1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 ** 120 ** iSrcLine is the source code line (from the __LINE__ macro) that 121 ** generated the VDBE instruction. This instrumentation assumes that all 122 ** source code is in a single file (the amalgamation). Special values 1 123 ** and 2 for the iSrcLine parameter mean that this particular branch is 124 ** always taken or never taken, respectively. 125 */ 126 #if !defined(SQLITE_VDBE_COVERAGE) 127 # define VdbeBranchTaken(I,M) 128 #else 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 132 M = iSrcLine; 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and 134 ** VdbeCoverageNeverTaken() */ 135 assert( (M & I)==I ); 136 }else{ 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 139 iSrcLine,I,M); 140 } 141 } 142 #endif 143 144 /* 145 ** Convert the given register into a string if it isn't one 146 ** already. Return non-zero if a malloc() fails. 147 */ 148 #define Stringify(P, enc) \ 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 150 { goto no_mem; } 151 152 /* 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 154 ** a pointer to a dynamically allocated string where some other entity 155 ** is responsible for deallocating that string. Because the register 156 ** does not control the string, it might be deleted without the register 157 ** knowing it. 158 ** 159 ** This routine converts an ephemeral string into a dynamically allocated 160 ** string that the register itself controls. In other words, it 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 162 */ 163 #define Deephemeralize(P) \ 164 if( ((P)->flags&MEM_Ephem)!=0 \ 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 166 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 168 #define isSorter(x) ((x)->pSorter!=0) 169 170 /* 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 172 ** if we run out of memory. 173 */ 174 static VdbeCursor *allocateCursor( 175 Vdbe *p, /* The virtual machine */ 176 int iCur, /* Index of the new VdbeCursor */ 177 int nField, /* Number of fields in the table or index */ 178 int iDb, /* Database the cursor belongs to, or -1 */ 179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 180 ){ 181 /* Find the memory cell that will be used to store the blob of memory 182 ** required for this VdbeCursor structure. It is convenient to use a 183 ** vdbe memory cell to manage the memory allocation required for a 184 ** VdbeCursor structure for the following reasons: 185 ** 186 ** * Sometimes cursor numbers are used for a couple of different 187 ** purposes in a vdbe program. The different uses might require 188 ** different sized allocations. Memory cells provide growable 189 ** allocations. 190 ** 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 192 ** be freed lazily via the sqlite3_release_memory() API. This 193 ** minimizes the number of malloc calls made by the system. 194 ** 195 ** Memory cells for cursors are allocated at the top of the address 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 198 */ 199 Mem *pMem = &p->aMem[p->nMem-iCur]; 200 201 int nByte; 202 VdbeCursor *pCx = 0; 203 nByte = 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 205 (isBtreeCursor?sqlite3BtreeCursorSize():0); 206 207 assert( iCur<p->nCursor ); 208 if( p->apCsr[iCur] ){ 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 210 p->apCsr[iCur] = 0; 211 } 212 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 214 memset(pCx, 0, sizeof(VdbeCursor)); 215 pCx->iDb = iDb; 216 pCx->nField = nField; 217 if( isBtreeCursor ){ 218 pCx->pCursor = (BtCursor*) 219 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 220 sqlite3BtreeCursorZero(pCx->pCursor); 221 } 222 } 223 return pCx; 224 } 225 226 /* 227 ** Try to convert a value into a numeric representation if we can 228 ** do so without loss of information. In other words, if the string 229 ** looks like a number, convert it into a number. If it does not 230 ** look like a number, leave it alone. 231 */ 232 static void applyNumericAffinity(Mem *pRec){ 233 double rValue; 234 i64 iValue; 235 u8 enc = pRec->enc; 236 if( (pRec->flags&MEM_Str)==0 ) return; 237 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 238 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 239 pRec->u.i = iValue; 240 pRec->flags |= MEM_Int; 241 }else{ 242 pRec->r = rValue; 243 pRec->flags |= MEM_Real; 244 } 245 } 246 #define ApplyNumericAffinity(X) \ 247 if(((X)->flags&(MEM_Real|MEM_Int))==0){applyNumericAffinity(X);} 248 249 /* 250 ** Processing is determine by the affinity parameter: 251 ** 252 ** SQLITE_AFF_INTEGER: 253 ** SQLITE_AFF_REAL: 254 ** SQLITE_AFF_NUMERIC: 255 ** Try to convert pRec to an integer representation or a 256 ** floating-point representation if an integer representation 257 ** is not possible. Note that the integer representation is 258 ** always preferred, even if the affinity is REAL, because 259 ** an integer representation is more space efficient on disk. 260 ** 261 ** SQLITE_AFF_TEXT: 262 ** Convert pRec to a text representation. 263 ** 264 ** SQLITE_AFF_NONE: 265 ** No-op. pRec is unchanged. 266 */ 267 static void applyAffinity( 268 Mem *pRec, /* The value to apply affinity to */ 269 char affinity, /* The affinity to be applied */ 270 u8 enc /* Use this text encoding */ 271 ){ 272 if( affinity==SQLITE_AFF_TEXT ){ 273 /* Only attempt the conversion to TEXT if there is an integer or real 274 ** representation (blob and NULL do not get converted) but no string 275 ** representation. 276 */ 277 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 278 sqlite3VdbeMemStringify(pRec, enc); 279 } 280 pRec->flags &= ~(MEM_Real|MEM_Int); 281 }else if( affinity!=SQLITE_AFF_NONE ){ 282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 283 || affinity==SQLITE_AFF_NUMERIC ); 284 ApplyNumericAffinity(pRec); 285 if( pRec->flags & MEM_Real ){ 286 sqlite3VdbeIntegerAffinity(pRec); 287 } 288 } 289 } 290 291 /* 292 ** Try to convert the type of a function argument or a result column 293 ** into a numeric representation. Use either INTEGER or REAL whichever 294 ** is appropriate. But only do the conversion if it is possible without 295 ** loss of information and return the revised type of the argument. 296 */ 297 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 298 int eType = sqlite3_value_type(pVal); 299 if( eType==SQLITE_TEXT ){ 300 Mem *pMem = (Mem*)pVal; 301 applyNumericAffinity(pMem); 302 eType = sqlite3_value_type(pVal); 303 } 304 return eType; 305 } 306 307 /* 308 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 309 ** not the internal Mem* type. 310 */ 311 void sqlite3ValueApplyAffinity( 312 sqlite3_value *pVal, 313 u8 affinity, 314 u8 enc 315 ){ 316 applyAffinity((Mem *)pVal, affinity, enc); 317 } 318 319 /* 320 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 321 ** none. 322 ** 323 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 324 ** But it does set pMem->r and pMem->u.i appropriately. 325 */ 326 static u16 numericType(Mem *pMem){ 327 if( pMem->flags & (MEM_Int|MEM_Real) ){ 328 return pMem->flags & (MEM_Int|MEM_Real); 329 } 330 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 331 if( sqlite3AtoF(pMem->z, &pMem->r, pMem->n, pMem->enc)==0 ){ 332 return 0; 333 } 334 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 335 return MEM_Int; 336 } 337 return MEM_Real; 338 } 339 return 0; 340 } 341 342 #ifdef SQLITE_DEBUG 343 /* 344 ** Write a nice string representation of the contents of cell pMem 345 ** into buffer zBuf, length nBuf. 346 */ 347 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 348 char *zCsr = zBuf; 349 int f = pMem->flags; 350 351 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 352 353 if( f&MEM_Blob ){ 354 int i; 355 char c; 356 if( f & MEM_Dyn ){ 357 c = 'z'; 358 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 359 }else if( f & MEM_Static ){ 360 c = 't'; 361 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 362 }else if( f & MEM_Ephem ){ 363 c = 'e'; 364 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 365 }else{ 366 c = 's'; 367 } 368 369 sqlite3_snprintf(100, zCsr, "%c", c); 370 zCsr += sqlite3Strlen30(zCsr); 371 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 372 zCsr += sqlite3Strlen30(zCsr); 373 for(i=0; i<16 && i<pMem->n; i++){ 374 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 375 zCsr += sqlite3Strlen30(zCsr); 376 } 377 for(i=0; i<16 && i<pMem->n; i++){ 378 char z = pMem->z[i]; 379 if( z<32 || z>126 ) *zCsr++ = '.'; 380 else *zCsr++ = z; 381 } 382 383 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 384 zCsr += sqlite3Strlen30(zCsr); 385 if( f & MEM_Zero ){ 386 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 387 zCsr += sqlite3Strlen30(zCsr); 388 } 389 *zCsr = '\0'; 390 }else if( f & MEM_Str ){ 391 int j, k; 392 zBuf[0] = ' '; 393 if( f & MEM_Dyn ){ 394 zBuf[1] = 'z'; 395 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 396 }else if( f & MEM_Static ){ 397 zBuf[1] = 't'; 398 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 399 }else if( f & MEM_Ephem ){ 400 zBuf[1] = 'e'; 401 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 402 }else{ 403 zBuf[1] = 's'; 404 } 405 k = 2; 406 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 407 k += sqlite3Strlen30(&zBuf[k]); 408 zBuf[k++] = '['; 409 for(j=0; j<15 && j<pMem->n; j++){ 410 u8 c = pMem->z[j]; 411 if( c>=0x20 && c<0x7f ){ 412 zBuf[k++] = c; 413 }else{ 414 zBuf[k++] = '.'; 415 } 416 } 417 zBuf[k++] = ']'; 418 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 419 k += sqlite3Strlen30(&zBuf[k]); 420 zBuf[k++] = 0; 421 } 422 } 423 #endif 424 425 #ifdef SQLITE_DEBUG 426 /* 427 ** Print the value of a register for tracing purposes: 428 */ 429 static void memTracePrint(Mem *p){ 430 if( p->flags & MEM_Undefined ){ 431 printf(" undefined"); 432 }else if( p->flags & MEM_Null ){ 433 printf(" NULL"); 434 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 435 printf(" si:%lld", p->u.i); 436 }else if( p->flags & MEM_Int ){ 437 printf(" i:%lld", p->u.i); 438 #ifndef SQLITE_OMIT_FLOATING_POINT 439 }else if( p->flags & MEM_Real ){ 440 printf(" r:%g", p->r); 441 #endif 442 }else if( p->flags & MEM_RowSet ){ 443 printf(" (rowset)"); 444 }else{ 445 char zBuf[200]; 446 sqlite3VdbeMemPrettyPrint(p, zBuf); 447 printf(" %s", zBuf); 448 } 449 } 450 static void registerTrace(int iReg, Mem *p){ 451 printf("REG[%d] = ", iReg); 452 memTracePrint(p); 453 printf("\n"); 454 } 455 #endif 456 457 #ifdef SQLITE_DEBUG 458 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 459 #else 460 # define REGISTER_TRACE(R,M) 461 #endif 462 463 464 #ifdef VDBE_PROFILE 465 466 /* 467 ** hwtime.h contains inline assembler code for implementing 468 ** high-performance timing routines. 469 */ 470 #include "hwtime.h" 471 472 #endif 473 474 #ifndef NDEBUG 475 /* 476 ** This function is only called from within an assert() expression. It 477 ** checks that the sqlite3.nTransaction variable is correctly set to 478 ** the number of non-transaction savepoints currently in the 479 ** linked list starting at sqlite3.pSavepoint. 480 ** 481 ** Usage: 482 ** 483 ** assert( checkSavepointCount(db) ); 484 */ 485 static int checkSavepointCount(sqlite3 *db){ 486 int n = 0; 487 Savepoint *p; 488 for(p=db->pSavepoint; p; p=p->pNext) n++; 489 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 490 return 1; 491 } 492 #endif 493 494 495 /* 496 ** Execute as much of a VDBE program as we can. 497 ** This is the core of sqlite3_step(). 498 */ 499 int sqlite3VdbeExec( 500 Vdbe *p /* The VDBE */ 501 ){ 502 int pc=0; /* The program counter */ 503 Op *aOp = p->aOp; /* Copy of p->aOp */ 504 Op *pOp; /* Current operation */ 505 int rc = SQLITE_OK; /* Value to return */ 506 sqlite3 *db = p->db; /* The database */ 507 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 508 u8 encoding = ENC(db); /* The database encoding */ 509 int iCompare = 0; /* Result of last OP_Compare operation */ 510 unsigned nVmStep = 0; /* Number of virtual machine steps */ 511 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 512 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 513 #endif 514 Mem *aMem = p->aMem; /* Copy of p->aMem */ 515 Mem *pIn1 = 0; /* 1st input operand */ 516 Mem *pIn2 = 0; /* 2nd input operand */ 517 Mem *pIn3 = 0; /* 3rd input operand */ 518 Mem *pOut = 0; /* Output operand */ 519 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 520 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 521 #ifdef VDBE_PROFILE 522 u64 start; /* CPU clock count at start of opcode */ 523 #endif 524 /*** INSERT STACK UNION HERE ***/ 525 526 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 527 sqlite3VdbeEnter(p); 528 if( p->rc==SQLITE_NOMEM ){ 529 /* This happens if a malloc() inside a call to sqlite3_column_text() or 530 ** sqlite3_column_text16() failed. */ 531 goto no_mem; 532 } 533 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 534 assert( p->bIsReader || p->readOnly!=0 ); 535 p->rc = SQLITE_OK; 536 p->iCurrentTime = 0; 537 assert( p->explain==0 ); 538 p->pResultSet = 0; 539 db->busyHandler.nBusy = 0; 540 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 541 sqlite3VdbeIOTraceSql(p); 542 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 543 if( db->xProgress ){ 544 assert( 0 < db->nProgressOps ); 545 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 546 if( nProgressLimit==0 ){ 547 nProgressLimit = db->nProgressOps; 548 }else{ 549 nProgressLimit %= (unsigned)db->nProgressOps; 550 } 551 } 552 #endif 553 #ifdef SQLITE_DEBUG 554 sqlite3BeginBenignMalloc(); 555 if( p->pc==0 556 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 557 ){ 558 int i; 559 int once = 1; 560 sqlite3VdbePrintSql(p); 561 if( p->db->flags & SQLITE_VdbeListing ){ 562 printf("VDBE Program Listing:\n"); 563 for(i=0; i<p->nOp; i++){ 564 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 565 } 566 } 567 if( p->db->flags & SQLITE_VdbeEQP ){ 568 for(i=0; i<p->nOp; i++){ 569 if( aOp[i].opcode==OP_Explain ){ 570 if( once ) printf("VDBE Query Plan:\n"); 571 printf("%s\n", aOp[i].p4.z); 572 once = 0; 573 } 574 } 575 } 576 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 577 } 578 sqlite3EndBenignMalloc(); 579 #endif 580 for(pc=p->pc; rc==SQLITE_OK; pc++){ 581 assert( pc>=0 && pc<p->nOp ); 582 if( db->mallocFailed ) goto no_mem; 583 #ifdef VDBE_PROFILE 584 start = sqlite3Hwtime(); 585 #endif 586 nVmStep++; 587 pOp = &aOp[pc]; 588 589 /* Only allow tracing if SQLITE_DEBUG is defined. 590 */ 591 #ifdef SQLITE_DEBUG 592 if( db->flags & SQLITE_VdbeTrace ){ 593 sqlite3VdbePrintOp(stdout, pc, pOp); 594 } 595 #endif 596 597 598 /* Check to see if we need to simulate an interrupt. This only happens 599 ** if we have a special test build. 600 */ 601 #ifdef SQLITE_TEST 602 if( sqlite3_interrupt_count>0 ){ 603 sqlite3_interrupt_count--; 604 if( sqlite3_interrupt_count==0 ){ 605 sqlite3_interrupt(db); 606 } 607 } 608 #endif 609 610 /* On any opcode with the "out2-prerelease" tag, free any 611 ** external allocations out of mem[p2] and set mem[p2] to be 612 ** an undefined integer. Opcodes will either fill in the integer 613 ** value or convert mem[p2] to a different type. 614 */ 615 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 616 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 617 assert( pOp->p2>0 ); 618 assert( pOp->p2<=(p->nMem-p->nCursor) ); 619 pOut = &aMem[pOp->p2]; 620 memAboutToChange(p, pOut); 621 VdbeMemRelease(pOut); 622 pOut->flags = MEM_Int; 623 } 624 625 /* Sanity checking on other operands */ 626 #ifdef SQLITE_DEBUG 627 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 628 assert( pOp->p1>0 ); 629 assert( pOp->p1<=(p->nMem-p->nCursor) ); 630 assert( memIsValid(&aMem[pOp->p1]) ); 631 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 632 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 633 } 634 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 635 assert( pOp->p2>0 ); 636 assert( pOp->p2<=(p->nMem-p->nCursor) ); 637 assert( memIsValid(&aMem[pOp->p2]) ); 638 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 639 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 640 } 641 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 642 assert( pOp->p3>0 ); 643 assert( pOp->p3<=(p->nMem-p->nCursor) ); 644 assert( memIsValid(&aMem[pOp->p3]) ); 645 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 646 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 647 } 648 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 649 assert( pOp->p2>0 ); 650 assert( pOp->p2<=(p->nMem-p->nCursor) ); 651 memAboutToChange(p, &aMem[pOp->p2]); 652 } 653 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 654 assert( pOp->p3>0 ); 655 assert( pOp->p3<=(p->nMem-p->nCursor) ); 656 memAboutToChange(p, &aMem[pOp->p3]); 657 } 658 #endif 659 660 switch( pOp->opcode ){ 661 662 /***************************************************************************** 663 ** What follows is a massive switch statement where each case implements a 664 ** separate instruction in the virtual machine. If we follow the usual 665 ** indentation conventions, each case should be indented by 6 spaces. But 666 ** that is a lot of wasted space on the left margin. So the code within 667 ** the switch statement will break with convention and be flush-left. Another 668 ** big comment (similar to this one) will mark the point in the code where 669 ** we transition back to normal indentation. 670 ** 671 ** The formatting of each case is important. The makefile for SQLite 672 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 673 ** file looking for lines that begin with "case OP_". The opcodes.h files 674 ** will be filled with #defines that give unique integer values to each 675 ** opcode and the opcodes.c file is filled with an array of strings where 676 ** each string is the symbolic name for the corresponding opcode. If the 677 ** case statement is followed by a comment of the form "/# same as ... #/" 678 ** that comment is used to determine the particular value of the opcode. 679 ** 680 ** Other keywords in the comment that follows each case are used to 681 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 682 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 683 ** the mkopcodeh.awk script for additional information. 684 ** 685 ** Documentation about VDBE opcodes is generated by scanning this file 686 ** for lines of that contain "Opcode:". That line and all subsequent 687 ** comment lines are used in the generation of the opcode.html documentation 688 ** file. 689 ** 690 ** SUMMARY: 691 ** 692 ** Formatting is important to scripts that scan this file. 693 ** Do not deviate from the formatting style currently in use. 694 ** 695 *****************************************************************************/ 696 697 /* Opcode: Goto * P2 * * * 698 ** 699 ** An unconditional jump to address P2. 700 ** The next instruction executed will be 701 ** the one at index P2 from the beginning of 702 ** the program. 703 ** 704 ** The P1 parameter is not actually used by this opcode. However, it 705 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 706 ** that this Goto is the bottom of a loop and that the lines from P2 down 707 ** to the current line should be indented for EXPLAIN output. 708 */ 709 case OP_Goto: { /* jump */ 710 pc = pOp->p2 - 1; 711 712 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 713 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 714 ** completion. Check to see if sqlite3_interrupt() has been called 715 ** or if the progress callback needs to be invoked. 716 ** 717 ** This code uses unstructured "goto" statements and does not look clean. 718 ** But that is not due to sloppy coding habits. The code is written this 719 ** way for performance, to avoid having to run the interrupt and progress 720 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 721 ** faster according to "valgrind --tool=cachegrind" */ 722 check_for_interrupt: 723 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 724 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 725 /* Call the progress callback if it is configured and the required number 726 ** of VDBE ops have been executed (either since this invocation of 727 ** sqlite3VdbeExec() or since last time the progress callback was called). 728 ** If the progress callback returns non-zero, exit the virtual machine with 729 ** a return code SQLITE_ABORT. 730 */ 731 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 732 assert( db->nProgressOps!=0 ); 733 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 734 if( db->xProgress(db->pProgressArg) ){ 735 rc = SQLITE_INTERRUPT; 736 goto vdbe_error_halt; 737 } 738 } 739 #endif 740 741 break; 742 } 743 744 /* Opcode: Gosub P1 P2 * * * 745 ** 746 ** Write the current address onto register P1 747 ** and then jump to address P2. 748 */ 749 case OP_Gosub: { /* jump */ 750 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 751 pIn1 = &aMem[pOp->p1]; 752 assert( VdbeMemDynamic(pIn1)==0 ); 753 memAboutToChange(p, pIn1); 754 pIn1->flags = MEM_Int; 755 pIn1->u.i = pc; 756 REGISTER_TRACE(pOp->p1, pIn1); 757 pc = pOp->p2 - 1; 758 break; 759 } 760 761 /* Opcode: Return P1 * * * * 762 ** 763 ** Jump to the next instruction after the address in register P1. After 764 ** the jump, register P1 becomes undefined. 765 */ 766 case OP_Return: { /* in1 */ 767 pIn1 = &aMem[pOp->p1]; 768 assert( pIn1->flags==MEM_Int ); 769 pc = (int)pIn1->u.i; 770 pIn1->flags = MEM_Undefined; 771 break; 772 } 773 774 /* Opcode: InitCoroutine P1 P2 P3 * * 775 ** 776 ** Set up register P1 so that it will Yield to the coroutine 777 ** located at address P3. 778 ** 779 ** If P2!=0 then the coroutine implementation immediately follows 780 ** this opcode. So jump over the coroutine implementation to 781 ** address P2. 782 ** 783 ** See also: EndCoroutine 784 */ 785 case OP_InitCoroutine: { /* jump */ 786 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 787 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 788 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 789 pOut = &aMem[pOp->p1]; 790 assert( !VdbeMemDynamic(pOut) ); 791 pOut->u.i = pOp->p3 - 1; 792 pOut->flags = MEM_Int; 793 if( pOp->p2 ) pc = pOp->p2 - 1; 794 break; 795 } 796 797 /* Opcode: EndCoroutine P1 * * * * 798 ** 799 ** The instruction at the address in register P1 is a Yield. 800 ** Jump to the P2 parameter of that Yield. 801 ** After the jump, register P1 becomes undefined. 802 ** 803 ** See also: InitCoroutine 804 */ 805 case OP_EndCoroutine: { /* in1 */ 806 VdbeOp *pCaller; 807 pIn1 = &aMem[pOp->p1]; 808 assert( pIn1->flags==MEM_Int ); 809 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 810 pCaller = &aOp[pIn1->u.i]; 811 assert( pCaller->opcode==OP_Yield ); 812 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 813 pc = pCaller->p2 - 1; 814 pIn1->flags = MEM_Undefined; 815 break; 816 } 817 818 /* Opcode: Yield P1 P2 * * * 819 ** 820 ** Swap the program counter with the value in register P1. This 821 ** has the effect of yielding to a coroutine. 822 ** 823 ** If the coroutine that is launched by this instruction ends with 824 ** Yield or Return then continue to the next instruction. But if 825 ** the coroutine launched by this instruction ends with 826 ** EndCoroutine, then jump to P2 rather than continuing with the 827 ** next instruction. 828 ** 829 ** See also: InitCoroutine 830 */ 831 case OP_Yield: { /* in1, jump */ 832 int pcDest; 833 pIn1 = &aMem[pOp->p1]; 834 assert( VdbeMemDynamic(pIn1)==0 ); 835 pIn1->flags = MEM_Int; 836 pcDest = (int)pIn1->u.i; 837 pIn1->u.i = pc; 838 REGISTER_TRACE(pOp->p1, pIn1); 839 pc = pcDest; 840 break; 841 } 842 843 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 844 ** Synopsis: if r[P3]=null halt 845 ** 846 ** Check the value in register P3. If it is NULL then Halt using 847 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 848 ** value in register P3 is not NULL, then this routine is a no-op. 849 ** The P5 parameter should be 1. 850 */ 851 case OP_HaltIfNull: { /* in3 */ 852 pIn3 = &aMem[pOp->p3]; 853 if( (pIn3->flags & MEM_Null)==0 ) break; 854 /* Fall through into OP_Halt */ 855 } 856 857 /* Opcode: Halt P1 P2 * P4 P5 858 ** 859 ** Exit immediately. All open cursors, etc are closed 860 ** automatically. 861 ** 862 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 863 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 864 ** For errors, it can be some other value. If P1!=0 then P2 will determine 865 ** whether or not to rollback the current transaction. Do not rollback 866 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 867 ** then back out all changes that have occurred during this execution of the 868 ** VDBE, but do not rollback the transaction. 869 ** 870 ** If P4 is not null then it is an error message string. 871 ** 872 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 873 ** 874 ** 0: (no change) 875 ** 1: NOT NULL contraint failed: P4 876 ** 2: UNIQUE constraint failed: P4 877 ** 3: CHECK constraint failed: P4 878 ** 4: FOREIGN KEY constraint failed: P4 879 ** 880 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 881 ** omitted. 882 ** 883 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 884 ** every program. So a jump past the last instruction of the program 885 ** is the same as executing Halt. 886 */ 887 case OP_Halt: { 888 const char *zType; 889 const char *zLogFmt; 890 891 if( pOp->p1==SQLITE_OK && p->pFrame ){ 892 /* Halt the sub-program. Return control to the parent frame. */ 893 VdbeFrame *pFrame = p->pFrame; 894 p->pFrame = pFrame->pParent; 895 p->nFrame--; 896 sqlite3VdbeSetChanges(db, p->nChange); 897 pc = sqlite3VdbeFrameRestore(pFrame); 898 lastRowid = db->lastRowid; 899 if( pOp->p2==OE_Ignore ){ 900 /* Instruction pc is the OP_Program that invoked the sub-program 901 ** currently being halted. If the p2 instruction of this OP_Halt 902 ** instruction is set to OE_Ignore, then the sub-program is throwing 903 ** an IGNORE exception. In this case jump to the address specified 904 ** as the p2 of the calling OP_Program. */ 905 pc = p->aOp[pc].p2-1; 906 } 907 aOp = p->aOp; 908 aMem = p->aMem; 909 break; 910 } 911 p->rc = pOp->p1; 912 p->errorAction = (u8)pOp->p2; 913 p->pc = pc; 914 if( p->rc ){ 915 if( pOp->p5 ){ 916 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 917 "FOREIGN KEY" }; 918 assert( pOp->p5>=1 && pOp->p5<=4 ); 919 testcase( pOp->p5==1 ); 920 testcase( pOp->p5==2 ); 921 testcase( pOp->p5==3 ); 922 testcase( pOp->p5==4 ); 923 zType = azType[pOp->p5-1]; 924 }else{ 925 zType = 0; 926 } 927 assert( zType!=0 || pOp->p4.z!=0 ); 928 zLogFmt = "abort at %d in [%s]: %s"; 929 if( zType && pOp->p4.z ){ 930 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 931 zType, pOp->p4.z); 932 }else if( pOp->p4.z ){ 933 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 934 }else{ 935 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 936 } 937 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 938 } 939 rc = sqlite3VdbeHalt(p); 940 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 941 if( rc==SQLITE_BUSY ){ 942 p->rc = rc = SQLITE_BUSY; 943 }else{ 944 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 945 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 946 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 947 } 948 goto vdbe_return; 949 } 950 951 /* Opcode: Integer P1 P2 * * * 952 ** Synopsis: r[P2]=P1 953 ** 954 ** The 32-bit integer value P1 is written into register P2. 955 */ 956 case OP_Integer: { /* out2-prerelease */ 957 pOut->u.i = pOp->p1; 958 break; 959 } 960 961 /* Opcode: Int64 * P2 * P4 * 962 ** Synopsis: r[P2]=P4 963 ** 964 ** P4 is a pointer to a 64-bit integer value. 965 ** Write that value into register P2. 966 */ 967 case OP_Int64: { /* out2-prerelease */ 968 assert( pOp->p4.pI64!=0 ); 969 pOut->u.i = *pOp->p4.pI64; 970 break; 971 } 972 973 #ifndef SQLITE_OMIT_FLOATING_POINT 974 /* Opcode: Real * P2 * P4 * 975 ** Synopsis: r[P2]=P4 976 ** 977 ** P4 is a pointer to a 64-bit floating point value. 978 ** Write that value into register P2. 979 */ 980 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 981 pOut->flags = MEM_Real; 982 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 983 pOut->r = *pOp->p4.pReal; 984 break; 985 } 986 #endif 987 988 /* Opcode: String8 * P2 * P4 * 989 ** Synopsis: r[P2]='P4' 990 ** 991 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 992 ** into a String before it is executed for the first time. During 993 ** this transformation, the length of string P4 is computed and stored 994 ** as the P1 parameter. 995 */ 996 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 997 assert( pOp->p4.z!=0 ); 998 pOp->opcode = OP_String; 999 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1000 1001 #ifndef SQLITE_OMIT_UTF16 1002 if( encoding!=SQLITE_UTF8 ){ 1003 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1004 if( rc==SQLITE_TOOBIG ) goto too_big; 1005 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1006 assert( pOut->zMalloc==pOut->z ); 1007 assert( VdbeMemDynamic(pOut)==0 ); 1008 pOut->zMalloc = 0; 1009 pOut->flags |= MEM_Static; 1010 if( pOp->p4type==P4_DYNAMIC ){ 1011 sqlite3DbFree(db, pOp->p4.z); 1012 } 1013 pOp->p4type = P4_DYNAMIC; 1014 pOp->p4.z = pOut->z; 1015 pOp->p1 = pOut->n; 1016 } 1017 #endif 1018 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1019 goto too_big; 1020 } 1021 /* Fall through to the next case, OP_String */ 1022 } 1023 1024 /* Opcode: String P1 P2 * P4 * 1025 ** Synopsis: r[P2]='P4' (len=P1) 1026 ** 1027 ** The string value P4 of length P1 (bytes) is stored in register P2. 1028 */ 1029 case OP_String: { /* out2-prerelease */ 1030 assert( pOp->p4.z!=0 ); 1031 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1032 pOut->z = pOp->p4.z; 1033 pOut->n = pOp->p1; 1034 pOut->enc = encoding; 1035 UPDATE_MAX_BLOBSIZE(pOut); 1036 break; 1037 } 1038 1039 /* Opcode: Null P1 P2 P3 * * 1040 ** Synopsis: r[P2..P3]=NULL 1041 ** 1042 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1043 ** NULL into register P3 and every register in between P2 and P3. If P3 1044 ** is less than P2 (typically P3 is zero) then only register P2 is 1045 ** set to NULL. 1046 ** 1047 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1048 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1049 ** OP_Ne or OP_Eq. 1050 */ 1051 case OP_Null: { /* out2-prerelease */ 1052 int cnt; 1053 u16 nullFlag; 1054 cnt = pOp->p3-pOp->p2; 1055 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1056 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1057 while( cnt>0 ){ 1058 pOut++; 1059 memAboutToChange(p, pOut); 1060 VdbeMemRelease(pOut); 1061 pOut->flags = nullFlag; 1062 cnt--; 1063 } 1064 break; 1065 } 1066 1067 /* Opcode: SoftNull P1 * * * * 1068 ** Synopsis: r[P1]=NULL 1069 ** 1070 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1071 ** instruction, but do not free any string or blob memory associated with 1072 ** the register, so that if the value was a string or blob that was 1073 ** previously copied using OP_SCopy, the copies will continue to be valid. 1074 */ 1075 case OP_SoftNull: { 1076 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1077 pOut = &aMem[pOp->p1]; 1078 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1079 break; 1080 } 1081 1082 /* Opcode: Blob P1 P2 * P4 * 1083 ** Synopsis: r[P2]=P4 (len=P1) 1084 ** 1085 ** P4 points to a blob of data P1 bytes long. Store this 1086 ** blob in register P2. 1087 */ 1088 case OP_Blob: { /* out2-prerelease */ 1089 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1090 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1091 pOut->enc = encoding; 1092 UPDATE_MAX_BLOBSIZE(pOut); 1093 break; 1094 } 1095 1096 /* Opcode: Variable P1 P2 * P4 * 1097 ** Synopsis: r[P2]=parameter(P1,P4) 1098 ** 1099 ** Transfer the values of bound parameter P1 into register P2 1100 ** 1101 ** If the parameter is named, then its name appears in P4. 1102 ** The P4 value is used by sqlite3_bind_parameter_name(). 1103 */ 1104 case OP_Variable: { /* out2-prerelease */ 1105 Mem *pVar; /* Value being transferred */ 1106 1107 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1108 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1109 pVar = &p->aVar[pOp->p1 - 1]; 1110 if( sqlite3VdbeMemTooBig(pVar) ){ 1111 goto too_big; 1112 } 1113 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1114 UPDATE_MAX_BLOBSIZE(pOut); 1115 break; 1116 } 1117 1118 /* Opcode: Move P1 P2 P3 * * 1119 ** Synopsis: r[P2@P3]=r[P1@P3] 1120 ** 1121 ** Move the P3 values in register P1..P1+P3-1 over into 1122 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1123 ** left holding a NULL. It is an error for register ranges 1124 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1125 ** for P3 to be less than 1. 1126 */ 1127 case OP_Move: { 1128 char *zMalloc; /* Holding variable for allocated memory */ 1129 int n; /* Number of registers left to copy */ 1130 int p1; /* Register to copy from */ 1131 int p2; /* Register to copy to */ 1132 1133 n = pOp->p3; 1134 p1 = pOp->p1; 1135 p2 = pOp->p2; 1136 assert( n>0 && p1>0 && p2>0 ); 1137 assert( p1+n<=p2 || p2+n<=p1 ); 1138 1139 pIn1 = &aMem[p1]; 1140 pOut = &aMem[p2]; 1141 do{ 1142 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1143 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1144 assert( memIsValid(pIn1) ); 1145 memAboutToChange(p, pOut); 1146 VdbeMemRelease(pOut); 1147 zMalloc = pOut->zMalloc; 1148 memcpy(pOut, pIn1, sizeof(Mem)); 1149 #ifdef SQLITE_DEBUG 1150 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1151 pOut->pScopyFrom += p1 - pOp->p2; 1152 } 1153 #endif 1154 pIn1->flags = MEM_Undefined; 1155 pIn1->xDel = 0; 1156 pIn1->zMalloc = zMalloc; 1157 REGISTER_TRACE(p2++, pOut); 1158 pIn1++; 1159 pOut++; 1160 }while( --n ); 1161 break; 1162 } 1163 1164 /* Opcode: Copy P1 P2 P3 * * 1165 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1166 ** 1167 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1168 ** 1169 ** This instruction makes a deep copy of the value. A duplicate 1170 ** is made of any string or blob constant. See also OP_SCopy. 1171 */ 1172 case OP_Copy: { 1173 int n; 1174 1175 n = pOp->p3; 1176 pIn1 = &aMem[pOp->p1]; 1177 pOut = &aMem[pOp->p2]; 1178 assert( pOut!=pIn1 ); 1179 while( 1 ){ 1180 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1181 Deephemeralize(pOut); 1182 #ifdef SQLITE_DEBUG 1183 pOut->pScopyFrom = 0; 1184 #endif 1185 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1186 if( (n--)==0 ) break; 1187 pOut++; 1188 pIn1++; 1189 } 1190 break; 1191 } 1192 1193 /* Opcode: SCopy P1 P2 * * * 1194 ** Synopsis: r[P2]=r[P1] 1195 ** 1196 ** Make a shallow copy of register P1 into register P2. 1197 ** 1198 ** This instruction makes a shallow copy of the value. If the value 1199 ** is a string or blob, then the copy is only a pointer to the 1200 ** original and hence if the original changes so will the copy. 1201 ** Worse, if the original is deallocated, the copy becomes invalid. 1202 ** Thus the program must guarantee that the original will not change 1203 ** during the lifetime of the copy. Use OP_Copy to make a complete 1204 ** copy. 1205 */ 1206 case OP_SCopy: { /* out2 */ 1207 pIn1 = &aMem[pOp->p1]; 1208 pOut = &aMem[pOp->p2]; 1209 assert( pOut!=pIn1 ); 1210 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1211 #ifdef SQLITE_DEBUG 1212 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1213 #endif 1214 break; 1215 } 1216 1217 /* Opcode: ResultRow P1 P2 * * * 1218 ** Synopsis: output=r[P1@P2] 1219 ** 1220 ** The registers P1 through P1+P2-1 contain a single row of 1221 ** results. This opcode causes the sqlite3_step() call to terminate 1222 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1223 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1224 ** the result row. 1225 */ 1226 case OP_ResultRow: { 1227 Mem *pMem; 1228 int i; 1229 assert( p->nResColumn==pOp->p2 ); 1230 assert( pOp->p1>0 ); 1231 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1232 1233 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1234 /* Run the progress counter just before returning. 1235 */ 1236 if( db->xProgress!=0 1237 && nVmStep>=nProgressLimit 1238 && db->xProgress(db->pProgressArg)!=0 1239 ){ 1240 rc = SQLITE_INTERRUPT; 1241 goto vdbe_error_halt; 1242 } 1243 #endif 1244 1245 /* If this statement has violated immediate foreign key constraints, do 1246 ** not return the number of rows modified. And do not RELEASE the statement 1247 ** transaction. It needs to be rolled back. */ 1248 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1249 assert( db->flags&SQLITE_CountRows ); 1250 assert( p->usesStmtJournal ); 1251 break; 1252 } 1253 1254 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1255 ** DML statements invoke this opcode to return the number of rows 1256 ** modified to the user. This is the only way that a VM that 1257 ** opens a statement transaction may invoke this opcode. 1258 ** 1259 ** In case this is such a statement, close any statement transaction 1260 ** opened by this VM before returning control to the user. This is to 1261 ** ensure that statement-transactions are always nested, not overlapping. 1262 ** If the open statement-transaction is not closed here, then the user 1263 ** may step another VM that opens its own statement transaction. This 1264 ** may lead to overlapping statement transactions. 1265 ** 1266 ** The statement transaction is never a top-level transaction. Hence 1267 ** the RELEASE call below can never fail. 1268 */ 1269 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1270 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1271 if( NEVER(rc!=SQLITE_OK) ){ 1272 break; 1273 } 1274 1275 /* Invalidate all ephemeral cursor row caches */ 1276 p->cacheCtr = (p->cacheCtr + 2)|1; 1277 1278 /* Make sure the results of the current row are \000 terminated 1279 ** and have an assigned type. The results are de-ephemeralized as 1280 ** a side effect. 1281 */ 1282 pMem = p->pResultSet = &aMem[pOp->p1]; 1283 for(i=0; i<pOp->p2; i++){ 1284 assert( memIsValid(&pMem[i]) ); 1285 Deephemeralize(&pMem[i]); 1286 assert( (pMem[i].flags & MEM_Ephem)==0 1287 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1288 sqlite3VdbeMemNulTerminate(&pMem[i]); 1289 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1290 } 1291 if( db->mallocFailed ) goto no_mem; 1292 1293 /* Return SQLITE_ROW 1294 */ 1295 p->pc = pc + 1; 1296 rc = SQLITE_ROW; 1297 goto vdbe_return; 1298 } 1299 1300 /* Opcode: Concat P1 P2 P3 * * 1301 ** Synopsis: r[P3]=r[P2]+r[P1] 1302 ** 1303 ** Add the text in register P1 onto the end of the text in 1304 ** register P2 and store the result in register P3. 1305 ** If either the P1 or P2 text are NULL then store NULL in P3. 1306 ** 1307 ** P3 = P2 || P1 1308 ** 1309 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1310 ** if P3 is the same register as P2, the implementation is able 1311 ** to avoid a memcpy(). 1312 */ 1313 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1314 i64 nByte; 1315 1316 pIn1 = &aMem[pOp->p1]; 1317 pIn2 = &aMem[pOp->p2]; 1318 pOut = &aMem[pOp->p3]; 1319 assert( pIn1!=pOut ); 1320 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1321 sqlite3VdbeMemSetNull(pOut); 1322 break; 1323 } 1324 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1325 Stringify(pIn1, encoding); 1326 Stringify(pIn2, encoding); 1327 nByte = pIn1->n + pIn2->n; 1328 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1329 goto too_big; 1330 } 1331 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1332 goto no_mem; 1333 } 1334 MemSetTypeFlag(pOut, MEM_Str); 1335 if( pOut!=pIn2 ){ 1336 memcpy(pOut->z, pIn2->z, pIn2->n); 1337 } 1338 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1339 pOut->z[nByte]=0; 1340 pOut->z[nByte+1] = 0; 1341 pOut->flags |= MEM_Term; 1342 pOut->n = (int)nByte; 1343 pOut->enc = encoding; 1344 UPDATE_MAX_BLOBSIZE(pOut); 1345 break; 1346 } 1347 1348 /* Opcode: Add P1 P2 P3 * * 1349 ** Synopsis: r[P3]=r[P1]+r[P2] 1350 ** 1351 ** Add the value in register P1 to the value in register P2 1352 ** and store the result in register P3. 1353 ** If either input is NULL, the result is NULL. 1354 */ 1355 /* Opcode: Multiply P1 P2 P3 * * 1356 ** Synopsis: r[P3]=r[P1]*r[P2] 1357 ** 1358 ** 1359 ** Multiply the value in register P1 by the value in register P2 1360 ** and store the result in register P3. 1361 ** If either input is NULL, the result is NULL. 1362 */ 1363 /* Opcode: Subtract P1 P2 P3 * * 1364 ** Synopsis: r[P3]=r[P2]-r[P1] 1365 ** 1366 ** Subtract the value in register P1 from the value in register P2 1367 ** and store the result in register P3. 1368 ** If either input is NULL, the result is NULL. 1369 */ 1370 /* Opcode: Divide P1 P2 P3 * * 1371 ** Synopsis: r[P3]=r[P2]/r[P1] 1372 ** 1373 ** Divide the value in register P1 by the value in register P2 1374 ** and store the result in register P3 (P3=P2/P1). If the value in 1375 ** register P1 is zero, then the result is NULL. If either input is 1376 ** NULL, the result is NULL. 1377 */ 1378 /* Opcode: Remainder P1 P2 P3 * * 1379 ** Synopsis: r[P3]=r[P2]%r[P1] 1380 ** 1381 ** Compute the remainder after integer register P2 is divided by 1382 ** register P1 and store the result in register P3. 1383 ** If the value in register P1 is zero the result is NULL. 1384 ** If either operand is NULL, the result is NULL. 1385 */ 1386 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1387 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1388 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1389 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1390 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1391 char bIntint; /* Started out as two integer operands */ 1392 u16 flags; /* Combined MEM_* flags from both inputs */ 1393 u16 type1; /* Numeric type of left operand */ 1394 u16 type2; /* Numeric type of right operand */ 1395 i64 iA; /* Integer value of left operand */ 1396 i64 iB; /* Integer value of right operand */ 1397 double rA; /* Real value of left operand */ 1398 double rB; /* Real value of right operand */ 1399 1400 pIn1 = &aMem[pOp->p1]; 1401 type1 = numericType(pIn1); 1402 pIn2 = &aMem[pOp->p2]; 1403 type2 = numericType(pIn2); 1404 pOut = &aMem[pOp->p3]; 1405 flags = pIn1->flags | pIn2->flags; 1406 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1407 if( (type1 & type2 & MEM_Int)!=0 ){ 1408 iA = pIn1->u.i; 1409 iB = pIn2->u.i; 1410 bIntint = 1; 1411 switch( pOp->opcode ){ 1412 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1413 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1414 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1415 case OP_Divide: { 1416 if( iA==0 ) goto arithmetic_result_is_null; 1417 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1418 iB /= iA; 1419 break; 1420 } 1421 default: { 1422 if( iA==0 ) goto arithmetic_result_is_null; 1423 if( iA==-1 ) iA = 1; 1424 iB %= iA; 1425 break; 1426 } 1427 } 1428 pOut->u.i = iB; 1429 MemSetTypeFlag(pOut, MEM_Int); 1430 }else{ 1431 bIntint = 0; 1432 fp_math: 1433 rA = sqlite3VdbeRealValue(pIn1); 1434 rB = sqlite3VdbeRealValue(pIn2); 1435 switch( pOp->opcode ){ 1436 case OP_Add: rB += rA; break; 1437 case OP_Subtract: rB -= rA; break; 1438 case OP_Multiply: rB *= rA; break; 1439 case OP_Divide: { 1440 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1441 if( rA==(double)0 ) goto arithmetic_result_is_null; 1442 rB /= rA; 1443 break; 1444 } 1445 default: { 1446 iA = (i64)rA; 1447 iB = (i64)rB; 1448 if( iA==0 ) goto arithmetic_result_is_null; 1449 if( iA==-1 ) iA = 1; 1450 rB = (double)(iB % iA); 1451 break; 1452 } 1453 } 1454 #ifdef SQLITE_OMIT_FLOATING_POINT 1455 pOut->u.i = rB; 1456 MemSetTypeFlag(pOut, MEM_Int); 1457 #else 1458 if( sqlite3IsNaN(rB) ){ 1459 goto arithmetic_result_is_null; 1460 } 1461 pOut->r = rB; 1462 MemSetTypeFlag(pOut, MEM_Real); 1463 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1464 sqlite3VdbeIntegerAffinity(pOut); 1465 } 1466 #endif 1467 } 1468 break; 1469 1470 arithmetic_result_is_null: 1471 sqlite3VdbeMemSetNull(pOut); 1472 break; 1473 } 1474 1475 /* Opcode: CollSeq P1 * * P4 1476 ** 1477 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1478 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1479 ** be returned. This is used by the built-in min(), max() and nullif() 1480 ** functions. 1481 ** 1482 ** If P1 is not zero, then it is a register that a subsequent min() or 1483 ** max() aggregate will set to 1 if the current row is not the minimum or 1484 ** maximum. The P1 register is initialized to 0 by this instruction. 1485 ** 1486 ** The interface used by the implementation of the aforementioned functions 1487 ** to retrieve the collation sequence set by this opcode is not available 1488 ** publicly, only to user functions defined in func.c. 1489 */ 1490 case OP_CollSeq: { 1491 assert( pOp->p4type==P4_COLLSEQ ); 1492 if( pOp->p1 ){ 1493 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1494 } 1495 break; 1496 } 1497 1498 /* Opcode: Function P1 P2 P3 P4 P5 1499 ** Synopsis: r[P3]=func(r[P2@P5]) 1500 ** 1501 ** Invoke a user function (P4 is a pointer to a Function structure that 1502 ** defines the function) with P5 arguments taken from register P2 and 1503 ** successors. The result of the function is stored in register P3. 1504 ** Register P3 must not be one of the function inputs. 1505 ** 1506 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1507 ** function was determined to be constant at compile time. If the first 1508 ** argument was constant then bit 0 of P1 is set. This is used to determine 1509 ** whether meta data associated with a user function argument using the 1510 ** sqlite3_set_auxdata() API may be safely retained until the next 1511 ** invocation of this opcode. 1512 ** 1513 ** See also: AggStep and AggFinal 1514 */ 1515 case OP_Function: { 1516 int i; 1517 Mem *pArg; 1518 sqlite3_context ctx; 1519 sqlite3_value **apVal; 1520 int n; 1521 1522 n = pOp->p5; 1523 apVal = p->apArg; 1524 assert( apVal || n==0 ); 1525 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1526 pOut = &aMem[pOp->p3]; 1527 memAboutToChange(p, pOut); 1528 1529 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1530 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1531 pArg = &aMem[pOp->p2]; 1532 for(i=0; i<n; i++, pArg++){ 1533 assert( memIsValid(pArg) ); 1534 apVal[i] = pArg; 1535 Deephemeralize(pArg); 1536 REGISTER_TRACE(pOp->p2+i, pArg); 1537 } 1538 1539 assert( pOp->p4type==P4_FUNCDEF ); 1540 ctx.pFunc = pOp->p4.pFunc; 1541 ctx.iOp = pc; 1542 ctx.pVdbe = p; 1543 1544 /* The output cell may already have a buffer allocated. Move 1545 ** the pointer to ctx.s so in case the user-function can use 1546 ** the already allocated buffer instead of allocating a new one. 1547 */ 1548 memcpy(&ctx.s, pOut, sizeof(Mem)); 1549 pOut->flags = MEM_Null; 1550 pOut->xDel = 0; 1551 pOut->zMalloc = 0; 1552 MemSetTypeFlag(&ctx.s, MEM_Null); 1553 1554 ctx.fErrorOrAux = 0; 1555 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1556 assert( pOp>aOp ); 1557 assert( pOp[-1].p4type==P4_COLLSEQ ); 1558 assert( pOp[-1].opcode==OP_CollSeq ); 1559 ctx.pColl = pOp[-1].p4.pColl; 1560 } 1561 db->lastRowid = lastRowid; 1562 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1563 lastRowid = db->lastRowid; 1564 1565 if( db->mallocFailed ){ 1566 /* Even though a malloc() has failed, the implementation of the 1567 ** user function may have called an sqlite3_result_XXX() function 1568 ** to return a value. The following call releases any resources 1569 ** associated with such a value. 1570 */ 1571 sqlite3VdbeMemRelease(&ctx.s); 1572 goto no_mem; 1573 } 1574 1575 /* If the function returned an error, throw an exception */ 1576 if( ctx.fErrorOrAux ){ 1577 if( ctx.isError ){ 1578 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1579 rc = ctx.isError; 1580 } 1581 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1582 } 1583 1584 /* Copy the result of the function into register P3 */ 1585 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1586 assert( pOut->flags==MEM_Null ); 1587 memcpy(pOut, &ctx.s, sizeof(Mem)); 1588 if( sqlite3VdbeMemTooBig(pOut) ){ 1589 goto too_big; 1590 } 1591 1592 #if 0 1593 /* The app-defined function has done something that as caused this 1594 ** statement to expire. (Perhaps the function called sqlite3_exec() 1595 ** with a CREATE TABLE statement.) 1596 */ 1597 if( p->expired ) rc = SQLITE_ABORT; 1598 #endif 1599 1600 REGISTER_TRACE(pOp->p3, pOut); 1601 UPDATE_MAX_BLOBSIZE(pOut); 1602 break; 1603 } 1604 1605 /* Opcode: BitAnd P1 P2 P3 * * 1606 ** Synopsis: r[P3]=r[P1]&r[P2] 1607 ** 1608 ** Take the bit-wise AND of the values in register P1 and P2 and 1609 ** store the result in register P3. 1610 ** If either input is NULL, the result is NULL. 1611 */ 1612 /* Opcode: BitOr P1 P2 P3 * * 1613 ** Synopsis: r[P3]=r[P1]|r[P2] 1614 ** 1615 ** Take the bit-wise OR of the values in register P1 and P2 and 1616 ** store the result in register P3. 1617 ** If either input is NULL, the result is NULL. 1618 */ 1619 /* Opcode: ShiftLeft P1 P2 P3 * * 1620 ** Synopsis: r[P3]=r[P2]<<r[P1] 1621 ** 1622 ** Shift the integer value in register P2 to the left by the 1623 ** number of bits specified by the integer in register P1. 1624 ** Store the result in register P3. 1625 ** If either input is NULL, the result is NULL. 1626 */ 1627 /* Opcode: ShiftRight P1 P2 P3 * * 1628 ** Synopsis: r[P3]=r[P2]>>r[P1] 1629 ** 1630 ** Shift the integer value in register P2 to the right by the 1631 ** number of bits specified by the integer in register P1. 1632 ** Store the result in register P3. 1633 ** If either input is NULL, the result is NULL. 1634 */ 1635 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1636 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1637 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1638 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1639 i64 iA; 1640 u64 uA; 1641 i64 iB; 1642 u8 op; 1643 1644 pIn1 = &aMem[pOp->p1]; 1645 pIn2 = &aMem[pOp->p2]; 1646 pOut = &aMem[pOp->p3]; 1647 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1648 sqlite3VdbeMemSetNull(pOut); 1649 break; 1650 } 1651 iA = sqlite3VdbeIntValue(pIn2); 1652 iB = sqlite3VdbeIntValue(pIn1); 1653 op = pOp->opcode; 1654 if( op==OP_BitAnd ){ 1655 iA &= iB; 1656 }else if( op==OP_BitOr ){ 1657 iA |= iB; 1658 }else if( iB!=0 ){ 1659 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1660 1661 /* If shifting by a negative amount, shift in the other direction */ 1662 if( iB<0 ){ 1663 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1664 op = 2*OP_ShiftLeft + 1 - op; 1665 iB = iB>(-64) ? -iB : 64; 1666 } 1667 1668 if( iB>=64 ){ 1669 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1670 }else{ 1671 memcpy(&uA, &iA, sizeof(uA)); 1672 if( op==OP_ShiftLeft ){ 1673 uA <<= iB; 1674 }else{ 1675 uA >>= iB; 1676 /* Sign-extend on a right shift of a negative number */ 1677 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1678 } 1679 memcpy(&iA, &uA, sizeof(iA)); 1680 } 1681 } 1682 pOut->u.i = iA; 1683 MemSetTypeFlag(pOut, MEM_Int); 1684 break; 1685 } 1686 1687 /* Opcode: AddImm P1 P2 * * * 1688 ** Synopsis: r[P1]=r[P1]+P2 1689 ** 1690 ** Add the constant P2 to the value in register P1. 1691 ** The result is always an integer. 1692 ** 1693 ** To force any register to be an integer, just add 0. 1694 */ 1695 case OP_AddImm: { /* in1 */ 1696 pIn1 = &aMem[pOp->p1]; 1697 memAboutToChange(p, pIn1); 1698 sqlite3VdbeMemIntegerify(pIn1); 1699 pIn1->u.i += pOp->p2; 1700 break; 1701 } 1702 1703 /* Opcode: MustBeInt P1 P2 * * * 1704 ** 1705 ** Force the value in register P1 to be an integer. If the value 1706 ** in P1 is not an integer and cannot be converted into an integer 1707 ** without data loss, then jump immediately to P2, or if P2==0 1708 ** raise an SQLITE_MISMATCH exception. 1709 */ 1710 case OP_MustBeInt: { /* jump, in1 */ 1711 pIn1 = &aMem[pOp->p1]; 1712 if( (pIn1->flags & MEM_Int)==0 ){ 1713 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1714 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1715 if( (pIn1->flags & MEM_Int)==0 ){ 1716 if( pOp->p2==0 ){ 1717 rc = SQLITE_MISMATCH; 1718 goto abort_due_to_error; 1719 }else{ 1720 pc = pOp->p2 - 1; 1721 break; 1722 } 1723 } 1724 } 1725 MemSetTypeFlag(pIn1, MEM_Int); 1726 break; 1727 } 1728 1729 #ifndef SQLITE_OMIT_FLOATING_POINT 1730 /* Opcode: RealAffinity P1 * * * * 1731 ** 1732 ** If register P1 holds an integer convert it to a real value. 1733 ** 1734 ** This opcode is used when extracting information from a column that 1735 ** has REAL affinity. Such column values may still be stored as 1736 ** integers, for space efficiency, but after extraction we want them 1737 ** to have only a real value. 1738 */ 1739 case OP_RealAffinity: { /* in1 */ 1740 pIn1 = &aMem[pOp->p1]; 1741 if( pIn1->flags & MEM_Int ){ 1742 sqlite3VdbeMemRealify(pIn1); 1743 } 1744 break; 1745 } 1746 #endif 1747 1748 #ifndef SQLITE_OMIT_CAST 1749 /* Opcode: ToText P1 * * * * 1750 ** 1751 ** Force the value in register P1 to be text. 1752 ** If the value is numeric, convert it to a string using the 1753 ** equivalent of sprintf(). Blob values are unchanged and 1754 ** are afterwards simply interpreted as text. 1755 ** 1756 ** A NULL value is not changed by this routine. It remains NULL. 1757 */ 1758 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1759 pIn1 = &aMem[pOp->p1]; 1760 memAboutToChange(p, pIn1); 1761 if( pIn1->flags & MEM_Null ) break; 1762 assert( MEM_Str==(MEM_Blob>>3) ); 1763 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1764 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1765 rc = ExpandBlob(pIn1); 1766 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1767 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1768 UPDATE_MAX_BLOBSIZE(pIn1); 1769 break; 1770 } 1771 1772 /* Opcode: ToBlob P1 * * * * 1773 ** 1774 ** Force the value in register P1 to be a BLOB. 1775 ** If the value is numeric, convert it to a string first. 1776 ** Strings are simply reinterpreted as blobs with no change 1777 ** to the underlying data. 1778 ** 1779 ** A NULL value is not changed by this routine. It remains NULL. 1780 */ 1781 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1782 pIn1 = &aMem[pOp->p1]; 1783 if( pIn1->flags & MEM_Null ) break; 1784 if( (pIn1->flags & MEM_Blob)==0 ){ 1785 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1786 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1787 MemSetTypeFlag(pIn1, MEM_Blob); 1788 }else{ 1789 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1790 } 1791 UPDATE_MAX_BLOBSIZE(pIn1); 1792 break; 1793 } 1794 1795 /* Opcode: ToNumeric P1 * * * * 1796 ** 1797 ** Force the value in register P1 to be numeric (either an 1798 ** integer or a floating-point number.) 1799 ** If the value is text or blob, try to convert it to an using the 1800 ** equivalent of atoi() or atof() and store 0 if no such conversion 1801 ** is possible. 1802 ** 1803 ** A NULL value is not changed by this routine. It remains NULL. 1804 */ 1805 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1806 pIn1 = &aMem[pOp->p1]; 1807 sqlite3VdbeMemNumerify(pIn1); 1808 break; 1809 } 1810 #endif /* SQLITE_OMIT_CAST */ 1811 1812 /* Opcode: ToInt P1 * * * * 1813 ** 1814 ** Force the value in register P1 to be an integer. If 1815 ** The value is currently a real number, drop its fractional part. 1816 ** If the value is text or blob, try to convert it to an integer using the 1817 ** equivalent of atoi() and store 0 if no such conversion is possible. 1818 ** 1819 ** A NULL value is not changed by this routine. It remains NULL. 1820 */ 1821 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1822 pIn1 = &aMem[pOp->p1]; 1823 if( (pIn1->flags & MEM_Null)==0 ){ 1824 sqlite3VdbeMemIntegerify(pIn1); 1825 } 1826 break; 1827 } 1828 1829 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1830 /* Opcode: ToReal P1 * * * * 1831 ** 1832 ** Force the value in register P1 to be a floating point number. 1833 ** If The value is currently an integer, convert it. 1834 ** If the value is text or blob, try to convert it to an integer using the 1835 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1836 ** 1837 ** A NULL value is not changed by this routine. It remains NULL. 1838 */ 1839 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1840 pIn1 = &aMem[pOp->p1]; 1841 memAboutToChange(p, pIn1); 1842 if( (pIn1->flags & MEM_Null)==0 ){ 1843 sqlite3VdbeMemRealify(pIn1); 1844 } 1845 break; 1846 } 1847 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1848 1849 /* Opcode: Lt P1 P2 P3 P4 P5 1850 ** Synopsis: if r[P1]<r[P3] goto P2 1851 ** 1852 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1853 ** jump to address P2. 1854 ** 1855 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1856 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1857 ** bit is clear then fall through if either operand is NULL. 1858 ** 1859 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1860 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1861 ** to coerce both inputs according to this affinity before the 1862 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1863 ** affinity is used. Note that the affinity conversions are stored 1864 ** back into the input registers P1 and P3. So this opcode can cause 1865 ** persistent changes to registers P1 and P3. 1866 ** 1867 ** Once any conversions have taken place, and neither value is NULL, 1868 ** the values are compared. If both values are blobs then memcmp() is 1869 ** used to determine the results of the comparison. If both values 1870 ** are text, then the appropriate collating function specified in 1871 ** P4 is used to do the comparison. If P4 is not specified then 1872 ** memcmp() is used to compare text string. If both values are 1873 ** numeric, then a numeric comparison is used. If the two values 1874 ** are of different types, then numbers are considered less than 1875 ** strings and strings are considered less than blobs. 1876 ** 1877 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1878 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1879 ** 1880 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1881 ** equal to one another, provided that they do not have their MEM_Cleared 1882 ** bit set. 1883 */ 1884 /* Opcode: Ne P1 P2 P3 P4 P5 1885 ** Synopsis: if r[P1]!=r[P3] goto P2 1886 ** 1887 ** This works just like the Lt opcode except that the jump is taken if 1888 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1889 ** additional information. 1890 ** 1891 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1892 ** true or false and is never NULL. If both operands are NULL then the result 1893 ** of comparison is false. If either operand is NULL then the result is true. 1894 ** If neither operand is NULL the result is the same as it would be if 1895 ** the SQLITE_NULLEQ flag were omitted from P5. 1896 */ 1897 /* Opcode: Eq P1 P2 P3 P4 P5 1898 ** Synopsis: if r[P1]==r[P3] goto P2 1899 ** 1900 ** This works just like the Lt opcode except that the jump is taken if 1901 ** the operands in registers P1 and P3 are equal. 1902 ** See the Lt opcode for additional information. 1903 ** 1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1905 ** true or false and is never NULL. If both operands are NULL then the result 1906 ** of comparison is true. If either operand is NULL then the result is false. 1907 ** If neither operand is NULL the result is the same as it would be if 1908 ** the SQLITE_NULLEQ flag were omitted from P5. 1909 */ 1910 /* Opcode: Le P1 P2 P3 P4 P5 1911 ** Synopsis: if r[P1]<=r[P3] goto P2 1912 ** 1913 ** This works just like the Lt opcode except that the jump is taken if 1914 ** the content of register P3 is less than or equal to the content of 1915 ** register P1. See the Lt opcode for additional information. 1916 */ 1917 /* Opcode: Gt P1 P2 P3 P4 P5 1918 ** Synopsis: if r[P1]>r[P3] goto P2 1919 ** 1920 ** This works just like the Lt opcode except that the jump is taken if 1921 ** the content of register P3 is greater than the content of 1922 ** register P1. See the Lt opcode for additional information. 1923 */ 1924 /* Opcode: Ge P1 P2 P3 P4 P5 1925 ** Synopsis: if r[P1]>=r[P3] goto P2 1926 ** 1927 ** This works just like the Lt opcode except that the jump is taken if 1928 ** the content of register P3 is greater than or equal to the content of 1929 ** register P1. See the Lt opcode for additional information. 1930 */ 1931 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1932 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1933 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1934 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1935 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1936 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1937 int res; /* Result of the comparison of pIn1 against pIn3 */ 1938 char affinity; /* Affinity to use for comparison */ 1939 u16 flags1; /* Copy of initial value of pIn1->flags */ 1940 u16 flags3; /* Copy of initial value of pIn3->flags */ 1941 1942 pIn1 = &aMem[pOp->p1]; 1943 pIn3 = &aMem[pOp->p3]; 1944 flags1 = pIn1->flags; 1945 flags3 = pIn3->flags; 1946 if( (flags1 | flags3)&MEM_Null ){ 1947 /* One or both operands are NULL */ 1948 if( pOp->p5 & SQLITE_NULLEQ ){ 1949 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1950 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1951 ** or not both operands are null. 1952 */ 1953 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1954 assert( (flags1 & MEM_Cleared)==0 ); 1955 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1956 if( (flags1&MEM_Null)!=0 1957 && (flags3&MEM_Null)!=0 1958 && (flags3&MEM_Cleared)==0 1959 ){ 1960 res = 0; /* Results are equal */ 1961 }else{ 1962 res = 1; /* Results are not equal */ 1963 } 1964 }else{ 1965 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1966 ** then the result is always NULL. 1967 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1968 */ 1969 if( pOp->p5 & SQLITE_STOREP2 ){ 1970 pOut = &aMem[pOp->p2]; 1971 MemSetTypeFlag(pOut, MEM_Null); 1972 REGISTER_TRACE(pOp->p2, pOut); 1973 }else{ 1974 VdbeBranchTaken(2,3); 1975 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1976 pc = pOp->p2-1; 1977 } 1978 } 1979 break; 1980 } 1981 }else{ 1982 /* Neither operand is NULL. Do a comparison. */ 1983 affinity = pOp->p5 & SQLITE_AFF_MASK; 1984 if( affinity ){ 1985 applyAffinity(pIn1, affinity, encoding); 1986 applyAffinity(pIn3, affinity, encoding); 1987 if( db->mallocFailed ) goto no_mem; 1988 } 1989 1990 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1991 ExpandBlob(pIn1); 1992 ExpandBlob(pIn3); 1993 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1994 } 1995 switch( pOp->opcode ){ 1996 case OP_Eq: res = res==0; break; 1997 case OP_Ne: res = res!=0; break; 1998 case OP_Lt: res = res<0; break; 1999 case OP_Le: res = res<=0; break; 2000 case OP_Gt: res = res>0; break; 2001 default: res = res>=0; break; 2002 } 2003 2004 if( pOp->p5 & SQLITE_STOREP2 ){ 2005 pOut = &aMem[pOp->p2]; 2006 memAboutToChange(p, pOut); 2007 MemSetTypeFlag(pOut, MEM_Int); 2008 pOut->u.i = res; 2009 REGISTER_TRACE(pOp->p2, pOut); 2010 }else{ 2011 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2012 if( res ){ 2013 pc = pOp->p2-1; 2014 } 2015 } 2016 /* Undo any changes made by applyAffinity() to the input registers. */ 2017 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 2018 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 2019 break; 2020 } 2021 2022 /* Opcode: Permutation * * * P4 * 2023 ** 2024 ** Set the permutation used by the OP_Compare operator to be the array 2025 ** of integers in P4. 2026 ** 2027 ** The permutation is only valid until the next OP_Compare that has 2028 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2029 ** occur immediately prior to the OP_Compare. 2030 */ 2031 case OP_Permutation: { 2032 assert( pOp->p4type==P4_INTARRAY ); 2033 assert( pOp->p4.ai ); 2034 aPermute = pOp->p4.ai; 2035 break; 2036 } 2037 2038 /* Opcode: Compare P1 P2 P3 P4 P5 2039 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2040 ** 2041 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2042 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2043 ** the comparison for use by the next OP_Jump instruct. 2044 ** 2045 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2046 ** determined by the most recent OP_Permutation operator. If the 2047 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2048 ** order. 2049 ** 2050 ** P4 is a KeyInfo structure that defines collating sequences and sort 2051 ** orders for the comparison. The permutation applies to registers 2052 ** only. The KeyInfo elements are used sequentially. 2053 ** 2054 ** The comparison is a sort comparison, so NULLs compare equal, 2055 ** NULLs are less than numbers, numbers are less than strings, 2056 ** and strings are less than blobs. 2057 */ 2058 case OP_Compare: { 2059 int n; 2060 int i; 2061 int p1; 2062 int p2; 2063 const KeyInfo *pKeyInfo; 2064 int idx; 2065 CollSeq *pColl; /* Collating sequence to use on this term */ 2066 int bRev; /* True for DESCENDING sort order */ 2067 2068 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2069 n = pOp->p3; 2070 pKeyInfo = pOp->p4.pKeyInfo; 2071 assert( n>0 ); 2072 assert( pKeyInfo!=0 ); 2073 p1 = pOp->p1; 2074 p2 = pOp->p2; 2075 #if SQLITE_DEBUG 2076 if( aPermute ){ 2077 int k, mx = 0; 2078 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2079 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2080 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2081 }else{ 2082 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2083 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2084 } 2085 #endif /* SQLITE_DEBUG */ 2086 for(i=0; i<n; i++){ 2087 idx = aPermute ? aPermute[i] : i; 2088 assert( memIsValid(&aMem[p1+idx]) ); 2089 assert( memIsValid(&aMem[p2+idx]) ); 2090 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2091 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2092 assert( i<pKeyInfo->nField ); 2093 pColl = pKeyInfo->aColl[i]; 2094 bRev = pKeyInfo->aSortOrder[i]; 2095 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2096 if( iCompare ){ 2097 if( bRev ) iCompare = -iCompare; 2098 break; 2099 } 2100 } 2101 aPermute = 0; 2102 break; 2103 } 2104 2105 /* Opcode: Jump P1 P2 P3 * * 2106 ** 2107 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2108 ** in the most recent OP_Compare instruction the P1 vector was less than 2109 ** equal to, or greater than the P2 vector, respectively. 2110 */ 2111 case OP_Jump: { /* jump */ 2112 if( iCompare<0 ){ 2113 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); 2114 }else if( iCompare==0 ){ 2115 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); 2116 }else{ 2117 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); 2118 } 2119 break; 2120 } 2121 2122 /* Opcode: And P1 P2 P3 * * 2123 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2124 ** 2125 ** Take the logical AND of the values in registers P1 and P2 and 2126 ** write the result into register P3. 2127 ** 2128 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2129 ** the other input is NULL. A NULL and true or two NULLs give 2130 ** a NULL output. 2131 */ 2132 /* Opcode: Or P1 P2 P3 * * 2133 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2134 ** 2135 ** Take the logical OR of the values in register P1 and P2 and 2136 ** store the answer in register P3. 2137 ** 2138 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2139 ** even if the other input is NULL. A NULL and false or two NULLs 2140 ** give a NULL output. 2141 */ 2142 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2143 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2144 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2145 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2146 2147 pIn1 = &aMem[pOp->p1]; 2148 if( pIn1->flags & MEM_Null ){ 2149 v1 = 2; 2150 }else{ 2151 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2152 } 2153 pIn2 = &aMem[pOp->p2]; 2154 if( pIn2->flags & MEM_Null ){ 2155 v2 = 2; 2156 }else{ 2157 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2158 } 2159 if( pOp->opcode==OP_And ){ 2160 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2161 v1 = and_logic[v1*3+v2]; 2162 }else{ 2163 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2164 v1 = or_logic[v1*3+v2]; 2165 } 2166 pOut = &aMem[pOp->p3]; 2167 if( v1==2 ){ 2168 MemSetTypeFlag(pOut, MEM_Null); 2169 }else{ 2170 pOut->u.i = v1; 2171 MemSetTypeFlag(pOut, MEM_Int); 2172 } 2173 break; 2174 } 2175 2176 /* Opcode: Not P1 P2 * * * 2177 ** Synopsis: r[P2]= !r[P1] 2178 ** 2179 ** Interpret the value in register P1 as a boolean value. Store the 2180 ** boolean complement in register P2. If the value in register P1 is 2181 ** NULL, then a NULL is stored in P2. 2182 */ 2183 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2184 pIn1 = &aMem[pOp->p1]; 2185 pOut = &aMem[pOp->p2]; 2186 if( pIn1->flags & MEM_Null ){ 2187 sqlite3VdbeMemSetNull(pOut); 2188 }else{ 2189 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 2190 } 2191 break; 2192 } 2193 2194 /* Opcode: BitNot P1 P2 * * * 2195 ** Synopsis: r[P1]= ~r[P1] 2196 ** 2197 ** Interpret the content of register P1 as an integer. Store the 2198 ** ones-complement of the P1 value into register P2. If P1 holds 2199 ** a NULL then store a NULL in P2. 2200 */ 2201 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2202 pIn1 = &aMem[pOp->p1]; 2203 pOut = &aMem[pOp->p2]; 2204 if( pIn1->flags & MEM_Null ){ 2205 sqlite3VdbeMemSetNull(pOut); 2206 }else{ 2207 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 2208 } 2209 break; 2210 } 2211 2212 /* Opcode: Once P1 P2 * * * 2213 ** 2214 ** Check the "once" flag number P1. If it is set, jump to instruction P2. 2215 ** Otherwise, set the flag and fall through to the next instruction. 2216 ** In other words, this opcode causes all following opcodes up through P2 2217 ** (but not including P2) to run just once and to be skipped on subsequent 2218 ** times through the loop. 2219 ** 2220 ** All "once" flags are initially cleared whenever a prepared statement 2221 ** first begins to run. 2222 */ 2223 case OP_Once: { /* jump */ 2224 assert( pOp->p1<p->nOnceFlag ); 2225 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2226 if( p->aOnceFlag[pOp->p1] ){ 2227 pc = pOp->p2-1; 2228 }else{ 2229 p->aOnceFlag[pOp->p1] = 1; 2230 } 2231 break; 2232 } 2233 2234 /* Opcode: If P1 P2 P3 * * 2235 ** 2236 ** Jump to P2 if the value in register P1 is true. The value 2237 ** is considered true if it is numeric and non-zero. If the value 2238 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2239 */ 2240 /* Opcode: IfNot P1 P2 P3 * * 2241 ** 2242 ** Jump to P2 if the value in register P1 is False. The value 2243 ** is considered false if it has a numeric value of zero. If the value 2244 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2245 */ 2246 case OP_If: /* jump, in1 */ 2247 case OP_IfNot: { /* jump, in1 */ 2248 int c; 2249 pIn1 = &aMem[pOp->p1]; 2250 if( pIn1->flags & MEM_Null ){ 2251 c = pOp->p3; 2252 }else{ 2253 #ifdef SQLITE_OMIT_FLOATING_POINT 2254 c = sqlite3VdbeIntValue(pIn1)!=0; 2255 #else 2256 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2257 #endif 2258 if( pOp->opcode==OP_IfNot ) c = !c; 2259 } 2260 VdbeBranchTaken(c!=0, 2); 2261 if( c ){ 2262 pc = pOp->p2-1; 2263 } 2264 break; 2265 } 2266 2267 /* Opcode: IsNull P1 P2 * * * 2268 ** Synopsis: if r[P1]==NULL goto P2 2269 ** 2270 ** Jump to P2 if the value in register P1 is NULL. 2271 */ 2272 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2273 pIn1 = &aMem[pOp->p1]; 2274 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2275 if( (pIn1->flags & MEM_Null)!=0 ){ 2276 pc = pOp->p2 - 1; 2277 } 2278 break; 2279 } 2280 2281 /* Opcode: NotNull P1 P2 * * * 2282 ** Synopsis: if r[P1]!=NULL goto P2 2283 ** 2284 ** Jump to P2 if the value in register P1 is not NULL. 2285 */ 2286 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2287 pIn1 = &aMem[pOp->p1]; 2288 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2289 if( (pIn1->flags & MEM_Null)==0 ){ 2290 pc = pOp->p2 - 1; 2291 } 2292 break; 2293 } 2294 2295 /* Opcode: Column P1 P2 P3 P4 P5 2296 ** Synopsis: r[P3]=PX 2297 ** 2298 ** Interpret the data that cursor P1 points to as a structure built using 2299 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2300 ** information about the format of the data.) Extract the P2-th column 2301 ** from this record. If there are less that (P2+1) 2302 ** values in the record, extract a NULL. 2303 ** 2304 ** The value extracted is stored in register P3. 2305 ** 2306 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2307 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2308 ** the result. 2309 ** 2310 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2311 ** then the cache of the cursor is reset prior to extracting the column. 2312 ** The first OP_Column against a pseudo-table after the value of the content 2313 ** register has changed should have this bit set. 2314 ** 2315 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2316 ** the result is guaranteed to only be used as the argument of a length() 2317 ** or typeof() function, respectively. The loading of large blobs can be 2318 ** skipped for length() and all content loading can be skipped for typeof(). 2319 */ 2320 case OP_Column: { 2321 i64 payloadSize64; /* Number of bytes in the record */ 2322 int p2; /* column number to retrieve */ 2323 VdbeCursor *pC; /* The VDBE cursor */ 2324 BtCursor *pCrsr; /* The BTree cursor */ 2325 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2326 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2327 int len; /* The length of the serialized data for the column */ 2328 int i; /* Loop counter */ 2329 Mem *pDest; /* Where to write the extracted value */ 2330 Mem sMem; /* For storing the record being decoded */ 2331 const u8 *zData; /* Part of the record being decoded */ 2332 const u8 *zHdr; /* Next unparsed byte of the header */ 2333 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2334 u32 offset; /* Offset into the data */ 2335 u32 szField; /* Number of bytes in the content of a field */ 2336 u32 avail; /* Number of bytes of available data */ 2337 u32 t; /* A type code from the record header */ 2338 Mem *pReg; /* PseudoTable input register */ 2339 2340 p2 = pOp->p2; 2341 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2342 pDest = &aMem[pOp->p3]; 2343 memAboutToChange(p, pDest); 2344 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2345 pC = p->apCsr[pOp->p1]; 2346 assert( pC!=0 ); 2347 assert( p2<pC->nField ); 2348 aType = pC->aType; 2349 aOffset = aType + pC->nField; 2350 #ifndef SQLITE_OMIT_VIRTUALTABLE 2351 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2352 #endif 2353 pCrsr = pC->pCursor; 2354 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ 2355 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ 2356 2357 /* If the cursor cache is stale, bring it up-to-date */ 2358 rc = sqlite3VdbeCursorMoveto(pC); 2359 if( rc ) goto abort_due_to_error; 2360 if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ 2361 if( pC->nullRow ){ 2362 if( pCrsr==0 ){ 2363 assert( pC->pseudoTableReg>0 ); 2364 pReg = &aMem[pC->pseudoTableReg]; 2365 assert( pReg->flags & MEM_Blob ); 2366 assert( memIsValid(pReg) ); 2367 pC->payloadSize = pC->szRow = avail = pReg->n; 2368 pC->aRow = (u8*)pReg->z; 2369 }else{ 2370 MemSetTypeFlag(pDest, MEM_Null); 2371 goto op_column_out; 2372 } 2373 }else{ 2374 assert( pCrsr ); 2375 if( pC->isTable==0 ){ 2376 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2377 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2378 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2379 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2380 ** payload size, so it is impossible for payloadSize64 to be 2381 ** larger than 32 bits. */ 2382 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2383 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2384 pC->payloadSize = (u32)payloadSize64; 2385 }else{ 2386 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2387 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2388 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2389 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2390 } 2391 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2392 if( pC->payloadSize <= (u32)avail ){ 2393 pC->szRow = pC->payloadSize; 2394 }else{ 2395 pC->szRow = avail; 2396 } 2397 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2398 goto too_big; 2399 } 2400 } 2401 pC->cacheStatus = p->cacheCtr; 2402 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2403 pC->nHdrParsed = 0; 2404 aOffset[0] = offset; 2405 if( avail<offset ){ 2406 /* pC->aRow does not have to hold the entire row, but it does at least 2407 ** need to cover the header of the record. If pC->aRow does not contain 2408 ** the complete header, then set it to zero, forcing the header to be 2409 ** dynamically allocated. */ 2410 pC->aRow = 0; 2411 pC->szRow = 0; 2412 } 2413 2414 /* Make sure a corrupt database has not given us an oversize header. 2415 ** Do this now to avoid an oversize memory allocation. 2416 ** 2417 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2418 ** types use so much data space that there can only be 4096 and 32 of 2419 ** them, respectively. So the maximum header length results from a 2420 ** 3-byte type for each of the maximum of 32768 columns plus three 2421 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2422 */ 2423 if( offset > 98307 || offset > pC->payloadSize ){ 2424 rc = SQLITE_CORRUPT_BKPT; 2425 goto op_column_error; 2426 } 2427 } 2428 2429 /* Make sure at least the first p2+1 entries of the header have been 2430 ** parsed and valid information is in aOffset[] and aType[]. 2431 */ 2432 if( pC->nHdrParsed<=p2 ){ 2433 /* If there is more header available for parsing in the record, try 2434 ** to extract additional fields up through the p2+1-th field 2435 */ 2436 if( pC->iHdrOffset<aOffset[0] ){ 2437 /* Make sure zData points to enough of the record to cover the header. */ 2438 if( pC->aRow==0 ){ 2439 memset(&sMem, 0, sizeof(sMem)); 2440 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2441 !pC->isTable, &sMem); 2442 if( rc!=SQLITE_OK ){ 2443 goto op_column_error; 2444 } 2445 zData = (u8*)sMem.z; 2446 }else{ 2447 zData = pC->aRow; 2448 } 2449 2450 /* Fill in aType[i] and aOffset[i] values through the p2-th field. */ 2451 i = pC->nHdrParsed; 2452 offset = aOffset[i]; 2453 zHdr = zData + pC->iHdrOffset; 2454 zEndHdr = zData + aOffset[0]; 2455 assert( i<=p2 && zHdr<zEndHdr ); 2456 do{ 2457 if( zHdr[0]<0x80 ){ 2458 t = zHdr[0]; 2459 zHdr++; 2460 }else{ 2461 zHdr += sqlite3GetVarint32(zHdr, &t); 2462 } 2463 aType[i] = t; 2464 szField = sqlite3VdbeSerialTypeLen(t); 2465 offset += szField; 2466 if( offset<szField ){ /* True if offset overflows */ 2467 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2468 break; 2469 } 2470 i++; 2471 aOffset[i] = offset; 2472 }while( i<=p2 && zHdr<zEndHdr ); 2473 pC->nHdrParsed = i; 2474 pC->iHdrOffset = (u32)(zHdr - zData); 2475 if( pC->aRow==0 ){ 2476 sqlite3VdbeMemRelease(&sMem); 2477 sMem.flags = MEM_Null; 2478 } 2479 2480 /* If we have read more header data than was contained in the header, 2481 ** or if the end of the last field appears to be past the end of the 2482 ** record, or if the end of the last field appears to be before the end 2483 ** of the record (when all fields present), then we must be dealing 2484 ** with a corrupt database. 2485 */ 2486 if( (zHdr > zEndHdr) 2487 || (offset > pC->payloadSize) 2488 || (zHdr==zEndHdr && offset!=pC->payloadSize) 2489 ){ 2490 rc = SQLITE_CORRUPT_BKPT; 2491 goto op_column_error; 2492 } 2493 } 2494 2495 /* If after trying to extra new entries from the header, nHdrParsed is 2496 ** still not up to p2, that means that the record has fewer than p2 2497 ** columns. So the result will be either the default value or a NULL. 2498 */ 2499 if( pC->nHdrParsed<=p2 ){ 2500 if( pOp->p4type==P4_MEM ){ 2501 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2502 }else{ 2503 MemSetTypeFlag(pDest, MEM_Null); 2504 } 2505 goto op_column_out; 2506 } 2507 } 2508 2509 /* Extract the content for the p2+1-th column. Control can only 2510 ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are 2511 ** all valid. 2512 */ 2513 assert( p2<pC->nHdrParsed ); 2514 assert( rc==SQLITE_OK ); 2515 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2516 if( pC->szRow>=aOffset[p2+1] ){ 2517 /* This is the common case where the desired content fits on the original 2518 ** page - where the content is not on an overflow page */ 2519 VdbeMemRelease(pDest); 2520 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); 2521 }else{ 2522 /* This branch happens only when content is on overflow pages */ 2523 t = aType[p2]; 2524 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2525 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2526 || (len = sqlite3VdbeSerialTypeLen(t))==0 2527 ){ 2528 /* Content is irrelevant for the typeof() function and for 2529 ** the length(X) function if X is a blob. So we might as well use 2530 ** bogus content rather than reading content from disk. NULL works 2531 ** for text and blob and whatever is in the payloadSize64 variable 2532 ** will work for everything else. Content is also irrelevant if 2533 ** the content length is 0. */ 2534 zData = t<=13 ? (u8*)&payloadSize64 : 0; 2535 sMem.zMalloc = 0; 2536 }else{ 2537 memset(&sMem, 0, sizeof(sMem)); 2538 sqlite3VdbeMemMove(&sMem, pDest); 2539 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2540 &sMem); 2541 if( rc!=SQLITE_OK ){ 2542 goto op_column_error; 2543 } 2544 zData = (u8*)sMem.z; 2545 } 2546 sqlite3VdbeSerialGet(zData, t, pDest); 2547 /* If we dynamically allocated space to hold the data (in the 2548 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2549 ** dynamically allocated space over to the pDest structure. 2550 ** This prevents a memory copy. */ 2551 if( sMem.zMalloc ){ 2552 assert( sMem.z==sMem.zMalloc ); 2553 assert( VdbeMemDynamic(pDest)==0 ); 2554 assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z ); 2555 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2556 pDest->flags |= MEM_Term; 2557 pDest->z = sMem.z; 2558 pDest->zMalloc = sMem.zMalloc; 2559 } 2560 } 2561 pDest->enc = encoding; 2562 2563 op_column_out: 2564 Deephemeralize(pDest); 2565 op_column_error: 2566 UPDATE_MAX_BLOBSIZE(pDest); 2567 REGISTER_TRACE(pOp->p3, pDest); 2568 break; 2569 } 2570 2571 /* Opcode: Affinity P1 P2 * P4 * 2572 ** Synopsis: affinity(r[P1@P2]) 2573 ** 2574 ** Apply affinities to a range of P2 registers starting with P1. 2575 ** 2576 ** P4 is a string that is P2 characters long. The nth character of the 2577 ** string indicates the column affinity that should be used for the nth 2578 ** memory cell in the range. 2579 */ 2580 case OP_Affinity: { 2581 const char *zAffinity; /* The affinity to be applied */ 2582 char cAff; /* A single character of affinity */ 2583 2584 zAffinity = pOp->p4.z; 2585 assert( zAffinity!=0 ); 2586 assert( zAffinity[pOp->p2]==0 ); 2587 pIn1 = &aMem[pOp->p1]; 2588 while( (cAff = *(zAffinity++))!=0 ){ 2589 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2590 assert( memIsValid(pIn1) ); 2591 applyAffinity(pIn1, cAff, encoding); 2592 pIn1++; 2593 } 2594 break; 2595 } 2596 2597 /* Opcode: MakeRecord P1 P2 P3 P4 * 2598 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2599 ** 2600 ** Convert P2 registers beginning with P1 into the [record format] 2601 ** use as a data record in a database table or as a key 2602 ** in an index. The OP_Column opcode can decode the record later. 2603 ** 2604 ** P4 may be a string that is P2 characters long. The nth character of the 2605 ** string indicates the column affinity that should be used for the nth 2606 ** field of the index key. 2607 ** 2608 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2609 ** macros defined in sqliteInt.h. 2610 ** 2611 ** If P4 is NULL then all index fields have the affinity NONE. 2612 */ 2613 case OP_MakeRecord: { 2614 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2615 Mem *pRec; /* The new record */ 2616 u64 nData; /* Number of bytes of data space */ 2617 int nHdr; /* Number of bytes of header space */ 2618 i64 nByte; /* Data space required for this record */ 2619 int nZero; /* Number of zero bytes at the end of the record */ 2620 int nVarint; /* Number of bytes in a varint */ 2621 u32 serial_type; /* Type field */ 2622 Mem *pData0; /* First field to be combined into the record */ 2623 Mem *pLast; /* Last field of the record */ 2624 int nField; /* Number of fields in the record */ 2625 char *zAffinity; /* The affinity string for the record */ 2626 int file_format; /* File format to use for encoding */ 2627 int i; /* Space used in zNewRecord[] header */ 2628 int j; /* Space used in zNewRecord[] content */ 2629 int len; /* Length of a field */ 2630 2631 /* Assuming the record contains N fields, the record format looks 2632 ** like this: 2633 ** 2634 ** ------------------------------------------------------------------------ 2635 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2636 ** ------------------------------------------------------------------------ 2637 ** 2638 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2639 ** and so froth. 2640 ** 2641 ** Each type field is a varint representing the serial type of the 2642 ** corresponding data element (see sqlite3VdbeSerialType()). The 2643 ** hdr-size field is also a varint which is the offset from the beginning 2644 ** of the record to data0. 2645 */ 2646 nData = 0; /* Number of bytes of data space */ 2647 nHdr = 0; /* Number of bytes of header space */ 2648 nZero = 0; /* Number of zero bytes at the end of the record */ 2649 nField = pOp->p1; 2650 zAffinity = pOp->p4.z; 2651 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2652 pData0 = &aMem[nField]; 2653 nField = pOp->p2; 2654 pLast = &pData0[nField-1]; 2655 file_format = p->minWriteFileFormat; 2656 2657 /* Identify the output register */ 2658 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2659 pOut = &aMem[pOp->p3]; 2660 memAboutToChange(p, pOut); 2661 2662 /* Apply the requested affinity to all inputs 2663 */ 2664 assert( pData0<=pLast ); 2665 if( zAffinity ){ 2666 pRec = pData0; 2667 do{ 2668 applyAffinity(pRec++, *(zAffinity++), encoding); 2669 assert( zAffinity[0]==0 || pRec<=pLast ); 2670 }while( zAffinity[0] ); 2671 } 2672 2673 /* Loop through the elements that will make up the record to figure 2674 ** out how much space is required for the new record. 2675 */ 2676 pRec = pLast; 2677 do{ 2678 assert( memIsValid(pRec) ); 2679 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2680 len = sqlite3VdbeSerialTypeLen(serial_type); 2681 if( pRec->flags & MEM_Zero ){ 2682 if( nData ){ 2683 sqlite3VdbeMemExpandBlob(pRec); 2684 }else{ 2685 nZero += pRec->u.nZero; 2686 len -= pRec->u.nZero; 2687 } 2688 } 2689 nData += len; 2690 testcase( serial_type==127 ); 2691 testcase( serial_type==128 ); 2692 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2693 }while( (--pRec)>=pData0 ); 2694 2695 /* Add the initial header varint and total the size */ 2696 testcase( nHdr==126 ); 2697 testcase( nHdr==127 ); 2698 if( nHdr<=126 ){ 2699 /* The common case */ 2700 nHdr += 1; 2701 }else{ 2702 /* Rare case of a really large header */ 2703 nVarint = sqlite3VarintLen(nHdr); 2704 nHdr += nVarint; 2705 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2706 } 2707 nByte = nHdr+nData; 2708 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2709 goto too_big; 2710 } 2711 2712 /* Make sure the output register has a buffer large enough to store 2713 ** the new record. The output register (pOp->p3) is not allowed to 2714 ** be one of the input registers (because the following call to 2715 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2716 */ 2717 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2718 goto no_mem; 2719 } 2720 zNewRecord = (u8 *)pOut->z; 2721 2722 /* Write the record */ 2723 i = putVarint32(zNewRecord, nHdr); 2724 j = nHdr; 2725 assert( pData0<=pLast ); 2726 pRec = pData0; 2727 do{ 2728 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2729 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2730 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2731 }while( (++pRec)<=pLast ); 2732 assert( i==nHdr ); 2733 assert( j==nByte ); 2734 2735 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2736 pOut->n = (int)nByte; 2737 pOut->flags = MEM_Blob; 2738 pOut->xDel = 0; 2739 if( nZero ){ 2740 pOut->u.nZero = nZero; 2741 pOut->flags |= MEM_Zero; 2742 } 2743 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2744 REGISTER_TRACE(pOp->p3, pOut); 2745 UPDATE_MAX_BLOBSIZE(pOut); 2746 break; 2747 } 2748 2749 /* Opcode: Count P1 P2 * * * 2750 ** Synopsis: r[P2]=count() 2751 ** 2752 ** Store the number of entries (an integer value) in the table or index 2753 ** opened by cursor P1 in register P2 2754 */ 2755 #ifndef SQLITE_OMIT_BTREECOUNT 2756 case OP_Count: { /* out2-prerelease */ 2757 i64 nEntry; 2758 BtCursor *pCrsr; 2759 2760 pCrsr = p->apCsr[pOp->p1]->pCursor; 2761 assert( pCrsr ); 2762 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2763 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2764 pOut->u.i = nEntry; 2765 break; 2766 } 2767 #endif 2768 2769 /* Opcode: Savepoint P1 * * P4 * 2770 ** 2771 ** Open, release or rollback the savepoint named by parameter P4, depending 2772 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2773 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2774 */ 2775 case OP_Savepoint: { 2776 int p1; /* Value of P1 operand */ 2777 char *zName; /* Name of savepoint */ 2778 int nName; 2779 Savepoint *pNew; 2780 Savepoint *pSavepoint; 2781 Savepoint *pTmp; 2782 int iSavepoint; 2783 int ii; 2784 2785 p1 = pOp->p1; 2786 zName = pOp->p4.z; 2787 2788 /* Assert that the p1 parameter is valid. Also that if there is no open 2789 ** transaction, then there cannot be any savepoints. 2790 */ 2791 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2792 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2793 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2794 assert( checkSavepointCount(db) ); 2795 assert( p->bIsReader ); 2796 2797 if( p1==SAVEPOINT_BEGIN ){ 2798 if( db->nVdbeWrite>0 ){ 2799 /* A new savepoint cannot be created if there are active write 2800 ** statements (i.e. open read/write incremental blob handles). 2801 */ 2802 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2803 "SQL statements in progress"); 2804 rc = SQLITE_BUSY; 2805 }else{ 2806 nName = sqlite3Strlen30(zName); 2807 2808 #ifndef SQLITE_OMIT_VIRTUALTABLE 2809 /* This call is Ok even if this savepoint is actually a transaction 2810 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2811 ** If this is a transaction savepoint being opened, it is guaranteed 2812 ** that the db->aVTrans[] array is empty. */ 2813 assert( db->autoCommit==0 || db->nVTrans==0 ); 2814 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2815 db->nStatement+db->nSavepoint); 2816 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2817 #endif 2818 2819 /* Create a new savepoint structure. */ 2820 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2821 if( pNew ){ 2822 pNew->zName = (char *)&pNew[1]; 2823 memcpy(pNew->zName, zName, nName+1); 2824 2825 /* If there is no open transaction, then mark this as a special 2826 ** "transaction savepoint". */ 2827 if( db->autoCommit ){ 2828 db->autoCommit = 0; 2829 db->isTransactionSavepoint = 1; 2830 }else{ 2831 db->nSavepoint++; 2832 } 2833 2834 /* Link the new savepoint into the database handle's list. */ 2835 pNew->pNext = db->pSavepoint; 2836 db->pSavepoint = pNew; 2837 pNew->nDeferredCons = db->nDeferredCons; 2838 pNew->nDeferredImmCons = db->nDeferredImmCons; 2839 } 2840 } 2841 }else{ 2842 iSavepoint = 0; 2843 2844 /* Find the named savepoint. If there is no such savepoint, then an 2845 ** an error is returned to the user. */ 2846 for( 2847 pSavepoint = db->pSavepoint; 2848 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2849 pSavepoint = pSavepoint->pNext 2850 ){ 2851 iSavepoint++; 2852 } 2853 if( !pSavepoint ){ 2854 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2855 rc = SQLITE_ERROR; 2856 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2857 /* It is not possible to release (commit) a savepoint if there are 2858 ** active write statements. 2859 */ 2860 sqlite3SetString(&p->zErrMsg, db, 2861 "cannot release savepoint - SQL statements in progress" 2862 ); 2863 rc = SQLITE_BUSY; 2864 }else{ 2865 2866 /* Determine whether or not this is a transaction savepoint. If so, 2867 ** and this is a RELEASE command, then the current transaction 2868 ** is committed. 2869 */ 2870 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2871 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2872 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2873 goto vdbe_return; 2874 } 2875 db->autoCommit = 1; 2876 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2877 p->pc = pc; 2878 db->autoCommit = 0; 2879 p->rc = rc = SQLITE_BUSY; 2880 goto vdbe_return; 2881 } 2882 db->isTransactionSavepoint = 0; 2883 rc = p->rc; 2884 }else{ 2885 iSavepoint = db->nSavepoint - iSavepoint - 1; 2886 if( p1==SAVEPOINT_ROLLBACK ){ 2887 for(ii=0; ii<db->nDb; ii++){ 2888 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT); 2889 } 2890 } 2891 for(ii=0; ii<db->nDb; ii++){ 2892 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2893 if( rc!=SQLITE_OK ){ 2894 goto abort_due_to_error; 2895 } 2896 } 2897 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2898 sqlite3ExpirePreparedStatements(db); 2899 sqlite3ResetAllSchemasOfConnection(db); 2900 db->flags = (db->flags | SQLITE_InternChanges); 2901 } 2902 } 2903 2904 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2905 ** savepoints nested inside of the savepoint being operated on. */ 2906 while( db->pSavepoint!=pSavepoint ){ 2907 pTmp = db->pSavepoint; 2908 db->pSavepoint = pTmp->pNext; 2909 sqlite3DbFree(db, pTmp); 2910 db->nSavepoint--; 2911 } 2912 2913 /* If it is a RELEASE, then destroy the savepoint being operated on 2914 ** too. If it is a ROLLBACK TO, then set the number of deferred 2915 ** constraint violations present in the database to the value stored 2916 ** when the savepoint was created. */ 2917 if( p1==SAVEPOINT_RELEASE ){ 2918 assert( pSavepoint==db->pSavepoint ); 2919 db->pSavepoint = pSavepoint->pNext; 2920 sqlite3DbFree(db, pSavepoint); 2921 if( !isTransaction ){ 2922 db->nSavepoint--; 2923 } 2924 }else{ 2925 db->nDeferredCons = pSavepoint->nDeferredCons; 2926 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2927 } 2928 2929 if( !isTransaction ){ 2930 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2931 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2932 } 2933 } 2934 } 2935 2936 break; 2937 } 2938 2939 /* Opcode: AutoCommit P1 P2 * * * 2940 ** 2941 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2942 ** back any currently active btree transactions. If there are any active 2943 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2944 ** there are active writing VMs or active VMs that use shared cache. 2945 ** 2946 ** This instruction causes the VM to halt. 2947 */ 2948 case OP_AutoCommit: { 2949 int desiredAutoCommit; 2950 int iRollback; 2951 int turnOnAC; 2952 2953 desiredAutoCommit = pOp->p1; 2954 iRollback = pOp->p2; 2955 turnOnAC = desiredAutoCommit && !db->autoCommit; 2956 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2957 assert( desiredAutoCommit==1 || iRollback==0 ); 2958 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2959 assert( p->bIsReader ); 2960 2961 #if 0 2962 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2963 /* If this instruction implements a ROLLBACK and other VMs are 2964 ** still running, and a transaction is active, return an error indicating 2965 ** that the other VMs must complete first. 2966 */ 2967 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2968 "SQL statements in progress"); 2969 rc = SQLITE_BUSY; 2970 }else 2971 #endif 2972 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2973 /* If this instruction implements a COMMIT and other VMs are writing 2974 ** return an error indicating that the other VMs must complete first. 2975 */ 2976 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2977 "SQL statements in progress"); 2978 rc = SQLITE_BUSY; 2979 }else if( desiredAutoCommit!=db->autoCommit ){ 2980 if( iRollback ){ 2981 assert( desiredAutoCommit==1 ); 2982 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2983 db->autoCommit = 1; 2984 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2985 goto vdbe_return; 2986 }else{ 2987 db->autoCommit = (u8)desiredAutoCommit; 2988 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2989 p->pc = pc; 2990 db->autoCommit = (u8)(1-desiredAutoCommit); 2991 p->rc = rc = SQLITE_BUSY; 2992 goto vdbe_return; 2993 } 2994 } 2995 assert( db->nStatement==0 ); 2996 sqlite3CloseSavepoints(db); 2997 if( p->rc==SQLITE_OK ){ 2998 rc = SQLITE_DONE; 2999 }else{ 3000 rc = SQLITE_ERROR; 3001 } 3002 goto vdbe_return; 3003 }else{ 3004 sqlite3SetString(&p->zErrMsg, db, 3005 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3006 (iRollback)?"cannot rollback - no transaction is active": 3007 "cannot commit - no transaction is active")); 3008 3009 rc = SQLITE_ERROR; 3010 } 3011 break; 3012 } 3013 3014 /* Opcode: Transaction P1 P2 P3 P4 P5 3015 ** 3016 ** Begin a transaction on database P1 if a transaction is not already 3017 ** active. 3018 ** If P2 is non-zero, then a write-transaction is started, or if a 3019 ** read-transaction is already active, it is upgraded to a write-transaction. 3020 ** If P2 is zero, then a read-transaction is started. 3021 ** 3022 ** P1 is the index of the database file on which the transaction is 3023 ** started. Index 0 is the main database file and index 1 is the 3024 ** file used for temporary tables. Indices of 2 or more are used for 3025 ** attached databases. 3026 ** 3027 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3028 ** true (this flag is set if the Vdbe may modify more than one row and may 3029 ** throw an ABORT exception), a statement transaction may also be opened. 3030 ** More specifically, a statement transaction is opened iff the database 3031 ** connection is currently not in autocommit mode, or if there are other 3032 ** active statements. A statement transaction allows the changes made by this 3033 ** VDBE to be rolled back after an error without having to roll back the 3034 ** entire transaction. If no error is encountered, the statement transaction 3035 ** will automatically commit when the VDBE halts. 3036 ** 3037 ** If P5!=0 then this opcode also checks the schema cookie against P3 3038 ** and the schema generation counter against P4. 3039 ** The cookie changes its value whenever the database schema changes. 3040 ** This operation is used to detect when that the cookie has changed 3041 ** and that the current process needs to reread the schema. If the schema 3042 ** cookie in P3 differs from the schema cookie in the database header or 3043 ** if the schema generation counter in P4 differs from the current 3044 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3045 ** halts. The sqlite3_step() wrapper function might then reprepare the 3046 ** statement and rerun it from the beginning. 3047 */ 3048 case OP_Transaction: { 3049 Btree *pBt; 3050 int iMeta; 3051 int iGen; 3052 3053 assert( p->bIsReader ); 3054 assert( p->readOnly==0 || pOp->p2==0 ); 3055 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3056 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3057 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3058 rc = SQLITE_READONLY; 3059 goto abort_due_to_error; 3060 } 3061 pBt = db->aDb[pOp->p1].pBt; 3062 3063 if( pBt ){ 3064 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3065 if( rc==SQLITE_BUSY ){ 3066 p->pc = pc; 3067 p->rc = rc = SQLITE_BUSY; 3068 goto vdbe_return; 3069 } 3070 if( rc!=SQLITE_OK ){ 3071 goto abort_due_to_error; 3072 } 3073 3074 if( pOp->p2 && p->usesStmtJournal 3075 && (db->autoCommit==0 || db->nVdbeRead>1) 3076 ){ 3077 assert( sqlite3BtreeIsInTrans(pBt) ); 3078 if( p->iStatement==0 ){ 3079 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3080 db->nStatement++; 3081 p->iStatement = db->nSavepoint + db->nStatement; 3082 } 3083 3084 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3085 if( rc==SQLITE_OK ){ 3086 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3087 } 3088 3089 /* Store the current value of the database handles deferred constraint 3090 ** counter. If the statement transaction needs to be rolled back, 3091 ** the value of this counter needs to be restored too. */ 3092 p->nStmtDefCons = db->nDeferredCons; 3093 p->nStmtDefImmCons = db->nDeferredImmCons; 3094 } 3095 3096 /* Gather the schema version number for checking */ 3097 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3098 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3099 }else{ 3100 iGen = iMeta = 0; 3101 } 3102 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3103 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3104 sqlite3DbFree(db, p->zErrMsg); 3105 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3106 /* If the schema-cookie from the database file matches the cookie 3107 ** stored with the in-memory representation of the schema, do 3108 ** not reload the schema from the database file. 3109 ** 3110 ** If virtual-tables are in use, this is not just an optimization. 3111 ** Often, v-tables store their data in other SQLite tables, which 3112 ** are queried from within xNext() and other v-table methods using 3113 ** prepared queries. If such a query is out-of-date, we do not want to 3114 ** discard the database schema, as the user code implementing the 3115 ** v-table would have to be ready for the sqlite3_vtab structure itself 3116 ** to be invalidated whenever sqlite3_step() is called from within 3117 ** a v-table method. 3118 */ 3119 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3120 sqlite3ResetOneSchema(db, pOp->p1); 3121 } 3122 p->expired = 1; 3123 rc = SQLITE_SCHEMA; 3124 } 3125 break; 3126 } 3127 3128 /* Opcode: ReadCookie P1 P2 P3 * * 3129 ** 3130 ** Read cookie number P3 from database P1 and write it into register P2. 3131 ** P3==1 is the schema version. P3==2 is the database format. 3132 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3133 ** the main database file and P1==1 is the database file used to store 3134 ** temporary tables. 3135 ** 3136 ** There must be a read-lock on the database (either a transaction 3137 ** must be started or there must be an open cursor) before 3138 ** executing this instruction. 3139 */ 3140 case OP_ReadCookie: { /* out2-prerelease */ 3141 int iMeta; 3142 int iDb; 3143 int iCookie; 3144 3145 assert( p->bIsReader ); 3146 iDb = pOp->p1; 3147 iCookie = pOp->p3; 3148 assert( pOp->p3<SQLITE_N_BTREE_META ); 3149 assert( iDb>=0 && iDb<db->nDb ); 3150 assert( db->aDb[iDb].pBt!=0 ); 3151 assert( DbMaskTest(p->btreeMask, iDb) ); 3152 3153 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3154 pOut->u.i = iMeta; 3155 break; 3156 } 3157 3158 /* Opcode: SetCookie P1 P2 P3 * * 3159 ** 3160 ** Write the content of register P3 (interpreted as an integer) 3161 ** into cookie number P2 of database P1. P2==1 is the schema version. 3162 ** P2==2 is the database format. P2==3 is the recommended pager cache 3163 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3164 ** database file used to store temporary tables. 3165 ** 3166 ** A transaction must be started before executing this opcode. 3167 */ 3168 case OP_SetCookie: { /* in3 */ 3169 Db *pDb; 3170 assert( pOp->p2<SQLITE_N_BTREE_META ); 3171 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3172 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3173 assert( p->readOnly==0 ); 3174 pDb = &db->aDb[pOp->p1]; 3175 assert( pDb->pBt!=0 ); 3176 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3177 pIn3 = &aMem[pOp->p3]; 3178 sqlite3VdbeMemIntegerify(pIn3); 3179 /* See note about index shifting on OP_ReadCookie */ 3180 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3181 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3182 /* When the schema cookie changes, record the new cookie internally */ 3183 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3184 db->flags |= SQLITE_InternChanges; 3185 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3186 /* Record changes in the file format */ 3187 pDb->pSchema->file_format = (u8)pIn3->u.i; 3188 } 3189 if( pOp->p1==1 ){ 3190 /* Invalidate all prepared statements whenever the TEMP database 3191 ** schema is changed. Ticket #1644 */ 3192 sqlite3ExpirePreparedStatements(db); 3193 p->expired = 0; 3194 } 3195 break; 3196 } 3197 3198 /* Opcode: OpenRead P1 P2 P3 P4 P5 3199 ** Synopsis: root=P2 iDb=P3 3200 ** 3201 ** Open a read-only cursor for the database table whose root page is 3202 ** P2 in a database file. The database file is determined by P3. 3203 ** P3==0 means the main database, P3==1 means the database used for 3204 ** temporary tables, and P3>1 means used the corresponding attached 3205 ** database. Give the new cursor an identifier of P1. The P1 3206 ** values need not be contiguous but all P1 values should be small integers. 3207 ** It is an error for P1 to be negative. 3208 ** 3209 ** If P5!=0 then use the content of register P2 as the root page, not 3210 ** the value of P2 itself. 3211 ** 3212 ** There will be a read lock on the database whenever there is an 3213 ** open cursor. If the database was unlocked prior to this instruction 3214 ** then a read lock is acquired as part of this instruction. A read 3215 ** lock allows other processes to read the database but prohibits 3216 ** any other process from modifying the database. The read lock is 3217 ** released when all cursors are closed. If this instruction attempts 3218 ** to get a read lock but fails, the script terminates with an 3219 ** SQLITE_BUSY error code. 3220 ** 3221 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3222 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3223 ** structure, then said structure defines the content and collating 3224 ** sequence of the index being opened. Otherwise, if P4 is an integer 3225 ** value, it is set to the number of columns in the table. 3226 ** 3227 ** See also: OpenWrite, ReopenIdx 3228 */ 3229 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3230 ** Synopsis: root=P2 iDb=P3 3231 ** 3232 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3233 ** checks to see if the cursor on P1 is already open with a root page 3234 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3235 ** if the cursor is already open, do not reopen it. 3236 ** 3237 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3238 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3239 ** every other ReopenIdx or OpenRead for the same cursor number. 3240 ** 3241 ** See the OpenRead opcode documentation for additional information. 3242 */ 3243 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3244 ** Synopsis: root=P2 iDb=P3 3245 ** 3246 ** Open a read/write cursor named P1 on the table or index whose root 3247 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3248 ** root page. 3249 ** 3250 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3251 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3252 ** structure, then said structure defines the content and collating 3253 ** sequence of the index being opened. Otherwise, if P4 is an integer 3254 ** value, it is set to the number of columns in the table, or to the 3255 ** largest index of any column of the table that is actually used. 3256 ** 3257 ** This instruction works just like OpenRead except that it opens the cursor 3258 ** in read/write mode. For a given table, there can be one or more read-only 3259 ** cursors or a single read/write cursor but not both. 3260 ** 3261 ** See also OpenRead. 3262 */ 3263 case OP_ReopenIdx: { 3264 VdbeCursor *pCur; 3265 3266 assert( pOp->p5==0 ); 3267 assert( pOp->p4type==P4_KEYINFO ); 3268 pCur = p->apCsr[pOp->p1]; 3269 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3270 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3271 break; 3272 } 3273 /* If the cursor is not currently open or is open on a different 3274 ** index, then fall through into OP_OpenRead to force a reopen */ 3275 } 3276 case OP_OpenRead: 3277 case OP_OpenWrite: { 3278 int nField; 3279 KeyInfo *pKeyInfo; 3280 int p2; 3281 int iDb; 3282 int wrFlag; 3283 Btree *pX; 3284 VdbeCursor *pCur; 3285 Db *pDb; 3286 3287 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3288 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3289 assert( p->bIsReader ); 3290 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3291 || p->readOnly==0 ); 3292 3293 if( p->expired ){ 3294 rc = SQLITE_ABORT; 3295 break; 3296 } 3297 3298 nField = 0; 3299 pKeyInfo = 0; 3300 p2 = pOp->p2; 3301 iDb = pOp->p3; 3302 assert( iDb>=0 && iDb<db->nDb ); 3303 assert( DbMaskTest(p->btreeMask, iDb) ); 3304 pDb = &db->aDb[iDb]; 3305 pX = pDb->pBt; 3306 assert( pX!=0 ); 3307 if( pOp->opcode==OP_OpenWrite ){ 3308 wrFlag = 1; 3309 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3310 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3311 p->minWriteFileFormat = pDb->pSchema->file_format; 3312 } 3313 }else{ 3314 wrFlag = 0; 3315 } 3316 if( pOp->p5 & OPFLAG_P2ISREG ){ 3317 assert( p2>0 ); 3318 assert( p2<=(p->nMem-p->nCursor) ); 3319 pIn2 = &aMem[p2]; 3320 assert( memIsValid(pIn2) ); 3321 assert( (pIn2->flags & MEM_Int)!=0 ); 3322 sqlite3VdbeMemIntegerify(pIn2); 3323 p2 = (int)pIn2->u.i; 3324 /* The p2 value always comes from a prior OP_CreateTable opcode and 3325 ** that opcode will always set the p2 value to 2 or more or else fail. 3326 ** If there were a failure, the prepared statement would have halted 3327 ** before reaching this instruction. */ 3328 if( NEVER(p2<2) ) { 3329 rc = SQLITE_CORRUPT_BKPT; 3330 goto abort_due_to_error; 3331 } 3332 } 3333 if( pOp->p4type==P4_KEYINFO ){ 3334 pKeyInfo = pOp->p4.pKeyInfo; 3335 assert( pKeyInfo->enc==ENC(db) ); 3336 assert( pKeyInfo->db==db ); 3337 nField = pKeyInfo->nField+pKeyInfo->nXField; 3338 }else if( pOp->p4type==P4_INT32 ){ 3339 nField = pOp->p4.i; 3340 } 3341 assert( pOp->p1>=0 ); 3342 assert( nField>=0 ); 3343 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3344 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3345 if( pCur==0 ) goto no_mem; 3346 pCur->nullRow = 1; 3347 pCur->isOrdered = 1; 3348 pCur->pgnoRoot = p2; 3349 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3350 pCur->pKeyInfo = pKeyInfo; 3351 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3352 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3353 3354 /* Since it performs no memory allocation or IO, the only value that 3355 ** sqlite3BtreeCursor() may return is SQLITE_OK. */ 3356 assert( rc==SQLITE_OK ); 3357 3358 /* Set the VdbeCursor.isTable variable. Previous versions of 3359 ** SQLite used to check if the root-page flags were sane at this point 3360 ** and report database corruption if they were not, but this check has 3361 ** since moved into the btree layer. */ 3362 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3363 break; 3364 } 3365 3366 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3367 ** Synopsis: nColumn=P2 3368 ** 3369 ** Open a new cursor P1 to a transient table. 3370 ** The cursor is always opened read/write even if 3371 ** the main database is read-only. The ephemeral 3372 ** table is deleted automatically when the cursor is closed. 3373 ** 3374 ** P2 is the number of columns in the ephemeral table. 3375 ** The cursor points to a BTree table if P4==0 and to a BTree index 3376 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3377 ** that defines the format of keys in the index. 3378 ** 3379 ** The P5 parameter can be a mask of the BTREE_* flags defined 3380 ** in btree.h. These flags control aspects of the operation of 3381 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3382 ** added automatically. 3383 */ 3384 /* Opcode: OpenAutoindex P1 P2 * P4 * 3385 ** Synopsis: nColumn=P2 3386 ** 3387 ** This opcode works the same as OP_OpenEphemeral. It has a 3388 ** different name to distinguish its use. Tables created using 3389 ** by this opcode will be used for automatically created transient 3390 ** indices in joins. 3391 */ 3392 case OP_OpenAutoindex: 3393 case OP_OpenEphemeral: { 3394 VdbeCursor *pCx; 3395 KeyInfo *pKeyInfo; 3396 3397 static const int vfsFlags = 3398 SQLITE_OPEN_READWRITE | 3399 SQLITE_OPEN_CREATE | 3400 SQLITE_OPEN_EXCLUSIVE | 3401 SQLITE_OPEN_DELETEONCLOSE | 3402 SQLITE_OPEN_TRANSIENT_DB; 3403 assert( pOp->p1>=0 ); 3404 assert( pOp->p2>=0 ); 3405 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3406 if( pCx==0 ) goto no_mem; 3407 pCx->nullRow = 1; 3408 pCx->isEphemeral = 1; 3409 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3410 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3411 if( rc==SQLITE_OK ){ 3412 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3413 } 3414 if( rc==SQLITE_OK ){ 3415 /* If a transient index is required, create it by calling 3416 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3417 ** opening it. If a transient table is required, just use the 3418 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3419 */ 3420 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3421 int pgno; 3422 assert( pOp->p4type==P4_KEYINFO ); 3423 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3424 if( rc==SQLITE_OK ){ 3425 assert( pgno==MASTER_ROOT+1 ); 3426 assert( pKeyInfo->db==db ); 3427 assert( pKeyInfo->enc==ENC(db) ); 3428 pCx->pKeyInfo = pKeyInfo; 3429 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3430 } 3431 pCx->isTable = 0; 3432 }else{ 3433 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3434 pCx->isTable = 1; 3435 } 3436 } 3437 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3438 break; 3439 } 3440 3441 /* Opcode: SorterOpen P1 P2 * P4 * 3442 ** 3443 ** This opcode works like OP_OpenEphemeral except that it opens 3444 ** a transient index that is specifically designed to sort large 3445 ** tables using an external merge-sort algorithm. 3446 */ 3447 case OP_SorterOpen: { 3448 VdbeCursor *pCx; 3449 3450 assert( pOp->p1>=0 ); 3451 assert( pOp->p2>=0 ); 3452 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3453 if( pCx==0 ) goto no_mem; 3454 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3455 assert( pCx->pKeyInfo->db==db ); 3456 assert( pCx->pKeyInfo->enc==ENC(db) ); 3457 rc = sqlite3VdbeSorterInit(db, pCx); 3458 break; 3459 } 3460 3461 /* Opcode: OpenPseudo P1 P2 P3 * * 3462 ** Synopsis: P3 columns in r[P2] 3463 ** 3464 ** Open a new cursor that points to a fake table that contains a single 3465 ** row of data. The content of that one row is the content of memory 3466 ** register P2. In other words, cursor P1 becomes an alias for the 3467 ** MEM_Blob content contained in register P2. 3468 ** 3469 ** A pseudo-table created by this opcode is used to hold a single 3470 ** row output from the sorter so that the row can be decomposed into 3471 ** individual columns using the OP_Column opcode. The OP_Column opcode 3472 ** is the only cursor opcode that works with a pseudo-table. 3473 ** 3474 ** P3 is the number of fields in the records that will be stored by 3475 ** the pseudo-table. 3476 */ 3477 case OP_OpenPseudo: { 3478 VdbeCursor *pCx; 3479 3480 assert( pOp->p1>=0 ); 3481 assert( pOp->p3>=0 ); 3482 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3483 if( pCx==0 ) goto no_mem; 3484 pCx->nullRow = 1; 3485 pCx->pseudoTableReg = pOp->p2; 3486 pCx->isTable = 1; 3487 assert( pOp->p5==0 ); 3488 break; 3489 } 3490 3491 /* Opcode: Close P1 * * * * 3492 ** 3493 ** Close a cursor previously opened as P1. If P1 is not 3494 ** currently open, this instruction is a no-op. 3495 */ 3496 case OP_Close: { 3497 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3498 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3499 p->apCsr[pOp->p1] = 0; 3500 break; 3501 } 3502 3503 /* Opcode: SeekGE P1 P2 P3 P4 * 3504 ** Synopsis: key=r[P3@P4] 3505 ** 3506 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3507 ** use the value in register P3 as the key. If cursor P1 refers 3508 ** to an SQL index, then P3 is the first in an array of P4 registers 3509 ** that are used as an unpacked index key. 3510 ** 3511 ** Reposition cursor P1 so that it points to the smallest entry that 3512 ** is greater than or equal to the key value. If there are no records 3513 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3514 ** 3515 ** This opcode leaves the cursor configured to move in forward order, 3516 ** from the beginning toward the end. In other words, the cursor is 3517 ** configured to use Next, not Prev. 3518 ** 3519 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3520 */ 3521 /* Opcode: SeekGT P1 P2 P3 P4 * 3522 ** Synopsis: key=r[P3@P4] 3523 ** 3524 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3525 ** use the value in register P3 as a key. If cursor P1 refers 3526 ** to an SQL index, then P3 is the first in an array of P4 registers 3527 ** that are used as an unpacked index key. 3528 ** 3529 ** Reposition cursor P1 so that it points to the smallest entry that 3530 ** is greater than the key value. If there are no records greater than 3531 ** the key and P2 is not zero, then jump to P2. 3532 ** 3533 ** This opcode leaves the cursor configured to move in forward order, 3534 ** from the begining toward the end. In other words, the cursor is 3535 ** configured to use Next, not Prev. 3536 ** 3537 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3538 */ 3539 /* Opcode: SeekLT P1 P2 P3 P4 * 3540 ** Synopsis: key=r[P3@P4] 3541 ** 3542 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3543 ** use the value in register P3 as a key. If cursor P1 refers 3544 ** to an SQL index, then P3 is the first in an array of P4 registers 3545 ** that are used as an unpacked index key. 3546 ** 3547 ** Reposition cursor P1 so that it points to the largest entry that 3548 ** is less than the key value. If there are no records less than 3549 ** the key and P2 is not zero, then jump to P2. 3550 ** 3551 ** This opcode leaves the cursor configured to move in reverse order, 3552 ** from the end toward the beginning. In other words, the cursor is 3553 ** configured to use Prev, not Next. 3554 ** 3555 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3556 */ 3557 /* Opcode: SeekLE P1 P2 P3 P4 * 3558 ** Synopsis: key=r[P3@P4] 3559 ** 3560 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3561 ** use the value in register P3 as a key. If cursor P1 refers 3562 ** to an SQL index, then P3 is the first in an array of P4 registers 3563 ** that are used as an unpacked index key. 3564 ** 3565 ** Reposition cursor P1 so that it points to the largest entry that 3566 ** is less than or equal to the key value. If there are no records 3567 ** less than or equal to the key and P2 is not zero, then jump to P2. 3568 ** 3569 ** This opcode leaves the cursor configured to move in reverse order, 3570 ** from the end toward the beginning. In other words, the cursor is 3571 ** configured to use Prev, not Next. 3572 ** 3573 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3574 */ 3575 case OP_SeekLT: /* jump, in3 */ 3576 case OP_SeekLE: /* jump, in3 */ 3577 case OP_SeekGE: /* jump, in3 */ 3578 case OP_SeekGT: { /* jump, in3 */ 3579 int res; 3580 int oc; 3581 VdbeCursor *pC; 3582 UnpackedRecord r; 3583 int nField; 3584 i64 iKey; /* The rowid we are to seek to */ 3585 3586 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3587 assert( pOp->p2!=0 ); 3588 pC = p->apCsr[pOp->p1]; 3589 assert( pC!=0 ); 3590 assert( pC->pseudoTableReg==0 ); 3591 assert( OP_SeekLE == OP_SeekLT+1 ); 3592 assert( OP_SeekGE == OP_SeekLT+2 ); 3593 assert( OP_SeekGT == OP_SeekLT+3 ); 3594 assert( pC->isOrdered ); 3595 assert( pC->pCursor!=0 ); 3596 oc = pOp->opcode; 3597 pC->nullRow = 0; 3598 #ifdef SQLITE_DEBUG 3599 pC->seekOp = pOp->opcode; 3600 #endif 3601 if( pC->isTable ){ 3602 /* The input value in P3 might be of any type: integer, real, string, 3603 ** blob, or NULL. But it needs to be an integer before we can do 3604 ** the seek, so covert it. */ 3605 pIn3 = &aMem[pOp->p3]; 3606 ApplyNumericAffinity(pIn3); 3607 iKey = sqlite3VdbeIntValue(pIn3); 3608 pC->rowidIsValid = 0; 3609 3610 /* If the P3 value could not be converted into an integer without 3611 ** loss of information, then special processing is required... */ 3612 if( (pIn3->flags & MEM_Int)==0 ){ 3613 if( (pIn3->flags & MEM_Real)==0 ){ 3614 /* If the P3 value cannot be converted into any kind of a number, 3615 ** then the seek is not possible, so jump to P2 */ 3616 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3617 break; 3618 } 3619 3620 /* If the approximation iKey is larger than the actual real search 3621 ** term, substitute >= for > and < for <=. e.g. if the search term 3622 ** is 4.9 and the integer approximation 5: 3623 ** 3624 ** (x > 4.9) -> (x >= 5) 3625 ** (x <= 4.9) -> (x < 5) 3626 */ 3627 if( pIn3->r<(double)iKey ){ 3628 assert( OP_SeekGE==(OP_SeekGT-1) ); 3629 assert( OP_SeekLT==(OP_SeekLE-1) ); 3630 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3631 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3632 } 3633 3634 /* If the approximation iKey is smaller than the actual real search 3635 ** term, substitute <= for < and > for >=. */ 3636 else if( pIn3->r>(double)iKey ){ 3637 assert( OP_SeekLE==(OP_SeekLT+1) ); 3638 assert( OP_SeekGT==(OP_SeekGE+1) ); 3639 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3640 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3641 } 3642 } 3643 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3644 if( rc!=SQLITE_OK ){ 3645 goto abort_due_to_error; 3646 } 3647 if( res==0 ){ 3648 pC->rowidIsValid = 1; 3649 pC->lastRowid = iKey; 3650 } 3651 }else{ 3652 nField = pOp->p4.i; 3653 assert( pOp->p4type==P4_INT32 ); 3654 assert( nField>0 ); 3655 r.pKeyInfo = pC->pKeyInfo; 3656 r.nField = (u16)nField; 3657 3658 /* The next line of code computes as follows, only faster: 3659 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3660 ** r.default_rc = -1; 3661 ** }else{ 3662 ** r.default_rc = +1; 3663 ** } 3664 */ 3665 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3666 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3667 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3668 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3669 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3670 3671 r.aMem = &aMem[pOp->p3]; 3672 #ifdef SQLITE_DEBUG 3673 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3674 #endif 3675 ExpandBlob(r.aMem); 3676 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3677 if( rc!=SQLITE_OK ){ 3678 goto abort_due_to_error; 3679 } 3680 pC->rowidIsValid = 0; 3681 } 3682 pC->deferredMoveto = 0; 3683 pC->cacheStatus = CACHE_STALE; 3684 #ifdef SQLITE_TEST 3685 sqlite3_search_count++; 3686 #endif 3687 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3688 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3689 res = 0; 3690 rc = sqlite3BtreeNext(pC->pCursor, &res); 3691 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3692 pC->rowidIsValid = 0; 3693 }else{ 3694 res = 0; 3695 } 3696 }else{ 3697 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3698 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3699 res = 0; 3700 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3701 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3702 pC->rowidIsValid = 0; 3703 }else{ 3704 /* res might be negative because the table is empty. Check to 3705 ** see if this is the case. 3706 */ 3707 res = sqlite3BtreeEof(pC->pCursor); 3708 } 3709 } 3710 assert( pOp->p2>0 ); 3711 VdbeBranchTaken(res!=0,2); 3712 if( res ){ 3713 pc = pOp->p2 - 1; 3714 } 3715 break; 3716 } 3717 3718 /* Opcode: Seek P1 P2 * * * 3719 ** Synopsis: intkey=r[P2] 3720 ** 3721 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3722 ** for P1 to move so that it points to the rowid given by P2. 3723 ** 3724 ** This is actually a deferred seek. Nothing actually happens until 3725 ** the cursor is used to read a record. That way, if no reads 3726 ** occur, no unnecessary I/O happens. 3727 */ 3728 case OP_Seek: { /* in2 */ 3729 VdbeCursor *pC; 3730 3731 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3732 pC = p->apCsr[pOp->p1]; 3733 assert( pC!=0 ); 3734 assert( pC->pCursor!=0 ); 3735 assert( pC->isTable ); 3736 pC->nullRow = 0; 3737 pIn2 = &aMem[pOp->p2]; 3738 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3739 pC->rowidIsValid = 0; 3740 pC->deferredMoveto = 1; 3741 break; 3742 } 3743 3744 3745 /* Opcode: Found P1 P2 P3 P4 * 3746 ** Synopsis: key=r[P3@P4] 3747 ** 3748 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3749 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3750 ** record. 3751 ** 3752 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3753 ** is a prefix of any entry in P1 then a jump is made to P2 and 3754 ** P1 is left pointing at the matching entry. 3755 ** 3756 ** This operation leaves the cursor in a state where it can be 3757 ** advanced in the forward direction. The Next instruction will work, 3758 ** but not the Prev instruction. 3759 ** 3760 ** See also: NotFound, NoConflict, NotExists. SeekGe 3761 */ 3762 /* Opcode: NotFound P1 P2 P3 P4 * 3763 ** Synopsis: key=r[P3@P4] 3764 ** 3765 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3766 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3767 ** record. 3768 ** 3769 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3770 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3771 ** does contain an entry whose prefix matches the P3/P4 record then control 3772 ** falls through to the next instruction and P1 is left pointing at the 3773 ** matching entry. 3774 ** 3775 ** This operation leaves the cursor in a state where it cannot be 3776 ** advanced in either direction. In other words, the Next and Prev 3777 ** opcodes do not work after this operation. 3778 ** 3779 ** See also: Found, NotExists, NoConflict 3780 */ 3781 /* Opcode: NoConflict P1 P2 P3 P4 * 3782 ** Synopsis: key=r[P3@P4] 3783 ** 3784 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3785 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3786 ** record. 3787 ** 3788 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3789 ** contains any NULL value, jump immediately to P2. If all terms of the 3790 ** record are not-NULL then a check is done to determine if any row in the 3791 ** P1 index btree has a matching key prefix. If there are no matches, jump 3792 ** immediately to P2. If there is a match, fall through and leave the P1 3793 ** cursor pointing to the matching row. 3794 ** 3795 ** This opcode is similar to OP_NotFound with the exceptions that the 3796 ** branch is always taken if any part of the search key input is NULL. 3797 ** 3798 ** This operation leaves the cursor in a state where it cannot be 3799 ** advanced in either direction. In other words, the Next and Prev 3800 ** opcodes do not work after this operation. 3801 ** 3802 ** See also: NotFound, Found, NotExists 3803 */ 3804 case OP_NoConflict: /* jump, in3 */ 3805 case OP_NotFound: /* jump, in3 */ 3806 case OP_Found: { /* jump, in3 */ 3807 int alreadyExists; 3808 int ii; 3809 VdbeCursor *pC; 3810 int res; 3811 char *pFree; 3812 UnpackedRecord *pIdxKey; 3813 UnpackedRecord r; 3814 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3815 3816 #ifdef SQLITE_TEST 3817 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3818 #endif 3819 3820 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3821 assert( pOp->p4type==P4_INT32 ); 3822 pC = p->apCsr[pOp->p1]; 3823 assert( pC!=0 ); 3824 #ifdef SQLITE_DEBUG 3825 pC->seekOp = pOp->opcode; 3826 #endif 3827 pIn3 = &aMem[pOp->p3]; 3828 assert( pC->pCursor!=0 ); 3829 assert( pC->isTable==0 ); 3830 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3831 if( pOp->p4.i>0 ){ 3832 r.pKeyInfo = pC->pKeyInfo; 3833 r.nField = (u16)pOp->p4.i; 3834 r.aMem = pIn3; 3835 for(ii=0; ii<r.nField; ii++){ 3836 assert( memIsValid(&r.aMem[ii]) ); 3837 ExpandBlob(&r.aMem[ii]); 3838 #ifdef SQLITE_DEBUG 3839 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3840 #endif 3841 } 3842 pIdxKey = &r; 3843 }else{ 3844 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3845 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3846 ); 3847 if( pIdxKey==0 ) goto no_mem; 3848 assert( pIn3->flags & MEM_Blob ); 3849 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3850 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3851 } 3852 pIdxKey->default_rc = 0; 3853 if( pOp->opcode==OP_NoConflict ){ 3854 /* For the OP_NoConflict opcode, take the jump if any of the 3855 ** input fields are NULL, since any key with a NULL will not 3856 ** conflict */ 3857 for(ii=0; ii<r.nField; ii++){ 3858 if( r.aMem[ii].flags & MEM_Null ){ 3859 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3860 break; 3861 } 3862 } 3863 } 3864 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3865 if( pOp->p4.i==0 ){ 3866 sqlite3DbFree(db, pFree); 3867 } 3868 if( rc!=SQLITE_OK ){ 3869 break; 3870 } 3871 pC->seekResult = res; 3872 alreadyExists = (res==0); 3873 pC->nullRow = 1-alreadyExists; 3874 pC->deferredMoveto = 0; 3875 pC->cacheStatus = CACHE_STALE; 3876 if( pOp->opcode==OP_Found ){ 3877 VdbeBranchTaken(alreadyExists!=0,2); 3878 if( alreadyExists ) pc = pOp->p2 - 1; 3879 }else{ 3880 VdbeBranchTaken(alreadyExists==0,2); 3881 if( !alreadyExists ) pc = pOp->p2 - 1; 3882 } 3883 break; 3884 } 3885 3886 /* Opcode: NotExists P1 P2 P3 * * 3887 ** Synopsis: intkey=r[P3] 3888 ** 3889 ** P1 is the index of a cursor open on an SQL table btree (with integer 3890 ** keys). P3 is an integer rowid. If P1 does not contain a record with 3891 ** rowid P3 then jump immediately to P2. If P1 does contain a record 3892 ** with rowid P3 then leave the cursor pointing at that record and fall 3893 ** through to the next instruction. 3894 ** 3895 ** The OP_NotFound opcode performs the same operation on index btrees 3896 ** (with arbitrary multi-value keys). 3897 ** 3898 ** This opcode leaves the cursor in a state where it cannot be advanced 3899 ** in either direction. In other words, the Next and Prev opcodes will 3900 ** not work following this opcode. 3901 ** 3902 ** See also: Found, NotFound, NoConflict 3903 */ 3904 case OP_NotExists: { /* jump, in3 */ 3905 VdbeCursor *pC; 3906 BtCursor *pCrsr; 3907 int res; 3908 u64 iKey; 3909 3910 pIn3 = &aMem[pOp->p3]; 3911 assert( pIn3->flags & MEM_Int ); 3912 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3913 pC = p->apCsr[pOp->p1]; 3914 assert( pC!=0 ); 3915 #ifdef SQLITE_DEBUG 3916 pC->seekOp = 0; 3917 #endif 3918 assert( pC->isTable ); 3919 assert( pC->pseudoTableReg==0 ); 3920 pCrsr = pC->pCursor; 3921 assert( pCrsr!=0 ); 3922 res = 0; 3923 iKey = pIn3->u.i; 3924 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3925 pC->lastRowid = pIn3->u.i; 3926 pC->rowidIsValid = res==0 ?1:0; 3927 pC->nullRow = 0; 3928 pC->cacheStatus = CACHE_STALE; 3929 pC->deferredMoveto = 0; 3930 VdbeBranchTaken(res!=0,2); 3931 if( res!=0 ){ 3932 pc = pOp->p2 - 1; 3933 assert( pC->rowidIsValid==0 ); 3934 } 3935 pC->seekResult = res; 3936 break; 3937 } 3938 3939 /* Opcode: Sequence P1 P2 * * * 3940 ** Synopsis: r[P2]=cursor[P1].ctr++ 3941 ** 3942 ** Find the next available sequence number for cursor P1. 3943 ** Write the sequence number into register P2. 3944 ** The sequence number on the cursor is incremented after this 3945 ** instruction. 3946 */ 3947 case OP_Sequence: { /* out2-prerelease */ 3948 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3949 assert( p->apCsr[pOp->p1]!=0 ); 3950 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3951 break; 3952 } 3953 3954 3955 /* Opcode: NewRowid P1 P2 P3 * * 3956 ** Synopsis: r[P2]=rowid 3957 ** 3958 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3959 ** The record number is not previously used as a key in the database 3960 ** table that cursor P1 points to. The new record number is written 3961 ** written to register P2. 3962 ** 3963 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3964 ** the largest previously generated record number. No new record numbers are 3965 ** allowed to be less than this value. When this value reaches its maximum, 3966 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3967 ** generated record number. This P3 mechanism is used to help implement the 3968 ** AUTOINCREMENT feature. 3969 */ 3970 case OP_NewRowid: { /* out2-prerelease */ 3971 i64 v; /* The new rowid */ 3972 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3973 int res; /* Result of an sqlite3BtreeLast() */ 3974 int cnt; /* Counter to limit the number of searches */ 3975 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3976 VdbeFrame *pFrame; /* Root frame of VDBE */ 3977 3978 v = 0; 3979 res = 0; 3980 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3981 pC = p->apCsr[pOp->p1]; 3982 assert( pC!=0 ); 3983 if( NEVER(pC->pCursor==0) ){ 3984 /* The zero initialization above is all that is needed */ 3985 }else{ 3986 /* The next rowid or record number (different terms for the same 3987 ** thing) is obtained in a two-step algorithm. 3988 ** 3989 ** First we attempt to find the largest existing rowid and add one 3990 ** to that. But if the largest existing rowid is already the maximum 3991 ** positive integer, we have to fall through to the second 3992 ** probabilistic algorithm 3993 ** 3994 ** The second algorithm is to select a rowid at random and see if 3995 ** it already exists in the table. If it does not exist, we have 3996 ** succeeded. If the random rowid does exist, we select a new one 3997 ** and try again, up to 100 times. 3998 */ 3999 assert( pC->isTable ); 4000 4001 #ifdef SQLITE_32BIT_ROWID 4002 # define MAX_ROWID 0x7fffffff 4003 #else 4004 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4005 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4006 ** to provide the constant while making all compilers happy. 4007 */ 4008 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4009 #endif 4010 4011 if( !pC->useRandomRowid ){ 4012 rc = sqlite3BtreeLast(pC->pCursor, &res); 4013 if( rc!=SQLITE_OK ){ 4014 goto abort_due_to_error; 4015 } 4016 if( res ){ 4017 v = 1; /* IMP: R-61914-48074 */ 4018 }else{ 4019 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 4020 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4021 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 4022 if( v>=MAX_ROWID ){ 4023 pC->useRandomRowid = 1; 4024 }else{ 4025 v++; /* IMP: R-29538-34987 */ 4026 } 4027 } 4028 } 4029 4030 #ifndef SQLITE_OMIT_AUTOINCREMENT 4031 if( pOp->p3 ){ 4032 /* Assert that P3 is a valid memory cell. */ 4033 assert( pOp->p3>0 ); 4034 if( p->pFrame ){ 4035 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4036 /* Assert that P3 is a valid memory cell. */ 4037 assert( pOp->p3<=pFrame->nMem ); 4038 pMem = &pFrame->aMem[pOp->p3]; 4039 }else{ 4040 /* Assert that P3 is a valid memory cell. */ 4041 assert( pOp->p3<=(p->nMem-p->nCursor) ); 4042 pMem = &aMem[pOp->p3]; 4043 memAboutToChange(p, pMem); 4044 } 4045 assert( memIsValid(pMem) ); 4046 4047 REGISTER_TRACE(pOp->p3, pMem); 4048 sqlite3VdbeMemIntegerify(pMem); 4049 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4050 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4051 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 4052 goto abort_due_to_error; 4053 } 4054 if( v<pMem->u.i+1 ){ 4055 v = pMem->u.i + 1; 4056 } 4057 pMem->u.i = v; 4058 } 4059 #endif 4060 if( pC->useRandomRowid ){ 4061 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4062 ** largest possible integer (9223372036854775807) then the database 4063 ** engine starts picking positive candidate ROWIDs at random until 4064 ** it finds one that is not previously used. */ 4065 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4066 ** an AUTOINCREMENT table. */ 4067 /* on the first attempt, simply do one more than previous */ 4068 v = lastRowid; 4069 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 4070 v++; /* ensure non-zero */ 4071 cnt = 0; 4072 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 4073 0, &res))==SQLITE_OK) 4074 && (res==0) 4075 && (++cnt<100)){ 4076 /* collision - try another random rowid */ 4077 sqlite3_randomness(sizeof(v), &v); 4078 if( cnt<5 ){ 4079 /* try "small" random rowids for the initial attempts */ 4080 v &= 0xffffff; 4081 }else{ 4082 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 4083 } 4084 v++; /* ensure non-zero */ 4085 } 4086 if( rc==SQLITE_OK && res==0 ){ 4087 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4088 goto abort_due_to_error; 4089 } 4090 assert( v>0 ); /* EV: R-40812-03570 */ 4091 } 4092 pC->rowidIsValid = 0; 4093 pC->deferredMoveto = 0; 4094 pC->cacheStatus = CACHE_STALE; 4095 } 4096 pOut->u.i = v; 4097 break; 4098 } 4099 4100 /* Opcode: Insert P1 P2 P3 P4 P5 4101 ** Synopsis: intkey=r[P3] data=r[P2] 4102 ** 4103 ** Write an entry into the table of cursor P1. A new entry is 4104 ** created if it doesn't already exist or the data for an existing 4105 ** entry is overwritten. The data is the value MEM_Blob stored in register 4106 ** number P2. The key is stored in register P3. The key must 4107 ** be a MEM_Int. 4108 ** 4109 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4110 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4111 ** then rowid is stored for subsequent return by the 4112 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4113 ** 4114 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4115 ** the last seek operation (OP_NotExists) was a success, then this 4116 ** operation will not attempt to find the appropriate row before doing 4117 ** the insert but will instead overwrite the row that the cursor is 4118 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4119 ** has already positioned the cursor correctly. This is an optimization 4120 ** that boosts performance by avoiding redundant seeks. 4121 ** 4122 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4123 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4124 ** is part of an INSERT operation. The difference is only important to 4125 ** the update hook. 4126 ** 4127 ** Parameter P4 may point to a string containing the table-name, or 4128 ** may be NULL. If it is not NULL, then the update-hook 4129 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4130 ** 4131 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4132 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4133 ** and register P2 becomes ephemeral. If the cursor is changed, the 4134 ** value of register P2 will then change. Make sure this does not 4135 ** cause any problems.) 4136 ** 4137 ** This instruction only works on tables. The equivalent instruction 4138 ** for indices is OP_IdxInsert. 4139 */ 4140 /* Opcode: InsertInt P1 P2 P3 P4 P5 4141 ** Synopsis: intkey=P3 data=r[P2] 4142 ** 4143 ** This works exactly like OP_Insert except that the key is the 4144 ** integer value P3, not the value of the integer stored in register P3. 4145 */ 4146 case OP_Insert: 4147 case OP_InsertInt: { 4148 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4149 Mem *pKey; /* MEM cell holding key for the record */ 4150 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4151 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4152 int nZero; /* Number of zero-bytes to append */ 4153 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4154 const char *zDb; /* database name - used by the update hook */ 4155 const char *zTbl; /* Table name - used by the opdate hook */ 4156 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4157 4158 pData = &aMem[pOp->p2]; 4159 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4160 assert( memIsValid(pData) ); 4161 pC = p->apCsr[pOp->p1]; 4162 assert( pC!=0 ); 4163 assert( pC->pCursor!=0 ); 4164 assert( pC->pseudoTableReg==0 ); 4165 assert( pC->isTable ); 4166 REGISTER_TRACE(pOp->p2, pData); 4167 4168 if( pOp->opcode==OP_Insert ){ 4169 pKey = &aMem[pOp->p3]; 4170 assert( pKey->flags & MEM_Int ); 4171 assert( memIsValid(pKey) ); 4172 REGISTER_TRACE(pOp->p3, pKey); 4173 iKey = pKey->u.i; 4174 }else{ 4175 assert( pOp->opcode==OP_InsertInt ); 4176 iKey = pOp->p3; 4177 } 4178 4179 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4180 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4181 if( pData->flags & MEM_Null ){ 4182 pData->z = 0; 4183 pData->n = 0; 4184 }else{ 4185 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4186 } 4187 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4188 if( pData->flags & MEM_Zero ){ 4189 nZero = pData->u.nZero; 4190 }else{ 4191 nZero = 0; 4192 } 4193 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4194 pData->z, pData->n, nZero, 4195 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4196 ); 4197 pC->rowidIsValid = 0; 4198 pC->deferredMoveto = 0; 4199 pC->cacheStatus = CACHE_STALE; 4200 4201 /* Invoke the update-hook if required. */ 4202 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4203 zDb = db->aDb[pC->iDb].zName; 4204 zTbl = pOp->p4.z; 4205 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4206 assert( pC->isTable ); 4207 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4208 assert( pC->iDb>=0 ); 4209 } 4210 break; 4211 } 4212 4213 /* Opcode: Delete P1 P2 * P4 * 4214 ** 4215 ** Delete the record at which the P1 cursor is currently pointing. 4216 ** 4217 ** The cursor will be left pointing at either the next or the previous 4218 ** record in the table. If it is left pointing at the next record, then 4219 ** the next Next instruction will be a no-op. Hence it is OK to delete 4220 ** a record from within a Next loop. 4221 ** 4222 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4223 ** incremented (otherwise not). 4224 ** 4225 ** P1 must not be pseudo-table. It has to be a real table with 4226 ** multiple rows. 4227 ** 4228 ** If P4 is not NULL, then it is the name of the table that P1 is 4229 ** pointing to. The update hook will be invoked, if it exists. 4230 ** If P4 is not NULL then the P1 cursor must have been positioned 4231 ** using OP_NotFound prior to invoking this opcode. 4232 */ 4233 case OP_Delete: { 4234 i64 iKey; 4235 VdbeCursor *pC; 4236 4237 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4238 pC = p->apCsr[pOp->p1]; 4239 assert( pC!=0 ); 4240 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4241 iKey = pC->lastRowid; /* Only used for the update hook */ 4242 4243 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 4244 ** OP_Column on the same table without any intervening operations that 4245 ** might move or invalidate the cursor. Hence cursor pC is always pointing 4246 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 4247 ** below is always a no-op and cannot fail. We will run it anyhow, though, 4248 ** to guard against future changes to the code generator. 4249 **/ 4250 assert( pC->deferredMoveto==0 ); 4251 rc = sqlite3VdbeCursorMoveto(pC); 4252 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4253 4254 rc = sqlite3BtreeDelete(pC->pCursor); 4255 pC->cacheStatus = CACHE_STALE; 4256 4257 /* Invoke the update-hook if required. */ 4258 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4259 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4260 db->aDb[pC->iDb].zName, pOp->p4.z, iKey); 4261 assert( pC->iDb>=0 ); 4262 } 4263 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4264 break; 4265 } 4266 /* Opcode: ResetCount * * * * * 4267 ** 4268 ** The value of the change counter is copied to the database handle 4269 ** change counter (returned by subsequent calls to sqlite3_changes()). 4270 ** Then the VMs internal change counter resets to 0. 4271 ** This is used by trigger programs. 4272 */ 4273 case OP_ResetCount: { 4274 sqlite3VdbeSetChanges(db, p->nChange); 4275 p->nChange = 0; 4276 break; 4277 } 4278 4279 /* Opcode: SorterCompare P1 P2 P3 P4 4280 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4281 ** 4282 ** P1 is a sorter cursor. This instruction compares a prefix of the 4283 ** record blob in register P3 against a prefix of the entry that 4284 ** the sorter cursor currently points to. Only the first P4 fields 4285 ** of r[P3] and the sorter record are compared. 4286 ** 4287 ** If either P3 or the sorter contains a NULL in one of their significant 4288 ** fields (not counting the P4 fields at the end which are ignored) then 4289 ** the comparison is assumed to be equal. 4290 ** 4291 ** Fall through to next instruction if the two records compare equal to 4292 ** each other. Jump to P2 if they are different. 4293 */ 4294 case OP_SorterCompare: { 4295 VdbeCursor *pC; 4296 int res; 4297 int nKeyCol; 4298 4299 pC = p->apCsr[pOp->p1]; 4300 assert( isSorter(pC) ); 4301 assert( pOp->p4type==P4_INT32 ); 4302 pIn3 = &aMem[pOp->p3]; 4303 nKeyCol = pOp->p4.i; 4304 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4305 VdbeBranchTaken(res!=0,2); 4306 if( res ){ 4307 pc = pOp->p2-1; 4308 } 4309 break; 4310 }; 4311 4312 /* Opcode: SorterData P1 P2 * * * 4313 ** Synopsis: r[P2]=data 4314 ** 4315 ** Write into register P2 the current sorter data for sorter cursor P1. 4316 */ 4317 case OP_SorterData: { 4318 VdbeCursor *pC; 4319 4320 pOut = &aMem[pOp->p2]; 4321 pC = p->apCsr[pOp->p1]; 4322 assert( isSorter(pC) ); 4323 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4324 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4325 break; 4326 } 4327 4328 /* Opcode: RowData P1 P2 * * * 4329 ** Synopsis: r[P2]=data 4330 ** 4331 ** Write into register P2 the complete row data for cursor P1. 4332 ** There is no interpretation of the data. 4333 ** It is just copied onto the P2 register exactly as 4334 ** it is found in the database file. 4335 ** 4336 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4337 ** of a real table, not a pseudo-table. 4338 */ 4339 /* Opcode: RowKey P1 P2 * * * 4340 ** Synopsis: r[P2]=key 4341 ** 4342 ** Write into register P2 the complete row key for cursor P1. 4343 ** There is no interpretation of the data. 4344 ** The key is copied onto the P2 register exactly as 4345 ** it is found in the database file. 4346 ** 4347 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4348 ** of a real table, not a pseudo-table. 4349 */ 4350 case OP_RowKey: 4351 case OP_RowData: { 4352 VdbeCursor *pC; 4353 BtCursor *pCrsr; 4354 u32 n; 4355 i64 n64; 4356 4357 pOut = &aMem[pOp->p2]; 4358 memAboutToChange(p, pOut); 4359 4360 /* Note that RowKey and RowData are really exactly the same instruction */ 4361 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4362 pC = p->apCsr[pOp->p1]; 4363 assert( isSorter(pC)==0 ); 4364 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4365 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4366 assert( pC!=0 ); 4367 assert( pC->nullRow==0 ); 4368 assert( pC->pseudoTableReg==0 ); 4369 assert( pC->pCursor!=0 ); 4370 pCrsr = pC->pCursor; 4371 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4372 4373 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4374 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4375 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 4376 ** a no-op and can never fail. But we leave it in place as a safety. 4377 */ 4378 assert( pC->deferredMoveto==0 ); 4379 rc = sqlite3VdbeCursorMoveto(pC); 4380 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4381 4382 if( pC->isTable==0 ){ 4383 assert( !pC->isTable ); 4384 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4385 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4386 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4387 goto too_big; 4388 } 4389 n = (u32)n64; 4390 }else{ 4391 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4392 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4393 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4394 goto too_big; 4395 } 4396 } 4397 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4398 goto no_mem; 4399 } 4400 pOut->n = n; 4401 MemSetTypeFlag(pOut, MEM_Blob); 4402 if( pC->isTable==0 ){ 4403 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4404 }else{ 4405 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4406 } 4407 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4408 UPDATE_MAX_BLOBSIZE(pOut); 4409 REGISTER_TRACE(pOp->p2, pOut); 4410 break; 4411 } 4412 4413 /* Opcode: Rowid P1 P2 * * * 4414 ** Synopsis: r[P2]=rowid 4415 ** 4416 ** Store in register P2 an integer which is the key of the table entry that 4417 ** P1 is currently point to. 4418 ** 4419 ** P1 can be either an ordinary table or a virtual table. There used to 4420 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4421 ** one opcode now works for both table types. 4422 */ 4423 case OP_Rowid: { /* out2-prerelease */ 4424 VdbeCursor *pC; 4425 i64 v; 4426 sqlite3_vtab *pVtab; 4427 const sqlite3_module *pModule; 4428 4429 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4430 pC = p->apCsr[pOp->p1]; 4431 assert( pC!=0 ); 4432 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4433 if( pC->nullRow ){ 4434 pOut->flags = MEM_Null; 4435 break; 4436 }else if( pC->deferredMoveto ){ 4437 v = pC->movetoTarget; 4438 #ifndef SQLITE_OMIT_VIRTUALTABLE 4439 }else if( pC->pVtabCursor ){ 4440 pVtab = pC->pVtabCursor->pVtab; 4441 pModule = pVtab->pModule; 4442 assert( pModule->xRowid ); 4443 rc = pModule->xRowid(pC->pVtabCursor, &v); 4444 sqlite3VtabImportErrmsg(p, pVtab); 4445 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4446 }else{ 4447 assert( pC->pCursor!=0 ); 4448 rc = sqlite3VdbeCursorMoveto(pC); 4449 if( rc ) goto abort_due_to_error; 4450 if( pC->rowidIsValid ){ 4451 v = pC->lastRowid; 4452 }else{ 4453 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4454 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4455 } 4456 } 4457 pOut->u.i = v; 4458 break; 4459 } 4460 4461 /* Opcode: NullRow P1 * * * * 4462 ** 4463 ** Move the cursor P1 to a null row. Any OP_Column operations 4464 ** that occur while the cursor is on the null row will always 4465 ** write a NULL. 4466 */ 4467 case OP_NullRow: { 4468 VdbeCursor *pC; 4469 4470 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4471 pC = p->apCsr[pOp->p1]; 4472 assert( pC!=0 ); 4473 pC->nullRow = 1; 4474 pC->rowidIsValid = 0; 4475 pC->cacheStatus = CACHE_STALE; 4476 if( pC->pCursor ){ 4477 sqlite3BtreeClearCursor(pC->pCursor); 4478 } 4479 break; 4480 } 4481 4482 /* Opcode: Last P1 P2 * * * 4483 ** 4484 ** The next use of the Rowid or Column or Prev instruction for P1 4485 ** will refer to the last entry in the database table or index. 4486 ** If the table or index is empty and P2>0, then jump immediately to P2. 4487 ** If P2 is 0 or if the table or index is not empty, fall through 4488 ** to the following instruction. 4489 ** 4490 ** This opcode leaves the cursor configured to move in reverse order, 4491 ** from the end toward the beginning. In other words, the cursor is 4492 ** configured to use Prev, not Next. 4493 */ 4494 case OP_Last: { /* jump */ 4495 VdbeCursor *pC; 4496 BtCursor *pCrsr; 4497 int res; 4498 4499 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4500 pC = p->apCsr[pOp->p1]; 4501 assert( pC!=0 ); 4502 pCrsr = pC->pCursor; 4503 res = 0; 4504 assert( pCrsr!=0 ); 4505 rc = sqlite3BtreeLast(pCrsr, &res); 4506 pC->nullRow = (u8)res; 4507 pC->deferredMoveto = 0; 4508 pC->rowidIsValid = 0; 4509 pC->cacheStatus = CACHE_STALE; 4510 #ifdef SQLITE_DEBUG 4511 pC->seekOp = OP_Last; 4512 #endif 4513 if( pOp->p2>0 ){ 4514 VdbeBranchTaken(res!=0,2); 4515 if( res ) pc = pOp->p2 - 1; 4516 } 4517 break; 4518 } 4519 4520 4521 /* Opcode: Sort P1 P2 * * * 4522 ** 4523 ** This opcode does exactly the same thing as OP_Rewind except that 4524 ** it increments an undocumented global variable used for testing. 4525 ** 4526 ** Sorting is accomplished by writing records into a sorting index, 4527 ** then rewinding that index and playing it back from beginning to 4528 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4529 ** rewinding so that the global variable will be incremented and 4530 ** regression tests can determine whether or not the optimizer is 4531 ** correctly optimizing out sorts. 4532 */ 4533 case OP_SorterSort: /* jump */ 4534 case OP_Sort: { /* jump */ 4535 #ifdef SQLITE_TEST 4536 sqlite3_sort_count++; 4537 sqlite3_search_count--; 4538 #endif 4539 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4540 /* Fall through into OP_Rewind */ 4541 } 4542 /* Opcode: Rewind P1 P2 * * * 4543 ** 4544 ** The next use of the Rowid or Column or Next instruction for P1 4545 ** will refer to the first entry in the database table or index. 4546 ** If the table or index is empty and P2>0, then jump immediately to P2. 4547 ** If P2 is 0 or if the table or index is not empty, fall through 4548 ** to the following instruction. 4549 ** 4550 ** This opcode leaves the cursor configured to move in forward order, 4551 ** from the begining toward the end. In other words, the cursor is 4552 ** configured to use Next, not Prev. 4553 */ 4554 case OP_Rewind: { /* jump */ 4555 VdbeCursor *pC; 4556 BtCursor *pCrsr; 4557 int res; 4558 4559 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4560 pC = p->apCsr[pOp->p1]; 4561 assert( pC!=0 ); 4562 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4563 res = 1; 4564 #ifdef SQLITE_DEBUG 4565 pC->seekOp = OP_Rewind; 4566 #endif 4567 if( isSorter(pC) ){ 4568 rc = sqlite3VdbeSorterRewind(db, pC, &res); 4569 }else{ 4570 pCrsr = pC->pCursor; 4571 assert( pCrsr ); 4572 rc = sqlite3BtreeFirst(pCrsr, &res); 4573 pC->deferredMoveto = 0; 4574 pC->cacheStatus = CACHE_STALE; 4575 pC->rowidIsValid = 0; 4576 } 4577 pC->nullRow = (u8)res; 4578 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4579 VdbeBranchTaken(res!=0,2); 4580 if( res ){ 4581 pc = pOp->p2 - 1; 4582 } 4583 break; 4584 } 4585 4586 /* Opcode: Next P1 P2 P3 P4 P5 4587 ** 4588 ** Advance cursor P1 so that it points to the next key/data pair in its 4589 ** table or index. If there are no more key/value pairs then fall through 4590 ** to the following instruction. But if the cursor advance was successful, 4591 ** jump immediately to P2. 4592 ** 4593 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4594 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4595 ** to follow SeekLT, SeekLE, or OP_Last. 4596 ** 4597 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4598 ** been opened prior to this opcode or the program will segfault. 4599 ** 4600 ** The P3 value is a hint to the btree implementation. If P3==1, that 4601 ** means P1 is an SQL index and that this instruction could have been 4602 ** omitted if that index had been unique. P3 is usually 0. P3 is 4603 ** always either 0 or 1. 4604 ** 4605 ** P4 is always of type P4_ADVANCE. The function pointer points to 4606 ** sqlite3BtreeNext(). 4607 ** 4608 ** If P5 is positive and the jump is taken, then event counter 4609 ** number P5-1 in the prepared statement is incremented. 4610 ** 4611 ** See also: Prev, NextIfOpen 4612 */ 4613 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4614 ** 4615 ** This opcode works just like Next except that if cursor P1 is not 4616 ** open it behaves a no-op. 4617 */ 4618 /* Opcode: Prev P1 P2 P3 P4 P5 4619 ** 4620 ** Back up cursor P1 so that it points to the previous key/data pair in its 4621 ** table or index. If there is no previous key/value pairs then fall through 4622 ** to the following instruction. But if the cursor backup was successful, 4623 ** jump immediately to P2. 4624 ** 4625 ** 4626 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4627 ** OP_Last opcode used to position the cursor. Prev is not allowed 4628 ** to follow SeekGT, SeekGE, or OP_Rewind. 4629 ** 4630 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4631 ** not open then the behavior is undefined. 4632 ** 4633 ** The P3 value is a hint to the btree implementation. If P3==1, that 4634 ** means P1 is an SQL index and that this instruction could have been 4635 ** omitted if that index had been unique. P3 is usually 0. P3 is 4636 ** always either 0 or 1. 4637 ** 4638 ** P4 is always of type P4_ADVANCE. The function pointer points to 4639 ** sqlite3BtreePrevious(). 4640 ** 4641 ** If P5 is positive and the jump is taken, then event counter 4642 ** number P5-1 in the prepared statement is incremented. 4643 */ 4644 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4645 ** 4646 ** This opcode works just like Prev except that if cursor P1 is not 4647 ** open it behaves a no-op. 4648 */ 4649 case OP_SorterNext: { /* jump */ 4650 VdbeCursor *pC; 4651 int res; 4652 4653 pC = p->apCsr[pOp->p1]; 4654 assert( isSorter(pC) ); 4655 res = 0; 4656 rc = sqlite3VdbeSorterNext(db, pC, &res); 4657 goto next_tail; 4658 case OP_PrevIfOpen: /* jump */ 4659 case OP_NextIfOpen: /* jump */ 4660 if( p->apCsr[pOp->p1]==0 ) break; 4661 /* Fall through */ 4662 case OP_Prev: /* jump */ 4663 case OP_Next: /* jump */ 4664 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4665 assert( pOp->p5<ArraySize(p->aCounter) ); 4666 pC = p->apCsr[pOp->p1]; 4667 res = pOp->p3; 4668 assert( pC!=0 ); 4669 assert( pC->deferredMoveto==0 ); 4670 assert( pC->pCursor ); 4671 assert( res==0 || (res==1 && pC->isTable==0) ); 4672 testcase( res==1 ); 4673 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4674 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4675 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4676 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4677 4678 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4679 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4680 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4681 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4682 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4683 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4684 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4685 || pC->seekOp==OP_Last ); 4686 4687 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4688 next_tail: 4689 pC->cacheStatus = CACHE_STALE; 4690 VdbeBranchTaken(res==0,2); 4691 if( res==0 ){ 4692 pC->nullRow = 0; 4693 pc = pOp->p2 - 1; 4694 p->aCounter[pOp->p5]++; 4695 #ifdef SQLITE_TEST 4696 sqlite3_search_count++; 4697 #endif 4698 }else{ 4699 pC->nullRow = 1; 4700 } 4701 pC->rowidIsValid = 0; 4702 goto check_for_interrupt; 4703 } 4704 4705 /* Opcode: IdxInsert P1 P2 P3 * P5 4706 ** Synopsis: key=r[P2] 4707 ** 4708 ** Register P2 holds an SQL index key made using the 4709 ** MakeRecord instructions. This opcode writes that key 4710 ** into the index P1. Data for the entry is nil. 4711 ** 4712 ** P3 is a flag that provides a hint to the b-tree layer that this 4713 ** insert is likely to be an append. 4714 ** 4715 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4716 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4717 ** then the change counter is unchanged. 4718 ** 4719 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4720 ** just done a seek to the spot where the new entry is to be inserted. 4721 ** This flag avoids doing an extra seek. 4722 ** 4723 ** This instruction only works for indices. The equivalent instruction 4724 ** for tables is OP_Insert. 4725 */ 4726 case OP_SorterInsert: /* in2 */ 4727 case OP_IdxInsert: { /* in2 */ 4728 VdbeCursor *pC; 4729 BtCursor *pCrsr; 4730 int nKey; 4731 const char *zKey; 4732 4733 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4734 pC = p->apCsr[pOp->p1]; 4735 assert( pC!=0 ); 4736 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4737 pIn2 = &aMem[pOp->p2]; 4738 assert( pIn2->flags & MEM_Blob ); 4739 pCrsr = pC->pCursor; 4740 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4741 assert( pCrsr!=0 ); 4742 assert( pC->isTable==0 ); 4743 rc = ExpandBlob(pIn2); 4744 if( rc==SQLITE_OK ){ 4745 if( isSorter(pC) ){ 4746 rc = sqlite3VdbeSorterWrite(db, pC, pIn2); 4747 }else{ 4748 nKey = pIn2->n; 4749 zKey = pIn2->z; 4750 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4751 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4752 ); 4753 assert( pC->deferredMoveto==0 ); 4754 pC->cacheStatus = CACHE_STALE; 4755 } 4756 } 4757 break; 4758 } 4759 4760 /* Opcode: IdxDelete P1 P2 P3 * * 4761 ** Synopsis: key=r[P2@P3] 4762 ** 4763 ** The content of P3 registers starting at register P2 form 4764 ** an unpacked index key. This opcode removes that entry from the 4765 ** index opened by cursor P1. 4766 */ 4767 case OP_IdxDelete: { 4768 VdbeCursor *pC; 4769 BtCursor *pCrsr; 4770 int res; 4771 UnpackedRecord r; 4772 4773 assert( pOp->p3>0 ); 4774 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4775 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4776 pC = p->apCsr[pOp->p1]; 4777 assert( pC!=0 ); 4778 pCrsr = pC->pCursor; 4779 assert( pCrsr!=0 ); 4780 assert( pOp->p5==0 ); 4781 r.pKeyInfo = pC->pKeyInfo; 4782 r.nField = (u16)pOp->p3; 4783 r.default_rc = 0; 4784 r.aMem = &aMem[pOp->p2]; 4785 #ifdef SQLITE_DEBUG 4786 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4787 #endif 4788 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4789 if( rc==SQLITE_OK && res==0 ){ 4790 rc = sqlite3BtreeDelete(pCrsr); 4791 } 4792 assert( pC->deferredMoveto==0 ); 4793 pC->cacheStatus = CACHE_STALE; 4794 break; 4795 } 4796 4797 /* Opcode: IdxRowid P1 P2 * * * 4798 ** Synopsis: r[P2]=rowid 4799 ** 4800 ** Write into register P2 an integer which is the last entry in the record at 4801 ** the end of the index key pointed to by cursor P1. This integer should be 4802 ** the rowid of the table entry to which this index entry points. 4803 ** 4804 ** See also: Rowid, MakeRecord. 4805 */ 4806 case OP_IdxRowid: { /* out2-prerelease */ 4807 BtCursor *pCrsr; 4808 VdbeCursor *pC; 4809 i64 rowid; 4810 4811 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4812 pC = p->apCsr[pOp->p1]; 4813 assert( pC!=0 ); 4814 pCrsr = pC->pCursor; 4815 assert( pCrsr!=0 ); 4816 pOut->flags = MEM_Null; 4817 rc = sqlite3VdbeCursorMoveto(pC); 4818 if( NEVER(rc) ) goto abort_due_to_error; 4819 assert( pC->deferredMoveto==0 ); 4820 assert( pC->isTable==0 ); 4821 if( !pC->nullRow ){ 4822 rowid = 0; /* Not needed. Only used to silence a warning. */ 4823 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4824 if( rc!=SQLITE_OK ){ 4825 goto abort_due_to_error; 4826 } 4827 pOut->u.i = rowid; 4828 pOut->flags = MEM_Int; 4829 } 4830 break; 4831 } 4832 4833 /* Opcode: IdxGE P1 P2 P3 P4 P5 4834 ** Synopsis: key=r[P3@P4] 4835 ** 4836 ** The P4 register values beginning with P3 form an unpacked index 4837 ** key that omits the PRIMARY KEY. Compare this key value against the index 4838 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4839 ** fields at the end. 4840 ** 4841 ** If the P1 index entry is greater than or equal to the key value 4842 ** then jump to P2. Otherwise fall through to the next instruction. 4843 */ 4844 /* Opcode: IdxGT P1 P2 P3 P4 P5 4845 ** Synopsis: key=r[P3@P4] 4846 ** 4847 ** The P4 register values beginning with P3 form an unpacked index 4848 ** key that omits the PRIMARY KEY. Compare this key value against the index 4849 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4850 ** fields at the end. 4851 ** 4852 ** If the P1 index entry is greater than the key value 4853 ** then jump to P2. Otherwise fall through to the next instruction. 4854 */ 4855 /* Opcode: IdxLT P1 P2 P3 P4 P5 4856 ** Synopsis: key=r[P3@P4] 4857 ** 4858 ** The P4 register values beginning with P3 form an unpacked index 4859 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4860 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4861 ** ROWID on the P1 index. 4862 ** 4863 ** If the P1 index entry is less than the key value then jump to P2. 4864 ** Otherwise fall through to the next instruction. 4865 */ 4866 /* Opcode: IdxLE P1 P2 P3 P4 P5 4867 ** Synopsis: key=r[P3@P4] 4868 ** 4869 ** The P4 register values beginning with P3 form an unpacked index 4870 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4871 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4872 ** ROWID on the P1 index. 4873 ** 4874 ** If the P1 index entry is less than or equal to the key value then jump 4875 ** to P2. Otherwise fall through to the next instruction. 4876 */ 4877 case OP_IdxLE: /* jump */ 4878 case OP_IdxGT: /* jump */ 4879 case OP_IdxLT: /* jump */ 4880 case OP_IdxGE: { /* jump */ 4881 VdbeCursor *pC; 4882 int res; 4883 UnpackedRecord r; 4884 4885 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4886 pC = p->apCsr[pOp->p1]; 4887 assert( pC!=0 ); 4888 assert( pC->isOrdered ); 4889 assert( pC->pCursor!=0); 4890 assert( pC->deferredMoveto==0 ); 4891 assert( pOp->p5==0 || pOp->p5==1 ); 4892 assert( pOp->p4type==P4_INT32 ); 4893 r.pKeyInfo = pC->pKeyInfo; 4894 r.nField = (u16)pOp->p4.i; 4895 if( pOp->opcode<OP_IdxLT ){ 4896 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 4897 r.default_rc = -1; 4898 }else{ 4899 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 4900 r.default_rc = 0; 4901 } 4902 r.aMem = &aMem[pOp->p3]; 4903 #ifdef SQLITE_DEBUG 4904 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4905 #endif 4906 res = 0; /* Not needed. Only used to silence a warning. */ 4907 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4908 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 4909 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 4910 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 4911 res = -res; 4912 }else{ 4913 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 4914 res++; 4915 } 4916 VdbeBranchTaken(res>0,2); 4917 if( res>0 ){ 4918 pc = pOp->p2 - 1 ; 4919 } 4920 break; 4921 } 4922 4923 /* Opcode: Destroy P1 P2 P3 * * 4924 ** 4925 ** Delete an entire database table or index whose root page in the database 4926 ** file is given by P1. 4927 ** 4928 ** The table being destroyed is in the main database file if P3==0. If 4929 ** P3==1 then the table to be clear is in the auxiliary database file 4930 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4931 ** 4932 ** If AUTOVACUUM is enabled then it is possible that another root page 4933 ** might be moved into the newly deleted root page in order to keep all 4934 ** root pages contiguous at the beginning of the database. The former 4935 ** value of the root page that moved - its value before the move occurred - 4936 ** is stored in register P2. If no page 4937 ** movement was required (because the table being dropped was already 4938 ** the last one in the database) then a zero is stored in register P2. 4939 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4940 ** 4941 ** See also: Clear 4942 */ 4943 case OP_Destroy: { /* out2-prerelease */ 4944 int iMoved; 4945 int iCnt; 4946 Vdbe *pVdbe; 4947 int iDb; 4948 4949 assert( p->readOnly==0 ); 4950 #ifndef SQLITE_OMIT_VIRTUALTABLE 4951 iCnt = 0; 4952 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4953 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4954 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4955 ){ 4956 iCnt++; 4957 } 4958 } 4959 #else 4960 iCnt = db->nVdbeRead; 4961 #endif 4962 pOut->flags = MEM_Null; 4963 if( iCnt>1 ){ 4964 rc = SQLITE_LOCKED; 4965 p->errorAction = OE_Abort; 4966 }else{ 4967 iDb = pOp->p3; 4968 assert( iCnt==1 ); 4969 assert( DbMaskTest(p->btreeMask, iDb) ); 4970 iMoved = 0; /* Not needed. Only to silence a warning. */ 4971 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4972 pOut->flags = MEM_Int; 4973 pOut->u.i = iMoved; 4974 #ifndef SQLITE_OMIT_AUTOVACUUM 4975 if( rc==SQLITE_OK && iMoved!=0 ){ 4976 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4977 /* All OP_Destroy operations occur on the same btree */ 4978 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4979 resetSchemaOnFault = iDb+1; 4980 } 4981 #endif 4982 } 4983 break; 4984 } 4985 4986 /* Opcode: Clear P1 P2 P3 4987 ** 4988 ** Delete all contents of the database table or index whose root page 4989 ** in the database file is given by P1. But, unlike Destroy, do not 4990 ** remove the table or index from the database file. 4991 ** 4992 ** The table being clear is in the main database file if P2==0. If 4993 ** P2==1 then the table to be clear is in the auxiliary database file 4994 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4995 ** 4996 ** If the P3 value is non-zero, then the table referred to must be an 4997 ** intkey table (an SQL table, not an index). In this case the row change 4998 ** count is incremented by the number of rows in the table being cleared. 4999 ** If P3 is greater than zero, then the value stored in register P3 is 5000 ** also incremented by the number of rows in the table being cleared. 5001 ** 5002 ** See also: Destroy 5003 */ 5004 case OP_Clear: { 5005 int nChange; 5006 5007 nChange = 0; 5008 assert( p->readOnly==0 ); 5009 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5010 rc = sqlite3BtreeClearTable( 5011 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5012 ); 5013 if( pOp->p3 ){ 5014 p->nChange += nChange; 5015 if( pOp->p3>0 ){ 5016 assert( memIsValid(&aMem[pOp->p3]) ); 5017 memAboutToChange(p, &aMem[pOp->p3]); 5018 aMem[pOp->p3].u.i += nChange; 5019 } 5020 } 5021 break; 5022 } 5023 5024 /* Opcode: ResetSorter P1 * * * * 5025 ** 5026 ** Delete all contents from the ephemeral table or sorter 5027 ** that is open on cursor P1. 5028 ** 5029 ** This opcode only works for cursors used for sorting and 5030 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5031 */ 5032 case OP_ResetSorter: { 5033 VdbeCursor *pC; 5034 5035 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5036 pC = p->apCsr[pOp->p1]; 5037 assert( pC!=0 ); 5038 if( pC->pSorter ){ 5039 sqlite3VdbeSorterReset(db, pC->pSorter); 5040 }else{ 5041 assert( pC->isEphemeral ); 5042 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); 5043 } 5044 break; 5045 } 5046 5047 /* Opcode: CreateTable P1 P2 * * * 5048 ** Synopsis: r[P2]=root iDb=P1 5049 ** 5050 ** Allocate a new table in the main database file if P1==0 or in the 5051 ** auxiliary database file if P1==1 or in an attached database if 5052 ** P1>1. Write the root page number of the new table into 5053 ** register P2 5054 ** 5055 ** The difference between a table and an index is this: A table must 5056 ** have a 4-byte integer key and can have arbitrary data. An index 5057 ** has an arbitrary key but no data. 5058 ** 5059 ** See also: CreateIndex 5060 */ 5061 /* Opcode: CreateIndex P1 P2 * * * 5062 ** Synopsis: r[P2]=root iDb=P1 5063 ** 5064 ** Allocate a new index in the main database file if P1==0 or in the 5065 ** auxiliary database file if P1==1 or in an attached database if 5066 ** P1>1. Write the root page number of the new table into 5067 ** register P2. 5068 ** 5069 ** See documentation on OP_CreateTable for additional information. 5070 */ 5071 case OP_CreateIndex: /* out2-prerelease */ 5072 case OP_CreateTable: { /* out2-prerelease */ 5073 int pgno; 5074 int flags; 5075 Db *pDb; 5076 5077 pgno = 0; 5078 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5079 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5080 assert( p->readOnly==0 ); 5081 pDb = &db->aDb[pOp->p1]; 5082 assert( pDb->pBt!=0 ); 5083 if( pOp->opcode==OP_CreateTable ){ 5084 /* flags = BTREE_INTKEY; */ 5085 flags = BTREE_INTKEY; 5086 }else{ 5087 flags = BTREE_BLOBKEY; 5088 } 5089 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5090 pOut->u.i = pgno; 5091 break; 5092 } 5093 5094 /* Opcode: ParseSchema P1 * * P4 * 5095 ** 5096 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5097 ** that match the WHERE clause P4. 5098 ** 5099 ** This opcode invokes the parser to create a new virtual machine, 5100 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5101 */ 5102 case OP_ParseSchema: { 5103 int iDb; 5104 const char *zMaster; 5105 char *zSql; 5106 InitData initData; 5107 5108 /* Any prepared statement that invokes this opcode will hold mutexes 5109 ** on every btree. This is a prerequisite for invoking 5110 ** sqlite3InitCallback(). 5111 */ 5112 #ifdef SQLITE_DEBUG 5113 for(iDb=0; iDb<db->nDb; iDb++){ 5114 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5115 } 5116 #endif 5117 5118 iDb = pOp->p1; 5119 assert( iDb>=0 && iDb<db->nDb ); 5120 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5121 /* Used to be a conditional */ { 5122 zMaster = SCHEMA_TABLE(iDb); 5123 initData.db = db; 5124 initData.iDb = pOp->p1; 5125 initData.pzErrMsg = &p->zErrMsg; 5126 zSql = sqlite3MPrintf(db, 5127 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5128 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5129 if( zSql==0 ){ 5130 rc = SQLITE_NOMEM; 5131 }else{ 5132 assert( db->init.busy==0 ); 5133 db->init.busy = 1; 5134 initData.rc = SQLITE_OK; 5135 assert( !db->mallocFailed ); 5136 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5137 if( rc==SQLITE_OK ) rc = initData.rc; 5138 sqlite3DbFree(db, zSql); 5139 db->init.busy = 0; 5140 } 5141 } 5142 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 5143 if( rc==SQLITE_NOMEM ){ 5144 goto no_mem; 5145 } 5146 break; 5147 } 5148 5149 #if !defined(SQLITE_OMIT_ANALYZE) 5150 /* Opcode: LoadAnalysis P1 * * * * 5151 ** 5152 ** Read the sqlite_stat1 table for database P1 and load the content 5153 ** of that table into the internal index hash table. This will cause 5154 ** the analysis to be used when preparing all subsequent queries. 5155 */ 5156 case OP_LoadAnalysis: { 5157 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5158 rc = sqlite3AnalysisLoad(db, pOp->p1); 5159 break; 5160 } 5161 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5162 5163 /* Opcode: DropTable P1 * * P4 * 5164 ** 5165 ** Remove the internal (in-memory) data structures that describe 5166 ** the table named P4 in database P1. This is called after a table 5167 ** is dropped from disk (using the Destroy opcode) in order to keep 5168 ** the internal representation of the 5169 ** schema consistent with what is on disk. 5170 */ 5171 case OP_DropTable: { 5172 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5173 break; 5174 } 5175 5176 /* Opcode: DropIndex P1 * * P4 * 5177 ** 5178 ** Remove the internal (in-memory) data structures that describe 5179 ** the index named P4 in database P1. This is called after an index 5180 ** is dropped from disk (using the Destroy opcode) 5181 ** in order to keep the internal representation of the 5182 ** schema consistent with what is on disk. 5183 */ 5184 case OP_DropIndex: { 5185 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5186 break; 5187 } 5188 5189 /* Opcode: DropTrigger P1 * * P4 * 5190 ** 5191 ** Remove the internal (in-memory) data structures that describe 5192 ** the trigger named P4 in database P1. This is called after a trigger 5193 ** is dropped from disk (using the Destroy opcode) in order to keep 5194 ** the internal representation of the 5195 ** schema consistent with what is on disk. 5196 */ 5197 case OP_DropTrigger: { 5198 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5199 break; 5200 } 5201 5202 5203 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5204 /* Opcode: IntegrityCk P1 P2 P3 * P5 5205 ** 5206 ** Do an analysis of the currently open database. Store in 5207 ** register P1 the text of an error message describing any problems. 5208 ** If no problems are found, store a NULL in register P1. 5209 ** 5210 ** The register P3 contains the maximum number of allowed errors. 5211 ** At most reg(P3) errors will be reported. 5212 ** In other words, the analysis stops as soon as reg(P1) errors are 5213 ** seen. Reg(P1) is updated with the number of errors remaining. 5214 ** 5215 ** The root page numbers of all tables in the database are integer 5216 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5217 ** total. 5218 ** 5219 ** If P5 is not zero, the check is done on the auxiliary database 5220 ** file, not the main database file. 5221 ** 5222 ** This opcode is used to implement the integrity_check pragma. 5223 */ 5224 case OP_IntegrityCk: { 5225 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5226 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5227 int j; /* Loop counter */ 5228 int nErr; /* Number of errors reported */ 5229 char *z; /* Text of the error report */ 5230 Mem *pnErr; /* Register keeping track of errors remaining */ 5231 5232 assert( p->bIsReader ); 5233 nRoot = pOp->p2; 5234 assert( nRoot>0 ); 5235 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5236 if( aRoot==0 ) goto no_mem; 5237 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5238 pnErr = &aMem[pOp->p3]; 5239 assert( (pnErr->flags & MEM_Int)!=0 ); 5240 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5241 pIn1 = &aMem[pOp->p1]; 5242 for(j=0; j<nRoot; j++){ 5243 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5244 } 5245 aRoot[j] = 0; 5246 assert( pOp->p5<db->nDb ); 5247 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5248 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5249 (int)pnErr->u.i, &nErr); 5250 sqlite3DbFree(db, aRoot); 5251 pnErr->u.i -= nErr; 5252 sqlite3VdbeMemSetNull(pIn1); 5253 if( nErr==0 ){ 5254 assert( z==0 ); 5255 }else if( z==0 ){ 5256 goto no_mem; 5257 }else{ 5258 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5259 } 5260 UPDATE_MAX_BLOBSIZE(pIn1); 5261 sqlite3VdbeChangeEncoding(pIn1, encoding); 5262 break; 5263 } 5264 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5265 5266 /* Opcode: RowSetAdd P1 P2 * * * 5267 ** Synopsis: rowset(P1)=r[P2] 5268 ** 5269 ** Insert the integer value held by register P2 into a boolean index 5270 ** held in register P1. 5271 ** 5272 ** An assertion fails if P2 is not an integer. 5273 */ 5274 case OP_RowSetAdd: { /* in1, in2 */ 5275 pIn1 = &aMem[pOp->p1]; 5276 pIn2 = &aMem[pOp->p2]; 5277 assert( (pIn2->flags & MEM_Int)!=0 ); 5278 if( (pIn1->flags & MEM_RowSet)==0 ){ 5279 sqlite3VdbeMemSetRowSet(pIn1); 5280 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5281 } 5282 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5283 break; 5284 } 5285 5286 /* Opcode: RowSetRead P1 P2 P3 * * 5287 ** Synopsis: r[P3]=rowset(P1) 5288 ** 5289 ** Extract the smallest value from boolean index P1 and put that value into 5290 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5291 ** unchanged and jump to instruction P2. 5292 */ 5293 case OP_RowSetRead: { /* jump, in1, out3 */ 5294 i64 val; 5295 5296 pIn1 = &aMem[pOp->p1]; 5297 if( (pIn1->flags & MEM_RowSet)==0 5298 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5299 ){ 5300 /* The boolean index is empty */ 5301 sqlite3VdbeMemSetNull(pIn1); 5302 pc = pOp->p2 - 1; 5303 VdbeBranchTaken(1,2); 5304 }else{ 5305 /* A value was pulled from the index */ 5306 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5307 VdbeBranchTaken(0,2); 5308 } 5309 goto check_for_interrupt; 5310 } 5311 5312 /* Opcode: RowSetTest P1 P2 P3 P4 5313 ** Synopsis: if r[P3] in rowset(P1) goto P2 5314 ** 5315 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5316 ** contains a RowSet object and that RowSet object contains 5317 ** the value held in P3, jump to register P2. Otherwise, insert the 5318 ** integer in P3 into the RowSet and continue on to the 5319 ** next opcode. 5320 ** 5321 ** The RowSet object is optimized for the case where successive sets 5322 ** of integers, where each set contains no duplicates. Each set 5323 ** of values is identified by a unique P4 value. The first set 5324 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5325 ** non-negative. For non-negative values of P4 only the lower 4 5326 ** bits are significant. 5327 ** 5328 ** This allows optimizations: (a) when P4==0 there is no need to test 5329 ** the rowset object for P3, as it is guaranteed not to contain it, 5330 ** (b) when P4==-1 there is no need to insert the value, as it will 5331 ** never be tested for, and (c) when a value that is part of set X is 5332 ** inserted, there is no need to search to see if the same value was 5333 ** previously inserted as part of set X (only if it was previously 5334 ** inserted as part of some other set). 5335 */ 5336 case OP_RowSetTest: { /* jump, in1, in3 */ 5337 int iSet; 5338 int exists; 5339 5340 pIn1 = &aMem[pOp->p1]; 5341 pIn3 = &aMem[pOp->p3]; 5342 iSet = pOp->p4.i; 5343 assert( pIn3->flags&MEM_Int ); 5344 5345 /* If there is anything other than a rowset object in memory cell P1, 5346 ** delete it now and initialize P1 with an empty rowset 5347 */ 5348 if( (pIn1->flags & MEM_RowSet)==0 ){ 5349 sqlite3VdbeMemSetRowSet(pIn1); 5350 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5351 } 5352 5353 assert( pOp->p4type==P4_INT32 ); 5354 assert( iSet==-1 || iSet>=0 ); 5355 if( iSet ){ 5356 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5357 VdbeBranchTaken(exists!=0,2); 5358 if( exists ){ 5359 pc = pOp->p2 - 1; 5360 break; 5361 } 5362 } 5363 if( iSet>=0 ){ 5364 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5365 } 5366 break; 5367 } 5368 5369 5370 #ifndef SQLITE_OMIT_TRIGGER 5371 5372 /* Opcode: Program P1 P2 P3 P4 P5 5373 ** 5374 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5375 ** 5376 ** P1 contains the address of the memory cell that contains the first memory 5377 ** cell in an array of values used as arguments to the sub-program. P2 5378 ** contains the address to jump to if the sub-program throws an IGNORE 5379 ** exception using the RAISE() function. Register P3 contains the address 5380 ** of a memory cell in this (the parent) VM that is used to allocate the 5381 ** memory required by the sub-vdbe at runtime. 5382 ** 5383 ** P4 is a pointer to the VM containing the trigger program. 5384 ** 5385 ** If P5 is non-zero, then recursive program invocation is enabled. 5386 */ 5387 case OP_Program: { /* jump */ 5388 int nMem; /* Number of memory registers for sub-program */ 5389 int nByte; /* Bytes of runtime space required for sub-program */ 5390 Mem *pRt; /* Register to allocate runtime space */ 5391 Mem *pMem; /* Used to iterate through memory cells */ 5392 Mem *pEnd; /* Last memory cell in new array */ 5393 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5394 SubProgram *pProgram; /* Sub-program to execute */ 5395 void *t; /* Token identifying trigger */ 5396 5397 pProgram = pOp->p4.pProgram; 5398 pRt = &aMem[pOp->p3]; 5399 assert( pProgram->nOp>0 ); 5400 5401 /* If the p5 flag is clear, then recursive invocation of triggers is 5402 ** disabled for backwards compatibility (p5 is set if this sub-program 5403 ** is really a trigger, not a foreign key action, and the flag set 5404 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5405 ** 5406 ** It is recursive invocation of triggers, at the SQL level, that is 5407 ** disabled. In some cases a single trigger may generate more than one 5408 ** SubProgram (if the trigger may be executed with more than one different 5409 ** ON CONFLICT algorithm). SubProgram structures associated with a 5410 ** single trigger all have the same value for the SubProgram.token 5411 ** variable. */ 5412 if( pOp->p5 ){ 5413 t = pProgram->token; 5414 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5415 if( pFrame ) break; 5416 } 5417 5418 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5419 rc = SQLITE_ERROR; 5420 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5421 break; 5422 } 5423 5424 /* Register pRt is used to store the memory required to save the state 5425 ** of the current program, and the memory required at runtime to execute 5426 ** the trigger program. If this trigger has been fired before, then pRt 5427 ** is already allocated. Otherwise, it must be initialized. */ 5428 if( (pRt->flags&MEM_Frame)==0 ){ 5429 /* SubProgram.nMem is set to the number of memory cells used by the 5430 ** program stored in SubProgram.aOp. As well as these, one memory 5431 ** cell is required for each cursor used by the program. Set local 5432 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5433 */ 5434 nMem = pProgram->nMem + pProgram->nCsr; 5435 nByte = ROUND8(sizeof(VdbeFrame)) 5436 + nMem * sizeof(Mem) 5437 + pProgram->nCsr * sizeof(VdbeCursor *) 5438 + pProgram->nOnce * sizeof(u8); 5439 pFrame = sqlite3DbMallocZero(db, nByte); 5440 if( !pFrame ){ 5441 goto no_mem; 5442 } 5443 sqlite3VdbeMemRelease(pRt); 5444 pRt->flags = MEM_Frame; 5445 pRt->u.pFrame = pFrame; 5446 5447 pFrame->v = p; 5448 pFrame->nChildMem = nMem; 5449 pFrame->nChildCsr = pProgram->nCsr; 5450 pFrame->pc = pc; 5451 pFrame->aMem = p->aMem; 5452 pFrame->nMem = p->nMem; 5453 pFrame->apCsr = p->apCsr; 5454 pFrame->nCursor = p->nCursor; 5455 pFrame->aOp = p->aOp; 5456 pFrame->nOp = p->nOp; 5457 pFrame->token = pProgram->token; 5458 pFrame->aOnceFlag = p->aOnceFlag; 5459 pFrame->nOnceFlag = p->nOnceFlag; 5460 5461 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5462 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5463 pMem->flags = MEM_Undefined; 5464 pMem->db = db; 5465 } 5466 }else{ 5467 pFrame = pRt->u.pFrame; 5468 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5469 assert( pProgram->nCsr==pFrame->nChildCsr ); 5470 assert( pc==pFrame->pc ); 5471 } 5472 5473 p->nFrame++; 5474 pFrame->pParent = p->pFrame; 5475 pFrame->lastRowid = lastRowid; 5476 pFrame->nChange = p->nChange; 5477 p->nChange = 0; 5478 p->pFrame = pFrame; 5479 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5480 p->nMem = pFrame->nChildMem; 5481 p->nCursor = (u16)pFrame->nChildCsr; 5482 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5483 p->aOp = aOp = pProgram->aOp; 5484 p->nOp = pProgram->nOp; 5485 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5486 p->nOnceFlag = pProgram->nOnce; 5487 pc = -1; 5488 memset(p->aOnceFlag, 0, p->nOnceFlag); 5489 5490 break; 5491 } 5492 5493 /* Opcode: Param P1 P2 * * * 5494 ** 5495 ** This opcode is only ever present in sub-programs called via the 5496 ** OP_Program instruction. Copy a value currently stored in a memory 5497 ** cell of the calling (parent) frame to cell P2 in the current frames 5498 ** address space. This is used by trigger programs to access the new.* 5499 ** and old.* values. 5500 ** 5501 ** The address of the cell in the parent frame is determined by adding 5502 ** the value of the P1 argument to the value of the P1 argument to the 5503 ** calling OP_Program instruction. 5504 */ 5505 case OP_Param: { /* out2-prerelease */ 5506 VdbeFrame *pFrame; 5507 Mem *pIn; 5508 pFrame = p->pFrame; 5509 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5510 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5511 break; 5512 } 5513 5514 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5515 5516 #ifndef SQLITE_OMIT_FOREIGN_KEY 5517 /* Opcode: FkCounter P1 P2 * * * 5518 ** Synopsis: fkctr[P1]+=P2 5519 ** 5520 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5521 ** If P1 is non-zero, the database constraint counter is incremented 5522 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5523 ** statement counter is incremented (immediate foreign key constraints). 5524 */ 5525 case OP_FkCounter: { 5526 if( db->flags & SQLITE_DeferFKs ){ 5527 db->nDeferredImmCons += pOp->p2; 5528 }else if( pOp->p1 ){ 5529 db->nDeferredCons += pOp->p2; 5530 }else{ 5531 p->nFkConstraint += pOp->p2; 5532 } 5533 break; 5534 } 5535 5536 /* Opcode: FkIfZero P1 P2 * * * 5537 ** Synopsis: if fkctr[P1]==0 goto P2 5538 ** 5539 ** This opcode tests if a foreign key constraint-counter is currently zero. 5540 ** If so, jump to instruction P2. Otherwise, fall through to the next 5541 ** instruction. 5542 ** 5543 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5544 ** is zero (the one that counts deferred constraint violations). If P1 is 5545 ** zero, the jump is taken if the statement constraint-counter is zero 5546 ** (immediate foreign key constraint violations). 5547 */ 5548 case OP_FkIfZero: { /* jump */ 5549 if( pOp->p1 ){ 5550 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5551 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5552 }else{ 5553 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5554 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5555 } 5556 break; 5557 } 5558 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5559 5560 #ifndef SQLITE_OMIT_AUTOINCREMENT 5561 /* Opcode: MemMax P1 P2 * * * 5562 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5563 ** 5564 ** P1 is a register in the root frame of this VM (the root frame is 5565 ** different from the current frame if this instruction is being executed 5566 ** within a sub-program). Set the value of register P1 to the maximum of 5567 ** its current value and the value in register P2. 5568 ** 5569 ** This instruction throws an error if the memory cell is not initially 5570 ** an integer. 5571 */ 5572 case OP_MemMax: { /* in2 */ 5573 VdbeFrame *pFrame; 5574 if( p->pFrame ){ 5575 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5576 pIn1 = &pFrame->aMem[pOp->p1]; 5577 }else{ 5578 pIn1 = &aMem[pOp->p1]; 5579 } 5580 assert( memIsValid(pIn1) ); 5581 sqlite3VdbeMemIntegerify(pIn1); 5582 pIn2 = &aMem[pOp->p2]; 5583 sqlite3VdbeMemIntegerify(pIn2); 5584 if( pIn1->u.i<pIn2->u.i){ 5585 pIn1->u.i = pIn2->u.i; 5586 } 5587 break; 5588 } 5589 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5590 5591 /* Opcode: IfPos P1 P2 * * * 5592 ** Synopsis: if r[P1]>0 goto P2 5593 ** 5594 ** If the value of register P1 is 1 or greater, jump to P2. 5595 ** 5596 ** It is illegal to use this instruction on a register that does 5597 ** not contain an integer. An assertion fault will result if you try. 5598 */ 5599 case OP_IfPos: { /* jump, in1 */ 5600 pIn1 = &aMem[pOp->p1]; 5601 assert( pIn1->flags&MEM_Int ); 5602 VdbeBranchTaken( pIn1->u.i>0, 2); 5603 if( pIn1->u.i>0 ){ 5604 pc = pOp->p2 - 1; 5605 } 5606 break; 5607 } 5608 5609 /* Opcode: IfNeg P1 P2 P3 * * 5610 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 5611 ** 5612 ** Register P1 must contain an integer. Add literal P3 to the value in 5613 ** register P1 then if the value of register P1 is less than zero, jump to P2. 5614 */ 5615 case OP_IfNeg: { /* jump, in1 */ 5616 pIn1 = &aMem[pOp->p1]; 5617 assert( pIn1->flags&MEM_Int ); 5618 pIn1->u.i += pOp->p3; 5619 VdbeBranchTaken(pIn1->u.i<0, 2); 5620 if( pIn1->u.i<0 ){ 5621 pc = pOp->p2 - 1; 5622 } 5623 break; 5624 } 5625 5626 /* Opcode: IfZero P1 P2 P3 * * 5627 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 5628 ** 5629 ** The register P1 must contain an integer. Add literal P3 to the 5630 ** value in register P1. If the result is exactly 0, jump to P2. 5631 */ 5632 case OP_IfZero: { /* jump, in1 */ 5633 pIn1 = &aMem[pOp->p1]; 5634 assert( pIn1->flags&MEM_Int ); 5635 pIn1->u.i += pOp->p3; 5636 VdbeBranchTaken(pIn1->u.i==0, 2); 5637 if( pIn1->u.i==0 ){ 5638 pc = pOp->p2 - 1; 5639 } 5640 break; 5641 } 5642 5643 /* Opcode: AggStep * P2 P3 P4 P5 5644 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5645 ** 5646 ** Execute the step function for an aggregate. The 5647 ** function has P5 arguments. P4 is a pointer to the FuncDef 5648 ** structure that specifies the function. Use register 5649 ** P3 as the accumulator. 5650 ** 5651 ** The P5 arguments are taken from register P2 and its 5652 ** successors. 5653 */ 5654 case OP_AggStep: { 5655 int n; 5656 int i; 5657 Mem *pMem; 5658 Mem *pRec; 5659 sqlite3_context ctx; 5660 sqlite3_value **apVal; 5661 5662 n = pOp->p5; 5663 assert( n>=0 ); 5664 pRec = &aMem[pOp->p2]; 5665 apVal = p->apArg; 5666 assert( apVal || n==0 ); 5667 for(i=0; i<n; i++, pRec++){ 5668 assert( memIsValid(pRec) ); 5669 apVal[i] = pRec; 5670 memAboutToChange(p, pRec); 5671 } 5672 ctx.pFunc = pOp->p4.pFunc; 5673 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5674 ctx.pMem = pMem = &aMem[pOp->p3]; 5675 pMem->n++; 5676 ctx.s.flags = MEM_Null; 5677 ctx.s.z = 0; 5678 ctx.s.zMalloc = 0; 5679 ctx.s.xDel = 0; 5680 ctx.s.db = db; 5681 ctx.isError = 0; 5682 ctx.pColl = 0; 5683 ctx.skipFlag = 0; 5684 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5685 assert( pOp>p->aOp ); 5686 assert( pOp[-1].p4type==P4_COLLSEQ ); 5687 assert( pOp[-1].opcode==OP_CollSeq ); 5688 ctx.pColl = pOp[-1].p4.pColl; 5689 } 5690 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5691 if( ctx.isError ){ 5692 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5693 rc = ctx.isError; 5694 } 5695 if( ctx.skipFlag ){ 5696 assert( pOp[-1].opcode==OP_CollSeq ); 5697 i = pOp[-1].p1; 5698 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5699 } 5700 5701 sqlite3VdbeMemRelease(&ctx.s); 5702 5703 break; 5704 } 5705 5706 /* Opcode: AggFinal P1 P2 * P4 * 5707 ** Synopsis: accum=r[P1] N=P2 5708 ** 5709 ** Execute the finalizer function for an aggregate. P1 is 5710 ** the memory location that is the accumulator for the aggregate. 5711 ** 5712 ** P2 is the number of arguments that the step function takes and 5713 ** P4 is a pointer to the FuncDef for this function. The P2 5714 ** argument is not used by this opcode. It is only there to disambiguate 5715 ** functions that can take varying numbers of arguments. The 5716 ** P4 argument is only needed for the degenerate case where 5717 ** the step function was not previously called. 5718 */ 5719 case OP_AggFinal: { 5720 Mem *pMem; 5721 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5722 pMem = &aMem[pOp->p1]; 5723 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5724 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5725 if( rc ){ 5726 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5727 } 5728 sqlite3VdbeChangeEncoding(pMem, encoding); 5729 UPDATE_MAX_BLOBSIZE(pMem); 5730 if( sqlite3VdbeMemTooBig(pMem) ){ 5731 goto too_big; 5732 } 5733 break; 5734 } 5735 5736 #ifndef SQLITE_OMIT_WAL 5737 /* Opcode: Checkpoint P1 P2 P3 * * 5738 ** 5739 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5740 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5741 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5742 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5743 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5744 ** in the WAL that have been checkpointed after the checkpoint 5745 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5746 ** mem[P3+2] are initialized to -1. 5747 */ 5748 case OP_Checkpoint: { 5749 int i; /* Loop counter */ 5750 int aRes[3]; /* Results */ 5751 Mem *pMem; /* Write results here */ 5752 5753 assert( p->readOnly==0 ); 5754 aRes[0] = 0; 5755 aRes[1] = aRes[2] = -1; 5756 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5757 || pOp->p2==SQLITE_CHECKPOINT_FULL 5758 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5759 ); 5760 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5761 if( rc==SQLITE_BUSY ){ 5762 rc = SQLITE_OK; 5763 aRes[0] = 1; 5764 } 5765 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5766 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5767 } 5768 break; 5769 }; 5770 #endif 5771 5772 #ifndef SQLITE_OMIT_PRAGMA 5773 /* Opcode: JournalMode P1 P2 P3 * * 5774 ** 5775 ** Change the journal mode of database P1 to P3. P3 must be one of the 5776 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5777 ** modes (delete, truncate, persist, off and memory), this is a simple 5778 ** operation. No IO is required. 5779 ** 5780 ** If changing into or out of WAL mode the procedure is more complicated. 5781 ** 5782 ** Write a string containing the final journal-mode to register P2. 5783 */ 5784 case OP_JournalMode: { /* out2-prerelease */ 5785 Btree *pBt; /* Btree to change journal mode of */ 5786 Pager *pPager; /* Pager associated with pBt */ 5787 int eNew; /* New journal mode */ 5788 int eOld; /* The old journal mode */ 5789 #ifndef SQLITE_OMIT_WAL 5790 const char *zFilename; /* Name of database file for pPager */ 5791 #endif 5792 5793 eNew = pOp->p3; 5794 assert( eNew==PAGER_JOURNALMODE_DELETE 5795 || eNew==PAGER_JOURNALMODE_TRUNCATE 5796 || eNew==PAGER_JOURNALMODE_PERSIST 5797 || eNew==PAGER_JOURNALMODE_OFF 5798 || eNew==PAGER_JOURNALMODE_MEMORY 5799 || eNew==PAGER_JOURNALMODE_WAL 5800 || eNew==PAGER_JOURNALMODE_QUERY 5801 ); 5802 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5803 assert( p->readOnly==0 ); 5804 5805 pBt = db->aDb[pOp->p1].pBt; 5806 pPager = sqlite3BtreePager(pBt); 5807 eOld = sqlite3PagerGetJournalMode(pPager); 5808 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5809 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5810 5811 #ifndef SQLITE_OMIT_WAL 5812 zFilename = sqlite3PagerFilename(pPager, 1); 5813 5814 /* Do not allow a transition to journal_mode=WAL for a database 5815 ** in temporary storage or if the VFS does not support shared memory 5816 */ 5817 if( eNew==PAGER_JOURNALMODE_WAL 5818 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5819 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5820 ){ 5821 eNew = eOld; 5822 } 5823 5824 if( (eNew!=eOld) 5825 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5826 ){ 5827 if( !db->autoCommit || db->nVdbeRead>1 ){ 5828 rc = SQLITE_ERROR; 5829 sqlite3SetString(&p->zErrMsg, db, 5830 "cannot change %s wal mode from within a transaction", 5831 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5832 ); 5833 break; 5834 }else{ 5835 5836 if( eOld==PAGER_JOURNALMODE_WAL ){ 5837 /* If leaving WAL mode, close the log file. If successful, the call 5838 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5839 ** file. An EXCLUSIVE lock may still be held on the database file 5840 ** after a successful return. 5841 */ 5842 rc = sqlite3PagerCloseWal(pPager); 5843 if( rc==SQLITE_OK ){ 5844 sqlite3PagerSetJournalMode(pPager, eNew); 5845 } 5846 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5847 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5848 ** as an intermediate */ 5849 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5850 } 5851 5852 /* Open a transaction on the database file. Regardless of the journal 5853 ** mode, this transaction always uses a rollback journal. 5854 */ 5855 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5856 if( rc==SQLITE_OK ){ 5857 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5858 } 5859 } 5860 } 5861 #endif /* ifndef SQLITE_OMIT_WAL */ 5862 5863 if( rc ){ 5864 eNew = eOld; 5865 } 5866 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5867 5868 pOut = &aMem[pOp->p2]; 5869 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5870 pOut->z = (char *)sqlite3JournalModename(eNew); 5871 pOut->n = sqlite3Strlen30(pOut->z); 5872 pOut->enc = SQLITE_UTF8; 5873 sqlite3VdbeChangeEncoding(pOut, encoding); 5874 break; 5875 }; 5876 #endif /* SQLITE_OMIT_PRAGMA */ 5877 5878 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5879 /* Opcode: Vacuum * * * * * 5880 ** 5881 ** Vacuum the entire database. This opcode will cause other virtual 5882 ** machines to be created and run. It may not be called from within 5883 ** a transaction. 5884 */ 5885 case OP_Vacuum: { 5886 assert( p->readOnly==0 ); 5887 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5888 break; 5889 } 5890 #endif 5891 5892 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5893 /* Opcode: IncrVacuum P1 P2 * * * 5894 ** 5895 ** Perform a single step of the incremental vacuum procedure on 5896 ** the P1 database. If the vacuum has finished, jump to instruction 5897 ** P2. Otherwise, fall through to the next instruction. 5898 */ 5899 case OP_IncrVacuum: { /* jump */ 5900 Btree *pBt; 5901 5902 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5903 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5904 assert( p->readOnly==0 ); 5905 pBt = db->aDb[pOp->p1].pBt; 5906 rc = sqlite3BtreeIncrVacuum(pBt); 5907 VdbeBranchTaken(rc==SQLITE_DONE,2); 5908 if( rc==SQLITE_DONE ){ 5909 pc = pOp->p2 - 1; 5910 rc = SQLITE_OK; 5911 } 5912 break; 5913 } 5914 #endif 5915 5916 /* Opcode: Expire P1 * * * * 5917 ** 5918 ** Cause precompiled statements to expire. When an expired statement 5919 ** is executed using sqlite3_step() it will either automatically 5920 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 5921 ** or it will fail with SQLITE_SCHEMA. 5922 ** 5923 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5924 ** then only the currently executing statement is expired. 5925 */ 5926 case OP_Expire: { 5927 if( !pOp->p1 ){ 5928 sqlite3ExpirePreparedStatements(db); 5929 }else{ 5930 p->expired = 1; 5931 } 5932 break; 5933 } 5934 5935 #ifndef SQLITE_OMIT_SHARED_CACHE 5936 /* Opcode: TableLock P1 P2 P3 P4 * 5937 ** Synopsis: iDb=P1 root=P2 write=P3 5938 ** 5939 ** Obtain a lock on a particular table. This instruction is only used when 5940 ** the shared-cache feature is enabled. 5941 ** 5942 ** P1 is the index of the database in sqlite3.aDb[] of the database 5943 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5944 ** a write lock if P3==1. 5945 ** 5946 ** P2 contains the root-page of the table to lock. 5947 ** 5948 ** P4 contains a pointer to the name of the table being locked. This is only 5949 ** used to generate an error message if the lock cannot be obtained. 5950 */ 5951 case OP_TableLock: { 5952 u8 isWriteLock = (u8)pOp->p3; 5953 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5954 int p1 = pOp->p1; 5955 assert( p1>=0 && p1<db->nDb ); 5956 assert( DbMaskTest(p->btreeMask, p1) ); 5957 assert( isWriteLock==0 || isWriteLock==1 ); 5958 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5959 if( (rc&0xFF)==SQLITE_LOCKED ){ 5960 const char *z = pOp->p4.z; 5961 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5962 } 5963 } 5964 break; 5965 } 5966 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5967 5968 #ifndef SQLITE_OMIT_VIRTUALTABLE 5969 /* Opcode: VBegin * * * P4 * 5970 ** 5971 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5972 ** xBegin method for that table. 5973 ** 5974 ** Also, whether or not P4 is set, check that this is not being called from 5975 ** within a callback to a virtual table xSync() method. If it is, the error 5976 ** code will be set to SQLITE_LOCKED. 5977 */ 5978 case OP_VBegin: { 5979 VTable *pVTab; 5980 pVTab = pOp->p4.pVtab; 5981 rc = sqlite3VtabBegin(db, pVTab); 5982 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 5983 break; 5984 } 5985 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5986 5987 #ifndef SQLITE_OMIT_VIRTUALTABLE 5988 /* Opcode: VCreate P1 * * P4 * 5989 ** 5990 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5991 ** for that table. 5992 */ 5993 case OP_VCreate: { 5994 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5995 break; 5996 } 5997 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5998 5999 #ifndef SQLITE_OMIT_VIRTUALTABLE 6000 /* Opcode: VDestroy P1 * * P4 * 6001 ** 6002 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6003 ** of that table. 6004 */ 6005 case OP_VDestroy: { 6006 p->inVtabMethod = 2; 6007 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6008 p->inVtabMethod = 0; 6009 break; 6010 } 6011 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6012 6013 #ifndef SQLITE_OMIT_VIRTUALTABLE 6014 /* Opcode: VOpen P1 * * P4 * 6015 ** 6016 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6017 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6018 ** table and stores that cursor in P1. 6019 */ 6020 case OP_VOpen: { 6021 VdbeCursor *pCur; 6022 sqlite3_vtab_cursor *pVtabCursor; 6023 sqlite3_vtab *pVtab; 6024 sqlite3_module *pModule; 6025 6026 assert( p->bIsReader ); 6027 pCur = 0; 6028 pVtabCursor = 0; 6029 pVtab = pOp->p4.pVtab->pVtab; 6030 pModule = (sqlite3_module *)pVtab->pModule; 6031 assert(pVtab && pModule); 6032 rc = pModule->xOpen(pVtab, &pVtabCursor); 6033 sqlite3VtabImportErrmsg(p, pVtab); 6034 if( SQLITE_OK==rc ){ 6035 /* Initialize sqlite3_vtab_cursor base class */ 6036 pVtabCursor->pVtab = pVtab; 6037 6038 /* Initialize vdbe cursor object */ 6039 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 6040 if( pCur ){ 6041 pCur->pVtabCursor = pVtabCursor; 6042 }else{ 6043 db->mallocFailed = 1; 6044 pModule->xClose(pVtabCursor); 6045 } 6046 } 6047 break; 6048 } 6049 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6050 6051 #ifndef SQLITE_OMIT_VIRTUALTABLE 6052 /* Opcode: VFilter P1 P2 P3 P4 * 6053 ** Synopsis: iplan=r[P3] zplan='P4' 6054 ** 6055 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6056 ** the filtered result set is empty. 6057 ** 6058 ** P4 is either NULL or a string that was generated by the xBestIndex 6059 ** method of the module. The interpretation of the P4 string is left 6060 ** to the module implementation. 6061 ** 6062 ** This opcode invokes the xFilter method on the virtual table specified 6063 ** by P1. The integer query plan parameter to xFilter is stored in register 6064 ** P3. Register P3+1 stores the argc parameter to be passed to the 6065 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6066 ** additional parameters which are passed to 6067 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6068 ** 6069 ** A jump is made to P2 if the result set after filtering would be empty. 6070 */ 6071 case OP_VFilter: { /* jump */ 6072 int nArg; 6073 int iQuery; 6074 const sqlite3_module *pModule; 6075 Mem *pQuery; 6076 Mem *pArgc; 6077 sqlite3_vtab_cursor *pVtabCursor; 6078 sqlite3_vtab *pVtab; 6079 VdbeCursor *pCur; 6080 int res; 6081 int i; 6082 Mem **apArg; 6083 6084 pQuery = &aMem[pOp->p3]; 6085 pArgc = &pQuery[1]; 6086 pCur = p->apCsr[pOp->p1]; 6087 assert( memIsValid(pQuery) ); 6088 REGISTER_TRACE(pOp->p3, pQuery); 6089 assert( pCur->pVtabCursor ); 6090 pVtabCursor = pCur->pVtabCursor; 6091 pVtab = pVtabCursor->pVtab; 6092 pModule = pVtab->pModule; 6093 6094 /* Grab the index number and argc parameters */ 6095 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6096 nArg = (int)pArgc->u.i; 6097 iQuery = (int)pQuery->u.i; 6098 6099 /* Invoke the xFilter method */ 6100 { 6101 res = 0; 6102 apArg = p->apArg; 6103 for(i = 0; i<nArg; i++){ 6104 apArg[i] = &pArgc[i+1]; 6105 } 6106 6107 p->inVtabMethod = 1; 6108 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 6109 p->inVtabMethod = 0; 6110 sqlite3VtabImportErrmsg(p, pVtab); 6111 if( rc==SQLITE_OK ){ 6112 res = pModule->xEof(pVtabCursor); 6113 } 6114 VdbeBranchTaken(res!=0,2); 6115 if( res ){ 6116 pc = pOp->p2 - 1; 6117 } 6118 } 6119 pCur->nullRow = 0; 6120 6121 break; 6122 } 6123 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6124 6125 #ifndef SQLITE_OMIT_VIRTUALTABLE 6126 /* Opcode: VColumn P1 P2 P3 * * 6127 ** Synopsis: r[P3]=vcolumn(P2) 6128 ** 6129 ** Store the value of the P2-th column of 6130 ** the row of the virtual-table that the 6131 ** P1 cursor is pointing to into register P3. 6132 */ 6133 case OP_VColumn: { 6134 sqlite3_vtab *pVtab; 6135 const sqlite3_module *pModule; 6136 Mem *pDest; 6137 sqlite3_context sContext; 6138 6139 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6140 assert( pCur->pVtabCursor ); 6141 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6142 pDest = &aMem[pOp->p3]; 6143 memAboutToChange(p, pDest); 6144 if( pCur->nullRow ){ 6145 sqlite3VdbeMemSetNull(pDest); 6146 break; 6147 } 6148 pVtab = pCur->pVtabCursor->pVtab; 6149 pModule = pVtab->pModule; 6150 assert( pModule->xColumn ); 6151 memset(&sContext, 0, sizeof(sContext)); 6152 6153 /* The output cell may already have a buffer allocated. Move 6154 ** the current contents to sContext.s so in case the user-function 6155 ** can use the already allocated buffer instead of allocating a 6156 ** new one. 6157 */ 6158 sqlite3VdbeMemMove(&sContext.s, pDest); 6159 MemSetTypeFlag(&sContext.s, MEM_Null); 6160 6161 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 6162 sqlite3VtabImportErrmsg(p, pVtab); 6163 if( sContext.isError ){ 6164 rc = sContext.isError; 6165 } 6166 6167 /* Copy the result of the function to the P3 register. We 6168 ** do this regardless of whether or not an error occurred to ensure any 6169 ** dynamic allocation in sContext.s (a Mem struct) is released. 6170 */ 6171 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 6172 sqlite3VdbeMemMove(pDest, &sContext.s); 6173 REGISTER_TRACE(pOp->p3, pDest); 6174 UPDATE_MAX_BLOBSIZE(pDest); 6175 6176 if( sqlite3VdbeMemTooBig(pDest) ){ 6177 goto too_big; 6178 } 6179 break; 6180 } 6181 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6182 6183 #ifndef SQLITE_OMIT_VIRTUALTABLE 6184 /* Opcode: VNext P1 P2 * * * 6185 ** 6186 ** Advance virtual table P1 to the next row in its result set and 6187 ** jump to instruction P2. Or, if the virtual table has reached 6188 ** the end of its result set, then fall through to the next instruction. 6189 */ 6190 case OP_VNext: { /* jump */ 6191 sqlite3_vtab *pVtab; 6192 const sqlite3_module *pModule; 6193 int res; 6194 VdbeCursor *pCur; 6195 6196 res = 0; 6197 pCur = p->apCsr[pOp->p1]; 6198 assert( pCur->pVtabCursor ); 6199 if( pCur->nullRow ){ 6200 break; 6201 } 6202 pVtab = pCur->pVtabCursor->pVtab; 6203 pModule = pVtab->pModule; 6204 assert( pModule->xNext ); 6205 6206 /* Invoke the xNext() method of the module. There is no way for the 6207 ** underlying implementation to return an error if one occurs during 6208 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6209 ** data is available) and the error code returned when xColumn or 6210 ** some other method is next invoked on the save virtual table cursor. 6211 */ 6212 p->inVtabMethod = 1; 6213 rc = pModule->xNext(pCur->pVtabCursor); 6214 p->inVtabMethod = 0; 6215 sqlite3VtabImportErrmsg(p, pVtab); 6216 if( rc==SQLITE_OK ){ 6217 res = pModule->xEof(pCur->pVtabCursor); 6218 } 6219 VdbeBranchTaken(!res,2); 6220 if( !res ){ 6221 /* If there is data, jump to P2 */ 6222 pc = pOp->p2 - 1; 6223 } 6224 goto check_for_interrupt; 6225 } 6226 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6227 6228 #ifndef SQLITE_OMIT_VIRTUALTABLE 6229 /* Opcode: VRename P1 * * P4 * 6230 ** 6231 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6232 ** This opcode invokes the corresponding xRename method. The value 6233 ** in register P1 is passed as the zName argument to the xRename method. 6234 */ 6235 case OP_VRename: { 6236 sqlite3_vtab *pVtab; 6237 Mem *pName; 6238 6239 pVtab = pOp->p4.pVtab->pVtab; 6240 pName = &aMem[pOp->p1]; 6241 assert( pVtab->pModule->xRename ); 6242 assert( memIsValid(pName) ); 6243 assert( p->readOnly==0 ); 6244 REGISTER_TRACE(pOp->p1, pName); 6245 assert( pName->flags & MEM_Str ); 6246 testcase( pName->enc==SQLITE_UTF8 ); 6247 testcase( pName->enc==SQLITE_UTF16BE ); 6248 testcase( pName->enc==SQLITE_UTF16LE ); 6249 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6250 if( rc==SQLITE_OK ){ 6251 rc = pVtab->pModule->xRename(pVtab, pName->z); 6252 sqlite3VtabImportErrmsg(p, pVtab); 6253 p->expired = 0; 6254 } 6255 break; 6256 } 6257 #endif 6258 6259 #ifndef SQLITE_OMIT_VIRTUALTABLE 6260 /* Opcode: VUpdate P1 P2 P3 P4 P5 6261 ** Synopsis: data=r[P3@P2] 6262 ** 6263 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6264 ** This opcode invokes the corresponding xUpdate method. P2 values 6265 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6266 ** invocation. The value in register (P3+P2-1) corresponds to the 6267 ** p2th element of the argv array passed to xUpdate. 6268 ** 6269 ** The xUpdate method will do a DELETE or an INSERT or both. 6270 ** The argv[0] element (which corresponds to memory cell P3) 6271 ** is the rowid of a row to delete. If argv[0] is NULL then no 6272 ** deletion occurs. The argv[1] element is the rowid of the new 6273 ** row. This can be NULL to have the virtual table select the new 6274 ** rowid for itself. The subsequent elements in the array are 6275 ** the values of columns in the new row. 6276 ** 6277 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6278 ** a row to delete. 6279 ** 6280 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6281 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6282 ** is set to the value of the rowid for the row just inserted. 6283 ** 6284 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6285 ** apply in the case of a constraint failure on an insert or update. 6286 */ 6287 case OP_VUpdate: { 6288 sqlite3_vtab *pVtab; 6289 sqlite3_module *pModule; 6290 int nArg; 6291 int i; 6292 sqlite_int64 rowid; 6293 Mem **apArg; 6294 Mem *pX; 6295 6296 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6297 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6298 ); 6299 assert( p->readOnly==0 ); 6300 pVtab = pOp->p4.pVtab->pVtab; 6301 pModule = (sqlite3_module *)pVtab->pModule; 6302 nArg = pOp->p2; 6303 assert( pOp->p4type==P4_VTAB ); 6304 if( ALWAYS(pModule->xUpdate) ){ 6305 u8 vtabOnConflict = db->vtabOnConflict; 6306 apArg = p->apArg; 6307 pX = &aMem[pOp->p3]; 6308 for(i=0; i<nArg; i++){ 6309 assert( memIsValid(pX) ); 6310 memAboutToChange(p, pX); 6311 apArg[i] = pX; 6312 pX++; 6313 } 6314 db->vtabOnConflict = pOp->p5; 6315 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6316 db->vtabOnConflict = vtabOnConflict; 6317 sqlite3VtabImportErrmsg(p, pVtab); 6318 if( rc==SQLITE_OK && pOp->p1 ){ 6319 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6320 db->lastRowid = lastRowid = rowid; 6321 } 6322 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6323 if( pOp->p5==OE_Ignore ){ 6324 rc = SQLITE_OK; 6325 }else{ 6326 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6327 } 6328 }else{ 6329 p->nChange++; 6330 } 6331 } 6332 break; 6333 } 6334 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6335 6336 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6337 /* Opcode: Pagecount P1 P2 * * * 6338 ** 6339 ** Write the current number of pages in database P1 to memory cell P2. 6340 */ 6341 case OP_Pagecount: { /* out2-prerelease */ 6342 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6343 break; 6344 } 6345 #endif 6346 6347 6348 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6349 /* Opcode: MaxPgcnt P1 P2 P3 * * 6350 ** 6351 ** Try to set the maximum page count for database P1 to the value in P3. 6352 ** Do not let the maximum page count fall below the current page count and 6353 ** do not change the maximum page count value if P3==0. 6354 ** 6355 ** Store the maximum page count after the change in register P2. 6356 */ 6357 case OP_MaxPgcnt: { /* out2-prerelease */ 6358 unsigned int newMax; 6359 Btree *pBt; 6360 6361 pBt = db->aDb[pOp->p1].pBt; 6362 newMax = 0; 6363 if( pOp->p3 ){ 6364 newMax = sqlite3BtreeLastPage(pBt); 6365 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6366 } 6367 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6368 break; 6369 } 6370 #endif 6371 6372 6373 /* Opcode: Init * P2 * P4 * 6374 ** Synopsis: Start at P2 6375 ** 6376 ** Programs contain a single instance of this opcode as the very first 6377 ** opcode. 6378 ** 6379 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6380 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6381 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6382 ** 6383 ** If P2 is not zero, jump to instruction P2. 6384 */ 6385 case OP_Init: { /* jump */ 6386 char *zTrace; 6387 char *z; 6388 6389 if( pOp->p2 ){ 6390 pc = pOp->p2 - 1; 6391 } 6392 #ifndef SQLITE_OMIT_TRACE 6393 if( db->xTrace 6394 && !p->doingRerun 6395 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6396 ){ 6397 z = sqlite3VdbeExpandSql(p, zTrace); 6398 db->xTrace(db->pTraceArg, z); 6399 sqlite3DbFree(db, z); 6400 } 6401 #ifdef SQLITE_USE_FCNTL_TRACE 6402 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6403 if( zTrace ){ 6404 int i; 6405 for(i=0; i<db->nDb; i++){ 6406 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6407 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6408 } 6409 } 6410 #endif /* SQLITE_USE_FCNTL_TRACE */ 6411 #ifdef SQLITE_DEBUG 6412 if( (db->flags & SQLITE_SqlTrace)!=0 6413 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6414 ){ 6415 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6416 } 6417 #endif /* SQLITE_DEBUG */ 6418 #endif /* SQLITE_OMIT_TRACE */ 6419 break; 6420 } 6421 6422 6423 /* Opcode: Noop * * * * * 6424 ** 6425 ** Do nothing. This instruction is often useful as a jump 6426 ** destination. 6427 */ 6428 /* 6429 ** The magic Explain opcode are only inserted when explain==2 (which 6430 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6431 ** This opcode records information from the optimizer. It is the 6432 ** the same as a no-op. This opcodesnever appears in a real VM program. 6433 */ 6434 default: { /* This is really OP_Noop and OP_Explain */ 6435 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6436 break; 6437 } 6438 6439 /***************************************************************************** 6440 ** The cases of the switch statement above this line should all be indented 6441 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6442 ** readability. From this point on down, the normal indentation rules are 6443 ** restored. 6444 *****************************************************************************/ 6445 } 6446 6447 #ifdef VDBE_PROFILE 6448 { 6449 u64 endTime = sqlite3Hwtime(); 6450 if( endTime>start ) pOp->cycles += endTime - start; 6451 pOp->cnt++; 6452 } 6453 #endif 6454 6455 /* The following code adds nothing to the actual functionality 6456 ** of the program. It is only here for testing and debugging. 6457 ** On the other hand, it does burn CPU cycles every time through 6458 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6459 */ 6460 #ifndef NDEBUG 6461 assert( pc>=-1 && pc<p->nOp ); 6462 6463 #ifdef SQLITE_DEBUG 6464 if( db->flags & SQLITE_VdbeTrace ){ 6465 if( rc!=0 ) printf("rc=%d\n",rc); 6466 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6467 registerTrace(pOp->p2, &aMem[pOp->p2]); 6468 } 6469 if( pOp->opflags & OPFLG_OUT3 ){ 6470 registerTrace(pOp->p3, &aMem[pOp->p3]); 6471 } 6472 } 6473 #endif /* SQLITE_DEBUG */ 6474 #endif /* NDEBUG */ 6475 } /* The end of the for(;;) loop the loops through opcodes */ 6476 6477 /* If we reach this point, it means that execution is finished with 6478 ** an error of some kind. 6479 */ 6480 vdbe_error_halt: 6481 assert( rc ); 6482 p->rc = rc; 6483 testcase( sqlite3GlobalConfig.xLog!=0 ); 6484 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6485 pc, p->zSql, p->zErrMsg); 6486 sqlite3VdbeHalt(p); 6487 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6488 rc = SQLITE_ERROR; 6489 if( resetSchemaOnFault>0 ){ 6490 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6491 } 6492 6493 /* This is the only way out of this procedure. We have to 6494 ** release the mutexes on btrees that were acquired at the 6495 ** top. */ 6496 vdbe_return: 6497 db->lastRowid = lastRowid; 6498 testcase( nVmStep>0 ); 6499 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6500 sqlite3VdbeLeave(p); 6501 return rc; 6502 6503 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6504 ** is encountered. 6505 */ 6506 too_big: 6507 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6508 rc = SQLITE_TOOBIG; 6509 goto vdbe_error_halt; 6510 6511 /* Jump to here if a malloc() fails. 6512 */ 6513 no_mem: 6514 db->mallocFailed = 1; 6515 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6516 rc = SQLITE_NOMEM; 6517 goto vdbe_error_halt; 6518 6519 /* Jump to here for any other kind of fatal error. The "rc" variable 6520 ** should hold the error number. 6521 */ 6522 abort_due_to_error: 6523 assert( p->zErrMsg==0 ); 6524 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6525 if( rc!=SQLITE_IOERR_NOMEM ){ 6526 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6527 } 6528 goto vdbe_error_halt; 6529 6530 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6531 ** flag. 6532 */ 6533 abort_due_to_interrupt: 6534 assert( db->u1.isInterrupted ); 6535 rc = SQLITE_INTERRUPT; 6536 p->rc = rc; 6537 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6538 goto vdbe_error_halt; 6539 } 6540