1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is an integer between 2 and 4. 2 indicates a ordinary two-way 126 ** branch (I=0 means fall through and I=1 means taken). 3 indicates 127 ** a 3-way branch where the third way is when one of the operands is 128 ** NULL. 4 indicates the OP_Jump instruction which has three destinations 129 ** depending on whether the first operand is less than, equal to, or greater 130 ** than the second. 131 ** 132 ** iSrcLine is the source code line (from the __LINE__ macro) that 133 ** generated the VDBE instruction combined with flag bits. The source 134 ** code line number is in the lower 24 bits of iSrcLine and the upper 135 ** 8 bytes are flags. The lower three bits of the flags indicate 136 ** values for I that should never occur. For example, if the branch is 137 ** always taken, the flags should be 0x05 since the fall-through and 138 ** alternate branch are never taken. If a branch is never taken then 139 ** flags should be 0x06 since only the fall-through approach is allowed. 140 ** 141 ** Bit 0x04 of the flags indicates an OP_Jump opcode that is only 142 ** interested in equal or not-equal. In other words, I==0 and I==2 143 ** should be treated the same. 144 ** 145 ** Since only a line number is retained, not the filename, this macro 146 ** only works for amalgamation builds. But that is ok, since these macros 147 ** should be no-ops except for special builds used to measure test coverage. 148 */ 149 #if !defined(SQLITE_VDBE_COVERAGE) 150 # define VdbeBranchTaken(I,M) 151 #else 152 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 153 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 154 u8 mNever; 155 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 156 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 157 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 158 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 159 I = 1<<I; 160 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 161 ** the flags indicate directions that the branch can never go. If 162 ** a branch really does go in one of those directions, assert right 163 ** away. */ 164 mNever = iSrcLine >> 24; 165 assert( (I & mNever)==0 ); 166 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 167 I |= mNever; 168 if( M==2 ) I |= 0x04; 169 if( M==4 ){ 170 I |= 0x08; 171 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 172 } 173 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 174 iSrcLine&0xffffff, I, M); 175 } 176 #endif 177 178 /* 179 ** Convert the given register into a string if it isn't one 180 ** already. Return non-zero if a malloc() fails. 181 */ 182 #define Stringify(P, enc) \ 183 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 184 { goto no_mem; } 185 186 /* 187 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 188 ** a pointer to a dynamically allocated string where some other entity 189 ** is responsible for deallocating that string. Because the register 190 ** does not control the string, it might be deleted without the register 191 ** knowing it. 192 ** 193 ** This routine converts an ephemeral string into a dynamically allocated 194 ** string that the register itself controls. In other words, it 195 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 196 */ 197 #define Deephemeralize(P) \ 198 if( ((P)->flags&MEM_Ephem)!=0 \ 199 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 200 201 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 202 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 203 204 /* 205 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 206 ** if we run out of memory. 207 */ 208 static VdbeCursor *allocateCursor( 209 Vdbe *p, /* The virtual machine */ 210 int iCur, /* Index of the new VdbeCursor */ 211 int nField, /* Number of fields in the table or index */ 212 int iDb, /* Database the cursor belongs to, or -1 */ 213 u8 eCurType /* Type of the new cursor */ 214 ){ 215 /* Find the memory cell that will be used to store the blob of memory 216 ** required for this VdbeCursor structure. It is convenient to use a 217 ** vdbe memory cell to manage the memory allocation required for a 218 ** VdbeCursor structure for the following reasons: 219 ** 220 ** * Sometimes cursor numbers are used for a couple of different 221 ** purposes in a vdbe program. The different uses might require 222 ** different sized allocations. Memory cells provide growable 223 ** allocations. 224 ** 225 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 226 ** be freed lazily via the sqlite3_release_memory() API. This 227 ** minimizes the number of malloc calls made by the system. 228 ** 229 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 230 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 231 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 232 */ 233 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 234 235 int nByte; 236 VdbeCursor *pCx = 0; 237 nByte = 238 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 239 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 240 241 assert( iCur>=0 && iCur<p->nCursor ); 242 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 243 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 244 p->apCsr[iCur] = 0; 245 } 246 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 247 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 248 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 249 pCx->eCurType = eCurType; 250 pCx->iDb = iDb; 251 pCx->nField = nField; 252 pCx->aOffset = &pCx->aType[nField]; 253 if( eCurType==CURTYPE_BTREE ){ 254 pCx->uc.pCursor = (BtCursor*) 255 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 256 sqlite3BtreeCursorZero(pCx->uc.pCursor); 257 } 258 } 259 return pCx; 260 } 261 262 /* 263 ** Try to convert a value into a numeric representation if we can 264 ** do so without loss of information. In other words, if the string 265 ** looks like a number, convert it into a number. If it does not 266 ** look like a number, leave it alone. 267 ** 268 ** If the bTryForInt flag is true, then extra effort is made to give 269 ** an integer representation. Strings that look like floating point 270 ** values but which have no fractional component (example: '48.00') 271 ** will have a MEM_Int representation when bTryForInt is true. 272 ** 273 ** If bTryForInt is false, then if the input string contains a decimal 274 ** point or exponential notation, the result is only MEM_Real, even 275 ** if there is an exact integer representation of the quantity. 276 */ 277 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 278 double rValue; 279 i64 iValue; 280 u8 enc = pRec->enc; 281 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 282 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 283 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 284 pRec->u.i = iValue; 285 pRec->flags |= MEM_Int; 286 }else{ 287 pRec->u.r = rValue; 288 pRec->flags |= MEM_Real; 289 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 290 } 291 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 292 ** string representation after computing a numeric equivalent, because the 293 ** string representation might not be the canonical representation for the 294 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 295 pRec->flags &= ~MEM_Str; 296 } 297 298 /* 299 ** Processing is determine by the affinity parameter: 300 ** 301 ** SQLITE_AFF_INTEGER: 302 ** SQLITE_AFF_REAL: 303 ** SQLITE_AFF_NUMERIC: 304 ** Try to convert pRec to an integer representation or a 305 ** floating-point representation if an integer representation 306 ** is not possible. Note that the integer representation is 307 ** always preferred, even if the affinity is REAL, because 308 ** an integer representation is more space efficient on disk. 309 ** 310 ** SQLITE_AFF_TEXT: 311 ** Convert pRec to a text representation. 312 ** 313 ** SQLITE_AFF_BLOB: 314 ** No-op. pRec is unchanged. 315 */ 316 static void applyAffinity( 317 Mem *pRec, /* The value to apply affinity to */ 318 char affinity, /* The affinity to be applied */ 319 u8 enc /* Use this text encoding */ 320 ){ 321 if( affinity>=SQLITE_AFF_NUMERIC ){ 322 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 323 || affinity==SQLITE_AFF_NUMERIC ); 324 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 325 if( (pRec->flags & MEM_Real)==0 ){ 326 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 327 }else{ 328 sqlite3VdbeIntegerAffinity(pRec); 329 } 330 } 331 }else if( affinity==SQLITE_AFF_TEXT ){ 332 /* Only attempt the conversion to TEXT if there is an integer or real 333 ** representation (blob and NULL do not get converted) but no string 334 ** representation. It would be harmless to repeat the conversion if 335 ** there is already a string rep, but it is pointless to waste those 336 ** CPU cycles. */ 337 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 338 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 339 sqlite3VdbeMemStringify(pRec, enc, 1); 340 } 341 } 342 pRec->flags &= ~(MEM_Real|MEM_Int); 343 } 344 } 345 346 /* 347 ** Try to convert the type of a function argument or a result column 348 ** into a numeric representation. Use either INTEGER or REAL whichever 349 ** is appropriate. But only do the conversion if it is possible without 350 ** loss of information and return the revised type of the argument. 351 */ 352 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 353 int eType = sqlite3_value_type(pVal); 354 if( eType==SQLITE_TEXT ){ 355 Mem *pMem = (Mem*)pVal; 356 applyNumericAffinity(pMem, 0); 357 eType = sqlite3_value_type(pVal); 358 } 359 return eType; 360 } 361 362 /* 363 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 364 ** not the internal Mem* type. 365 */ 366 void sqlite3ValueApplyAffinity( 367 sqlite3_value *pVal, 368 u8 affinity, 369 u8 enc 370 ){ 371 applyAffinity((Mem *)pVal, affinity, enc); 372 } 373 374 /* 375 ** pMem currently only holds a string type (or maybe a BLOB that we can 376 ** interpret as a string if we want to). Compute its corresponding 377 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 378 ** accordingly. 379 */ 380 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 381 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 382 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 383 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 384 return 0; 385 } 386 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ 387 return MEM_Int; 388 } 389 return MEM_Real; 390 } 391 392 /* 393 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 394 ** none. 395 ** 396 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 397 ** But it does set pMem->u.r and pMem->u.i appropriately. 398 */ 399 static u16 numericType(Mem *pMem){ 400 if( pMem->flags & (MEM_Int|MEM_Real) ){ 401 return pMem->flags & (MEM_Int|MEM_Real); 402 } 403 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 404 return computeNumericType(pMem); 405 } 406 return 0; 407 } 408 409 #ifdef SQLITE_DEBUG 410 /* 411 ** Write a nice string representation of the contents of cell pMem 412 ** into buffer zBuf, length nBuf. 413 */ 414 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 415 char *zCsr = zBuf; 416 int f = pMem->flags; 417 418 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 419 420 if( f&MEM_Blob ){ 421 int i; 422 char c; 423 if( f & MEM_Dyn ){ 424 c = 'z'; 425 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 426 }else if( f & MEM_Static ){ 427 c = 't'; 428 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 429 }else if( f & MEM_Ephem ){ 430 c = 'e'; 431 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 432 }else{ 433 c = 's'; 434 } 435 *(zCsr++) = c; 436 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 437 zCsr += sqlite3Strlen30(zCsr); 438 for(i=0; i<16 && i<pMem->n; i++){ 439 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 440 zCsr += sqlite3Strlen30(zCsr); 441 } 442 for(i=0; i<16 && i<pMem->n; i++){ 443 char z = pMem->z[i]; 444 if( z<32 || z>126 ) *zCsr++ = '.'; 445 else *zCsr++ = z; 446 } 447 *(zCsr++) = ']'; 448 if( f & MEM_Zero ){ 449 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 450 zCsr += sqlite3Strlen30(zCsr); 451 } 452 *zCsr = '\0'; 453 }else if( f & MEM_Str ){ 454 int j, k; 455 zBuf[0] = ' '; 456 if( f & MEM_Dyn ){ 457 zBuf[1] = 'z'; 458 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 459 }else if( f & MEM_Static ){ 460 zBuf[1] = 't'; 461 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 462 }else if( f & MEM_Ephem ){ 463 zBuf[1] = 'e'; 464 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 465 }else{ 466 zBuf[1] = 's'; 467 } 468 k = 2; 469 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 470 k += sqlite3Strlen30(&zBuf[k]); 471 zBuf[k++] = '['; 472 for(j=0; j<15 && j<pMem->n; j++){ 473 u8 c = pMem->z[j]; 474 if( c>=0x20 && c<0x7f ){ 475 zBuf[k++] = c; 476 }else{ 477 zBuf[k++] = '.'; 478 } 479 } 480 zBuf[k++] = ']'; 481 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 482 k += sqlite3Strlen30(&zBuf[k]); 483 zBuf[k++] = 0; 484 } 485 } 486 #endif 487 488 #ifdef SQLITE_DEBUG 489 /* 490 ** Print the value of a register for tracing purposes: 491 */ 492 static void memTracePrint(Mem *p){ 493 if( p->flags & MEM_Undefined ){ 494 printf(" undefined"); 495 }else if( p->flags & MEM_Null ){ 496 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 497 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 498 printf(" si:%lld", p->u.i); 499 }else if( p->flags & MEM_Int ){ 500 printf(" i:%lld", p->u.i); 501 #ifndef SQLITE_OMIT_FLOATING_POINT 502 }else if( p->flags & MEM_Real ){ 503 printf(" r:%g", p->u.r); 504 #endif 505 }else if( sqlite3VdbeMemIsRowSet(p) ){ 506 printf(" (rowset)"); 507 }else{ 508 char zBuf[200]; 509 sqlite3VdbeMemPrettyPrint(p, zBuf); 510 printf(" %s", zBuf); 511 } 512 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 513 } 514 static void registerTrace(int iReg, Mem *p){ 515 printf("REG[%d] = ", iReg); 516 memTracePrint(p); 517 printf("\n"); 518 sqlite3VdbeCheckMemInvariants(p); 519 } 520 #endif 521 522 #ifdef SQLITE_DEBUG 523 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 524 #else 525 # define REGISTER_TRACE(R,M) 526 #endif 527 528 529 #ifdef VDBE_PROFILE 530 531 /* 532 ** hwtime.h contains inline assembler code for implementing 533 ** high-performance timing routines. 534 */ 535 #include "hwtime.h" 536 537 #endif 538 539 #ifndef NDEBUG 540 /* 541 ** This function is only called from within an assert() expression. It 542 ** checks that the sqlite3.nTransaction variable is correctly set to 543 ** the number of non-transaction savepoints currently in the 544 ** linked list starting at sqlite3.pSavepoint. 545 ** 546 ** Usage: 547 ** 548 ** assert( checkSavepointCount(db) ); 549 */ 550 static int checkSavepointCount(sqlite3 *db){ 551 int n = 0; 552 Savepoint *p; 553 for(p=db->pSavepoint; p; p=p->pNext) n++; 554 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 555 return 1; 556 } 557 #endif 558 559 /* 560 ** Return the register of pOp->p2 after first preparing it to be 561 ** overwritten with an integer value. 562 */ 563 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 564 sqlite3VdbeMemSetNull(pOut); 565 pOut->flags = MEM_Int; 566 return pOut; 567 } 568 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 569 Mem *pOut; 570 assert( pOp->p2>0 ); 571 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 572 pOut = &p->aMem[pOp->p2]; 573 memAboutToChange(p, pOut); 574 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 575 return out2PrereleaseWithClear(pOut); 576 }else{ 577 pOut->flags = MEM_Int; 578 return pOut; 579 } 580 } 581 582 583 /* 584 ** Execute as much of a VDBE program as we can. 585 ** This is the core of sqlite3_step(). 586 */ 587 int sqlite3VdbeExec( 588 Vdbe *p /* The VDBE */ 589 ){ 590 Op *aOp = p->aOp; /* Copy of p->aOp */ 591 Op *pOp = aOp; /* Current operation */ 592 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 593 Op *pOrigOp; /* Value of pOp at the top of the loop */ 594 #endif 595 #ifdef SQLITE_DEBUG 596 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 597 #endif 598 int rc = SQLITE_OK; /* Value to return */ 599 sqlite3 *db = p->db; /* The database */ 600 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 601 u8 encoding = ENC(db); /* The database encoding */ 602 int iCompare = 0; /* Result of last comparison */ 603 unsigned nVmStep = 0; /* Number of virtual machine steps */ 604 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 605 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 606 #endif 607 Mem *aMem = p->aMem; /* Copy of p->aMem */ 608 Mem *pIn1 = 0; /* 1st input operand */ 609 Mem *pIn2 = 0; /* 2nd input operand */ 610 Mem *pIn3 = 0; /* 3rd input operand */ 611 Mem *pOut = 0; /* Output operand */ 612 #ifdef VDBE_PROFILE 613 u64 start; /* CPU clock count at start of opcode */ 614 #endif 615 /*** INSERT STACK UNION HERE ***/ 616 617 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 618 sqlite3VdbeEnter(p); 619 if( p->rc==SQLITE_NOMEM ){ 620 /* This happens if a malloc() inside a call to sqlite3_column_text() or 621 ** sqlite3_column_text16() failed. */ 622 goto no_mem; 623 } 624 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 625 assert( p->bIsReader || p->readOnly!=0 ); 626 p->iCurrentTime = 0; 627 assert( p->explain==0 ); 628 p->pResultSet = 0; 629 db->busyHandler.nBusy = 0; 630 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 631 sqlite3VdbeIOTraceSql(p); 632 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 633 if( db->xProgress ){ 634 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 635 assert( 0 < db->nProgressOps ); 636 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 637 }else{ 638 nProgressLimit = 0xffffffff; 639 } 640 #endif 641 #ifdef SQLITE_DEBUG 642 sqlite3BeginBenignMalloc(); 643 if( p->pc==0 644 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 645 ){ 646 int i; 647 int once = 1; 648 sqlite3VdbePrintSql(p); 649 if( p->db->flags & SQLITE_VdbeListing ){ 650 printf("VDBE Program Listing:\n"); 651 for(i=0; i<p->nOp; i++){ 652 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 653 } 654 } 655 if( p->db->flags & SQLITE_VdbeEQP ){ 656 for(i=0; i<p->nOp; i++){ 657 if( aOp[i].opcode==OP_Explain ){ 658 if( once ) printf("VDBE Query Plan:\n"); 659 printf("%s\n", aOp[i].p4.z); 660 once = 0; 661 } 662 } 663 } 664 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 665 } 666 sqlite3EndBenignMalloc(); 667 #endif 668 for(pOp=&aOp[p->pc]; 1; pOp++){ 669 /* Errors are detected by individual opcodes, with an immediate 670 ** jumps to abort_due_to_error. */ 671 assert( rc==SQLITE_OK ); 672 673 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 674 #ifdef VDBE_PROFILE 675 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 676 #endif 677 nVmStep++; 678 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 679 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 680 #endif 681 682 /* Only allow tracing if SQLITE_DEBUG is defined. 683 */ 684 #ifdef SQLITE_DEBUG 685 if( db->flags & SQLITE_VdbeTrace ){ 686 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 687 } 688 #endif 689 690 691 /* Check to see if we need to simulate an interrupt. This only happens 692 ** if we have a special test build. 693 */ 694 #ifdef SQLITE_TEST 695 if( sqlite3_interrupt_count>0 ){ 696 sqlite3_interrupt_count--; 697 if( sqlite3_interrupt_count==0 ){ 698 sqlite3_interrupt(db); 699 } 700 } 701 #endif 702 703 /* Sanity checking on other operands */ 704 #ifdef SQLITE_DEBUG 705 { 706 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 707 if( (opProperty & OPFLG_IN1)!=0 ){ 708 assert( pOp->p1>0 ); 709 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 710 assert( memIsValid(&aMem[pOp->p1]) ); 711 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 712 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 713 } 714 if( (opProperty & OPFLG_IN2)!=0 ){ 715 assert( pOp->p2>0 ); 716 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 717 assert( memIsValid(&aMem[pOp->p2]) ); 718 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 719 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 720 } 721 if( (opProperty & OPFLG_IN3)!=0 ){ 722 assert( pOp->p3>0 ); 723 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 724 assert( memIsValid(&aMem[pOp->p3]) ); 725 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 726 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 727 } 728 if( (opProperty & OPFLG_OUT2)!=0 ){ 729 assert( pOp->p2>0 ); 730 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 731 memAboutToChange(p, &aMem[pOp->p2]); 732 } 733 if( (opProperty & OPFLG_OUT3)!=0 ){ 734 assert( pOp->p3>0 ); 735 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 736 memAboutToChange(p, &aMem[pOp->p3]); 737 } 738 } 739 #endif 740 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 741 pOrigOp = pOp; 742 #endif 743 744 switch( pOp->opcode ){ 745 746 /***************************************************************************** 747 ** What follows is a massive switch statement where each case implements a 748 ** separate instruction in the virtual machine. If we follow the usual 749 ** indentation conventions, each case should be indented by 6 spaces. But 750 ** that is a lot of wasted space on the left margin. So the code within 751 ** the switch statement will break with convention and be flush-left. Another 752 ** big comment (similar to this one) will mark the point in the code where 753 ** we transition back to normal indentation. 754 ** 755 ** The formatting of each case is important. The makefile for SQLite 756 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 757 ** file looking for lines that begin with "case OP_". The opcodes.h files 758 ** will be filled with #defines that give unique integer values to each 759 ** opcode and the opcodes.c file is filled with an array of strings where 760 ** each string is the symbolic name for the corresponding opcode. If the 761 ** case statement is followed by a comment of the form "/# same as ... #/" 762 ** that comment is used to determine the particular value of the opcode. 763 ** 764 ** Other keywords in the comment that follows each case are used to 765 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 766 ** Keywords include: in1, in2, in3, out2, out3. See 767 ** the mkopcodeh.awk script for additional information. 768 ** 769 ** Documentation about VDBE opcodes is generated by scanning this file 770 ** for lines of that contain "Opcode:". That line and all subsequent 771 ** comment lines are used in the generation of the opcode.html documentation 772 ** file. 773 ** 774 ** SUMMARY: 775 ** 776 ** Formatting is important to scripts that scan this file. 777 ** Do not deviate from the formatting style currently in use. 778 ** 779 *****************************************************************************/ 780 781 /* Opcode: Goto * P2 * * * 782 ** 783 ** An unconditional jump to address P2. 784 ** The next instruction executed will be 785 ** the one at index P2 from the beginning of 786 ** the program. 787 ** 788 ** The P1 parameter is not actually used by this opcode. However, it 789 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 790 ** that this Goto is the bottom of a loop and that the lines from P2 down 791 ** to the current line should be indented for EXPLAIN output. 792 */ 793 case OP_Goto: { /* jump */ 794 jump_to_p2_and_check_for_interrupt: 795 pOp = &aOp[pOp->p2 - 1]; 796 797 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 798 ** OP_VNext, or OP_SorterNext) all jump here upon 799 ** completion. Check to see if sqlite3_interrupt() has been called 800 ** or if the progress callback needs to be invoked. 801 ** 802 ** This code uses unstructured "goto" statements and does not look clean. 803 ** But that is not due to sloppy coding habits. The code is written this 804 ** way for performance, to avoid having to run the interrupt and progress 805 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 806 ** faster according to "valgrind --tool=cachegrind" */ 807 check_for_interrupt: 808 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 809 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 810 /* Call the progress callback if it is configured and the required number 811 ** of VDBE ops have been executed (either since this invocation of 812 ** sqlite3VdbeExec() or since last time the progress callback was called). 813 ** If the progress callback returns non-zero, exit the virtual machine with 814 ** a return code SQLITE_ABORT. 815 */ 816 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 817 assert( db->nProgressOps!=0 ); 818 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 819 if( db->xProgress(db->pProgressArg) ){ 820 rc = SQLITE_INTERRUPT; 821 goto abort_due_to_error; 822 } 823 } 824 #endif 825 826 break; 827 } 828 829 /* Opcode: Gosub P1 P2 * * * 830 ** 831 ** Write the current address onto register P1 832 ** and then jump to address P2. 833 */ 834 case OP_Gosub: { /* jump */ 835 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 836 pIn1 = &aMem[pOp->p1]; 837 assert( VdbeMemDynamic(pIn1)==0 ); 838 memAboutToChange(p, pIn1); 839 pIn1->flags = MEM_Int; 840 pIn1->u.i = (int)(pOp-aOp); 841 REGISTER_TRACE(pOp->p1, pIn1); 842 843 /* Most jump operations do a goto to this spot in order to update 844 ** the pOp pointer. */ 845 jump_to_p2: 846 pOp = &aOp[pOp->p2 - 1]; 847 break; 848 } 849 850 /* Opcode: Return P1 * * * * 851 ** 852 ** Jump to the next instruction after the address in register P1. After 853 ** the jump, register P1 becomes undefined. 854 */ 855 case OP_Return: { /* in1 */ 856 pIn1 = &aMem[pOp->p1]; 857 assert( pIn1->flags==MEM_Int ); 858 pOp = &aOp[pIn1->u.i]; 859 pIn1->flags = MEM_Undefined; 860 break; 861 } 862 863 /* Opcode: InitCoroutine P1 P2 P3 * * 864 ** 865 ** Set up register P1 so that it will Yield to the coroutine 866 ** located at address P3. 867 ** 868 ** If P2!=0 then the coroutine implementation immediately follows 869 ** this opcode. So jump over the coroutine implementation to 870 ** address P2. 871 ** 872 ** See also: EndCoroutine 873 */ 874 case OP_InitCoroutine: { /* jump */ 875 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 876 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 877 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 878 pOut = &aMem[pOp->p1]; 879 assert( !VdbeMemDynamic(pOut) ); 880 pOut->u.i = pOp->p3 - 1; 881 pOut->flags = MEM_Int; 882 if( pOp->p2 ) goto jump_to_p2; 883 break; 884 } 885 886 /* Opcode: EndCoroutine P1 * * * * 887 ** 888 ** The instruction at the address in register P1 is a Yield. 889 ** Jump to the P2 parameter of that Yield. 890 ** After the jump, register P1 becomes undefined. 891 ** 892 ** See also: InitCoroutine 893 */ 894 case OP_EndCoroutine: { /* in1 */ 895 VdbeOp *pCaller; 896 pIn1 = &aMem[pOp->p1]; 897 assert( pIn1->flags==MEM_Int ); 898 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 899 pCaller = &aOp[pIn1->u.i]; 900 assert( pCaller->opcode==OP_Yield ); 901 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 902 pOp = &aOp[pCaller->p2 - 1]; 903 pIn1->flags = MEM_Undefined; 904 break; 905 } 906 907 /* Opcode: Yield P1 P2 * * * 908 ** 909 ** Swap the program counter with the value in register P1. This 910 ** has the effect of yielding to a coroutine. 911 ** 912 ** If the coroutine that is launched by this instruction ends with 913 ** Yield or Return then continue to the next instruction. But if 914 ** the coroutine launched by this instruction ends with 915 ** EndCoroutine, then jump to P2 rather than continuing with the 916 ** next instruction. 917 ** 918 ** See also: InitCoroutine 919 */ 920 case OP_Yield: { /* in1, jump */ 921 int pcDest; 922 pIn1 = &aMem[pOp->p1]; 923 assert( VdbeMemDynamic(pIn1)==0 ); 924 pIn1->flags = MEM_Int; 925 pcDest = (int)pIn1->u.i; 926 pIn1->u.i = (int)(pOp - aOp); 927 REGISTER_TRACE(pOp->p1, pIn1); 928 pOp = &aOp[pcDest]; 929 break; 930 } 931 932 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 933 ** Synopsis: if r[P3]=null halt 934 ** 935 ** Check the value in register P3. If it is NULL then Halt using 936 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 937 ** value in register P3 is not NULL, then this routine is a no-op. 938 ** The P5 parameter should be 1. 939 */ 940 case OP_HaltIfNull: { /* in3 */ 941 pIn3 = &aMem[pOp->p3]; 942 #ifdef SQLITE_DEBUG 943 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 944 #endif 945 if( (pIn3->flags & MEM_Null)==0 ) break; 946 /* Fall through into OP_Halt */ 947 } 948 949 /* Opcode: Halt P1 P2 * P4 P5 950 ** 951 ** Exit immediately. All open cursors, etc are closed 952 ** automatically. 953 ** 954 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 955 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 956 ** For errors, it can be some other value. If P1!=0 then P2 will determine 957 ** whether or not to rollback the current transaction. Do not rollback 958 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 959 ** then back out all changes that have occurred during this execution of the 960 ** VDBE, but do not rollback the transaction. 961 ** 962 ** If P4 is not null then it is an error message string. 963 ** 964 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 965 ** 966 ** 0: (no change) 967 ** 1: NOT NULL contraint failed: P4 968 ** 2: UNIQUE constraint failed: P4 969 ** 3: CHECK constraint failed: P4 970 ** 4: FOREIGN KEY constraint failed: P4 971 ** 972 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 973 ** omitted. 974 ** 975 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 976 ** every program. So a jump past the last instruction of the program 977 ** is the same as executing Halt. 978 */ 979 case OP_Halt: { 980 VdbeFrame *pFrame; 981 int pcx; 982 983 pcx = (int)(pOp - aOp); 984 #ifdef SQLITE_DEBUG 985 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 986 #endif 987 if( pOp->p1==SQLITE_OK && p->pFrame ){ 988 /* Halt the sub-program. Return control to the parent frame. */ 989 pFrame = p->pFrame; 990 p->pFrame = pFrame->pParent; 991 p->nFrame--; 992 sqlite3VdbeSetChanges(db, p->nChange); 993 pcx = sqlite3VdbeFrameRestore(pFrame); 994 if( pOp->p2==OE_Ignore ){ 995 /* Instruction pcx is the OP_Program that invoked the sub-program 996 ** currently being halted. If the p2 instruction of this OP_Halt 997 ** instruction is set to OE_Ignore, then the sub-program is throwing 998 ** an IGNORE exception. In this case jump to the address specified 999 ** as the p2 of the calling OP_Program. */ 1000 pcx = p->aOp[pcx].p2-1; 1001 } 1002 aOp = p->aOp; 1003 aMem = p->aMem; 1004 pOp = &aOp[pcx]; 1005 break; 1006 } 1007 p->rc = pOp->p1; 1008 p->errorAction = (u8)pOp->p2; 1009 p->pc = pcx; 1010 assert( pOp->p5<=4 ); 1011 if( p->rc ){ 1012 if( pOp->p5 ){ 1013 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1014 "FOREIGN KEY" }; 1015 testcase( pOp->p5==1 ); 1016 testcase( pOp->p5==2 ); 1017 testcase( pOp->p5==3 ); 1018 testcase( pOp->p5==4 ); 1019 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1020 if( pOp->p4.z ){ 1021 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1022 } 1023 }else{ 1024 sqlite3VdbeError(p, "%s", pOp->p4.z); 1025 } 1026 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1027 } 1028 rc = sqlite3VdbeHalt(p); 1029 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1030 if( rc==SQLITE_BUSY ){ 1031 p->rc = SQLITE_BUSY; 1032 }else{ 1033 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1034 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1035 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1036 } 1037 goto vdbe_return; 1038 } 1039 1040 /* Opcode: Integer P1 P2 * * * 1041 ** Synopsis: r[P2]=P1 1042 ** 1043 ** The 32-bit integer value P1 is written into register P2. 1044 */ 1045 case OP_Integer: { /* out2 */ 1046 pOut = out2Prerelease(p, pOp); 1047 pOut->u.i = pOp->p1; 1048 break; 1049 } 1050 1051 /* Opcode: Int64 * P2 * P4 * 1052 ** Synopsis: r[P2]=P4 1053 ** 1054 ** P4 is a pointer to a 64-bit integer value. 1055 ** Write that value into register P2. 1056 */ 1057 case OP_Int64: { /* out2 */ 1058 pOut = out2Prerelease(p, pOp); 1059 assert( pOp->p4.pI64!=0 ); 1060 pOut->u.i = *pOp->p4.pI64; 1061 break; 1062 } 1063 1064 #ifndef SQLITE_OMIT_FLOATING_POINT 1065 /* Opcode: Real * P2 * P4 * 1066 ** Synopsis: r[P2]=P4 1067 ** 1068 ** P4 is a pointer to a 64-bit floating point value. 1069 ** Write that value into register P2. 1070 */ 1071 case OP_Real: { /* same as TK_FLOAT, out2 */ 1072 pOut = out2Prerelease(p, pOp); 1073 pOut->flags = MEM_Real; 1074 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1075 pOut->u.r = *pOp->p4.pReal; 1076 break; 1077 } 1078 #endif 1079 1080 /* Opcode: String8 * P2 * P4 * 1081 ** Synopsis: r[P2]='P4' 1082 ** 1083 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1084 ** into a String opcode before it is executed for the first time. During 1085 ** this transformation, the length of string P4 is computed and stored 1086 ** as the P1 parameter. 1087 */ 1088 case OP_String8: { /* same as TK_STRING, out2 */ 1089 assert( pOp->p4.z!=0 ); 1090 pOut = out2Prerelease(p, pOp); 1091 pOp->opcode = OP_String; 1092 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1093 1094 #ifndef SQLITE_OMIT_UTF16 1095 if( encoding!=SQLITE_UTF8 ){ 1096 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1097 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1098 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1099 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1100 assert( VdbeMemDynamic(pOut)==0 ); 1101 pOut->szMalloc = 0; 1102 pOut->flags |= MEM_Static; 1103 if( pOp->p4type==P4_DYNAMIC ){ 1104 sqlite3DbFree(db, pOp->p4.z); 1105 } 1106 pOp->p4type = P4_DYNAMIC; 1107 pOp->p4.z = pOut->z; 1108 pOp->p1 = pOut->n; 1109 } 1110 testcase( rc==SQLITE_TOOBIG ); 1111 #endif 1112 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1113 goto too_big; 1114 } 1115 assert( rc==SQLITE_OK ); 1116 /* Fall through to the next case, OP_String */ 1117 } 1118 1119 /* Opcode: String P1 P2 P3 P4 P5 1120 ** Synopsis: r[P2]='P4' (len=P1) 1121 ** 1122 ** The string value P4 of length P1 (bytes) is stored in register P2. 1123 ** 1124 ** If P3 is not zero and the content of register P3 is equal to P5, then 1125 ** the datatype of the register P2 is converted to BLOB. The content is 1126 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1127 ** of a string, as if it had been CAST. In other words: 1128 ** 1129 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1130 */ 1131 case OP_String: { /* out2 */ 1132 assert( pOp->p4.z!=0 ); 1133 pOut = out2Prerelease(p, pOp); 1134 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1135 pOut->z = pOp->p4.z; 1136 pOut->n = pOp->p1; 1137 pOut->enc = encoding; 1138 UPDATE_MAX_BLOBSIZE(pOut); 1139 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1140 if( pOp->p3>0 ){ 1141 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1142 pIn3 = &aMem[pOp->p3]; 1143 assert( pIn3->flags & MEM_Int ); 1144 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1145 } 1146 #endif 1147 break; 1148 } 1149 1150 /* Opcode: Null P1 P2 P3 * * 1151 ** Synopsis: r[P2..P3]=NULL 1152 ** 1153 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1154 ** NULL into register P3 and every register in between P2 and P3. If P3 1155 ** is less than P2 (typically P3 is zero) then only register P2 is 1156 ** set to NULL. 1157 ** 1158 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1159 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1160 ** OP_Ne or OP_Eq. 1161 */ 1162 case OP_Null: { /* out2 */ 1163 int cnt; 1164 u16 nullFlag; 1165 pOut = out2Prerelease(p, pOp); 1166 cnt = pOp->p3-pOp->p2; 1167 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1168 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1169 pOut->n = 0; 1170 #ifdef SQLITE_DEBUG 1171 pOut->uTemp = 0; 1172 #endif 1173 while( cnt>0 ){ 1174 pOut++; 1175 memAboutToChange(p, pOut); 1176 sqlite3VdbeMemSetNull(pOut); 1177 pOut->flags = nullFlag; 1178 pOut->n = 0; 1179 cnt--; 1180 } 1181 break; 1182 } 1183 1184 /* Opcode: SoftNull P1 * * * * 1185 ** Synopsis: r[P1]=NULL 1186 ** 1187 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1188 ** instruction, but do not free any string or blob memory associated with 1189 ** the register, so that if the value was a string or blob that was 1190 ** previously copied using OP_SCopy, the copies will continue to be valid. 1191 */ 1192 case OP_SoftNull: { 1193 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1194 pOut = &aMem[pOp->p1]; 1195 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1196 break; 1197 } 1198 1199 /* Opcode: Blob P1 P2 * P4 * 1200 ** Synopsis: r[P2]=P4 (len=P1) 1201 ** 1202 ** P4 points to a blob of data P1 bytes long. Store this 1203 ** blob in register P2. 1204 */ 1205 case OP_Blob: { /* out2 */ 1206 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1207 pOut = out2Prerelease(p, pOp); 1208 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1209 pOut->enc = encoding; 1210 UPDATE_MAX_BLOBSIZE(pOut); 1211 break; 1212 } 1213 1214 /* Opcode: Variable P1 P2 * P4 * 1215 ** Synopsis: r[P2]=parameter(P1,P4) 1216 ** 1217 ** Transfer the values of bound parameter P1 into register P2 1218 ** 1219 ** If the parameter is named, then its name appears in P4. 1220 ** The P4 value is used by sqlite3_bind_parameter_name(). 1221 */ 1222 case OP_Variable: { /* out2 */ 1223 Mem *pVar; /* Value being transferred */ 1224 1225 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1226 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1227 pVar = &p->aVar[pOp->p1 - 1]; 1228 if( sqlite3VdbeMemTooBig(pVar) ){ 1229 goto too_big; 1230 } 1231 pOut = &aMem[pOp->p2]; 1232 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1233 UPDATE_MAX_BLOBSIZE(pOut); 1234 break; 1235 } 1236 1237 /* Opcode: Move P1 P2 P3 * * 1238 ** Synopsis: r[P2@P3]=r[P1@P3] 1239 ** 1240 ** Move the P3 values in register P1..P1+P3-1 over into 1241 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1242 ** left holding a NULL. It is an error for register ranges 1243 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1244 ** for P3 to be less than 1. 1245 */ 1246 case OP_Move: { 1247 int n; /* Number of registers left to copy */ 1248 int p1; /* Register to copy from */ 1249 int p2; /* Register to copy to */ 1250 1251 n = pOp->p3; 1252 p1 = pOp->p1; 1253 p2 = pOp->p2; 1254 assert( n>0 && p1>0 && p2>0 ); 1255 assert( p1+n<=p2 || p2+n<=p1 ); 1256 1257 pIn1 = &aMem[p1]; 1258 pOut = &aMem[p2]; 1259 do{ 1260 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1261 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1262 assert( memIsValid(pIn1) ); 1263 memAboutToChange(p, pOut); 1264 sqlite3VdbeMemMove(pOut, pIn1); 1265 #ifdef SQLITE_DEBUG 1266 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1267 pOut->pScopyFrom += pOp->p2 - p1; 1268 } 1269 #endif 1270 Deephemeralize(pOut); 1271 REGISTER_TRACE(p2++, pOut); 1272 pIn1++; 1273 pOut++; 1274 }while( --n ); 1275 break; 1276 } 1277 1278 /* Opcode: Copy P1 P2 P3 * * 1279 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1280 ** 1281 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1282 ** 1283 ** This instruction makes a deep copy of the value. A duplicate 1284 ** is made of any string or blob constant. See also OP_SCopy. 1285 */ 1286 case OP_Copy: { 1287 int n; 1288 1289 n = pOp->p3; 1290 pIn1 = &aMem[pOp->p1]; 1291 pOut = &aMem[pOp->p2]; 1292 assert( pOut!=pIn1 ); 1293 while( 1 ){ 1294 memAboutToChange(p, pOut); 1295 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1296 Deephemeralize(pOut); 1297 #ifdef SQLITE_DEBUG 1298 pOut->pScopyFrom = 0; 1299 #endif 1300 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1301 if( (n--)==0 ) break; 1302 pOut++; 1303 pIn1++; 1304 } 1305 break; 1306 } 1307 1308 /* Opcode: SCopy P1 P2 * * * 1309 ** Synopsis: r[P2]=r[P1] 1310 ** 1311 ** Make a shallow copy of register P1 into register P2. 1312 ** 1313 ** This instruction makes a shallow copy of the value. If the value 1314 ** is a string or blob, then the copy is only a pointer to the 1315 ** original and hence if the original changes so will the copy. 1316 ** Worse, if the original is deallocated, the copy becomes invalid. 1317 ** Thus the program must guarantee that the original will not change 1318 ** during the lifetime of the copy. Use OP_Copy to make a complete 1319 ** copy. 1320 */ 1321 case OP_SCopy: { /* out2 */ 1322 pIn1 = &aMem[pOp->p1]; 1323 pOut = &aMem[pOp->p2]; 1324 assert( pOut!=pIn1 ); 1325 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1326 #ifdef SQLITE_DEBUG 1327 pOut->pScopyFrom = pIn1; 1328 pOut->mScopyFlags = pIn1->flags; 1329 #endif 1330 break; 1331 } 1332 1333 /* Opcode: IntCopy P1 P2 * * * 1334 ** Synopsis: r[P2]=r[P1] 1335 ** 1336 ** Transfer the integer value held in register P1 into register P2. 1337 ** 1338 ** This is an optimized version of SCopy that works only for integer 1339 ** values. 1340 */ 1341 case OP_IntCopy: { /* out2 */ 1342 pIn1 = &aMem[pOp->p1]; 1343 assert( (pIn1->flags & MEM_Int)!=0 ); 1344 pOut = &aMem[pOp->p2]; 1345 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1346 break; 1347 } 1348 1349 /* Opcode: ResultRow P1 P2 * * * 1350 ** Synopsis: output=r[P1@P2] 1351 ** 1352 ** The registers P1 through P1+P2-1 contain a single row of 1353 ** results. This opcode causes the sqlite3_step() call to terminate 1354 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1355 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1356 ** the result row. 1357 */ 1358 case OP_ResultRow: { 1359 Mem *pMem; 1360 int i; 1361 assert( p->nResColumn==pOp->p2 ); 1362 assert( pOp->p1>0 ); 1363 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1364 1365 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1366 /* Run the progress counter just before returning. 1367 */ 1368 if( db->xProgress!=0 1369 && nVmStep>=nProgressLimit 1370 && db->xProgress(db->pProgressArg)!=0 1371 ){ 1372 rc = SQLITE_INTERRUPT; 1373 goto abort_due_to_error; 1374 } 1375 #endif 1376 1377 /* If this statement has violated immediate foreign key constraints, do 1378 ** not return the number of rows modified. And do not RELEASE the statement 1379 ** transaction. It needs to be rolled back. */ 1380 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1381 assert( db->flags&SQLITE_CountRows ); 1382 assert( p->usesStmtJournal ); 1383 goto abort_due_to_error; 1384 } 1385 1386 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1387 ** DML statements invoke this opcode to return the number of rows 1388 ** modified to the user. This is the only way that a VM that 1389 ** opens a statement transaction may invoke this opcode. 1390 ** 1391 ** In case this is such a statement, close any statement transaction 1392 ** opened by this VM before returning control to the user. This is to 1393 ** ensure that statement-transactions are always nested, not overlapping. 1394 ** If the open statement-transaction is not closed here, then the user 1395 ** may step another VM that opens its own statement transaction. This 1396 ** may lead to overlapping statement transactions. 1397 ** 1398 ** The statement transaction is never a top-level transaction. Hence 1399 ** the RELEASE call below can never fail. 1400 */ 1401 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1402 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1403 assert( rc==SQLITE_OK ); 1404 1405 /* Invalidate all ephemeral cursor row caches */ 1406 p->cacheCtr = (p->cacheCtr + 2)|1; 1407 1408 /* Make sure the results of the current row are \000 terminated 1409 ** and have an assigned type. The results are de-ephemeralized as 1410 ** a side effect. 1411 */ 1412 pMem = p->pResultSet = &aMem[pOp->p1]; 1413 for(i=0; i<pOp->p2; i++){ 1414 assert( memIsValid(&pMem[i]) ); 1415 Deephemeralize(&pMem[i]); 1416 assert( (pMem[i].flags & MEM_Ephem)==0 1417 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1418 sqlite3VdbeMemNulTerminate(&pMem[i]); 1419 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1420 } 1421 if( db->mallocFailed ) goto no_mem; 1422 1423 if( db->mTrace & SQLITE_TRACE_ROW ){ 1424 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1425 } 1426 1427 /* Return SQLITE_ROW 1428 */ 1429 p->pc = (int)(pOp - aOp) + 1; 1430 rc = SQLITE_ROW; 1431 goto vdbe_return; 1432 } 1433 1434 /* Opcode: Concat P1 P2 P3 * * 1435 ** Synopsis: r[P3]=r[P2]+r[P1] 1436 ** 1437 ** Add the text in register P1 onto the end of the text in 1438 ** register P2 and store the result in register P3. 1439 ** If either the P1 or P2 text are NULL then store NULL in P3. 1440 ** 1441 ** P3 = P2 || P1 1442 ** 1443 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1444 ** if P3 is the same register as P2, the implementation is able 1445 ** to avoid a memcpy(). 1446 */ 1447 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1448 i64 nByte; 1449 1450 pIn1 = &aMem[pOp->p1]; 1451 pIn2 = &aMem[pOp->p2]; 1452 pOut = &aMem[pOp->p3]; 1453 assert( pIn1!=pOut ); 1454 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1455 sqlite3VdbeMemSetNull(pOut); 1456 break; 1457 } 1458 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1459 Stringify(pIn1, encoding); 1460 Stringify(pIn2, encoding); 1461 nByte = pIn1->n + pIn2->n; 1462 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1463 goto too_big; 1464 } 1465 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1466 goto no_mem; 1467 } 1468 MemSetTypeFlag(pOut, MEM_Str); 1469 if( pOut!=pIn2 ){ 1470 memcpy(pOut->z, pIn2->z, pIn2->n); 1471 } 1472 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1473 pOut->z[nByte]=0; 1474 pOut->z[nByte+1] = 0; 1475 pOut->flags |= MEM_Term; 1476 pOut->n = (int)nByte; 1477 pOut->enc = encoding; 1478 UPDATE_MAX_BLOBSIZE(pOut); 1479 break; 1480 } 1481 1482 /* Opcode: Add P1 P2 P3 * * 1483 ** Synopsis: r[P3]=r[P1]+r[P2] 1484 ** 1485 ** Add the value in register P1 to the value in register P2 1486 ** and store the result in register P3. 1487 ** If either input is NULL, the result is NULL. 1488 */ 1489 /* Opcode: Multiply P1 P2 P3 * * 1490 ** Synopsis: r[P3]=r[P1]*r[P2] 1491 ** 1492 ** 1493 ** Multiply the value in register P1 by the value in register P2 1494 ** and store the result in register P3. 1495 ** If either input is NULL, the result is NULL. 1496 */ 1497 /* Opcode: Subtract P1 P2 P3 * * 1498 ** Synopsis: r[P3]=r[P2]-r[P1] 1499 ** 1500 ** Subtract the value in register P1 from the value in register P2 1501 ** and store the result in register P3. 1502 ** If either input is NULL, the result is NULL. 1503 */ 1504 /* Opcode: Divide P1 P2 P3 * * 1505 ** Synopsis: r[P3]=r[P2]/r[P1] 1506 ** 1507 ** Divide the value in register P1 by the value in register P2 1508 ** and store the result in register P3 (P3=P2/P1). If the value in 1509 ** register P1 is zero, then the result is NULL. If either input is 1510 ** NULL, the result is NULL. 1511 */ 1512 /* Opcode: Remainder P1 P2 P3 * * 1513 ** Synopsis: r[P3]=r[P2]%r[P1] 1514 ** 1515 ** Compute the remainder after integer register P2 is divided by 1516 ** register P1 and store the result in register P3. 1517 ** If the value in register P1 is zero the result is NULL. 1518 ** If either operand is NULL, the result is NULL. 1519 */ 1520 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1521 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1522 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1523 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1524 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1525 char bIntint; /* Started out as two integer operands */ 1526 u16 flags; /* Combined MEM_* flags from both inputs */ 1527 u16 type1; /* Numeric type of left operand */ 1528 u16 type2; /* Numeric type of right operand */ 1529 i64 iA; /* Integer value of left operand */ 1530 i64 iB; /* Integer value of right operand */ 1531 double rA; /* Real value of left operand */ 1532 double rB; /* Real value of right operand */ 1533 1534 pIn1 = &aMem[pOp->p1]; 1535 type1 = numericType(pIn1); 1536 pIn2 = &aMem[pOp->p2]; 1537 type2 = numericType(pIn2); 1538 pOut = &aMem[pOp->p3]; 1539 flags = pIn1->flags | pIn2->flags; 1540 if( (type1 & type2 & MEM_Int)!=0 ){ 1541 iA = pIn1->u.i; 1542 iB = pIn2->u.i; 1543 bIntint = 1; 1544 switch( pOp->opcode ){ 1545 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1546 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1547 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1548 case OP_Divide: { 1549 if( iA==0 ) goto arithmetic_result_is_null; 1550 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1551 iB /= iA; 1552 break; 1553 } 1554 default: { 1555 if( iA==0 ) goto arithmetic_result_is_null; 1556 if( iA==-1 ) iA = 1; 1557 iB %= iA; 1558 break; 1559 } 1560 } 1561 pOut->u.i = iB; 1562 MemSetTypeFlag(pOut, MEM_Int); 1563 }else if( (flags & MEM_Null)!=0 ){ 1564 goto arithmetic_result_is_null; 1565 }else{ 1566 bIntint = 0; 1567 fp_math: 1568 rA = sqlite3VdbeRealValue(pIn1); 1569 rB = sqlite3VdbeRealValue(pIn2); 1570 switch( pOp->opcode ){ 1571 case OP_Add: rB += rA; break; 1572 case OP_Subtract: rB -= rA; break; 1573 case OP_Multiply: rB *= rA; break; 1574 case OP_Divide: { 1575 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1576 if( rA==(double)0 ) goto arithmetic_result_is_null; 1577 rB /= rA; 1578 break; 1579 } 1580 default: { 1581 iA = (i64)rA; 1582 iB = (i64)rB; 1583 if( iA==0 ) goto arithmetic_result_is_null; 1584 if( iA==-1 ) iA = 1; 1585 rB = (double)(iB % iA); 1586 break; 1587 } 1588 } 1589 #ifdef SQLITE_OMIT_FLOATING_POINT 1590 pOut->u.i = rB; 1591 MemSetTypeFlag(pOut, MEM_Int); 1592 #else 1593 if( sqlite3IsNaN(rB) ){ 1594 goto arithmetic_result_is_null; 1595 } 1596 pOut->u.r = rB; 1597 MemSetTypeFlag(pOut, MEM_Real); 1598 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1599 sqlite3VdbeIntegerAffinity(pOut); 1600 } 1601 #endif 1602 } 1603 break; 1604 1605 arithmetic_result_is_null: 1606 sqlite3VdbeMemSetNull(pOut); 1607 break; 1608 } 1609 1610 /* Opcode: CollSeq P1 * * P4 1611 ** 1612 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1613 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1614 ** be returned. This is used by the built-in min(), max() and nullif() 1615 ** functions. 1616 ** 1617 ** If P1 is not zero, then it is a register that a subsequent min() or 1618 ** max() aggregate will set to 1 if the current row is not the minimum or 1619 ** maximum. The P1 register is initialized to 0 by this instruction. 1620 ** 1621 ** The interface used by the implementation of the aforementioned functions 1622 ** to retrieve the collation sequence set by this opcode is not available 1623 ** publicly. Only built-in functions have access to this feature. 1624 */ 1625 case OP_CollSeq: { 1626 assert( pOp->p4type==P4_COLLSEQ ); 1627 if( pOp->p1 ){ 1628 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1629 } 1630 break; 1631 } 1632 1633 /* Opcode: BitAnd P1 P2 P3 * * 1634 ** Synopsis: r[P3]=r[P1]&r[P2] 1635 ** 1636 ** Take the bit-wise AND of the values in register P1 and P2 and 1637 ** store the result in register P3. 1638 ** If either input is NULL, the result is NULL. 1639 */ 1640 /* Opcode: BitOr P1 P2 P3 * * 1641 ** Synopsis: r[P3]=r[P1]|r[P2] 1642 ** 1643 ** Take the bit-wise OR of the values in register P1 and P2 and 1644 ** store the result in register P3. 1645 ** If either input is NULL, the result is NULL. 1646 */ 1647 /* Opcode: ShiftLeft P1 P2 P3 * * 1648 ** Synopsis: r[P3]=r[P2]<<r[P1] 1649 ** 1650 ** Shift the integer value in register P2 to the left by the 1651 ** number of bits specified by the integer in register P1. 1652 ** Store the result in register P3. 1653 ** If either input is NULL, the result is NULL. 1654 */ 1655 /* Opcode: ShiftRight P1 P2 P3 * * 1656 ** Synopsis: r[P3]=r[P2]>>r[P1] 1657 ** 1658 ** Shift the integer value in register P2 to the right by the 1659 ** number of bits specified by the integer in register P1. 1660 ** Store the result in register P3. 1661 ** If either input is NULL, the result is NULL. 1662 */ 1663 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1664 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1665 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1666 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1667 i64 iA; 1668 u64 uA; 1669 i64 iB; 1670 u8 op; 1671 1672 pIn1 = &aMem[pOp->p1]; 1673 pIn2 = &aMem[pOp->p2]; 1674 pOut = &aMem[pOp->p3]; 1675 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1676 sqlite3VdbeMemSetNull(pOut); 1677 break; 1678 } 1679 iA = sqlite3VdbeIntValue(pIn2); 1680 iB = sqlite3VdbeIntValue(pIn1); 1681 op = pOp->opcode; 1682 if( op==OP_BitAnd ){ 1683 iA &= iB; 1684 }else if( op==OP_BitOr ){ 1685 iA |= iB; 1686 }else if( iB!=0 ){ 1687 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1688 1689 /* If shifting by a negative amount, shift in the other direction */ 1690 if( iB<0 ){ 1691 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1692 op = 2*OP_ShiftLeft + 1 - op; 1693 iB = iB>(-64) ? -iB : 64; 1694 } 1695 1696 if( iB>=64 ){ 1697 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1698 }else{ 1699 memcpy(&uA, &iA, sizeof(uA)); 1700 if( op==OP_ShiftLeft ){ 1701 uA <<= iB; 1702 }else{ 1703 uA >>= iB; 1704 /* Sign-extend on a right shift of a negative number */ 1705 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1706 } 1707 memcpy(&iA, &uA, sizeof(iA)); 1708 } 1709 } 1710 pOut->u.i = iA; 1711 MemSetTypeFlag(pOut, MEM_Int); 1712 break; 1713 } 1714 1715 /* Opcode: AddImm P1 P2 * * * 1716 ** Synopsis: r[P1]=r[P1]+P2 1717 ** 1718 ** Add the constant P2 to the value in register P1. 1719 ** The result is always an integer. 1720 ** 1721 ** To force any register to be an integer, just add 0. 1722 */ 1723 case OP_AddImm: { /* in1 */ 1724 pIn1 = &aMem[pOp->p1]; 1725 memAboutToChange(p, pIn1); 1726 sqlite3VdbeMemIntegerify(pIn1); 1727 pIn1->u.i += pOp->p2; 1728 break; 1729 } 1730 1731 /* Opcode: MustBeInt P1 P2 * * * 1732 ** 1733 ** Force the value in register P1 to be an integer. If the value 1734 ** in P1 is not an integer and cannot be converted into an integer 1735 ** without data loss, then jump immediately to P2, or if P2==0 1736 ** raise an SQLITE_MISMATCH exception. 1737 */ 1738 case OP_MustBeInt: { /* jump, in1 */ 1739 pIn1 = &aMem[pOp->p1]; 1740 if( (pIn1->flags & MEM_Int)==0 ){ 1741 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1742 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1743 if( (pIn1->flags & MEM_Int)==0 ){ 1744 if( pOp->p2==0 ){ 1745 rc = SQLITE_MISMATCH; 1746 goto abort_due_to_error; 1747 }else{ 1748 goto jump_to_p2; 1749 } 1750 } 1751 } 1752 MemSetTypeFlag(pIn1, MEM_Int); 1753 break; 1754 } 1755 1756 #ifndef SQLITE_OMIT_FLOATING_POINT 1757 /* Opcode: RealAffinity P1 * * * * 1758 ** 1759 ** If register P1 holds an integer convert it to a real value. 1760 ** 1761 ** This opcode is used when extracting information from a column that 1762 ** has REAL affinity. Such column values may still be stored as 1763 ** integers, for space efficiency, but after extraction we want them 1764 ** to have only a real value. 1765 */ 1766 case OP_RealAffinity: { /* in1 */ 1767 pIn1 = &aMem[pOp->p1]; 1768 if( pIn1->flags & MEM_Int ){ 1769 sqlite3VdbeMemRealify(pIn1); 1770 } 1771 break; 1772 } 1773 #endif 1774 1775 #ifndef SQLITE_OMIT_CAST 1776 /* Opcode: Cast P1 P2 * * * 1777 ** Synopsis: affinity(r[P1]) 1778 ** 1779 ** Force the value in register P1 to be the type defined by P2. 1780 ** 1781 ** <ul> 1782 ** <li> P2=='A' → BLOB 1783 ** <li> P2=='B' → TEXT 1784 ** <li> P2=='C' → NUMERIC 1785 ** <li> P2=='D' → INTEGER 1786 ** <li> P2=='E' → REAL 1787 ** </ul> 1788 ** 1789 ** A NULL value is not changed by this routine. It remains NULL. 1790 */ 1791 case OP_Cast: { /* in1 */ 1792 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1793 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1794 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1795 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1796 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1797 testcase( pOp->p2==SQLITE_AFF_REAL ); 1798 pIn1 = &aMem[pOp->p1]; 1799 memAboutToChange(p, pIn1); 1800 rc = ExpandBlob(pIn1); 1801 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1802 UPDATE_MAX_BLOBSIZE(pIn1); 1803 if( rc ) goto abort_due_to_error; 1804 break; 1805 } 1806 #endif /* SQLITE_OMIT_CAST */ 1807 1808 /* Opcode: Eq P1 P2 P3 P4 P5 1809 ** Synopsis: IF r[P3]==r[P1] 1810 ** 1811 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1812 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1813 ** store the result of comparison in register P2. 1814 ** 1815 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1816 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1817 ** to coerce both inputs according to this affinity before the 1818 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1819 ** affinity is used. Note that the affinity conversions are stored 1820 ** back into the input registers P1 and P3. So this opcode can cause 1821 ** persistent changes to registers P1 and P3. 1822 ** 1823 ** Once any conversions have taken place, and neither value is NULL, 1824 ** the values are compared. If both values are blobs then memcmp() is 1825 ** used to determine the results of the comparison. If both values 1826 ** are text, then the appropriate collating function specified in 1827 ** P4 is used to do the comparison. If P4 is not specified then 1828 ** memcmp() is used to compare text string. If both values are 1829 ** numeric, then a numeric comparison is used. If the two values 1830 ** are of different types, then numbers are considered less than 1831 ** strings and strings are considered less than blobs. 1832 ** 1833 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1834 ** true or false and is never NULL. If both operands are NULL then the result 1835 ** of comparison is true. If either operand is NULL then the result is false. 1836 ** If neither operand is NULL the result is the same as it would be if 1837 ** the SQLITE_NULLEQ flag were omitted from P5. 1838 ** 1839 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1840 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1841 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1842 */ 1843 /* Opcode: Ne P1 P2 P3 P4 P5 1844 ** Synopsis: IF r[P3]!=r[P1] 1845 ** 1846 ** This works just like the Eq opcode except that the jump is taken if 1847 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1848 ** additional information. 1849 ** 1850 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1851 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1852 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1853 */ 1854 /* Opcode: Lt P1 P2 P3 P4 P5 1855 ** Synopsis: IF r[P3]<r[P1] 1856 ** 1857 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1858 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1859 ** the result of comparison (0 or 1 or NULL) into register P2. 1860 ** 1861 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1862 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1863 ** bit is clear then fall through if either operand is NULL. 1864 ** 1865 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1866 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1867 ** to coerce both inputs according to this affinity before the 1868 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1869 ** affinity is used. Note that the affinity conversions are stored 1870 ** back into the input registers P1 and P3. So this opcode can cause 1871 ** persistent changes to registers P1 and P3. 1872 ** 1873 ** Once any conversions have taken place, and neither value is NULL, 1874 ** the values are compared. If both values are blobs then memcmp() is 1875 ** used to determine the results of the comparison. If both values 1876 ** are text, then the appropriate collating function specified in 1877 ** P4 is used to do the comparison. If P4 is not specified then 1878 ** memcmp() is used to compare text string. If both values are 1879 ** numeric, then a numeric comparison is used. If the two values 1880 ** are of different types, then numbers are considered less than 1881 ** strings and strings are considered less than blobs. 1882 */ 1883 /* Opcode: Le P1 P2 P3 P4 P5 1884 ** Synopsis: IF r[P3]<=r[P1] 1885 ** 1886 ** This works just like the Lt opcode except that the jump is taken if 1887 ** the content of register P3 is less than or equal to the content of 1888 ** register P1. See the Lt opcode for additional information. 1889 */ 1890 /* Opcode: Gt P1 P2 P3 P4 P5 1891 ** Synopsis: IF r[P3]>r[P1] 1892 ** 1893 ** This works just like the Lt opcode except that the jump is taken if 1894 ** the content of register P3 is greater than the content of 1895 ** register P1. See the Lt opcode for additional information. 1896 */ 1897 /* Opcode: Ge P1 P2 P3 P4 P5 1898 ** Synopsis: IF r[P3]>=r[P1] 1899 ** 1900 ** This works just like the Lt opcode except that the jump is taken if 1901 ** the content of register P3 is greater than or equal to the content of 1902 ** register P1. See the Lt opcode for additional information. 1903 */ 1904 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1905 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1906 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1907 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1908 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1909 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1910 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1911 char affinity; /* Affinity to use for comparison */ 1912 u16 flags1; /* Copy of initial value of pIn1->flags */ 1913 u16 flags3; /* Copy of initial value of pIn3->flags */ 1914 1915 pIn1 = &aMem[pOp->p1]; 1916 pIn3 = &aMem[pOp->p3]; 1917 flags1 = pIn1->flags; 1918 flags3 = pIn3->flags; 1919 if( (flags1 | flags3)&MEM_Null ){ 1920 /* One or both operands are NULL */ 1921 if( pOp->p5 & SQLITE_NULLEQ ){ 1922 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1923 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1924 ** or not both operands are null. 1925 */ 1926 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1927 assert( (flags1 & MEM_Cleared)==0 ); 1928 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1929 if( (flags1&flags3&MEM_Null)!=0 1930 && (flags3&MEM_Cleared)==0 1931 ){ 1932 res = 0; /* Operands are equal */ 1933 }else{ 1934 res = 1; /* Operands are not equal */ 1935 } 1936 }else{ 1937 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1938 ** then the result is always NULL. 1939 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1940 */ 1941 if( pOp->p5 & SQLITE_STOREP2 ){ 1942 pOut = &aMem[pOp->p2]; 1943 iCompare = 1; /* Operands are not equal */ 1944 memAboutToChange(p, pOut); 1945 MemSetTypeFlag(pOut, MEM_Null); 1946 REGISTER_TRACE(pOp->p2, pOut); 1947 }else{ 1948 VdbeBranchTaken(2,3); 1949 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1950 goto jump_to_p2; 1951 } 1952 } 1953 break; 1954 } 1955 }else{ 1956 /* Neither operand is NULL. Do a comparison. */ 1957 affinity = pOp->p5 & SQLITE_AFF_MASK; 1958 if( affinity>=SQLITE_AFF_NUMERIC ){ 1959 if( (flags1 | flags3)&MEM_Str ){ 1960 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1961 applyNumericAffinity(pIn1,0); 1962 assert( flags3==pIn3->flags ); 1963 /* testcase( flags3!=pIn3->flags ); 1964 ** this used to be possible with pIn1==pIn3, but not since 1965 ** the column cache was removed. The following assignment 1966 ** is essentially a no-op. But, it provides defense-in-depth 1967 ** in case our analysis is incorrect, so it is left in. */ 1968 flags3 = pIn3->flags; 1969 } 1970 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1971 applyNumericAffinity(pIn3,0); 1972 } 1973 } 1974 /* Handle the common case of integer comparison here, as an 1975 ** optimization, to avoid a call to sqlite3MemCompare() */ 1976 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 1977 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 1978 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 1979 res = 0; 1980 goto compare_op; 1981 } 1982 }else if( affinity==SQLITE_AFF_TEXT ){ 1983 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 1984 testcase( pIn1->flags & MEM_Int ); 1985 testcase( pIn1->flags & MEM_Real ); 1986 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1987 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 1988 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 1989 assert( pIn1!=pIn3 ); 1990 } 1991 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 1992 testcase( pIn3->flags & MEM_Int ); 1993 testcase( pIn3->flags & MEM_Real ); 1994 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1995 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 1996 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 1997 } 1998 } 1999 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2000 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2001 } 2002 compare_op: 2003 /* At this point, res is negative, zero, or positive if reg[P1] is 2004 ** less than, equal to, or greater than reg[P3], respectively. Compute 2005 ** the answer to this operator in res2, depending on what the comparison 2006 ** operator actually is. The next block of code depends on the fact 2007 ** that the 6 comparison operators are consecutive integers in this 2008 ** order: NE, EQ, GT, LE, LT, GE */ 2009 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2010 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2011 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2012 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2013 res2 = aLTb[pOp->opcode - OP_Ne]; 2014 }else if( res==0 ){ 2015 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2016 res2 = aEQb[pOp->opcode - OP_Ne]; 2017 }else{ 2018 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2019 res2 = aGTb[pOp->opcode - OP_Ne]; 2020 } 2021 2022 /* Undo any changes made by applyAffinity() to the input registers. */ 2023 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2024 pIn1->flags = flags1; 2025 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2026 pIn3->flags = flags3; 2027 2028 if( pOp->p5 & SQLITE_STOREP2 ){ 2029 pOut = &aMem[pOp->p2]; 2030 iCompare = res; 2031 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2032 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2033 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2034 ** is only used in contexts where either: 2035 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2036 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2037 ** Therefore it is not necessary to check the content of r[P2] for 2038 ** NULL. */ 2039 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2040 assert( res2==0 || res2==1 ); 2041 testcase( res2==0 && pOp->opcode==OP_Eq ); 2042 testcase( res2==1 && pOp->opcode==OP_Eq ); 2043 testcase( res2==0 && pOp->opcode==OP_Ne ); 2044 testcase( res2==1 && pOp->opcode==OP_Ne ); 2045 if( (pOp->opcode==OP_Eq)==res2 ) break; 2046 } 2047 memAboutToChange(p, pOut); 2048 MemSetTypeFlag(pOut, MEM_Int); 2049 pOut->u.i = res2; 2050 REGISTER_TRACE(pOp->p2, pOut); 2051 }else{ 2052 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2053 if( res2 ){ 2054 goto jump_to_p2; 2055 } 2056 } 2057 break; 2058 } 2059 2060 /* Opcode: ElseNotEq * P2 * * * 2061 ** 2062 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2063 ** If result of an OP_Eq comparison on the same two operands 2064 ** would have be NULL or false (0), then then jump to P2. 2065 ** If the result of an OP_Eq comparison on the two previous operands 2066 ** would have been true (1), then fall through. 2067 */ 2068 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2069 assert( pOp>aOp ); 2070 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2071 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2072 VdbeBranchTaken(iCompare!=0, 2); 2073 if( iCompare!=0 ) goto jump_to_p2; 2074 break; 2075 } 2076 2077 2078 /* Opcode: Permutation * * * P4 * 2079 ** 2080 ** Set the permutation used by the OP_Compare operator in the next 2081 ** instruction. The permutation is stored in the P4 operand. 2082 ** 2083 ** The permutation is only valid until the next OP_Compare that has 2084 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2085 ** occur immediately prior to the OP_Compare. 2086 ** 2087 ** The first integer in the P4 integer array is the length of the array 2088 ** and does not become part of the permutation. 2089 */ 2090 case OP_Permutation: { 2091 assert( pOp->p4type==P4_INTARRAY ); 2092 assert( pOp->p4.ai ); 2093 assert( pOp[1].opcode==OP_Compare ); 2094 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2095 break; 2096 } 2097 2098 /* Opcode: Compare P1 P2 P3 P4 P5 2099 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2100 ** 2101 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2102 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2103 ** the comparison for use by the next OP_Jump instruct. 2104 ** 2105 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2106 ** determined by the most recent OP_Permutation operator. If the 2107 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2108 ** order. 2109 ** 2110 ** P4 is a KeyInfo structure that defines collating sequences and sort 2111 ** orders for the comparison. The permutation applies to registers 2112 ** only. The KeyInfo elements are used sequentially. 2113 ** 2114 ** The comparison is a sort comparison, so NULLs compare equal, 2115 ** NULLs are less than numbers, numbers are less than strings, 2116 ** and strings are less than blobs. 2117 */ 2118 case OP_Compare: { 2119 int n; 2120 int i; 2121 int p1; 2122 int p2; 2123 const KeyInfo *pKeyInfo; 2124 int idx; 2125 CollSeq *pColl; /* Collating sequence to use on this term */ 2126 int bRev; /* True for DESCENDING sort order */ 2127 int *aPermute; /* The permutation */ 2128 2129 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2130 aPermute = 0; 2131 }else{ 2132 assert( pOp>aOp ); 2133 assert( pOp[-1].opcode==OP_Permutation ); 2134 assert( pOp[-1].p4type==P4_INTARRAY ); 2135 aPermute = pOp[-1].p4.ai + 1; 2136 assert( aPermute!=0 ); 2137 } 2138 n = pOp->p3; 2139 pKeyInfo = pOp->p4.pKeyInfo; 2140 assert( n>0 ); 2141 assert( pKeyInfo!=0 ); 2142 p1 = pOp->p1; 2143 p2 = pOp->p2; 2144 #ifdef SQLITE_DEBUG 2145 if( aPermute ){ 2146 int k, mx = 0; 2147 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2148 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2149 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2150 }else{ 2151 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2152 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2153 } 2154 #endif /* SQLITE_DEBUG */ 2155 for(i=0; i<n; i++){ 2156 idx = aPermute ? aPermute[i] : i; 2157 assert( memIsValid(&aMem[p1+idx]) ); 2158 assert( memIsValid(&aMem[p2+idx]) ); 2159 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2160 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2161 assert( i<pKeyInfo->nKeyField ); 2162 pColl = pKeyInfo->aColl[i]; 2163 bRev = pKeyInfo->aSortOrder[i]; 2164 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2165 if( iCompare ){ 2166 if( bRev ) iCompare = -iCompare; 2167 break; 2168 } 2169 } 2170 break; 2171 } 2172 2173 /* Opcode: Jump P1 P2 P3 * * 2174 ** 2175 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2176 ** in the most recent OP_Compare instruction the P1 vector was less than 2177 ** equal to, or greater than the P2 vector, respectively. 2178 */ 2179 case OP_Jump: { /* jump */ 2180 if( iCompare<0 ){ 2181 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2182 }else if( iCompare==0 ){ 2183 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2184 }else{ 2185 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2186 } 2187 break; 2188 } 2189 2190 /* Opcode: And P1 P2 P3 * * 2191 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2192 ** 2193 ** Take the logical AND of the values in registers P1 and P2 and 2194 ** write the result into register P3. 2195 ** 2196 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2197 ** the other input is NULL. A NULL and true or two NULLs give 2198 ** a NULL output. 2199 */ 2200 /* Opcode: Or P1 P2 P3 * * 2201 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2202 ** 2203 ** Take the logical OR of the values in register P1 and P2 and 2204 ** store the answer in register P3. 2205 ** 2206 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2207 ** even if the other input is NULL. A NULL and false or two NULLs 2208 ** give a NULL output. 2209 */ 2210 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2211 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2212 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2213 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2214 2215 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2216 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2217 if( pOp->opcode==OP_And ){ 2218 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2219 v1 = and_logic[v1*3+v2]; 2220 }else{ 2221 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2222 v1 = or_logic[v1*3+v2]; 2223 } 2224 pOut = &aMem[pOp->p3]; 2225 if( v1==2 ){ 2226 MemSetTypeFlag(pOut, MEM_Null); 2227 }else{ 2228 pOut->u.i = v1; 2229 MemSetTypeFlag(pOut, MEM_Int); 2230 } 2231 break; 2232 } 2233 2234 /* Opcode: IsTrue P1 P2 P3 P4 * 2235 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2236 ** 2237 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2238 ** IS NOT FALSE operators. 2239 ** 2240 ** Interpret the value in register P1 as a boolean value. Store that 2241 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2242 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2243 ** is 1. 2244 ** 2245 ** The logic is summarized like this: 2246 ** 2247 ** <ul> 2248 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2249 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2250 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2251 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2252 ** </ul> 2253 */ 2254 case OP_IsTrue: { /* in1, out2 */ 2255 assert( pOp->p4type==P4_INT32 ); 2256 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2257 assert( pOp->p3==0 || pOp->p3==1 ); 2258 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2259 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2260 break; 2261 } 2262 2263 /* Opcode: Not P1 P2 * * * 2264 ** Synopsis: r[P2]= !r[P1] 2265 ** 2266 ** Interpret the value in register P1 as a boolean value. Store the 2267 ** boolean complement in register P2. If the value in register P1 is 2268 ** NULL, then a NULL is stored in P2. 2269 */ 2270 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2271 pIn1 = &aMem[pOp->p1]; 2272 pOut = &aMem[pOp->p2]; 2273 if( (pIn1->flags & MEM_Null)==0 ){ 2274 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2275 }else{ 2276 sqlite3VdbeMemSetNull(pOut); 2277 } 2278 break; 2279 } 2280 2281 /* Opcode: BitNot P1 P2 * * * 2282 ** Synopsis: r[P2]= ~r[P1] 2283 ** 2284 ** Interpret the content of register P1 as an integer. Store the 2285 ** ones-complement of the P1 value into register P2. If P1 holds 2286 ** a NULL then store a NULL in P2. 2287 */ 2288 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2289 pIn1 = &aMem[pOp->p1]; 2290 pOut = &aMem[pOp->p2]; 2291 sqlite3VdbeMemSetNull(pOut); 2292 if( (pIn1->flags & MEM_Null)==0 ){ 2293 pOut->flags = MEM_Int; 2294 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2295 } 2296 break; 2297 } 2298 2299 /* Opcode: Once P1 P2 * * * 2300 ** 2301 ** Fall through to the next instruction the first time this opcode is 2302 ** encountered on each invocation of the byte-code program. Jump to P2 2303 ** on the second and all subsequent encounters during the same invocation. 2304 ** 2305 ** Top-level programs determine first invocation by comparing the P1 2306 ** operand against the P1 operand on the OP_Init opcode at the beginning 2307 ** of the program. If the P1 values differ, then fall through and make 2308 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2309 ** the same then take the jump. 2310 ** 2311 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2312 ** whether or not the jump should be taken. The bitmask is necessary 2313 ** because the self-altering code trick does not work for recursive 2314 ** triggers. 2315 */ 2316 case OP_Once: { /* jump */ 2317 u32 iAddr; /* Address of this instruction */ 2318 assert( p->aOp[0].opcode==OP_Init ); 2319 if( p->pFrame ){ 2320 iAddr = (int)(pOp - p->aOp); 2321 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2322 VdbeBranchTaken(1, 2); 2323 goto jump_to_p2; 2324 } 2325 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2326 }else{ 2327 if( p->aOp[0].p1==pOp->p1 ){ 2328 VdbeBranchTaken(1, 2); 2329 goto jump_to_p2; 2330 } 2331 } 2332 VdbeBranchTaken(0, 2); 2333 pOp->p1 = p->aOp[0].p1; 2334 break; 2335 } 2336 2337 /* Opcode: If P1 P2 P3 * * 2338 ** 2339 ** Jump to P2 if the value in register P1 is true. The value 2340 ** is considered true if it is numeric and non-zero. If the value 2341 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2342 */ 2343 case OP_If: { /* jump, in1 */ 2344 int c; 2345 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2346 VdbeBranchTaken(c!=0, 2); 2347 if( c ) goto jump_to_p2; 2348 break; 2349 } 2350 2351 /* Opcode: IfNot P1 P2 P3 * * 2352 ** 2353 ** Jump to P2 if the value in register P1 is False. The value 2354 ** is considered false if it has a numeric value of zero. If the value 2355 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2356 */ 2357 case OP_IfNot: { /* jump, in1 */ 2358 int c; 2359 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2360 VdbeBranchTaken(c!=0, 2); 2361 if( c ) goto jump_to_p2; 2362 break; 2363 } 2364 2365 /* Opcode: IsNull P1 P2 * * * 2366 ** Synopsis: if r[P1]==NULL goto P2 2367 ** 2368 ** Jump to P2 if the value in register P1 is NULL. 2369 */ 2370 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2371 pIn1 = &aMem[pOp->p1]; 2372 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2373 if( (pIn1->flags & MEM_Null)!=0 ){ 2374 goto jump_to_p2; 2375 } 2376 break; 2377 } 2378 2379 /* Opcode: NotNull P1 P2 * * * 2380 ** Synopsis: if r[P1]!=NULL goto P2 2381 ** 2382 ** Jump to P2 if the value in register P1 is not NULL. 2383 */ 2384 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2385 pIn1 = &aMem[pOp->p1]; 2386 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2387 if( (pIn1->flags & MEM_Null)==0 ){ 2388 goto jump_to_p2; 2389 } 2390 break; 2391 } 2392 2393 /* Opcode: IfNullRow P1 P2 P3 * * 2394 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2395 ** 2396 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2397 ** If it is, then set register P3 to NULL and jump immediately to P2. 2398 ** If P1 is not on a NULL row, then fall through without making any 2399 ** changes. 2400 */ 2401 case OP_IfNullRow: { /* jump */ 2402 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2403 assert( p->apCsr[pOp->p1]!=0 ); 2404 if( p->apCsr[pOp->p1]->nullRow ){ 2405 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2406 goto jump_to_p2; 2407 } 2408 break; 2409 } 2410 2411 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2412 /* Opcode: Offset P1 P2 P3 * * 2413 ** Synopsis: r[P3] = sqlite_offset(P1) 2414 ** 2415 ** Store in register r[P3] the byte offset into the database file that is the 2416 ** start of the payload for the record at which that cursor P1 is currently 2417 ** pointing. 2418 ** 2419 ** P2 is the column number for the argument to the sqlite_offset() function. 2420 ** This opcode does not use P2 itself, but the P2 value is used by the 2421 ** code generator. The P1, P2, and P3 operands to this opcode are the 2422 ** same as for OP_Column. 2423 ** 2424 ** This opcode is only available if SQLite is compiled with the 2425 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2426 */ 2427 case OP_Offset: { /* out3 */ 2428 VdbeCursor *pC; /* The VDBE cursor */ 2429 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2430 pC = p->apCsr[pOp->p1]; 2431 pOut = &p->aMem[pOp->p3]; 2432 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2433 sqlite3VdbeMemSetNull(pOut); 2434 }else{ 2435 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2436 } 2437 break; 2438 } 2439 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2440 2441 /* Opcode: Column P1 P2 P3 P4 P5 2442 ** Synopsis: r[P3]=PX 2443 ** 2444 ** Interpret the data that cursor P1 points to as a structure built using 2445 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2446 ** information about the format of the data.) Extract the P2-th column 2447 ** from this record. If there are less that (P2+1) 2448 ** values in the record, extract a NULL. 2449 ** 2450 ** The value extracted is stored in register P3. 2451 ** 2452 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2453 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2454 ** the result. 2455 ** 2456 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2457 ** then the cache of the cursor is reset prior to extracting the column. 2458 ** The first OP_Column against a pseudo-table after the value of the content 2459 ** register has changed should have this bit set. 2460 ** 2461 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2462 ** the result is guaranteed to only be used as the argument of a length() 2463 ** or typeof() function, respectively. The loading of large blobs can be 2464 ** skipped for length() and all content loading can be skipped for typeof(). 2465 */ 2466 case OP_Column: { 2467 int p2; /* column number to retrieve */ 2468 VdbeCursor *pC; /* The VDBE cursor */ 2469 BtCursor *pCrsr; /* The BTree cursor */ 2470 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2471 int len; /* The length of the serialized data for the column */ 2472 int i; /* Loop counter */ 2473 Mem *pDest; /* Where to write the extracted value */ 2474 Mem sMem; /* For storing the record being decoded */ 2475 const u8 *zData; /* Part of the record being decoded */ 2476 const u8 *zHdr; /* Next unparsed byte of the header */ 2477 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2478 u64 offset64; /* 64-bit offset */ 2479 u32 t; /* A type code from the record header */ 2480 Mem *pReg; /* PseudoTable input register */ 2481 2482 pC = p->apCsr[pOp->p1]; 2483 p2 = pOp->p2; 2484 2485 /* If the cursor cache is stale (meaning it is not currently point at 2486 ** the correct row) then bring it up-to-date by doing the necessary 2487 ** B-Tree seek. */ 2488 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2489 if( rc ) goto abort_due_to_error; 2490 2491 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2492 pDest = &aMem[pOp->p3]; 2493 memAboutToChange(p, pDest); 2494 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2495 assert( pC!=0 ); 2496 assert( p2<pC->nField ); 2497 aOffset = pC->aOffset; 2498 assert( pC->eCurType!=CURTYPE_VTAB ); 2499 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2500 assert( pC->eCurType!=CURTYPE_SORTER ); 2501 2502 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2503 if( pC->nullRow ){ 2504 if( pC->eCurType==CURTYPE_PSEUDO ){ 2505 /* For the special case of as pseudo-cursor, the seekResult field 2506 ** identifies the register that holds the record */ 2507 assert( pC->seekResult>0 ); 2508 pReg = &aMem[pC->seekResult]; 2509 assert( pReg->flags & MEM_Blob ); 2510 assert( memIsValid(pReg) ); 2511 pC->payloadSize = pC->szRow = pReg->n; 2512 pC->aRow = (u8*)pReg->z; 2513 }else{ 2514 sqlite3VdbeMemSetNull(pDest); 2515 goto op_column_out; 2516 } 2517 }else{ 2518 pCrsr = pC->uc.pCursor; 2519 assert( pC->eCurType==CURTYPE_BTREE ); 2520 assert( pCrsr ); 2521 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2522 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2523 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2524 assert( pC->szRow<=pC->payloadSize ); 2525 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2526 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2527 goto too_big; 2528 } 2529 } 2530 pC->cacheStatus = p->cacheCtr; 2531 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2532 pC->nHdrParsed = 0; 2533 2534 2535 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2536 /* pC->aRow does not have to hold the entire row, but it does at least 2537 ** need to cover the header of the record. If pC->aRow does not contain 2538 ** the complete header, then set it to zero, forcing the header to be 2539 ** dynamically allocated. */ 2540 pC->aRow = 0; 2541 pC->szRow = 0; 2542 2543 /* Make sure a corrupt database has not given us an oversize header. 2544 ** Do this now to avoid an oversize memory allocation. 2545 ** 2546 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2547 ** types use so much data space that there can only be 4096 and 32 of 2548 ** them, respectively. So the maximum header length results from a 2549 ** 3-byte type for each of the maximum of 32768 columns plus three 2550 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2551 */ 2552 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2553 goto op_column_corrupt; 2554 } 2555 }else{ 2556 /* This is an optimization. By skipping over the first few tests 2557 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2558 ** measurable performance gain. 2559 ** 2560 ** This branch is taken even if aOffset[0]==0. Such a record is never 2561 ** generated by SQLite, and could be considered corruption, but we 2562 ** accept it for historical reasons. When aOffset[0]==0, the code this 2563 ** branch jumps to reads past the end of the record, but never more 2564 ** than a few bytes. Even if the record occurs at the end of the page 2565 ** content area, the "page header" comes after the page content and so 2566 ** this overread is harmless. Similar overreads can occur for a corrupt 2567 ** database file. 2568 */ 2569 zData = pC->aRow; 2570 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2571 testcase( aOffset[0]==0 ); 2572 goto op_column_read_header; 2573 } 2574 } 2575 2576 /* Make sure at least the first p2+1 entries of the header have been 2577 ** parsed and valid information is in aOffset[] and pC->aType[]. 2578 */ 2579 if( pC->nHdrParsed<=p2 ){ 2580 /* If there is more header available for parsing in the record, try 2581 ** to extract additional fields up through the p2+1-th field 2582 */ 2583 if( pC->iHdrOffset<aOffset[0] ){ 2584 /* Make sure zData points to enough of the record to cover the header. */ 2585 if( pC->aRow==0 ){ 2586 memset(&sMem, 0, sizeof(sMem)); 2587 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2588 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2589 zData = (u8*)sMem.z; 2590 }else{ 2591 zData = pC->aRow; 2592 } 2593 2594 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2595 op_column_read_header: 2596 i = pC->nHdrParsed; 2597 offset64 = aOffset[i]; 2598 zHdr = zData + pC->iHdrOffset; 2599 zEndHdr = zData + aOffset[0]; 2600 testcase( zHdr>=zEndHdr ); 2601 do{ 2602 if( (t = zHdr[0])<0x80 ){ 2603 zHdr++; 2604 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2605 }else{ 2606 zHdr += sqlite3GetVarint32(zHdr, &t); 2607 offset64 += sqlite3VdbeSerialTypeLen(t); 2608 } 2609 pC->aType[i++] = t; 2610 aOffset[i] = (u32)(offset64 & 0xffffffff); 2611 }while( i<=p2 && zHdr<zEndHdr ); 2612 2613 /* The record is corrupt if any of the following are true: 2614 ** (1) the bytes of the header extend past the declared header size 2615 ** (2) the entire header was used but not all data was used 2616 ** (3) the end of the data extends beyond the end of the record. 2617 */ 2618 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2619 || (offset64 > pC->payloadSize) 2620 ){ 2621 if( aOffset[0]==0 ){ 2622 i = 0; 2623 zHdr = zEndHdr; 2624 }else{ 2625 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2626 goto op_column_corrupt; 2627 } 2628 } 2629 2630 pC->nHdrParsed = i; 2631 pC->iHdrOffset = (u32)(zHdr - zData); 2632 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2633 }else{ 2634 t = 0; 2635 } 2636 2637 /* If after trying to extract new entries from the header, nHdrParsed is 2638 ** still not up to p2, that means that the record has fewer than p2 2639 ** columns. So the result will be either the default value or a NULL. 2640 */ 2641 if( pC->nHdrParsed<=p2 ){ 2642 if( pOp->p4type==P4_MEM ){ 2643 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2644 }else{ 2645 sqlite3VdbeMemSetNull(pDest); 2646 } 2647 goto op_column_out; 2648 } 2649 }else{ 2650 t = pC->aType[p2]; 2651 } 2652 2653 /* Extract the content for the p2+1-th column. Control can only 2654 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2655 ** all valid. 2656 */ 2657 assert( p2<pC->nHdrParsed ); 2658 assert( rc==SQLITE_OK ); 2659 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2660 if( VdbeMemDynamic(pDest) ){ 2661 sqlite3VdbeMemSetNull(pDest); 2662 } 2663 assert( t==pC->aType[p2] ); 2664 if( pC->szRow>=aOffset[p2+1] ){ 2665 /* This is the common case where the desired content fits on the original 2666 ** page - where the content is not on an overflow page */ 2667 zData = pC->aRow + aOffset[p2]; 2668 if( t<12 ){ 2669 sqlite3VdbeSerialGet(zData, t, pDest); 2670 }else{ 2671 /* If the column value is a string, we need a persistent value, not 2672 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2673 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2674 */ 2675 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2676 pDest->n = len = (t-12)/2; 2677 pDest->enc = encoding; 2678 if( pDest->szMalloc < len+2 ){ 2679 pDest->flags = MEM_Null; 2680 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2681 }else{ 2682 pDest->z = pDest->zMalloc; 2683 } 2684 memcpy(pDest->z, zData, len); 2685 pDest->z[len] = 0; 2686 pDest->z[len+1] = 0; 2687 pDest->flags = aFlag[t&1]; 2688 } 2689 }else{ 2690 pDest->enc = encoding; 2691 /* This branch happens only when content is on overflow pages */ 2692 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2693 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2694 || (len = sqlite3VdbeSerialTypeLen(t))==0 2695 ){ 2696 /* Content is irrelevant for 2697 ** 1. the typeof() function, 2698 ** 2. the length(X) function if X is a blob, and 2699 ** 3. if the content length is zero. 2700 ** So we might as well use bogus content rather than reading 2701 ** content from disk. 2702 ** 2703 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2704 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2705 ** read up to 16. So 16 bytes of bogus content is supplied. 2706 */ 2707 static u8 aZero[16]; /* This is the bogus content */ 2708 sqlite3VdbeSerialGet(aZero, t, pDest); 2709 }else{ 2710 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2711 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2712 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2713 pDest->flags &= ~MEM_Ephem; 2714 } 2715 } 2716 2717 op_column_out: 2718 UPDATE_MAX_BLOBSIZE(pDest); 2719 REGISTER_TRACE(pOp->p3, pDest); 2720 break; 2721 2722 op_column_corrupt: 2723 if( aOp[0].p3>0 ){ 2724 pOp = &aOp[aOp[0].p3-1]; 2725 break; 2726 }else{ 2727 rc = SQLITE_CORRUPT_BKPT; 2728 goto abort_due_to_error; 2729 } 2730 } 2731 2732 /* Opcode: Affinity P1 P2 * P4 * 2733 ** Synopsis: affinity(r[P1@P2]) 2734 ** 2735 ** Apply affinities to a range of P2 registers starting with P1. 2736 ** 2737 ** P4 is a string that is P2 characters long. The N-th character of the 2738 ** string indicates the column affinity that should be used for the N-th 2739 ** memory cell in the range. 2740 */ 2741 case OP_Affinity: { 2742 const char *zAffinity; /* The affinity to be applied */ 2743 2744 zAffinity = pOp->p4.z; 2745 assert( zAffinity!=0 ); 2746 assert( pOp->p2>0 ); 2747 assert( zAffinity[pOp->p2]==0 ); 2748 pIn1 = &aMem[pOp->p1]; 2749 do{ 2750 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2751 assert( memIsValid(pIn1) ); 2752 applyAffinity(pIn1, *(zAffinity++), encoding); 2753 pIn1++; 2754 }while( zAffinity[0] ); 2755 break; 2756 } 2757 2758 /* Opcode: MakeRecord P1 P2 P3 P4 * 2759 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2760 ** 2761 ** Convert P2 registers beginning with P1 into the [record format] 2762 ** use as a data record in a database table or as a key 2763 ** in an index. The OP_Column opcode can decode the record later. 2764 ** 2765 ** P4 may be a string that is P2 characters long. The N-th character of the 2766 ** string indicates the column affinity that should be used for the N-th 2767 ** field of the index key. 2768 ** 2769 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2770 ** macros defined in sqliteInt.h. 2771 ** 2772 ** If P4 is NULL then all index fields have the affinity BLOB. 2773 */ 2774 case OP_MakeRecord: { 2775 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2776 Mem *pRec; /* The new record */ 2777 u64 nData; /* Number of bytes of data space */ 2778 int nHdr; /* Number of bytes of header space */ 2779 i64 nByte; /* Data space required for this record */ 2780 i64 nZero; /* Number of zero bytes at the end of the record */ 2781 int nVarint; /* Number of bytes in a varint */ 2782 u32 serial_type; /* Type field */ 2783 Mem *pData0; /* First field to be combined into the record */ 2784 Mem *pLast; /* Last field of the record */ 2785 int nField; /* Number of fields in the record */ 2786 char *zAffinity; /* The affinity string for the record */ 2787 int file_format; /* File format to use for encoding */ 2788 int i; /* Space used in zNewRecord[] header */ 2789 int j; /* Space used in zNewRecord[] content */ 2790 u32 len; /* Length of a field */ 2791 2792 /* Assuming the record contains N fields, the record format looks 2793 ** like this: 2794 ** 2795 ** ------------------------------------------------------------------------ 2796 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2797 ** ------------------------------------------------------------------------ 2798 ** 2799 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2800 ** and so forth. 2801 ** 2802 ** Each type field is a varint representing the serial type of the 2803 ** corresponding data element (see sqlite3VdbeSerialType()). The 2804 ** hdr-size field is also a varint which is the offset from the beginning 2805 ** of the record to data0. 2806 */ 2807 nData = 0; /* Number of bytes of data space */ 2808 nHdr = 0; /* Number of bytes of header space */ 2809 nZero = 0; /* Number of zero bytes at the end of the record */ 2810 nField = pOp->p1; 2811 zAffinity = pOp->p4.z; 2812 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2813 pData0 = &aMem[nField]; 2814 nField = pOp->p2; 2815 pLast = &pData0[nField-1]; 2816 file_format = p->minWriteFileFormat; 2817 2818 /* Identify the output register */ 2819 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2820 pOut = &aMem[pOp->p3]; 2821 memAboutToChange(p, pOut); 2822 2823 /* Apply the requested affinity to all inputs 2824 */ 2825 assert( pData0<=pLast ); 2826 if( zAffinity ){ 2827 pRec = pData0; 2828 do{ 2829 applyAffinity(pRec++, *(zAffinity++), encoding); 2830 assert( zAffinity[0]==0 || pRec<=pLast ); 2831 }while( zAffinity[0] ); 2832 } 2833 2834 #ifdef SQLITE_ENABLE_NULL_TRIM 2835 /* NULLs can be safely trimmed from the end of the record, as long as 2836 ** as the schema format is 2 or more and none of the omitted columns 2837 ** have a non-NULL default value. Also, the record must be left with 2838 ** at least one field. If P5>0 then it will be one more than the 2839 ** index of the right-most column with a non-NULL default value */ 2840 if( pOp->p5 ){ 2841 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2842 pLast--; 2843 nField--; 2844 } 2845 } 2846 #endif 2847 2848 /* Loop through the elements that will make up the record to figure 2849 ** out how much space is required for the new record. 2850 */ 2851 pRec = pLast; 2852 do{ 2853 assert( memIsValid(pRec) ); 2854 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2855 if( pRec->flags & MEM_Zero ){ 2856 if( serial_type==0 ){ 2857 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2858 ** table methods that never invoke sqlite3_result_xxxxx() while 2859 ** computing an unchanging column value in an UPDATE statement. 2860 ** Give such values a special internal-use-only serial-type of 10 2861 ** so that they can be passed through to xUpdate and have 2862 ** a true sqlite3_value_nochange(). */ 2863 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2864 serial_type = 10; 2865 }else if( nData ){ 2866 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2867 }else{ 2868 nZero += pRec->u.nZero; 2869 len -= pRec->u.nZero; 2870 } 2871 } 2872 nData += len; 2873 testcase( serial_type==127 ); 2874 testcase( serial_type==128 ); 2875 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2876 pRec->uTemp = serial_type; 2877 if( pRec==pData0 ) break; 2878 pRec--; 2879 }while(1); 2880 2881 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2882 ** which determines the total number of bytes in the header. The varint 2883 ** value is the size of the header in bytes including the size varint 2884 ** itself. */ 2885 testcase( nHdr==126 ); 2886 testcase( nHdr==127 ); 2887 if( nHdr<=126 ){ 2888 /* The common case */ 2889 nHdr += 1; 2890 }else{ 2891 /* Rare case of a really large header */ 2892 nVarint = sqlite3VarintLen(nHdr); 2893 nHdr += nVarint; 2894 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2895 } 2896 nByte = nHdr+nData; 2897 2898 /* Make sure the output register has a buffer large enough to store 2899 ** the new record. The output register (pOp->p3) is not allowed to 2900 ** be one of the input registers (because the following call to 2901 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2902 */ 2903 if( nByte+nZero<=pOut->szMalloc ){ 2904 /* The output register is already large enough to hold the record. 2905 ** No error checks or buffer enlargement is required */ 2906 pOut->z = pOut->zMalloc; 2907 }else{ 2908 /* Need to make sure that the output is not too big and then enlarge 2909 ** the output register to hold the full result */ 2910 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2911 goto too_big; 2912 } 2913 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2914 goto no_mem; 2915 } 2916 } 2917 zNewRecord = (u8 *)pOut->z; 2918 2919 /* Write the record */ 2920 i = putVarint32(zNewRecord, nHdr); 2921 j = nHdr; 2922 assert( pData0<=pLast ); 2923 pRec = pData0; 2924 do{ 2925 serial_type = pRec->uTemp; 2926 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2927 ** additional varints, one per column. */ 2928 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2929 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2930 ** immediately follow the header. */ 2931 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2932 }while( (++pRec)<=pLast ); 2933 assert( i==nHdr ); 2934 assert( j==nByte ); 2935 2936 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2937 pOut->n = (int)nByte; 2938 pOut->flags = MEM_Blob; 2939 if( nZero ){ 2940 pOut->u.nZero = nZero; 2941 pOut->flags |= MEM_Zero; 2942 } 2943 REGISTER_TRACE(pOp->p3, pOut); 2944 UPDATE_MAX_BLOBSIZE(pOut); 2945 break; 2946 } 2947 2948 /* Opcode: Count P1 P2 * * * 2949 ** Synopsis: r[P2]=count() 2950 ** 2951 ** Store the number of entries (an integer value) in the table or index 2952 ** opened by cursor P1 in register P2 2953 */ 2954 #ifndef SQLITE_OMIT_BTREECOUNT 2955 case OP_Count: { /* out2 */ 2956 i64 nEntry; 2957 BtCursor *pCrsr; 2958 2959 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2960 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2961 assert( pCrsr ); 2962 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2963 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2964 if( rc ) goto abort_due_to_error; 2965 pOut = out2Prerelease(p, pOp); 2966 pOut->u.i = nEntry; 2967 break; 2968 } 2969 #endif 2970 2971 /* Opcode: Savepoint P1 * * P4 * 2972 ** 2973 ** Open, release or rollback the savepoint named by parameter P4, depending 2974 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2975 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2976 */ 2977 case OP_Savepoint: { 2978 int p1; /* Value of P1 operand */ 2979 char *zName; /* Name of savepoint */ 2980 int nName; 2981 Savepoint *pNew; 2982 Savepoint *pSavepoint; 2983 Savepoint *pTmp; 2984 int iSavepoint; 2985 int ii; 2986 2987 p1 = pOp->p1; 2988 zName = pOp->p4.z; 2989 2990 /* Assert that the p1 parameter is valid. Also that if there is no open 2991 ** transaction, then there cannot be any savepoints. 2992 */ 2993 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2994 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2995 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2996 assert( checkSavepointCount(db) ); 2997 assert( p->bIsReader ); 2998 2999 if( p1==SAVEPOINT_BEGIN ){ 3000 if( db->nVdbeWrite>0 ){ 3001 /* A new savepoint cannot be created if there are active write 3002 ** statements (i.e. open read/write incremental blob handles). 3003 */ 3004 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3005 rc = SQLITE_BUSY; 3006 }else{ 3007 nName = sqlite3Strlen30(zName); 3008 3009 #ifndef SQLITE_OMIT_VIRTUALTABLE 3010 /* This call is Ok even if this savepoint is actually a transaction 3011 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3012 ** If this is a transaction savepoint being opened, it is guaranteed 3013 ** that the db->aVTrans[] array is empty. */ 3014 assert( db->autoCommit==0 || db->nVTrans==0 ); 3015 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3016 db->nStatement+db->nSavepoint); 3017 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3018 #endif 3019 3020 /* Create a new savepoint structure. */ 3021 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3022 if( pNew ){ 3023 pNew->zName = (char *)&pNew[1]; 3024 memcpy(pNew->zName, zName, nName+1); 3025 3026 /* If there is no open transaction, then mark this as a special 3027 ** "transaction savepoint". */ 3028 if( db->autoCommit ){ 3029 db->autoCommit = 0; 3030 db->isTransactionSavepoint = 1; 3031 }else{ 3032 db->nSavepoint++; 3033 } 3034 3035 /* Link the new savepoint into the database handle's list. */ 3036 pNew->pNext = db->pSavepoint; 3037 db->pSavepoint = pNew; 3038 pNew->nDeferredCons = db->nDeferredCons; 3039 pNew->nDeferredImmCons = db->nDeferredImmCons; 3040 } 3041 } 3042 }else{ 3043 iSavepoint = 0; 3044 3045 /* Find the named savepoint. If there is no such savepoint, then an 3046 ** an error is returned to the user. */ 3047 for( 3048 pSavepoint = db->pSavepoint; 3049 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3050 pSavepoint = pSavepoint->pNext 3051 ){ 3052 iSavepoint++; 3053 } 3054 if( !pSavepoint ){ 3055 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3056 rc = SQLITE_ERROR; 3057 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3058 /* It is not possible to release (commit) a savepoint if there are 3059 ** active write statements. 3060 */ 3061 sqlite3VdbeError(p, "cannot release savepoint - " 3062 "SQL statements in progress"); 3063 rc = SQLITE_BUSY; 3064 }else{ 3065 3066 /* Determine whether or not this is a transaction savepoint. If so, 3067 ** and this is a RELEASE command, then the current transaction 3068 ** is committed. 3069 */ 3070 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3071 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3072 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3073 goto vdbe_return; 3074 } 3075 db->autoCommit = 1; 3076 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3077 p->pc = (int)(pOp - aOp); 3078 db->autoCommit = 0; 3079 p->rc = rc = SQLITE_BUSY; 3080 goto vdbe_return; 3081 } 3082 db->isTransactionSavepoint = 0; 3083 rc = p->rc; 3084 }else{ 3085 int isSchemaChange; 3086 iSavepoint = db->nSavepoint - iSavepoint - 1; 3087 if( p1==SAVEPOINT_ROLLBACK ){ 3088 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3089 for(ii=0; ii<db->nDb; ii++){ 3090 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3091 SQLITE_ABORT_ROLLBACK, 3092 isSchemaChange==0); 3093 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3094 } 3095 }else{ 3096 isSchemaChange = 0; 3097 } 3098 for(ii=0; ii<db->nDb; ii++){ 3099 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3100 if( rc!=SQLITE_OK ){ 3101 goto abort_due_to_error; 3102 } 3103 } 3104 if( isSchemaChange ){ 3105 sqlite3ExpirePreparedStatements(db, 0); 3106 sqlite3ResetAllSchemasOfConnection(db); 3107 db->mDbFlags |= DBFLAG_SchemaChange; 3108 } 3109 } 3110 3111 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3112 ** savepoints nested inside of the savepoint being operated on. */ 3113 while( db->pSavepoint!=pSavepoint ){ 3114 pTmp = db->pSavepoint; 3115 db->pSavepoint = pTmp->pNext; 3116 sqlite3DbFree(db, pTmp); 3117 db->nSavepoint--; 3118 } 3119 3120 /* If it is a RELEASE, then destroy the savepoint being operated on 3121 ** too. If it is a ROLLBACK TO, then set the number of deferred 3122 ** constraint violations present in the database to the value stored 3123 ** when the savepoint was created. */ 3124 if( p1==SAVEPOINT_RELEASE ){ 3125 assert( pSavepoint==db->pSavepoint ); 3126 db->pSavepoint = pSavepoint->pNext; 3127 sqlite3DbFree(db, pSavepoint); 3128 if( !isTransaction ){ 3129 db->nSavepoint--; 3130 } 3131 }else{ 3132 db->nDeferredCons = pSavepoint->nDeferredCons; 3133 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3134 } 3135 3136 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3137 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3138 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3139 } 3140 } 3141 } 3142 if( rc ) goto abort_due_to_error; 3143 3144 break; 3145 } 3146 3147 /* Opcode: AutoCommit P1 P2 * * * 3148 ** 3149 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3150 ** back any currently active btree transactions. If there are any active 3151 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3152 ** there are active writing VMs or active VMs that use shared cache. 3153 ** 3154 ** This instruction causes the VM to halt. 3155 */ 3156 case OP_AutoCommit: { 3157 int desiredAutoCommit; 3158 int iRollback; 3159 3160 desiredAutoCommit = pOp->p1; 3161 iRollback = pOp->p2; 3162 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3163 assert( desiredAutoCommit==1 || iRollback==0 ); 3164 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3165 assert( p->bIsReader ); 3166 3167 if( desiredAutoCommit!=db->autoCommit ){ 3168 if( iRollback ){ 3169 assert( desiredAutoCommit==1 ); 3170 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3171 db->autoCommit = 1; 3172 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3173 /* If this instruction implements a COMMIT and other VMs are writing 3174 ** return an error indicating that the other VMs must complete first. 3175 */ 3176 sqlite3VdbeError(p, "cannot commit transaction - " 3177 "SQL statements in progress"); 3178 rc = SQLITE_BUSY; 3179 goto abort_due_to_error; 3180 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3181 goto vdbe_return; 3182 }else{ 3183 db->autoCommit = (u8)desiredAutoCommit; 3184 } 3185 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3186 p->pc = (int)(pOp - aOp); 3187 db->autoCommit = (u8)(1-desiredAutoCommit); 3188 p->rc = rc = SQLITE_BUSY; 3189 goto vdbe_return; 3190 } 3191 assert( db->nStatement==0 ); 3192 sqlite3CloseSavepoints(db); 3193 if( p->rc==SQLITE_OK ){ 3194 rc = SQLITE_DONE; 3195 }else{ 3196 rc = SQLITE_ERROR; 3197 } 3198 goto vdbe_return; 3199 }else{ 3200 sqlite3VdbeError(p, 3201 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3202 (iRollback)?"cannot rollback - no transaction is active": 3203 "cannot commit - no transaction is active")); 3204 3205 rc = SQLITE_ERROR; 3206 goto abort_due_to_error; 3207 } 3208 break; 3209 } 3210 3211 /* Opcode: Transaction P1 P2 P3 P4 P5 3212 ** 3213 ** Begin a transaction on database P1 if a transaction is not already 3214 ** active. 3215 ** If P2 is non-zero, then a write-transaction is started, or if a 3216 ** read-transaction is already active, it is upgraded to a write-transaction. 3217 ** If P2 is zero, then a read-transaction is started. 3218 ** 3219 ** P1 is the index of the database file on which the transaction is 3220 ** started. Index 0 is the main database file and index 1 is the 3221 ** file used for temporary tables. Indices of 2 or more are used for 3222 ** attached databases. 3223 ** 3224 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3225 ** true (this flag is set if the Vdbe may modify more than one row and may 3226 ** throw an ABORT exception), a statement transaction may also be opened. 3227 ** More specifically, a statement transaction is opened iff the database 3228 ** connection is currently not in autocommit mode, or if there are other 3229 ** active statements. A statement transaction allows the changes made by this 3230 ** VDBE to be rolled back after an error without having to roll back the 3231 ** entire transaction. If no error is encountered, the statement transaction 3232 ** will automatically commit when the VDBE halts. 3233 ** 3234 ** If P5!=0 then this opcode also checks the schema cookie against P3 3235 ** and the schema generation counter against P4. 3236 ** The cookie changes its value whenever the database schema changes. 3237 ** This operation is used to detect when that the cookie has changed 3238 ** and that the current process needs to reread the schema. If the schema 3239 ** cookie in P3 differs from the schema cookie in the database header or 3240 ** if the schema generation counter in P4 differs from the current 3241 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3242 ** halts. The sqlite3_step() wrapper function might then reprepare the 3243 ** statement and rerun it from the beginning. 3244 */ 3245 case OP_Transaction: { 3246 Btree *pBt; 3247 int iMeta = 0; 3248 3249 assert( p->bIsReader ); 3250 assert( p->readOnly==0 || pOp->p2==0 ); 3251 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3252 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3253 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3254 rc = SQLITE_READONLY; 3255 goto abort_due_to_error; 3256 } 3257 pBt = db->aDb[pOp->p1].pBt; 3258 3259 if( pBt ){ 3260 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3261 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3262 testcase( rc==SQLITE_BUSY_RECOVERY ); 3263 if( rc!=SQLITE_OK ){ 3264 if( (rc&0xff)==SQLITE_BUSY ){ 3265 p->pc = (int)(pOp - aOp); 3266 p->rc = rc; 3267 goto vdbe_return; 3268 } 3269 goto abort_due_to_error; 3270 } 3271 3272 if( pOp->p2 && p->usesStmtJournal 3273 && (db->autoCommit==0 || db->nVdbeRead>1) 3274 ){ 3275 assert( sqlite3BtreeIsInTrans(pBt) ); 3276 if( p->iStatement==0 ){ 3277 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3278 db->nStatement++; 3279 p->iStatement = db->nSavepoint + db->nStatement; 3280 } 3281 3282 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3283 if( rc==SQLITE_OK ){ 3284 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3285 } 3286 3287 /* Store the current value of the database handles deferred constraint 3288 ** counter. If the statement transaction needs to be rolled back, 3289 ** the value of this counter needs to be restored too. */ 3290 p->nStmtDefCons = db->nDeferredCons; 3291 p->nStmtDefImmCons = db->nDeferredImmCons; 3292 } 3293 } 3294 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3295 if( pOp->p5 3296 && (iMeta!=pOp->p3 3297 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3298 ){ 3299 /* 3300 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3301 ** version is checked to ensure that the schema has not changed since the 3302 ** SQL statement was prepared. 3303 */ 3304 sqlite3DbFree(db, p->zErrMsg); 3305 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3306 /* If the schema-cookie from the database file matches the cookie 3307 ** stored with the in-memory representation of the schema, do 3308 ** not reload the schema from the database file. 3309 ** 3310 ** If virtual-tables are in use, this is not just an optimization. 3311 ** Often, v-tables store their data in other SQLite tables, which 3312 ** are queried from within xNext() and other v-table methods using 3313 ** prepared queries. If such a query is out-of-date, we do not want to 3314 ** discard the database schema, as the user code implementing the 3315 ** v-table would have to be ready for the sqlite3_vtab structure itself 3316 ** to be invalidated whenever sqlite3_step() is called from within 3317 ** a v-table method. 3318 */ 3319 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3320 sqlite3ResetOneSchema(db, pOp->p1); 3321 } 3322 p->expired = 1; 3323 rc = SQLITE_SCHEMA; 3324 } 3325 if( rc ) goto abort_due_to_error; 3326 break; 3327 } 3328 3329 /* Opcode: ReadCookie P1 P2 P3 * * 3330 ** 3331 ** Read cookie number P3 from database P1 and write it into register P2. 3332 ** P3==1 is the schema version. P3==2 is the database format. 3333 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3334 ** the main database file and P1==1 is the database file used to store 3335 ** temporary tables. 3336 ** 3337 ** There must be a read-lock on the database (either a transaction 3338 ** must be started or there must be an open cursor) before 3339 ** executing this instruction. 3340 */ 3341 case OP_ReadCookie: { /* out2 */ 3342 int iMeta; 3343 int iDb; 3344 int iCookie; 3345 3346 assert( p->bIsReader ); 3347 iDb = pOp->p1; 3348 iCookie = pOp->p3; 3349 assert( pOp->p3<SQLITE_N_BTREE_META ); 3350 assert( iDb>=0 && iDb<db->nDb ); 3351 assert( db->aDb[iDb].pBt!=0 ); 3352 assert( DbMaskTest(p->btreeMask, iDb) ); 3353 3354 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3355 pOut = out2Prerelease(p, pOp); 3356 pOut->u.i = iMeta; 3357 break; 3358 } 3359 3360 /* Opcode: SetCookie P1 P2 P3 * * 3361 ** 3362 ** Write the integer value P3 into cookie number P2 of database P1. 3363 ** P2==1 is the schema version. P2==2 is the database format. 3364 ** P2==3 is the recommended pager cache 3365 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3366 ** database file used to store temporary tables. 3367 ** 3368 ** A transaction must be started before executing this opcode. 3369 */ 3370 case OP_SetCookie: { 3371 Db *pDb; 3372 3373 sqlite3VdbeIncrWriteCounter(p, 0); 3374 assert( pOp->p2<SQLITE_N_BTREE_META ); 3375 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3376 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3377 assert( p->readOnly==0 ); 3378 pDb = &db->aDb[pOp->p1]; 3379 assert( pDb->pBt!=0 ); 3380 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3381 /* See note about index shifting on OP_ReadCookie */ 3382 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3383 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3384 /* When the schema cookie changes, record the new cookie internally */ 3385 pDb->pSchema->schema_cookie = pOp->p3; 3386 db->mDbFlags |= DBFLAG_SchemaChange; 3387 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3388 /* Record changes in the file format */ 3389 pDb->pSchema->file_format = pOp->p3; 3390 } 3391 if( pOp->p1==1 ){ 3392 /* Invalidate all prepared statements whenever the TEMP database 3393 ** schema is changed. Ticket #1644 */ 3394 sqlite3ExpirePreparedStatements(db, 0); 3395 p->expired = 0; 3396 } 3397 if( rc ) goto abort_due_to_error; 3398 break; 3399 } 3400 3401 /* Opcode: OpenRead P1 P2 P3 P4 P5 3402 ** Synopsis: root=P2 iDb=P3 3403 ** 3404 ** Open a read-only cursor for the database table whose root page is 3405 ** P2 in a database file. The database file is determined by P3. 3406 ** P3==0 means the main database, P3==1 means the database used for 3407 ** temporary tables, and P3>1 means used the corresponding attached 3408 ** database. Give the new cursor an identifier of P1. The P1 3409 ** values need not be contiguous but all P1 values should be small integers. 3410 ** It is an error for P1 to be negative. 3411 ** 3412 ** Allowed P5 bits: 3413 ** <ul> 3414 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3415 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3416 ** of OP_SeekLE/OP_IdxGT) 3417 ** </ul> 3418 ** 3419 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3420 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3421 ** object, then table being opened must be an [index b-tree] where the 3422 ** KeyInfo object defines the content and collating 3423 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3424 ** value, then the table being opened must be a [table b-tree] with a 3425 ** number of columns no less than the value of P4. 3426 ** 3427 ** See also: OpenWrite, ReopenIdx 3428 */ 3429 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3430 ** Synopsis: root=P2 iDb=P3 3431 ** 3432 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3433 ** checks to see if the cursor on P1 is already open on the same 3434 ** b-tree and if it is this opcode becomes a no-op. In other words, 3435 ** if the cursor is already open, do not reopen it. 3436 ** 3437 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3438 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3439 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3440 ** number. 3441 ** 3442 ** Allowed P5 bits: 3443 ** <ul> 3444 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3445 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3446 ** of OP_SeekLE/OP_IdxGT) 3447 ** </ul> 3448 ** 3449 ** See also: OP_OpenRead, OP_OpenWrite 3450 */ 3451 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3452 ** Synopsis: root=P2 iDb=P3 3453 ** 3454 ** Open a read/write cursor named P1 on the table or index whose root 3455 ** page is P2 (or whose root page is held in register P2 if the 3456 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3457 ** 3458 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3459 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3460 ** object, then table being opened must be an [index b-tree] where the 3461 ** KeyInfo object defines the content and collating 3462 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3463 ** value, then the table being opened must be a [table b-tree] with a 3464 ** number of columns no less than the value of P4. 3465 ** 3466 ** Allowed P5 bits: 3467 ** <ul> 3468 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3469 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3470 ** of OP_SeekLE/OP_IdxGT) 3471 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3472 ** and subsequently delete entries in an index btree. This is a 3473 ** hint to the storage engine that the storage engine is allowed to 3474 ** ignore. The hint is not used by the official SQLite b*tree storage 3475 ** engine, but is used by COMDB2. 3476 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3477 ** as the root page, not the value of P2 itself. 3478 ** </ul> 3479 ** 3480 ** This instruction works like OpenRead except that it opens the cursor 3481 ** in read/write mode. 3482 ** 3483 ** See also: OP_OpenRead, OP_ReopenIdx 3484 */ 3485 case OP_ReopenIdx: { 3486 int nField; 3487 KeyInfo *pKeyInfo; 3488 int p2; 3489 int iDb; 3490 int wrFlag; 3491 Btree *pX; 3492 VdbeCursor *pCur; 3493 Db *pDb; 3494 3495 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3496 assert( pOp->p4type==P4_KEYINFO ); 3497 pCur = p->apCsr[pOp->p1]; 3498 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3499 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3500 goto open_cursor_set_hints; 3501 } 3502 /* If the cursor is not currently open or is open on a different 3503 ** index, then fall through into OP_OpenRead to force a reopen */ 3504 case OP_OpenRead: 3505 case OP_OpenWrite: 3506 3507 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3508 assert( p->bIsReader ); 3509 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3510 || p->readOnly==0 ); 3511 3512 if( p->expired==1 ){ 3513 rc = SQLITE_ABORT_ROLLBACK; 3514 goto abort_due_to_error; 3515 } 3516 3517 nField = 0; 3518 pKeyInfo = 0; 3519 p2 = pOp->p2; 3520 iDb = pOp->p3; 3521 assert( iDb>=0 && iDb<db->nDb ); 3522 assert( DbMaskTest(p->btreeMask, iDb) ); 3523 pDb = &db->aDb[iDb]; 3524 pX = pDb->pBt; 3525 assert( pX!=0 ); 3526 if( pOp->opcode==OP_OpenWrite ){ 3527 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3528 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3529 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3530 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3531 p->minWriteFileFormat = pDb->pSchema->file_format; 3532 } 3533 }else{ 3534 wrFlag = 0; 3535 } 3536 if( pOp->p5 & OPFLAG_P2ISREG ){ 3537 assert( p2>0 ); 3538 assert( p2<=(p->nMem+1 - p->nCursor) ); 3539 assert( pOp->opcode==OP_OpenWrite ); 3540 pIn2 = &aMem[p2]; 3541 assert( memIsValid(pIn2) ); 3542 assert( (pIn2->flags & MEM_Int)!=0 ); 3543 sqlite3VdbeMemIntegerify(pIn2); 3544 p2 = (int)pIn2->u.i; 3545 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3546 ** that opcode will always set the p2 value to 2 or more or else fail. 3547 ** If there were a failure, the prepared statement would have halted 3548 ** before reaching this instruction. */ 3549 assert( p2>=2 ); 3550 } 3551 if( pOp->p4type==P4_KEYINFO ){ 3552 pKeyInfo = pOp->p4.pKeyInfo; 3553 assert( pKeyInfo->enc==ENC(db) ); 3554 assert( pKeyInfo->db==db ); 3555 nField = pKeyInfo->nAllField; 3556 }else if( pOp->p4type==P4_INT32 ){ 3557 nField = pOp->p4.i; 3558 } 3559 assert( pOp->p1>=0 ); 3560 assert( nField>=0 ); 3561 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3562 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3563 if( pCur==0 ) goto no_mem; 3564 pCur->nullRow = 1; 3565 pCur->isOrdered = 1; 3566 pCur->pgnoRoot = p2; 3567 #ifdef SQLITE_DEBUG 3568 pCur->wrFlag = wrFlag; 3569 #endif 3570 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3571 pCur->pKeyInfo = pKeyInfo; 3572 /* Set the VdbeCursor.isTable variable. Previous versions of 3573 ** SQLite used to check if the root-page flags were sane at this point 3574 ** and report database corruption if they were not, but this check has 3575 ** since moved into the btree layer. */ 3576 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3577 3578 open_cursor_set_hints: 3579 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3580 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3581 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3582 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3583 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3584 #endif 3585 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3586 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3587 if( rc ) goto abort_due_to_error; 3588 break; 3589 } 3590 3591 /* Opcode: OpenDup P1 P2 * * * 3592 ** 3593 ** Open a new cursor P1 that points to the same ephemeral table as 3594 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3595 ** opcode. Only ephemeral cursors may be duplicated. 3596 ** 3597 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3598 */ 3599 case OP_OpenDup: { 3600 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3601 VdbeCursor *pCx; /* The new cursor */ 3602 3603 pOrig = p->apCsr[pOp->p2]; 3604 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3605 3606 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3607 if( pCx==0 ) goto no_mem; 3608 pCx->nullRow = 1; 3609 pCx->isEphemeral = 1; 3610 pCx->pKeyInfo = pOrig->pKeyInfo; 3611 pCx->isTable = pOrig->isTable; 3612 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR, 3613 pCx->pKeyInfo, pCx->uc.pCursor); 3614 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3615 ** opened for a database. Since there is already an open cursor when this 3616 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3617 assert( rc==SQLITE_OK ); 3618 break; 3619 } 3620 3621 3622 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3623 ** Synopsis: nColumn=P2 3624 ** 3625 ** Open a new cursor P1 to a transient table. 3626 ** The cursor is always opened read/write even if 3627 ** the main database is read-only. The ephemeral 3628 ** table is deleted automatically when the cursor is closed. 3629 ** 3630 ** P2 is the number of columns in the ephemeral table. 3631 ** The cursor points to a BTree table if P4==0 and to a BTree index 3632 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3633 ** that defines the format of keys in the index. 3634 ** 3635 ** The P5 parameter can be a mask of the BTREE_* flags defined 3636 ** in btree.h. These flags control aspects of the operation of 3637 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3638 ** added automatically. 3639 */ 3640 /* Opcode: OpenAutoindex P1 P2 * P4 * 3641 ** Synopsis: nColumn=P2 3642 ** 3643 ** This opcode works the same as OP_OpenEphemeral. It has a 3644 ** different name to distinguish its use. Tables created using 3645 ** by this opcode will be used for automatically created transient 3646 ** indices in joins. 3647 */ 3648 case OP_OpenAutoindex: 3649 case OP_OpenEphemeral: { 3650 VdbeCursor *pCx; 3651 KeyInfo *pKeyInfo; 3652 3653 static const int vfsFlags = 3654 SQLITE_OPEN_READWRITE | 3655 SQLITE_OPEN_CREATE | 3656 SQLITE_OPEN_EXCLUSIVE | 3657 SQLITE_OPEN_DELETEONCLOSE | 3658 SQLITE_OPEN_TRANSIENT_DB; 3659 assert( pOp->p1>=0 ); 3660 assert( pOp->p2>=0 ); 3661 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3662 if( pCx==0 ) goto no_mem; 3663 pCx->nullRow = 1; 3664 pCx->isEphemeral = 1; 3665 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3666 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3667 if( rc==SQLITE_OK ){ 3668 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3669 } 3670 if( rc==SQLITE_OK ){ 3671 /* If a transient index is required, create it by calling 3672 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3673 ** opening it. If a transient table is required, just use the 3674 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3675 */ 3676 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3677 int pgno; 3678 assert( pOp->p4type==P4_KEYINFO ); 3679 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3680 if( rc==SQLITE_OK ){ 3681 assert( pgno==MASTER_ROOT+1 ); 3682 assert( pKeyInfo->db==db ); 3683 assert( pKeyInfo->enc==ENC(db) ); 3684 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3685 pKeyInfo, pCx->uc.pCursor); 3686 } 3687 pCx->isTable = 0; 3688 }else{ 3689 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3690 0, pCx->uc.pCursor); 3691 pCx->isTable = 1; 3692 } 3693 } 3694 if( rc ) goto abort_due_to_error; 3695 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3696 break; 3697 } 3698 3699 /* Opcode: SorterOpen P1 P2 P3 P4 * 3700 ** 3701 ** This opcode works like OP_OpenEphemeral except that it opens 3702 ** a transient index that is specifically designed to sort large 3703 ** tables using an external merge-sort algorithm. 3704 ** 3705 ** If argument P3 is non-zero, then it indicates that the sorter may 3706 ** assume that a stable sort considering the first P3 fields of each 3707 ** key is sufficient to produce the required results. 3708 */ 3709 case OP_SorterOpen: { 3710 VdbeCursor *pCx; 3711 3712 assert( pOp->p1>=0 ); 3713 assert( pOp->p2>=0 ); 3714 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3715 if( pCx==0 ) goto no_mem; 3716 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3717 assert( pCx->pKeyInfo->db==db ); 3718 assert( pCx->pKeyInfo->enc==ENC(db) ); 3719 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3720 if( rc ) goto abort_due_to_error; 3721 break; 3722 } 3723 3724 /* Opcode: SequenceTest P1 P2 * * * 3725 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3726 ** 3727 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3728 ** to P2. Regardless of whether or not the jump is taken, increment the 3729 ** the sequence value. 3730 */ 3731 case OP_SequenceTest: { 3732 VdbeCursor *pC; 3733 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3734 pC = p->apCsr[pOp->p1]; 3735 assert( isSorter(pC) ); 3736 if( (pC->seqCount++)==0 ){ 3737 goto jump_to_p2; 3738 } 3739 break; 3740 } 3741 3742 /* Opcode: OpenPseudo P1 P2 P3 * * 3743 ** Synopsis: P3 columns in r[P2] 3744 ** 3745 ** Open a new cursor that points to a fake table that contains a single 3746 ** row of data. The content of that one row is the content of memory 3747 ** register P2. In other words, cursor P1 becomes an alias for the 3748 ** MEM_Blob content contained in register P2. 3749 ** 3750 ** A pseudo-table created by this opcode is used to hold a single 3751 ** row output from the sorter so that the row can be decomposed into 3752 ** individual columns using the OP_Column opcode. The OP_Column opcode 3753 ** is the only cursor opcode that works with a pseudo-table. 3754 ** 3755 ** P3 is the number of fields in the records that will be stored by 3756 ** the pseudo-table. 3757 */ 3758 case OP_OpenPseudo: { 3759 VdbeCursor *pCx; 3760 3761 assert( pOp->p1>=0 ); 3762 assert( pOp->p3>=0 ); 3763 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3764 if( pCx==0 ) goto no_mem; 3765 pCx->nullRow = 1; 3766 pCx->seekResult = pOp->p2; 3767 pCx->isTable = 1; 3768 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3769 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3770 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3771 ** which is a performance optimization */ 3772 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3773 assert( pOp->p5==0 ); 3774 break; 3775 } 3776 3777 /* Opcode: Close P1 * * * * 3778 ** 3779 ** Close a cursor previously opened as P1. If P1 is not 3780 ** currently open, this instruction is a no-op. 3781 */ 3782 case OP_Close: { 3783 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3784 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3785 p->apCsr[pOp->p1] = 0; 3786 break; 3787 } 3788 3789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3790 /* Opcode: ColumnsUsed P1 * * P4 * 3791 ** 3792 ** This opcode (which only exists if SQLite was compiled with 3793 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3794 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3795 ** (P4_INT64) in which the first 63 bits are one for each of the 3796 ** first 63 columns of the table or index that are actually used 3797 ** by the cursor. The high-order bit is set if any column after 3798 ** the 64th is used. 3799 */ 3800 case OP_ColumnsUsed: { 3801 VdbeCursor *pC; 3802 pC = p->apCsr[pOp->p1]; 3803 assert( pC->eCurType==CURTYPE_BTREE ); 3804 pC->maskUsed = *(u64*)pOp->p4.pI64; 3805 break; 3806 } 3807 #endif 3808 3809 /* Opcode: SeekGE P1 P2 P3 P4 * 3810 ** Synopsis: key=r[P3@P4] 3811 ** 3812 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3813 ** use the value in register P3 as the key. If cursor P1 refers 3814 ** to an SQL index, then P3 is the first in an array of P4 registers 3815 ** that are used as an unpacked index key. 3816 ** 3817 ** Reposition cursor P1 so that it points to the smallest entry that 3818 ** is greater than or equal to the key value. If there are no records 3819 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3820 ** 3821 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3822 ** opcode will always land on a record that equally equals the key, or 3823 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3824 ** opcode must be followed by an IdxLE opcode with the same arguments. 3825 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3826 ** IdxLE opcode will be used on subsequent loop iterations. 3827 ** 3828 ** This opcode leaves the cursor configured to move in forward order, 3829 ** from the beginning toward the end. In other words, the cursor is 3830 ** configured to use Next, not Prev. 3831 ** 3832 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3833 */ 3834 /* Opcode: SeekGT P1 P2 P3 P4 * 3835 ** Synopsis: key=r[P3@P4] 3836 ** 3837 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3838 ** use the value in register P3 as a key. If cursor P1 refers 3839 ** to an SQL index, then P3 is the first in an array of P4 registers 3840 ** that are used as an unpacked index key. 3841 ** 3842 ** Reposition cursor P1 so that it points to the smallest entry that 3843 ** is greater than the key value. If there are no records greater than 3844 ** the key and P2 is not zero, then jump to P2. 3845 ** 3846 ** This opcode leaves the cursor configured to move in forward order, 3847 ** from the beginning toward the end. In other words, the cursor is 3848 ** configured to use Next, not Prev. 3849 ** 3850 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3851 */ 3852 /* Opcode: SeekLT P1 P2 P3 P4 * 3853 ** Synopsis: key=r[P3@P4] 3854 ** 3855 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3856 ** use the value in register P3 as a key. If cursor P1 refers 3857 ** to an SQL index, then P3 is the first in an array of P4 registers 3858 ** that are used as an unpacked index key. 3859 ** 3860 ** Reposition cursor P1 so that it points to the largest entry that 3861 ** is less than the key value. If there are no records less than 3862 ** the key and P2 is not zero, then jump to P2. 3863 ** 3864 ** This opcode leaves the cursor configured to move in reverse order, 3865 ** from the end toward the beginning. In other words, the cursor is 3866 ** configured to use Prev, not Next. 3867 ** 3868 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3869 */ 3870 /* Opcode: SeekLE P1 P2 P3 P4 * 3871 ** Synopsis: key=r[P3@P4] 3872 ** 3873 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3874 ** use the value in register P3 as a key. If cursor P1 refers 3875 ** to an SQL index, then P3 is the first in an array of P4 registers 3876 ** that are used as an unpacked index key. 3877 ** 3878 ** Reposition cursor P1 so that it points to the largest entry that 3879 ** is less than or equal to the key value. If there are no records 3880 ** less than or equal to the key and P2 is not zero, then jump to P2. 3881 ** 3882 ** This opcode leaves the cursor configured to move in reverse order, 3883 ** from the end toward the beginning. In other words, the cursor is 3884 ** configured to use Prev, not Next. 3885 ** 3886 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3887 ** opcode will always land on a record that equally equals the key, or 3888 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3889 ** opcode must be followed by an IdxGE opcode with the same arguments. 3890 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3891 ** IdxGE opcode will be used on subsequent loop iterations. 3892 ** 3893 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3894 */ 3895 case OP_SeekLT: /* jump, in3, group */ 3896 case OP_SeekLE: /* jump, in3, group */ 3897 case OP_SeekGE: /* jump, in3, group */ 3898 case OP_SeekGT: { /* jump, in3, group */ 3899 int res; /* Comparison result */ 3900 int oc; /* Opcode */ 3901 VdbeCursor *pC; /* The cursor to seek */ 3902 UnpackedRecord r; /* The key to seek for */ 3903 int nField; /* Number of columns or fields in the key */ 3904 i64 iKey; /* The rowid we are to seek to */ 3905 int eqOnly; /* Only interested in == results */ 3906 3907 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3908 assert( pOp->p2!=0 ); 3909 pC = p->apCsr[pOp->p1]; 3910 assert( pC!=0 ); 3911 assert( pC->eCurType==CURTYPE_BTREE ); 3912 assert( OP_SeekLE == OP_SeekLT+1 ); 3913 assert( OP_SeekGE == OP_SeekLT+2 ); 3914 assert( OP_SeekGT == OP_SeekLT+3 ); 3915 assert( pC->isOrdered ); 3916 assert( pC->uc.pCursor!=0 ); 3917 oc = pOp->opcode; 3918 eqOnly = 0; 3919 pC->nullRow = 0; 3920 #ifdef SQLITE_DEBUG 3921 pC->seekOp = pOp->opcode; 3922 #endif 3923 3924 if( pC->isTable ){ 3925 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3926 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3927 || CORRUPT_DB ); 3928 3929 /* The input value in P3 might be of any type: integer, real, string, 3930 ** blob, or NULL. But it needs to be an integer before we can do 3931 ** the seek, so convert it. */ 3932 pIn3 = &aMem[pOp->p3]; 3933 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3934 applyNumericAffinity(pIn3, 0); 3935 } 3936 iKey = sqlite3VdbeIntValue(pIn3); 3937 3938 /* If the P3 value could not be converted into an integer without 3939 ** loss of information, then special processing is required... */ 3940 if( (pIn3->flags & MEM_Int)==0 ){ 3941 if( (pIn3->flags & MEM_Real)==0 ){ 3942 /* If the P3 value cannot be converted into any kind of a number, 3943 ** then the seek is not possible, so jump to P2 */ 3944 VdbeBranchTaken(1,2); goto jump_to_p2; 3945 break; 3946 } 3947 3948 /* If the approximation iKey is larger than the actual real search 3949 ** term, substitute >= for > and < for <=. e.g. if the search term 3950 ** is 4.9 and the integer approximation 5: 3951 ** 3952 ** (x > 4.9) -> (x >= 5) 3953 ** (x <= 4.9) -> (x < 5) 3954 */ 3955 if( pIn3->u.r<(double)iKey ){ 3956 assert( OP_SeekGE==(OP_SeekGT-1) ); 3957 assert( OP_SeekLT==(OP_SeekLE-1) ); 3958 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3959 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3960 } 3961 3962 /* If the approximation iKey is smaller than the actual real search 3963 ** term, substitute <= for < and > for >=. */ 3964 else if( pIn3->u.r>(double)iKey ){ 3965 assert( OP_SeekLE==(OP_SeekLT+1) ); 3966 assert( OP_SeekGT==(OP_SeekGE+1) ); 3967 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3968 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3969 } 3970 } 3971 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3972 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3973 if( rc!=SQLITE_OK ){ 3974 goto abort_due_to_error; 3975 } 3976 }else{ 3977 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3978 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3979 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3980 */ 3981 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3982 eqOnly = 1; 3983 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3984 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3985 assert( pOp[1].p1==pOp[0].p1 ); 3986 assert( pOp[1].p2==pOp[0].p2 ); 3987 assert( pOp[1].p3==pOp[0].p3 ); 3988 assert( pOp[1].p4.i==pOp[0].p4.i ); 3989 } 3990 3991 nField = pOp->p4.i; 3992 assert( pOp->p4type==P4_INT32 ); 3993 assert( nField>0 ); 3994 r.pKeyInfo = pC->pKeyInfo; 3995 r.nField = (u16)nField; 3996 3997 /* The next line of code computes as follows, only faster: 3998 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3999 ** r.default_rc = -1; 4000 ** }else{ 4001 ** r.default_rc = +1; 4002 ** } 4003 */ 4004 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4005 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4006 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4007 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4008 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4009 4010 r.aMem = &aMem[pOp->p3]; 4011 #ifdef SQLITE_DEBUG 4012 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4013 #endif 4014 r.eqSeen = 0; 4015 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4016 if( rc!=SQLITE_OK ){ 4017 goto abort_due_to_error; 4018 } 4019 if( eqOnly && r.eqSeen==0 ){ 4020 assert( res!=0 ); 4021 goto seek_not_found; 4022 } 4023 } 4024 pC->deferredMoveto = 0; 4025 pC->cacheStatus = CACHE_STALE; 4026 #ifdef SQLITE_TEST 4027 sqlite3_search_count++; 4028 #endif 4029 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4030 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4031 res = 0; 4032 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4033 if( rc!=SQLITE_OK ){ 4034 if( rc==SQLITE_DONE ){ 4035 rc = SQLITE_OK; 4036 res = 1; 4037 }else{ 4038 goto abort_due_to_error; 4039 } 4040 } 4041 }else{ 4042 res = 0; 4043 } 4044 }else{ 4045 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4046 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4047 res = 0; 4048 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4049 if( rc!=SQLITE_OK ){ 4050 if( rc==SQLITE_DONE ){ 4051 rc = SQLITE_OK; 4052 res = 1; 4053 }else{ 4054 goto abort_due_to_error; 4055 } 4056 } 4057 }else{ 4058 /* res might be negative because the table is empty. Check to 4059 ** see if this is the case. 4060 */ 4061 res = sqlite3BtreeEof(pC->uc.pCursor); 4062 } 4063 } 4064 seek_not_found: 4065 assert( pOp->p2>0 ); 4066 VdbeBranchTaken(res!=0,2); 4067 if( res ){ 4068 goto jump_to_p2; 4069 }else if( eqOnly ){ 4070 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4071 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4072 } 4073 break; 4074 } 4075 4076 /* Opcode: SeekHit P1 P2 * * * 4077 ** Synopsis: seekHit=P2 4078 ** 4079 ** Set the seekHit flag on cursor P1 to the value in P2. 4080 ** The seekHit flag is used by the IfNoHope opcode. 4081 ** 4082 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4083 ** either 0 or 1. 4084 */ 4085 case OP_SeekHit: { 4086 VdbeCursor *pC; 4087 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4088 pC = p->apCsr[pOp->p1]; 4089 assert( pC!=0 ); 4090 assert( pOp->p2==0 || pOp->p2==1 ); 4091 pC->seekHit = pOp->p2 & 1; 4092 break; 4093 } 4094 4095 /* Opcode: Found P1 P2 P3 P4 * 4096 ** Synopsis: key=r[P3@P4] 4097 ** 4098 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4099 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4100 ** record. 4101 ** 4102 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4103 ** is a prefix of any entry in P1 then a jump is made to P2 and 4104 ** P1 is left pointing at the matching entry. 4105 ** 4106 ** This operation leaves the cursor in a state where it can be 4107 ** advanced in the forward direction. The Next instruction will work, 4108 ** but not the Prev instruction. 4109 ** 4110 ** See also: NotFound, NoConflict, NotExists. SeekGe 4111 */ 4112 /* Opcode: NotFound P1 P2 P3 P4 * 4113 ** Synopsis: key=r[P3@P4] 4114 ** 4115 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4116 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4117 ** record. 4118 ** 4119 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4120 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4121 ** does contain an entry whose prefix matches the P3/P4 record then control 4122 ** falls through to the next instruction and P1 is left pointing at the 4123 ** matching entry. 4124 ** 4125 ** This operation leaves the cursor in a state where it cannot be 4126 ** advanced in either direction. In other words, the Next and Prev 4127 ** opcodes do not work after this operation. 4128 ** 4129 ** See also: Found, NotExists, NoConflict, IfNoHope 4130 */ 4131 /* Opcode: IfNoHope P1 P2 P3 P4 * 4132 ** Synopsis: key=r[P3@P4] 4133 ** 4134 ** Register P3 is the first of P4 registers that form an unpacked 4135 ** record. 4136 ** 4137 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4138 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4139 ** check to see if there is any entry in P1 that matches the 4140 ** prefix identified by P3 and P4. If no entry matches the prefix, 4141 ** jump to P2. Otherwise fall through. 4142 ** 4143 ** This opcode behaves like OP_NotFound if the seekHit 4144 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4145 ** 4146 ** This opcode is used in IN clause processing for a multi-column key. 4147 ** If an IN clause is attached to an element of the key other than the 4148 ** left-most element, and if there are no matches on the most recent 4149 ** seek over the whole key, then it might be that one of the key element 4150 ** to the left is prohibiting a match, and hence there is "no hope" of 4151 ** any match regardless of how many IN clause elements are checked. 4152 ** In such a case, we abandon the IN clause search early, using this 4153 ** opcode. The opcode name comes from the fact that the 4154 ** jump is taken if there is "no hope" of achieving a match. 4155 ** 4156 ** See also: NotFound, SeekHit 4157 */ 4158 /* Opcode: NoConflict P1 P2 P3 P4 * 4159 ** Synopsis: key=r[P3@P4] 4160 ** 4161 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4162 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4163 ** record. 4164 ** 4165 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4166 ** contains any NULL value, jump immediately to P2. If all terms of the 4167 ** record are not-NULL then a check is done to determine if any row in the 4168 ** P1 index btree has a matching key prefix. If there are no matches, jump 4169 ** immediately to P2. If there is a match, fall through and leave the P1 4170 ** cursor pointing to the matching row. 4171 ** 4172 ** This opcode is similar to OP_NotFound with the exceptions that the 4173 ** branch is always taken if any part of the search key input is NULL. 4174 ** 4175 ** This operation leaves the cursor in a state where it cannot be 4176 ** advanced in either direction. In other words, the Next and Prev 4177 ** opcodes do not work after this operation. 4178 ** 4179 ** See also: NotFound, Found, NotExists 4180 */ 4181 case OP_IfNoHope: { /* jump, in3 */ 4182 VdbeCursor *pC; 4183 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4184 pC = p->apCsr[pOp->p1]; 4185 assert( pC!=0 ); 4186 if( pC->seekHit ) break; 4187 /* Fall through into OP_NotFound */ 4188 } 4189 case OP_NoConflict: /* jump, in3 */ 4190 case OP_NotFound: /* jump, in3 */ 4191 case OP_Found: { /* jump, in3 */ 4192 int alreadyExists; 4193 int takeJump; 4194 int ii; 4195 VdbeCursor *pC; 4196 int res; 4197 UnpackedRecord *pFree; 4198 UnpackedRecord *pIdxKey; 4199 UnpackedRecord r; 4200 4201 #ifdef SQLITE_TEST 4202 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4203 #endif 4204 4205 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4206 assert( pOp->p4type==P4_INT32 ); 4207 pC = p->apCsr[pOp->p1]; 4208 assert( pC!=0 ); 4209 #ifdef SQLITE_DEBUG 4210 pC->seekOp = pOp->opcode; 4211 #endif 4212 pIn3 = &aMem[pOp->p3]; 4213 assert( pC->eCurType==CURTYPE_BTREE ); 4214 assert( pC->uc.pCursor!=0 ); 4215 assert( pC->isTable==0 ); 4216 if( pOp->p4.i>0 ){ 4217 r.pKeyInfo = pC->pKeyInfo; 4218 r.nField = (u16)pOp->p4.i; 4219 r.aMem = pIn3; 4220 #ifdef SQLITE_DEBUG 4221 for(ii=0; ii<r.nField; ii++){ 4222 assert( memIsValid(&r.aMem[ii]) ); 4223 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4224 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4225 } 4226 #endif 4227 pIdxKey = &r; 4228 pFree = 0; 4229 }else{ 4230 assert( pIn3->flags & MEM_Blob ); 4231 rc = ExpandBlob(pIn3); 4232 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4233 if( rc ) goto no_mem; 4234 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4235 if( pIdxKey==0 ) goto no_mem; 4236 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4237 } 4238 pIdxKey->default_rc = 0; 4239 takeJump = 0; 4240 if( pOp->opcode==OP_NoConflict ){ 4241 /* For the OP_NoConflict opcode, take the jump if any of the 4242 ** input fields are NULL, since any key with a NULL will not 4243 ** conflict */ 4244 for(ii=0; ii<pIdxKey->nField; ii++){ 4245 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4246 takeJump = 1; 4247 break; 4248 } 4249 } 4250 } 4251 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4252 if( pFree ) sqlite3DbFreeNN(db, pFree); 4253 if( rc!=SQLITE_OK ){ 4254 goto abort_due_to_error; 4255 } 4256 pC->seekResult = res; 4257 alreadyExists = (res==0); 4258 pC->nullRow = 1-alreadyExists; 4259 pC->deferredMoveto = 0; 4260 pC->cacheStatus = CACHE_STALE; 4261 if( pOp->opcode==OP_Found ){ 4262 VdbeBranchTaken(alreadyExists!=0,2); 4263 if( alreadyExists ) goto jump_to_p2; 4264 }else{ 4265 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4266 if( takeJump || !alreadyExists ) goto jump_to_p2; 4267 } 4268 break; 4269 } 4270 4271 /* Opcode: SeekRowid P1 P2 P3 * * 4272 ** Synopsis: intkey=r[P3] 4273 ** 4274 ** P1 is the index of a cursor open on an SQL table btree (with integer 4275 ** keys). If register P3 does not contain an integer or if P1 does not 4276 ** contain a record with rowid P3 then jump immediately to P2. 4277 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4278 ** a record with rowid P3 then 4279 ** leave the cursor pointing at that record and fall through to the next 4280 ** instruction. 4281 ** 4282 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4283 ** the P3 register must be guaranteed to contain an integer value. With this 4284 ** opcode, register P3 might not contain an integer. 4285 ** 4286 ** The OP_NotFound opcode performs the same operation on index btrees 4287 ** (with arbitrary multi-value keys). 4288 ** 4289 ** This opcode leaves the cursor in a state where it cannot be advanced 4290 ** in either direction. In other words, the Next and Prev opcodes will 4291 ** not work following this opcode. 4292 ** 4293 ** See also: Found, NotFound, NoConflict, SeekRowid 4294 */ 4295 /* Opcode: NotExists P1 P2 P3 * * 4296 ** Synopsis: intkey=r[P3] 4297 ** 4298 ** P1 is the index of a cursor open on an SQL table btree (with integer 4299 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4300 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4301 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4302 ** leave the cursor pointing at that record and fall through to the next 4303 ** instruction. 4304 ** 4305 ** The OP_SeekRowid opcode performs the same operation but also allows the 4306 ** P3 register to contain a non-integer value, in which case the jump is 4307 ** always taken. This opcode requires that P3 always contain an integer. 4308 ** 4309 ** The OP_NotFound opcode performs the same operation on index btrees 4310 ** (with arbitrary multi-value keys). 4311 ** 4312 ** This opcode leaves the cursor in a state where it cannot be advanced 4313 ** in either direction. In other words, the Next and Prev opcodes will 4314 ** not work following this opcode. 4315 ** 4316 ** See also: Found, NotFound, NoConflict, SeekRowid 4317 */ 4318 case OP_SeekRowid: { /* jump, in3 */ 4319 VdbeCursor *pC; 4320 BtCursor *pCrsr; 4321 int res; 4322 u64 iKey; 4323 4324 pIn3 = &aMem[pOp->p3]; 4325 if( (pIn3->flags & MEM_Int)==0 ){ 4326 /* Make sure pIn3->u.i contains a valid integer representation of 4327 ** the key value, but do not change the datatype of the register, as 4328 ** other parts of the perpared statement might be depending on the 4329 ** current datatype. */ 4330 u16 origFlags = pIn3->flags; 4331 int isNotInt; 4332 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4333 isNotInt = (pIn3->flags & MEM_Int)==0; 4334 pIn3->flags = origFlags; 4335 if( isNotInt ) goto jump_to_p2; 4336 } 4337 /* Fall through into OP_NotExists */ 4338 case OP_NotExists: /* jump, in3 */ 4339 pIn3 = &aMem[pOp->p3]; 4340 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4341 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4342 pC = p->apCsr[pOp->p1]; 4343 assert( pC!=0 ); 4344 #ifdef SQLITE_DEBUG 4345 pC->seekOp = OP_SeekRowid; 4346 #endif 4347 assert( pC->isTable ); 4348 assert( pC->eCurType==CURTYPE_BTREE ); 4349 pCrsr = pC->uc.pCursor; 4350 assert( pCrsr!=0 ); 4351 res = 0; 4352 iKey = pIn3->u.i; 4353 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4354 assert( rc==SQLITE_OK || res==0 ); 4355 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4356 pC->nullRow = 0; 4357 pC->cacheStatus = CACHE_STALE; 4358 pC->deferredMoveto = 0; 4359 VdbeBranchTaken(res!=0,2); 4360 pC->seekResult = res; 4361 if( res!=0 ){ 4362 assert( rc==SQLITE_OK ); 4363 if( pOp->p2==0 ){ 4364 rc = SQLITE_CORRUPT_BKPT; 4365 }else{ 4366 goto jump_to_p2; 4367 } 4368 } 4369 if( rc ) goto abort_due_to_error; 4370 break; 4371 } 4372 4373 /* Opcode: Sequence P1 P2 * * * 4374 ** Synopsis: r[P2]=cursor[P1].ctr++ 4375 ** 4376 ** Find the next available sequence number for cursor P1. 4377 ** Write the sequence number into register P2. 4378 ** The sequence number on the cursor is incremented after this 4379 ** instruction. 4380 */ 4381 case OP_Sequence: { /* out2 */ 4382 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4383 assert( p->apCsr[pOp->p1]!=0 ); 4384 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4385 pOut = out2Prerelease(p, pOp); 4386 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4387 break; 4388 } 4389 4390 4391 /* Opcode: NewRowid P1 P2 P3 * * 4392 ** Synopsis: r[P2]=rowid 4393 ** 4394 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4395 ** The record number is not previously used as a key in the database 4396 ** table that cursor P1 points to. The new record number is written 4397 ** written to register P2. 4398 ** 4399 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4400 ** the largest previously generated record number. No new record numbers are 4401 ** allowed to be less than this value. When this value reaches its maximum, 4402 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4403 ** generated record number. This P3 mechanism is used to help implement the 4404 ** AUTOINCREMENT feature. 4405 */ 4406 case OP_NewRowid: { /* out2 */ 4407 i64 v; /* The new rowid */ 4408 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4409 int res; /* Result of an sqlite3BtreeLast() */ 4410 int cnt; /* Counter to limit the number of searches */ 4411 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4412 VdbeFrame *pFrame; /* Root frame of VDBE */ 4413 4414 v = 0; 4415 res = 0; 4416 pOut = out2Prerelease(p, pOp); 4417 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4418 pC = p->apCsr[pOp->p1]; 4419 assert( pC!=0 ); 4420 assert( pC->isTable ); 4421 assert( pC->eCurType==CURTYPE_BTREE ); 4422 assert( pC->uc.pCursor!=0 ); 4423 { 4424 /* The next rowid or record number (different terms for the same 4425 ** thing) is obtained in a two-step algorithm. 4426 ** 4427 ** First we attempt to find the largest existing rowid and add one 4428 ** to that. But if the largest existing rowid is already the maximum 4429 ** positive integer, we have to fall through to the second 4430 ** probabilistic algorithm 4431 ** 4432 ** The second algorithm is to select a rowid at random and see if 4433 ** it already exists in the table. If it does not exist, we have 4434 ** succeeded. If the random rowid does exist, we select a new one 4435 ** and try again, up to 100 times. 4436 */ 4437 assert( pC->isTable ); 4438 4439 #ifdef SQLITE_32BIT_ROWID 4440 # define MAX_ROWID 0x7fffffff 4441 #else 4442 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4443 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4444 ** to provide the constant while making all compilers happy. 4445 */ 4446 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4447 #endif 4448 4449 if( !pC->useRandomRowid ){ 4450 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4451 if( rc!=SQLITE_OK ){ 4452 goto abort_due_to_error; 4453 } 4454 if( res ){ 4455 v = 1; /* IMP: R-61914-48074 */ 4456 }else{ 4457 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4458 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4459 if( v>=MAX_ROWID ){ 4460 pC->useRandomRowid = 1; 4461 }else{ 4462 v++; /* IMP: R-29538-34987 */ 4463 } 4464 } 4465 } 4466 4467 #ifndef SQLITE_OMIT_AUTOINCREMENT 4468 if( pOp->p3 ){ 4469 /* Assert that P3 is a valid memory cell. */ 4470 assert( pOp->p3>0 ); 4471 if( p->pFrame ){ 4472 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4473 /* Assert that P3 is a valid memory cell. */ 4474 assert( pOp->p3<=pFrame->nMem ); 4475 pMem = &pFrame->aMem[pOp->p3]; 4476 }else{ 4477 /* Assert that P3 is a valid memory cell. */ 4478 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4479 pMem = &aMem[pOp->p3]; 4480 memAboutToChange(p, pMem); 4481 } 4482 assert( memIsValid(pMem) ); 4483 4484 REGISTER_TRACE(pOp->p3, pMem); 4485 sqlite3VdbeMemIntegerify(pMem); 4486 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4487 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4488 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4489 goto abort_due_to_error; 4490 } 4491 if( v<pMem->u.i+1 ){ 4492 v = pMem->u.i + 1; 4493 } 4494 pMem->u.i = v; 4495 } 4496 #endif 4497 if( pC->useRandomRowid ){ 4498 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4499 ** largest possible integer (9223372036854775807) then the database 4500 ** engine starts picking positive candidate ROWIDs at random until 4501 ** it finds one that is not previously used. */ 4502 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4503 ** an AUTOINCREMENT table. */ 4504 cnt = 0; 4505 do{ 4506 sqlite3_randomness(sizeof(v), &v); 4507 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4508 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4509 0, &res))==SQLITE_OK) 4510 && (res==0) 4511 && (++cnt<100)); 4512 if( rc ) goto abort_due_to_error; 4513 if( res==0 ){ 4514 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4515 goto abort_due_to_error; 4516 } 4517 assert( v>0 ); /* EV: R-40812-03570 */ 4518 } 4519 pC->deferredMoveto = 0; 4520 pC->cacheStatus = CACHE_STALE; 4521 } 4522 pOut->u.i = v; 4523 break; 4524 } 4525 4526 /* Opcode: Insert P1 P2 P3 P4 P5 4527 ** Synopsis: intkey=r[P3] data=r[P2] 4528 ** 4529 ** Write an entry into the table of cursor P1. A new entry is 4530 ** created if it doesn't already exist or the data for an existing 4531 ** entry is overwritten. The data is the value MEM_Blob stored in register 4532 ** number P2. The key is stored in register P3. The key must 4533 ** be a MEM_Int. 4534 ** 4535 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4536 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4537 ** then rowid is stored for subsequent return by the 4538 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4539 ** 4540 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4541 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4542 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4543 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4544 ** 4545 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4546 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4547 ** is part of an INSERT operation. The difference is only important to 4548 ** the update hook. 4549 ** 4550 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4551 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4552 ** following a successful insert. 4553 ** 4554 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4555 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4556 ** and register P2 becomes ephemeral. If the cursor is changed, the 4557 ** value of register P2 will then change. Make sure this does not 4558 ** cause any problems.) 4559 ** 4560 ** This instruction only works on tables. The equivalent instruction 4561 ** for indices is OP_IdxInsert. 4562 */ 4563 /* Opcode: InsertInt P1 P2 P3 P4 P5 4564 ** Synopsis: intkey=P3 data=r[P2] 4565 ** 4566 ** This works exactly like OP_Insert except that the key is the 4567 ** integer value P3, not the value of the integer stored in register P3. 4568 */ 4569 case OP_Insert: 4570 case OP_InsertInt: { 4571 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4572 Mem *pKey; /* MEM cell holding key for the record */ 4573 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4574 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4575 const char *zDb; /* database name - used by the update hook */ 4576 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4577 BtreePayload x; /* Payload to be inserted */ 4578 4579 pData = &aMem[pOp->p2]; 4580 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4581 assert( memIsValid(pData) ); 4582 pC = p->apCsr[pOp->p1]; 4583 assert( pC!=0 ); 4584 assert( pC->eCurType==CURTYPE_BTREE ); 4585 assert( pC->uc.pCursor!=0 ); 4586 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4587 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4588 REGISTER_TRACE(pOp->p2, pData); 4589 sqlite3VdbeIncrWriteCounter(p, pC); 4590 4591 if( pOp->opcode==OP_Insert ){ 4592 pKey = &aMem[pOp->p3]; 4593 assert( pKey->flags & MEM_Int ); 4594 assert( memIsValid(pKey) ); 4595 REGISTER_TRACE(pOp->p3, pKey); 4596 x.nKey = pKey->u.i; 4597 }else{ 4598 assert( pOp->opcode==OP_InsertInt ); 4599 x.nKey = pOp->p3; 4600 } 4601 4602 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4603 assert( pC->iDb>=0 ); 4604 zDb = db->aDb[pC->iDb].zDbSName; 4605 pTab = pOp->p4.pTab; 4606 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4607 }else{ 4608 pTab = 0; 4609 zDb = 0; /* Not needed. Silence a compiler warning. */ 4610 } 4611 4612 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4613 /* Invoke the pre-update hook, if any */ 4614 if( pTab ){ 4615 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4616 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4617 } 4618 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4619 /* Prevent post-update hook from running in cases when it should not */ 4620 pTab = 0; 4621 } 4622 } 4623 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4624 #endif 4625 4626 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4627 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4628 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4629 x.pData = pData->z; 4630 x.nData = pData->n; 4631 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4632 if( pData->flags & MEM_Zero ){ 4633 x.nZero = pData->u.nZero; 4634 }else{ 4635 x.nZero = 0; 4636 } 4637 x.pKey = 0; 4638 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4639 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4640 ); 4641 pC->deferredMoveto = 0; 4642 pC->cacheStatus = CACHE_STALE; 4643 4644 /* Invoke the update-hook if required. */ 4645 if( rc ) goto abort_due_to_error; 4646 if( pTab ){ 4647 assert( db->xUpdateCallback!=0 ); 4648 assert( pTab->aCol!=0 ); 4649 db->xUpdateCallback(db->pUpdateArg, 4650 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4651 zDb, pTab->zName, x.nKey); 4652 } 4653 break; 4654 } 4655 4656 /* Opcode: Delete P1 P2 P3 P4 P5 4657 ** 4658 ** Delete the record at which the P1 cursor is currently pointing. 4659 ** 4660 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4661 ** the cursor will be left pointing at either the next or the previous 4662 ** record in the table. If it is left pointing at the next record, then 4663 ** the next Next instruction will be a no-op. As a result, in this case 4664 ** it is ok to delete a record from within a Next loop. If 4665 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4666 ** left in an undefined state. 4667 ** 4668 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4669 ** delete one of several associated with deleting a table row and all its 4670 ** associated index entries. Exactly one of those deletes is the "primary" 4671 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4672 ** marked with the AUXDELETE flag. 4673 ** 4674 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4675 ** change count is incremented (otherwise not). 4676 ** 4677 ** P1 must not be pseudo-table. It has to be a real table with 4678 ** multiple rows. 4679 ** 4680 ** If P4 is not NULL then it points to a Table object. In this case either 4681 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4682 ** have been positioned using OP_NotFound prior to invoking this opcode in 4683 ** this case. Specifically, if one is configured, the pre-update hook is 4684 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4685 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4686 ** 4687 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4688 ** of the memory cell that contains the value that the rowid of the row will 4689 ** be set to by the update. 4690 */ 4691 case OP_Delete: { 4692 VdbeCursor *pC; 4693 const char *zDb; 4694 Table *pTab; 4695 int opflags; 4696 4697 opflags = pOp->p2; 4698 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4699 pC = p->apCsr[pOp->p1]; 4700 assert( pC!=0 ); 4701 assert( pC->eCurType==CURTYPE_BTREE ); 4702 assert( pC->uc.pCursor!=0 ); 4703 assert( pC->deferredMoveto==0 ); 4704 sqlite3VdbeIncrWriteCounter(p, pC); 4705 4706 #ifdef SQLITE_DEBUG 4707 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4708 /* If p5 is zero, the seek operation that positioned the cursor prior to 4709 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4710 ** the row that is being deleted */ 4711 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4712 assert( pC->movetoTarget==iKey ); 4713 } 4714 #endif 4715 4716 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4717 ** the name of the db to pass as to it. Also set local pTab to a copy 4718 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4719 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4720 ** VdbeCursor.movetoTarget to the current rowid. */ 4721 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4722 assert( pC->iDb>=0 ); 4723 assert( pOp->p4.pTab!=0 ); 4724 zDb = db->aDb[pC->iDb].zDbSName; 4725 pTab = pOp->p4.pTab; 4726 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4727 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4728 } 4729 }else{ 4730 zDb = 0; /* Not needed. Silence a compiler warning. */ 4731 pTab = 0; /* Not needed. Silence a compiler warning. */ 4732 } 4733 4734 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4735 /* Invoke the pre-update-hook if required. */ 4736 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4737 assert( !(opflags & OPFLAG_ISUPDATE) 4738 || HasRowid(pTab)==0 4739 || (aMem[pOp->p3].flags & MEM_Int) 4740 ); 4741 sqlite3VdbePreUpdateHook(p, pC, 4742 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4743 zDb, pTab, pC->movetoTarget, 4744 pOp->p3 4745 ); 4746 } 4747 if( opflags & OPFLAG_ISNOOP ) break; 4748 #endif 4749 4750 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4751 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4752 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4753 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4754 4755 #ifdef SQLITE_DEBUG 4756 if( p->pFrame==0 ){ 4757 if( pC->isEphemeral==0 4758 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4759 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4760 ){ 4761 nExtraDelete++; 4762 } 4763 if( pOp->p2 & OPFLAG_NCHANGE ){ 4764 nExtraDelete--; 4765 } 4766 } 4767 #endif 4768 4769 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4770 pC->cacheStatus = CACHE_STALE; 4771 pC->seekResult = 0; 4772 if( rc ) goto abort_due_to_error; 4773 4774 /* Invoke the update-hook if required. */ 4775 if( opflags & OPFLAG_NCHANGE ){ 4776 p->nChange++; 4777 if( db->xUpdateCallback && HasRowid(pTab) ){ 4778 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4779 pC->movetoTarget); 4780 assert( pC->iDb>=0 ); 4781 } 4782 } 4783 4784 break; 4785 } 4786 /* Opcode: ResetCount * * * * * 4787 ** 4788 ** The value of the change counter is copied to the database handle 4789 ** change counter (returned by subsequent calls to sqlite3_changes()). 4790 ** Then the VMs internal change counter resets to 0. 4791 ** This is used by trigger programs. 4792 */ 4793 case OP_ResetCount: { 4794 sqlite3VdbeSetChanges(db, p->nChange); 4795 p->nChange = 0; 4796 break; 4797 } 4798 4799 /* Opcode: SorterCompare P1 P2 P3 P4 4800 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4801 ** 4802 ** P1 is a sorter cursor. This instruction compares a prefix of the 4803 ** record blob in register P3 against a prefix of the entry that 4804 ** the sorter cursor currently points to. Only the first P4 fields 4805 ** of r[P3] and the sorter record are compared. 4806 ** 4807 ** If either P3 or the sorter contains a NULL in one of their significant 4808 ** fields (not counting the P4 fields at the end which are ignored) then 4809 ** the comparison is assumed to be equal. 4810 ** 4811 ** Fall through to next instruction if the two records compare equal to 4812 ** each other. Jump to P2 if they are different. 4813 */ 4814 case OP_SorterCompare: { 4815 VdbeCursor *pC; 4816 int res; 4817 int nKeyCol; 4818 4819 pC = p->apCsr[pOp->p1]; 4820 assert( isSorter(pC) ); 4821 assert( pOp->p4type==P4_INT32 ); 4822 pIn3 = &aMem[pOp->p3]; 4823 nKeyCol = pOp->p4.i; 4824 res = 0; 4825 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4826 VdbeBranchTaken(res!=0,2); 4827 if( rc ) goto abort_due_to_error; 4828 if( res ) goto jump_to_p2; 4829 break; 4830 }; 4831 4832 /* Opcode: SorterData P1 P2 P3 * * 4833 ** Synopsis: r[P2]=data 4834 ** 4835 ** Write into register P2 the current sorter data for sorter cursor P1. 4836 ** Then clear the column header cache on cursor P3. 4837 ** 4838 ** This opcode is normally use to move a record out of the sorter and into 4839 ** a register that is the source for a pseudo-table cursor created using 4840 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4841 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4842 ** us from having to issue a separate NullRow instruction to clear that cache. 4843 */ 4844 case OP_SorterData: { 4845 VdbeCursor *pC; 4846 4847 pOut = &aMem[pOp->p2]; 4848 pC = p->apCsr[pOp->p1]; 4849 assert( isSorter(pC) ); 4850 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4851 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4852 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4853 if( rc ) goto abort_due_to_error; 4854 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4855 break; 4856 } 4857 4858 /* Opcode: RowData P1 P2 P3 * * 4859 ** Synopsis: r[P2]=data 4860 ** 4861 ** Write into register P2 the complete row content for the row at 4862 ** which cursor P1 is currently pointing. 4863 ** There is no interpretation of the data. 4864 ** It is just copied onto the P2 register exactly as 4865 ** it is found in the database file. 4866 ** 4867 ** If cursor P1 is an index, then the content is the key of the row. 4868 ** If cursor P2 is a table, then the content extracted is the data. 4869 ** 4870 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4871 ** of a real table, not a pseudo-table. 4872 ** 4873 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 4874 ** into the database page. That means that the content of the output 4875 ** register will be invalidated as soon as the cursor moves - including 4876 ** moves caused by other cursors that "save" the current cursors 4877 ** position in order that they can write to the same table. If P3==0 4878 ** then a copy of the data is made into memory. P3!=0 is faster, but 4879 ** P3==0 is safer. 4880 ** 4881 ** If P3!=0 then the content of the P2 register is unsuitable for use 4882 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4883 ** The P2 register content is invalidated by opcodes like OP_Function or 4884 ** by any use of another cursor pointing to the same table. 4885 */ 4886 case OP_RowData: { 4887 VdbeCursor *pC; 4888 BtCursor *pCrsr; 4889 u32 n; 4890 4891 pOut = out2Prerelease(p, pOp); 4892 4893 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4894 pC = p->apCsr[pOp->p1]; 4895 assert( pC!=0 ); 4896 assert( pC->eCurType==CURTYPE_BTREE ); 4897 assert( isSorter(pC)==0 ); 4898 assert( pC->nullRow==0 ); 4899 assert( pC->uc.pCursor!=0 ); 4900 pCrsr = pC->uc.pCursor; 4901 4902 /* The OP_RowData opcodes always follow OP_NotExists or 4903 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4904 ** that might invalidate the cursor. 4905 ** If this where not the case, on of the following assert()s 4906 ** would fail. Should this ever change (because of changes in the code 4907 ** generator) then the fix would be to insert a call to 4908 ** sqlite3VdbeCursorMoveto(). 4909 */ 4910 assert( pC->deferredMoveto==0 ); 4911 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4912 #if 0 /* Not required due to the previous to assert() statements */ 4913 rc = sqlite3VdbeCursorMoveto(pC); 4914 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4915 #endif 4916 4917 n = sqlite3BtreePayloadSize(pCrsr); 4918 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4919 goto too_big; 4920 } 4921 testcase( n==0 ); 4922 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4923 if( rc ) goto abort_due_to_error; 4924 if( !pOp->p3 ) Deephemeralize(pOut); 4925 UPDATE_MAX_BLOBSIZE(pOut); 4926 REGISTER_TRACE(pOp->p2, pOut); 4927 break; 4928 } 4929 4930 /* Opcode: Rowid P1 P2 * * * 4931 ** Synopsis: r[P2]=rowid 4932 ** 4933 ** Store in register P2 an integer which is the key of the table entry that 4934 ** P1 is currently point to. 4935 ** 4936 ** P1 can be either an ordinary table or a virtual table. There used to 4937 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4938 ** one opcode now works for both table types. 4939 */ 4940 case OP_Rowid: { /* out2 */ 4941 VdbeCursor *pC; 4942 i64 v; 4943 sqlite3_vtab *pVtab; 4944 const sqlite3_module *pModule; 4945 4946 pOut = out2Prerelease(p, pOp); 4947 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4948 pC = p->apCsr[pOp->p1]; 4949 assert( pC!=0 ); 4950 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4951 if( pC->nullRow ){ 4952 pOut->flags = MEM_Null; 4953 break; 4954 }else if( pC->deferredMoveto ){ 4955 v = pC->movetoTarget; 4956 #ifndef SQLITE_OMIT_VIRTUALTABLE 4957 }else if( pC->eCurType==CURTYPE_VTAB ){ 4958 assert( pC->uc.pVCur!=0 ); 4959 pVtab = pC->uc.pVCur->pVtab; 4960 pModule = pVtab->pModule; 4961 assert( pModule->xRowid ); 4962 rc = pModule->xRowid(pC->uc.pVCur, &v); 4963 sqlite3VtabImportErrmsg(p, pVtab); 4964 if( rc ) goto abort_due_to_error; 4965 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4966 }else{ 4967 assert( pC->eCurType==CURTYPE_BTREE ); 4968 assert( pC->uc.pCursor!=0 ); 4969 rc = sqlite3VdbeCursorRestore(pC); 4970 if( rc ) goto abort_due_to_error; 4971 if( pC->nullRow ){ 4972 pOut->flags = MEM_Null; 4973 break; 4974 } 4975 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4976 } 4977 pOut->u.i = v; 4978 break; 4979 } 4980 4981 /* Opcode: NullRow P1 * * * * 4982 ** 4983 ** Move the cursor P1 to a null row. Any OP_Column operations 4984 ** that occur while the cursor is on the null row will always 4985 ** write a NULL. 4986 */ 4987 case OP_NullRow: { 4988 VdbeCursor *pC; 4989 4990 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4991 pC = p->apCsr[pOp->p1]; 4992 assert( pC!=0 ); 4993 pC->nullRow = 1; 4994 pC->cacheStatus = CACHE_STALE; 4995 if( pC->eCurType==CURTYPE_BTREE ){ 4996 assert( pC->uc.pCursor!=0 ); 4997 sqlite3BtreeClearCursor(pC->uc.pCursor); 4998 } 4999 #ifdef SQLITE_DEBUG 5000 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5001 #endif 5002 break; 5003 } 5004 5005 /* Opcode: SeekEnd P1 * * * * 5006 ** 5007 ** Position cursor P1 at the end of the btree for the purpose of 5008 ** appending a new entry onto the btree. 5009 ** 5010 ** It is assumed that the cursor is used only for appending and so 5011 ** if the cursor is valid, then the cursor must already be pointing 5012 ** at the end of the btree and so no changes are made to 5013 ** the cursor. 5014 */ 5015 /* Opcode: Last P1 P2 * * * 5016 ** 5017 ** The next use of the Rowid or Column or Prev instruction for P1 5018 ** will refer to the last entry in the database table or index. 5019 ** If the table or index is empty and P2>0, then jump immediately to P2. 5020 ** If P2 is 0 or if the table or index is not empty, fall through 5021 ** to the following instruction. 5022 ** 5023 ** This opcode leaves the cursor configured to move in reverse order, 5024 ** from the end toward the beginning. In other words, the cursor is 5025 ** configured to use Prev, not Next. 5026 */ 5027 case OP_SeekEnd: 5028 case OP_Last: { /* jump */ 5029 VdbeCursor *pC; 5030 BtCursor *pCrsr; 5031 int res; 5032 5033 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5034 pC = p->apCsr[pOp->p1]; 5035 assert( pC!=0 ); 5036 assert( pC->eCurType==CURTYPE_BTREE ); 5037 pCrsr = pC->uc.pCursor; 5038 res = 0; 5039 assert( pCrsr!=0 ); 5040 #ifdef SQLITE_DEBUG 5041 pC->seekOp = pOp->opcode; 5042 #endif 5043 if( pOp->opcode==OP_SeekEnd ){ 5044 assert( pOp->p2==0 ); 5045 pC->seekResult = -1; 5046 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5047 break; 5048 } 5049 } 5050 rc = sqlite3BtreeLast(pCrsr, &res); 5051 pC->nullRow = (u8)res; 5052 pC->deferredMoveto = 0; 5053 pC->cacheStatus = CACHE_STALE; 5054 if( rc ) goto abort_due_to_error; 5055 if( pOp->p2>0 ){ 5056 VdbeBranchTaken(res!=0,2); 5057 if( res ) goto jump_to_p2; 5058 } 5059 break; 5060 } 5061 5062 /* Opcode: IfSmaller P1 P2 P3 * * 5063 ** 5064 ** Estimate the number of rows in the table P1. Jump to P2 if that 5065 ** estimate is less than approximately 2**(0.1*P3). 5066 */ 5067 case OP_IfSmaller: { /* jump */ 5068 VdbeCursor *pC; 5069 BtCursor *pCrsr; 5070 int res; 5071 i64 sz; 5072 5073 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5074 pC = p->apCsr[pOp->p1]; 5075 assert( pC!=0 ); 5076 pCrsr = pC->uc.pCursor; 5077 assert( pCrsr ); 5078 rc = sqlite3BtreeFirst(pCrsr, &res); 5079 if( rc ) goto abort_due_to_error; 5080 if( res==0 ){ 5081 sz = sqlite3BtreeRowCountEst(pCrsr); 5082 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5083 } 5084 VdbeBranchTaken(res!=0,2); 5085 if( res ) goto jump_to_p2; 5086 break; 5087 } 5088 5089 5090 /* Opcode: SorterSort P1 P2 * * * 5091 ** 5092 ** After all records have been inserted into the Sorter object 5093 ** identified by P1, invoke this opcode to actually do the sorting. 5094 ** Jump to P2 if there are no records to be sorted. 5095 ** 5096 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5097 ** for Sorter objects. 5098 */ 5099 /* Opcode: Sort P1 P2 * * * 5100 ** 5101 ** This opcode does exactly the same thing as OP_Rewind except that 5102 ** it increments an undocumented global variable used for testing. 5103 ** 5104 ** Sorting is accomplished by writing records into a sorting index, 5105 ** then rewinding that index and playing it back from beginning to 5106 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5107 ** rewinding so that the global variable will be incremented and 5108 ** regression tests can determine whether or not the optimizer is 5109 ** correctly optimizing out sorts. 5110 */ 5111 case OP_SorterSort: /* jump */ 5112 case OP_Sort: { /* jump */ 5113 #ifdef SQLITE_TEST 5114 sqlite3_sort_count++; 5115 sqlite3_search_count--; 5116 #endif 5117 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5118 /* Fall through into OP_Rewind */ 5119 } 5120 /* Opcode: Rewind P1 P2 * * P5 5121 ** 5122 ** The next use of the Rowid or Column or Next instruction for P1 5123 ** will refer to the first entry in the database table or index. 5124 ** If the table or index is empty, jump immediately to P2. 5125 ** If the table or index is not empty, fall through to the following 5126 ** instruction. 5127 ** 5128 ** If P5 is non-zero and the table is not empty, then the "skip-next" 5129 ** flag is set on the cursor so that the next OP_Next instruction 5130 ** executed on it is a no-op. 5131 ** 5132 ** This opcode leaves the cursor configured to move in forward order, 5133 ** from the beginning toward the end. In other words, the cursor is 5134 ** configured to use Next, not Prev. 5135 */ 5136 case OP_Rewind: { /* jump */ 5137 VdbeCursor *pC; 5138 BtCursor *pCrsr; 5139 int res; 5140 5141 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5142 pC = p->apCsr[pOp->p1]; 5143 assert( pC!=0 ); 5144 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5145 res = 1; 5146 #ifdef SQLITE_DEBUG 5147 pC->seekOp = OP_Rewind; 5148 #endif 5149 if( isSorter(pC) ){ 5150 rc = sqlite3VdbeSorterRewind(pC, &res); 5151 }else{ 5152 assert( pC->eCurType==CURTYPE_BTREE ); 5153 pCrsr = pC->uc.pCursor; 5154 assert( pCrsr ); 5155 rc = sqlite3BtreeFirst(pCrsr, &res); 5156 #ifndef SQLITE_OMIT_WINDOWFUNC 5157 if( pOp->p5 ) sqlite3BtreeSkipNext(pCrsr); 5158 #endif 5159 pC->deferredMoveto = 0; 5160 pC->cacheStatus = CACHE_STALE; 5161 } 5162 if( rc ) goto abort_due_to_error; 5163 pC->nullRow = (u8)res; 5164 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5165 VdbeBranchTaken(res!=0,2); 5166 if( res ) goto jump_to_p2; 5167 break; 5168 } 5169 5170 /* Opcode: Next P1 P2 P3 P4 P5 5171 ** 5172 ** Advance cursor P1 so that it points to the next key/data pair in its 5173 ** table or index. If there are no more key/value pairs then fall through 5174 ** to the following instruction. But if the cursor advance was successful, 5175 ** jump immediately to P2. 5176 ** 5177 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5178 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5179 ** to follow SeekLT, SeekLE, or OP_Last. 5180 ** 5181 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5182 ** been opened prior to this opcode or the program will segfault. 5183 ** 5184 ** The P3 value is a hint to the btree implementation. If P3==1, that 5185 ** means P1 is an SQL index and that this instruction could have been 5186 ** omitted if that index had been unique. P3 is usually 0. P3 is 5187 ** always either 0 or 1. 5188 ** 5189 ** P4 is always of type P4_ADVANCE. The function pointer points to 5190 ** sqlite3BtreeNext(). 5191 ** 5192 ** If P5 is positive and the jump is taken, then event counter 5193 ** number P5-1 in the prepared statement is incremented. 5194 ** 5195 ** See also: Prev 5196 */ 5197 /* Opcode: Prev P1 P2 P3 P4 P5 5198 ** 5199 ** Back up cursor P1 so that it points to the previous key/data pair in its 5200 ** table or index. If there is no previous key/value pairs then fall through 5201 ** to the following instruction. But if the cursor backup was successful, 5202 ** jump immediately to P2. 5203 ** 5204 ** 5205 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5206 ** OP_Last opcode used to position the cursor. Prev is not allowed 5207 ** to follow SeekGT, SeekGE, or OP_Rewind. 5208 ** 5209 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5210 ** not open then the behavior is undefined. 5211 ** 5212 ** The P3 value is a hint to the btree implementation. If P3==1, that 5213 ** means P1 is an SQL index and that this instruction could have been 5214 ** omitted if that index had been unique. P3 is usually 0. P3 is 5215 ** always either 0 or 1. 5216 ** 5217 ** P4 is always of type P4_ADVANCE. The function pointer points to 5218 ** sqlite3BtreePrevious(). 5219 ** 5220 ** If P5 is positive and the jump is taken, then event counter 5221 ** number P5-1 in the prepared statement is incremented. 5222 */ 5223 /* Opcode: SorterNext P1 P2 * * P5 5224 ** 5225 ** This opcode works just like OP_Next except that P1 must be a 5226 ** sorter object for which the OP_SorterSort opcode has been 5227 ** invoked. This opcode advances the cursor to the next sorted 5228 ** record, or jumps to P2 if there are no more sorted records. 5229 */ 5230 case OP_SorterNext: { /* jump */ 5231 VdbeCursor *pC; 5232 5233 pC = p->apCsr[pOp->p1]; 5234 assert( isSorter(pC) ); 5235 rc = sqlite3VdbeSorterNext(db, pC); 5236 goto next_tail; 5237 case OP_Prev: /* jump */ 5238 case OP_Next: /* jump */ 5239 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5240 assert( pOp->p5<ArraySize(p->aCounter) ); 5241 pC = p->apCsr[pOp->p1]; 5242 assert( pC!=0 ); 5243 assert( pC->deferredMoveto==0 ); 5244 assert( pC->eCurType==CURTYPE_BTREE ); 5245 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5246 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5247 5248 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5249 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5250 assert( pOp->opcode!=OP_Next 5251 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5252 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5253 || pC->seekOp==OP_NullRow); 5254 assert( pOp->opcode!=OP_Prev 5255 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5256 || pC->seekOp==OP_Last 5257 || pC->seekOp==OP_NullRow); 5258 5259 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5260 next_tail: 5261 pC->cacheStatus = CACHE_STALE; 5262 VdbeBranchTaken(rc==SQLITE_OK,2); 5263 if( rc==SQLITE_OK ){ 5264 pC->nullRow = 0; 5265 p->aCounter[pOp->p5]++; 5266 #ifdef SQLITE_TEST 5267 sqlite3_search_count++; 5268 #endif 5269 goto jump_to_p2_and_check_for_interrupt; 5270 } 5271 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5272 rc = SQLITE_OK; 5273 pC->nullRow = 1; 5274 goto check_for_interrupt; 5275 } 5276 5277 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5278 ** Synopsis: key=r[P2] 5279 ** 5280 ** Register P2 holds an SQL index key made using the 5281 ** MakeRecord instructions. This opcode writes that key 5282 ** into the index P1. Data for the entry is nil. 5283 ** 5284 ** If P4 is not zero, then it is the number of values in the unpacked 5285 ** key of reg(P2). In that case, P3 is the index of the first register 5286 ** for the unpacked key. The availability of the unpacked key can sometimes 5287 ** be an optimization. 5288 ** 5289 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5290 ** that this insert is likely to be an append. 5291 ** 5292 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5293 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5294 ** then the change counter is unchanged. 5295 ** 5296 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5297 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5298 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5299 ** seeks on the cursor or if the most recent seek used a key equivalent 5300 ** to P2. 5301 ** 5302 ** This instruction only works for indices. The equivalent instruction 5303 ** for tables is OP_Insert. 5304 */ 5305 /* Opcode: SorterInsert P1 P2 * * * 5306 ** Synopsis: key=r[P2] 5307 ** 5308 ** Register P2 holds an SQL index key made using the 5309 ** MakeRecord instructions. This opcode writes that key 5310 ** into the sorter P1. Data for the entry is nil. 5311 */ 5312 case OP_SorterInsert: /* in2 */ 5313 case OP_IdxInsert: { /* in2 */ 5314 VdbeCursor *pC; 5315 BtreePayload x; 5316 5317 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5318 pC = p->apCsr[pOp->p1]; 5319 sqlite3VdbeIncrWriteCounter(p, pC); 5320 assert( pC!=0 ); 5321 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5322 pIn2 = &aMem[pOp->p2]; 5323 assert( pIn2->flags & MEM_Blob ); 5324 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5325 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5326 assert( pC->isTable==0 ); 5327 rc = ExpandBlob(pIn2); 5328 if( rc ) goto abort_due_to_error; 5329 if( pOp->opcode==OP_SorterInsert ){ 5330 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5331 }else{ 5332 x.nKey = pIn2->n; 5333 x.pKey = pIn2->z; 5334 x.aMem = aMem + pOp->p3; 5335 x.nMem = (u16)pOp->p4.i; 5336 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5337 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5338 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5339 ); 5340 assert( pC->deferredMoveto==0 ); 5341 pC->cacheStatus = CACHE_STALE; 5342 } 5343 if( rc) goto abort_due_to_error; 5344 break; 5345 } 5346 5347 /* Opcode: IdxDelete P1 P2 P3 * * 5348 ** Synopsis: key=r[P2@P3] 5349 ** 5350 ** The content of P3 registers starting at register P2 form 5351 ** an unpacked index key. This opcode removes that entry from the 5352 ** index opened by cursor P1. 5353 */ 5354 case OP_IdxDelete: { 5355 VdbeCursor *pC; 5356 BtCursor *pCrsr; 5357 int res; 5358 UnpackedRecord r; 5359 5360 assert( pOp->p3>0 ); 5361 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5362 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5363 pC = p->apCsr[pOp->p1]; 5364 assert( pC!=0 ); 5365 assert( pC->eCurType==CURTYPE_BTREE ); 5366 sqlite3VdbeIncrWriteCounter(p, pC); 5367 pCrsr = pC->uc.pCursor; 5368 assert( pCrsr!=0 ); 5369 assert( pOp->p5==0 ); 5370 r.pKeyInfo = pC->pKeyInfo; 5371 r.nField = (u16)pOp->p3; 5372 r.default_rc = 0; 5373 r.aMem = &aMem[pOp->p2]; 5374 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5375 if( rc ) goto abort_due_to_error; 5376 if( res==0 ){ 5377 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5378 if( rc ) goto abort_due_to_error; 5379 } 5380 assert( pC->deferredMoveto==0 ); 5381 pC->cacheStatus = CACHE_STALE; 5382 pC->seekResult = 0; 5383 break; 5384 } 5385 5386 /* Opcode: DeferredSeek P1 * P3 P4 * 5387 ** Synopsis: Move P3 to P1.rowid if needed 5388 ** 5389 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5390 ** table. This opcode does a deferred seek of the P3 table cursor 5391 ** to the row that corresponds to the current row of P1. 5392 ** 5393 ** This is a deferred seek. Nothing actually happens until 5394 ** the cursor is used to read a record. That way, if no reads 5395 ** occur, no unnecessary I/O happens. 5396 ** 5397 ** P4 may be an array of integers (type P4_INTARRAY) containing 5398 ** one entry for each column in the P3 table. If array entry a(i) 5399 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5400 ** equivalent to performing the deferred seek and then reading column i 5401 ** from P1. This information is stored in P3 and used to redirect 5402 ** reads against P3 over to P1, thus possibly avoiding the need to 5403 ** seek and read cursor P3. 5404 */ 5405 /* Opcode: IdxRowid P1 P2 * * * 5406 ** Synopsis: r[P2]=rowid 5407 ** 5408 ** Write into register P2 an integer which is the last entry in the record at 5409 ** the end of the index key pointed to by cursor P1. This integer should be 5410 ** the rowid of the table entry to which this index entry points. 5411 ** 5412 ** See also: Rowid, MakeRecord. 5413 */ 5414 case OP_DeferredSeek: 5415 case OP_IdxRowid: { /* out2 */ 5416 VdbeCursor *pC; /* The P1 index cursor */ 5417 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5418 i64 rowid; /* Rowid that P1 current points to */ 5419 5420 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5421 pC = p->apCsr[pOp->p1]; 5422 assert( pC!=0 ); 5423 assert( pC->eCurType==CURTYPE_BTREE ); 5424 assert( pC->uc.pCursor!=0 ); 5425 assert( pC->isTable==0 ); 5426 assert( pC->deferredMoveto==0 ); 5427 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5428 5429 /* The IdxRowid and Seek opcodes are combined because of the commonality 5430 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5431 rc = sqlite3VdbeCursorRestore(pC); 5432 5433 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5434 ** out from under the cursor. That will never happens for an IdxRowid 5435 ** or Seek opcode */ 5436 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5437 5438 if( !pC->nullRow ){ 5439 rowid = 0; /* Not needed. Only used to silence a warning. */ 5440 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5441 if( rc!=SQLITE_OK ){ 5442 goto abort_due_to_error; 5443 } 5444 if( pOp->opcode==OP_DeferredSeek ){ 5445 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5446 pTabCur = p->apCsr[pOp->p3]; 5447 assert( pTabCur!=0 ); 5448 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5449 assert( pTabCur->uc.pCursor!=0 ); 5450 assert( pTabCur->isTable ); 5451 pTabCur->nullRow = 0; 5452 pTabCur->movetoTarget = rowid; 5453 pTabCur->deferredMoveto = 1; 5454 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5455 pTabCur->aAltMap = pOp->p4.ai; 5456 pTabCur->pAltCursor = pC; 5457 }else{ 5458 pOut = out2Prerelease(p, pOp); 5459 pOut->u.i = rowid; 5460 } 5461 }else{ 5462 assert( pOp->opcode==OP_IdxRowid ); 5463 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5464 } 5465 break; 5466 } 5467 5468 /* Opcode: IdxGE P1 P2 P3 P4 P5 5469 ** Synopsis: key=r[P3@P4] 5470 ** 5471 ** The P4 register values beginning with P3 form an unpacked index 5472 ** key that omits the PRIMARY KEY. Compare this key value against the index 5473 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5474 ** fields at the end. 5475 ** 5476 ** If the P1 index entry is greater than or equal to the key value 5477 ** then jump to P2. Otherwise fall through to the next instruction. 5478 */ 5479 /* Opcode: IdxGT P1 P2 P3 P4 P5 5480 ** Synopsis: key=r[P3@P4] 5481 ** 5482 ** The P4 register values beginning with P3 form an unpacked index 5483 ** key that omits the PRIMARY KEY. Compare this key value against the index 5484 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5485 ** fields at the end. 5486 ** 5487 ** If the P1 index entry is greater than the key value 5488 ** then jump to P2. Otherwise fall through to the next instruction. 5489 */ 5490 /* Opcode: IdxLT P1 P2 P3 P4 P5 5491 ** Synopsis: key=r[P3@P4] 5492 ** 5493 ** The P4 register values beginning with P3 form an unpacked index 5494 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5495 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5496 ** ROWID on the P1 index. 5497 ** 5498 ** If the P1 index entry is less than the key value then jump to P2. 5499 ** Otherwise fall through to the next instruction. 5500 */ 5501 /* Opcode: IdxLE P1 P2 P3 P4 P5 5502 ** Synopsis: key=r[P3@P4] 5503 ** 5504 ** The P4 register values beginning with P3 form an unpacked index 5505 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5506 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5507 ** ROWID on the P1 index. 5508 ** 5509 ** If the P1 index entry is less than or equal to the key value then jump 5510 ** to P2. Otherwise fall through to the next instruction. 5511 */ 5512 case OP_IdxLE: /* jump */ 5513 case OP_IdxGT: /* jump */ 5514 case OP_IdxLT: /* jump */ 5515 case OP_IdxGE: { /* jump */ 5516 VdbeCursor *pC; 5517 int res; 5518 UnpackedRecord r; 5519 5520 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5521 pC = p->apCsr[pOp->p1]; 5522 assert( pC!=0 ); 5523 assert( pC->isOrdered ); 5524 assert( pC->eCurType==CURTYPE_BTREE ); 5525 assert( pC->uc.pCursor!=0); 5526 assert( pC->deferredMoveto==0 ); 5527 assert( pOp->p5==0 || pOp->p5==1 ); 5528 assert( pOp->p4type==P4_INT32 ); 5529 r.pKeyInfo = pC->pKeyInfo; 5530 r.nField = (u16)pOp->p4.i; 5531 if( pOp->opcode<OP_IdxLT ){ 5532 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5533 r.default_rc = -1; 5534 }else{ 5535 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5536 r.default_rc = 0; 5537 } 5538 r.aMem = &aMem[pOp->p3]; 5539 #ifdef SQLITE_DEBUG 5540 { 5541 int i; 5542 for(i=0; i<r.nField; i++){ 5543 assert( memIsValid(&r.aMem[i]) ); 5544 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 5545 } 5546 } 5547 #endif 5548 res = 0; /* Not needed. Only used to silence a warning. */ 5549 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5550 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5551 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5552 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5553 res = -res; 5554 }else{ 5555 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5556 res++; 5557 } 5558 VdbeBranchTaken(res>0,2); 5559 if( rc ) goto abort_due_to_error; 5560 if( res>0 ) goto jump_to_p2; 5561 break; 5562 } 5563 5564 /* Opcode: Destroy P1 P2 P3 * * 5565 ** 5566 ** Delete an entire database table or index whose root page in the database 5567 ** file is given by P1. 5568 ** 5569 ** The table being destroyed is in the main database file if P3==0. If 5570 ** P3==1 then the table to be clear is in the auxiliary database file 5571 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5572 ** 5573 ** If AUTOVACUUM is enabled then it is possible that another root page 5574 ** might be moved into the newly deleted root page in order to keep all 5575 ** root pages contiguous at the beginning of the database. The former 5576 ** value of the root page that moved - its value before the move occurred - 5577 ** is stored in register P2. If no page movement was required (because the 5578 ** table being dropped was already the last one in the database) then a 5579 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5580 ** is stored in register P2. 5581 ** 5582 ** This opcode throws an error if there are any active reader VMs when 5583 ** it is invoked. This is done to avoid the difficulty associated with 5584 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5585 ** database. This error is thrown even if the database is not an AUTOVACUUM 5586 ** db in order to avoid introducing an incompatibility between autovacuum 5587 ** and non-autovacuum modes. 5588 ** 5589 ** See also: Clear 5590 */ 5591 case OP_Destroy: { /* out2 */ 5592 int iMoved; 5593 int iDb; 5594 5595 sqlite3VdbeIncrWriteCounter(p, 0); 5596 assert( p->readOnly==0 ); 5597 assert( pOp->p1>1 ); 5598 pOut = out2Prerelease(p, pOp); 5599 pOut->flags = MEM_Null; 5600 if( db->nVdbeRead > db->nVDestroy+1 ){ 5601 rc = SQLITE_LOCKED; 5602 p->errorAction = OE_Abort; 5603 goto abort_due_to_error; 5604 }else{ 5605 iDb = pOp->p3; 5606 assert( DbMaskTest(p->btreeMask, iDb) ); 5607 iMoved = 0; /* Not needed. Only to silence a warning. */ 5608 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5609 pOut->flags = MEM_Int; 5610 pOut->u.i = iMoved; 5611 if( rc ) goto abort_due_to_error; 5612 #ifndef SQLITE_OMIT_AUTOVACUUM 5613 if( iMoved!=0 ){ 5614 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5615 /* All OP_Destroy operations occur on the same btree */ 5616 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5617 resetSchemaOnFault = iDb+1; 5618 } 5619 #endif 5620 } 5621 break; 5622 } 5623 5624 /* Opcode: Clear P1 P2 P3 5625 ** 5626 ** Delete all contents of the database table or index whose root page 5627 ** in the database file is given by P1. But, unlike Destroy, do not 5628 ** remove the table or index from the database file. 5629 ** 5630 ** The table being clear is in the main database file if P2==0. If 5631 ** P2==1 then the table to be clear is in the auxiliary database file 5632 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5633 ** 5634 ** If the P3 value is non-zero, then the table referred to must be an 5635 ** intkey table (an SQL table, not an index). In this case the row change 5636 ** count is incremented by the number of rows in the table being cleared. 5637 ** If P3 is greater than zero, then the value stored in register P3 is 5638 ** also incremented by the number of rows in the table being cleared. 5639 ** 5640 ** See also: Destroy 5641 */ 5642 case OP_Clear: { 5643 int nChange; 5644 5645 sqlite3VdbeIncrWriteCounter(p, 0); 5646 nChange = 0; 5647 assert( p->readOnly==0 ); 5648 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5649 rc = sqlite3BtreeClearTable( 5650 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5651 ); 5652 if( pOp->p3 ){ 5653 p->nChange += nChange; 5654 if( pOp->p3>0 ){ 5655 assert( memIsValid(&aMem[pOp->p3]) ); 5656 memAboutToChange(p, &aMem[pOp->p3]); 5657 aMem[pOp->p3].u.i += nChange; 5658 } 5659 } 5660 if( rc ) goto abort_due_to_error; 5661 break; 5662 } 5663 5664 /* Opcode: ResetSorter P1 * * * * 5665 ** 5666 ** Delete all contents from the ephemeral table or sorter 5667 ** that is open on cursor P1. 5668 ** 5669 ** This opcode only works for cursors used for sorting and 5670 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5671 */ 5672 case OP_ResetSorter: { 5673 VdbeCursor *pC; 5674 5675 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5676 pC = p->apCsr[pOp->p1]; 5677 assert( pC!=0 ); 5678 if( isSorter(pC) ){ 5679 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5680 }else{ 5681 assert( pC->eCurType==CURTYPE_BTREE ); 5682 assert( pC->isEphemeral ); 5683 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5684 if( rc ) goto abort_due_to_error; 5685 } 5686 break; 5687 } 5688 5689 /* Opcode: CreateBtree P1 P2 P3 * * 5690 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5691 ** 5692 ** Allocate a new b-tree in the main database file if P1==0 or in the 5693 ** TEMP database file if P1==1 or in an attached database if 5694 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5695 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 5696 ** The root page number of the new b-tree is stored in register P2. 5697 */ 5698 case OP_CreateBtree: { /* out2 */ 5699 int pgno; 5700 Db *pDb; 5701 5702 sqlite3VdbeIncrWriteCounter(p, 0); 5703 pOut = out2Prerelease(p, pOp); 5704 pgno = 0; 5705 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5706 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5707 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5708 assert( p->readOnly==0 ); 5709 pDb = &db->aDb[pOp->p1]; 5710 assert( pDb->pBt!=0 ); 5711 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5712 if( rc ) goto abort_due_to_error; 5713 pOut->u.i = pgno; 5714 break; 5715 } 5716 5717 /* Opcode: SqlExec * * * P4 * 5718 ** 5719 ** Run the SQL statement or statements specified in the P4 string. 5720 */ 5721 case OP_SqlExec: { 5722 sqlite3VdbeIncrWriteCounter(p, 0); 5723 db->nSqlExec++; 5724 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5725 db->nSqlExec--; 5726 if( rc ) goto abort_due_to_error; 5727 break; 5728 } 5729 5730 /* Opcode: ParseSchema P1 * * P4 * 5731 ** 5732 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5733 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 5734 ** entire schema for P1 is reparsed. 5735 ** 5736 ** This opcode invokes the parser to create a new virtual machine, 5737 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5738 */ 5739 case OP_ParseSchema: { 5740 int iDb; 5741 const char *zMaster; 5742 char *zSql; 5743 InitData initData; 5744 5745 /* Any prepared statement that invokes this opcode will hold mutexes 5746 ** on every btree. This is a prerequisite for invoking 5747 ** sqlite3InitCallback(). 5748 */ 5749 #ifdef SQLITE_DEBUG 5750 for(iDb=0; iDb<db->nDb; iDb++){ 5751 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5752 } 5753 #endif 5754 5755 iDb = pOp->p1; 5756 assert( iDb>=0 && iDb<db->nDb ); 5757 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5758 5759 #ifndef SQLITE_OMIT_ALTERTABLE 5760 if( pOp->p4.z==0 ){ 5761 sqlite3SchemaClear(db->aDb[iDb].pSchema); 5762 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 5763 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable); 5764 db->mDbFlags |= DBFLAG_SchemaChange; 5765 p->expired = 0; 5766 }else 5767 #endif 5768 { 5769 zMaster = MASTER_NAME; 5770 initData.db = db; 5771 initData.iDb = iDb; 5772 initData.pzErrMsg = &p->zErrMsg; 5773 initData.mInitFlags = 0; 5774 zSql = sqlite3MPrintf(db, 5775 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5776 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5777 if( zSql==0 ){ 5778 rc = SQLITE_NOMEM_BKPT; 5779 }else{ 5780 assert( db->init.busy==0 ); 5781 db->init.busy = 1; 5782 initData.rc = SQLITE_OK; 5783 assert( !db->mallocFailed ); 5784 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5785 if( rc==SQLITE_OK ) rc = initData.rc; 5786 sqlite3DbFreeNN(db, zSql); 5787 db->init.busy = 0; 5788 } 5789 } 5790 if( rc ){ 5791 sqlite3ResetAllSchemasOfConnection(db); 5792 if( rc==SQLITE_NOMEM ){ 5793 goto no_mem; 5794 } 5795 goto abort_due_to_error; 5796 } 5797 break; 5798 } 5799 5800 #if !defined(SQLITE_OMIT_ANALYZE) 5801 /* Opcode: LoadAnalysis P1 * * * * 5802 ** 5803 ** Read the sqlite_stat1 table for database P1 and load the content 5804 ** of that table into the internal index hash table. This will cause 5805 ** the analysis to be used when preparing all subsequent queries. 5806 */ 5807 case OP_LoadAnalysis: { 5808 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5809 rc = sqlite3AnalysisLoad(db, pOp->p1); 5810 if( rc ) goto abort_due_to_error; 5811 break; 5812 } 5813 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5814 5815 /* Opcode: DropTable P1 * * P4 * 5816 ** 5817 ** Remove the internal (in-memory) data structures that describe 5818 ** the table named P4 in database P1. This is called after a table 5819 ** is dropped from disk (using the Destroy opcode) in order to keep 5820 ** the internal representation of the 5821 ** schema consistent with what is on disk. 5822 */ 5823 case OP_DropTable: { 5824 sqlite3VdbeIncrWriteCounter(p, 0); 5825 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5826 break; 5827 } 5828 5829 /* Opcode: DropIndex P1 * * P4 * 5830 ** 5831 ** Remove the internal (in-memory) data structures that describe 5832 ** the index named P4 in database P1. This is called after an index 5833 ** is dropped from disk (using the Destroy opcode) 5834 ** in order to keep the internal representation of the 5835 ** schema consistent with what is on disk. 5836 */ 5837 case OP_DropIndex: { 5838 sqlite3VdbeIncrWriteCounter(p, 0); 5839 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5840 break; 5841 } 5842 5843 /* Opcode: DropTrigger P1 * * P4 * 5844 ** 5845 ** Remove the internal (in-memory) data structures that describe 5846 ** the trigger named P4 in database P1. This is called after a trigger 5847 ** is dropped from disk (using the Destroy opcode) in order to keep 5848 ** the internal representation of the 5849 ** schema consistent with what is on disk. 5850 */ 5851 case OP_DropTrigger: { 5852 sqlite3VdbeIncrWriteCounter(p, 0); 5853 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5854 break; 5855 } 5856 5857 5858 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5859 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5860 ** 5861 ** Do an analysis of the currently open database. Store in 5862 ** register P1 the text of an error message describing any problems. 5863 ** If no problems are found, store a NULL in register P1. 5864 ** 5865 ** The register P3 contains one less than the maximum number of allowed errors. 5866 ** At most reg(P3) errors will be reported. 5867 ** In other words, the analysis stops as soon as reg(P1) errors are 5868 ** seen. Reg(P1) is updated with the number of errors remaining. 5869 ** 5870 ** The root page numbers of all tables in the database are integers 5871 ** stored in P4_INTARRAY argument. 5872 ** 5873 ** If P5 is not zero, the check is done on the auxiliary database 5874 ** file, not the main database file. 5875 ** 5876 ** This opcode is used to implement the integrity_check pragma. 5877 */ 5878 case OP_IntegrityCk: { 5879 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5880 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5881 int nErr; /* Number of errors reported */ 5882 char *z; /* Text of the error report */ 5883 Mem *pnErr; /* Register keeping track of errors remaining */ 5884 5885 assert( p->bIsReader ); 5886 nRoot = pOp->p2; 5887 aRoot = pOp->p4.ai; 5888 assert( nRoot>0 ); 5889 assert( aRoot[0]==nRoot ); 5890 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5891 pnErr = &aMem[pOp->p3]; 5892 assert( (pnErr->flags & MEM_Int)!=0 ); 5893 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5894 pIn1 = &aMem[pOp->p1]; 5895 assert( pOp->p5<db->nDb ); 5896 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5897 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 5898 (int)pnErr->u.i+1, &nErr); 5899 sqlite3VdbeMemSetNull(pIn1); 5900 if( nErr==0 ){ 5901 assert( z==0 ); 5902 }else if( z==0 ){ 5903 goto no_mem; 5904 }else{ 5905 pnErr->u.i -= nErr-1; 5906 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5907 } 5908 UPDATE_MAX_BLOBSIZE(pIn1); 5909 sqlite3VdbeChangeEncoding(pIn1, encoding); 5910 break; 5911 } 5912 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5913 5914 /* Opcode: RowSetAdd P1 P2 * * * 5915 ** Synopsis: rowset(P1)=r[P2] 5916 ** 5917 ** Insert the integer value held by register P2 into a RowSet object 5918 ** held in register P1. 5919 ** 5920 ** An assertion fails if P2 is not an integer. 5921 */ 5922 case OP_RowSetAdd: { /* in1, in2 */ 5923 pIn1 = &aMem[pOp->p1]; 5924 pIn2 = &aMem[pOp->p2]; 5925 assert( (pIn2->flags & MEM_Int)!=0 ); 5926 if( (pIn1->flags & MEM_Blob)==0 ){ 5927 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 5928 } 5929 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 5930 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 5931 break; 5932 } 5933 5934 /* Opcode: RowSetRead P1 P2 P3 * * 5935 ** Synopsis: r[P3]=rowset(P1) 5936 ** 5937 ** Extract the smallest value from the RowSet object in P1 5938 ** and put that value into register P3. 5939 ** Or, if RowSet object P1 is initially empty, leave P3 5940 ** unchanged and jump to instruction P2. 5941 */ 5942 case OP_RowSetRead: { /* jump, in1, out3 */ 5943 i64 val; 5944 5945 pIn1 = &aMem[pOp->p1]; 5946 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 5947 if( (pIn1->flags & MEM_Blob)==0 5948 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 5949 ){ 5950 /* The boolean index is empty */ 5951 sqlite3VdbeMemSetNull(pIn1); 5952 VdbeBranchTaken(1,2); 5953 goto jump_to_p2_and_check_for_interrupt; 5954 }else{ 5955 /* A value was pulled from the index */ 5956 VdbeBranchTaken(0,2); 5957 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5958 } 5959 goto check_for_interrupt; 5960 } 5961 5962 /* Opcode: RowSetTest P1 P2 P3 P4 5963 ** Synopsis: if r[P3] in rowset(P1) goto P2 5964 ** 5965 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5966 ** contains a RowSet object and that RowSet object contains 5967 ** the value held in P3, jump to register P2. Otherwise, insert the 5968 ** integer in P3 into the RowSet and continue on to the 5969 ** next opcode. 5970 ** 5971 ** The RowSet object is optimized for the case where sets of integers 5972 ** are inserted in distinct phases, which each set contains no duplicates. 5973 ** Each set is identified by a unique P4 value. The first set 5974 ** must have P4==0, the final set must have P4==-1, and for all other sets 5975 ** must have P4>0. 5976 ** 5977 ** This allows optimizations: (a) when P4==0 there is no need to test 5978 ** the RowSet object for P3, as it is guaranteed not to contain it, 5979 ** (b) when P4==-1 there is no need to insert the value, as it will 5980 ** never be tested for, and (c) when a value that is part of set X is 5981 ** inserted, there is no need to search to see if the same value was 5982 ** previously inserted as part of set X (only if it was previously 5983 ** inserted as part of some other set). 5984 */ 5985 case OP_RowSetTest: { /* jump, in1, in3 */ 5986 int iSet; 5987 int exists; 5988 5989 pIn1 = &aMem[pOp->p1]; 5990 pIn3 = &aMem[pOp->p3]; 5991 iSet = pOp->p4.i; 5992 assert( pIn3->flags&MEM_Int ); 5993 5994 /* If there is anything other than a rowset object in memory cell P1, 5995 ** delete it now and initialize P1 with an empty rowset 5996 */ 5997 if( (pIn1->flags & MEM_Blob)==0 ){ 5998 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 5999 } 6000 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6001 assert( pOp->p4type==P4_INT32 ); 6002 assert( iSet==-1 || iSet>=0 ); 6003 if( iSet ){ 6004 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6005 VdbeBranchTaken(exists!=0,2); 6006 if( exists ) goto jump_to_p2; 6007 } 6008 if( iSet>=0 ){ 6009 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6010 } 6011 break; 6012 } 6013 6014 6015 #ifndef SQLITE_OMIT_TRIGGER 6016 6017 /* Opcode: Program P1 P2 P3 P4 P5 6018 ** 6019 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6020 ** 6021 ** P1 contains the address of the memory cell that contains the first memory 6022 ** cell in an array of values used as arguments to the sub-program. P2 6023 ** contains the address to jump to if the sub-program throws an IGNORE 6024 ** exception using the RAISE() function. Register P3 contains the address 6025 ** of a memory cell in this (the parent) VM that is used to allocate the 6026 ** memory required by the sub-vdbe at runtime. 6027 ** 6028 ** P4 is a pointer to the VM containing the trigger program. 6029 ** 6030 ** If P5 is non-zero, then recursive program invocation is enabled. 6031 */ 6032 case OP_Program: { /* jump */ 6033 int nMem; /* Number of memory registers for sub-program */ 6034 int nByte; /* Bytes of runtime space required for sub-program */ 6035 Mem *pRt; /* Register to allocate runtime space */ 6036 Mem *pMem; /* Used to iterate through memory cells */ 6037 Mem *pEnd; /* Last memory cell in new array */ 6038 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6039 SubProgram *pProgram; /* Sub-program to execute */ 6040 void *t; /* Token identifying trigger */ 6041 6042 pProgram = pOp->p4.pProgram; 6043 pRt = &aMem[pOp->p3]; 6044 assert( pProgram->nOp>0 ); 6045 6046 /* If the p5 flag is clear, then recursive invocation of triggers is 6047 ** disabled for backwards compatibility (p5 is set if this sub-program 6048 ** is really a trigger, not a foreign key action, and the flag set 6049 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6050 ** 6051 ** It is recursive invocation of triggers, at the SQL level, that is 6052 ** disabled. In some cases a single trigger may generate more than one 6053 ** SubProgram (if the trigger may be executed with more than one different 6054 ** ON CONFLICT algorithm). SubProgram structures associated with a 6055 ** single trigger all have the same value for the SubProgram.token 6056 ** variable. */ 6057 if( pOp->p5 ){ 6058 t = pProgram->token; 6059 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6060 if( pFrame ) break; 6061 } 6062 6063 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6064 rc = SQLITE_ERROR; 6065 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6066 goto abort_due_to_error; 6067 } 6068 6069 /* Register pRt is used to store the memory required to save the state 6070 ** of the current program, and the memory required at runtime to execute 6071 ** the trigger program. If this trigger has been fired before, then pRt 6072 ** is already allocated. Otherwise, it must be initialized. */ 6073 if( (pRt->flags&MEM_Blob)==0 ){ 6074 /* SubProgram.nMem is set to the number of memory cells used by the 6075 ** program stored in SubProgram.aOp. As well as these, one memory 6076 ** cell is required for each cursor used by the program. Set local 6077 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6078 */ 6079 nMem = pProgram->nMem + pProgram->nCsr; 6080 assert( nMem>0 ); 6081 if( pProgram->nCsr==0 ) nMem++; 6082 nByte = ROUND8(sizeof(VdbeFrame)) 6083 + nMem * sizeof(Mem) 6084 + pProgram->nCsr * sizeof(VdbeCursor*) 6085 + (pProgram->nOp + 7)/8; 6086 pFrame = sqlite3DbMallocZero(db, nByte); 6087 if( !pFrame ){ 6088 goto no_mem; 6089 } 6090 sqlite3VdbeMemRelease(pRt); 6091 pRt->flags = MEM_Blob|MEM_Dyn; 6092 pRt->z = (char*)pFrame; 6093 pRt->n = nByte; 6094 pRt->xDel = sqlite3VdbeFrameMemDel; 6095 6096 pFrame->v = p; 6097 pFrame->nChildMem = nMem; 6098 pFrame->nChildCsr = pProgram->nCsr; 6099 pFrame->pc = (int)(pOp - aOp); 6100 pFrame->aMem = p->aMem; 6101 pFrame->nMem = p->nMem; 6102 pFrame->apCsr = p->apCsr; 6103 pFrame->nCursor = p->nCursor; 6104 pFrame->aOp = p->aOp; 6105 pFrame->nOp = p->nOp; 6106 pFrame->token = pProgram->token; 6107 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6108 pFrame->anExec = p->anExec; 6109 #endif 6110 #ifdef SQLITE_DEBUG 6111 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6112 #endif 6113 6114 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6115 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6116 pMem->flags = MEM_Undefined; 6117 pMem->db = db; 6118 } 6119 }else{ 6120 pFrame = (VdbeFrame*)pRt->z; 6121 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6122 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6123 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6124 assert( pProgram->nCsr==pFrame->nChildCsr ); 6125 assert( (int)(pOp - aOp)==pFrame->pc ); 6126 } 6127 6128 p->nFrame++; 6129 pFrame->pParent = p->pFrame; 6130 pFrame->lastRowid = db->lastRowid; 6131 pFrame->nChange = p->nChange; 6132 pFrame->nDbChange = p->db->nChange; 6133 assert( pFrame->pAuxData==0 ); 6134 pFrame->pAuxData = p->pAuxData; 6135 p->pAuxData = 0; 6136 p->nChange = 0; 6137 p->pFrame = pFrame; 6138 p->aMem = aMem = VdbeFrameMem(pFrame); 6139 p->nMem = pFrame->nChildMem; 6140 p->nCursor = (u16)pFrame->nChildCsr; 6141 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6142 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6143 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6144 p->aOp = aOp = pProgram->aOp; 6145 p->nOp = pProgram->nOp; 6146 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6147 p->anExec = 0; 6148 #endif 6149 pOp = &aOp[-1]; 6150 6151 break; 6152 } 6153 6154 /* Opcode: Param P1 P2 * * * 6155 ** 6156 ** This opcode is only ever present in sub-programs called via the 6157 ** OP_Program instruction. Copy a value currently stored in a memory 6158 ** cell of the calling (parent) frame to cell P2 in the current frames 6159 ** address space. This is used by trigger programs to access the new.* 6160 ** and old.* values. 6161 ** 6162 ** The address of the cell in the parent frame is determined by adding 6163 ** the value of the P1 argument to the value of the P1 argument to the 6164 ** calling OP_Program instruction. 6165 */ 6166 case OP_Param: { /* out2 */ 6167 VdbeFrame *pFrame; 6168 Mem *pIn; 6169 pOut = out2Prerelease(p, pOp); 6170 pFrame = p->pFrame; 6171 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6172 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6173 break; 6174 } 6175 6176 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6177 6178 #ifndef SQLITE_OMIT_FOREIGN_KEY 6179 /* Opcode: FkCounter P1 P2 * * * 6180 ** Synopsis: fkctr[P1]+=P2 6181 ** 6182 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6183 ** If P1 is non-zero, the database constraint counter is incremented 6184 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6185 ** statement counter is incremented (immediate foreign key constraints). 6186 */ 6187 case OP_FkCounter: { 6188 if( db->flags & SQLITE_DeferFKs ){ 6189 db->nDeferredImmCons += pOp->p2; 6190 }else if( pOp->p1 ){ 6191 db->nDeferredCons += pOp->p2; 6192 }else{ 6193 p->nFkConstraint += pOp->p2; 6194 } 6195 break; 6196 } 6197 6198 /* Opcode: FkIfZero P1 P2 * * * 6199 ** Synopsis: if fkctr[P1]==0 goto P2 6200 ** 6201 ** This opcode tests if a foreign key constraint-counter is currently zero. 6202 ** If so, jump to instruction P2. Otherwise, fall through to the next 6203 ** instruction. 6204 ** 6205 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6206 ** is zero (the one that counts deferred constraint violations). If P1 is 6207 ** zero, the jump is taken if the statement constraint-counter is zero 6208 ** (immediate foreign key constraint violations). 6209 */ 6210 case OP_FkIfZero: { /* jump */ 6211 if( pOp->p1 ){ 6212 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6213 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6214 }else{ 6215 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6216 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6217 } 6218 break; 6219 } 6220 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6221 6222 #ifndef SQLITE_OMIT_AUTOINCREMENT 6223 /* Opcode: MemMax P1 P2 * * * 6224 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6225 ** 6226 ** P1 is a register in the root frame of this VM (the root frame is 6227 ** different from the current frame if this instruction is being executed 6228 ** within a sub-program). Set the value of register P1 to the maximum of 6229 ** its current value and the value in register P2. 6230 ** 6231 ** This instruction throws an error if the memory cell is not initially 6232 ** an integer. 6233 */ 6234 case OP_MemMax: { /* in2 */ 6235 VdbeFrame *pFrame; 6236 if( p->pFrame ){ 6237 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6238 pIn1 = &pFrame->aMem[pOp->p1]; 6239 }else{ 6240 pIn1 = &aMem[pOp->p1]; 6241 } 6242 assert( memIsValid(pIn1) ); 6243 sqlite3VdbeMemIntegerify(pIn1); 6244 pIn2 = &aMem[pOp->p2]; 6245 sqlite3VdbeMemIntegerify(pIn2); 6246 if( pIn1->u.i<pIn2->u.i){ 6247 pIn1->u.i = pIn2->u.i; 6248 } 6249 break; 6250 } 6251 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6252 6253 /* Opcode: IfPos P1 P2 P3 * * 6254 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6255 ** 6256 ** Register P1 must contain an integer. 6257 ** If the value of register P1 is 1 or greater, subtract P3 from the 6258 ** value in P1 and jump to P2. 6259 ** 6260 ** If the initial value of register P1 is less than 1, then the 6261 ** value is unchanged and control passes through to the next instruction. 6262 */ 6263 case OP_IfPos: { /* jump, in1 */ 6264 pIn1 = &aMem[pOp->p1]; 6265 assert( pIn1->flags&MEM_Int ); 6266 VdbeBranchTaken( pIn1->u.i>0, 2); 6267 if( pIn1->u.i>0 ){ 6268 pIn1->u.i -= pOp->p3; 6269 goto jump_to_p2; 6270 } 6271 break; 6272 } 6273 6274 /* Opcode: OffsetLimit P1 P2 P3 * * 6275 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6276 ** 6277 ** This opcode performs a commonly used computation associated with 6278 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6279 ** holds the offset counter. The opcode computes the combined value 6280 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6281 ** value computed is the total number of rows that will need to be 6282 ** visited in order to complete the query. 6283 ** 6284 ** If r[P3] is zero or negative, that means there is no OFFSET 6285 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6286 ** 6287 ** if r[P1] is zero or negative, that means there is no LIMIT 6288 ** and r[P2] is set to -1. 6289 ** 6290 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6291 */ 6292 case OP_OffsetLimit: { /* in1, out2, in3 */ 6293 i64 x; 6294 pIn1 = &aMem[pOp->p1]; 6295 pIn3 = &aMem[pOp->p3]; 6296 pOut = out2Prerelease(p, pOp); 6297 assert( pIn1->flags & MEM_Int ); 6298 assert( pIn3->flags & MEM_Int ); 6299 x = pIn1->u.i; 6300 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6301 /* If the LIMIT is less than or equal to zero, loop forever. This 6302 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6303 ** also loop forever. This is undocumented. In fact, one could argue 6304 ** that the loop should terminate. But assuming 1 billion iterations 6305 ** per second (far exceeding the capabilities of any current hardware) 6306 ** it would take nearly 300 years to actually reach the limit. So 6307 ** looping forever is a reasonable approximation. */ 6308 pOut->u.i = -1; 6309 }else{ 6310 pOut->u.i = x; 6311 } 6312 break; 6313 } 6314 6315 /* Opcode: IfNotZero P1 P2 * * * 6316 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6317 ** 6318 ** Register P1 must contain an integer. If the content of register P1 is 6319 ** initially greater than zero, then decrement the value in register P1. 6320 ** If it is non-zero (negative or positive) and then also jump to P2. 6321 ** If register P1 is initially zero, leave it unchanged and fall through. 6322 */ 6323 case OP_IfNotZero: { /* jump, in1 */ 6324 pIn1 = &aMem[pOp->p1]; 6325 assert( pIn1->flags&MEM_Int ); 6326 VdbeBranchTaken(pIn1->u.i<0, 2); 6327 if( pIn1->u.i ){ 6328 if( pIn1->u.i>0 ) pIn1->u.i--; 6329 goto jump_to_p2; 6330 } 6331 break; 6332 } 6333 6334 /* Opcode: DecrJumpZero P1 P2 * * * 6335 ** Synopsis: if (--r[P1])==0 goto P2 6336 ** 6337 ** Register P1 must hold an integer. Decrement the value in P1 6338 ** and jump to P2 if the new value is exactly zero. 6339 */ 6340 case OP_DecrJumpZero: { /* jump, in1 */ 6341 pIn1 = &aMem[pOp->p1]; 6342 assert( pIn1->flags&MEM_Int ); 6343 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6344 VdbeBranchTaken(pIn1->u.i==0, 2); 6345 if( pIn1->u.i==0 ) goto jump_to_p2; 6346 break; 6347 } 6348 6349 6350 /* Opcode: AggStep * P2 P3 P4 P5 6351 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6352 ** 6353 ** Execute the xStep function for an aggregate. 6354 ** The function has P5 arguments. P4 is a pointer to the 6355 ** FuncDef structure that specifies the function. Register P3 is the 6356 ** accumulator. 6357 ** 6358 ** The P5 arguments are taken from register P2 and its 6359 ** successors. 6360 */ 6361 /* Opcode: AggInverse * P2 P3 P4 P5 6362 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6363 ** 6364 ** Execute the xInverse function for an aggregate. 6365 ** The function has P5 arguments. P4 is a pointer to the 6366 ** FuncDef structure that specifies the function. Register P3 is the 6367 ** accumulator. 6368 ** 6369 ** The P5 arguments are taken from register P2 and its 6370 ** successors. 6371 */ 6372 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6373 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6374 ** 6375 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6376 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6377 ** FuncDef structure that specifies the function. Register P3 is the 6378 ** accumulator. 6379 ** 6380 ** The P5 arguments are taken from register P2 and its 6381 ** successors. 6382 ** 6383 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6384 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6385 ** the opcode is changed. In this way, the initialization of the 6386 ** sqlite3_context only happens once, instead of on each call to the 6387 ** step function. 6388 */ 6389 case OP_AggInverse: 6390 case OP_AggStep: { 6391 int n; 6392 sqlite3_context *pCtx; 6393 6394 assert( pOp->p4type==P4_FUNCDEF ); 6395 n = pOp->p5; 6396 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6397 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6398 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6399 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6400 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6401 if( pCtx==0 ) goto no_mem; 6402 pCtx->pMem = 0; 6403 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6404 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6405 pCtx->pFunc = pOp->p4.pFunc; 6406 pCtx->iOp = (int)(pOp - aOp); 6407 pCtx->pVdbe = p; 6408 pCtx->skipFlag = 0; 6409 pCtx->isError = 0; 6410 pCtx->argc = n; 6411 pOp->p4type = P4_FUNCCTX; 6412 pOp->p4.pCtx = pCtx; 6413 6414 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6415 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6416 6417 pOp->opcode = OP_AggStep1; 6418 /* Fall through into OP_AggStep */ 6419 } 6420 case OP_AggStep1: { 6421 int i; 6422 sqlite3_context *pCtx; 6423 Mem *pMem; 6424 6425 assert( pOp->p4type==P4_FUNCCTX ); 6426 pCtx = pOp->p4.pCtx; 6427 pMem = &aMem[pOp->p3]; 6428 6429 #ifdef SQLITE_DEBUG 6430 if( pOp->p1 ){ 6431 /* This is an OP_AggInverse call. Verify that xStep has always 6432 ** been called at least once prior to any xInverse call. */ 6433 assert( pMem->uTemp==0x1122e0e3 ); 6434 }else{ 6435 /* This is an OP_AggStep call. Mark it as such. */ 6436 pMem->uTemp = 0x1122e0e3; 6437 } 6438 #endif 6439 6440 /* If this function is inside of a trigger, the register array in aMem[] 6441 ** might change from one evaluation to the next. The next block of code 6442 ** checks to see if the register array has changed, and if so it 6443 ** reinitializes the relavant parts of the sqlite3_context object */ 6444 if( pCtx->pMem != pMem ){ 6445 pCtx->pMem = pMem; 6446 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6447 } 6448 6449 #ifdef SQLITE_DEBUG 6450 for(i=0; i<pCtx->argc; i++){ 6451 assert( memIsValid(pCtx->argv[i]) ); 6452 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6453 } 6454 #endif 6455 6456 pMem->n++; 6457 assert( pCtx->pOut->flags==MEM_Null ); 6458 assert( pCtx->isError==0 ); 6459 assert( pCtx->skipFlag==0 ); 6460 #ifndef SQLITE_OMIT_WINDOWFUNC 6461 if( pOp->p1 ){ 6462 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6463 }else 6464 #endif 6465 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6466 6467 if( pCtx->isError ){ 6468 if( pCtx->isError>0 ){ 6469 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6470 rc = pCtx->isError; 6471 } 6472 if( pCtx->skipFlag ){ 6473 assert( pOp[-1].opcode==OP_CollSeq ); 6474 i = pOp[-1].p1; 6475 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6476 pCtx->skipFlag = 0; 6477 } 6478 sqlite3VdbeMemRelease(pCtx->pOut); 6479 pCtx->pOut->flags = MEM_Null; 6480 pCtx->isError = 0; 6481 if( rc ) goto abort_due_to_error; 6482 } 6483 assert( pCtx->pOut->flags==MEM_Null ); 6484 assert( pCtx->skipFlag==0 ); 6485 break; 6486 } 6487 6488 /* Opcode: AggFinal P1 P2 * P4 * 6489 ** Synopsis: accum=r[P1] N=P2 6490 ** 6491 ** P1 is the memory location that is the accumulator for an aggregate 6492 ** or window function. Execute the finalizer function 6493 ** for an aggregate and store the result in P1. 6494 ** 6495 ** P2 is the number of arguments that the step function takes and 6496 ** P4 is a pointer to the FuncDef for this function. The P2 6497 ** argument is not used by this opcode. It is only there to disambiguate 6498 ** functions that can take varying numbers of arguments. The 6499 ** P4 argument is only needed for the case where 6500 ** the step function was not previously called. 6501 */ 6502 /* Opcode: AggValue * P2 P3 P4 * 6503 ** Synopsis: r[P3]=value N=P2 6504 ** 6505 ** Invoke the xValue() function and store the result in register P3. 6506 ** 6507 ** P2 is the number of arguments that the step function takes and 6508 ** P4 is a pointer to the FuncDef for this function. The P2 6509 ** argument is not used by this opcode. It is only there to disambiguate 6510 ** functions that can take varying numbers of arguments. The 6511 ** P4 argument is only needed for the case where 6512 ** the step function was not previously called. 6513 */ 6514 case OP_AggValue: 6515 case OP_AggFinal: { 6516 Mem *pMem; 6517 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6518 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6519 pMem = &aMem[pOp->p1]; 6520 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6521 #ifndef SQLITE_OMIT_WINDOWFUNC 6522 if( pOp->p3 ){ 6523 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6524 pMem = &aMem[pOp->p3]; 6525 }else 6526 #endif 6527 { 6528 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6529 } 6530 6531 if( rc ){ 6532 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6533 goto abort_due_to_error; 6534 } 6535 sqlite3VdbeChangeEncoding(pMem, encoding); 6536 UPDATE_MAX_BLOBSIZE(pMem); 6537 if( sqlite3VdbeMemTooBig(pMem) ){ 6538 goto too_big; 6539 } 6540 break; 6541 } 6542 6543 #ifndef SQLITE_OMIT_WAL 6544 /* Opcode: Checkpoint P1 P2 P3 * * 6545 ** 6546 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6547 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6548 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6549 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6550 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6551 ** in the WAL that have been checkpointed after the checkpoint 6552 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6553 ** mem[P3+2] are initialized to -1. 6554 */ 6555 case OP_Checkpoint: { 6556 int i; /* Loop counter */ 6557 int aRes[3]; /* Results */ 6558 Mem *pMem; /* Write results here */ 6559 6560 assert( p->readOnly==0 ); 6561 aRes[0] = 0; 6562 aRes[1] = aRes[2] = -1; 6563 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6564 || pOp->p2==SQLITE_CHECKPOINT_FULL 6565 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6566 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6567 ); 6568 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6569 if( rc ){ 6570 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6571 rc = SQLITE_OK; 6572 aRes[0] = 1; 6573 } 6574 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6575 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6576 } 6577 break; 6578 }; 6579 #endif 6580 6581 #ifndef SQLITE_OMIT_PRAGMA 6582 /* Opcode: JournalMode P1 P2 P3 * * 6583 ** 6584 ** Change the journal mode of database P1 to P3. P3 must be one of the 6585 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6586 ** modes (delete, truncate, persist, off and memory), this is a simple 6587 ** operation. No IO is required. 6588 ** 6589 ** If changing into or out of WAL mode the procedure is more complicated. 6590 ** 6591 ** Write a string containing the final journal-mode to register P2. 6592 */ 6593 case OP_JournalMode: { /* out2 */ 6594 Btree *pBt; /* Btree to change journal mode of */ 6595 Pager *pPager; /* Pager associated with pBt */ 6596 int eNew; /* New journal mode */ 6597 int eOld; /* The old journal mode */ 6598 #ifndef SQLITE_OMIT_WAL 6599 const char *zFilename; /* Name of database file for pPager */ 6600 #endif 6601 6602 pOut = out2Prerelease(p, pOp); 6603 eNew = pOp->p3; 6604 assert( eNew==PAGER_JOURNALMODE_DELETE 6605 || eNew==PAGER_JOURNALMODE_TRUNCATE 6606 || eNew==PAGER_JOURNALMODE_PERSIST 6607 || eNew==PAGER_JOURNALMODE_OFF 6608 || eNew==PAGER_JOURNALMODE_MEMORY 6609 || eNew==PAGER_JOURNALMODE_WAL 6610 || eNew==PAGER_JOURNALMODE_QUERY 6611 ); 6612 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6613 assert( p->readOnly==0 ); 6614 6615 pBt = db->aDb[pOp->p1].pBt; 6616 pPager = sqlite3BtreePager(pBt); 6617 eOld = sqlite3PagerGetJournalMode(pPager); 6618 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6619 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6620 6621 #ifndef SQLITE_OMIT_WAL 6622 zFilename = sqlite3PagerFilename(pPager, 1); 6623 6624 /* Do not allow a transition to journal_mode=WAL for a database 6625 ** in temporary storage or if the VFS does not support shared memory 6626 */ 6627 if( eNew==PAGER_JOURNALMODE_WAL 6628 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6629 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6630 ){ 6631 eNew = eOld; 6632 } 6633 6634 if( (eNew!=eOld) 6635 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6636 ){ 6637 if( !db->autoCommit || db->nVdbeRead>1 ){ 6638 rc = SQLITE_ERROR; 6639 sqlite3VdbeError(p, 6640 "cannot change %s wal mode from within a transaction", 6641 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6642 ); 6643 goto abort_due_to_error; 6644 }else{ 6645 6646 if( eOld==PAGER_JOURNALMODE_WAL ){ 6647 /* If leaving WAL mode, close the log file. If successful, the call 6648 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6649 ** file. An EXCLUSIVE lock may still be held on the database file 6650 ** after a successful return. 6651 */ 6652 rc = sqlite3PagerCloseWal(pPager, db); 6653 if( rc==SQLITE_OK ){ 6654 sqlite3PagerSetJournalMode(pPager, eNew); 6655 } 6656 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6657 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6658 ** as an intermediate */ 6659 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6660 } 6661 6662 /* Open a transaction on the database file. Regardless of the journal 6663 ** mode, this transaction always uses a rollback journal. 6664 */ 6665 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6666 if( rc==SQLITE_OK ){ 6667 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6668 } 6669 } 6670 } 6671 #endif /* ifndef SQLITE_OMIT_WAL */ 6672 6673 if( rc ) eNew = eOld; 6674 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6675 6676 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6677 pOut->z = (char *)sqlite3JournalModename(eNew); 6678 pOut->n = sqlite3Strlen30(pOut->z); 6679 pOut->enc = SQLITE_UTF8; 6680 sqlite3VdbeChangeEncoding(pOut, encoding); 6681 if( rc ) goto abort_due_to_error; 6682 break; 6683 }; 6684 #endif /* SQLITE_OMIT_PRAGMA */ 6685 6686 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6687 /* Opcode: Vacuum P1 * * * * 6688 ** 6689 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6690 ** for an attached database. The "temp" database may not be vacuumed. 6691 */ 6692 case OP_Vacuum: { 6693 assert( p->readOnly==0 ); 6694 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6695 if( rc ) goto abort_due_to_error; 6696 break; 6697 } 6698 #endif 6699 6700 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6701 /* Opcode: IncrVacuum P1 P2 * * * 6702 ** 6703 ** Perform a single step of the incremental vacuum procedure on 6704 ** the P1 database. If the vacuum has finished, jump to instruction 6705 ** P2. Otherwise, fall through to the next instruction. 6706 */ 6707 case OP_IncrVacuum: { /* jump */ 6708 Btree *pBt; 6709 6710 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6711 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6712 assert( p->readOnly==0 ); 6713 pBt = db->aDb[pOp->p1].pBt; 6714 rc = sqlite3BtreeIncrVacuum(pBt); 6715 VdbeBranchTaken(rc==SQLITE_DONE,2); 6716 if( rc ){ 6717 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6718 rc = SQLITE_OK; 6719 goto jump_to_p2; 6720 } 6721 break; 6722 } 6723 #endif 6724 6725 /* Opcode: Expire P1 P2 * * * 6726 ** 6727 ** Cause precompiled statements to expire. When an expired statement 6728 ** is executed using sqlite3_step() it will either automatically 6729 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6730 ** or it will fail with SQLITE_SCHEMA. 6731 ** 6732 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6733 ** then only the currently executing statement is expired. 6734 ** 6735 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 6736 ** then running SQL statements are allowed to continue to run to completion. 6737 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 6738 ** that might help the statement run faster but which does not affect the 6739 ** correctness of operation. 6740 */ 6741 case OP_Expire: { 6742 assert( pOp->p2==0 || pOp->p2==1 ); 6743 if( !pOp->p1 ){ 6744 sqlite3ExpirePreparedStatements(db, pOp->p2); 6745 }else{ 6746 p->expired = pOp->p2+1; 6747 } 6748 break; 6749 } 6750 6751 #ifndef SQLITE_OMIT_SHARED_CACHE 6752 /* Opcode: TableLock P1 P2 P3 P4 * 6753 ** Synopsis: iDb=P1 root=P2 write=P3 6754 ** 6755 ** Obtain a lock on a particular table. This instruction is only used when 6756 ** the shared-cache feature is enabled. 6757 ** 6758 ** P1 is the index of the database in sqlite3.aDb[] of the database 6759 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6760 ** a write lock if P3==1. 6761 ** 6762 ** P2 contains the root-page of the table to lock. 6763 ** 6764 ** P4 contains a pointer to the name of the table being locked. This is only 6765 ** used to generate an error message if the lock cannot be obtained. 6766 */ 6767 case OP_TableLock: { 6768 u8 isWriteLock = (u8)pOp->p3; 6769 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6770 int p1 = pOp->p1; 6771 assert( p1>=0 && p1<db->nDb ); 6772 assert( DbMaskTest(p->btreeMask, p1) ); 6773 assert( isWriteLock==0 || isWriteLock==1 ); 6774 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6775 if( rc ){ 6776 if( (rc&0xFF)==SQLITE_LOCKED ){ 6777 const char *z = pOp->p4.z; 6778 sqlite3VdbeError(p, "database table is locked: %s", z); 6779 } 6780 goto abort_due_to_error; 6781 } 6782 } 6783 break; 6784 } 6785 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6786 6787 #ifndef SQLITE_OMIT_VIRTUALTABLE 6788 /* Opcode: VBegin * * * P4 * 6789 ** 6790 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6791 ** xBegin method for that table. 6792 ** 6793 ** Also, whether or not P4 is set, check that this is not being called from 6794 ** within a callback to a virtual table xSync() method. If it is, the error 6795 ** code will be set to SQLITE_LOCKED. 6796 */ 6797 case OP_VBegin: { 6798 VTable *pVTab; 6799 pVTab = pOp->p4.pVtab; 6800 rc = sqlite3VtabBegin(db, pVTab); 6801 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6802 if( rc ) goto abort_due_to_error; 6803 break; 6804 } 6805 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6806 6807 #ifndef SQLITE_OMIT_VIRTUALTABLE 6808 /* Opcode: VCreate P1 P2 * * * 6809 ** 6810 ** P2 is a register that holds the name of a virtual table in database 6811 ** P1. Call the xCreate method for that table. 6812 */ 6813 case OP_VCreate: { 6814 Mem sMem; /* For storing the record being decoded */ 6815 const char *zTab; /* Name of the virtual table */ 6816 6817 memset(&sMem, 0, sizeof(sMem)); 6818 sMem.db = db; 6819 /* Because P2 is always a static string, it is impossible for the 6820 ** sqlite3VdbeMemCopy() to fail */ 6821 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6822 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6823 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6824 assert( rc==SQLITE_OK ); 6825 zTab = (const char*)sqlite3_value_text(&sMem); 6826 assert( zTab || db->mallocFailed ); 6827 if( zTab ){ 6828 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6829 } 6830 sqlite3VdbeMemRelease(&sMem); 6831 if( rc ) goto abort_due_to_error; 6832 break; 6833 } 6834 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6835 6836 #ifndef SQLITE_OMIT_VIRTUALTABLE 6837 /* Opcode: VDestroy P1 * * P4 * 6838 ** 6839 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6840 ** of that table. 6841 */ 6842 case OP_VDestroy: { 6843 db->nVDestroy++; 6844 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6845 db->nVDestroy--; 6846 if( rc ) goto abort_due_to_error; 6847 break; 6848 } 6849 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6850 6851 #ifndef SQLITE_OMIT_VIRTUALTABLE 6852 /* Opcode: VOpen P1 * * P4 * 6853 ** 6854 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6855 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6856 ** table and stores that cursor in P1. 6857 */ 6858 case OP_VOpen: { 6859 VdbeCursor *pCur; 6860 sqlite3_vtab_cursor *pVCur; 6861 sqlite3_vtab *pVtab; 6862 const sqlite3_module *pModule; 6863 6864 assert( p->bIsReader ); 6865 pCur = 0; 6866 pVCur = 0; 6867 pVtab = pOp->p4.pVtab->pVtab; 6868 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6869 rc = SQLITE_LOCKED; 6870 goto abort_due_to_error; 6871 } 6872 pModule = pVtab->pModule; 6873 rc = pModule->xOpen(pVtab, &pVCur); 6874 sqlite3VtabImportErrmsg(p, pVtab); 6875 if( rc ) goto abort_due_to_error; 6876 6877 /* Initialize sqlite3_vtab_cursor base class */ 6878 pVCur->pVtab = pVtab; 6879 6880 /* Initialize vdbe cursor object */ 6881 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6882 if( pCur ){ 6883 pCur->uc.pVCur = pVCur; 6884 pVtab->nRef++; 6885 }else{ 6886 assert( db->mallocFailed ); 6887 pModule->xClose(pVCur); 6888 goto no_mem; 6889 } 6890 break; 6891 } 6892 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6893 6894 #ifndef SQLITE_OMIT_VIRTUALTABLE 6895 /* Opcode: VFilter P1 P2 P3 P4 * 6896 ** Synopsis: iplan=r[P3] zplan='P4' 6897 ** 6898 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6899 ** the filtered result set is empty. 6900 ** 6901 ** P4 is either NULL or a string that was generated by the xBestIndex 6902 ** method of the module. The interpretation of the P4 string is left 6903 ** to the module implementation. 6904 ** 6905 ** This opcode invokes the xFilter method on the virtual table specified 6906 ** by P1. The integer query plan parameter to xFilter is stored in register 6907 ** P3. Register P3+1 stores the argc parameter to be passed to the 6908 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6909 ** additional parameters which are passed to 6910 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6911 ** 6912 ** A jump is made to P2 if the result set after filtering would be empty. 6913 */ 6914 case OP_VFilter: { /* jump */ 6915 int nArg; 6916 int iQuery; 6917 const sqlite3_module *pModule; 6918 Mem *pQuery; 6919 Mem *pArgc; 6920 sqlite3_vtab_cursor *pVCur; 6921 sqlite3_vtab *pVtab; 6922 VdbeCursor *pCur; 6923 int res; 6924 int i; 6925 Mem **apArg; 6926 6927 pQuery = &aMem[pOp->p3]; 6928 pArgc = &pQuery[1]; 6929 pCur = p->apCsr[pOp->p1]; 6930 assert( memIsValid(pQuery) ); 6931 REGISTER_TRACE(pOp->p3, pQuery); 6932 assert( pCur->eCurType==CURTYPE_VTAB ); 6933 pVCur = pCur->uc.pVCur; 6934 pVtab = pVCur->pVtab; 6935 pModule = pVtab->pModule; 6936 6937 /* Grab the index number and argc parameters */ 6938 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6939 nArg = (int)pArgc->u.i; 6940 iQuery = (int)pQuery->u.i; 6941 6942 /* Invoke the xFilter method */ 6943 res = 0; 6944 apArg = p->apArg; 6945 for(i = 0; i<nArg; i++){ 6946 apArg[i] = &pArgc[i+1]; 6947 } 6948 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6949 sqlite3VtabImportErrmsg(p, pVtab); 6950 if( rc ) goto abort_due_to_error; 6951 res = pModule->xEof(pVCur); 6952 pCur->nullRow = 0; 6953 VdbeBranchTaken(res!=0,2); 6954 if( res ) goto jump_to_p2; 6955 break; 6956 } 6957 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6958 6959 #ifndef SQLITE_OMIT_VIRTUALTABLE 6960 /* Opcode: VColumn P1 P2 P3 * P5 6961 ** Synopsis: r[P3]=vcolumn(P2) 6962 ** 6963 ** Store in register P3 the value of the P2-th column of 6964 ** the current row of the virtual-table of cursor P1. 6965 ** 6966 ** If the VColumn opcode is being used to fetch the value of 6967 ** an unchanging column during an UPDATE operation, then the P5 6968 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 6969 ** function to return true inside the xColumn method of the virtual 6970 ** table implementation. The P5 column might also contain other 6971 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 6972 ** unused by OP_VColumn. 6973 */ 6974 case OP_VColumn: { 6975 sqlite3_vtab *pVtab; 6976 const sqlite3_module *pModule; 6977 Mem *pDest; 6978 sqlite3_context sContext; 6979 6980 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6981 assert( pCur->eCurType==CURTYPE_VTAB ); 6982 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6983 pDest = &aMem[pOp->p3]; 6984 memAboutToChange(p, pDest); 6985 if( pCur->nullRow ){ 6986 sqlite3VdbeMemSetNull(pDest); 6987 break; 6988 } 6989 pVtab = pCur->uc.pVCur->pVtab; 6990 pModule = pVtab->pModule; 6991 assert( pModule->xColumn ); 6992 memset(&sContext, 0, sizeof(sContext)); 6993 sContext.pOut = pDest; 6994 testcase( (pOp->p5 & OPFLAG_NOCHNG)==0 && pOp->p5!=0 ); 6995 if( pOp->p5 & OPFLAG_NOCHNG ){ 6996 sqlite3VdbeMemSetNull(pDest); 6997 pDest->flags = MEM_Null|MEM_Zero; 6998 pDest->u.nZero = 0; 6999 }else{ 7000 MemSetTypeFlag(pDest, MEM_Null); 7001 } 7002 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7003 sqlite3VtabImportErrmsg(p, pVtab); 7004 if( sContext.isError>0 ){ 7005 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7006 rc = sContext.isError; 7007 } 7008 sqlite3VdbeChangeEncoding(pDest, encoding); 7009 REGISTER_TRACE(pOp->p3, pDest); 7010 UPDATE_MAX_BLOBSIZE(pDest); 7011 7012 if( sqlite3VdbeMemTooBig(pDest) ){ 7013 goto too_big; 7014 } 7015 if( rc ) goto abort_due_to_error; 7016 break; 7017 } 7018 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7019 7020 #ifndef SQLITE_OMIT_VIRTUALTABLE 7021 /* Opcode: VNext P1 P2 * * * 7022 ** 7023 ** Advance virtual table P1 to the next row in its result set and 7024 ** jump to instruction P2. Or, if the virtual table has reached 7025 ** the end of its result set, then fall through to the next instruction. 7026 */ 7027 case OP_VNext: { /* jump */ 7028 sqlite3_vtab *pVtab; 7029 const sqlite3_module *pModule; 7030 int res; 7031 VdbeCursor *pCur; 7032 7033 res = 0; 7034 pCur = p->apCsr[pOp->p1]; 7035 assert( pCur->eCurType==CURTYPE_VTAB ); 7036 if( pCur->nullRow ){ 7037 break; 7038 } 7039 pVtab = pCur->uc.pVCur->pVtab; 7040 pModule = pVtab->pModule; 7041 assert( pModule->xNext ); 7042 7043 /* Invoke the xNext() method of the module. There is no way for the 7044 ** underlying implementation to return an error if one occurs during 7045 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7046 ** data is available) and the error code returned when xColumn or 7047 ** some other method is next invoked on the save virtual table cursor. 7048 */ 7049 rc = pModule->xNext(pCur->uc.pVCur); 7050 sqlite3VtabImportErrmsg(p, pVtab); 7051 if( rc ) goto abort_due_to_error; 7052 res = pModule->xEof(pCur->uc.pVCur); 7053 VdbeBranchTaken(!res,2); 7054 if( !res ){ 7055 /* If there is data, jump to P2 */ 7056 goto jump_to_p2_and_check_for_interrupt; 7057 } 7058 goto check_for_interrupt; 7059 } 7060 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7061 7062 #ifndef SQLITE_OMIT_VIRTUALTABLE 7063 /* Opcode: VRename P1 * * P4 * 7064 ** 7065 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7066 ** This opcode invokes the corresponding xRename method. The value 7067 ** in register P1 is passed as the zName argument to the xRename method. 7068 */ 7069 case OP_VRename: { 7070 sqlite3_vtab *pVtab; 7071 Mem *pName; 7072 int isLegacy; 7073 7074 isLegacy = (db->flags & SQLITE_LegacyAlter); 7075 db->flags |= SQLITE_LegacyAlter; 7076 pVtab = pOp->p4.pVtab->pVtab; 7077 pName = &aMem[pOp->p1]; 7078 assert( pVtab->pModule->xRename ); 7079 assert( memIsValid(pName) ); 7080 assert( p->readOnly==0 ); 7081 REGISTER_TRACE(pOp->p1, pName); 7082 assert( pName->flags & MEM_Str ); 7083 testcase( pName->enc==SQLITE_UTF8 ); 7084 testcase( pName->enc==SQLITE_UTF16BE ); 7085 testcase( pName->enc==SQLITE_UTF16LE ); 7086 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7087 if( rc ) goto abort_due_to_error; 7088 rc = pVtab->pModule->xRename(pVtab, pName->z); 7089 if( isLegacy==0 ) db->flags &= ~SQLITE_LegacyAlter; 7090 sqlite3VtabImportErrmsg(p, pVtab); 7091 p->expired = 0; 7092 if( rc ) goto abort_due_to_error; 7093 break; 7094 } 7095 #endif 7096 7097 #ifndef SQLITE_OMIT_VIRTUALTABLE 7098 /* Opcode: VUpdate P1 P2 P3 P4 P5 7099 ** Synopsis: data=r[P3@P2] 7100 ** 7101 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7102 ** This opcode invokes the corresponding xUpdate method. P2 values 7103 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7104 ** invocation. The value in register (P3+P2-1) corresponds to the 7105 ** p2th element of the argv array passed to xUpdate. 7106 ** 7107 ** The xUpdate method will do a DELETE or an INSERT or both. 7108 ** The argv[0] element (which corresponds to memory cell P3) 7109 ** is the rowid of a row to delete. If argv[0] is NULL then no 7110 ** deletion occurs. The argv[1] element is the rowid of the new 7111 ** row. This can be NULL to have the virtual table select the new 7112 ** rowid for itself. The subsequent elements in the array are 7113 ** the values of columns in the new row. 7114 ** 7115 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7116 ** a row to delete. 7117 ** 7118 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7119 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7120 ** is set to the value of the rowid for the row just inserted. 7121 ** 7122 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7123 ** apply in the case of a constraint failure on an insert or update. 7124 */ 7125 case OP_VUpdate: { 7126 sqlite3_vtab *pVtab; 7127 const sqlite3_module *pModule; 7128 int nArg; 7129 int i; 7130 sqlite_int64 rowid; 7131 Mem **apArg; 7132 Mem *pX; 7133 7134 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7135 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7136 ); 7137 assert( p->readOnly==0 ); 7138 if( db->mallocFailed ) goto no_mem; 7139 sqlite3VdbeIncrWriteCounter(p, 0); 7140 pVtab = pOp->p4.pVtab->pVtab; 7141 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7142 rc = SQLITE_LOCKED; 7143 goto abort_due_to_error; 7144 } 7145 pModule = pVtab->pModule; 7146 nArg = pOp->p2; 7147 assert( pOp->p4type==P4_VTAB ); 7148 if( ALWAYS(pModule->xUpdate) ){ 7149 u8 vtabOnConflict = db->vtabOnConflict; 7150 apArg = p->apArg; 7151 pX = &aMem[pOp->p3]; 7152 for(i=0; i<nArg; i++){ 7153 assert( memIsValid(pX) ); 7154 memAboutToChange(p, pX); 7155 apArg[i] = pX; 7156 pX++; 7157 } 7158 db->vtabOnConflict = pOp->p5; 7159 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7160 db->vtabOnConflict = vtabOnConflict; 7161 sqlite3VtabImportErrmsg(p, pVtab); 7162 if( rc==SQLITE_OK && pOp->p1 ){ 7163 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7164 db->lastRowid = rowid; 7165 } 7166 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7167 if( pOp->p5==OE_Ignore ){ 7168 rc = SQLITE_OK; 7169 }else{ 7170 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7171 } 7172 }else{ 7173 p->nChange++; 7174 } 7175 if( rc ) goto abort_due_to_error; 7176 } 7177 break; 7178 } 7179 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7180 7181 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7182 /* Opcode: Pagecount P1 P2 * * * 7183 ** 7184 ** Write the current number of pages in database P1 to memory cell P2. 7185 */ 7186 case OP_Pagecount: { /* out2 */ 7187 pOut = out2Prerelease(p, pOp); 7188 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7189 break; 7190 } 7191 #endif 7192 7193 7194 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7195 /* Opcode: MaxPgcnt P1 P2 P3 * * 7196 ** 7197 ** Try to set the maximum page count for database P1 to the value in P3. 7198 ** Do not let the maximum page count fall below the current page count and 7199 ** do not change the maximum page count value if P3==0. 7200 ** 7201 ** Store the maximum page count after the change in register P2. 7202 */ 7203 case OP_MaxPgcnt: { /* out2 */ 7204 unsigned int newMax; 7205 Btree *pBt; 7206 7207 pOut = out2Prerelease(p, pOp); 7208 pBt = db->aDb[pOp->p1].pBt; 7209 newMax = 0; 7210 if( pOp->p3 ){ 7211 newMax = sqlite3BtreeLastPage(pBt); 7212 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7213 } 7214 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7215 break; 7216 } 7217 #endif 7218 7219 /* Opcode: Function0 P1 P2 P3 P4 P5 7220 ** Synopsis: r[P3]=func(r[P2@P5]) 7221 ** 7222 ** Invoke a user function (P4 is a pointer to a FuncDef object that 7223 ** defines the function) with P5 arguments taken from register P2 and 7224 ** successors. The result of the function is stored in register P3. 7225 ** Register P3 must not be one of the function inputs. 7226 ** 7227 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7228 ** function was determined to be constant at compile time. If the first 7229 ** argument was constant then bit 0 of P1 is set. This is used to determine 7230 ** whether meta data associated with a user function argument using the 7231 ** sqlite3_set_auxdata() API may be safely retained until the next 7232 ** invocation of this opcode. 7233 ** 7234 ** See also: Function, AggStep, AggFinal 7235 */ 7236 /* Opcode: Function P1 P2 P3 P4 P5 7237 ** Synopsis: r[P3]=func(r[P2@P5]) 7238 ** 7239 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7240 ** contains a pointer to the function to be run) with P5 arguments taken 7241 ** from register P2 and successors. The result of the function is stored 7242 ** in register P3. Register P3 must not be one of the function inputs. 7243 ** 7244 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7245 ** function was determined to be constant at compile time. If the first 7246 ** argument was constant then bit 0 of P1 is set. This is used to determine 7247 ** whether meta data associated with a user function argument using the 7248 ** sqlite3_set_auxdata() API may be safely retained until the next 7249 ** invocation of this opcode. 7250 ** 7251 ** SQL functions are initially coded as OP_Function0 with P4 pointing 7252 ** to a FuncDef object. But on first evaluation, the P4 operand is 7253 ** automatically converted into an sqlite3_context object and the operation 7254 ** changed to this OP_Function opcode. In this way, the initialization of 7255 ** the sqlite3_context object occurs only once, rather than once for each 7256 ** evaluation of the function. 7257 ** 7258 ** See also: Function0, AggStep, AggFinal 7259 */ 7260 case OP_PureFunc0: /* group */ 7261 case OP_Function0: { /* group */ 7262 int n; 7263 sqlite3_context *pCtx; 7264 7265 assert( pOp->p4type==P4_FUNCDEF ); 7266 n = pOp->p5; 7267 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7268 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7269 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7270 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 7271 if( pCtx==0 ) goto no_mem; 7272 pCtx->pOut = 0; 7273 pCtx->pFunc = pOp->p4.pFunc; 7274 pCtx->iOp = (int)(pOp - aOp); 7275 pCtx->pVdbe = p; 7276 pCtx->isError = 0; 7277 pCtx->argc = n; 7278 pOp->p4type = P4_FUNCCTX; 7279 pOp->p4.pCtx = pCtx; 7280 assert( OP_PureFunc == OP_PureFunc0+2 ); 7281 assert( OP_Function == OP_Function0+2 ); 7282 pOp->opcode += 2; 7283 /* Fall through into OP_Function */ 7284 } 7285 case OP_PureFunc: /* group */ 7286 case OP_Function: { /* group */ 7287 int i; 7288 sqlite3_context *pCtx; 7289 7290 assert( pOp->p4type==P4_FUNCCTX ); 7291 pCtx = pOp->p4.pCtx; 7292 7293 /* If this function is inside of a trigger, the register array in aMem[] 7294 ** might change from one evaluation to the next. The next block of code 7295 ** checks to see if the register array has changed, and if so it 7296 ** reinitializes the relavant parts of the sqlite3_context object */ 7297 pOut = &aMem[pOp->p3]; 7298 if( pCtx->pOut != pOut ){ 7299 pCtx->pOut = pOut; 7300 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7301 } 7302 7303 memAboutToChange(p, pOut); 7304 #ifdef SQLITE_DEBUG 7305 for(i=0; i<pCtx->argc; i++){ 7306 assert( memIsValid(pCtx->argv[i]) ); 7307 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7308 } 7309 #endif 7310 MemSetTypeFlag(pOut, MEM_Null); 7311 assert( pCtx->isError==0 ); 7312 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7313 7314 /* If the function returned an error, throw an exception */ 7315 if( pCtx->isError ){ 7316 if( pCtx->isError>0 ){ 7317 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7318 rc = pCtx->isError; 7319 } 7320 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7321 pCtx->isError = 0; 7322 if( rc ) goto abort_due_to_error; 7323 } 7324 7325 /* Copy the result of the function into register P3 */ 7326 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7327 sqlite3VdbeChangeEncoding(pOut, encoding); 7328 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7329 } 7330 7331 REGISTER_TRACE(pOp->p3, pOut); 7332 UPDATE_MAX_BLOBSIZE(pOut); 7333 break; 7334 } 7335 7336 /* Opcode: Trace P1 P2 * P4 * 7337 ** 7338 ** Write P4 on the statement trace output if statement tracing is 7339 ** enabled. 7340 ** 7341 ** Operand P1 must be 0x7fffffff and P2 must positive. 7342 */ 7343 /* Opcode: Init P1 P2 P3 P4 * 7344 ** Synopsis: Start at P2 7345 ** 7346 ** Programs contain a single instance of this opcode as the very first 7347 ** opcode. 7348 ** 7349 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7350 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7351 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7352 ** 7353 ** If P2 is not zero, jump to instruction P2. 7354 ** 7355 ** Increment the value of P1 so that OP_Once opcodes will jump the 7356 ** first time they are evaluated for this run. 7357 ** 7358 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7359 ** error is encountered. 7360 */ 7361 case OP_Trace: 7362 case OP_Init: { /* jump */ 7363 int i; 7364 #ifndef SQLITE_OMIT_TRACE 7365 char *zTrace; 7366 #endif 7367 7368 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7369 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7370 ** 7371 ** This assert() provides evidence for: 7372 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7373 ** would have been returned by the legacy sqlite3_trace() interface by 7374 ** using the X argument when X begins with "--" and invoking 7375 ** sqlite3_expanded_sql(P) otherwise. 7376 */ 7377 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7378 7379 /* OP_Init is always instruction 0 */ 7380 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7381 7382 #ifndef SQLITE_OMIT_TRACE 7383 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7384 && !p->doingRerun 7385 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7386 ){ 7387 #ifndef SQLITE_OMIT_DEPRECATED 7388 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7389 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7390 char *z = sqlite3VdbeExpandSql(p, zTrace); 7391 x(db->pTraceArg, z); 7392 sqlite3_free(z); 7393 }else 7394 #endif 7395 if( db->nVdbeExec>1 ){ 7396 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7397 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7398 sqlite3DbFree(db, z); 7399 }else{ 7400 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7401 } 7402 } 7403 #ifdef SQLITE_USE_FCNTL_TRACE 7404 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7405 if( zTrace ){ 7406 int j; 7407 for(j=0; j<db->nDb; j++){ 7408 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7409 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7410 } 7411 } 7412 #endif /* SQLITE_USE_FCNTL_TRACE */ 7413 #ifdef SQLITE_DEBUG 7414 if( (db->flags & SQLITE_SqlTrace)!=0 7415 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7416 ){ 7417 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7418 } 7419 #endif /* SQLITE_DEBUG */ 7420 #endif /* SQLITE_OMIT_TRACE */ 7421 assert( pOp->p2>0 ); 7422 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7423 if( pOp->opcode==OP_Trace ) break; 7424 for(i=1; i<p->nOp; i++){ 7425 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7426 } 7427 pOp->p1 = 0; 7428 } 7429 pOp->p1++; 7430 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7431 goto jump_to_p2; 7432 } 7433 7434 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7435 /* Opcode: CursorHint P1 * * P4 * 7436 ** 7437 ** Provide a hint to cursor P1 that it only needs to return rows that 7438 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7439 ** to values currently held in registers. TK_COLUMN terms in the P4 7440 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7441 */ 7442 case OP_CursorHint: { 7443 VdbeCursor *pC; 7444 7445 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7446 assert( pOp->p4type==P4_EXPR ); 7447 pC = p->apCsr[pOp->p1]; 7448 if( pC ){ 7449 assert( pC->eCurType==CURTYPE_BTREE ); 7450 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7451 pOp->p4.pExpr, aMem); 7452 } 7453 break; 7454 } 7455 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7456 7457 #ifdef SQLITE_DEBUG 7458 /* Opcode: Abortable * * * * * 7459 ** 7460 ** Verify that an Abort can happen. Assert if an Abort at this point 7461 ** might cause database corruption. This opcode only appears in debugging 7462 ** builds. 7463 ** 7464 ** An Abort is safe if either there have been no writes, or if there is 7465 ** an active statement journal. 7466 */ 7467 case OP_Abortable: { 7468 sqlite3VdbeAssertAbortable(p); 7469 break; 7470 } 7471 #endif 7472 7473 /* Opcode: Noop * * * * * 7474 ** 7475 ** Do nothing. This instruction is often useful as a jump 7476 ** destination. 7477 */ 7478 /* 7479 ** The magic Explain opcode are only inserted when explain==2 (which 7480 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7481 ** This opcode records information from the optimizer. It is the 7482 ** the same as a no-op. This opcodesnever appears in a real VM program. 7483 */ 7484 default: { /* This is really OP_Noop, OP_Explain */ 7485 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7486 7487 break; 7488 } 7489 7490 /***************************************************************************** 7491 ** The cases of the switch statement above this line should all be indented 7492 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7493 ** readability. From this point on down, the normal indentation rules are 7494 ** restored. 7495 *****************************************************************************/ 7496 } 7497 7498 #ifdef VDBE_PROFILE 7499 { 7500 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7501 if( endTime>start ) pOrigOp->cycles += endTime - start; 7502 pOrigOp->cnt++; 7503 } 7504 #endif 7505 7506 /* The following code adds nothing to the actual functionality 7507 ** of the program. It is only here for testing and debugging. 7508 ** On the other hand, it does burn CPU cycles every time through 7509 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7510 */ 7511 #ifndef NDEBUG 7512 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7513 7514 #ifdef SQLITE_DEBUG 7515 if( db->flags & SQLITE_VdbeTrace ){ 7516 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7517 if( rc!=0 ) printf("rc=%d\n",rc); 7518 if( opProperty & (OPFLG_OUT2) ){ 7519 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7520 } 7521 if( opProperty & OPFLG_OUT3 ){ 7522 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7523 } 7524 } 7525 #endif /* SQLITE_DEBUG */ 7526 #endif /* NDEBUG */ 7527 } /* The end of the for(;;) loop the loops through opcodes */ 7528 7529 /* If we reach this point, it means that execution is finished with 7530 ** an error of some kind. 7531 */ 7532 abort_due_to_error: 7533 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7534 assert( rc ); 7535 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7536 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7537 } 7538 p->rc = rc; 7539 sqlite3SystemError(db, rc); 7540 testcase( sqlite3GlobalConfig.xLog!=0 ); 7541 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7542 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7543 sqlite3VdbeHalt(p); 7544 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7545 rc = SQLITE_ERROR; 7546 if( resetSchemaOnFault>0 ){ 7547 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7548 } 7549 7550 /* This is the only way out of this procedure. We have to 7551 ** release the mutexes on btrees that were acquired at the 7552 ** top. */ 7553 vdbe_return: 7554 testcase( nVmStep>0 ); 7555 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7556 sqlite3VdbeLeave(p); 7557 assert( rc!=SQLITE_OK || nExtraDelete==0 7558 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7559 ); 7560 return rc; 7561 7562 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7563 ** is encountered. 7564 */ 7565 too_big: 7566 sqlite3VdbeError(p, "string or blob too big"); 7567 rc = SQLITE_TOOBIG; 7568 goto abort_due_to_error; 7569 7570 /* Jump to here if a malloc() fails. 7571 */ 7572 no_mem: 7573 sqlite3OomFault(db); 7574 sqlite3VdbeError(p, "out of memory"); 7575 rc = SQLITE_NOMEM_BKPT; 7576 goto abort_due_to_error; 7577 7578 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7579 ** flag. 7580 */ 7581 abort_due_to_interrupt: 7582 assert( db->u1.isInterrupted ); 7583 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7584 p->rc = rc; 7585 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7586 goto abort_due_to_error; 7587 } 7588