdbeCursor *pC; 5565 BtCursor *pCrsr; 5566 int res; 5567 UnpackedRecord r; 5568 5569 assert( pOp->p3>0 ); 5570 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5571 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5572 pC = p->apCsr[pOp->p1]; 5573 assert( pC!=0 ); 5574 assert( pC->eCurType==CURTYPE_BTREE ); 5575 sqlite3VdbeIncrWriteCounter(p, pC); 5576 pCrsr = pC->uc.pCursor; 5577 assert( pCrsr!=0 ); 5578 assert( pOp->p5==0 ); 5579 r.pKeyInfo = pC->pKeyInfo; 5580 r.nField = (u16)pOp->p3; 5581 r.default_rc = 0; 5582 r.aMem = &aMem[pOp->p2]; 5583 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5584 if( rc ) goto abort_due_to_error; 5585 if( res==0 ){ 5586 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5587 if( rc ) goto abort_due_to_error; 5588 } 5589 assert( pC->deferredMoveto==0 ); 5590 pC->cacheStatus = CACHE_STALE; 5591 pC->seekResult = 0; 5592 break; 5593 } 5594 5595 /* Opcode: DeferredSeek P1 * P3 P4 * 5596 ** Synopsis: Move P3 to P1.rowid if needed 5597 ** 5598 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5599 ** table. This opcode does a deferred seek of the P3 table cursor 5600 ** to the row that corresponds to the current row of P1. 5601 ** 5602 ** This is a deferred seek. Nothing actually happens until 5603 ** the cursor is used to read a record. That way, if no reads 5604 ** occur, no unnecessary I/O happens. 5605 ** 5606 ** P4 may be an array of integers (type P4_INTARRAY) containing 5607 ** one entry for each column in the P3 table. If array entry a(i) 5608 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5609 ** equivalent to performing the deferred seek and then reading column i 5610 ** from P1. This information is stored in P3 and used to redirect 5611 ** reads against P3 over to P1, thus possibly avoiding the need to 5612 ** seek and read cursor P3. 5613 */ 5614 /* Opcode: IdxRowid P1 P2 * * * 5615 ** Synopsis: r[P2]=rowid 5616 ** 5617 ** Write into register P2 an integer which is the last entry in the record at 5618 ** the end of the index key pointed to by cursor P1. This integer should be 5619 ** the rowid of the table entry to which this index entry points. 5620 ** 5621 ** See also: Rowid, MakeRecord. 5622 */ 5623 case OP_DeferredSeek: 5624 case OP_IdxRowid: { /* out2 */ 5625 VdbeCursor *pC; /* The P1 index cursor */ 5626 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5627 i64 rowid; /* Rowid that P1 current points to */ 5628 5629 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5630 pC = p->apCsr[pOp->p1]; 5631 assert( pC!=0 ); 5632 assert( pC->eCurType==CURTYPE_BTREE ); 5633 assert( pC->uc.pCursor!=0 ); 5634 assert( pC->isTable==0 ); 5635 assert( pC->deferredMoveto==0 ); 5636 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5637 5638 /* The IdxRowid and Seek opcodes are combined because of the commonality 5639 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5640 rc = sqlite3VdbeCursorRestore(pC); 5641 5642 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5643 ** out from under the cursor. That will never happens for an IdxRowid 5644 ** or Seek opcode */ 5645 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5646 5647 if( !pC->nullRow ){ 5648 rowid = 0; /* Not needed. Only used to silence a warning. */ 5649 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5650 if( rc!=SQLITE_OK ){ 5651 goto abort_due_to_error; 5652 } 5653 if( pOp->opcode==OP_DeferredSeek ){ 5654 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5655 pTabCur = p->apCsr[pOp->p3]; 5656 assert( pTabCur!=0 ); 5657 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5658 assert( pTabCur->uc.pCursor!=0 ); 5659 assert( pTabCur->isTable ); 5660 pTabCur->nullRow = 0; 5661 pTabCur->movetoTarget = rowid; 5662 pTabCur->deferredMoveto = 1; 5663 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5664 pTabCur->aAltMap = pOp->p4.ai; 5665 pTabCur->pAltCursor = pC; 5666 }else{ 5667 pOut = out2Prerelease(p, pOp); 5668 pOut->u.i = rowid; 5669 } 5670 }else{ 5671 assert( pOp->opcode==OP_IdxRowid ); 5672 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5673 } 5674 break; 5675 } 5676 5677 /* Opcode: IdxGE P1 P2 P3 P4 P5 5678 ** Synopsis: key=r[P3@P4] 5679 ** 5680 ** The P4 register values beginning with P3 form an unpacked index 5681 ** key that omits the PRIMARY KEY. Compare this key value against the index 5682 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5683 ** fields at the end. 5684 ** 5685 ** If the P1 index entry is greater than or equal to the key value 5686 ** then jump to P2. Otherwise fall through to the next instruction. 5687 */ 5688 /* Opcode: IdxGT P1 P2 P3 P4 P5 5689 ** Synopsis: key=r[P3@P4] 5690 ** 5691 ** The P4 register values beginning with P3 form an unpacked index 5692 ** key that omits the PRIMARY KEY. Compare this key value against the index 5693 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5694 ** fields at the end. 5695 ** 5696 ** If the P1 index entry is greater than the key value 5697 ** then jump to P2. Otherwise fall through to the next instruction. 5698 */ 5699 /* Opcode: IdxLT P1 P2 P3 P4 P5 5700 ** Synopsis: key=r[P3@P4] 5701 ** 5702 ** The P4 register values beginning with P3 form an unpacked index 5703 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5704 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5705 ** ROWID on the P1 index. 5706 ** 5707 ** If the P1 index entry is less than the key value then jump to P2. 5708 ** Otherwise fall through to the next instruction. 5709 */ 5710 /* Opcode: IdxLE P1 P2 P3 P4 P5 5711 ** Synopsis: key=r[P3@P4] 5712 ** 5713 ** The P4 register values beginning with P3 form an unpacked index 5714 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5715 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5716 ** ROWID on the P1 index. 5717 ** 5718 ** If the P1 index entry is less than or equal to the key value then jump 5719 ** to P2. Otherwise fall through to the next instruction. 5720 */ 5721 case OP_IdxLE: /* jump */ 5722 case OP_IdxGT: /* jump */ 5723 case OP_IdxLT: /* jump */ 5724 case OP_IdxGE: { /* jump */ 5725 VdbeCursor *pC; 5726 int res; 5727 UnpackedRecord r; 5728 5729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5730 pC = p->apCsr[pOp->p1]; 5731 assert( pC!=0 ); 5732 assert( pC->isOrdered ); 5733 assert( pC->eCurType==CURTYPE_BTREE ); 5734 assert( pC->uc.pCursor!=0); 5735 assert( pC->deferredMoveto==0 ); 5736 assert( pOp->p5==0 || pOp->p5==1 ); 5737 assert( pOp->p4type==P4_INT32 ); 5738 r.pKeyInfo = pC->pKeyInfo; 5739 r.nField = (u16)pOp->p4.i; 5740 if( pOp->opcode<OP_IdxLT ){ 5741 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5742 r.default_rc = -1; 5743 }else{ 5744 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5745 r.default_rc = 0; 5746 } 5747 r.aMem = &aMem[pOp->p3]; 5748 #ifdef SQLITE_DEBUG 5749 { 5750 int i; 5751 for(i=0; i<r.nField; i++){ 5752 assert( memIsValid(&r.aMem[i]) ); 5753 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 5754 } 5755 } 5756 #endif 5757 res = 0; /* Not needed. Only used to silence a warning. */ 5758 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5759 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5760 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5761 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5762 res = -res; 5763 }else{ 5764 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5765 res++; 5766 } 5767 VdbeBranchTaken(res>0,2); 5768 if( rc ) goto abort_due_to_error; 5769 if( res>0 ) goto jump_to_p2; 5770 break; 5771 } 5772 5773 /* Opcode: Destroy P1 P2 P3 * * 5774 ** 5775 ** Delete an entire database table or index whose root page in the database 5776 ** file is given by P1. 5777 ** 5778 ** The table being destroyed is in the main database file if P3==0. If 5779 ** P3==1 then the table to be clear is in the auxiliary database file 5780 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5781 ** 5782 ** If AUTOVACUUM is enabled then it is possible that another root page 5783 ** might be moved into the newly deleted root page in order to keep all 5784 ** root pages contiguous at the beginning of the database. The former 5785 ** value of the root page that moved - its value before the move occurred - 5786 ** is stored in register P2. If no page movement was required (because the 5787 ** table being dropped was already the last one in the database) then a 5788 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5789 ** is stored in register P2. 5790 ** 5791 ** This opcode throws an error if there are any active reader VMs when 5792 ** it is invoked. This is done to avoid the difficulty associated with 5793 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5794 ** database. This error is thrown even if the database is not an AUTOVACUUM 5795 ** db in order to avoid introducing an incompatibility between autovacuum 5796 ** and non-autovacuum modes. 5797 ** 5798 ** See also: Clear 5799 */ 5800 case OP_Destroy: { /* out2 */ 5801 int iMoved; 5802 int iDb; 5803 5804 sqlite3VdbeIncrWriteCounter(p, 0); 5805 assert( p->readOnly==0 ); 5806 assert( pOp->p1>1 ); 5807 pOut = out2Prerelease(p, pOp); 5808 pOut->flags = MEM_Null; 5809 if( db->nVdbeRead > db->nVDestroy+1 ){ 5810 rc = SQLITE_LOCKED; 5811 p->errorAction = OE_Abort; 5812 goto abort_due_to_error; 5813 }else{ 5814 iDb = pOp->p3; 5815 assert( DbMaskTest(p->btreeMask, iDb) ); 5816 iMoved = 0; /* Not needed. Only to silence a warning. */ 5817 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5818 pOut->flags = MEM_Int; 5819 pOut->u.i = iMoved; 5820 if( rc ) goto abort_due_to_error; 5821 #ifndef SQLITE_OMIT_AUTOVACUUM 5822 if( iMoved!=0 ){ 5823 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5824 /* All OP_Destroy operations occur on the same btree */ 5825 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5826 resetSchemaOnFault = iDb+1; 5827 } 5828 #endif 5829 } 5830 break; 5831 } 5832 5833 /* Opcode: Clear P1 P2 P3 5834 ** 5835 ** Delete all contents of the database table or index whose root page 5836 ** in the database file is given by P1. But, unlike Destroy, do not 5837 ** remove the table or index from the database file. 5838 ** 5839 ** The table being clear is in the main database file if P2==0. If 5840 ** P2==1 then the table to be clear is in the auxiliary database file 5841 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5842 ** 5843 ** If the P3 value is non-zero, then the table referred to must be an 5844 ** intkey table (an SQL table, not an index). In this case the row change 5845 ** count is incremented by the number of rows in the table being cleared. 5846 ** If P3 is greater than zero, then the value stored in register P3 is 5847 ** also incremented by the number of rows in the table being cleared. 5848 ** 5849 ** See also: Destroy 5850 */ 5851 case OP_Clear: { 5852 int nChange; 5853 5854 sqlite3VdbeIncrWriteCounter(p, 0); 5855 nChange = 0; 5856 assert( p->readOnly==0 ); 5857 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5858 rc = sqlite3BtreeClearTable( 5859 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5860 ); 5861 if( pOp->p3 ){ 5862 p->nChange += nChange; 5863 if( pOp->p3>0 ){ 5864 assert( memIsValid(&aMem[pOp->p3]) ); 5865 memAboutToChange(p, &aMem[pOp->p3]); 5866 aMem[pOp->p3].u.i += nChange; 5867 } 5868 } 5869 if( rc ) goto abort_due_to_error; 5870 break; 5871 } 5872 5873 /* Opcode: ResetSorter P1 * * * * 5874 ** 5875 ** Delete all contents from the ephemeral table or sorter 5876 ** that is open on cursor P1. 5877 ** 5878 ** This opcode only works for cursors used for sorting and 5879 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5880 */ 5881 case OP_ResetSorter: { 5882 VdbeCursor *pC; 5883 5884 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5885 pC = p->apCsr[pOp->p1]; 5886 assert( pC!=0 ); 5887 if( isSorter(pC) ){ 5888 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5889 }else{ 5890 assert( pC->eCurType==CURTYPE_BTREE ); 5891 assert( pC->isEphemeral ); 5892 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5893 if( rc ) goto abort_due_to_error; 5894 } 5895 break; 5896 } 5897 5898 /* Opcode: CreateBtree P1 P2 P3 * * 5899 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5900 ** 5901 ** Allocate a new b-tree in the main database file if P1==0 or in the 5902 ** TEMP database file if P1==1 or in an attached database if 5903 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5904 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 5905 ** The root page number of the new b-tree is stored in register P2. 5906 */ 5907 case OP_CreateBtree: { /* out2 */ 5908 int pgno; 5909 Db *pDb; 5910 5911 sqlite3VdbeIncrWriteCounter(p, 0); 5912 pOut = out2Prerelease(p, pOp); 5913 pgno = 0; 5914 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5915 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5916 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5917 assert( p->readOnly==0 ); 5918 pDb = &db->aDb[pOp->p1]; 5919 assert( pDb->pBt!=0 ); 5920 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5921 if( rc ) goto abort_due_to_error; 5922 pOut->u.i = pgno; 5923 break; 5924 } 5925 5926 /* Opcode: SqlExec * * * P4 * 5927 ** 5928 ** Run the SQL statement or statements specified in the P4 string. 5929 */ 5930 case OP_SqlExec: { 5931 sqlite3VdbeIncrWriteCounter(p, 0); 5932 db->nSqlExec++; 5933 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5934 db->nSqlExec--; 5935 if( rc ) goto abort_due_to_error; 5936 break; 5937 } 5938 5939 /* Opcode: ParseSchema P1 * * P4 * 5940 ** 5941 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5942 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 5943 ** entire schema for P1 is reparsed. 5944 ** 5945 ** This opcode invokes the parser to create a new virtual machine, 5946 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5947 */ 5948 case OP_ParseSchema: { 5949 int iDb; 5950 const char *zMaster; 5951 char *zSql; 5952 InitData initData; 5953 5954 /* Any prepared statement that invokes this opcode will hold mutexes 5955 ** on every btree. This is a prerequisite for invoking 5956 ** sqlite3InitCallback(). 5957 */ 5958 #ifdef SQLITE_DEBUG 5959 for(iDb=0; iDb<db->nDb; iDb++){ 5960 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5961 } 5962 #endif 5963 5964 iDb = pOp->p1; 5965 assert( iDb>=0 && iDb<db->nDb ); 5966 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5967 5968 #ifndef SQLITE_OMIT_ALTERTABLE 5969 if( pOp->p4.z==0 ){ 5970 sqlite3SchemaClear(db->aDb[iDb].pSchema); 5971 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 5972 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable); 5973 db->mDbFlags |= DBFLAG_SchemaChange; 5974 p->expired = 0; 5975 }else 5976 #endif 5977 { 5978 zMaster = MASTER_NAME; 5979 initData.db = db; 5980 initData.iDb = iDb; 5981 initData.pzErrMsg = &p->zErrMsg; 5982 initData.mInitFlags = 0; 5983 zSql = sqlite3MPrintf(db, 5984 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 5985 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5986 if( zSql==0 ){ 5987 rc = SQLITE_NOMEM_BKPT; 5988 }else{ 5989 assert( db->init.busy==0 ); 5990 db->init.busy = 1; 5991 initData.rc = SQLITE_OK; 5992 initData.nInitRow = 0; 5993 assert( !db->mallocFailed ); 5994 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5995 if( rc==SQLITE_OK ) rc = initData.rc; 5996 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 5997 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 5998 ** at least one SQL statement. Any less than that indicates that 5999 ** the sqlite_master table is corrupt. */ 6000 rc = SQLITE_CORRUPT_BKPT; 6001 } 6002 sqlite3DbFreeNN(db, zSql); 6003 db->init.busy = 0; 6004 } 6005 } 6006 if( rc ){ 6007 sqlite3ResetAllSchemasOfConnection(db); 6008 if( rc==SQLITE_NOMEM ){ 6009 goto no_mem; 6010 } 6011 goto abort_due_to_error; 6012 } 6013 break; 6014 } 6015 6016 #if !defined(SQLITE_OMIT_ANALYZE) 6017 /* Opcode: LoadAnalysis P1 * * * * 6018 ** 6019 ** Read the sqlite_stat1 table for database P1 and load the content 6020 ** of that table into the internal index hash table. This will cause 6021 ** the analysis to be used when preparing all subsequent queries. 6022 */ 6023 case OP_LoadAnalysis: { 6024 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6025 rc = sqlite3AnalysisLoad(db, pOp->p1); 6026 if( rc ) goto abort_due_to_error; 6027 break; 6028 } 6029 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6030 6031 /* Opcode: DropTable P1 * * P4 * 6032 ** 6033 ** Remove the internal (in-memory) data structures that describe 6034 ** the table named P4 in database P1. This is called after a table 6035 ** is dropped from disk (using the Destroy opcode) in order to keep 6036 ** the internal representation of the 6037 ** schema consistent with what is on disk. 6038 */ 6039 case OP_DropTable: { 6040 sqlite3VdbeIncrWriteCounter(p, 0); 6041 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6042 break; 6043 } 6044 6045 /* Opcode: DropIndex P1 * * P4 * 6046 ** 6047 ** Remove the internal (in-memory) data structures that describe 6048 ** the index named P4 in database P1. This is called after an index 6049 ** is dropped from disk (using the Destroy opcode) 6050 ** in order to keep the internal representation of the 6051 ** schema consistent with what is on disk. 6052 */ 6053 case OP_DropIndex: { 6054 sqlite3VdbeIncrWriteCounter(p, 0); 6055 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6056 break; 6057 } 6058 6059 /* Opcode: DropTrigger P1 * * P4 * 6060 ** 6061 ** Remove the internal (in-memory) data structures that describe 6062 ** the trigger named P4 in database P1. This is called after a trigger 6063 ** is dropped from disk (using the Destroy opcode) in order to keep 6064 ** the internal representation of the 6065 ** schema consistent with what is on disk. 6066 */ 6067 case OP_DropTrigger: { 6068 sqlite3VdbeIncrWriteCounter(p, 0); 6069 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6070 break; 6071 } 6072 6073 6074 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6075 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6076 ** 6077 ** Do an analysis of the currently open database. Store in 6078 ** register P1 the text of an error message describing any problems. 6079 ** If no problems are found, store a NULL in register P1. 6080 ** 6081 ** The register P3 contains one less than the maximum number of allowed errors. 6082 ** At most reg(P3) errors will be reported. 6083 ** In other words, the analysis stops as soon as reg(P1) errors are 6084 ** seen. Reg(P1) is updated with the number of errors remaining. 6085 ** 6086 ** The root page numbers of all tables in the database are integers 6087 ** stored in P4_INTARRAY argument. 6088 ** 6089 ** If P5 is not zero, the check is done on the auxiliary database 6090 ** file, not the main database file. 6091 ** 6092 ** This opcode is used to implement the integrity_check pragma. 6093 */ 6094 case OP_IntegrityCk: { 6095 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6096 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 6097 int nErr; /* Number of errors reported */ 6098 char *z; /* Text of the error report */ 6099 Mem *pnErr; /* Register keeping track of errors remaining */ 6100 6101 assert( p->bIsReader ); 6102 nRoot = pOp->p2; 6103 aRoot = pOp->p4.ai; 6104 assert( nRoot>0 ); 6105 assert( aRoot[0]==nRoot ); 6106 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6107 pnErr = &aMem[pOp->p3]; 6108 assert( (pnErr->flags & MEM_Int)!=0 ); 6109 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6110 pIn1 = &aMem[pOp->p1]; 6111 assert( pOp->p5<db->nDb ); 6112 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6113 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6114 (int)pnErr->u.i+1, &nErr); 6115 sqlite3VdbeMemSetNull(pIn1); 6116 if( nErr==0 ){ 6117 assert( z==0 ); 6118 }else if( z==0 ){ 6119 goto no_mem; 6120 }else{ 6121 pnErr->u.i -= nErr-1; 6122 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6123 } 6124 UPDATE_MAX_BLOBSIZE(pIn1); 6125 sqlite3VdbeChangeEncoding(pIn1, encoding); 6126 goto check_for_interrupt; 6127 } 6128 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6129 6130 /* Opcode: RowSetAdd P1 P2 * * * 6131 ** Synopsis: rowset(P1)=r[P2] 6132 ** 6133 ** Insert the integer value held by register P2 into a RowSet object 6134 ** held in register P1. 6135 ** 6136 ** An assertion fails if P2 is not an integer. 6137 */ 6138 case OP_RowSetAdd: { /* in1, in2 */ 6139 pIn1 = &aMem[pOp->p1]; 6140 pIn2 = &aMem[pOp->p2]; 6141 assert( (pIn2->flags & MEM_Int)!=0 ); 6142 if( (pIn1->flags & MEM_Blob)==0 ){ 6143 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6144 } 6145 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6146 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6147 break; 6148 } 6149 6150 /* Opcode: RowSetRead P1 P2 P3 * * 6151 ** Synopsis: r[P3]=rowset(P1) 6152 ** 6153 ** Extract the smallest value from the RowSet object in P1 6154 ** and put that value into register P3. 6155 ** Or, if RowSet object P1 is initially empty, leave P3 6156 ** unchanged and jump to instruction P2. 6157 */ 6158 case OP_RowSetRead: { /* jump, in1, out3 */ 6159 i64 val; 6160 6161 pIn1 = &aMem[pOp->p1]; 6162 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6163 if( (pIn1->flags & MEM_Blob)==0 6164 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6165 ){ 6166 /* The boolean index is empty */ 6167 sqlite3VdbeMemSetNull(pIn1); 6168 VdbeBranchTaken(1,2); 6169 goto jump_to_p2_and_check_for_interrupt; 6170 }else{ 6171 /* A value was pulled from the index */ 6172 VdbeBranchTaken(0,2); 6173 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6174 } 6175 goto check_for_interrupt; 6176 } 6177 6178 /* Opcode: RowSetTest P1 P2 P3 P4 6179 ** Synopsis: if r[P3] in rowset(P1) goto P2 6180 ** 6181 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6182 ** contains a RowSet object and that RowSet object contains 6183 ** the value held in P3, jump to register P2. Otherwise, insert the 6184 ** integer in P3 into the RowSet and continue on to the 6185 ** next opcode. 6186 ** 6187 ** The RowSet object is optimized for the case where sets of integers 6188 ** are inserted in distinct phases, which each set contains no duplicates. 6189 ** Each set is identified by a unique P4 value. The first set 6190 ** must have P4==0, the final set must have P4==-1, and for all other sets 6191 ** must have P4>0. 6192 ** 6193 ** This allows optimizations: (a) when P4==0 there is no need to test 6194 ** the RowSet object for P3, as it is guaranteed not to contain it, 6195 ** (b) when P4==-1 there is no need to insert the value, as it will 6196 ** never be tested for, and (c) when a value that is part of set X is 6197 ** inserted, there is no need to search to see if the same value was 6198 ** previously inserted as part of set X (only if it was previously 6199 ** inserted as part of some other set). 6200 */ 6201 case OP_RowSetTest: { /* jump, in1, in3 */ 6202 int iSet; 6203 int exists; 6204 6205 pIn1 = &aMem[pOp->p1]; 6206 pIn3 = &aMem[pOp->p3]; 6207 iSet = pOp->p4.i; 6208 assert( pIn3->flags&MEM_Int ); 6209 6210 /* If there is anything other than a rowset object in memory cell P1, 6211 ** delete it now and initialize P1 with an empty rowset 6212 */ 6213 if( (pIn1->flags & MEM_Blob)==0 ){ 6214 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6215 } 6216 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6217 assert( pOp->p4type==P4_INT32 ); 6218 assert( iSet==-1 || iSet>=0 ); 6219 if( iSet ){ 6220 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6221 VdbeBranchTaken(exists!=0,2); 6222 if( exists ) goto jump_to_p2; 6223 } 6224 if( iSet>=0 ){ 6225 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6226 } 6227 break; 6228 } 6229 6230 6231 #ifndef SQLITE_OMIT_TRIGGER 6232 6233 /* Opcode: Program P1 P2 P3 P4 P5 6234 ** 6235 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6236 ** 6237 ** P1 contains the address of the memory cell that contains the first memory 6238 ** cell in an array of values used as arguments to the sub-program. P2 6239 ** contains the address to jump to if the sub-program throws an IGNORE 6240 ** exception using the RAISE() function. Register P3 contains the address 6241 ** of a memory cell in this (the parent) VM that is used to allocate the 6242 ** memory required by the sub-vdbe at runtime. 6243 ** 6244 ** P4 is a pointer to the VM containing the trigger program. 6245 ** 6246 ** If P5 is non-zero, then recursive program invocation is enabled. 6247 */ 6248 case OP_Program: { /* jump */ 6249 int nMem; /* Number of memory registers for sub-program */ 6250 int nByte; /* Bytes of runtime space required for sub-program */ 6251 Mem *pRt; /* Register to allocate runtime space */ 6252 Mem *pMem; /* Used to iterate through memory cells */ 6253 Mem *pEnd; /* Last memory cell in new array */ 6254 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6255 SubProgram *pProgram; /* Sub-program to execute */ 6256 void *t; /* Token identifying trigger */ 6257 6258 pProgram = pOp->p4.pProgram; 6259 pRt = &aMem[pOp->p3]; 6260 assert( pProgram->nOp>0 ); 6261 6262 /* If the p5 flag is clear, then recursive invocation of triggers is 6263 ** disabled for backwards compatibility (p5 is set if this sub-program 6264 ** is really a trigger, not a foreign key action, and the flag set 6265 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6266 ** 6267 ** It is recursive invocation of triggers, at the SQL level, that is 6268 ** disabled. In some cases a single trigger may generate more than one 6269 ** SubProgram (if the trigger may be executed with more than one different 6270 ** ON CONFLICT algorithm). SubProgram structures associated with a 6271 ** single trigger all have the same value for the SubProgram.token 6272 ** variable. */ 6273 if( pOp->p5 ){ 6274 t = pProgram->token; 6275 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6276 if( pFrame ) break; 6277 } 6278 6279 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6280 rc = SQLITE_ERROR; 6281 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6282 goto abort_due_to_error; 6283 } 6284 6285 /* Register pRt is used to store the memory required to save the state 6286 ** of the current program, and the memory required at runtime to execute 6287 ** the trigger program. If this trigger has been fired before, then pRt 6288 ** is already allocated. Otherwise, it must be initialized. */ 6289 if( (pRt->flags&MEM_Blob)==0 ){ 6290 /* SubProgram.nMem is set to the number of memory cells used by the 6291 ** program stored in SubProgram.aOp. As well as these, one memory 6292 ** cell is required for each cursor used by the program. Set local 6293 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6294 */ 6295 nMem = pProgram->nMem + pProgram->nCsr; 6296 assert( nMem>0 ); 6297 if( pProgram->nCsr==0 ) nMem++; 6298 nByte = ROUND8(sizeof(VdbeFrame)) 6299 + nMem * sizeof(Mem) 6300 + pProgram->nCsr * sizeof(VdbeCursor*) 6301 + (pProgram->nOp + 7)/8; 6302 pFrame = sqlite3DbMallocZero(db, nByte); 6303 if( !pFrame ){ 6304 goto no_mem; 6305 } 6306 sqlite3VdbeMemRelease(pRt); 6307 pRt->flags = MEM_Blob|MEM_Dyn; 6308 pRt->z = (char*)pFrame; 6309 pRt->n = nByte; 6310 pRt->xDel = sqlite3VdbeFrameMemDel; 6311 6312 pFrame->v = p; 6313 pFrame->nChildMem = nMem; 6314 pFrame->nChildCsr = pProgram->nCsr; 6315 pFrame->pc = (int)(pOp - aOp); 6316 pFrame->aMem = p->aMem; 6317 pFrame->nMem = p->nMem; 6318 pFrame->apCsr = p->apCsr; 6319 pFrame->nCursor = p->nCursor; 6320 pFrame->aOp = p->aOp; 6321 pFrame->nOp = p->nOp; 6322 pFrame->token = pProgram->token; 6323 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6324 pFrame->anExec = p->anExec; 6325 #endif 6326 #ifdef SQLITE_DEBUG 6327 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6328 #endif 6329 6330 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6331 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6332 pMem->flags = MEM_Undefined; 6333 pMem->db = db; 6334 } 6335 }else{ 6336 pFrame = (VdbeFrame*)pRt->z; 6337 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6338 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6339 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6340 assert( pProgram->nCsr==pFrame->nChildCsr ); 6341 assert( (int)(pOp - aOp)==pFrame->pc ); 6342 } 6343 6344 p->nFrame++; 6345 pFrame->pParent = p->pFrame; 6346 pFrame->lastRowid = db->lastRowid; 6347 pFrame->nChange = p->nChange; 6348 pFrame->nDbChange = p->db->nChange; 6349 assert( pFrame->pAuxData==0 ); 6350 pFrame->pAuxData = p->pAuxData; 6351 p->pAuxData = 0; 6352 p->nChange = 0; 6353 p->pFrame = pFrame; 6354 p->aMem = aMem = VdbeFrameMem(pFrame); 6355 p->nMem = pFrame->nChildMem; 6356 p->nCursor = (u16)pFrame->nChildCsr; 6357 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6358 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6359 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6360 p->aOp = aOp = pProgram->aOp; 6361 p->nOp = pProgram->nOp; 6362 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6363 p->anExec = 0; 6364 #endif 6365 #ifdef SQLITE_DEBUG 6366 /* Verify that second and subsequent executions of the same trigger do not 6367 ** try to reuse register values from the first use. */ 6368 { 6369 int i; 6370 for(i=0; i<p->nMem; i++){ 6371 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6372 aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */ 6373 } 6374 } 6375 #endif 6376 pOp = &aOp[-1]; 6377 goto check_for_interrupt; 6378 } 6379 6380 /* Opcode: Param P1 P2 * * * 6381 ** 6382 ** This opcode is only ever present in sub-programs called via the 6383 ** OP_Program instruction. Copy a value currently stored in a memory 6384 ** cell of the calling (parent) frame to cell P2 in the current frames 6385 ** address space. This is used by trigger programs to access the new.* 6386 ** and old.* values. 6387 ** 6388 ** The address of the cell in the parent frame is determined by adding 6389 ** the value of the P1 argument to the value of the P1 argument to the 6390 ** calling OP_Program instruction. 6391 */ 6392 case OP_Param: { /* out2 */ 6393 VdbeFrame *pFrame; 6394 Mem *pIn; 6395 pOut = out2Prerelease(p, pOp); 6396 pFrame = p->pFrame; 6397 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6398 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6399 break; 6400 } 6401 6402 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6403 6404 #ifndef SQLITE_OMIT_FOREIGN_KEY 6405 /* Opcode: FkCounter P1 P2 * * * 6406 ** Synopsis: fkctr[P1]+=P2 6407 ** 6408 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6409 ** If P1 is non-zero, the database constraint counter is incremented 6410 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6411 ** statement counter is incremented (immediate foreign key constraints). 6412 */ 6413 case OP_FkCounter: { 6414 if( db->flags & SQLITE_DeferFKs ){ 6415 db->nDeferredImmCons += pOp->p2; 6416 }else if( pOp->p1 ){ 6417 db->nDeferredCons += pOp->p2; 6418 }else{ 6419 p->nFkConstraint += pOp->p2; 6420 } 6421 break; 6422 } 6423 6424 /* Opcode: FkIfZero P1 P2 * * * 6425 ** Synopsis: if fkctr[P1]==0 goto P2 6426 ** 6427 ** This opcode tests if a foreign key constraint-counter is currently zero. 6428 ** If so, jump to instruction P2. Otherwise, fall through to the next 6429 ** instruction. 6430 ** 6431 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6432 ** is zero (the one that counts deferred constraint violations). If P1 is 6433 ** zero, the jump is taken if the statement constraint-counter is zero 6434 ** (immediate foreign key constraint violations). 6435 */ 6436 case OP_FkIfZero: { /* jump */ 6437 if( pOp->p1 ){ 6438 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6439 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6440 }else{ 6441 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6442 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6443 } 6444 break; 6445 } 6446 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6447 6448 #ifndef SQLITE_OMIT_AUTOINCREMENT 6449 /* Opcode: MemMax P1 P2 * * * 6450 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6451 ** 6452 ** P1 is a register in the root frame of this VM (the root frame is 6453 ** different from the current frame if this instruction is being executed 6454 ** within a sub-program). Set the value of register P1 to the maximum of 6455 ** its current value and the value in register P2. 6456 ** 6457 ** This instruction throws an error if the memory cell is not initially 6458 ** an integer. 6459 */ 6460 case OP_MemMax: { /* in2 */ 6461 VdbeFrame *pFrame; 6462 if( p->pFrame ){ 6463 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6464 pIn1 = &pFrame->aMem[pOp->p1]; 6465 }else{ 6466 pIn1 = &aMem[pOp->p1]; 6467 } 6468 assert( memIsValid(pIn1) ); 6469 sqlite3VdbeMemIntegerify(pIn1); 6470 pIn2 = &aMem[pOp->p2]; 6471 sqlite3VdbeMemIntegerify(pIn2); 6472 if( pIn1->u.i<pIn2->u.i){ 6473 pIn1->u.i = pIn2->u.i; 6474 } 6475 break; 6476 } 6477 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6478 6479 /* Opcode: IfPos P1 P2 P3 * * 6480 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6481 ** 6482 ** Register P1 must contain an integer. 6483 ** If the value of register P1 is 1 or greater, subtract P3 from the 6484 ** value in P1 and jump to P2. 6485 ** 6486 ** If the initial value of register P1 is less than 1, then the 6487 ** value is unchanged and control passes through to the next instruction. 6488 */ 6489 case OP_IfPos: { /* jump, in1 */ 6490 pIn1 = &aMem[pOp->p1]; 6491 assert( pIn1->flags&MEM_Int ); 6492 VdbeBranchTaken( pIn1->u.i>0, 2); 6493 if( pIn1->u.i>0 ){ 6494 pIn1->u.i -= pOp->p3; 6495 goto jump_to_p2; 6496 } 6497 break; 6498 } 6499 6500 /* Opcode: OffsetLimit P1 P2 P3 * * 6501 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6502 ** 6503 ** This opcode performs a commonly used computation associated with 6504 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6505 ** holds the offset counter. The opcode computes the combined value 6506 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6507 ** value computed is the total number of rows that will need to be 6508 ** visited in order to complete the query. 6509 ** 6510 ** If r[P3] is zero or negative, that means there is no OFFSET 6511 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6512 ** 6513 ** if r[P1] is zero or negative, that means there is no LIMIT 6514 ** and r[P2] is set to -1. 6515 ** 6516 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6517 */ 6518 case OP_OffsetLimit: { /* in1, out2, in3 */ 6519 i64 x; 6520 pIn1 = &aMem[pOp->p1]; 6521 pIn3 = &aMem[pOp->p3]; 6522 pOut = out2Prerelease(p, pOp); 6523 assert( pIn1->flags & MEM_Int ); 6524 assert( pIn3->flags & MEM_Int ); 6525 x = pIn1->u.i; 6526 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6527 /* If the LIMIT is less than or equal to zero, loop forever. This 6528 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6529 ** also loop forever. This is undocumented. In fact, one could argue 6530 ** that the loop should terminate. But assuming 1 billion iterations 6531 ** per second (far exceeding the capabilities of any current hardware) 6532 ** it would take nearly 300 years to actually reach the limit. So 6533 ** looping forever is a reasonable approximation. */ 6534 pOut->u.i = -1; 6535 }else{ 6536 pOut->u.i = x; 6537 } 6538 break; 6539 } 6540 6541 /* Opcode: IfNotZero P1 P2 * * * 6542 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6543 ** 6544 ** Register P1 must contain an integer. If the content of register P1 is 6545 ** initially greater than zero, then decrement the value in register P1. 6546 ** If it is non-zero (negative or positive) and then also jump to P2. 6547 ** If register P1 is initially zero, leave it unchanged and fall through. 6548 */ 6549 case OP_IfNotZero: { /* jump, in1 */ 6550 pIn1 = &aMem[pOp->p1]; 6551 assert( pIn1->flags&MEM_Int ); 6552 VdbeBranchTaken(pIn1->u.i<0, 2); 6553 if( pIn1->u.i ){ 6554 if( pIn1->u.i>0 ) pIn1->u.i--; 6555 goto jump_to_p2; 6556 } 6557 break; 6558 } 6559 6560 /* Opcode: DecrJumpZero P1 P2 * * * 6561 ** Synopsis: if (--r[P1])==0 goto P2 6562 ** 6563 ** Register P1 must hold an integer. Decrement the value in P1 6564 ** and jump to P2 if the new value is exactly zero. 6565 */ 6566 case OP_DecrJumpZero: { /* jump, in1 */ 6567 pIn1 = &aMem[pOp->p1]; 6568 assert( pIn1->flags&MEM_Int ); 6569 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6570 VdbeBranchTaken(pIn1->u.i==0, 2); 6571 if( pIn1->u.i==0 ) goto jump_to_p2; 6572 break; 6573 } 6574 6575 6576 /* Opcode: AggStep * P2 P3 P4 P5 6577 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6578 ** 6579 ** Execute the xStep function for an aggregate. 6580 ** The function has P5 arguments. P4 is a pointer to the 6581 ** FuncDef structure that specifies the function. Register P3 is the 6582 ** accumulator. 6583 ** 6584 ** The P5 arguments are taken from register P2 and its 6585 ** successors. 6586 */ 6587 /* Opcode: AggInverse * P2 P3 P4 P5 6588 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6589 ** 6590 ** Execute the xInverse function for an aggregate. 6591 ** The function has P5 arguments. P4 is a pointer to the 6592 ** FuncDef structure that specifies the function. Register P3 is the 6593 ** accumulator. 6594 ** 6595 ** The P5 arguments are taken from register P2 and its 6596 ** successors. 6597 */ 6598 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6599 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6600 ** 6601 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6602 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6603 ** FuncDef structure that specifies the function. Register P3 is the 6604 ** accumulator. 6605 ** 6606 ** The P5 arguments are taken from register P2 and its 6607 ** successors. 6608 ** 6609 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6610 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6611 ** the opcode is changed. In this way, the initialization of the 6612 ** sqlite3_context only happens once, instead of on each call to the 6613 ** step function. 6614 */ 6615 case OP_AggInverse: 6616 case OP_AggStep: { 6617 int n; 6618 sqlite3_context *pCtx; 6619 6620 assert( pOp->p4type==P4_FUNCDEF ); 6621 n = pOp->p5; 6622 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6623 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6624 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6625 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6626 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6627 if( pCtx==0 ) goto no_mem; 6628 pCtx->pMem = 0; 6629 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6630 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6631 pCtx->pFunc = pOp->p4.pFunc; 6632 pCtx->iOp = (int)(pOp - aOp); 6633 pCtx->pVdbe = p; 6634 pCtx->skipFlag = 0; 6635 pCtx->isError = 0; 6636 pCtx->argc = n; 6637 pOp->p4type = P4_FUNCCTX; 6638 pOp->p4.pCtx = pCtx; 6639 6640 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6641 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6642 6643 pOp->opcode = OP_AggStep1; 6644 /* Fall through into OP_AggStep */ 6645 } 6646 case OP_AggStep1: { 6647 int i; 6648 sqlite3_context *pCtx; 6649 Mem *pMem; 6650 6651 assert( pOp->p4type==P4_FUNCCTX ); 6652 pCtx = pOp->p4.pCtx; 6653 pMem = &aMem[pOp->p3]; 6654 6655 #ifdef SQLITE_DEBUG 6656 if( pOp->p1 ){ 6657 /* This is an OP_AggInverse call. Verify that xStep has always 6658 ** been called at least once prior to any xInverse call. */ 6659 assert( pMem->uTemp==0x1122e0e3 ); 6660 }else{ 6661 /* This is an OP_AggStep call. Mark it as such. */ 6662 pMem->uTemp = 0x1122e0e3; 6663 } 6664 #endif 6665 6666 /* If this function is inside of a trigger, the register array in aMem[] 6667 ** might change from one evaluation to the next. The next block of code 6668 ** checks to see if the register array has changed, and if so it 6669 ** reinitializes the relavant parts of the sqlite3_context object */ 6670 if( pCtx->pMem != pMem ){ 6671 pCtx->pMem = pMem; 6672 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6673 } 6674 6675 #ifdef SQLITE_DEBUG 6676 for(i=0; i<pCtx->argc; i++){ 6677 assert( memIsValid(pCtx->argv[i]) ); 6678 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6679 } 6680 #endif 6681 6682 pMem->n++; 6683 assert( pCtx->pOut->flags==MEM_Null ); 6684 assert( pCtx->isError==0 ); 6685 assert( pCtx->skipFlag==0 ); 6686 #ifndef SQLITE_OMIT_WINDOWFUNC 6687 if( pOp->p1 ){ 6688 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6689 }else 6690 #endif 6691 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6692 6693 if( pCtx->isError ){ 6694 if( pCtx->isError>0 ){ 6695 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6696 rc = pCtx->isError; 6697 } 6698 if( pCtx->skipFlag ){ 6699 assert( pOp[-1].opcode==OP_CollSeq ); 6700 i = pOp[-1].p1; 6701 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6702 pCtx->skipFlag = 0; 6703 } 6704 sqlite3VdbeMemRelease(pCtx->pOut); 6705 pCtx->pOut->flags = MEM_Null; 6706 pCtx->isError = 0; 6707 if( rc ) goto abort_due_to_error; 6708 } 6709 assert( pCtx->pOut->flags==MEM_Null ); 6710 assert( pCtx->skipFlag==0 ); 6711 break; 6712 } 6713 6714 /* Opcode: AggFinal P1 P2 * P4 * 6715 ** Synopsis: accum=r[P1] N=P2 6716 ** 6717 ** P1 is the memory location that is the accumulator for an aggregate 6718 ** or window function. Execute the finalizer function 6719 ** for an aggregate and store the result in P1. 6720 ** 6721 ** P2 is the number of arguments that the step function takes and 6722 ** P4 is a pointer to the FuncDef for this function. The P2 6723 ** argument is not used by this opcode. It is only there to disambiguate 6724 ** functions that can take varying numbers of arguments. The 6725 ** P4 argument is only needed for the case where 6726 ** the step function was not previously called. 6727 */ 6728 /* Opcode: AggValue * P2 P3 P4 * 6729 ** Synopsis: r[P3]=value N=P2 6730 ** 6731 ** Invoke the xValue() function and store the result in register P3. 6732 ** 6733 ** P2 is the number of arguments that the step function takes and 6734 ** P4 is a pointer to the FuncDef for this function. The P2 6735 ** argument is not used by this opcode. It is only there to disambiguate 6736 ** functions that can take varying numbers of arguments. The 6737 ** P4 argument is only needed for the case where 6738 ** the step function was not previously called. 6739 */ 6740 case OP_AggValue: 6741 case OP_AggFinal: { 6742 Mem *pMem; 6743 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6744 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6745 pMem = &aMem[pOp->p1]; 6746 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6747 #ifndef SQLITE_OMIT_WINDOWFUNC 6748 if( pOp->p3 ){ 6749 memAboutToChange(p, &aMem[pOp->p3]); 6750 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6751 pMem = &aMem[pOp->p3]; 6752 }else 6753 #endif 6754 { 6755 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6756 } 6757 6758 if( rc ){ 6759 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6760 goto abort_due_to_error; 6761 } 6762 sqlite3VdbeChangeEncoding(pMem, encoding); 6763 UPDATE_MAX_BLOBSIZE(pMem); 6764 if( sqlite3VdbeMemTooBig(pMem) ){ 6765 goto too_big; 6766 } 6767 break; 6768 } 6769 6770 #ifndef SQLITE_OMIT_WAL 6771 /* Opcode: Checkpoint P1 P2 P3 * * 6772 ** 6773 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6774 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6775 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6776 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6777 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6778 ** in the WAL that have been checkpointed after the checkpoint 6779 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6780 ** mem[P3+2] are initialized to -1. 6781 */ 6782 case OP_Checkpoint: { 6783 int i; /* Loop counter */ 6784 int aRes[3]; /* Results */ 6785 Mem *pMem; /* Write results here */ 6786 6787 assert( p->readOnly==0 ); 6788 aRes[0] = 0; 6789 aRes[1] = aRes[2] = -1; 6790 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6791 || pOp->p2==SQLITE_CHECKPOINT_FULL 6792 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6793 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6794 ); 6795 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6796 if( rc ){ 6797 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6798 rc = SQLITE_OK; 6799 aRes[0] = 1; 6800 } 6801 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6802 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6803 } 6804 break; 6805 }; 6806 #endif 6807 6808 #ifndef SQLITE_OMIT_PRAGMA 6809 /* Opcode: JournalMode P1 P2 P3 * * 6810 ** 6811 ** Change the journal mode of database P1 to P3. P3 must be one of the 6812 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6813 ** modes (delete, truncate, persist, off and memory), this is a simple 6814 ** operation. No IO is required. 6815 ** 6816 ** If changing into or out of WAL mode the procedure is more complicated. 6817 ** 6818 ** Write a string containing the final journal-mode to register P2. 6819 */ 6820 case OP_JournalMode: { /* out2 */ 6821 Btree *pBt; /* Btree to change journal mode of */ 6822 Pager *pPager; /* Pager associated with pBt */ 6823 int eNew; /* New journal mode */ 6824 int eOld; /* The old journal mode */ 6825 #ifndef SQLITE_OMIT_WAL 6826 const char *zFilename; /* Name of database file for pPager */ 6827 #endif 6828 6829 pOut = out2Prerelease(p, pOp); 6830 eNew = pOp->p3; 6831 assert( eNew==PAGER_JOURNALMODE_DELETE 6832 || eNew==PAGER_JOURNALMODE_TRUNCATE 6833 || eNew==PAGER_JOURNALMODE_PERSIST 6834 || eNew==PAGER_JOURNALMODE_OFF 6835 || eNew==PAGER_JOURNALMODE_MEMORY 6836 || eNew==PAGER_JOURNALMODE_WAL 6837 || eNew==PAGER_JOURNALMODE_QUERY 6838 ); 6839 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6840 assert( p->readOnly==0 ); 6841 6842 pBt = db->aDb[pOp->p1].pBt; 6843 pPager = sqlite3BtreePager(pBt); 6844 eOld = sqlite3PagerGetJournalMode(pPager); 6845 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6846 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6847 6848 #ifndef SQLITE_OMIT_WAL 6849 zFilename = sqlite3PagerFilename(pPager, 1); 6850 6851 /* Do not allow a transition to journal_mode=WAL for a database 6852 ** in temporary storage or if the VFS does not support shared memory 6853 */ 6854 if( eNew==PAGER_JOURNALMODE_WAL 6855 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6856 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6857 ){ 6858 eNew = eOld; 6859 } 6860 6861 if( (eNew!=eOld) 6862 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6863 ){ 6864 if( !db->autoCommit || db->nVdbeRead>1 ){ 6865 rc = SQLITE_ERROR; 6866 sqlite3VdbeError(p, 6867 "cannot change %s wal mode from within a transaction", 6868 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6869 ); 6870 goto abort_due_to_error; 6871 }else{ 6872 6873 if( eOld==PAGER_JOURNALMODE_WAL ){ 6874 /* If leaving WAL mode, close the log file. If successful, the call 6875 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6876 ** file. An EXCLUSIVE lock may still be held on the database file 6877 ** after a successful return. 6878 */ 6879 rc = sqlite3PagerCloseWal(pPager, db); 6880 if( rc==SQLITE_OK ){ 6881 sqlite3PagerSetJournalMode(pPager, eNew); 6882 } 6883 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6884 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6885 ** as an intermediate */ 6886 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6887 } 6888 6889 /* Open a transaction on the database file. Regardless of the journal 6890 ** mode, this transaction always uses a rollback journal. 6891 */ 6892 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6893 if( rc==SQLITE_OK ){ 6894 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6895 } 6896 } 6897 } 6898 #endif /* ifndef SQLITE_OMIT_WAL */ 6899 6900 if( rc ) eNew = eOld; 6901 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6902 6903 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6904 pOut->z = (char *)sqlite3JournalModename(eNew); 6905 pOut->n = sqlite3Strlen30(pOut->z); 6906 pOut->enc = SQLITE_UTF8; 6907 sqlite3VdbeChangeEncoding(pOut, encoding); 6908 if( rc ) goto abort_due_to_error; 6909 break; 6910 }; 6911 #endif /* SQLITE_OMIT_PRAGMA */ 6912 6913 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6914 /* Opcode: Vacuum P1 P2 * * * 6915 ** 6916 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6917 ** for an attached database. The "temp" database may not be vacuumed. 6918 ** 6919 ** If P2 is not zero, then it is a register holding a string which is 6920 ** the file into which the result of vacuum should be written. When 6921 ** P2 is zero, the vacuum overwrites the original database. 6922 */ 6923 case OP_Vacuum: { 6924 assert( p->readOnly==0 ); 6925 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 6926 pOp->p2 ? &aMem[pOp->p2] : 0); 6927 if( rc ) goto abort_due_to_error; 6928 break; 6929 } 6930 #endif 6931 6932 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6933 /* Opcode: IncrVacuum P1 P2 * * * 6934 ** 6935 ** Perform a single step of the incremental vacuum procedure on 6936 ** the P1 database. If the vacuum has finished, jump to instruction 6937 ** P2. Otherwise, fall through to the next instruction. 6938 */ 6939 case OP_IncrVacuum: { /* jump */ 6940 Btree *pBt; 6941 6942 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6943 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6944 assert( p->readOnly==0 ); 6945 pBt = db->aDb[pOp->p1].pBt; 6946 rc = sqlite3BtreeIncrVacuum(pBt); 6947 VdbeBranchTaken(rc==SQLITE_DONE,2); 6948 if( rc ){ 6949 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6950 rc = SQLITE_OK; 6951 goto jump_to_p2; 6952 } 6953 break; 6954 } 6955 #endif 6956 6957 /* Opcode: Expire P1 P2 * * * 6958 ** 6959 ** Cause precompiled statements to expire. When an expired statement 6960 ** is executed using sqlite3_step() it will either automatically 6961 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6962 ** or it will fail with SQLITE_SCHEMA. 6963 ** 6964 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6965 ** then only the currently executing statement is expired. 6966 ** 6967 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 6968 ** then running SQL statements are allowed to continue to run to completion. 6969 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 6970 ** that might help the statement run faster but which does not affect the 6971 ** correctness of operation. 6972 */ 6973 case OP_Expire: { 6974 assert( pOp->p2==0 || pOp->p2==1 ); 6975 if( !pOp->p1 ){ 6976 sqlite3ExpirePreparedStatements(db, pOp->p2); 6977 }else{ 6978 p->expired = pOp->p2+1; 6979 } 6980 break; 6981 } 6982 6983 #ifndef SQLITE_OMIT_SHARED_CACHE 6984 /* Opcode: TableLock P1 P2 P3 P4 * 6985 ** Synopsis: iDb=P1 root=P2 write=P3 6986 ** 6987 ** Obtain a lock on a particular table. This instruction is only used when 6988 ** the shared-cache feature is enabled. 6989 ** 6990 ** P1 is the index of the database in sqlite3.aDb[] of the database 6991 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6992 ** a write lock if P3==1. 6993 ** 6994 ** P2 contains the root-page of the table to lock. 6995 ** 6996 ** P4 contains a pointer to the name of the table being locked. This is only 6997 ** used to generate an error message if the lock cannot be obtained. 6998 */ 6999 case OP_TableLock: { 7000 u8 isWriteLock = (u8)pOp->p3; 7001 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7002 int p1 = pOp->p1; 7003 assert( p1>=0 && p1<db->nDb ); 7004 assert( DbMaskTest(p->btreeMask, p1) ); 7005 assert( isWriteLock==0 || isWriteLock==1 ); 7006 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7007 if( rc ){ 7008 if( (rc&0xFF)==SQLITE_LOCKED ){ 7009 const char *z = pOp->p4.z; 7010 sqlite3VdbeError(p, "database table is locked: %s", z); 7011 } 7012 goto abort_due_to_error; 7013 } 7014 } 7015 break; 7016 } 7017 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7018 7019 #ifndef SQLITE_OMIT_VIRTUALTABLE 7020 /* Opcode: VBegin * * * P4 * 7021 ** 7022 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7023 ** xBegin method for that table. 7024 ** 7025 ** Also, whether or not P4 is set, check that this is not being called from 7026 ** within a callback to a virtual table xSync() method. If it is, the error 7027 ** code will be set to SQLITE_LOCKED. 7028 */ 7029 case OP_VBegin: { 7030 VTable *pVTab; 7031 pVTab = pOp->p4.pVtab; 7032 rc = sqlite3VtabBegin(db, pVTab); 7033 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7034 if( rc ) goto abort_due_to_error; 7035 break; 7036 } 7037 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7038 7039 #ifndef SQLITE_OMIT_VIRTUALTABLE 7040 /* Opcode: VCreate P1 P2 * * * 7041 ** 7042 ** P2 is a register that holds the name of a virtual table in database 7043 ** P1. Call the xCreate method for that table. 7044 */ 7045 case OP_VCreate: { 7046 Mem sMem; /* For storing the record being decoded */ 7047 const char *zTab; /* Name of the virtual table */ 7048 7049 memset(&sMem, 0, sizeof(sMem)); 7050 sMem.db = db; 7051 /* Because P2 is always a static string, it is impossible for the 7052 ** sqlite3VdbeMemCopy() to fail */ 7053 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7054 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7055 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7056 assert( rc==SQLITE_OK ); 7057 zTab = (const char*)sqlite3_value_text(&sMem); 7058 assert( zTab || db->mallocFailed ); 7059 if( zTab ){ 7060 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7061 } 7062 sqlite3VdbeMemRelease(&sMem); 7063 if( rc ) goto abort_due_to_error; 7064 break; 7065 } 7066 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7067 7068 #ifndef SQLITE_OMIT_VIRTUALTABLE 7069 /* Opcode: VDestroy P1 * * P4 * 7070 ** 7071 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7072 ** of that table. 7073 */ 7074 case OP_VDestroy: { 7075 db->nVDestroy++; 7076 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7077 db->nVDestroy--; 7078 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7079 if( rc ) goto abort_due_to_error; 7080 break; 7081 } 7082 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7083 7084 #ifndef SQLITE_OMIT_VIRTUALTABLE 7085 /* Opcode: VOpen P1 * * P4 * 7086 ** 7087 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7088 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7089 ** table and stores that cursor in P1. 7090 */ 7091 case OP_VOpen: { 7092 VdbeCursor *pCur; 7093 sqlite3_vtab_cursor *pVCur; 7094 sqlite3_vtab *pVtab; 7095 const sqlite3_module *pModule; 7096 7097 assert( p->bIsReader ); 7098 pCur = 0; 7099 pVCur = 0; 7100 pVtab = pOp->p4.pVtab->pVtab; 7101 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7102 rc = SQLITE_LOCKED; 7103 goto abort_due_to_error; 7104 } 7105 pModule = pVtab->pModule; 7106 rc = pModule->xOpen(pVtab, &pVCur); 7107 sqlite3VtabImportErrmsg(p, pVtab); 7108 if( rc ) goto abort_due_to_error; 7109 7110 /* Initialize sqlite3_vtab_cursor base class */ 7111 pVCur->pVtab = pVtab; 7112 7113 /* Initialize vdbe cursor object */ 7114 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7115 if( pCur ){ 7116 pCur->uc.pVCur = pVCur; 7117 pVtab->nRef++; 7118 }else{ 7119 assert( db->mallocFailed ); 7120 pModule->xClose(pVCur); 7121 goto no_mem; 7122 } 7123 break; 7124 } 7125 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7126 7127 #ifndef SQLITE_OMIT_VIRTUALTABLE 7128 /* Opcode: VFilter P1 P2 P3 P4 * 7129 ** Synopsis: iplan=r[P3] zplan='P4' 7130 ** 7131 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7132 ** the filtered result set is empty. 7133 ** 7134 ** P4 is either NULL or a string that was generated by the xBestIndex 7135 ** method of the module. The interpretation of the P4 string is left 7136 ** to the module implementation. 7137 ** 7138 ** This opcode invokes the xFilter method on the virtual table specified 7139 ** by P1. The integer query plan parameter to xFilter is stored in register 7140 ** P3. Register P3+1 stores the argc parameter to be passed to the 7141 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7142 ** additional parameters which are passed to 7143 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7144 ** 7145 ** A jump is made to P2 if the result set after filtering would be empty. 7146 */ 7147 case OP_VFilter: { /* jump */ 7148 int nArg; 7149 int iQuery; 7150 const sqlite3_module *pModule; 7151 Mem *pQuery; 7152 Mem *pArgc; 7153 sqlite3_vtab_cursor *pVCur; 7154 sqlite3_vtab *pVtab; 7155 VdbeCursor *pCur; 7156 int res; 7157 int i; 7158 Mem **apArg; 7159 7160 pQuery = &aMem[pOp->p3]; 7161 pArgc = &pQuery[1]; 7162 pCur = p->apCsr[pOp->p1]; 7163 assert( memIsValid(pQuery) ); 7164 REGISTER_TRACE(pOp->p3, pQuery); 7165 assert( pCur->eCurType==CURTYPE_VTAB ); 7166 pVCur = pCur->uc.pVCur; 7167 pVtab = pVCur->pVtab; 7168 pModule = pVtab->pModule; 7169 7170 /* Grab the index number and argc parameters */ 7171 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7172 nArg = (int)pArgc->u.i; 7173 iQuery = (int)pQuery->u.i; 7174 7175 /* Invoke the xFilter method */ 7176 res = 0; 7177 apArg = p->apArg; 7178 for(i = 0; i<nArg; i++){ 7179 apArg[i] = &pArgc[i+1]; 7180 } 7181 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7182 sqlite3VtabImportErrmsg(p, pVtab); 7183 if( rc ) goto abort_due_to_error; 7184 res = pModule->xEof(pVCur); 7185 pCur->nullRow = 0; 7186 VdbeBranchTaken(res!=0,2); 7187 if( res ) goto jump_to_p2; 7188 break; 7189 } 7190 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7191 7192 #ifndef SQLITE_OMIT_VIRTUALTABLE 7193 /* Opcode: VColumn P1 P2 P3 * P5 7194 ** Synopsis: r[P3]=vcolumn(P2) 7195 ** 7196 ** Store in register P3 the value of the P2-th column of 7197 ** the current row of the virtual-table of cursor P1. 7198 ** 7199 ** If the VColumn opcode is being used to fetch the value of 7200 ** an unchanging column during an UPDATE operation, then the P5 7201 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7202 ** function to return true inside the xColumn method of the virtual 7203 ** table implementation. The P5 column might also contain other 7204 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7205 ** unused by OP_VColumn. 7206 */ 7207 case OP_VColumn: { 7208 sqlite3_vtab *pVtab; 7209 const sqlite3_module *pModule; 7210 Mem *pDest; 7211 sqlite3_context sContext; 7212 7213 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7214 assert( pCur->eCurType==CURTYPE_VTAB ); 7215 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7216 pDest = &aMem[pOp->p3]; 7217 memAboutToChange(p, pDest); 7218 if( pCur->nullRow ){ 7219 sqlite3VdbeMemSetNull(pDest); 7220 break; 7221 } 7222 pVtab = pCur->uc.pVCur->pVtab; 7223 pModule = pVtab->pModule; 7224 assert( pModule->xColumn ); 7225 memset(&sContext, 0, sizeof(sContext)); 7226 sContext.pOut = pDest; 7227 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7228 if( pOp->p5 & OPFLAG_NOCHNG ){ 7229 sqlite3VdbeMemSetNull(pDest); 7230 pDest->flags = MEM_Null|MEM_Zero; 7231 pDest->u.nZero = 0; 7232 }else{ 7233 MemSetTypeFlag(pDest, MEM_Null); 7234 } 7235 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7236 sqlite3VtabImportErrmsg(p, pVtab); 7237 if( sContext.isError>0 ){ 7238 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7239 rc = sContext.isError; 7240 } 7241 sqlite3VdbeChangeEncoding(pDest, encoding); 7242 REGISTER_TRACE(pOp->p3, pDest); 7243 UPDATE_MAX_BLOBSIZE(pDest); 7244 7245 if( sqlite3VdbeMemTooBig(pDest) ){ 7246 goto too_big; 7247 } 7248 if( rc ) goto abort_due_to_error; 7249 break; 7250 } 7251 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7252 7253 #ifndef SQLITE_OMIT_VIRTUALTABLE 7254 /* Opcode: VNext P1 P2 * * * 7255 ** 7256 ** Advance virtual table P1 to the next row in its result set and 7257 ** jump to instruction P2. Or, if the virtual table has reached 7258 ** the end of its result set, then fall through to the next instruction. 7259 */ 7260 case OP_VNext: { /* jump */ 7261 sqlite3_vtab *pVtab; 7262 const sqlite3_module *pModule; 7263 int res; 7264 VdbeCursor *pCur; 7265 7266 res = 0; 7267 pCur = p->apCsr[pOp->p1]; 7268 assert( pCur->eCurType==CURTYPE_VTAB ); 7269 if( pCur->nullRow ){ 7270 break; 7271 } 7272 pVtab = pCur->uc.pVCur->pVtab; 7273 pModule = pVtab->pModule; 7274 assert( pModule->xNext ); 7275 7276 /* Invoke the xNext() method of the module. There is no way for the 7277 ** underlying implementation to return an error if one occurs during 7278 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7279 ** data is available) and the error code returned when xColumn or 7280 ** some other method is next invoked on the save virtual table cursor. 7281 */ 7282 rc = pModule->xNext(pCur->uc.pVCur); 7283 sqlite3VtabImportErrmsg(p, pVtab); 7284 if( rc ) goto abort_due_to_error; 7285 res = pModule->xEof(pCur->uc.pVCur); 7286 VdbeBranchTaken(!res,2); 7287 if( !res ){ 7288 /* If there is data, jump to P2 */ 7289 goto jump_to_p2_and_check_for_interrupt; 7290 } 7291 goto check_for_interrupt; 7292 } 7293 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7294 7295 #ifndef SQLITE_OMIT_VIRTUALTABLE 7296 /* Opcode: VRename P1 * * P4 * 7297 ** 7298 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7299 ** This opcode invokes the corresponding xRename method. The value 7300 ** in register P1 is passed as the zName argument to the xRename method. 7301 */ 7302 case OP_VRename: { 7303 sqlite3_vtab *pVtab; 7304 Mem *pName; 7305 int isLegacy; 7306 7307 isLegacy = (db->flags & SQLITE_LegacyAlter); 7308 db->flags |= SQLITE_LegacyAlter; 7309 pVtab = pOp->p4.pVtab->pVtab; 7310 pName = &aMem[pOp->p1]; 7311 assert( pVtab->pModule->xRename ); 7312 assert( memIsValid(pName) ); 7313 assert( p->readOnly==0 ); 7314 REGISTER_TRACE(pOp->p1, pName); 7315 assert( pName->flags & MEM_Str ); 7316 testcase( pName->enc==SQLITE_UTF8 ); 7317 testcase( pName->enc==SQLITE_UTF16BE ); 7318 testcase( pName->enc==SQLITE_UTF16LE ); 7319 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7320 if( rc ) goto abort_due_to_error; 7321 rc = pVtab->pModule->xRename(pVtab, pName->z); 7322 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7323 sqlite3VtabImportErrmsg(p, pVtab); 7324 p->expired = 0; 7325 if( rc ) goto abort_due_to_error; 7326 break; 7327 } 7328 #endif 7329 7330 #ifndef SQLITE_OMIT_VIRTUALTABLE 7331 /* Opcode: VUpdate P1 P2 P3 P4 P5 7332 ** Synopsis: data=r[P3@P2] 7333 ** 7334 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7335 ** This opcode invokes the corresponding xUpdate method. P2 values 7336 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7337 ** invocation. The value in register (P3+P2-1) corresponds to the 7338 ** p2th element of the argv array passed to xUpdate. 7339 ** 7340 ** The xUpdate method will do a DELETE or an INSERT or both. 7341 ** The argv[0] element (which corresponds to memory cell P3) 7342 ** is the rowid of a row to delete. If argv[0] is NULL then no 7343 ** deletion occurs. The argv[1] element is the rowid of the new 7344 ** row. This can be NULL to have the virtual table select the new 7345 ** rowid for itself. The subsequent elements in the array are 7346 ** the values of columns in the new row. 7347 ** 7348 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7349 ** a row to delete. 7350 ** 7351 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7352 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7353 ** is set to the value of the rowid for the row just inserted. 7354 ** 7355 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7356 ** apply in the case of a constraint failure on an insert or update. 7357 */ 7358 case OP_VUpdate: { 7359 sqlite3_vtab *pVtab; 7360 const sqlite3_module *pModule; 7361 int nArg; 7362 int i; 7363 sqlite_int64 rowid; 7364 Mem **apArg; 7365 Mem *pX; 7366 7367 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7368 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7369 ); 7370 assert( p->readOnly==0 ); 7371 if( db->mallocFailed ) goto no_mem; 7372 sqlite3VdbeIncrWriteCounter(p, 0); 7373 pVtab = pOp->p4.pVtab->pVtab; 7374 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7375 rc = SQLITE_LOCKED; 7376 goto abort_due_to_error; 7377 } 7378 pModule = pVtab->pModule; 7379 nArg = pOp->p2; 7380 assert( pOp->p4type==P4_VTAB ); 7381 if( ALWAYS(pModule->xUpdate) ){ 7382 u8 vtabOnConflict = db->vtabOnConflict; 7383 apArg = p->apArg; 7384 pX = &aMem[pOp->p3]; 7385 for(i=0; i<nArg; i++){ 7386 assert( memIsValid(pX) ); 7387 memAboutToChange(p, pX); 7388 apArg[i] = pX; 7389 pX++; 7390 } 7391 db->vtabOnConflict = pOp->p5; 7392 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7393 db->vtabOnConflict = vtabOnConflict; 7394 sqlite3VtabImportErrmsg(p, pVtab); 7395 if( rc==SQLITE_OK && pOp->p1 ){ 7396 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7397 db->lastRowid = rowid; 7398 } 7399 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7400 if( pOp->p5==OE_Ignore ){ 7401 rc = SQLITE_OK; 7402 }else{ 7403 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7404 } 7405 }else{ 7406 p->nChange++; 7407 } 7408 if( rc ) goto abort_due_to_error; 7409 } 7410 break; 7411 } 7412 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7413 7414 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7415 /* Opcode: Pagecount P1 P2 * * * 7416 ** 7417 ** Write the current number of pages in database P1 to memory cell P2. 7418 */ 7419 case OP_Pagecount: { /* out2 */ 7420 pOut = out2Prerelease(p, pOp); 7421 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7422 break; 7423 } 7424 #endif 7425 7426 7427 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7428 /* Opcode: MaxPgcnt P1 P2 P3 * * 7429 ** 7430 ** Try to set the maximum page count for database P1 to the value in P3. 7431 ** Do not let the maximum page count fall below the current page count and 7432 ** do not change the maximum page count value if P3==0. 7433 ** 7434 ** Store the maximum page count after the change in register P2. 7435 */ 7436 case OP_MaxPgcnt: { /* out2 */ 7437 unsigned int newMax; 7438 Btree *pBt; 7439 7440 pOut = out2Prerelease(p, pOp); 7441 pBt = db->aDb[pOp->p1].pBt; 7442 newMax = 0; 7443 if( pOp->p3 ){ 7444 newMax = sqlite3BtreeLastPage(pBt); 7445 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7446 } 7447 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7448 break; 7449 } 7450 #endif 7451 7452 /* Opcode: Function P1 P2 P3 P4 * 7453 ** Synopsis: r[P3]=func(r[P2@P5]) 7454 ** 7455 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7456 ** contains a pointer to the function to be run) with arguments taken 7457 ** from register P2 and successors. The number of arguments is in 7458 ** the sqlite3_context object that P4 points to. 7459 ** The result of the function is stored 7460 ** in register P3. Register P3 must not be one of the function inputs. 7461 ** 7462 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7463 ** function was determined to be constant at compile time. If the first 7464 ** argument was constant then bit 0 of P1 is set. This is used to determine 7465 ** whether meta data associated with a user function argument using the 7466 ** sqlite3_set_auxdata() API may be safely retained until the next 7467 ** invocation of this opcode. 7468 ** 7469 ** See also: AggStep, AggFinal, PureFunc 7470 */ 7471 /* Opcode: PureFunc P1 P2 P3 P4 * 7472 ** Synopsis: r[P3]=func(r[P2@P5]) 7473 ** 7474 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7475 ** contains a pointer to the function to be run) with arguments taken 7476 ** from register P2 and successors. The number of arguments is in 7477 ** the sqlite3_context object that P4 points to. 7478 ** The result of the function is stored 7479 ** in register P3. Register P3 must not be one of the function inputs. 7480 ** 7481 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7482 ** function was determined to be constant at compile time. If the first 7483 ** argument was constant then bit 0 of P1 is set. This is used to determine 7484 ** whether meta data associated with a user function argument using the 7485 ** sqlite3_set_auxdata() API may be safely retained until the next 7486 ** invocation of this opcode. 7487 ** 7488 ** This opcode works exactly like OP_Function. The only difference is in 7489 ** its name. This opcode is used in places where the function must be 7490 ** purely non-deterministic. Some built-in date/time functions can be 7491 ** either determinitic of non-deterministic, depending on their arguments. 7492 ** When those function are used in a non-deterministic way, they will check 7493 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7494 ** if they were, they throw an error. 7495 ** 7496 ** See also: AggStep, AggFinal, Function 7497 */ 7498 case OP_PureFunc: /* group */ 7499 case OP_Function: { /* group */ 7500 int i; 7501 sqlite3_context *pCtx; 7502 7503 assert( pOp->p4type==P4_FUNCCTX ); 7504 pCtx = pOp->p4.pCtx; 7505 7506 /* If this function is inside of a trigger, the register array in aMem[] 7507 ** might change from one evaluation to the next. The next block of code 7508 ** checks to see if the register array has changed, and if so it 7509 ** reinitializes the relavant parts of the sqlite3_context object */ 7510 pOut = &aMem[pOp->p3]; 7511 if( pCtx->pOut != pOut ){ 7512 pCtx->pVdbe = p; 7513 pCtx->pOut = pOut; 7514 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7515 } 7516 assert( pCtx->pVdbe==p ); 7517 7518 memAboutToChange(p, pOut); 7519 #ifdef SQLITE_DEBUG 7520 for(i=0; i<pCtx->argc; i++){ 7521 assert( memIsValid(pCtx->argv[i]) ); 7522 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7523 } 7524 #endif 7525 MemSetTypeFlag(pOut, MEM_Null); 7526 assert( pCtx->isError==0 ); 7527 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7528 7529 /* If the function returned an error, throw an exception */ 7530 if( pCtx->isError ){ 7531 if( pCtx->isError>0 ){ 7532 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7533 rc = pCtx->isError; 7534 } 7535 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7536 pCtx->isError = 0; 7537 if( rc ) goto abort_due_to_error; 7538 } 7539 7540 /* Copy the result of the function into register P3 */ 7541 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7542 sqlite3VdbeChangeEncoding(pOut, encoding); 7543 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7544 } 7545 7546 REGISTER_TRACE(pOp->p3, pOut); 7547 UPDATE_MAX_BLOBSIZE(pOut); 7548 break; 7549 } 7550 7551 /* Opcode: Trace P1 P2 * P4 * 7552 ** 7553 ** Write P4 on the statement trace output if statement tracing is 7554 ** enabled. 7555 ** 7556 ** Operand P1 must be 0x7fffffff and P2 must positive. 7557 */ 7558 /* Opcode: Init P1 P2 P3 P4 * 7559 ** Synopsis: Start at P2 7560 ** 7561 ** Programs contain a single instance of this opcode as the very first 7562 ** opcode. 7563 ** 7564 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7565 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7566 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7567 ** 7568 ** If P2 is not zero, jump to instruction P2. 7569 ** 7570 ** Increment the value of P1 so that OP_Once opcodes will jump the 7571 ** first time they are evaluated for this run. 7572 ** 7573 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7574 ** error is encountered. 7575 */ 7576 case OP_Trace: 7577 case OP_Init: { /* jump */ 7578 int i; 7579 #ifndef SQLITE_OMIT_TRACE 7580 char *zTrace; 7581 #endif 7582 7583 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7584 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7585 ** 7586 ** This assert() provides evidence for: 7587 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7588 ** would have been returned by the legacy sqlite3_trace() interface by 7589 ** using the X argument when X begins with "--" and invoking 7590 ** sqlite3_expanded_sql(P) otherwise. 7591 */ 7592 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7593 7594 /* OP_Init is always instruction 0 */ 7595 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7596 7597 #ifndef SQLITE_OMIT_TRACE 7598 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7599 && !p->doingRerun 7600 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7601 ){ 7602 #ifndef SQLITE_OMIT_DEPRECATED 7603 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7604 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7605 char *z = sqlite3VdbeExpandSql(p, zTrace); 7606 x(db->pTraceArg, z); 7607 sqlite3_free(z); 7608 }else 7609 #endif 7610 if( db->nVdbeExec>1 ){ 7611 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7612 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7613 sqlite3DbFree(db, z); 7614 }else{ 7615 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7616 } 7617 } 7618 #ifdef SQLITE_USE_FCNTL_TRACE 7619 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7620 if( zTrace ){ 7621 int j; 7622 for(j=0; j<db->nDb; j++){ 7623 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7624 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7625 } 7626 } 7627 #endif /* SQLITE_USE_FCNTL_TRACE */ 7628 #ifdef SQLITE_DEBUG 7629 if( (db->flags & SQLITE_SqlTrace)!=0 7630 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7631 ){ 7632 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7633 } 7634 #endif /* SQLITE_DEBUG */ 7635 #endif /* SQLITE_OMIT_TRACE */ 7636 assert( pOp->p2>0 ); 7637 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7638 if( pOp->opcode==OP_Trace ) break; 7639 for(i=1; i<p->nOp; i++){ 7640 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7641 } 7642 pOp->p1 = 0; 7643 } 7644 pOp->p1++; 7645 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7646 goto jump_to_p2; 7647 } 7648 7649 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7650 /* Opcode: CursorHint P1 * * P4 * 7651 ** 7652 ** Provide a hint to cursor P1 that it only needs to return rows that 7653 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7654 ** to values currently held in registers. TK_COLUMN terms in the P4 7655 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7656 */ 7657 case OP_CursorHint: { 7658 VdbeCursor *pC; 7659 7660 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7661 assert( pOp->p4type==P4_EXPR ); 7662 pC = p->apCsr[pOp->p1]; 7663 if( pC ){ 7664 assert( pC->eCurType==CURTYPE_BTREE ); 7665 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7666 pOp->p4.pExpr, aMem); 7667 } 7668 break; 7669 } 7670 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7671 7672 #ifdef SQLITE_DEBUG 7673 /* Opcode: Abortable * * * * * 7674 ** 7675 ** Verify that an Abort can happen. Assert if an Abort at this point 7676 ** might cause database corruption. This opcode only appears in debugging 7677 ** builds. 7678 ** 7679 ** An Abort is safe if either there have been no writes, or if there is 7680 ** an active statement journal. 7681 */ 7682 case OP_Abortable: { 7683 sqlite3VdbeAssertAbortable(p); 7684 break; 7685 } 7686 #endif 7687 7688 /* Opcode: Noop * * * * * 7689 ** 7690 ** Do nothing. This instruction is often useful as a jump 7691 ** destination. 7692 */ 7693 /* 7694 ** The magic Explain opcode are only inserted when explain==2 (which 7695 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7696 ** This opcode records information from the optimizer. It is the 7697 ** the same as a no-op. This opcodesnever appears in a real VM program. 7698 */ 7699 default: { /* This is really OP_Noop, OP_Explain */ 7700 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7701 7702 break; 7703 } 7704 7705 /***************************************************************************** 7706 ** The cases of the switch statement above this line should all be indented 7707 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7708 ** readability. From this point on down, the normal indentation rules are 7709 ** restored. 7710 *****************************************************************************/ 7711 } 7712 7713 #ifdef VDBE_PROFILE 7714 { 7715 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7716 if( endTime>start ) pOrigOp->cycles += endTime - start; 7717 pOrigOp->cnt++; 7718 } 7719 #endif 7720 7721 /* The following code adds nothing to the actual functionality 7722 ** of the program. It is only here for testing and debugging. 7723 ** On the other hand, it does burn CPU cycles every time through 7724 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7725 */ 7726 #ifndef NDEBUG 7727 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7728 7729 #ifdef SQLITE_DEBUG 7730 if( db->flags & SQLITE_VdbeTrace ){ 7731 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7732 if( rc!=0 ) printf("rc=%d\n",rc); 7733 if( opProperty & (OPFLG_OUT2) ){ 7734 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7735 } 7736 if( opProperty & OPFLG_OUT3 ){ 7737 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7738 } 7739 } 7740 #endif /* SQLITE_DEBUG */ 7741 #endif /* NDEBUG */ 7742 } /* The end of the for(;;) loop the loops through opcodes */ 7743 7744 /* If we reach this point, it means that execution is finished with 7745 ** an error of some kind. 7746 */ 7747 abort_due_to_error: 7748 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7749 assert( rc ); 7750 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7751 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7752 } 7753 p->rc = rc; 7754 sqlite3SystemError(db, rc); 7755 testcase( sqlite3GlobalConfig.xLog!=0 ); 7756 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7757 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7758 sqlite3VdbeHalt(p); 7759 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7760 rc = SQLITE_ERROR; 7761 if( resetSchemaOnFault>0 ){ 7762 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7763 } 7764 7765 /* This is the only way out of this procedure. We have to 7766 ** release the mutexes on btrees that were acquired at the 7767 ** top. */ 7768 vdbe_return: 7769 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 7770 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 7771 nProgressLimit += db->nProgressOps; 7772 if( db->xProgress(db->pProgressArg) ){ 7773 nProgressLimit = 0xffffffff; 7774 rc = SQLITE_INTERRUPT; 7775 goto abort_due_to_error; 7776 } 7777 } 7778 #endif 7779 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7780 sqlite3VdbeLeave(p); 7781 assert( rc!=SQLITE_OK || nExtraDelete==0 7782 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7783 ); 7784 return rc; 7785 7786 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7787 ** is encountered. 7788 */ 7789 too_big: 7790 sqlite3VdbeError(p, "string or blob too big"); 7791 rc = SQLITE_TOOBIG; 7792 goto abort_due_to_error; 7793 7794 /* Jump to here if a malloc() fails. 7795 */ 7796 no_mem: 7797 sqlite3OomFault(db); 7798 sqlite3VdbeError(p, "out of memory"); 7799 rc = SQLITE_NOMEM_BKPT; 7800 goto abort_due_to_error; 7801 7802 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7803 ** flag. 7804 */ 7805 abort_due_to_interrupt: 7806 assert( db->u1.isInterrupted ); 7807 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7808 p->rc = rc; 7809 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7810 goto abort_due_to_error; 7811 } 7812