1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** Given a cursor number and a column for a table or index, compute a 41 ** hash value for use in the Mem.iTabColHash value. The iTabColHash 42 ** column is only used for verification - it is omitted from production 43 ** builds. Collisions are harmless in the sense that the correct answer 44 ** still results. The only harm of collisions is that they can potential 45 ** reduce column-cache error detection during SQLITE_DEBUG builds. 46 ** 47 ** No valid hash should be 0. 48 */ 49 #define TableColumnHash(T,C) (((u32)(T)<<16)^(u32)(C+2)) 50 51 /* 52 ** The following global variable is incremented every time a cursor 53 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 54 ** procedures use this information to make sure that indices are 55 ** working correctly. This variable has no function other than to 56 ** help verify the correct operation of the library. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_search_count = 0; 60 #endif 61 62 /* 63 ** When this global variable is positive, it gets decremented once before 64 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 65 ** field of the sqlite3 structure is set in order to simulate an interrupt. 66 ** 67 ** This facility is used for testing purposes only. It does not function 68 ** in an ordinary build. 69 */ 70 #ifdef SQLITE_TEST 71 int sqlite3_interrupt_count = 0; 72 #endif 73 74 /* 75 ** The next global variable is incremented each type the OP_Sort opcode 76 ** is executed. The test procedures use this information to make sure that 77 ** sorting is occurring or not occurring at appropriate times. This variable 78 ** has no function other than to help verify the correct operation of the 79 ** library. 80 */ 81 #ifdef SQLITE_TEST 82 int sqlite3_sort_count = 0; 83 #endif 84 85 /* 86 ** The next global variable records the size of the largest MEM_Blob 87 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 88 ** use this information to make sure that the zero-blob functionality 89 ** is working correctly. This variable has no function other than to 90 ** help verify the correct operation of the library. 91 */ 92 #ifdef SQLITE_TEST 93 int sqlite3_max_blobsize = 0; 94 static void updateMaxBlobsize(Mem *p){ 95 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 96 sqlite3_max_blobsize = p->n; 97 } 98 } 99 #endif 100 101 /* 102 ** This macro evaluates to true if either the update hook or the preupdate 103 ** hook are enabled for database connect DB. 104 */ 105 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 106 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 107 #else 108 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 109 #endif 110 111 /* 112 ** The next global variable is incremented each time the OP_Found opcode 113 ** is executed. This is used to test whether or not the foreign key 114 ** operation implemented using OP_FkIsZero is working. This variable 115 ** has no function other than to help verify the correct operation of the 116 ** library. 117 */ 118 #ifdef SQLITE_TEST 119 int sqlite3_found_count = 0; 120 #endif 121 122 /* 123 ** Test a register to see if it exceeds the current maximum blob size. 124 ** If it does, record the new maximum blob size. 125 */ 126 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 127 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 128 #else 129 # define UPDATE_MAX_BLOBSIZE(P) 130 #endif 131 132 /* 133 ** Invoke the VDBE coverage callback, if that callback is defined. This 134 ** feature is used for test suite validation only and does not appear an 135 ** production builds. 136 ** 137 ** M is an integer between 2 and 4. 2 indicates a ordinary two-way 138 ** branch (I=0 means fall through and I=1 means taken). 3 indicates 139 ** a 3-way branch where the third way is when one of the operands is 140 ** NULL. 4 indicates the OP_Jump instruction which has three destinations 141 ** depending on whether the first operand is less than, equal to, or greater 142 ** than the second. 143 ** 144 ** iSrcLine is the source code line (from the __LINE__ macro) that 145 ** generated the VDBE instruction combined with flag bits. The source 146 ** code line number is in the lower 24 bits of iSrcLine and the upper 147 ** 8 bytes are flags. The lower three bits of the flags indicate 148 ** values for I that should never occur. For example, if the branch is 149 ** always taken, the flags should be 0x05 since the fall-through and 150 ** alternate branch are never taken. If a branch is never taken then 151 ** flags should be 0x06 since only the fall-through approach is allowed. 152 ** 153 ** Bit 0x04 of the flags indicates an OP_Jump opcode that is only 154 ** interested in equal or not-equal. In other words, I==0 and I==2 155 ** should be treated the same. 156 ** 157 ** Since only a line number is retained, not the filename, this macro 158 ** only works for amalgamation builds. But that is ok, since these macros 159 ** should be no-ops except for special builds used to measure test coverage. 160 */ 161 #if !defined(SQLITE_VDBE_COVERAGE) 162 # define VdbeBranchTaken(I,M) 163 #else 164 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 165 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 166 u8 mNever; 167 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 168 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 169 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 170 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 171 I = 1<<I; 172 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 173 ** the flags indicate directions that the branch can never go. If 174 ** a branch really does go in one of those directions, assert right 175 ** away. */ 176 mNever = iSrcLine >> 24; 177 assert( (I & mNever)==0 ); 178 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 179 I |= mNever; 180 if( M==2 ) I |= 0x04; 181 if( M==4 ){ 182 I |= 0x08; 183 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 184 } 185 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 186 iSrcLine&0xffffff, I, M); 187 } 188 #endif 189 190 /* 191 ** Convert the given register into a string if it isn't one 192 ** already. Return non-zero if a malloc() fails. 193 */ 194 #define Stringify(P, enc) \ 195 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 196 { goto no_mem; } 197 198 /* 199 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 200 ** a pointer to a dynamically allocated string where some other entity 201 ** is responsible for deallocating that string. Because the register 202 ** does not control the string, it might be deleted without the register 203 ** knowing it. 204 ** 205 ** This routine converts an ephemeral string into a dynamically allocated 206 ** string that the register itself controls. In other words, it 207 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 208 */ 209 #define Deephemeralize(P) \ 210 if( ((P)->flags&MEM_Ephem)!=0 \ 211 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 212 213 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 214 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 215 216 /* 217 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 218 ** if we run out of memory. 219 */ 220 static VdbeCursor *allocateCursor( 221 Vdbe *p, /* The virtual machine */ 222 int iCur, /* Index of the new VdbeCursor */ 223 int nField, /* Number of fields in the table or index */ 224 int iDb, /* Database the cursor belongs to, or -1 */ 225 u8 eCurType /* Type of the new cursor */ 226 ){ 227 /* Find the memory cell that will be used to store the blob of memory 228 ** required for this VdbeCursor structure. It is convenient to use a 229 ** vdbe memory cell to manage the memory allocation required for a 230 ** VdbeCursor structure for the following reasons: 231 ** 232 ** * Sometimes cursor numbers are used for a couple of different 233 ** purposes in a vdbe program. The different uses might require 234 ** different sized allocations. Memory cells provide growable 235 ** allocations. 236 ** 237 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 238 ** be freed lazily via the sqlite3_release_memory() API. This 239 ** minimizes the number of malloc calls made by the system. 240 ** 241 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 242 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 243 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 244 */ 245 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 246 247 int nByte; 248 VdbeCursor *pCx = 0; 249 nByte = 250 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 251 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 252 253 assert( iCur>=0 && iCur<p->nCursor ); 254 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 255 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 256 p->apCsr[iCur] = 0; 257 } 258 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 259 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 260 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 261 pCx->eCurType = eCurType; 262 pCx->iDb = iDb; 263 pCx->nField = nField; 264 pCx->aOffset = &pCx->aType[nField]; 265 if( eCurType==CURTYPE_BTREE ){ 266 pCx->uc.pCursor = (BtCursor*) 267 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 268 sqlite3BtreeCursorZero(pCx->uc.pCursor); 269 } 270 } 271 return pCx; 272 } 273 274 /* 275 ** Try to convert a value into a numeric representation if we can 276 ** do so without loss of information. In other words, if the string 277 ** looks like a number, convert it into a number. If it does not 278 ** look like a number, leave it alone. 279 ** 280 ** If the bTryForInt flag is true, then extra effort is made to give 281 ** an integer representation. Strings that look like floating point 282 ** values but which have no fractional component (example: '48.00') 283 ** will have a MEM_Int representation when bTryForInt is true. 284 ** 285 ** If bTryForInt is false, then if the input string contains a decimal 286 ** point or exponential notation, the result is only MEM_Real, even 287 ** if there is an exact integer representation of the quantity. 288 */ 289 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 290 double rValue; 291 i64 iValue; 292 u8 enc = pRec->enc; 293 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 294 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 295 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 296 pRec->u.i = iValue; 297 pRec->flags |= MEM_Int; 298 }else{ 299 pRec->u.r = rValue; 300 pRec->flags |= MEM_Real; 301 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 302 } 303 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 304 ** string representation after computing a numeric equivalent, because the 305 ** string representation might not be the canonical representation for the 306 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 307 pRec->flags &= ~MEM_Str; 308 } 309 310 /* 311 ** Processing is determine by the affinity parameter: 312 ** 313 ** SQLITE_AFF_INTEGER: 314 ** SQLITE_AFF_REAL: 315 ** SQLITE_AFF_NUMERIC: 316 ** Try to convert pRec to an integer representation or a 317 ** floating-point representation if an integer representation 318 ** is not possible. Note that the integer representation is 319 ** always preferred, even if the affinity is REAL, because 320 ** an integer representation is more space efficient on disk. 321 ** 322 ** SQLITE_AFF_TEXT: 323 ** Convert pRec to a text representation. 324 ** 325 ** SQLITE_AFF_BLOB: 326 ** No-op. pRec is unchanged. 327 */ 328 static void applyAffinity( 329 Mem *pRec, /* The value to apply affinity to */ 330 char affinity, /* The affinity to be applied */ 331 u8 enc /* Use this text encoding */ 332 ){ 333 if( affinity>=SQLITE_AFF_NUMERIC ){ 334 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 335 || affinity==SQLITE_AFF_NUMERIC ); 336 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 337 if( (pRec->flags & MEM_Real)==0 ){ 338 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 339 }else{ 340 sqlite3VdbeIntegerAffinity(pRec); 341 } 342 } 343 }else if( affinity==SQLITE_AFF_TEXT ){ 344 /* Only attempt the conversion to TEXT if there is an integer or real 345 ** representation (blob and NULL do not get converted) but no string 346 ** representation. It would be harmless to repeat the conversion if 347 ** there is already a string rep, but it is pointless to waste those 348 ** CPU cycles. */ 349 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 350 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 351 sqlite3VdbeMemStringify(pRec, enc, 1); 352 } 353 } 354 pRec->flags &= ~(MEM_Real|MEM_Int); 355 } 356 } 357 358 /* 359 ** Try to convert the type of a function argument or a result column 360 ** into a numeric representation. Use either INTEGER or REAL whichever 361 ** is appropriate. But only do the conversion if it is possible without 362 ** loss of information and return the revised type of the argument. 363 */ 364 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 365 int eType = sqlite3_value_type(pVal); 366 if( eType==SQLITE_TEXT ){ 367 Mem *pMem = (Mem*)pVal; 368 applyNumericAffinity(pMem, 0); 369 eType = sqlite3_value_type(pVal); 370 } 371 return eType; 372 } 373 374 /* 375 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 376 ** not the internal Mem* type. 377 */ 378 void sqlite3ValueApplyAffinity( 379 sqlite3_value *pVal, 380 u8 affinity, 381 u8 enc 382 ){ 383 applyAffinity((Mem *)pVal, affinity, enc); 384 } 385 386 /* 387 ** pMem currently only holds a string type (or maybe a BLOB that we can 388 ** interpret as a string if we want to). Compute its corresponding 389 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 390 ** accordingly. 391 */ 392 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 393 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 394 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 395 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 396 return 0; 397 } 398 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ 399 return MEM_Int; 400 } 401 return MEM_Real; 402 } 403 404 /* 405 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 406 ** none. 407 ** 408 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 409 ** But it does set pMem->u.r and pMem->u.i appropriately. 410 */ 411 static u16 numericType(Mem *pMem){ 412 if( pMem->flags & (MEM_Int|MEM_Real) ){ 413 return pMem->flags & (MEM_Int|MEM_Real); 414 } 415 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 416 return computeNumericType(pMem); 417 } 418 return 0; 419 } 420 421 #ifdef SQLITE_DEBUG 422 /* 423 ** Write a nice string representation of the contents of cell pMem 424 ** into buffer zBuf, length nBuf. 425 */ 426 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 427 char *zCsr = zBuf; 428 int f = pMem->flags; 429 430 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 431 432 if( f&MEM_Blob ){ 433 int i; 434 char c; 435 if( f & MEM_Dyn ){ 436 c = 'z'; 437 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 438 }else if( f & MEM_Static ){ 439 c = 't'; 440 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 441 }else if( f & MEM_Ephem ){ 442 c = 'e'; 443 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 444 }else{ 445 c = 's'; 446 } 447 *(zCsr++) = c; 448 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 449 zCsr += sqlite3Strlen30(zCsr); 450 for(i=0; i<16 && i<pMem->n; i++){ 451 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 452 zCsr += sqlite3Strlen30(zCsr); 453 } 454 for(i=0; i<16 && i<pMem->n; i++){ 455 char z = pMem->z[i]; 456 if( z<32 || z>126 ) *zCsr++ = '.'; 457 else *zCsr++ = z; 458 } 459 *(zCsr++) = ']'; 460 if( f & MEM_Zero ){ 461 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 462 zCsr += sqlite3Strlen30(zCsr); 463 } 464 *zCsr = '\0'; 465 }else if( f & MEM_Str ){ 466 int j, k; 467 zBuf[0] = ' '; 468 if( f & MEM_Dyn ){ 469 zBuf[1] = 'z'; 470 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 471 }else if( f & MEM_Static ){ 472 zBuf[1] = 't'; 473 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 474 }else if( f & MEM_Ephem ){ 475 zBuf[1] = 'e'; 476 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 477 }else{ 478 zBuf[1] = 's'; 479 } 480 k = 2; 481 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 482 k += sqlite3Strlen30(&zBuf[k]); 483 zBuf[k++] = '['; 484 for(j=0; j<15 && j<pMem->n; j++){ 485 u8 c = pMem->z[j]; 486 if( c>=0x20 && c<0x7f ){ 487 zBuf[k++] = c; 488 }else{ 489 zBuf[k++] = '.'; 490 } 491 } 492 zBuf[k++] = ']'; 493 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 494 k += sqlite3Strlen30(&zBuf[k]); 495 zBuf[k++] = 0; 496 } 497 } 498 #endif 499 500 #ifdef SQLITE_DEBUG 501 /* 502 ** Print the value of a register for tracing purposes: 503 */ 504 static void memTracePrint(Mem *p){ 505 if( p->flags & MEM_Undefined ){ 506 printf(" undefined"); 507 }else if( p->flags & MEM_Null ){ 508 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 509 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 510 printf(" si:%lld", p->u.i); 511 }else if( p->flags & MEM_Int ){ 512 printf(" i:%lld", p->u.i); 513 #ifndef SQLITE_OMIT_FLOATING_POINT 514 }else if( p->flags & MEM_Real ){ 515 printf(" r:%g", p->u.r); 516 #endif 517 }else if( p->flags & MEM_RowSet ){ 518 printf(" (rowset)"); 519 }else{ 520 char zBuf[200]; 521 sqlite3VdbeMemPrettyPrint(p, zBuf); 522 printf(" %s", zBuf); 523 } 524 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 525 } 526 static void registerTrace(int iReg, Mem *p){ 527 printf("REG[%d] = ", iReg); 528 memTracePrint(p); 529 printf("\n"); 530 sqlite3VdbeCheckMemInvariants(p); 531 } 532 #endif 533 534 #ifdef SQLITE_DEBUG 535 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 536 #else 537 # define REGISTER_TRACE(R,M) 538 #endif 539 540 541 #ifdef VDBE_PROFILE 542 543 /* 544 ** hwtime.h contains inline assembler code for implementing 545 ** high-performance timing routines. 546 */ 547 #include "hwtime.h" 548 549 #endif 550 551 #ifndef NDEBUG 552 /* 553 ** This function is only called from within an assert() expression. It 554 ** checks that the sqlite3.nTransaction variable is correctly set to 555 ** the number of non-transaction savepoints currently in the 556 ** linked list starting at sqlite3.pSavepoint. 557 ** 558 ** Usage: 559 ** 560 ** assert( checkSavepointCount(db) ); 561 */ 562 static int checkSavepointCount(sqlite3 *db){ 563 int n = 0; 564 Savepoint *p; 565 for(p=db->pSavepoint; p; p=p->pNext) n++; 566 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 567 return 1; 568 } 569 #endif 570 571 /* 572 ** Return the register of pOp->p2 after first preparing it to be 573 ** overwritten with an integer value. 574 */ 575 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 576 sqlite3VdbeMemSetNull(pOut); 577 pOut->flags = MEM_Int; 578 return pOut; 579 } 580 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 581 Mem *pOut; 582 assert( pOp->p2>0 ); 583 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 584 pOut = &p->aMem[pOp->p2]; 585 memAboutToChange(p, pOut); 586 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 587 return out2PrereleaseWithClear(pOut); 588 }else{ 589 pOut->flags = MEM_Int; 590 return pOut; 591 } 592 } 593 594 595 /* 596 ** Execute as much of a VDBE program as we can. 597 ** This is the core of sqlite3_step(). 598 */ 599 int sqlite3VdbeExec( 600 Vdbe *p /* The VDBE */ 601 ){ 602 Op *aOp = p->aOp; /* Copy of p->aOp */ 603 Op *pOp = aOp; /* Current operation */ 604 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 605 Op *pOrigOp; /* Value of pOp at the top of the loop */ 606 #endif 607 #ifdef SQLITE_DEBUG 608 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 609 #endif 610 int rc = SQLITE_OK; /* Value to return */ 611 sqlite3 *db = p->db; /* The database */ 612 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 613 u8 encoding = ENC(db); /* The database encoding */ 614 int iCompare = 0; /* Result of last comparison */ 615 unsigned nVmStep = 0; /* Number of virtual machine steps */ 616 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 617 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 618 #endif 619 Mem *aMem = p->aMem; /* Copy of p->aMem */ 620 Mem *pIn1 = 0; /* 1st input operand */ 621 Mem *pIn2 = 0; /* 2nd input operand */ 622 Mem *pIn3 = 0; /* 3rd input operand */ 623 Mem *pOut = 0; /* Output operand */ 624 #ifdef VDBE_PROFILE 625 u64 start; /* CPU clock count at start of opcode */ 626 #endif 627 /*** INSERT STACK UNION HERE ***/ 628 629 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 630 sqlite3VdbeEnter(p); 631 if( p->rc==SQLITE_NOMEM ){ 632 /* This happens if a malloc() inside a call to sqlite3_column_text() or 633 ** sqlite3_column_text16() failed. */ 634 goto no_mem; 635 } 636 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 637 assert( p->bIsReader || p->readOnly!=0 ); 638 p->iCurrentTime = 0; 639 assert( p->explain==0 ); 640 p->pResultSet = 0; 641 db->busyHandler.nBusy = 0; 642 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 643 sqlite3VdbeIOTraceSql(p); 644 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 645 if( db->xProgress ){ 646 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 647 assert( 0 < db->nProgressOps ); 648 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 649 }else{ 650 nProgressLimit = 0xffffffff; 651 } 652 #endif 653 #ifdef SQLITE_DEBUG 654 sqlite3BeginBenignMalloc(); 655 if( p->pc==0 656 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 657 ){ 658 int i; 659 int once = 1; 660 sqlite3VdbePrintSql(p); 661 if( p->db->flags & SQLITE_VdbeListing ){ 662 printf("VDBE Program Listing:\n"); 663 for(i=0; i<p->nOp; i++){ 664 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 665 } 666 } 667 if( p->db->flags & SQLITE_VdbeEQP ){ 668 for(i=0; i<p->nOp; i++){ 669 if( aOp[i].opcode==OP_Explain ){ 670 if( once ) printf("VDBE Query Plan:\n"); 671 printf("%s\n", aOp[i].p4.z); 672 once = 0; 673 } 674 } 675 } 676 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 677 } 678 sqlite3EndBenignMalloc(); 679 #endif 680 for(pOp=&aOp[p->pc]; 1; pOp++){ 681 /* Errors are detected by individual opcodes, with an immediate 682 ** jumps to abort_due_to_error. */ 683 assert( rc==SQLITE_OK ); 684 685 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 686 #ifdef VDBE_PROFILE 687 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 688 #endif 689 nVmStep++; 690 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 691 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 692 #endif 693 694 /* Only allow tracing if SQLITE_DEBUG is defined. 695 */ 696 #ifdef SQLITE_DEBUG 697 if( db->flags & SQLITE_VdbeTrace ){ 698 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 699 } 700 #endif 701 702 703 /* Check to see if we need to simulate an interrupt. This only happens 704 ** if we have a special test build. 705 */ 706 #ifdef SQLITE_TEST 707 if( sqlite3_interrupt_count>0 ){ 708 sqlite3_interrupt_count--; 709 if( sqlite3_interrupt_count==0 ){ 710 sqlite3_interrupt(db); 711 } 712 } 713 #endif 714 715 /* Sanity checking on other operands */ 716 #ifdef SQLITE_DEBUG 717 { 718 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 719 if( (opProperty & OPFLG_IN1)!=0 ){ 720 assert( pOp->p1>0 ); 721 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 722 assert( memIsValid(&aMem[pOp->p1]) ); 723 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 724 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 725 } 726 if( (opProperty & OPFLG_IN2)!=0 ){ 727 assert( pOp->p2>0 ); 728 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 729 assert( memIsValid(&aMem[pOp->p2]) ); 730 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 731 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 732 } 733 if( (opProperty & OPFLG_IN3)!=0 ){ 734 assert( pOp->p3>0 ); 735 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 736 assert( memIsValid(&aMem[pOp->p3]) ); 737 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 738 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 739 } 740 if( (opProperty & OPFLG_OUT2)!=0 ){ 741 assert( pOp->p2>0 ); 742 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 743 memAboutToChange(p, &aMem[pOp->p2]); 744 } 745 if( (opProperty & OPFLG_OUT3)!=0 ){ 746 assert( pOp->p3>0 ); 747 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 748 memAboutToChange(p, &aMem[pOp->p3]); 749 } 750 } 751 #endif 752 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 753 pOrigOp = pOp; 754 #endif 755 756 switch( pOp->opcode ){ 757 758 /***************************************************************************** 759 ** What follows is a massive switch statement where each case implements a 760 ** separate instruction in the virtual machine. If we follow the usual 761 ** indentation conventions, each case should be indented by 6 spaces. But 762 ** that is a lot of wasted space on the left margin. So the code within 763 ** the switch statement will break with convention and be flush-left. Another 764 ** big comment (similar to this one) will mark the point in the code where 765 ** we transition back to normal indentation. 766 ** 767 ** The formatting of each case is important. The makefile for SQLite 768 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 769 ** file looking for lines that begin with "case OP_". The opcodes.h files 770 ** will be filled with #defines that give unique integer values to each 771 ** opcode and the opcodes.c file is filled with an array of strings where 772 ** each string is the symbolic name for the corresponding opcode. If the 773 ** case statement is followed by a comment of the form "/# same as ... #/" 774 ** that comment is used to determine the particular value of the opcode. 775 ** 776 ** Other keywords in the comment that follows each case are used to 777 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 778 ** Keywords include: in1, in2, in3, out2, out3. See 779 ** the mkopcodeh.awk script for additional information. 780 ** 781 ** Documentation about VDBE opcodes is generated by scanning this file 782 ** for lines of that contain "Opcode:". That line and all subsequent 783 ** comment lines are used in the generation of the opcode.html documentation 784 ** file. 785 ** 786 ** SUMMARY: 787 ** 788 ** Formatting is important to scripts that scan this file. 789 ** Do not deviate from the formatting style currently in use. 790 ** 791 *****************************************************************************/ 792 793 /* Opcode: Goto * P2 * * * 794 ** 795 ** An unconditional jump to address P2. 796 ** The next instruction executed will be 797 ** the one at index P2 from the beginning of 798 ** the program. 799 ** 800 ** The P1 parameter is not actually used by this opcode. However, it 801 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 802 ** that this Goto is the bottom of a loop and that the lines from P2 down 803 ** to the current line should be indented for EXPLAIN output. 804 */ 805 case OP_Goto: { /* jump */ 806 jump_to_p2_and_check_for_interrupt: 807 pOp = &aOp[pOp->p2 - 1]; 808 809 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 810 ** OP_VNext, or OP_SorterNext) all jump here upon 811 ** completion. Check to see if sqlite3_interrupt() has been called 812 ** or if the progress callback needs to be invoked. 813 ** 814 ** This code uses unstructured "goto" statements and does not look clean. 815 ** But that is not due to sloppy coding habits. The code is written this 816 ** way for performance, to avoid having to run the interrupt and progress 817 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 818 ** faster according to "valgrind --tool=cachegrind" */ 819 check_for_interrupt: 820 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 821 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 822 /* Call the progress callback if it is configured and the required number 823 ** of VDBE ops have been executed (either since this invocation of 824 ** sqlite3VdbeExec() or since last time the progress callback was called). 825 ** If the progress callback returns non-zero, exit the virtual machine with 826 ** a return code SQLITE_ABORT. 827 */ 828 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 829 assert( db->nProgressOps!=0 ); 830 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 831 if( db->xProgress(db->pProgressArg) ){ 832 rc = SQLITE_INTERRUPT; 833 goto abort_due_to_error; 834 } 835 } 836 #endif 837 838 break; 839 } 840 841 /* Opcode: Gosub P1 P2 * * * 842 ** 843 ** Write the current address onto register P1 844 ** and then jump to address P2. 845 */ 846 case OP_Gosub: { /* jump */ 847 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 848 pIn1 = &aMem[pOp->p1]; 849 assert( VdbeMemDynamic(pIn1)==0 ); 850 memAboutToChange(p, pIn1); 851 pIn1->flags = MEM_Int; 852 pIn1->u.i = (int)(pOp-aOp); 853 REGISTER_TRACE(pOp->p1, pIn1); 854 855 /* Most jump operations do a goto to this spot in order to update 856 ** the pOp pointer. */ 857 jump_to_p2: 858 pOp = &aOp[pOp->p2 - 1]; 859 break; 860 } 861 862 /* Opcode: Return P1 * * * * 863 ** 864 ** Jump to the next instruction after the address in register P1. After 865 ** the jump, register P1 becomes undefined. 866 */ 867 case OP_Return: { /* in1 */ 868 pIn1 = &aMem[pOp->p1]; 869 assert( pIn1->flags==MEM_Int ); 870 pOp = &aOp[pIn1->u.i]; 871 pIn1->flags = MEM_Undefined; 872 break; 873 } 874 875 /* Opcode: InitCoroutine P1 P2 P3 * * 876 ** 877 ** Set up register P1 so that it will Yield to the coroutine 878 ** located at address P3. 879 ** 880 ** If P2!=0 then the coroutine implementation immediately follows 881 ** this opcode. So jump over the coroutine implementation to 882 ** address P2. 883 ** 884 ** See also: EndCoroutine 885 */ 886 case OP_InitCoroutine: { /* jump */ 887 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 888 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 889 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 890 pOut = &aMem[pOp->p1]; 891 assert( !VdbeMemDynamic(pOut) ); 892 pOut->u.i = pOp->p3 - 1; 893 pOut->flags = MEM_Int; 894 if( pOp->p2 ) goto jump_to_p2; 895 break; 896 } 897 898 /* Opcode: EndCoroutine P1 * * * * 899 ** 900 ** The instruction at the address in register P1 is a Yield. 901 ** Jump to the P2 parameter of that Yield. 902 ** After the jump, register P1 becomes undefined. 903 ** 904 ** See also: InitCoroutine 905 */ 906 case OP_EndCoroutine: { /* in1 */ 907 VdbeOp *pCaller; 908 pIn1 = &aMem[pOp->p1]; 909 assert( pIn1->flags==MEM_Int ); 910 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 911 pCaller = &aOp[pIn1->u.i]; 912 assert( pCaller->opcode==OP_Yield ); 913 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 914 pOp = &aOp[pCaller->p2 - 1]; 915 pIn1->flags = MEM_Undefined; 916 break; 917 } 918 919 /* Opcode: Yield P1 P2 * * * 920 ** 921 ** Swap the program counter with the value in register P1. This 922 ** has the effect of yielding to a coroutine. 923 ** 924 ** If the coroutine that is launched by this instruction ends with 925 ** Yield or Return then continue to the next instruction. But if 926 ** the coroutine launched by this instruction ends with 927 ** EndCoroutine, then jump to P2 rather than continuing with the 928 ** next instruction. 929 ** 930 ** See also: InitCoroutine 931 */ 932 case OP_Yield: { /* in1, jump */ 933 int pcDest; 934 pIn1 = &aMem[pOp->p1]; 935 assert( VdbeMemDynamic(pIn1)==0 ); 936 pIn1->flags = MEM_Int; 937 pcDest = (int)pIn1->u.i; 938 pIn1->u.i = (int)(pOp - aOp); 939 REGISTER_TRACE(pOp->p1, pIn1); 940 pOp = &aOp[pcDest]; 941 break; 942 } 943 944 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 945 ** Synopsis: if r[P3]=null halt 946 ** 947 ** Check the value in register P3. If it is NULL then Halt using 948 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 949 ** value in register P3 is not NULL, then this routine is a no-op. 950 ** The P5 parameter should be 1. 951 */ 952 case OP_HaltIfNull: { /* in3 */ 953 pIn3 = &aMem[pOp->p3]; 954 #ifdef SQLITE_DEBUG 955 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 956 #endif 957 if( (pIn3->flags & MEM_Null)==0 ) break; 958 /* Fall through into OP_Halt */ 959 } 960 961 /* Opcode: Halt P1 P2 * P4 P5 962 ** 963 ** Exit immediately. All open cursors, etc are closed 964 ** automatically. 965 ** 966 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 967 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 968 ** For errors, it can be some other value. If P1!=0 then P2 will determine 969 ** whether or not to rollback the current transaction. Do not rollback 970 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 971 ** then back out all changes that have occurred during this execution of the 972 ** VDBE, but do not rollback the transaction. 973 ** 974 ** If P4 is not null then it is an error message string. 975 ** 976 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 977 ** 978 ** 0: (no change) 979 ** 1: NOT NULL contraint failed: P4 980 ** 2: UNIQUE constraint failed: P4 981 ** 3: CHECK constraint failed: P4 982 ** 4: FOREIGN KEY constraint failed: P4 983 ** 984 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 985 ** omitted. 986 ** 987 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 988 ** every program. So a jump past the last instruction of the program 989 ** is the same as executing Halt. 990 */ 991 case OP_Halt: { 992 VdbeFrame *pFrame; 993 int pcx; 994 995 pcx = (int)(pOp - aOp); 996 #ifdef SQLITE_DEBUG 997 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 998 #endif 999 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1000 /* Halt the sub-program. Return control to the parent frame. */ 1001 pFrame = p->pFrame; 1002 p->pFrame = pFrame->pParent; 1003 p->nFrame--; 1004 sqlite3VdbeSetChanges(db, p->nChange); 1005 pcx = sqlite3VdbeFrameRestore(pFrame); 1006 if( pOp->p2==OE_Ignore ){ 1007 /* Instruction pcx is the OP_Program that invoked the sub-program 1008 ** currently being halted. If the p2 instruction of this OP_Halt 1009 ** instruction is set to OE_Ignore, then the sub-program is throwing 1010 ** an IGNORE exception. In this case jump to the address specified 1011 ** as the p2 of the calling OP_Program. */ 1012 pcx = p->aOp[pcx].p2-1; 1013 } 1014 aOp = p->aOp; 1015 aMem = p->aMem; 1016 pOp = &aOp[pcx]; 1017 break; 1018 } 1019 p->rc = pOp->p1; 1020 p->errorAction = (u8)pOp->p2; 1021 p->pc = pcx; 1022 assert( pOp->p5<=4 ); 1023 if( p->rc ){ 1024 if( pOp->p5 ){ 1025 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1026 "FOREIGN KEY" }; 1027 testcase( pOp->p5==1 ); 1028 testcase( pOp->p5==2 ); 1029 testcase( pOp->p5==3 ); 1030 testcase( pOp->p5==4 ); 1031 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1032 if( pOp->p4.z ){ 1033 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1034 } 1035 }else{ 1036 sqlite3VdbeError(p, "%s", pOp->p4.z); 1037 } 1038 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1039 } 1040 rc = sqlite3VdbeHalt(p); 1041 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1042 if( rc==SQLITE_BUSY ){ 1043 p->rc = SQLITE_BUSY; 1044 }else{ 1045 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1046 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1047 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1048 } 1049 goto vdbe_return; 1050 } 1051 1052 /* Opcode: Integer P1 P2 * * * 1053 ** Synopsis: r[P2]=P1 1054 ** 1055 ** The 32-bit integer value P1 is written into register P2. 1056 */ 1057 case OP_Integer: { /* out2 */ 1058 pOut = out2Prerelease(p, pOp); 1059 pOut->u.i = pOp->p1; 1060 break; 1061 } 1062 1063 /* Opcode: Int64 * P2 * P4 * 1064 ** Synopsis: r[P2]=P4 1065 ** 1066 ** P4 is a pointer to a 64-bit integer value. 1067 ** Write that value into register P2. 1068 */ 1069 case OP_Int64: { /* out2 */ 1070 pOut = out2Prerelease(p, pOp); 1071 assert( pOp->p4.pI64!=0 ); 1072 pOut->u.i = *pOp->p4.pI64; 1073 break; 1074 } 1075 1076 #ifndef SQLITE_OMIT_FLOATING_POINT 1077 /* Opcode: Real * P2 * P4 * 1078 ** Synopsis: r[P2]=P4 1079 ** 1080 ** P4 is a pointer to a 64-bit floating point value. 1081 ** Write that value into register P2. 1082 */ 1083 case OP_Real: { /* same as TK_FLOAT, out2 */ 1084 pOut = out2Prerelease(p, pOp); 1085 pOut->flags = MEM_Real; 1086 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1087 pOut->u.r = *pOp->p4.pReal; 1088 break; 1089 } 1090 #endif 1091 1092 /* Opcode: String8 * P2 * P4 * 1093 ** Synopsis: r[P2]='P4' 1094 ** 1095 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1096 ** into a String opcode before it is executed for the first time. During 1097 ** this transformation, the length of string P4 is computed and stored 1098 ** as the P1 parameter. 1099 */ 1100 case OP_String8: { /* same as TK_STRING, out2 */ 1101 assert( pOp->p4.z!=0 ); 1102 pOut = out2Prerelease(p, pOp); 1103 pOp->opcode = OP_String; 1104 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1105 1106 #ifndef SQLITE_OMIT_UTF16 1107 if( encoding!=SQLITE_UTF8 ){ 1108 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1109 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1110 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1111 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1112 assert( VdbeMemDynamic(pOut)==0 ); 1113 pOut->szMalloc = 0; 1114 pOut->flags |= MEM_Static; 1115 if( pOp->p4type==P4_DYNAMIC ){ 1116 sqlite3DbFree(db, pOp->p4.z); 1117 } 1118 pOp->p4type = P4_DYNAMIC; 1119 pOp->p4.z = pOut->z; 1120 pOp->p1 = pOut->n; 1121 } 1122 testcase( rc==SQLITE_TOOBIG ); 1123 #endif 1124 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1125 goto too_big; 1126 } 1127 assert( rc==SQLITE_OK ); 1128 /* Fall through to the next case, OP_String */ 1129 } 1130 1131 /* Opcode: String P1 P2 P3 P4 P5 1132 ** Synopsis: r[P2]='P4' (len=P1) 1133 ** 1134 ** The string value P4 of length P1 (bytes) is stored in register P2. 1135 ** 1136 ** If P3 is not zero and the content of register P3 is equal to P5, then 1137 ** the datatype of the register P2 is converted to BLOB. The content is 1138 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1139 ** of a string, as if it had been CAST. In other words: 1140 ** 1141 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1142 */ 1143 case OP_String: { /* out2 */ 1144 assert( pOp->p4.z!=0 ); 1145 pOut = out2Prerelease(p, pOp); 1146 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1147 pOut->z = pOp->p4.z; 1148 pOut->n = pOp->p1; 1149 pOut->enc = encoding; 1150 UPDATE_MAX_BLOBSIZE(pOut); 1151 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1152 if( pOp->p3>0 ){ 1153 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1154 pIn3 = &aMem[pOp->p3]; 1155 assert( pIn3->flags & MEM_Int ); 1156 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1157 } 1158 #endif 1159 break; 1160 } 1161 1162 /* Opcode: Null P1 P2 P3 * * 1163 ** Synopsis: r[P2..P3]=NULL 1164 ** 1165 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1166 ** NULL into register P3 and every register in between P2 and P3. If P3 1167 ** is less than P2 (typically P3 is zero) then only register P2 is 1168 ** set to NULL. 1169 ** 1170 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1171 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1172 ** OP_Ne or OP_Eq. 1173 */ 1174 case OP_Null: { /* out2 */ 1175 int cnt; 1176 u16 nullFlag; 1177 pOut = out2Prerelease(p, pOp); 1178 cnt = pOp->p3-pOp->p2; 1179 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1180 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1181 pOut->n = 0; 1182 #ifdef SQLITE_DEBUG 1183 pOut->uTemp = 0; 1184 #endif 1185 while( cnt>0 ){ 1186 pOut++; 1187 memAboutToChange(p, pOut); 1188 sqlite3VdbeMemSetNull(pOut); 1189 pOut->flags = nullFlag; 1190 pOut->n = 0; 1191 cnt--; 1192 } 1193 break; 1194 } 1195 1196 /* Opcode: SoftNull P1 * * * * 1197 ** Synopsis: r[P1]=NULL 1198 ** 1199 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1200 ** instruction, but do not free any string or blob memory associated with 1201 ** the register, so that if the value was a string or blob that was 1202 ** previously copied using OP_SCopy, the copies will continue to be valid. 1203 */ 1204 case OP_SoftNull: { 1205 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1206 pOut = &aMem[pOp->p1]; 1207 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1208 break; 1209 } 1210 1211 /* Opcode: Blob P1 P2 * P4 * 1212 ** Synopsis: r[P2]=P4 (len=P1) 1213 ** 1214 ** P4 points to a blob of data P1 bytes long. Store this 1215 ** blob in register P2. 1216 */ 1217 case OP_Blob: { /* out2 */ 1218 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1219 pOut = out2Prerelease(p, pOp); 1220 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1221 pOut->enc = encoding; 1222 UPDATE_MAX_BLOBSIZE(pOut); 1223 break; 1224 } 1225 1226 /* Opcode: Variable P1 P2 * P4 * 1227 ** Synopsis: r[P2]=parameter(P1,P4) 1228 ** 1229 ** Transfer the values of bound parameter P1 into register P2 1230 ** 1231 ** If the parameter is named, then its name appears in P4. 1232 ** The P4 value is used by sqlite3_bind_parameter_name(). 1233 */ 1234 case OP_Variable: { /* out2 */ 1235 Mem *pVar; /* Value being transferred */ 1236 1237 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1238 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1239 pVar = &p->aVar[pOp->p1 - 1]; 1240 if( sqlite3VdbeMemTooBig(pVar) ){ 1241 goto too_big; 1242 } 1243 pOut = &aMem[pOp->p2]; 1244 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1245 UPDATE_MAX_BLOBSIZE(pOut); 1246 break; 1247 } 1248 1249 /* Opcode: Move P1 P2 P3 * * 1250 ** Synopsis: r[P2@P3]=r[P1@P3] 1251 ** 1252 ** Move the P3 values in register P1..P1+P3-1 over into 1253 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1254 ** left holding a NULL. It is an error for register ranges 1255 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1256 ** for P3 to be less than 1. 1257 */ 1258 case OP_Move: { 1259 int n; /* Number of registers left to copy */ 1260 int p1; /* Register to copy from */ 1261 int p2; /* Register to copy to */ 1262 1263 n = pOp->p3; 1264 p1 = pOp->p1; 1265 p2 = pOp->p2; 1266 assert( n>0 && p1>0 && p2>0 ); 1267 assert( p1+n<=p2 || p2+n<=p1 ); 1268 1269 pIn1 = &aMem[p1]; 1270 pOut = &aMem[p2]; 1271 do{ 1272 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1273 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1274 assert( memIsValid(pIn1) ); 1275 memAboutToChange(p, pOut); 1276 sqlite3VdbeMemMove(pOut, pIn1); 1277 #ifdef SQLITE_DEBUG 1278 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1279 pOut->pScopyFrom += pOp->p2 - p1; 1280 } 1281 #endif 1282 Deephemeralize(pOut); 1283 REGISTER_TRACE(p2++, pOut); 1284 pIn1++; 1285 pOut++; 1286 }while( --n ); 1287 break; 1288 } 1289 1290 /* Opcode: Copy P1 P2 P3 * * 1291 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1292 ** 1293 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1294 ** 1295 ** This instruction makes a deep copy of the value. A duplicate 1296 ** is made of any string or blob constant. See also OP_SCopy. 1297 */ 1298 case OP_Copy: { 1299 int n; 1300 1301 n = pOp->p3; 1302 pIn1 = &aMem[pOp->p1]; 1303 pOut = &aMem[pOp->p2]; 1304 assert( pOut!=pIn1 ); 1305 while( 1 ){ 1306 memAboutToChange(p, pOut); 1307 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1308 Deephemeralize(pOut); 1309 #ifdef SQLITE_DEBUG 1310 pOut->pScopyFrom = 0; 1311 pOut->iTabColHash = 0; 1312 #endif 1313 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1314 if( (n--)==0 ) break; 1315 pOut++; 1316 pIn1++; 1317 } 1318 break; 1319 } 1320 1321 /* Opcode: SCopy P1 P2 * * * 1322 ** Synopsis: r[P2]=r[P1] 1323 ** 1324 ** Make a shallow copy of register P1 into register P2. 1325 ** 1326 ** This instruction makes a shallow copy of the value. If the value 1327 ** is a string or blob, then the copy is only a pointer to the 1328 ** original and hence if the original changes so will the copy. 1329 ** Worse, if the original is deallocated, the copy becomes invalid. 1330 ** Thus the program must guarantee that the original will not change 1331 ** during the lifetime of the copy. Use OP_Copy to make a complete 1332 ** copy. 1333 */ 1334 case OP_SCopy: { /* out2 */ 1335 pIn1 = &aMem[pOp->p1]; 1336 pOut = &aMem[pOp->p2]; 1337 assert( pOut!=pIn1 ); 1338 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1339 #ifdef SQLITE_DEBUG 1340 pOut->pScopyFrom = pIn1; 1341 pOut->mScopyFlags = pIn1->flags; 1342 #endif 1343 break; 1344 } 1345 1346 /* Opcode: IntCopy P1 P2 * * * 1347 ** Synopsis: r[P2]=r[P1] 1348 ** 1349 ** Transfer the integer value held in register P1 into register P2. 1350 ** 1351 ** This is an optimized version of SCopy that works only for integer 1352 ** values. 1353 */ 1354 case OP_IntCopy: { /* out2 */ 1355 pIn1 = &aMem[pOp->p1]; 1356 assert( (pIn1->flags & MEM_Int)!=0 ); 1357 pOut = &aMem[pOp->p2]; 1358 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1359 break; 1360 } 1361 1362 /* Opcode: ResultRow P1 P2 * * * 1363 ** Synopsis: output=r[P1@P2] 1364 ** 1365 ** The registers P1 through P1+P2-1 contain a single row of 1366 ** results. This opcode causes the sqlite3_step() call to terminate 1367 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1368 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1369 ** the result row. 1370 */ 1371 case OP_ResultRow: { 1372 Mem *pMem; 1373 int i; 1374 assert( p->nResColumn==pOp->p2 ); 1375 assert( pOp->p1>0 ); 1376 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1377 1378 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1379 /* Run the progress counter just before returning. 1380 */ 1381 if( db->xProgress!=0 1382 && nVmStep>=nProgressLimit 1383 && db->xProgress(db->pProgressArg)!=0 1384 ){ 1385 rc = SQLITE_INTERRUPT; 1386 goto abort_due_to_error; 1387 } 1388 #endif 1389 1390 /* If this statement has violated immediate foreign key constraints, do 1391 ** not return the number of rows modified. And do not RELEASE the statement 1392 ** transaction. It needs to be rolled back. */ 1393 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1394 assert( db->flags&SQLITE_CountRows ); 1395 assert( p->usesStmtJournal ); 1396 goto abort_due_to_error; 1397 } 1398 1399 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1400 ** DML statements invoke this opcode to return the number of rows 1401 ** modified to the user. This is the only way that a VM that 1402 ** opens a statement transaction may invoke this opcode. 1403 ** 1404 ** In case this is such a statement, close any statement transaction 1405 ** opened by this VM before returning control to the user. This is to 1406 ** ensure that statement-transactions are always nested, not overlapping. 1407 ** If the open statement-transaction is not closed here, then the user 1408 ** may step another VM that opens its own statement transaction. This 1409 ** may lead to overlapping statement transactions. 1410 ** 1411 ** The statement transaction is never a top-level transaction. Hence 1412 ** the RELEASE call below can never fail. 1413 */ 1414 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1415 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1416 assert( rc==SQLITE_OK ); 1417 1418 /* Invalidate all ephemeral cursor row caches */ 1419 p->cacheCtr = (p->cacheCtr + 2)|1; 1420 1421 /* Make sure the results of the current row are \000 terminated 1422 ** and have an assigned type. The results are de-ephemeralized as 1423 ** a side effect. 1424 */ 1425 pMem = p->pResultSet = &aMem[pOp->p1]; 1426 for(i=0; i<pOp->p2; i++){ 1427 assert( memIsValid(&pMem[i]) ); 1428 Deephemeralize(&pMem[i]); 1429 assert( (pMem[i].flags & MEM_Ephem)==0 1430 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1431 sqlite3VdbeMemNulTerminate(&pMem[i]); 1432 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1433 } 1434 if( db->mallocFailed ) goto no_mem; 1435 1436 if( db->mTrace & SQLITE_TRACE_ROW ){ 1437 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1438 } 1439 1440 /* Return SQLITE_ROW 1441 */ 1442 p->pc = (int)(pOp - aOp) + 1; 1443 rc = SQLITE_ROW; 1444 goto vdbe_return; 1445 } 1446 1447 /* Opcode: Concat P1 P2 P3 * * 1448 ** Synopsis: r[P3]=r[P2]+r[P1] 1449 ** 1450 ** Add the text in register P1 onto the end of the text in 1451 ** register P2 and store the result in register P3. 1452 ** If either the P1 or P2 text are NULL then store NULL in P3. 1453 ** 1454 ** P3 = P2 || P1 1455 ** 1456 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1457 ** if P3 is the same register as P2, the implementation is able 1458 ** to avoid a memcpy(). 1459 */ 1460 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1461 i64 nByte; 1462 1463 pIn1 = &aMem[pOp->p1]; 1464 pIn2 = &aMem[pOp->p2]; 1465 pOut = &aMem[pOp->p3]; 1466 assert( pIn1!=pOut ); 1467 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1468 sqlite3VdbeMemSetNull(pOut); 1469 break; 1470 } 1471 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1472 Stringify(pIn1, encoding); 1473 Stringify(pIn2, encoding); 1474 nByte = pIn1->n + pIn2->n; 1475 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1476 goto too_big; 1477 } 1478 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1479 goto no_mem; 1480 } 1481 MemSetTypeFlag(pOut, MEM_Str); 1482 if( pOut!=pIn2 ){ 1483 memcpy(pOut->z, pIn2->z, pIn2->n); 1484 } 1485 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1486 pOut->z[nByte]=0; 1487 pOut->z[nByte+1] = 0; 1488 pOut->flags |= MEM_Term; 1489 pOut->n = (int)nByte; 1490 pOut->enc = encoding; 1491 UPDATE_MAX_BLOBSIZE(pOut); 1492 break; 1493 } 1494 1495 /* Opcode: Add P1 P2 P3 * * 1496 ** Synopsis: r[P3]=r[P1]+r[P2] 1497 ** 1498 ** Add the value in register P1 to the value in register P2 1499 ** and store the result in register P3. 1500 ** If either input is NULL, the result is NULL. 1501 */ 1502 /* Opcode: Multiply P1 P2 P3 * * 1503 ** Synopsis: r[P3]=r[P1]*r[P2] 1504 ** 1505 ** 1506 ** Multiply the value in register P1 by the value in register P2 1507 ** and store the result in register P3. 1508 ** If either input is NULL, the result is NULL. 1509 */ 1510 /* Opcode: Subtract P1 P2 P3 * * 1511 ** Synopsis: r[P3]=r[P2]-r[P1] 1512 ** 1513 ** Subtract the value in register P1 from the value in register P2 1514 ** and store the result in register P3. 1515 ** If either input is NULL, the result is NULL. 1516 */ 1517 /* Opcode: Divide P1 P2 P3 * * 1518 ** Synopsis: r[P3]=r[P2]/r[P1] 1519 ** 1520 ** Divide the value in register P1 by the value in register P2 1521 ** and store the result in register P3 (P3=P2/P1). If the value in 1522 ** register P1 is zero, then the result is NULL. If either input is 1523 ** NULL, the result is NULL. 1524 */ 1525 /* Opcode: Remainder P1 P2 P3 * * 1526 ** Synopsis: r[P3]=r[P2]%r[P1] 1527 ** 1528 ** Compute the remainder after integer register P2 is divided by 1529 ** register P1 and store the result in register P3. 1530 ** If the value in register P1 is zero the result is NULL. 1531 ** If either operand is NULL, the result is NULL. 1532 */ 1533 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1534 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1535 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1536 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1537 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1538 char bIntint; /* Started out as two integer operands */ 1539 u16 flags; /* Combined MEM_* flags from both inputs */ 1540 u16 type1; /* Numeric type of left operand */ 1541 u16 type2; /* Numeric type of right operand */ 1542 i64 iA; /* Integer value of left operand */ 1543 i64 iB; /* Integer value of right operand */ 1544 double rA; /* Real value of left operand */ 1545 double rB; /* Real value of right operand */ 1546 1547 pIn1 = &aMem[pOp->p1]; 1548 type1 = numericType(pIn1); 1549 pIn2 = &aMem[pOp->p2]; 1550 type2 = numericType(pIn2); 1551 pOut = &aMem[pOp->p3]; 1552 flags = pIn1->flags | pIn2->flags; 1553 if( (type1 & type2 & MEM_Int)!=0 ){ 1554 iA = pIn1->u.i; 1555 iB = pIn2->u.i; 1556 bIntint = 1; 1557 switch( pOp->opcode ){ 1558 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1559 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1560 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1561 case OP_Divide: { 1562 if( iA==0 ) goto arithmetic_result_is_null; 1563 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1564 iB /= iA; 1565 break; 1566 } 1567 default: { 1568 if( iA==0 ) goto arithmetic_result_is_null; 1569 if( iA==-1 ) iA = 1; 1570 iB %= iA; 1571 break; 1572 } 1573 } 1574 pOut->u.i = iB; 1575 MemSetTypeFlag(pOut, MEM_Int); 1576 }else if( (flags & MEM_Null)!=0 ){ 1577 goto arithmetic_result_is_null; 1578 }else{ 1579 bIntint = 0; 1580 fp_math: 1581 rA = sqlite3VdbeRealValue(pIn1); 1582 rB = sqlite3VdbeRealValue(pIn2); 1583 switch( pOp->opcode ){ 1584 case OP_Add: rB += rA; break; 1585 case OP_Subtract: rB -= rA; break; 1586 case OP_Multiply: rB *= rA; break; 1587 case OP_Divide: { 1588 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1589 if( rA==(double)0 ) goto arithmetic_result_is_null; 1590 rB /= rA; 1591 break; 1592 } 1593 default: { 1594 iA = (i64)rA; 1595 iB = (i64)rB; 1596 if( iA==0 ) goto arithmetic_result_is_null; 1597 if( iA==-1 ) iA = 1; 1598 rB = (double)(iB % iA); 1599 break; 1600 } 1601 } 1602 #ifdef SQLITE_OMIT_FLOATING_POINT 1603 pOut->u.i = rB; 1604 MemSetTypeFlag(pOut, MEM_Int); 1605 #else 1606 if( sqlite3IsNaN(rB) ){ 1607 goto arithmetic_result_is_null; 1608 } 1609 pOut->u.r = rB; 1610 MemSetTypeFlag(pOut, MEM_Real); 1611 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1612 sqlite3VdbeIntegerAffinity(pOut); 1613 } 1614 #endif 1615 } 1616 break; 1617 1618 arithmetic_result_is_null: 1619 sqlite3VdbeMemSetNull(pOut); 1620 break; 1621 } 1622 1623 /* Opcode: CollSeq P1 * * P4 1624 ** 1625 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1626 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1627 ** be returned. This is used by the built-in min(), max() and nullif() 1628 ** functions. 1629 ** 1630 ** If P1 is not zero, then it is a register that a subsequent min() or 1631 ** max() aggregate will set to 1 if the current row is not the minimum or 1632 ** maximum. The P1 register is initialized to 0 by this instruction. 1633 ** 1634 ** The interface used by the implementation of the aforementioned functions 1635 ** to retrieve the collation sequence set by this opcode is not available 1636 ** publicly. Only built-in functions have access to this feature. 1637 */ 1638 case OP_CollSeq: { 1639 assert( pOp->p4type==P4_COLLSEQ ); 1640 if( pOp->p1 ){ 1641 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1642 } 1643 break; 1644 } 1645 1646 /* Opcode: BitAnd P1 P2 P3 * * 1647 ** Synopsis: r[P3]=r[P1]&r[P2] 1648 ** 1649 ** Take the bit-wise AND of the values in register P1 and P2 and 1650 ** store the result in register P3. 1651 ** If either input is NULL, the result is NULL. 1652 */ 1653 /* Opcode: BitOr P1 P2 P3 * * 1654 ** Synopsis: r[P3]=r[P1]|r[P2] 1655 ** 1656 ** Take the bit-wise OR of the values in register P1 and P2 and 1657 ** store the result in register P3. 1658 ** If either input is NULL, the result is NULL. 1659 */ 1660 /* Opcode: ShiftLeft P1 P2 P3 * * 1661 ** Synopsis: r[P3]=r[P2]<<r[P1] 1662 ** 1663 ** Shift the integer value in register P2 to the left by the 1664 ** number of bits specified by the integer in register P1. 1665 ** Store the result in register P3. 1666 ** If either input is NULL, the result is NULL. 1667 */ 1668 /* Opcode: ShiftRight P1 P2 P3 * * 1669 ** Synopsis: r[P3]=r[P2]>>r[P1] 1670 ** 1671 ** Shift the integer value in register P2 to the right by the 1672 ** number of bits specified by the integer in register P1. 1673 ** Store the result in register P3. 1674 ** If either input is NULL, the result is NULL. 1675 */ 1676 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1677 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1678 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1679 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1680 i64 iA; 1681 u64 uA; 1682 i64 iB; 1683 u8 op; 1684 1685 pIn1 = &aMem[pOp->p1]; 1686 pIn2 = &aMem[pOp->p2]; 1687 pOut = &aMem[pOp->p3]; 1688 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1689 sqlite3VdbeMemSetNull(pOut); 1690 break; 1691 } 1692 iA = sqlite3VdbeIntValue(pIn2); 1693 iB = sqlite3VdbeIntValue(pIn1); 1694 op = pOp->opcode; 1695 if( op==OP_BitAnd ){ 1696 iA &= iB; 1697 }else if( op==OP_BitOr ){ 1698 iA |= iB; 1699 }else if( iB!=0 ){ 1700 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1701 1702 /* If shifting by a negative amount, shift in the other direction */ 1703 if( iB<0 ){ 1704 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1705 op = 2*OP_ShiftLeft + 1 - op; 1706 iB = iB>(-64) ? -iB : 64; 1707 } 1708 1709 if( iB>=64 ){ 1710 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1711 }else{ 1712 memcpy(&uA, &iA, sizeof(uA)); 1713 if( op==OP_ShiftLeft ){ 1714 uA <<= iB; 1715 }else{ 1716 uA >>= iB; 1717 /* Sign-extend on a right shift of a negative number */ 1718 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1719 } 1720 memcpy(&iA, &uA, sizeof(iA)); 1721 } 1722 } 1723 pOut->u.i = iA; 1724 MemSetTypeFlag(pOut, MEM_Int); 1725 break; 1726 } 1727 1728 /* Opcode: AddImm P1 P2 * * * 1729 ** Synopsis: r[P1]=r[P1]+P2 1730 ** 1731 ** Add the constant P2 to the value in register P1. 1732 ** The result is always an integer. 1733 ** 1734 ** To force any register to be an integer, just add 0. 1735 */ 1736 case OP_AddImm: { /* in1 */ 1737 pIn1 = &aMem[pOp->p1]; 1738 memAboutToChange(p, pIn1); 1739 sqlite3VdbeMemIntegerify(pIn1); 1740 pIn1->u.i += pOp->p2; 1741 break; 1742 } 1743 1744 /* Opcode: MustBeInt P1 P2 * * * 1745 ** 1746 ** Force the value in register P1 to be an integer. If the value 1747 ** in P1 is not an integer and cannot be converted into an integer 1748 ** without data loss, then jump immediately to P2, or if P2==0 1749 ** raise an SQLITE_MISMATCH exception. 1750 */ 1751 case OP_MustBeInt: { /* jump, in1 */ 1752 pIn1 = &aMem[pOp->p1]; 1753 if( (pIn1->flags & MEM_Int)==0 ){ 1754 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1755 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1756 if( (pIn1->flags & MEM_Int)==0 ){ 1757 if( pOp->p2==0 ){ 1758 rc = SQLITE_MISMATCH; 1759 goto abort_due_to_error; 1760 }else{ 1761 goto jump_to_p2; 1762 } 1763 } 1764 } 1765 MemSetTypeFlag(pIn1, MEM_Int); 1766 break; 1767 } 1768 1769 #ifndef SQLITE_OMIT_FLOATING_POINT 1770 /* Opcode: RealAffinity P1 * * * * 1771 ** 1772 ** If register P1 holds an integer convert it to a real value. 1773 ** 1774 ** This opcode is used when extracting information from a column that 1775 ** has REAL affinity. Such column values may still be stored as 1776 ** integers, for space efficiency, but after extraction we want them 1777 ** to have only a real value. 1778 */ 1779 case OP_RealAffinity: { /* in1 */ 1780 pIn1 = &aMem[pOp->p1]; 1781 if( pIn1->flags & MEM_Int ){ 1782 sqlite3VdbeMemRealify(pIn1); 1783 } 1784 break; 1785 } 1786 #endif 1787 1788 #ifndef SQLITE_OMIT_CAST 1789 /* Opcode: Cast P1 P2 * * * 1790 ** Synopsis: affinity(r[P1]) 1791 ** 1792 ** Force the value in register P1 to be the type defined by P2. 1793 ** 1794 ** <ul> 1795 ** <li> P2=='A' → BLOB 1796 ** <li> P2=='B' → TEXT 1797 ** <li> P2=='C' → NUMERIC 1798 ** <li> P2=='D' → INTEGER 1799 ** <li> P2=='E' → REAL 1800 ** </ul> 1801 ** 1802 ** A NULL value is not changed by this routine. It remains NULL. 1803 */ 1804 case OP_Cast: { /* in1 */ 1805 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1806 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1807 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1808 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1809 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1810 testcase( pOp->p2==SQLITE_AFF_REAL ); 1811 pIn1 = &aMem[pOp->p1]; 1812 memAboutToChange(p, pIn1); 1813 rc = ExpandBlob(pIn1); 1814 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1815 UPDATE_MAX_BLOBSIZE(pIn1); 1816 if( rc ) goto abort_due_to_error; 1817 break; 1818 } 1819 #endif /* SQLITE_OMIT_CAST */ 1820 1821 /* Opcode: Eq P1 P2 P3 P4 P5 1822 ** Synopsis: IF r[P3]==r[P1] 1823 ** 1824 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1825 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1826 ** store the result of comparison in register P2. 1827 ** 1828 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1829 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1830 ** to coerce both inputs according to this affinity before the 1831 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1832 ** affinity is used. Note that the affinity conversions are stored 1833 ** back into the input registers P1 and P3. So this opcode can cause 1834 ** persistent changes to registers P1 and P3. 1835 ** 1836 ** Once any conversions have taken place, and neither value is NULL, 1837 ** the values are compared. If both values are blobs then memcmp() is 1838 ** used to determine the results of the comparison. If both values 1839 ** are text, then the appropriate collating function specified in 1840 ** P4 is used to do the comparison. If P4 is not specified then 1841 ** memcmp() is used to compare text string. If both values are 1842 ** numeric, then a numeric comparison is used. If the two values 1843 ** are of different types, then numbers are considered less than 1844 ** strings and strings are considered less than blobs. 1845 ** 1846 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1847 ** true or false and is never NULL. If both operands are NULL then the result 1848 ** of comparison is true. If either operand is NULL then the result is false. 1849 ** If neither operand is NULL the result is the same as it would be if 1850 ** the SQLITE_NULLEQ flag were omitted from P5. 1851 ** 1852 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1853 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1854 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1855 */ 1856 /* Opcode: Ne P1 P2 P3 P4 P5 1857 ** Synopsis: IF r[P3]!=r[P1] 1858 ** 1859 ** This works just like the Eq opcode except that the jump is taken if 1860 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1861 ** additional information. 1862 ** 1863 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1864 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1865 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1866 */ 1867 /* Opcode: Lt P1 P2 P3 P4 P5 1868 ** Synopsis: IF r[P3]<r[P1] 1869 ** 1870 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1871 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1872 ** the result of comparison (0 or 1 or NULL) into register P2. 1873 ** 1874 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1875 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1876 ** bit is clear then fall through if either operand is NULL. 1877 ** 1878 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1879 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1880 ** to coerce both inputs according to this affinity before the 1881 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1882 ** affinity is used. Note that the affinity conversions are stored 1883 ** back into the input registers P1 and P3. So this opcode can cause 1884 ** persistent changes to registers P1 and P3. 1885 ** 1886 ** Once any conversions have taken place, and neither value is NULL, 1887 ** the values are compared. If both values are blobs then memcmp() is 1888 ** used to determine the results of the comparison. If both values 1889 ** are text, then the appropriate collating function specified in 1890 ** P4 is used to do the comparison. If P4 is not specified then 1891 ** memcmp() is used to compare text string. If both values are 1892 ** numeric, then a numeric comparison is used. If the two values 1893 ** are of different types, then numbers are considered less than 1894 ** strings and strings are considered less than blobs. 1895 */ 1896 /* Opcode: Le P1 P2 P3 P4 P5 1897 ** Synopsis: IF r[P3]<=r[P1] 1898 ** 1899 ** This works just like the Lt opcode except that the jump is taken if 1900 ** the content of register P3 is less than or equal to the content of 1901 ** register P1. See the Lt opcode for additional information. 1902 */ 1903 /* Opcode: Gt P1 P2 P3 P4 P5 1904 ** Synopsis: IF r[P3]>r[P1] 1905 ** 1906 ** This works just like the Lt opcode except that the jump is taken if 1907 ** the content of register P3 is greater than the content of 1908 ** register P1. See the Lt opcode for additional information. 1909 */ 1910 /* Opcode: Ge P1 P2 P3 P4 P5 1911 ** Synopsis: IF r[P3]>=r[P1] 1912 ** 1913 ** This works just like the Lt opcode except that the jump is taken if 1914 ** the content of register P3 is greater than or equal to the content of 1915 ** register P1. See the Lt opcode for additional information. 1916 */ 1917 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1918 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1919 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1920 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1921 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1922 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1923 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1924 char affinity; /* Affinity to use for comparison */ 1925 u16 flags1; /* Copy of initial value of pIn1->flags */ 1926 u16 flags3; /* Copy of initial value of pIn3->flags */ 1927 1928 pIn1 = &aMem[pOp->p1]; 1929 pIn3 = &aMem[pOp->p3]; 1930 flags1 = pIn1->flags; 1931 flags3 = pIn3->flags; 1932 if( (flags1 | flags3)&MEM_Null ){ 1933 /* One or both operands are NULL */ 1934 if( pOp->p5 & SQLITE_NULLEQ ){ 1935 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1936 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1937 ** or not both operands are null. 1938 */ 1939 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1940 assert( (flags1 & MEM_Cleared)==0 ); 1941 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1942 if( (flags1&flags3&MEM_Null)!=0 1943 && (flags3&MEM_Cleared)==0 1944 ){ 1945 res = 0; /* Operands are equal */ 1946 }else{ 1947 res = 1; /* Operands are not equal */ 1948 } 1949 }else{ 1950 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1951 ** then the result is always NULL. 1952 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1953 */ 1954 if( pOp->p5 & SQLITE_STOREP2 ){ 1955 pOut = &aMem[pOp->p2]; 1956 iCompare = 1; /* Operands are not equal */ 1957 memAboutToChange(p, pOut); 1958 MemSetTypeFlag(pOut, MEM_Null); 1959 REGISTER_TRACE(pOp->p2, pOut); 1960 }else{ 1961 VdbeBranchTaken(2,3); 1962 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1963 goto jump_to_p2; 1964 } 1965 } 1966 break; 1967 } 1968 }else{ 1969 /* Neither operand is NULL. Do a comparison. */ 1970 affinity = pOp->p5 & SQLITE_AFF_MASK; 1971 if( affinity>=SQLITE_AFF_NUMERIC ){ 1972 if( (flags1 | flags3)&MEM_Str ){ 1973 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1974 applyNumericAffinity(pIn1,0); 1975 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ 1976 flags3 = pIn3->flags; 1977 } 1978 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1979 applyNumericAffinity(pIn3,0); 1980 } 1981 } 1982 /* Handle the common case of integer comparison here, as an 1983 ** optimization, to avoid a call to sqlite3MemCompare() */ 1984 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 1985 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 1986 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 1987 res = 0; 1988 goto compare_op; 1989 } 1990 }else if( affinity==SQLITE_AFF_TEXT ){ 1991 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 1992 testcase( pIn1->flags & MEM_Int ); 1993 testcase( pIn1->flags & MEM_Real ); 1994 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1995 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 1996 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 1997 assert( pIn1!=pIn3 ); 1998 } 1999 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 2000 testcase( pIn3->flags & MEM_Int ); 2001 testcase( pIn3->flags & MEM_Real ); 2002 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2003 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2004 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2005 } 2006 } 2007 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2008 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2009 } 2010 compare_op: 2011 /* At this point, res is negative, zero, or positive if reg[P1] is 2012 ** less than, equal to, or greater than reg[P3], respectively. Compute 2013 ** the answer to this operator in res2, depending on what the comparison 2014 ** operator actually is. The next block of code depends on the fact 2015 ** that the 6 comparison operators are consecutive integers in this 2016 ** order: NE, EQ, GT, LE, LT, GE */ 2017 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2018 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2019 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2020 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2021 res2 = aLTb[pOp->opcode - OP_Ne]; 2022 }else if( res==0 ){ 2023 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2024 res2 = aEQb[pOp->opcode - OP_Ne]; 2025 }else{ 2026 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2027 res2 = aGTb[pOp->opcode - OP_Ne]; 2028 } 2029 2030 /* Undo any changes made by applyAffinity() to the input registers. */ 2031 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2032 pIn1->flags = flags1; 2033 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2034 pIn3->flags = flags3; 2035 2036 if( pOp->p5 & SQLITE_STOREP2 ){ 2037 pOut = &aMem[pOp->p2]; 2038 iCompare = res; 2039 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2040 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2041 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2042 ** is only used in contexts where either: 2043 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2044 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2045 ** Therefore it is not necessary to check the content of r[P2] for 2046 ** NULL. */ 2047 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2048 assert( res2==0 || res2==1 ); 2049 testcase( res2==0 && pOp->opcode==OP_Eq ); 2050 testcase( res2==1 && pOp->opcode==OP_Eq ); 2051 testcase( res2==0 && pOp->opcode==OP_Ne ); 2052 testcase( res2==1 && pOp->opcode==OP_Ne ); 2053 if( (pOp->opcode==OP_Eq)==res2 ) break; 2054 } 2055 memAboutToChange(p, pOut); 2056 MemSetTypeFlag(pOut, MEM_Int); 2057 pOut->u.i = res2; 2058 REGISTER_TRACE(pOp->p2, pOut); 2059 }else{ 2060 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2061 if( res2 ){ 2062 goto jump_to_p2; 2063 } 2064 } 2065 break; 2066 } 2067 2068 /* Opcode: ElseNotEq * P2 * * * 2069 ** 2070 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2071 ** If result of an OP_Eq comparison on the same two operands 2072 ** would have be NULL or false (0), then then jump to P2. 2073 ** If the result of an OP_Eq comparison on the two previous operands 2074 ** would have been true (1), then fall through. 2075 */ 2076 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2077 assert( pOp>aOp ); 2078 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2079 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2080 VdbeBranchTaken(iCompare!=0, 2); 2081 if( iCompare!=0 ) goto jump_to_p2; 2082 break; 2083 } 2084 2085 2086 /* Opcode: Permutation * * * P4 * 2087 ** 2088 ** Set the permutation used by the OP_Compare operator in the next 2089 ** instruction. The permutation is stored in the P4 operand. 2090 ** 2091 ** The permutation is only valid until the next OP_Compare that has 2092 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2093 ** occur immediately prior to the OP_Compare. 2094 ** 2095 ** The first integer in the P4 integer array is the length of the array 2096 ** and does not become part of the permutation. 2097 */ 2098 case OP_Permutation: { 2099 assert( pOp->p4type==P4_INTARRAY ); 2100 assert( pOp->p4.ai ); 2101 assert( pOp[1].opcode==OP_Compare ); 2102 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2103 break; 2104 } 2105 2106 /* Opcode: Compare P1 P2 P3 P4 P5 2107 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2108 ** 2109 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2110 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2111 ** the comparison for use by the next OP_Jump instruct. 2112 ** 2113 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2114 ** determined by the most recent OP_Permutation operator. If the 2115 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2116 ** order. 2117 ** 2118 ** P4 is a KeyInfo structure that defines collating sequences and sort 2119 ** orders for the comparison. The permutation applies to registers 2120 ** only. The KeyInfo elements are used sequentially. 2121 ** 2122 ** The comparison is a sort comparison, so NULLs compare equal, 2123 ** NULLs are less than numbers, numbers are less than strings, 2124 ** and strings are less than blobs. 2125 */ 2126 case OP_Compare: { 2127 int n; 2128 int i; 2129 int p1; 2130 int p2; 2131 const KeyInfo *pKeyInfo; 2132 int idx; 2133 CollSeq *pColl; /* Collating sequence to use on this term */ 2134 int bRev; /* True for DESCENDING sort order */ 2135 int *aPermute; /* The permutation */ 2136 2137 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2138 aPermute = 0; 2139 }else{ 2140 assert( pOp>aOp ); 2141 assert( pOp[-1].opcode==OP_Permutation ); 2142 assert( pOp[-1].p4type==P4_INTARRAY ); 2143 aPermute = pOp[-1].p4.ai + 1; 2144 assert( aPermute!=0 ); 2145 } 2146 n = pOp->p3; 2147 pKeyInfo = pOp->p4.pKeyInfo; 2148 assert( n>0 ); 2149 assert( pKeyInfo!=0 ); 2150 p1 = pOp->p1; 2151 p2 = pOp->p2; 2152 #ifdef SQLITE_DEBUG 2153 if( aPermute ){ 2154 int k, mx = 0; 2155 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2156 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2157 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2158 }else{ 2159 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2160 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2161 } 2162 #endif /* SQLITE_DEBUG */ 2163 for(i=0; i<n; i++){ 2164 idx = aPermute ? aPermute[i] : i; 2165 assert( memIsValid(&aMem[p1+idx]) ); 2166 assert( memIsValid(&aMem[p2+idx]) ); 2167 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2168 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2169 assert( i<pKeyInfo->nKeyField ); 2170 pColl = pKeyInfo->aColl[i]; 2171 bRev = pKeyInfo->aSortOrder[i]; 2172 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2173 if( iCompare ){ 2174 if( bRev ) iCompare = -iCompare; 2175 break; 2176 } 2177 } 2178 break; 2179 } 2180 2181 /* Opcode: Jump P1 P2 P3 * * 2182 ** 2183 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2184 ** in the most recent OP_Compare instruction the P1 vector was less than 2185 ** equal to, or greater than the P2 vector, respectively. 2186 */ 2187 case OP_Jump: { /* jump */ 2188 if( iCompare<0 ){ 2189 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2190 }else if( iCompare==0 ){ 2191 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2192 }else{ 2193 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2194 } 2195 break; 2196 } 2197 2198 /* Opcode: And P1 P2 P3 * * 2199 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2200 ** 2201 ** Take the logical AND of the values in registers P1 and P2 and 2202 ** write the result into register P3. 2203 ** 2204 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2205 ** the other input is NULL. A NULL and true or two NULLs give 2206 ** a NULL output. 2207 */ 2208 /* Opcode: Or P1 P2 P3 * * 2209 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2210 ** 2211 ** Take the logical OR of the values in register P1 and P2 and 2212 ** store the answer in register P3. 2213 ** 2214 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2215 ** even if the other input is NULL. A NULL and false or two NULLs 2216 ** give a NULL output. 2217 */ 2218 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2219 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2220 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2221 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2222 2223 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2224 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2225 if( pOp->opcode==OP_And ){ 2226 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2227 v1 = and_logic[v1*3+v2]; 2228 }else{ 2229 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2230 v1 = or_logic[v1*3+v2]; 2231 } 2232 pOut = &aMem[pOp->p3]; 2233 if( v1==2 ){ 2234 MemSetTypeFlag(pOut, MEM_Null); 2235 }else{ 2236 pOut->u.i = v1; 2237 MemSetTypeFlag(pOut, MEM_Int); 2238 } 2239 break; 2240 } 2241 2242 /* Opcode: IsTrue P1 P2 P3 P4 * 2243 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2244 ** 2245 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2246 ** IS NOT FALSE operators. 2247 ** 2248 ** Interpret the value in register P1 as a boolean value. Store that 2249 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2250 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2251 ** is 1. 2252 ** 2253 ** The logic is summarized like this: 2254 ** 2255 ** <ul> 2256 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2257 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2258 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2259 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2260 ** </ul> 2261 */ 2262 case OP_IsTrue: { /* in1, out2 */ 2263 assert( pOp->p4type==P4_INT32 ); 2264 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2265 assert( pOp->p3==0 || pOp->p3==1 ); 2266 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2267 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2268 break; 2269 } 2270 2271 /* Opcode: Not P1 P2 * * * 2272 ** Synopsis: r[P2]= !r[P1] 2273 ** 2274 ** Interpret the value in register P1 as a boolean value. Store the 2275 ** boolean complement in register P2. If the value in register P1 is 2276 ** NULL, then a NULL is stored in P2. 2277 */ 2278 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2279 pIn1 = &aMem[pOp->p1]; 2280 pOut = &aMem[pOp->p2]; 2281 if( (pIn1->flags & MEM_Null)==0 ){ 2282 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2283 }else{ 2284 sqlite3VdbeMemSetNull(pOut); 2285 } 2286 break; 2287 } 2288 2289 /* Opcode: BitNot P1 P2 * * * 2290 ** Synopsis: r[P2]= ~r[P1] 2291 ** 2292 ** Interpret the content of register P1 as an integer. Store the 2293 ** ones-complement of the P1 value into register P2. If P1 holds 2294 ** a NULL then store a NULL in P2. 2295 */ 2296 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2297 pIn1 = &aMem[pOp->p1]; 2298 pOut = &aMem[pOp->p2]; 2299 sqlite3VdbeMemSetNull(pOut); 2300 if( (pIn1->flags & MEM_Null)==0 ){ 2301 pOut->flags = MEM_Int; 2302 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2303 } 2304 break; 2305 } 2306 2307 /* Opcode: Once P1 P2 * * * 2308 ** 2309 ** Fall through to the next instruction the first time this opcode is 2310 ** encountered on each invocation of the byte-code program. Jump to P2 2311 ** on the second and all subsequent encounters during the same invocation. 2312 ** 2313 ** Top-level programs determine first invocation by comparing the P1 2314 ** operand against the P1 operand on the OP_Init opcode at the beginning 2315 ** of the program. If the P1 values differ, then fall through and make 2316 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2317 ** the same then take the jump. 2318 ** 2319 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2320 ** whether or not the jump should be taken. The bitmask is necessary 2321 ** because the self-altering code trick does not work for recursive 2322 ** triggers. 2323 */ 2324 case OP_Once: { /* jump */ 2325 u32 iAddr; /* Address of this instruction */ 2326 assert( p->aOp[0].opcode==OP_Init ); 2327 if( p->pFrame ){ 2328 iAddr = (int)(pOp - p->aOp); 2329 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2330 VdbeBranchTaken(1, 2); 2331 goto jump_to_p2; 2332 } 2333 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2334 }else{ 2335 if( p->aOp[0].p1==pOp->p1 ){ 2336 VdbeBranchTaken(1, 2); 2337 goto jump_to_p2; 2338 } 2339 } 2340 VdbeBranchTaken(0, 2); 2341 pOp->p1 = p->aOp[0].p1; 2342 break; 2343 } 2344 2345 /* Opcode: If P1 P2 P3 * * 2346 ** 2347 ** Jump to P2 if the value in register P1 is true. The value 2348 ** is considered true if it is numeric and non-zero. If the value 2349 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2350 */ 2351 case OP_If: { /* jump, in1 */ 2352 int c; 2353 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2354 VdbeBranchTaken(c!=0, 2); 2355 if( c ) goto jump_to_p2; 2356 break; 2357 } 2358 2359 /* Opcode: IfNot P1 P2 P3 * * 2360 ** 2361 ** Jump to P2 if the value in register P1 is False. The value 2362 ** is considered false if it has a numeric value of zero. If the value 2363 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2364 */ 2365 case OP_IfNot: { /* jump, in1 */ 2366 int c; 2367 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2368 VdbeBranchTaken(c!=0, 2); 2369 if( c ) goto jump_to_p2; 2370 break; 2371 } 2372 2373 /* Opcode: IsNull P1 P2 * * * 2374 ** Synopsis: if r[P1]==NULL goto P2 2375 ** 2376 ** Jump to P2 if the value in register P1 is NULL. 2377 */ 2378 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2379 pIn1 = &aMem[pOp->p1]; 2380 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2381 if( (pIn1->flags & MEM_Null)!=0 ){ 2382 goto jump_to_p2; 2383 } 2384 break; 2385 } 2386 2387 /* Opcode: NotNull P1 P2 * * * 2388 ** Synopsis: if r[P1]!=NULL goto P2 2389 ** 2390 ** Jump to P2 if the value in register P1 is not NULL. 2391 */ 2392 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2393 pIn1 = &aMem[pOp->p1]; 2394 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2395 if( (pIn1->flags & MEM_Null)==0 ){ 2396 goto jump_to_p2; 2397 } 2398 break; 2399 } 2400 2401 /* Opcode: IfNullRow P1 P2 P3 * * 2402 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2403 ** 2404 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2405 ** If it is, then set register P3 to NULL and jump immediately to P2. 2406 ** If P1 is not on a NULL row, then fall through without making any 2407 ** changes. 2408 */ 2409 case OP_IfNullRow: { /* jump */ 2410 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2411 assert( p->apCsr[pOp->p1]!=0 ); 2412 if( p->apCsr[pOp->p1]->nullRow ){ 2413 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2414 goto jump_to_p2; 2415 } 2416 break; 2417 } 2418 2419 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2420 /* Opcode: Offset P1 P2 P3 * * 2421 ** Synopsis: r[P3] = sqlite_offset(P1) 2422 ** 2423 ** Store in register r[P3] the byte offset into the database file that is the 2424 ** start of the payload for the record at which that cursor P1 is currently 2425 ** pointing. 2426 ** 2427 ** P2 is the column number for the argument to the sqlite_offset() function. 2428 ** This opcode does not use P2 itself, but the P2 value is used by the 2429 ** code generator. The P1, P2, and P3 operands to this opcode are the 2430 ** same as for OP_Column. 2431 ** 2432 ** This opcode is only available if SQLite is compiled with the 2433 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2434 */ 2435 case OP_Offset: { /* out3 */ 2436 VdbeCursor *pC; /* The VDBE cursor */ 2437 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2438 pC = p->apCsr[pOp->p1]; 2439 pOut = &p->aMem[pOp->p3]; 2440 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2441 sqlite3VdbeMemSetNull(pOut); 2442 }else{ 2443 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2444 } 2445 break; 2446 } 2447 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2448 2449 /* Opcode: Column P1 P2 P3 P4 P5 2450 ** Synopsis: r[P3]=PX 2451 ** 2452 ** Interpret the data that cursor P1 points to as a structure built using 2453 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2454 ** information about the format of the data.) Extract the P2-th column 2455 ** from this record. If there are less that (P2+1) 2456 ** values in the record, extract a NULL. 2457 ** 2458 ** The value extracted is stored in register P3. 2459 ** 2460 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2461 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2462 ** the result. 2463 ** 2464 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2465 ** then the cache of the cursor is reset prior to extracting the column. 2466 ** The first OP_Column against a pseudo-table after the value of the content 2467 ** register has changed should have this bit set. 2468 ** 2469 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2470 ** the result is guaranteed to only be used as the argument of a length() 2471 ** or typeof() function, respectively. The loading of large blobs can be 2472 ** skipped for length() and all content loading can be skipped for typeof(). 2473 */ 2474 case OP_Column: { 2475 int p2; /* column number to retrieve */ 2476 VdbeCursor *pC; /* The VDBE cursor */ 2477 BtCursor *pCrsr; /* The BTree cursor */ 2478 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2479 int len; /* The length of the serialized data for the column */ 2480 int i; /* Loop counter */ 2481 Mem *pDest; /* Where to write the extracted value */ 2482 Mem sMem; /* For storing the record being decoded */ 2483 const u8 *zData; /* Part of the record being decoded */ 2484 const u8 *zHdr; /* Next unparsed byte of the header */ 2485 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2486 u64 offset64; /* 64-bit offset */ 2487 u32 t; /* A type code from the record header */ 2488 Mem *pReg; /* PseudoTable input register */ 2489 2490 pC = p->apCsr[pOp->p1]; 2491 p2 = pOp->p2; 2492 2493 /* If the cursor cache is stale (meaning it is not currently point at 2494 ** the correct row) then bring it up-to-date by doing the necessary 2495 ** B-Tree seek. */ 2496 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2497 if( rc ) goto abort_due_to_error; 2498 2499 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2500 pDest = &aMem[pOp->p3]; 2501 memAboutToChange(p, pDest); 2502 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2503 assert( pC!=0 ); 2504 assert( p2<pC->nField ); 2505 aOffset = pC->aOffset; 2506 assert( pC->eCurType!=CURTYPE_VTAB ); 2507 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2508 assert( pC->eCurType!=CURTYPE_SORTER ); 2509 2510 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2511 if( pC->nullRow ){ 2512 if( pC->eCurType==CURTYPE_PSEUDO ){ 2513 /* For the special case of as pseudo-cursor, the seekResult field 2514 ** identifies the register that holds the record */ 2515 assert( pC->seekResult>0 ); 2516 pReg = &aMem[pC->seekResult]; 2517 assert( pReg->flags & MEM_Blob ); 2518 assert( memIsValid(pReg) ); 2519 pC->payloadSize = pC->szRow = pReg->n; 2520 pC->aRow = (u8*)pReg->z; 2521 }else{ 2522 sqlite3VdbeMemSetNull(pDest); 2523 goto op_column_out; 2524 } 2525 }else{ 2526 pCrsr = pC->uc.pCursor; 2527 assert( pC->eCurType==CURTYPE_BTREE ); 2528 assert( pCrsr ); 2529 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2530 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2531 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2532 assert( pC->szRow<=pC->payloadSize ); 2533 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2534 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2535 goto too_big; 2536 } 2537 } 2538 pC->cacheStatus = p->cacheCtr; 2539 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2540 pC->nHdrParsed = 0; 2541 2542 2543 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2544 /* pC->aRow does not have to hold the entire row, but it does at least 2545 ** need to cover the header of the record. If pC->aRow does not contain 2546 ** the complete header, then set it to zero, forcing the header to be 2547 ** dynamically allocated. */ 2548 pC->aRow = 0; 2549 pC->szRow = 0; 2550 2551 /* Make sure a corrupt database has not given us an oversize header. 2552 ** Do this now to avoid an oversize memory allocation. 2553 ** 2554 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2555 ** types use so much data space that there can only be 4096 and 32 of 2556 ** them, respectively. So the maximum header length results from a 2557 ** 3-byte type for each of the maximum of 32768 columns plus three 2558 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2559 */ 2560 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2561 goto op_column_corrupt; 2562 } 2563 }else{ 2564 /* This is an optimization. By skipping over the first few tests 2565 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2566 ** measurable performance gain. 2567 ** 2568 ** This branch is taken even if aOffset[0]==0. Such a record is never 2569 ** generated by SQLite, and could be considered corruption, but we 2570 ** accept it for historical reasons. When aOffset[0]==0, the code this 2571 ** branch jumps to reads past the end of the record, but never more 2572 ** than a few bytes. Even if the record occurs at the end of the page 2573 ** content area, the "page header" comes after the page content and so 2574 ** this overread is harmless. Similar overreads can occur for a corrupt 2575 ** database file. 2576 */ 2577 zData = pC->aRow; 2578 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2579 testcase( aOffset[0]==0 ); 2580 goto op_column_read_header; 2581 } 2582 } 2583 2584 /* Make sure at least the first p2+1 entries of the header have been 2585 ** parsed and valid information is in aOffset[] and pC->aType[]. 2586 */ 2587 if( pC->nHdrParsed<=p2 ){ 2588 /* If there is more header available for parsing in the record, try 2589 ** to extract additional fields up through the p2+1-th field 2590 */ 2591 if( pC->iHdrOffset<aOffset[0] ){ 2592 /* Make sure zData points to enough of the record to cover the header. */ 2593 if( pC->aRow==0 ){ 2594 memset(&sMem, 0, sizeof(sMem)); 2595 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2596 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2597 zData = (u8*)sMem.z; 2598 }else{ 2599 zData = pC->aRow; 2600 } 2601 2602 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2603 op_column_read_header: 2604 i = pC->nHdrParsed; 2605 offset64 = aOffset[i]; 2606 zHdr = zData + pC->iHdrOffset; 2607 zEndHdr = zData + aOffset[0]; 2608 testcase( zHdr>=zEndHdr ); 2609 do{ 2610 if( (t = zHdr[0])<0x80 ){ 2611 zHdr++; 2612 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2613 }else{ 2614 zHdr += sqlite3GetVarint32(zHdr, &t); 2615 offset64 += sqlite3VdbeSerialTypeLen(t); 2616 } 2617 pC->aType[i++] = t; 2618 aOffset[i] = (u32)(offset64 & 0xffffffff); 2619 }while( i<=p2 && zHdr<zEndHdr ); 2620 2621 /* The record is corrupt if any of the following are true: 2622 ** (1) the bytes of the header extend past the declared header size 2623 ** (2) the entire header was used but not all data was used 2624 ** (3) the end of the data extends beyond the end of the record. 2625 */ 2626 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2627 || (offset64 > pC->payloadSize) 2628 ){ 2629 if( aOffset[0]==0 ){ 2630 i = 0; 2631 zHdr = zEndHdr; 2632 }else{ 2633 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2634 goto op_column_corrupt; 2635 } 2636 } 2637 2638 pC->nHdrParsed = i; 2639 pC->iHdrOffset = (u32)(zHdr - zData); 2640 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2641 }else{ 2642 t = 0; 2643 } 2644 2645 /* If after trying to extract new entries from the header, nHdrParsed is 2646 ** still not up to p2, that means that the record has fewer than p2 2647 ** columns. So the result will be either the default value or a NULL. 2648 */ 2649 if( pC->nHdrParsed<=p2 ){ 2650 if( pOp->p4type==P4_MEM ){ 2651 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2652 }else{ 2653 sqlite3VdbeMemSetNull(pDest); 2654 } 2655 goto op_column_out; 2656 } 2657 }else{ 2658 t = pC->aType[p2]; 2659 } 2660 2661 /* Extract the content for the p2+1-th column. Control can only 2662 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2663 ** all valid. 2664 */ 2665 assert( p2<pC->nHdrParsed ); 2666 assert( rc==SQLITE_OK ); 2667 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2668 if( VdbeMemDynamic(pDest) ){ 2669 sqlite3VdbeMemSetNull(pDest); 2670 } 2671 assert( t==pC->aType[p2] ); 2672 if( pC->szRow>=aOffset[p2+1] ){ 2673 /* This is the common case where the desired content fits on the original 2674 ** page - where the content is not on an overflow page */ 2675 zData = pC->aRow + aOffset[p2]; 2676 if( t<12 ){ 2677 sqlite3VdbeSerialGet(zData, t, pDest); 2678 }else{ 2679 /* If the column value is a string, we need a persistent value, not 2680 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2681 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2682 */ 2683 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2684 pDest->n = len = (t-12)/2; 2685 pDest->enc = encoding; 2686 if( pDest->szMalloc < len+2 ){ 2687 pDest->flags = MEM_Null; 2688 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2689 }else{ 2690 pDest->z = pDest->zMalloc; 2691 } 2692 memcpy(pDest->z, zData, len); 2693 pDest->z[len] = 0; 2694 pDest->z[len+1] = 0; 2695 pDest->flags = aFlag[t&1]; 2696 } 2697 }else{ 2698 pDest->enc = encoding; 2699 /* This branch happens only when content is on overflow pages */ 2700 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2701 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2702 || (len = sqlite3VdbeSerialTypeLen(t))==0 2703 ){ 2704 /* Content is irrelevant for 2705 ** 1. the typeof() function, 2706 ** 2. the length(X) function if X is a blob, and 2707 ** 3. if the content length is zero. 2708 ** So we might as well use bogus content rather than reading 2709 ** content from disk. 2710 ** 2711 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2712 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2713 ** read up to 16. So 16 bytes of bogus content is supplied. 2714 */ 2715 static u8 aZero[16]; /* This is the bogus content */ 2716 sqlite3VdbeSerialGet(aZero, t, pDest); 2717 }else{ 2718 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2719 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2720 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2721 pDest->flags &= ~MEM_Ephem; 2722 } 2723 } 2724 2725 op_column_out: 2726 UPDATE_MAX_BLOBSIZE(pDest); 2727 REGISTER_TRACE(pOp->p3, pDest); 2728 break; 2729 2730 op_column_corrupt: 2731 if( aOp[0].p3>0 ){ 2732 pOp = &aOp[aOp[0].p3-1]; 2733 break; 2734 }else{ 2735 rc = SQLITE_CORRUPT_BKPT; 2736 goto abort_due_to_error; 2737 } 2738 } 2739 2740 /* Opcode: Affinity P1 P2 * P4 * 2741 ** Synopsis: affinity(r[P1@P2]) 2742 ** 2743 ** Apply affinities to a range of P2 registers starting with P1. 2744 ** 2745 ** P4 is a string that is P2 characters long. The N-th character of the 2746 ** string indicates the column affinity that should be used for the N-th 2747 ** memory cell in the range. 2748 */ 2749 case OP_Affinity: { 2750 const char *zAffinity; /* The affinity to be applied */ 2751 2752 zAffinity = pOp->p4.z; 2753 assert( zAffinity!=0 ); 2754 assert( pOp->p2>0 ); 2755 assert( zAffinity[pOp->p2]==0 ); 2756 pIn1 = &aMem[pOp->p1]; 2757 do{ 2758 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2759 assert( memIsValid(pIn1) ); 2760 applyAffinity(pIn1, *(zAffinity++), encoding); 2761 pIn1++; 2762 }while( zAffinity[0] ); 2763 break; 2764 } 2765 2766 /* Opcode: MakeRecord P1 P2 P3 P4 * 2767 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2768 ** 2769 ** Convert P2 registers beginning with P1 into the [record format] 2770 ** use as a data record in a database table or as a key 2771 ** in an index. The OP_Column opcode can decode the record later. 2772 ** 2773 ** P4 may be a string that is P2 characters long. The N-th character of the 2774 ** string indicates the column affinity that should be used for the N-th 2775 ** field of the index key. 2776 ** 2777 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2778 ** macros defined in sqliteInt.h. 2779 ** 2780 ** If P4 is NULL then all index fields have the affinity BLOB. 2781 */ 2782 case OP_MakeRecord: { 2783 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2784 Mem *pRec; /* The new record */ 2785 u64 nData; /* Number of bytes of data space */ 2786 int nHdr; /* Number of bytes of header space */ 2787 i64 nByte; /* Data space required for this record */ 2788 i64 nZero; /* Number of zero bytes at the end of the record */ 2789 int nVarint; /* Number of bytes in a varint */ 2790 u32 serial_type; /* Type field */ 2791 Mem *pData0; /* First field to be combined into the record */ 2792 Mem *pLast; /* Last field of the record */ 2793 int nField; /* Number of fields in the record */ 2794 char *zAffinity; /* The affinity string for the record */ 2795 int file_format; /* File format to use for encoding */ 2796 int i; /* Space used in zNewRecord[] header */ 2797 int j; /* Space used in zNewRecord[] content */ 2798 u32 len; /* Length of a field */ 2799 2800 /* Assuming the record contains N fields, the record format looks 2801 ** like this: 2802 ** 2803 ** ------------------------------------------------------------------------ 2804 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2805 ** ------------------------------------------------------------------------ 2806 ** 2807 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2808 ** and so forth. 2809 ** 2810 ** Each type field is a varint representing the serial type of the 2811 ** corresponding data element (see sqlite3VdbeSerialType()). The 2812 ** hdr-size field is also a varint which is the offset from the beginning 2813 ** of the record to data0. 2814 */ 2815 nData = 0; /* Number of bytes of data space */ 2816 nHdr = 0; /* Number of bytes of header space */ 2817 nZero = 0; /* Number of zero bytes at the end of the record */ 2818 nField = pOp->p1; 2819 zAffinity = pOp->p4.z; 2820 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2821 pData0 = &aMem[nField]; 2822 nField = pOp->p2; 2823 pLast = &pData0[nField-1]; 2824 file_format = p->minWriteFileFormat; 2825 2826 /* Identify the output register */ 2827 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2828 pOut = &aMem[pOp->p3]; 2829 memAboutToChange(p, pOut); 2830 2831 /* Apply the requested affinity to all inputs 2832 */ 2833 assert( pData0<=pLast ); 2834 if( zAffinity ){ 2835 pRec = pData0; 2836 do{ 2837 applyAffinity(pRec++, *(zAffinity++), encoding); 2838 assert( zAffinity[0]==0 || pRec<=pLast ); 2839 }while( zAffinity[0] ); 2840 } 2841 2842 #ifdef SQLITE_ENABLE_NULL_TRIM 2843 /* NULLs can be safely trimmed from the end of the record, as long as 2844 ** as the schema format is 2 or more and none of the omitted columns 2845 ** have a non-NULL default value. Also, the record must be left with 2846 ** at least one field. If P5>0 then it will be one more than the 2847 ** index of the right-most column with a non-NULL default value */ 2848 if( pOp->p5 ){ 2849 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2850 pLast--; 2851 nField--; 2852 } 2853 } 2854 #endif 2855 2856 /* Loop through the elements that will make up the record to figure 2857 ** out how much space is required for the new record. 2858 */ 2859 pRec = pLast; 2860 do{ 2861 assert( memIsValid(pRec) ); 2862 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2863 if( pRec->flags & MEM_Zero ){ 2864 if( serial_type==0 ){ 2865 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2866 ** table methods that never invoke sqlite3_result_xxxxx() while 2867 ** computing an unchanging column value in an UPDATE statement. 2868 ** Give such values a special internal-use-only serial-type of 10 2869 ** so that they can be passed through to xUpdate and have 2870 ** a true sqlite3_value_nochange(). */ 2871 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2872 serial_type = 10; 2873 }else if( nData ){ 2874 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2875 }else{ 2876 nZero += pRec->u.nZero; 2877 len -= pRec->u.nZero; 2878 } 2879 } 2880 nData += len; 2881 testcase( serial_type==127 ); 2882 testcase( serial_type==128 ); 2883 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2884 pRec->uTemp = serial_type; 2885 if( pRec==pData0 ) break; 2886 pRec--; 2887 }while(1); 2888 2889 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2890 ** which determines the total number of bytes in the header. The varint 2891 ** value is the size of the header in bytes including the size varint 2892 ** itself. */ 2893 testcase( nHdr==126 ); 2894 testcase( nHdr==127 ); 2895 if( nHdr<=126 ){ 2896 /* The common case */ 2897 nHdr += 1; 2898 }else{ 2899 /* Rare case of a really large header */ 2900 nVarint = sqlite3VarintLen(nHdr); 2901 nHdr += nVarint; 2902 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2903 } 2904 nByte = nHdr+nData; 2905 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2906 goto too_big; 2907 } 2908 2909 /* Make sure the output register has a buffer large enough to store 2910 ** the new record. The output register (pOp->p3) is not allowed to 2911 ** be one of the input registers (because the following call to 2912 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2913 */ 2914 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2915 goto no_mem; 2916 } 2917 zNewRecord = (u8 *)pOut->z; 2918 2919 /* Write the record */ 2920 i = putVarint32(zNewRecord, nHdr); 2921 j = nHdr; 2922 assert( pData0<=pLast ); 2923 pRec = pData0; 2924 do{ 2925 serial_type = pRec->uTemp; 2926 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2927 ** additional varints, one per column. */ 2928 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2929 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2930 ** immediately follow the header. */ 2931 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2932 }while( (++pRec)<=pLast ); 2933 assert( i==nHdr ); 2934 assert( j==nByte ); 2935 2936 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2937 pOut->n = (int)nByte; 2938 pOut->flags = MEM_Blob; 2939 if( nZero ){ 2940 pOut->u.nZero = nZero; 2941 pOut->flags |= MEM_Zero; 2942 } 2943 REGISTER_TRACE(pOp->p3, pOut); 2944 UPDATE_MAX_BLOBSIZE(pOut); 2945 break; 2946 } 2947 2948 /* Opcode: Count P1 P2 * * * 2949 ** Synopsis: r[P2]=count() 2950 ** 2951 ** Store the number of entries (an integer value) in the table or index 2952 ** opened by cursor P1 in register P2 2953 */ 2954 #ifndef SQLITE_OMIT_BTREECOUNT 2955 case OP_Count: { /* out2 */ 2956 i64 nEntry; 2957 BtCursor *pCrsr; 2958 2959 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2960 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2961 assert( pCrsr ); 2962 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2963 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2964 if( rc ) goto abort_due_to_error; 2965 pOut = out2Prerelease(p, pOp); 2966 pOut->u.i = nEntry; 2967 break; 2968 } 2969 #endif 2970 2971 /* Opcode: Savepoint P1 * * P4 * 2972 ** 2973 ** Open, release or rollback the savepoint named by parameter P4, depending 2974 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2975 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2976 */ 2977 case OP_Savepoint: { 2978 int p1; /* Value of P1 operand */ 2979 char *zName; /* Name of savepoint */ 2980 int nName; 2981 Savepoint *pNew; 2982 Savepoint *pSavepoint; 2983 Savepoint *pTmp; 2984 int iSavepoint; 2985 int ii; 2986 2987 p1 = pOp->p1; 2988 zName = pOp->p4.z; 2989 2990 /* Assert that the p1 parameter is valid. Also that if there is no open 2991 ** transaction, then there cannot be any savepoints. 2992 */ 2993 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2994 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2995 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2996 assert( checkSavepointCount(db) ); 2997 assert( p->bIsReader ); 2998 2999 if( p1==SAVEPOINT_BEGIN ){ 3000 if( db->nVdbeWrite>0 ){ 3001 /* A new savepoint cannot be created if there are active write 3002 ** statements (i.e. open read/write incremental blob handles). 3003 */ 3004 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3005 rc = SQLITE_BUSY; 3006 }else{ 3007 nName = sqlite3Strlen30(zName); 3008 3009 #ifndef SQLITE_OMIT_VIRTUALTABLE 3010 /* This call is Ok even if this savepoint is actually a transaction 3011 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3012 ** If this is a transaction savepoint being opened, it is guaranteed 3013 ** that the db->aVTrans[] array is empty. */ 3014 assert( db->autoCommit==0 || db->nVTrans==0 ); 3015 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3016 db->nStatement+db->nSavepoint); 3017 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3018 #endif 3019 3020 /* Create a new savepoint structure. */ 3021 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3022 if( pNew ){ 3023 pNew->zName = (char *)&pNew[1]; 3024 memcpy(pNew->zName, zName, nName+1); 3025 3026 /* If there is no open transaction, then mark this as a special 3027 ** "transaction savepoint". */ 3028 if( db->autoCommit ){ 3029 db->autoCommit = 0; 3030 db->isTransactionSavepoint = 1; 3031 }else{ 3032 db->nSavepoint++; 3033 } 3034 3035 /* Link the new savepoint into the database handle's list. */ 3036 pNew->pNext = db->pSavepoint; 3037 db->pSavepoint = pNew; 3038 pNew->nDeferredCons = db->nDeferredCons; 3039 pNew->nDeferredImmCons = db->nDeferredImmCons; 3040 } 3041 } 3042 }else{ 3043 iSavepoint = 0; 3044 3045 /* Find the named savepoint. If there is no such savepoint, then an 3046 ** an error is returned to the user. */ 3047 for( 3048 pSavepoint = db->pSavepoint; 3049 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3050 pSavepoint = pSavepoint->pNext 3051 ){ 3052 iSavepoint++; 3053 } 3054 if( !pSavepoint ){ 3055 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3056 rc = SQLITE_ERROR; 3057 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3058 /* It is not possible to release (commit) a savepoint if there are 3059 ** active write statements. 3060 */ 3061 sqlite3VdbeError(p, "cannot release savepoint - " 3062 "SQL statements in progress"); 3063 rc = SQLITE_BUSY; 3064 }else{ 3065 3066 /* Determine whether or not this is a transaction savepoint. If so, 3067 ** and this is a RELEASE command, then the current transaction 3068 ** is committed. 3069 */ 3070 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3071 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3072 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3073 goto vdbe_return; 3074 } 3075 db->autoCommit = 1; 3076 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3077 p->pc = (int)(pOp - aOp); 3078 db->autoCommit = 0; 3079 p->rc = rc = SQLITE_BUSY; 3080 goto vdbe_return; 3081 } 3082 db->isTransactionSavepoint = 0; 3083 rc = p->rc; 3084 }else{ 3085 int isSchemaChange; 3086 iSavepoint = db->nSavepoint - iSavepoint - 1; 3087 if( p1==SAVEPOINT_ROLLBACK ){ 3088 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3089 for(ii=0; ii<db->nDb; ii++){ 3090 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3091 SQLITE_ABORT_ROLLBACK, 3092 isSchemaChange==0); 3093 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3094 } 3095 }else{ 3096 isSchemaChange = 0; 3097 } 3098 for(ii=0; ii<db->nDb; ii++){ 3099 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3100 if( rc!=SQLITE_OK ){ 3101 goto abort_due_to_error; 3102 } 3103 } 3104 if( isSchemaChange ){ 3105 sqlite3ExpirePreparedStatements(db); 3106 sqlite3ResetAllSchemasOfConnection(db); 3107 db->mDbFlags |= DBFLAG_SchemaChange; 3108 } 3109 } 3110 3111 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3112 ** savepoints nested inside of the savepoint being operated on. */ 3113 while( db->pSavepoint!=pSavepoint ){ 3114 pTmp = db->pSavepoint; 3115 db->pSavepoint = pTmp->pNext; 3116 sqlite3DbFree(db, pTmp); 3117 db->nSavepoint--; 3118 } 3119 3120 /* If it is a RELEASE, then destroy the savepoint being operated on 3121 ** too. If it is a ROLLBACK TO, then set the number of deferred 3122 ** constraint violations present in the database to the value stored 3123 ** when the savepoint was created. */ 3124 if( p1==SAVEPOINT_RELEASE ){ 3125 assert( pSavepoint==db->pSavepoint ); 3126 db->pSavepoint = pSavepoint->pNext; 3127 sqlite3DbFree(db, pSavepoint); 3128 if( !isTransaction ){ 3129 db->nSavepoint--; 3130 } 3131 }else{ 3132 db->nDeferredCons = pSavepoint->nDeferredCons; 3133 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3134 } 3135 3136 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3137 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3138 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3139 } 3140 } 3141 } 3142 if( rc ) goto abort_due_to_error; 3143 3144 break; 3145 } 3146 3147 /* Opcode: AutoCommit P1 P2 * * * 3148 ** 3149 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3150 ** back any currently active btree transactions. If there are any active 3151 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3152 ** there are active writing VMs or active VMs that use shared cache. 3153 ** 3154 ** This instruction causes the VM to halt. 3155 */ 3156 case OP_AutoCommit: { 3157 int desiredAutoCommit; 3158 int iRollback; 3159 3160 desiredAutoCommit = pOp->p1; 3161 iRollback = pOp->p2; 3162 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3163 assert( desiredAutoCommit==1 || iRollback==0 ); 3164 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3165 assert( p->bIsReader ); 3166 3167 if( desiredAutoCommit!=db->autoCommit ){ 3168 if( iRollback ){ 3169 assert( desiredAutoCommit==1 ); 3170 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3171 db->autoCommit = 1; 3172 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3173 /* If this instruction implements a COMMIT and other VMs are writing 3174 ** return an error indicating that the other VMs must complete first. 3175 */ 3176 sqlite3VdbeError(p, "cannot commit transaction - " 3177 "SQL statements in progress"); 3178 rc = SQLITE_BUSY; 3179 goto abort_due_to_error; 3180 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3181 goto vdbe_return; 3182 }else{ 3183 db->autoCommit = (u8)desiredAutoCommit; 3184 } 3185 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3186 p->pc = (int)(pOp - aOp); 3187 db->autoCommit = (u8)(1-desiredAutoCommit); 3188 p->rc = rc = SQLITE_BUSY; 3189 goto vdbe_return; 3190 } 3191 assert( db->nStatement==0 ); 3192 sqlite3CloseSavepoints(db); 3193 if( p->rc==SQLITE_OK ){ 3194 rc = SQLITE_DONE; 3195 }else{ 3196 rc = SQLITE_ERROR; 3197 } 3198 goto vdbe_return; 3199 }else{ 3200 sqlite3VdbeError(p, 3201 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3202 (iRollback)?"cannot rollback - no transaction is active": 3203 "cannot commit - no transaction is active")); 3204 3205 rc = SQLITE_ERROR; 3206 goto abort_due_to_error; 3207 } 3208 break; 3209 } 3210 3211 /* Opcode: Transaction P1 P2 P3 P4 P5 3212 ** 3213 ** Begin a transaction on database P1 if a transaction is not already 3214 ** active. 3215 ** If P2 is non-zero, then a write-transaction is started, or if a 3216 ** read-transaction is already active, it is upgraded to a write-transaction. 3217 ** If P2 is zero, then a read-transaction is started. 3218 ** 3219 ** P1 is the index of the database file on which the transaction is 3220 ** started. Index 0 is the main database file and index 1 is the 3221 ** file used for temporary tables. Indices of 2 or more are used for 3222 ** attached databases. 3223 ** 3224 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3225 ** true (this flag is set if the Vdbe may modify more than one row and may 3226 ** throw an ABORT exception), a statement transaction may also be opened. 3227 ** More specifically, a statement transaction is opened iff the database 3228 ** connection is currently not in autocommit mode, or if there are other 3229 ** active statements. A statement transaction allows the changes made by this 3230 ** VDBE to be rolled back after an error without having to roll back the 3231 ** entire transaction. If no error is encountered, the statement transaction 3232 ** will automatically commit when the VDBE halts. 3233 ** 3234 ** If P5!=0 then this opcode also checks the schema cookie against P3 3235 ** and the schema generation counter against P4. 3236 ** The cookie changes its value whenever the database schema changes. 3237 ** This operation is used to detect when that the cookie has changed 3238 ** and that the current process needs to reread the schema. If the schema 3239 ** cookie in P3 differs from the schema cookie in the database header or 3240 ** if the schema generation counter in P4 differs from the current 3241 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3242 ** halts. The sqlite3_step() wrapper function might then reprepare the 3243 ** statement and rerun it from the beginning. 3244 */ 3245 case OP_Transaction: { 3246 Btree *pBt; 3247 int iMeta = 0; 3248 3249 assert( p->bIsReader ); 3250 assert( p->readOnly==0 || pOp->p2==0 ); 3251 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3252 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3253 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3254 rc = SQLITE_READONLY; 3255 goto abort_due_to_error; 3256 } 3257 pBt = db->aDb[pOp->p1].pBt; 3258 3259 if( pBt ){ 3260 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3261 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3262 testcase( rc==SQLITE_BUSY_RECOVERY ); 3263 if( rc!=SQLITE_OK ){ 3264 if( (rc&0xff)==SQLITE_BUSY ){ 3265 p->pc = (int)(pOp - aOp); 3266 p->rc = rc; 3267 goto vdbe_return; 3268 } 3269 goto abort_due_to_error; 3270 } 3271 3272 if( pOp->p2 && p->usesStmtJournal 3273 && (db->autoCommit==0 || db->nVdbeRead>1) 3274 ){ 3275 assert( sqlite3BtreeIsInTrans(pBt) ); 3276 if( p->iStatement==0 ){ 3277 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3278 db->nStatement++; 3279 p->iStatement = db->nSavepoint + db->nStatement; 3280 } 3281 3282 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3283 if( rc==SQLITE_OK ){ 3284 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3285 } 3286 3287 /* Store the current value of the database handles deferred constraint 3288 ** counter. If the statement transaction needs to be rolled back, 3289 ** the value of this counter needs to be restored too. */ 3290 p->nStmtDefCons = db->nDeferredCons; 3291 p->nStmtDefImmCons = db->nDeferredImmCons; 3292 } 3293 } 3294 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3295 if( pOp->p5 3296 && (iMeta!=pOp->p3 3297 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3298 ){ 3299 /* 3300 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3301 ** version is checked to ensure that the schema has not changed since the 3302 ** SQL statement was prepared. 3303 */ 3304 sqlite3DbFree(db, p->zErrMsg); 3305 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3306 /* If the schema-cookie from the database file matches the cookie 3307 ** stored with the in-memory representation of the schema, do 3308 ** not reload the schema from the database file. 3309 ** 3310 ** If virtual-tables are in use, this is not just an optimization. 3311 ** Often, v-tables store their data in other SQLite tables, which 3312 ** are queried from within xNext() and other v-table methods using 3313 ** prepared queries. If such a query is out-of-date, we do not want to 3314 ** discard the database schema, as the user code implementing the 3315 ** v-table would have to be ready for the sqlite3_vtab structure itself 3316 ** to be invalidated whenever sqlite3_step() is called from within 3317 ** a v-table method. 3318 */ 3319 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3320 sqlite3ResetOneSchema(db, pOp->p1); 3321 } 3322 p->expired = 1; 3323 rc = SQLITE_SCHEMA; 3324 } 3325 if( rc ) goto abort_due_to_error; 3326 break; 3327 } 3328 3329 /* Opcode: ReadCookie P1 P2 P3 * * 3330 ** 3331 ** Read cookie number P3 from database P1 and write it into register P2. 3332 ** P3==1 is the schema version. P3==2 is the database format. 3333 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3334 ** the main database file and P1==1 is the database file used to store 3335 ** temporary tables. 3336 ** 3337 ** There must be a read-lock on the database (either a transaction 3338 ** must be started or there must be an open cursor) before 3339 ** executing this instruction. 3340 */ 3341 case OP_ReadCookie: { /* out2 */ 3342 int iMeta; 3343 int iDb; 3344 int iCookie; 3345 3346 assert( p->bIsReader ); 3347 iDb = pOp->p1; 3348 iCookie = pOp->p3; 3349 assert( pOp->p3<SQLITE_N_BTREE_META ); 3350 assert( iDb>=0 && iDb<db->nDb ); 3351 assert( db->aDb[iDb].pBt!=0 ); 3352 assert( DbMaskTest(p->btreeMask, iDb) ); 3353 3354 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3355 pOut = out2Prerelease(p, pOp); 3356 pOut->u.i = iMeta; 3357 break; 3358 } 3359 3360 /* Opcode: SetCookie P1 P2 P3 * * 3361 ** 3362 ** Write the integer value P3 into cookie number P2 of database P1. 3363 ** P2==1 is the schema version. P2==2 is the database format. 3364 ** P2==3 is the recommended pager cache 3365 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3366 ** database file used to store temporary tables. 3367 ** 3368 ** A transaction must be started before executing this opcode. 3369 */ 3370 case OP_SetCookie: { 3371 Db *pDb; 3372 3373 sqlite3VdbeIncrWriteCounter(p, 0); 3374 assert( pOp->p2<SQLITE_N_BTREE_META ); 3375 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3376 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3377 assert( p->readOnly==0 ); 3378 pDb = &db->aDb[pOp->p1]; 3379 assert( pDb->pBt!=0 ); 3380 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3381 /* See note about index shifting on OP_ReadCookie */ 3382 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3383 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3384 /* When the schema cookie changes, record the new cookie internally */ 3385 pDb->pSchema->schema_cookie = pOp->p3; 3386 db->mDbFlags |= DBFLAG_SchemaChange; 3387 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3388 /* Record changes in the file format */ 3389 pDb->pSchema->file_format = pOp->p3; 3390 } 3391 if( pOp->p1==1 ){ 3392 /* Invalidate all prepared statements whenever the TEMP database 3393 ** schema is changed. Ticket #1644 */ 3394 sqlite3ExpirePreparedStatements(db); 3395 p->expired = 0; 3396 } 3397 if( rc ) goto abort_due_to_error; 3398 break; 3399 } 3400 3401 /* Opcode: OpenRead P1 P2 P3 P4 P5 3402 ** Synopsis: root=P2 iDb=P3 3403 ** 3404 ** Open a read-only cursor for the database table whose root page is 3405 ** P2 in a database file. The database file is determined by P3. 3406 ** P3==0 means the main database, P3==1 means the database used for 3407 ** temporary tables, and P3>1 means used the corresponding attached 3408 ** database. Give the new cursor an identifier of P1. The P1 3409 ** values need not be contiguous but all P1 values should be small integers. 3410 ** It is an error for P1 to be negative. 3411 ** 3412 ** Allowed P5 bits: 3413 ** <ul> 3414 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3415 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3416 ** of OP_SeekLE/OP_IdxGT) 3417 ** </ul> 3418 ** 3419 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3420 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3421 ** object, then table being opened must be an [index b-tree] where the 3422 ** KeyInfo object defines the content and collating 3423 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3424 ** value, then the table being opened must be a [table b-tree] with a 3425 ** number of columns no less than the value of P4. 3426 ** 3427 ** See also: OpenWrite, ReopenIdx 3428 */ 3429 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3430 ** Synopsis: root=P2 iDb=P3 3431 ** 3432 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3433 ** checks to see if the cursor on P1 is already open on the same 3434 ** b-tree and if it is this opcode becomes a no-op. In other words, 3435 ** if the cursor is already open, do not reopen it. 3436 ** 3437 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3438 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3439 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3440 ** number. 3441 ** 3442 ** Allowed P5 bits: 3443 ** <ul> 3444 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3445 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3446 ** of OP_SeekLE/OP_IdxGT) 3447 ** </ul> 3448 ** 3449 ** See also: OP_OpenRead, OP_OpenWrite 3450 */ 3451 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3452 ** Synopsis: root=P2 iDb=P3 3453 ** 3454 ** Open a read/write cursor named P1 on the table or index whose root 3455 ** page is P2 (or whose root page is held in register P2 if the 3456 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3457 ** 3458 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3459 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3460 ** object, then table being opened must be an [index b-tree] where the 3461 ** KeyInfo object defines the content and collating 3462 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3463 ** value, then the table being opened must be a [table b-tree] with a 3464 ** number of columns no less than the value of P4. 3465 ** 3466 ** Allowed P5 bits: 3467 ** <ul> 3468 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3469 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3470 ** of OP_SeekLE/OP_IdxGT) 3471 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3472 ** and subsequently delete entries in an index btree. This is a 3473 ** hint to the storage engine that the storage engine is allowed to 3474 ** ignore. The hint is not used by the official SQLite b*tree storage 3475 ** engine, but is used by COMDB2. 3476 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3477 ** as the root page, not the value of P2 itself. 3478 ** </ul> 3479 ** 3480 ** This instruction works like OpenRead except that it opens the cursor 3481 ** in read/write mode. 3482 ** 3483 ** See also: OP_OpenRead, OP_ReopenIdx 3484 */ 3485 case OP_ReopenIdx: { 3486 int nField; 3487 KeyInfo *pKeyInfo; 3488 int p2; 3489 int iDb; 3490 int wrFlag; 3491 Btree *pX; 3492 VdbeCursor *pCur; 3493 Db *pDb; 3494 3495 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3496 assert( pOp->p4type==P4_KEYINFO ); 3497 pCur = p->apCsr[pOp->p1]; 3498 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3499 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3500 goto open_cursor_set_hints; 3501 } 3502 /* If the cursor is not currently open or is open on a different 3503 ** index, then fall through into OP_OpenRead to force a reopen */ 3504 case OP_OpenRead: 3505 case OP_OpenWrite: 3506 3507 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3508 assert( p->bIsReader ); 3509 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3510 || p->readOnly==0 ); 3511 3512 if( p->expired ){ 3513 rc = SQLITE_ABORT_ROLLBACK; 3514 goto abort_due_to_error; 3515 } 3516 3517 nField = 0; 3518 pKeyInfo = 0; 3519 p2 = pOp->p2; 3520 iDb = pOp->p3; 3521 assert( iDb>=0 && iDb<db->nDb ); 3522 assert( DbMaskTest(p->btreeMask, iDb) ); 3523 pDb = &db->aDb[iDb]; 3524 pX = pDb->pBt; 3525 assert( pX!=0 ); 3526 if( pOp->opcode==OP_OpenWrite ){ 3527 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3528 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3529 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3530 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3531 p->minWriteFileFormat = pDb->pSchema->file_format; 3532 } 3533 }else{ 3534 wrFlag = 0; 3535 } 3536 if( pOp->p5 & OPFLAG_P2ISREG ){ 3537 assert( p2>0 ); 3538 assert( p2<=(p->nMem+1 - p->nCursor) ); 3539 assert( pOp->opcode==OP_OpenWrite ); 3540 pIn2 = &aMem[p2]; 3541 assert( memIsValid(pIn2) ); 3542 assert( (pIn2->flags & MEM_Int)!=0 ); 3543 sqlite3VdbeMemIntegerify(pIn2); 3544 p2 = (int)pIn2->u.i; 3545 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3546 ** that opcode will always set the p2 value to 2 or more or else fail. 3547 ** If there were a failure, the prepared statement would have halted 3548 ** before reaching this instruction. */ 3549 assert( p2>=2 ); 3550 } 3551 if( pOp->p4type==P4_KEYINFO ){ 3552 pKeyInfo = pOp->p4.pKeyInfo; 3553 assert( pKeyInfo->enc==ENC(db) ); 3554 assert( pKeyInfo->db==db ); 3555 nField = pKeyInfo->nAllField; 3556 }else if( pOp->p4type==P4_INT32 ){ 3557 nField = pOp->p4.i; 3558 } 3559 assert( pOp->p1>=0 ); 3560 assert( nField>=0 ); 3561 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3562 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3563 if( pCur==0 ) goto no_mem; 3564 pCur->nullRow = 1; 3565 pCur->isOrdered = 1; 3566 pCur->pgnoRoot = p2; 3567 #ifdef SQLITE_DEBUG 3568 pCur->wrFlag = wrFlag; 3569 #endif 3570 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3571 pCur->pKeyInfo = pKeyInfo; 3572 /* Set the VdbeCursor.isTable variable. Previous versions of 3573 ** SQLite used to check if the root-page flags were sane at this point 3574 ** and report database corruption if they were not, but this check has 3575 ** since moved into the btree layer. */ 3576 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3577 3578 open_cursor_set_hints: 3579 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3580 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3581 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3582 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3583 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3584 #endif 3585 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3586 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3587 if( rc ) goto abort_due_to_error; 3588 break; 3589 } 3590 3591 /* Opcode: OpenDup P1 P2 * * * 3592 ** 3593 ** Open a new cursor P1 that points to the same ephemeral table as 3594 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3595 ** opcode. Only ephemeral cursors may be duplicated. 3596 ** 3597 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3598 */ 3599 case OP_OpenDup: { 3600 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3601 VdbeCursor *pCx; /* The new cursor */ 3602 3603 pOrig = p->apCsr[pOp->p2]; 3604 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3605 3606 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3607 if( pCx==0 ) goto no_mem; 3608 pCx->nullRow = 1; 3609 pCx->isEphemeral = 1; 3610 pCx->pKeyInfo = pOrig->pKeyInfo; 3611 pCx->isTable = pOrig->isTable; 3612 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR, 3613 pCx->pKeyInfo, pCx->uc.pCursor); 3614 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3615 ** opened for a database. Since there is already an open cursor when this 3616 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3617 assert( rc==SQLITE_OK ); 3618 break; 3619 } 3620 3621 3622 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3623 ** Synopsis: nColumn=P2 3624 ** 3625 ** Open a new cursor P1 to a transient table. 3626 ** The cursor is always opened read/write even if 3627 ** the main database is read-only. The ephemeral 3628 ** table is deleted automatically when the cursor is closed. 3629 ** 3630 ** P2 is the number of columns in the ephemeral table. 3631 ** The cursor points to a BTree table if P4==0 and to a BTree index 3632 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3633 ** that defines the format of keys in the index. 3634 ** 3635 ** The P5 parameter can be a mask of the BTREE_* flags defined 3636 ** in btree.h. These flags control aspects of the operation of 3637 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3638 ** added automatically. 3639 */ 3640 /* Opcode: OpenAutoindex P1 P2 * P4 * 3641 ** Synopsis: nColumn=P2 3642 ** 3643 ** This opcode works the same as OP_OpenEphemeral. It has a 3644 ** different name to distinguish its use. Tables created using 3645 ** by this opcode will be used for automatically created transient 3646 ** indices in joins. 3647 */ 3648 case OP_OpenAutoindex: 3649 case OP_OpenEphemeral: { 3650 VdbeCursor *pCx; 3651 KeyInfo *pKeyInfo; 3652 3653 static const int vfsFlags = 3654 SQLITE_OPEN_READWRITE | 3655 SQLITE_OPEN_CREATE | 3656 SQLITE_OPEN_EXCLUSIVE | 3657 SQLITE_OPEN_DELETEONCLOSE | 3658 SQLITE_OPEN_TRANSIENT_DB; 3659 assert( pOp->p1>=0 ); 3660 assert( pOp->p2>=0 ); 3661 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3662 if( pCx==0 ) goto no_mem; 3663 pCx->nullRow = 1; 3664 pCx->isEphemeral = 1; 3665 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3666 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3667 if( rc==SQLITE_OK ){ 3668 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3669 } 3670 if( rc==SQLITE_OK ){ 3671 /* If a transient index is required, create it by calling 3672 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3673 ** opening it. If a transient table is required, just use the 3674 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3675 */ 3676 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3677 int pgno; 3678 assert( pOp->p4type==P4_KEYINFO ); 3679 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3680 if( rc==SQLITE_OK ){ 3681 assert( pgno==MASTER_ROOT+1 ); 3682 assert( pKeyInfo->db==db ); 3683 assert( pKeyInfo->enc==ENC(db) ); 3684 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3685 pKeyInfo, pCx->uc.pCursor); 3686 } 3687 pCx->isTable = 0; 3688 }else{ 3689 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3690 0, pCx->uc.pCursor); 3691 pCx->isTable = 1; 3692 } 3693 } 3694 if( rc ) goto abort_due_to_error; 3695 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3696 break; 3697 } 3698 3699 /* Opcode: SorterOpen P1 P2 P3 P4 * 3700 ** 3701 ** This opcode works like OP_OpenEphemeral except that it opens 3702 ** a transient index that is specifically designed to sort large 3703 ** tables using an external merge-sort algorithm. 3704 ** 3705 ** If argument P3 is non-zero, then it indicates that the sorter may 3706 ** assume that a stable sort considering the first P3 fields of each 3707 ** key is sufficient to produce the required results. 3708 */ 3709 case OP_SorterOpen: { 3710 VdbeCursor *pCx; 3711 3712 assert( pOp->p1>=0 ); 3713 assert( pOp->p2>=0 ); 3714 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3715 if( pCx==0 ) goto no_mem; 3716 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3717 assert( pCx->pKeyInfo->db==db ); 3718 assert( pCx->pKeyInfo->enc==ENC(db) ); 3719 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3720 if( rc ) goto abort_due_to_error; 3721 break; 3722 } 3723 3724 /* Opcode: SequenceTest P1 P2 * * * 3725 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3726 ** 3727 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3728 ** to P2. Regardless of whether or not the jump is taken, increment the 3729 ** the sequence value. 3730 */ 3731 case OP_SequenceTest: { 3732 VdbeCursor *pC; 3733 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3734 pC = p->apCsr[pOp->p1]; 3735 assert( isSorter(pC) ); 3736 if( (pC->seqCount++)==0 ){ 3737 goto jump_to_p2; 3738 } 3739 break; 3740 } 3741 3742 /* Opcode: OpenPseudo P1 P2 P3 * * 3743 ** Synopsis: P3 columns in r[P2] 3744 ** 3745 ** Open a new cursor that points to a fake table that contains a single 3746 ** row of data. The content of that one row is the content of memory 3747 ** register P2. In other words, cursor P1 becomes an alias for the 3748 ** MEM_Blob content contained in register P2. 3749 ** 3750 ** A pseudo-table created by this opcode is used to hold a single 3751 ** row output from the sorter so that the row can be decomposed into 3752 ** individual columns using the OP_Column opcode. The OP_Column opcode 3753 ** is the only cursor opcode that works with a pseudo-table. 3754 ** 3755 ** P3 is the number of fields in the records that will be stored by 3756 ** the pseudo-table. 3757 */ 3758 case OP_OpenPseudo: { 3759 VdbeCursor *pCx; 3760 3761 assert( pOp->p1>=0 ); 3762 assert( pOp->p3>=0 ); 3763 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3764 if( pCx==0 ) goto no_mem; 3765 pCx->nullRow = 1; 3766 pCx->seekResult = pOp->p2; 3767 pCx->isTable = 1; 3768 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3769 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3770 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3771 ** which is a performance optimization */ 3772 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3773 assert( pOp->p5==0 ); 3774 break; 3775 } 3776 3777 /* Opcode: Close P1 * * * * 3778 ** 3779 ** Close a cursor previously opened as P1. If P1 is not 3780 ** currently open, this instruction is a no-op. 3781 */ 3782 case OP_Close: { 3783 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3784 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3785 p->apCsr[pOp->p1] = 0; 3786 break; 3787 } 3788 3789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3790 /* Opcode: ColumnsUsed P1 * * P4 * 3791 ** 3792 ** This opcode (which only exists if SQLite was compiled with 3793 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3794 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3795 ** (P4_INT64) in which the first 63 bits are one for each of the 3796 ** first 63 columns of the table or index that are actually used 3797 ** by the cursor. The high-order bit is set if any column after 3798 ** the 64th is used. 3799 */ 3800 case OP_ColumnsUsed: { 3801 VdbeCursor *pC; 3802 pC = p->apCsr[pOp->p1]; 3803 assert( pC->eCurType==CURTYPE_BTREE ); 3804 pC->maskUsed = *(u64*)pOp->p4.pI64; 3805 break; 3806 } 3807 #endif 3808 3809 /* Opcode: SeekGE P1 P2 P3 P4 * 3810 ** Synopsis: key=r[P3@P4] 3811 ** 3812 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3813 ** use the value in register P3 as the key. If cursor P1 refers 3814 ** to an SQL index, then P3 is the first in an array of P4 registers 3815 ** that are used as an unpacked index key. 3816 ** 3817 ** Reposition cursor P1 so that it points to the smallest entry that 3818 ** is greater than or equal to the key value. If there are no records 3819 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3820 ** 3821 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3822 ** opcode will always land on a record that equally equals the key, or 3823 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3824 ** opcode must be followed by an IdxLE opcode with the same arguments. 3825 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3826 ** IdxLE opcode will be used on subsequent loop iterations. 3827 ** 3828 ** This opcode leaves the cursor configured to move in forward order, 3829 ** from the beginning toward the end. In other words, the cursor is 3830 ** configured to use Next, not Prev. 3831 ** 3832 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3833 */ 3834 /* Opcode: SeekGT P1 P2 P3 P4 * 3835 ** Synopsis: key=r[P3@P4] 3836 ** 3837 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3838 ** use the value in register P3 as a key. If cursor P1 refers 3839 ** to an SQL index, then P3 is the first in an array of P4 registers 3840 ** that are used as an unpacked index key. 3841 ** 3842 ** Reposition cursor P1 so that it points to the smallest entry that 3843 ** is greater than the key value. If there are no records greater than 3844 ** the key and P2 is not zero, then jump to P2. 3845 ** 3846 ** This opcode leaves the cursor configured to move in forward order, 3847 ** from the beginning toward the end. In other words, the cursor is 3848 ** configured to use Next, not Prev. 3849 ** 3850 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3851 */ 3852 /* Opcode: SeekLT P1 P2 P3 P4 * 3853 ** Synopsis: key=r[P3@P4] 3854 ** 3855 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3856 ** use the value in register P3 as a key. If cursor P1 refers 3857 ** to an SQL index, then P3 is the first in an array of P4 registers 3858 ** that are used as an unpacked index key. 3859 ** 3860 ** Reposition cursor P1 so that it points to the largest entry that 3861 ** is less than the key value. If there are no records less than 3862 ** the key and P2 is not zero, then jump to P2. 3863 ** 3864 ** This opcode leaves the cursor configured to move in reverse order, 3865 ** from the end toward the beginning. In other words, the cursor is 3866 ** configured to use Prev, not Next. 3867 ** 3868 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3869 */ 3870 /* Opcode: SeekLE P1 P2 P3 P4 * 3871 ** Synopsis: key=r[P3@P4] 3872 ** 3873 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3874 ** use the value in register P3 as a key. If cursor P1 refers 3875 ** to an SQL index, then P3 is the first in an array of P4 registers 3876 ** that are used as an unpacked index key. 3877 ** 3878 ** Reposition cursor P1 so that it points to the largest entry that 3879 ** is less than or equal to the key value. If there are no records 3880 ** less than or equal to the key and P2 is not zero, then jump to P2. 3881 ** 3882 ** This opcode leaves the cursor configured to move in reverse order, 3883 ** from the end toward the beginning. In other words, the cursor is 3884 ** configured to use Prev, not Next. 3885 ** 3886 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3887 ** opcode will always land on a record that equally equals the key, or 3888 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3889 ** opcode must be followed by an IdxGE opcode with the same arguments. 3890 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3891 ** IdxGE opcode will be used on subsequent loop iterations. 3892 ** 3893 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3894 */ 3895 case OP_SeekLT: /* jump, in3 */ 3896 case OP_SeekLE: /* jump, in3 */ 3897 case OP_SeekGE: /* jump, in3 */ 3898 case OP_SeekGT: { /* jump, in3 */ 3899 int res; /* Comparison result */ 3900 int oc; /* Opcode */ 3901 VdbeCursor *pC; /* The cursor to seek */ 3902 UnpackedRecord r; /* The key to seek for */ 3903 int nField; /* Number of columns or fields in the key */ 3904 i64 iKey; /* The rowid we are to seek to */ 3905 int eqOnly; /* Only interested in == results */ 3906 3907 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3908 assert( pOp->p2!=0 ); 3909 pC = p->apCsr[pOp->p1]; 3910 assert( pC!=0 ); 3911 assert( pC->eCurType==CURTYPE_BTREE ); 3912 assert( OP_SeekLE == OP_SeekLT+1 ); 3913 assert( OP_SeekGE == OP_SeekLT+2 ); 3914 assert( OP_SeekGT == OP_SeekLT+3 ); 3915 assert( pC->isOrdered ); 3916 assert( pC->uc.pCursor!=0 ); 3917 oc = pOp->opcode; 3918 eqOnly = 0; 3919 pC->nullRow = 0; 3920 #ifdef SQLITE_DEBUG 3921 pC->seekOp = pOp->opcode; 3922 #endif 3923 3924 if( pC->isTable ){ 3925 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3926 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3927 || CORRUPT_DB ); 3928 3929 /* The input value in P3 might be of any type: integer, real, string, 3930 ** blob, or NULL. But it needs to be an integer before we can do 3931 ** the seek, so convert it. */ 3932 pIn3 = &aMem[pOp->p3]; 3933 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3934 applyNumericAffinity(pIn3, 0); 3935 } 3936 iKey = sqlite3VdbeIntValue(pIn3); 3937 3938 /* If the P3 value could not be converted into an integer without 3939 ** loss of information, then special processing is required... */ 3940 if( (pIn3->flags & MEM_Int)==0 ){ 3941 if( (pIn3->flags & MEM_Real)==0 ){ 3942 /* If the P3 value cannot be converted into any kind of a number, 3943 ** then the seek is not possible, so jump to P2 */ 3944 VdbeBranchTaken(1,2); goto jump_to_p2; 3945 break; 3946 } 3947 3948 /* If the approximation iKey is larger than the actual real search 3949 ** term, substitute >= for > and < for <=. e.g. if the search term 3950 ** is 4.9 and the integer approximation 5: 3951 ** 3952 ** (x > 4.9) -> (x >= 5) 3953 ** (x <= 4.9) -> (x < 5) 3954 */ 3955 if( pIn3->u.r<(double)iKey ){ 3956 assert( OP_SeekGE==(OP_SeekGT-1) ); 3957 assert( OP_SeekLT==(OP_SeekLE-1) ); 3958 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3959 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3960 } 3961 3962 /* If the approximation iKey is smaller than the actual real search 3963 ** term, substitute <= for < and > for >=. */ 3964 else if( pIn3->u.r>(double)iKey ){ 3965 assert( OP_SeekLE==(OP_SeekLT+1) ); 3966 assert( OP_SeekGT==(OP_SeekGE+1) ); 3967 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3968 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3969 } 3970 } 3971 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3972 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3973 if( rc!=SQLITE_OK ){ 3974 goto abort_due_to_error; 3975 } 3976 }else{ 3977 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3978 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3979 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3980 */ 3981 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3982 eqOnly = 1; 3983 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3984 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3985 assert( pOp[1].p1==pOp[0].p1 ); 3986 assert( pOp[1].p2==pOp[0].p2 ); 3987 assert( pOp[1].p3==pOp[0].p3 ); 3988 assert( pOp[1].p4.i==pOp[0].p4.i ); 3989 } 3990 3991 nField = pOp->p4.i; 3992 assert( pOp->p4type==P4_INT32 ); 3993 assert( nField>0 ); 3994 r.pKeyInfo = pC->pKeyInfo; 3995 r.nField = (u16)nField; 3996 3997 /* The next line of code computes as follows, only faster: 3998 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3999 ** r.default_rc = -1; 4000 ** }else{ 4001 ** r.default_rc = +1; 4002 ** } 4003 */ 4004 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4005 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4006 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4007 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4008 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4009 4010 r.aMem = &aMem[pOp->p3]; 4011 #ifdef SQLITE_DEBUG 4012 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4013 #endif 4014 r.eqSeen = 0; 4015 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4016 if( rc!=SQLITE_OK ){ 4017 goto abort_due_to_error; 4018 } 4019 if( eqOnly && r.eqSeen==0 ){ 4020 assert( res!=0 ); 4021 goto seek_not_found; 4022 } 4023 } 4024 pC->deferredMoveto = 0; 4025 pC->cacheStatus = CACHE_STALE; 4026 #ifdef SQLITE_TEST 4027 sqlite3_search_count++; 4028 #endif 4029 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4030 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4031 res = 0; 4032 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4033 if( rc!=SQLITE_OK ){ 4034 if( rc==SQLITE_DONE ){ 4035 rc = SQLITE_OK; 4036 res = 1; 4037 }else{ 4038 goto abort_due_to_error; 4039 } 4040 } 4041 }else{ 4042 res = 0; 4043 } 4044 }else{ 4045 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4046 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4047 res = 0; 4048 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4049 if( rc!=SQLITE_OK ){ 4050 if( rc==SQLITE_DONE ){ 4051 rc = SQLITE_OK; 4052 res = 1; 4053 }else{ 4054 goto abort_due_to_error; 4055 } 4056 } 4057 }else{ 4058 /* res might be negative because the table is empty. Check to 4059 ** see if this is the case. 4060 */ 4061 res = sqlite3BtreeEof(pC->uc.pCursor); 4062 } 4063 } 4064 seek_not_found: 4065 assert( pOp->p2>0 ); 4066 VdbeBranchTaken(res!=0,2); 4067 if( res ){ 4068 goto jump_to_p2; 4069 }else if( eqOnly ){ 4070 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4071 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4072 } 4073 break; 4074 } 4075 4076 /* Opcode: SeekHit P1 P2 * * * 4077 ** Synopsis: seekHit=P2 4078 ** 4079 ** Set the seekHit flag on cursor P1 to the value in P2. 4080 ** The seekHit flag is used by the IfNoHope opcode. 4081 ** 4082 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4083 ** either 0 or 1. 4084 */ 4085 case OP_SeekHit: { 4086 VdbeCursor *pC; 4087 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4088 pC = p->apCsr[pOp->p1]; 4089 assert( pC!=0 ); 4090 assert( pOp->p2==0 || pOp->p2==1 ); 4091 pC->seekHit = pOp->p2 & 1; 4092 break; 4093 } 4094 4095 /* Opcode: Found P1 P2 P3 P4 * 4096 ** Synopsis: key=r[P3@P4] 4097 ** 4098 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4099 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4100 ** record. 4101 ** 4102 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4103 ** is a prefix of any entry in P1 then a jump is made to P2 and 4104 ** P1 is left pointing at the matching entry. 4105 ** 4106 ** This operation leaves the cursor in a state where it can be 4107 ** advanced in the forward direction. The Next instruction will work, 4108 ** but not the Prev instruction. 4109 ** 4110 ** See also: NotFound, NoConflict, NotExists. SeekGe 4111 */ 4112 /* Opcode: NotFound P1 P2 P3 P4 * 4113 ** Synopsis: key=r[P3@P4] 4114 ** 4115 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4116 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4117 ** record. 4118 ** 4119 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4120 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4121 ** does contain an entry whose prefix matches the P3/P4 record then control 4122 ** falls through to the next instruction and P1 is left pointing at the 4123 ** matching entry. 4124 ** 4125 ** This operation leaves the cursor in a state where it cannot be 4126 ** advanced in either direction. In other words, the Next and Prev 4127 ** opcodes do not work after this operation. 4128 ** 4129 ** See also: Found, NotExists, NoConflict, IfNoHope 4130 */ 4131 /* Opcode: IfNoHope P1 P2 P3 P4 * 4132 ** Synopsis: key=r[P3@P4] 4133 ** 4134 ** Register P3 is the first of P4 registers that form an unpacked 4135 ** record. 4136 ** 4137 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4138 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4139 ** check to see if there is any entry in P1 that matches the 4140 ** prefix identified by P3 and P4. If no entry matches the prefix, 4141 ** jump to P2. Otherwise fall through. 4142 ** 4143 ** This opcode behaves like OP_NotFound if the seekHit 4144 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4145 ** 4146 ** This opcode is used in IN clause processing for a multi-column key. 4147 ** If an IN clause is attached to an element of the key other than the 4148 ** left-most element, and if there are no matches on the most recent 4149 ** seek over the whole key, then it might be that one of the key element 4150 ** to the left is prohibiting a match, and hence there is "no hope" of 4151 ** any match regardless of how many IN clause elements are checked. 4152 ** In such a case, we abandon the IN clause search early, using this 4153 ** opcode. The opcode name comes from the fact that the 4154 ** jump is taken if there is "no hope" of achieving a match. 4155 ** 4156 ** See also: NotFound, SeekHit 4157 */ 4158 /* Opcode: NoConflict P1 P2 P3 P4 * 4159 ** Synopsis: key=r[P3@P4] 4160 ** 4161 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4162 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4163 ** record. 4164 ** 4165 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4166 ** contains any NULL value, jump immediately to P2. If all terms of the 4167 ** record are not-NULL then a check is done to determine if any row in the 4168 ** P1 index btree has a matching key prefix. If there are no matches, jump 4169 ** immediately to P2. If there is a match, fall through and leave the P1 4170 ** cursor pointing to the matching row. 4171 ** 4172 ** This opcode is similar to OP_NotFound with the exceptions that the 4173 ** branch is always taken if any part of the search key input is NULL. 4174 ** 4175 ** This operation leaves the cursor in a state where it cannot be 4176 ** advanced in either direction. In other words, the Next and Prev 4177 ** opcodes do not work after this operation. 4178 ** 4179 ** See also: NotFound, Found, NotExists 4180 */ 4181 case OP_IfNoHope: { /* jump, in3 */ 4182 VdbeCursor *pC; 4183 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4184 pC = p->apCsr[pOp->p1]; 4185 assert( pC!=0 ); 4186 if( pC->seekHit ) break; 4187 /* Fall through into OP_NotFound */ 4188 } 4189 case OP_NoConflict: /* jump, in3 */ 4190 case OP_NotFound: /* jump, in3 */ 4191 case OP_Found: { /* jump, in3 */ 4192 int alreadyExists; 4193 int takeJump; 4194 int ii; 4195 VdbeCursor *pC; 4196 int res; 4197 UnpackedRecord *pFree; 4198 UnpackedRecord *pIdxKey; 4199 UnpackedRecord r; 4200 4201 #ifdef SQLITE_TEST 4202 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4203 #endif 4204 4205 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4206 assert( pOp->p4type==P4_INT32 ); 4207 pC = p->apCsr[pOp->p1]; 4208 assert( pC!=0 ); 4209 #ifdef SQLITE_DEBUG 4210 pC->seekOp = pOp->opcode; 4211 #endif 4212 pIn3 = &aMem[pOp->p3]; 4213 assert( pC->eCurType==CURTYPE_BTREE ); 4214 assert( pC->uc.pCursor!=0 ); 4215 assert( pC->isTable==0 ); 4216 if( pOp->p4.i>0 ){ 4217 r.pKeyInfo = pC->pKeyInfo; 4218 r.nField = (u16)pOp->p4.i; 4219 r.aMem = pIn3; 4220 #ifdef SQLITE_DEBUG 4221 for(ii=0; ii<r.nField; ii++){ 4222 assert( memIsValid(&r.aMem[ii]) ); 4223 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4224 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4225 } 4226 #endif 4227 pIdxKey = &r; 4228 pFree = 0; 4229 }else{ 4230 assert( pIn3->flags & MEM_Blob ); 4231 rc = ExpandBlob(pIn3); 4232 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4233 if( rc ) goto no_mem; 4234 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4235 if( pIdxKey==0 ) goto no_mem; 4236 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4237 } 4238 pIdxKey->default_rc = 0; 4239 takeJump = 0; 4240 if( pOp->opcode==OP_NoConflict ){ 4241 /* For the OP_NoConflict opcode, take the jump if any of the 4242 ** input fields are NULL, since any key with a NULL will not 4243 ** conflict */ 4244 for(ii=0; ii<pIdxKey->nField; ii++){ 4245 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4246 takeJump = 1; 4247 break; 4248 } 4249 } 4250 } 4251 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4252 if( pFree ) sqlite3DbFreeNN(db, pFree); 4253 if( rc!=SQLITE_OK ){ 4254 goto abort_due_to_error; 4255 } 4256 pC->seekResult = res; 4257 alreadyExists = (res==0); 4258 pC->nullRow = 1-alreadyExists; 4259 pC->deferredMoveto = 0; 4260 pC->cacheStatus = CACHE_STALE; 4261 if( pOp->opcode==OP_Found ){ 4262 VdbeBranchTaken(alreadyExists!=0,2); 4263 if( alreadyExists ) goto jump_to_p2; 4264 }else{ 4265 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4266 if( takeJump || !alreadyExists ) goto jump_to_p2; 4267 } 4268 break; 4269 } 4270 4271 /* Opcode: SeekRowid P1 P2 P3 * * 4272 ** Synopsis: intkey=r[P3] 4273 ** 4274 ** P1 is the index of a cursor open on an SQL table btree (with integer 4275 ** keys). If register P3 does not contain an integer or if P1 does not 4276 ** contain a record with rowid P3 then jump immediately to P2. 4277 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4278 ** a record with rowid P3 then 4279 ** leave the cursor pointing at that record and fall through to the next 4280 ** instruction. 4281 ** 4282 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4283 ** the P3 register must be guaranteed to contain an integer value. With this 4284 ** opcode, register P3 might not contain an integer. 4285 ** 4286 ** The OP_NotFound opcode performs the same operation on index btrees 4287 ** (with arbitrary multi-value keys). 4288 ** 4289 ** This opcode leaves the cursor in a state where it cannot be advanced 4290 ** in either direction. In other words, the Next and Prev opcodes will 4291 ** not work following this opcode. 4292 ** 4293 ** See also: Found, NotFound, NoConflict, SeekRowid 4294 */ 4295 /* Opcode: NotExists P1 P2 P3 * * 4296 ** Synopsis: intkey=r[P3] 4297 ** 4298 ** P1 is the index of a cursor open on an SQL table btree (with integer 4299 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4300 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4301 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4302 ** leave the cursor pointing at that record and fall through to the next 4303 ** instruction. 4304 ** 4305 ** The OP_SeekRowid opcode performs the same operation but also allows the 4306 ** P3 register to contain a non-integer value, in which case the jump is 4307 ** always taken. This opcode requires that P3 always contain an integer. 4308 ** 4309 ** The OP_NotFound opcode performs the same operation on index btrees 4310 ** (with arbitrary multi-value keys). 4311 ** 4312 ** This opcode leaves the cursor in a state where it cannot be advanced 4313 ** in either direction. In other words, the Next and Prev opcodes will 4314 ** not work following this opcode. 4315 ** 4316 ** See also: Found, NotFound, NoConflict, SeekRowid 4317 */ 4318 case OP_SeekRowid: { /* jump, in3 */ 4319 VdbeCursor *pC; 4320 BtCursor *pCrsr; 4321 int res; 4322 u64 iKey; 4323 4324 pIn3 = &aMem[pOp->p3]; 4325 if( (pIn3->flags & MEM_Int)==0 ){ 4326 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4327 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; 4328 } 4329 /* Fall through into OP_NotExists */ 4330 case OP_NotExists: /* jump, in3 */ 4331 pIn3 = &aMem[pOp->p3]; 4332 assert( pIn3->flags & MEM_Int ); 4333 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4334 pC = p->apCsr[pOp->p1]; 4335 assert( pC!=0 ); 4336 #ifdef SQLITE_DEBUG 4337 pC->seekOp = OP_SeekRowid; 4338 #endif 4339 assert( pC->isTable ); 4340 assert( pC->eCurType==CURTYPE_BTREE ); 4341 pCrsr = pC->uc.pCursor; 4342 assert( pCrsr!=0 ); 4343 res = 0; 4344 iKey = pIn3->u.i; 4345 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4346 assert( rc==SQLITE_OK || res==0 ); 4347 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4348 pC->nullRow = 0; 4349 pC->cacheStatus = CACHE_STALE; 4350 pC->deferredMoveto = 0; 4351 VdbeBranchTaken(res!=0,2); 4352 pC->seekResult = res; 4353 if( res!=0 ){ 4354 assert( rc==SQLITE_OK ); 4355 if( pOp->p2==0 ){ 4356 rc = SQLITE_CORRUPT_BKPT; 4357 }else{ 4358 goto jump_to_p2; 4359 } 4360 } 4361 if( rc ) goto abort_due_to_error; 4362 break; 4363 } 4364 4365 /* Opcode: Sequence P1 P2 * * * 4366 ** Synopsis: r[P2]=cursor[P1].ctr++ 4367 ** 4368 ** Find the next available sequence number for cursor P1. 4369 ** Write the sequence number into register P2. 4370 ** The sequence number on the cursor is incremented after this 4371 ** instruction. 4372 */ 4373 case OP_Sequence: { /* out2 */ 4374 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4375 assert( p->apCsr[pOp->p1]!=0 ); 4376 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4377 pOut = out2Prerelease(p, pOp); 4378 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4379 break; 4380 } 4381 4382 4383 /* Opcode: NewRowid P1 P2 P3 * * 4384 ** Synopsis: r[P2]=rowid 4385 ** 4386 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4387 ** The record number is not previously used as a key in the database 4388 ** table that cursor P1 points to. The new record number is written 4389 ** written to register P2. 4390 ** 4391 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4392 ** the largest previously generated record number. No new record numbers are 4393 ** allowed to be less than this value. When this value reaches its maximum, 4394 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4395 ** generated record number. This P3 mechanism is used to help implement the 4396 ** AUTOINCREMENT feature. 4397 */ 4398 case OP_NewRowid: { /* out2 */ 4399 i64 v; /* The new rowid */ 4400 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4401 int res; /* Result of an sqlite3BtreeLast() */ 4402 int cnt; /* Counter to limit the number of searches */ 4403 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4404 VdbeFrame *pFrame; /* Root frame of VDBE */ 4405 4406 v = 0; 4407 res = 0; 4408 pOut = out2Prerelease(p, pOp); 4409 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4410 pC = p->apCsr[pOp->p1]; 4411 assert( pC!=0 ); 4412 assert( pC->isTable ); 4413 assert( pC->eCurType==CURTYPE_BTREE ); 4414 assert( pC->uc.pCursor!=0 ); 4415 { 4416 /* The next rowid or record number (different terms for the same 4417 ** thing) is obtained in a two-step algorithm. 4418 ** 4419 ** First we attempt to find the largest existing rowid and add one 4420 ** to that. But if the largest existing rowid is already the maximum 4421 ** positive integer, we have to fall through to the second 4422 ** probabilistic algorithm 4423 ** 4424 ** The second algorithm is to select a rowid at random and see if 4425 ** it already exists in the table. If it does not exist, we have 4426 ** succeeded. If the random rowid does exist, we select a new one 4427 ** and try again, up to 100 times. 4428 */ 4429 assert( pC->isTable ); 4430 4431 #ifdef SQLITE_32BIT_ROWID 4432 # define MAX_ROWID 0x7fffffff 4433 #else 4434 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4435 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4436 ** to provide the constant while making all compilers happy. 4437 */ 4438 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4439 #endif 4440 4441 if( !pC->useRandomRowid ){ 4442 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4443 if( rc!=SQLITE_OK ){ 4444 goto abort_due_to_error; 4445 } 4446 if( res ){ 4447 v = 1; /* IMP: R-61914-48074 */ 4448 }else{ 4449 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4450 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4451 if( v>=MAX_ROWID ){ 4452 pC->useRandomRowid = 1; 4453 }else{ 4454 v++; /* IMP: R-29538-34987 */ 4455 } 4456 } 4457 } 4458 4459 #ifndef SQLITE_OMIT_AUTOINCREMENT 4460 if( pOp->p3 ){ 4461 /* Assert that P3 is a valid memory cell. */ 4462 assert( pOp->p3>0 ); 4463 if( p->pFrame ){ 4464 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4465 /* Assert that P3 is a valid memory cell. */ 4466 assert( pOp->p3<=pFrame->nMem ); 4467 pMem = &pFrame->aMem[pOp->p3]; 4468 }else{ 4469 /* Assert that P3 is a valid memory cell. */ 4470 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4471 pMem = &aMem[pOp->p3]; 4472 memAboutToChange(p, pMem); 4473 } 4474 assert( memIsValid(pMem) ); 4475 4476 REGISTER_TRACE(pOp->p3, pMem); 4477 sqlite3VdbeMemIntegerify(pMem); 4478 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4479 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4480 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4481 goto abort_due_to_error; 4482 } 4483 if( v<pMem->u.i+1 ){ 4484 v = pMem->u.i + 1; 4485 } 4486 pMem->u.i = v; 4487 } 4488 #endif 4489 if( pC->useRandomRowid ){ 4490 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4491 ** largest possible integer (9223372036854775807) then the database 4492 ** engine starts picking positive candidate ROWIDs at random until 4493 ** it finds one that is not previously used. */ 4494 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4495 ** an AUTOINCREMENT table. */ 4496 cnt = 0; 4497 do{ 4498 sqlite3_randomness(sizeof(v), &v); 4499 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4500 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4501 0, &res))==SQLITE_OK) 4502 && (res==0) 4503 && (++cnt<100)); 4504 if( rc ) goto abort_due_to_error; 4505 if( res==0 ){ 4506 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4507 goto abort_due_to_error; 4508 } 4509 assert( v>0 ); /* EV: R-40812-03570 */ 4510 } 4511 pC->deferredMoveto = 0; 4512 pC->cacheStatus = CACHE_STALE; 4513 } 4514 pOut->u.i = v; 4515 break; 4516 } 4517 4518 /* Opcode: Insert P1 P2 P3 P4 P5 4519 ** Synopsis: intkey=r[P3] data=r[P2] 4520 ** 4521 ** Write an entry into the table of cursor P1. A new entry is 4522 ** created if it doesn't already exist or the data for an existing 4523 ** entry is overwritten. The data is the value MEM_Blob stored in register 4524 ** number P2. The key is stored in register P3. The key must 4525 ** be a MEM_Int. 4526 ** 4527 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4528 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4529 ** then rowid is stored for subsequent return by the 4530 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4531 ** 4532 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4533 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4534 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4535 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4536 ** 4537 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4538 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4539 ** is part of an INSERT operation. The difference is only important to 4540 ** the update hook. 4541 ** 4542 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4543 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4544 ** following a successful insert. 4545 ** 4546 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4547 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4548 ** and register P2 becomes ephemeral. If the cursor is changed, the 4549 ** value of register P2 will then change. Make sure this does not 4550 ** cause any problems.) 4551 ** 4552 ** This instruction only works on tables. The equivalent instruction 4553 ** for indices is OP_IdxInsert. 4554 */ 4555 /* Opcode: InsertInt P1 P2 P3 P4 P5 4556 ** Synopsis: intkey=P3 data=r[P2] 4557 ** 4558 ** This works exactly like OP_Insert except that the key is the 4559 ** integer value P3, not the value of the integer stored in register P3. 4560 */ 4561 case OP_Insert: 4562 case OP_InsertInt: { 4563 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4564 Mem *pKey; /* MEM cell holding key for the record */ 4565 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4566 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4567 const char *zDb; /* database name - used by the update hook */ 4568 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4569 BtreePayload x; /* Payload to be inserted */ 4570 4571 pData = &aMem[pOp->p2]; 4572 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4573 assert( memIsValid(pData) ); 4574 pC = p->apCsr[pOp->p1]; 4575 assert( pC!=0 ); 4576 assert( pC->eCurType==CURTYPE_BTREE ); 4577 assert( pC->uc.pCursor!=0 ); 4578 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4579 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4580 REGISTER_TRACE(pOp->p2, pData); 4581 sqlite3VdbeIncrWriteCounter(p, pC); 4582 4583 if( pOp->opcode==OP_Insert ){ 4584 pKey = &aMem[pOp->p3]; 4585 assert( pKey->flags & MEM_Int ); 4586 assert( memIsValid(pKey) ); 4587 REGISTER_TRACE(pOp->p3, pKey); 4588 x.nKey = pKey->u.i; 4589 }else{ 4590 assert( pOp->opcode==OP_InsertInt ); 4591 x.nKey = pOp->p3; 4592 } 4593 4594 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4595 assert( pC->iDb>=0 ); 4596 zDb = db->aDb[pC->iDb].zDbSName; 4597 pTab = pOp->p4.pTab; 4598 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4599 }else{ 4600 pTab = 0; 4601 zDb = 0; /* Not needed. Silence a compiler warning. */ 4602 } 4603 4604 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4605 /* Invoke the pre-update hook, if any */ 4606 if( pTab ){ 4607 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4608 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4609 } 4610 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4611 /* Prevent post-update hook from running in cases when it should not */ 4612 pTab = 0; 4613 } 4614 } 4615 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4616 #endif 4617 4618 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4619 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4620 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4621 x.pData = pData->z; 4622 x.nData = pData->n; 4623 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4624 if( pData->flags & MEM_Zero ){ 4625 x.nZero = pData->u.nZero; 4626 }else{ 4627 x.nZero = 0; 4628 } 4629 x.pKey = 0; 4630 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4631 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4632 ); 4633 pC->deferredMoveto = 0; 4634 pC->cacheStatus = CACHE_STALE; 4635 4636 /* Invoke the update-hook if required. */ 4637 if( rc ) goto abort_due_to_error; 4638 if( pTab ){ 4639 assert( db->xUpdateCallback!=0 ); 4640 assert( pTab->aCol!=0 ); 4641 db->xUpdateCallback(db->pUpdateArg, 4642 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4643 zDb, pTab->zName, x.nKey); 4644 } 4645 break; 4646 } 4647 4648 /* Opcode: Delete P1 P2 P3 P4 P5 4649 ** 4650 ** Delete the record at which the P1 cursor is currently pointing. 4651 ** 4652 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4653 ** the cursor will be left pointing at either the next or the previous 4654 ** record in the table. If it is left pointing at the next record, then 4655 ** the next Next instruction will be a no-op. As a result, in this case 4656 ** it is ok to delete a record from within a Next loop. If 4657 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4658 ** left in an undefined state. 4659 ** 4660 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4661 ** delete one of several associated with deleting a table row and all its 4662 ** associated index entries. Exactly one of those deletes is the "primary" 4663 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4664 ** marked with the AUXDELETE flag. 4665 ** 4666 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4667 ** change count is incremented (otherwise not). 4668 ** 4669 ** P1 must not be pseudo-table. It has to be a real table with 4670 ** multiple rows. 4671 ** 4672 ** If P4 is not NULL then it points to a Table object. In this case either 4673 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4674 ** have been positioned using OP_NotFound prior to invoking this opcode in 4675 ** this case. Specifically, if one is configured, the pre-update hook is 4676 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4677 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4678 ** 4679 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4680 ** of the memory cell that contains the value that the rowid of the row will 4681 ** be set to by the update. 4682 */ 4683 case OP_Delete: { 4684 VdbeCursor *pC; 4685 const char *zDb; 4686 Table *pTab; 4687 int opflags; 4688 4689 opflags = pOp->p2; 4690 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4691 pC = p->apCsr[pOp->p1]; 4692 assert( pC!=0 ); 4693 assert( pC->eCurType==CURTYPE_BTREE ); 4694 assert( pC->uc.pCursor!=0 ); 4695 assert( pC->deferredMoveto==0 ); 4696 sqlite3VdbeIncrWriteCounter(p, pC); 4697 4698 #ifdef SQLITE_DEBUG 4699 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4700 /* If p5 is zero, the seek operation that positioned the cursor prior to 4701 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4702 ** the row that is being deleted */ 4703 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4704 assert( pC->movetoTarget==iKey ); 4705 } 4706 #endif 4707 4708 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4709 ** the name of the db to pass as to it. Also set local pTab to a copy 4710 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4711 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4712 ** VdbeCursor.movetoTarget to the current rowid. */ 4713 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4714 assert( pC->iDb>=0 ); 4715 assert( pOp->p4.pTab!=0 ); 4716 zDb = db->aDb[pC->iDb].zDbSName; 4717 pTab = pOp->p4.pTab; 4718 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4719 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4720 } 4721 }else{ 4722 zDb = 0; /* Not needed. Silence a compiler warning. */ 4723 pTab = 0; /* Not needed. Silence a compiler warning. */ 4724 } 4725 4726 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4727 /* Invoke the pre-update-hook if required. */ 4728 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4729 assert( !(opflags & OPFLAG_ISUPDATE) 4730 || HasRowid(pTab)==0 4731 || (aMem[pOp->p3].flags & MEM_Int) 4732 ); 4733 sqlite3VdbePreUpdateHook(p, pC, 4734 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4735 zDb, pTab, pC->movetoTarget, 4736 pOp->p3 4737 ); 4738 } 4739 if( opflags & OPFLAG_ISNOOP ) break; 4740 #endif 4741 4742 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4743 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4744 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4745 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4746 4747 #ifdef SQLITE_DEBUG 4748 if( p->pFrame==0 ){ 4749 if( pC->isEphemeral==0 4750 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4751 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4752 ){ 4753 nExtraDelete++; 4754 } 4755 if( pOp->p2 & OPFLAG_NCHANGE ){ 4756 nExtraDelete--; 4757 } 4758 } 4759 #endif 4760 4761 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4762 pC->cacheStatus = CACHE_STALE; 4763 pC->seekResult = 0; 4764 if( rc ) goto abort_due_to_error; 4765 4766 /* Invoke the update-hook if required. */ 4767 if( opflags & OPFLAG_NCHANGE ){ 4768 p->nChange++; 4769 if( db->xUpdateCallback && HasRowid(pTab) ){ 4770 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4771 pC->movetoTarget); 4772 assert( pC->iDb>=0 ); 4773 } 4774 } 4775 4776 break; 4777 } 4778 /* Opcode: ResetCount * * * * * 4779 ** 4780 ** The value of the change counter is copied to the database handle 4781 ** change counter (returned by subsequent calls to sqlite3_changes()). 4782 ** Then the VMs internal change counter resets to 0. 4783 ** This is used by trigger programs. 4784 */ 4785 case OP_ResetCount: { 4786 sqlite3VdbeSetChanges(db, p->nChange); 4787 p->nChange = 0; 4788 break; 4789 } 4790 4791 /* Opcode: SorterCompare P1 P2 P3 P4 4792 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4793 ** 4794 ** P1 is a sorter cursor. This instruction compares a prefix of the 4795 ** record blob in register P3 against a prefix of the entry that 4796 ** the sorter cursor currently points to. Only the first P4 fields 4797 ** of r[P3] and the sorter record are compared. 4798 ** 4799 ** If either P3 or the sorter contains a NULL in one of their significant 4800 ** fields (not counting the P4 fields at the end which are ignored) then 4801 ** the comparison is assumed to be equal. 4802 ** 4803 ** Fall through to next instruction if the two records compare equal to 4804 ** each other. Jump to P2 if they are different. 4805 */ 4806 case OP_SorterCompare: { 4807 VdbeCursor *pC; 4808 int res; 4809 int nKeyCol; 4810 4811 pC = p->apCsr[pOp->p1]; 4812 assert( isSorter(pC) ); 4813 assert( pOp->p4type==P4_INT32 ); 4814 pIn3 = &aMem[pOp->p3]; 4815 nKeyCol = pOp->p4.i; 4816 res = 0; 4817 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4818 VdbeBranchTaken(res!=0,2); 4819 if( rc ) goto abort_due_to_error; 4820 if( res ) goto jump_to_p2; 4821 break; 4822 }; 4823 4824 /* Opcode: SorterData P1 P2 P3 * * 4825 ** Synopsis: r[P2]=data 4826 ** 4827 ** Write into register P2 the current sorter data for sorter cursor P1. 4828 ** Then clear the column header cache on cursor P3. 4829 ** 4830 ** This opcode is normally use to move a record out of the sorter and into 4831 ** a register that is the source for a pseudo-table cursor created using 4832 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4833 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4834 ** us from having to issue a separate NullRow instruction to clear that cache. 4835 */ 4836 case OP_SorterData: { 4837 VdbeCursor *pC; 4838 4839 pOut = &aMem[pOp->p2]; 4840 pC = p->apCsr[pOp->p1]; 4841 assert( isSorter(pC) ); 4842 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4843 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4844 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4845 if( rc ) goto abort_due_to_error; 4846 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4847 break; 4848 } 4849 4850 /* Opcode: RowData P1 P2 P3 * * 4851 ** Synopsis: r[P2]=data 4852 ** 4853 ** Write into register P2 the complete row content for the row at 4854 ** which cursor P1 is currently pointing. 4855 ** There is no interpretation of the data. 4856 ** It is just copied onto the P2 register exactly as 4857 ** it is found in the database file. 4858 ** 4859 ** If cursor P1 is an index, then the content is the key of the row. 4860 ** If cursor P2 is a table, then the content extracted is the data. 4861 ** 4862 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4863 ** of a real table, not a pseudo-table. 4864 ** 4865 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 4866 ** into the database page. That means that the content of the output 4867 ** register will be invalidated as soon as the cursor moves - including 4868 ** moves caused by other cursors that "save" the current cursors 4869 ** position in order that they can write to the same table. If P3==0 4870 ** then a copy of the data is made into memory. P3!=0 is faster, but 4871 ** P3==0 is safer. 4872 ** 4873 ** If P3!=0 then the content of the P2 register is unsuitable for use 4874 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4875 ** The P2 register content is invalidated by opcodes like OP_Function or 4876 ** by any use of another cursor pointing to the same table. 4877 */ 4878 case OP_RowData: { 4879 VdbeCursor *pC; 4880 BtCursor *pCrsr; 4881 u32 n; 4882 4883 pOut = out2Prerelease(p, pOp); 4884 4885 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4886 pC = p->apCsr[pOp->p1]; 4887 assert( pC!=0 ); 4888 assert( pC->eCurType==CURTYPE_BTREE ); 4889 assert( isSorter(pC)==0 ); 4890 assert( pC->nullRow==0 ); 4891 assert( pC->uc.pCursor!=0 ); 4892 pCrsr = pC->uc.pCursor; 4893 4894 /* The OP_RowData opcodes always follow OP_NotExists or 4895 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4896 ** that might invalidate the cursor. 4897 ** If this where not the case, on of the following assert()s 4898 ** would fail. Should this ever change (because of changes in the code 4899 ** generator) then the fix would be to insert a call to 4900 ** sqlite3VdbeCursorMoveto(). 4901 */ 4902 assert( pC->deferredMoveto==0 ); 4903 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4904 #if 0 /* Not required due to the previous to assert() statements */ 4905 rc = sqlite3VdbeCursorMoveto(pC); 4906 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4907 #endif 4908 4909 n = sqlite3BtreePayloadSize(pCrsr); 4910 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4911 goto too_big; 4912 } 4913 testcase( n==0 ); 4914 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4915 if( rc ) goto abort_due_to_error; 4916 if( !pOp->p3 ) Deephemeralize(pOut); 4917 UPDATE_MAX_BLOBSIZE(pOut); 4918 REGISTER_TRACE(pOp->p2, pOut); 4919 break; 4920 } 4921 4922 /* Opcode: Rowid P1 P2 * * * 4923 ** Synopsis: r[P2]=rowid 4924 ** 4925 ** Store in register P2 an integer which is the key of the table entry that 4926 ** P1 is currently point to. 4927 ** 4928 ** P1 can be either an ordinary table or a virtual table. There used to 4929 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4930 ** one opcode now works for both table types. 4931 */ 4932 case OP_Rowid: { /* out2 */ 4933 VdbeCursor *pC; 4934 i64 v; 4935 sqlite3_vtab *pVtab; 4936 const sqlite3_module *pModule; 4937 4938 pOut = out2Prerelease(p, pOp); 4939 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4940 pC = p->apCsr[pOp->p1]; 4941 assert( pC!=0 ); 4942 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4943 if( pC->nullRow ){ 4944 pOut->flags = MEM_Null; 4945 break; 4946 }else if( pC->deferredMoveto ){ 4947 v = pC->movetoTarget; 4948 #ifndef SQLITE_OMIT_VIRTUALTABLE 4949 }else if( pC->eCurType==CURTYPE_VTAB ){ 4950 assert( pC->uc.pVCur!=0 ); 4951 pVtab = pC->uc.pVCur->pVtab; 4952 pModule = pVtab->pModule; 4953 assert( pModule->xRowid ); 4954 rc = pModule->xRowid(pC->uc.pVCur, &v); 4955 sqlite3VtabImportErrmsg(p, pVtab); 4956 if( rc ) goto abort_due_to_error; 4957 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4958 }else{ 4959 assert( pC->eCurType==CURTYPE_BTREE ); 4960 assert( pC->uc.pCursor!=0 ); 4961 rc = sqlite3VdbeCursorRestore(pC); 4962 if( rc ) goto abort_due_to_error; 4963 if( pC->nullRow ){ 4964 pOut->flags = MEM_Null; 4965 break; 4966 } 4967 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4968 } 4969 pOut->u.i = v; 4970 break; 4971 } 4972 4973 /* Opcode: NullRow P1 * * * * 4974 ** 4975 ** Move the cursor P1 to a null row. Any OP_Column operations 4976 ** that occur while the cursor is on the null row will always 4977 ** write a NULL. 4978 */ 4979 case OP_NullRow: { 4980 VdbeCursor *pC; 4981 4982 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4983 pC = p->apCsr[pOp->p1]; 4984 assert( pC!=0 ); 4985 pC->nullRow = 1; 4986 pC->cacheStatus = CACHE_STALE; 4987 if( pC->eCurType==CURTYPE_BTREE ){ 4988 assert( pC->uc.pCursor!=0 ); 4989 sqlite3BtreeClearCursor(pC->uc.pCursor); 4990 } 4991 #ifdef SQLITE_DEBUG 4992 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 4993 #endif 4994 break; 4995 } 4996 4997 /* Opcode: SeekEnd P1 * * * * 4998 ** 4999 ** Position cursor P1 at the end of the btree for the purpose of 5000 ** appending a new entry onto the btree. 5001 ** 5002 ** It is assumed that the cursor is used only for appending and so 5003 ** if the cursor is valid, then the cursor must already be pointing 5004 ** at the end of the btree and so no changes are made to 5005 ** the cursor. 5006 */ 5007 /* Opcode: Last P1 P2 * * * 5008 ** 5009 ** The next use of the Rowid or Column or Prev instruction for P1 5010 ** will refer to the last entry in the database table or index. 5011 ** If the table or index is empty and P2>0, then jump immediately to P2. 5012 ** If P2 is 0 or if the table or index is not empty, fall through 5013 ** to the following instruction. 5014 ** 5015 ** This opcode leaves the cursor configured to move in reverse order, 5016 ** from the end toward the beginning. In other words, the cursor is 5017 ** configured to use Prev, not Next. 5018 */ 5019 case OP_SeekEnd: 5020 case OP_Last: { /* jump */ 5021 VdbeCursor *pC; 5022 BtCursor *pCrsr; 5023 int res; 5024 5025 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5026 pC = p->apCsr[pOp->p1]; 5027 assert( pC!=0 ); 5028 assert( pC->eCurType==CURTYPE_BTREE ); 5029 pCrsr = pC->uc.pCursor; 5030 res = 0; 5031 assert( pCrsr!=0 ); 5032 #ifdef SQLITE_DEBUG 5033 pC->seekOp = pOp->opcode; 5034 #endif 5035 if( pOp->opcode==OP_SeekEnd ){ 5036 assert( pOp->p2==0 ); 5037 pC->seekResult = -1; 5038 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5039 break; 5040 } 5041 } 5042 rc = sqlite3BtreeLast(pCrsr, &res); 5043 pC->nullRow = (u8)res; 5044 pC->deferredMoveto = 0; 5045 pC->cacheStatus = CACHE_STALE; 5046 if( rc ) goto abort_due_to_error; 5047 if( pOp->p2>0 ){ 5048 VdbeBranchTaken(res!=0,2); 5049 if( res ) goto jump_to_p2; 5050 } 5051 break; 5052 } 5053 5054 /* Opcode: IfSmaller P1 P2 P3 * * 5055 ** 5056 ** Estimate the number of rows in the table P1. Jump to P2 if that 5057 ** estimate is less than approximately 2**(0.1*P3). 5058 */ 5059 case OP_IfSmaller: { /* jump */ 5060 VdbeCursor *pC; 5061 BtCursor *pCrsr; 5062 int res; 5063 i64 sz; 5064 5065 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5066 pC = p->apCsr[pOp->p1]; 5067 assert( pC!=0 ); 5068 pCrsr = pC->uc.pCursor; 5069 assert( pCrsr ); 5070 rc = sqlite3BtreeFirst(pCrsr, &res); 5071 if( rc ) goto abort_due_to_error; 5072 if( res==0 ){ 5073 sz = sqlite3BtreeRowCountEst(pCrsr); 5074 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5075 } 5076 VdbeBranchTaken(res!=0,2); 5077 if( res ) goto jump_to_p2; 5078 break; 5079 } 5080 5081 5082 /* Opcode: SorterSort P1 P2 * * * 5083 ** 5084 ** After all records have been inserted into the Sorter object 5085 ** identified by P1, invoke this opcode to actually do the sorting. 5086 ** Jump to P2 if there are no records to be sorted. 5087 ** 5088 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5089 ** for Sorter objects. 5090 */ 5091 /* Opcode: Sort P1 P2 * * * 5092 ** 5093 ** This opcode does exactly the same thing as OP_Rewind except that 5094 ** it increments an undocumented global variable used for testing. 5095 ** 5096 ** Sorting is accomplished by writing records into a sorting index, 5097 ** then rewinding that index and playing it back from beginning to 5098 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5099 ** rewinding so that the global variable will be incremented and 5100 ** regression tests can determine whether or not the optimizer is 5101 ** correctly optimizing out sorts. 5102 */ 5103 case OP_SorterSort: /* jump */ 5104 case OP_Sort: { /* jump */ 5105 #ifdef SQLITE_TEST 5106 sqlite3_sort_count++; 5107 sqlite3_search_count--; 5108 #endif 5109 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5110 /* Fall through into OP_Rewind */ 5111 } 5112 /* Opcode: Rewind P1 P2 * * P5 5113 ** 5114 ** The next use of the Rowid or Column or Next instruction for P1 5115 ** will refer to the first entry in the database table or index. 5116 ** If the table or index is empty, jump immediately to P2. 5117 ** If the table or index is not empty, fall through to the following 5118 ** instruction. 5119 ** 5120 ** If P5 is non-zero and the table is not empty, then the "skip-next" 5121 ** flag is set on the cursor so that the next OP_Next instruction 5122 ** executed on it is a no-op. 5123 ** 5124 ** This opcode leaves the cursor configured to move in forward order, 5125 ** from the beginning toward the end. In other words, the cursor is 5126 ** configured to use Next, not Prev. 5127 */ 5128 case OP_Rewind: { /* jump */ 5129 VdbeCursor *pC; 5130 BtCursor *pCrsr; 5131 int res; 5132 5133 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5134 pC = p->apCsr[pOp->p1]; 5135 assert( pC!=0 ); 5136 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5137 res = 1; 5138 #ifdef SQLITE_DEBUG 5139 pC->seekOp = OP_Rewind; 5140 #endif 5141 if( isSorter(pC) ){ 5142 rc = sqlite3VdbeSorterRewind(pC, &res); 5143 }else{ 5144 assert( pC->eCurType==CURTYPE_BTREE ); 5145 pCrsr = pC->uc.pCursor; 5146 assert( pCrsr ); 5147 rc = sqlite3BtreeFirst(pCrsr, &res); 5148 #ifndef SQLITE_OMIT_WINDOWFUNC 5149 if( pOp->p5 ) sqlite3BtreeSkipNext(pCrsr); 5150 #endif 5151 pC->deferredMoveto = 0; 5152 pC->cacheStatus = CACHE_STALE; 5153 } 5154 if( rc ) goto abort_due_to_error; 5155 pC->nullRow = (u8)res; 5156 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5157 VdbeBranchTaken(res!=0,2); 5158 if( res ) goto jump_to_p2; 5159 break; 5160 } 5161 5162 /* Opcode: Next P1 P2 P3 P4 P5 5163 ** 5164 ** Advance cursor P1 so that it points to the next key/data pair in its 5165 ** table or index. If there are no more key/value pairs then fall through 5166 ** to the following instruction. But if the cursor advance was successful, 5167 ** jump immediately to P2. 5168 ** 5169 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5170 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5171 ** to follow SeekLT, SeekLE, or OP_Last. 5172 ** 5173 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5174 ** been opened prior to this opcode or the program will segfault. 5175 ** 5176 ** The P3 value is a hint to the btree implementation. If P3==1, that 5177 ** means P1 is an SQL index and that this instruction could have been 5178 ** omitted if that index had been unique. P3 is usually 0. P3 is 5179 ** always either 0 or 1. 5180 ** 5181 ** P4 is always of type P4_ADVANCE. The function pointer points to 5182 ** sqlite3BtreeNext(). 5183 ** 5184 ** If P5 is positive and the jump is taken, then event counter 5185 ** number P5-1 in the prepared statement is incremented. 5186 ** 5187 ** See also: Prev 5188 */ 5189 /* Opcode: Prev P1 P2 P3 P4 P5 5190 ** 5191 ** Back up cursor P1 so that it points to the previous key/data pair in its 5192 ** table or index. If there is no previous key/value pairs then fall through 5193 ** to the following instruction. But if the cursor backup was successful, 5194 ** jump immediately to P2. 5195 ** 5196 ** 5197 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5198 ** OP_Last opcode used to position the cursor. Prev is not allowed 5199 ** to follow SeekGT, SeekGE, or OP_Rewind. 5200 ** 5201 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5202 ** not open then the behavior is undefined. 5203 ** 5204 ** The P3 value is a hint to the btree implementation. If P3==1, that 5205 ** means P1 is an SQL index and that this instruction could have been 5206 ** omitted if that index had been unique. P3 is usually 0. P3 is 5207 ** always either 0 or 1. 5208 ** 5209 ** P4 is always of type P4_ADVANCE. The function pointer points to 5210 ** sqlite3BtreePrevious(). 5211 ** 5212 ** If P5 is positive and the jump is taken, then event counter 5213 ** number P5-1 in the prepared statement is incremented. 5214 */ 5215 /* Opcode: SorterNext P1 P2 * * P5 5216 ** 5217 ** This opcode works just like OP_Next except that P1 must be a 5218 ** sorter object for which the OP_SorterSort opcode has been 5219 ** invoked. This opcode advances the cursor to the next sorted 5220 ** record, or jumps to P2 if there are no more sorted records. 5221 */ 5222 case OP_SorterNext: { /* jump */ 5223 VdbeCursor *pC; 5224 5225 pC = p->apCsr[pOp->p1]; 5226 assert( isSorter(pC) ); 5227 rc = sqlite3VdbeSorterNext(db, pC); 5228 goto next_tail; 5229 case OP_Prev: /* jump */ 5230 case OP_Next: /* jump */ 5231 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5232 assert( pOp->p5<ArraySize(p->aCounter) ); 5233 pC = p->apCsr[pOp->p1]; 5234 assert( pC!=0 ); 5235 assert( pC->deferredMoveto==0 ); 5236 assert( pC->eCurType==CURTYPE_BTREE ); 5237 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5238 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5239 5240 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5241 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5242 assert( pOp->opcode!=OP_Next 5243 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5244 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5245 || pC->seekOp==OP_NullRow); 5246 assert( pOp->opcode!=OP_Prev 5247 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5248 || pC->seekOp==OP_Last 5249 || pC->seekOp==OP_NullRow); 5250 5251 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5252 next_tail: 5253 pC->cacheStatus = CACHE_STALE; 5254 VdbeBranchTaken(rc==SQLITE_OK,2); 5255 if( rc==SQLITE_OK ){ 5256 pC->nullRow = 0; 5257 p->aCounter[pOp->p5]++; 5258 #ifdef SQLITE_TEST 5259 sqlite3_search_count++; 5260 #endif 5261 goto jump_to_p2_and_check_for_interrupt; 5262 } 5263 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5264 rc = SQLITE_OK; 5265 pC->nullRow = 1; 5266 goto check_for_interrupt; 5267 } 5268 5269 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5270 ** Synopsis: key=r[P2] 5271 ** 5272 ** Register P2 holds an SQL index key made using the 5273 ** MakeRecord instructions. This opcode writes that key 5274 ** into the index P1. Data for the entry is nil. 5275 ** 5276 ** If P4 is not zero, then it is the number of values in the unpacked 5277 ** key of reg(P2). In that case, P3 is the index of the first register 5278 ** for the unpacked key. The availability of the unpacked key can sometimes 5279 ** be an optimization. 5280 ** 5281 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5282 ** that this insert is likely to be an append. 5283 ** 5284 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5285 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5286 ** then the change counter is unchanged. 5287 ** 5288 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5289 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5290 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5291 ** seeks on the cursor or if the most recent seek used a key equivalent 5292 ** to P2. 5293 ** 5294 ** This instruction only works for indices. The equivalent instruction 5295 ** for tables is OP_Insert. 5296 */ 5297 /* Opcode: SorterInsert P1 P2 * * * 5298 ** Synopsis: key=r[P2] 5299 ** 5300 ** Register P2 holds an SQL index key made using the 5301 ** MakeRecord instructions. This opcode writes that key 5302 ** into the sorter P1. Data for the entry is nil. 5303 */ 5304 case OP_SorterInsert: /* in2 */ 5305 case OP_IdxInsert: { /* in2 */ 5306 VdbeCursor *pC; 5307 BtreePayload x; 5308 5309 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5310 pC = p->apCsr[pOp->p1]; 5311 sqlite3VdbeIncrWriteCounter(p, pC); 5312 assert( pC!=0 ); 5313 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5314 pIn2 = &aMem[pOp->p2]; 5315 assert( pIn2->flags & MEM_Blob ); 5316 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5317 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5318 assert( pC->isTable==0 ); 5319 rc = ExpandBlob(pIn2); 5320 if( rc ) goto abort_due_to_error; 5321 if( pOp->opcode==OP_SorterInsert ){ 5322 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5323 }else{ 5324 x.nKey = pIn2->n; 5325 x.pKey = pIn2->z; 5326 x.aMem = aMem + pOp->p3; 5327 x.nMem = (u16)pOp->p4.i; 5328 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5329 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5330 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5331 ); 5332 assert( pC->deferredMoveto==0 ); 5333 pC->cacheStatus = CACHE_STALE; 5334 } 5335 if( rc) goto abort_due_to_error; 5336 break; 5337 } 5338 5339 /* Opcode: IdxDelete P1 P2 P3 * * 5340 ** Synopsis: key=r[P2@P3] 5341 ** 5342 ** The content of P3 registers starting at register P2 form 5343 ** an unpacked index key. This opcode removes that entry from the 5344 ** index opened by cursor P1. 5345 */ 5346 case OP_IdxDelete: { 5347 VdbeCursor *pC; 5348 BtCursor *pCrsr; 5349 int res; 5350 UnpackedRecord r; 5351 5352 assert( pOp->p3>0 ); 5353 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5354 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5355 pC = p->apCsr[pOp->p1]; 5356 assert( pC!=0 ); 5357 assert( pC->eCurType==CURTYPE_BTREE ); 5358 sqlite3VdbeIncrWriteCounter(p, pC); 5359 pCrsr = pC->uc.pCursor; 5360 assert( pCrsr!=0 ); 5361 assert( pOp->p5==0 ); 5362 r.pKeyInfo = pC->pKeyInfo; 5363 r.nField = (u16)pOp->p3; 5364 r.default_rc = 0; 5365 r.aMem = &aMem[pOp->p2]; 5366 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5367 if( rc ) goto abort_due_to_error; 5368 if( res==0 ){ 5369 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5370 if( rc ) goto abort_due_to_error; 5371 } 5372 assert( pC->deferredMoveto==0 ); 5373 pC->cacheStatus = CACHE_STALE; 5374 pC->seekResult = 0; 5375 break; 5376 } 5377 5378 /* Opcode: DeferredSeek P1 * P3 P4 * 5379 ** Synopsis: Move P3 to P1.rowid if needed 5380 ** 5381 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5382 ** table. This opcode does a deferred seek of the P3 table cursor 5383 ** to the row that corresponds to the current row of P1. 5384 ** 5385 ** This is a deferred seek. Nothing actually happens until 5386 ** the cursor is used to read a record. That way, if no reads 5387 ** occur, no unnecessary I/O happens. 5388 ** 5389 ** P4 may be an array of integers (type P4_INTARRAY) containing 5390 ** one entry for each column in the P3 table. If array entry a(i) 5391 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5392 ** equivalent to performing the deferred seek and then reading column i 5393 ** from P1. This information is stored in P3 and used to redirect 5394 ** reads against P3 over to P1, thus possibly avoiding the need to 5395 ** seek and read cursor P3. 5396 */ 5397 /* Opcode: IdxRowid P1 P2 * * * 5398 ** Synopsis: r[P2]=rowid 5399 ** 5400 ** Write into register P2 an integer which is the last entry in the record at 5401 ** the end of the index key pointed to by cursor P1. This integer should be 5402 ** the rowid of the table entry to which this index entry points. 5403 ** 5404 ** See also: Rowid, MakeRecord. 5405 */ 5406 case OP_DeferredSeek: 5407 case OP_IdxRowid: { /* out2 */ 5408 VdbeCursor *pC; /* The P1 index cursor */ 5409 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5410 i64 rowid; /* Rowid that P1 current points to */ 5411 5412 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5413 pC = p->apCsr[pOp->p1]; 5414 assert( pC!=0 ); 5415 assert( pC->eCurType==CURTYPE_BTREE ); 5416 assert( pC->uc.pCursor!=0 ); 5417 assert( pC->isTable==0 ); 5418 assert( pC->deferredMoveto==0 ); 5419 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5420 5421 /* The IdxRowid and Seek opcodes are combined because of the commonality 5422 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5423 rc = sqlite3VdbeCursorRestore(pC); 5424 5425 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5426 ** out from under the cursor. That will never happens for an IdxRowid 5427 ** or Seek opcode */ 5428 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5429 5430 if( !pC->nullRow ){ 5431 rowid = 0; /* Not needed. Only used to silence a warning. */ 5432 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5433 if( rc!=SQLITE_OK ){ 5434 goto abort_due_to_error; 5435 } 5436 if( pOp->opcode==OP_DeferredSeek ){ 5437 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5438 pTabCur = p->apCsr[pOp->p3]; 5439 assert( pTabCur!=0 ); 5440 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5441 assert( pTabCur->uc.pCursor!=0 ); 5442 assert( pTabCur->isTable ); 5443 pTabCur->nullRow = 0; 5444 pTabCur->movetoTarget = rowid; 5445 pTabCur->deferredMoveto = 1; 5446 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5447 pTabCur->aAltMap = pOp->p4.ai; 5448 pTabCur->pAltCursor = pC; 5449 }else{ 5450 pOut = out2Prerelease(p, pOp); 5451 pOut->u.i = rowid; 5452 } 5453 }else{ 5454 assert( pOp->opcode==OP_IdxRowid ); 5455 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5456 } 5457 break; 5458 } 5459 5460 /* Opcode: IdxGE P1 P2 P3 P4 P5 5461 ** Synopsis: key=r[P3@P4] 5462 ** 5463 ** The P4 register values beginning with P3 form an unpacked index 5464 ** key that omits the PRIMARY KEY. Compare this key value against the index 5465 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5466 ** fields at the end. 5467 ** 5468 ** If the P1 index entry is greater than or equal to the key value 5469 ** then jump to P2. Otherwise fall through to the next instruction. 5470 */ 5471 /* Opcode: IdxGT P1 P2 P3 P4 P5 5472 ** Synopsis: key=r[P3@P4] 5473 ** 5474 ** The P4 register values beginning with P3 form an unpacked index 5475 ** key that omits the PRIMARY KEY. Compare this key value against the index 5476 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5477 ** fields at the end. 5478 ** 5479 ** If the P1 index entry is greater than the key value 5480 ** then jump to P2. Otherwise fall through to the next instruction. 5481 */ 5482 /* Opcode: IdxLT P1 P2 P3 P4 P5 5483 ** Synopsis: key=r[P3@P4] 5484 ** 5485 ** The P4 register values beginning with P3 form an unpacked index 5486 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5487 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5488 ** ROWID on the P1 index. 5489 ** 5490 ** If the P1 index entry is less than the key value then jump to P2. 5491 ** Otherwise fall through to the next instruction. 5492 */ 5493 /* Opcode: IdxLE P1 P2 P3 P4 P5 5494 ** Synopsis: key=r[P3@P4] 5495 ** 5496 ** The P4 register values beginning with P3 form an unpacked index 5497 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5498 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5499 ** ROWID on the P1 index. 5500 ** 5501 ** If the P1 index entry is less than or equal to the key value then jump 5502 ** to P2. Otherwise fall through to the next instruction. 5503 */ 5504 case OP_IdxLE: /* jump */ 5505 case OP_IdxGT: /* jump */ 5506 case OP_IdxLT: /* jump */ 5507 case OP_IdxGE: { /* jump */ 5508 VdbeCursor *pC; 5509 int res; 5510 UnpackedRecord r; 5511 5512 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5513 pC = p->apCsr[pOp->p1]; 5514 assert( pC!=0 ); 5515 assert( pC->isOrdered ); 5516 assert( pC->eCurType==CURTYPE_BTREE ); 5517 assert( pC->uc.pCursor!=0); 5518 assert( pC->deferredMoveto==0 ); 5519 assert( pOp->p5==0 || pOp->p5==1 ); 5520 assert( pOp->p4type==P4_INT32 ); 5521 r.pKeyInfo = pC->pKeyInfo; 5522 r.nField = (u16)pOp->p4.i; 5523 if( pOp->opcode<OP_IdxLT ){ 5524 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5525 r.default_rc = -1; 5526 }else{ 5527 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5528 r.default_rc = 0; 5529 } 5530 r.aMem = &aMem[pOp->p3]; 5531 #ifdef SQLITE_DEBUG 5532 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5533 #endif 5534 res = 0; /* Not needed. Only used to silence a warning. */ 5535 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5536 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5537 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5538 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5539 res = -res; 5540 }else{ 5541 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5542 res++; 5543 } 5544 VdbeBranchTaken(res>0,2); 5545 if( rc ) goto abort_due_to_error; 5546 if( res>0 ) goto jump_to_p2; 5547 break; 5548 } 5549 5550 /* Opcode: Destroy P1 P2 P3 * * 5551 ** 5552 ** Delete an entire database table or index whose root page in the database 5553 ** file is given by P1. 5554 ** 5555 ** The table being destroyed is in the main database file if P3==0. If 5556 ** P3==1 then the table to be clear is in the auxiliary database file 5557 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5558 ** 5559 ** If AUTOVACUUM is enabled then it is possible that another root page 5560 ** might be moved into the newly deleted root page in order to keep all 5561 ** root pages contiguous at the beginning of the database. The former 5562 ** value of the root page that moved - its value before the move occurred - 5563 ** is stored in register P2. If no page movement was required (because the 5564 ** table being dropped was already the last one in the database) then a 5565 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5566 ** is stored in register P2. 5567 ** 5568 ** This opcode throws an error if there are any active reader VMs when 5569 ** it is invoked. This is done to avoid the difficulty associated with 5570 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5571 ** database. This error is thrown even if the database is not an AUTOVACUUM 5572 ** db in order to avoid introducing an incompatibility between autovacuum 5573 ** and non-autovacuum modes. 5574 ** 5575 ** See also: Clear 5576 */ 5577 case OP_Destroy: { /* out2 */ 5578 int iMoved; 5579 int iDb; 5580 5581 sqlite3VdbeIncrWriteCounter(p, 0); 5582 assert( p->readOnly==0 ); 5583 assert( pOp->p1>1 ); 5584 pOut = out2Prerelease(p, pOp); 5585 pOut->flags = MEM_Null; 5586 if( db->nVdbeRead > db->nVDestroy+1 ){ 5587 rc = SQLITE_LOCKED; 5588 p->errorAction = OE_Abort; 5589 goto abort_due_to_error; 5590 }else{ 5591 iDb = pOp->p3; 5592 assert( DbMaskTest(p->btreeMask, iDb) ); 5593 iMoved = 0; /* Not needed. Only to silence a warning. */ 5594 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5595 pOut->flags = MEM_Int; 5596 pOut->u.i = iMoved; 5597 if( rc ) goto abort_due_to_error; 5598 #ifndef SQLITE_OMIT_AUTOVACUUM 5599 if( iMoved!=0 ){ 5600 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5601 /* All OP_Destroy operations occur on the same btree */ 5602 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5603 resetSchemaOnFault = iDb+1; 5604 } 5605 #endif 5606 } 5607 break; 5608 } 5609 5610 /* Opcode: Clear P1 P2 P3 5611 ** 5612 ** Delete all contents of the database table or index whose root page 5613 ** in the database file is given by P1. But, unlike Destroy, do not 5614 ** remove the table or index from the database file. 5615 ** 5616 ** The table being clear is in the main database file if P2==0. If 5617 ** P2==1 then the table to be clear is in the auxiliary database file 5618 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5619 ** 5620 ** If the P3 value is non-zero, then the table referred to must be an 5621 ** intkey table (an SQL table, not an index). In this case the row change 5622 ** count is incremented by the number of rows in the table being cleared. 5623 ** If P3 is greater than zero, then the value stored in register P3 is 5624 ** also incremented by the number of rows in the table being cleared. 5625 ** 5626 ** See also: Destroy 5627 */ 5628 case OP_Clear: { 5629 int nChange; 5630 5631 sqlite3VdbeIncrWriteCounter(p, 0); 5632 nChange = 0; 5633 assert( p->readOnly==0 ); 5634 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5635 rc = sqlite3BtreeClearTable( 5636 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5637 ); 5638 if( pOp->p3 ){ 5639 p->nChange += nChange; 5640 if( pOp->p3>0 ){ 5641 assert( memIsValid(&aMem[pOp->p3]) ); 5642 memAboutToChange(p, &aMem[pOp->p3]); 5643 aMem[pOp->p3].u.i += nChange; 5644 } 5645 } 5646 if( rc ) goto abort_due_to_error; 5647 break; 5648 } 5649 5650 /* Opcode: ResetSorter P1 * * * * 5651 ** 5652 ** Delete all contents from the ephemeral table or sorter 5653 ** that is open on cursor P1. 5654 ** 5655 ** This opcode only works for cursors used for sorting and 5656 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5657 */ 5658 case OP_ResetSorter: { 5659 VdbeCursor *pC; 5660 5661 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5662 pC = p->apCsr[pOp->p1]; 5663 assert( pC!=0 ); 5664 if( isSorter(pC) ){ 5665 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5666 }else{ 5667 assert( pC->eCurType==CURTYPE_BTREE ); 5668 assert( pC->isEphemeral ); 5669 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5670 if( rc ) goto abort_due_to_error; 5671 } 5672 break; 5673 } 5674 5675 /* Opcode: CreateBtree P1 P2 P3 * * 5676 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5677 ** 5678 ** Allocate a new b-tree in the main database file if P1==0 or in the 5679 ** TEMP database file if P1==1 or in an attached database if 5680 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5681 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 5682 ** The root page number of the new b-tree is stored in register P2. 5683 */ 5684 case OP_CreateBtree: { /* out2 */ 5685 int pgno; 5686 Db *pDb; 5687 5688 sqlite3VdbeIncrWriteCounter(p, 0); 5689 pOut = out2Prerelease(p, pOp); 5690 pgno = 0; 5691 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5692 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5693 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5694 assert( p->readOnly==0 ); 5695 pDb = &db->aDb[pOp->p1]; 5696 assert( pDb->pBt!=0 ); 5697 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5698 if( rc ) goto abort_due_to_error; 5699 pOut->u.i = pgno; 5700 break; 5701 } 5702 5703 /* Opcode: SqlExec * * * P4 * 5704 ** 5705 ** Run the SQL statement or statements specified in the P4 string. 5706 */ 5707 case OP_SqlExec: { 5708 sqlite3VdbeIncrWriteCounter(p, 0); 5709 db->nSqlExec++; 5710 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5711 db->nSqlExec--; 5712 if( rc ) goto abort_due_to_error; 5713 break; 5714 } 5715 5716 /* Opcode: ParseSchema P1 * * P4 * 5717 ** 5718 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5719 ** that match the WHERE clause P4. 5720 ** 5721 ** This opcode invokes the parser to create a new virtual machine, 5722 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5723 */ 5724 case OP_ParseSchema: { 5725 int iDb; 5726 const char *zMaster; 5727 char *zSql; 5728 InitData initData; 5729 5730 /* Any prepared statement that invokes this opcode will hold mutexes 5731 ** on every btree. This is a prerequisite for invoking 5732 ** sqlite3InitCallback(). 5733 */ 5734 #ifdef SQLITE_DEBUG 5735 for(iDb=0; iDb<db->nDb; iDb++){ 5736 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5737 } 5738 #endif 5739 5740 iDb = pOp->p1; 5741 assert( iDb>=0 && iDb<db->nDb ); 5742 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5743 /* Used to be a conditional */ { 5744 zMaster = MASTER_NAME; 5745 initData.db = db; 5746 initData.iDb = pOp->p1; 5747 initData.pzErrMsg = &p->zErrMsg; 5748 zSql = sqlite3MPrintf(db, 5749 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5750 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5751 if( zSql==0 ){ 5752 rc = SQLITE_NOMEM_BKPT; 5753 }else{ 5754 assert( db->init.busy==0 ); 5755 db->init.busy = 1; 5756 initData.rc = SQLITE_OK; 5757 assert( !db->mallocFailed ); 5758 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5759 if( rc==SQLITE_OK ) rc = initData.rc; 5760 sqlite3DbFreeNN(db, zSql); 5761 db->init.busy = 0; 5762 } 5763 } 5764 if( rc ){ 5765 sqlite3ResetAllSchemasOfConnection(db); 5766 if( rc==SQLITE_NOMEM ){ 5767 goto no_mem; 5768 } 5769 goto abort_due_to_error; 5770 } 5771 break; 5772 } 5773 5774 #if !defined(SQLITE_OMIT_ANALYZE) 5775 /* Opcode: LoadAnalysis P1 * * * * 5776 ** 5777 ** Read the sqlite_stat1 table for database P1 and load the content 5778 ** of that table into the internal index hash table. This will cause 5779 ** the analysis to be used when preparing all subsequent queries. 5780 */ 5781 case OP_LoadAnalysis: { 5782 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5783 rc = sqlite3AnalysisLoad(db, pOp->p1); 5784 if( rc ) goto abort_due_to_error; 5785 break; 5786 } 5787 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5788 5789 /* Opcode: DropTable P1 * * P4 * 5790 ** 5791 ** Remove the internal (in-memory) data structures that describe 5792 ** the table named P4 in database P1. This is called after a table 5793 ** is dropped from disk (using the Destroy opcode) in order to keep 5794 ** the internal representation of the 5795 ** schema consistent with what is on disk. 5796 */ 5797 case OP_DropTable: { 5798 sqlite3VdbeIncrWriteCounter(p, 0); 5799 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5800 break; 5801 } 5802 5803 /* Opcode: DropIndex P1 * * P4 * 5804 ** 5805 ** Remove the internal (in-memory) data structures that describe 5806 ** the index named P4 in database P1. This is called after an index 5807 ** is dropped from disk (using the Destroy opcode) 5808 ** in order to keep the internal representation of the 5809 ** schema consistent with what is on disk. 5810 */ 5811 case OP_DropIndex: { 5812 sqlite3VdbeIncrWriteCounter(p, 0); 5813 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5814 break; 5815 } 5816 5817 /* Opcode: DropTrigger P1 * * P4 * 5818 ** 5819 ** Remove the internal (in-memory) data structures that describe 5820 ** the trigger named P4 in database P1. This is called after a trigger 5821 ** is dropped from disk (using the Destroy opcode) in order to keep 5822 ** the internal representation of the 5823 ** schema consistent with what is on disk. 5824 */ 5825 case OP_DropTrigger: { 5826 sqlite3VdbeIncrWriteCounter(p, 0); 5827 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5828 break; 5829 } 5830 5831 5832 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5833 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5834 ** 5835 ** Do an analysis of the currently open database. Store in 5836 ** register P1 the text of an error message describing any problems. 5837 ** If no problems are found, store a NULL in register P1. 5838 ** 5839 ** The register P3 contains one less than the maximum number of allowed errors. 5840 ** At most reg(P3) errors will be reported. 5841 ** In other words, the analysis stops as soon as reg(P1) errors are 5842 ** seen. Reg(P1) is updated with the number of errors remaining. 5843 ** 5844 ** The root page numbers of all tables in the database are integers 5845 ** stored in P4_INTARRAY argument. 5846 ** 5847 ** If P5 is not zero, the check is done on the auxiliary database 5848 ** file, not the main database file. 5849 ** 5850 ** This opcode is used to implement the integrity_check pragma. 5851 */ 5852 case OP_IntegrityCk: { 5853 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5854 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5855 int nErr; /* Number of errors reported */ 5856 char *z; /* Text of the error report */ 5857 Mem *pnErr; /* Register keeping track of errors remaining */ 5858 5859 assert( p->bIsReader ); 5860 nRoot = pOp->p2; 5861 aRoot = pOp->p4.ai; 5862 assert( nRoot>0 ); 5863 assert( aRoot[0]==nRoot ); 5864 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5865 pnErr = &aMem[pOp->p3]; 5866 assert( (pnErr->flags & MEM_Int)!=0 ); 5867 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5868 pIn1 = &aMem[pOp->p1]; 5869 assert( pOp->p5<db->nDb ); 5870 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5871 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 5872 (int)pnErr->u.i+1, &nErr); 5873 sqlite3VdbeMemSetNull(pIn1); 5874 if( nErr==0 ){ 5875 assert( z==0 ); 5876 }else if( z==0 ){ 5877 goto no_mem; 5878 }else{ 5879 pnErr->u.i -= nErr-1; 5880 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5881 } 5882 UPDATE_MAX_BLOBSIZE(pIn1); 5883 sqlite3VdbeChangeEncoding(pIn1, encoding); 5884 break; 5885 } 5886 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5887 5888 /* Opcode: RowSetAdd P1 P2 * * * 5889 ** Synopsis: rowset(P1)=r[P2] 5890 ** 5891 ** Insert the integer value held by register P2 into a RowSet object 5892 ** held in register P1. 5893 ** 5894 ** An assertion fails if P2 is not an integer. 5895 */ 5896 case OP_RowSetAdd: { /* in1, in2 */ 5897 pIn1 = &aMem[pOp->p1]; 5898 pIn2 = &aMem[pOp->p2]; 5899 assert( (pIn2->flags & MEM_Int)!=0 ); 5900 if( (pIn1->flags & MEM_RowSet)==0 ){ 5901 sqlite3VdbeMemSetRowSet(pIn1); 5902 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5903 } 5904 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5905 break; 5906 } 5907 5908 /* Opcode: RowSetRead P1 P2 P3 * * 5909 ** Synopsis: r[P3]=rowset(P1) 5910 ** 5911 ** Extract the smallest value from the RowSet object in P1 5912 ** and put that value into register P3. 5913 ** Or, if RowSet object P1 is initially empty, leave P3 5914 ** unchanged and jump to instruction P2. 5915 */ 5916 case OP_RowSetRead: { /* jump, in1, out3 */ 5917 i64 val; 5918 5919 pIn1 = &aMem[pOp->p1]; 5920 if( (pIn1->flags & MEM_RowSet)==0 5921 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5922 ){ 5923 /* The boolean index is empty */ 5924 sqlite3VdbeMemSetNull(pIn1); 5925 VdbeBranchTaken(1,2); 5926 goto jump_to_p2_and_check_for_interrupt; 5927 }else{ 5928 /* A value was pulled from the index */ 5929 VdbeBranchTaken(0,2); 5930 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5931 } 5932 goto check_for_interrupt; 5933 } 5934 5935 /* Opcode: RowSetTest P1 P2 P3 P4 5936 ** Synopsis: if r[P3] in rowset(P1) goto P2 5937 ** 5938 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5939 ** contains a RowSet object and that RowSet object contains 5940 ** the value held in P3, jump to register P2. Otherwise, insert the 5941 ** integer in P3 into the RowSet and continue on to the 5942 ** next opcode. 5943 ** 5944 ** The RowSet object is optimized for the case where sets of integers 5945 ** are inserted in distinct phases, which each set contains no duplicates. 5946 ** Each set is identified by a unique P4 value. The first set 5947 ** must have P4==0, the final set must have P4==-1, and for all other sets 5948 ** must have P4>0. 5949 ** 5950 ** This allows optimizations: (a) when P4==0 there is no need to test 5951 ** the RowSet object for P3, as it is guaranteed not to contain it, 5952 ** (b) when P4==-1 there is no need to insert the value, as it will 5953 ** never be tested for, and (c) when a value that is part of set X is 5954 ** inserted, there is no need to search to see if the same value was 5955 ** previously inserted as part of set X (only if it was previously 5956 ** inserted as part of some other set). 5957 */ 5958 case OP_RowSetTest: { /* jump, in1, in3 */ 5959 int iSet; 5960 int exists; 5961 5962 pIn1 = &aMem[pOp->p1]; 5963 pIn3 = &aMem[pOp->p3]; 5964 iSet = pOp->p4.i; 5965 assert( pIn3->flags&MEM_Int ); 5966 5967 /* If there is anything other than a rowset object in memory cell P1, 5968 ** delete it now and initialize P1 with an empty rowset 5969 */ 5970 if( (pIn1->flags & MEM_RowSet)==0 ){ 5971 sqlite3VdbeMemSetRowSet(pIn1); 5972 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5973 } 5974 5975 assert( pOp->p4type==P4_INT32 ); 5976 assert( iSet==-1 || iSet>=0 ); 5977 if( iSet ){ 5978 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5979 VdbeBranchTaken(exists!=0,2); 5980 if( exists ) goto jump_to_p2; 5981 } 5982 if( iSet>=0 ){ 5983 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5984 } 5985 break; 5986 } 5987 5988 5989 #ifndef SQLITE_OMIT_TRIGGER 5990 5991 /* Opcode: Program P1 P2 P3 P4 P5 5992 ** 5993 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5994 ** 5995 ** P1 contains the address of the memory cell that contains the first memory 5996 ** cell in an array of values used as arguments to the sub-program. P2 5997 ** contains the address to jump to if the sub-program throws an IGNORE 5998 ** exception using the RAISE() function. Register P3 contains the address 5999 ** of a memory cell in this (the parent) VM that is used to allocate the 6000 ** memory required by the sub-vdbe at runtime. 6001 ** 6002 ** P4 is a pointer to the VM containing the trigger program. 6003 ** 6004 ** If P5 is non-zero, then recursive program invocation is enabled. 6005 */ 6006 case OP_Program: { /* jump */ 6007 int nMem; /* Number of memory registers for sub-program */ 6008 int nByte; /* Bytes of runtime space required for sub-program */ 6009 Mem *pRt; /* Register to allocate runtime space */ 6010 Mem *pMem; /* Used to iterate through memory cells */ 6011 Mem *pEnd; /* Last memory cell in new array */ 6012 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6013 SubProgram *pProgram; /* Sub-program to execute */ 6014 void *t; /* Token identifying trigger */ 6015 6016 pProgram = pOp->p4.pProgram; 6017 pRt = &aMem[pOp->p3]; 6018 assert( pProgram->nOp>0 ); 6019 6020 /* If the p5 flag is clear, then recursive invocation of triggers is 6021 ** disabled for backwards compatibility (p5 is set if this sub-program 6022 ** is really a trigger, not a foreign key action, and the flag set 6023 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6024 ** 6025 ** It is recursive invocation of triggers, at the SQL level, that is 6026 ** disabled. In some cases a single trigger may generate more than one 6027 ** SubProgram (if the trigger may be executed with more than one different 6028 ** ON CONFLICT algorithm). SubProgram structures associated with a 6029 ** single trigger all have the same value for the SubProgram.token 6030 ** variable. */ 6031 if( pOp->p5 ){ 6032 t = pProgram->token; 6033 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6034 if( pFrame ) break; 6035 } 6036 6037 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6038 rc = SQLITE_ERROR; 6039 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6040 goto abort_due_to_error; 6041 } 6042 6043 /* Register pRt is used to store the memory required to save the state 6044 ** of the current program, and the memory required at runtime to execute 6045 ** the trigger program. If this trigger has been fired before, then pRt 6046 ** is already allocated. Otherwise, it must be initialized. */ 6047 if( (pRt->flags&MEM_Frame)==0 ){ 6048 /* SubProgram.nMem is set to the number of memory cells used by the 6049 ** program stored in SubProgram.aOp. As well as these, one memory 6050 ** cell is required for each cursor used by the program. Set local 6051 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6052 */ 6053 nMem = pProgram->nMem + pProgram->nCsr; 6054 assert( nMem>0 ); 6055 if( pProgram->nCsr==0 ) nMem++; 6056 nByte = ROUND8(sizeof(VdbeFrame)) 6057 + nMem * sizeof(Mem) 6058 + pProgram->nCsr * sizeof(VdbeCursor*) 6059 + (pProgram->nOp + 7)/8; 6060 pFrame = sqlite3DbMallocZero(db, nByte); 6061 if( !pFrame ){ 6062 goto no_mem; 6063 } 6064 sqlite3VdbeMemRelease(pRt); 6065 pRt->flags = MEM_Frame; 6066 pRt->u.pFrame = pFrame; 6067 6068 pFrame->v = p; 6069 pFrame->nChildMem = nMem; 6070 pFrame->nChildCsr = pProgram->nCsr; 6071 pFrame->pc = (int)(pOp - aOp); 6072 pFrame->aMem = p->aMem; 6073 pFrame->nMem = p->nMem; 6074 pFrame->apCsr = p->apCsr; 6075 pFrame->nCursor = p->nCursor; 6076 pFrame->aOp = p->aOp; 6077 pFrame->nOp = p->nOp; 6078 pFrame->token = pProgram->token; 6079 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6080 pFrame->anExec = p->anExec; 6081 #endif 6082 6083 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6084 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6085 pMem->flags = MEM_Undefined; 6086 pMem->db = db; 6087 } 6088 }else{ 6089 pFrame = pRt->u.pFrame; 6090 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6091 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6092 assert( pProgram->nCsr==pFrame->nChildCsr ); 6093 assert( (int)(pOp - aOp)==pFrame->pc ); 6094 } 6095 6096 p->nFrame++; 6097 pFrame->pParent = p->pFrame; 6098 pFrame->lastRowid = db->lastRowid; 6099 pFrame->nChange = p->nChange; 6100 pFrame->nDbChange = p->db->nChange; 6101 assert( pFrame->pAuxData==0 ); 6102 pFrame->pAuxData = p->pAuxData; 6103 p->pAuxData = 0; 6104 p->nChange = 0; 6105 p->pFrame = pFrame; 6106 p->aMem = aMem = VdbeFrameMem(pFrame); 6107 p->nMem = pFrame->nChildMem; 6108 p->nCursor = (u16)pFrame->nChildCsr; 6109 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6110 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6111 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6112 p->aOp = aOp = pProgram->aOp; 6113 p->nOp = pProgram->nOp; 6114 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6115 p->anExec = 0; 6116 #endif 6117 pOp = &aOp[-1]; 6118 6119 break; 6120 } 6121 6122 /* Opcode: Param P1 P2 * * * 6123 ** 6124 ** This opcode is only ever present in sub-programs called via the 6125 ** OP_Program instruction. Copy a value currently stored in a memory 6126 ** cell of the calling (parent) frame to cell P2 in the current frames 6127 ** address space. This is used by trigger programs to access the new.* 6128 ** and old.* values. 6129 ** 6130 ** The address of the cell in the parent frame is determined by adding 6131 ** the value of the P1 argument to the value of the P1 argument to the 6132 ** calling OP_Program instruction. 6133 */ 6134 case OP_Param: { /* out2 */ 6135 VdbeFrame *pFrame; 6136 Mem *pIn; 6137 pOut = out2Prerelease(p, pOp); 6138 pFrame = p->pFrame; 6139 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6140 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6141 break; 6142 } 6143 6144 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6145 6146 #ifndef SQLITE_OMIT_FOREIGN_KEY 6147 /* Opcode: FkCounter P1 P2 * * * 6148 ** Synopsis: fkctr[P1]+=P2 6149 ** 6150 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6151 ** If P1 is non-zero, the database constraint counter is incremented 6152 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6153 ** statement counter is incremented (immediate foreign key constraints). 6154 */ 6155 case OP_FkCounter: { 6156 if( db->flags & SQLITE_DeferFKs ){ 6157 db->nDeferredImmCons += pOp->p2; 6158 }else if( pOp->p1 ){ 6159 db->nDeferredCons += pOp->p2; 6160 }else{ 6161 p->nFkConstraint += pOp->p2; 6162 } 6163 break; 6164 } 6165 6166 /* Opcode: FkIfZero P1 P2 * * * 6167 ** Synopsis: if fkctr[P1]==0 goto P2 6168 ** 6169 ** This opcode tests if a foreign key constraint-counter is currently zero. 6170 ** If so, jump to instruction P2. Otherwise, fall through to the next 6171 ** instruction. 6172 ** 6173 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6174 ** is zero (the one that counts deferred constraint violations). If P1 is 6175 ** zero, the jump is taken if the statement constraint-counter is zero 6176 ** (immediate foreign key constraint violations). 6177 */ 6178 case OP_FkIfZero: { /* jump */ 6179 if( pOp->p1 ){ 6180 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6181 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6182 }else{ 6183 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6184 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6185 } 6186 break; 6187 } 6188 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6189 6190 #ifndef SQLITE_OMIT_AUTOINCREMENT 6191 /* Opcode: MemMax P1 P2 * * * 6192 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6193 ** 6194 ** P1 is a register in the root frame of this VM (the root frame is 6195 ** different from the current frame if this instruction is being executed 6196 ** within a sub-program). Set the value of register P1 to the maximum of 6197 ** its current value and the value in register P2. 6198 ** 6199 ** This instruction throws an error if the memory cell is not initially 6200 ** an integer. 6201 */ 6202 case OP_MemMax: { /* in2 */ 6203 VdbeFrame *pFrame; 6204 if( p->pFrame ){ 6205 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6206 pIn1 = &pFrame->aMem[pOp->p1]; 6207 }else{ 6208 pIn1 = &aMem[pOp->p1]; 6209 } 6210 assert( memIsValid(pIn1) ); 6211 sqlite3VdbeMemIntegerify(pIn1); 6212 pIn2 = &aMem[pOp->p2]; 6213 sqlite3VdbeMemIntegerify(pIn2); 6214 if( pIn1->u.i<pIn2->u.i){ 6215 pIn1->u.i = pIn2->u.i; 6216 } 6217 break; 6218 } 6219 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6220 6221 /* Opcode: IfPos P1 P2 P3 * * 6222 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6223 ** 6224 ** Register P1 must contain an integer. 6225 ** If the value of register P1 is 1 or greater, subtract P3 from the 6226 ** value in P1 and jump to P2. 6227 ** 6228 ** If the initial value of register P1 is less than 1, then the 6229 ** value is unchanged and control passes through to the next instruction. 6230 */ 6231 case OP_IfPos: { /* jump, in1 */ 6232 pIn1 = &aMem[pOp->p1]; 6233 assert( pIn1->flags&MEM_Int ); 6234 VdbeBranchTaken( pIn1->u.i>0, 2); 6235 if( pIn1->u.i>0 ){ 6236 pIn1->u.i -= pOp->p3; 6237 goto jump_to_p2; 6238 } 6239 break; 6240 } 6241 6242 /* Opcode: OffsetLimit P1 P2 P3 * * 6243 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6244 ** 6245 ** This opcode performs a commonly used computation associated with 6246 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6247 ** holds the offset counter. The opcode computes the combined value 6248 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6249 ** value computed is the total number of rows that will need to be 6250 ** visited in order to complete the query. 6251 ** 6252 ** If r[P3] is zero or negative, that means there is no OFFSET 6253 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6254 ** 6255 ** if r[P1] is zero or negative, that means there is no LIMIT 6256 ** and r[P2] is set to -1. 6257 ** 6258 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6259 */ 6260 case OP_OffsetLimit: { /* in1, out2, in3 */ 6261 i64 x; 6262 pIn1 = &aMem[pOp->p1]; 6263 pIn3 = &aMem[pOp->p3]; 6264 pOut = out2Prerelease(p, pOp); 6265 assert( pIn1->flags & MEM_Int ); 6266 assert( pIn3->flags & MEM_Int ); 6267 x = pIn1->u.i; 6268 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6269 /* If the LIMIT is less than or equal to zero, loop forever. This 6270 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6271 ** also loop forever. This is undocumented. In fact, one could argue 6272 ** that the loop should terminate. But assuming 1 billion iterations 6273 ** per second (far exceeding the capabilities of any current hardware) 6274 ** it would take nearly 300 years to actually reach the limit. So 6275 ** looping forever is a reasonable approximation. */ 6276 pOut->u.i = -1; 6277 }else{ 6278 pOut->u.i = x; 6279 } 6280 break; 6281 } 6282 6283 /* Opcode: IfNotZero P1 P2 * * * 6284 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6285 ** 6286 ** Register P1 must contain an integer. If the content of register P1 is 6287 ** initially greater than zero, then decrement the value in register P1. 6288 ** If it is non-zero (negative or positive) and then also jump to P2. 6289 ** If register P1 is initially zero, leave it unchanged and fall through. 6290 */ 6291 case OP_IfNotZero: { /* jump, in1 */ 6292 pIn1 = &aMem[pOp->p1]; 6293 assert( pIn1->flags&MEM_Int ); 6294 VdbeBranchTaken(pIn1->u.i<0, 2); 6295 if( pIn1->u.i ){ 6296 if( pIn1->u.i>0 ) pIn1->u.i--; 6297 goto jump_to_p2; 6298 } 6299 break; 6300 } 6301 6302 /* Opcode: DecrJumpZero P1 P2 * * * 6303 ** Synopsis: if (--r[P1])==0 goto P2 6304 ** 6305 ** Register P1 must hold an integer. Decrement the value in P1 6306 ** and jump to P2 if the new value is exactly zero. 6307 */ 6308 case OP_DecrJumpZero: { /* jump, in1 */ 6309 pIn1 = &aMem[pOp->p1]; 6310 assert( pIn1->flags&MEM_Int ); 6311 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6312 VdbeBranchTaken(pIn1->u.i==0, 2); 6313 if( pIn1->u.i==0 ) goto jump_to_p2; 6314 break; 6315 } 6316 6317 6318 /* Opcode: AggStep * P2 P3 P4 P5 6319 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6320 ** 6321 ** Execute the xStep function for an aggregate. 6322 ** The function has P5 arguments. P4 is a pointer to the 6323 ** FuncDef structure that specifies the function. Register P3 is the 6324 ** accumulator. 6325 ** 6326 ** The P5 arguments are taken from register P2 and its 6327 ** successors. 6328 */ 6329 /* Opcode: AggInverse * P2 P3 P4 P5 6330 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6331 ** 6332 ** Execute the xInverse function for an aggregate. 6333 ** The function has P5 arguments. P4 is a pointer to the 6334 ** FuncDef structure that specifies the function. Register P3 is the 6335 ** accumulator. 6336 ** 6337 ** The P5 arguments are taken from register P2 and its 6338 ** successors. 6339 */ 6340 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6341 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6342 ** 6343 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6344 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6345 ** FuncDef structure that specifies the function. Register P3 is the 6346 ** accumulator. 6347 ** 6348 ** The P5 arguments are taken from register P2 and its 6349 ** successors. 6350 ** 6351 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6352 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6353 ** the opcode is changed. In this way, the initialization of the 6354 ** sqlite3_context only happens once, instead of on each call to the 6355 ** step function. 6356 */ 6357 case OP_AggInverse: 6358 case OP_AggStep: { 6359 int n; 6360 sqlite3_context *pCtx; 6361 6362 assert( pOp->p4type==P4_FUNCDEF ); 6363 n = pOp->p5; 6364 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6365 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6366 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6367 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6368 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6369 if( pCtx==0 ) goto no_mem; 6370 pCtx->pMem = 0; 6371 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6372 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6373 pCtx->pFunc = pOp->p4.pFunc; 6374 pCtx->iOp = (int)(pOp - aOp); 6375 pCtx->pVdbe = p; 6376 pCtx->skipFlag = 0; 6377 pCtx->isError = 0; 6378 pCtx->argc = n; 6379 pOp->p4type = P4_FUNCCTX; 6380 pOp->p4.pCtx = pCtx; 6381 6382 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6383 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6384 6385 pOp->opcode = OP_AggStep1; 6386 /* Fall through into OP_AggStep */ 6387 } 6388 case OP_AggStep1: { 6389 int i; 6390 sqlite3_context *pCtx; 6391 Mem *pMem; 6392 6393 assert( pOp->p4type==P4_FUNCCTX ); 6394 pCtx = pOp->p4.pCtx; 6395 pMem = &aMem[pOp->p3]; 6396 6397 #ifdef SQLITE_DEBUG 6398 if( pOp->p1 ){ 6399 /* This is an OP_AggInverse call. Verify that xStep has always 6400 ** been called at least once prior to any xInverse call. */ 6401 assert( pMem->uTemp==0x1122e0e3 ); 6402 }else{ 6403 /* This is an OP_AggStep call. Mark it as such. */ 6404 pMem->uTemp = 0x1122e0e3; 6405 } 6406 #endif 6407 6408 /* If this function is inside of a trigger, the register array in aMem[] 6409 ** might change from one evaluation to the next. The next block of code 6410 ** checks to see if the register array has changed, and if so it 6411 ** reinitializes the relavant parts of the sqlite3_context object */ 6412 if( pCtx->pMem != pMem ){ 6413 pCtx->pMem = pMem; 6414 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6415 } 6416 6417 #ifdef SQLITE_DEBUG 6418 for(i=0; i<pCtx->argc; i++){ 6419 assert( memIsValid(pCtx->argv[i]) ); 6420 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6421 } 6422 #endif 6423 6424 pMem->n++; 6425 assert( pCtx->pOut->flags==MEM_Null ); 6426 assert( pCtx->isError==0 ); 6427 assert( pCtx->skipFlag==0 ); 6428 #ifndef SQLITE_OMIT_WINDOWFUNC 6429 if( pOp->p1 ){ 6430 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6431 }else 6432 #endif 6433 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6434 6435 if( pCtx->isError ){ 6436 if( pCtx->isError>0 ){ 6437 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6438 rc = pCtx->isError; 6439 } 6440 if( pCtx->skipFlag ){ 6441 assert( pOp[-1].opcode==OP_CollSeq ); 6442 i = pOp[-1].p1; 6443 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6444 pCtx->skipFlag = 0; 6445 } 6446 sqlite3VdbeMemRelease(pCtx->pOut); 6447 pCtx->pOut->flags = MEM_Null; 6448 pCtx->isError = 0; 6449 if( rc ) goto abort_due_to_error; 6450 } 6451 assert( pCtx->pOut->flags==MEM_Null ); 6452 assert( pCtx->skipFlag==0 ); 6453 break; 6454 } 6455 6456 /* Opcode: AggFinal P1 P2 * P4 * 6457 ** Synopsis: accum=r[P1] N=P2 6458 ** 6459 ** P1 is the memory location that is the accumulator for an aggregate 6460 ** or window function. Execute the finalizer function 6461 ** for an aggregate and store the result in P1. 6462 ** 6463 ** P2 is the number of arguments that the step function takes and 6464 ** P4 is a pointer to the FuncDef for this function. The P2 6465 ** argument is not used by this opcode. It is only there to disambiguate 6466 ** functions that can take varying numbers of arguments. The 6467 ** P4 argument is only needed for the case where 6468 ** the step function was not previously called. 6469 */ 6470 /* Opcode: AggValue * P2 P3 P4 * 6471 ** Synopsis: r[P3]=value N=P2 6472 ** 6473 ** Invoke the xValue() function and store the result in register P3. 6474 ** 6475 ** P2 is the number of arguments that the step function takes and 6476 ** P4 is a pointer to the FuncDef for this function. The P2 6477 ** argument is not used by this opcode. It is only there to disambiguate 6478 ** functions that can take varying numbers of arguments. The 6479 ** P4 argument is only needed for the case where 6480 ** the step function was not previously called. 6481 */ 6482 case OP_AggValue: 6483 case OP_AggFinal: { 6484 Mem *pMem; 6485 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6486 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6487 pMem = &aMem[pOp->p1]; 6488 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6489 #ifndef SQLITE_OMIT_WINDOWFUNC 6490 if( pOp->p3 ){ 6491 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6492 pMem = &aMem[pOp->p3]; 6493 }else 6494 #endif 6495 { 6496 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6497 } 6498 6499 if( rc ){ 6500 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6501 goto abort_due_to_error; 6502 } 6503 sqlite3VdbeChangeEncoding(pMem, encoding); 6504 UPDATE_MAX_BLOBSIZE(pMem); 6505 if( sqlite3VdbeMemTooBig(pMem) ){ 6506 goto too_big; 6507 } 6508 break; 6509 } 6510 6511 #ifndef SQLITE_OMIT_WAL 6512 /* Opcode: Checkpoint P1 P2 P3 * * 6513 ** 6514 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6515 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6516 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6517 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6518 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6519 ** in the WAL that have been checkpointed after the checkpoint 6520 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6521 ** mem[P3+2] are initialized to -1. 6522 */ 6523 case OP_Checkpoint: { 6524 int i; /* Loop counter */ 6525 int aRes[3]; /* Results */ 6526 Mem *pMem; /* Write results here */ 6527 6528 assert( p->readOnly==0 ); 6529 aRes[0] = 0; 6530 aRes[1] = aRes[2] = -1; 6531 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6532 || pOp->p2==SQLITE_CHECKPOINT_FULL 6533 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6534 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6535 ); 6536 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6537 if( rc ){ 6538 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6539 rc = SQLITE_OK; 6540 aRes[0] = 1; 6541 } 6542 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6543 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6544 } 6545 break; 6546 }; 6547 #endif 6548 6549 #ifndef SQLITE_OMIT_PRAGMA 6550 /* Opcode: JournalMode P1 P2 P3 * * 6551 ** 6552 ** Change the journal mode of database P1 to P3. P3 must be one of the 6553 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6554 ** modes (delete, truncate, persist, off and memory), this is a simple 6555 ** operation. No IO is required. 6556 ** 6557 ** If changing into or out of WAL mode the procedure is more complicated. 6558 ** 6559 ** Write a string containing the final journal-mode to register P2. 6560 */ 6561 case OP_JournalMode: { /* out2 */ 6562 Btree *pBt; /* Btree to change journal mode of */ 6563 Pager *pPager; /* Pager associated with pBt */ 6564 int eNew; /* New journal mode */ 6565 int eOld; /* The old journal mode */ 6566 #ifndef SQLITE_OMIT_WAL 6567 const char *zFilename; /* Name of database file for pPager */ 6568 #endif 6569 6570 pOut = out2Prerelease(p, pOp); 6571 eNew = pOp->p3; 6572 assert( eNew==PAGER_JOURNALMODE_DELETE 6573 || eNew==PAGER_JOURNALMODE_TRUNCATE 6574 || eNew==PAGER_JOURNALMODE_PERSIST 6575 || eNew==PAGER_JOURNALMODE_OFF 6576 || eNew==PAGER_JOURNALMODE_MEMORY 6577 || eNew==PAGER_JOURNALMODE_WAL 6578 || eNew==PAGER_JOURNALMODE_QUERY 6579 ); 6580 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6581 assert( p->readOnly==0 ); 6582 6583 pBt = db->aDb[pOp->p1].pBt; 6584 pPager = sqlite3BtreePager(pBt); 6585 eOld = sqlite3PagerGetJournalMode(pPager); 6586 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6587 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6588 6589 #ifndef SQLITE_OMIT_WAL 6590 zFilename = sqlite3PagerFilename(pPager, 1); 6591 6592 /* Do not allow a transition to journal_mode=WAL for a database 6593 ** in temporary storage or if the VFS does not support shared memory 6594 */ 6595 if( eNew==PAGER_JOURNALMODE_WAL 6596 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6597 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6598 ){ 6599 eNew = eOld; 6600 } 6601 6602 if( (eNew!=eOld) 6603 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6604 ){ 6605 if( !db->autoCommit || db->nVdbeRead>1 ){ 6606 rc = SQLITE_ERROR; 6607 sqlite3VdbeError(p, 6608 "cannot change %s wal mode from within a transaction", 6609 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6610 ); 6611 goto abort_due_to_error; 6612 }else{ 6613 6614 if( eOld==PAGER_JOURNALMODE_WAL ){ 6615 /* If leaving WAL mode, close the log file. If successful, the call 6616 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6617 ** file. An EXCLUSIVE lock may still be held on the database file 6618 ** after a successful return. 6619 */ 6620 rc = sqlite3PagerCloseWal(pPager, db); 6621 if( rc==SQLITE_OK ){ 6622 sqlite3PagerSetJournalMode(pPager, eNew); 6623 } 6624 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6625 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6626 ** as an intermediate */ 6627 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6628 } 6629 6630 /* Open a transaction on the database file. Regardless of the journal 6631 ** mode, this transaction always uses a rollback journal. 6632 */ 6633 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6634 if( rc==SQLITE_OK ){ 6635 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6636 } 6637 } 6638 } 6639 #endif /* ifndef SQLITE_OMIT_WAL */ 6640 6641 if( rc ) eNew = eOld; 6642 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6643 6644 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6645 pOut->z = (char *)sqlite3JournalModename(eNew); 6646 pOut->n = sqlite3Strlen30(pOut->z); 6647 pOut->enc = SQLITE_UTF8; 6648 sqlite3VdbeChangeEncoding(pOut, encoding); 6649 if( rc ) goto abort_due_to_error; 6650 break; 6651 }; 6652 #endif /* SQLITE_OMIT_PRAGMA */ 6653 6654 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6655 /* Opcode: Vacuum P1 * * * * 6656 ** 6657 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6658 ** for an attached database. The "temp" database may not be vacuumed. 6659 */ 6660 case OP_Vacuum: { 6661 assert( p->readOnly==0 ); 6662 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6663 if( rc ) goto abort_due_to_error; 6664 break; 6665 } 6666 #endif 6667 6668 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6669 /* Opcode: IncrVacuum P1 P2 * * * 6670 ** 6671 ** Perform a single step of the incremental vacuum procedure on 6672 ** the P1 database. If the vacuum has finished, jump to instruction 6673 ** P2. Otherwise, fall through to the next instruction. 6674 */ 6675 case OP_IncrVacuum: { /* jump */ 6676 Btree *pBt; 6677 6678 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6679 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6680 assert( p->readOnly==0 ); 6681 pBt = db->aDb[pOp->p1].pBt; 6682 rc = sqlite3BtreeIncrVacuum(pBt); 6683 VdbeBranchTaken(rc==SQLITE_DONE,2); 6684 if( rc ){ 6685 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6686 rc = SQLITE_OK; 6687 goto jump_to_p2; 6688 } 6689 break; 6690 } 6691 #endif 6692 6693 /* Opcode: Expire P1 * * * * 6694 ** 6695 ** Cause precompiled statements to expire. When an expired statement 6696 ** is executed using sqlite3_step() it will either automatically 6697 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6698 ** or it will fail with SQLITE_SCHEMA. 6699 ** 6700 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6701 ** then only the currently executing statement is expired. 6702 */ 6703 case OP_Expire: { 6704 if( !pOp->p1 ){ 6705 sqlite3ExpirePreparedStatements(db); 6706 }else{ 6707 p->expired = 1; 6708 } 6709 break; 6710 } 6711 6712 #ifndef SQLITE_OMIT_SHARED_CACHE 6713 /* Opcode: TableLock P1 P2 P3 P4 * 6714 ** Synopsis: iDb=P1 root=P2 write=P3 6715 ** 6716 ** Obtain a lock on a particular table. This instruction is only used when 6717 ** the shared-cache feature is enabled. 6718 ** 6719 ** P1 is the index of the database in sqlite3.aDb[] of the database 6720 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6721 ** a write lock if P3==1. 6722 ** 6723 ** P2 contains the root-page of the table to lock. 6724 ** 6725 ** P4 contains a pointer to the name of the table being locked. This is only 6726 ** used to generate an error message if the lock cannot be obtained. 6727 */ 6728 case OP_TableLock: { 6729 u8 isWriteLock = (u8)pOp->p3; 6730 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6731 int p1 = pOp->p1; 6732 assert( p1>=0 && p1<db->nDb ); 6733 assert( DbMaskTest(p->btreeMask, p1) ); 6734 assert( isWriteLock==0 || isWriteLock==1 ); 6735 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6736 if( rc ){ 6737 if( (rc&0xFF)==SQLITE_LOCKED ){ 6738 const char *z = pOp->p4.z; 6739 sqlite3VdbeError(p, "database table is locked: %s", z); 6740 } 6741 goto abort_due_to_error; 6742 } 6743 } 6744 break; 6745 } 6746 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6747 6748 #ifndef SQLITE_OMIT_VIRTUALTABLE 6749 /* Opcode: VBegin * * * P4 * 6750 ** 6751 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6752 ** xBegin method for that table. 6753 ** 6754 ** Also, whether or not P4 is set, check that this is not being called from 6755 ** within a callback to a virtual table xSync() method. If it is, the error 6756 ** code will be set to SQLITE_LOCKED. 6757 */ 6758 case OP_VBegin: { 6759 VTable *pVTab; 6760 pVTab = pOp->p4.pVtab; 6761 rc = sqlite3VtabBegin(db, pVTab); 6762 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6763 if( rc ) goto abort_due_to_error; 6764 break; 6765 } 6766 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6767 6768 #ifndef SQLITE_OMIT_VIRTUALTABLE 6769 /* Opcode: VCreate P1 P2 * * * 6770 ** 6771 ** P2 is a register that holds the name of a virtual table in database 6772 ** P1. Call the xCreate method for that table. 6773 */ 6774 case OP_VCreate: { 6775 Mem sMem; /* For storing the record being decoded */ 6776 const char *zTab; /* Name of the virtual table */ 6777 6778 memset(&sMem, 0, sizeof(sMem)); 6779 sMem.db = db; 6780 /* Because P2 is always a static string, it is impossible for the 6781 ** sqlite3VdbeMemCopy() to fail */ 6782 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6783 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6784 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6785 assert( rc==SQLITE_OK ); 6786 zTab = (const char*)sqlite3_value_text(&sMem); 6787 assert( zTab || db->mallocFailed ); 6788 if( zTab ){ 6789 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6790 } 6791 sqlite3VdbeMemRelease(&sMem); 6792 if( rc ) goto abort_due_to_error; 6793 break; 6794 } 6795 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6796 6797 #ifndef SQLITE_OMIT_VIRTUALTABLE 6798 /* Opcode: VDestroy P1 * * P4 * 6799 ** 6800 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6801 ** of that table. 6802 */ 6803 case OP_VDestroy: { 6804 db->nVDestroy++; 6805 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6806 db->nVDestroy--; 6807 if( rc ) goto abort_due_to_error; 6808 break; 6809 } 6810 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6811 6812 #ifndef SQLITE_OMIT_VIRTUALTABLE 6813 /* Opcode: VOpen P1 * * P4 * 6814 ** 6815 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6816 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6817 ** table and stores that cursor in P1. 6818 */ 6819 case OP_VOpen: { 6820 VdbeCursor *pCur; 6821 sqlite3_vtab_cursor *pVCur; 6822 sqlite3_vtab *pVtab; 6823 const sqlite3_module *pModule; 6824 6825 assert( p->bIsReader ); 6826 pCur = 0; 6827 pVCur = 0; 6828 pVtab = pOp->p4.pVtab->pVtab; 6829 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6830 rc = SQLITE_LOCKED; 6831 goto abort_due_to_error; 6832 } 6833 pModule = pVtab->pModule; 6834 rc = pModule->xOpen(pVtab, &pVCur); 6835 sqlite3VtabImportErrmsg(p, pVtab); 6836 if( rc ) goto abort_due_to_error; 6837 6838 /* Initialize sqlite3_vtab_cursor base class */ 6839 pVCur->pVtab = pVtab; 6840 6841 /* Initialize vdbe cursor object */ 6842 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6843 if( pCur ){ 6844 pCur->uc.pVCur = pVCur; 6845 pVtab->nRef++; 6846 }else{ 6847 assert( db->mallocFailed ); 6848 pModule->xClose(pVCur); 6849 goto no_mem; 6850 } 6851 break; 6852 } 6853 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6854 6855 #ifndef SQLITE_OMIT_VIRTUALTABLE 6856 /* Opcode: VFilter P1 P2 P3 P4 * 6857 ** Synopsis: iplan=r[P3] zplan='P4' 6858 ** 6859 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6860 ** the filtered result set is empty. 6861 ** 6862 ** P4 is either NULL or a string that was generated by the xBestIndex 6863 ** method of the module. The interpretation of the P4 string is left 6864 ** to the module implementation. 6865 ** 6866 ** This opcode invokes the xFilter method on the virtual table specified 6867 ** by P1. The integer query plan parameter to xFilter is stored in register 6868 ** P3. Register P3+1 stores the argc parameter to be passed to the 6869 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6870 ** additional parameters which are passed to 6871 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6872 ** 6873 ** A jump is made to P2 if the result set after filtering would be empty. 6874 */ 6875 case OP_VFilter: { /* jump */ 6876 int nArg; 6877 int iQuery; 6878 const sqlite3_module *pModule; 6879 Mem *pQuery; 6880 Mem *pArgc; 6881 sqlite3_vtab_cursor *pVCur; 6882 sqlite3_vtab *pVtab; 6883 VdbeCursor *pCur; 6884 int res; 6885 int i; 6886 Mem **apArg; 6887 6888 pQuery = &aMem[pOp->p3]; 6889 pArgc = &pQuery[1]; 6890 pCur = p->apCsr[pOp->p1]; 6891 assert( memIsValid(pQuery) ); 6892 REGISTER_TRACE(pOp->p3, pQuery); 6893 assert( pCur->eCurType==CURTYPE_VTAB ); 6894 pVCur = pCur->uc.pVCur; 6895 pVtab = pVCur->pVtab; 6896 pModule = pVtab->pModule; 6897 6898 /* Grab the index number and argc parameters */ 6899 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6900 nArg = (int)pArgc->u.i; 6901 iQuery = (int)pQuery->u.i; 6902 6903 /* Invoke the xFilter method */ 6904 res = 0; 6905 apArg = p->apArg; 6906 for(i = 0; i<nArg; i++){ 6907 apArg[i] = &pArgc[i+1]; 6908 } 6909 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6910 sqlite3VtabImportErrmsg(p, pVtab); 6911 if( rc ) goto abort_due_to_error; 6912 res = pModule->xEof(pVCur); 6913 pCur->nullRow = 0; 6914 VdbeBranchTaken(res!=0,2); 6915 if( res ) goto jump_to_p2; 6916 break; 6917 } 6918 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6919 6920 #ifndef SQLITE_OMIT_VIRTUALTABLE 6921 /* Opcode: VColumn P1 P2 P3 * P5 6922 ** Synopsis: r[P3]=vcolumn(P2) 6923 ** 6924 ** Store in register P3 the value of the P2-th column of 6925 ** the current row of the virtual-table of cursor P1. 6926 ** 6927 ** If the VColumn opcode is being used to fetch the value of 6928 ** an unchanging column during an UPDATE operation, then the P5 6929 ** value is 1. Otherwise, P5 is 0. The P5 value is returned 6930 ** by sqlite3_vtab_nochange() routine and can be used 6931 ** by virtual table implementations to return special "no-change" 6932 ** marks which can be more efficient, depending on the virtual table. 6933 */ 6934 case OP_VColumn: { 6935 sqlite3_vtab *pVtab; 6936 const sqlite3_module *pModule; 6937 Mem *pDest; 6938 sqlite3_context sContext; 6939 6940 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6941 assert( pCur->eCurType==CURTYPE_VTAB ); 6942 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6943 pDest = &aMem[pOp->p3]; 6944 memAboutToChange(p, pDest); 6945 if( pCur->nullRow ){ 6946 sqlite3VdbeMemSetNull(pDest); 6947 break; 6948 } 6949 pVtab = pCur->uc.pVCur->pVtab; 6950 pModule = pVtab->pModule; 6951 assert( pModule->xColumn ); 6952 memset(&sContext, 0, sizeof(sContext)); 6953 sContext.pOut = pDest; 6954 if( pOp->p5 ){ 6955 sqlite3VdbeMemSetNull(pDest); 6956 pDest->flags = MEM_Null|MEM_Zero; 6957 pDest->u.nZero = 0; 6958 }else{ 6959 MemSetTypeFlag(pDest, MEM_Null); 6960 } 6961 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6962 sqlite3VtabImportErrmsg(p, pVtab); 6963 if( sContext.isError>0 ){ 6964 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 6965 rc = sContext.isError; 6966 } 6967 sqlite3VdbeChangeEncoding(pDest, encoding); 6968 REGISTER_TRACE(pOp->p3, pDest); 6969 UPDATE_MAX_BLOBSIZE(pDest); 6970 6971 if( sqlite3VdbeMemTooBig(pDest) ){ 6972 goto too_big; 6973 } 6974 if( rc ) goto abort_due_to_error; 6975 break; 6976 } 6977 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6978 6979 #ifndef SQLITE_OMIT_VIRTUALTABLE 6980 /* Opcode: VNext P1 P2 * * * 6981 ** 6982 ** Advance virtual table P1 to the next row in its result set and 6983 ** jump to instruction P2. Or, if the virtual table has reached 6984 ** the end of its result set, then fall through to the next instruction. 6985 */ 6986 case OP_VNext: { /* jump */ 6987 sqlite3_vtab *pVtab; 6988 const sqlite3_module *pModule; 6989 int res; 6990 VdbeCursor *pCur; 6991 6992 res = 0; 6993 pCur = p->apCsr[pOp->p1]; 6994 assert( pCur->eCurType==CURTYPE_VTAB ); 6995 if( pCur->nullRow ){ 6996 break; 6997 } 6998 pVtab = pCur->uc.pVCur->pVtab; 6999 pModule = pVtab->pModule; 7000 assert( pModule->xNext ); 7001 7002 /* Invoke the xNext() method of the module. There is no way for the 7003 ** underlying implementation to return an error if one occurs during 7004 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7005 ** data is available) and the error code returned when xColumn or 7006 ** some other method is next invoked on the save virtual table cursor. 7007 */ 7008 rc = pModule->xNext(pCur->uc.pVCur); 7009 sqlite3VtabImportErrmsg(p, pVtab); 7010 if( rc ) goto abort_due_to_error; 7011 res = pModule->xEof(pCur->uc.pVCur); 7012 VdbeBranchTaken(!res,2); 7013 if( !res ){ 7014 /* If there is data, jump to P2 */ 7015 goto jump_to_p2_and_check_for_interrupt; 7016 } 7017 goto check_for_interrupt; 7018 } 7019 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7020 7021 #ifndef SQLITE_OMIT_VIRTUALTABLE 7022 /* Opcode: VRename P1 * * P4 * 7023 ** 7024 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7025 ** This opcode invokes the corresponding xRename method. The value 7026 ** in register P1 is passed as the zName argument to the xRename method. 7027 */ 7028 case OP_VRename: { 7029 sqlite3_vtab *pVtab; 7030 Mem *pName; 7031 7032 pVtab = pOp->p4.pVtab->pVtab; 7033 pName = &aMem[pOp->p1]; 7034 assert( pVtab->pModule->xRename ); 7035 assert( memIsValid(pName) ); 7036 assert( p->readOnly==0 ); 7037 REGISTER_TRACE(pOp->p1, pName); 7038 assert( pName->flags & MEM_Str ); 7039 testcase( pName->enc==SQLITE_UTF8 ); 7040 testcase( pName->enc==SQLITE_UTF16BE ); 7041 testcase( pName->enc==SQLITE_UTF16LE ); 7042 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7043 if( rc ) goto abort_due_to_error; 7044 rc = pVtab->pModule->xRename(pVtab, pName->z); 7045 sqlite3VtabImportErrmsg(p, pVtab); 7046 p->expired = 0; 7047 if( rc ) goto abort_due_to_error; 7048 break; 7049 } 7050 #endif 7051 7052 #ifndef SQLITE_OMIT_VIRTUALTABLE 7053 /* Opcode: VUpdate P1 P2 P3 P4 P5 7054 ** Synopsis: data=r[P3@P2] 7055 ** 7056 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7057 ** This opcode invokes the corresponding xUpdate method. P2 values 7058 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7059 ** invocation. The value in register (P3+P2-1) corresponds to the 7060 ** p2th element of the argv array passed to xUpdate. 7061 ** 7062 ** The xUpdate method will do a DELETE or an INSERT or both. 7063 ** The argv[0] element (which corresponds to memory cell P3) 7064 ** is the rowid of a row to delete. If argv[0] is NULL then no 7065 ** deletion occurs. The argv[1] element is the rowid of the new 7066 ** row. This can be NULL to have the virtual table select the new 7067 ** rowid for itself. The subsequent elements in the array are 7068 ** the values of columns in the new row. 7069 ** 7070 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7071 ** a row to delete. 7072 ** 7073 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7074 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7075 ** is set to the value of the rowid for the row just inserted. 7076 ** 7077 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7078 ** apply in the case of a constraint failure on an insert or update. 7079 */ 7080 case OP_VUpdate: { 7081 sqlite3_vtab *pVtab; 7082 const sqlite3_module *pModule; 7083 int nArg; 7084 int i; 7085 sqlite_int64 rowid; 7086 Mem **apArg; 7087 Mem *pX; 7088 7089 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7090 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7091 ); 7092 assert( p->readOnly==0 ); 7093 if( db->mallocFailed ) goto no_mem; 7094 sqlite3VdbeIncrWriteCounter(p, 0); 7095 pVtab = pOp->p4.pVtab->pVtab; 7096 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7097 rc = SQLITE_LOCKED; 7098 goto abort_due_to_error; 7099 } 7100 pModule = pVtab->pModule; 7101 nArg = pOp->p2; 7102 assert( pOp->p4type==P4_VTAB ); 7103 if( ALWAYS(pModule->xUpdate) ){ 7104 u8 vtabOnConflict = db->vtabOnConflict; 7105 apArg = p->apArg; 7106 pX = &aMem[pOp->p3]; 7107 for(i=0; i<nArg; i++){ 7108 assert( memIsValid(pX) ); 7109 memAboutToChange(p, pX); 7110 apArg[i] = pX; 7111 pX++; 7112 } 7113 db->vtabOnConflict = pOp->p5; 7114 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7115 db->vtabOnConflict = vtabOnConflict; 7116 sqlite3VtabImportErrmsg(p, pVtab); 7117 if( rc==SQLITE_OK && pOp->p1 ){ 7118 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7119 db->lastRowid = rowid; 7120 } 7121 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7122 if( pOp->p5==OE_Ignore ){ 7123 rc = SQLITE_OK; 7124 }else{ 7125 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7126 } 7127 }else{ 7128 p->nChange++; 7129 } 7130 if( rc ) goto abort_due_to_error; 7131 } 7132 break; 7133 } 7134 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7135 7136 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7137 /* Opcode: Pagecount P1 P2 * * * 7138 ** 7139 ** Write the current number of pages in database P1 to memory cell P2. 7140 */ 7141 case OP_Pagecount: { /* out2 */ 7142 pOut = out2Prerelease(p, pOp); 7143 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7144 break; 7145 } 7146 #endif 7147 7148 7149 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7150 /* Opcode: MaxPgcnt P1 P2 P3 * * 7151 ** 7152 ** Try to set the maximum page count for database P1 to the value in P3. 7153 ** Do not let the maximum page count fall below the current page count and 7154 ** do not change the maximum page count value if P3==0. 7155 ** 7156 ** Store the maximum page count after the change in register P2. 7157 */ 7158 case OP_MaxPgcnt: { /* out2 */ 7159 unsigned int newMax; 7160 Btree *pBt; 7161 7162 pOut = out2Prerelease(p, pOp); 7163 pBt = db->aDb[pOp->p1].pBt; 7164 newMax = 0; 7165 if( pOp->p3 ){ 7166 newMax = sqlite3BtreeLastPage(pBt); 7167 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7168 } 7169 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7170 break; 7171 } 7172 #endif 7173 7174 /* Opcode: Function0 P1 P2 P3 P4 P5 7175 ** Synopsis: r[P3]=func(r[P2@P5]) 7176 ** 7177 ** Invoke a user function (P4 is a pointer to a FuncDef object that 7178 ** defines the function) with P5 arguments taken from register P2 and 7179 ** successors. The result of the function is stored in register P3. 7180 ** Register P3 must not be one of the function inputs. 7181 ** 7182 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7183 ** function was determined to be constant at compile time. If the first 7184 ** argument was constant then bit 0 of P1 is set. This is used to determine 7185 ** whether meta data associated with a user function argument using the 7186 ** sqlite3_set_auxdata() API may be safely retained until the next 7187 ** invocation of this opcode. 7188 ** 7189 ** See also: Function, AggStep, AggFinal 7190 */ 7191 /* Opcode: Function P1 P2 P3 P4 P5 7192 ** Synopsis: r[P3]=func(r[P2@P5]) 7193 ** 7194 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7195 ** contains a pointer to the function to be run) with P5 arguments taken 7196 ** from register P2 and successors. The result of the function is stored 7197 ** in register P3. Register P3 must not be one of the function inputs. 7198 ** 7199 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7200 ** function was determined to be constant at compile time. If the first 7201 ** argument was constant then bit 0 of P1 is set. This is used to determine 7202 ** whether meta data associated with a user function argument using the 7203 ** sqlite3_set_auxdata() API may be safely retained until the next 7204 ** invocation of this opcode. 7205 ** 7206 ** SQL functions are initially coded as OP_Function0 with P4 pointing 7207 ** to a FuncDef object. But on first evaluation, the P4 operand is 7208 ** automatically converted into an sqlite3_context object and the operation 7209 ** changed to this OP_Function opcode. In this way, the initialization of 7210 ** the sqlite3_context object occurs only once, rather than once for each 7211 ** evaluation of the function. 7212 ** 7213 ** See also: Function0, AggStep, AggFinal 7214 */ 7215 case OP_PureFunc0: 7216 case OP_Function0: { 7217 int n; 7218 sqlite3_context *pCtx; 7219 7220 assert( pOp->p4type==P4_FUNCDEF ); 7221 n = pOp->p5; 7222 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7223 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7224 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7225 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 7226 if( pCtx==0 ) goto no_mem; 7227 pCtx->pOut = 0; 7228 pCtx->pFunc = pOp->p4.pFunc; 7229 pCtx->iOp = (int)(pOp - aOp); 7230 pCtx->pVdbe = p; 7231 pCtx->isError = 0; 7232 pCtx->argc = n; 7233 pOp->p4type = P4_FUNCCTX; 7234 pOp->p4.pCtx = pCtx; 7235 assert( OP_PureFunc == OP_PureFunc0+2 ); 7236 assert( OP_Function == OP_Function0+2 ); 7237 pOp->opcode += 2; 7238 /* Fall through into OP_Function */ 7239 } 7240 case OP_PureFunc: 7241 case OP_Function: { 7242 int i; 7243 sqlite3_context *pCtx; 7244 7245 assert( pOp->p4type==P4_FUNCCTX ); 7246 pCtx = pOp->p4.pCtx; 7247 7248 /* If this function is inside of a trigger, the register array in aMem[] 7249 ** might change from one evaluation to the next. The next block of code 7250 ** checks to see if the register array has changed, and if so it 7251 ** reinitializes the relavant parts of the sqlite3_context object */ 7252 pOut = &aMem[pOp->p3]; 7253 if( pCtx->pOut != pOut ){ 7254 pCtx->pOut = pOut; 7255 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7256 } 7257 7258 memAboutToChange(p, pOut); 7259 #ifdef SQLITE_DEBUG 7260 for(i=0; i<pCtx->argc; i++){ 7261 assert( memIsValid(pCtx->argv[i]) ); 7262 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7263 } 7264 #endif 7265 MemSetTypeFlag(pOut, MEM_Null); 7266 assert( pCtx->isError==0 ); 7267 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7268 7269 /* If the function returned an error, throw an exception */ 7270 if( pCtx->isError ){ 7271 if( pCtx->isError>0 ){ 7272 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7273 rc = pCtx->isError; 7274 } 7275 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7276 pCtx->isError = 0; 7277 if( rc ) goto abort_due_to_error; 7278 } 7279 7280 /* Copy the result of the function into register P3 */ 7281 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7282 sqlite3VdbeChangeEncoding(pOut, encoding); 7283 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7284 } 7285 7286 REGISTER_TRACE(pOp->p3, pOut); 7287 UPDATE_MAX_BLOBSIZE(pOut); 7288 break; 7289 } 7290 7291 /* Opcode: Trace P1 P2 * P4 * 7292 ** 7293 ** Write P4 on the statement trace output if statement tracing is 7294 ** enabled. 7295 ** 7296 ** Operand P1 must be 0x7fffffff and P2 must positive. 7297 */ 7298 /* Opcode: Init P1 P2 P3 P4 * 7299 ** Synopsis: Start at P2 7300 ** 7301 ** Programs contain a single instance of this opcode as the very first 7302 ** opcode. 7303 ** 7304 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7305 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7306 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7307 ** 7308 ** If P2 is not zero, jump to instruction P2. 7309 ** 7310 ** Increment the value of P1 so that OP_Once opcodes will jump the 7311 ** first time they are evaluated for this run. 7312 ** 7313 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7314 ** error is encountered. 7315 */ 7316 case OP_Trace: 7317 case OP_Init: { /* jump */ 7318 int i; 7319 #ifndef SQLITE_OMIT_TRACE 7320 char *zTrace; 7321 #endif 7322 7323 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7324 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7325 ** 7326 ** This assert() provides evidence for: 7327 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7328 ** would have been returned by the legacy sqlite3_trace() interface by 7329 ** using the X argument when X begins with "--" and invoking 7330 ** sqlite3_expanded_sql(P) otherwise. 7331 */ 7332 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7333 7334 /* OP_Init is always instruction 0 */ 7335 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7336 7337 #ifndef SQLITE_OMIT_TRACE 7338 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7339 && !p->doingRerun 7340 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7341 ){ 7342 #ifndef SQLITE_OMIT_DEPRECATED 7343 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7344 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7345 char *z = sqlite3VdbeExpandSql(p, zTrace); 7346 x(db->pTraceArg, z); 7347 sqlite3_free(z); 7348 }else 7349 #endif 7350 if( db->nVdbeExec>1 ){ 7351 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7352 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7353 sqlite3DbFree(db, z); 7354 }else{ 7355 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7356 } 7357 } 7358 #ifdef SQLITE_USE_FCNTL_TRACE 7359 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7360 if( zTrace ){ 7361 int j; 7362 for(j=0; j<db->nDb; j++){ 7363 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7364 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7365 } 7366 } 7367 #endif /* SQLITE_USE_FCNTL_TRACE */ 7368 #ifdef SQLITE_DEBUG 7369 if( (db->flags & SQLITE_SqlTrace)!=0 7370 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7371 ){ 7372 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7373 } 7374 #endif /* SQLITE_DEBUG */ 7375 #endif /* SQLITE_OMIT_TRACE */ 7376 assert( pOp->p2>0 ); 7377 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7378 if( pOp->opcode==OP_Trace ) break; 7379 for(i=1; i<p->nOp; i++){ 7380 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7381 } 7382 pOp->p1 = 0; 7383 } 7384 pOp->p1++; 7385 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7386 goto jump_to_p2; 7387 } 7388 7389 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7390 /* Opcode: CursorHint P1 * * P4 * 7391 ** 7392 ** Provide a hint to cursor P1 that it only needs to return rows that 7393 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7394 ** to values currently held in registers. TK_COLUMN terms in the P4 7395 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7396 */ 7397 case OP_CursorHint: { 7398 VdbeCursor *pC; 7399 7400 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7401 assert( pOp->p4type==P4_EXPR ); 7402 pC = p->apCsr[pOp->p1]; 7403 if( pC ){ 7404 assert( pC->eCurType==CURTYPE_BTREE ); 7405 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7406 pOp->p4.pExpr, aMem); 7407 } 7408 break; 7409 } 7410 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7411 7412 #ifdef SQLITE_DEBUG 7413 /* Opcode: Abortable * * * * * 7414 ** 7415 ** Verify that an Abort can happen. Assert if an Abort at this point 7416 ** might cause database corruption. This opcode only appears in debugging 7417 ** builds. 7418 ** 7419 ** An Abort is safe if either there have been no writes, or if there is 7420 ** an active statement journal. 7421 */ 7422 case OP_Abortable: { 7423 sqlite3VdbeAssertAbortable(p); 7424 break; 7425 } 7426 #endif 7427 7428 #ifdef SQLITE_DEBUG_COLUMNCACHE 7429 /* Opcode: SetTabCol P1 P2 P3 * * 7430 ** 7431 ** Set a flag in register REG[P3] indicating that it holds the value 7432 ** of column P2 from the table on cursor P1. This flag is checked 7433 ** by a subsequent VerifyTabCol opcode. 7434 ** 7435 ** This opcode only appears SQLITE_DEBUG builds. It is used to verify 7436 ** that the expression table column cache is working correctly. 7437 */ 7438 case OP_SetTabCol: { 7439 aMem[pOp->p3].iTabColHash = TableColumnHash(pOp->p1,pOp->p2); 7440 break; 7441 } 7442 /* Opcode: VerifyTabCol P1 P2 P3 * * 7443 ** 7444 ** Verify that register REG[P3] contains the value of column P2 from 7445 ** cursor P1. Assert() if this is not the case. 7446 ** 7447 ** This opcode only appears SQLITE_DEBUG builds. It is used to verify 7448 ** that the expression table column cache is working correctly. 7449 */ 7450 case OP_VerifyTabCol: { 7451 assert( aMem[pOp->p3].iTabColHash == TableColumnHash(pOp->p1,pOp->p2) ); 7452 break; 7453 } 7454 #endif 7455 7456 /* Opcode: Noop * * * * * 7457 ** 7458 ** Do nothing. This instruction is often useful as a jump 7459 ** destination. 7460 */ 7461 /* 7462 ** The magic Explain opcode are only inserted when explain==2 (which 7463 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7464 ** This opcode records information from the optimizer. It is the 7465 ** the same as a no-op. This opcodesnever appears in a real VM program. 7466 */ 7467 default: { /* This is really OP_Noop, OP_Explain */ 7468 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7469 7470 break; 7471 } 7472 7473 /***************************************************************************** 7474 ** The cases of the switch statement above this line should all be indented 7475 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7476 ** readability. From this point on down, the normal indentation rules are 7477 ** restored. 7478 *****************************************************************************/ 7479 } 7480 7481 #ifdef VDBE_PROFILE 7482 { 7483 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7484 if( endTime>start ) pOrigOp->cycles += endTime - start; 7485 pOrigOp->cnt++; 7486 } 7487 #endif 7488 7489 /* The following code adds nothing to the actual functionality 7490 ** of the program. It is only here for testing and debugging. 7491 ** On the other hand, it does burn CPU cycles every time through 7492 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7493 */ 7494 #ifndef NDEBUG 7495 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7496 7497 #ifdef SQLITE_DEBUG 7498 if( db->flags & SQLITE_VdbeTrace ){ 7499 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7500 if( rc!=0 ) printf("rc=%d\n",rc); 7501 if( opProperty & (OPFLG_OUT2) ){ 7502 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7503 } 7504 if( opProperty & OPFLG_OUT3 ){ 7505 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7506 } 7507 } 7508 #endif /* SQLITE_DEBUG */ 7509 #endif /* NDEBUG */ 7510 } /* The end of the for(;;) loop the loops through opcodes */ 7511 7512 /* If we reach this point, it means that execution is finished with 7513 ** an error of some kind. 7514 */ 7515 abort_due_to_error: 7516 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7517 assert( rc ); 7518 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7519 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7520 } 7521 p->rc = rc; 7522 sqlite3SystemError(db, rc); 7523 testcase( sqlite3GlobalConfig.xLog!=0 ); 7524 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7525 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7526 sqlite3VdbeHalt(p); 7527 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7528 rc = SQLITE_ERROR; 7529 if( resetSchemaOnFault>0 ){ 7530 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7531 } 7532 7533 /* This is the only way out of this procedure. We have to 7534 ** release the mutexes on btrees that were acquired at the 7535 ** top. */ 7536 vdbe_return: 7537 testcase( nVmStep>0 ); 7538 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7539 sqlite3VdbeLeave(p); 7540 assert( rc!=SQLITE_OK || nExtraDelete==0 7541 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7542 ); 7543 return rc; 7544 7545 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7546 ** is encountered. 7547 */ 7548 too_big: 7549 sqlite3VdbeError(p, "string or blob too big"); 7550 rc = SQLITE_TOOBIG; 7551 goto abort_due_to_error; 7552 7553 /* Jump to here if a malloc() fails. 7554 */ 7555 no_mem: 7556 sqlite3OomFault(db); 7557 sqlite3VdbeError(p, "out of memory"); 7558 rc = SQLITE_NOMEM_BKPT; 7559 goto abort_due_to_error; 7560 7561 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7562 ** flag. 7563 */ 7564 abort_due_to_interrupt: 7565 assert( db->u1.isInterrupted ); 7566 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7567 p->rc = rc; 7568 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7569 goto abort_due_to_error; 7570 } 7571