xref: /sqlite-3.40.0/src/vdbe.c (revision dfe4e6bb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 /*
121 ** Invoke the VDBE coverage callback, if that callback is defined.  This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
124 **
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go.  It is usually 2.  "I" is the direction the branch
127 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
128 ** second alternative branch is taken.
129 **
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction.  This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation).  Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
135 */
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
138 #else
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142       M = iSrcLine;
143       /* Assert the truth of VdbeCoverageAlwaysTaken() and
144       ** VdbeCoverageNeverTaken() */
145       assert( (M & I)==I );
146     }else{
147       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
148       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149                                       iSrcLine,I,M);
150     }
151   }
152 #endif
153 
154 /*
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
157 */
158 #define Stringify(P, enc) \
159    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
160      { goto no_mem; }
161 
162 /*
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string.  Because the register
166 ** does not control the string, it might be deleted without the register
167 ** knowing it.
168 **
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls.  In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
172 */
173 #define Deephemeralize(P) \
174    if( ((P)->flags&MEM_Ephem)!=0 \
175        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
176 
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
179 
180 /*
181 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
182 ** if we run out of memory.
183 */
184 static VdbeCursor *allocateCursor(
185   Vdbe *p,              /* The virtual machine */
186   int iCur,             /* Index of the new VdbeCursor */
187   int nField,           /* Number of fields in the table or index */
188   int iDb,              /* Database the cursor belongs to, or -1 */
189   u8 eCurType           /* Type of the new cursor */
190 ){
191   /* Find the memory cell that will be used to store the blob of memory
192   ** required for this VdbeCursor structure. It is convenient to use a
193   ** vdbe memory cell to manage the memory allocation required for a
194   ** VdbeCursor structure for the following reasons:
195   **
196   **   * Sometimes cursor numbers are used for a couple of different
197   **     purposes in a vdbe program. The different uses might require
198   **     different sized allocations. Memory cells provide growable
199   **     allocations.
200   **
201   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202   **     be freed lazily via the sqlite3_release_memory() API. This
203   **     minimizes the number of malloc calls made by the system.
204   **
205   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
207   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
208   */
209   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
210 
211   int nByte;
212   VdbeCursor *pCx = 0;
213   nByte =
214       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
215       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
216 
217   assert( iCur>=0 && iCur<p->nCursor );
218   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
219     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
220     p->apCsr[iCur] = 0;
221   }
222   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
223     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
224     memset(pCx, 0, sizeof(VdbeCursor));
225     pCx->eCurType = eCurType;
226     pCx->iDb = iDb;
227     pCx->nField = nField;
228     pCx->aOffset = &pCx->aType[nField];
229     if( eCurType==CURTYPE_BTREE ){
230       pCx->uc.pCursor = (BtCursor*)
231           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
232       sqlite3BtreeCursorZero(pCx->uc.pCursor);
233     }
234   }
235   return pCx;
236 }
237 
238 /*
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information.  In other words, if the string
241 ** looks like a number, convert it into a number.  If it does not
242 ** look like a number, leave it alone.
243 **
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation.  Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
248 **
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
252 */
253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
254   double rValue;
255   i64 iValue;
256   u8 enc = pRec->enc;
257   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
258   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260     pRec->u.i = iValue;
261     pRec->flags |= MEM_Int;
262   }else{
263     pRec->u.r = rValue;
264     pRec->flags |= MEM_Real;
265     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
266   }
267 }
268 
269 /*
270 ** Processing is determine by the affinity parameter:
271 **
272 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_REAL:
274 ** SQLITE_AFF_NUMERIC:
275 **    Try to convert pRec to an integer representation or a
276 **    floating-point representation if an integer representation
277 **    is not possible.  Note that the integer representation is
278 **    always preferred, even if the affinity is REAL, because
279 **    an integer representation is more space efficient on disk.
280 **
281 ** SQLITE_AFF_TEXT:
282 **    Convert pRec to a text representation.
283 **
284 ** SQLITE_AFF_BLOB:
285 **    No-op.  pRec is unchanged.
286 */
287 static void applyAffinity(
288   Mem *pRec,          /* The value to apply affinity to */
289   char affinity,      /* The affinity to be applied */
290   u8 enc              /* Use this text encoding */
291 ){
292   if( affinity>=SQLITE_AFF_NUMERIC ){
293     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294              || affinity==SQLITE_AFF_NUMERIC );
295     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
296       if( (pRec->flags & MEM_Real)==0 ){
297         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
298       }else{
299         sqlite3VdbeIntegerAffinity(pRec);
300       }
301     }
302   }else if( affinity==SQLITE_AFF_TEXT ){
303     /* Only attempt the conversion to TEXT if there is an integer or real
304     ** representation (blob and NULL do not get converted) but no string
305     ** representation.  It would be harmless to repeat the conversion if
306     ** there is already a string rep, but it is pointless to waste those
307     ** CPU cycles. */
308     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309       if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310         sqlite3VdbeMemStringify(pRec, enc, 1);
311       }
312     }
313     pRec->flags &= ~(MEM_Real|MEM_Int);
314   }
315 }
316 
317 /*
318 ** Try to convert the type of a function argument or a result column
319 ** into a numeric representation.  Use either INTEGER or REAL whichever
320 ** is appropriate.  But only do the conversion if it is possible without
321 ** loss of information and return the revised type of the argument.
322 */
323 int sqlite3_value_numeric_type(sqlite3_value *pVal){
324   int eType = sqlite3_value_type(pVal);
325   if( eType==SQLITE_TEXT ){
326     Mem *pMem = (Mem*)pVal;
327     applyNumericAffinity(pMem, 0);
328     eType = sqlite3_value_type(pVal);
329   }
330   return eType;
331 }
332 
333 /*
334 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
335 ** not the internal Mem* type.
336 */
337 void sqlite3ValueApplyAffinity(
338   sqlite3_value *pVal,
339   u8 affinity,
340   u8 enc
341 ){
342   applyAffinity((Mem *)pVal, affinity, enc);
343 }
344 
345 /*
346 ** pMem currently only holds a string type (or maybe a BLOB that we can
347 ** interpret as a string if we want to).  Compute its corresponding
348 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
349 ** accordingly.
350 */
351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
354   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
355     return 0;
356   }
357   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358     return MEM_Int;
359   }
360   return MEM_Real;
361 }
362 
363 /*
364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365 ** none.
366 **
367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
368 ** But it does set pMem->u.r and pMem->u.i appropriately.
369 */
370 static u16 numericType(Mem *pMem){
371   if( pMem->flags & (MEM_Int|MEM_Real) ){
372     return pMem->flags & (MEM_Int|MEM_Real);
373   }
374   if( pMem->flags & (MEM_Str|MEM_Blob) ){
375     return computeNumericType(pMem);
376   }
377   return 0;
378 }
379 
380 #ifdef SQLITE_DEBUG
381 /*
382 ** Write a nice string representation of the contents of cell pMem
383 ** into buffer zBuf, length nBuf.
384 */
385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
386   char *zCsr = zBuf;
387   int f = pMem->flags;
388 
389   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
390 
391   if( f&MEM_Blob ){
392     int i;
393     char c;
394     if( f & MEM_Dyn ){
395       c = 'z';
396       assert( (f & (MEM_Static|MEM_Ephem))==0 );
397     }else if( f & MEM_Static ){
398       c = 't';
399       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400     }else if( f & MEM_Ephem ){
401       c = 'e';
402       assert( (f & (MEM_Static|MEM_Dyn))==0 );
403     }else{
404       c = 's';
405     }
406 
407     sqlite3_snprintf(100, zCsr, "%c", c);
408     zCsr += sqlite3Strlen30(zCsr);
409     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
410     zCsr += sqlite3Strlen30(zCsr);
411     for(i=0; i<16 && i<pMem->n; i++){
412       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
413       zCsr += sqlite3Strlen30(zCsr);
414     }
415     for(i=0; i<16 && i<pMem->n; i++){
416       char z = pMem->z[i];
417       if( z<32 || z>126 ) *zCsr++ = '.';
418       else *zCsr++ = z;
419     }
420 
421     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
422     zCsr += sqlite3Strlen30(zCsr);
423     if( f & MEM_Zero ){
424       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
425       zCsr += sqlite3Strlen30(zCsr);
426     }
427     *zCsr = '\0';
428   }else if( f & MEM_Str ){
429     int j, k;
430     zBuf[0] = ' ';
431     if( f & MEM_Dyn ){
432       zBuf[1] = 'z';
433       assert( (f & (MEM_Static|MEM_Ephem))==0 );
434     }else if( f & MEM_Static ){
435       zBuf[1] = 't';
436       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
437     }else if( f & MEM_Ephem ){
438       zBuf[1] = 'e';
439       assert( (f & (MEM_Static|MEM_Dyn))==0 );
440     }else{
441       zBuf[1] = 's';
442     }
443     k = 2;
444     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
445     k += sqlite3Strlen30(&zBuf[k]);
446     zBuf[k++] = '[';
447     for(j=0; j<15 && j<pMem->n; j++){
448       u8 c = pMem->z[j];
449       if( c>=0x20 && c<0x7f ){
450         zBuf[k++] = c;
451       }else{
452         zBuf[k++] = '.';
453       }
454     }
455     zBuf[k++] = ']';
456     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
457     k += sqlite3Strlen30(&zBuf[k]);
458     zBuf[k++] = 0;
459   }
460 }
461 #endif
462 
463 #ifdef SQLITE_DEBUG
464 /*
465 ** Print the value of a register for tracing purposes:
466 */
467 static void memTracePrint(Mem *p){
468   if( p->flags & MEM_Undefined ){
469     printf(" undefined");
470   }else if( p->flags & MEM_Null ){
471     printf(" NULL");
472   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
473     printf(" si:%lld", p->u.i);
474   }else if( p->flags & MEM_Int ){
475     printf(" i:%lld", p->u.i);
476 #ifndef SQLITE_OMIT_FLOATING_POINT
477   }else if( p->flags & MEM_Real ){
478     printf(" r:%g", p->u.r);
479 #endif
480   }else if( p->flags & MEM_RowSet ){
481     printf(" (rowset)");
482   }else{
483     char zBuf[200];
484     sqlite3VdbeMemPrettyPrint(p, zBuf);
485     printf(" %s", zBuf);
486   }
487   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
488 }
489 static void registerTrace(int iReg, Mem *p){
490   printf("REG[%d] = ", iReg);
491   memTracePrint(p);
492   printf("\n");
493 }
494 #endif
495 
496 #ifdef SQLITE_DEBUG
497 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
498 #else
499 #  define REGISTER_TRACE(R,M)
500 #endif
501 
502 
503 #ifdef VDBE_PROFILE
504 
505 /*
506 ** hwtime.h contains inline assembler code for implementing
507 ** high-performance timing routines.
508 */
509 #include "hwtime.h"
510 
511 #endif
512 
513 #ifndef NDEBUG
514 /*
515 ** This function is only called from within an assert() expression. It
516 ** checks that the sqlite3.nTransaction variable is correctly set to
517 ** the number of non-transaction savepoints currently in the
518 ** linked list starting at sqlite3.pSavepoint.
519 **
520 ** Usage:
521 **
522 **     assert( checkSavepointCount(db) );
523 */
524 static int checkSavepointCount(sqlite3 *db){
525   int n = 0;
526   Savepoint *p;
527   for(p=db->pSavepoint; p; p=p->pNext) n++;
528   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
529   return 1;
530 }
531 #endif
532 
533 /*
534 ** Return the register of pOp->p2 after first preparing it to be
535 ** overwritten with an integer value.
536 */
537 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
538   sqlite3VdbeMemSetNull(pOut);
539   pOut->flags = MEM_Int;
540   return pOut;
541 }
542 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
543   Mem *pOut;
544   assert( pOp->p2>0 );
545   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
546   pOut = &p->aMem[pOp->p2];
547   memAboutToChange(p, pOut);
548   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
549     return out2PrereleaseWithClear(pOut);
550   }else{
551     pOut->flags = MEM_Int;
552     return pOut;
553   }
554 }
555 
556 
557 /*
558 ** Execute as much of a VDBE program as we can.
559 ** This is the core of sqlite3_step().
560 */
561 int sqlite3VdbeExec(
562   Vdbe *p                    /* The VDBE */
563 ){
564   Op *aOp = p->aOp;          /* Copy of p->aOp */
565   Op *pOp = aOp;             /* Current operation */
566 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
567   Op *pOrigOp;               /* Value of pOp at the top of the loop */
568 #endif
569 #ifdef SQLITE_DEBUG
570   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
571 #endif
572   int rc = SQLITE_OK;        /* Value to return */
573   sqlite3 *db = p->db;       /* The database */
574   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
575   u8 encoding = ENC(db);     /* The database encoding */
576   int iCompare = 0;          /* Result of last comparison */
577   unsigned nVmStep = 0;      /* Number of virtual machine steps */
578 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
579   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
580 #endif
581   Mem *aMem = p->aMem;       /* Copy of p->aMem */
582   Mem *pIn1 = 0;             /* 1st input operand */
583   Mem *pIn2 = 0;             /* 2nd input operand */
584   Mem *pIn3 = 0;             /* 3rd input operand */
585   Mem *pOut = 0;             /* Output operand */
586   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
587   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
588 #ifdef VDBE_PROFILE
589   u64 start;                 /* CPU clock count at start of opcode */
590 #endif
591   /*** INSERT STACK UNION HERE ***/
592 
593   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
594   sqlite3VdbeEnter(p);
595   if( p->rc==SQLITE_NOMEM ){
596     /* This happens if a malloc() inside a call to sqlite3_column_text() or
597     ** sqlite3_column_text16() failed.  */
598     goto no_mem;
599   }
600   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
601   assert( p->bIsReader || p->readOnly!=0 );
602   p->rc = SQLITE_OK;
603   p->iCurrentTime = 0;
604   assert( p->explain==0 );
605   p->pResultSet = 0;
606   db->busyHandler.nBusy = 0;
607   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
608   sqlite3VdbeIOTraceSql(p);
609 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
610   if( db->xProgress ){
611     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
612     assert( 0 < db->nProgressOps );
613     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
614   }
615 #endif
616 #ifdef SQLITE_DEBUG
617   sqlite3BeginBenignMalloc();
618   if( p->pc==0
619    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
620   ){
621     int i;
622     int once = 1;
623     sqlite3VdbePrintSql(p);
624     if( p->db->flags & SQLITE_VdbeListing ){
625       printf("VDBE Program Listing:\n");
626       for(i=0; i<p->nOp; i++){
627         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
628       }
629     }
630     if( p->db->flags & SQLITE_VdbeEQP ){
631       for(i=0; i<p->nOp; i++){
632         if( aOp[i].opcode==OP_Explain ){
633           if( once ) printf("VDBE Query Plan:\n");
634           printf("%s\n", aOp[i].p4.z);
635           once = 0;
636         }
637       }
638     }
639     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
640   }
641   sqlite3EndBenignMalloc();
642 #endif
643   for(pOp=&aOp[p->pc]; 1; pOp++){
644     /* Errors are detected by individual opcodes, with an immediate
645     ** jumps to abort_due_to_error. */
646     assert( rc==SQLITE_OK );
647 
648     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
649 #ifdef VDBE_PROFILE
650     start = sqlite3Hwtime();
651 #endif
652     nVmStep++;
653 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
654     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
655 #endif
656 
657     /* Only allow tracing if SQLITE_DEBUG is defined.
658     */
659 #ifdef SQLITE_DEBUG
660     if( db->flags & SQLITE_VdbeTrace ){
661       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
662     }
663 #endif
664 
665 
666     /* Check to see if we need to simulate an interrupt.  This only happens
667     ** if we have a special test build.
668     */
669 #ifdef SQLITE_TEST
670     if( sqlite3_interrupt_count>0 ){
671       sqlite3_interrupt_count--;
672       if( sqlite3_interrupt_count==0 ){
673         sqlite3_interrupt(db);
674       }
675     }
676 #endif
677 
678     /* Sanity checking on other operands */
679 #ifdef SQLITE_DEBUG
680     {
681       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
682       if( (opProperty & OPFLG_IN1)!=0 ){
683         assert( pOp->p1>0 );
684         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
685         assert( memIsValid(&aMem[pOp->p1]) );
686         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
687         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
688       }
689       if( (opProperty & OPFLG_IN2)!=0 ){
690         assert( pOp->p2>0 );
691         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
692         assert( memIsValid(&aMem[pOp->p2]) );
693         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
694         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
695       }
696       if( (opProperty & OPFLG_IN3)!=0 ){
697         assert( pOp->p3>0 );
698         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
699         assert( memIsValid(&aMem[pOp->p3]) );
700         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
701         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
702       }
703       if( (opProperty & OPFLG_OUT2)!=0 ){
704         assert( pOp->p2>0 );
705         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
706         memAboutToChange(p, &aMem[pOp->p2]);
707       }
708       if( (opProperty & OPFLG_OUT3)!=0 ){
709         assert( pOp->p3>0 );
710         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
711         memAboutToChange(p, &aMem[pOp->p3]);
712       }
713     }
714 #endif
715 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
716     pOrigOp = pOp;
717 #endif
718 
719     switch( pOp->opcode ){
720 
721 /*****************************************************************************
722 ** What follows is a massive switch statement where each case implements a
723 ** separate instruction in the virtual machine.  If we follow the usual
724 ** indentation conventions, each case should be indented by 6 spaces.  But
725 ** that is a lot of wasted space on the left margin.  So the code within
726 ** the switch statement will break with convention and be flush-left. Another
727 ** big comment (similar to this one) will mark the point in the code where
728 ** we transition back to normal indentation.
729 **
730 ** The formatting of each case is important.  The makefile for SQLite
731 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
732 ** file looking for lines that begin with "case OP_".  The opcodes.h files
733 ** will be filled with #defines that give unique integer values to each
734 ** opcode and the opcodes.c file is filled with an array of strings where
735 ** each string is the symbolic name for the corresponding opcode.  If the
736 ** case statement is followed by a comment of the form "/# same as ... #/"
737 ** that comment is used to determine the particular value of the opcode.
738 **
739 ** Other keywords in the comment that follows each case are used to
740 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
741 ** Keywords include: in1, in2, in3, out2, out3.  See
742 ** the mkopcodeh.awk script for additional information.
743 **
744 ** Documentation about VDBE opcodes is generated by scanning this file
745 ** for lines of that contain "Opcode:".  That line and all subsequent
746 ** comment lines are used in the generation of the opcode.html documentation
747 ** file.
748 **
749 ** SUMMARY:
750 **
751 **     Formatting is important to scripts that scan this file.
752 **     Do not deviate from the formatting style currently in use.
753 **
754 *****************************************************************************/
755 
756 /* Opcode:  Goto * P2 * * *
757 **
758 ** An unconditional jump to address P2.
759 ** The next instruction executed will be
760 ** the one at index P2 from the beginning of
761 ** the program.
762 **
763 ** The P1 parameter is not actually used by this opcode.  However, it
764 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
765 ** that this Goto is the bottom of a loop and that the lines from P2 down
766 ** to the current line should be indented for EXPLAIN output.
767 */
768 case OP_Goto: {             /* jump */
769 jump_to_p2_and_check_for_interrupt:
770   pOp = &aOp[pOp->p2 - 1];
771 
772   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
773   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
774   ** completion.  Check to see if sqlite3_interrupt() has been called
775   ** or if the progress callback needs to be invoked.
776   **
777   ** This code uses unstructured "goto" statements and does not look clean.
778   ** But that is not due to sloppy coding habits. The code is written this
779   ** way for performance, to avoid having to run the interrupt and progress
780   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
781   ** faster according to "valgrind --tool=cachegrind" */
782 check_for_interrupt:
783   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
784 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
785   /* Call the progress callback if it is configured and the required number
786   ** of VDBE ops have been executed (either since this invocation of
787   ** sqlite3VdbeExec() or since last time the progress callback was called).
788   ** If the progress callback returns non-zero, exit the virtual machine with
789   ** a return code SQLITE_ABORT.
790   */
791   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
792     assert( db->nProgressOps!=0 );
793     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
794     if( db->xProgress(db->pProgressArg) ){
795       rc = SQLITE_INTERRUPT;
796       goto abort_due_to_error;
797     }
798   }
799 #endif
800 
801   break;
802 }
803 
804 /* Opcode:  Gosub P1 P2 * * *
805 **
806 ** Write the current address onto register P1
807 ** and then jump to address P2.
808 */
809 case OP_Gosub: {            /* jump */
810   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
811   pIn1 = &aMem[pOp->p1];
812   assert( VdbeMemDynamic(pIn1)==0 );
813   memAboutToChange(p, pIn1);
814   pIn1->flags = MEM_Int;
815   pIn1->u.i = (int)(pOp-aOp);
816   REGISTER_TRACE(pOp->p1, pIn1);
817 
818   /* Most jump operations do a goto to this spot in order to update
819   ** the pOp pointer. */
820 jump_to_p2:
821   pOp = &aOp[pOp->p2 - 1];
822   break;
823 }
824 
825 /* Opcode:  Return P1 * * * *
826 **
827 ** Jump to the next instruction after the address in register P1.  After
828 ** the jump, register P1 becomes undefined.
829 */
830 case OP_Return: {           /* in1 */
831   pIn1 = &aMem[pOp->p1];
832   assert( pIn1->flags==MEM_Int );
833   pOp = &aOp[pIn1->u.i];
834   pIn1->flags = MEM_Undefined;
835   break;
836 }
837 
838 /* Opcode: InitCoroutine P1 P2 P3 * *
839 **
840 ** Set up register P1 so that it will Yield to the coroutine
841 ** located at address P3.
842 **
843 ** If P2!=0 then the coroutine implementation immediately follows
844 ** this opcode.  So jump over the coroutine implementation to
845 ** address P2.
846 **
847 ** See also: EndCoroutine
848 */
849 case OP_InitCoroutine: {     /* jump */
850   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
851   assert( pOp->p2>=0 && pOp->p2<p->nOp );
852   assert( pOp->p3>=0 && pOp->p3<p->nOp );
853   pOut = &aMem[pOp->p1];
854   assert( !VdbeMemDynamic(pOut) );
855   pOut->u.i = pOp->p3 - 1;
856   pOut->flags = MEM_Int;
857   if( pOp->p2 ) goto jump_to_p2;
858   break;
859 }
860 
861 /* Opcode:  EndCoroutine P1 * * * *
862 **
863 ** The instruction at the address in register P1 is a Yield.
864 ** Jump to the P2 parameter of that Yield.
865 ** After the jump, register P1 becomes undefined.
866 **
867 ** See also: InitCoroutine
868 */
869 case OP_EndCoroutine: {           /* in1 */
870   VdbeOp *pCaller;
871   pIn1 = &aMem[pOp->p1];
872   assert( pIn1->flags==MEM_Int );
873   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
874   pCaller = &aOp[pIn1->u.i];
875   assert( pCaller->opcode==OP_Yield );
876   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
877   pOp = &aOp[pCaller->p2 - 1];
878   pIn1->flags = MEM_Undefined;
879   break;
880 }
881 
882 /* Opcode:  Yield P1 P2 * * *
883 **
884 ** Swap the program counter with the value in register P1.  This
885 ** has the effect of yielding to a coroutine.
886 **
887 ** If the coroutine that is launched by this instruction ends with
888 ** Yield or Return then continue to the next instruction.  But if
889 ** the coroutine launched by this instruction ends with
890 ** EndCoroutine, then jump to P2 rather than continuing with the
891 ** next instruction.
892 **
893 ** See also: InitCoroutine
894 */
895 case OP_Yield: {            /* in1, jump */
896   int pcDest;
897   pIn1 = &aMem[pOp->p1];
898   assert( VdbeMemDynamic(pIn1)==0 );
899   pIn1->flags = MEM_Int;
900   pcDest = (int)pIn1->u.i;
901   pIn1->u.i = (int)(pOp - aOp);
902   REGISTER_TRACE(pOp->p1, pIn1);
903   pOp = &aOp[pcDest];
904   break;
905 }
906 
907 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
908 ** Synopsis: if r[P3]=null halt
909 **
910 ** Check the value in register P3.  If it is NULL then Halt using
911 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
912 ** value in register P3 is not NULL, then this routine is a no-op.
913 ** The P5 parameter should be 1.
914 */
915 case OP_HaltIfNull: {      /* in3 */
916   pIn3 = &aMem[pOp->p3];
917   if( (pIn3->flags & MEM_Null)==0 ) break;
918   /* Fall through into OP_Halt */
919 }
920 
921 /* Opcode:  Halt P1 P2 * P4 P5
922 **
923 ** Exit immediately.  All open cursors, etc are closed
924 ** automatically.
925 **
926 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
927 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
928 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
929 ** whether or not to rollback the current transaction.  Do not rollback
930 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
931 ** then back out all changes that have occurred during this execution of the
932 ** VDBE, but do not rollback the transaction.
933 **
934 ** If P4 is not null then it is an error message string.
935 **
936 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
937 **
938 **    0:  (no change)
939 **    1:  NOT NULL contraint failed: P4
940 **    2:  UNIQUE constraint failed: P4
941 **    3:  CHECK constraint failed: P4
942 **    4:  FOREIGN KEY constraint failed: P4
943 **
944 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
945 ** omitted.
946 **
947 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
948 ** every program.  So a jump past the last instruction of the program
949 ** is the same as executing Halt.
950 */
951 case OP_Halt: {
952   VdbeFrame *pFrame;
953   int pcx;
954 
955   pcx = (int)(pOp - aOp);
956   if( pOp->p1==SQLITE_OK && p->pFrame ){
957     /* Halt the sub-program. Return control to the parent frame. */
958     pFrame = p->pFrame;
959     p->pFrame = pFrame->pParent;
960     p->nFrame--;
961     sqlite3VdbeSetChanges(db, p->nChange);
962     pcx = sqlite3VdbeFrameRestore(pFrame);
963     lastRowid = db->lastRowid;
964     if( pOp->p2==OE_Ignore ){
965       /* Instruction pcx is the OP_Program that invoked the sub-program
966       ** currently being halted. If the p2 instruction of this OP_Halt
967       ** instruction is set to OE_Ignore, then the sub-program is throwing
968       ** an IGNORE exception. In this case jump to the address specified
969       ** as the p2 of the calling OP_Program.  */
970       pcx = p->aOp[pcx].p2-1;
971     }
972     aOp = p->aOp;
973     aMem = p->aMem;
974     pOp = &aOp[pcx];
975     break;
976   }
977   p->rc = pOp->p1;
978   p->errorAction = (u8)pOp->p2;
979   p->pc = pcx;
980   assert( pOp->p5>=0 && pOp->p5<=4 );
981   if( p->rc ){
982     if( pOp->p5 ){
983       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
984                                              "FOREIGN KEY" };
985       testcase( pOp->p5==1 );
986       testcase( pOp->p5==2 );
987       testcase( pOp->p5==3 );
988       testcase( pOp->p5==4 );
989       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
990       if( pOp->p4.z ){
991         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
992       }
993     }else{
994       sqlite3VdbeError(p, "%s", pOp->p4.z);
995     }
996     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
997   }
998   rc = sqlite3VdbeHalt(p);
999   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1000   if( rc==SQLITE_BUSY ){
1001     p->rc = SQLITE_BUSY;
1002   }else{
1003     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1004     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1005     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1006   }
1007   goto vdbe_return;
1008 }
1009 
1010 /* Opcode: Integer P1 P2 * * *
1011 ** Synopsis: r[P2]=P1
1012 **
1013 ** The 32-bit integer value P1 is written into register P2.
1014 */
1015 case OP_Integer: {         /* out2 */
1016   pOut = out2Prerelease(p, pOp);
1017   pOut->u.i = pOp->p1;
1018   break;
1019 }
1020 
1021 /* Opcode: Int64 * P2 * P4 *
1022 ** Synopsis: r[P2]=P4
1023 **
1024 ** P4 is a pointer to a 64-bit integer value.
1025 ** Write that value into register P2.
1026 */
1027 case OP_Int64: {           /* out2 */
1028   pOut = out2Prerelease(p, pOp);
1029   assert( pOp->p4.pI64!=0 );
1030   pOut->u.i = *pOp->p4.pI64;
1031   break;
1032 }
1033 
1034 #ifndef SQLITE_OMIT_FLOATING_POINT
1035 /* Opcode: Real * P2 * P4 *
1036 ** Synopsis: r[P2]=P4
1037 **
1038 ** P4 is a pointer to a 64-bit floating point value.
1039 ** Write that value into register P2.
1040 */
1041 case OP_Real: {            /* same as TK_FLOAT, out2 */
1042   pOut = out2Prerelease(p, pOp);
1043   pOut->flags = MEM_Real;
1044   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1045   pOut->u.r = *pOp->p4.pReal;
1046   break;
1047 }
1048 #endif
1049 
1050 /* Opcode: String8 * P2 * P4 *
1051 ** Synopsis: r[P2]='P4'
1052 **
1053 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1054 ** into a String opcode before it is executed for the first time.  During
1055 ** this transformation, the length of string P4 is computed and stored
1056 ** as the P1 parameter.
1057 */
1058 case OP_String8: {         /* same as TK_STRING, out2 */
1059   assert( pOp->p4.z!=0 );
1060   pOut = out2Prerelease(p, pOp);
1061   pOp->opcode = OP_String;
1062   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1063 
1064 #ifndef SQLITE_OMIT_UTF16
1065   if( encoding!=SQLITE_UTF8 ){
1066     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1067     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1068     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1069     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1070     assert( VdbeMemDynamic(pOut)==0 );
1071     pOut->szMalloc = 0;
1072     pOut->flags |= MEM_Static;
1073     if( pOp->p4type==P4_DYNAMIC ){
1074       sqlite3DbFree(db, pOp->p4.z);
1075     }
1076     pOp->p4type = P4_DYNAMIC;
1077     pOp->p4.z = pOut->z;
1078     pOp->p1 = pOut->n;
1079   }
1080   testcase( rc==SQLITE_TOOBIG );
1081 #endif
1082   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1083     goto too_big;
1084   }
1085   assert( rc==SQLITE_OK );
1086   /* Fall through to the next case, OP_String */
1087 }
1088 
1089 /* Opcode: String P1 P2 P3 P4 P5
1090 ** Synopsis: r[P2]='P4' (len=P1)
1091 **
1092 ** The string value P4 of length P1 (bytes) is stored in register P2.
1093 **
1094 ** If P3 is not zero and the content of register P3 is equal to P5, then
1095 ** the datatype of the register P2 is converted to BLOB.  The content is
1096 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1097 ** of a string, as if it had been CAST.  In other words:
1098 **
1099 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1100 */
1101 case OP_String: {          /* out2 */
1102   assert( pOp->p4.z!=0 );
1103   pOut = out2Prerelease(p, pOp);
1104   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1105   pOut->z = pOp->p4.z;
1106   pOut->n = pOp->p1;
1107   pOut->enc = encoding;
1108   UPDATE_MAX_BLOBSIZE(pOut);
1109 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1110   if( pOp->p3>0 ){
1111     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1112     pIn3 = &aMem[pOp->p3];
1113     assert( pIn3->flags & MEM_Int );
1114     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1115   }
1116 #endif
1117   break;
1118 }
1119 
1120 /* Opcode: Null P1 P2 P3 * *
1121 ** Synopsis: r[P2..P3]=NULL
1122 **
1123 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1124 ** NULL into register P3 and every register in between P2 and P3.  If P3
1125 ** is less than P2 (typically P3 is zero) then only register P2 is
1126 ** set to NULL.
1127 **
1128 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1130 ** OP_Ne or OP_Eq.
1131 */
1132 case OP_Null: {           /* out2 */
1133   int cnt;
1134   u16 nullFlag;
1135   pOut = out2Prerelease(p, pOp);
1136   cnt = pOp->p3-pOp->p2;
1137   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1138   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1139   pOut->n = 0;
1140   while( cnt>0 ){
1141     pOut++;
1142     memAboutToChange(p, pOut);
1143     sqlite3VdbeMemSetNull(pOut);
1144     pOut->flags = nullFlag;
1145     pOut->n = 0;
1146     cnt--;
1147   }
1148   break;
1149 }
1150 
1151 /* Opcode: SoftNull P1 * * * *
1152 ** Synopsis: r[P1]=NULL
1153 **
1154 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1155 ** instruction, but do not free any string or blob memory associated with
1156 ** the register, so that if the value was a string or blob that was
1157 ** previously copied using OP_SCopy, the copies will continue to be valid.
1158 */
1159 case OP_SoftNull: {
1160   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1161   pOut = &aMem[pOp->p1];
1162   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1163   break;
1164 }
1165 
1166 /* Opcode: Blob P1 P2 * P4 *
1167 ** Synopsis: r[P2]=P4 (len=P1)
1168 **
1169 ** P4 points to a blob of data P1 bytes long.  Store this
1170 ** blob in register P2.
1171 */
1172 case OP_Blob: {                /* out2 */
1173   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1174   pOut = out2Prerelease(p, pOp);
1175   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1176   pOut->enc = encoding;
1177   UPDATE_MAX_BLOBSIZE(pOut);
1178   break;
1179 }
1180 
1181 /* Opcode: Variable P1 P2 * P4 *
1182 ** Synopsis: r[P2]=parameter(P1,P4)
1183 **
1184 ** Transfer the values of bound parameter P1 into register P2
1185 **
1186 ** If the parameter is named, then its name appears in P4.
1187 ** The P4 value is used by sqlite3_bind_parameter_name().
1188 */
1189 case OP_Variable: {            /* out2 */
1190   Mem *pVar;       /* Value being transferred */
1191 
1192   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1193   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1194   pVar = &p->aVar[pOp->p1 - 1];
1195   if( sqlite3VdbeMemTooBig(pVar) ){
1196     goto too_big;
1197   }
1198   pOut = out2Prerelease(p, pOp);
1199   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1200   UPDATE_MAX_BLOBSIZE(pOut);
1201   break;
1202 }
1203 
1204 /* Opcode: Move P1 P2 P3 * *
1205 ** Synopsis: r[P2@P3]=r[P1@P3]
1206 **
1207 ** Move the P3 values in register P1..P1+P3-1 over into
1208 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1209 ** left holding a NULL.  It is an error for register ranges
1210 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1211 ** for P3 to be less than 1.
1212 */
1213 case OP_Move: {
1214   int n;           /* Number of registers left to copy */
1215   int p1;          /* Register to copy from */
1216   int p2;          /* Register to copy to */
1217 
1218   n = pOp->p3;
1219   p1 = pOp->p1;
1220   p2 = pOp->p2;
1221   assert( n>0 && p1>0 && p2>0 );
1222   assert( p1+n<=p2 || p2+n<=p1 );
1223 
1224   pIn1 = &aMem[p1];
1225   pOut = &aMem[p2];
1226   do{
1227     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1228     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1229     assert( memIsValid(pIn1) );
1230     memAboutToChange(p, pOut);
1231     sqlite3VdbeMemMove(pOut, pIn1);
1232 #ifdef SQLITE_DEBUG
1233     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1234       pOut->pScopyFrom += pOp->p2 - p1;
1235     }
1236 #endif
1237     Deephemeralize(pOut);
1238     REGISTER_TRACE(p2++, pOut);
1239     pIn1++;
1240     pOut++;
1241   }while( --n );
1242   break;
1243 }
1244 
1245 /* Opcode: Copy P1 P2 P3 * *
1246 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1247 **
1248 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1249 **
1250 ** This instruction makes a deep copy of the value.  A duplicate
1251 ** is made of any string or blob constant.  See also OP_SCopy.
1252 */
1253 case OP_Copy: {
1254   int n;
1255 
1256   n = pOp->p3;
1257   pIn1 = &aMem[pOp->p1];
1258   pOut = &aMem[pOp->p2];
1259   assert( pOut!=pIn1 );
1260   while( 1 ){
1261     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1262     Deephemeralize(pOut);
1263 #ifdef SQLITE_DEBUG
1264     pOut->pScopyFrom = 0;
1265 #endif
1266     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1267     if( (n--)==0 ) break;
1268     pOut++;
1269     pIn1++;
1270   }
1271   break;
1272 }
1273 
1274 /* Opcode: SCopy P1 P2 * * *
1275 ** Synopsis: r[P2]=r[P1]
1276 **
1277 ** Make a shallow copy of register P1 into register P2.
1278 **
1279 ** This instruction makes a shallow copy of the value.  If the value
1280 ** is a string or blob, then the copy is only a pointer to the
1281 ** original and hence if the original changes so will the copy.
1282 ** Worse, if the original is deallocated, the copy becomes invalid.
1283 ** Thus the program must guarantee that the original will not change
1284 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1285 ** copy.
1286 */
1287 case OP_SCopy: {            /* out2 */
1288   pIn1 = &aMem[pOp->p1];
1289   pOut = &aMem[pOp->p2];
1290   assert( pOut!=pIn1 );
1291   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1292 #ifdef SQLITE_DEBUG
1293   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1294 #endif
1295   break;
1296 }
1297 
1298 /* Opcode: IntCopy P1 P2 * * *
1299 ** Synopsis: r[P2]=r[P1]
1300 **
1301 ** Transfer the integer value held in register P1 into register P2.
1302 **
1303 ** This is an optimized version of SCopy that works only for integer
1304 ** values.
1305 */
1306 case OP_IntCopy: {            /* out2 */
1307   pIn1 = &aMem[pOp->p1];
1308   assert( (pIn1->flags & MEM_Int)!=0 );
1309   pOut = &aMem[pOp->p2];
1310   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1311   break;
1312 }
1313 
1314 /* Opcode: ResultRow P1 P2 * * *
1315 ** Synopsis: output=r[P1@P2]
1316 **
1317 ** The registers P1 through P1+P2-1 contain a single row of
1318 ** results. This opcode causes the sqlite3_step() call to terminate
1319 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1320 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1321 ** the result row.
1322 */
1323 case OP_ResultRow: {
1324   Mem *pMem;
1325   int i;
1326   assert( p->nResColumn==pOp->p2 );
1327   assert( pOp->p1>0 );
1328   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1329 
1330 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1331   /* Run the progress counter just before returning.
1332   */
1333   if( db->xProgress!=0
1334    && nVmStep>=nProgressLimit
1335    && db->xProgress(db->pProgressArg)!=0
1336   ){
1337     rc = SQLITE_INTERRUPT;
1338     goto abort_due_to_error;
1339   }
1340 #endif
1341 
1342   /* If this statement has violated immediate foreign key constraints, do
1343   ** not return the number of rows modified. And do not RELEASE the statement
1344   ** transaction. It needs to be rolled back.  */
1345   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1346     assert( db->flags&SQLITE_CountRows );
1347     assert( p->usesStmtJournal );
1348     goto abort_due_to_error;
1349   }
1350 
1351   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1352   ** DML statements invoke this opcode to return the number of rows
1353   ** modified to the user. This is the only way that a VM that
1354   ** opens a statement transaction may invoke this opcode.
1355   **
1356   ** In case this is such a statement, close any statement transaction
1357   ** opened by this VM before returning control to the user. This is to
1358   ** ensure that statement-transactions are always nested, not overlapping.
1359   ** If the open statement-transaction is not closed here, then the user
1360   ** may step another VM that opens its own statement transaction. This
1361   ** may lead to overlapping statement transactions.
1362   **
1363   ** The statement transaction is never a top-level transaction.  Hence
1364   ** the RELEASE call below can never fail.
1365   */
1366   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1367   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1368   assert( rc==SQLITE_OK );
1369 
1370   /* Invalidate all ephemeral cursor row caches */
1371   p->cacheCtr = (p->cacheCtr + 2)|1;
1372 
1373   /* Make sure the results of the current row are \000 terminated
1374   ** and have an assigned type.  The results are de-ephemeralized as
1375   ** a side effect.
1376   */
1377   pMem = p->pResultSet = &aMem[pOp->p1];
1378   for(i=0; i<pOp->p2; i++){
1379     assert( memIsValid(&pMem[i]) );
1380     Deephemeralize(&pMem[i]);
1381     assert( (pMem[i].flags & MEM_Ephem)==0
1382             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1383     sqlite3VdbeMemNulTerminate(&pMem[i]);
1384     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1385   }
1386   if( db->mallocFailed ) goto no_mem;
1387 
1388   if( db->mTrace & SQLITE_TRACE_ROW ){
1389     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1390   }
1391 
1392   /* Return SQLITE_ROW
1393   */
1394   p->pc = (int)(pOp - aOp) + 1;
1395   rc = SQLITE_ROW;
1396   goto vdbe_return;
1397 }
1398 
1399 /* Opcode: Concat P1 P2 P3 * *
1400 ** Synopsis: r[P3]=r[P2]+r[P1]
1401 **
1402 ** Add the text in register P1 onto the end of the text in
1403 ** register P2 and store the result in register P3.
1404 ** If either the P1 or P2 text are NULL then store NULL in P3.
1405 **
1406 **   P3 = P2 || P1
1407 **
1408 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1409 ** if P3 is the same register as P2, the implementation is able
1410 ** to avoid a memcpy().
1411 */
1412 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1413   i64 nByte;
1414 
1415   pIn1 = &aMem[pOp->p1];
1416   pIn2 = &aMem[pOp->p2];
1417   pOut = &aMem[pOp->p3];
1418   assert( pIn1!=pOut );
1419   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1420     sqlite3VdbeMemSetNull(pOut);
1421     break;
1422   }
1423   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1424   Stringify(pIn1, encoding);
1425   Stringify(pIn2, encoding);
1426   nByte = pIn1->n + pIn2->n;
1427   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1428     goto too_big;
1429   }
1430   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1431     goto no_mem;
1432   }
1433   MemSetTypeFlag(pOut, MEM_Str);
1434   if( pOut!=pIn2 ){
1435     memcpy(pOut->z, pIn2->z, pIn2->n);
1436   }
1437   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1438   pOut->z[nByte]=0;
1439   pOut->z[nByte+1] = 0;
1440   pOut->flags |= MEM_Term;
1441   pOut->n = (int)nByte;
1442   pOut->enc = encoding;
1443   UPDATE_MAX_BLOBSIZE(pOut);
1444   break;
1445 }
1446 
1447 /* Opcode: Add P1 P2 P3 * *
1448 ** Synopsis: r[P3]=r[P1]+r[P2]
1449 **
1450 ** Add the value in register P1 to the value in register P2
1451 ** and store the result in register P3.
1452 ** If either input is NULL, the result is NULL.
1453 */
1454 /* Opcode: Multiply P1 P2 P3 * *
1455 ** Synopsis: r[P3]=r[P1]*r[P2]
1456 **
1457 **
1458 ** Multiply the value in register P1 by the value in register P2
1459 ** and store the result in register P3.
1460 ** If either input is NULL, the result is NULL.
1461 */
1462 /* Opcode: Subtract P1 P2 P3 * *
1463 ** Synopsis: r[P3]=r[P2]-r[P1]
1464 **
1465 ** Subtract the value in register P1 from the value in register P2
1466 ** and store the result in register P3.
1467 ** If either input is NULL, the result is NULL.
1468 */
1469 /* Opcode: Divide P1 P2 P3 * *
1470 ** Synopsis: r[P3]=r[P2]/r[P1]
1471 **
1472 ** Divide the value in register P1 by the value in register P2
1473 ** and store the result in register P3 (P3=P2/P1). If the value in
1474 ** register P1 is zero, then the result is NULL. If either input is
1475 ** NULL, the result is NULL.
1476 */
1477 /* Opcode: Remainder P1 P2 P3 * *
1478 ** Synopsis: r[P3]=r[P2]%r[P1]
1479 **
1480 ** Compute the remainder after integer register P2 is divided by
1481 ** register P1 and store the result in register P3.
1482 ** If the value in register P1 is zero the result is NULL.
1483 ** If either operand is NULL, the result is NULL.
1484 */
1485 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1486 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1487 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1488 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1489 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1490   char bIntint;   /* Started out as two integer operands */
1491   u16 flags;      /* Combined MEM_* flags from both inputs */
1492   u16 type1;      /* Numeric type of left operand */
1493   u16 type2;      /* Numeric type of right operand */
1494   i64 iA;         /* Integer value of left operand */
1495   i64 iB;         /* Integer value of right operand */
1496   double rA;      /* Real value of left operand */
1497   double rB;      /* Real value of right operand */
1498 
1499   pIn1 = &aMem[pOp->p1];
1500   type1 = numericType(pIn1);
1501   pIn2 = &aMem[pOp->p2];
1502   type2 = numericType(pIn2);
1503   pOut = &aMem[pOp->p3];
1504   flags = pIn1->flags | pIn2->flags;
1505   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1506   if( (type1 & type2 & MEM_Int)!=0 ){
1507     iA = pIn1->u.i;
1508     iB = pIn2->u.i;
1509     bIntint = 1;
1510     switch( pOp->opcode ){
1511       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1512       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1513       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1514       case OP_Divide: {
1515         if( iA==0 ) goto arithmetic_result_is_null;
1516         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1517         iB /= iA;
1518         break;
1519       }
1520       default: {
1521         if( iA==0 ) goto arithmetic_result_is_null;
1522         if( iA==-1 ) iA = 1;
1523         iB %= iA;
1524         break;
1525       }
1526     }
1527     pOut->u.i = iB;
1528     MemSetTypeFlag(pOut, MEM_Int);
1529   }else{
1530     bIntint = 0;
1531 fp_math:
1532     rA = sqlite3VdbeRealValue(pIn1);
1533     rB = sqlite3VdbeRealValue(pIn2);
1534     switch( pOp->opcode ){
1535       case OP_Add:         rB += rA;       break;
1536       case OP_Subtract:    rB -= rA;       break;
1537       case OP_Multiply:    rB *= rA;       break;
1538       case OP_Divide: {
1539         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1540         if( rA==(double)0 ) goto arithmetic_result_is_null;
1541         rB /= rA;
1542         break;
1543       }
1544       default: {
1545         iA = (i64)rA;
1546         iB = (i64)rB;
1547         if( iA==0 ) goto arithmetic_result_is_null;
1548         if( iA==-1 ) iA = 1;
1549         rB = (double)(iB % iA);
1550         break;
1551       }
1552     }
1553 #ifdef SQLITE_OMIT_FLOATING_POINT
1554     pOut->u.i = rB;
1555     MemSetTypeFlag(pOut, MEM_Int);
1556 #else
1557     if( sqlite3IsNaN(rB) ){
1558       goto arithmetic_result_is_null;
1559     }
1560     pOut->u.r = rB;
1561     MemSetTypeFlag(pOut, MEM_Real);
1562     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1563       sqlite3VdbeIntegerAffinity(pOut);
1564     }
1565 #endif
1566   }
1567   break;
1568 
1569 arithmetic_result_is_null:
1570   sqlite3VdbeMemSetNull(pOut);
1571   break;
1572 }
1573 
1574 /* Opcode: CollSeq P1 * * P4
1575 **
1576 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1577 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1578 ** be returned. This is used by the built-in min(), max() and nullif()
1579 ** functions.
1580 **
1581 ** If P1 is not zero, then it is a register that a subsequent min() or
1582 ** max() aggregate will set to 1 if the current row is not the minimum or
1583 ** maximum.  The P1 register is initialized to 0 by this instruction.
1584 **
1585 ** The interface used by the implementation of the aforementioned functions
1586 ** to retrieve the collation sequence set by this opcode is not available
1587 ** publicly.  Only built-in functions have access to this feature.
1588 */
1589 case OP_CollSeq: {
1590   assert( pOp->p4type==P4_COLLSEQ );
1591   if( pOp->p1 ){
1592     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1593   }
1594   break;
1595 }
1596 
1597 /* Opcode: Function0 P1 P2 P3 P4 P5
1598 ** Synopsis: r[P3]=func(r[P2@P5])
1599 **
1600 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1601 ** defines the function) with P5 arguments taken from register P2 and
1602 ** successors.  The result of the function is stored in register P3.
1603 ** Register P3 must not be one of the function inputs.
1604 **
1605 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1606 ** function was determined to be constant at compile time. If the first
1607 ** argument was constant then bit 0 of P1 is set. This is used to determine
1608 ** whether meta data associated with a user function argument using the
1609 ** sqlite3_set_auxdata() API may be safely retained until the next
1610 ** invocation of this opcode.
1611 **
1612 ** See also: Function, AggStep, AggFinal
1613 */
1614 /* Opcode: Function P1 P2 P3 P4 P5
1615 ** Synopsis: r[P3]=func(r[P2@P5])
1616 **
1617 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1618 ** contains a pointer to the function to be run) with P5 arguments taken
1619 ** from register P2 and successors.  The result of the function is stored
1620 ** in register P3.  Register P3 must not be one of the function inputs.
1621 **
1622 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1623 ** function was determined to be constant at compile time. If the first
1624 ** argument was constant then bit 0 of P1 is set. This is used to determine
1625 ** whether meta data associated with a user function argument using the
1626 ** sqlite3_set_auxdata() API may be safely retained until the next
1627 ** invocation of this opcode.
1628 **
1629 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1630 ** to a FuncDef object.  But on first evaluation, the P4 operand is
1631 ** automatically converted into an sqlite3_context object and the operation
1632 ** changed to this OP_Function opcode.  In this way, the initialization of
1633 ** the sqlite3_context object occurs only once, rather than once for each
1634 ** evaluation of the function.
1635 **
1636 ** See also: Function0, AggStep, AggFinal
1637 */
1638 case OP_Function0: {
1639   int n;
1640   sqlite3_context *pCtx;
1641 
1642   assert( pOp->p4type==P4_FUNCDEF );
1643   n = pOp->p5;
1644   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1645   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
1646   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1647   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1648   if( pCtx==0 ) goto no_mem;
1649   pCtx->pOut = 0;
1650   pCtx->pFunc = pOp->p4.pFunc;
1651   pCtx->iOp = (int)(pOp - aOp);
1652   pCtx->pVdbe = p;
1653   pCtx->argc = n;
1654   pOp->p4type = P4_FUNCCTX;
1655   pOp->p4.pCtx = pCtx;
1656   pOp->opcode = OP_Function;
1657   /* Fall through into OP_Function */
1658 }
1659 case OP_Function: {
1660   int i;
1661   sqlite3_context *pCtx;
1662 
1663   assert( pOp->p4type==P4_FUNCCTX );
1664   pCtx = pOp->p4.pCtx;
1665 
1666   /* If this function is inside of a trigger, the register array in aMem[]
1667   ** might change from one evaluation to the next.  The next block of code
1668   ** checks to see if the register array has changed, and if so it
1669   ** reinitializes the relavant parts of the sqlite3_context object */
1670   pOut = &aMem[pOp->p3];
1671   if( pCtx->pOut != pOut ){
1672     pCtx->pOut = pOut;
1673     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1674   }
1675 
1676   memAboutToChange(p, pCtx->pOut);
1677 #ifdef SQLITE_DEBUG
1678   for(i=0; i<pCtx->argc; i++){
1679     assert( memIsValid(pCtx->argv[i]) );
1680     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1681   }
1682 #endif
1683   MemSetTypeFlag(pCtx->pOut, MEM_Null);
1684   pCtx->fErrorOrAux = 0;
1685   db->lastRowid = lastRowid;
1686   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1687   lastRowid = db->lastRowid;  /* Remember rowid changes made by xSFunc */
1688 
1689   /* If the function returned an error, throw an exception */
1690   if( pCtx->fErrorOrAux ){
1691     if( pCtx->isError ){
1692       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1693       rc = pCtx->isError;
1694     }
1695     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
1696     if( rc ) goto abort_due_to_error;
1697   }
1698 
1699   /* Copy the result of the function into register P3 */
1700   if( pOut->flags & (MEM_Str|MEM_Blob) ){
1701     sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1702     if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1703   }
1704 
1705   REGISTER_TRACE(pOp->p3, pCtx->pOut);
1706   UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1707   break;
1708 }
1709 
1710 /* Opcode: BitAnd P1 P2 P3 * *
1711 ** Synopsis: r[P3]=r[P1]&r[P2]
1712 **
1713 ** Take the bit-wise AND of the values in register P1 and P2 and
1714 ** store the result in register P3.
1715 ** If either input is NULL, the result is NULL.
1716 */
1717 /* Opcode: BitOr P1 P2 P3 * *
1718 ** Synopsis: r[P3]=r[P1]|r[P2]
1719 **
1720 ** Take the bit-wise OR of the values in register P1 and P2 and
1721 ** store the result in register P3.
1722 ** If either input is NULL, the result is NULL.
1723 */
1724 /* Opcode: ShiftLeft P1 P2 P3 * *
1725 ** Synopsis: r[P3]=r[P2]<<r[P1]
1726 **
1727 ** Shift the integer value in register P2 to the left by the
1728 ** number of bits specified by the integer in register P1.
1729 ** Store the result in register P3.
1730 ** If either input is NULL, the result is NULL.
1731 */
1732 /* Opcode: ShiftRight P1 P2 P3 * *
1733 ** Synopsis: r[P3]=r[P2]>>r[P1]
1734 **
1735 ** Shift the integer value in register P2 to the right by the
1736 ** number of bits specified by the integer in register P1.
1737 ** Store the result in register P3.
1738 ** If either input is NULL, the result is NULL.
1739 */
1740 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1741 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1742 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1743 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1744   i64 iA;
1745   u64 uA;
1746   i64 iB;
1747   u8 op;
1748 
1749   pIn1 = &aMem[pOp->p1];
1750   pIn2 = &aMem[pOp->p2];
1751   pOut = &aMem[pOp->p3];
1752   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1753     sqlite3VdbeMemSetNull(pOut);
1754     break;
1755   }
1756   iA = sqlite3VdbeIntValue(pIn2);
1757   iB = sqlite3VdbeIntValue(pIn1);
1758   op = pOp->opcode;
1759   if( op==OP_BitAnd ){
1760     iA &= iB;
1761   }else if( op==OP_BitOr ){
1762     iA |= iB;
1763   }else if( iB!=0 ){
1764     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1765 
1766     /* If shifting by a negative amount, shift in the other direction */
1767     if( iB<0 ){
1768       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1769       op = 2*OP_ShiftLeft + 1 - op;
1770       iB = iB>(-64) ? -iB : 64;
1771     }
1772 
1773     if( iB>=64 ){
1774       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1775     }else{
1776       memcpy(&uA, &iA, sizeof(uA));
1777       if( op==OP_ShiftLeft ){
1778         uA <<= iB;
1779       }else{
1780         uA >>= iB;
1781         /* Sign-extend on a right shift of a negative number */
1782         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1783       }
1784       memcpy(&iA, &uA, sizeof(iA));
1785     }
1786   }
1787   pOut->u.i = iA;
1788   MemSetTypeFlag(pOut, MEM_Int);
1789   break;
1790 }
1791 
1792 /* Opcode: AddImm  P1 P2 * * *
1793 ** Synopsis: r[P1]=r[P1]+P2
1794 **
1795 ** Add the constant P2 to the value in register P1.
1796 ** The result is always an integer.
1797 **
1798 ** To force any register to be an integer, just add 0.
1799 */
1800 case OP_AddImm: {            /* in1 */
1801   pIn1 = &aMem[pOp->p1];
1802   memAboutToChange(p, pIn1);
1803   sqlite3VdbeMemIntegerify(pIn1);
1804   pIn1->u.i += pOp->p2;
1805   break;
1806 }
1807 
1808 /* Opcode: MustBeInt P1 P2 * * *
1809 **
1810 ** Force the value in register P1 to be an integer.  If the value
1811 ** in P1 is not an integer and cannot be converted into an integer
1812 ** without data loss, then jump immediately to P2, or if P2==0
1813 ** raise an SQLITE_MISMATCH exception.
1814 */
1815 case OP_MustBeInt: {            /* jump, in1 */
1816   pIn1 = &aMem[pOp->p1];
1817   if( (pIn1->flags & MEM_Int)==0 ){
1818     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1819     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1820     if( (pIn1->flags & MEM_Int)==0 ){
1821       if( pOp->p2==0 ){
1822         rc = SQLITE_MISMATCH;
1823         goto abort_due_to_error;
1824       }else{
1825         goto jump_to_p2;
1826       }
1827     }
1828   }
1829   MemSetTypeFlag(pIn1, MEM_Int);
1830   break;
1831 }
1832 
1833 #ifndef SQLITE_OMIT_FLOATING_POINT
1834 /* Opcode: RealAffinity P1 * * * *
1835 **
1836 ** If register P1 holds an integer convert it to a real value.
1837 **
1838 ** This opcode is used when extracting information from a column that
1839 ** has REAL affinity.  Such column values may still be stored as
1840 ** integers, for space efficiency, but after extraction we want them
1841 ** to have only a real value.
1842 */
1843 case OP_RealAffinity: {                  /* in1 */
1844   pIn1 = &aMem[pOp->p1];
1845   if( pIn1->flags & MEM_Int ){
1846     sqlite3VdbeMemRealify(pIn1);
1847   }
1848   break;
1849 }
1850 #endif
1851 
1852 #ifndef SQLITE_OMIT_CAST
1853 /* Opcode: Cast P1 P2 * * *
1854 ** Synopsis: affinity(r[P1])
1855 **
1856 ** Force the value in register P1 to be the type defined by P2.
1857 **
1858 ** <ul>
1859 ** <li value="97"> TEXT
1860 ** <li value="98"> BLOB
1861 ** <li value="99"> NUMERIC
1862 ** <li value="100"> INTEGER
1863 ** <li value="101"> REAL
1864 ** </ul>
1865 **
1866 ** A NULL value is not changed by this routine.  It remains NULL.
1867 */
1868 case OP_Cast: {                  /* in1 */
1869   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1870   testcase( pOp->p2==SQLITE_AFF_TEXT );
1871   testcase( pOp->p2==SQLITE_AFF_BLOB );
1872   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1873   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1874   testcase( pOp->p2==SQLITE_AFF_REAL );
1875   pIn1 = &aMem[pOp->p1];
1876   memAboutToChange(p, pIn1);
1877   rc = ExpandBlob(pIn1);
1878   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1879   UPDATE_MAX_BLOBSIZE(pIn1);
1880   if( rc ) goto abort_due_to_error;
1881   break;
1882 }
1883 #endif /* SQLITE_OMIT_CAST */
1884 
1885 /* Opcode: Eq P1 P2 P3 P4 P5
1886 ** Synopsis: IF r[P3]==r[P1]
1887 **
1888 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1889 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1890 ** store the result of comparison in register P2.
1891 **
1892 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1893 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1894 ** to coerce both inputs according to this affinity before the
1895 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1896 ** affinity is used. Note that the affinity conversions are stored
1897 ** back into the input registers P1 and P3.  So this opcode can cause
1898 ** persistent changes to registers P1 and P3.
1899 **
1900 ** Once any conversions have taken place, and neither value is NULL,
1901 ** the values are compared. If both values are blobs then memcmp() is
1902 ** used to determine the results of the comparison.  If both values
1903 ** are text, then the appropriate collating function specified in
1904 ** P4 is used to do the comparison.  If P4 is not specified then
1905 ** memcmp() is used to compare text string.  If both values are
1906 ** numeric, then a numeric comparison is used. If the two values
1907 ** are of different types, then numbers are considered less than
1908 ** strings and strings are considered less than blobs.
1909 **
1910 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1911 ** true or false and is never NULL.  If both operands are NULL then the result
1912 ** of comparison is true.  If either operand is NULL then the result is false.
1913 ** If neither operand is NULL the result is the same as it would be if
1914 ** the SQLITE_NULLEQ flag were omitted from P5.
1915 **
1916 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1917 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1918 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1919 */
1920 /* Opcode: Ne P1 P2 P3 P4 P5
1921 ** Synopsis: IF r[P3]!=r[P1]
1922 **
1923 ** This works just like the Eq opcode except that the jump is taken if
1924 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1925 ** additional information.
1926 **
1927 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1928 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1929 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1930 */
1931 /* Opcode: Lt P1 P2 P3 P4 P5
1932 ** Synopsis: IF r[P3]<r[P1]
1933 **
1934 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1935 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1936 ** the result of comparison (0 or 1 or NULL) into register P2.
1937 **
1938 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1939 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1940 ** bit is clear then fall through if either operand is NULL.
1941 **
1942 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1943 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1944 ** to coerce both inputs according to this affinity before the
1945 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1946 ** affinity is used. Note that the affinity conversions are stored
1947 ** back into the input registers P1 and P3.  So this opcode can cause
1948 ** persistent changes to registers P1 and P3.
1949 **
1950 ** Once any conversions have taken place, and neither value is NULL,
1951 ** the values are compared. If both values are blobs then memcmp() is
1952 ** used to determine the results of the comparison.  If both values
1953 ** are text, then the appropriate collating function specified in
1954 ** P4 is  used to do the comparison.  If P4 is not specified then
1955 ** memcmp() is used to compare text string.  If both values are
1956 ** numeric, then a numeric comparison is used. If the two values
1957 ** are of different types, then numbers are considered less than
1958 ** strings and strings are considered less than blobs.
1959 */
1960 /* Opcode: Le P1 P2 P3 P4 P5
1961 ** Synopsis: IF r[P3]<=r[P1]
1962 **
1963 ** This works just like the Lt opcode except that the jump is taken if
1964 ** the content of register P3 is less than or equal to the content of
1965 ** register P1.  See the Lt opcode for additional information.
1966 */
1967 /* Opcode: Gt P1 P2 P3 P4 P5
1968 ** Synopsis: IF r[P3]>r[P1]
1969 **
1970 ** This works just like the Lt opcode except that the jump is taken if
1971 ** the content of register P3 is greater than the content of
1972 ** register P1.  See the Lt opcode for additional information.
1973 */
1974 /* Opcode: Ge P1 P2 P3 P4 P5
1975 ** Synopsis: IF r[P3]>=r[P1]
1976 **
1977 ** This works just like the Lt opcode except that the jump is taken if
1978 ** the content of register P3 is greater than or equal to the content of
1979 ** register P1.  See the Lt opcode for additional information.
1980 */
1981 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1982 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1983 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1984 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1985 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1986 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1987   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1988   char affinity;      /* Affinity to use for comparison */
1989   u16 flags1;         /* Copy of initial value of pIn1->flags */
1990   u16 flags3;         /* Copy of initial value of pIn3->flags */
1991 
1992   pIn1 = &aMem[pOp->p1];
1993   pIn3 = &aMem[pOp->p3];
1994   flags1 = pIn1->flags;
1995   flags3 = pIn3->flags;
1996   if( (flags1 | flags3)&MEM_Null ){
1997     /* One or both operands are NULL */
1998     if( pOp->p5 & SQLITE_NULLEQ ){
1999       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2000       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2001       ** or not both operands are null.
2002       */
2003       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
2004       assert( (flags1 & MEM_Cleared)==0 );
2005       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
2006       if( (flags1&MEM_Null)!=0
2007        && (flags3&MEM_Null)!=0
2008        && (flags3&MEM_Cleared)==0
2009       ){
2010         res = 0;  /* Operands are equal */
2011       }else{
2012         res = 1;  /* Operands are not equal */
2013       }
2014     }else{
2015       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2016       ** then the result is always NULL.
2017       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2018       */
2019       if( pOp->p5 & SQLITE_STOREP2 ){
2020         pOut = &aMem[pOp->p2];
2021         iCompare = 1;    /* Operands are not equal */
2022         memAboutToChange(p, pOut);
2023         MemSetTypeFlag(pOut, MEM_Null);
2024         REGISTER_TRACE(pOp->p2, pOut);
2025       }else{
2026         VdbeBranchTaken(2,3);
2027         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2028           goto jump_to_p2;
2029         }
2030       }
2031       break;
2032     }
2033   }else{
2034     /* Neither operand is NULL.  Do a comparison. */
2035     affinity = pOp->p5 & SQLITE_AFF_MASK;
2036     if( affinity>=SQLITE_AFF_NUMERIC ){
2037       if( (flags1 | flags3)&MEM_Str ){
2038         if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2039           applyNumericAffinity(pIn1,0);
2040           testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
2041           flags3 = pIn3->flags;
2042         }
2043         if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2044           applyNumericAffinity(pIn3,0);
2045         }
2046       }
2047       /* Handle the common case of integer comparison here, as an
2048       ** optimization, to avoid a call to sqlite3MemCompare() */
2049       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2050         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2051         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2052         res = 0;
2053         goto compare_op;
2054       }
2055     }else if( affinity==SQLITE_AFF_TEXT ){
2056       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2057         testcase( pIn1->flags & MEM_Int );
2058         testcase( pIn1->flags & MEM_Real );
2059         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2060         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2061         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2062         assert( pIn1!=pIn3 );
2063       }
2064       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2065         testcase( pIn3->flags & MEM_Int );
2066         testcase( pIn3->flags & MEM_Real );
2067         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2068         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2069         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2070       }
2071     }
2072     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2073     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2074   }
2075 compare_op:
2076   switch( pOp->opcode ){
2077     case OP_Eq:    res2 = res==0;     break;
2078     case OP_Ne:    res2 = res;        break;
2079     case OP_Lt:    res2 = res<0;      break;
2080     case OP_Le:    res2 = res<=0;     break;
2081     case OP_Gt:    res2 = res>0;      break;
2082     default:       res2 = res>=0;     break;
2083   }
2084 
2085   /* Undo any changes made by applyAffinity() to the input registers. */
2086   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2087   pIn1->flags = flags1;
2088   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2089   pIn3->flags = flags3;
2090 
2091   if( pOp->p5 & SQLITE_STOREP2 ){
2092     pOut = &aMem[pOp->p2];
2093     iCompare = res;
2094     res2 = res2!=0;  /* For this path res2 must be exactly 0 or 1 */
2095     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2096       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2097       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2098       ** is only used in contexts where either:
2099       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2100       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2101       ** Therefore it is not necessary to check the content of r[P2] for
2102       ** NULL. */
2103       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2104       assert( res2==0 || res2==1 );
2105       testcase( res2==0 && pOp->opcode==OP_Eq );
2106       testcase( res2==1 && pOp->opcode==OP_Eq );
2107       testcase( res2==0 && pOp->opcode==OP_Ne );
2108       testcase( res2==1 && pOp->opcode==OP_Ne );
2109       if( (pOp->opcode==OP_Eq)==res2 ) break;
2110     }
2111     memAboutToChange(p, pOut);
2112     MemSetTypeFlag(pOut, MEM_Int);
2113     pOut->u.i = res2;
2114     REGISTER_TRACE(pOp->p2, pOut);
2115   }else{
2116     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2117     if( res2 ){
2118       goto jump_to_p2;
2119     }
2120   }
2121   break;
2122 }
2123 
2124 /* Opcode: ElseNotEq * P2 * * *
2125 **
2126 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2127 ** If result of an OP_Eq comparison on the same two operands
2128 ** would have be NULL or false (0), then then jump to P2.
2129 ** If the result of an OP_Eq comparison on the two previous operands
2130 ** would have been true (1), then fall through.
2131 */
2132 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2133   assert( pOp>aOp );
2134   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2135   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2136   VdbeBranchTaken(iCompare!=0, 2);
2137   if( iCompare!=0 ) goto jump_to_p2;
2138   break;
2139 }
2140 
2141 
2142 /* Opcode: Permutation * * * P4 *
2143 **
2144 ** Set the permutation used by the OP_Compare operator to be the array
2145 ** of integers in P4.
2146 **
2147 ** The permutation is only valid until the next OP_Compare that has
2148 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2149 ** occur immediately prior to the OP_Compare.
2150 **
2151 ** The first integer in the P4 integer array is the length of the array
2152 ** and does not become part of the permutation.
2153 */
2154 case OP_Permutation: {
2155   assert( pOp->p4type==P4_INTARRAY );
2156   assert( pOp->p4.ai );
2157   aPermute = pOp->p4.ai + 1;
2158   break;
2159 }
2160 
2161 /* Opcode: Compare P1 P2 P3 P4 P5
2162 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2163 **
2164 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2165 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2166 ** the comparison for use by the next OP_Jump instruct.
2167 **
2168 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2169 ** determined by the most recent OP_Permutation operator.  If the
2170 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2171 ** order.
2172 **
2173 ** P4 is a KeyInfo structure that defines collating sequences and sort
2174 ** orders for the comparison.  The permutation applies to registers
2175 ** only.  The KeyInfo elements are used sequentially.
2176 **
2177 ** The comparison is a sort comparison, so NULLs compare equal,
2178 ** NULLs are less than numbers, numbers are less than strings,
2179 ** and strings are less than blobs.
2180 */
2181 case OP_Compare: {
2182   int n;
2183   int i;
2184   int p1;
2185   int p2;
2186   const KeyInfo *pKeyInfo;
2187   int idx;
2188   CollSeq *pColl;    /* Collating sequence to use on this term */
2189   int bRev;          /* True for DESCENDING sort order */
2190 
2191   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2192   n = pOp->p3;
2193   pKeyInfo = pOp->p4.pKeyInfo;
2194   assert( n>0 );
2195   assert( pKeyInfo!=0 );
2196   p1 = pOp->p1;
2197   p2 = pOp->p2;
2198 #if SQLITE_DEBUG
2199   if( aPermute ){
2200     int k, mx = 0;
2201     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2202     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2203     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2204   }else{
2205     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2206     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2207   }
2208 #endif /* SQLITE_DEBUG */
2209   for(i=0; i<n; i++){
2210     idx = aPermute ? aPermute[i] : i;
2211     assert( memIsValid(&aMem[p1+idx]) );
2212     assert( memIsValid(&aMem[p2+idx]) );
2213     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2214     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2215     assert( i<pKeyInfo->nField );
2216     pColl = pKeyInfo->aColl[i];
2217     bRev = pKeyInfo->aSortOrder[i];
2218     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2219     if( iCompare ){
2220       if( bRev ) iCompare = -iCompare;
2221       break;
2222     }
2223   }
2224   aPermute = 0;
2225   break;
2226 }
2227 
2228 /* Opcode: Jump P1 P2 P3 * *
2229 **
2230 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2231 ** in the most recent OP_Compare instruction the P1 vector was less than
2232 ** equal to, or greater than the P2 vector, respectively.
2233 */
2234 case OP_Jump: {             /* jump */
2235   if( iCompare<0 ){
2236     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2237   }else if( iCompare==0 ){
2238     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2239   }else{
2240     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2241   }
2242   break;
2243 }
2244 
2245 /* Opcode: And P1 P2 P3 * *
2246 ** Synopsis: r[P3]=(r[P1] && r[P2])
2247 **
2248 ** Take the logical AND of the values in registers P1 and P2 and
2249 ** write the result into register P3.
2250 **
2251 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2252 ** the other input is NULL.  A NULL and true or two NULLs give
2253 ** a NULL output.
2254 */
2255 /* Opcode: Or P1 P2 P3 * *
2256 ** Synopsis: r[P3]=(r[P1] || r[P2])
2257 **
2258 ** Take the logical OR of the values in register P1 and P2 and
2259 ** store the answer in register P3.
2260 **
2261 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2262 ** even if the other input is NULL.  A NULL and false or two NULLs
2263 ** give a NULL output.
2264 */
2265 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2266 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2267   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2268   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2269 
2270   pIn1 = &aMem[pOp->p1];
2271   if( pIn1->flags & MEM_Null ){
2272     v1 = 2;
2273   }else{
2274     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2275   }
2276   pIn2 = &aMem[pOp->p2];
2277   if( pIn2->flags & MEM_Null ){
2278     v2 = 2;
2279   }else{
2280     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2281   }
2282   if( pOp->opcode==OP_And ){
2283     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2284     v1 = and_logic[v1*3+v2];
2285   }else{
2286     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2287     v1 = or_logic[v1*3+v2];
2288   }
2289   pOut = &aMem[pOp->p3];
2290   if( v1==2 ){
2291     MemSetTypeFlag(pOut, MEM_Null);
2292   }else{
2293     pOut->u.i = v1;
2294     MemSetTypeFlag(pOut, MEM_Int);
2295   }
2296   break;
2297 }
2298 
2299 /* Opcode: Not P1 P2 * * *
2300 ** Synopsis: r[P2]= !r[P1]
2301 **
2302 ** Interpret the value in register P1 as a boolean value.  Store the
2303 ** boolean complement in register P2.  If the value in register P1 is
2304 ** NULL, then a NULL is stored in P2.
2305 */
2306 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2307   pIn1 = &aMem[pOp->p1];
2308   pOut = &aMem[pOp->p2];
2309   sqlite3VdbeMemSetNull(pOut);
2310   if( (pIn1->flags & MEM_Null)==0 ){
2311     pOut->flags = MEM_Int;
2312     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2313   }
2314   break;
2315 }
2316 
2317 /* Opcode: BitNot P1 P2 * * *
2318 ** Synopsis: r[P1]= ~r[P1]
2319 **
2320 ** Interpret the content of register P1 as an integer.  Store the
2321 ** ones-complement of the P1 value into register P2.  If P1 holds
2322 ** a NULL then store a NULL in P2.
2323 */
2324 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2325   pIn1 = &aMem[pOp->p1];
2326   pOut = &aMem[pOp->p2];
2327   sqlite3VdbeMemSetNull(pOut);
2328   if( (pIn1->flags & MEM_Null)==0 ){
2329     pOut->flags = MEM_Int;
2330     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2331   }
2332   break;
2333 }
2334 
2335 /* Opcode: Once P1 P2 * * *
2336 **
2337 ** If the P1 value is equal to the P1 value on the OP_Init opcode at
2338 ** instruction 0, then jump to P2.  If the two P1 values differ, then
2339 ** set the P1 value on this opcode to equal the P1 value on the OP_Init
2340 ** and fall through.
2341 */
2342 case OP_Once: {             /* jump */
2343   assert( p->aOp[0].opcode==OP_Init );
2344   VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2);
2345   if( p->aOp[0].p1==pOp->p1 ){
2346     goto jump_to_p2;
2347   }else{
2348     pOp->p1 = p->aOp[0].p1;
2349   }
2350   break;
2351 }
2352 
2353 /* Opcode: If P1 P2 P3 * *
2354 **
2355 ** Jump to P2 if the value in register P1 is true.  The value
2356 ** is considered true if it is numeric and non-zero.  If the value
2357 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2358 */
2359 /* Opcode: IfNot P1 P2 P3 * *
2360 **
2361 ** Jump to P2 if the value in register P1 is False.  The value
2362 ** is considered false if it has a numeric value of zero.  If the value
2363 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2364 */
2365 case OP_If:                 /* jump, in1 */
2366 case OP_IfNot: {            /* jump, in1 */
2367   int c;
2368   pIn1 = &aMem[pOp->p1];
2369   if( pIn1->flags & MEM_Null ){
2370     c = pOp->p3;
2371   }else{
2372 #ifdef SQLITE_OMIT_FLOATING_POINT
2373     c = sqlite3VdbeIntValue(pIn1)!=0;
2374 #else
2375     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2376 #endif
2377     if( pOp->opcode==OP_IfNot ) c = !c;
2378   }
2379   VdbeBranchTaken(c!=0, 2);
2380   if( c ){
2381     goto jump_to_p2;
2382   }
2383   break;
2384 }
2385 
2386 /* Opcode: IsNull P1 P2 * * *
2387 ** Synopsis: if r[P1]==NULL goto P2
2388 **
2389 ** Jump to P2 if the value in register P1 is NULL.
2390 */
2391 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2392   pIn1 = &aMem[pOp->p1];
2393   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2394   if( (pIn1->flags & MEM_Null)!=0 ){
2395     goto jump_to_p2;
2396   }
2397   break;
2398 }
2399 
2400 /* Opcode: NotNull P1 P2 * * *
2401 ** Synopsis: if r[P1]!=NULL goto P2
2402 **
2403 ** Jump to P2 if the value in register P1 is not NULL.
2404 */
2405 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2406   pIn1 = &aMem[pOp->p1];
2407   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2408   if( (pIn1->flags & MEM_Null)==0 ){
2409     goto jump_to_p2;
2410   }
2411   break;
2412 }
2413 
2414 /* Opcode: Column P1 P2 P3 P4 P5
2415 ** Synopsis: r[P3]=PX
2416 **
2417 ** Interpret the data that cursor P1 points to as a structure built using
2418 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2419 ** information about the format of the data.)  Extract the P2-th column
2420 ** from this record.  If there are less that (P2+1)
2421 ** values in the record, extract a NULL.
2422 **
2423 ** The value extracted is stored in register P3.
2424 **
2425 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2426 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2427 ** the result.
2428 **
2429 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2430 ** then the cache of the cursor is reset prior to extracting the column.
2431 ** The first OP_Column against a pseudo-table after the value of the content
2432 ** register has changed should have this bit set.
2433 **
2434 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2435 ** the result is guaranteed to only be used as the argument of a length()
2436 ** or typeof() function, respectively.  The loading of large blobs can be
2437 ** skipped for length() and all content loading can be skipped for typeof().
2438 */
2439 case OP_Column: {
2440   int p2;            /* column number to retrieve */
2441   VdbeCursor *pC;    /* The VDBE cursor */
2442   BtCursor *pCrsr;   /* The BTree cursor */
2443   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2444   int len;           /* The length of the serialized data for the column */
2445   int i;             /* Loop counter */
2446   Mem *pDest;        /* Where to write the extracted value */
2447   Mem sMem;          /* For storing the record being decoded */
2448   const u8 *zData;   /* Part of the record being decoded */
2449   const u8 *zHdr;    /* Next unparsed byte of the header */
2450   const u8 *zEndHdr; /* Pointer to first byte after the header */
2451   u32 offset;        /* Offset into the data */
2452   u64 offset64;      /* 64-bit offset */
2453   u32 avail;         /* Number of bytes of available data */
2454   u32 t;             /* A type code from the record header */
2455   Mem *pReg;         /* PseudoTable input register */
2456 
2457   pC = p->apCsr[pOp->p1];
2458   p2 = pOp->p2;
2459 
2460   /* If the cursor cache is stale, bring it up-to-date */
2461   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2462   if( rc ) goto abort_due_to_error;
2463 
2464   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2465   pDest = &aMem[pOp->p3];
2466   memAboutToChange(p, pDest);
2467   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2468   assert( pC!=0 );
2469   assert( p2<pC->nField );
2470   aOffset = pC->aOffset;
2471   assert( pC->eCurType!=CURTYPE_VTAB );
2472   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2473   assert( pC->eCurType!=CURTYPE_SORTER );
2474   pCrsr = pC->uc.pCursor;
2475 
2476   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2477     if( pC->nullRow ){
2478       if( pC->eCurType==CURTYPE_PSEUDO ){
2479         assert( pC->uc.pseudoTableReg>0 );
2480         pReg = &aMem[pC->uc.pseudoTableReg];
2481         assert( pReg->flags & MEM_Blob );
2482         assert( memIsValid(pReg) );
2483         pC->payloadSize = pC->szRow = avail = pReg->n;
2484         pC->aRow = (u8*)pReg->z;
2485       }else{
2486         sqlite3VdbeMemSetNull(pDest);
2487         goto op_column_out;
2488       }
2489     }else{
2490       assert( pC->eCurType==CURTYPE_BTREE );
2491       assert( pCrsr );
2492       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2493       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2494       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
2495       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2496       if( pC->payloadSize <= (u32)avail ){
2497         pC->szRow = pC->payloadSize;
2498       }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2499         goto too_big;
2500       }else{
2501         pC->szRow = avail;
2502       }
2503     }
2504     pC->cacheStatus = p->cacheCtr;
2505     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2506     pC->nHdrParsed = 0;
2507     aOffset[0] = offset;
2508 
2509 
2510     if( avail<offset ){      /*OPTIMIZATION-IF-FALSE*/
2511       /* pC->aRow does not have to hold the entire row, but it does at least
2512       ** need to cover the header of the record.  If pC->aRow does not contain
2513       ** the complete header, then set it to zero, forcing the header to be
2514       ** dynamically allocated. */
2515       pC->aRow = 0;
2516       pC->szRow = 0;
2517 
2518       /* Make sure a corrupt database has not given us an oversize header.
2519       ** Do this now to avoid an oversize memory allocation.
2520       **
2521       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2522       ** types use so much data space that there can only be 4096 and 32 of
2523       ** them, respectively.  So the maximum header length results from a
2524       ** 3-byte type for each of the maximum of 32768 columns plus three
2525       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2526       */
2527       if( offset > 98307 || offset > pC->payloadSize ){
2528         rc = SQLITE_CORRUPT_BKPT;
2529         goto abort_due_to_error;
2530       }
2531     }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2532       /* The following goto is an optimization.  It can be omitted and
2533       ** everything will still work.  But OP_Column is measurably faster
2534       ** by skipping the subsequent conditional, which is always true.
2535       */
2536       zData = pC->aRow;
2537       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2538       goto op_column_read_header;
2539     }
2540   }
2541 
2542   /* Make sure at least the first p2+1 entries of the header have been
2543   ** parsed and valid information is in aOffset[] and pC->aType[].
2544   */
2545   if( pC->nHdrParsed<=p2 ){
2546     /* If there is more header available for parsing in the record, try
2547     ** to extract additional fields up through the p2+1-th field
2548     */
2549     if( pC->iHdrOffset<aOffset[0] ){
2550       /* Make sure zData points to enough of the record to cover the header. */
2551       if( pC->aRow==0 ){
2552         memset(&sMem, 0, sizeof(sMem));
2553         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2554         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2555         zData = (u8*)sMem.z;
2556       }else{
2557         zData = pC->aRow;
2558       }
2559 
2560       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2561     op_column_read_header:
2562       i = pC->nHdrParsed;
2563       offset64 = aOffset[i];
2564       zHdr = zData + pC->iHdrOffset;
2565       zEndHdr = zData + aOffset[0];
2566       do{
2567         if( (t = zHdr[0])<0x80 ){
2568           zHdr++;
2569           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2570         }else{
2571           zHdr += sqlite3GetVarint32(zHdr, &t);
2572           offset64 += sqlite3VdbeSerialTypeLen(t);
2573         }
2574         pC->aType[i++] = t;
2575         aOffset[i] = (u32)(offset64 & 0xffffffff);
2576       }while( i<=p2 && zHdr<zEndHdr );
2577 
2578       /* The record is corrupt if any of the following are true:
2579       ** (1) the bytes of the header extend past the declared header size
2580       ** (2) the entire header was used but not all data was used
2581       ** (3) the end of the data extends beyond the end of the record.
2582       */
2583       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2584        || (offset64 > pC->payloadSize)
2585       ){
2586         if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2587         rc = SQLITE_CORRUPT_BKPT;
2588         goto abort_due_to_error;
2589       }
2590 
2591       pC->nHdrParsed = i;
2592       pC->iHdrOffset = (u32)(zHdr - zData);
2593       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2594     }else{
2595       t = 0;
2596     }
2597 
2598     /* If after trying to extract new entries from the header, nHdrParsed is
2599     ** still not up to p2, that means that the record has fewer than p2
2600     ** columns.  So the result will be either the default value or a NULL.
2601     */
2602     if( pC->nHdrParsed<=p2 ){
2603       if( pOp->p4type==P4_MEM ){
2604         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2605       }else{
2606         sqlite3VdbeMemSetNull(pDest);
2607       }
2608       goto op_column_out;
2609     }
2610   }else{
2611     t = pC->aType[p2];
2612   }
2613 
2614   /* Extract the content for the p2+1-th column.  Control can only
2615   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2616   ** all valid.
2617   */
2618   assert( p2<pC->nHdrParsed );
2619   assert( rc==SQLITE_OK );
2620   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2621   if( VdbeMemDynamic(pDest) ){
2622     sqlite3VdbeMemSetNull(pDest);
2623   }
2624   assert( t==pC->aType[p2] );
2625   if( pC->szRow>=aOffset[p2+1] ){
2626     /* This is the common case where the desired content fits on the original
2627     ** page - where the content is not on an overflow page */
2628     zData = pC->aRow + aOffset[p2];
2629     if( t<12 ){
2630       sqlite3VdbeSerialGet(zData, t, pDest);
2631     }else{
2632       /* If the column value is a string, we need a persistent value, not
2633       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2634       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2635       */
2636       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2637       pDest->n = len = (t-12)/2;
2638       pDest->enc = encoding;
2639       if( pDest->szMalloc < len+2 ){
2640         pDest->flags = MEM_Null;
2641         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2642       }else{
2643         pDest->z = pDest->zMalloc;
2644       }
2645       memcpy(pDest->z, zData, len);
2646       pDest->z[len] = 0;
2647       pDest->z[len+1] = 0;
2648       pDest->flags = aFlag[t&1];
2649     }
2650   }else{
2651     pDest->enc = encoding;
2652     /* This branch happens only when content is on overflow pages */
2653     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2654           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2655      || (len = sqlite3VdbeSerialTypeLen(t))==0
2656     ){
2657       /* Content is irrelevant for
2658       **    1. the typeof() function,
2659       **    2. the length(X) function if X is a blob, and
2660       **    3. if the content length is zero.
2661       ** So we might as well use bogus content rather than reading
2662       ** content from disk. */
2663       static u8 aZero[8];  /* This is the bogus content */
2664       sqlite3VdbeSerialGet(aZero, t, pDest);
2665     }else{
2666       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2667                                    pDest);
2668       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2669       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2670       pDest->flags &= ~MEM_Ephem;
2671     }
2672   }
2673 
2674 op_column_out:
2675   UPDATE_MAX_BLOBSIZE(pDest);
2676   REGISTER_TRACE(pOp->p3, pDest);
2677   break;
2678 }
2679 
2680 /* Opcode: Affinity P1 P2 * P4 *
2681 ** Synopsis: affinity(r[P1@P2])
2682 **
2683 ** Apply affinities to a range of P2 registers starting with P1.
2684 **
2685 ** P4 is a string that is P2 characters long. The nth character of the
2686 ** string indicates the column affinity that should be used for the nth
2687 ** memory cell in the range.
2688 */
2689 case OP_Affinity: {
2690   const char *zAffinity;   /* The affinity to be applied */
2691   char cAff;               /* A single character of affinity */
2692 
2693   zAffinity = pOp->p4.z;
2694   assert( zAffinity!=0 );
2695   assert( zAffinity[pOp->p2]==0 );
2696   pIn1 = &aMem[pOp->p1];
2697   while( (cAff = *(zAffinity++))!=0 ){
2698     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2699     assert( memIsValid(pIn1) );
2700     applyAffinity(pIn1, cAff, encoding);
2701     pIn1++;
2702   }
2703   break;
2704 }
2705 
2706 /* Opcode: MakeRecord P1 P2 P3 P4 *
2707 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2708 **
2709 ** Convert P2 registers beginning with P1 into the [record format]
2710 ** use as a data record in a database table or as a key
2711 ** in an index.  The OP_Column opcode can decode the record later.
2712 **
2713 ** P4 may be a string that is P2 characters long.  The nth character of the
2714 ** string indicates the column affinity that should be used for the nth
2715 ** field of the index key.
2716 **
2717 ** The mapping from character to affinity is given by the SQLITE_AFF_
2718 ** macros defined in sqliteInt.h.
2719 **
2720 ** If P4 is NULL then all index fields have the affinity BLOB.
2721 */
2722 case OP_MakeRecord: {
2723   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2724   Mem *pRec;             /* The new record */
2725   u64 nData;             /* Number of bytes of data space */
2726   int nHdr;              /* Number of bytes of header space */
2727   i64 nByte;             /* Data space required for this record */
2728   i64 nZero;             /* Number of zero bytes at the end of the record */
2729   int nVarint;           /* Number of bytes in a varint */
2730   u32 serial_type;       /* Type field */
2731   Mem *pData0;           /* First field to be combined into the record */
2732   Mem *pLast;            /* Last field of the record */
2733   int nField;            /* Number of fields in the record */
2734   char *zAffinity;       /* The affinity string for the record */
2735   int file_format;       /* File format to use for encoding */
2736   int i;                 /* Space used in zNewRecord[] header */
2737   int j;                 /* Space used in zNewRecord[] content */
2738   u32 len;               /* Length of a field */
2739 
2740   /* Assuming the record contains N fields, the record format looks
2741   ** like this:
2742   **
2743   ** ------------------------------------------------------------------------
2744   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2745   ** ------------------------------------------------------------------------
2746   **
2747   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2748   ** and so forth.
2749   **
2750   ** Each type field is a varint representing the serial type of the
2751   ** corresponding data element (see sqlite3VdbeSerialType()). The
2752   ** hdr-size field is also a varint which is the offset from the beginning
2753   ** of the record to data0.
2754   */
2755   nData = 0;         /* Number of bytes of data space */
2756   nHdr = 0;          /* Number of bytes of header space */
2757   nZero = 0;         /* Number of zero bytes at the end of the record */
2758   nField = pOp->p1;
2759   zAffinity = pOp->p4.z;
2760   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2761   pData0 = &aMem[nField];
2762   nField = pOp->p2;
2763   pLast = &pData0[nField-1];
2764   file_format = p->minWriteFileFormat;
2765 
2766   /* Identify the output register */
2767   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2768   pOut = &aMem[pOp->p3];
2769   memAboutToChange(p, pOut);
2770 
2771   /* Apply the requested affinity to all inputs
2772   */
2773   assert( pData0<=pLast );
2774   if( zAffinity ){
2775     pRec = pData0;
2776     do{
2777       applyAffinity(pRec++, *(zAffinity++), encoding);
2778       assert( zAffinity[0]==0 || pRec<=pLast );
2779     }while( zAffinity[0] );
2780   }
2781 
2782   /* Loop through the elements that will make up the record to figure
2783   ** out how much space is required for the new record.
2784   */
2785   pRec = pLast;
2786   do{
2787     assert( memIsValid(pRec) );
2788     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2789     if( pRec->flags & MEM_Zero ){
2790       if( nData ){
2791         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2792       }else{
2793         nZero += pRec->u.nZero;
2794         len -= pRec->u.nZero;
2795       }
2796     }
2797     nData += len;
2798     testcase( serial_type==127 );
2799     testcase( serial_type==128 );
2800     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2801     if( pRec==pData0 ) break;
2802     pRec--;
2803   }while(1);
2804 
2805   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2806   ** which determines the total number of bytes in the header. The varint
2807   ** value is the size of the header in bytes including the size varint
2808   ** itself. */
2809   testcase( nHdr==126 );
2810   testcase( nHdr==127 );
2811   if( nHdr<=126 ){
2812     /* The common case */
2813     nHdr += 1;
2814   }else{
2815     /* Rare case of a really large header */
2816     nVarint = sqlite3VarintLen(nHdr);
2817     nHdr += nVarint;
2818     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2819   }
2820   nByte = nHdr+nData;
2821   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2822     goto too_big;
2823   }
2824 
2825   /* Make sure the output register has a buffer large enough to store
2826   ** the new record. The output register (pOp->p3) is not allowed to
2827   ** be one of the input registers (because the following call to
2828   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2829   */
2830   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2831     goto no_mem;
2832   }
2833   zNewRecord = (u8 *)pOut->z;
2834 
2835   /* Write the record */
2836   i = putVarint32(zNewRecord, nHdr);
2837   j = nHdr;
2838   assert( pData0<=pLast );
2839   pRec = pData0;
2840   do{
2841     serial_type = pRec->uTemp;
2842     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2843     ** additional varints, one per column. */
2844     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2845     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2846     ** immediately follow the header. */
2847     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2848   }while( (++pRec)<=pLast );
2849   assert( i==nHdr );
2850   assert( j==nByte );
2851 
2852   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2853   pOut->n = (int)nByte;
2854   pOut->flags = MEM_Blob;
2855   if( nZero ){
2856     pOut->u.nZero = nZero;
2857     pOut->flags |= MEM_Zero;
2858   }
2859   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2860   REGISTER_TRACE(pOp->p3, pOut);
2861   UPDATE_MAX_BLOBSIZE(pOut);
2862   break;
2863 }
2864 
2865 /* Opcode: Count P1 P2 * * *
2866 ** Synopsis: r[P2]=count()
2867 **
2868 ** Store the number of entries (an integer value) in the table or index
2869 ** opened by cursor P1 in register P2
2870 */
2871 #ifndef SQLITE_OMIT_BTREECOUNT
2872 case OP_Count: {         /* out2 */
2873   i64 nEntry;
2874   BtCursor *pCrsr;
2875 
2876   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2877   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2878   assert( pCrsr );
2879   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2880   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2881   if( rc ) goto abort_due_to_error;
2882   pOut = out2Prerelease(p, pOp);
2883   pOut->u.i = nEntry;
2884   break;
2885 }
2886 #endif
2887 
2888 /* Opcode: Savepoint P1 * * P4 *
2889 **
2890 ** Open, release or rollback the savepoint named by parameter P4, depending
2891 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2892 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2893 */
2894 case OP_Savepoint: {
2895   int p1;                         /* Value of P1 operand */
2896   char *zName;                    /* Name of savepoint */
2897   int nName;
2898   Savepoint *pNew;
2899   Savepoint *pSavepoint;
2900   Savepoint *pTmp;
2901   int iSavepoint;
2902   int ii;
2903 
2904   p1 = pOp->p1;
2905   zName = pOp->p4.z;
2906 
2907   /* Assert that the p1 parameter is valid. Also that if there is no open
2908   ** transaction, then there cannot be any savepoints.
2909   */
2910   assert( db->pSavepoint==0 || db->autoCommit==0 );
2911   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2912   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2913   assert( checkSavepointCount(db) );
2914   assert( p->bIsReader );
2915 
2916   if( p1==SAVEPOINT_BEGIN ){
2917     if( db->nVdbeWrite>0 ){
2918       /* A new savepoint cannot be created if there are active write
2919       ** statements (i.e. open read/write incremental blob handles).
2920       */
2921       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2922       rc = SQLITE_BUSY;
2923     }else{
2924       nName = sqlite3Strlen30(zName);
2925 
2926 #ifndef SQLITE_OMIT_VIRTUALTABLE
2927       /* This call is Ok even if this savepoint is actually a transaction
2928       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2929       ** If this is a transaction savepoint being opened, it is guaranteed
2930       ** that the db->aVTrans[] array is empty.  */
2931       assert( db->autoCommit==0 || db->nVTrans==0 );
2932       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2933                                 db->nStatement+db->nSavepoint);
2934       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2935 #endif
2936 
2937       /* Create a new savepoint structure. */
2938       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2939       if( pNew ){
2940         pNew->zName = (char *)&pNew[1];
2941         memcpy(pNew->zName, zName, nName+1);
2942 
2943         /* If there is no open transaction, then mark this as a special
2944         ** "transaction savepoint". */
2945         if( db->autoCommit ){
2946           db->autoCommit = 0;
2947           db->isTransactionSavepoint = 1;
2948         }else{
2949           db->nSavepoint++;
2950         }
2951 
2952         /* Link the new savepoint into the database handle's list. */
2953         pNew->pNext = db->pSavepoint;
2954         db->pSavepoint = pNew;
2955         pNew->nDeferredCons = db->nDeferredCons;
2956         pNew->nDeferredImmCons = db->nDeferredImmCons;
2957       }
2958     }
2959   }else{
2960     iSavepoint = 0;
2961 
2962     /* Find the named savepoint. If there is no such savepoint, then an
2963     ** an error is returned to the user.  */
2964     for(
2965       pSavepoint = db->pSavepoint;
2966       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2967       pSavepoint = pSavepoint->pNext
2968     ){
2969       iSavepoint++;
2970     }
2971     if( !pSavepoint ){
2972       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2973       rc = SQLITE_ERROR;
2974     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2975       /* It is not possible to release (commit) a savepoint if there are
2976       ** active write statements.
2977       */
2978       sqlite3VdbeError(p, "cannot release savepoint - "
2979                           "SQL statements in progress");
2980       rc = SQLITE_BUSY;
2981     }else{
2982 
2983       /* Determine whether or not this is a transaction savepoint. If so,
2984       ** and this is a RELEASE command, then the current transaction
2985       ** is committed.
2986       */
2987       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2988       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2989         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2990           goto vdbe_return;
2991         }
2992         db->autoCommit = 1;
2993         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2994           p->pc = (int)(pOp - aOp);
2995           db->autoCommit = 0;
2996           p->rc = rc = SQLITE_BUSY;
2997           goto vdbe_return;
2998         }
2999         db->isTransactionSavepoint = 0;
3000         rc = p->rc;
3001       }else{
3002         int isSchemaChange;
3003         iSavepoint = db->nSavepoint - iSavepoint - 1;
3004         if( p1==SAVEPOINT_ROLLBACK ){
3005           isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
3006           for(ii=0; ii<db->nDb; ii++){
3007             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3008                                        SQLITE_ABORT_ROLLBACK,
3009                                        isSchemaChange==0);
3010             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3011           }
3012         }else{
3013           isSchemaChange = 0;
3014         }
3015         for(ii=0; ii<db->nDb; ii++){
3016           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3017           if( rc!=SQLITE_OK ){
3018             goto abort_due_to_error;
3019           }
3020         }
3021         if( isSchemaChange ){
3022           sqlite3ExpirePreparedStatements(db);
3023           sqlite3ResetAllSchemasOfConnection(db);
3024           db->flags = (db->flags | SQLITE_InternChanges);
3025         }
3026       }
3027 
3028       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3029       ** savepoints nested inside of the savepoint being operated on. */
3030       while( db->pSavepoint!=pSavepoint ){
3031         pTmp = db->pSavepoint;
3032         db->pSavepoint = pTmp->pNext;
3033         sqlite3DbFree(db, pTmp);
3034         db->nSavepoint--;
3035       }
3036 
3037       /* If it is a RELEASE, then destroy the savepoint being operated on
3038       ** too. If it is a ROLLBACK TO, then set the number of deferred
3039       ** constraint violations present in the database to the value stored
3040       ** when the savepoint was created.  */
3041       if( p1==SAVEPOINT_RELEASE ){
3042         assert( pSavepoint==db->pSavepoint );
3043         db->pSavepoint = pSavepoint->pNext;
3044         sqlite3DbFree(db, pSavepoint);
3045         if( !isTransaction ){
3046           db->nSavepoint--;
3047         }
3048       }else{
3049         db->nDeferredCons = pSavepoint->nDeferredCons;
3050         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3051       }
3052 
3053       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3054         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3055         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3056       }
3057     }
3058   }
3059   if( rc ) goto abort_due_to_error;
3060 
3061   break;
3062 }
3063 
3064 /* Opcode: AutoCommit P1 P2 * * *
3065 **
3066 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3067 ** back any currently active btree transactions. If there are any active
3068 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3069 ** there are active writing VMs or active VMs that use shared cache.
3070 **
3071 ** This instruction causes the VM to halt.
3072 */
3073 case OP_AutoCommit: {
3074   int desiredAutoCommit;
3075   int iRollback;
3076 
3077   desiredAutoCommit = pOp->p1;
3078   iRollback = pOp->p2;
3079   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3080   assert( desiredAutoCommit==1 || iRollback==0 );
3081   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3082   assert( p->bIsReader );
3083 
3084   if( desiredAutoCommit!=db->autoCommit ){
3085     if( iRollback ){
3086       assert( desiredAutoCommit==1 );
3087       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3088       db->autoCommit = 1;
3089     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3090       /* If this instruction implements a COMMIT and other VMs are writing
3091       ** return an error indicating that the other VMs must complete first.
3092       */
3093       sqlite3VdbeError(p, "cannot commit transaction - "
3094                           "SQL statements in progress");
3095       rc = SQLITE_BUSY;
3096       goto abort_due_to_error;
3097     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3098       goto vdbe_return;
3099     }else{
3100       db->autoCommit = (u8)desiredAutoCommit;
3101     }
3102     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3103       p->pc = (int)(pOp - aOp);
3104       db->autoCommit = (u8)(1-desiredAutoCommit);
3105       p->rc = rc = SQLITE_BUSY;
3106       goto vdbe_return;
3107     }
3108     assert( db->nStatement==0 );
3109     sqlite3CloseSavepoints(db);
3110     if( p->rc==SQLITE_OK ){
3111       rc = SQLITE_DONE;
3112     }else{
3113       rc = SQLITE_ERROR;
3114     }
3115     goto vdbe_return;
3116   }else{
3117     sqlite3VdbeError(p,
3118         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3119         (iRollback)?"cannot rollback - no transaction is active":
3120                    "cannot commit - no transaction is active"));
3121 
3122     rc = SQLITE_ERROR;
3123     goto abort_due_to_error;
3124   }
3125   break;
3126 }
3127 
3128 /* Opcode: Transaction P1 P2 P3 P4 P5
3129 **
3130 ** Begin a transaction on database P1 if a transaction is not already
3131 ** active.
3132 ** If P2 is non-zero, then a write-transaction is started, or if a
3133 ** read-transaction is already active, it is upgraded to a write-transaction.
3134 ** If P2 is zero, then a read-transaction is started.
3135 **
3136 ** P1 is the index of the database file on which the transaction is
3137 ** started.  Index 0 is the main database file and index 1 is the
3138 ** file used for temporary tables.  Indices of 2 or more are used for
3139 ** attached databases.
3140 **
3141 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3142 ** true (this flag is set if the Vdbe may modify more than one row and may
3143 ** throw an ABORT exception), a statement transaction may also be opened.
3144 ** More specifically, a statement transaction is opened iff the database
3145 ** connection is currently not in autocommit mode, or if there are other
3146 ** active statements. A statement transaction allows the changes made by this
3147 ** VDBE to be rolled back after an error without having to roll back the
3148 ** entire transaction. If no error is encountered, the statement transaction
3149 ** will automatically commit when the VDBE halts.
3150 **
3151 ** If P5!=0 then this opcode also checks the schema cookie against P3
3152 ** and the schema generation counter against P4.
3153 ** The cookie changes its value whenever the database schema changes.
3154 ** This operation is used to detect when that the cookie has changed
3155 ** and that the current process needs to reread the schema.  If the schema
3156 ** cookie in P3 differs from the schema cookie in the database header or
3157 ** if the schema generation counter in P4 differs from the current
3158 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3159 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3160 ** statement and rerun it from the beginning.
3161 */
3162 case OP_Transaction: {
3163   Btree *pBt;
3164   int iMeta;
3165   int iGen;
3166 
3167   assert( p->bIsReader );
3168   assert( p->readOnly==0 || pOp->p2==0 );
3169   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3170   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3171   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3172     rc = SQLITE_READONLY;
3173     goto abort_due_to_error;
3174   }
3175   pBt = db->aDb[pOp->p1].pBt;
3176 
3177   if( pBt ){
3178     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3179     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3180     testcase( rc==SQLITE_BUSY_RECOVERY );
3181     if( rc!=SQLITE_OK ){
3182       if( (rc&0xff)==SQLITE_BUSY ){
3183         p->pc = (int)(pOp - aOp);
3184         p->rc = rc;
3185         goto vdbe_return;
3186       }
3187       goto abort_due_to_error;
3188     }
3189 
3190     if( pOp->p2 && p->usesStmtJournal
3191      && (db->autoCommit==0 || db->nVdbeRead>1)
3192     ){
3193       assert( sqlite3BtreeIsInTrans(pBt) );
3194       if( p->iStatement==0 ){
3195         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3196         db->nStatement++;
3197         p->iStatement = db->nSavepoint + db->nStatement;
3198       }
3199 
3200       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3201       if( rc==SQLITE_OK ){
3202         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3203       }
3204 
3205       /* Store the current value of the database handles deferred constraint
3206       ** counter. If the statement transaction needs to be rolled back,
3207       ** the value of this counter needs to be restored too.  */
3208       p->nStmtDefCons = db->nDeferredCons;
3209       p->nStmtDefImmCons = db->nDeferredImmCons;
3210     }
3211 
3212     /* Gather the schema version number for checking:
3213     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3214     ** version is checked to ensure that the schema has not changed since the
3215     ** SQL statement was prepared.
3216     */
3217     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3218     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3219   }else{
3220     iGen = iMeta = 0;
3221   }
3222   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3223   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3224     sqlite3DbFree(db, p->zErrMsg);
3225     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3226     /* If the schema-cookie from the database file matches the cookie
3227     ** stored with the in-memory representation of the schema, do
3228     ** not reload the schema from the database file.
3229     **
3230     ** If virtual-tables are in use, this is not just an optimization.
3231     ** Often, v-tables store their data in other SQLite tables, which
3232     ** are queried from within xNext() and other v-table methods using
3233     ** prepared queries. If such a query is out-of-date, we do not want to
3234     ** discard the database schema, as the user code implementing the
3235     ** v-table would have to be ready for the sqlite3_vtab structure itself
3236     ** to be invalidated whenever sqlite3_step() is called from within
3237     ** a v-table method.
3238     */
3239     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3240       sqlite3ResetOneSchema(db, pOp->p1);
3241     }
3242     p->expired = 1;
3243     rc = SQLITE_SCHEMA;
3244   }
3245   if( rc ) goto abort_due_to_error;
3246   break;
3247 }
3248 
3249 /* Opcode: ReadCookie P1 P2 P3 * *
3250 **
3251 ** Read cookie number P3 from database P1 and write it into register P2.
3252 ** P3==1 is the schema version.  P3==2 is the database format.
3253 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3254 ** the main database file and P1==1 is the database file used to store
3255 ** temporary tables.
3256 **
3257 ** There must be a read-lock on the database (either a transaction
3258 ** must be started or there must be an open cursor) before
3259 ** executing this instruction.
3260 */
3261 case OP_ReadCookie: {               /* out2 */
3262   int iMeta;
3263   int iDb;
3264   int iCookie;
3265 
3266   assert( p->bIsReader );
3267   iDb = pOp->p1;
3268   iCookie = pOp->p3;
3269   assert( pOp->p3<SQLITE_N_BTREE_META );
3270   assert( iDb>=0 && iDb<db->nDb );
3271   assert( db->aDb[iDb].pBt!=0 );
3272   assert( DbMaskTest(p->btreeMask, iDb) );
3273 
3274   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3275   pOut = out2Prerelease(p, pOp);
3276   pOut->u.i = iMeta;
3277   break;
3278 }
3279 
3280 /* Opcode: SetCookie P1 P2 P3 * *
3281 **
3282 ** Write the integer value P3 into cookie number P2 of database P1.
3283 ** P2==1 is the schema version.  P2==2 is the database format.
3284 ** P2==3 is the recommended pager cache
3285 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3286 ** database file used to store temporary tables.
3287 **
3288 ** A transaction must be started before executing this opcode.
3289 */
3290 case OP_SetCookie: {
3291   Db *pDb;
3292   assert( pOp->p2<SQLITE_N_BTREE_META );
3293   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3294   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3295   assert( p->readOnly==0 );
3296   pDb = &db->aDb[pOp->p1];
3297   assert( pDb->pBt!=0 );
3298   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3299   /* See note about index shifting on OP_ReadCookie */
3300   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3301   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3302     /* When the schema cookie changes, record the new cookie internally */
3303     pDb->pSchema->schema_cookie = pOp->p3;
3304     db->flags |= SQLITE_InternChanges;
3305   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3306     /* Record changes in the file format */
3307     pDb->pSchema->file_format = pOp->p3;
3308   }
3309   if( pOp->p1==1 ){
3310     /* Invalidate all prepared statements whenever the TEMP database
3311     ** schema is changed.  Ticket #1644 */
3312     sqlite3ExpirePreparedStatements(db);
3313     p->expired = 0;
3314   }
3315   if( rc ) goto abort_due_to_error;
3316   break;
3317 }
3318 
3319 /* Opcode: OpenRead P1 P2 P3 P4 P5
3320 ** Synopsis: root=P2 iDb=P3
3321 **
3322 ** Open a read-only cursor for the database table whose root page is
3323 ** P2 in a database file.  The database file is determined by P3.
3324 ** P3==0 means the main database, P3==1 means the database used for
3325 ** temporary tables, and P3>1 means used the corresponding attached
3326 ** database.  Give the new cursor an identifier of P1.  The P1
3327 ** values need not be contiguous but all P1 values should be small integers.
3328 ** It is an error for P1 to be negative.
3329 **
3330 ** If P5!=0 then use the content of register P2 as the root page, not
3331 ** the value of P2 itself.
3332 **
3333 ** There will be a read lock on the database whenever there is an
3334 ** open cursor.  If the database was unlocked prior to this instruction
3335 ** then a read lock is acquired as part of this instruction.  A read
3336 ** lock allows other processes to read the database but prohibits
3337 ** any other process from modifying the database.  The read lock is
3338 ** released when all cursors are closed.  If this instruction attempts
3339 ** to get a read lock but fails, the script terminates with an
3340 ** SQLITE_BUSY error code.
3341 **
3342 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3343 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3344 ** structure, then said structure defines the content and collating
3345 ** sequence of the index being opened. Otherwise, if P4 is an integer
3346 ** value, it is set to the number of columns in the table.
3347 **
3348 ** See also: OpenWrite, ReopenIdx
3349 */
3350 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3351 ** Synopsis: root=P2 iDb=P3
3352 **
3353 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3354 ** checks to see if the cursor on P1 is already open with a root page
3355 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3356 ** if the cursor is already open, do not reopen it.
3357 **
3358 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3359 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3360 ** every other ReopenIdx or OpenRead for the same cursor number.
3361 **
3362 ** See the OpenRead opcode documentation for additional information.
3363 */
3364 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3365 ** Synopsis: root=P2 iDb=P3
3366 **
3367 ** Open a read/write cursor named P1 on the table or index whose root
3368 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3369 ** root page.
3370 **
3371 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3372 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3373 ** structure, then said structure defines the content and collating
3374 ** sequence of the index being opened. Otherwise, if P4 is an integer
3375 ** value, it is set to the number of columns in the table, or to the
3376 ** largest index of any column of the table that is actually used.
3377 **
3378 ** This instruction works just like OpenRead except that it opens the cursor
3379 ** in read/write mode.  For a given table, there can be one or more read-only
3380 ** cursors or a single read/write cursor but not both.
3381 **
3382 ** See also OpenRead.
3383 */
3384 case OP_ReopenIdx: {
3385   int nField;
3386   KeyInfo *pKeyInfo;
3387   int p2;
3388   int iDb;
3389   int wrFlag;
3390   Btree *pX;
3391   VdbeCursor *pCur;
3392   Db *pDb;
3393 
3394   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3395   assert( pOp->p4type==P4_KEYINFO );
3396   pCur = p->apCsr[pOp->p1];
3397   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3398     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3399     goto open_cursor_set_hints;
3400   }
3401   /* If the cursor is not currently open or is open on a different
3402   ** index, then fall through into OP_OpenRead to force a reopen */
3403 case OP_OpenRead:
3404 case OP_OpenWrite:
3405 
3406   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3407   assert( p->bIsReader );
3408   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3409           || p->readOnly==0 );
3410 
3411   if( p->expired ){
3412     rc = SQLITE_ABORT_ROLLBACK;
3413     goto abort_due_to_error;
3414   }
3415 
3416   nField = 0;
3417   pKeyInfo = 0;
3418   p2 = pOp->p2;
3419   iDb = pOp->p3;
3420   assert( iDb>=0 && iDb<db->nDb );
3421   assert( DbMaskTest(p->btreeMask, iDb) );
3422   pDb = &db->aDb[iDb];
3423   pX = pDb->pBt;
3424   assert( pX!=0 );
3425   if( pOp->opcode==OP_OpenWrite ){
3426     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3427     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3428     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3429     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3430       p->minWriteFileFormat = pDb->pSchema->file_format;
3431     }
3432   }else{
3433     wrFlag = 0;
3434   }
3435   if( pOp->p5 & OPFLAG_P2ISREG ){
3436     assert( p2>0 );
3437     assert( p2<=(p->nMem+1 - p->nCursor) );
3438     pIn2 = &aMem[p2];
3439     assert( memIsValid(pIn2) );
3440     assert( (pIn2->flags & MEM_Int)!=0 );
3441     sqlite3VdbeMemIntegerify(pIn2);
3442     p2 = (int)pIn2->u.i;
3443     /* The p2 value always comes from a prior OP_CreateTable opcode and
3444     ** that opcode will always set the p2 value to 2 or more or else fail.
3445     ** If there were a failure, the prepared statement would have halted
3446     ** before reaching this instruction. */
3447     assert( p2>=2 );
3448   }
3449   if( pOp->p4type==P4_KEYINFO ){
3450     pKeyInfo = pOp->p4.pKeyInfo;
3451     assert( pKeyInfo->enc==ENC(db) );
3452     assert( pKeyInfo->db==db );
3453     nField = pKeyInfo->nField+pKeyInfo->nXField;
3454   }else if( pOp->p4type==P4_INT32 ){
3455     nField = pOp->p4.i;
3456   }
3457   assert( pOp->p1>=0 );
3458   assert( nField>=0 );
3459   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3460   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3461   if( pCur==0 ) goto no_mem;
3462   pCur->nullRow = 1;
3463   pCur->isOrdered = 1;
3464   pCur->pgnoRoot = p2;
3465 #ifdef SQLITE_DEBUG
3466   pCur->wrFlag = wrFlag;
3467 #endif
3468   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3469   pCur->pKeyInfo = pKeyInfo;
3470   /* Set the VdbeCursor.isTable variable. Previous versions of
3471   ** SQLite used to check if the root-page flags were sane at this point
3472   ** and report database corruption if they were not, but this check has
3473   ** since moved into the btree layer.  */
3474   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3475 
3476 open_cursor_set_hints:
3477   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3478   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3479   testcase( pOp->p5 & OPFLAG_BULKCSR );
3480 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3481   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3482 #endif
3483   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3484                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3485   if( rc ) goto abort_due_to_error;
3486   break;
3487 }
3488 
3489 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3490 ** Synopsis: nColumn=P2
3491 **
3492 ** Open a new cursor P1 to a transient table.
3493 ** The cursor is always opened read/write even if
3494 ** the main database is read-only.  The ephemeral
3495 ** table is deleted automatically when the cursor is closed.
3496 **
3497 ** P2 is the number of columns in the ephemeral table.
3498 ** The cursor points to a BTree table if P4==0 and to a BTree index
3499 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3500 ** that defines the format of keys in the index.
3501 **
3502 ** The P5 parameter can be a mask of the BTREE_* flags defined
3503 ** in btree.h.  These flags control aspects of the operation of
3504 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3505 ** added automatically.
3506 */
3507 /* Opcode: OpenAutoindex P1 P2 * P4 *
3508 ** Synopsis: nColumn=P2
3509 **
3510 ** This opcode works the same as OP_OpenEphemeral.  It has a
3511 ** different name to distinguish its use.  Tables created using
3512 ** by this opcode will be used for automatically created transient
3513 ** indices in joins.
3514 */
3515 case OP_OpenAutoindex:
3516 case OP_OpenEphemeral: {
3517   VdbeCursor *pCx;
3518   KeyInfo *pKeyInfo;
3519 
3520   static const int vfsFlags =
3521       SQLITE_OPEN_READWRITE |
3522       SQLITE_OPEN_CREATE |
3523       SQLITE_OPEN_EXCLUSIVE |
3524       SQLITE_OPEN_DELETEONCLOSE |
3525       SQLITE_OPEN_TRANSIENT_DB;
3526   assert( pOp->p1>=0 );
3527   assert( pOp->p2>=0 );
3528   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3529   if( pCx==0 ) goto no_mem;
3530   pCx->nullRow = 1;
3531   pCx->isEphemeral = 1;
3532   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3533                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3534   if( rc==SQLITE_OK ){
3535     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3536   }
3537   if( rc==SQLITE_OK ){
3538     /* If a transient index is required, create it by calling
3539     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3540     ** opening it. If a transient table is required, just use the
3541     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3542     */
3543     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3544       int pgno;
3545       assert( pOp->p4type==P4_KEYINFO );
3546       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3547       if( rc==SQLITE_OK ){
3548         assert( pgno==MASTER_ROOT+1 );
3549         assert( pKeyInfo->db==db );
3550         assert( pKeyInfo->enc==ENC(db) );
3551         pCx->pKeyInfo = pKeyInfo;
3552         rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3553                                 pKeyInfo, pCx->uc.pCursor);
3554       }
3555       pCx->isTable = 0;
3556     }else{
3557       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3558                               0, pCx->uc.pCursor);
3559       pCx->isTable = 1;
3560     }
3561   }
3562   if( rc ) goto abort_due_to_error;
3563   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3564   break;
3565 }
3566 
3567 /* Opcode: SorterOpen P1 P2 P3 P4 *
3568 **
3569 ** This opcode works like OP_OpenEphemeral except that it opens
3570 ** a transient index that is specifically designed to sort large
3571 ** tables using an external merge-sort algorithm.
3572 **
3573 ** If argument P3 is non-zero, then it indicates that the sorter may
3574 ** assume that a stable sort considering the first P3 fields of each
3575 ** key is sufficient to produce the required results.
3576 */
3577 case OP_SorterOpen: {
3578   VdbeCursor *pCx;
3579 
3580   assert( pOp->p1>=0 );
3581   assert( pOp->p2>=0 );
3582   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3583   if( pCx==0 ) goto no_mem;
3584   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3585   assert( pCx->pKeyInfo->db==db );
3586   assert( pCx->pKeyInfo->enc==ENC(db) );
3587   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3588   if( rc ) goto abort_due_to_error;
3589   break;
3590 }
3591 
3592 /* Opcode: SequenceTest P1 P2 * * *
3593 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3594 **
3595 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3596 ** to P2. Regardless of whether or not the jump is taken, increment the
3597 ** the sequence value.
3598 */
3599 case OP_SequenceTest: {
3600   VdbeCursor *pC;
3601   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3602   pC = p->apCsr[pOp->p1];
3603   assert( isSorter(pC) );
3604   if( (pC->seqCount++)==0 ){
3605     goto jump_to_p2;
3606   }
3607   break;
3608 }
3609 
3610 /* Opcode: OpenPseudo P1 P2 P3 * *
3611 ** Synopsis: P3 columns in r[P2]
3612 **
3613 ** Open a new cursor that points to a fake table that contains a single
3614 ** row of data.  The content of that one row is the content of memory
3615 ** register P2.  In other words, cursor P1 becomes an alias for the
3616 ** MEM_Blob content contained in register P2.
3617 **
3618 ** A pseudo-table created by this opcode is used to hold a single
3619 ** row output from the sorter so that the row can be decomposed into
3620 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3621 ** is the only cursor opcode that works with a pseudo-table.
3622 **
3623 ** P3 is the number of fields in the records that will be stored by
3624 ** the pseudo-table.
3625 */
3626 case OP_OpenPseudo: {
3627   VdbeCursor *pCx;
3628 
3629   assert( pOp->p1>=0 );
3630   assert( pOp->p3>=0 );
3631   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3632   if( pCx==0 ) goto no_mem;
3633   pCx->nullRow = 1;
3634   pCx->uc.pseudoTableReg = pOp->p2;
3635   pCx->isTable = 1;
3636   assert( pOp->p5==0 );
3637   break;
3638 }
3639 
3640 /* Opcode: Close P1 * * * *
3641 **
3642 ** Close a cursor previously opened as P1.  If P1 is not
3643 ** currently open, this instruction is a no-op.
3644 */
3645 case OP_Close: {
3646   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3647   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3648   p->apCsr[pOp->p1] = 0;
3649   break;
3650 }
3651 
3652 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3653 /* Opcode: ColumnsUsed P1 * * P4 *
3654 **
3655 ** This opcode (which only exists if SQLite was compiled with
3656 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3657 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3658 ** (P4_INT64) in which the first 63 bits are one for each of the
3659 ** first 63 columns of the table or index that are actually used
3660 ** by the cursor.  The high-order bit is set if any column after
3661 ** the 64th is used.
3662 */
3663 case OP_ColumnsUsed: {
3664   VdbeCursor *pC;
3665   pC = p->apCsr[pOp->p1];
3666   assert( pC->eCurType==CURTYPE_BTREE );
3667   pC->maskUsed = *(u64*)pOp->p4.pI64;
3668   break;
3669 }
3670 #endif
3671 
3672 /* Opcode: SeekGE P1 P2 P3 P4 *
3673 ** Synopsis: key=r[P3@P4]
3674 **
3675 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3676 ** use the value in register P3 as the key.  If cursor P1 refers
3677 ** to an SQL index, then P3 is the first in an array of P4 registers
3678 ** that are used as an unpacked index key.
3679 **
3680 ** Reposition cursor P1 so that  it points to the smallest entry that
3681 ** is greater than or equal to the key value. If there are no records
3682 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3683 **
3684 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3685 ** opcode will always land on a record that equally equals the key, or
3686 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3687 ** opcode must be followed by an IdxLE opcode with the same arguments.
3688 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3689 ** IdxLE opcode will be used on subsequent loop iterations.
3690 **
3691 ** This opcode leaves the cursor configured to move in forward order,
3692 ** from the beginning toward the end.  In other words, the cursor is
3693 ** configured to use Next, not Prev.
3694 **
3695 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3696 */
3697 /* Opcode: SeekGT P1 P2 P3 P4 *
3698 ** Synopsis: key=r[P3@P4]
3699 **
3700 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3701 ** use the value in register P3 as a key. If cursor P1 refers
3702 ** to an SQL index, then P3 is the first in an array of P4 registers
3703 ** that are used as an unpacked index key.
3704 **
3705 ** Reposition cursor P1 so that  it points to the smallest entry that
3706 ** is greater than the key value. If there are no records greater than
3707 ** the key and P2 is not zero, then jump to P2.
3708 **
3709 ** This opcode leaves the cursor configured to move in forward order,
3710 ** from the beginning toward the end.  In other words, the cursor is
3711 ** configured to use Next, not Prev.
3712 **
3713 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3714 */
3715 /* Opcode: SeekLT P1 P2 P3 P4 *
3716 ** Synopsis: key=r[P3@P4]
3717 **
3718 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3719 ** use the value in register P3 as a key. If cursor P1 refers
3720 ** to an SQL index, then P3 is the first in an array of P4 registers
3721 ** that are used as an unpacked index key.
3722 **
3723 ** Reposition cursor P1 so that  it points to the largest entry that
3724 ** is less than the key value. If there are no records less than
3725 ** the key and P2 is not zero, then jump to P2.
3726 **
3727 ** This opcode leaves the cursor configured to move in reverse order,
3728 ** from the end toward the beginning.  In other words, the cursor is
3729 ** configured to use Prev, not Next.
3730 **
3731 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3732 */
3733 /* Opcode: SeekLE P1 P2 P3 P4 *
3734 ** Synopsis: key=r[P3@P4]
3735 **
3736 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3737 ** use the value in register P3 as a key. If cursor P1 refers
3738 ** to an SQL index, then P3 is the first in an array of P4 registers
3739 ** that are used as an unpacked index key.
3740 **
3741 ** Reposition cursor P1 so that it points to the largest entry that
3742 ** is less than or equal to the key value. If there are no records
3743 ** less than or equal to the key and P2 is not zero, then jump to P2.
3744 **
3745 ** This opcode leaves the cursor configured to move in reverse order,
3746 ** from the end toward the beginning.  In other words, the cursor is
3747 ** configured to use Prev, not Next.
3748 **
3749 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3750 ** opcode will always land on a record that equally equals the key, or
3751 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3752 ** opcode must be followed by an IdxGE opcode with the same arguments.
3753 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3754 ** IdxGE opcode will be used on subsequent loop iterations.
3755 **
3756 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3757 */
3758 case OP_SeekLT:         /* jump, in3 */
3759 case OP_SeekLE:         /* jump, in3 */
3760 case OP_SeekGE:         /* jump, in3 */
3761 case OP_SeekGT: {       /* jump, in3 */
3762   int res;           /* Comparison result */
3763   int oc;            /* Opcode */
3764   VdbeCursor *pC;    /* The cursor to seek */
3765   UnpackedRecord r;  /* The key to seek for */
3766   int nField;        /* Number of columns or fields in the key */
3767   i64 iKey;          /* The rowid we are to seek to */
3768   int eqOnly;        /* Only interested in == results */
3769 
3770   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3771   assert( pOp->p2!=0 );
3772   pC = p->apCsr[pOp->p1];
3773   assert( pC!=0 );
3774   assert( pC->eCurType==CURTYPE_BTREE );
3775   assert( OP_SeekLE == OP_SeekLT+1 );
3776   assert( OP_SeekGE == OP_SeekLT+2 );
3777   assert( OP_SeekGT == OP_SeekLT+3 );
3778   assert( pC->isOrdered );
3779   assert( pC->uc.pCursor!=0 );
3780   oc = pOp->opcode;
3781   eqOnly = 0;
3782   pC->nullRow = 0;
3783 #ifdef SQLITE_DEBUG
3784   pC->seekOp = pOp->opcode;
3785 #endif
3786 
3787   if( pC->isTable ){
3788     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3789     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3790 
3791     /* The input value in P3 might be of any type: integer, real, string,
3792     ** blob, or NULL.  But it needs to be an integer before we can do
3793     ** the seek, so convert it. */
3794     pIn3 = &aMem[pOp->p3];
3795     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3796       applyNumericAffinity(pIn3, 0);
3797     }
3798     iKey = sqlite3VdbeIntValue(pIn3);
3799 
3800     /* If the P3 value could not be converted into an integer without
3801     ** loss of information, then special processing is required... */
3802     if( (pIn3->flags & MEM_Int)==0 ){
3803       if( (pIn3->flags & MEM_Real)==0 ){
3804         /* If the P3 value cannot be converted into any kind of a number,
3805         ** then the seek is not possible, so jump to P2 */
3806         VdbeBranchTaken(1,2); goto jump_to_p2;
3807         break;
3808       }
3809 
3810       /* If the approximation iKey is larger than the actual real search
3811       ** term, substitute >= for > and < for <=. e.g. if the search term
3812       ** is 4.9 and the integer approximation 5:
3813       **
3814       **        (x >  4.9)    ->     (x >= 5)
3815       **        (x <= 4.9)    ->     (x <  5)
3816       */
3817       if( pIn3->u.r<(double)iKey ){
3818         assert( OP_SeekGE==(OP_SeekGT-1) );
3819         assert( OP_SeekLT==(OP_SeekLE-1) );
3820         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3821         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3822       }
3823 
3824       /* If the approximation iKey is smaller than the actual real search
3825       ** term, substitute <= for < and > for >=.  */
3826       else if( pIn3->u.r>(double)iKey ){
3827         assert( OP_SeekLE==(OP_SeekLT+1) );
3828         assert( OP_SeekGT==(OP_SeekGE+1) );
3829         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3830         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3831       }
3832     }
3833     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3834     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3835     if( rc!=SQLITE_OK ){
3836       goto abort_due_to_error;
3837     }
3838   }else{
3839     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3840     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3841     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3842     */
3843     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3844       eqOnly = 1;
3845       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3846       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3847       assert( pOp[1].p1==pOp[0].p1 );
3848       assert( pOp[1].p2==pOp[0].p2 );
3849       assert( pOp[1].p3==pOp[0].p3 );
3850       assert( pOp[1].p4.i==pOp[0].p4.i );
3851     }
3852 
3853     nField = pOp->p4.i;
3854     assert( pOp->p4type==P4_INT32 );
3855     assert( nField>0 );
3856     r.pKeyInfo = pC->pKeyInfo;
3857     r.nField = (u16)nField;
3858 
3859     /* The next line of code computes as follows, only faster:
3860     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3861     **     r.default_rc = -1;
3862     **   }else{
3863     **     r.default_rc = +1;
3864     **   }
3865     */
3866     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3867     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3868     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3869     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3870     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3871 
3872     r.aMem = &aMem[pOp->p3];
3873 #ifdef SQLITE_DEBUG
3874     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3875 #endif
3876     r.eqSeen = 0;
3877     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3878     if( rc!=SQLITE_OK ){
3879       goto abort_due_to_error;
3880     }
3881     if( eqOnly && r.eqSeen==0 ){
3882       assert( res!=0 );
3883       goto seek_not_found;
3884     }
3885   }
3886   pC->deferredMoveto = 0;
3887   pC->cacheStatus = CACHE_STALE;
3888 #ifdef SQLITE_TEST
3889   sqlite3_search_count++;
3890 #endif
3891   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3892     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3893       res = 0;
3894       rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3895       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3896     }else{
3897       res = 0;
3898     }
3899   }else{
3900     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3901     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3902       res = 0;
3903       rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3904       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3905     }else{
3906       /* res might be negative because the table is empty.  Check to
3907       ** see if this is the case.
3908       */
3909       res = sqlite3BtreeEof(pC->uc.pCursor);
3910     }
3911   }
3912 seek_not_found:
3913   assert( pOp->p2>0 );
3914   VdbeBranchTaken(res!=0,2);
3915   if( res ){
3916     goto jump_to_p2;
3917   }else if( eqOnly ){
3918     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3919     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3920   }
3921   break;
3922 }
3923 
3924 /* Opcode: Found P1 P2 P3 P4 *
3925 ** Synopsis: key=r[P3@P4]
3926 **
3927 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3928 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3929 ** record.
3930 **
3931 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3932 ** is a prefix of any entry in P1 then a jump is made to P2 and
3933 ** P1 is left pointing at the matching entry.
3934 **
3935 ** This operation leaves the cursor in a state where it can be
3936 ** advanced in the forward direction.  The Next instruction will work,
3937 ** but not the Prev instruction.
3938 **
3939 ** See also: NotFound, NoConflict, NotExists. SeekGe
3940 */
3941 /* Opcode: NotFound P1 P2 P3 P4 *
3942 ** Synopsis: key=r[P3@P4]
3943 **
3944 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3945 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3946 ** record.
3947 **
3948 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3949 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3950 ** does contain an entry whose prefix matches the P3/P4 record then control
3951 ** falls through to the next instruction and P1 is left pointing at the
3952 ** matching entry.
3953 **
3954 ** This operation leaves the cursor in a state where it cannot be
3955 ** advanced in either direction.  In other words, the Next and Prev
3956 ** opcodes do not work after this operation.
3957 **
3958 ** See also: Found, NotExists, NoConflict
3959 */
3960 /* Opcode: NoConflict P1 P2 P3 P4 *
3961 ** Synopsis: key=r[P3@P4]
3962 **
3963 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3964 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3965 ** record.
3966 **
3967 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3968 ** contains any NULL value, jump immediately to P2.  If all terms of the
3969 ** record are not-NULL then a check is done to determine if any row in the
3970 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3971 ** immediately to P2.  If there is a match, fall through and leave the P1
3972 ** cursor pointing to the matching row.
3973 **
3974 ** This opcode is similar to OP_NotFound with the exceptions that the
3975 ** branch is always taken if any part of the search key input is NULL.
3976 **
3977 ** This operation leaves the cursor in a state where it cannot be
3978 ** advanced in either direction.  In other words, the Next and Prev
3979 ** opcodes do not work after this operation.
3980 **
3981 ** See also: NotFound, Found, NotExists
3982 */
3983 case OP_NoConflict:     /* jump, in3 */
3984 case OP_NotFound:       /* jump, in3 */
3985 case OP_Found: {        /* jump, in3 */
3986   int alreadyExists;
3987   int takeJump;
3988   int ii;
3989   VdbeCursor *pC;
3990   int res;
3991   char *pFree;
3992   UnpackedRecord *pIdxKey;
3993   UnpackedRecord r;
3994   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3995 
3996 #ifdef SQLITE_TEST
3997   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3998 #endif
3999 
4000   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4001   assert( pOp->p4type==P4_INT32 );
4002   pC = p->apCsr[pOp->p1];
4003   assert( pC!=0 );
4004 #ifdef SQLITE_DEBUG
4005   pC->seekOp = pOp->opcode;
4006 #endif
4007   pIn3 = &aMem[pOp->p3];
4008   assert( pC->eCurType==CURTYPE_BTREE );
4009   assert( pC->uc.pCursor!=0 );
4010   assert( pC->isTable==0 );
4011   pFree = 0;
4012   if( pOp->p4.i>0 ){
4013     r.pKeyInfo = pC->pKeyInfo;
4014     r.nField = (u16)pOp->p4.i;
4015     r.aMem = pIn3;
4016 #ifdef SQLITE_DEBUG
4017     for(ii=0; ii<r.nField; ii++){
4018       assert( memIsValid(&r.aMem[ii]) );
4019       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4020       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4021     }
4022 #endif
4023     pIdxKey = &r;
4024   }else{
4025     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
4026         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
4027     );
4028     if( pIdxKey==0 ) goto no_mem;
4029     assert( pIn3->flags & MEM_Blob );
4030     (void)ExpandBlob(pIn3);
4031     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4032   }
4033   pIdxKey->default_rc = 0;
4034   takeJump = 0;
4035   if( pOp->opcode==OP_NoConflict ){
4036     /* For the OP_NoConflict opcode, take the jump if any of the
4037     ** input fields are NULL, since any key with a NULL will not
4038     ** conflict */
4039     for(ii=0; ii<pIdxKey->nField; ii++){
4040       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4041         takeJump = 1;
4042         break;
4043       }
4044     }
4045   }
4046   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4047   sqlite3DbFree(db, pFree);
4048   if( rc!=SQLITE_OK ){
4049     goto abort_due_to_error;
4050   }
4051   pC->seekResult = res;
4052   alreadyExists = (res==0);
4053   pC->nullRow = 1-alreadyExists;
4054   pC->deferredMoveto = 0;
4055   pC->cacheStatus = CACHE_STALE;
4056   if( pOp->opcode==OP_Found ){
4057     VdbeBranchTaken(alreadyExists!=0,2);
4058     if( alreadyExists ) goto jump_to_p2;
4059   }else{
4060     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4061     if( takeJump || !alreadyExists ) goto jump_to_p2;
4062   }
4063   break;
4064 }
4065 
4066 /* Opcode: SeekRowid P1 P2 P3 * *
4067 ** Synopsis: intkey=r[P3]
4068 **
4069 ** P1 is the index of a cursor open on an SQL table btree (with integer
4070 ** keys).  If register P3 does not contain an integer or if P1 does not
4071 ** contain a record with rowid P3 then jump immediately to P2.
4072 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4073 ** a record with rowid P3 then
4074 ** leave the cursor pointing at that record and fall through to the next
4075 ** instruction.
4076 **
4077 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4078 ** the P3 register must be guaranteed to contain an integer value.  With this
4079 ** opcode, register P3 might not contain an integer.
4080 **
4081 ** The OP_NotFound opcode performs the same operation on index btrees
4082 ** (with arbitrary multi-value keys).
4083 **
4084 ** This opcode leaves the cursor in a state where it cannot be advanced
4085 ** in either direction.  In other words, the Next and Prev opcodes will
4086 ** not work following this opcode.
4087 **
4088 ** See also: Found, NotFound, NoConflict, SeekRowid
4089 */
4090 /* Opcode: NotExists P1 P2 P3 * *
4091 ** Synopsis: intkey=r[P3]
4092 **
4093 ** P1 is the index of a cursor open on an SQL table btree (with integer
4094 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4095 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4096 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4097 ** leave the cursor pointing at that record and fall through to the next
4098 ** instruction.
4099 **
4100 ** The OP_SeekRowid opcode performs the same operation but also allows the
4101 ** P3 register to contain a non-integer value, in which case the jump is
4102 ** always taken.  This opcode requires that P3 always contain an integer.
4103 **
4104 ** The OP_NotFound opcode performs the same operation on index btrees
4105 ** (with arbitrary multi-value keys).
4106 **
4107 ** This opcode leaves the cursor in a state where it cannot be advanced
4108 ** in either direction.  In other words, the Next and Prev opcodes will
4109 ** not work following this opcode.
4110 **
4111 ** See also: Found, NotFound, NoConflict, SeekRowid
4112 */
4113 case OP_SeekRowid: {        /* jump, in3 */
4114   VdbeCursor *pC;
4115   BtCursor *pCrsr;
4116   int res;
4117   u64 iKey;
4118 
4119   pIn3 = &aMem[pOp->p3];
4120   if( (pIn3->flags & MEM_Int)==0 ){
4121     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4122     if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4123   }
4124   /* Fall through into OP_NotExists */
4125 case OP_NotExists:          /* jump, in3 */
4126   pIn3 = &aMem[pOp->p3];
4127   assert( pIn3->flags & MEM_Int );
4128   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4129   pC = p->apCsr[pOp->p1];
4130   assert( pC!=0 );
4131 #ifdef SQLITE_DEBUG
4132   pC->seekOp = 0;
4133 #endif
4134   assert( pC->isTable );
4135   assert( pC->eCurType==CURTYPE_BTREE );
4136   pCrsr = pC->uc.pCursor;
4137   assert( pCrsr!=0 );
4138   res = 0;
4139   iKey = pIn3->u.i;
4140   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4141   assert( rc==SQLITE_OK || res==0 );
4142   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4143   pC->nullRow = 0;
4144   pC->cacheStatus = CACHE_STALE;
4145   pC->deferredMoveto = 0;
4146   VdbeBranchTaken(res!=0,2);
4147   pC->seekResult = res;
4148   if( res!=0 ){
4149     assert( rc==SQLITE_OK );
4150     if( pOp->p2==0 ){
4151       rc = SQLITE_CORRUPT_BKPT;
4152     }else{
4153       goto jump_to_p2;
4154     }
4155   }
4156   if( rc ) goto abort_due_to_error;
4157   break;
4158 }
4159 
4160 /* Opcode: Sequence P1 P2 * * *
4161 ** Synopsis: r[P2]=cursor[P1].ctr++
4162 **
4163 ** Find the next available sequence number for cursor P1.
4164 ** Write the sequence number into register P2.
4165 ** The sequence number on the cursor is incremented after this
4166 ** instruction.
4167 */
4168 case OP_Sequence: {           /* out2 */
4169   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4170   assert( p->apCsr[pOp->p1]!=0 );
4171   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4172   pOut = out2Prerelease(p, pOp);
4173   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4174   break;
4175 }
4176 
4177 
4178 /* Opcode: NewRowid P1 P2 P3 * *
4179 ** Synopsis: r[P2]=rowid
4180 **
4181 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4182 ** The record number is not previously used as a key in the database
4183 ** table that cursor P1 points to.  The new record number is written
4184 ** written to register P2.
4185 **
4186 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4187 ** the largest previously generated record number. No new record numbers are
4188 ** allowed to be less than this value. When this value reaches its maximum,
4189 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4190 ** generated record number. This P3 mechanism is used to help implement the
4191 ** AUTOINCREMENT feature.
4192 */
4193 case OP_NewRowid: {           /* out2 */
4194   i64 v;                 /* The new rowid */
4195   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4196   int res;               /* Result of an sqlite3BtreeLast() */
4197   int cnt;               /* Counter to limit the number of searches */
4198   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4199   VdbeFrame *pFrame;     /* Root frame of VDBE */
4200 
4201   v = 0;
4202   res = 0;
4203   pOut = out2Prerelease(p, pOp);
4204   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4205   pC = p->apCsr[pOp->p1];
4206   assert( pC!=0 );
4207   assert( pC->eCurType==CURTYPE_BTREE );
4208   assert( pC->uc.pCursor!=0 );
4209   {
4210     /* The next rowid or record number (different terms for the same
4211     ** thing) is obtained in a two-step algorithm.
4212     **
4213     ** First we attempt to find the largest existing rowid and add one
4214     ** to that.  But if the largest existing rowid is already the maximum
4215     ** positive integer, we have to fall through to the second
4216     ** probabilistic algorithm
4217     **
4218     ** The second algorithm is to select a rowid at random and see if
4219     ** it already exists in the table.  If it does not exist, we have
4220     ** succeeded.  If the random rowid does exist, we select a new one
4221     ** and try again, up to 100 times.
4222     */
4223     assert( pC->isTable );
4224 
4225 #ifdef SQLITE_32BIT_ROWID
4226 #   define MAX_ROWID 0x7fffffff
4227 #else
4228     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4229     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4230     ** to provide the constant while making all compilers happy.
4231     */
4232 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4233 #endif
4234 
4235     if( !pC->useRandomRowid ){
4236       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4237       if( rc!=SQLITE_OK ){
4238         goto abort_due_to_error;
4239       }
4240       if( res ){
4241         v = 1;   /* IMP: R-61914-48074 */
4242       }else{
4243         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4244         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4245         if( v>=MAX_ROWID ){
4246           pC->useRandomRowid = 1;
4247         }else{
4248           v++;   /* IMP: R-29538-34987 */
4249         }
4250       }
4251     }
4252 
4253 #ifndef SQLITE_OMIT_AUTOINCREMENT
4254     if( pOp->p3 ){
4255       /* Assert that P3 is a valid memory cell. */
4256       assert( pOp->p3>0 );
4257       if( p->pFrame ){
4258         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4259         /* Assert that P3 is a valid memory cell. */
4260         assert( pOp->p3<=pFrame->nMem );
4261         pMem = &pFrame->aMem[pOp->p3];
4262       }else{
4263         /* Assert that P3 is a valid memory cell. */
4264         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4265         pMem = &aMem[pOp->p3];
4266         memAboutToChange(p, pMem);
4267       }
4268       assert( memIsValid(pMem) );
4269 
4270       REGISTER_TRACE(pOp->p3, pMem);
4271       sqlite3VdbeMemIntegerify(pMem);
4272       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4273       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4274         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
4275         goto abort_due_to_error;
4276       }
4277       if( v<pMem->u.i+1 ){
4278         v = pMem->u.i + 1;
4279       }
4280       pMem->u.i = v;
4281     }
4282 #endif
4283     if( pC->useRandomRowid ){
4284       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4285       ** largest possible integer (9223372036854775807) then the database
4286       ** engine starts picking positive candidate ROWIDs at random until
4287       ** it finds one that is not previously used. */
4288       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4289                              ** an AUTOINCREMENT table. */
4290       cnt = 0;
4291       do{
4292         sqlite3_randomness(sizeof(v), &v);
4293         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4294       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4295                                                  0, &res))==SQLITE_OK)
4296             && (res==0)
4297             && (++cnt<100));
4298       if( rc ) goto abort_due_to_error;
4299       if( res==0 ){
4300         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4301         goto abort_due_to_error;
4302       }
4303       assert( v>0 );  /* EV: R-40812-03570 */
4304     }
4305     pC->deferredMoveto = 0;
4306     pC->cacheStatus = CACHE_STALE;
4307   }
4308   pOut->u.i = v;
4309   break;
4310 }
4311 
4312 /* Opcode: Insert P1 P2 P3 P4 P5
4313 ** Synopsis: intkey=r[P3] data=r[P2]
4314 **
4315 ** Write an entry into the table of cursor P1.  A new entry is
4316 ** created if it doesn't already exist or the data for an existing
4317 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4318 ** number P2. The key is stored in register P3. The key must
4319 ** be a MEM_Int.
4320 **
4321 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4322 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4323 ** then rowid is stored for subsequent return by the
4324 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4325 **
4326 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4327 ** the last seek operation (OP_NotExists or OP_SeekRowid) was a success,
4328 ** then this
4329 ** operation will not attempt to find the appropriate row before doing
4330 ** the insert but will instead overwrite the row that the cursor is
4331 ** currently pointing to.  Presumably, the prior OP_NotExists or
4332 ** OP_SeekRowid opcode
4333 ** has already positioned the cursor correctly.  This is an optimization
4334 ** that boosts performance by avoiding redundant seeks.
4335 **
4336 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4337 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4338 ** is part of an INSERT operation.  The difference is only important to
4339 ** the update hook.
4340 **
4341 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4342 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4343 ** following a successful insert.
4344 **
4345 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4346 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4347 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4348 ** value of register P2 will then change.  Make sure this does not
4349 ** cause any problems.)
4350 **
4351 ** This instruction only works on tables.  The equivalent instruction
4352 ** for indices is OP_IdxInsert.
4353 */
4354 /* Opcode: InsertInt P1 P2 P3 P4 P5
4355 ** Synopsis: intkey=P3 data=r[P2]
4356 **
4357 ** This works exactly like OP_Insert except that the key is the
4358 ** integer value P3, not the value of the integer stored in register P3.
4359 */
4360 case OP_Insert:
4361 case OP_InsertInt: {
4362   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4363   Mem *pKey;        /* MEM cell holding key  for the record */
4364   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4365   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4366   const char *zDb;  /* database name - used by the update hook */
4367   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4368   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4369   BtreePayload x;   /* Payload to be inserted */
4370 
4371   op = 0;
4372   pData = &aMem[pOp->p2];
4373   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4374   assert( memIsValid(pData) );
4375   pC = p->apCsr[pOp->p1];
4376   assert( pC!=0 );
4377   assert( pC->eCurType==CURTYPE_BTREE );
4378   assert( pC->uc.pCursor!=0 );
4379   assert( pC->isTable );
4380   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4381   REGISTER_TRACE(pOp->p2, pData);
4382 
4383   if( pOp->opcode==OP_Insert ){
4384     pKey = &aMem[pOp->p3];
4385     assert( pKey->flags & MEM_Int );
4386     assert( memIsValid(pKey) );
4387     REGISTER_TRACE(pOp->p3, pKey);
4388     x.nKey = pKey->u.i;
4389   }else{
4390     assert( pOp->opcode==OP_InsertInt );
4391     x.nKey = pOp->p3;
4392   }
4393 
4394   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4395     assert( pC->isTable );
4396     assert( pC->iDb>=0 );
4397     zDb = db->aDb[pC->iDb].zDbSName;
4398     pTab = pOp->p4.pTab;
4399     assert( HasRowid(pTab) );
4400     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4401   }else{
4402     pTab = 0; /* Not needed.  Silence a comiler warning. */
4403     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4404   }
4405 
4406 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4407   /* Invoke the pre-update hook, if any */
4408   if( db->xPreUpdateCallback
4409    && pOp->p4type==P4_TABLE
4410    && !(pOp->p5 & OPFLAG_ISUPDATE)
4411   ){
4412     sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
4413   }
4414 #endif
4415 
4416   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4417   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
4418   if( pData->flags & MEM_Null ){
4419     x.pData = 0;
4420     x.nData = 0;
4421   }else{
4422     assert( pData->flags & (MEM_Blob|MEM_Str) );
4423     x.pData = pData->z;
4424     x.nData = pData->n;
4425   }
4426   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4427   if( pData->flags & MEM_Zero ){
4428     x.nZero = pData->u.nZero;
4429   }else{
4430     x.nZero = 0;
4431   }
4432   x.pKey = 0;
4433   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4434                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4435   );
4436   pC->deferredMoveto = 0;
4437   pC->cacheStatus = CACHE_STALE;
4438 
4439   /* Invoke the update-hook if required. */
4440   if( rc ) goto abort_due_to_error;
4441   if( db->xUpdateCallback && op ){
4442     db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
4443   }
4444   break;
4445 }
4446 
4447 /* Opcode: Delete P1 P2 P3 P4 P5
4448 **
4449 ** Delete the record at which the P1 cursor is currently pointing.
4450 **
4451 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4452 ** the cursor will be left pointing at  either the next or the previous
4453 ** record in the table. If it is left pointing at the next record, then
4454 ** the next Next instruction will be a no-op. As a result, in this case
4455 ** it is ok to delete a record from within a Next loop. If
4456 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4457 ** left in an undefined state.
4458 **
4459 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4460 ** delete one of several associated with deleting a table row and all its
4461 ** associated index entries.  Exactly one of those deletes is the "primary"
4462 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4463 ** marked with the AUXDELETE flag.
4464 **
4465 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4466 ** change count is incremented (otherwise not).
4467 **
4468 ** P1 must not be pseudo-table.  It has to be a real table with
4469 ** multiple rows.
4470 **
4471 ** If P4 is not NULL then it points to a Table object. In this case either
4472 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4473 ** have been positioned using OP_NotFound prior to invoking this opcode in
4474 ** this case. Specifically, if one is configured, the pre-update hook is
4475 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4476 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4477 **
4478 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4479 ** of the memory cell that contains the value that the rowid of the row will
4480 ** be set to by the update.
4481 */
4482 case OP_Delete: {
4483   VdbeCursor *pC;
4484   const char *zDb;
4485   Table *pTab;
4486   int opflags;
4487 
4488   opflags = pOp->p2;
4489   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4490   pC = p->apCsr[pOp->p1];
4491   assert( pC!=0 );
4492   assert( pC->eCurType==CURTYPE_BTREE );
4493   assert( pC->uc.pCursor!=0 );
4494   assert( pC->deferredMoveto==0 );
4495 
4496 #ifdef SQLITE_DEBUG
4497   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4498     /* If p5 is zero, the seek operation that positioned the cursor prior to
4499     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4500     ** the row that is being deleted */
4501     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4502     assert( pC->movetoTarget==iKey );
4503   }
4504 #endif
4505 
4506   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4507   ** the name of the db to pass as to it. Also set local pTab to a copy
4508   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4509   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4510   ** VdbeCursor.movetoTarget to the current rowid.  */
4511   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4512     assert( pC->iDb>=0 );
4513     assert( pOp->p4.pTab!=0 );
4514     zDb = db->aDb[pC->iDb].zDbSName;
4515     pTab = pOp->p4.pTab;
4516     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4517       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4518     }
4519   }else{
4520     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4521     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4522   }
4523 
4524 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4525   /* Invoke the pre-update-hook if required. */
4526   if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
4527     assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4528     sqlite3VdbePreUpdateHook(p, pC,
4529         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4530         zDb, pTab, pC->movetoTarget,
4531         pOp->p3
4532     );
4533   }
4534   if( opflags & OPFLAG_ISNOOP ) break;
4535 #endif
4536 
4537   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4538   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4539   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4540   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4541 
4542 #ifdef SQLITE_DEBUG
4543   if( p->pFrame==0 ){
4544     if( pC->isEphemeral==0
4545         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4546         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4547       ){
4548       nExtraDelete++;
4549     }
4550     if( pOp->p2 & OPFLAG_NCHANGE ){
4551       nExtraDelete--;
4552     }
4553   }
4554 #endif
4555 
4556   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4557   pC->cacheStatus = CACHE_STALE;
4558   if( rc ) goto abort_due_to_error;
4559 
4560   /* Invoke the update-hook if required. */
4561   if( opflags & OPFLAG_NCHANGE ){
4562     p->nChange++;
4563     if( db->xUpdateCallback && HasRowid(pTab) ){
4564       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4565           pC->movetoTarget);
4566       assert( pC->iDb>=0 );
4567     }
4568   }
4569 
4570   break;
4571 }
4572 /* Opcode: ResetCount * * * * *
4573 **
4574 ** The value of the change counter is copied to the database handle
4575 ** change counter (returned by subsequent calls to sqlite3_changes()).
4576 ** Then the VMs internal change counter resets to 0.
4577 ** This is used by trigger programs.
4578 */
4579 case OP_ResetCount: {
4580   sqlite3VdbeSetChanges(db, p->nChange);
4581   p->nChange = 0;
4582   break;
4583 }
4584 
4585 /* Opcode: SorterCompare P1 P2 P3 P4
4586 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4587 **
4588 ** P1 is a sorter cursor. This instruction compares a prefix of the
4589 ** record blob in register P3 against a prefix of the entry that
4590 ** the sorter cursor currently points to.  Only the first P4 fields
4591 ** of r[P3] and the sorter record are compared.
4592 **
4593 ** If either P3 or the sorter contains a NULL in one of their significant
4594 ** fields (not counting the P4 fields at the end which are ignored) then
4595 ** the comparison is assumed to be equal.
4596 **
4597 ** Fall through to next instruction if the two records compare equal to
4598 ** each other.  Jump to P2 if they are different.
4599 */
4600 case OP_SorterCompare: {
4601   VdbeCursor *pC;
4602   int res;
4603   int nKeyCol;
4604 
4605   pC = p->apCsr[pOp->p1];
4606   assert( isSorter(pC) );
4607   assert( pOp->p4type==P4_INT32 );
4608   pIn3 = &aMem[pOp->p3];
4609   nKeyCol = pOp->p4.i;
4610   res = 0;
4611   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4612   VdbeBranchTaken(res!=0,2);
4613   if( rc ) goto abort_due_to_error;
4614   if( res ) goto jump_to_p2;
4615   break;
4616 };
4617 
4618 /* Opcode: SorterData P1 P2 P3 * *
4619 ** Synopsis: r[P2]=data
4620 **
4621 ** Write into register P2 the current sorter data for sorter cursor P1.
4622 ** Then clear the column header cache on cursor P3.
4623 **
4624 ** This opcode is normally use to move a record out of the sorter and into
4625 ** a register that is the source for a pseudo-table cursor created using
4626 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4627 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4628 ** us from having to issue a separate NullRow instruction to clear that cache.
4629 */
4630 case OP_SorterData: {
4631   VdbeCursor *pC;
4632 
4633   pOut = &aMem[pOp->p2];
4634   pC = p->apCsr[pOp->p1];
4635   assert( isSorter(pC) );
4636   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4637   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4638   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4639   if( rc ) goto abort_due_to_error;
4640   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4641   break;
4642 }
4643 
4644 /* Opcode: RowData P1 P2 * * *
4645 ** Synopsis: r[P2]=data
4646 **
4647 ** Write into register P2 the complete row data for cursor P1.
4648 ** There is no interpretation of the data.
4649 ** It is just copied onto the P2 register exactly as
4650 ** it is found in the database file.
4651 **
4652 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4653 ** of a real table, not a pseudo-table.
4654 */
4655 /* Opcode: RowKey P1 P2 * * *
4656 ** Synopsis: r[P2]=key
4657 **
4658 ** Write into register P2 the complete row key for cursor P1.
4659 ** There is no interpretation of the data.
4660 ** The key is copied onto the P2 register exactly as
4661 ** it is found in the database file.
4662 **
4663 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4664 ** of a real table, not a pseudo-table.
4665 */
4666 case OP_RowKey:
4667 case OP_RowData: {
4668   VdbeCursor *pC;
4669   BtCursor *pCrsr;
4670   u32 n;
4671 
4672   pOut = &aMem[pOp->p2];
4673   memAboutToChange(p, pOut);
4674 
4675   /* Note that RowKey and RowData are really exactly the same instruction */
4676   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4677   pC = p->apCsr[pOp->p1];
4678   assert( pC!=0 );
4679   assert( pC->eCurType==CURTYPE_BTREE );
4680   assert( isSorter(pC)==0 );
4681   assert( pC->isTable || pOp->opcode!=OP_RowData );
4682   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4683   assert( pC->nullRow==0 );
4684   assert( pC->uc.pCursor!=0 );
4685   pCrsr = pC->uc.pCursor;
4686 
4687   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4688   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4689   ** that might invalidate the cursor.
4690   ** If this where not the case, on of the following assert()s
4691   ** would fail.  Should this ever change (because of changes in the code
4692   ** generator) then the fix would be to insert a call to
4693   ** sqlite3VdbeCursorMoveto().
4694   */
4695   assert( pC->deferredMoveto==0 );
4696   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4697 #if 0  /* Not required due to the previous to assert() statements */
4698   rc = sqlite3VdbeCursorMoveto(pC);
4699   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4700 #endif
4701 
4702   n = sqlite3BtreePayloadSize(pCrsr);
4703   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4704     goto too_big;
4705   }
4706   testcase( n==0 );
4707   if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4708     goto no_mem;
4709   }
4710   pOut->n = n;
4711   MemSetTypeFlag(pOut, MEM_Blob);
4712   if( pC->isTable==0 ){
4713     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4714   }else{
4715     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4716   }
4717   if( rc ) goto abort_due_to_error;
4718   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4719   UPDATE_MAX_BLOBSIZE(pOut);
4720   REGISTER_TRACE(pOp->p2, pOut);
4721   break;
4722 }
4723 
4724 /* Opcode: Rowid P1 P2 * * *
4725 ** Synopsis: r[P2]=rowid
4726 **
4727 ** Store in register P2 an integer which is the key of the table entry that
4728 ** P1 is currently point to.
4729 **
4730 ** P1 can be either an ordinary table or a virtual table.  There used to
4731 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4732 ** one opcode now works for both table types.
4733 */
4734 case OP_Rowid: {                 /* out2 */
4735   VdbeCursor *pC;
4736   i64 v;
4737   sqlite3_vtab *pVtab;
4738   const sqlite3_module *pModule;
4739 
4740   pOut = out2Prerelease(p, pOp);
4741   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4742   pC = p->apCsr[pOp->p1];
4743   assert( pC!=0 );
4744   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4745   if( pC->nullRow ){
4746     pOut->flags = MEM_Null;
4747     break;
4748   }else if( pC->deferredMoveto ){
4749     v = pC->movetoTarget;
4750 #ifndef SQLITE_OMIT_VIRTUALTABLE
4751   }else if( pC->eCurType==CURTYPE_VTAB ){
4752     assert( pC->uc.pVCur!=0 );
4753     pVtab = pC->uc.pVCur->pVtab;
4754     pModule = pVtab->pModule;
4755     assert( pModule->xRowid );
4756     rc = pModule->xRowid(pC->uc.pVCur, &v);
4757     sqlite3VtabImportErrmsg(p, pVtab);
4758     if( rc ) goto abort_due_to_error;
4759 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4760   }else{
4761     assert( pC->eCurType==CURTYPE_BTREE );
4762     assert( pC->uc.pCursor!=0 );
4763     rc = sqlite3VdbeCursorRestore(pC);
4764     if( rc ) goto abort_due_to_error;
4765     if( pC->nullRow ){
4766       pOut->flags = MEM_Null;
4767       break;
4768     }
4769     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4770   }
4771   pOut->u.i = v;
4772   break;
4773 }
4774 
4775 /* Opcode: NullRow P1 * * * *
4776 **
4777 ** Move the cursor P1 to a null row.  Any OP_Column operations
4778 ** that occur while the cursor is on the null row will always
4779 ** write a NULL.
4780 */
4781 case OP_NullRow: {
4782   VdbeCursor *pC;
4783 
4784   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4785   pC = p->apCsr[pOp->p1];
4786   assert( pC!=0 );
4787   pC->nullRow = 1;
4788   pC->cacheStatus = CACHE_STALE;
4789   if( pC->eCurType==CURTYPE_BTREE ){
4790     assert( pC->uc.pCursor!=0 );
4791     sqlite3BtreeClearCursor(pC->uc.pCursor);
4792   }
4793   break;
4794 }
4795 
4796 /* Opcode: Last P1 P2 P3 * *
4797 **
4798 ** The next use of the Rowid or Column or Prev instruction for P1
4799 ** will refer to the last entry in the database table or index.
4800 ** If the table or index is empty and P2>0, then jump immediately to P2.
4801 ** If P2 is 0 or if the table or index is not empty, fall through
4802 ** to the following instruction.
4803 **
4804 ** This opcode leaves the cursor configured to move in reverse order,
4805 ** from the end toward the beginning.  In other words, the cursor is
4806 ** configured to use Prev, not Next.
4807 */
4808 case OP_Last: {        /* jump */
4809   VdbeCursor *pC;
4810   BtCursor *pCrsr;
4811   int res;
4812 
4813   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4814   pC = p->apCsr[pOp->p1];
4815   assert( pC!=0 );
4816   assert( pC->eCurType==CURTYPE_BTREE );
4817   pCrsr = pC->uc.pCursor;
4818   res = 0;
4819   assert( pCrsr!=0 );
4820   rc = sqlite3BtreeLast(pCrsr, &res);
4821   pC->nullRow = (u8)res;
4822   pC->deferredMoveto = 0;
4823   pC->cacheStatus = CACHE_STALE;
4824   pC->seekResult = pOp->p3;
4825 #ifdef SQLITE_DEBUG
4826   pC->seekOp = OP_Last;
4827 #endif
4828   if( rc ) goto abort_due_to_error;
4829   if( pOp->p2>0 ){
4830     VdbeBranchTaken(res!=0,2);
4831     if( res ) goto jump_to_p2;
4832   }
4833   break;
4834 }
4835 
4836 
4837 /* Opcode: Sort P1 P2 * * *
4838 **
4839 ** This opcode does exactly the same thing as OP_Rewind except that
4840 ** it increments an undocumented global variable used for testing.
4841 **
4842 ** Sorting is accomplished by writing records into a sorting index,
4843 ** then rewinding that index and playing it back from beginning to
4844 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4845 ** rewinding so that the global variable will be incremented and
4846 ** regression tests can determine whether or not the optimizer is
4847 ** correctly optimizing out sorts.
4848 */
4849 case OP_SorterSort:    /* jump */
4850 case OP_Sort: {        /* jump */
4851 #ifdef SQLITE_TEST
4852   sqlite3_sort_count++;
4853   sqlite3_search_count--;
4854 #endif
4855   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4856   /* Fall through into OP_Rewind */
4857 }
4858 /* Opcode: Rewind P1 P2 * * *
4859 **
4860 ** The next use of the Rowid or Column or Next instruction for P1
4861 ** will refer to the first entry in the database table or index.
4862 ** If the table or index is empty, jump immediately to P2.
4863 ** If the table or index is not empty, fall through to the following
4864 ** instruction.
4865 **
4866 ** This opcode leaves the cursor configured to move in forward order,
4867 ** from the beginning toward the end.  In other words, the cursor is
4868 ** configured to use Next, not Prev.
4869 */
4870 case OP_Rewind: {        /* jump */
4871   VdbeCursor *pC;
4872   BtCursor *pCrsr;
4873   int res;
4874 
4875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4876   pC = p->apCsr[pOp->p1];
4877   assert( pC!=0 );
4878   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4879   res = 1;
4880 #ifdef SQLITE_DEBUG
4881   pC->seekOp = OP_Rewind;
4882 #endif
4883   if( isSorter(pC) ){
4884     rc = sqlite3VdbeSorterRewind(pC, &res);
4885   }else{
4886     assert( pC->eCurType==CURTYPE_BTREE );
4887     pCrsr = pC->uc.pCursor;
4888     assert( pCrsr );
4889     rc = sqlite3BtreeFirst(pCrsr, &res);
4890     pC->deferredMoveto = 0;
4891     pC->cacheStatus = CACHE_STALE;
4892   }
4893   if( rc ) goto abort_due_to_error;
4894   pC->nullRow = (u8)res;
4895   assert( pOp->p2>0 && pOp->p2<p->nOp );
4896   VdbeBranchTaken(res!=0,2);
4897   if( res ) goto jump_to_p2;
4898   break;
4899 }
4900 
4901 /* Opcode: Next P1 P2 P3 P4 P5
4902 **
4903 ** Advance cursor P1 so that it points to the next key/data pair in its
4904 ** table or index.  If there are no more key/value pairs then fall through
4905 ** to the following instruction.  But if the cursor advance was successful,
4906 ** jump immediately to P2.
4907 **
4908 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4909 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4910 ** to follow SeekLT, SeekLE, or OP_Last.
4911 **
4912 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4913 ** been opened prior to this opcode or the program will segfault.
4914 **
4915 ** The P3 value is a hint to the btree implementation. If P3==1, that
4916 ** means P1 is an SQL index and that this instruction could have been
4917 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4918 ** always either 0 or 1.
4919 **
4920 ** P4 is always of type P4_ADVANCE. The function pointer points to
4921 ** sqlite3BtreeNext().
4922 **
4923 ** If P5 is positive and the jump is taken, then event counter
4924 ** number P5-1 in the prepared statement is incremented.
4925 **
4926 ** See also: Prev, NextIfOpen
4927 */
4928 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4929 **
4930 ** This opcode works just like Next except that if cursor P1 is not
4931 ** open it behaves a no-op.
4932 */
4933 /* Opcode: Prev P1 P2 P3 P4 P5
4934 **
4935 ** Back up cursor P1 so that it points to the previous key/data pair in its
4936 ** table or index.  If there is no previous key/value pairs then fall through
4937 ** to the following instruction.  But if the cursor backup was successful,
4938 ** jump immediately to P2.
4939 **
4940 **
4941 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4942 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4943 ** to follow SeekGT, SeekGE, or OP_Rewind.
4944 **
4945 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4946 ** not open then the behavior is undefined.
4947 **
4948 ** The P3 value is a hint to the btree implementation. If P3==1, that
4949 ** means P1 is an SQL index and that this instruction could have been
4950 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4951 ** always either 0 or 1.
4952 **
4953 ** P4 is always of type P4_ADVANCE. The function pointer points to
4954 ** sqlite3BtreePrevious().
4955 **
4956 ** If P5 is positive and the jump is taken, then event counter
4957 ** number P5-1 in the prepared statement is incremented.
4958 */
4959 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4960 **
4961 ** This opcode works just like Prev except that if cursor P1 is not
4962 ** open it behaves a no-op.
4963 */
4964 case OP_SorterNext: {  /* jump */
4965   VdbeCursor *pC;
4966   int res;
4967 
4968   pC = p->apCsr[pOp->p1];
4969   assert( isSorter(pC) );
4970   res = 0;
4971   rc = sqlite3VdbeSorterNext(db, pC, &res);
4972   goto next_tail;
4973 case OP_PrevIfOpen:    /* jump */
4974 case OP_NextIfOpen:    /* jump */
4975   if( p->apCsr[pOp->p1]==0 ) break;
4976   /* Fall through */
4977 case OP_Prev:          /* jump */
4978 case OP_Next:          /* jump */
4979   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4980   assert( pOp->p5<ArraySize(p->aCounter) );
4981   pC = p->apCsr[pOp->p1];
4982   res = pOp->p3;
4983   assert( pC!=0 );
4984   assert( pC->deferredMoveto==0 );
4985   assert( pC->eCurType==CURTYPE_BTREE );
4986   assert( res==0 || (res==1 && pC->isTable==0) );
4987   testcase( res==1 );
4988   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4989   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4990   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4991   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4992 
4993   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4994   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4995   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4996        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4997        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4998   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4999        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5000        || pC->seekOp==OP_Last );
5001 
5002   rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
5003 next_tail:
5004   pC->cacheStatus = CACHE_STALE;
5005   VdbeBranchTaken(res==0,2);
5006   if( rc ) goto abort_due_to_error;
5007   if( res==0 ){
5008     pC->nullRow = 0;
5009     p->aCounter[pOp->p5]++;
5010 #ifdef SQLITE_TEST
5011     sqlite3_search_count++;
5012 #endif
5013     goto jump_to_p2_and_check_for_interrupt;
5014   }else{
5015     pC->nullRow = 1;
5016   }
5017   goto check_for_interrupt;
5018 }
5019 
5020 /* Opcode: IdxInsert P1 P2 P3 * P5
5021 ** Synopsis: key=r[P2]
5022 **
5023 ** Register P2 holds an SQL index key made using the
5024 ** MakeRecord instructions.  This opcode writes that key
5025 ** into the index P1.  Data for the entry is nil.
5026 **
5027 ** P3 is a flag that provides a hint to the b-tree layer that this
5028 ** insert is likely to be an append.
5029 **
5030 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5031 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5032 ** then the change counter is unchanged.
5033 **
5034 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
5035 ** just done a seek to the spot where the new entry is to be inserted.
5036 ** This flag avoids doing an extra seek.
5037 **
5038 ** This instruction only works for indices.  The equivalent instruction
5039 ** for tables is OP_Insert.
5040 */
5041 case OP_SorterInsert:       /* in2 */
5042 case OP_IdxInsert: {        /* in2 */
5043   VdbeCursor *pC;
5044   BtreePayload x;
5045 
5046   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5047   pC = p->apCsr[pOp->p1];
5048   assert( pC!=0 );
5049   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5050   pIn2 = &aMem[pOp->p2];
5051   assert( pIn2->flags & MEM_Blob );
5052   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5053   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5054   assert( pC->isTable==0 );
5055   rc = ExpandBlob(pIn2);
5056   if( rc ) goto abort_due_to_error;
5057   if( pOp->opcode==OP_SorterInsert ){
5058     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5059   }else{
5060     x.nKey = pIn2->n;
5061     x.pKey = pIn2->z;
5062     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, pOp->p3,
5063         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5064         );
5065     assert( pC->deferredMoveto==0 );
5066     pC->cacheStatus = CACHE_STALE;
5067   }
5068   if( rc) goto abort_due_to_error;
5069   break;
5070 }
5071 
5072 /* Opcode: IdxDelete P1 P2 P3 * *
5073 ** Synopsis: key=r[P2@P3]
5074 **
5075 ** The content of P3 registers starting at register P2 form
5076 ** an unpacked index key. This opcode removes that entry from the
5077 ** index opened by cursor P1.
5078 */
5079 case OP_IdxDelete: {
5080   VdbeCursor *pC;
5081   BtCursor *pCrsr;
5082   int res;
5083   UnpackedRecord r;
5084 
5085   assert( pOp->p3>0 );
5086   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5087   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5088   pC = p->apCsr[pOp->p1];
5089   assert( pC!=0 );
5090   assert( pC->eCurType==CURTYPE_BTREE );
5091   pCrsr = pC->uc.pCursor;
5092   assert( pCrsr!=0 );
5093   assert( pOp->p5==0 );
5094   r.pKeyInfo = pC->pKeyInfo;
5095   r.nField = (u16)pOp->p3;
5096   r.default_rc = 0;
5097   r.aMem = &aMem[pOp->p2];
5098   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5099   if( rc ) goto abort_due_to_error;
5100   if( res==0 ){
5101     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5102     if( rc ) goto abort_due_to_error;
5103   }
5104   assert( pC->deferredMoveto==0 );
5105   pC->cacheStatus = CACHE_STALE;
5106   break;
5107 }
5108 
5109 /* Opcode: Seek P1 * P3 P4 *
5110 ** Synopsis: Move P3 to P1.rowid
5111 **
5112 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5113 ** table.  This opcode does a deferred seek of the P3 table cursor
5114 ** to the row that corresponds to the current row of P1.
5115 **
5116 ** This is a deferred seek.  Nothing actually happens until
5117 ** the cursor is used to read a record.  That way, if no reads
5118 ** occur, no unnecessary I/O happens.
5119 **
5120 ** P4 may be an array of integers (type P4_INTARRAY) containing
5121 ** one entry for each column in the P3 table.  If array entry a(i)
5122 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5123 ** equivalent to performing the deferred seek and then reading column i
5124 ** from P1.  This information is stored in P3 and used to redirect
5125 ** reads against P3 over to P1, thus possibly avoiding the need to
5126 ** seek and read cursor P3.
5127 */
5128 /* Opcode: IdxRowid P1 P2 * * *
5129 ** Synopsis: r[P2]=rowid
5130 **
5131 ** Write into register P2 an integer which is the last entry in the record at
5132 ** the end of the index key pointed to by cursor P1.  This integer should be
5133 ** the rowid of the table entry to which this index entry points.
5134 **
5135 ** See also: Rowid, MakeRecord.
5136 */
5137 case OP_Seek:
5138 case OP_IdxRowid: {              /* out2 */
5139   VdbeCursor *pC;                /* The P1 index cursor */
5140   VdbeCursor *pTabCur;           /* The P2 table cursor (OP_Seek only) */
5141   i64 rowid;                     /* Rowid that P1 current points to */
5142 
5143   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5144   pC = p->apCsr[pOp->p1];
5145   assert( pC!=0 );
5146   assert( pC->eCurType==CURTYPE_BTREE );
5147   assert( pC->uc.pCursor!=0 );
5148   assert( pC->isTable==0 );
5149   assert( pC->deferredMoveto==0 );
5150   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5151 
5152   /* The IdxRowid and Seek opcodes are combined because of the commonality
5153   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5154   rc = sqlite3VdbeCursorRestore(pC);
5155 
5156   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5157   ** out from under the cursor.  That will never happens for an IdxRowid
5158   ** or Seek opcode */
5159   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5160 
5161   if( !pC->nullRow ){
5162     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5163     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5164     if( rc!=SQLITE_OK ){
5165       goto abort_due_to_error;
5166     }
5167     if( pOp->opcode==OP_Seek ){
5168       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5169       pTabCur = p->apCsr[pOp->p3];
5170       assert( pTabCur!=0 );
5171       assert( pTabCur->eCurType==CURTYPE_BTREE );
5172       assert( pTabCur->uc.pCursor!=0 );
5173       assert( pTabCur->isTable );
5174       pTabCur->nullRow = 0;
5175       pTabCur->movetoTarget = rowid;
5176       pTabCur->deferredMoveto = 1;
5177       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5178       pTabCur->aAltMap = pOp->p4.ai;
5179       pTabCur->pAltCursor = pC;
5180     }else{
5181       pOut = out2Prerelease(p, pOp);
5182       pOut->u.i = rowid;
5183       pOut->flags = MEM_Int;
5184     }
5185   }else{
5186     assert( pOp->opcode==OP_IdxRowid );
5187     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5188   }
5189   break;
5190 }
5191 
5192 /* Opcode: IdxGE P1 P2 P3 P4 P5
5193 ** Synopsis: key=r[P3@P4]
5194 **
5195 ** The P4 register values beginning with P3 form an unpacked index
5196 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5197 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5198 ** fields at the end.
5199 **
5200 ** If the P1 index entry is greater than or equal to the key value
5201 ** then jump to P2.  Otherwise fall through to the next instruction.
5202 */
5203 /* Opcode: IdxGT P1 P2 P3 P4 P5
5204 ** Synopsis: key=r[P3@P4]
5205 **
5206 ** The P4 register values beginning with P3 form an unpacked index
5207 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5208 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5209 ** fields at the end.
5210 **
5211 ** If the P1 index entry is greater than the key value
5212 ** then jump to P2.  Otherwise fall through to the next instruction.
5213 */
5214 /* Opcode: IdxLT P1 P2 P3 P4 P5
5215 ** Synopsis: key=r[P3@P4]
5216 **
5217 ** The P4 register values beginning with P3 form an unpacked index
5218 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5219 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5220 ** ROWID on the P1 index.
5221 **
5222 ** If the P1 index entry is less than the key value then jump to P2.
5223 ** Otherwise fall through to the next instruction.
5224 */
5225 /* Opcode: IdxLE P1 P2 P3 P4 P5
5226 ** Synopsis: key=r[P3@P4]
5227 **
5228 ** The P4 register values beginning with P3 form an unpacked index
5229 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5230 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5231 ** ROWID on the P1 index.
5232 **
5233 ** If the P1 index entry is less than or equal to the key value then jump
5234 ** to P2. Otherwise fall through to the next instruction.
5235 */
5236 case OP_IdxLE:          /* jump */
5237 case OP_IdxGT:          /* jump */
5238 case OP_IdxLT:          /* jump */
5239 case OP_IdxGE:  {       /* jump */
5240   VdbeCursor *pC;
5241   int res;
5242   UnpackedRecord r;
5243 
5244   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5245   pC = p->apCsr[pOp->p1];
5246   assert( pC!=0 );
5247   assert( pC->isOrdered );
5248   assert( pC->eCurType==CURTYPE_BTREE );
5249   assert( pC->uc.pCursor!=0);
5250   assert( pC->deferredMoveto==0 );
5251   assert( pOp->p5==0 || pOp->p5==1 );
5252   assert( pOp->p4type==P4_INT32 );
5253   r.pKeyInfo = pC->pKeyInfo;
5254   r.nField = (u16)pOp->p4.i;
5255   if( pOp->opcode<OP_IdxLT ){
5256     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5257     r.default_rc = -1;
5258   }else{
5259     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5260     r.default_rc = 0;
5261   }
5262   r.aMem = &aMem[pOp->p3];
5263 #ifdef SQLITE_DEBUG
5264   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5265 #endif
5266   res = 0;  /* Not needed.  Only used to silence a warning. */
5267   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5268   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5269   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5270     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5271     res = -res;
5272   }else{
5273     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5274     res++;
5275   }
5276   VdbeBranchTaken(res>0,2);
5277   if( rc ) goto abort_due_to_error;
5278   if( res>0 ) goto jump_to_p2;
5279   break;
5280 }
5281 
5282 /* Opcode: Destroy P1 P2 P3 * *
5283 **
5284 ** Delete an entire database table or index whose root page in the database
5285 ** file is given by P1.
5286 **
5287 ** The table being destroyed is in the main database file if P3==0.  If
5288 ** P3==1 then the table to be clear is in the auxiliary database file
5289 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5290 **
5291 ** If AUTOVACUUM is enabled then it is possible that another root page
5292 ** might be moved into the newly deleted root page in order to keep all
5293 ** root pages contiguous at the beginning of the database.  The former
5294 ** value of the root page that moved - its value before the move occurred -
5295 ** is stored in register P2.  If no page
5296 ** movement was required (because the table being dropped was already
5297 ** the last one in the database) then a zero is stored in register P2.
5298 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5299 **
5300 ** See also: Clear
5301 */
5302 case OP_Destroy: {     /* out2 */
5303   int iMoved;
5304   int iDb;
5305 
5306   assert( p->readOnly==0 );
5307   assert( pOp->p1>1 );
5308   pOut = out2Prerelease(p, pOp);
5309   pOut->flags = MEM_Null;
5310   if( db->nVdbeRead > db->nVDestroy+1 ){
5311     rc = SQLITE_LOCKED;
5312     p->errorAction = OE_Abort;
5313     goto abort_due_to_error;
5314   }else{
5315     iDb = pOp->p3;
5316     assert( DbMaskTest(p->btreeMask, iDb) );
5317     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5318     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5319     pOut->flags = MEM_Int;
5320     pOut->u.i = iMoved;
5321     if( rc ) goto abort_due_to_error;
5322 #ifndef SQLITE_OMIT_AUTOVACUUM
5323     if( iMoved!=0 ){
5324       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5325       /* All OP_Destroy operations occur on the same btree */
5326       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5327       resetSchemaOnFault = iDb+1;
5328     }
5329 #endif
5330   }
5331   break;
5332 }
5333 
5334 /* Opcode: Clear P1 P2 P3
5335 **
5336 ** Delete all contents of the database table or index whose root page
5337 ** in the database file is given by P1.  But, unlike Destroy, do not
5338 ** remove the table or index from the database file.
5339 **
5340 ** The table being clear is in the main database file if P2==0.  If
5341 ** P2==1 then the table to be clear is in the auxiliary database file
5342 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5343 **
5344 ** If the P3 value is non-zero, then the table referred to must be an
5345 ** intkey table (an SQL table, not an index). In this case the row change
5346 ** count is incremented by the number of rows in the table being cleared.
5347 ** If P3 is greater than zero, then the value stored in register P3 is
5348 ** also incremented by the number of rows in the table being cleared.
5349 **
5350 ** See also: Destroy
5351 */
5352 case OP_Clear: {
5353   int nChange;
5354 
5355   nChange = 0;
5356   assert( p->readOnly==0 );
5357   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5358   rc = sqlite3BtreeClearTable(
5359       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5360   );
5361   if( pOp->p3 ){
5362     p->nChange += nChange;
5363     if( pOp->p3>0 ){
5364       assert( memIsValid(&aMem[pOp->p3]) );
5365       memAboutToChange(p, &aMem[pOp->p3]);
5366       aMem[pOp->p3].u.i += nChange;
5367     }
5368   }
5369   if( rc ) goto abort_due_to_error;
5370   break;
5371 }
5372 
5373 /* Opcode: ResetSorter P1 * * * *
5374 **
5375 ** Delete all contents from the ephemeral table or sorter
5376 ** that is open on cursor P1.
5377 **
5378 ** This opcode only works for cursors used for sorting and
5379 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5380 */
5381 case OP_ResetSorter: {
5382   VdbeCursor *pC;
5383 
5384   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5385   pC = p->apCsr[pOp->p1];
5386   assert( pC!=0 );
5387   if( isSorter(pC) ){
5388     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5389   }else{
5390     assert( pC->eCurType==CURTYPE_BTREE );
5391     assert( pC->isEphemeral );
5392     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5393     if( rc ) goto abort_due_to_error;
5394   }
5395   break;
5396 }
5397 
5398 /* Opcode: CreateTable P1 P2 * * *
5399 ** Synopsis: r[P2]=root iDb=P1
5400 **
5401 ** Allocate a new table in the main database file if P1==0 or in the
5402 ** auxiliary database file if P1==1 or in an attached database if
5403 ** P1>1.  Write the root page number of the new table into
5404 ** register P2
5405 **
5406 ** The difference between a table and an index is this:  A table must
5407 ** have a 4-byte integer key and can have arbitrary data.  An index
5408 ** has an arbitrary key but no data.
5409 **
5410 ** See also: CreateIndex
5411 */
5412 /* Opcode: CreateIndex P1 P2 * * *
5413 ** Synopsis: r[P2]=root iDb=P1
5414 **
5415 ** Allocate a new index in the main database file if P1==0 or in the
5416 ** auxiliary database file if P1==1 or in an attached database if
5417 ** P1>1.  Write the root page number of the new table into
5418 ** register P2.
5419 **
5420 ** See documentation on OP_CreateTable for additional information.
5421 */
5422 case OP_CreateIndex:            /* out2 */
5423 case OP_CreateTable: {          /* out2 */
5424   int pgno;
5425   int flags;
5426   Db *pDb;
5427 
5428   pOut = out2Prerelease(p, pOp);
5429   pgno = 0;
5430   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5431   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5432   assert( p->readOnly==0 );
5433   pDb = &db->aDb[pOp->p1];
5434   assert( pDb->pBt!=0 );
5435   if( pOp->opcode==OP_CreateTable ){
5436     /* flags = BTREE_INTKEY; */
5437     flags = BTREE_INTKEY;
5438   }else{
5439     flags = BTREE_BLOBKEY;
5440   }
5441   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5442   if( rc ) goto abort_due_to_error;
5443   pOut->u.i = pgno;
5444   break;
5445 }
5446 
5447 /* Opcode: ParseSchema P1 * * P4 *
5448 **
5449 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5450 ** that match the WHERE clause P4.
5451 **
5452 ** This opcode invokes the parser to create a new virtual machine,
5453 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5454 */
5455 case OP_ParseSchema: {
5456   int iDb;
5457   const char *zMaster;
5458   char *zSql;
5459   InitData initData;
5460 
5461   /* Any prepared statement that invokes this opcode will hold mutexes
5462   ** on every btree.  This is a prerequisite for invoking
5463   ** sqlite3InitCallback().
5464   */
5465 #ifdef SQLITE_DEBUG
5466   for(iDb=0; iDb<db->nDb; iDb++){
5467     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5468   }
5469 #endif
5470 
5471   iDb = pOp->p1;
5472   assert( iDb>=0 && iDb<db->nDb );
5473   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5474   /* Used to be a conditional */ {
5475     zMaster = SCHEMA_TABLE(iDb);
5476     initData.db = db;
5477     initData.iDb = pOp->p1;
5478     initData.pzErrMsg = &p->zErrMsg;
5479     zSql = sqlite3MPrintf(db,
5480        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5481        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5482     if( zSql==0 ){
5483       rc = SQLITE_NOMEM_BKPT;
5484     }else{
5485       assert( db->init.busy==0 );
5486       db->init.busy = 1;
5487       initData.rc = SQLITE_OK;
5488       assert( !db->mallocFailed );
5489       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5490       if( rc==SQLITE_OK ) rc = initData.rc;
5491       sqlite3DbFree(db, zSql);
5492       db->init.busy = 0;
5493     }
5494   }
5495   if( rc ){
5496     sqlite3ResetAllSchemasOfConnection(db);
5497     if( rc==SQLITE_NOMEM ){
5498       goto no_mem;
5499     }
5500     goto abort_due_to_error;
5501   }
5502   break;
5503 }
5504 
5505 #if !defined(SQLITE_OMIT_ANALYZE)
5506 /* Opcode: LoadAnalysis P1 * * * *
5507 **
5508 ** Read the sqlite_stat1 table for database P1 and load the content
5509 ** of that table into the internal index hash table.  This will cause
5510 ** the analysis to be used when preparing all subsequent queries.
5511 */
5512 case OP_LoadAnalysis: {
5513   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5514   rc = sqlite3AnalysisLoad(db, pOp->p1);
5515   if( rc ) goto abort_due_to_error;
5516   break;
5517 }
5518 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5519 
5520 /* Opcode: DropTable P1 * * P4 *
5521 **
5522 ** Remove the internal (in-memory) data structures that describe
5523 ** the table named P4 in database P1.  This is called after a table
5524 ** is dropped from disk (using the Destroy opcode) in order to keep
5525 ** the internal representation of the
5526 ** schema consistent with what is on disk.
5527 */
5528 case OP_DropTable: {
5529   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5530   break;
5531 }
5532 
5533 /* Opcode: DropIndex P1 * * P4 *
5534 **
5535 ** Remove the internal (in-memory) data structures that describe
5536 ** the index named P4 in database P1.  This is called after an index
5537 ** is dropped from disk (using the Destroy opcode)
5538 ** in order to keep the internal representation of the
5539 ** schema consistent with what is on disk.
5540 */
5541 case OP_DropIndex: {
5542   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5543   break;
5544 }
5545 
5546 /* Opcode: DropTrigger P1 * * P4 *
5547 **
5548 ** Remove the internal (in-memory) data structures that describe
5549 ** the trigger named P4 in database P1.  This is called after a trigger
5550 ** is dropped from disk (using the Destroy opcode) in order to keep
5551 ** the internal representation of the
5552 ** schema consistent with what is on disk.
5553 */
5554 case OP_DropTrigger: {
5555   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5556   break;
5557 }
5558 
5559 
5560 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5561 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5562 **
5563 ** Do an analysis of the currently open database.  Store in
5564 ** register P1 the text of an error message describing any problems.
5565 ** If no problems are found, store a NULL in register P1.
5566 **
5567 ** The register P3 contains the maximum number of allowed errors.
5568 ** At most reg(P3) errors will be reported.
5569 ** In other words, the analysis stops as soon as reg(P1) errors are
5570 ** seen.  Reg(P1) is updated with the number of errors remaining.
5571 **
5572 ** The root page numbers of all tables in the database are integers
5573 ** stored in P4_INTARRAY argument.
5574 **
5575 ** If P5 is not zero, the check is done on the auxiliary database
5576 ** file, not the main database file.
5577 **
5578 ** This opcode is used to implement the integrity_check pragma.
5579 */
5580 case OP_IntegrityCk: {
5581   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5582   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5583   int nErr;       /* Number of errors reported */
5584   char *z;        /* Text of the error report */
5585   Mem *pnErr;     /* Register keeping track of errors remaining */
5586 
5587   assert( p->bIsReader );
5588   nRoot = pOp->p2;
5589   aRoot = pOp->p4.ai;
5590   assert( nRoot>0 );
5591   assert( aRoot[nRoot]==0 );
5592   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5593   pnErr = &aMem[pOp->p3];
5594   assert( (pnErr->flags & MEM_Int)!=0 );
5595   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5596   pIn1 = &aMem[pOp->p1];
5597   assert( pOp->p5<db->nDb );
5598   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5599   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5600                                  (int)pnErr->u.i, &nErr);
5601   pnErr->u.i -= nErr;
5602   sqlite3VdbeMemSetNull(pIn1);
5603   if( nErr==0 ){
5604     assert( z==0 );
5605   }else if( z==0 ){
5606     goto no_mem;
5607   }else{
5608     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5609   }
5610   UPDATE_MAX_BLOBSIZE(pIn1);
5611   sqlite3VdbeChangeEncoding(pIn1, encoding);
5612   break;
5613 }
5614 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5615 
5616 /* Opcode: RowSetAdd P1 P2 * * *
5617 ** Synopsis: rowset(P1)=r[P2]
5618 **
5619 ** Insert the integer value held by register P2 into a boolean index
5620 ** held in register P1.
5621 **
5622 ** An assertion fails if P2 is not an integer.
5623 */
5624 case OP_RowSetAdd: {       /* in1, in2 */
5625   pIn1 = &aMem[pOp->p1];
5626   pIn2 = &aMem[pOp->p2];
5627   assert( (pIn2->flags & MEM_Int)!=0 );
5628   if( (pIn1->flags & MEM_RowSet)==0 ){
5629     sqlite3VdbeMemSetRowSet(pIn1);
5630     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5631   }
5632   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5633   break;
5634 }
5635 
5636 /* Opcode: RowSetRead P1 P2 P3 * *
5637 ** Synopsis: r[P3]=rowset(P1)
5638 **
5639 ** Extract the smallest value from boolean index P1 and put that value into
5640 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5641 ** unchanged and jump to instruction P2.
5642 */
5643 case OP_RowSetRead: {       /* jump, in1, out3 */
5644   i64 val;
5645 
5646   pIn1 = &aMem[pOp->p1];
5647   if( (pIn1->flags & MEM_RowSet)==0
5648    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5649   ){
5650     /* The boolean index is empty */
5651     sqlite3VdbeMemSetNull(pIn1);
5652     VdbeBranchTaken(1,2);
5653     goto jump_to_p2_and_check_for_interrupt;
5654   }else{
5655     /* A value was pulled from the index */
5656     VdbeBranchTaken(0,2);
5657     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5658   }
5659   goto check_for_interrupt;
5660 }
5661 
5662 /* Opcode: RowSetTest P1 P2 P3 P4
5663 ** Synopsis: if r[P3] in rowset(P1) goto P2
5664 **
5665 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5666 ** contains a RowSet object and that RowSet object contains
5667 ** the value held in P3, jump to register P2. Otherwise, insert the
5668 ** integer in P3 into the RowSet and continue on to the
5669 ** next opcode.
5670 **
5671 ** The RowSet object is optimized for the case where successive sets
5672 ** of integers, where each set contains no duplicates. Each set
5673 ** of values is identified by a unique P4 value. The first set
5674 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5675 ** non-negative.  For non-negative values of P4 only the lower 4
5676 ** bits are significant.
5677 **
5678 ** This allows optimizations: (a) when P4==0 there is no need to test
5679 ** the rowset object for P3, as it is guaranteed not to contain it,
5680 ** (b) when P4==-1 there is no need to insert the value, as it will
5681 ** never be tested for, and (c) when a value that is part of set X is
5682 ** inserted, there is no need to search to see if the same value was
5683 ** previously inserted as part of set X (only if it was previously
5684 ** inserted as part of some other set).
5685 */
5686 case OP_RowSetTest: {                     /* jump, in1, in3 */
5687   int iSet;
5688   int exists;
5689 
5690   pIn1 = &aMem[pOp->p1];
5691   pIn3 = &aMem[pOp->p3];
5692   iSet = pOp->p4.i;
5693   assert( pIn3->flags&MEM_Int );
5694 
5695   /* If there is anything other than a rowset object in memory cell P1,
5696   ** delete it now and initialize P1 with an empty rowset
5697   */
5698   if( (pIn1->flags & MEM_RowSet)==0 ){
5699     sqlite3VdbeMemSetRowSet(pIn1);
5700     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5701   }
5702 
5703   assert( pOp->p4type==P4_INT32 );
5704   assert( iSet==-1 || iSet>=0 );
5705   if( iSet ){
5706     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5707     VdbeBranchTaken(exists!=0,2);
5708     if( exists ) goto jump_to_p2;
5709   }
5710   if( iSet>=0 ){
5711     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5712   }
5713   break;
5714 }
5715 
5716 
5717 #ifndef SQLITE_OMIT_TRIGGER
5718 
5719 /* Opcode: Program P1 P2 P3 P4 P5
5720 **
5721 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5722 **
5723 ** P1 contains the address of the memory cell that contains the first memory
5724 ** cell in an array of values used as arguments to the sub-program. P2
5725 ** contains the address to jump to if the sub-program throws an IGNORE
5726 ** exception using the RAISE() function. Register P3 contains the address
5727 ** of a memory cell in this (the parent) VM that is used to allocate the
5728 ** memory required by the sub-vdbe at runtime.
5729 **
5730 ** P4 is a pointer to the VM containing the trigger program.
5731 **
5732 ** If P5 is non-zero, then recursive program invocation is enabled.
5733 */
5734 case OP_Program: {        /* jump */
5735   int nMem;               /* Number of memory registers for sub-program */
5736   int nByte;              /* Bytes of runtime space required for sub-program */
5737   Mem *pRt;               /* Register to allocate runtime space */
5738   Mem *pMem;              /* Used to iterate through memory cells */
5739   Mem *pEnd;              /* Last memory cell in new array */
5740   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5741   SubProgram *pProgram;   /* Sub-program to execute */
5742   void *t;                /* Token identifying trigger */
5743 
5744   pProgram = pOp->p4.pProgram;
5745   pRt = &aMem[pOp->p3];
5746   assert( pProgram->nOp>0 );
5747 
5748   /* If the p5 flag is clear, then recursive invocation of triggers is
5749   ** disabled for backwards compatibility (p5 is set if this sub-program
5750   ** is really a trigger, not a foreign key action, and the flag set
5751   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5752   **
5753   ** It is recursive invocation of triggers, at the SQL level, that is
5754   ** disabled. In some cases a single trigger may generate more than one
5755   ** SubProgram (if the trigger may be executed with more than one different
5756   ** ON CONFLICT algorithm). SubProgram structures associated with a
5757   ** single trigger all have the same value for the SubProgram.token
5758   ** variable.  */
5759   if( pOp->p5 ){
5760     t = pProgram->token;
5761     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5762     if( pFrame ) break;
5763   }
5764 
5765   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5766     rc = SQLITE_ERROR;
5767     sqlite3VdbeError(p, "too many levels of trigger recursion");
5768     goto abort_due_to_error;
5769   }
5770 
5771   /* Register pRt is used to store the memory required to save the state
5772   ** of the current program, and the memory required at runtime to execute
5773   ** the trigger program. If this trigger has been fired before, then pRt
5774   ** is already allocated. Otherwise, it must be initialized.  */
5775   if( (pRt->flags&MEM_Frame)==0 ){
5776     /* SubProgram.nMem is set to the number of memory cells used by the
5777     ** program stored in SubProgram.aOp. As well as these, one memory
5778     ** cell is required for each cursor used by the program. Set local
5779     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5780     */
5781     nMem = pProgram->nMem + pProgram->nCsr;
5782     assert( nMem>0 );
5783     if( pProgram->nCsr==0 ) nMem++;
5784     nByte = ROUND8(sizeof(VdbeFrame))
5785               + nMem * sizeof(Mem)
5786               + pProgram->nCsr * sizeof(VdbeCursor *);
5787     pFrame = sqlite3DbMallocZero(db, nByte);
5788     if( !pFrame ){
5789       goto no_mem;
5790     }
5791     sqlite3VdbeMemRelease(pRt);
5792     pRt->flags = MEM_Frame;
5793     pRt->u.pFrame = pFrame;
5794 
5795     pFrame->v = p;
5796     pFrame->nChildMem = nMem;
5797     pFrame->nChildCsr = pProgram->nCsr;
5798     pFrame->pc = (int)(pOp - aOp);
5799     pFrame->aMem = p->aMem;
5800     pFrame->nMem = p->nMem;
5801     pFrame->apCsr = p->apCsr;
5802     pFrame->nCursor = p->nCursor;
5803     pFrame->aOp = p->aOp;
5804     pFrame->nOp = p->nOp;
5805     pFrame->token = pProgram->token;
5806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5807     pFrame->anExec = p->anExec;
5808 #endif
5809 
5810     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5811     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5812       pMem->flags = MEM_Undefined;
5813       pMem->db = db;
5814     }
5815   }else{
5816     pFrame = pRt->u.pFrame;
5817     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5818         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
5819     assert( pProgram->nCsr==pFrame->nChildCsr );
5820     assert( (int)(pOp - aOp)==pFrame->pc );
5821   }
5822 
5823   p->nFrame++;
5824   pFrame->pParent = p->pFrame;
5825   pFrame->lastRowid = lastRowid;
5826   pFrame->nChange = p->nChange;
5827   pFrame->nDbChange = p->db->nChange;
5828   assert( pFrame->pAuxData==0 );
5829   pFrame->pAuxData = p->pAuxData;
5830   p->pAuxData = 0;
5831   p->nChange = 0;
5832   p->pFrame = pFrame;
5833   p->aMem = aMem = VdbeFrameMem(pFrame);
5834   p->nMem = pFrame->nChildMem;
5835   p->nCursor = (u16)pFrame->nChildCsr;
5836   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
5837   p->aOp = aOp = pProgram->aOp;
5838   p->nOp = pProgram->nOp;
5839 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5840   p->anExec = 0;
5841 #endif
5842   pOp = &aOp[-1];
5843 
5844   break;
5845 }
5846 
5847 /* Opcode: Param P1 P2 * * *
5848 **
5849 ** This opcode is only ever present in sub-programs called via the
5850 ** OP_Program instruction. Copy a value currently stored in a memory
5851 ** cell of the calling (parent) frame to cell P2 in the current frames
5852 ** address space. This is used by trigger programs to access the new.*
5853 ** and old.* values.
5854 **
5855 ** The address of the cell in the parent frame is determined by adding
5856 ** the value of the P1 argument to the value of the P1 argument to the
5857 ** calling OP_Program instruction.
5858 */
5859 case OP_Param: {           /* out2 */
5860   VdbeFrame *pFrame;
5861   Mem *pIn;
5862   pOut = out2Prerelease(p, pOp);
5863   pFrame = p->pFrame;
5864   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5865   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5866   break;
5867 }
5868 
5869 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5870 
5871 #ifndef SQLITE_OMIT_FOREIGN_KEY
5872 /* Opcode: FkCounter P1 P2 * * *
5873 ** Synopsis: fkctr[P1]+=P2
5874 **
5875 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5876 ** If P1 is non-zero, the database constraint counter is incremented
5877 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5878 ** statement counter is incremented (immediate foreign key constraints).
5879 */
5880 case OP_FkCounter: {
5881   if( db->flags & SQLITE_DeferFKs ){
5882     db->nDeferredImmCons += pOp->p2;
5883   }else if( pOp->p1 ){
5884     db->nDeferredCons += pOp->p2;
5885   }else{
5886     p->nFkConstraint += pOp->p2;
5887   }
5888   break;
5889 }
5890 
5891 /* Opcode: FkIfZero P1 P2 * * *
5892 ** Synopsis: if fkctr[P1]==0 goto P2
5893 **
5894 ** This opcode tests if a foreign key constraint-counter is currently zero.
5895 ** If so, jump to instruction P2. Otherwise, fall through to the next
5896 ** instruction.
5897 **
5898 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5899 ** is zero (the one that counts deferred constraint violations). If P1 is
5900 ** zero, the jump is taken if the statement constraint-counter is zero
5901 ** (immediate foreign key constraint violations).
5902 */
5903 case OP_FkIfZero: {         /* jump */
5904   if( pOp->p1 ){
5905     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5906     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5907   }else{
5908     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5909     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5910   }
5911   break;
5912 }
5913 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5914 
5915 #ifndef SQLITE_OMIT_AUTOINCREMENT
5916 /* Opcode: MemMax P1 P2 * * *
5917 ** Synopsis: r[P1]=max(r[P1],r[P2])
5918 **
5919 ** P1 is a register in the root frame of this VM (the root frame is
5920 ** different from the current frame if this instruction is being executed
5921 ** within a sub-program). Set the value of register P1 to the maximum of
5922 ** its current value and the value in register P2.
5923 **
5924 ** This instruction throws an error if the memory cell is not initially
5925 ** an integer.
5926 */
5927 case OP_MemMax: {        /* in2 */
5928   VdbeFrame *pFrame;
5929   if( p->pFrame ){
5930     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5931     pIn1 = &pFrame->aMem[pOp->p1];
5932   }else{
5933     pIn1 = &aMem[pOp->p1];
5934   }
5935   assert( memIsValid(pIn1) );
5936   sqlite3VdbeMemIntegerify(pIn1);
5937   pIn2 = &aMem[pOp->p2];
5938   sqlite3VdbeMemIntegerify(pIn2);
5939   if( pIn1->u.i<pIn2->u.i){
5940     pIn1->u.i = pIn2->u.i;
5941   }
5942   break;
5943 }
5944 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5945 
5946 /* Opcode: IfPos P1 P2 P3 * *
5947 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5948 **
5949 ** Register P1 must contain an integer.
5950 ** If the value of register P1 is 1 or greater, subtract P3 from the
5951 ** value in P1 and jump to P2.
5952 **
5953 ** If the initial value of register P1 is less than 1, then the
5954 ** value is unchanged and control passes through to the next instruction.
5955 */
5956 case OP_IfPos: {        /* jump, in1 */
5957   pIn1 = &aMem[pOp->p1];
5958   assert( pIn1->flags&MEM_Int );
5959   VdbeBranchTaken( pIn1->u.i>0, 2);
5960   if( pIn1->u.i>0 ){
5961     pIn1->u.i -= pOp->p3;
5962     goto jump_to_p2;
5963   }
5964   break;
5965 }
5966 
5967 /* Opcode: OffsetLimit P1 P2 P3 * *
5968 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
5969 **
5970 ** This opcode performs a commonly used computation associated with
5971 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
5972 ** holds the offset counter.  The opcode computes the combined value
5973 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
5974 ** value computed is the total number of rows that will need to be
5975 ** visited in order to complete the query.
5976 **
5977 ** If r[P3] is zero or negative, that means there is no OFFSET
5978 ** and r[P2] is set to be the value of the LIMIT, r[P1].
5979 **
5980 ** if r[P1] is zero or negative, that means there is no LIMIT
5981 ** and r[P2] is set to -1.
5982 **
5983 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
5984 */
5985 case OP_OffsetLimit: {    /* in1, out2, in3 */
5986   pIn1 = &aMem[pOp->p1];
5987   pIn3 = &aMem[pOp->p3];
5988   pOut = out2Prerelease(p, pOp);
5989   assert( pIn1->flags & MEM_Int );
5990   assert( pIn3->flags & MEM_Int );
5991   pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
5992   break;
5993 }
5994 
5995 /* Opcode: IfNotZero P1 P2 P3 * *
5996 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5997 **
5998 ** Register P1 must contain an integer.  If the content of register P1 is
5999 ** initially nonzero, then subtract P3 from the value in register P1 and
6000 ** jump to P2.  If register P1 is initially zero, leave it unchanged
6001 ** and fall through.
6002 */
6003 case OP_IfNotZero: {        /* jump, in1 */
6004   pIn1 = &aMem[pOp->p1];
6005   assert( pIn1->flags&MEM_Int );
6006   VdbeBranchTaken(pIn1->u.i<0, 2);
6007   if( pIn1->u.i ){
6008      pIn1->u.i -= pOp->p3;
6009      goto jump_to_p2;
6010   }
6011   break;
6012 }
6013 
6014 /* Opcode: DecrJumpZero P1 P2 * * *
6015 ** Synopsis: if (--r[P1])==0 goto P2
6016 **
6017 ** Register P1 must hold an integer.  Decrement the value in register P1
6018 ** then jump to P2 if the new value is exactly zero.
6019 */
6020 case OP_DecrJumpZero: {      /* jump, in1 */
6021   pIn1 = &aMem[pOp->p1];
6022   assert( pIn1->flags&MEM_Int );
6023   pIn1->u.i--;
6024   VdbeBranchTaken(pIn1->u.i==0, 2);
6025   if( pIn1->u.i==0 ) goto jump_to_p2;
6026   break;
6027 }
6028 
6029 
6030 /* Opcode: AggStep0 * P2 P3 P4 P5
6031 ** Synopsis: accum=r[P3] step(r[P2@P5])
6032 **
6033 ** Execute the step function for an aggregate.  The
6034 ** function has P5 arguments.   P4 is a pointer to the FuncDef
6035 ** structure that specifies the function.  Register P3 is the
6036 ** accumulator.
6037 **
6038 ** The P5 arguments are taken from register P2 and its
6039 ** successors.
6040 */
6041 /* Opcode: AggStep * P2 P3 P4 P5
6042 ** Synopsis: accum=r[P3] step(r[P2@P5])
6043 **
6044 ** Execute the step function for an aggregate.  The
6045 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
6046 ** object that is used to run the function.  Register P3 is
6047 ** as the accumulator.
6048 **
6049 ** The P5 arguments are taken from register P2 and its
6050 ** successors.
6051 **
6052 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6053 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6054 ** the opcode is changed.  In this way, the initialization of the
6055 ** sqlite3_context only happens once, instead of on each call to the
6056 ** step function.
6057 */
6058 case OP_AggStep0: {
6059   int n;
6060   sqlite3_context *pCtx;
6061 
6062   assert( pOp->p4type==P4_FUNCDEF );
6063   n = pOp->p5;
6064   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6065   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6066   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6067   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6068   if( pCtx==0 ) goto no_mem;
6069   pCtx->pMem = 0;
6070   pCtx->pFunc = pOp->p4.pFunc;
6071   pCtx->iOp = (int)(pOp - aOp);
6072   pCtx->pVdbe = p;
6073   pCtx->argc = n;
6074   pOp->p4type = P4_FUNCCTX;
6075   pOp->p4.pCtx = pCtx;
6076   pOp->opcode = OP_AggStep;
6077   /* Fall through into OP_AggStep */
6078 }
6079 case OP_AggStep: {
6080   int i;
6081   sqlite3_context *pCtx;
6082   Mem *pMem;
6083   Mem t;
6084 
6085   assert( pOp->p4type==P4_FUNCCTX );
6086   pCtx = pOp->p4.pCtx;
6087   pMem = &aMem[pOp->p3];
6088 
6089   /* If this function is inside of a trigger, the register array in aMem[]
6090   ** might change from one evaluation to the next.  The next block of code
6091   ** checks to see if the register array has changed, and if so it
6092   ** reinitializes the relavant parts of the sqlite3_context object */
6093   if( pCtx->pMem != pMem ){
6094     pCtx->pMem = pMem;
6095     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6096   }
6097 
6098 #ifdef SQLITE_DEBUG
6099   for(i=0; i<pCtx->argc; i++){
6100     assert( memIsValid(pCtx->argv[i]) );
6101     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6102   }
6103 #endif
6104 
6105   pMem->n++;
6106   sqlite3VdbeMemInit(&t, db, MEM_Null);
6107   pCtx->pOut = &t;
6108   pCtx->fErrorOrAux = 0;
6109   pCtx->skipFlag = 0;
6110   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6111   if( pCtx->fErrorOrAux ){
6112     if( pCtx->isError ){
6113       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6114       rc = pCtx->isError;
6115     }
6116     sqlite3VdbeMemRelease(&t);
6117     if( rc ) goto abort_due_to_error;
6118   }else{
6119     assert( t.flags==MEM_Null );
6120   }
6121   if( pCtx->skipFlag ){
6122     assert( pOp[-1].opcode==OP_CollSeq );
6123     i = pOp[-1].p1;
6124     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6125   }
6126   break;
6127 }
6128 
6129 /* Opcode: AggFinal P1 P2 * P4 *
6130 ** Synopsis: accum=r[P1] N=P2
6131 **
6132 ** Execute the finalizer function for an aggregate.  P1 is
6133 ** the memory location that is the accumulator for the aggregate.
6134 **
6135 ** P2 is the number of arguments that the step function takes and
6136 ** P4 is a pointer to the FuncDef for this function.  The P2
6137 ** argument is not used by this opcode.  It is only there to disambiguate
6138 ** functions that can take varying numbers of arguments.  The
6139 ** P4 argument is only needed for the degenerate case where
6140 ** the step function was not previously called.
6141 */
6142 case OP_AggFinal: {
6143   Mem *pMem;
6144   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6145   pMem = &aMem[pOp->p1];
6146   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6147   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6148   if( rc ){
6149     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6150     goto abort_due_to_error;
6151   }
6152   sqlite3VdbeChangeEncoding(pMem, encoding);
6153   UPDATE_MAX_BLOBSIZE(pMem);
6154   if( sqlite3VdbeMemTooBig(pMem) ){
6155     goto too_big;
6156   }
6157   break;
6158 }
6159 
6160 #ifndef SQLITE_OMIT_WAL
6161 /* Opcode: Checkpoint P1 P2 P3 * *
6162 **
6163 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6164 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6165 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6166 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6167 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6168 ** in the WAL that have been checkpointed after the checkpoint
6169 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6170 ** mem[P3+2] are initialized to -1.
6171 */
6172 case OP_Checkpoint: {
6173   int i;                          /* Loop counter */
6174   int aRes[3];                    /* Results */
6175   Mem *pMem;                      /* Write results here */
6176 
6177   assert( p->readOnly==0 );
6178   aRes[0] = 0;
6179   aRes[1] = aRes[2] = -1;
6180   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6181        || pOp->p2==SQLITE_CHECKPOINT_FULL
6182        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6183        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6184   );
6185   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6186   if( rc ){
6187     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6188     rc = SQLITE_OK;
6189     aRes[0] = 1;
6190   }
6191   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6192     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6193   }
6194   break;
6195 };
6196 #endif
6197 
6198 #ifndef SQLITE_OMIT_PRAGMA
6199 /* Opcode: JournalMode P1 P2 P3 * *
6200 **
6201 ** Change the journal mode of database P1 to P3. P3 must be one of the
6202 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6203 ** modes (delete, truncate, persist, off and memory), this is a simple
6204 ** operation. No IO is required.
6205 **
6206 ** If changing into or out of WAL mode the procedure is more complicated.
6207 **
6208 ** Write a string containing the final journal-mode to register P2.
6209 */
6210 case OP_JournalMode: {    /* out2 */
6211   Btree *pBt;                     /* Btree to change journal mode of */
6212   Pager *pPager;                  /* Pager associated with pBt */
6213   int eNew;                       /* New journal mode */
6214   int eOld;                       /* The old journal mode */
6215 #ifndef SQLITE_OMIT_WAL
6216   const char *zFilename;          /* Name of database file for pPager */
6217 #endif
6218 
6219   pOut = out2Prerelease(p, pOp);
6220   eNew = pOp->p3;
6221   assert( eNew==PAGER_JOURNALMODE_DELETE
6222        || eNew==PAGER_JOURNALMODE_TRUNCATE
6223        || eNew==PAGER_JOURNALMODE_PERSIST
6224        || eNew==PAGER_JOURNALMODE_OFF
6225        || eNew==PAGER_JOURNALMODE_MEMORY
6226        || eNew==PAGER_JOURNALMODE_WAL
6227        || eNew==PAGER_JOURNALMODE_QUERY
6228   );
6229   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6230   assert( p->readOnly==0 );
6231 
6232   pBt = db->aDb[pOp->p1].pBt;
6233   pPager = sqlite3BtreePager(pBt);
6234   eOld = sqlite3PagerGetJournalMode(pPager);
6235   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6236   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6237 
6238 #ifndef SQLITE_OMIT_WAL
6239   zFilename = sqlite3PagerFilename(pPager, 1);
6240 
6241   /* Do not allow a transition to journal_mode=WAL for a database
6242   ** in temporary storage or if the VFS does not support shared memory
6243   */
6244   if( eNew==PAGER_JOURNALMODE_WAL
6245    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6246        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6247   ){
6248     eNew = eOld;
6249   }
6250 
6251   if( (eNew!=eOld)
6252    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6253   ){
6254     if( !db->autoCommit || db->nVdbeRead>1 ){
6255       rc = SQLITE_ERROR;
6256       sqlite3VdbeError(p,
6257           "cannot change %s wal mode from within a transaction",
6258           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6259       );
6260       goto abort_due_to_error;
6261     }else{
6262 
6263       if( eOld==PAGER_JOURNALMODE_WAL ){
6264         /* If leaving WAL mode, close the log file. If successful, the call
6265         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6266         ** file. An EXCLUSIVE lock may still be held on the database file
6267         ** after a successful return.
6268         */
6269         rc = sqlite3PagerCloseWal(pPager);
6270         if( rc==SQLITE_OK ){
6271           sqlite3PagerSetJournalMode(pPager, eNew);
6272         }
6273       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6274         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6275         ** as an intermediate */
6276         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6277       }
6278 
6279       /* Open a transaction on the database file. Regardless of the journal
6280       ** mode, this transaction always uses a rollback journal.
6281       */
6282       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6283       if( rc==SQLITE_OK ){
6284         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6285       }
6286     }
6287   }
6288 #endif /* ifndef SQLITE_OMIT_WAL */
6289 
6290   if( rc ) eNew = eOld;
6291   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6292 
6293   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6294   pOut->z = (char *)sqlite3JournalModename(eNew);
6295   pOut->n = sqlite3Strlen30(pOut->z);
6296   pOut->enc = SQLITE_UTF8;
6297   sqlite3VdbeChangeEncoding(pOut, encoding);
6298   if( rc ) goto abort_due_to_error;
6299   break;
6300 };
6301 #endif /* SQLITE_OMIT_PRAGMA */
6302 
6303 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6304 /* Opcode: Vacuum P1 * * * *
6305 **
6306 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6307 ** for an attached database.  The "temp" database may not be vacuumed.
6308 */
6309 case OP_Vacuum: {
6310   assert( p->readOnly==0 );
6311   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6312   if( rc ) goto abort_due_to_error;
6313   break;
6314 }
6315 #endif
6316 
6317 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6318 /* Opcode: IncrVacuum P1 P2 * * *
6319 **
6320 ** Perform a single step of the incremental vacuum procedure on
6321 ** the P1 database. If the vacuum has finished, jump to instruction
6322 ** P2. Otherwise, fall through to the next instruction.
6323 */
6324 case OP_IncrVacuum: {        /* jump */
6325   Btree *pBt;
6326 
6327   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6328   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6329   assert( p->readOnly==0 );
6330   pBt = db->aDb[pOp->p1].pBt;
6331   rc = sqlite3BtreeIncrVacuum(pBt);
6332   VdbeBranchTaken(rc==SQLITE_DONE,2);
6333   if( rc ){
6334     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6335     rc = SQLITE_OK;
6336     goto jump_to_p2;
6337   }
6338   break;
6339 }
6340 #endif
6341 
6342 /* Opcode: Expire P1 * * * *
6343 **
6344 ** Cause precompiled statements to expire.  When an expired statement
6345 ** is executed using sqlite3_step() it will either automatically
6346 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6347 ** or it will fail with SQLITE_SCHEMA.
6348 **
6349 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6350 ** then only the currently executing statement is expired.
6351 */
6352 case OP_Expire: {
6353   if( !pOp->p1 ){
6354     sqlite3ExpirePreparedStatements(db);
6355   }else{
6356     p->expired = 1;
6357   }
6358   break;
6359 }
6360 
6361 #ifndef SQLITE_OMIT_SHARED_CACHE
6362 /* Opcode: TableLock P1 P2 P3 P4 *
6363 ** Synopsis: iDb=P1 root=P2 write=P3
6364 **
6365 ** Obtain a lock on a particular table. This instruction is only used when
6366 ** the shared-cache feature is enabled.
6367 **
6368 ** P1 is the index of the database in sqlite3.aDb[] of the database
6369 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6370 ** a write lock if P3==1.
6371 **
6372 ** P2 contains the root-page of the table to lock.
6373 **
6374 ** P4 contains a pointer to the name of the table being locked. This is only
6375 ** used to generate an error message if the lock cannot be obtained.
6376 */
6377 case OP_TableLock: {
6378   u8 isWriteLock = (u8)pOp->p3;
6379   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6380     int p1 = pOp->p1;
6381     assert( p1>=0 && p1<db->nDb );
6382     assert( DbMaskTest(p->btreeMask, p1) );
6383     assert( isWriteLock==0 || isWriteLock==1 );
6384     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6385     if( rc ){
6386       if( (rc&0xFF)==SQLITE_LOCKED ){
6387         const char *z = pOp->p4.z;
6388         sqlite3VdbeError(p, "database table is locked: %s", z);
6389       }
6390       goto abort_due_to_error;
6391     }
6392   }
6393   break;
6394 }
6395 #endif /* SQLITE_OMIT_SHARED_CACHE */
6396 
6397 #ifndef SQLITE_OMIT_VIRTUALTABLE
6398 /* Opcode: VBegin * * * P4 *
6399 **
6400 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6401 ** xBegin method for that table.
6402 **
6403 ** Also, whether or not P4 is set, check that this is not being called from
6404 ** within a callback to a virtual table xSync() method. If it is, the error
6405 ** code will be set to SQLITE_LOCKED.
6406 */
6407 case OP_VBegin: {
6408   VTable *pVTab;
6409   pVTab = pOp->p4.pVtab;
6410   rc = sqlite3VtabBegin(db, pVTab);
6411   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6412   if( rc ) goto abort_due_to_error;
6413   break;
6414 }
6415 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6416 
6417 #ifndef SQLITE_OMIT_VIRTUALTABLE
6418 /* Opcode: VCreate P1 P2 * * *
6419 **
6420 ** P2 is a register that holds the name of a virtual table in database
6421 ** P1. Call the xCreate method for that table.
6422 */
6423 case OP_VCreate: {
6424   Mem sMem;          /* For storing the record being decoded */
6425   const char *zTab;  /* Name of the virtual table */
6426 
6427   memset(&sMem, 0, sizeof(sMem));
6428   sMem.db = db;
6429   /* Because P2 is always a static string, it is impossible for the
6430   ** sqlite3VdbeMemCopy() to fail */
6431   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6432   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6433   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6434   assert( rc==SQLITE_OK );
6435   zTab = (const char*)sqlite3_value_text(&sMem);
6436   assert( zTab || db->mallocFailed );
6437   if( zTab ){
6438     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6439   }
6440   sqlite3VdbeMemRelease(&sMem);
6441   if( rc ) goto abort_due_to_error;
6442   break;
6443 }
6444 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6445 
6446 #ifndef SQLITE_OMIT_VIRTUALTABLE
6447 /* Opcode: VDestroy P1 * * P4 *
6448 **
6449 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6450 ** of that table.
6451 */
6452 case OP_VDestroy: {
6453   db->nVDestroy++;
6454   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6455   db->nVDestroy--;
6456   if( rc ) goto abort_due_to_error;
6457   break;
6458 }
6459 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6460 
6461 #ifndef SQLITE_OMIT_VIRTUALTABLE
6462 /* Opcode: VOpen P1 * * P4 *
6463 **
6464 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6465 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6466 ** table and stores that cursor in P1.
6467 */
6468 case OP_VOpen: {
6469   VdbeCursor *pCur;
6470   sqlite3_vtab_cursor *pVCur;
6471   sqlite3_vtab *pVtab;
6472   const sqlite3_module *pModule;
6473 
6474   assert( p->bIsReader );
6475   pCur = 0;
6476   pVCur = 0;
6477   pVtab = pOp->p4.pVtab->pVtab;
6478   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6479     rc = SQLITE_LOCKED;
6480     goto abort_due_to_error;
6481   }
6482   pModule = pVtab->pModule;
6483   rc = pModule->xOpen(pVtab, &pVCur);
6484   sqlite3VtabImportErrmsg(p, pVtab);
6485   if( rc ) goto abort_due_to_error;
6486 
6487   /* Initialize sqlite3_vtab_cursor base class */
6488   pVCur->pVtab = pVtab;
6489 
6490   /* Initialize vdbe cursor object */
6491   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6492   if( pCur ){
6493     pCur->uc.pVCur = pVCur;
6494     pVtab->nRef++;
6495   }else{
6496     assert( db->mallocFailed );
6497     pModule->xClose(pVCur);
6498     goto no_mem;
6499   }
6500   break;
6501 }
6502 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6503 
6504 #ifndef SQLITE_OMIT_VIRTUALTABLE
6505 /* Opcode: VFilter P1 P2 P3 P4 *
6506 ** Synopsis: iplan=r[P3] zplan='P4'
6507 **
6508 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6509 ** the filtered result set is empty.
6510 **
6511 ** P4 is either NULL or a string that was generated by the xBestIndex
6512 ** method of the module.  The interpretation of the P4 string is left
6513 ** to the module implementation.
6514 **
6515 ** This opcode invokes the xFilter method on the virtual table specified
6516 ** by P1.  The integer query plan parameter to xFilter is stored in register
6517 ** P3. Register P3+1 stores the argc parameter to be passed to the
6518 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6519 ** additional parameters which are passed to
6520 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6521 **
6522 ** A jump is made to P2 if the result set after filtering would be empty.
6523 */
6524 case OP_VFilter: {   /* jump */
6525   int nArg;
6526   int iQuery;
6527   const sqlite3_module *pModule;
6528   Mem *pQuery;
6529   Mem *pArgc;
6530   sqlite3_vtab_cursor *pVCur;
6531   sqlite3_vtab *pVtab;
6532   VdbeCursor *pCur;
6533   int res;
6534   int i;
6535   Mem **apArg;
6536 
6537   pQuery = &aMem[pOp->p3];
6538   pArgc = &pQuery[1];
6539   pCur = p->apCsr[pOp->p1];
6540   assert( memIsValid(pQuery) );
6541   REGISTER_TRACE(pOp->p3, pQuery);
6542   assert( pCur->eCurType==CURTYPE_VTAB );
6543   pVCur = pCur->uc.pVCur;
6544   pVtab = pVCur->pVtab;
6545   pModule = pVtab->pModule;
6546 
6547   /* Grab the index number and argc parameters */
6548   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6549   nArg = (int)pArgc->u.i;
6550   iQuery = (int)pQuery->u.i;
6551 
6552   /* Invoke the xFilter method */
6553   res = 0;
6554   apArg = p->apArg;
6555   for(i = 0; i<nArg; i++){
6556     apArg[i] = &pArgc[i+1];
6557   }
6558   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6559   sqlite3VtabImportErrmsg(p, pVtab);
6560   if( rc ) goto abort_due_to_error;
6561   res = pModule->xEof(pVCur);
6562   pCur->nullRow = 0;
6563   VdbeBranchTaken(res!=0,2);
6564   if( res ) goto jump_to_p2;
6565   break;
6566 }
6567 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6568 
6569 #ifndef SQLITE_OMIT_VIRTUALTABLE
6570 /* Opcode: VColumn P1 P2 P3 * *
6571 ** Synopsis: r[P3]=vcolumn(P2)
6572 **
6573 ** Store the value of the P2-th column of
6574 ** the row of the virtual-table that the
6575 ** P1 cursor is pointing to into register P3.
6576 */
6577 case OP_VColumn: {
6578   sqlite3_vtab *pVtab;
6579   const sqlite3_module *pModule;
6580   Mem *pDest;
6581   sqlite3_context sContext;
6582 
6583   VdbeCursor *pCur = p->apCsr[pOp->p1];
6584   assert( pCur->eCurType==CURTYPE_VTAB );
6585   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6586   pDest = &aMem[pOp->p3];
6587   memAboutToChange(p, pDest);
6588   if( pCur->nullRow ){
6589     sqlite3VdbeMemSetNull(pDest);
6590     break;
6591   }
6592   pVtab = pCur->uc.pVCur->pVtab;
6593   pModule = pVtab->pModule;
6594   assert( pModule->xColumn );
6595   memset(&sContext, 0, sizeof(sContext));
6596   sContext.pOut = pDest;
6597   MemSetTypeFlag(pDest, MEM_Null);
6598   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6599   sqlite3VtabImportErrmsg(p, pVtab);
6600   if( sContext.isError ){
6601     rc = sContext.isError;
6602   }
6603   sqlite3VdbeChangeEncoding(pDest, encoding);
6604   REGISTER_TRACE(pOp->p3, pDest);
6605   UPDATE_MAX_BLOBSIZE(pDest);
6606 
6607   if( sqlite3VdbeMemTooBig(pDest) ){
6608     goto too_big;
6609   }
6610   if( rc ) goto abort_due_to_error;
6611   break;
6612 }
6613 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6614 
6615 #ifndef SQLITE_OMIT_VIRTUALTABLE
6616 /* Opcode: VNext P1 P2 * * *
6617 **
6618 ** Advance virtual table P1 to the next row in its result set and
6619 ** jump to instruction P2.  Or, if the virtual table has reached
6620 ** the end of its result set, then fall through to the next instruction.
6621 */
6622 case OP_VNext: {   /* jump */
6623   sqlite3_vtab *pVtab;
6624   const sqlite3_module *pModule;
6625   int res;
6626   VdbeCursor *pCur;
6627 
6628   res = 0;
6629   pCur = p->apCsr[pOp->p1];
6630   assert( pCur->eCurType==CURTYPE_VTAB );
6631   if( pCur->nullRow ){
6632     break;
6633   }
6634   pVtab = pCur->uc.pVCur->pVtab;
6635   pModule = pVtab->pModule;
6636   assert( pModule->xNext );
6637 
6638   /* Invoke the xNext() method of the module. There is no way for the
6639   ** underlying implementation to return an error if one occurs during
6640   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6641   ** data is available) and the error code returned when xColumn or
6642   ** some other method is next invoked on the save virtual table cursor.
6643   */
6644   rc = pModule->xNext(pCur->uc.pVCur);
6645   sqlite3VtabImportErrmsg(p, pVtab);
6646   if( rc ) goto abort_due_to_error;
6647   res = pModule->xEof(pCur->uc.pVCur);
6648   VdbeBranchTaken(!res,2);
6649   if( !res ){
6650     /* If there is data, jump to P2 */
6651     goto jump_to_p2_and_check_for_interrupt;
6652   }
6653   goto check_for_interrupt;
6654 }
6655 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6656 
6657 #ifndef SQLITE_OMIT_VIRTUALTABLE
6658 /* Opcode: VRename P1 * * P4 *
6659 **
6660 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6661 ** This opcode invokes the corresponding xRename method. The value
6662 ** in register P1 is passed as the zName argument to the xRename method.
6663 */
6664 case OP_VRename: {
6665   sqlite3_vtab *pVtab;
6666   Mem *pName;
6667 
6668   pVtab = pOp->p4.pVtab->pVtab;
6669   pName = &aMem[pOp->p1];
6670   assert( pVtab->pModule->xRename );
6671   assert( memIsValid(pName) );
6672   assert( p->readOnly==0 );
6673   REGISTER_TRACE(pOp->p1, pName);
6674   assert( pName->flags & MEM_Str );
6675   testcase( pName->enc==SQLITE_UTF8 );
6676   testcase( pName->enc==SQLITE_UTF16BE );
6677   testcase( pName->enc==SQLITE_UTF16LE );
6678   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6679   if( rc ) goto abort_due_to_error;
6680   rc = pVtab->pModule->xRename(pVtab, pName->z);
6681   sqlite3VtabImportErrmsg(p, pVtab);
6682   p->expired = 0;
6683   if( rc ) goto abort_due_to_error;
6684   break;
6685 }
6686 #endif
6687 
6688 #ifndef SQLITE_OMIT_VIRTUALTABLE
6689 /* Opcode: VUpdate P1 P2 P3 P4 P5
6690 ** Synopsis: data=r[P3@P2]
6691 **
6692 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6693 ** This opcode invokes the corresponding xUpdate method. P2 values
6694 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6695 ** invocation. The value in register (P3+P2-1) corresponds to the
6696 ** p2th element of the argv array passed to xUpdate.
6697 **
6698 ** The xUpdate method will do a DELETE or an INSERT or both.
6699 ** The argv[0] element (which corresponds to memory cell P3)
6700 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6701 ** deletion occurs.  The argv[1] element is the rowid of the new
6702 ** row.  This can be NULL to have the virtual table select the new
6703 ** rowid for itself.  The subsequent elements in the array are
6704 ** the values of columns in the new row.
6705 **
6706 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6707 ** a row to delete.
6708 **
6709 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6710 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6711 ** is set to the value of the rowid for the row just inserted.
6712 **
6713 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6714 ** apply in the case of a constraint failure on an insert or update.
6715 */
6716 case OP_VUpdate: {
6717   sqlite3_vtab *pVtab;
6718   const sqlite3_module *pModule;
6719   int nArg;
6720   int i;
6721   sqlite_int64 rowid;
6722   Mem **apArg;
6723   Mem *pX;
6724 
6725   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6726        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6727   );
6728   assert( p->readOnly==0 );
6729   pVtab = pOp->p4.pVtab->pVtab;
6730   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6731     rc = SQLITE_LOCKED;
6732     goto abort_due_to_error;
6733   }
6734   pModule = pVtab->pModule;
6735   nArg = pOp->p2;
6736   assert( pOp->p4type==P4_VTAB );
6737   if( ALWAYS(pModule->xUpdate) ){
6738     u8 vtabOnConflict = db->vtabOnConflict;
6739     apArg = p->apArg;
6740     pX = &aMem[pOp->p3];
6741     for(i=0; i<nArg; i++){
6742       assert( memIsValid(pX) );
6743       memAboutToChange(p, pX);
6744       apArg[i] = pX;
6745       pX++;
6746     }
6747     db->vtabOnConflict = pOp->p5;
6748     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6749     db->vtabOnConflict = vtabOnConflict;
6750     sqlite3VtabImportErrmsg(p, pVtab);
6751     if( rc==SQLITE_OK && pOp->p1 ){
6752       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6753       db->lastRowid = lastRowid = rowid;
6754     }
6755     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6756       if( pOp->p5==OE_Ignore ){
6757         rc = SQLITE_OK;
6758       }else{
6759         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6760       }
6761     }else{
6762       p->nChange++;
6763     }
6764     if( rc ) goto abort_due_to_error;
6765   }
6766   break;
6767 }
6768 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6769 
6770 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6771 /* Opcode: Pagecount P1 P2 * * *
6772 **
6773 ** Write the current number of pages in database P1 to memory cell P2.
6774 */
6775 case OP_Pagecount: {            /* out2 */
6776   pOut = out2Prerelease(p, pOp);
6777   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6778   break;
6779 }
6780 #endif
6781 
6782 
6783 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6784 /* Opcode: MaxPgcnt P1 P2 P3 * *
6785 **
6786 ** Try to set the maximum page count for database P1 to the value in P3.
6787 ** Do not let the maximum page count fall below the current page count and
6788 ** do not change the maximum page count value if P3==0.
6789 **
6790 ** Store the maximum page count after the change in register P2.
6791 */
6792 case OP_MaxPgcnt: {            /* out2 */
6793   unsigned int newMax;
6794   Btree *pBt;
6795 
6796   pOut = out2Prerelease(p, pOp);
6797   pBt = db->aDb[pOp->p1].pBt;
6798   newMax = 0;
6799   if( pOp->p3 ){
6800     newMax = sqlite3BtreeLastPage(pBt);
6801     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6802   }
6803   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6804   break;
6805 }
6806 #endif
6807 
6808 
6809 /* Opcode: Init P1 P2 * P4 *
6810 ** Synopsis: Start at P2
6811 **
6812 ** Programs contain a single instance of this opcode as the very first
6813 ** opcode.
6814 **
6815 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6816 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6817 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6818 **
6819 ** If P2 is not zero, jump to instruction P2.
6820 **
6821 ** Increment the value of P1 so that OP_Once opcodes will jump the
6822 ** first time they are evaluated for this run.
6823 */
6824 case OP_Init: {          /* jump */
6825   char *zTrace;
6826   int i;
6827 
6828   /* If the P4 argument is not NULL, then it must be an SQL comment string.
6829   ** The "--" string is broken up to prevent false-positives with srcck1.c.
6830   **
6831   ** This assert() provides evidence for:
6832   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
6833   ** would have been returned by the legacy sqlite3_trace() interface by
6834   ** using the X argument when X begins with "--" and invoking
6835   ** sqlite3_expanded_sql(P) otherwise.
6836   */
6837   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
6838   assert( pOp==p->aOp );  /* Always instruction 0 */
6839 
6840 #ifndef SQLITE_OMIT_TRACE
6841   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
6842    && !p->doingRerun
6843    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6844   ){
6845 #ifndef SQLITE_OMIT_DEPRECATED
6846     if( db->mTrace & SQLITE_TRACE_LEGACY ){
6847       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
6848       char *z = sqlite3VdbeExpandSql(p, zTrace);
6849       x(db->pTraceArg, z);
6850       sqlite3_free(z);
6851     }else
6852 #endif
6853     {
6854       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
6855     }
6856   }
6857 #ifdef SQLITE_USE_FCNTL_TRACE
6858   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6859   if( zTrace ){
6860     int j;
6861     for(j=0; j<db->nDb; j++){
6862       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
6863       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
6864     }
6865   }
6866 #endif /* SQLITE_USE_FCNTL_TRACE */
6867 #ifdef SQLITE_DEBUG
6868   if( (db->flags & SQLITE_SqlTrace)!=0
6869    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6870   ){
6871     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6872   }
6873 #endif /* SQLITE_DEBUG */
6874 #endif /* SQLITE_OMIT_TRACE */
6875   assert( pOp->p2>0 );
6876   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
6877     for(i=1; i<p->nOp; i++){
6878       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
6879     }
6880     pOp->p1 = 0;
6881   }
6882   pOp->p1++;
6883   goto jump_to_p2;
6884 }
6885 
6886 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6887 /* Opcode: CursorHint P1 * * P4 *
6888 **
6889 ** Provide a hint to cursor P1 that it only needs to return rows that
6890 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
6891 ** to values currently held in registers.  TK_COLUMN terms in the P4
6892 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6893 */
6894 case OP_CursorHint: {
6895   VdbeCursor *pC;
6896 
6897   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6898   assert( pOp->p4type==P4_EXPR );
6899   pC = p->apCsr[pOp->p1];
6900   if( pC ){
6901     assert( pC->eCurType==CURTYPE_BTREE );
6902     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6903                            pOp->p4.pExpr, aMem);
6904   }
6905   break;
6906 }
6907 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6908 
6909 /* Opcode: Noop * * * * *
6910 **
6911 ** Do nothing.  This instruction is often useful as a jump
6912 ** destination.
6913 */
6914 /*
6915 ** The magic Explain opcode are only inserted when explain==2 (which
6916 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6917 ** This opcode records information from the optimizer.  It is the
6918 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6919 */
6920 default: {          /* This is really OP_Noop and OP_Explain */
6921   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6922   break;
6923 }
6924 
6925 /*****************************************************************************
6926 ** The cases of the switch statement above this line should all be indented
6927 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6928 ** readability.  From this point on down, the normal indentation rules are
6929 ** restored.
6930 *****************************************************************************/
6931     }
6932 
6933 #ifdef VDBE_PROFILE
6934     {
6935       u64 endTime = sqlite3Hwtime();
6936       if( endTime>start ) pOrigOp->cycles += endTime - start;
6937       pOrigOp->cnt++;
6938     }
6939 #endif
6940 
6941     /* The following code adds nothing to the actual functionality
6942     ** of the program.  It is only here for testing and debugging.
6943     ** On the other hand, it does burn CPU cycles every time through
6944     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6945     */
6946 #ifndef NDEBUG
6947     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6948 
6949 #ifdef SQLITE_DEBUG
6950     if( db->flags & SQLITE_VdbeTrace ){
6951       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
6952       if( rc!=0 ) printf("rc=%d\n",rc);
6953       if( opProperty & (OPFLG_OUT2) ){
6954         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6955       }
6956       if( opProperty & OPFLG_OUT3 ){
6957         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6958       }
6959     }
6960 #endif  /* SQLITE_DEBUG */
6961 #endif  /* NDEBUG */
6962   }  /* The end of the for(;;) loop the loops through opcodes */
6963 
6964   /* If we reach this point, it means that execution is finished with
6965   ** an error of some kind.
6966   */
6967 abort_due_to_error:
6968   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
6969   assert( rc );
6970   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
6971     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6972   }
6973   p->rc = rc;
6974   sqlite3SystemError(db, rc);
6975   testcase( sqlite3GlobalConfig.xLog!=0 );
6976   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6977                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
6978   sqlite3VdbeHalt(p);
6979   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
6980   rc = SQLITE_ERROR;
6981   if( resetSchemaOnFault>0 ){
6982     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6983   }
6984 
6985   /* This is the only way out of this procedure.  We have to
6986   ** release the mutexes on btrees that were acquired at the
6987   ** top. */
6988 vdbe_return:
6989   db->lastRowid = lastRowid;
6990   testcase( nVmStep>0 );
6991   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6992   sqlite3VdbeLeave(p);
6993   assert( rc!=SQLITE_OK || nExtraDelete==0
6994        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
6995   );
6996   return rc;
6997 
6998   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6999   ** is encountered.
7000   */
7001 too_big:
7002   sqlite3VdbeError(p, "string or blob too big");
7003   rc = SQLITE_TOOBIG;
7004   goto abort_due_to_error;
7005 
7006   /* Jump to here if a malloc() fails.
7007   */
7008 no_mem:
7009   sqlite3OomFault(db);
7010   sqlite3VdbeError(p, "out of memory");
7011   rc = SQLITE_NOMEM_BKPT;
7012   goto abort_due_to_error;
7013 
7014   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7015   ** flag.
7016   */
7017 abort_due_to_interrupt:
7018   assert( db->u1.isInterrupted );
7019   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7020   p->rc = rc;
7021   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7022   goto abort_due_to_error;
7023 }
7024