xref: /sqlite-3.40.0/src/vdbe.c (revision e7952263)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** Given a cursor number and a column for a table or index, compute a
41 ** hash value for use in the Mem.iTabColHash value.  The iTabColHash
42 ** column is only used for verification - it is omitted from production
43 ** builds.  Collisions are harmless in the sense that the correct answer
44 ** still results.  The only harm of collisions is that they can potential
45 ** reduce column-cache error detection during SQLITE_DEBUG builds.
46 **
47 ** No valid hash should be 0.
48 */
49 #define TableColumnHash(T,C)  (((u32)(T)<<16)^(u32)(C+2))
50 
51 /*
52 ** The following global variable is incremented every time a cursor
53 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
54 ** procedures use this information to make sure that indices are
55 ** working correctly.  This variable has no function other than to
56 ** help verify the correct operation of the library.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_search_count = 0;
60 #endif
61 
62 /*
63 ** When this global variable is positive, it gets decremented once before
64 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
65 ** field of the sqlite3 structure is set in order to simulate an interrupt.
66 **
67 ** This facility is used for testing purposes only.  It does not function
68 ** in an ordinary build.
69 */
70 #ifdef SQLITE_TEST
71 int sqlite3_interrupt_count = 0;
72 #endif
73 
74 /*
75 ** The next global variable is incremented each type the OP_Sort opcode
76 ** is executed.  The test procedures use this information to make sure that
77 ** sorting is occurring or not occurring at appropriate times.   This variable
78 ** has no function other than to help verify the correct operation of the
79 ** library.
80 */
81 #ifdef SQLITE_TEST
82 int sqlite3_sort_count = 0;
83 #endif
84 
85 /*
86 ** The next global variable records the size of the largest MEM_Blob
87 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
88 ** use this information to make sure that the zero-blob functionality
89 ** is working correctly.   This variable has no function other than to
90 ** help verify the correct operation of the library.
91 */
92 #ifdef SQLITE_TEST
93 int sqlite3_max_blobsize = 0;
94 static void updateMaxBlobsize(Mem *p){
95   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
96     sqlite3_max_blobsize = p->n;
97   }
98 }
99 #endif
100 
101 /*
102 ** This macro evaluates to true if either the update hook or the preupdate
103 ** hook are enabled for database connect DB.
104 */
105 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
106 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
107 #else
108 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
109 #endif
110 
111 /*
112 ** The next global variable is incremented each time the OP_Found opcode
113 ** is executed. This is used to test whether or not the foreign key
114 ** operation implemented using OP_FkIsZero is working. This variable
115 ** has no function other than to help verify the correct operation of the
116 ** library.
117 */
118 #ifdef SQLITE_TEST
119 int sqlite3_found_count = 0;
120 #endif
121 
122 /*
123 ** Test a register to see if it exceeds the current maximum blob size.
124 ** If it does, record the new maximum blob size.
125 */
126 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
127 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
128 #else
129 # define UPDATE_MAX_BLOBSIZE(P)
130 #endif
131 
132 /*
133 ** Invoke the VDBE coverage callback, if that callback is defined.  This
134 ** feature is used for test suite validation only and does not appear an
135 ** production builds.
136 **
137 ** M is an integer between 2 and 4.  2 indicates a ordinary two-way
138 ** branch (I=0 means fall through and I=1 means taken).  3 indicates
139 ** a 3-way branch where the third way is when one of the operands is
140 ** NULL.  4 indicates the OP_Jump instruction which has three destinations
141 ** depending on whether the first operand is less than, equal to, or greater
142 ** than the second.
143 **
144 ** iSrcLine is the source code line (from the __LINE__ macro) that
145 ** generated the VDBE instruction combined with flag bits.  The source
146 ** code line number is in the lower 24 bits of iSrcLine and the upper
147 ** 8 bytes are flags.  The lower three bits of the flags indicate
148 ** values for I that should never occur.  For example, if the branch is
149 ** always taken, the flags should be 0x05 since the fall-through and
150 ** alternate branch are never taken.  If a branch is never taken then
151 ** flags should be 0x06 since only the fall-through approach is allowed.
152 **
153 ** Bit 0x04 of the flags indicates an OP_Jump opcode that is only
154 ** interested in equal or not-equal.  In other words, I==0 and I==2
155 ** should be treated the same.
156 **
157 ** Since only a line number is retained, not the filename, this macro
158 ** only works for amalgamation builds.  But that is ok, since these macros
159 ** should be no-ops except for special builds used to measure test coverage.
160 */
161 #if !defined(SQLITE_VDBE_COVERAGE)
162 # define VdbeBranchTaken(I,M)
163 #else
164 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
165   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
166     u8 mNever;
167     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
168     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
169     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
170     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
171     I = 1<<I;
172     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
173     ** the flags indicate directions that the branch can never go.  If
174     ** a branch really does go in one of those directions, assert right
175     ** away. */
176     mNever = iSrcLine >> 24;
177     assert( (I & mNever)==0 );
178     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
179     I |= mNever;
180     if( M==2 ) I |= 0x04;
181     if( M==4 ){
182       I |= 0x08;
183       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
184     }
185     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
186                                     iSrcLine&0xffffff, I, M);
187   }
188 #endif
189 
190 /*
191 ** Convert the given register into a string if it isn't one
192 ** already. Return non-zero if a malloc() fails.
193 */
194 #define Stringify(P, enc) \
195    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
196      { goto no_mem; }
197 
198 /*
199 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
200 ** a pointer to a dynamically allocated string where some other entity
201 ** is responsible for deallocating that string.  Because the register
202 ** does not control the string, it might be deleted without the register
203 ** knowing it.
204 **
205 ** This routine converts an ephemeral string into a dynamically allocated
206 ** string that the register itself controls.  In other words, it
207 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
208 */
209 #define Deephemeralize(P) \
210    if( ((P)->flags&MEM_Ephem)!=0 \
211        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
212 
213 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
214 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
215 
216 /*
217 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
218 ** if we run out of memory.
219 */
220 static VdbeCursor *allocateCursor(
221   Vdbe *p,              /* The virtual machine */
222   int iCur,             /* Index of the new VdbeCursor */
223   int nField,           /* Number of fields in the table or index */
224   int iDb,              /* Database the cursor belongs to, or -1 */
225   u8 eCurType           /* Type of the new cursor */
226 ){
227   /* Find the memory cell that will be used to store the blob of memory
228   ** required for this VdbeCursor structure. It is convenient to use a
229   ** vdbe memory cell to manage the memory allocation required for a
230   ** VdbeCursor structure for the following reasons:
231   **
232   **   * Sometimes cursor numbers are used for a couple of different
233   **     purposes in a vdbe program. The different uses might require
234   **     different sized allocations. Memory cells provide growable
235   **     allocations.
236   **
237   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
238   **     be freed lazily via the sqlite3_release_memory() API. This
239   **     minimizes the number of malloc calls made by the system.
240   **
241   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
242   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
243   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
244   */
245   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
246 
247   int nByte;
248   VdbeCursor *pCx = 0;
249   nByte =
250       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
251       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
252 
253   assert( iCur>=0 && iCur<p->nCursor );
254   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
255     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
256     p->apCsr[iCur] = 0;
257   }
258   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
259     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
260     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
261     pCx->eCurType = eCurType;
262     pCx->iDb = iDb;
263     pCx->nField = nField;
264     pCx->aOffset = &pCx->aType[nField];
265     if( eCurType==CURTYPE_BTREE ){
266       pCx->uc.pCursor = (BtCursor*)
267           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
268       sqlite3BtreeCursorZero(pCx->uc.pCursor);
269     }
270   }
271   return pCx;
272 }
273 
274 /*
275 ** Try to convert a value into a numeric representation if we can
276 ** do so without loss of information.  In other words, if the string
277 ** looks like a number, convert it into a number.  If it does not
278 ** look like a number, leave it alone.
279 **
280 ** If the bTryForInt flag is true, then extra effort is made to give
281 ** an integer representation.  Strings that look like floating point
282 ** values but which have no fractional component (example: '48.00')
283 ** will have a MEM_Int representation when bTryForInt is true.
284 **
285 ** If bTryForInt is false, then if the input string contains a decimal
286 ** point or exponential notation, the result is only MEM_Real, even
287 ** if there is an exact integer representation of the quantity.
288 */
289 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
290   double rValue;
291   i64 iValue;
292   u8 enc = pRec->enc;
293   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
294   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
295   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
296     pRec->u.i = iValue;
297     pRec->flags |= MEM_Int;
298   }else{
299     pRec->u.r = rValue;
300     pRec->flags |= MEM_Real;
301     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
302   }
303   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
304   ** string representation after computing a numeric equivalent, because the
305   ** string representation might not be the canonical representation for the
306   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
307   pRec->flags &= ~MEM_Str;
308 }
309 
310 /*
311 ** Processing is determine by the affinity parameter:
312 **
313 ** SQLITE_AFF_INTEGER:
314 ** SQLITE_AFF_REAL:
315 ** SQLITE_AFF_NUMERIC:
316 **    Try to convert pRec to an integer representation or a
317 **    floating-point representation if an integer representation
318 **    is not possible.  Note that the integer representation is
319 **    always preferred, even if the affinity is REAL, because
320 **    an integer representation is more space efficient on disk.
321 **
322 ** SQLITE_AFF_TEXT:
323 **    Convert pRec to a text representation.
324 **
325 ** SQLITE_AFF_BLOB:
326 **    No-op.  pRec is unchanged.
327 */
328 static void applyAffinity(
329   Mem *pRec,          /* The value to apply affinity to */
330   char affinity,      /* The affinity to be applied */
331   u8 enc              /* Use this text encoding */
332 ){
333   if( affinity>=SQLITE_AFF_NUMERIC ){
334     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
335              || affinity==SQLITE_AFF_NUMERIC );
336     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
337       if( (pRec->flags & MEM_Real)==0 ){
338         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
339       }else{
340         sqlite3VdbeIntegerAffinity(pRec);
341       }
342     }
343   }else if( affinity==SQLITE_AFF_TEXT ){
344     /* Only attempt the conversion to TEXT if there is an integer or real
345     ** representation (blob and NULL do not get converted) but no string
346     ** representation.  It would be harmless to repeat the conversion if
347     ** there is already a string rep, but it is pointless to waste those
348     ** CPU cycles. */
349     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
350       if( (pRec->flags&(MEM_Real|MEM_Int)) ){
351         sqlite3VdbeMemStringify(pRec, enc, 1);
352       }
353     }
354     pRec->flags &= ~(MEM_Real|MEM_Int);
355   }
356 }
357 
358 /*
359 ** Try to convert the type of a function argument or a result column
360 ** into a numeric representation.  Use either INTEGER or REAL whichever
361 ** is appropriate.  But only do the conversion if it is possible without
362 ** loss of information and return the revised type of the argument.
363 */
364 int sqlite3_value_numeric_type(sqlite3_value *pVal){
365   int eType = sqlite3_value_type(pVal);
366   if( eType==SQLITE_TEXT ){
367     Mem *pMem = (Mem*)pVal;
368     applyNumericAffinity(pMem, 0);
369     eType = sqlite3_value_type(pVal);
370   }
371   return eType;
372 }
373 
374 /*
375 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
376 ** not the internal Mem* type.
377 */
378 void sqlite3ValueApplyAffinity(
379   sqlite3_value *pVal,
380   u8 affinity,
381   u8 enc
382 ){
383   applyAffinity((Mem *)pVal, affinity, enc);
384 }
385 
386 /*
387 ** pMem currently only holds a string type (or maybe a BLOB that we can
388 ** interpret as a string if we want to).  Compute its corresponding
389 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
390 ** accordingly.
391 */
392 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
393   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
394   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
395   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
396     return 0;
397   }
398   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
399     return MEM_Int;
400   }
401   return MEM_Real;
402 }
403 
404 /*
405 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
406 ** none.
407 **
408 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
409 ** But it does set pMem->u.r and pMem->u.i appropriately.
410 */
411 static u16 numericType(Mem *pMem){
412   if( pMem->flags & (MEM_Int|MEM_Real) ){
413     return pMem->flags & (MEM_Int|MEM_Real);
414   }
415   if( pMem->flags & (MEM_Str|MEM_Blob) ){
416     return computeNumericType(pMem);
417   }
418   return 0;
419 }
420 
421 #ifdef SQLITE_DEBUG
422 /*
423 ** Write a nice string representation of the contents of cell pMem
424 ** into buffer zBuf, length nBuf.
425 */
426 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
427   char *zCsr = zBuf;
428   int f = pMem->flags;
429 
430   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
431 
432   if( f&MEM_Blob ){
433     int i;
434     char c;
435     if( f & MEM_Dyn ){
436       c = 'z';
437       assert( (f & (MEM_Static|MEM_Ephem))==0 );
438     }else if( f & MEM_Static ){
439       c = 't';
440       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
441     }else if( f & MEM_Ephem ){
442       c = 'e';
443       assert( (f & (MEM_Static|MEM_Dyn))==0 );
444     }else{
445       c = 's';
446     }
447     *(zCsr++) = c;
448     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
449     zCsr += sqlite3Strlen30(zCsr);
450     for(i=0; i<16 && i<pMem->n; i++){
451       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
452       zCsr += sqlite3Strlen30(zCsr);
453     }
454     for(i=0; i<16 && i<pMem->n; i++){
455       char z = pMem->z[i];
456       if( z<32 || z>126 ) *zCsr++ = '.';
457       else *zCsr++ = z;
458     }
459     *(zCsr++) = ']';
460     if( f & MEM_Zero ){
461       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
462       zCsr += sqlite3Strlen30(zCsr);
463     }
464     *zCsr = '\0';
465   }else if( f & MEM_Str ){
466     int j, k;
467     zBuf[0] = ' ';
468     if( f & MEM_Dyn ){
469       zBuf[1] = 'z';
470       assert( (f & (MEM_Static|MEM_Ephem))==0 );
471     }else if( f & MEM_Static ){
472       zBuf[1] = 't';
473       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
474     }else if( f & MEM_Ephem ){
475       zBuf[1] = 'e';
476       assert( (f & (MEM_Static|MEM_Dyn))==0 );
477     }else{
478       zBuf[1] = 's';
479     }
480     k = 2;
481     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
482     k += sqlite3Strlen30(&zBuf[k]);
483     zBuf[k++] = '[';
484     for(j=0; j<15 && j<pMem->n; j++){
485       u8 c = pMem->z[j];
486       if( c>=0x20 && c<0x7f ){
487         zBuf[k++] = c;
488       }else{
489         zBuf[k++] = '.';
490       }
491     }
492     zBuf[k++] = ']';
493     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
494     k += sqlite3Strlen30(&zBuf[k]);
495     zBuf[k++] = 0;
496   }
497 }
498 #endif
499 
500 #ifdef SQLITE_DEBUG
501 /*
502 ** Print the value of a register for tracing purposes:
503 */
504 static void memTracePrint(Mem *p){
505   if( p->flags & MEM_Undefined ){
506     printf(" undefined");
507   }else if( p->flags & MEM_Null ){
508     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
509   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
510     printf(" si:%lld", p->u.i);
511   }else if( p->flags & MEM_Int ){
512     printf(" i:%lld", p->u.i);
513 #ifndef SQLITE_OMIT_FLOATING_POINT
514   }else if( p->flags & MEM_Real ){
515     printf(" r:%g", p->u.r);
516 #endif
517   }else if( p->flags & MEM_RowSet ){
518     printf(" (rowset)");
519   }else{
520     char zBuf[200];
521     sqlite3VdbeMemPrettyPrint(p, zBuf);
522     printf(" %s", zBuf);
523   }
524   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
525 }
526 static void registerTrace(int iReg, Mem *p){
527   printf("REG[%d] = ", iReg);
528   memTracePrint(p);
529   printf("\n");
530   sqlite3VdbeCheckMemInvariants(p);
531 }
532 #endif
533 
534 #ifdef SQLITE_DEBUG
535 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
536 #else
537 #  define REGISTER_TRACE(R,M)
538 #endif
539 
540 
541 #ifdef VDBE_PROFILE
542 
543 /*
544 ** hwtime.h contains inline assembler code for implementing
545 ** high-performance timing routines.
546 */
547 #include "hwtime.h"
548 
549 #endif
550 
551 #ifndef NDEBUG
552 /*
553 ** This function is only called from within an assert() expression. It
554 ** checks that the sqlite3.nTransaction variable is correctly set to
555 ** the number of non-transaction savepoints currently in the
556 ** linked list starting at sqlite3.pSavepoint.
557 **
558 ** Usage:
559 **
560 **     assert( checkSavepointCount(db) );
561 */
562 static int checkSavepointCount(sqlite3 *db){
563   int n = 0;
564   Savepoint *p;
565   for(p=db->pSavepoint; p; p=p->pNext) n++;
566   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
567   return 1;
568 }
569 #endif
570 
571 /*
572 ** Return the register of pOp->p2 after first preparing it to be
573 ** overwritten with an integer value.
574 */
575 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
576   sqlite3VdbeMemSetNull(pOut);
577   pOut->flags = MEM_Int;
578   return pOut;
579 }
580 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
581   Mem *pOut;
582   assert( pOp->p2>0 );
583   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
584   pOut = &p->aMem[pOp->p2];
585   memAboutToChange(p, pOut);
586   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
587     return out2PrereleaseWithClear(pOut);
588   }else{
589     pOut->flags = MEM_Int;
590     return pOut;
591   }
592 }
593 
594 
595 /*
596 ** Execute as much of a VDBE program as we can.
597 ** This is the core of sqlite3_step().
598 */
599 int sqlite3VdbeExec(
600   Vdbe *p                    /* The VDBE */
601 ){
602   Op *aOp = p->aOp;          /* Copy of p->aOp */
603   Op *pOp = aOp;             /* Current operation */
604 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
605   Op *pOrigOp;               /* Value of pOp at the top of the loop */
606 #endif
607 #ifdef SQLITE_DEBUG
608   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
609 #endif
610   int rc = SQLITE_OK;        /* Value to return */
611   sqlite3 *db = p->db;       /* The database */
612   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
613   u8 encoding = ENC(db);     /* The database encoding */
614   int iCompare = 0;          /* Result of last comparison */
615   unsigned nVmStep = 0;      /* Number of virtual machine steps */
616 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
617   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
618 #endif
619   Mem *aMem = p->aMem;       /* Copy of p->aMem */
620   Mem *pIn1 = 0;             /* 1st input operand */
621   Mem *pIn2 = 0;             /* 2nd input operand */
622   Mem *pIn3 = 0;             /* 3rd input operand */
623   Mem *pOut = 0;             /* Output operand */
624 #ifdef VDBE_PROFILE
625   u64 start;                 /* CPU clock count at start of opcode */
626 #endif
627   /*** INSERT STACK UNION HERE ***/
628 
629   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
630   sqlite3VdbeEnter(p);
631   if( p->rc==SQLITE_NOMEM ){
632     /* This happens if a malloc() inside a call to sqlite3_column_text() or
633     ** sqlite3_column_text16() failed.  */
634     goto no_mem;
635   }
636   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
637   assert( p->bIsReader || p->readOnly!=0 );
638   p->iCurrentTime = 0;
639   assert( p->explain==0 );
640   p->pResultSet = 0;
641   db->busyHandler.nBusy = 0;
642   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
643   sqlite3VdbeIOTraceSql(p);
644 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
645   if( db->xProgress ){
646     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
647     assert( 0 < db->nProgressOps );
648     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
649   }else{
650     nProgressLimit = 0xffffffff;
651   }
652 #endif
653 #ifdef SQLITE_DEBUG
654   sqlite3BeginBenignMalloc();
655   if( p->pc==0
656    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
657   ){
658     int i;
659     int once = 1;
660     sqlite3VdbePrintSql(p);
661     if( p->db->flags & SQLITE_VdbeListing ){
662       printf("VDBE Program Listing:\n");
663       for(i=0; i<p->nOp; i++){
664         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
665       }
666     }
667     if( p->db->flags & SQLITE_VdbeEQP ){
668       for(i=0; i<p->nOp; i++){
669         if( aOp[i].opcode==OP_Explain ){
670           if( once ) printf("VDBE Query Plan:\n");
671           printf("%s\n", aOp[i].p4.z);
672           once = 0;
673         }
674       }
675     }
676     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
677   }
678   sqlite3EndBenignMalloc();
679 #endif
680   for(pOp=&aOp[p->pc]; 1; pOp++){
681     /* Errors are detected by individual opcodes, with an immediate
682     ** jumps to abort_due_to_error. */
683     assert( rc==SQLITE_OK );
684 
685     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
686 #ifdef VDBE_PROFILE
687     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
688 #endif
689     nVmStep++;
690 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
691     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
692 #endif
693 
694     /* Only allow tracing if SQLITE_DEBUG is defined.
695     */
696 #ifdef SQLITE_DEBUG
697     if( db->flags & SQLITE_VdbeTrace ){
698       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
699     }
700 #endif
701 
702 
703     /* Check to see if we need to simulate an interrupt.  This only happens
704     ** if we have a special test build.
705     */
706 #ifdef SQLITE_TEST
707     if( sqlite3_interrupt_count>0 ){
708       sqlite3_interrupt_count--;
709       if( sqlite3_interrupt_count==0 ){
710         sqlite3_interrupt(db);
711       }
712     }
713 #endif
714 
715     /* Sanity checking on other operands */
716 #ifdef SQLITE_DEBUG
717     {
718       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
719       if( (opProperty & OPFLG_IN1)!=0 ){
720         assert( pOp->p1>0 );
721         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
722         assert( memIsValid(&aMem[pOp->p1]) );
723         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
724         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
725       }
726       if( (opProperty & OPFLG_IN2)!=0 ){
727         assert( pOp->p2>0 );
728         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
729         assert( memIsValid(&aMem[pOp->p2]) );
730         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
731         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
732       }
733       if( (opProperty & OPFLG_IN3)!=0 ){
734         assert( pOp->p3>0 );
735         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
736         assert( memIsValid(&aMem[pOp->p3]) );
737         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
738         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
739       }
740       if( (opProperty & OPFLG_OUT2)!=0 ){
741         assert( pOp->p2>0 );
742         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
743         memAboutToChange(p, &aMem[pOp->p2]);
744       }
745       if( (opProperty & OPFLG_OUT3)!=0 ){
746         assert( pOp->p3>0 );
747         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
748         memAboutToChange(p, &aMem[pOp->p3]);
749       }
750     }
751 #endif
752 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
753     pOrigOp = pOp;
754 #endif
755 
756     switch( pOp->opcode ){
757 
758 /*****************************************************************************
759 ** What follows is a massive switch statement where each case implements a
760 ** separate instruction in the virtual machine.  If we follow the usual
761 ** indentation conventions, each case should be indented by 6 spaces.  But
762 ** that is a lot of wasted space on the left margin.  So the code within
763 ** the switch statement will break with convention and be flush-left. Another
764 ** big comment (similar to this one) will mark the point in the code where
765 ** we transition back to normal indentation.
766 **
767 ** The formatting of each case is important.  The makefile for SQLite
768 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
769 ** file looking for lines that begin with "case OP_".  The opcodes.h files
770 ** will be filled with #defines that give unique integer values to each
771 ** opcode and the opcodes.c file is filled with an array of strings where
772 ** each string is the symbolic name for the corresponding opcode.  If the
773 ** case statement is followed by a comment of the form "/# same as ... #/"
774 ** that comment is used to determine the particular value of the opcode.
775 **
776 ** Other keywords in the comment that follows each case are used to
777 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
778 ** Keywords include: in1, in2, in3, out2, out3.  See
779 ** the mkopcodeh.awk script for additional information.
780 **
781 ** Documentation about VDBE opcodes is generated by scanning this file
782 ** for lines of that contain "Opcode:".  That line and all subsequent
783 ** comment lines are used in the generation of the opcode.html documentation
784 ** file.
785 **
786 ** SUMMARY:
787 **
788 **     Formatting is important to scripts that scan this file.
789 **     Do not deviate from the formatting style currently in use.
790 **
791 *****************************************************************************/
792 
793 /* Opcode:  Goto * P2 * * *
794 **
795 ** An unconditional jump to address P2.
796 ** The next instruction executed will be
797 ** the one at index P2 from the beginning of
798 ** the program.
799 **
800 ** The P1 parameter is not actually used by this opcode.  However, it
801 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
802 ** that this Goto is the bottom of a loop and that the lines from P2 down
803 ** to the current line should be indented for EXPLAIN output.
804 */
805 case OP_Goto: {             /* jump */
806 jump_to_p2_and_check_for_interrupt:
807   pOp = &aOp[pOp->p2 - 1];
808 
809   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
810   ** OP_VNext, or OP_SorterNext) all jump here upon
811   ** completion.  Check to see if sqlite3_interrupt() has been called
812   ** or if the progress callback needs to be invoked.
813   **
814   ** This code uses unstructured "goto" statements and does not look clean.
815   ** But that is not due to sloppy coding habits. The code is written this
816   ** way for performance, to avoid having to run the interrupt and progress
817   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
818   ** faster according to "valgrind --tool=cachegrind" */
819 check_for_interrupt:
820   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
821 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
822   /* Call the progress callback if it is configured and the required number
823   ** of VDBE ops have been executed (either since this invocation of
824   ** sqlite3VdbeExec() or since last time the progress callback was called).
825   ** If the progress callback returns non-zero, exit the virtual machine with
826   ** a return code SQLITE_ABORT.
827   */
828   if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
829     assert( db->nProgressOps!=0 );
830     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
831     if( db->xProgress(db->pProgressArg) ){
832       rc = SQLITE_INTERRUPT;
833       goto abort_due_to_error;
834     }
835   }
836 #endif
837 
838   break;
839 }
840 
841 /* Opcode:  Gosub P1 P2 * * *
842 **
843 ** Write the current address onto register P1
844 ** and then jump to address P2.
845 */
846 case OP_Gosub: {            /* jump */
847   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
848   pIn1 = &aMem[pOp->p1];
849   assert( VdbeMemDynamic(pIn1)==0 );
850   memAboutToChange(p, pIn1);
851   pIn1->flags = MEM_Int;
852   pIn1->u.i = (int)(pOp-aOp);
853   REGISTER_TRACE(pOp->p1, pIn1);
854 
855   /* Most jump operations do a goto to this spot in order to update
856   ** the pOp pointer. */
857 jump_to_p2:
858   pOp = &aOp[pOp->p2 - 1];
859   break;
860 }
861 
862 /* Opcode:  Return P1 * * * *
863 **
864 ** Jump to the next instruction after the address in register P1.  After
865 ** the jump, register P1 becomes undefined.
866 */
867 case OP_Return: {           /* in1 */
868   pIn1 = &aMem[pOp->p1];
869   assert( pIn1->flags==MEM_Int );
870   pOp = &aOp[pIn1->u.i];
871   pIn1->flags = MEM_Undefined;
872   break;
873 }
874 
875 /* Opcode: InitCoroutine P1 P2 P3 * *
876 **
877 ** Set up register P1 so that it will Yield to the coroutine
878 ** located at address P3.
879 **
880 ** If P2!=0 then the coroutine implementation immediately follows
881 ** this opcode.  So jump over the coroutine implementation to
882 ** address P2.
883 **
884 ** See also: EndCoroutine
885 */
886 case OP_InitCoroutine: {     /* jump */
887   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
888   assert( pOp->p2>=0 && pOp->p2<p->nOp );
889   assert( pOp->p3>=0 && pOp->p3<p->nOp );
890   pOut = &aMem[pOp->p1];
891   assert( !VdbeMemDynamic(pOut) );
892   pOut->u.i = pOp->p3 - 1;
893   pOut->flags = MEM_Int;
894   if( pOp->p2 ) goto jump_to_p2;
895   break;
896 }
897 
898 /* Opcode:  EndCoroutine P1 * * * *
899 **
900 ** The instruction at the address in register P1 is a Yield.
901 ** Jump to the P2 parameter of that Yield.
902 ** After the jump, register P1 becomes undefined.
903 **
904 ** See also: InitCoroutine
905 */
906 case OP_EndCoroutine: {           /* in1 */
907   VdbeOp *pCaller;
908   pIn1 = &aMem[pOp->p1];
909   assert( pIn1->flags==MEM_Int );
910   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
911   pCaller = &aOp[pIn1->u.i];
912   assert( pCaller->opcode==OP_Yield );
913   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
914   pOp = &aOp[pCaller->p2 - 1];
915   pIn1->flags = MEM_Undefined;
916   break;
917 }
918 
919 /* Opcode:  Yield P1 P2 * * *
920 **
921 ** Swap the program counter with the value in register P1.  This
922 ** has the effect of yielding to a coroutine.
923 **
924 ** If the coroutine that is launched by this instruction ends with
925 ** Yield or Return then continue to the next instruction.  But if
926 ** the coroutine launched by this instruction ends with
927 ** EndCoroutine, then jump to P2 rather than continuing with the
928 ** next instruction.
929 **
930 ** See also: InitCoroutine
931 */
932 case OP_Yield: {            /* in1, jump */
933   int pcDest;
934   pIn1 = &aMem[pOp->p1];
935   assert( VdbeMemDynamic(pIn1)==0 );
936   pIn1->flags = MEM_Int;
937   pcDest = (int)pIn1->u.i;
938   pIn1->u.i = (int)(pOp - aOp);
939   REGISTER_TRACE(pOp->p1, pIn1);
940   pOp = &aOp[pcDest];
941   break;
942 }
943 
944 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
945 ** Synopsis: if r[P3]=null halt
946 **
947 ** Check the value in register P3.  If it is NULL then Halt using
948 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
949 ** value in register P3 is not NULL, then this routine is a no-op.
950 ** The P5 parameter should be 1.
951 */
952 case OP_HaltIfNull: {      /* in3 */
953   pIn3 = &aMem[pOp->p3];
954 #ifdef SQLITE_DEBUG
955   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
956 #endif
957   if( (pIn3->flags & MEM_Null)==0 ) break;
958   /* Fall through into OP_Halt */
959 }
960 
961 /* Opcode:  Halt P1 P2 * P4 P5
962 **
963 ** Exit immediately.  All open cursors, etc are closed
964 ** automatically.
965 **
966 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
967 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
968 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
969 ** whether or not to rollback the current transaction.  Do not rollback
970 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
971 ** then back out all changes that have occurred during this execution of the
972 ** VDBE, but do not rollback the transaction.
973 **
974 ** If P4 is not null then it is an error message string.
975 **
976 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
977 **
978 **    0:  (no change)
979 **    1:  NOT NULL contraint failed: P4
980 **    2:  UNIQUE constraint failed: P4
981 **    3:  CHECK constraint failed: P4
982 **    4:  FOREIGN KEY constraint failed: P4
983 **
984 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
985 ** omitted.
986 **
987 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
988 ** every program.  So a jump past the last instruction of the program
989 ** is the same as executing Halt.
990 */
991 case OP_Halt: {
992   VdbeFrame *pFrame;
993   int pcx;
994 
995   pcx = (int)(pOp - aOp);
996 #ifdef SQLITE_DEBUG
997   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
998 #endif
999   if( pOp->p1==SQLITE_OK && p->pFrame ){
1000     /* Halt the sub-program. Return control to the parent frame. */
1001     pFrame = p->pFrame;
1002     p->pFrame = pFrame->pParent;
1003     p->nFrame--;
1004     sqlite3VdbeSetChanges(db, p->nChange);
1005     pcx = sqlite3VdbeFrameRestore(pFrame);
1006     if( pOp->p2==OE_Ignore ){
1007       /* Instruction pcx is the OP_Program that invoked the sub-program
1008       ** currently being halted. If the p2 instruction of this OP_Halt
1009       ** instruction is set to OE_Ignore, then the sub-program is throwing
1010       ** an IGNORE exception. In this case jump to the address specified
1011       ** as the p2 of the calling OP_Program.  */
1012       pcx = p->aOp[pcx].p2-1;
1013     }
1014     aOp = p->aOp;
1015     aMem = p->aMem;
1016     pOp = &aOp[pcx];
1017     break;
1018   }
1019   p->rc = pOp->p1;
1020   p->errorAction = (u8)pOp->p2;
1021   p->pc = pcx;
1022   assert( pOp->p5<=4 );
1023   if( p->rc ){
1024     if( pOp->p5 ){
1025       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1026                                              "FOREIGN KEY" };
1027       testcase( pOp->p5==1 );
1028       testcase( pOp->p5==2 );
1029       testcase( pOp->p5==3 );
1030       testcase( pOp->p5==4 );
1031       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1032       if( pOp->p4.z ){
1033         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1034       }
1035     }else{
1036       sqlite3VdbeError(p, "%s", pOp->p4.z);
1037     }
1038     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1039   }
1040   rc = sqlite3VdbeHalt(p);
1041   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1042   if( rc==SQLITE_BUSY ){
1043     p->rc = SQLITE_BUSY;
1044   }else{
1045     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1046     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1047     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1048   }
1049   goto vdbe_return;
1050 }
1051 
1052 /* Opcode: Integer P1 P2 * * *
1053 ** Synopsis: r[P2]=P1
1054 **
1055 ** The 32-bit integer value P1 is written into register P2.
1056 */
1057 case OP_Integer: {         /* out2 */
1058   pOut = out2Prerelease(p, pOp);
1059   pOut->u.i = pOp->p1;
1060   break;
1061 }
1062 
1063 /* Opcode: Int64 * P2 * P4 *
1064 ** Synopsis: r[P2]=P4
1065 **
1066 ** P4 is a pointer to a 64-bit integer value.
1067 ** Write that value into register P2.
1068 */
1069 case OP_Int64: {           /* out2 */
1070   pOut = out2Prerelease(p, pOp);
1071   assert( pOp->p4.pI64!=0 );
1072   pOut->u.i = *pOp->p4.pI64;
1073   break;
1074 }
1075 
1076 #ifndef SQLITE_OMIT_FLOATING_POINT
1077 /* Opcode: Real * P2 * P4 *
1078 ** Synopsis: r[P2]=P4
1079 **
1080 ** P4 is a pointer to a 64-bit floating point value.
1081 ** Write that value into register P2.
1082 */
1083 case OP_Real: {            /* same as TK_FLOAT, out2 */
1084   pOut = out2Prerelease(p, pOp);
1085   pOut->flags = MEM_Real;
1086   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1087   pOut->u.r = *pOp->p4.pReal;
1088   break;
1089 }
1090 #endif
1091 
1092 /* Opcode: String8 * P2 * P4 *
1093 ** Synopsis: r[P2]='P4'
1094 **
1095 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1096 ** into a String opcode before it is executed for the first time.  During
1097 ** this transformation, the length of string P4 is computed and stored
1098 ** as the P1 parameter.
1099 */
1100 case OP_String8: {         /* same as TK_STRING, out2 */
1101   assert( pOp->p4.z!=0 );
1102   pOut = out2Prerelease(p, pOp);
1103   pOp->opcode = OP_String;
1104   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1105 
1106 #ifndef SQLITE_OMIT_UTF16
1107   if( encoding!=SQLITE_UTF8 ){
1108     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1109     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1110     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1111     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1112     assert( VdbeMemDynamic(pOut)==0 );
1113     pOut->szMalloc = 0;
1114     pOut->flags |= MEM_Static;
1115     if( pOp->p4type==P4_DYNAMIC ){
1116       sqlite3DbFree(db, pOp->p4.z);
1117     }
1118     pOp->p4type = P4_DYNAMIC;
1119     pOp->p4.z = pOut->z;
1120     pOp->p1 = pOut->n;
1121   }
1122   testcase( rc==SQLITE_TOOBIG );
1123 #endif
1124   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1125     goto too_big;
1126   }
1127   assert( rc==SQLITE_OK );
1128   /* Fall through to the next case, OP_String */
1129 }
1130 
1131 /* Opcode: String P1 P2 P3 P4 P5
1132 ** Synopsis: r[P2]='P4' (len=P1)
1133 **
1134 ** The string value P4 of length P1 (bytes) is stored in register P2.
1135 **
1136 ** If P3 is not zero and the content of register P3 is equal to P5, then
1137 ** the datatype of the register P2 is converted to BLOB.  The content is
1138 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1139 ** of a string, as if it had been CAST.  In other words:
1140 **
1141 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1142 */
1143 case OP_String: {          /* out2 */
1144   assert( pOp->p4.z!=0 );
1145   pOut = out2Prerelease(p, pOp);
1146   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1147   pOut->z = pOp->p4.z;
1148   pOut->n = pOp->p1;
1149   pOut->enc = encoding;
1150   UPDATE_MAX_BLOBSIZE(pOut);
1151 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1152   if( pOp->p3>0 ){
1153     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1154     pIn3 = &aMem[pOp->p3];
1155     assert( pIn3->flags & MEM_Int );
1156     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1157   }
1158 #endif
1159   break;
1160 }
1161 
1162 /* Opcode: Null P1 P2 P3 * *
1163 ** Synopsis: r[P2..P3]=NULL
1164 **
1165 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1166 ** NULL into register P3 and every register in between P2 and P3.  If P3
1167 ** is less than P2 (typically P3 is zero) then only register P2 is
1168 ** set to NULL.
1169 **
1170 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1171 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1172 ** OP_Ne or OP_Eq.
1173 */
1174 case OP_Null: {           /* out2 */
1175   int cnt;
1176   u16 nullFlag;
1177   pOut = out2Prerelease(p, pOp);
1178   cnt = pOp->p3-pOp->p2;
1179   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1180   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1181   pOut->n = 0;
1182 #ifdef SQLITE_DEBUG
1183   pOut->uTemp = 0;
1184 #endif
1185   while( cnt>0 ){
1186     pOut++;
1187     memAboutToChange(p, pOut);
1188     sqlite3VdbeMemSetNull(pOut);
1189     pOut->flags = nullFlag;
1190     pOut->n = 0;
1191     cnt--;
1192   }
1193   break;
1194 }
1195 
1196 /* Opcode: SoftNull P1 * * * *
1197 ** Synopsis: r[P1]=NULL
1198 **
1199 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1200 ** instruction, but do not free any string or blob memory associated with
1201 ** the register, so that if the value was a string or blob that was
1202 ** previously copied using OP_SCopy, the copies will continue to be valid.
1203 */
1204 case OP_SoftNull: {
1205   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1206   pOut = &aMem[pOp->p1];
1207   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1208   break;
1209 }
1210 
1211 /* Opcode: Blob P1 P2 * P4 *
1212 ** Synopsis: r[P2]=P4 (len=P1)
1213 **
1214 ** P4 points to a blob of data P1 bytes long.  Store this
1215 ** blob in register P2.
1216 */
1217 case OP_Blob: {                /* out2 */
1218   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1219   pOut = out2Prerelease(p, pOp);
1220   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1221   pOut->enc = encoding;
1222   UPDATE_MAX_BLOBSIZE(pOut);
1223   break;
1224 }
1225 
1226 /* Opcode: Variable P1 P2 * P4 *
1227 ** Synopsis: r[P2]=parameter(P1,P4)
1228 **
1229 ** Transfer the values of bound parameter P1 into register P2
1230 **
1231 ** If the parameter is named, then its name appears in P4.
1232 ** The P4 value is used by sqlite3_bind_parameter_name().
1233 */
1234 case OP_Variable: {            /* out2 */
1235   Mem *pVar;       /* Value being transferred */
1236 
1237   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1238   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1239   pVar = &p->aVar[pOp->p1 - 1];
1240   if( sqlite3VdbeMemTooBig(pVar) ){
1241     goto too_big;
1242   }
1243   pOut = &aMem[pOp->p2];
1244   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1245   UPDATE_MAX_BLOBSIZE(pOut);
1246   break;
1247 }
1248 
1249 /* Opcode: Move P1 P2 P3 * *
1250 ** Synopsis: r[P2@P3]=r[P1@P3]
1251 **
1252 ** Move the P3 values in register P1..P1+P3-1 over into
1253 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1254 ** left holding a NULL.  It is an error for register ranges
1255 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1256 ** for P3 to be less than 1.
1257 */
1258 case OP_Move: {
1259   int n;           /* Number of registers left to copy */
1260   int p1;          /* Register to copy from */
1261   int p2;          /* Register to copy to */
1262 
1263   n = pOp->p3;
1264   p1 = pOp->p1;
1265   p2 = pOp->p2;
1266   assert( n>0 && p1>0 && p2>0 );
1267   assert( p1+n<=p2 || p2+n<=p1 );
1268 
1269   pIn1 = &aMem[p1];
1270   pOut = &aMem[p2];
1271   do{
1272     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1273     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1274     assert( memIsValid(pIn1) );
1275     memAboutToChange(p, pOut);
1276     sqlite3VdbeMemMove(pOut, pIn1);
1277 #ifdef SQLITE_DEBUG
1278     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1279       pOut->pScopyFrom += pOp->p2 - p1;
1280     }
1281 #endif
1282     Deephemeralize(pOut);
1283     REGISTER_TRACE(p2++, pOut);
1284     pIn1++;
1285     pOut++;
1286   }while( --n );
1287   break;
1288 }
1289 
1290 /* Opcode: Copy P1 P2 P3 * *
1291 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1292 **
1293 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1294 **
1295 ** This instruction makes a deep copy of the value.  A duplicate
1296 ** is made of any string or blob constant.  See also OP_SCopy.
1297 */
1298 case OP_Copy: {
1299   int n;
1300 
1301   n = pOp->p3;
1302   pIn1 = &aMem[pOp->p1];
1303   pOut = &aMem[pOp->p2];
1304   assert( pOut!=pIn1 );
1305   while( 1 ){
1306     memAboutToChange(p, pOut);
1307     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1308     Deephemeralize(pOut);
1309 #ifdef SQLITE_DEBUG
1310     pOut->pScopyFrom = 0;
1311     pOut->iTabColHash = 0;
1312 #endif
1313     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1314     if( (n--)==0 ) break;
1315     pOut++;
1316     pIn1++;
1317   }
1318   break;
1319 }
1320 
1321 /* Opcode: SCopy P1 P2 * * *
1322 ** Synopsis: r[P2]=r[P1]
1323 **
1324 ** Make a shallow copy of register P1 into register P2.
1325 **
1326 ** This instruction makes a shallow copy of the value.  If the value
1327 ** is a string or blob, then the copy is only a pointer to the
1328 ** original and hence if the original changes so will the copy.
1329 ** Worse, if the original is deallocated, the copy becomes invalid.
1330 ** Thus the program must guarantee that the original will not change
1331 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1332 ** copy.
1333 */
1334 case OP_SCopy: {            /* out2 */
1335   pIn1 = &aMem[pOp->p1];
1336   pOut = &aMem[pOp->p2];
1337   assert( pOut!=pIn1 );
1338   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1339 #ifdef SQLITE_DEBUG
1340   pOut->pScopyFrom = pIn1;
1341   pOut->mScopyFlags = pIn1->flags;
1342 #endif
1343   break;
1344 }
1345 
1346 /* Opcode: IntCopy P1 P2 * * *
1347 ** Synopsis: r[P2]=r[P1]
1348 **
1349 ** Transfer the integer value held in register P1 into register P2.
1350 **
1351 ** This is an optimized version of SCopy that works only for integer
1352 ** values.
1353 */
1354 case OP_IntCopy: {            /* out2 */
1355   pIn1 = &aMem[pOp->p1];
1356   assert( (pIn1->flags & MEM_Int)!=0 );
1357   pOut = &aMem[pOp->p2];
1358   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1359   break;
1360 }
1361 
1362 /* Opcode: ResultRow P1 P2 * * *
1363 ** Synopsis: output=r[P1@P2]
1364 **
1365 ** The registers P1 through P1+P2-1 contain a single row of
1366 ** results. This opcode causes the sqlite3_step() call to terminate
1367 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1368 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1369 ** the result row.
1370 */
1371 case OP_ResultRow: {
1372   Mem *pMem;
1373   int i;
1374   assert( p->nResColumn==pOp->p2 );
1375   assert( pOp->p1>0 );
1376   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1377 
1378 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1379   /* Run the progress counter just before returning.
1380   */
1381   if( db->xProgress!=0
1382    && nVmStep>=nProgressLimit
1383    && db->xProgress(db->pProgressArg)!=0
1384   ){
1385     rc = SQLITE_INTERRUPT;
1386     goto abort_due_to_error;
1387   }
1388 #endif
1389 
1390   /* If this statement has violated immediate foreign key constraints, do
1391   ** not return the number of rows modified. And do not RELEASE the statement
1392   ** transaction. It needs to be rolled back.  */
1393   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1394     assert( db->flags&SQLITE_CountRows );
1395     assert( p->usesStmtJournal );
1396     goto abort_due_to_error;
1397   }
1398 
1399   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1400   ** DML statements invoke this opcode to return the number of rows
1401   ** modified to the user. This is the only way that a VM that
1402   ** opens a statement transaction may invoke this opcode.
1403   **
1404   ** In case this is such a statement, close any statement transaction
1405   ** opened by this VM before returning control to the user. This is to
1406   ** ensure that statement-transactions are always nested, not overlapping.
1407   ** If the open statement-transaction is not closed here, then the user
1408   ** may step another VM that opens its own statement transaction. This
1409   ** may lead to overlapping statement transactions.
1410   **
1411   ** The statement transaction is never a top-level transaction.  Hence
1412   ** the RELEASE call below can never fail.
1413   */
1414   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1415   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1416   assert( rc==SQLITE_OK );
1417 
1418   /* Invalidate all ephemeral cursor row caches */
1419   p->cacheCtr = (p->cacheCtr + 2)|1;
1420 
1421   /* Make sure the results of the current row are \000 terminated
1422   ** and have an assigned type.  The results are de-ephemeralized as
1423   ** a side effect.
1424   */
1425   pMem = p->pResultSet = &aMem[pOp->p1];
1426   for(i=0; i<pOp->p2; i++){
1427     assert( memIsValid(&pMem[i]) );
1428     Deephemeralize(&pMem[i]);
1429     assert( (pMem[i].flags & MEM_Ephem)==0
1430             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1431     sqlite3VdbeMemNulTerminate(&pMem[i]);
1432     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1433   }
1434   if( db->mallocFailed ) goto no_mem;
1435 
1436   if( db->mTrace & SQLITE_TRACE_ROW ){
1437     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1438   }
1439 
1440   /* Return SQLITE_ROW
1441   */
1442   p->pc = (int)(pOp - aOp) + 1;
1443   rc = SQLITE_ROW;
1444   goto vdbe_return;
1445 }
1446 
1447 /* Opcode: Concat P1 P2 P3 * *
1448 ** Synopsis: r[P3]=r[P2]+r[P1]
1449 **
1450 ** Add the text in register P1 onto the end of the text in
1451 ** register P2 and store the result in register P3.
1452 ** If either the P1 or P2 text are NULL then store NULL in P3.
1453 **
1454 **   P3 = P2 || P1
1455 **
1456 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1457 ** if P3 is the same register as P2, the implementation is able
1458 ** to avoid a memcpy().
1459 */
1460 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1461   i64 nByte;
1462 
1463   pIn1 = &aMem[pOp->p1];
1464   pIn2 = &aMem[pOp->p2];
1465   pOut = &aMem[pOp->p3];
1466   assert( pIn1!=pOut );
1467   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1468     sqlite3VdbeMemSetNull(pOut);
1469     break;
1470   }
1471   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1472   Stringify(pIn1, encoding);
1473   Stringify(pIn2, encoding);
1474   nByte = pIn1->n + pIn2->n;
1475   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1476     goto too_big;
1477   }
1478   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1479     goto no_mem;
1480   }
1481   MemSetTypeFlag(pOut, MEM_Str);
1482   if( pOut!=pIn2 ){
1483     memcpy(pOut->z, pIn2->z, pIn2->n);
1484   }
1485   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1486   pOut->z[nByte]=0;
1487   pOut->z[nByte+1] = 0;
1488   pOut->flags |= MEM_Term;
1489   pOut->n = (int)nByte;
1490   pOut->enc = encoding;
1491   UPDATE_MAX_BLOBSIZE(pOut);
1492   break;
1493 }
1494 
1495 /* Opcode: Add P1 P2 P3 * *
1496 ** Synopsis: r[P3]=r[P1]+r[P2]
1497 **
1498 ** Add the value in register P1 to the value in register P2
1499 ** and store the result in register P3.
1500 ** If either input is NULL, the result is NULL.
1501 */
1502 /* Opcode: Multiply P1 P2 P3 * *
1503 ** Synopsis: r[P3]=r[P1]*r[P2]
1504 **
1505 **
1506 ** Multiply the value in register P1 by the value in register P2
1507 ** and store the result in register P3.
1508 ** If either input is NULL, the result is NULL.
1509 */
1510 /* Opcode: Subtract P1 P2 P3 * *
1511 ** Synopsis: r[P3]=r[P2]-r[P1]
1512 **
1513 ** Subtract the value in register P1 from the value in register P2
1514 ** and store the result in register P3.
1515 ** If either input is NULL, the result is NULL.
1516 */
1517 /* Opcode: Divide P1 P2 P3 * *
1518 ** Synopsis: r[P3]=r[P2]/r[P1]
1519 **
1520 ** Divide the value in register P1 by the value in register P2
1521 ** and store the result in register P3 (P3=P2/P1). If the value in
1522 ** register P1 is zero, then the result is NULL. If either input is
1523 ** NULL, the result is NULL.
1524 */
1525 /* Opcode: Remainder P1 P2 P3 * *
1526 ** Synopsis: r[P3]=r[P2]%r[P1]
1527 **
1528 ** Compute the remainder after integer register P2 is divided by
1529 ** register P1 and store the result in register P3.
1530 ** If the value in register P1 is zero the result is NULL.
1531 ** If either operand is NULL, the result is NULL.
1532 */
1533 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1534 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1535 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1536 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1537 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1538   char bIntint;   /* Started out as two integer operands */
1539   u16 flags;      /* Combined MEM_* flags from both inputs */
1540   u16 type1;      /* Numeric type of left operand */
1541   u16 type2;      /* Numeric type of right operand */
1542   i64 iA;         /* Integer value of left operand */
1543   i64 iB;         /* Integer value of right operand */
1544   double rA;      /* Real value of left operand */
1545   double rB;      /* Real value of right operand */
1546 
1547   pIn1 = &aMem[pOp->p1];
1548   type1 = numericType(pIn1);
1549   pIn2 = &aMem[pOp->p2];
1550   type2 = numericType(pIn2);
1551   pOut = &aMem[pOp->p3];
1552   flags = pIn1->flags | pIn2->flags;
1553   if( (type1 & type2 & MEM_Int)!=0 ){
1554     iA = pIn1->u.i;
1555     iB = pIn2->u.i;
1556     bIntint = 1;
1557     switch( pOp->opcode ){
1558       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1559       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1560       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1561       case OP_Divide: {
1562         if( iA==0 ) goto arithmetic_result_is_null;
1563         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1564         iB /= iA;
1565         break;
1566       }
1567       default: {
1568         if( iA==0 ) goto arithmetic_result_is_null;
1569         if( iA==-1 ) iA = 1;
1570         iB %= iA;
1571         break;
1572       }
1573     }
1574     pOut->u.i = iB;
1575     MemSetTypeFlag(pOut, MEM_Int);
1576   }else if( (flags & MEM_Null)!=0 ){
1577     goto arithmetic_result_is_null;
1578   }else{
1579     bIntint = 0;
1580 fp_math:
1581     rA = sqlite3VdbeRealValue(pIn1);
1582     rB = sqlite3VdbeRealValue(pIn2);
1583     switch( pOp->opcode ){
1584       case OP_Add:         rB += rA;       break;
1585       case OP_Subtract:    rB -= rA;       break;
1586       case OP_Multiply:    rB *= rA;       break;
1587       case OP_Divide: {
1588         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1589         if( rA==(double)0 ) goto arithmetic_result_is_null;
1590         rB /= rA;
1591         break;
1592       }
1593       default: {
1594         iA = (i64)rA;
1595         iB = (i64)rB;
1596         if( iA==0 ) goto arithmetic_result_is_null;
1597         if( iA==-1 ) iA = 1;
1598         rB = (double)(iB % iA);
1599         break;
1600       }
1601     }
1602 #ifdef SQLITE_OMIT_FLOATING_POINT
1603     pOut->u.i = rB;
1604     MemSetTypeFlag(pOut, MEM_Int);
1605 #else
1606     if( sqlite3IsNaN(rB) ){
1607       goto arithmetic_result_is_null;
1608     }
1609     pOut->u.r = rB;
1610     MemSetTypeFlag(pOut, MEM_Real);
1611     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1612       sqlite3VdbeIntegerAffinity(pOut);
1613     }
1614 #endif
1615   }
1616   break;
1617 
1618 arithmetic_result_is_null:
1619   sqlite3VdbeMemSetNull(pOut);
1620   break;
1621 }
1622 
1623 /* Opcode: CollSeq P1 * * P4
1624 **
1625 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1626 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1627 ** be returned. This is used by the built-in min(), max() and nullif()
1628 ** functions.
1629 **
1630 ** If P1 is not zero, then it is a register that a subsequent min() or
1631 ** max() aggregate will set to 1 if the current row is not the minimum or
1632 ** maximum.  The P1 register is initialized to 0 by this instruction.
1633 **
1634 ** The interface used by the implementation of the aforementioned functions
1635 ** to retrieve the collation sequence set by this opcode is not available
1636 ** publicly.  Only built-in functions have access to this feature.
1637 */
1638 case OP_CollSeq: {
1639   assert( pOp->p4type==P4_COLLSEQ );
1640   if( pOp->p1 ){
1641     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1642   }
1643   break;
1644 }
1645 
1646 /* Opcode: BitAnd P1 P2 P3 * *
1647 ** Synopsis: r[P3]=r[P1]&r[P2]
1648 **
1649 ** Take the bit-wise AND of the values in register P1 and P2 and
1650 ** store the result in register P3.
1651 ** If either input is NULL, the result is NULL.
1652 */
1653 /* Opcode: BitOr P1 P2 P3 * *
1654 ** Synopsis: r[P3]=r[P1]|r[P2]
1655 **
1656 ** Take the bit-wise OR of the values in register P1 and P2 and
1657 ** store the result in register P3.
1658 ** If either input is NULL, the result is NULL.
1659 */
1660 /* Opcode: ShiftLeft P1 P2 P3 * *
1661 ** Synopsis: r[P3]=r[P2]<<r[P1]
1662 **
1663 ** Shift the integer value in register P2 to the left by the
1664 ** number of bits specified by the integer in register P1.
1665 ** Store the result in register P3.
1666 ** If either input is NULL, the result is NULL.
1667 */
1668 /* Opcode: ShiftRight P1 P2 P3 * *
1669 ** Synopsis: r[P3]=r[P2]>>r[P1]
1670 **
1671 ** Shift the integer value in register P2 to the right by the
1672 ** number of bits specified by the integer in register P1.
1673 ** Store the result in register P3.
1674 ** If either input is NULL, the result is NULL.
1675 */
1676 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1677 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1678 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1679 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1680   i64 iA;
1681   u64 uA;
1682   i64 iB;
1683   u8 op;
1684 
1685   pIn1 = &aMem[pOp->p1];
1686   pIn2 = &aMem[pOp->p2];
1687   pOut = &aMem[pOp->p3];
1688   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1689     sqlite3VdbeMemSetNull(pOut);
1690     break;
1691   }
1692   iA = sqlite3VdbeIntValue(pIn2);
1693   iB = sqlite3VdbeIntValue(pIn1);
1694   op = pOp->opcode;
1695   if( op==OP_BitAnd ){
1696     iA &= iB;
1697   }else if( op==OP_BitOr ){
1698     iA |= iB;
1699   }else if( iB!=0 ){
1700     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1701 
1702     /* If shifting by a negative amount, shift in the other direction */
1703     if( iB<0 ){
1704       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1705       op = 2*OP_ShiftLeft + 1 - op;
1706       iB = iB>(-64) ? -iB : 64;
1707     }
1708 
1709     if( iB>=64 ){
1710       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1711     }else{
1712       memcpy(&uA, &iA, sizeof(uA));
1713       if( op==OP_ShiftLeft ){
1714         uA <<= iB;
1715       }else{
1716         uA >>= iB;
1717         /* Sign-extend on a right shift of a negative number */
1718         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1719       }
1720       memcpy(&iA, &uA, sizeof(iA));
1721     }
1722   }
1723   pOut->u.i = iA;
1724   MemSetTypeFlag(pOut, MEM_Int);
1725   break;
1726 }
1727 
1728 /* Opcode: AddImm  P1 P2 * * *
1729 ** Synopsis: r[P1]=r[P1]+P2
1730 **
1731 ** Add the constant P2 to the value in register P1.
1732 ** The result is always an integer.
1733 **
1734 ** To force any register to be an integer, just add 0.
1735 */
1736 case OP_AddImm: {            /* in1 */
1737   pIn1 = &aMem[pOp->p1];
1738   memAboutToChange(p, pIn1);
1739   sqlite3VdbeMemIntegerify(pIn1);
1740   pIn1->u.i += pOp->p2;
1741   break;
1742 }
1743 
1744 /* Opcode: MustBeInt P1 P2 * * *
1745 **
1746 ** Force the value in register P1 to be an integer.  If the value
1747 ** in P1 is not an integer and cannot be converted into an integer
1748 ** without data loss, then jump immediately to P2, or if P2==0
1749 ** raise an SQLITE_MISMATCH exception.
1750 */
1751 case OP_MustBeInt: {            /* jump, in1 */
1752   pIn1 = &aMem[pOp->p1];
1753   if( (pIn1->flags & MEM_Int)==0 ){
1754     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1755     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1756     if( (pIn1->flags & MEM_Int)==0 ){
1757       if( pOp->p2==0 ){
1758         rc = SQLITE_MISMATCH;
1759         goto abort_due_to_error;
1760       }else{
1761         goto jump_to_p2;
1762       }
1763     }
1764   }
1765   MemSetTypeFlag(pIn1, MEM_Int);
1766   break;
1767 }
1768 
1769 #ifndef SQLITE_OMIT_FLOATING_POINT
1770 /* Opcode: RealAffinity P1 * * * *
1771 **
1772 ** If register P1 holds an integer convert it to a real value.
1773 **
1774 ** This opcode is used when extracting information from a column that
1775 ** has REAL affinity.  Such column values may still be stored as
1776 ** integers, for space efficiency, but after extraction we want them
1777 ** to have only a real value.
1778 */
1779 case OP_RealAffinity: {                  /* in1 */
1780   pIn1 = &aMem[pOp->p1];
1781   if( pIn1->flags & MEM_Int ){
1782     sqlite3VdbeMemRealify(pIn1);
1783   }
1784   break;
1785 }
1786 #endif
1787 
1788 #ifndef SQLITE_OMIT_CAST
1789 /* Opcode: Cast P1 P2 * * *
1790 ** Synopsis: affinity(r[P1])
1791 **
1792 ** Force the value in register P1 to be the type defined by P2.
1793 **
1794 ** <ul>
1795 ** <li> P2=='A' &rarr; BLOB
1796 ** <li> P2=='B' &rarr; TEXT
1797 ** <li> P2=='C' &rarr; NUMERIC
1798 ** <li> P2=='D' &rarr; INTEGER
1799 ** <li> P2=='E' &rarr; REAL
1800 ** </ul>
1801 **
1802 ** A NULL value is not changed by this routine.  It remains NULL.
1803 */
1804 case OP_Cast: {                  /* in1 */
1805   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1806   testcase( pOp->p2==SQLITE_AFF_TEXT );
1807   testcase( pOp->p2==SQLITE_AFF_BLOB );
1808   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1809   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1810   testcase( pOp->p2==SQLITE_AFF_REAL );
1811   pIn1 = &aMem[pOp->p1];
1812   memAboutToChange(p, pIn1);
1813   rc = ExpandBlob(pIn1);
1814   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1815   UPDATE_MAX_BLOBSIZE(pIn1);
1816   if( rc ) goto abort_due_to_error;
1817   break;
1818 }
1819 #endif /* SQLITE_OMIT_CAST */
1820 
1821 /* Opcode: Eq P1 P2 P3 P4 P5
1822 ** Synopsis: IF r[P3]==r[P1]
1823 **
1824 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1825 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1826 ** store the result of comparison in register P2.
1827 **
1828 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1829 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1830 ** to coerce both inputs according to this affinity before the
1831 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1832 ** affinity is used. Note that the affinity conversions are stored
1833 ** back into the input registers P1 and P3.  So this opcode can cause
1834 ** persistent changes to registers P1 and P3.
1835 **
1836 ** Once any conversions have taken place, and neither value is NULL,
1837 ** the values are compared. If both values are blobs then memcmp() is
1838 ** used to determine the results of the comparison.  If both values
1839 ** are text, then the appropriate collating function specified in
1840 ** P4 is used to do the comparison.  If P4 is not specified then
1841 ** memcmp() is used to compare text string.  If both values are
1842 ** numeric, then a numeric comparison is used. If the two values
1843 ** are of different types, then numbers are considered less than
1844 ** strings and strings are considered less than blobs.
1845 **
1846 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1847 ** true or false and is never NULL.  If both operands are NULL then the result
1848 ** of comparison is true.  If either operand is NULL then the result is false.
1849 ** If neither operand is NULL the result is the same as it would be if
1850 ** the SQLITE_NULLEQ flag were omitted from P5.
1851 **
1852 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1853 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1854 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1855 */
1856 /* Opcode: Ne P1 P2 P3 P4 P5
1857 ** Synopsis: IF r[P3]!=r[P1]
1858 **
1859 ** This works just like the Eq opcode except that the jump is taken if
1860 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1861 ** additional information.
1862 **
1863 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1864 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1865 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1866 */
1867 /* Opcode: Lt P1 P2 P3 P4 P5
1868 ** Synopsis: IF r[P3]<r[P1]
1869 **
1870 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1871 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1872 ** the result of comparison (0 or 1 or NULL) into register P2.
1873 **
1874 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1875 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1876 ** bit is clear then fall through if either operand is NULL.
1877 **
1878 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1879 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1880 ** to coerce both inputs according to this affinity before the
1881 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1882 ** affinity is used. Note that the affinity conversions are stored
1883 ** back into the input registers P1 and P3.  So this opcode can cause
1884 ** persistent changes to registers P1 and P3.
1885 **
1886 ** Once any conversions have taken place, and neither value is NULL,
1887 ** the values are compared. If both values are blobs then memcmp() is
1888 ** used to determine the results of the comparison.  If both values
1889 ** are text, then the appropriate collating function specified in
1890 ** P4 is  used to do the comparison.  If P4 is not specified then
1891 ** memcmp() is used to compare text string.  If both values are
1892 ** numeric, then a numeric comparison is used. If the two values
1893 ** are of different types, then numbers are considered less than
1894 ** strings and strings are considered less than blobs.
1895 */
1896 /* Opcode: Le P1 P2 P3 P4 P5
1897 ** Synopsis: IF r[P3]<=r[P1]
1898 **
1899 ** This works just like the Lt opcode except that the jump is taken if
1900 ** the content of register P3 is less than or equal to the content of
1901 ** register P1.  See the Lt opcode for additional information.
1902 */
1903 /* Opcode: Gt P1 P2 P3 P4 P5
1904 ** Synopsis: IF r[P3]>r[P1]
1905 **
1906 ** This works just like the Lt opcode except that the jump is taken if
1907 ** the content of register P3 is greater than the content of
1908 ** register P1.  See the Lt opcode for additional information.
1909 */
1910 /* Opcode: Ge P1 P2 P3 P4 P5
1911 ** Synopsis: IF r[P3]>=r[P1]
1912 **
1913 ** This works just like the Lt opcode except that the jump is taken if
1914 ** the content of register P3 is greater than or equal to the content of
1915 ** register P1.  See the Lt opcode for additional information.
1916 */
1917 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1918 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1919 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1920 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1921 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1922 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1923   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1924   char affinity;      /* Affinity to use for comparison */
1925   u16 flags1;         /* Copy of initial value of pIn1->flags */
1926   u16 flags3;         /* Copy of initial value of pIn3->flags */
1927 
1928   pIn1 = &aMem[pOp->p1];
1929   pIn3 = &aMem[pOp->p3];
1930   flags1 = pIn1->flags;
1931   flags3 = pIn3->flags;
1932   if( (flags1 | flags3)&MEM_Null ){
1933     /* One or both operands are NULL */
1934     if( pOp->p5 & SQLITE_NULLEQ ){
1935       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1936       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1937       ** or not both operands are null.
1938       */
1939       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1940       assert( (flags1 & MEM_Cleared)==0 );
1941       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1942       if( (flags1&flags3&MEM_Null)!=0
1943        && (flags3&MEM_Cleared)==0
1944       ){
1945         res = 0;  /* Operands are equal */
1946       }else{
1947         res = 1;  /* Operands are not equal */
1948       }
1949     }else{
1950       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1951       ** then the result is always NULL.
1952       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1953       */
1954       if( pOp->p5 & SQLITE_STOREP2 ){
1955         pOut = &aMem[pOp->p2];
1956         iCompare = 1;    /* Operands are not equal */
1957         memAboutToChange(p, pOut);
1958         MemSetTypeFlag(pOut, MEM_Null);
1959         REGISTER_TRACE(pOp->p2, pOut);
1960       }else{
1961         VdbeBranchTaken(2,3);
1962         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1963           goto jump_to_p2;
1964         }
1965       }
1966       break;
1967     }
1968   }else{
1969     /* Neither operand is NULL.  Do a comparison. */
1970     affinity = pOp->p5 & SQLITE_AFF_MASK;
1971     if( affinity>=SQLITE_AFF_NUMERIC ){
1972       if( (flags1 | flags3)&MEM_Str ){
1973         if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1974           applyNumericAffinity(pIn1,0);
1975           testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
1976           flags3 = pIn3->flags;
1977         }
1978         if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1979           applyNumericAffinity(pIn3,0);
1980         }
1981       }
1982       /* Handle the common case of integer comparison here, as an
1983       ** optimization, to avoid a call to sqlite3MemCompare() */
1984       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1985         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1986         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1987         res = 0;
1988         goto compare_op;
1989       }
1990     }else if( affinity==SQLITE_AFF_TEXT ){
1991       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
1992         testcase( pIn1->flags & MEM_Int );
1993         testcase( pIn1->flags & MEM_Real );
1994         sqlite3VdbeMemStringify(pIn1, encoding, 1);
1995         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1996         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1997         assert( pIn1!=pIn3 );
1998       }
1999       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2000         testcase( pIn3->flags & MEM_Int );
2001         testcase( pIn3->flags & MEM_Real );
2002         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2003         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2004         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2005       }
2006     }
2007     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2008     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2009   }
2010 compare_op:
2011   /* At this point, res is negative, zero, or positive if reg[P1] is
2012   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2013   ** the answer to this operator in res2, depending on what the comparison
2014   ** operator actually is.  The next block of code depends on the fact
2015   ** that the 6 comparison operators are consecutive integers in this
2016   ** order:  NE, EQ, GT, LE, LT, GE */
2017   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2018   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2019   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2020     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2021     res2 = aLTb[pOp->opcode - OP_Ne];
2022   }else if( res==0 ){
2023     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2024     res2 = aEQb[pOp->opcode - OP_Ne];
2025   }else{
2026     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2027     res2 = aGTb[pOp->opcode - OP_Ne];
2028   }
2029 
2030   /* Undo any changes made by applyAffinity() to the input registers. */
2031   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2032   pIn1->flags = flags1;
2033   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2034   pIn3->flags = flags3;
2035 
2036   if( pOp->p5 & SQLITE_STOREP2 ){
2037     pOut = &aMem[pOp->p2];
2038     iCompare = res;
2039     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2040       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2041       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2042       ** is only used in contexts where either:
2043       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2044       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2045       ** Therefore it is not necessary to check the content of r[P2] for
2046       ** NULL. */
2047       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2048       assert( res2==0 || res2==1 );
2049       testcase( res2==0 && pOp->opcode==OP_Eq );
2050       testcase( res2==1 && pOp->opcode==OP_Eq );
2051       testcase( res2==0 && pOp->opcode==OP_Ne );
2052       testcase( res2==1 && pOp->opcode==OP_Ne );
2053       if( (pOp->opcode==OP_Eq)==res2 ) break;
2054     }
2055     memAboutToChange(p, pOut);
2056     MemSetTypeFlag(pOut, MEM_Int);
2057     pOut->u.i = res2;
2058     REGISTER_TRACE(pOp->p2, pOut);
2059   }else{
2060     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2061     if( res2 ){
2062       goto jump_to_p2;
2063     }
2064   }
2065   break;
2066 }
2067 
2068 /* Opcode: ElseNotEq * P2 * * *
2069 **
2070 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2071 ** If result of an OP_Eq comparison on the same two operands
2072 ** would have be NULL or false (0), then then jump to P2.
2073 ** If the result of an OP_Eq comparison on the two previous operands
2074 ** would have been true (1), then fall through.
2075 */
2076 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2077   assert( pOp>aOp );
2078   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2079   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2080   VdbeBranchTaken(iCompare!=0, 2);
2081   if( iCompare!=0 ) goto jump_to_p2;
2082   break;
2083 }
2084 
2085 
2086 /* Opcode: Permutation * * * P4 *
2087 **
2088 ** Set the permutation used by the OP_Compare operator in the next
2089 ** instruction.  The permutation is stored in the P4 operand.
2090 **
2091 ** The permutation is only valid until the next OP_Compare that has
2092 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2093 ** occur immediately prior to the OP_Compare.
2094 **
2095 ** The first integer in the P4 integer array is the length of the array
2096 ** and does not become part of the permutation.
2097 */
2098 case OP_Permutation: {
2099   assert( pOp->p4type==P4_INTARRAY );
2100   assert( pOp->p4.ai );
2101   assert( pOp[1].opcode==OP_Compare );
2102   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2103   break;
2104 }
2105 
2106 /* Opcode: Compare P1 P2 P3 P4 P5
2107 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2108 **
2109 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2110 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2111 ** the comparison for use by the next OP_Jump instruct.
2112 **
2113 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2114 ** determined by the most recent OP_Permutation operator.  If the
2115 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2116 ** order.
2117 **
2118 ** P4 is a KeyInfo structure that defines collating sequences and sort
2119 ** orders for the comparison.  The permutation applies to registers
2120 ** only.  The KeyInfo elements are used sequentially.
2121 **
2122 ** The comparison is a sort comparison, so NULLs compare equal,
2123 ** NULLs are less than numbers, numbers are less than strings,
2124 ** and strings are less than blobs.
2125 */
2126 case OP_Compare: {
2127   int n;
2128   int i;
2129   int p1;
2130   int p2;
2131   const KeyInfo *pKeyInfo;
2132   int idx;
2133   CollSeq *pColl;    /* Collating sequence to use on this term */
2134   int bRev;          /* True for DESCENDING sort order */
2135   int *aPermute;     /* The permutation */
2136 
2137   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2138     aPermute = 0;
2139   }else{
2140     assert( pOp>aOp );
2141     assert( pOp[-1].opcode==OP_Permutation );
2142     assert( pOp[-1].p4type==P4_INTARRAY );
2143     aPermute = pOp[-1].p4.ai + 1;
2144     assert( aPermute!=0 );
2145   }
2146   n = pOp->p3;
2147   pKeyInfo = pOp->p4.pKeyInfo;
2148   assert( n>0 );
2149   assert( pKeyInfo!=0 );
2150   p1 = pOp->p1;
2151   p2 = pOp->p2;
2152 #ifdef SQLITE_DEBUG
2153   if( aPermute ){
2154     int k, mx = 0;
2155     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2156     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2157     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2158   }else{
2159     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2160     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2161   }
2162 #endif /* SQLITE_DEBUG */
2163   for(i=0; i<n; i++){
2164     idx = aPermute ? aPermute[i] : i;
2165     assert( memIsValid(&aMem[p1+idx]) );
2166     assert( memIsValid(&aMem[p2+idx]) );
2167     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2168     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2169     assert( i<pKeyInfo->nKeyField );
2170     pColl = pKeyInfo->aColl[i];
2171     bRev = pKeyInfo->aSortOrder[i];
2172     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2173     if( iCompare ){
2174       if( bRev ) iCompare = -iCompare;
2175       break;
2176     }
2177   }
2178   break;
2179 }
2180 
2181 /* Opcode: Jump P1 P2 P3 * *
2182 **
2183 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2184 ** in the most recent OP_Compare instruction the P1 vector was less than
2185 ** equal to, or greater than the P2 vector, respectively.
2186 */
2187 case OP_Jump: {             /* jump */
2188   if( iCompare<0 ){
2189     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2190   }else if( iCompare==0 ){
2191     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2192   }else{
2193     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2194   }
2195   break;
2196 }
2197 
2198 /* Opcode: And P1 P2 P3 * *
2199 ** Synopsis: r[P3]=(r[P1] && r[P2])
2200 **
2201 ** Take the logical AND of the values in registers P1 and P2 and
2202 ** write the result into register P3.
2203 **
2204 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2205 ** the other input is NULL.  A NULL and true or two NULLs give
2206 ** a NULL output.
2207 */
2208 /* Opcode: Or P1 P2 P3 * *
2209 ** Synopsis: r[P3]=(r[P1] || r[P2])
2210 **
2211 ** Take the logical OR of the values in register P1 and P2 and
2212 ** store the answer in register P3.
2213 **
2214 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2215 ** even if the other input is NULL.  A NULL and false or two NULLs
2216 ** give a NULL output.
2217 */
2218 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2219 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2220   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2221   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2222 
2223   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2224   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2225   if( pOp->opcode==OP_And ){
2226     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2227     v1 = and_logic[v1*3+v2];
2228   }else{
2229     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2230     v1 = or_logic[v1*3+v2];
2231   }
2232   pOut = &aMem[pOp->p3];
2233   if( v1==2 ){
2234     MemSetTypeFlag(pOut, MEM_Null);
2235   }else{
2236     pOut->u.i = v1;
2237     MemSetTypeFlag(pOut, MEM_Int);
2238   }
2239   break;
2240 }
2241 
2242 /* Opcode: IsTrue P1 P2 P3 P4 *
2243 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2244 **
2245 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2246 ** IS NOT FALSE operators.
2247 **
2248 ** Interpret the value in register P1 as a boolean value.  Store that
2249 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2250 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2251 ** is 1.
2252 **
2253 ** The logic is summarized like this:
2254 **
2255 ** <ul>
2256 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2257 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2258 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2259 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2260 ** </ul>
2261 */
2262 case OP_IsTrue: {               /* in1, out2 */
2263   assert( pOp->p4type==P4_INT32 );
2264   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2265   assert( pOp->p3==0 || pOp->p3==1 );
2266   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2267       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2268   break;
2269 }
2270 
2271 /* Opcode: Not P1 P2 * * *
2272 ** Synopsis: r[P2]= !r[P1]
2273 **
2274 ** Interpret the value in register P1 as a boolean value.  Store the
2275 ** boolean complement in register P2.  If the value in register P1 is
2276 ** NULL, then a NULL is stored in P2.
2277 */
2278 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2279   pIn1 = &aMem[pOp->p1];
2280   pOut = &aMem[pOp->p2];
2281   if( (pIn1->flags & MEM_Null)==0 ){
2282     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2283   }else{
2284     sqlite3VdbeMemSetNull(pOut);
2285   }
2286   break;
2287 }
2288 
2289 /* Opcode: BitNot P1 P2 * * *
2290 ** Synopsis: r[P2]= ~r[P1]
2291 **
2292 ** Interpret the content of register P1 as an integer.  Store the
2293 ** ones-complement of the P1 value into register P2.  If P1 holds
2294 ** a NULL then store a NULL in P2.
2295 */
2296 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2297   pIn1 = &aMem[pOp->p1];
2298   pOut = &aMem[pOp->p2];
2299   sqlite3VdbeMemSetNull(pOut);
2300   if( (pIn1->flags & MEM_Null)==0 ){
2301     pOut->flags = MEM_Int;
2302     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2303   }
2304   break;
2305 }
2306 
2307 /* Opcode: Once P1 P2 * * *
2308 **
2309 ** Fall through to the next instruction the first time this opcode is
2310 ** encountered on each invocation of the byte-code program.  Jump to P2
2311 ** on the second and all subsequent encounters during the same invocation.
2312 **
2313 ** Top-level programs determine first invocation by comparing the P1
2314 ** operand against the P1 operand on the OP_Init opcode at the beginning
2315 ** of the program.  If the P1 values differ, then fall through and make
2316 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2317 ** the same then take the jump.
2318 **
2319 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2320 ** whether or not the jump should be taken.  The bitmask is necessary
2321 ** because the self-altering code trick does not work for recursive
2322 ** triggers.
2323 */
2324 case OP_Once: {             /* jump */
2325   u32 iAddr;                /* Address of this instruction */
2326   assert( p->aOp[0].opcode==OP_Init );
2327   if( p->pFrame ){
2328     iAddr = (int)(pOp - p->aOp);
2329     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2330       VdbeBranchTaken(1, 2);
2331       goto jump_to_p2;
2332     }
2333     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2334   }else{
2335     if( p->aOp[0].p1==pOp->p1 ){
2336       VdbeBranchTaken(1, 2);
2337       goto jump_to_p2;
2338     }
2339   }
2340   VdbeBranchTaken(0, 2);
2341   pOp->p1 = p->aOp[0].p1;
2342   break;
2343 }
2344 
2345 /* Opcode: If P1 P2 P3 * *
2346 **
2347 ** Jump to P2 if the value in register P1 is true.  The value
2348 ** is considered true if it is numeric and non-zero.  If the value
2349 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2350 */
2351 case OP_If:  {               /* jump, in1 */
2352   int c;
2353   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2354   VdbeBranchTaken(c!=0, 2);
2355   if( c ) goto jump_to_p2;
2356   break;
2357 }
2358 
2359 /* Opcode: IfNot P1 P2 P3 * *
2360 **
2361 ** Jump to P2 if the value in register P1 is False.  The value
2362 ** is considered false if it has a numeric value of zero.  If the value
2363 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2364 */
2365 case OP_IfNot: {            /* jump, in1 */
2366   int c;
2367   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2368   VdbeBranchTaken(c!=0, 2);
2369   if( c ) goto jump_to_p2;
2370   break;
2371 }
2372 
2373 /* Opcode: IsNull P1 P2 * * *
2374 ** Synopsis: if r[P1]==NULL goto P2
2375 **
2376 ** Jump to P2 if the value in register P1 is NULL.
2377 */
2378 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2379   pIn1 = &aMem[pOp->p1];
2380   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2381   if( (pIn1->flags & MEM_Null)!=0 ){
2382     goto jump_to_p2;
2383   }
2384   break;
2385 }
2386 
2387 /* Opcode: NotNull P1 P2 * * *
2388 ** Synopsis: if r[P1]!=NULL goto P2
2389 **
2390 ** Jump to P2 if the value in register P1 is not NULL.
2391 */
2392 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2393   pIn1 = &aMem[pOp->p1];
2394   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2395   if( (pIn1->flags & MEM_Null)==0 ){
2396     goto jump_to_p2;
2397   }
2398   break;
2399 }
2400 
2401 /* Opcode: IfNullRow P1 P2 P3 * *
2402 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2403 **
2404 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2405 ** If it is, then set register P3 to NULL and jump immediately to P2.
2406 ** If P1 is not on a NULL row, then fall through without making any
2407 ** changes.
2408 */
2409 case OP_IfNullRow: {         /* jump */
2410   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2411   assert( p->apCsr[pOp->p1]!=0 );
2412   if( p->apCsr[pOp->p1]->nullRow ){
2413     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2414     goto jump_to_p2;
2415   }
2416   break;
2417 }
2418 
2419 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2420 /* Opcode: Offset P1 P2 P3 * *
2421 ** Synopsis: r[P3] = sqlite_offset(P1)
2422 **
2423 ** Store in register r[P3] the byte offset into the database file that is the
2424 ** start of the payload for the record at which that cursor P1 is currently
2425 ** pointing.
2426 **
2427 ** P2 is the column number for the argument to the sqlite_offset() function.
2428 ** This opcode does not use P2 itself, but the P2 value is used by the
2429 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2430 ** same as for OP_Column.
2431 **
2432 ** This opcode is only available if SQLite is compiled with the
2433 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2434 */
2435 case OP_Offset: {          /* out3 */
2436   VdbeCursor *pC;    /* The VDBE cursor */
2437   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2438   pC = p->apCsr[pOp->p1];
2439   pOut = &p->aMem[pOp->p3];
2440   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2441     sqlite3VdbeMemSetNull(pOut);
2442   }else{
2443     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2444   }
2445   break;
2446 }
2447 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2448 
2449 /* Opcode: Column P1 P2 P3 P4 P5
2450 ** Synopsis: r[P3]=PX
2451 **
2452 ** Interpret the data that cursor P1 points to as a structure built using
2453 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2454 ** information about the format of the data.)  Extract the P2-th column
2455 ** from this record.  If there are less that (P2+1)
2456 ** values in the record, extract a NULL.
2457 **
2458 ** The value extracted is stored in register P3.
2459 **
2460 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2461 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2462 ** the result.
2463 **
2464 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2465 ** then the cache of the cursor is reset prior to extracting the column.
2466 ** The first OP_Column against a pseudo-table after the value of the content
2467 ** register has changed should have this bit set.
2468 **
2469 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2470 ** the result is guaranteed to only be used as the argument of a length()
2471 ** or typeof() function, respectively.  The loading of large blobs can be
2472 ** skipped for length() and all content loading can be skipped for typeof().
2473 */
2474 case OP_Column: {
2475   int p2;            /* column number to retrieve */
2476   VdbeCursor *pC;    /* The VDBE cursor */
2477   BtCursor *pCrsr;   /* The BTree cursor */
2478   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2479   int len;           /* The length of the serialized data for the column */
2480   int i;             /* Loop counter */
2481   Mem *pDest;        /* Where to write the extracted value */
2482   Mem sMem;          /* For storing the record being decoded */
2483   const u8 *zData;   /* Part of the record being decoded */
2484   const u8 *zHdr;    /* Next unparsed byte of the header */
2485   const u8 *zEndHdr; /* Pointer to first byte after the header */
2486   u64 offset64;      /* 64-bit offset */
2487   u32 t;             /* A type code from the record header */
2488   Mem *pReg;         /* PseudoTable input register */
2489 
2490   pC = p->apCsr[pOp->p1];
2491   p2 = pOp->p2;
2492 
2493   /* If the cursor cache is stale (meaning it is not currently point at
2494   ** the correct row) then bring it up-to-date by doing the necessary
2495   ** B-Tree seek. */
2496   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2497   if( rc ) goto abort_due_to_error;
2498 
2499   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2500   pDest = &aMem[pOp->p3];
2501   memAboutToChange(p, pDest);
2502   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2503   assert( pC!=0 );
2504   assert( p2<pC->nField );
2505   aOffset = pC->aOffset;
2506   assert( pC->eCurType!=CURTYPE_VTAB );
2507   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2508   assert( pC->eCurType!=CURTYPE_SORTER );
2509 
2510   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2511     if( pC->nullRow ){
2512       if( pC->eCurType==CURTYPE_PSEUDO ){
2513         /* For the special case of as pseudo-cursor, the seekResult field
2514         ** identifies the register that holds the record */
2515         assert( pC->seekResult>0 );
2516         pReg = &aMem[pC->seekResult];
2517         assert( pReg->flags & MEM_Blob );
2518         assert( memIsValid(pReg) );
2519         pC->payloadSize = pC->szRow = pReg->n;
2520         pC->aRow = (u8*)pReg->z;
2521       }else{
2522         sqlite3VdbeMemSetNull(pDest);
2523         goto op_column_out;
2524       }
2525     }else{
2526       pCrsr = pC->uc.pCursor;
2527       assert( pC->eCurType==CURTYPE_BTREE );
2528       assert( pCrsr );
2529       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2530       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2531       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2532       assert( pC->szRow<=pC->payloadSize );
2533       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2534       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2535         goto too_big;
2536       }
2537     }
2538     pC->cacheStatus = p->cacheCtr;
2539     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2540     pC->nHdrParsed = 0;
2541 
2542 
2543     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2544       /* pC->aRow does not have to hold the entire row, but it does at least
2545       ** need to cover the header of the record.  If pC->aRow does not contain
2546       ** the complete header, then set it to zero, forcing the header to be
2547       ** dynamically allocated. */
2548       pC->aRow = 0;
2549       pC->szRow = 0;
2550 
2551       /* Make sure a corrupt database has not given us an oversize header.
2552       ** Do this now to avoid an oversize memory allocation.
2553       **
2554       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2555       ** types use so much data space that there can only be 4096 and 32 of
2556       ** them, respectively.  So the maximum header length results from a
2557       ** 3-byte type for each of the maximum of 32768 columns plus three
2558       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2559       */
2560       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2561         goto op_column_corrupt;
2562       }
2563     }else{
2564       /* This is an optimization.  By skipping over the first few tests
2565       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2566       ** measurable performance gain.
2567       **
2568       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2569       ** generated by SQLite, and could be considered corruption, but we
2570       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2571       ** branch jumps to reads past the end of the record, but never more
2572       ** than a few bytes.  Even if the record occurs at the end of the page
2573       ** content area, the "page header" comes after the page content and so
2574       ** this overread is harmless.  Similar overreads can occur for a corrupt
2575       ** database file.
2576       */
2577       zData = pC->aRow;
2578       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2579       testcase( aOffset[0]==0 );
2580       goto op_column_read_header;
2581     }
2582   }
2583 
2584   /* Make sure at least the first p2+1 entries of the header have been
2585   ** parsed and valid information is in aOffset[] and pC->aType[].
2586   */
2587   if( pC->nHdrParsed<=p2 ){
2588     /* If there is more header available for parsing in the record, try
2589     ** to extract additional fields up through the p2+1-th field
2590     */
2591     if( pC->iHdrOffset<aOffset[0] ){
2592       /* Make sure zData points to enough of the record to cover the header. */
2593       if( pC->aRow==0 ){
2594         memset(&sMem, 0, sizeof(sMem));
2595         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2596         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2597         zData = (u8*)sMem.z;
2598       }else{
2599         zData = pC->aRow;
2600       }
2601 
2602       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2603     op_column_read_header:
2604       i = pC->nHdrParsed;
2605       offset64 = aOffset[i];
2606       zHdr = zData + pC->iHdrOffset;
2607       zEndHdr = zData + aOffset[0];
2608       testcase( zHdr>=zEndHdr );
2609       do{
2610         if( (t = zHdr[0])<0x80 ){
2611           zHdr++;
2612           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2613         }else{
2614           zHdr += sqlite3GetVarint32(zHdr, &t);
2615           offset64 += sqlite3VdbeSerialTypeLen(t);
2616         }
2617         pC->aType[i++] = t;
2618         aOffset[i] = (u32)(offset64 & 0xffffffff);
2619       }while( i<=p2 && zHdr<zEndHdr );
2620 
2621       /* The record is corrupt if any of the following are true:
2622       ** (1) the bytes of the header extend past the declared header size
2623       ** (2) the entire header was used but not all data was used
2624       ** (3) the end of the data extends beyond the end of the record.
2625       */
2626       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2627        || (offset64 > pC->payloadSize)
2628       ){
2629         if( aOffset[0]==0 ){
2630           i = 0;
2631           zHdr = zEndHdr;
2632         }else{
2633           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2634           goto op_column_corrupt;
2635         }
2636       }
2637 
2638       pC->nHdrParsed = i;
2639       pC->iHdrOffset = (u32)(zHdr - zData);
2640       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2641     }else{
2642       t = 0;
2643     }
2644 
2645     /* If after trying to extract new entries from the header, nHdrParsed is
2646     ** still not up to p2, that means that the record has fewer than p2
2647     ** columns.  So the result will be either the default value or a NULL.
2648     */
2649     if( pC->nHdrParsed<=p2 ){
2650       if( pOp->p4type==P4_MEM ){
2651         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2652       }else{
2653         sqlite3VdbeMemSetNull(pDest);
2654       }
2655       goto op_column_out;
2656     }
2657   }else{
2658     t = pC->aType[p2];
2659   }
2660 
2661   /* Extract the content for the p2+1-th column.  Control can only
2662   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2663   ** all valid.
2664   */
2665   assert( p2<pC->nHdrParsed );
2666   assert( rc==SQLITE_OK );
2667   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2668   if( VdbeMemDynamic(pDest) ){
2669     sqlite3VdbeMemSetNull(pDest);
2670   }
2671   assert( t==pC->aType[p2] );
2672   if( pC->szRow>=aOffset[p2+1] ){
2673     /* This is the common case where the desired content fits on the original
2674     ** page - where the content is not on an overflow page */
2675     zData = pC->aRow + aOffset[p2];
2676     if( t<12 ){
2677       sqlite3VdbeSerialGet(zData, t, pDest);
2678     }else{
2679       /* If the column value is a string, we need a persistent value, not
2680       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2681       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2682       */
2683       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2684       pDest->n = len = (t-12)/2;
2685       pDest->enc = encoding;
2686       if( pDest->szMalloc < len+2 ){
2687         pDest->flags = MEM_Null;
2688         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2689       }else{
2690         pDest->z = pDest->zMalloc;
2691       }
2692       memcpy(pDest->z, zData, len);
2693       pDest->z[len] = 0;
2694       pDest->z[len+1] = 0;
2695       pDest->flags = aFlag[t&1];
2696     }
2697   }else{
2698     pDest->enc = encoding;
2699     /* This branch happens only when content is on overflow pages */
2700     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2701           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2702      || (len = sqlite3VdbeSerialTypeLen(t))==0
2703     ){
2704       /* Content is irrelevant for
2705       **    1. the typeof() function,
2706       **    2. the length(X) function if X is a blob, and
2707       **    3. if the content length is zero.
2708       ** So we might as well use bogus content rather than reading
2709       ** content from disk.
2710       **
2711       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2712       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2713       ** read up to 16. So 16 bytes of bogus content is supplied.
2714       */
2715       static u8 aZero[16];  /* This is the bogus content */
2716       sqlite3VdbeSerialGet(aZero, t, pDest);
2717     }else{
2718       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2719       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2720       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2721       pDest->flags &= ~MEM_Ephem;
2722     }
2723   }
2724 
2725 op_column_out:
2726   UPDATE_MAX_BLOBSIZE(pDest);
2727   REGISTER_TRACE(pOp->p3, pDest);
2728   break;
2729 
2730 op_column_corrupt:
2731   if( aOp[0].p3>0 ){
2732     pOp = &aOp[aOp[0].p3-1];
2733     break;
2734   }else{
2735     rc = SQLITE_CORRUPT_BKPT;
2736     goto abort_due_to_error;
2737   }
2738 }
2739 
2740 /* Opcode: Affinity P1 P2 * P4 *
2741 ** Synopsis: affinity(r[P1@P2])
2742 **
2743 ** Apply affinities to a range of P2 registers starting with P1.
2744 **
2745 ** P4 is a string that is P2 characters long. The N-th character of the
2746 ** string indicates the column affinity that should be used for the N-th
2747 ** memory cell in the range.
2748 */
2749 case OP_Affinity: {
2750   const char *zAffinity;   /* The affinity to be applied */
2751 
2752   zAffinity = pOp->p4.z;
2753   assert( zAffinity!=0 );
2754   assert( pOp->p2>0 );
2755   assert( zAffinity[pOp->p2]==0 );
2756   pIn1 = &aMem[pOp->p1];
2757   do{
2758     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2759     assert( memIsValid(pIn1) );
2760     applyAffinity(pIn1, *(zAffinity++), encoding);
2761     pIn1++;
2762   }while( zAffinity[0] );
2763   break;
2764 }
2765 
2766 /* Opcode: MakeRecord P1 P2 P3 P4 *
2767 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2768 **
2769 ** Convert P2 registers beginning with P1 into the [record format]
2770 ** use as a data record in a database table or as a key
2771 ** in an index.  The OP_Column opcode can decode the record later.
2772 **
2773 ** P4 may be a string that is P2 characters long.  The N-th character of the
2774 ** string indicates the column affinity that should be used for the N-th
2775 ** field of the index key.
2776 **
2777 ** The mapping from character to affinity is given by the SQLITE_AFF_
2778 ** macros defined in sqliteInt.h.
2779 **
2780 ** If P4 is NULL then all index fields have the affinity BLOB.
2781 */
2782 case OP_MakeRecord: {
2783   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2784   Mem *pRec;             /* The new record */
2785   u64 nData;             /* Number of bytes of data space */
2786   int nHdr;              /* Number of bytes of header space */
2787   i64 nByte;             /* Data space required for this record */
2788   i64 nZero;             /* Number of zero bytes at the end of the record */
2789   int nVarint;           /* Number of bytes in a varint */
2790   u32 serial_type;       /* Type field */
2791   Mem *pData0;           /* First field to be combined into the record */
2792   Mem *pLast;            /* Last field of the record */
2793   int nField;            /* Number of fields in the record */
2794   char *zAffinity;       /* The affinity string for the record */
2795   int file_format;       /* File format to use for encoding */
2796   int i;                 /* Space used in zNewRecord[] header */
2797   int j;                 /* Space used in zNewRecord[] content */
2798   u32 len;               /* Length of a field */
2799 
2800   /* Assuming the record contains N fields, the record format looks
2801   ** like this:
2802   **
2803   ** ------------------------------------------------------------------------
2804   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2805   ** ------------------------------------------------------------------------
2806   **
2807   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2808   ** and so forth.
2809   **
2810   ** Each type field is a varint representing the serial type of the
2811   ** corresponding data element (see sqlite3VdbeSerialType()). The
2812   ** hdr-size field is also a varint which is the offset from the beginning
2813   ** of the record to data0.
2814   */
2815   nData = 0;         /* Number of bytes of data space */
2816   nHdr = 0;          /* Number of bytes of header space */
2817   nZero = 0;         /* Number of zero bytes at the end of the record */
2818   nField = pOp->p1;
2819   zAffinity = pOp->p4.z;
2820   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2821   pData0 = &aMem[nField];
2822   nField = pOp->p2;
2823   pLast = &pData0[nField-1];
2824   file_format = p->minWriteFileFormat;
2825 
2826   /* Identify the output register */
2827   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2828   pOut = &aMem[pOp->p3];
2829   memAboutToChange(p, pOut);
2830 
2831   /* Apply the requested affinity to all inputs
2832   */
2833   assert( pData0<=pLast );
2834   if( zAffinity ){
2835     pRec = pData0;
2836     do{
2837       applyAffinity(pRec++, *(zAffinity++), encoding);
2838       assert( zAffinity[0]==0 || pRec<=pLast );
2839     }while( zAffinity[0] );
2840   }
2841 
2842 #ifdef SQLITE_ENABLE_NULL_TRIM
2843   /* NULLs can be safely trimmed from the end of the record, as long as
2844   ** as the schema format is 2 or more and none of the omitted columns
2845   ** have a non-NULL default value.  Also, the record must be left with
2846   ** at least one field.  If P5>0 then it will be one more than the
2847   ** index of the right-most column with a non-NULL default value */
2848   if( pOp->p5 ){
2849     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2850       pLast--;
2851       nField--;
2852     }
2853   }
2854 #endif
2855 
2856   /* Loop through the elements that will make up the record to figure
2857   ** out how much space is required for the new record.
2858   */
2859   pRec = pLast;
2860   do{
2861     assert( memIsValid(pRec) );
2862     serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2863     if( pRec->flags & MEM_Zero ){
2864       if( serial_type==0 ){
2865         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2866         ** table methods that never invoke sqlite3_result_xxxxx() while
2867         ** computing an unchanging column value in an UPDATE statement.
2868         ** Give such values a special internal-use-only serial-type of 10
2869         ** so that they can be passed through to xUpdate and have
2870         ** a true sqlite3_value_nochange(). */
2871         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
2872         serial_type = 10;
2873       }else if( nData ){
2874         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2875       }else{
2876         nZero += pRec->u.nZero;
2877         len -= pRec->u.nZero;
2878       }
2879     }
2880     nData += len;
2881     testcase( serial_type==127 );
2882     testcase( serial_type==128 );
2883     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2884     pRec->uTemp = serial_type;
2885     if( pRec==pData0 ) break;
2886     pRec--;
2887   }while(1);
2888 
2889   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2890   ** which determines the total number of bytes in the header. The varint
2891   ** value is the size of the header in bytes including the size varint
2892   ** itself. */
2893   testcase( nHdr==126 );
2894   testcase( nHdr==127 );
2895   if( nHdr<=126 ){
2896     /* The common case */
2897     nHdr += 1;
2898   }else{
2899     /* Rare case of a really large header */
2900     nVarint = sqlite3VarintLen(nHdr);
2901     nHdr += nVarint;
2902     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2903   }
2904   nByte = nHdr+nData;
2905   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2906     goto too_big;
2907   }
2908 
2909   /* Make sure the output register has a buffer large enough to store
2910   ** the new record. The output register (pOp->p3) is not allowed to
2911   ** be one of the input registers (because the following call to
2912   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2913   */
2914   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2915     goto no_mem;
2916   }
2917   zNewRecord = (u8 *)pOut->z;
2918 
2919   /* Write the record */
2920   i = putVarint32(zNewRecord, nHdr);
2921   j = nHdr;
2922   assert( pData0<=pLast );
2923   pRec = pData0;
2924   do{
2925     serial_type = pRec->uTemp;
2926     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2927     ** additional varints, one per column. */
2928     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2929     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2930     ** immediately follow the header. */
2931     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2932   }while( (++pRec)<=pLast );
2933   assert( i==nHdr );
2934   assert( j==nByte );
2935 
2936   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2937   pOut->n = (int)nByte;
2938   pOut->flags = MEM_Blob;
2939   if( nZero ){
2940     pOut->u.nZero = nZero;
2941     pOut->flags |= MEM_Zero;
2942   }
2943   REGISTER_TRACE(pOp->p3, pOut);
2944   UPDATE_MAX_BLOBSIZE(pOut);
2945   break;
2946 }
2947 
2948 /* Opcode: Count P1 P2 * * *
2949 ** Synopsis: r[P2]=count()
2950 **
2951 ** Store the number of entries (an integer value) in the table or index
2952 ** opened by cursor P1 in register P2
2953 */
2954 #ifndef SQLITE_OMIT_BTREECOUNT
2955 case OP_Count: {         /* out2 */
2956   i64 nEntry;
2957   BtCursor *pCrsr;
2958 
2959   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2960   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2961   assert( pCrsr );
2962   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2963   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2964   if( rc ) goto abort_due_to_error;
2965   pOut = out2Prerelease(p, pOp);
2966   pOut->u.i = nEntry;
2967   break;
2968 }
2969 #endif
2970 
2971 /* Opcode: Savepoint P1 * * P4 *
2972 **
2973 ** Open, release or rollback the savepoint named by parameter P4, depending
2974 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2975 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2976 */
2977 case OP_Savepoint: {
2978   int p1;                         /* Value of P1 operand */
2979   char *zName;                    /* Name of savepoint */
2980   int nName;
2981   Savepoint *pNew;
2982   Savepoint *pSavepoint;
2983   Savepoint *pTmp;
2984   int iSavepoint;
2985   int ii;
2986 
2987   p1 = pOp->p1;
2988   zName = pOp->p4.z;
2989 
2990   /* Assert that the p1 parameter is valid. Also that if there is no open
2991   ** transaction, then there cannot be any savepoints.
2992   */
2993   assert( db->pSavepoint==0 || db->autoCommit==0 );
2994   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2995   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2996   assert( checkSavepointCount(db) );
2997   assert( p->bIsReader );
2998 
2999   if( p1==SAVEPOINT_BEGIN ){
3000     if( db->nVdbeWrite>0 ){
3001       /* A new savepoint cannot be created if there are active write
3002       ** statements (i.e. open read/write incremental blob handles).
3003       */
3004       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3005       rc = SQLITE_BUSY;
3006     }else{
3007       nName = sqlite3Strlen30(zName);
3008 
3009 #ifndef SQLITE_OMIT_VIRTUALTABLE
3010       /* This call is Ok even if this savepoint is actually a transaction
3011       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3012       ** If this is a transaction savepoint being opened, it is guaranteed
3013       ** that the db->aVTrans[] array is empty.  */
3014       assert( db->autoCommit==0 || db->nVTrans==0 );
3015       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3016                                 db->nStatement+db->nSavepoint);
3017       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3018 #endif
3019 
3020       /* Create a new savepoint structure. */
3021       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3022       if( pNew ){
3023         pNew->zName = (char *)&pNew[1];
3024         memcpy(pNew->zName, zName, nName+1);
3025 
3026         /* If there is no open transaction, then mark this as a special
3027         ** "transaction savepoint". */
3028         if( db->autoCommit ){
3029           db->autoCommit = 0;
3030           db->isTransactionSavepoint = 1;
3031         }else{
3032           db->nSavepoint++;
3033         }
3034 
3035         /* Link the new savepoint into the database handle's list. */
3036         pNew->pNext = db->pSavepoint;
3037         db->pSavepoint = pNew;
3038         pNew->nDeferredCons = db->nDeferredCons;
3039         pNew->nDeferredImmCons = db->nDeferredImmCons;
3040       }
3041     }
3042   }else{
3043     iSavepoint = 0;
3044 
3045     /* Find the named savepoint. If there is no such savepoint, then an
3046     ** an error is returned to the user.  */
3047     for(
3048       pSavepoint = db->pSavepoint;
3049       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3050       pSavepoint = pSavepoint->pNext
3051     ){
3052       iSavepoint++;
3053     }
3054     if( !pSavepoint ){
3055       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3056       rc = SQLITE_ERROR;
3057     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3058       /* It is not possible to release (commit) a savepoint if there are
3059       ** active write statements.
3060       */
3061       sqlite3VdbeError(p, "cannot release savepoint - "
3062                           "SQL statements in progress");
3063       rc = SQLITE_BUSY;
3064     }else{
3065 
3066       /* Determine whether or not this is a transaction savepoint. If so,
3067       ** and this is a RELEASE command, then the current transaction
3068       ** is committed.
3069       */
3070       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3071       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3072         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3073           goto vdbe_return;
3074         }
3075         db->autoCommit = 1;
3076         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3077           p->pc = (int)(pOp - aOp);
3078           db->autoCommit = 0;
3079           p->rc = rc = SQLITE_BUSY;
3080           goto vdbe_return;
3081         }
3082         db->isTransactionSavepoint = 0;
3083         rc = p->rc;
3084       }else{
3085         int isSchemaChange;
3086         iSavepoint = db->nSavepoint - iSavepoint - 1;
3087         if( p1==SAVEPOINT_ROLLBACK ){
3088           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3089           for(ii=0; ii<db->nDb; ii++){
3090             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3091                                        SQLITE_ABORT_ROLLBACK,
3092                                        isSchemaChange==0);
3093             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3094           }
3095         }else{
3096           isSchemaChange = 0;
3097         }
3098         for(ii=0; ii<db->nDb; ii++){
3099           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3100           if( rc!=SQLITE_OK ){
3101             goto abort_due_to_error;
3102           }
3103         }
3104         if( isSchemaChange ){
3105           sqlite3ExpirePreparedStatements(db);
3106           sqlite3ResetAllSchemasOfConnection(db);
3107           db->mDbFlags |= DBFLAG_SchemaChange;
3108         }
3109       }
3110 
3111       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3112       ** savepoints nested inside of the savepoint being operated on. */
3113       while( db->pSavepoint!=pSavepoint ){
3114         pTmp = db->pSavepoint;
3115         db->pSavepoint = pTmp->pNext;
3116         sqlite3DbFree(db, pTmp);
3117         db->nSavepoint--;
3118       }
3119 
3120       /* If it is a RELEASE, then destroy the savepoint being operated on
3121       ** too. If it is a ROLLBACK TO, then set the number of deferred
3122       ** constraint violations present in the database to the value stored
3123       ** when the savepoint was created.  */
3124       if( p1==SAVEPOINT_RELEASE ){
3125         assert( pSavepoint==db->pSavepoint );
3126         db->pSavepoint = pSavepoint->pNext;
3127         sqlite3DbFree(db, pSavepoint);
3128         if( !isTransaction ){
3129           db->nSavepoint--;
3130         }
3131       }else{
3132         db->nDeferredCons = pSavepoint->nDeferredCons;
3133         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3134       }
3135 
3136       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3137         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3138         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3139       }
3140     }
3141   }
3142   if( rc ) goto abort_due_to_error;
3143 
3144   break;
3145 }
3146 
3147 /* Opcode: AutoCommit P1 P2 * * *
3148 **
3149 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3150 ** back any currently active btree transactions. If there are any active
3151 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3152 ** there are active writing VMs or active VMs that use shared cache.
3153 **
3154 ** This instruction causes the VM to halt.
3155 */
3156 case OP_AutoCommit: {
3157   int desiredAutoCommit;
3158   int iRollback;
3159 
3160   desiredAutoCommit = pOp->p1;
3161   iRollback = pOp->p2;
3162   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3163   assert( desiredAutoCommit==1 || iRollback==0 );
3164   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3165   assert( p->bIsReader );
3166 
3167   if( desiredAutoCommit!=db->autoCommit ){
3168     if( iRollback ){
3169       assert( desiredAutoCommit==1 );
3170       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3171       db->autoCommit = 1;
3172     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3173       /* If this instruction implements a COMMIT and other VMs are writing
3174       ** return an error indicating that the other VMs must complete first.
3175       */
3176       sqlite3VdbeError(p, "cannot commit transaction - "
3177                           "SQL statements in progress");
3178       rc = SQLITE_BUSY;
3179       goto abort_due_to_error;
3180     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3181       goto vdbe_return;
3182     }else{
3183       db->autoCommit = (u8)desiredAutoCommit;
3184     }
3185     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3186       p->pc = (int)(pOp - aOp);
3187       db->autoCommit = (u8)(1-desiredAutoCommit);
3188       p->rc = rc = SQLITE_BUSY;
3189       goto vdbe_return;
3190     }
3191     assert( db->nStatement==0 );
3192     sqlite3CloseSavepoints(db);
3193     if( p->rc==SQLITE_OK ){
3194       rc = SQLITE_DONE;
3195     }else{
3196       rc = SQLITE_ERROR;
3197     }
3198     goto vdbe_return;
3199   }else{
3200     sqlite3VdbeError(p,
3201         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3202         (iRollback)?"cannot rollback - no transaction is active":
3203                    "cannot commit - no transaction is active"));
3204 
3205     rc = SQLITE_ERROR;
3206     goto abort_due_to_error;
3207   }
3208   break;
3209 }
3210 
3211 /* Opcode: Transaction P1 P2 P3 P4 P5
3212 **
3213 ** Begin a transaction on database P1 if a transaction is not already
3214 ** active.
3215 ** If P2 is non-zero, then a write-transaction is started, or if a
3216 ** read-transaction is already active, it is upgraded to a write-transaction.
3217 ** If P2 is zero, then a read-transaction is started.
3218 **
3219 ** P1 is the index of the database file on which the transaction is
3220 ** started.  Index 0 is the main database file and index 1 is the
3221 ** file used for temporary tables.  Indices of 2 or more are used for
3222 ** attached databases.
3223 **
3224 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3225 ** true (this flag is set if the Vdbe may modify more than one row and may
3226 ** throw an ABORT exception), a statement transaction may also be opened.
3227 ** More specifically, a statement transaction is opened iff the database
3228 ** connection is currently not in autocommit mode, or if there are other
3229 ** active statements. A statement transaction allows the changes made by this
3230 ** VDBE to be rolled back after an error without having to roll back the
3231 ** entire transaction. If no error is encountered, the statement transaction
3232 ** will automatically commit when the VDBE halts.
3233 **
3234 ** If P5!=0 then this opcode also checks the schema cookie against P3
3235 ** and the schema generation counter against P4.
3236 ** The cookie changes its value whenever the database schema changes.
3237 ** This operation is used to detect when that the cookie has changed
3238 ** and that the current process needs to reread the schema.  If the schema
3239 ** cookie in P3 differs from the schema cookie in the database header or
3240 ** if the schema generation counter in P4 differs from the current
3241 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3242 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3243 ** statement and rerun it from the beginning.
3244 */
3245 case OP_Transaction: {
3246   Btree *pBt;
3247   int iMeta = 0;
3248 
3249   assert( p->bIsReader );
3250   assert( p->readOnly==0 || pOp->p2==0 );
3251   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3252   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3253   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3254     rc = SQLITE_READONLY;
3255     goto abort_due_to_error;
3256   }
3257   pBt = db->aDb[pOp->p1].pBt;
3258 
3259   if( pBt ){
3260     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3261     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3262     testcase( rc==SQLITE_BUSY_RECOVERY );
3263     if( rc!=SQLITE_OK ){
3264       if( (rc&0xff)==SQLITE_BUSY ){
3265         p->pc = (int)(pOp - aOp);
3266         p->rc = rc;
3267         goto vdbe_return;
3268       }
3269       goto abort_due_to_error;
3270     }
3271 
3272     if( pOp->p2 && p->usesStmtJournal
3273      && (db->autoCommit==0 || db->nVdbeRead>1)
3274     ){
3275       assert( sqlite3BtreeIsInTrans(pBt) );
3276       if( p->iStatement==0 ){
3277         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3278         db->nStatement++;
3279         p->iStatement = db->nSavepoint + db->nStatement;
3280       }
3281 
3282       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3283       if( rc==SQLITE_OK ){
3284         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3285       }
3286 
3287       /* Store the current value of the database handles deferred constraint
3288       ** counter. If the statement transaction needs to be rolled back,
3289       ** the value of this counter needs to be restored too.  */
3290       p->nStmtDefCons = db->nDeferredCons;
3291       p->nStmtDefImmCons = db->nDeferredImmCons;
3292     }
3293   }
3294   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3295   if( pOp->p5
3296    && (iMeta!=pOp->p3
3297       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3298   ){
3299     /*
3300     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3301     ** version is checked to ensure that the schema has not changed since the
3302     ** SQL statement was prepared.
3303     */
3304     sqlite3DbFree(db, p->zErrMsg);
3305     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3306     /* If the schema-cookie from the database file matches the cookie
3307     ** stored with the in-memory representation of the schema, do
3308     ** not reload the schema from the database file.
3309     **
3310     ** If virtual-tables are in use, this is not just an optimization.
3311     ** Often, v-tables store their data in other SQLite tables, which
3312     ** are queried from within xNext() and other v-table methods using
3313     ** prepared queries. If such a query is out-of-date, we do not want to
3314     ** discard the database schema, as the user code implementing the
3315     ** v-table would have to be ready for the sqlite3_vtab structure itself
3316     ** to be invalidated whenever sqlite3_step() is called from within
3317     ** a v-table method.
3318     */
3319     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3320       sqlite3ResetOneSchema(db, pOp->p1);
3321     }
3322     p->expired = 1;
3323     rc = SQLITE_SCHEMA;
3324   }
3325   if( rc ) goto abort_due_to_error;
3326   break;
3327 }
3328 
3329 /* Opcode: ReadCookie P1 P2 P3 * *
3330 **
3331 ** Read cookie number P3 from database P1 and write it into register P2.
3332 ** P3==1 is the schema version.  P3==2 is the database format.
3333 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3334 ** the main database file and P1==1 is the database file used to store
3335 ** temporary tables.
3336 **
3337 ** There must be a read-lock on the database (either a transaction
3338 ** must be started or there must be an open cursor) before
3339 ** executing this instruction.
3340 */
3341 case OP_ReadCookie: {               /* out2 */
3342   int iMeta;
3343   int iDb;
3344   int iCookie;
3345 
3346   assert( p->bIsReader );
3347   iDb = pOp->p1;
3348   iCookie = pOp->p3;
3349   assert( pOp->p3<SQLITE_N_BTREE_META );
3350   assert( iDb>=0 && iDb<db->nDb );
3351   assert( db->aDb[iDb].pBt!=0 );
3352   assert( DbMaskTest(p->btreeMask, iDb) );
3353 
3354   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3355   pOut = out2Prerelease(p, pOp);
3356   pOut->u.i = iMeta;
3357   break;
3358 }
3359 
3360 /* Opcode: SetCookie P1 P2 P3 * *
3361 **
3362 ** Write the integer value P3 into cookie number P2 of database P1.
3363 ** P2==1 is the schema version.  P2==2 is the database format.
3364 ** P2==3 is the recommended pager cache
3365 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3366 ** database file used to store temporary tables.
3367 **
3368 ** A transaction must be started before executing this opcode.
3369 */
3370 case OP_SetCookie: {
3371   Db *pDb;
3372 
3373   sqlite3VdbeIncrWriteCounter(p, 0);
3374   assert( pOp->p2<SQLITE_N_BTREE_META );
3375   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3376   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3377   assert( p->readOnly==0 );
3378   pDb = &db->aDb[pOp->p1];
3379   assert( pDb->pBt!=0 );
3380   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3381   /* See note about index shifting on OP_ReadCookie */
3382   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3383   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3384     /* When the schema cookie changes, record the new cookie internally */
3385     pDb->pSchema->schema_cookie = pOp->p3;
3386     db->mDbFlags |= DBFLAG_SchemaChange;
3387   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3388     /* Record changes in the file format */
3389     pDb->pSchema->file_format = pOp->p3;
3390   }
3391   if( pOp->p1==1 ){
3392     /* Invalidate all prepared statements whenever the TEMP database
3393     ** schema is changed.  Ticket #1644 */
3394     sqlite3ExpirePreparedStatements(db);
3395     p->expired = 0;
3396   }
3397   if( rc ) goto abort_due_to_error;
3398   break;
3399 }
3400 
3401 /* Opcode: OpenRead P1 P2 P3 P4 P5
3402 ** Synopsis: root=P2 iDb=P3
3403 **
3404 ** Open a read-only cursor for the database table whose root page is
3405 ** P2 in a database file.  The database file is determined by P3.
3406 ** P3==0 means the main database, P3==1 means the database used for
3407 ** temporary tables, and P3>1 means used the corresponding attached
3408 ** database.  Give the new cursor an identifier of P1.  The P1
3409 ** values need not be contiguous but all P1 values should be small integers.
3410 ** It is an error for P1 to be negative.
3411 **
3412 ** Allowed P5 bits:
3413 ** <ul>
3414 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3415 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3416 **       of OP_SeekLE/OP_IdxGT)
3417 ** </ul>
3418 **
3419 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3420 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3421 ** object, then table being opened must be an [index b-tree] where the
3422 ** KeyInfo object defines the content and collating
3423 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3424 ** value, then the table being opened must be a [table b-tree] with a
3425 ** number of columns no less than the value of P4.
3426 **
3427 ** See also: OpenWrite, ReopenIdx
3428 */
3429 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3430 ** Synopsis: root=P2 iDb=P3
3431 **
3432 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3433 ** checks to see if the cursor on P1 is already open on the same
3434 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3435 ** if the cursor is already open, do not reopen it.
3436 **
3437 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3438 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3439 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3440 ** number.
3441 **
3442 ** Allowed P5 bits:
3443 ** <ul>
3444 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3445 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3446 **       of OP_SeekLE/OP_IdxGT)
3447 ** </ul>
3448 **
3449 ** See also: OP_OpenRead, OP_OpenWrite
3450 */
3451 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3452 ** Synopsis: root=P2 iDb=P3
3453 **
3454 ** Open a read/write cursor named P1 on the table or index whose root
3455 ** page is P2 (or whose root page is held in register P2 if the
3456 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3457 **
3458 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3459 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3460 ** object, then table being opened must be an [index b-tree] where the
3461 ** KeyInfo object defines the content and collating
3462 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3463 ** value, then the table being opened must be a [table b-tree] with a
3464 ** number of columns no less than the value of P4.
3465 **
3466 ** Allowed P5 bits:
3467 ** <ul>
3468 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3469 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3470 **       of OP_SeekLE/OP_IdxGT)
3471 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3472 **       and subsequently delete entries in an index btree.  This is a
3473 **       hint to the storage engine that the storage engine is allowed to
3474 **       ignore.  The hint is not used by the official SQLite b*tree storage
3475 **       engine, but is used by COMDB2.
3476 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3477 **       as the root page, not the value of P2 itself.
3478 ** </ul>
3479 **
3480 ** This instruction works like OpenRead except that it opens the cursor
3481 ** in read/write mode.
3482 **
3483 ** See also: OP_OpenRead, OP_ReopenIdx
3484 */
3485 case OP_ReopenIdx: {
3486   int nField;
3487   KeyInfo *pKeyInfo;
3488   int p2;
3489   int iDb;
3490   int wrFlag;
3491   Btree *pX;
3492   VdbeCursor *pCur;
3493   Db *pDb;
3494 
3495   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3496   assert( pOp->p4type==P4_KEYINFO );
3497   pCur = p->apCsr[pOp->p1];
3498   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3499     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3500     goto open_cursor_set_hints;
3501   }
3502   /* If the cursor is not currently open or is open on a different
3503   ** index, then fall through into OP_OpenRead to force a reopen */
3504 case OP_OpenRead:
3505 case OP_OpenWrite:
3506 
3507   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3508   assert( p->bIsReader );
3509   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3510           || p->readOnly==0 );
3511 
3512   if( p->expired ){
3513     rc = SQLITE_ABORT_ROLLBACK;
3514     goto abort_due_to_error;
3515   }
3516 
3517   nField = 0;
3518   pKeyInfo = 0;
3519   p2 = pOp->p2;
3520   iDb = pOp->p3;
3521   assert( iDb>=0 && iDb<db->nDb );
3522   assert( DbMaskTest(p->btreeMask, iDb) );
3523   pDb = &db->aDb[iDb];
3524   pX = pDb->pBt;
3525   assert( pX!=0 );
3526   if( pOp->opcode==OP_OpenWrite ){
3527     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3528     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3529     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3530     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3531       p->minWriteFileFormat = pDb->pSchema->file_format;
3532     }
3533   }else{
3534     wrFlag = 0;
3535   }
3536   if( pOp->p5 & OPFLAG_P2ISREG ){
3537     assert( p2>0 );
3538     assert( p2<=(p->nMem+1 - p->nCursor) );
3539     assert( pOp->opcode==OP_OpenWrite );
3540     pIn2 = &aMem[p2];
3541     assert( memIsValid(pIn2) );
3542     assert( (pIn2->flags & MEM_Int)!=0 );
3543     sqlite3VdbeMemIntegerify(pIn2);
3544     p2 = (int)pIn2->u.i;
3545     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3546     ** that opcode will always set the p2 value to 2 or more or else fail.
3547     ** If there were a failure, the prepared statement would have halted
3548     ** before reaching this instruction. */
3549     assert( p2>=2 );
3550   }
3551   if( pOp->p4type==P4_KEYINFO ){
3552     pKeyInfo = pOp->p4.pKeyInfo;
3553     assert( pKeyInfo->enc==ENC(db) );
3554     assert( pKeyInfo->db==db );
3555     nField = pKeyInfo->nAllField;
3556   }else if( pOp->p4type==P4_INT32 ){
3557     nField = pOp->p4.i;
3558   }
3559   assert( pOp->p1>=0 );
3560   assert( nField>=0 );
3561   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3562   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3563   if( pCur==0 ) goto no_mem;
3564   pCur->nullRow = 1;
3565   pCur->isOrdered = 1;
3566   pCur->pgnoRoot = p2;
3567 #ifdef SQLITE_DEBUG
3568   pCur->wrFlag = wrFlag;
3569 #endif
3570   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3571   pCur->pKeyInfo = pKeyInfo;
3572   /* Set the VdbeCursor.isTable variable. Previous versions of
3573   ** SQLite used to check if the root-page flags were sane at this point
3574   ** and report database corruption if they were not, but this check has
3575   ** since moved into the btree layer.  */
3576   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3577 
3578 open_cursor_set_hints:
3579   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3580   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3581   testcase( pOp->p5 & OPFLAG_BULKCSR );
3582 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3583   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3584 #endif
3585   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3586                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3587   if( rc ) goto abort_due_to_error;
3588   break;
3589 }
3590 
3591 /* Opcode: OpenDup P1 P2 * * *
3592 **
3593 ** Open a new cursor P1 that points to the same ephemeral table as
3594 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3595 ** opcode.  Only ephemeral cursors may be duplicated.
3596 **
3597 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3598 */
3599 case OP_OpenDup: {
3600   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3601   VdbeCursor *pCx;      /* The new cursor */
3602 
3603   pOrig = p->apCsr[pOp->p2];
3604   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3605 
3606   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3607   if( pCx==0 ) goto no_mem;
3608   pCx->nullRow = 1;
3609   pCx->isEphemeral = 1;
3610   pCx->pKeyInfo = pOrig->pKeyInfo;
3611   pCx->isTable = pOrig->isTable;
3612   rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3613                           pCx->pKeyInfo, pCx->uc.pCursor);
3614   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3615   ** opened for a database.  Since there is already an open cursor when this
3616   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3617   assert( rc==SQLITE_OK );
3618   break;
3619 }
3620 
3621 
3622 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3623 ** Synopsis: nColumn=P2
3624 **
3625 ** Open a new cursor P1 to a transient table.
3626 ** The cursor is always opened read/write even if
3627 ** the main database is read-only.  The ephemeral
3628 ** table is deleted automatically when the cursor is closed.
3629 **
3630 ** P2 is the number of columns in the ephemeral table.
3631 ** The cursor points to a BTree table if P4==0 and to a BTree index
3632 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3633 ** that defines the format of keys in the index.
3634 **
3635 ** The P5 parameter can be a mask of the BTREE_* flags defined
3636 ** in btree.h.  These flags control aspects of the operation of
3637 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3638 ** added automatically.
3639 */
3640 /* Opcode: OpenAutoindex P1 P2 * P4 *
3641 ** Synopsis: nColumn=P2
3642 **
3643 ** This opcode works the same as OP_OpenEphemeral.  It has a
3644 ** different name to distinguish its use.  Tables created using
3645 ** by this opcode will be used for automatically created transient
3646 ** indices in joins.
3647 */
3648 case OP_OpenAutoindex:
3649 case OP_OpenEphemeral: {
3650   VdbeCursor *pCx;
3651   KeyInfo *pKeyInfo;
3652 
3653   static const int vfsFlags =
3654       SQLITE_OPEN_READWRITE |
3655       SQLITE_OPEN_CREATE |
3656       SQLITE_OPEN_EXCLUSIVE |
3657       SQLITE_OPEN_DELETEONCLOSE |
3658       SQLITE_OPEN_TRANSIENT_DB;
3659   assert( pOp->p1>=0 );
3660   assert( pOp->p2>=0 );
3661   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3662   if( pCx==0 ) goto no_mem;
3663   pCx->nullRow = 1;
3664   pCx->isEphemeral = 1;
3665   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3666                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3667   if( rc==SQLITE_OK ){
3668     rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3669   }
3670   if( rc==SQLITE_OK ){
3671     /* If a transient index is required, create it by calling
3672     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3673     ** opening it. If a transient table is required, just use the
3674     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3675     */
3676     if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3677       int pgno;
3678       assert( pOp->p4type==P4_KEYINFO );
3679       rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
3680       if( rc==SQLITE_OK ){
3681         assert( pgno==MASTER_ROOT+1 );
3682         assert( pKeyInfo->db==db );
3683         assert( pKeyInfo->enc==ENC(db) );
3684         rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
3685                                 pKeyInfo, pCx->uc.pCursor);
3686       }
3687       pCx->isTable = 0;
3688     }else{
3689       rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3690                               0, pCx->uc.pCursor);
3691       pCx->isTable = 1;
3692     }
3693   }
3694   if( rc ) goto abort_due_to_error;
3695   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3696   break;
3697 }
3698 
3699 /* Opcode: SorterOpen P1 P2 P3 P4 *
3700 **
3701 ** This opcode works like OP_OpenEphemeral except that it opens
3702 ** a transient index that is specifically designed to sort large
3703 ** tables using an external merge-sort algorithm.
3704 **
3705 ** If argument P3 is non-zero, then it indicates that the sorter may
3706 ** assume that a stable sort considering the first P3 fields of each
3707 ** key is sufficient to produce the required results.
3708 */
3709 case OP_SorterOpen: {
3710   VdbeCursor *pCx;
3711 
3712   assert( pOp->p1>=0 );
3713   assert( pOp->p2>=0 );
3714   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3715   if( pCx==0 ) goto no_mem;
3716   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3717   assert( pCx->pKeyInfo->db==db );
3718   assert( pCx->pKeyInfo->enc==ENC(db) );
3719   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3720   if( rc ) goto abort_due_to_error;
3721   break;
3722 }
3723 
3724 /* Opcode: SequenceTest P1 P2 * * *
3725 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3726 **
3727 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3728 ** to P2. Regardless of whether or not the jump is taken, increment the
3729 ** the sequence value.
3730 */
3731 case OP_SequenceTest: {
3732   VdbeCursor *pC;
3733   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3734   pC = p->apCsr[pOp->p1];
3735   assert( isSorter(pC) );
3736   if( (pC->seqCount++)==0 ){
3737     goto jump_to_p2;
3738   }
3739   break;
3740 }
3741 
3742 /* Opcode: OpenPseudo P1 P2 P3 * *
3743 ** Synopsis: P3 columns in r[P2]
3744 **
3745 ** Open a new cursor that points to a fake table that contains a single
3746 ** row of data.  The content of that one row is the content of memory
3747 ** register P2.  In other words, cursor P1 becomes an alias for the
3748 ** MEM_Blob content contained in register P2.
3749 **
3750 ** A pseudo-table created by this opcode is used to hold a single
3751 ** row output from the sorter so that the row can be decomposed into
3752 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3753 ** is the only cursor opcode that works with a pseudo-table.
3754 **
3755 ** P3 is the number of fields in the records that will be stored by
3756 ** the pseudo-table.
3757 */
3758 case OP_OpenPseudo: {
3759   VdbeCursor *pCx;
3760 
3761   assert( pOp->p1>=0 );
3762   assert( pOp->p3>=0 );
3763   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3764   if( pCx==0 ) goto no_mem;
3765   pCx->nullRow = 1;
3766   pCx->seekResult = pOp->p2;
3767   pCx->isTable = 1;
3768   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3769   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
3770   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3771   ** which is a performance optimization */
3772   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
3773   assert( pOp->p5==0 );
3774   break;
3775 }
3776 
3777 /* Opcode: Close P1 * * * *
3778 **
3779 ** Close a cursor previously opened as P1.  If P1 is not
3780 ** currently open, this instruction is a no-op.
3781 */
3782 case OP_Close: {
3783   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3784   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3785   p->apCsr[pOp->p1] = 0;
3786   break;
3787 }
3788 
3789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3790 /* Opcode: ColumnsUsed P1 * * P4 *
3791 **
3792 ** This opcode (which only exists if SQLite was compiled with
3793 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3794 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3795 ** (P4_INT64) in which the first 63 bits are one for each of the
3796 ** first 63 columns of the table or index that are actually used
3797 ** by the cursor.  The high-order bit is set if any column after
3798 ** the 64th is used.
3799 */
3800 case OP_ColumnsUsed: {
3801   VdbeCursor *pC;
3802   pC = p->apCsr[pOp->p1];
3803   assert( pC->eCurType==CURTYPE_BTREE );
3804   pC->maskUsed = *(u64*)pOp->p4.pI64;
3805   break;
3806 }
3807 #endif
3808 
3809 /* Opcode: SeekGE P1 P2 P3 P4 *
3810 ** Synopsis: key=r[P3@P4]
3811 **
3812 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3813 ** use the value in register P3 as the key.  If cursor P1 refers
3814 ** to an SQL index, then P3 is the first in an array of P4 registers
3815 ** that are used as an unpacked index key.
3816 **
3817 ** Reposition cursor P1 so that  it points to the smallest entry that
3818 ** is greater than or equal to the key value. If there are no records
3819 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3820 **
3821 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3822 ** opcode will always land on a record that equally equals the key, or
3823 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3824 ** opcode must be followed by an IdxLE opcode with the same arguments.
3825 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3826 ** IdxLE opcode will be used on subsequent loop iterations.
3827 **
3828 ** This opcode leaves the cursor configured to move in forward order,
3829 ** from the beginning toward the end.  In other words, the cursor is
3830 ** configured to use Next, not Prev.
3831 **
3832 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3833 */
3834 /* Opcode: SeekGT P1 P2 P3 P4 *
3835 ** Synopsis: key=r[P3@P4]
3836 **
3837 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3838 ** use the value in register P3 as a key. If cursor P1 refers
3839 ** to an SQL index, then P3 is the first in an array of P4 registers
3840 ** that are used as an unpacked index key.
3841 **
3842 ** Reposition cursor P1 so that  it points to the smallest entry that
3843 ** is greater than the key value. If there are no records greater than
3844 ** the key and P2 is not zero, then jump to P2.
3845 **
3846 ** This opcode leaves the cursor configured to move in forward order,
3847 ** from the beginning toward the end.  In other words, the cursor is
3848 ** configured to use Next, not Prev.
3849 **
3850 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3851 */
3852 /* Opcode: SeekLT P1 P2 P3 P4 *
3853 ** Synopsis: key=r[P3@P4]
3854 **
3855 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3856 ** use the value in register P3 as a key. If cursor P1 refers
3857 ** to an SQL index, then P3 is the first in an array of P4 registers
3858 ** that are used as an unpacked index key.
3859 **
3860 ** Reposition cursor P1 so that  it points to the largest entry that
3861 ** is less than the key value. If there are no records less than
3862 ** the key and P2 is not zero, then jump to P2.
3863 **
3864 ** This opcode leaves the cursor configured to move in reverse order,
3865 ** from the end toward the beginning.  In other words, the cursor is
3866 ** configured to use Prev, not Next.
3867 **
3868 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3869 */
3870 /* Opcode: SeekLE P1 P2 P3 P4 *
3871 ** Synopsis: key=r[P3@P4]
3872 **
3873 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3874 ** use the value in register P3 as a key. If cursor P1 refers
3875 ** to an SQL index, then P3 is the first in an array of P4 registers
3876 ** that are used as an unpacked index key.
3877 **
3878 ** Reposition cursor P1 so that it points to the largest entry that
3879 ** is less than or equal to the key value. If there are no records
3880 ** less than or equal to the key and P2 is not zero, then jump to P2.
3881 **
3882 ** This opcode leaves the cursor configured to move in reverse order,
3883 ** from the end toward the beginning.  In other words, the cursor is
3884 ** configured to use Prev, not Next.
3885 **
3886 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3887 ** opcode will always land on a record that equally equals the key, or
3888 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3889 ** opcode must be followed by an IdxGE opcode with the same arguments.
3890 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3891 ** IdxGE opcode will be used on subsequent loop iterations.
3892 **
3893 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3894 */
3895 case OP_SeekLT:         /* jump, in3 */
3896 case OP_SeekLE:         /* jump, in3 */
3897 case OP_SeekGE:         /* jump, in3 */
3898 case OP_SeekGT: {       /* jump, in3 */
3899   int res;           /* Comparison result */
3900   int oc;            /* Opcode */
3901   VdbeCursor *pC;    /* The cursor to seek */
3902   UnpackedRecord r;  /* The key to seek for */
3903   int nField;        /* Number of columns or fields in the key */
3904   i64 iKey;          /* The rowid we are to seek to */
3905   int eqOnly;        /* Only interested in == results */
3906 
3907   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3908   assert( pOp->p2!=0 );
3909   pC = p->apCsr[pOp->p1];
3910   assert( pC!=0 );
3911   assert( pC->eCurType==CURTYPE_BTREE );
3912   assert( OP_SeekLE == OP_SeekLT+1 );
3913   assert( OP_SeekGE == OP_SeekLT+2 );
3914   assert( OP_SeekGT == OP_SeekLT+3 );
3915   assert( pC->isOrdered );
3916   assert( pC->uc.pCursor!=0 );
3917   oc = pOp->opcode;
3918   eqOnly = 0;
3919   pC->nullRow = 0;
3920 #ifdef SQLITE_DEBUG
3921   pC->seekOp = pOp->opcode;
3922 #endif
3923 
3924   if( pC->isTable ){
3925     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3926     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3927               || CORRUPT_DB );
3928 
3929     /* The input value in P3 might be of any type: integer, real, string,
3930     ** blob, or NULL.  But it needs to be an integer before we can do
3931     ** the seek, so convert it. */
3932     pIn3 = &aMem[pOp->p3];
3933     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3934       applyNumericAffinity(pIn3, 0);
3935     }
3936     iKey = sqlite3VdbeIntValue(pIn3);
3937 
3938     /* If the P3 value could not be converted into an integer without
3939     ** loss of information, then special processing is required... */
3940     if( (pIn3->flags & MEM_Int)==0 ){
3941       if( (pIn3->flags & MEM_Real)==0 ){
3942         /* If the P3 value cannot be converted into any kind of a number,
3943         ** then the seek is not possible, so jump to P2 */
3944         VdbeBranchTaken(1,2); goto jump_to_p2;
3945         break;
3946       }
3947 
3948       /* If the approximation iKey is larger than the actual real search
3949       ** term, substitute >= for > and < for <=. e.g. if the search term
3950       ** is 4.9 and the integer approximation 5:
3951       **
3952       **        (x >  4.9)    ->     (x >= 5)
3953       **        (x <= 4.9)    ->     (x <  5)
3954       */
3955       if( pIn3->u.r<(double)iKey ){
3956         assert( OP_SeekGE==(OP_SeekGT-1) );
3957         assert( OP_SeekLT==(OP_SeekLE-1) );
3958         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3959         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3960       }
3961 
3962       /* If the approximation iKey is smaller than the actual real search
3963       ** term, substitute <= for < and > for >=.  */
3964       else if( pIn3->u.r>(double)iKey ){
3965         assert( OP_SeekLE==(OP_SeekLT+1) );
3966         assert( OP_SeekGT==(OP_SeekGE+1) );
3967         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3968         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3969       }
3970     }
3971     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3972     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3973     if( rc!=SQLITE_OK ){
3974       goto abort_due_to_error;
3975     }
3976   }else{
3977     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3978     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3979     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3980     */
3981     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3982       eqOnly = 1;
3983       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3984       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3985       assert( pOp[1].p1==pOp[0].p1 );
3986       assert( pOp[1].p2==pOp[0].p2 );
3987       assert( pOp[1].p3==pOp[0].p3 );
3988       assert( pOp[1].p4.i==pOp[0].p4.i );
3989     }
3990 
3991     nField = pOp->p4.i;
3992     assert( pOp->p4type==P4_INT32 );
3993     assert( nField>0 );
3994     r.pKeyInfo = pC->pKeyInfo;
3995     r.nField = (u16)nField;
3996 
3997     /* The next line of code computes as follows, only faster:
3998     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3999     **     r.default_rc = -1;
4000     **   }else{
4001     **     r.default_rc = +1;
4002     **   }
4003     */
4004     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4005     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4006     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4007     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4008     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4009 
4010     r.aMem = &aMem[pOp->p3];
4011 #ifdef SQLITE_DEBUG
4012     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4013 #endif
4014     r.eqSeen = 0;
4015     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4016     if( rc!=SQLITE_OK ){
4017       goto abort_due_to_error;
4018     }
4019     if( eqOnly && r.eqSeen==0 ){
4020       assert( res!=0 );
4021       goto seek_not_found;
4022     }
4023   }
4024   pC->deferredMoveto = 0;
4025   pC->cacheStatus = CACHE_STALE;
4026 #ifdef SQLITE_TEST
4027   sqlite3_search_count++;
4028 #endif
4029   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4030     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4031       res = 0;
4032       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4033       if( rc!=SQLITE_OK ){
4034         if( rc==SQLITE_DONE ){
4035           rc = SQLITE_OK;
4036           res = 1;
4037         }else{
4038           goto abort_due_to_error;
4039         }
4040       }
4041     }else{
4042       res = 0;
4043     }
4044   }else{
4045     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4046     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4047       res = 0;
4048       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4049       if( rc!=SQLITE_OK ){
4050         if( rc==SQLITE_DONE ){
4051           rc = SQLITE_OK;
4052           res = 1;
4053         }else{
4054           goto abort_due_to_error;
4055         }
4056       }
4057     }else{
4058       /* res might be negative because the table is empty.  Check to
4059       ** see if this is the case.
4060       */
4061       res = sqlite3BtreeEof(pC->uc.pCursor);
4062     }
4063   }
4064 seek_not_found:
4065   assert( pOp->p2>0 );
4066   VdbeBranchTaken(res!=0,2);
4067   if( res ){
4068     goto jump_to_p2;
4069   }else if( eqOnly ){
4070     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4071     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4072   }
4073   break;
4074 }
4075 
4076 /* Opcode: SeekHit P1 P2 * * *
4077 ** Synopsis: seekHit=P2
4078 **
4079 ** Set the seekHit flag on cursor P1 to the value in P2.
4080 ** The seekHit flag is used by the IfNoHope opcode.
4081 **
4082 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4083 ** either 0 or 1.
4084 */
4085 case OP_SeekHit: {
4086   VdbeCursor *pC;
4087   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4088   pC = p->apCsr[pOp->p1];
4089   assert( pC!=0 );
4090   assert( pOp->p2==0 || pOp->p2==1 );
4091   pC->seekHit = pOp->p2 & 1;
4092   break;
4093 }
4094 
4095 /* Opcode: Found P1 P2 P3 P4 *
4096 ** Synopsis: key=r[P3@P4]
4097 **
4098 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4099 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4100 ** record.
4101 **
4102 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4103 ** is a prefix of any entry in P1 then a jump is made to P2 and
4104 ** P1 is left pointing at the matching entry.
4105 **
4106 ** This operation leaves the cursor in a state where it can be
4107 ** advanced in the forward direction.  The Next instruction will work,
4108 ** but not the Prev instruction.
4109 **
4110 ** See also: NotFound, NoConflict, NotExists. SeekGe
4111 */
4112 /* Opcode: NotFound P1 P2 P3 P4 *
4113 ** Synopsis: key=r[P3@P4]
4114 **
4115 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4116 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4117 ** record.
4118 **
4119 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4120 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4121 ** does contain an entry whose prefix matches the P3/P4 record then control
4122 ** falls through to the next instruction and P1 is left pointing at the
4123 ** matching entry.
4124 **
4125 ** This operation leaves the cursor in a state where it cannot be
4126 ** advanced in either direction.  In other words, the Next and Prev
4127 ** opcodes do not work after this operation.
4128 **
4129 ** See also: Found, NotExists, NoConflict, IfNoHope
4130 */
4131 /* Opcode: IfNoHope P1 P2 P3 P4 *
4132 ** Synopsis: key=r[P3@P4]
4133 **
4134 ** Register P3 is the first of P4 registers that form an unpacked
4135 ** record.
4136 **
4137 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4138 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4139 ** check to see if there is any entry in P1 that matches the
4140 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4141 ** jump to P2.  Otherwise fall through.
4142 **
4143 ** This opcode behaves like OP_NotFound if the seekHit
4144 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4145 **
4146 ** This opcode is used in IN clause processing for a multi-column key.
4147 ** If an IN clause is attached to an element of the key other than the
4148 ** left-most element, and if there are no matches on the most recent
4149 ** seek over the whole key, then it might be that one of the key element
4150 ** to the left is prohibiting a match, and hence there is "no hope" of
4151 ** any match regardless of how many IN clause elements are checked.
4152 ** In such a case, we abandon the IN clause search early, using this
4153 ** opcode.  The opcode name comes from the fact that the
4154 ** jump is taken if there is "no hope" of achieving a match.
4155 **
4156 ** See also: NotFound, SeekHit
4157 */
4158 /* Opcode: NoConflict P1 P2 P3 P4 *
4159 ** Synopsis: key=r[P3@P4]
4160 **
4161 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4162 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4163 ** record.
4164 **
4165 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4166 ** contains any NULL value, jump immediately to P2.  If all terms of the
4167 ** record are not-NULL then a check is done to determine if any row in the
4168 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4169 ** immediately to P2.  If there is a match, fall through and leave the P1
4170 ** cursor pointing to the matching row.
4171 **
4172 ** This opcode is similar to OP_NotFound with the exceptions that the
4173 ** branch is always taken if any part of the search key input is NULL.
4174 **
4175 ** This operation leaves the cursor in a state where it cannot be
4176 ** advanced in either direction.  In other words, the Next and Prev
4177 ** opcodes do not work after this operation.
4178 **
4179 ** See also: NotFound, Found, NotExists
4180 */
4181 case OP_IfNoHope: {     /* jump, in3 */
4182   VdbeCursor *pC;
4183   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4184   pC = p->apCsr[pOp->p1];
4185   assert( pC!=0 );
4186   if( pC->seekHit ) break;
4187   /* Fall through into OP_NotFound */
4188 }
4189 case OP_NoConflict:     /* jump, in3 */
4190 case OP_NotFound:       /* jump, in3 */
4191 case OP_Found: {        /* jump, in3 */
4192   int alreadyExists;
4193   int takeJump;
4194   int ii;
4195   VdbeCursor *pC;
4196   int res;
4197   UnpackedRecord *pFree;
4198   UnpackedRecord *pIdxKey;
4199   UnpackedRecord r;
4200 
4201 #ifdef SQLITE_TEST
4202   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4203 #endif
4204 
4205   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4206   assert( pOp->p4type==P4_INT32 );
4207   pC = p->apCsr[pOp->p1];
4208   assert( pC!=0 );
4209 #ifdef SQLITE_DEBUG
4210   pC->seekOp = pOp->opcode;
4211 #endif
4212   pIn3 = &aMem[pOp->p3];
4213   assert( pC->eCurType==CURTYPE_BTREE );
4214   assert( pC->uc.pCursor!=0 );
4215   assert( pC->isTable==0 );
4216   if( pOp->p4.i>0 ){
4217     r.pKeyInfo = pC->pKeyInfo;
4218     r.nField = (u16)pOp->p4.i;
4219     r.aMem = pIn3;
4220 #ifdef SQLITE_DEBUG
4221     for(ii=0; ii<r.nField; ii++){
4222       assert( memIsValid(&r.aMem[ii]) );
4223       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4224       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4225     }
4226 #endif
4227     pIdxKey = &r;
4228     pFree = 0;
4229   }else{
4230     assert( pIn3->flags & MEM_Blob );
4231     rc = ExpandBlob(pIn3);
4232     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4233     if( rc ) goto no_mem;
4234     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4235     if( pIdxKey==0 ) goto no_mem;
4236     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4237   }
4238   pIdxKey->default_rc = 0;
4239   takeJump = 0;
4240   if( pOp->opcode==OP_NoConflict ){
4241     /* For the OP_NoConflict opcode, take the jump if any of the
4242     ** input fields are NULL, since any key with a NULL will not
4243     ** conflict */
4244     for(ii=0; ii<pIdxKey->nField; ii++){
4245       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4246         takeJump = 1;
4247         break;
4248       }
4249     }
4250   }
4251   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4252   if( pFree ) sqlite3DbFreeNN(db, pFree);
4253   if( rc!=SQLITE_OK ){
4254     goto abort_due_to_error;
4255   }
4256   pC->seekResult = res;
4257   alreadyExists = (res==0);
4258   pC->nullRow = 1-alreadyExists;
4259   pC->deferredMoveto = 0;
4260   pC->cacheStatus = CACHE_STALE;
4261   if( pOp->opcode==OP_Found ){
4262     VdbeBranchTaken(alreadyExists!=0,2);
4263     if( alreadyExists ) goto jump_to_p2;
4264   }else{
4265     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4266     if( takeJump || !alreadyExists ) goto jump_to_p2;
4267   }
4268   break;
4269 }
4270 
4271 /* Opcode: SeekRowid P1 P2 P3 * *
4272 ** Synopsis: intkey=r[P3]
4273 **
4274 ** P1 is the index of a cursor open on an SQL table btree (with integer
4275 ** keys).  If register P3 does not contain an integer or if P1 does not
4276 ** contain a record with rowid P3 then jump immediately to P2.
4277 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4278 ** a record with rowid P3 then
4279 ** leave the cursor pointing at that record and fall through to the next
4280 ** instruction.
4281 **
4282 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4283 ** the P3 register must be guaranteed to contain an integer value.  With this
4284 ** opcode, register P3 might not contain an integer.
4285 **
4286 ** The OP_NotFound opcode performs the same operation on index btrees
4287 ** (with arbitrary multi-value keys).
4288 **
4289 ** This opcode leaves the cursor in a state where it cannot be advanced
4290 ** in either direction.  In other words, the Next and Prev opcodes will
4291 ** not work following this opcode.
4292 **
4293 ** See also: Found, NotFound, NoConflict, SeekRowid
4294 */
4295 /* Opcode: NotExists P1 P2 P3 * *
4296 ** Synopsis: intkey=r[P3]
4297 **
4298 ** P1 is the index of a cursor open on an SQL table btree (with integer
4299 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4300 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4301 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4302 ** leave the cursor pointing at that record and fall through to the next
4303 ** instruction.
4304 **
4305 ** The OP_SeekRowid opcode performs the same operation but also allows the
4306 ** P3 register to contain a non-integer value, in which case the jump is
4307 ** always taken.  This opcode requires that P3 always contain an integer.
4308 **
4309 ** The OP_NotFound opcode performs the same operation on index btrees
4310 ** (with arbitrary multi-value keys).
4311 **
4312 ** This opcode leaves the cursor in a state where it cannot be advanced
4313 ** in either direction.  In other words, the Next and Prev opcodes will
4314 ** not work following this opcode.
4315 **
4316 ** See also: Found, NotFound, NoConflict, SeekRowid
4317 */
4318 case OP_SeekRowid: {        /* jump, in3 */
4319   VdbeCursor *pC;
4320   BtCursor *pCrsr;
4321   int res;
4322   u64 iKey;
4323 
4324   pIn3 = &aMem[pOp->p3];
4325   if( (pIn3->flags & MEM_Int)==0 ){
4326     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4327     if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4328   }
4329   /* Fall through into OP_NotExists */
4330 case OP_NotExists:          /* jump, in3 */
4331   pIn3 = &aMem[pOp->p3];
4332   assert( pIn3->flags & MEM_Int );
4333   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4334   pC = p->apCsr[pOp->p1];
4335   assert( pC!=0 );
4336 #ifdef SQLITE_DEBUG
4337   pC->seekOp = OP_SeekRowid;
4338 #endif
4339   assert( pC->isTable );
4340   assert( pC->eCurType==CURTYPE_BTREE );
4341   pCrsr = pC->uc.pCursor;
4342   assert( pCrsr!=0 );
4343   res = 0;
4344   iKey = pIn3->u.i;
4345   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4346   assert( rc==SQLITE_OK || res==0 );
4347   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4348   pC->nullRow = 0;
4349   pC->cacheStatus = CACHE_STALE;
4350   pC->deferredMoveto = 0;
4351   VdbeBranchTaken(res!=0,2);
4352   pC->seekResult = res;
4353   if( res!=0 ){
4354     assert( rc==SQLITE_OK );
4355     if( pOp->p2==0 ){
4356       rc = SQLITE_CORRUPT_BKPT;
4357     }else{
4358       goto jump_to_p2;
4359     }
4360   }
4361   if( rc ) goto abort_due_to_error;
4362   break;
4363 }
4364 
4365 /* Opcode: Sequence P1 P2 * * *
4366 ** Synopsis: r[P2]=cursor[P1].ctr++
4367 **
4368 ** Find the next available sequence number for cursor P1.
4369 ** Write the sequence number into register P2.
4370 ** The sequence number on the cursor is incremented after this
4371 ** instruction.
4372 */
4373 case OP_Sequence: {           /* out2 */
4374   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4375   assert( p->apCsr[pOp->p1]!=0 );
4376   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4377   pOut = out2Prerelease(p, pOp);
4378   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4379   break;
4380 }
4381 
4382 
4383 /* Opcode: NewRowid P1 P2 P3 * *
4384 ** Synopsis: r[P2]=rowid
4385 **
4386 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4387 ** The record number is not previously used as a key in the database
4388 ** table that cursor P1 points to.  The new record number is written
4389 ** written to register P2.
4390 **
4391 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4392 ** the largest previously generated record number. No new record numbers are
4393 ** allowed to be less than this value. When this value reaches its maximum,
4394 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4395 ** generated record number. This P3 mechanism is used to help implement the
4396 ** AUTOINCREMENT feature.
4397 */
4398 case OP_NewRowid: {           /* out2 */
4399   i64 v;                 /* The new rowid */
4400   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4401   int res;               /* Result of an sqlite3BtreeLast() */
4402   int cnt;               /* Counter to limit the number of searches */
4403   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4404   VdbeFrame *pFrame;     /* Root frame of VDBE */
4405 
4406   v = 0;
4407   res = 0;
4408   pOut = out2Prerelease(p, pOp);
4409   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4410   pC = p->apCsr[pOp->p1];
4411   assert( pC!=0 );
4412   assert( pC->isTable );
4413   assert( pC->eCurType==CURTYPE_BTREE );
4414   assert( pC->uc.pCursor!=0 );
4415   {
4416     /* The next rowid or record number (different terms for the same
4417     ** thing) is obtained in a two-step algorithm.
4418     **
4419     ** First we attempt to find the largest existing rowid and add one
4420     ** to that.  But if the largest existing rowid is already the maximum
4421     ** positive integer, we have to fall through to the second
4422     ** probabilistic algorithm
4423     **
4424     ** The second algorithm is to select a rowid at random and see if
4425     ** it already exists in the table.  If it does not exist, we have
4426     ** succeeded.  If the random rowid does exist, we select a new one
4427     ** and try again, up to 100 times.
4428     */
4429     assert( pC->isTable );
4430 
4431 #ifdef SQLITE_32BIT_ROWID
4432 #   define MAX_ROWID 0x7fffffff
4433 #else
4434     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4435     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4436     ** to provide the constant while making all compilers happy.
4437     */
4438 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4439 #endif
4440 
4441     if( !pC->useRandomRowid ){
4442       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4443       if( rc!=SQLITE_OK ){
4444         goto abort_due_to_error;
4445       }
4446       if( res ){
4447         v = 1;   /* IMP: R-61914-48074 */
4448       }else{
4449         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4450         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4451         if( v>=MAX_ROWID ){
4452           pC->useRandomRowid = 1;
4453         }else{
4454           v++;   /* IMP: R-29538-34987 */
4455         }
4456       }
4457     }
4458 
4459 #ifndef SQLITE_OMIT_AUTOINCREMENT
4460     if( pOp->p3 ){
4461       /* Assert that P3 is a valid memory cell. */
4462       assert( pOp->p3>0 );
4463       if( p->pFrame ){
4464         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4465         /* Assert that P3 is a valid memory cell. */
4466         assert( pOp->p3<=pFrame->nMem );
4467         pMem = &pFrame->aMem[pOp->p3];
4468       }else{
4469         /* Assert that P3 is a valid memory cell. */
4470         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4471         pMem = &aMem[pOp->p3];
4472         memAboutToChange(p, pMem);
4473       }
4474       assert( memIsValid(pMem) );
4475 
4476       REGISTER_TRACE(pOp->p3, pMem);
4477       sqlite3VdbeMemIntegerify(pMem);
4478       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4479       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4480         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4481         goto abort_due_to_error;
4482       }
4483       if( v<pMem->u.i+1 ){
4484         v = pMem->u.i + 1;
4485       }
4486       pMem->u.i = v;
4487     }
4488 #endif
4489     if( pC->useRandomRowid ){
4490       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4491       ** largest possible integer (9223372036854775807) then the database
4492       ** engine starts picking positive candidate ROWIDs at random until
4493       ** it finds one that is not previously used. */
4494       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4495                              ** an AUTOINCREMENT table. */
4496       cnt = 0;
4497       do{
4498         sqlite3_randomness(sizeof(v), &v);
4499         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4500       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4501                                                  0, &res))==SQLITE_OK)
4502             && (res==0)
4503             && (++cnt<100));
4504       if( rc ) goto abort_due_to_error;
4505       if( res==0 ){
4506         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4507         goto abort_due_to_error;
4508       }
4509       assert( v>0 );  /* EV: R-40812-03570 */
4510     }
4511     pC->deferredMoveto = 0;
4512     pC->cacheStatus = CACHE_STALE;
4513   }
4514   pOut->u.i = v;
4515   break;
4516 }
4517 
4518 /* Opcode: Insert P1 P2 P3 P4 P5
4519 ** Synopsis: intkey=r[P3] data=r[P2]
4520 **
4521 ** Write an entry into the table of cursor P1.  A new entry is
4522 ** created if it doesn't already exist or the data for an existing
4523 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4524 ** number P2. The key is stored in register P3. The key must
4525 ** be a MEM_Int.
4526 **
4527 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4528 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4529 ** then rowid is stored for subsequent return by the
4530 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4531 **
4532 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4533 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4534 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4535 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4536 **
4537 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4538 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4539 ** is part of an INSERT operation.  The difference is only important to
4540 ** the update hook.
4541 **
4542 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4543 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4544 ** following a successful insert.
4545 **
4546 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4547 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4548 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4549 ** value of register P2 will then change.  Make sure this does not
4550 ** cause any problems.)
4551 **
4552 ** This instruction only works on tables.  The equivalent instruction
4553 ** for indices is OP_IdxInsert.
4554 */
4555 /* Opcode: InsertInt P1 P2 P3 P4 P5
4556 ** Synopsis: intkey=P3 data=r[P2]
4557 **
4558 ** This works exactly like OP_Insert except that the key is the
4559 ** integer value P3, not the value of the integer stored in register P3.
4560 */
4561 case OP_Insert:
4562 case OP_InsertInt: {
4563   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4564   Mem *pKey;        /* MEM cell holding key  for the record */
4565   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4566   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4567   const char *zDb;  /* database name - used by the update hook */
4568   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4569   BtreePayload x;   /* Payload to be inserted */
4570 
4571   pData = &aMem[pOp->p2];
4572   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4573   assert( memIsValid(pData) );
4574   pC = p->apCsr[pOp->p1];
4575   assert( pC!=0 );
4576   assert( pC->eCurType==CURTYPE_BTREE );
4577   assert( pC->uc.pCursor!=0 );
4578   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4579   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4580   REGISTER_TRACE(pOp->p2, pData);
4581   sqlite3VdbeIncrWriteCounter(p, pC);
4582 
4583   if( pOp->opcode==OP_Insert ){
4584     pKey = &aMem[pOp->p3];
4585     assert( pKey->flags & MEM_Int );
4586     assert( memIsValid(pKey) );
4587     REGISTER_TRACE(pOp->p3, pKey);
4588     x.nKey = pKey->u.i;
4589   }else{
4590     assert( pOp->opcode==OP_InsertInt );
4591     x.nKey = pOp->p3;
4592   }
4593 
4594   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4595     assert( pC->iDb>=0 );
4596     zDb = db->aDb[pC->iDb].zDbSName;
4597     pTab = pOp->p4.pTab;
4598     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4599   }else{
4600     pTab = 0;
4601     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4602   }
4603 
4604 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4605   /* Invoke the pre-update hook, if any */
4606   if( pTab ){
4607     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4608       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4609     }
4610     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4611       /* Prevent post-update hook from running in cases when it should not */
4612       pTab = 0;
4613     }
4614   }
4615   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4616 #endif
4617 
4618   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4619   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4620   assert( pData->flags & (MEM_Blob|MEM_Str) );
4621   x.pData = pData->z;
4622   x.nData = pData->n;
4623   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4624   if( pData->flags & MEM_Zero ){
4625     x.nZero = pData->u.nZero;
4626   }else{
4627     x.nZero = 0;
4628   }
4629   x.pKey = 0;
4630   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4631       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4632   );
4633   pC->deferredMoveto = 0;
4634   pC->cacheStatus = CACHE_STALE;
4635 
4636   /* Invoke the update-hook if required. */
4637   if( rc ) goto abort_due_to_error;
4638   if( pTab ){
4639     assert( db->xUpdateCallback!=0 );
4640     assert( pTab->aCol!=0 );
4641     db->xUpdateCallback(db->pUpdateArg,
4642            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4643            zDb, pTab->zName, x.nKey);
4644   }
4645   break;
4646 }
4647 
4648 /* Opcode: Delete P1 P2 P3 P4 P5
4649 **
4650 ** Delete the record at which the P1 cursor is currently pointing.
4651 **
4652 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4653 ** the cursor will be left pointing at  either the next or the previous
4654 ** record in the table. If it is left pointing at the next record, then
4655 ** the next Next instruction will be a no-op. As a result, in this case
4656 ** it is ok to delete a record from within a Next loop. If
4657 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4658 ** left in an undefined state.
4659 **
4660 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4661 ** delete one of several associated with deleting a table row and all its
4662 ** associated index entries.  Exactly one of those deletes is the "primary"
4663 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4664 ** marked with the AUXDELETE flag.
4665 **
4666 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4667 ** change count is incremented (otherwise not).
4668 **
4669 ** P1 must not be pseudo-table.  It has to be a real table with
4670 ** multiple rows.
4671 **
4672 ** If P4 is not NULL then it points to a Table object. In this case either
4673 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4674 ** have been positioned using OP_NotFound prior to invoking this opcode in
4675 ** this case. Specifically, if one is configured, the pre-update hook is
4676 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4677 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4678 **
4679 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4680 ** of the memory cell that contains the value that the rowid of the row will
4681 ** be set to by the update.
4682 */
4683 case OP_Delete: {
4684   VdbeCursor *pC;
4685   const char *zDb;
4686   Table *pTab;
4687   int opflags;
4688 
4689   opflags = pOp->p2;
4690   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4691   pC = p->apCsr[pOp->p1];
4692   assert( pC!=0 );
4693   assert( pC->eCurType==CURTYPE_BTREE );
4694   assert( pC->uc.pCursor!=0 );
4695   assert( pC->deferredMoveto==0 );
4696   sqlite3VdbeIncrWriteCounter(p, pC);
4697 
4698 #ifdef SQLITE_DEBUG
4699   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4700     /* If p5 is zero, the seek operation that positioned the cursor prior to
4701     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4702     ** the row that is being deleted */
4703     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4704     assert( pC->movetoTarget==iKey );
4705   }
4706 #endif
4707 
4708   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4709   ** the name of the db to pass as to it. Also set local pTab to a copy
4710   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4711   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4712   ** VdbeCursor.movetoTarget to the current rowid.  */
4713   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4714     assert( pC->iDb>=0 );
4715     assert( pOp->p4.pTab!=0 );
4716     zDb = db->aDb[pC->iDb].zDbSName;
4717     pTab = pOp->p4.pTab;
4718     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4719       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4720     }
4721   }else{
4722     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4723     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4724   }
4725 
4726 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4727   /* Invoke the pre-update-hook if required. */
4728   if( db->xPreUpdateCallback && pOp->p4.pTab ){
4729     assert( !(opflags & OPFLAG_ISUPDATE)
4730          || HasRowid(pTab)==0
4731          || (aMem[pOp->p3].flags & MEM_Int)
4732     );
4733     sqlite3VdbePreUpdateHook(p, pC,
4734         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4735         zDb, pTab, pC->movetoTarget,
4736         pOp->p3
4737     );
4738   }
4739   if( opflags & OPFLAG_ISNOOP ) break;
4740 #endif
4741 
4742   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4743   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4744   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4745   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4746 
4747 #ifdef SQLITE_DEBUG
4748   if( p->pFrame==0 ){
4749     if( pC->isEphemeral==0
4750         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4751         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4752       ){
4753       nExtraDelete++;
4754     }
4755     if( pOp->p2 & OPFLAG_NCHANGE ){
4756       nExtraDelete--;
4757     }
4758   }
4759 #endif
4760 
4761   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4762   pC->cacheStatus = CACHE_STALE;
4763   pC->seekResult = 0;
4764   if( rc ) goto abort_due_to_error;
4765 
4766   /* Invoke the update-hook if required. */
4767   if( opflags & OPFLAG_NCHANGE ){
4768     p->nChange++;
4769     if( db->xUpdateCallback && HasRowid(pTab) ){
4770       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4771           pC->movetoTarget);
4772       assert( pC->iDb>=0 );
4773     }
4774   }
4775 
4776   break;
4777 }
4778 /* Opcode: ResetCount * * * * *
4779 **
4780 ** The value of the change counter is copied to the database handle
4781 ** change counter (returned by subsequent calls to sqlite3_changes()).
4782 ** Then the VMs internal change counter resets to 0.
4783 ** This is used by trigger programs.
4784 */
4785 case OP_ResetCount: {
4786   sqlite3VdbeSetChanges(db, p->nChange);
4787   p->nChange = 0;
4788   break;
4789 }
4790 
4791 /* Opcode: SorterCompare P1 P2 P3 P4
4792 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4793 **
4794 ** P1 is a sorter cursor. This instruction compares a prefix of the
4795 ** record blob in register P3 against a prefix of the entry that
4796 ** the sorter cursor currently points to.  Only the first P4 fields
4797 ** of r[P3] and the sorter record are compared.
4798 **
4799 ** If either P3 or the sorter contains a NULL in one of their significant
4800 ** fields (not counting the P4 fields at the end which are ignored) then
4801 ** the comparison is assumed to be equal.
4802 **
4803 ** Fall through to next instruction if the two records compare equal to
4804 ** each other.  Jump to P2 if they are different.
4805 */
4806 case OP_SorterCompare: {
4807   VdbeCursor *pC;
4808   int res;
4809   int nKeyCol;
4810 
4811   pC = p->apCsr[pOp->p1];
4812   assert( isSorter(pC) );
4813   assert( pOp->p4type==P4_INT32 );
4814   pIn3 = &aMem[pOp->p3];
4815   nKeyCol = pOp->p4.i;
4816   res = 0;
4817   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4818   VdbeBranchTaken(res!=0,2);
4819   if( rc ) goto abort_due_to_error;
4820   if( res ) goto jump_to_p2;
4821   break;
4822 };
4823 
4824 /* Opcode: SorterData P1 P2 P3 * *
4825 ** Synopsis: r[P2]=data
4826 **
4827 ** Write into register P2 the current sorter data for sorter cursor P1.
4828 ** Then clear the column header cache on cursor P3.
4829 **
4830 ** This opcode is normally use to move a record out of the sorter and into
4831 ** a register that is the source for a pseudo-table cursor created using
4832 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4833 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4834 ** us from having to issue a separate NullRow instruction to clear that cache.
4835 */
4836 case OP_SorterData: {
4837   VdbeCursor *pC;
4838 
4839   pOut = &aMem[pOp->p2];
4840   pC = p->apCsr[pOp->p1];
4841   assert( isSorter(pC) );
4842   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4843   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4844   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4845   if( rc ) goto abort_due_to_error;
4846   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4847   break;
4848 }
4849 
4850 /* Opcode: RowData P1 P2 P3 * *
4851 ** Synopsis: r[P2]=data
4852 **
4853 ** Write into register P2 the complete row content for the row at
4854 ** which cursor P1 is currently pointing.
4855 ** There is no interpretation of the data.
4856 ** It is just copied onto the P2 register exactly as
4857 ** it is found in the database file.
4858 **
4859 ** If cursor P1 is an index, then the content is the key of the row.
4860 ** If cursor P2 is a table, then the content extracted is the data.
4861 **
4862 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4863 ** of a real table, not a pseudo-table.
4864 **
4865 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
4866 ** into the database page.  That means that the content of the output
4867 ** register will be invalidated as soon as the cursor moves - including
4868 ** moves caused by other cursors that "save" the current cursors
4869 ** position in order that they can write to the same table.  If P3==0
4870 ** then a copy of the data is made into memory.  P3!=0 is faster, but
4871 ** P3==0 is safer.
4872 **
4873 ** If P3!=0 then the content of the P2 register is unsuitable for use
4874 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4875 ** The P2 register content is invalidated by opcodes like OP_Function or
4876 ** by any use of another cursor pointing to the same table.
4877 */
4878 case OP_RowData: {
4879   VdbeCursor *pC;
4880   BtCursor *pCrsr;
4881   u32 n;
4882 
4883   pOut = out2Prerelease(p, pOp);
4884 
4885   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4886   pC = p->apCsr[pOp->p1];
4887   assert( pC!=0 );
4888   assert( pC->eCurType==CURTYPE_BTREE );
4889   assert( isSorter(pC)==0 );
4890   assert( pC->nullRow==0 );
4891   assert( pC->uc.pCursor!=0 );
4892   pCrsr = pC->uc.pCursor;
4893 
4894   /* The OP_RowData opcodes always follow OP_NotExists or
4895   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4896   ** that might invalidate the cursor.
4897   ** If this where not the case, on of the following assert()s
4898   ** would fail.  Should this ever change (because of changes in the code
4899   ** generator) then the fix would be to insert a call to
4900   ** sqlite3VdbeCursorMoveto().
4901   */
4902   assert( pC->deferredMoveto==0 );
4903   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4904 #if 0  /* Not required due to the previous to assert() statements */
4905   rc = sqlite3VdbeCursorMoveto(pC);
4906   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4907 #endif
4908 
4909   n = sqlite3BtreePayloadSize(pCrsr);
4910   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4911     goto too_big;
4912   }
4913   testcase( n==0 );
4914   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
4915   if( rc ) goto abort_due_to_error;
4916   if( !pOp->p3 ) Deephemeralize(pOut);
4917   UPDATE_MAX_BLOBSIZE(pOut);
4918   REGISTER_TRACE(pOp->p2, pOut);
4919   break;
4920 }
4921 
4922 /* Opcode: Rowid P1 P2 * * *
4923 ** Synopsis: r[P2]=rowid
4924 **
4925 ** Store in register P2 an integer which is the key of the table entry that
4926 ** P1 is currently point to.
4927 **
4928 ** P1 can be either an ordinary table or a virtual table.  There used to
4929 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4930 ** one opcode now works for both table types.
4931 */
4932 case OP_Rowid: {                 /* out2 */
4933   VdbeCursor *pC;
4934   i64 v;
4935   sqlite3_vtab *pVtab;
4936   const sqlite3_module *pModule;
4937 
4938   pOut = out2Prerelease(p, pOp);
4939   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4940   pC = p->apCsr[pOp->p1];
4941   assert( pC!=0 );
4942   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4943   if( pC->nullRow ){
4944     pOut->flags = MEM_Null;
4945     break;
4946   }else if( pC->deferredMoveto ){
4947     v = pC->movetoTarget;
4948 #ifndef SQLITE_OMIT_VIRTUALTABLE
4949   }else if( pC->eCurType==CURTYPE_VTAB ){
4950     assert( pC->uc.pVCur!=0 );
4951     pVtab = pC->uc.pVCur->pVtab;
4952     pModule = pVtab->pModule;
4953     assert( pModule->xRowid );
4954     rc = pModule->xRowid(pC->uc.pVCur, &v);
4955     sqlite3VtabImportErrmsg(p, pVtab);
4956     if( rc ) goto abort_due_to_error;
4957 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4958   }else{
4959     assert( pC->eCurType==CURTYPE_BTREE );
4960     assert( pC->uc.pCursor!=0 );
4961     rc = sqlite3VdbeCursorRestore(pC);
4962     if( rc ) goto abort_due_to_error;
4963     if( pC->nullRow ){
4964       pOut->flags = MEM_Null;
4965       break;
4966     }
4967     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4968   }
4969   pOut->u.i = v;
4970   break;
4971 }
4972 
4973 /* Opcode: NullRow P1 * * * *
4974 **
4975 ** Move the cursor P1 to a null row.  Any OP_Column operations
4976 ** that occur while the cursor is on the null row will always
4977 ** write a NULL.
4978 */
4979 case OP_NullRow: {
4980   VdbeCursor *pC;
4981 
4982   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4983   pC = p->apCsr[pOp->p1];
4984   assert( pC!=0 );
4985   pC->nullRow = 1;
4986   pC->cacheStatus = CACHE_STALE;
4987   if( pC->eCurType==CURTYPE_BTREE ){
4988     assert( pC->uc.pCursor!=0 );
4989     sqlite3BtreeClearCursor(pC->uc.pCursor);
4990   }
4991 #ifdef SQLITE_DEBUG
4992   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
4993 #endif
4994   break;
4995 }
4996 
4997 /* Opcode: SeekEnd P1 * * * *
4998 **
4999 ** Position cursor P1 at the end of the btree for the purpose of
5000 ** appending a new entry onto the btree.
5001 **
5002 ** It is assumed that the cursor is used only for appending and so
5003 ** if the cursor is valid, then the cursor must already be pointing
5004 ** at the end of the btree and so no changes are made to
5005 ** the cursor.
5006 */
5007 /* Opcode: Last P1 P2 * * *
5008 **
5009 ** The next use of the Rowid or Column or Prev instruction for P1
5010 ** will refer to the last entry in the database table or index.
5011 ** If the table or index is empty and P2>0, then jump immediately to P2.
5012 ** If P2 is 0 or if the table or index is not empty, fall through
5013 ** to the following instruction.
5014 **
5015 ** This opcode leaves the cursor configured to move in reverse order,
5016 ** from the end toward the beginning.  In other words, the cursor is
5017 ** configured to use Prev, not Next.
5018 */
5019 case OP_SeekEnd:
5020 case OP_Last: {        /* jump */
5021   VdbeCursor *pC;
5022   BtCursor *pCrsr;
5023   int res;
5024 
5025   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5026   pC = p->apCsr[pOp->p1];
5027   assert( pC!=0 );
5028   assert( pC->eCurType==CURTYPE_BTREE );
5029   pCrsr = pC->uc.pCursor;
5030   res = 0;
5031   assert( pCrsr!=0 );
5032 #ifdef SQLITE_DEBUG
5033   pC->seekOp = pOp->opcode;
5034 #endif
5035   if( pOp->opcode==OP_SeekEnd ){
5036     assert( pOp->p2==0 );
5037     pC->seekResult = -1;
5038     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5039       break;
5040     }
5041   }
5042   rc = sqlite3BtreeLast(pCrsr, &res);
5043   pC->nullRow = (u8)res;
5044   pC->deferredMoveto = 0;
5045   pC->cacheStatus = CACHE_STALE;
5046   if( rc ) goto abort_due_to_error;
5047   if( pOp->p2>0 ){
5048     VdbeBranchTaken(res!=0,2);
5049     if( res ) goto jump_to_p2;
5050   }
5051   break;
5052 }
5053 
5054 /* Opcode: IfSmaller P1 P2 P3 * *
5055 **
5056 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5057 ** estimate is less than approximately 2**(0.1*P3).
5058 */
5059 case OP_IfSmaller: {        /* jump */
5060   VdbeCursor *pC;
5061   BtCursor *pCrsr;
5062   int res;
5063   i64 sz;
5064 
5065   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5066   pC = p->apCsr[pOp->p1];
5067   assert( pC!=0 );
5068   pCrsr = pC->uc.pCursor;
5069   assert( pCrsr );
5070   rc = sqlite3BtreeFirst(pCrsr, &res);
5071   if( rc ) goto abort_due_to_error;
5072   if( res==0 ){
5073     sz = sqlite3BtreeRowCountEst(pCrsr);
5074     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5075   }
5076   VdbeBranchTaken(res!=0,2);
5077   if( res ) goto jump_to_p2;
5078   break;
5079 }
5080 
5081 
5082 /* Opcode: SorterSort P1 P2 * * *
5083 **
5084 ** After all records have been inserted into the Sorter object
5085 ** identified by P1, invoke this opcode to actually do the sorting.
5086 ** Jump to P2 if there are no records to be sorted.
5087 **
5088 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5089 ** for Sorter objects.
5090 */
5091 /* Opcode: Sort P1 P2 * * *
5092 **
5093 ** This opcode does exactly the same thing as OP_Rewind except that
5094 ** it increments an undocumented global variable used for testing.
5095 **
5096 ** Sorting is accomplished by writing records into a sorting index,
5097 ** then rewinding that index and playing it back from beginning to
5098 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5099 ** rewinding so that the global variable will be incremented and
5100 ** regression tests can determine whether or not the optimizer is
5101 ** correctly optimizing out sorts.
5102 */
5103 case OP_SorterSort:    /* jump */
5104 case OP_Sort: {        /* jump */
5105 #ifdef SQLITE_TEST
5106   sqlite3_sort_count++;
5107   sqlite3_search_count--;
5108 #endif
5109   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5110   /* Fall through into OP_Rewind */
5111 }
5112 /* Opcode: Rewind P1 P2 * * P5
5113 **
5114 ** The next use of the Rowid or Column or Next instruction for P1
5115 ** will refer to the first entry in the database table or index.
5116 ** If the table or index is empty, jump immediately to P2.
5117 ** If the table or index is not empty, fall through to the following
5118 ** instruction.
5119 **
5120 ** If P5 is non-zero and the table is not empty, then the "skip-next"
5121 ** flag is set on the cursor so that the next OP_Next instruction
5122 ** executed on it is a no-op.
5123 **
5124 ** This opcode leaves the cursor configured to move in forward order,
5125 ** from the beginning toward the end.  In other words, the cursor is
5126 ** configured to use Next, not Prev.
5127 */
5128 case OP_Rewind: {        /* jump */
5129   VdbeCursor *pC;
5130   BtCursor *pCrsr;
5131   int res;
5132 
5133   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5134   pC = p->apCsr[pOp->p1];
5135   assert( pC!=0 );
5136   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5137   res = 1;
5138 #ifdef SQLITE_DEBUG
5139   pC->seekOp = OP_Rewind;
5140 #endif
5141   if( isSorter(pC) ){
5142     rc = sqlite3VdbeSorterRewind(pC, &res);
5143   }else{
5144     assert( pC->eCurType==CURTYPE_BTREE );
5145     pCrsr = pC->uc.pCursor;
5146     assert( pCrsr );
5147     rc = sqlite3BtreeFirst(pCrsr, &res);
5148 #ifndef SQLITE_OMIT_WINDOWFUNC
5149     if( pOp->p5 ) sqlite3BtreeSkipNext(pCrsr);
5150 #endif
5151     pC->deferredMoveto = 0;
5152     pC->cacheStatus = CACHE_STALE;
5153   }
5154   if( rc ) goto abort_due_to_error;
5155   pC->nullRow = (u8)res;
5156   assert( pOp->p2>0 && pOp->p2<p->nOp );
5157   VdbeBranchTaken(res!=0,2);
5158   if( res ) goto jump_to_p2;
5159   break;
5160 }
5161 
5162 /* Opcode: Next P1 P2 P3 P4 P5
5163 **
5164 ** Advance cursor P1 so that it points to the next key/data pair in its
5165 ** table or index.  If there are no more key/value pairs then fall through
5166 ** to the following instruction.  But if the cursor advance was successful,
5167 ** jump immediately to P2.
5168 **
5169 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5170 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5171 ** to follow SeekLT, SeekLE, or OP_Last.
5172 **
5173 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5174 ** been opened prior to this opcode or the program will segfault.
5175 **
5176 ** The P3 value is a hint to the btree implementation. If P3==1, that
5177 ** means P1 is an SQL index and that this instruction could have been
5178 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5179 ** always either 0 or 1.
5180 **
5181 ** P4 is always of type P4_ADVANCE. The function pointer points to
5182 ** sqlite3BtreeNext().
5183 **
5184 ** If P5 is positive and the jump is taken, then event counter
5185 ** number P5-1 in the prepared statement is incremented.
5186 **
5187 ** See also: Prev
5188 */
5189 /* Opcode: Prev P1 P2 P3 P4 P5
5190 **
5191 ** Back up cursor P1 so that it points to the previous key/data pair in its
5192 ** table or index.  If there is no previous key/value pairs then fall through
5193 ** to the following instruction.  But if the cursor backup was successful,
5194 ** jump immediately to P2.
5195 **
5196 **
5197 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5198 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5199 ** to follow SeekGT, SeekGE, or OP_Rewind.
5200 **
5201 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5202 ** not open then the behavior is undefined.
5203 **
5204 ** The P3 value is a hint to the btree implementation. If P3==1, that
5205 ** means P1 is an SQL index and that this instruction could have been
5206 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5207 ** always either 0 or 1.
5208 **
5209 ** P4 is always of type P4_ADVANCE. The function pointer points to
5210 ** sqlite3BtreePrevious().
5211 **
5212 ** If P5 is positive and the jump is taken, then event counter
5213 ** number P5-1 in the prepared statement is incremented.
5214 */
5215 /* Opcode: SorterNext P1 P2 * * P5
5216 **
5217 ** This opcode works just like OP_Next except that P1 must be a
5218 ** sorter object for which the OP_SorterSort opcode has been
5219 ** invoked.  This opcode advances the cursor to the next sorted
5220 ** record, or jumps to P2 if there are no more sorted records.
5221 */
5222 case OP_SorterNext: {  /* jump */
5223   VdbeCursor *pC;
5224 
5225   pC = p->apCsr[pOp->p1];
5226   assert( isSorter(pC) );
5227   rc = sqlite3VdbeSorterNext(db, pC);
5228   goto next_tail;
5229 case OP_Prev:          /* jump */
5230 case OP_Next:          /* jump */
5231   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5232   assert( pOp->p5<ArraySize(p->aCounter) );
5233   pC = p->apCsr[pOp->p1];
5234   assert( pC!=0 );
5235   assert( pC->deferredMoveto==0 );
5236   assert( pC->eCurType==CURTYPE_BTREE );
5237   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5238   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5239 
5240   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5241   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5242   assert( pOp->opcode!=OP_Next
5243        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5244        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5245        || pC->seekOp==OP_NullRow);
5246   assert( pOp->opcode!=OP_Prev
5247        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5248        || pC->seekOp==OP_Last
5249        || pC->seekOp==OP_NullRow);
5250 
5251   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5252 next_tail:
5253   pC->cacheStatus = CACHE_STALE;
5254   VdbeBranchTaken(rc==SQLITE_OK,2);
5255   if( rc==SQLITE_OK ){
5256     pC->nullRow = 0;
5257     p->aCounter[pOp->p5]++;
5258 #ifdef SQLITE_TEST
5259     sqlite3_search_count++;
5260 #endif
5261     goto jump_to_p2_and_check_for_interrupt;
5262   }
5263   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5264   rc = SQLITE_OK;
5265   pC->nullRow = 1;
5266   goto check_for_interrupt;
5267 }
5268 
5269 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5270 ** Synopsis: key=r[P2]
5271 **
5272 ** Register P2 holds an SQL index key made using the
5273 ** MakeRecord instructions.  This opcode writes that key
5274 ** into the index P1.  Data for the entry is nil.
5275 **
5276 ** If P4 is not zero, then it is the number of values in the unpacked
5277 ** key of reg(P2).  In that case, P3 is the index of the first register
5278 ** for the unpacked key.  The availability of the unpacked key can sometimes
5279 ** be an optimization.
5280 **
5281 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5282 ** that this insert is likely to be an append.
5283 **
5284 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5285 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5286 ** then the change counter is unchanged.
5287 **
5288 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5289 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5290 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5291 ** seeks on the cursor or if the most recent seek used a key equivalent
5292 ** to P2.
5293 **
5294 ** This instruction only works for indices.  The equivalent instruction
5295 ** for tables is OP_Insert.
5296 */
5297 /* Opcode: SorterInsert P1 P2 * * *
5298 ** Synopsis: key=r[P2]
5299 **
5300 ** Register P2 holds an SQL index key made using the
5301 ** MakeRecord instructions.  This opcode writes that key
5302 ** into the sorter P1.  Data for the entry is nil.
5303 */
5304 case OP_SorterInsert:       /* in2 */
5305 case OP_IdxInsert: {        /* in2 */
5306   VdbeCursor *pC;
5307   BtreePayload x;
5308 
5309   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5310   pC = p->apCsr[pOp->p1];
5311   sqlite3VdbeIncrWriteCounter(p, pC);
5312   assert( pC!=0 );
5313   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5314   pIn2 = &aMem[pOp->p2];
5315   assert( pIn2->flags & MEM_Blob );
5316   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5317   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5318   assert( pC->isTable==0 );
5319   rc = ExpandBlob(pIn2);
5320   if( rc ) goto abort_due_to_error;
5321   if( pOp->opcode==OP_SorterInsert ){
5322     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5323   }else{
5324     x.nKey = pIn2->n;
5325     x.pKey = pIn2->z;
5326     x.aMem = aMem + pOp->p3;
5327     x.nMem = (u16)pOp->p4.i;
5328     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5329          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5330         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5331         );
5332     assert( pC->deferredMoveto==0 );
5333     pC->cacheStatus = CACHE_STALE;
5334   }
5335   if( rc) goto abort_due_to_error;
5336   break;
5337 }
5338 
5339 /* Opcode: IdxDelete P1 P2 P3 * *
5340 ** Synopsis: key=r[P2@P3]
5341 **
5342 ** The content of P3 registers starting at register P2 form
5343 ** an unpacked index key. This opcode removes that entry from the
5344 ** index opened by cursor P1.
5345 */
5346 case OP_IdxDelete: {
5347   VdbeCursor *pC;
5348   BtCursor *pCrsr;
5349   int res;
5350   UnpackedRecord r;
5351 
5352   assert( pOp->p3>0 );
5353   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5354   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5355   pC = p->apCsr[pOp->p1];
5356   assert( pC!=0 );
5357   assert( pC->eCurType==CURTYPE_BTREE );
5358   sqlite3VdbeIncrWriteCounter(p, pC);
5359   pCrsr = pC->uc.pCursor;
5360   assert( pCrsr!=0 );
5361   assert( pOp->p5==0 );
5362   r.pKeyInfo = pC->pKeyInfo;
5363   r.nField = (u16)pOp->p3;
5364   r.default_rc = 0;
5365   r.aMem = &aMem[pOp->p2];
5366   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5367   if( rc ) goto abort_due_to_error;
5368   if( res==0 ){
5369     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5370     if( rc ) goto abort_due_to_error;
5371   }
5372   assert( pC->deferredMoveto==0 );
5373   pC->cacheStatus = CACHE_STALE;
5374   pC->seekResult = 0;
5375   break;
5376 }
5377 
5378 /* Opcode: DeferredSeek P1 * P3 P4 *
5379 ** Synopsis: Move P3 to P1.rowid if needed
5380 **
5381 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5382 ** table.  This opcode does a deferred seek of the P3 table cursor
5383 ** to the row that corresponds to the current row of P1.
5384 **
5385 ** This is a deferred seek.  Nothing actually happens until
5386 ** the cursor is used to read a record.  That way, if no reads
5387 ** occur, no unnecessary I/O happens.
5388 **
5389 ** P4 may be an array of integers (type P4_INTARRAY) containing
5390 ** one entry for each column in the P3 table.  If array entry a(i)
5391 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5392 ** equivalent to performing the deferred seek and then reading column i
5393 ** from P1.  This information is stored in P3 and used to redirect
5394 ** reads against P3 over to P1, thus possibly avoiding the need to
5395 ** seek and read cursor P3.
5396 */
5397 /* Opcode: IdxRowid P1 P2 * * *
5398 ** Synopsis: r[P2]=rowid
5399 **
5400 ** Write into register P2 an integer which is the last entry in the record at
5401 ** the end of the index key pointed to by cursor P1.  This integer should be
5402 ** the rowid of the table entry to which this index entry points.
5403 **
5404 ** See also: Rowid, MakeRecord.
5405 */
5406 case OP_DeferredSeek:
5407 case OP_IdxRowid: {           /* out2 */
5408   VdbeCursor *pC;             /* The P1 index cursor */
5409   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5410   i64 rowid;                  /* Rowid that P1 current points to */
5411 
5412   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5413   pC = p->apCsr[pOp->p1];
5414   assert( pC!=0 );
5415   assert( pC->eCurType==CURTYPE_BTREE );
5416   assert( pC->uc.pCursor!=0 );
5417   assert( pC->isTable==0 );
5418   assert( pC->deferredMoveto==0 );
5419   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5420 
5421   /* The IdxRowid and Seek opcodes are combined because of the commonality
5422   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5423   rc = sqlite3VdbeCursorRestore(pC);
5424 
5425   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5426   ** out from under the cursor.  That will never happens for an IdxRowid
5427   ** or Seek opcode */
5428   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5429 
5430   if( !pC->nullRow ){
5431     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5432     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5433     if( rc!=SQLITE_OK ){
5434       goto abort_due_to_error;
5435     }
5436     if( pOp->opcode==OP_DeferredSeek ){
5437       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5438       pTabCur = p->apCsr[pOp->p3];
5439       assert( pTabCur!=0 );
5440       assert( pTabCur->eCurType==CURTYPE_BTREE );
5441       assert( pTabCur->uc.pCursor!=0 );
5442       assert( pTabCur->isTable );
5443       pTabCur->nullRow = 0;
5444       pTabCur->movetoTarget = rowid;
5445       pTabCur->deferredMoveto = 1;
5446       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5447       pTabCur->aAltMap = pOp->p4.ai;
5448       pTabCur->pAltCursor = pC;
5449     }else{
5450       pOut = out2Prerelease(p, pOp);
5451       pOut->u.i = rowid;
5452     }
5453   }else{
5454     assert( pOp->opcode==OP_IdxRowid );
5455     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5456   }
5457   break;
5458 }
5459 
5460 /* Opcode: IdxGE P1 P2 P3 P4 P5
5461 ** Synopsis: key=r[P3@P4]
5462 **
5463 ** The P4 register values beginning with P3 form an unpacked index
5464 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5465 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5466 ** fields at the end.
5467 **
5468 ** If the P1 index entry is greater than or equal to the key value
5469 ** then jump to P2.  Otherwise fall through to the next instruction.
5470 */
5471 /* Opcode: IdxGT P1 P2 P3 P4 P5
5472 ** Synopsis: key=r[P3@P4]
5473 **
5474 ** The P4 register values beginning with P3 form an unpacked index
5475 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5476 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5477 ** fields at the end.
5478 **
5479 ** If the P1 index entry is greater than the key value
5480 ** then jump to P2.  Otherwise fall through to the next instruction.
5481 */
5482 /* Opcode: IdxLT P1 P2 P3 P4 P5
5483 ** Synopsis: key=r[P3@P4]
5484 **
5485 ** The P4 register values beginning with P3 form an unpacked index
5486 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5487 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5488 ** ROWID on the P1 index.
5489 **
5490 ** If the P1 index entry is less than the key value then jump to P2.
5491 ** Otherwise fall through to the next instruction.
5492 */
5493 /* Opcode: IdxLE P1 P2 P3 P4 P5
5494 ** Synopsis: key=r[P3@P4]
5495 **
5496 ** The P4 register values beginning with P3 form an unpacked index
5497 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5498 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5499 ** ROWID on the P1 index.
5500 **
5501 ** If the P1 index entry is less than or equal to the key value then jump
5502 ** to P2. Otherwise fall through to the next instruction.
5503 */
5504 case OP_IdxLE:          /* jump */
5505 case OP_IdxGT:          /* jump */
5506 case OP_IdxLT:          /* jump */
5507 case OP_IdxGE:  {       /* jump */
5508   VdbeCursor *pC;
5509   int res;
5510   UnpackedRecord r;
5511 
5512   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5513   pC = p->apCsr[pOp->p1];
5514   assert( pC!=0 );
5515   assert( pC->isOrdered );
5516   assert( pC->eCurType==CURTYPE_BTREE );
5517   assert( pC->uc.pCursor!=0);
5518   assert( pC->deferredMoveto==0 );
5519   assert( pOp->p5==0 || pOp->p5==1 );
5520   assert( pOp->p4type==P4_INT32 );
5521   r.pKeyInfo = pC->pKeyInfo;
5522   r.nField = (u16)pOp->p4.i;
5523   if( pOp->opcode<OP_IdxLT ){
5524     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5525     r.default_rc = -1;
5526   }else{
5527     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5528     r.default_rc = 0;
5529   }
5530   r.aMem = &aMem[pOp->p3];
5531 #ifdef SQLITE_DEBUG
5532   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5533 #endif
5534   res = 0;  /* Not needed.  Only used to silence a warning. */
5535   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5536   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5537   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5538     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5539     res = -res;
5540   }else{
5541     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5542     res++;
5543   }
5544   VdbeBranchTaken(res>0,2);
5545   if( rc ) goto abort_due_to_error;
5546   if( res>0 ) goto jump_to_p2;
5547   break;
5548 }
5549 
5550 /* Opcode: Destroy P1 P2 P3 * *
5551 **
5552 ** Delete an entire database table or index whose root page in the database
5553 ** file is given by P1.
5554 **
5555 ** The table being destroyed is in the main database file if P3==0.  If
5556 ** P3==1 then the table to be clear is in the auxiliary database file
5557 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5558 **
5559 ** If AUTOVACUUM is enabled then it is possible that another root page
5560 ** might be moved into the newly deleted root page in order to keep all
5561 ** root pages contiguous at the beginning of the database.  The former
5562 ** value of the root page that moved - its value before the move occurred -
5563 ** is stored in register P2. If no page movement was required (because the
5564 ** table being dropped was already the last one in the database) then a
5565 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5566 ** is stored in register P2.
5567 **
5568 ** This opcode throws an error if there are any active reader VMs when
5569 ** it is invoked. This is done to avoid the difficulty associated with
5570 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5571 ** database. This error is thrown even if the database is not an AUTOVACUUM
5572 ** db in order to avoid introducing an incompatibility between autovacuum
5573 ** and non-autovacuum modes.
5574 **
5575 ** See also: Clear
5576 */
5577 case OP_Destroy: {     /* out2 */
5578   int iMoved;
5579   int iDb;
5580 
5581   sqlite3VdbeIncrWriteCounter(p, 0);
5582   assert( p->readOnly==0 );
5583   assert( pOp->p1>1 );
5584   pOut = out2Prerelease(p, pOp);
5585   pOut->flags = MEM_Null;
5586   if( db->nVdbeRead > db->nVDestroy+1 ){
5587     rc = SQLITE_LOCKED;
5588     p->errorAction = OE_Abort;
5589     goto abort_due_to_error;
5590   }else{
5591     iDb = pOp->p3;
5592     assert( DbMaskTest(p->btreeMask, iDb) );
5593     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5594     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5595     pOut->flags = MEM_Int;
5596     pOut->u.i = iMoved;
5597     if( rc ) goto abort_due_to_error;
5598 #ifndef SQLITE_OMIT_AUTOVACUUM
5599     if( iMoved!=0 ){
5600       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5601       /* All OP_Destroy operations occur on the same btree */
5602       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5603       resetSchemaOnFault = iDb+1;
5604     }
5605 #endif
5606   }
5607   break;
5608 }
5609 
5610 /* Opcode: Clear P1 P2 P3
5611 **
5612 ** Delete all contents of the database table or index whose root page
5613 ** in the database file is given by P1.  But, unlike Destroy, do not
5614 ** remove the table or index from the database file.
5615 **
5616 ** The table being clear is in the main database file if P2==0.  If
5617 ** P2==1 then the table to be clear is in the auxiliary database file
5618 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5619 **
5620 ** If the P3 value is non-zero, then the table referred to must be an
5621 ** intkey table (an SQL table, not an index). In this case the row change
5622 ** count is incremented by the number of rows in the table being cleared.
5623 ** If P3 is greater than zero, then the value stored in register P3 is
5624 ** also incremented by the number of rows in the table being cleared.
5625 **
5626 ** See also: Destroy
5627 */
5628 case OP_Clear: {
5629   int nChange;
5630 
5631   sqlite3VdbeIncrWriteCounter(p, 0);
5632   nChange = 0;
5633   assert( p->readOnly==0 );
5634   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5635   rc = sqlite3BtreeClearTable(
5636       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5637   );
5638   if( pOp->p3 ){
5639     p->nChange += nChange;
5640     if( pOp->p3>0 ){
5641       assert( memIsValid(&aMem[pOp->p3]) );
5642       memAboutToChange(p, &aMem[pOp->p3]);
5643       aMem[pOp->p3].u.i += nChange;
5644     }
5645   }
5646   if( rc ) goto abort_due_to_error;
5647   break;
5648 }
5649 
5650 /* Opcode: ResetSorter P1 * * * *
5651 **
5652 ** Delete all contents from the ephemeral table or sorter
5653 ** that is open on cursor P1.
5654 **
5655 ** This opcode only works for cursors used for sorting and
5656 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5657 */
5658 case OP_ResetSorter: {
5659   VdbeCursor *pC;
5660 
5661   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5662   pC = p->apCsr[pOp->p1];
5663   assert( pC!=0 );
5664   if( isSorter(pC) ){
5665     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5666   }else{
5667     assert( pC->eCurType==CURTYPE_BTREE );
5668     assert( pC->isEphemeral );
5669     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5670     if( rc ) goto abort_due_to_error;
5671   }
5672   break;
5673 }
5674 
5675 /* Opcode: CreateBtree P1 P2 P3 * *
5676 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5677 **
5678 ** Allocate a new b-tree in the main database file if P1==0 or in the
5679 ** TEMP database file if P1==1 or in an attached database if
5680 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5681 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
5682 ** The root page number of the new b-tree is stored in register P2.
5683 */
5684 case OP_CreateBtree: {          /* out2 */
5685   int pgno;
5686   Db *pDb;
5687 
5688   sqlite3VdbeIncrWriteCounter(p, 0);
5689   pOut = out2Prerelease(p, pOp);
5690   pgno = 0;
5691   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
5692   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5693   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5694   assert( p->readOnly==0 );
5695   pDb = &db->aDb[pOp->p1];
5696   assert( pDb->pBt!=0 );
5697   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
5698   if( rc ) goto abort_due_to_error;
5699   pOut->u.i = pgno;
5700   break;
5701 }
5702 
5703 /* Opcode: SqlExec * * * P4 *
5704 **
5705 ** Run the SQL statement or statements specified in the P4 string.
5706 */
5707 case OP_SqlExec: {
5708   sqlite3VdbeIncrWriteCounter(p, 0);
5709   db->nSqlExec++;
5710   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
5711   db->nSqlExec--;
5712   if( rc ) goto abort_due_to_error;
5713   break;
5714 }
5715 
5716 /* Opcode: ParseSchema P1 * * P4 *
5717 **
5718 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5719 ** that match the WHERE clause P4.
5720 **
5721 ** This opcode invokes the parser to create a new virtual machine,
5722 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5723 */
5724 case OP_ParseSchema: {
5725   int iDb;
5726   const char *zMaster;
5727   char *zSql;
5728   InitData initData;
5729 
5730   /* Any prepared statement that invokes this opcode will hold mutexes
5731   ** on every btree.  This is a prerequisite for invoking
5732   ** sqlite3InitCallback().
5733   */
5734 #ifdef SQLITE_DEBUG
5735   for(iDb=0; iDb<db->nDb; iDb++){
5736     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5737   }
5738 #endif
5739 
5740   iDb = pOp->p1;
5741   assert( iDb>=0 && iDb<db->nDb );
5742   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5743   /* Used to be a conditional */ {
5744     zMaster = MASTER_NAME;
5745     initData.db = db;
5746     initData.iDb = pOp->p1;
5747     initData.pzErrMsg = &p->zErrMsg;
5748     zSql = sqlite3MPrintf(db,
5749        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5750        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5751     if( zSql==0 ){
5752       rc = SQLITE_NOMEM_BKPT;
5753     }else{
5754       assert( db->init.busy==0 );
5755       db->init.busy = 1;
5756       initData.rc = SQLITE_OK;
5757       assert( !db->mallocFailed );
5758       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5759       if( rc==SQLITE_OK ) rc = initData.rc;
5760       sqlite3DbFreeNN(db, zSql);
5761       db->init.busy = 0;
5762     }
5763   }
5764   if( rc ){
5765     sqlite3ResetAllSchemasOfConnection(db);
5766     if( rc==SQLITE_NOMEM ){
5767       goto no_mem;
5768     }
5769     goto abort_due_to_error;
5770   }
5771   break;
5772 }
5773 
5774 #if !defined(SQLITE_OMIT_ANALYZE)
5775 /* Opcode: LoadAnalysis P1 * * * *
5776 **
5777 ** Read the sqlite_stat1 table for database P1 and load the content
5778 ** of that table into the internal index hash table.  This will cause
5779 ** the analysis to be used when preparing all subsequent queries.
5780 */
5781 case OP_LoadAnalysis: {
5782   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5783   rc = sqlite3AnalysisLoad(db, pOp->p1);
5784   if( rc ) goto abort_due_to_error;
5785   break;
5786 }
5787 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5788 
5789 /* Opcode: DropTable P1 * * P4 *
5790 **
5791 ** Remove the internal (in-memory) data structures that describe
5792 ** the table named P4 in database P1.  This is called after a table
5793 ** is dropped from disk (using the Destroy opcode) in order to keep
5794 ** the internal representation of the
5795 ** schema consistent with what is on disk.
5796 */
5797 case OP_DropTable: {
5798   sqlite3VdbeIncrWriteCounter(p, 0);
5799   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5800   break;
5801 }
5802 
5803 /* Opcode: DropIndex P1 * * P4 *
5804 **
5805 ** Remove the internal (in-memory) data structures that describe
5806 ** the index named P4 in database P1.  This is called after an index
5807 ** is dropped from disk (using the Destroy opcode)
5808 ** in order to keep the internal representation of the
5809 ** schema consistent with what is on disk.
5810 */
5811 case OP_DropIndex: {
5812   sqlite3VdbeIncrWriteCounter(p, 0);
5813   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5814   break;
5815 }
5816 
5817 /* Opcode: DropTrigger P1 * * P4 *
5818 **
5819 ** Remove the internal (in-memory) data structures that describe
5820 ** the trigger named P4 in database P1.  This is called after a trigger
5821 ** is dropped from disk (using the Destroy opcode) in order to keep
5822 ** the internal representation of the
5823 ** schema consistent with what is on disk.
5824 */
5825 case OP_DropTrigger: {
5826   sqlite3VdbeIncrWriteCounter(p, 0);
5827   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5828   break;
5829 }
5830 
5831 
5832 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5833 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5834 **
5835 ** Do an analysis of the currently open database.  Store in
5836 ** register P1 the text of an error message describing any problems.
5837 ** If no problems are found, store a NULL in register P1.
5838 **
5839 ** The register P3 contains one less than the maximum number of allowed errors.
5840 ** At most reg(P3) errors will be reported.
5841 ** In other words, the analysis stops as soon as reg(P1) errors are
5842 ** seen.  Reg(P1) is updated with the number of errors remaining.
5843 **
5844 ** The root page numbers of all tables in the database are integers
5845 ** stored in P4_INTARRAY argument.
5846 **
5847 ** If P5 is not zero, the check is done on the auxiliary database
5848 ** file, not the main database file.
5849 **
5850 ** This opcode is used to implement the integrity_check pragma.
5851 */
5852 case OP_IntegrityCk: {
5853   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5854   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5855   int nErr;       /* Number of errors reported */
5856   char *z;        /* Text of the error report */
5857   Mem *pnErr;     /* Register keeping track of errors remaining */
5858 
5859   assert( p->bIsReader );
5860   nRoot = pOp->p2;
5861   aRoot = pOp->p4.ai;
5862   assert( nRoot>0 );
5863   assert( aRoot[0]==nRoot );
5864   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5865   pnErr = &aMem[pOp->p3];
5866   assert( (pnErr->flags & MEM_Int)!=0 );
5867   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5868   pIn1 = &aMem[pOp->p1];
5869   assert( pOp->p5<db->nDb );
5870   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5871   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
5872                                  (int)pnErr->u.i+1, &nErr);
5873   sqlite3VdbeMemSetNull(pIn1);
5874   if( nErr==0 ){
5875     assert( z==0 );
5876   }else if( z==0 ){
5877     goto no_mem;
5878   }else{
5879     pnErr->u.i -= nErr-1;
5880     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5881   }
5882   UPDATE_MAX_BLOBSIZE(pIn1);
5883   sqlite3VdbeChangeEncoding(pIn1, encoding);
5884   break;
5885 }
5886 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5887 
5888 /* Opcode: RowSetAdd P1 P2 * * *
5889 ** Synopsis: rowset(P1)=r[P2]
5890 **
5891 ** Insert the integer value held by register P2 into a RowSet object
5892 ** held in register P1.
5893 **
5894 ** An assertion fails if P2 is not an integer.
5895 */
5896 case OP_RowSetAdd: {       /* in1, in2 */
5897   pIn1 = &aMem[pOp->p1];
5898   pIn2 = &aMem[pOp->p2];
5899   assert( (pIn2->flags & MEM_Int)!=0 );
5900   if( (pIn1->flags & MEM_RowSet)==0 ){
5901     sqlite3VdbeMemSetRowSet(pIn1);
5902     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5903   }
5904   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5905   break;
5906 }
5907 
5908 /* Opcode: RowSetRead P1 P2 P3 * *
5909 ** Synopsis: r[P3]=rowset(P1)
5910 **
5911 ** Extract the smallest value from the RowSet object in P1
5912 ** and put that value into register P3.
5913 ** Or, if RowSet object P1 is initially empty, leave P3
5914 ** unchanged and jump to instruction P2.
5915 */
5916 case OP_RowSetRead: {       /* jump, in1, out3 */
5917   i64 val;
5918 
5919   pIn1 = &aMem[pOp->p1];
5920   if( (pIn1->flags & MEM_RowSet)==0
5921    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5922   ){
5923     /* The boolean index is empty */
5924     sqlite3VdbeMemSetNull(pIn1);
5925     VdbeBranchTaken(1,2);
5926     goto jump_to_p2_and_check_for_interrupt;
5927   }else{
5928     /* A value was pulled from the index */
5929     VdbeBranchTaken(0,2);
5930     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5931   }
5932   goto check_for_interrupt;
5933 }
5934 
5935 /* Opcode: RowSetTest P1 P2 P3 P4
5936 ** Synopsis: if r[P3] in rowset(P1) goto P2
5937 **
5938 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5939 ** contains a RowSet object and that RowSet object contains
5940 ** the value held in P3, jump to register P2. Otherwise, insert the
5941 ** integer in P3 into the RowSet and continue on to the
5942 ** next opcode.
5943 **
5944 ** The RowSet object is optimized for the case where sets of integers
5945 ** are inserted in distinct phases, which each set contains no duplicates.
5946 ** Each set is identified by a unique P4 value. The first set
5947 ** must have P4==0, the final set must have P4==-1, and for all other sets
5948 ** must have P4>0.
5949 **
5950 ** This allows optimizations: (a) when P4==0 there is no need to test
5951 ** the RowSet object for P3, as it is guaranteed not to contain it,
5952 ** (b) when P4==-1 there is no need to insert the value, as it will
5953 ** never be tested for, and (c) when a value that is part of set X is
5954 ** inserted, there is no need to search to see if the same value was
5955 ** previously inserted as part of set X (only if it was previously
5956 ** inserted as part of some other set).
5957 */
5958 case OP_RowSetTest: {                     /* jump, in1, in3 */
5959   int iSet;
5960   int exists;
5961 
5962   pIn1 = &aMem[pOp->p1];
5963   pIn3 = &aMem[pOp->p3];
5964   iSet = pOp->p4.i;
5965   assert( pIn3->flags&MEM_Int );
5966 
5967   /* If there is anything other than a rowset object in memory cell P1,
5968   ** delete it now and initialize P1 with an empty rowset
5969   */
5970   if( (pIn1->flags & MEM_RowSet)==0 ){
5971     sqlite3VdbeMemSetRowSet(pIn1);
5972     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5973   }
5974 
5975   assert( pOp->p4type==P4_INT32 );
5976   assert( iSet==-1 || iSet>=0 );
5977   if( iSet ){
5978     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5979     VdbeBranchTaken(exists!=0,2);
5980     if( exists ) goto jump_to_p2;
5981   }
5982   if( iSet>=0 ){
5983     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5984   }
5985   break;
5986 }
5987 
5988 
5989 #ifndef SQLITE_OMIT_TRIGGER
5990 
5991 /* Opcode: Program P1 P2 P3 P4 P5
5992 **
5993 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5994 **
5995 ** P1 contains the address of the memory cell that contains the first memory
5996 ** cell in an array of values used as arguments to the sub-program. P2
5997 ** contains the address to jump to if the sub-program throws an IGNORE
5998 ** exception using the RAISE() function. Register P3 contains the address
5999 ** of a memory cell in this (the parent) VM that is used to allocate the
6000 ** memory required by the sub-vdbe at runtime.
6001 **
6002 ** P4 is a pointer to the VM containing the trigger program.
6003 **
6004 ** If P5 is non-zero, then recursive program invocation is enabled.
6005 */
6006 case OP_Program: {        /* jump */
6007   int nMem;               /* Number of memory registers for sub-program */
6008   int nByte;              /* Bytes of runtime space required for sub-program */
6009   Mem *pRt;               /* Register to allocate runtime space */
6010   Mem *pMem;              /* Used to iterate through memory cells */
6011   Mem *pEnd;              /* Last memory cell in new array */
6012   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6013   SubProgram *pProgram;   /* Sub-program to execute */
6014   void *t;                /* Token identifying trigger */
6015 
6016   pProgram = pOp->p4.pProgram;
6017   pRt = &aMem[pOp->p3];
6018   assert( pProgram->nOp>0 );
6019 
6020   /* If the p5 flag is clear, then recursive invocation of triggers is
6021   ** disabled for backwards compatibility (p5 is set if this sub-program
6022   ** is really a trigger, not a foreign key action, and the flag set
6023   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6024   **
6025   ** It is recursive invocation of triggers, at the SQL level, that is
6026   ** disabled. In some cases a single trigger may generate more than one
6027   ** SubProgram (if the trigger may be executed with more than one different
6028   ** ON CONFLICT algorithm). SubProgram structures associated with a
6029   ** single trigger all have the same value for the SubProgram.token
6030   ** variable.  */
6031   if( pOp->p5 ){
6032     t = pProgram->token;
6033     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6034     if( pFrame ) break;
6035   }
6036 
6037   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6038     rc = SQLITE_ERROR;
6039     sqlite3VdbeError(p, "too many levels of trigger recursion");
6040     goto abort_due_to_error;
6041   }
6042 
6043   /* Register pRt is used to store the memory required to save the state
6044   ** of the current program, and the memory required at runtime to execute
6045   ** the trigger program. If this trigger has been fired before, then pRt
6046   ** is already allocated. Otherwise, it must be initialized.  */
6047   if( (pRt->flags&MEM_Frame)==0 ){
6048     /* SubProgram.nMem is set to the number of memory cells used by the
6049     ** program stored in SubProgram.aOp. As well as these, one memory
6050     ** cell is required for each cursor used by the program. Set local
6051     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6052     */
6053     nMem = pProgram->nMem + pProgram->nCsr;
6054     assert( nMem>0 );
6055     if( pProgram->nCsr==0 ) nMem++;
6056     nByte = ROUND8(sizeof(VdbeFrame))
6057               + nMem * sizeof(Mem)
6058               + pProgram->nCsr * sizeof(VdbeCursor*)
6059               + (pProgram->nOp + 7)/8;
6060     pFrame = sqlite3DbMallocZero(db, nByte);
6061     if( !pFrame ){
6062       goto no_mem;
6063     }
6064     sqlite3VdbeMemRelease(pRt);
6065     pRt->flags = MEM_Frame;
6066     pRt->u.pFrame = pFrame;
6067 
6068     pFrame->v = p;
6069     pFrame->nChildMem = nMem;
6070     pFrame->nChildCsr = pProgram->nCsr;
6071     pFrame->pc = (int)(pOp - aOp);
6072     pFrame->aMem = p->aMem;
6073     pFrame->nMem = p->nMem;
6074     pFrame->apCsr = p->apCsr;
6075     pFrame->nCursor = p->nCursor;
6076     pFrame->aOp = p->aOp;
6077     pFrame->nOp = p->nOp;
6078     pFrame->token = pProgram->token;
6079 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6080     pFrame->anExec = p->anExec;
6081 #endif
6082 
6083     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6084     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6085       pMem->flags = MEM_Undefined;
6086       pMem->db = db;
6087     }
6088   }else{
6089     pFrame = pRt->u.pFrame;
6090     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6091         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6092     assert( pProgram->nCsr==pFrame->nChildCsr );
6093     assert( (int)(pOp - aOp)==pFrame->pc );
6094   }
6095 
6096   p->nFrame++;
6097   pFrame->pParent = p->pFrame;
6098   pFrame->lastRowid = db->lastRowid;
6099   pFrame->nChange = p->nChange;
6100   pFrame->nDbChange = p->db->nChange;
6101   assert( pFrame->pAuxData==0 );
6102   pFrame->pAuxData = p->pAuxData;
6103   p->pAuxData = 0;
6104   p->nChange = 0;
6105   p->pFrame = pFrame;
6106   p->aMem = aMem = VdbeFrameMem(pFrame);
6107   p->nMem = pFrame->nChildMem;
6108   p->nCursor = (u16)pFrame->nChildCsr;
6109   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6110   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6111   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6112   p->aOp = aOp = pProgram->aOp;
6113   p->nOp = pProgram->nOp;
6114 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6115   p->anExec = 0;
6116 #endif
6117   pOp = &aOp[-1];
6118 
6119   break;
6120 }
6121 
6122 /* Opcode: Param P1 P2 * * *
6123 **
6124 ** This opcode is only ever present in sub-programs called via the
6125 ** OP_Program instruction. Copy a value currently stored in a memory
6126 ** cell of the calling (parent) frame to cell P2 in the current frames
6127 ** address space. This is used by trigger programs to access the new.*
6128 ** and old.* values.
6129 **
6130 ** The address of the cell in the parent frame is determined by adding
6131 ** the value of the P1 argument to the value of the P1 argument to the
6132 ** calling OP_Program instruction.
6133 */
6134 case OP_Param: {           /* out2 */
6135   VdbeFrame *pFrame;
6136   Mem *pIn;
6137   pOut = out2Prerelease(p, pOp);
6138   pFrame = p->pFrame;
6139   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6140   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6141   break;
6142 }
6143 
6144 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6145 
6146 #ifndef SQLITE_OMIT_FOREIGN_KEY
6147 /* Opcode: FkCounter P1 P2 * * *
6148 ** Synopsis: fkctr[P1]+=P2
6149 **
6150 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6151 ** If P1 is non-zero, the database constraint counter is incremented
6152 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6153 ** statement counter is incremented (immediate foreign key constraints).
6154 */
6155 case OP_FkCounter: {
6156   if( db->flags & SQLITE_DeferFKs ){
6157     db->nDeferredImmCons += pOp->p2;
6158   }else if( pOp->p1 ){
6159     db->nDeferredCons += pOp->p2;
6160   }else{
6161     p->nFkConstraint += pOp->p2;
6162   }
6163   break;
6164 }
6165 
6166 /* Opcode: FkIfZero P1 P2 * * *
6167 ** Synopsis: if fkctr[P1]==0 goto P2
6168 **
6169 ** This opcode tests if a foreign key constraint-counter is currently zero.
6170 ** If so, jump to instruction P2. Otherwise, fall through to the next
6171 ** instruction.
6172 **
6173 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6174 ** is zero (the one that counts deferred constraint violations). If P1 is
6175 ** zero, the jump is taken if the statement constraint-counter is zero
6176 ** (immediate foreign key constraint violations).
6177 */
6178 case OP_FkIfZero: {         /* jump */
6179   if( pOp->p1 ){
6180     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6181     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6182   }else{
6183     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6184     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6185   }
6186   break;
6187 }
6188 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6189 
6190 #ifndef SQLITE_OMIT_AUTOINCREMENT
6191 /* Opcode: MemMax P1 P2 * * *
6192 ** Synopsis: r[P1]=max(r[P1],r[P2])
6193 **
6194 ** P1 is a register in the root frame of this VM (the root frame is
6195 ** different from the current frame if this instruction is being executed
6196 ** within a sub-program). Set the value of register P1 to the maximum of
6197 ** its current value and the value in register P2.
6198 **
6199 ** This instruction throws an error if the memory cell is not initially
6200 ** an integer.
6201 */
6202 case OP_MemMax: {        /* in2 */
6203   VdbeFrame *pFrame;
6204   if( p->pFrame ){
6205     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6206     pIn1 = &pFrame->aMem[pOp->p1];
6207   }else{
6208     pIn1 = &aMem[pOp->p1];
6209   }
6210   assert( memIsValid(pIn1) );
6211   sqlite3VdbeMemIntegerify(pIn1);
6212   pIn2 = &aMem[pOp->p2];
6213   sqlite3VdbeMemIntegerify(pIn2);
6214   if( pIn1->u.i<pIn2->u.i){
6215     pIn1->u.i = pIn2->u.i;
6216   }
6217   break;
6218 }
6219 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6220 
6221 /* Opcode: IfPos P1 P2 P3 * *
6222 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6223 **
6224 ** Register P1 must contain an integer.
6225 ** If the value of register P1 is 1 or greater, subtract P3 from the
6226 ** value in P1 and jump to P2.
6227 **
6228 ** If the initial value of register P1 is less than 1, then the
6229 ** value is unchanged and control passes through to the next instruction.
6230 */
6231 case OP_IfPos: {        /* jump, in1 */
6232   pIn1 = &aMem[pOp->p1];
6233   assert( pIn1->flags&MEM_Int );
6234   VdbeBranchTaken( pIn1->u.i>0, 2);
6235   if( pIn1->u.i>0 ){
6236     pIn1->u.i -= pOp->p3;
6237     goto jump_to_p2;
6238   }
6239   break;
6240 }
6241 
6242 /* Opcode: OffsetLimit P1 P2 P3 * *
6243 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6244 **
6245 ** This opcode performs a commonly used computation associated with
6246 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6247 ** holds the offset counter.  The opcode computes the combined value
6248 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6249 ** value computed is the total number of rows that will need to be
6250 ** visited in order to complete the query.
6251 **
6252 ** If r[P3] is zero or negative, that means there is no OFFSET
6253 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6254 **
6255 ** if r[P1] is zero or negative, that means there is no LIMIT
6256 ** and r[P2] is set to -1.
6257 **
6258 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6259 */
6260 case OP_OffsetLimit: {    /* in1, out2, in3 */
6261   i64 x;
6262   pIn1 = &aMem[pOp->p1];
6263   pIn3 = &aMem[pOp->p3];
6264   pOut = out2Prerelease(p, pOp);
6265   assert( pIn1->flags & MEM_Int );
6266   assert( pIn3->flags & MEM_Int );
6267   x = pIn1->u.i;
6268   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6269     /* If the LIMIT is less than or equal to zero, loop forever.  This
6270     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6271     ** also loop forever.  This is undocumented.  In fact, one could argue
6272     ** that the loop should terminate.  But assuming 1 billion iterations
6273     ** per second (far exceeding the capabilities of any current hardware)
6274     ** it would take nearly 300 years to actually reach the limit.  So
6275     ** looping forever is a reasonable approximation. */
6276     pOut->u.i = -1;
6277   }else{
6278     pOut->u.i = x;
6279   }
6280   break;
6281 }
6282 
6283 /* Opcode: IfNotZero P1 P2 * * *
6284 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6285 **
6286 ** Register P1 must contain an integer.  If the content of register P1 is
6287 ** initially greater than zero, then decrement the value in register P1.
6288 ** If it is non-zero (negative or positive) and then also jump to P2.
6289 ** If register P1 is initially zero, leave it unchanged and fall through.
6290 */
6291 case OP_IfNotZero: {        /* jump, in1 */
6292   pIn1 = &aMem[pOp->p1];
6293   assert( pIn1->flags&MEM_Int );
6294   VdbeBranchTaken(pIn1->u.i<0, 2);
6295   if( pIn1->u.i ){
6296      if( pIn1->u.i>0 ) pIn1->u.i--;
6297      goto jump_to_p2;
6298   }
6299   break;
6300 }
6301 
6302 /* Opcode: DecrJumpZero P1 P2 * * *
6303 ** Synopsis: if (--r[P1])==0 goto P2
6304 **
6305 ** Register P1 must hold an integer.  Decrement the value in P1
6306 ** and jump to P2 if the new value is exactly zero.
6307 */
6308 case OP_DecrJumpZero: {      /* jump, in1 */
6309   pIn1 = &aMem[pOp->p1];
6310   assert( pIn1->flags&MEM_Int );
6311   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6312   VdbeBranchTaken(pIn1->u.i==0, 2);
6313   if( pIn1->u.i==0 ) goto jump_to_p2;
6314   break;
6315 }
6316 
6317 
6318 /* Opcode: AggStep * P2 P3 P4 P5
6319 ** Synopsis: accum=r[P3] step(r[P2@P5])
6320 **
6321 ** Execute the xStep function for an aggregate.
6322 ** The function has P5 arguments.  P4 is a pointer to the
6323 ** FuncDef structure that specifies the function.  Register P3 is the
6324 ** accumulator.
6325 **
6326 ** The P5 arguments are taken from register P2 and its
6327 ** successors.
6328 */
6329 /* Opcode: AggInverse * P2 P3 P4 P5
6330 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6331 **
6332 ** Execute the xInverse function for an aggregate.
6333 ** The function has P5 arguments.  P4 is a pointer to the
6334 ** FuncDef structure that specifies the function.  Register P3 is the
6335 ** accumulator.
6336 **
6337 ** The P5 arguments are taken from register P2 and its
6338 ** successors.
6339 */
6340 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6341 ** Synopsis: accum=r[P3] step(r[P2@P5])
6342 **
6343 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6344 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6345 ** FuncDef structure that specifies the function.  Register P3 is the
6346 ** accumulator.
6347 **
6348 ** The P5 arguments are taken from register P2 and its
6349 ** successors.
6350 **
6351 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6352 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6353 ** the opcode is changed.  In this way, the initialization of the
6354 ** sqlite3_context only happens once, instead of on each call to the
6355 ** step function.
6356 */
6357 case OP_AggInverse:
6358 case OP_AggStep: {
6359   int n;
6360   sqlite3_context *pCtx;
6361 
6362   assert( pOp->p4type==P4_FUNCDEF );
6363   n = pOp->p5;
6364   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6365   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6366   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6367   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6368                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6369   if( pCtx==0 ) goto no_mem;
6370   pCtx->pMem = 0;
6371   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6372   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6373   pCtx->pFunc = pOp->p4.pFunc;
6374   pCtx->iOp = (int)(pOp - aOp);
6375   pCtx->pVdbe = p;
6376   pCtx->skipFlag = 0;
6377   pCtx->isError = 0;
6378   pCtx->argc = n;
6379   pOp->p4type = P4_FUNCCTX;
6380   pOp->p4.pCtx = pCtx;
6381 
6382   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6383   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6384 
6385   pOp->opcode = OP_AggStep1;
6386   /* Fall through into OP_AggStep */
6387 }
6388 case OP_AggStep1: {
6389   int i;
6390   sqlite3_context *pCtx;
6391   Mem *pMem;
6392 
6393   assert( pOp->p4type==P4_FUNCCTX );
6394   pCtx = pOp->p4.pCtx;
6395   pMem = &aMem[pOp->p3];
6396 
6397 #ifdef SQLITE_DEBUG
6398   if( pOp->p1 ){
6399     /* This is an OP_AggInverse call.  Verify that xStep has always
6400     ** been called at least once prior to any xInverse call. */
6401     assert( pMem->uTemp==0x1122e0e3 );
6402   }else{
6403     /* This is an OP_AggStep call.  Mark it as such. */
6404     pMem->uTemp = 0x1122e0e3;
6405   }
6406 #endif
6407 
6408   /* If this function is inside of a trigger, the register array in aMem[]
6409   ** might change from one evaluation to the next.  The next block of code
6410   ** checks to see if the register array has changed, and if so it
6411   ** reinitializes the relavant parts of the sqlite3_context object */
6412   if( pCtx->pMem != pMem ){
6413     pCtx->pMem = pMem;
6414     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6415   }
6416 
6417 #ifdef SQLITE_DEBUG
6418   for(i=0; i<pCtx->argc; i++){
6419     assert( memIsValid(pCtx->argv[i]) );
6420     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6421   }
6422 #endif
6423 
6424   pMem->n++;
6425   assert( pCtx->pOut->flags==MEM_Null );
6426   assert( pCtx->isError==0 );
6427   assert( pCtx->skipFlag==0 );
6428 #ifndef SQLITE_OMIT_WINDOWFUNC
6429   if( pOp->p1 ){
6430     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6431   }else
6432 #endif
6433   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6434 
6435   if( pCtx->isError ){
6436     if( pCtx->isError>0 ){
6437       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6438       rc = pCtx->isError;
6439     }
6440     if( pCtx->skipFlag ){
6441       assert( pOp[-1].opcode==OP_CollSeq );
6442       i = pOp[-1].p1;
6443       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6444       pCtx->skipFlag = 0;
6445     }
6446     sqlite3VdbeMemRelease(pCtx->pOut);
6447     pCtx->pOut->flags = MEM_Null;
6448     pCtx->isError = 0;
6449     if( rc ) goto abort_due_to_error;
6450   }
6451   assert( pCtx->pOut->flags==MEM_Null );
6452   assert( pCtx->skipFlag==0 );
6453   break;
6454 }
6455 
6456 /* Opcode: AggFinal P1 P2 * P4 *
6457 ** Synopsis: accum=r[P1] N=P2
6458 **
6459 ** P1 is the memory location that is the accumulator for an aggregate
6460 ** or window function.  Execute the finalizer function
6461 ** for an aggregate and store the result in P1.
6462 **
6463 ** P2 is the number of arguments that the step function takes and
6464 ** P4 is a pointer to the FuncDef for this function.  The P2
6465 ** argument is not used by this opcode.  It is only there to disambiguate
6466 ** functions that can take varying numbers of arguments.  The
6467 ** P4 argument is only needed for the case where
6468 ** the step function was not previously called.
6469 */
6470 /* Opcode: AggValue * P2 P3 P4 *
6471 ** Synopsis: r[P3]=value N=P2
6472 **
6473 ** Invoke the xValue() function and store the result in register P3.
6474 **
6475 ** P2 is the number of arguments that the step function takes and
6476 ** P4 is a pointer to the FuncDef for this function.  The P2
6477 ** argument is not used by this opcode.  It is only there to disambiguate
6478 ** functions that can take varying numbers of arguments.  The
6479 ** P4 argument is only needed for the case where
6480 ** the step function was not previously called.
6481 */
6482 case OP_AggValue:
6483 case OP_AggFinal: {
6484   Mem *pMem;
6485   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6486   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6487   pMem = &aMem[pOp->p1];
6488   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6489 #ifndef SQLITE_OMIT_WINDOWFUNC
6490   if( pOp->p3 ){
6491     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6492     pMem = &aMem[pOp->p3];
6493   }else
6494 #endif
6495   {
6496     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6497   }
6498 
6499   if( rc ){
6500     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6501     goto abort_due_to_error;
6502   }
6503   sqlite3VdbeChangeEncoding(pMem, encoding);
6504   UPDATE_MAX_BLOBSIZE(pMem);
6505   if( sqlite3VdbeMemTooBig(pMem) ){
6506     goto too_big;
6507   }
6508   break;
6509 }
6510 
6511 #ifndef SQLITE_OMIT_WAL
6512 /* Opcode: Checkpoint P1 P2 P3 * *
6513 **
6514 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6515 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6516 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6517 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6518 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6519 ** in the WAL that have been checkpointed after the checkpoint
6520 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6521 ** mem[P3+2] are initialized to -1.
6522 */
6523 case OP_Checkpoint: {
6524   int i;                          /* Loop counter */
6525   int aRes[3];                    /* Results */
6526   Mem *pMem;                      /* Write results here */
6527 
6528   assert( p->readOnly==0 );
6529   aRes[0] = 0;
6530   aRes[1] = aRes[2] = -1;
6531   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6532        || pOp->p2==SQLITE_CHECKPOINT_FULL
6533        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6534        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6535   );
6536   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6537   if( rc ){
6538     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6539     rc = SQLITE_OK;
6540     aRes[0] = 1;
6541   }
6542   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6543     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6544   }
6545   break;
6546 };
6547 #endif
6548 
6549 #ifndef SQLITE_OMIT_PRAGMA
6550 /* Opcode: JournalMode P1 P2 P3 * *
6551 **
6552 ** Change the journal mode of database P1 to P3. P3 must be one of the
6553 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6554 ** modes (delete, truncate, persist, off and memory), this is a simple
6555 ** operation. No IO is required.
6556 **
6557 ** If changing into or out of WAL mode the procedure is more complicated.
6558 **
6559 ** Write a string containing the final journal-mode to register P2.
6560 */
6561 case OP_JournalMode: {    /* out2 */
6562   Btree *pBt;                     /* Btree to change journal mode of */
6563   Pager *pPager;                  /* Pager associated with pBt */
6564   int eNew;                       /* New journal mode */
6565   int eOld;                       /* The old journal mode */
6566 #ifndef SQLITE_OMIT_WAL
6567   const char *zFilename;          /* Name of database file for pPager */
6568 #endif
6569 
6570   pOut = out2Prerelease(p, pOp);
6571   eNew = pOp->p3;
6572   assert( eNew==PAGER_JOURNALMODE_DELETE
6573        || eNew==PAGER_JOURNALMODE_TRUNCATE
6574        || eNew==PAGER_JOURNALMODE_PERSIST
6575        || eNew==PAGER_JOURNALMODE_OFF
6576        || eNew==PAGER_JOURNALMODE_MEMORY
6577        || eNew==PAGER_JOURNALMODE_WAL
6578        || eNew==PAGER_JOURNALMODE_QUERY
6579   );
6580   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6581   assert( p->readOnly==0 );
6582 
6583   pBt = db->aDb[pOp->p1].pBt;
6584   pPager = sqlite3BtreePager(pBt);
6585   eOld = sqlite3PagerGetJournalMode(pPager);
6586   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6587   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6588 
6589 #ifndef SQLITE_OMIT_WAL
6590   zFilename = sqlite3PagerFilename(pPager, 1);
6591 
6592   /* Do not allow a transition to journal_mode=WAL for a database
6593   ** in temporary storage or if the VFS does not support shared memory
6594   */
6595   if( eNew==PAGER_JOURNALMODE_WAL
6596    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6597        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6598   ){
6599     eNew = eOld;
6600   }
6601 
6602   if( (eNew!=eOld)
6603    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6604   ){
6605     if( !db->autoCommit || db->nVdbeRead>1 ){
6606       rc = SQLITE_ERROR;
6607       sqlite3VdbeError(p,
6608           "cannot change %s wal mode from within a transaction",
6609           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6610       );
6611       goto abort_due_to_error;
6612     }else{
6613 
6614       if( eOld==PAGER_JOURNALMODE_WAL ){
6615         /* If leaving WAL mode, close the log file. If successful, the call
6616         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6617         ** file. An EXCLUSIVE lock may still be held on the database file
6618         ** after a successful return.
6619         */
6620         rc = sqlite3PagerCloseWal(pPager, db);
6621         if( rc==SQLITE_OK ){
6622           sqlite3PagerSetJournalMode(pPager, eNew);
6623         }
6624       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6625         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6626         ** as an intermediate */
6627         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6628       }
6629 
6630       /* Open a transaction on the database file. Regardless of the journal
6631       ** mode, this transaction always uses a rollback journal.
6632       */
6633       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6634       if( rc==SQLITE_OK ){
6635         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6636       }
6637     }
6638   }
6639 #endif /* ifndef SQLITE_OMIT_WAL */
6640 
6641   if( rc ) eNew = eOld;
6642   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6643 
6644   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6645   pOut->z = (char *)sqlite3JournalModename(eNew);
6646   pOut->n = sqlite3Strlen30(pOut->z);
6647   pOut->enc = SQLITE_UTF8;
6648   sqlite3VdbeChangeEncoding(pOut, encoding);
6649   if( rc ) goto abort_due_to_error;
6650   break;
6651 };
6652 #endif /* SQLITE_OMIT_PRAGMA */
6653 
6654 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6655 /* Opcode: Vacuum P1 * * * *
6656 **
6657 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6658 ** for an attached database.  The "temp" database may not be vacuumed.
6659 */
6660 case OP_Vacuum: {
6661   assert( p->readOnly==0 );
6662   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6663   if( rc ) goto abort_due_to_error;
6664   break;
6665 }
6666 #endif
6667 
6668 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6669 /* Opcode: IncrVacuum P1 P2 * * *
6670 **
6671 ** Perform a single step of the incremental vacuum procedure on
6672 ** the P1 database. If the vacuum has finished, jump to instruction
6673 ** P2. Otherwise, fall through to the next instruction.
6674 */
6675 case OP_IncrVacuum: {        /* jump */
6676   Btree *pBt;
6677 
6678   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6679   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6680   assert( p->readOnly==0 );
6681   pBt = db->aDb[pOp->p1].pBt;
6682   rc = sqlite3BtreeIncrVacuum(pBt);
6683   VdbeBranchTaken(rc==SQLITE_DONE,2);
6684   if( rc ){
6685     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6686     rc = SQLITE_OK;
6687     goto jump_to_p2;
6688   }
6689   break;
6690 }
6691 #endif
6692 
6693 /* Opcode: Expire P1 * * * *
6694 **
6695 ** Cause precompiled statements to expire.  When an expired statement
6696 ** is executed using sqlite3_step() it will either automatically
6697 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6698 ** or it will fail with SQLITE_SCHEMA.
6699 **
6700 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6701 ** then only the currently executing statement is expired.
6702 */
6703 case OP_Expire: {
6704   if( !pOp->p1 ){
6705     sqlite3ExpirePreparedStatements(db);
6706   }else{
6707     p->expired = 1;
6708   }
6709   break;
6710 }
6711 
6712 #ifndef SQLITE_OMIT_SHARED_CACHE
6713 /* Opcode: TableLock P1 P2 P3 P4 *
6714 ** Synopsis: iDb=P1 root=P2 write=P3
6715 **
6716 ** Obtain a lock on a particular table. This instruction is only used when
6717 ** the shared-cache feature is enabled.
6718 **
6719 ** P1 is the index of the database in sqlite3.aDb[] of the database
6720 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6721 ** a write lock if P3==1.
6722 **
6723 ** P2 contains the root-page of the table to lock.
6724 **
6725 ** P4 contains a pointer to the name of the table being locked. This is only
6726 ** used to generate an error message if the lock cannot be obtained.
6727 */
6728 case OP_TableLock: {
6729   u8 isWriteLock = (u8)pOp->p3;
6730   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
6731     int p1 = pOp->p1;
6732     assert( p1>=0 && p1<db->nDb );
6733     assert( DbMaskTest(p->btreeMask, p1) );
6734     assert( isWriteLock==0 || isWriteLock==1 );
6735     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6736     if( rc ){
6737       if( (rc&0xFF)==SQLITE_LOCKED ){
6738         const char *z = pOp->p4.z;
6739         sqlite3VdbeError(p, "database table is locked: %s", z);
6740       }
6741       goto abort_due_to_error;
6742     }
6743   }
6744   break;
6745 }
6746 #endif /* SQLITE_OMIT_SHARED_CACHE */
6747 
6748 #ifndef SQLITE_OMIT_VIRTUALTABLE
6749 /* Opcode: VBegin * * * P4 *
6750 **
6751 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6752 ** xBegin method for that table.
6753 **
6754 ** Also, whether or not P4 is set, check that this is not being called from
6755 ** within a callback to a virtual table xSync() method. If it is, the error
6756 ** code will be set to SQLITE_LOCKED.
6757 */
6758 case OP_VBegin: {
6759   VTable *pVTab;
6760   pVTab = pOp->p4.pVtab;
6761   rc = sqlite3VtabBegin(db, pVTab);
6762   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6763   if( rc ) goto abort_due_to_error;
6764   break;
6765 }
6766 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6767 
6768 #ifndef SQLITE_OMIT_VIRTUALTABLE
6769 /* Opcode: VCreate P1 P2 * * *
6770 **
6771 ** P2 is a register that holds the name of a virtual table in database
6772 ** P1. Call the xCreate method for that table.
6773 */
6774 case OP_VCreate: {
6775   Mem sMem;          /* For storing the record being decoded */
6776   const char *zTab;  /* Name of the virtual table */
6777 
6778   memset(&sMem, 0, sizeof(sMem));
6779   sMem.db = db;
6780   /* Because P2 is always a static string, it is impossible for the
6781   ** sqlite3VdbeMemCopy() to fail */
6782   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6783   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6784   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6785   assert( rc==SQLITE_OK );
6786   zTab = (const char*)sqlite3_value_text(&sMem);
6787   assert( zTab || db->mallocFailed );
6788   if( zTab ){
6789     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6790   }
6791   sqlite3VdbeMemRelease(&sMem);
6792   if( rc ) goto abort_due_to_error;
6793   break;
6794 }
6795 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6796 
6797 #ifndef SQLITE_OMIT_VIRTUALTABLE
6798 /* Opcode: VDestroy P1 * * P4 *
6799 **
6800 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6801 ** of that table.
6802 */
6803 case OP_VDestroy: {
6804   db->nVDestroy++;
6805   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6806   db->nVDestroy--;
6807   if( rc ) goto abort_due_to_error;
6808   break;
6809 }
6810 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6811 
6812 #ifndef SQLITE_OMIT_VIRTUALTABLE
6813 /* Opcode: VOpen P1 * * P4 *
6814 **
6815 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6816 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6817 ** table and stores that cursor in P1.
6818 */
6819 case OP_VOpen: {
6820   VdbeCursor *pCur;
6821   sqlite3_vtab_cursor *pVCur;
6822   sqlite3_vtab *pVtab;
6823   const sqlite3_module *pModule;
6824 
6825   assert( p->bIsReader );
6826   pCur = 0;
6827   pVCur = 0;
6828   pVtab = pOp->p4.pVtab->pVtab;
6829   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6830     rc = SQLITE_LOCKED;
6831     goto abort_due_to_error;
6832   }
6833   pModule = pVtab->pModule;
6834   rc = pModule->xOpen(pVtab, &pVCur);
6835   sqlite3VtabImportErrmsg(p, pVtab);
6836   if( rc ) goto abort_due_to_error;
6837 
6838   /* Initialize sqlite3_vtab_cursor base class */
6839   pVCur->pVtab = pVtab;
6840 
6841   /* Initialize vdbe cursor object */
6842   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6843   if( pCur ){
6844     pCur->uc.pVCur = pVCur;
6845     pVtab->nRef++;
6846   }else{
6847     assert( db->mallocFailed );
6848     pModule->xClose(pVCur);
6849     goto no_mem;
6850   }
6851   break;
6852 }
6853 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6854 
6855 #ifndef SQLITE_OMIT_VIRTUALTABLE
6856 /* Opcode: VFilter P1 P2 P3 P4 *
6857 ** Synopsis: iplan=r[P3] zplan='P4'
6858 **
6859 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6860 ** the filtered result set is empty.
6861 **
6862 ** P4 is either NULL or a string that was generated by the xBestIndex
6863 ** method of the module.  The interpretation of the P4 string is left
6864 ** to the module implementation.
6865 **
6866 ** This opcode invokes the xFilter method on the virtual table specified
6867 ** by P1.  The integer query plan parameter to xFilter is stored in register
6868 ** P3. Register P3+1 stores the argc parameter to be passed to the
6869 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6870 ** additional parameters which are passed to
6871 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6872 **
6873 ** A jump is made to P2 if the result set after filtering would be empty.
6874 */
6875 case OP_VFilter: {   /* jump */
6876   int nArg;
6877   int iQuery;
6878   const sqlite3_module *pModule;
6879   Mem *pQuery;
6880   Mem *pArgc;
6881   sqlite3_vtab_cursor *pVCur;
6882   sqlite3_vtab *pVtab;
6883   VdbeCursor *pCur;
6884   int res;
6885   int i;
6886   Mem **apArg;
6887 
6888   pQuery = &aMem[pOp->p3];
6889   pArgc = &pQuery[1];
6890   pCur = p->apCsr[pOp->p1];
6891   assert( memIsValid(pQuery) );
6892   REGISTER_TRACE(pOp->p3, pQuery);
6893   assert( pCur->eCurType==CURTYPE_VTAB );
6894   pVCur = pCur->uc.pVCur;
6895   pVtab = pVCur->pVtab;
6896   pModule = pVtab->pModule;
6897 
6898   /* Grab the index number and argc parameters */
6899   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6900   nArg = (int)pArgc->u.i;
6901   iQuery = (int)pQuery->u.i;
6902 
6903   /* Invoke the xFilter method */
6904   res = 0;
6905   apArg = p->apArg;
6906   for(i = 0; i<nArg; i++){
6907     apArg[i] = &pArgc[i+1];
6908   }
6909   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6910   sqlite3VtabImportErrmsg(p, pVtab);
6911   if( rc ) goto abort_due_to_error;
6912   res = pModule->xEof(pVCur);
6913   pCur->nullRow = 0;
6914   VdbeBranchTaken(res!=0,2);
6915   if( res ) goto jump_to_p2;
6916   break;
6917 }
6918 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6919 
6920 #ifndef SQLITE_OMIT_VIRTUALTABLE
6921 /* Opcode: VColumn P1 P2 P3 * P5
6922 ** Synopsis: r[P3]=vcolumn(P2)
6923 **
6924 ** Store in register P3 the value of the P2-th column of
6925 ** the current row of the virtual-table of cursor P1.
6926 **
6927 ** If the VColumn opcode is being used to fetch the value of
6928 ** an unchanging column during an UPDATE operation, then the P5
6929 ** value is 1.  Otherwise, P5 is 0.  The P5 value is returned
6930 ** by sqlite3_vtab_nochange() routine and can be used
6931 ** by virtual table implementations to return special "no-change"
6932 ** marks which can be more efficient, depending on the virtual table.
6933 */
6934 case OP_VColumn: {
6935   sqlite3_vtab *pVtab;
6936   const sqlite3_module *pModule;
6937   Mem *pDest;
6938   sqlite3_context sContext;
6939 
6940   VdbeCursor *pCur = p->apCsr[pOp->p1];
6941   assert( pCur->eCurType==CURTYPE_VTAB );
6942   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6943   pDest = &aMem[pOp->p3];
6944   memAboutToChange(p, pDest);
6945   if( pCur->nullRow ){
6946     sqlite3VdbeMemSetNull(pDest);
6947     break;
6948   }
6949   pVtab = pCur->uc.pVCur->pVtab;
6950   pModule = pVtab->pModule;
6951   assert( pModule->xColumn );
6952   memset(&sContext, 0, sizeof(sContext));
6953   sContext.pOut = pDest;
6954   if( pOp->p5 ){
6955     sqlite3VdbeMemSetNull(pDest);
6956     pDest->flags = MEM_Null|MEM_Zero;
6957     pDest->u.nZero = 0;
6958   }else{
6959     MemSetTypeFlag(pDest, MEM_Null);
6960   }
6961   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6962   sqlite3VtabImportErrmsg(p, pVtab);
6963   if( sContext.isError>0 ){
6964     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
6965     rc = sContext.isError;
6966   }
6967   sqlite3VdbeChangeEncoding(pDest, encoding);
6968   REGISTER_TRACE(pOp->p3, pDest);
6969   UPDATE_MAX_BLOBSIZE(pDest);
6970 
6971   if( sqlite3VdbeMemTooBig(pDest) ){
6972     goto too_big;
6973   }
6974   if( rc ) goto abort_due_to_error;
6975   break;
6976 }
6977 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6978 
6979 #ifndef SQLITE_OMIT_VIRTUALTABLE
6980 /* Opcode: VNext P1 P2 * * *
6981 **
6982 ** Advance virtual table P1 to the next row in its result set and
6983 ** jump to instruction P2.  Or, if the virtual table has reached
6984 ** the end of its result set, then fall through to the next instruction.
6985 */
6986 case OP_VNext: {   /* jump */
6987   sqlite3_vtab *pVtab;
6988   const sqlite3_module *pModule;
6989   int res;
6990   VdbeCursor *pCur;
6991 
6992   res = 0;
6993   pCur = p->apCsr[pOp->p1];
6994   assert( pCur->eCurType==CURTYPE_VTAB );
6995   if( pCur->nullRow ){
6996     break;
6997   }
6998   pVtab = pCur->uc.pVCur->pVtab;
6999   pModule = pVtab->pModule;
7000   assert( pModule->xNext );
7001 
7002   /* Invoke the xNext() method of the module. There is no way for the
7003   ** underlying implementation to return an error if one occurs during
7004   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7005   ** data is available) and the error code returned when xColumn or
7006   ** some other method is next invoked on the save virtual table cursor.
7007   */
7008   rc = pModule->xNext(pCur->uc.pVCur);
7009   sqlite3VtabImportErrmsg(p, pVtab);
7010   if( rc ) goto abort_due_to_error;
7011   res = pModule->xEof(pCur->uc.pVCur);
7012   VdbeBranchTaken(!res,2);
7013   if( !res ){
7014     /* If there is data, jump to P2 */
7015     goto jump_to_p2_and_check_for_interrupt;
7016   }
7017   goto check_for_interrupt;
7018 }
7019 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7020 
7021 #ifndef SQLITE_OMIT_VIRTUALTABLE
7022 /* Opcode: VRename P1 * * P4 *
7023 **
7024 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7025 ** This opcode invokes the corresponding xRename method. The value
7026 ** in register P1 is passed as the zName argument to the xRename method.
7027 */
7028 case OP_VRename: {
7029   sqlite3_vtab *pVtab;
7030   Mem *pName;
7031 
7032   pVtab = pOp->p4.pVtab->pVtab;
7033   pName = &aMem[pOp->p1];
7034   assert( pVtab->pModule->xRename );
7035   assert( memIsValid(pName) );
7036   assert( p->readOnly==0 );
7037   REGISTER_TRACE(pOp->p1, pName);
7038   assert( pName->flags & MEM_Str );
7039   testcase( pName->enc==SQLITE_UTF8 );
7040   testcase( pName->enc==SQLITE_UTF16BE );
7041   testcase( pName->enc==SQLITE_UTF16LE );
7042   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7043   if( rc ) goto abort_due_to_error;
7044   rc = pVtab->pModule->xRename(pVtab, pName->z);
7045   sqlite3VtabImportErrmsg(p, pVtab);
7046   p->expired = 0;
7047   if( rc ) goto abort_due_to_error;
7048   break;
7049 }
7050 #endif
7051 
7052 #ifndef SQLITE_OMIT_VIRTUALTABLE
7053 /* Opcode: VUpdate P1 P2 P3 P4 P5
7054 ** Synopsis: data=r[P3@P2]
7055 **
7056 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7057 ** This opcode invokes the corresponding xUpdate method. P2 values
7058 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7059 ** invocation. The value in register (P3+P2-1) corresponds to the
7060 ** p2th element of the argv array passed to xUpdate.
7061 **
7062 ** The xUpdate method will do a DELETE or an INSERT or both.
7063 ** The argv[0] element (which corresponds to memory cell P3)
7064 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7065 ** deletion occurs.  The argv[1] element is the rowid of the new
7066 ** row.  This can be NULL to have the virtual table select the new
7067 ** rowid for itself.  The subsequent elements in the array are
7068 ** the values of columns in the new row.
7069 **
7070 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7071 ** a row to delete.
7072 **
7073 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7074 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7075 ** is set to the value of the rowid for the row just inserted.
7076 **
7077 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7078 ** apply in the case of a constraint failure on an insert or update.
7079 */
7080 case OP_VUpdate: {
7081   sqlite3_vtab *pVtab;
7082   const sqlite3_module *pModule;
7083   int nArg;
7084   int i;
7085   sqlite_int64 rowid;
7086   Mem **apArg;
7087   Mem *pX;
7088 
7089   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7090        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7091   );
7092   assert( p->readOnly==0 );
7093   if( db->mallocFailed ) goto no_mem;
7094   sqlite3VdbeIncrWriteCounter(p, 0);
7095   pVtab = pOp->p4.pVtab->pVtab;
7096   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7097     rc = SQLITE_LOCKED;
7098     goto abort_due_to_error;
7099   }
7100   pModule = pVtab->pModule;
7101   nArg = pOp->p2;
7102   assert( pOp->p4type==P4_VTAB );
7103   if( ALWAYS(pModule->xUpdate) ){
7104     u8 vtabOnConflict = db->vtabOnConflict;
7105     apArg = p->apArg;
7106     pX = &aMem[pOp->p3];
7107     for(i=0; i<nArg; i++){
7108       assert( memIsValid(pX) );
7109       memAboutToChange(p, pX);
7110       apArg[i] = pX;
7111       pX++;
7112     }
7113     db->vtabOnConflict = pOp->p5;
7114     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7115     db->vtabOnConflict = vtabOnConflict;
7116     sqlite3VtabImportErrmsg(p, pVtab);
7117     if( rc==SQLITE_OK && pOp->p1 ){
7118       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7119       db->lastRowid = rowid;
7120     }
7121     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7122       if( pOp->p5==OE_Ignore ){
7123         rc = SQLITE_OK;
7124       }else{
7125         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7126       }
7127     }else{
7128       p->nChange++;
7129     }
7130     if( rc ) goto abort_due_to_error;
7131   }
7132   break;
7133 }
7134 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7135 
7136 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7137 /* Opcode: Pagecount P1 P2 * * *
7138 **
7139 ** Write the current number of pages in database P1 to memory cell P2.
7140 */
7141 case OP_Pagecount: {            /* out2 */
7142   pOut = out2Prerelease(p, pOp);
7143   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7144   break;
7145 }
7146 #endif
7147 
7148 
7149 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7150 /* Opcode: MaxPgcnt P1 P2 P3 * *
7151 **
7152 ** Try to set the maximum page count for database P1 to the value in P3.
7153 ** Do not let the maximum page count fall below the current page count and
7154 ** do not change the maximum page count value if P3==0.
7155 **
7156 ** Store the maximum page count after the change in register P2.
7157 */
7158 case OP_MaxPgcnt: {            /* out2 */
7159   unsigned int newMax;
7160   Btree *pBt;
7161 
7162   pOut = out2Prerelease(p, pOp);
7163   pBt = db->aDb[pOp->p1].pBt;
7164   newMax = 0;
7165   if( pOp->p3 ){
7166     newMax = sqlite3BtreeLastPage(pBt);
7167     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7168   }
7169   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7170   break;
7171 }
7172 #endif
7173 
7174 /* Opcode: Function0 P1 P2 P3 P4 P5
7175 ** Synopsis: r[P3]=func(r[P2@P5])
7176 **
7177 ** Invoke a user function (P4 is a pointer to a FuncDef object that
7178 ** defines the function) with P5 arguments taken from register P2 and
7179 ** successors.  The result of the function is stored in register P3.
7180 ** Register P3 must not be one of the function inputs.
7181 **
7182 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7183 ** function was determined to be constant at compile time. If the first
7184 ** argument was constant then bit 0 of P1 is set. This is used to determine
7185 ** whether meta data associated with a user function argument using the
7186 ** sqlite3_set_auxdata() API may be safely retained until the next
7187 ** invocation of this opcode.
7188 **
7189 ** See also: Function, AggStep, AggFinal
7190 */
7191 /* Opcode: Function P1 P2 P3 P4 P5
7192 ** Synopsis: r[P3]=func(r[P2@P5])
7193 **
7194 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7195 ** contains a pointer to the function to be run) with P5 arguments taken
7196 ** from register P2 and successors.  The result of the function is stored
7197 ** in register P3.  Register P3 must not be one of the function inputs.
7198 **
7199 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7200 ** function was determined to be constant at compile time. If the first
7201 ** argument was constant then bit 0 of P1 is set. This is used to determine
7202 ** whether meta data associated with a user function argument using the
7203 ** sqlite3_set_auxdata() API may be safely retained until the next
7204 ** invocation of this opcode.
7205 **
7206 ** SQL functions are initially coded as OP_Function0 with P4 pointing
7207 ** to a FuncDef object.  But on first evaluation, the P4 operand is
7208 ** automatically converted into an sqlite3_context object and the operation
7209 ** changed to this OP_Function opcode.  In this way, the initialization of
7210 ** the sqlite3_context object occurs only once, rather than once for each
7211 ** evaluation of the function.
7212 **
7213 ** See also: Function0, AggStep, AggFinal
7214 */
7215 case OP_PureFunc0:
7216 case OP_Function0: {
7217   int n;
7218   sqlite3_context *pCtx;
7219 
7220   assert( pOp->p4type==P4_FUNCDEF );
7221   n = pOp->p5;
7222   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7223   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7224   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7225   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
7226   if( pCtx==0 ) goto no_mem;
7227   pCtx->pOut = 0;
7228   pCtx->pFunc = pOp->p4.pFunc;
7229   pCtx->iOp = (int)(pOp - aOp);
7230   pCtx->pVdbe = p;
7231   pCtx->isError = 0;
7232   pCtx->argc = n;
7233   pOp->p4type = P4_FUNCCTX;
7234   pOp->p4.pCtx = pCtx;
7235   assert( OP_PureFunc == OP_PureFunc0+2 );
7236   assert( OP_Function == OP_Function0+2 );
7237   pOp->opcode += 2;
7238   /* Fall through into OP_Function */
7239 }
7240 case OP_PureFunc:
7241 case OP_Function: {
7242   int i;
7243   sqlite3_context *pCtx;
7244 
7245   assert( pOp->p4type==P4_FUNCCTX );
7246   pCtx = pOp->p4.pCtx;
7247 
7248   /* If this function is inside of a trigger, the register array in aMem[]
7249   ** might change from one evaluation to the next.  The next block of code
7250   ** checks to see if the register array has changed, and if so it
7251   ** reinitializes the relavant parts of the sqlite3_context object */
7252   pOut = &aMem[pOp->p3];
7253   if( pCtx->pOut != pOut ){
7254     pCtx->pOut = pOut;
7255     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7256   }
7257 
7258   memAboutToChange(p, pOut);
7259 #ifdef SQLITE_DEBUG
7260   for(i=0; i<pCtx->argc; i++){
7261     assert( memIsValid(pCtx->argv[i]) );
7262     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7263   }
7264 #endif
7265   MemSetTypeFlag(pOut, MEM_Null);
7266   assert( pCtx->isError==0 );
7267   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7268 
7269   /* If the function returned an error, throw an exception */
7270   if( pCtx->isError ){
7271     if( pCtx->isError>0 ){
7272       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7273       rc = pCtx->isError;
7274     }
7275     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7276     pCtx->isError = 0;
7277     if( rc ) goto abort_due_to_error;
7278   }
7279 
7280   /* Copy the result of the function into register P3 */
7281   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7282     sqlite3VdbeChangeEncoding(pOut, encoding);
7283     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7284   }
7285 
7286   REGISTER_TRACE(pOp->p3, pOut);
7287   UPDATE_MAX_BLOBSIZE(pOut);
7288   break;
7289 }
7290 
7291 /* Opcode: Trace P1 P2 * P4 *
7292 **
7293 ** Write P4 on the statement trace output if statement tracing is
7294 ** enabled.
7295 **
7296 ** Operand P1 must be 0x7fffffff and P2 must positive.
7297 */
7298 /* Opcode: Init P1 P2 P3 P4 *
7299 ** Synopsis: Start at P2
7300 **
7301 ** Programs contain a single instance of this opcode as the very first
7302 ** opcode.
7303 **
7304 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7305 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7306 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7307 **
7308 ** If P2 is not zero, jump to instruction P2.
7309 **
7310 ** Increment the value of P1 so that OP_Once opcodes will jump the
7311 ** first time they are evaluated for this run.
7312 **
7313 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7314 ** error is encountered.
7315 */
7316 case OP_Trace:
7317 case OP_Init: {          /* jump */
7318   int i;
7319 #ifndef SQLITE_OMIT_TRACE
7320   char *zTrace;
7321 #endif
7322 
7323   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7324   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7325   **
7326   ** This assert() provides evidence for:
7327   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7328   ** would have been returned by the legacy sqlite3_trace() interface by
7329   ** using the X argument when X begins with "--" and invoking
7330   ** sqlite3_expanded_sql(P) otherwise.
7331   */
7332   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7333 
7334   /* OP_Init is always instruction 0 */
7335   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7336 
7337 #ifndef SQLITE_OMIT_TRACE
7338   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7339    && !p->doingRerun
7340    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7341   ){
7342 #ifndef SQLITE_OMIT_DEPRECATED
7343     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7344       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7345       char *z = sqlite3VdbeExpandSql(p, zTrace);
7346       x(db->pTraceArg, z);
7347       sqlite3_free(z);
7348     }else
7349 #endif
7350     if( db->nVdbeExec>1 ){
7351       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7352       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7353       sqlite3DbFree(db, z);
7354     }else{
7355       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7356     }
7357   }
7358 #ifdef SQLITE_USE_FCNTL_TRACE
7359   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7360   if( zTrace ){
7361     int j;
7362     for(j=0; j<db->nDb; j++){
7363       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7364       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7365     }
7366   }
7367 #endif /* SQLITE_USE_FCNTL_TRACE */
7368 #ifdef SQLITE_DEBUG
7369   if( (db->flags & SQLITE_SqlTrace)!=0
7370    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7371   ){
7372     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7373   }
7374 #endif /* SQLITE_DEBUG */
7375 #endif /* SQLITE_OMIT_TRACE */
7376   assert( pOp->p2>0 );
7377   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7378     if( pOp->opcode==OP_Trace ) break;
7379     for(i=1; i<p->nOp; i++){
7380       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7381     }
7382     pOp->p1 = 0;
7383   }
7384   pOp->p1++;
7385   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7386   goto jump_to_p2;
7387 }
7388 
7389 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7390 /* Opcode: CursorHint P1 * * P4 *
7391 **
7392 ** Provide a hint to cursor P1 that it only needs to return rows that
7393 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7394 ** to values currently held in registers.  TK_COLUMN terms in the P4
7395 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7396 */
7397 case OP_CursorHint: {
7398   VdbeCursor *pC;
7399 
7400   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7401   assert( pOp->p4type==P4_EXPR );
7402   pC = p->apCsr[pOp->p1];
7403   if( pC ){
7404     assert( pC->eCurType==CURTYPE_BTREE );
7405     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7406                            pOp->p4.pExpr, aMem);
7407   }
7408   break;
7409 }
7410 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7411 
7412 #ifdef SQLITE_DEBUG
7413 /* Opcode:  Abortable   * * * * *
7414 **
7415 ** Verify that an Abort can happen.  Assert if an Abort at this point
7416 ** might cause database corruption.  This opcode only appears in debugging
7417 ** builds.
7418 **
7419 ** An Abort is safe if either there have been no writes, or if there is
7420 ** an active statement journal.
7421 */
7422 case OP_Abortable: {
7423   sqlite3VdbeAssertAbortable(p);
7424   break;
7425 }
7426 #endif
7427 
7428 #ifdef SQLITE_DEBUG_COLUMNCACHE
7429 /* Opcode:  SetTabCol   P1 P2 P3 * *
7430 **
7431 ** Set a flag in register REG[P3] indicating that it holds the value
7432 ** of column P2 from the table on cursor P1.  This flag is checked
7433 ** by a subsequent VerifyTabCol opcode.
7434 **
7435 ** This opcode only appears SQLITE_DEBUG builds.  It is used to verify
7436 ** that the expression table column cache is working correctly.
7437 */
7438 case OP_SetTabCol: {
7439   aMem[pOp->p3].iTabColHash = TableColumnHash(pOp->p1,pOp->p2);
7440   break;
7441 }
7442 /* Opcode:  VerifyTabCol   P1 P2 P3 * *
7443 **
7444 ** Verify that register REG[P3] contains the value of column P2 from
7445 ** cursor P1.  Assert() if this is not the case.
7446 **
7447 ** This opcode only appears SQLITE_DEBUG builds.  It is used to verify
7448 ** that the expression table column cache is working correctly.
7449 */
7450 case OP_VerifyTabCol: {
7451   assert( aMem[pOp->p3].iTabColHash == TableColumnHash(pOp->p1,pOp->p2) );
7452   break;
7453 }
7454 #endif
7455 
7456 /* Opcode: Noop * * * * *
7457 **
7458 ** Do nothing.  This instruction is often useful as a jump
7459 ** destination.
7460 */
7461 /*
7462 ** The magic Explain opcode are only inserted when explain==2 (which
7463 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7464 ** This opcode records information from the optimizer.  It is the
7465 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7466 */
7467 default: {          /* This is really OP_Noop, OP_Explain */
7468   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7469 
7470   break;
7471 }
7472 
7473 /*****************************************************************************
7474 ** The cases of the switch statement above this line should all be indented
7475 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7476 ** readability.  From this point on down, the normal indentation rules are
7477 ** restored.
7478 *****************************************************************************/
7479     }
7480 
7481 #ifdef VDBE_PROFILE
7482     {
7483       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7484       if( endTime>start ) pOrigOp->cycles += endTime - start;
7485       pOrigOp->cnt++;
7486     }
7487 #endif
7488 
7489     /* The following code adds nothing to the actual functionality
7490     ** of the program.  It is only here for testing and debugging.
7491     ** On the other hand, it does burn CPU cycles every time through
7492     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7493     */
7494 #ifndef NDEBUG
7495     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7496 
7497 #ifdef SQLITE_DEBUG
7498     if( db->flags & SQLITE_VdbeTrace ){
7499       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7500       if( rc!=0 ) printf("rc=%d\n",rc);
7501       if( opProperty & (OPFLG_OUT2) ){
7502         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7503       }
7504       if( opProperty & OPFLG_OUT3 ){
7505         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7506       }
7507     }
7508 #endif  /* SQLITE_DEBUG */
7509 #endif  /* NDEBUG */
7510   }  /* The end of the for(;;) loop the loops through opcodes */
7511 
7512   /* If we reach this point, it means that execution is finished with
7513   ** an error of some kind.
7514   */
7515 abort_due_to_error:
7516   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7517   assert( rc );
7518   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7519     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7520   }
7521   p->rc = rc;
7522   sqlite3SystemError(db, rc);
7523   testcase( sqlite3GlobalConfig.xLog!=0 );
7524   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7525                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7526   sqlite3VdbeHalt(p);
7527   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7528   rc = SQLITE_ERROR;
7529   if( resetSchemaOnFault>0 ){
7530     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7531   }
7532 
7533   /* This is the only way out of this procedure.  We have to
7534   ** release the mutexes on btrees that were acquired at the
7535   ** top. */
7536 vdbe_return:
7537   testcase( nVmStep>0 );
7538   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7539   sqlite3VdbeLeave(p);
7540   assert( rc!=SQLITE_OK || nExtraDelete==0
7541        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7542   );
7543   return rc;
7544 
7545   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7546   ** is encountered.
7547   */
7548 too_big:
7549   sqlite3VdbeError(p, "string or blob too big");
7550   rc = SQLITE_TOOBIG;
7551   goto abort_due_to_error;
7552 
7553   /* Jump to here if a malloc() fails.
7554   */
7555 no_mem:
7556   sqlite3OomFault(db);
7557   sqlite3VdbeError(p, "out of memory");
7558   rc = SQLITE_NOMEM_BKPT;
7559   goto abort_due_to_error;
7560 
7561   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7562   ** flag.
7563   */
7564 abort_due_to_interrupt:
7565   assert( db->u1.isInterrupted );
7566   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7567   p->rc = rc;
7568   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7569   goto abort_due_to_error;
7570 }
7571