1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue = (double)rValue; 318 if( sqlite3RealSameAsInt(rValue,iValue) ){ 319 *piValue = iValue; 320 return 1; 321 } 322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 323 } 324 325 /* 326 ** Try to convert a value into a numeric representation if we can 327 ** do so without loss of information. In other words, if the string 328 ** looks like a number, convert it into a number. If it does not 329 ** look like a number, leave it alone. 330 ** 331 ** If the bTryForInt flag is true, then extra effort is made to give 332 ** an integer representation. Strings that look like floating point 333 ** values but which have no fractional component (example: '48.00') 334 ** will have a MEM_Int representation when bTryForInt is true. 335 ** 336 ** If bTryForInt is false, then if the input string contains a decimal 337 ** point or exponential notation, the result is only MEM_Real, even 338 ** if there is an exact integer representation of the quantity. 339 */ 340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 341 double rValue; 342 u8 enc = pRec->enc; 343 int rc; 344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 346 if( rc<=0 ) return; 347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 348 pRec->flags |= MEM_Int; 349 }else{ 350 pRec->u.r = rValue; 351 pRec->flags |= MEM_Real; 352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 353 } 354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 355 ** string representation after computing a numeric equivalent, because the 356 ** string representation might not be the canonical representation for the 357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 358 pRec->flags &= ~MEM_Str; 359 } 360 361 /* 362 ** Processing is determine by the affinity parameter: 363 ** 364 ** SQLITE_AFF_INTEGER: 365 ** SQLITE_AFF_REAL: 366 ** SQLITE_AFF_NUMERIC: 367 ** Try to convert pRec to an integer representation or a 368 ** floating-point representation if an integer representation 369 ** is not possible. Note that the integer representation is 370 ** always preferred, even if the affinity is REAL, because 371 ** an integer representation is more space efficient on disk. 372 ** 373 ** SQLITE_AFF_TEXT: 374 ** Convert pRec to a text representation. 375 ** 376 ** SQLITE_AFF_BLOB: 377 ** SQLITE_AFF_NONE: 378 ** No-op. pRec is unchanged. 379 */ 380 static void applyAffinity( 381 Mem *pRec, /* The value to apply affinity to */ 382 char affinity, /* The affinity to be applied */ 383 u8 enc /* Use this text encoding */ 384 ){ 385 if( affinity>=SQLITE_AFF_NUMERIC ){ 386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 387 || affinity==SQLITE_AFF_NUMERIC ); 388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 389 if( (pRec->flags & MEM_Real)==0 ){ 390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 391 }else{ 392 sqlite3VdbeIntegerAffinity(pRec); 393 } 394 } 395 }else if( affinity==SQLITE_AFF_TEXT ){ 396 /* Only attempt the conversion to TEXT if there is an integer or real 397 ** representation (blob and NULL do not get converted) but no string 398 ** representation. It would be harmless to repeat the conversion if 399 ** there is already a string rep, but it is pointless to waste those 400 ** CPU cycles. */ 401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 403 testcase( pRec->flags & MEM_Int ); 404 testcase( pRec->flags & MEM_Real ); 405 testcase( pRec->flags & MEM_IntReal ); 406 sqlite3VdbeMemStringify(pRec, enc, 1); 407 } 408 } 409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 410 } 411 } 412 413 /* 414 ** Try to convert the type of a function argument or a result column 415 ** into a numeric representation. Use either INTEGER or REAL whichever 416 ** is appropriate. But only do the conversion if it is possible without 417 ** loss of information and return the revised type of the argument. 418 */ 419 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 420 int eType = sqlite3_value_type(pVal); 421 if( eType==SQLITE_TEXT ){ 422 Mem *pMem = (Mem*)pVal; 423 applyNumericAffinity(pMem, 0); 424 eType = sqlite3_value_type(pVal); 425 } 426 return eType; 427 } 428 429 /* 430 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 431 ** not the internal Mem* type. 432 */ 433 void sqlite3ValueApplyAffinity( 434 sqlite3_value *pVal, 435 u8 affinity, 436 u8 enc 437 ){ 438 applyAffinity((Mem *)pVal, affinity, enc); 439 } 440 441 /* 442 ** pMem currently only holds a string type (or maybe a BLOB that we can 443 ** interpret as a string if we want to). Compute its corresponding 444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 445 ** accordingly. 446 */ 447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 448 int rc; 449 sqlite3_int64 ix; 450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 452 if( ExpandBlob(pMem) ){ 453 pMem->u.i = 0; 454 return MEM_Int; 455 } 456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 457 if( rc<=0 ){ 458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 459 pMem->u.i = ix; 460 return MEM_Int; 461 }else{ 462 return MEM_Real; 463 } 464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 465 pMem->u.i = ix; 466 return MEM_Int; 467 } 468 return MEM_Real; 469 } 470 471 /* 472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 473 ** none. 474 ** 475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 476 ** But it does set pMem->u.r and pMem->u.i appropriately. 477 */ 478 static u16 numericType(Mem *pMem){ 479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 480 testcase( pMem->flags & MEM_Int ); 481 testcase( pMem->flags & MEM_Real ); 482 testcase( pMem->flags & MEM_IntReal ); 483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 484 } 485 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 486 testcase( pMem->flags & MEM_Str ); 487 testcase( pMem->flags & MEM_Blob ); 488 return computeNumericType(pMem); 489 } 490 return 0; 491 } 492 493 #ifdef SQLITE_DEBUG 494 /* 495 ** Write a nice string representation of the contents of cell pMem 496 ** into buffer zBuf, length nBuf. 497 */ 498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 499 int f = pMem->flags; 500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 501 if( f&MEM_Blob ){ 502 int i; 503 char c; 504 if( f & MEM_Dyn ){ 505 c = 'z'; 506 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 507 }else if( f & MEM_Static ){ 508 c = 't'; 509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 510 }else if( f & MEM_Ephem ){ 511 c = 'e'; 512 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 513 }else{ 514 c = 's'; 515 } 516 sqlite3_str_appendf(pStr, "%cx[", c); 517 for(i=0; i<25 && i<pMem->n; i++){ 518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 519 } 520 sqlite3_str_appendf(pStr, "|"); 521 for(i=0; i<25 && i<pMem->n; i++){ 522 char z = pMem->z[i]; 523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 524 } 525 sqlite3_str_appendf(pStr,"]"); 526 if( f & MEM_Zero ){ 527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 528 } 529 }else if( f & MEM_Str ){ 530 int j; 531 u8 c; 532 if( f & MEM_Dyn ){ 533 c = 'z'; 534 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 535 }else if( f & MEM_Static ){ 536 c = 't'; 537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 538 }else if( f & MEM_Ephem ){ 539 c = 'e'; 540 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 541 }else{ 542 c = 's'; 543 } 544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 545 for(j=0; j<25 && j<pMem->n; j++){ 546 c = pMem->z[j]; 547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 548 } 549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 550 } 551 } 552 #endif 553 554 #ifdef SQLITE_DEBUG 555 /* 556 ** Print the value of a register for tracing purposes: 557 */ 558 static void memTracePrint(Mem *p){ 559 if( p->flags & MEM_Undefined ){ 560 printf(" undefined"); 561 }else if( p->flags & MEM_Null ){ 562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 564 printf(" si:%lld", p->u.i); 565 }else if( (p->flags & (MEM_IntReal))!=0 ){ 566 printf(" ir:%lld", p->u.i); 567 }else if( p->flags & MEM_Int ){ 568 printf(" i:%lld", p->u.i); 569 #ifndef SQLITE_OMIT_FLOATING_POINT 570 }else if( p->flags & MEM_Real ){ 571 printf(" r:%.17g", p->u.r); 572 #endif 573 }else if( sqlite3VdbeMemIsRowSet(p) ){ 574 printf(" (rowset)"); 575 }else{ 576 StrAccum acc; 577 char zBuf[1000]; 578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 579 sqlite3VdbeMemPrettyPrint(p, &acc); 580 printf(" %s", sqlite3StrAccumFinish(&acc)); 581 } 582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 583 } 584 static void registerTrace(int iReg, Mem *p){ 585 printf("R[%d] = ", iReg); 586 memTracePrint(p); 587 if( p->pScopyFrom ){ 588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 589 } 590 printf("\n"); 591 sqlite3VdbeCheckMemInvariants(p); 592 } 593 /**/ void sqlite3PrintMem(Mem *pMem){ 594 memTracePrint(pMem); 595 printf("\n"); 596 fflush(stdout); 597 } 598 #endif 599 600 #ifdef SQLITE_DEBUG 601 /* 602 ** Show the values of all registers in the virtual machine. Used for 603 ** interactive debugging. 604 */ 605 void sqlite3VdbeRegisterDump(Vdbe *v){ 606 int i; 607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 608 } 609 #endif /* SQLITE_DEBUG */ 610 611 612 #ifdef SQLITE_DEBUG 613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 614 #else 615 # define REGISTER_TRACE(R,M) 616 #endif 617 618 619 #ifdef VDBE_PROFILE 620 621 /* 622 ** hwtime.h contains inline assembler code for implementing 623 ** high-performance timing routines. 624 */ 625 #include "hwtime.h" 626 627 #endif 628 629 #ifndef NDEBUG 630 /* 631 ** This function is only called from within an assert() expression. It 632 ** checks that the sqlite3.nTransaction variable is correctly set to 633 ** the number of non-transaction savepoints currently in the 634 ** linked list starting at sqlite3.pSavepoint. 635 ** 636 ** Usage: 637 ** 638 ** assert( checkSavepointCount(db) ); 639 */ 640 static int checkSavepointCount(sqlite3 *db){ 641 int n = 0; 642 Savepoint *p; 643 for(p=db->pSavepoint; p; p=p->pNext) n++; 644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 645 return 1; 646 } 647 #endif 648 649 /* 650 ** Return the register of pOp->p2 after first preparing it to be 651 ** overwritten with an integer value. 652 */ 653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 654 sqlite3VdbeMemSetNull(pOut); 655 pOut->flags = MEM_Int; 656 return pOut; 657 } 658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 659 Mem *pOut; 660 assert( pOp->p2>0 ); 661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 662 pOut = &p->aMem[pOp->p2]; 663 memAboutToChange(p, pOut); 664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 665 return out2PrereleaseWithClear(pOut); 666 }else{ 667 pOut->flags = MEM_Int; 668 return pOut; 669 } 670 } 671 672 /* 673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 674 ** with pOp->p3. Return the hash. 675 */ 676 static u64 filterHash(const Mem *aMem, const Op *pOp){ 677 int i, mx; 678 u64 h = 0; 679 680 assert( pOp->p4type==P4_INT32 ); 681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 682 const Mem *p = &aMem[i]; 683 if( p->flags & (MEM_Int|MEM_IntReal) ){ 684 h += p->u.i; 685 }else if( p->flags & MEM_Real ){ 686 h += sqlite3VdbeIntValue(p); 687 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 688 h += p->n; 689 if( p->flags & MEM_Zero ) h += p->u.nZero; 690 } 691 } 692 return h; 693 } 694 695 /* 696 ** Return the symbolic name for the data type of a pMem 697 */ 698 static const char *vdbeMemTypeName(Mem *pMem){ 699 static const char *azTypes[] = { 700 /* SQLITE_INTEGER */ "INT", 701 /* SQLITE_FLOAT */ "REAL", 702 /* SQLITE_TEXT */ "TEXT", 703 /* SQLITE_BLOB */ "BLOB", 704 /* SQLITE_NULL */ "NULL" 705 }; 706 return azTypes[sqlite3_value_type(pMem)-1]; 707 } 708 709 /* 710 ** Execute as much of a VDBE program as we can. 711 ** This is the core of sqlite3_step(). 712 */ 713 int sqlite3VdbeExec( 714 Vdbe *p /* The VDBE */ 715 ){ 716 Op *aOp = p->aOp; /* Copy of p->aOp */ 717 Op *pOp = aOp; /* Current operation */ 718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 719 Op *pOrigOp; /* Value of pOp at the top of the loop */ 720 #endif 721 #ifdef SQLITE_DEBUG 722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 723 #endif 724 int rc = SQLITE_OK; /* Value to return */ 725 sqlite3 *db = p->db; /* The database */ 726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 727 u8 encoding = ENC(db); /* The database encoding */ 728 int iCompare = 0; /* Result of last comparison */ 729 u64 nVmStep = 0; /* Number of virtual machine steps */ 730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 732 #endif 733 Mem *aMem = p->aMem; /* Copy of p->aMem */ 734 Mem *pIn1 = 0; /* 1st input operand */ 735 Mem *pIn2 = 0; /* 2nd input operand */ 736 Mem *pIn3 = 0; /* 3rd input operand */ 737 Mem *pOut = 0; /* Output operand */ 738 #ifdef VDBE_PROFILE 739 u64 start; /* CPU clock count at start of opcode */ 740 #endif 741 /*** INSERT STACK UNION HERE ***/ 742 743 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 744 sqlite3VdbeEnter(p); 745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 746 if( db->xProgress ){ 747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 748 assert( 0 < db->nProgressOps ); 749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 750 }else{ 751 nProgressLimit = LARGEST_UINT64; 752 } 753 #endif 754 if( p->rc==SQLITE_NOMEM ){ 755 /* This happens if a malloc() inside a call to sqlite3_column_text() or 756 ** sqlite3_column_text16() failed. */ 757 goto no_mem; 758 } 759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 760 testcase( p->rc!=SQLITE_OK ); 761 p->rc = SQLITE_OK; 762 assert( p->bIsReader || p->readOnly!=0 ); 763 p->iCurrentTime = 0; 764 assert( p->explain==0 ); 765 p->pResultSet = 0; 766 db->busyHandler.nBusy = 0; 767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 768 sqlite3VdbeIOTraceSql(p); 769 #ifdef SQLITE_DEBUG 770 sqlite3BeginBenignMalloc(); 771 if( p->pc==0 772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 773 ){ 774 int i; 775 int once = 1; 776 sqlite3VdbePrintSql(p); 777 if( p->db->flags & SQLITE_VdbeListing ){ 778 printf("VDBE Program Listing:\n"); 779 for(i=0; i<p->nOp; i++){ 780 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 781 } 782 } 783 if( p->db->flags & SQLITE_VdbeEQP ){ 784 for(i=0; i<p->nOp; i++){ 785 if( aOp[i].opcode==OP_Explain ){ 786 if( once ) printf("VDBE Query Plan:\n"); 787 printf("%s\n", aOp[i].p4.z); 788 once = 0; 789 } 790 } 791 } 792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 793 } 794 sqlite3EndBenignMalloc(); 795 #endif 796 for(pOp=&aOp[p->pc]; 1; pOp++){ 797 /* Errors are detected by individual opcodes, with an immediate 798 ** jumps to abort_due_to_error. */ 799 assert( rc==SQLITE_OK ); 800 801 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 802 #ifdef VDBE_PROFILE 803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 804 #endif 805 nVmStep++; 806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 808 #endif 809 810 /* Only allow tracing if SQLITE_DEBUG is defined. 811 */ 812 #ifdef SQLITE_DEBUG 813 if( db->flags & SQLITE_VdbeTrace ){ 814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 815 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 816 } 817 #endif 818 819 820 /* Check to see if we need to simulate an interrupt. This only happens 821 ** if we have a special test build. 822 */ 823 #ifdef SQLITE_TEST 824 if( sqlite3_interrupt_count>0 ){ 825 sqlite3_interrupt_count--; 826 if( sqlite3_interrupt_count==0 ){ 827 sqlite3_interrupt(db); 828 } 829 } 830 #endif 831 832 /* Sanity checking on other operands */ 833 #ifdef SQLITE_DEBUG 834 { 835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 836 if( (opProperty & OPFLG_IN1)!=0 ){ 837 assert( pOp->p1>0 ); 838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 839 assert( memIsValid(&aMem[pOp->p1]) ); 840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 842 } 843 if( (opProperty & OPFLG_IN2)!=0 ){ 844 assert( pOp->p2>0 ); 845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 846 assert( memIsValid(&aMem[pOp->p2]) ); 847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 849 } 850 if( (opProperty & OPFLG_IN3)!=0 ){ 851 assert( pOp->p3>0 ); 852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 853 assert( memIsValid(&aMem[pOp->p3]) ); 854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 856 } 857 if( (opProperty & OPFLG_OUT2)!=0 ){ 858 assert( pOp->p2>0 ); 859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 860 memAboutToChange(p, &aMem[pOp->p2]); 861 } 862 if( (opProperty & OPFLG_OUT3)!=0 ){ 863 assert( pOp->p3>0 ); 864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 865 memAboutToChange(p, &aMem[pOp->p3]); 866 } 867 } 868 #endif 869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 870 pOrigOp = pOp; 871 #endif 872 873 switch( pOp->opcode ){ 874 875 /***************************************************************************** 876 ** What follows is a massive switch statement where each case implements a 877 ** separate instruction in the virtual machine. If we follow the usual 878 ** indentation conventions, each case should be indented by 6 spaces. But 879 ** that is a lot of wasted space on the left margin. So the code within 880 ** the switch statement will break with convention and be flush-left. Another 881 ** big comment (similar to this one) will mark the point in the code where 882 ** we transition back to normal indentation. 883 ** 884 ** The formatting of each case is important. The makefile for SQLite 885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 886 ** file looking for lines that begin with "case OP_". The opcodes.h files 887 ** will be filled with #defines that give unique integer values to each 888 ** opcode and the opcodes.c file is filled with an array of strings where 889 ** each string is the symbolic name for the corresponding opcode. If the 890 ** case statement is followed by a comment of the form "/# same as ... #/" 891 ** that comment is used to determine the particular value of the opcode. 892 ** 893 ** Other keywords in the comment that follows each case are used to 894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 895 ** Keywords include: in1, in2, in3, out2, out3. See 896 ** the mkopcodeh.awk script for additional information. 897 ** 898 ** Documentation about VDBE opcodes is generated by scanning this file 899 ** for lines of that contain "Opcode:". That line and all subsequent 900 ** comment lines are used in the generation of the opcode.html documentation 901 ** file. 902 ** 903 ** SUMMARY: 904 ** 905 ** Formatting is important to scripts that scan this file. 906 ** Do not deviate from the formatting style currently in use. 907 ** 908 *****************************************************************************/ 909 910 /* Opcode: Goto * P2 * * * 911 ** 912 ** An unconditional jump to address P2. 913 ** The next instruction executed will be 914 ** the one at index P2 from the beginning of 915 ** the program. 916 ** 917 ** The P1 parameter is not actually used by this opcode. However, it 918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 919 ** that this Goto is the bottom of a loop and that the lines from P2 down 920 ** to the current line should be indented for EXPLAIN output. 921 */ 922 case OP_Goto: { /* jump */ 923 924 #ifdef SQLITE_DEBUG 925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 926 ** means we should really jump back to the preceeding OP_ReleaseReg 927 ** instruction. */ 928 if( pOp->p5 ){ 929 assert( pOp->p2 < (int)(pOp - aOp) ); 930 assert( pOp->p2 > 1 ); 931 pOp = &aOp[pOp->p2 - 2]; 932 assert( pOp[1].opcode==OP_ReleaseReg ); 933 goto check_for_interrupt; 934 } 935 #endif 936 937 jump_to_p2_and_check_for_interrupt: 938 pOp = &aOp[pOp->p2 - 1]; 939 940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 941 ** OP_VNext, or OP_SorterNext) all jump here upon 942 ** completion. Check to see if sqlite3_interrupt() has been called 943 ** or if the progress callback needs to be invoked. 944 ** 945 ** This code uses unstructured "goto" statements and does not look clean. 946 ** But that is not due to sloppy coding habits. The code is written this 947 ** way for performance, to avoid having to run the interrupt and progress 948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 949 ** faster according to "valgrind --tool=cachegrind" */ 950 check_for_interrupt: 951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 953 /* Call the progress callback if it is configured and the required number 954 ** of VDBE ops have been executed (either since this invocation of 955 ** sqlite3VdbeExec() or since last time the progress callback was called). 956 ** If the progress callback returns non-zero, exit the virtual machine with 957 ** a return code SQLITE_ABORT. 958 */ 959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 960 assert( db->nProgressOps!=0 ); 961 nProgressLimit += db->nProgressOps; 962 if( db->xProgress(db->pProgressArg) ){ 963 nProgressLimit = LARGEST_UINT64; 964 rc = SQLITE_INTERRUPT; 965 goto abort_due_to_error; 966 } 967 } 968 #endif 969 970 break; 971 } 972 973 /* Opcode: Gosub P1 P2 * * * 974 ** 975 ** Write the current address onto register P1 976 ** and then jump to address P2. 977 */ 978 case OP_Gosub: { /* jump */ 979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 980 pIn1 = &aMem[pOp->p1]; 981 assert( VdbeMemDynamic(pIn1)==0 ); 982 memAboutToChange(p, pIn1); 983 pIn1->flags = MEM_Int; 984 pIn1->u.i = (int)(pOp-aOp); 985 REGISTER_TRACE(pOp->p1, pIn1); 986 987 /* Most jump operations do a goto to this spot in order to update 988 ** the pOp pointer. */ 989 jump_to_p2: 990 pOp = &aOp[pOp->p2 - 1]; 991 break; 992 } 993 994 /* Opcode: Return P1 * * * * 995 ** 996 ** Jump to the next instruction after the address in register P1. After 997 ** the jump, register P1 becomes undefined. 998 */ 999 case OP_Return: { /* in1 */ 1000 pIn1 = &aMem[pOp->p1]; 1001 assert( pIn1->flags==MEM_Int ); 1002 pOp = &aOp[pIn1->u.i]; 1003 pIn1->flags = MEM_Undefined; 1004 break; 1005 } 1006 1007 /* Opcode: InitCoroutine P1 P2 P3 * * 1008 ** 1009 ** Set up register P1 so that it will Yield to the coroutine 1010 ** located at address P3. 1011 ** 1012 ** If P2!=0 then the coroutine implementation immediately follows 1013 ** this opcode. So jump over the coroutine implementation to 1014 ** address P2. 1015 ** 1016 ** See also: EndCoroutine 1017 */ 1018 case OP_InitCoroutine: { /* jump */ 1019 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1020 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1021 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1022 pOut = &aMem[pOp->p1]; 1023 assert( !VdbeMemDynamic(pOut) ); 1024 pOut->u.i = pOp->p3 - 1; 1025 pOut->flags = MEM_Int; 1026 if( pOp->p2 ) goto jump_to_p2; 1027 break; 1028 } 1029 1030 /* Opcode: EndCoroutine P1 * * * * 1031 ** 1032 ** The instruction at the address in register P1 is a Yield. 1033 ** Jump to the P2 parameter of that Yield. 1034 ** After the jump, register P1 becomes undefined. 1035 ** 1036 ** See also: InitCoroutine 1037 */ 1038 case OP_EndCoroutine: { /* in1 */ 1039 VdbeOp *pCaller; 1040 pIn1 = &aMem[pOp->p1]; 1041 assert( pIn1->flags==MEM_Int ); 1042 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1043 pCaller = &aOp[pIn1->u.i]; 1044 assert( pCaller->opcode==OP_Yield ); 1045 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1046 pOp = &aOp[pCaller->p2 - 1]; 1047 pIn1->flags = MEM_Undefined; 1048 break; 1049 } 1050 1051 /* Opcode: Yield P1 P2 * * * 1052 ** 1053 ** Swap the program counter with the value in register P1. This 1054 ** has the effect of yielding to a coroutine. 1055 ** 1056 ** If the coroutine that is launched by this instruction ends with 1057 ** Yield or Return then continue to the next instruction. But if 1058 ** the coroutine launched by this instruction ends with 1059 ** EndCoroutine, then jump to P2 rather than continuing with the 1060 ** next instruction. 1061 ** 1062 ** See also: InitCoroutine 1063 */ 1064 case OP_Yield: { /* in1, jump */ 1065 int pcDest; 1066 pIn1 = &aMem[pOp->p1]; 1067 assert( VdbeMemDynamic(pIn1)==0 ); 1068 pIn1->flags = MEM_Int; 1069 pcDest = (int)pIn1->u.i; 1070 pIn1->u.i = (int)(pOp - aOp); 1071 REGISTER_TRACE(pOp->p1, pIn1); 1072 pOp = &aOp[pcDest]; 1073 break; 1074 } 1075 1076 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1077 ** Synopsis: if r[P3]=null halt 1078 ** 1079 ** Check the value in register P3. If it is NULL then Halt using 1080 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1081 ** value in register P3 is not NULL, then this routine is a no-op. 1082 ** The P5 parameter should be 1. 1083 */ 1084 case OP_HaltIfNull: { /* in3 */ 1085 pIn3 = &aMem[pOp->p3]; 1086 #ifdef SQLITE_DEBUG 1087 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1088 #endif 1089 if( (pIn3->flags & MEM_Null)==0 ) break; 1090 /* Fall through into OP_Halt */ 1091 /* no break */ deliberate_fall_through 1092 } 1093 1094 /* Opcode: Halt P1 P2 * P4 P5 1095 ** 1096 ** Exit immediately. All open cursors, etc are closed 1097 ** automatically. 1098 ** 1099 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1100 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1101 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1102 ** whether or not to rollback the current transaction. Do not rollback 1103 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1104 ** then back out all changes that have occurred during this execution of the 1105 ** VDBE, but do not rollback the transaction. 1106 ** 1107 ** If P4 is not null then it is an error message string. 1108 ** 1109 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1110 ** 1111 ** 0: (no change) 1112 ** 1: NOT NULL contraint failed: P4 1113 ** 2: UNIQUE constraint failed: P4 1114 ** 3: CHECK constraint failed: P4 1115 ** 4: FOREIGN KEY constraint failed: P4 1116 ** 1117 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1118 ** omitted. 1119 ** 1120 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1121 ** every program. So a jump past the last instruction of the program 1122 ** is the same as executing Halt. 1123 */ 1124 case OP_Halt: { 1125 VdbeFrame *pFrame; 1126 int pcx; 1127 1128 pcx = (int)(pOp - aOp); 1129 #ifdef SQLITE_DEBUG 1130 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1131 #endif 1132 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1133 /* Halt the sub-program. Return control to the parent frame. */ 1134 pFrame = p->pFrame; 1135 p->pFrame = pFrame->pParent; 1136 p->nFrame--; 1137 sqlite3VdbeSetChanges(db, p->nChange); 1138 pcx = sqlite3VdbeFrameRestore(pFrame); 1139 if( pOp->p2==OE_Ignore ){ 1140 /* Instruction pcx is the OP_Program that invoked the sub-program 1141 ** currently being halted. If the p2 instruction of this OP_Halt 1142 ** instruction is set to OE_Ignore, then the sub-program is throwing 1143 ** an IGNORE exception. In this case jump to the address specified 1144 ** as the p2 of the calling OP_Program. */ 1145 pcx = p->aOp[pcx].p2-1; 1146 } 1147 aOp = p->aOp; 1148 aMem = p->aMem; 1149 pOp = &aOp[pcx]; 1150 break; 1151 } 1152 p->rc = pOp->p1; 1153 p->errorAction = (u8)pOp->p2; 1154 p->pc = pcx; 1155 assert( pOp->p5<=4 ); 1156 if( p->rc ){ 1157 if( pOp->p5 ){ 1158 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1159 "FOREIGN KEY" }; 1160 testcase( pOp->p5==1 ); 1161 testcase( pOp->p5==2 ); 1162 testcase( pOp->p5==3 ); 1163 testcase( pOp->p5==4 ); 1164 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1165 if( pOp->p4.z ){ 1166 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1167 } 1168 }else{ 1169 sqlite3VdbeError(p, "%s", pOp->p4.z); 1170 } 1171 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1172 } 1173 rc = sqlite3VdbeHalt(p); 1174 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1175 if( rc==SQLITE_BUSY ){ 1176 p->rc = SQLITE_BUSY; 1177 }else{ 1178 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1179 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1180 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1181 } 1182 goto vdbe_return; 1183 } 1184 1185 /* Opcode: Integer P1 P2 * * * 1186 ** Synopsis: r[P2]=P1 1187 ** 1188 ** The 32-bit integer value P1 is written into register P2. 1189 */ 1190 case OP_Integer: { /* out2 */ 1191 pOut = out2Prerelease(p, pOp); 1192 pOut->u.i = pOp->p1; 1193 break; 1194 } 1195 1196 /* Opcode: Int64 * P2 * P4 * 1197 ** Synopsis: r[P2]=P4 1198 ** 1199 ** P4 is a pointer to a 64-bit integer value. 1200 ** Write that value into register P2. 1201 */ 1202 case OP_Int64: { /* out2 */ 1203 pOut = out2Prerelease(p, pOp); 1204 assert( pOp->p4.pI64!=0 ); 1205 pOut->u.i = *pOp->p4.pI64; 1206 break; 1207 } 1208 1209 #ifndef SQLITE_OMIT_FLOATING_POINT 1210 /* Opcode: Real * P2 * P4 * 1211 ** Synopsis: r[P2]=P4 1212 ** 1213 ** P4 is a pointer to a 64-bit floating point value. 1214 ** Write that value into register P2. 1215 */ 1216 case OP_Real: { /* same as TK_FLOAT, out2 */ 1217 pOut = out2Prerelease(p, pOp); 1218 pOut->flags = MEM_Real; 1219 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1220 pOut->u.r = *pOp->p4.pReal; 1221 break; 1222 } 1223 #endif 1224 1225 /* Opcode: String8 * P2 * P4 * 1226 ** Synopsis: r[P2]='P4' 1227 ** 1228 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1229 ** into a String opcode before it is executed for the first time. During 1230 ** this transformation, the length of string P4 is computed and stored 1231 ** as the P1 parameter. 1232 */ 1233 case OP_String8: { /* same as TK_STRING, out2 */ 1234 assert( pOp->p4.z!=0 ); 1235 pOut = out2Prerelease(p, pOp); 1236 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1237 1238 #ifndef SQLITE_OMIT_UTF16 1239 if( encoding!=SQLITE_UTF8 ){ 1240 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1241 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1242 if( rc ) goto too_big; 1243 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1244 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1245 assert( VdbeMemDynamic(pOut)==0 ); 1246 pOut->szMalloc = 0; 1247 pOut->flags |= MEM_Static; 1248 if( pOp->p4type==P4_DYNAMIC ){ 1249 sqlite3DbFree(db, pOp->p4.z); 1250 } 1251 pOp->p4type = P4_DYNAMIC; 1252 pOp->p4.z = pOut->z; 1253 pOp->p1 = pOut->n; 1254 } 1255 #endif 1256 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1257 goto too_big; 1258 } 1259 pOp->opcode = OP_String; 1260 assert( rc==SQLITE_OK ); 1261 /* Fall through to the next case, OP_String */ 1262 /* no break */ deliberate_fall_through 1263 } 1264 1265 /* Opcode: String P1 P2 P3 P4 P5 1266 ** Synopsis: r[P2]='P4' (len=P1) 1267 ** 1268 ** The string value P4 of length P1 (bytes) is stored in register P2. 1269 ** 1270 ** If P3 is not zero and the content of register P3 is equal to P5, then 1271 ** the datatype of the register P2 is converted to BLOB. The content is 1272 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1273 ** of a string, as if it had been CAST. In other words: 1274 ** 1275 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1276 */ 1277 case OP_String: { /* out2 */ 1278 assert( pOp->p4.z!=0 ); 1279 pOut = out2Prerelease(p, pOp); 1280 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1281 pOut->z = pOp->p4.z; 1282 pOut->n = pOp->p1; 1283 pOut->enc = encoding; 1284 UPDATE_MAX_BLOBSIZE(pOut); 1285 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1286 if( pOp->p3>0 ){ 1287 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1288 pIn3 = &aMem[pOp->p3]; 1289 assert( pIn3->flags & MEM_Int ); 1290 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1291 } 1292 #endif 1293 break; 1294 } 1295 1296 /* Opcode: Null P1 P2 P3 * * 1297 ** Synopsis: r[P2..P3]=NULL 1298 ** 1299 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1300 ** NULL into register P3 and every register in between P2 and P3. If P3 1301 ** is less than P2 (typically P3 is zero) then only register P2 is 1302 ** set to NULL. 1303 ** 1304 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1305 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1306 ** OP_Ne or OP_Eq. 1307 */ 1308 case OP_Null: { /* out2 */ 1309 int cnt; 1310 u16 nullFlag; 1311 pOut = out2Prerelease(p, pOp); 1312 cnt = pOp->p3-pOp->p2; 1313 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1314 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1315 pOut->n = 0; 1316 #ifdef SQLITE_DEBUG 1317 pOut->uTemp = 0; 1318 #endif 1319 while( cnt>0 ){ 1320 pOut++; 1321 memAboutToChange(p, pOut); 1322 sqlite3VdbeMemSetNull(pOut); 1323 pOut->flags = nullFlag; 1324 pOut->n = 0; 1325 cnt--; 1326 } 1327 break; 1328 } 1329 1330 /* Opcode: SoftNull P1 * * * * 1331 ** Synopsis: r[P1]=NULL 1332 ** 1333 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1334 ** instruction, but do not free any string or blob memory associated with 1335 ** the register, so that if the value was a string or blob that was 1336 ** previously copied using OP_SCopy, the copies will continue to be valid. 1337 */ 1338 case OP_SoftNull: { 1339 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1340 pOut = &aMem[pOp->p1]; 1341 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1342 break; 1343 } 1344 1345 /* Opcode: Blob P1 P2 * P4 * 1346 ** Synopsis: r[P2]=P4 (len=P1) 1347 ** 1348 ** P4 points to a blob of data P1 bytes long. Store this 1349 ** blob in register P2. If P4 is a NULL pointer, then construct 1350 ** a zero-filled blob that is P1 bytes long in P2. 1351 */ 1352 case OP_Blob: { /* out2 */ 1353 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1354 pOut = out2Prerelease(p, pOp); 1355 if( pOp->p4.z==0 ){ 1356 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1357 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1358 }else{ 1359 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1360 } 1361 pOut->enc = encoding; 1362 UPDATE_MAX_BLOBSIZE(pOut); 1363 break; 1364 } 1365 1366 /* Opcode: Variable P1 P2 * P4 * 1367 ** Synopsis: r[P2]=parameter(P1,P4) 1368 ** 1369 ** Transfer the values of bound parameter P1 into register P2 1370 ** 1371 ** If the parameter is named, then its name appears in P4. 1372 ** The P4 value is used by sqlite3_bind_parameter_name(). 1373 */ 1374 case OP_Variable: { /* out2 */ 1375 Mem *pVar; /* Value being transferred */ 1376 1377 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1378 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1379 pVar = &p->aVar[pOp->p1 - 1]; 1380 if( sqlite3VdbeMemTooBig(pVar) ){ 1381 goto too_big; 1382 } 1383 pOut = &aMem[pOp->p2]; 1384 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1385 memcpy(pOut, pVar, MEMCELLSIZE); 1386 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1387 pOut->flags |= MEM_Static|MEM_FromBind; 1388 UPDATE_MAX_BLOBSIZE(pOut); 1389 break; 1390 } 1391 1392 /* Opcode: Move P1 P2 P3 * * 1393 ** Synopsis: r[P2@P3]=r[P1@P3] 1394 ** 1395 ** Move the P3 values in register P1..P1+P3-1 over into 1396 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1397 ** left holding a NULL. It is an error for register ranges 1398 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1399 ** for P3 to be less than 1. 1400 */ 1401 case OP_Move: { 1402 int n; /* Number of registers left to copy */ 1403 int p1; /* Register to copy from */ 1404 int p2; /* Register to copy to */ 1405 1406 n = pOp->p3; 1407 p1 = pOp->p1; 1408 p2 = pOp->p2; 1409 assert( n>0 && p1>0 && p2>0 ); 1410 assert( p1+n<=p2 || p2+n<=p1 ); 1411 1412 pIn1 = &aMem[p1]; 1413 pOut = &aMem[p2]; 1414 do{ 1415 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1416 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1417 assert( memIsValid(pIn1) ); 1418 memAboutToChange(p, pOut); 1419 sqlite3VdbeMemMove(pOut, pIn1); 1420 #ifdef SQLITE_DEBUG 1421 pIn1->pScopyFrom = 0; 1422 { int i; 1423 for(i=1; i<p->nMem; i++){ 1424 if( aMem[i].pScopyFrom==pIn1 ){ 1425 aMem[i].pScopyFrom = pOut; 1426 } 1427 } 1428 } 1429 #endif 1430 Deephemeralize(pOut); 1431 REGISTER_TRACE(p2++, pOut); 1432 pIn1++; 1433 pOut++; 1434 }while( --n ); 1435 break; 1436 } 1437 1438 /* Opcode: Copy P1 P2 P3 * * 1439 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1440 ** 1441 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1442 ** 1443 ** This instruction makes a deep copy of the value. A duplicate 1444 ** is made of any string or blob constant. See also OP_SCopy. 1445 */ 1446 case OP_Copy: { 1447 int n; 1448 1449 n = pOp->p3; 1450 pIn1 = &aMem[pOp->p1]; 1451 pOut = &aMem[pOp->p2]; 1452 assert( pOut!=pIn1 ); 1453 while( 1 ){ 1454 memAboutToChange(p, pOut); 1455 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1456 Deephemeralize(pOut); 1457 #ifdef SQLITE_DEBUG 1458 pOut->pScopyFrom = 0; 1459 #endif 1460 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1461 if( (n--)==0 ) break; 1462 pOut++; 1463 pIn1++; 1464 } 1465 break; 1466 } 1467 1468 /* Opcode: SCopy P1 P2 * * * 1469 ** Synopsis: r[P2]=r[P1] 1470 ** 1471 ** Make a shallow copy of register P1 into register P2. 1472 ** 1473 ** This instruction makes a shallow copy of the value. If the value 1474 ** is a string or blob, then the copy is only a pointer to the 1475 ** original and hence if the original changes so will the copy. 1476 ** Worse, if the original is deallocated, the copy becomes invalid. 1477 ** Thus the program must guarantee that the original will not change 1478 ** during the lifetime of the copy. Use OP_Copy to make a complete 1479 ** copy. 1480 */ 1481 case OP_SCopy: { /* out2 */ 1482 pIn1 = &aMem[pOp->p1]; 1483 pOut = &aMem[pOp->p2]; 1484 assert( pOut!=pIn1 ); 1485 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1486 #ifdef SQLITE_DEBUG 1487 pOut->pScopyFrom = pIn1; 1488 pOut->mScopyFlags = pIn1->flags; 1489 #endif 1490 break; 1491 } 1492 1493 /* Opcode: IntCopy P1 P2 * * * 1494 ** Synopsis: r[P2]=r[P1] 1495 ** 1496 ** Transfer the integer value held in register P1 into register P2. 1497 ** 1498 ** This is an optimized version of SCopy that works only for integer 1499 ** values. 1500 */ 1501 case OP_IntCopy: { /* out2 */ 1502 pIn1 = &aMem[pOp->p1]; 1503 assert( (pIn1->flags & MEM_Int)!=0 ); 1504 pOut = &aMem[pOp->p2]; 1505 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1506 break; 1507 } 1508 1509 /* Opcode: FkCheck * * * * * 1510 ** 1511 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1512 ** foreign key constraint violations. If there are no foreign key 1513 ** constraint violations, this is a no-op. 1514 ** 1515 ** FK constraint violations are also checked when the prepared statement 1516 ** exits. This opcode is used to raise foreign key constraint errors prior 1517 ** to returning results such as a row change count or the result of a 1518 ** RETURNING clause. 1519 */ 1520 case OP_FkCheck: { 1521 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1522 goto abort_due_to_error; 1523 } 1524 break; 1525 } 1526 1527 /* Opcode: ResultRow P1 P2 * * * 1528 ** Synopsis: output=r[P1@P2] 1529 ** 1530 ** The registers P1 through P1+P2-1 contain a single row of 1531 ** results. This opcode causes the sqlite3_step() call to terminate 1532 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1533 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1534 ** the result row. 1535 */ 1536 case OP_ResultRow: { 1537 Mem *pMem; 1538 int i; 1539 assert( p->nResColumn==pOp->p2 ); 1540 assert( pOp->p1>0 || CORRUPT_DB ); 1541 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1542 1543 /* Invalidate all ephemeral cursor row caches */ 1544 p->cacheCtr = (p->cacheCtr + 2)|1; 1545 1546 /* Make sure the results of the current row are \000 terminated 1547 ** and have an assigned type. The results are de-ephemeralized as 1548 ** a side effect. 1549 */ 1550 pMem = p->pResultSet = &aMem[pOp->p1]; 1551 for(i=0; i<pOp->p2; i++){ 1552 assert( memIsValid(&pMem[i]) ); 1553 Deephemeralize(&pMem[i]); 1554 assert( (pMem[i].flags & MEM_Ephem)==0 1555 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1556 sqlite3VdbeMemNulTerminate(&pMem[i]); 1557 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1558 #ifdef SQLITE_DEBUG 1559 /* The registers in the result will not be used again when the 1560 ** prepared statement restarts. This is because sqlite3_column() 1561 ** APIs might have caused type conversions of made other changes to 1562 ** the register values. Therefore, we can go ahead and break any 1563 ** OP_SCopy dependencies. */ 1564 pMem[i].pScopyFrom = 0; 1565 #endif 1566 } 1567 if( db->mallocFailed ) goto no_mem; 1568 1569 if( db->mTrace & SQLITE_TRACE_ROW ){ 1570 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1571 } 1572 1573 1574 /* Return SQLITE_ROW 1575 */ 1576 p->pc = (int)(pOp - aOp) + 1; 1577 rc = SQLITE_ROW; 1578 goto vdbe_return; 1579 } 1580 1581 /* Opcode: Concat P1 P2 P3 * * 1582 ** Synopsis: r[P3]=r[P2]+r[P1] 1583 ** 1584 ** Add the text in register P1 onto the end of the text in 1585 ** register P2 and store the result in register P3. 1586 ** If either the P1 or P2 text are NULL then store NULL in P3. 1587 ** 1588 ** P3 = P2 || P1 1589 ** 1590 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1591 ** if P3 is the same register as P2, the implementation is able 1592 ** to avoid a memcpy(). 1593 */ 1594 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1595 i64 nByte; /* Total size of the output string or blob */ 1596 u16 flags1; /* Initial flags for P1 */ 1597 u16 flags2; /* Initial flags for P2 */ 1598 1599 pIn1 = &aMem[pOp->p1]; 1600 pIn2 = &aMem[pOp->p2]; 1601 pOut = &aMem[pOp->p3]; 1602 testcase( pOut==pIn2 ); 1603 assert( pIn1!=pOut ); 1604 flags1 = pIn1->flags; 1605 testcase( flags1 & MEM_Null ); 1606 testcase( pIn2->flags & MEM_Null ); 1607 if( (flags1 | pIn2->flags) & MEM_Null ){ 1608 sqlite3VdbeMemSetNull(pOut); 1609 break; 1610 } 1611 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1612 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1613 flags1 = pIn1->flags & ~MEM_Str; 1614 }else if( (flags1 & MEM_Zero)!=0 ){ 1615 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1616 flags1 = pIn1->flags & ~MEM_Str; 1617 } 1618 flags2 = pIn2->flags; 1619 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1620 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1621 flags2 = pIn2->flags & ~MEM_Str; 1622 }else if( (flags2 & MEM_Zero)!=0 ){ 1623 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1624 flags2 = pIn2->flags & ~MEM_Str; 1625 } 1626 nByte = pIn1->n + pIn2->n; 1627 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1628 goto too_big; 1629 } 1630 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1631 goto no_mem; 1632 } 1633 MemSetTypeFlag(pOut, MEM_Str); 1634 if( pOut!=pIn2 ){ 1635 memcpy(pOut->z, pIn2->z, pIn2->n); 1636 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1637 pIn2->flags = flags2; 1638 } 1639 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1640 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1641 pIn1->flags = flags1; 1642 pOut->z[nByte]=0; 1643 pOut->z[nByte+1] = 0; 1644 pOut->z[nByte+2] = 0; 1645 pOut->flags |= MEM_Term; 1646 pOut->n = (int)nByte; 1647 pOut->enc = encoding; 1648 UPDATE_MAX_BLOBSIZE(pOut); 1649 break; 1650 } 1651 1652 /* Opcode: Add P1 P2 P3 * * 1653 ** Synopsis: r[P3]=r[P1]+r[P2] 1654 ** 1655 ** Add the value in register P1 to the value in register P2 1656 ** and store the result in register P3. 1657 ** If either input is NULL, the result is NULL. 1658 */ 1659 /* Opcode: Multiply P1 P2 P3 * * 1660 ** Synopsis: r[P3]=r[P1]*r[P2] 1661 ** 1662 ** 1663 ** Multiply the value in register P1 by the value in register P2 1664 ** and store the result in register P3. 1665 ** If either input is NULL, the result is NULL. 1666 */ 1667 /* Opcode: Subtract P1 P2 P3 * * 1668 ** Synopsis: r[P3]=r[P2]-r[P1] 1669 ** 1670 ** Subtract the value in register P1 from the value in register P2 1671 ** and store the result in register P3. 1672 ** If either input is NULL, the result is NULL. 1673 */ 1674 /* Opcode: Divide P1 P2 P3 * * 1675 ** Synopsis: r[P3]=r[P2]/r[P1] 1676 ** 1677 ** Divide the value in register P1 by the value in register P2 1678 ** and store the result in register P3 (P3=P2/P1). If the value in 1679 ** register P1 is zero, then the result is NULL. If either input is 1680 ** NULL, the result is NULL. 1681 */ 1682 /* Opcode: Remainder P1 P2 P3 * * 1683 ** Synopsis: r[P3]=r[P2]%r[P1] 1684 ** 1685 ** Compute the remainder after integer register P2 is divided by 1686 ** register P1 and store the result in register P3. 1687 ** If the value in register P1 is zero the result is NULL. 1688 ** If either operand is NULL, the result is NULL. 1689 */ 1690 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1691 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1692 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1693 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1694 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1695 u16 flags; /* Combined MEM_* flags from both inputs */ 1696 u16 type1; /* Numeric type of left operand */ 1697 u16 type2; /* Numeric type of right operand */ 1698 i64 iA; /* Integer value of left operand */ 1699 i64 iB; /* Integer value of right operand */ 1700 double rA; /* Real value of left operand */ 1701 double rB; /* Real value of right operand */ 1702 1703 pIn1 = &aMem[pOp->p1]; 1704 type1 = numericType(pIn1); 1705 pIn2 = &aMem[pOp->p2]; 1706 type2 = numericType(pIn2); 1707 pOut = &aMem[pOp->p3]; 1708 flags = pIn1->flags | pIn2->flags; 1709 if( (type1 & type2 & MEM_Int)!=0 ){ 1710 iA = pIn1->u.i; 1711 iB = pIn2->u.i; 1712 switch( pOp->opcode ){ 1713 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1714 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1715 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1716 case OP_Divide: { 1717 if( iA==0 ) goto arithmetic_result_is_null; 1718 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1719 iB /= iA; 1720 break; 1721 } 1722 default: { 1723 if( iA==0 ) goto arithmetic_result_is_null; 1724 if( iA==-1 ) iA = 1; 1725 iB %= iA; 1726 break; 1727 } 1728 } 1729 pOut->u.i = iB; 1730 MemSetTypeFlag(pOut, MEM_Int); 1731 }else if( (flags & MEM_Null)!=0 ){ 1732 goto arithmetic_result_is_null; 1733 }else{ 1734 fp_math: 1735 rA = sqlite3VdbeRealValue(pIn1); 1736 rB = sqlite3VdbeRealValue(pIn2); 1737 switch( pOp->opcode ){ 1738 case OP_Add: rB += rA; break; 1739 case OP_Subtract: rB -= rA; break; 1740 case OP_Multiply: rB *= rA; break; 1741 case OP_Divide: { 1742 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1743 if( rA==(double)0 ) goto arithmetic_result_is_null; 1744 rB /= rA; 1745 break; 1746 } 1747 default: { 1748 iA = sqlite3VdbeIntValue(pIn1); 1749 iB = sqlite3VdbeIntValue(pIn2); 1750 if( iA==0 ) goto arithmetic_result_is_null; 1751 if( iA==-1 ) iA = 1; 1752 rB = (double)(iB % iA); 1753 break; 1754 } 1755 } 1756 #ifdef SQLITE_OMIT_FLOATING_POINT 1757 pOut->u.i = rB; 1758 MemSetTypeFlag(pOut, MEM_Int); 1759 #else 1760 if( sqlite3IsNaN(rB) ){ 1761 goto arithmetic_result_is_null; 1762 } 1763 pOut->u.r = rB; 1764 MemSetTypeFlag(pOut, MEM_Real); 1765 #endif 1766 } 1767 break; 1768 1769 arithmetic_result_is_null: 1770 sqlite3VdbeMemSetNull(pOut); 1771 break; 1772 } 1773 1774 /* Opcode: CollSeq P1 * * P4 1775 ** 1776 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1777 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1778 ** be returned. This is used by the built-in min(), max() and nullif() 1779 ** functions. 1780 ** 1781 ** If P1 is not zero, then it is a register that a subsequent min() or 1782 ** max() aggregate will set to 1 if the current row is not the minimum or 1783 ** maximum. The P1 register is initialized to 0 by this instruction. 1784 ** 1785 ** The interface used by the implementation of the aforementioned functions 1786 ** to retrieve the collation sequence set by this opcode is not available 1787 ** publicly. Only built-in functions have access to this feature. 1788 */ 1789 case OP_CollSeq: { 1790 assert( pOp->p4type==P4_COLLSEQ ); 1791 if( pOp->p1 ){ 1792 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1793 } 1794 break; 1795 } 1796 1797 /* Opcode: BitAnd P1 P2 P3 * * 1798 ** Synopsis: r[P3]=r[P1]&r[P2] 1799 ** 1800 ** Take the bit-wise AND of the values in register P1 and P2 and 1801 ** store the result in register P3. 1802 ** If either input is NULL, the result is NULL. 1803 */ 1804 /* Opcode: BitOr P1 P2 P3 * * 1805 ** Synopsis: r[P3]=r[P1]|r[P2] 1806 ** 1807 ** Take the bit-wise OR of the values in register P1 and P2 and 1808 ** store the result in register P3. 1809 ** If either input is NULL, the result is NULL. 1810 */ 1811 /* Opcode: ShiftLeft P1 P2 P3 * * 1812 ** Synopsis: r[P3]=r[P2]<<r[P1] 1813 ** 1814 ** Shift the integer value in register P2 to the left by the 1815 ** number of bits specified by the integer in register P1. 1816 ** Store the result in register P3. 1817 ** If either input is NULL, the result is NULL. 1818 */ 1819 /* Opcode: ShiftRight P1 P2 P3 * * 1820 ** Synopsis: r[P3]=r[P2]>>r[P1] 1821 ** 1822 ** Shift the integer value in register P2 to the right by the 1823 ** number of bits specified by the integer in register P1. 1824 ** Store the result in register P3. 1825 ** If either input is NULL, the result is NULL. 1826 */ 1827 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1828 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1829 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1830 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1831 i64 iA; 1832 u64 uA; 1833 i64 iB; 1834 u8 op; 1835 1836 pIn1 = &aMem[pOp->p1]; 1837 pIn2 = &aMem[pOp->p2]; 1838 pOut = &aMem[pOp->p3]; 1839 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1840 sqlite3VdbeMemSetNull(pOut); 1841 break; 1842 } 1843 iA = sqlite3VdbeIntValue(pIn2); 1844 iB = sqlite3VdbeIntValue(pIn1); 1845 op = pOp->opcode; 1846 if( op==OP_BitAnd ){ 1847 iA &= iB; 1848 }else if( op==OP_BitOr ){ 1849 iA |= iB; 1850 }else if( iB!=0 ){ 1851 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1852 1853 /* If shifting by a negative amount, shift in the other direction */ 1854 if( iB<0 ){ 1855 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1856 op = 2*OP_ShiftLeft + 1 - op; 1857 iB = iB>(-64) ? -iB : 64; 1858 } 1859 1860 if( iB>=64 ){ 1861 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1862 }else{ 1863 memcpy(&uA, &iA, sizeof(uA)); 1864 if( op==OP_ShiftLeft ){ 1865 uA <<= iB; 1866 }else{ 1867 uA >>= iB; 1868 /* Sign-extend on a right shift of a negative number */ 1869 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1870 } 1871 memcpy(&iA, &uA, sizeof(iA)); 1872 } 1873 } 1874 pOut->u.i = iA; 1875 MemSetTypeFlag(pOut, MEM_Int); 1876 break; 1877 } 1878 1879 /* Opcode: AddImm P1 P2 * * * 1880 ** Synopsis: r[P1]=r[P1]+P2 1881 ** 1882 ** Add the constant P2 to the value in register P1. 1883 ** The result is always an integer. 1884 ** 1885 ** To force any register to be an integer, just add 0. 1886 */ 1887 case OP_AddImm: { /* in1 */ 1888 pIn1 = &aMem[pOp->p1]; 1889 memAboutToChange(p, pIn1); 1890 sqlite3VdbeMemIntegerify(pIn1); 1891 pIn1->u.i += pOp->p2; 1892 break; 1893 } 1894 1895 /* Opcode: MustBeInt P1 P2 * * * 1896 ** 1897 ** Force the value in register P1 to be an integer. If the value 1898 ** in P1 is not an integer and cannot be converted into an integer 1899 ** without data loss, then jump immediately to P2, or if P2==0 1900 ** raise an SQLITE_MISMATCH exception. 1901 */ 1902 case OP_MustBeInt: { /* jump, in1 */ 1903 pIn1 = &aMem[pOp->p1]; 1904 if( (pIn1->flags & MEM_Int)==0 ){ 1905 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1906 if( (pIn1->flags & MEM_Int)==0 ){ 1907 VdbeBranchTaken(1, 2); 1908 if( pOp->p2==0 ){ 1909 rc = SQLITE_MISMATCH; 1910 goto abort_due_to_error; 1911 }else{ 1912 goto jump_to_p2; 1913 } 1914 } 1915 } 1916 VdbeBranchTaken(0, 2); 1917 MemSetTypeFlag(pIn1, MEM_Int); 1918 break; 1919 } 1920 1921 #ifndef SQLITE_OMIT_FLOATING_POINT 1922 /* Opcode: RealAffinity P1 * * * * 1923 ** 1924 ** If register P1 holds an integer convert it to a real value. 1925 ** 1926 ** This opcode is used when extracting information from a column that 1927 ** has REAL affinity. Such column values may still be stored as 1928 ** integers, for space efficiency, but after extraction we want them 1929 ** to have only a real value. 1930 */ 1931 case OP_RealAffinity: { /* in1 */ 1932 pIn1 = &aMem[pOp->p1]; 1933 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1934 testcase( pIn1->flags & MEM_Int ); 1935 testcase( pIn1->flags & MEM_IntReal ); 1936 sqlite3VdbeMemRealify(pIn1); 1937 REGISTER_TRACE(pOp->p1, pIn1); 1938 } 1939 break; 1940 } 1941 #endif 1942 1943 #ifndef SQLITE_OMIT_CAST 1944 /* Opcode: Cast P1 P2 * * * 1945 ** Synopsis: affinity(r[P1]) 1946 ** 1947 ** Force the value in register P1 to be the type defined by P2. 1948 ** 1949 ** <ul> 1950 ** <li> P2=='A' → BLOB 1951 ** <li> P2=='B' → TEXT 1952 ** <li> P2=='C' → NUMERIC 1953 ** <li> P2=='D' → INTEGER 1954 ** <li> P2=='E' → REAL 1955 ** </ul> 1956 ** 1957 ** A NULL value is not changed by this routine. It remains NULL. 1958 */ 1959 case OP_Cast: { /* in1 */ 1960 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1961 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1962 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1963 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1964 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1965 testcase( pOp->p2==SQLITE_AFF_REAL ); 1966 pIn1 = &aMem[pOp->p1]; 1967 memAboutToChange(p, pIn1); 1968 rc = ExpandBlob(pIn1); 1969 if( rc ) goto abort_due_to_error; 1970 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1971 if( rc ) goto abort_due_to_error; 1972 UPDATE_MAX_BLOBSIZE(pIn1); 1973 REGISTER_TRACE(pOp->p1, pIn1); 1974 break; 1975 } 1976 #endif /* SQLITE_OMIT_CAST */ 1977 1978 /* Opcode: Eq P1 P2 P3 P4 P5 1979 ** Synopsis: IF r[P3]==r[P1] 1980 ** 1981 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1982 ** jump to address P2. 1983 ** 1984 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1985 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1986 ** to coerce both inputs according to this affinity before the 1987 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1988 ** affinity is used. Note that the affinity conversions are stored 1989 ** back into the input registers P1 and P3. So this opcode can cause 1990 ** persistent changes to registers P1 and P3. 1991 ** 1992 ** Once any conversions have taken place, and neither value is NULL, 1993 ** the values are compared. If both values are blobs then memcmp() is 1994 ** used to determine the results of the comparison. If both values 1995 ** are text, then the appropriate collating function specified in 1996 ** P4 is used to do the comparison. If P4 is not specified then 1997 ** memcmp() is used to compare text string. If both values are 1998 ** numeric, then a numeric comparison is used. If the two values 1999 ** are of different types, then numbers are considered less than 2000 ** strings and strings are considered less than blobs. 2001 ** 2002 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2003 ** true or false and is never NULL. If both operands are NULL then the result 2004 ** of comparison is true. If either operand is NULL then the result is false. 2005 ** If neither operand is NULL the result is the same as it would be if 2006 ** the SQLITE_NULLEQ flag were omitted from P5. 2007 ** 2008 ** This opcode saves the result of comparison for use by the new 2009 ** OP_Jump opcode. 2010 */ 2011 /* Opcode: Ne P1 P2 P3 P4 P5 2012 ** Synopsis: IF r[P3]!=r[P1] 2013 ** 2014 ** This works just like the Eq opcode except that the jump is taken if 2015 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2016 ** additional information. 2017 */ 2018 /* Opcode: Lt P1 P2 P3 P4 P5 2019 ** Synopsis: IF r[P3]<r[P1] 2020 ** 2021 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2022 ** jump to address P2. 2023 ** 2024 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2025 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2026 ** bit is clear then fall through if either operand is NULL. 2027 ** 2028 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2029 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2030 ** to coerce both inputs according to this affinity before the 2031 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2032 ** affinity is used. Note that the affinity conversions are stored 2033 ** back into the input registers P1 and P3. So this opcode can cause 2034 ** persistent changes to registers P1 and P3. 2035 ** 2036 ** Once any conversions have taken place, and neither value is NULL, 2037 ** the values are compared. If both values are blobs then memcmp() is 2038 ** used to determine the results of the comparison. If both values 2039 ** are text, then the appropriate collating function specified in 2040 ** P4 is used to do the comparison. If P4 is not specified then 2041 ** memcmp() is used to compare text string. If both values are 2042 ** numeric, then a numeric comparison is used. If the two values 2043 ** are of different types, then numbers are considered less than 2044 ** strings and strings are considered less than blobs. 2045 ** 2046 ** This opcode saves the result of comparison for use by the new 2047 ** OP_Jump opcode. 2048 */ 2049 /* Opcode: Le P1 P2 P3 P4 P5 2050 ** Synopsis: IF r[P3]<=r[P1] 2051 ** 2052 ** This works just like the Lt opcode except that the jump is taken if 2053 ** the content of register P3 is less than or equal to the content of 2054 ** register P1. See the Lt opcode for additional information. 2055 */ 2056 /* Opcode: Gt P1 P2 P3 P4 P5 2057 ** Synopsis: IF r[P3]>r[P1] 2058 ** 2059 ** This works just like the Lt opcode except that the jump is taken if 2060 ** the content of register P3 is greater than the content of 2061 ** register P1. See the Lt opcode for additional information. 2062 */ 2063 /* Opcode: Ge P1 P2 P3 P4 P5 2064 ** Synopsis: IF r[P3]>=r[P1] 2065 ** 2066 ** This works just like the Lt opcode except that the jump is taken if 2067 ** the content of register P3 is greater than or equal to the content of 2068 ** register P1. See the Lt opcode for additional information. 2069 */ 2070 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2071 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2072 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2073 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2074 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2075 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2076 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2077 char affinity; /* Affinity to use for comparison */ 2078 u16 flags1; /* Copy of initial value of pIn1->flags */ 2079 u16 flags3; /* Copy of initial value of pIn3->flags */ 2080 2081 pIn1 = &aMem[pOp->p1]; 2082 pIn3 = &aMem[pOp->p3]; 2083 flags1 = pIn1->flags; 2084 flags3 = pIn3->flags; 2085 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2086 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2087 /* Common case of comparison of two integers */ 2088 if( pIn3->u.i > pIn1->u.i ){ 2089 iCompare = +1; 2090 if( sqlite3aGTb[pOp->opcode] ){ 2091 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2092 goto jump_to_p2; 2093 } 2094 }else if( pIn3->u.i < pIn1->u.i ){ 2095 iCompare = -1; 2096 if( sqlite3aLTb[pOp->opcode] ){ 2097 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2098 goto jump_to_p2; 2099 } 2100 }else{ 2101 iCompare = 0; 2102 if( sqlite3aEQb[pOp->opcode] ){ 2103 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2104 goto jump_to_p2; 2105 } 2106 } 2107 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2108 break; 2109 } 2110 if( (flags1 | flags3)&MEM_Null ){ 2111 /* One or both operands are NULL */ 2112 if( pOp->p5 & SQLITE_NULLEQ ){ 2113 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2114 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2115 ** or not both operands are null. 2116 */ 2117 assert( (flags1 & MEM_Cleared)==0 ); 2118 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2119 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2120 if( (flags1&flags3&MEM_Null)!=0 2121 && (flags3&MEM_Cleared)==0 2122 ){ 2123 res = 0; /* Operands are equal */ 2124 }else{ 2125 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2126 } 2127 }else{ 2128 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2129 ** then the result is always NULL. 2130 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2131 */ 2132 iCompare = 1; /* Operands are not equal */ 2133 VdbeBranchTaken(2,3); 2134 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2135 goto jump_to_p2; 2136 } 2137 break; 2138 } 2139 }else{ 2140 /* Neither operand is NULL and we couldn't do the special high-speed 2141 ** integer comparison case. So do a general-case comparison. */ 2142 affinity = pOp->p5 & SQLITE_AFF_MASK; 2143 if( affinity>=SQLITE_AFF_NUMERIC ){ 2144 if( (flags1 | flags3)&MEM_Str ){ 2145 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2146 applyNumericAffinity(pIn1,0); 2147 testcase( flags3==pIn3->flags ); 2148 flags3 = pIn3->flags; 2149 } 2150 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2151 applyNumericAffinity(pIn3,0); 2152 } 2153 } 2154 }else if( affinity==SQLITE_AFF_TEXT ){ 2155 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2156 testcase( pIn1->flags & MEM_Int ); 2157 testcase( pIn1->flags & MEM_Real ); 2158 testcase( pIn1->flags & MEM_IntReal ); 2159 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2160 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2161 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2162 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2163 } 2164 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2165 testcase( pIn3->flags & MEM_Int ); 2166 testcase( pIn3->flags & MEM_Real ); 2167 testcase( pIn3->flags & MEM_IntReal ); 2168 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2169 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2170 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2171 } 2172 } 2173 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2174 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2175 } 2176 2177 /* At this point, res is negative, zero, or positive if reg[P1] is 2178 ** less than, equal to, or greater than reg[P3], respectively. Compute 2179 ** the answer to this operator in res2, depending on what the comparison 2180 ** operator actually is. The next block of code depends on the fact 2181 ** that the 6 comparison operators are consecutive integers in this 2182 ** order: NE, EQ, GT, LE, LT, GE */ 2183 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2184 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2185 if( res<0 ){ 2186 res2 = sqlite3aLTb[pOp->opcode]; 2187 }else if( res==0 ){ 2188 res2 = sqlite3aEQb[pOp->opcode]; 2189 }else{ 2190 res2 = sqlite3aGTb[pOp->opcode]; 2191 } 2192 iCompare = res; 2193 2194 /* Undo any changes made by applyAffinity() to the input registers. */ 2195 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2196 pIn3->flags = flags3; 2197 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2198 pIn1->flags = flags1; 2199 2200 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2201 if( res2 ){ 2202 goto jump_to_p2; 2203 } 2204 break; 2205 } 2206 2207 /* Opcode: ElseEq * P2 * * * 2208 ** 2209 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2210 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2211 ** opcodes are allowed to occur between this instruction and the previous 2212 ** OP_Lt or OP_Gt. 2213 ** 2214 ** If result of an OP_Eq comparison on the same two operands as the 2215 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2216 ** If the result of an OP_Eq comparison on the two previous 2217 ** operands would have been false or NULL, then fall through. 2218 */ 2219 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2220 2221 #ifdef SQLITE_DEBUG 2222 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2223 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2224 int iAddr; 2225 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2226 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2227 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2228 break; 2229 } 2230 #endif /* SQLITE_DEBUG */ 2231 VdbeBranchTaken(iCompare==0, 2); 2232 if( iCompare==0 ) goto jump_to_p2; 2233 break; 2234 } 2235 2236 2237 /* Opcode: Permutation * * * P4 * 2238 ** 2239 ** Set the permutation used by the OP_Compare operator in the next 2240 ** instruction. The permutation is stored in the P4 operand. 2241 ** 2242 ** The permutation is only valid until the next OP_Compare that has 2243 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2244 ** occur immediately prior to the OP_Compare. 2245 ** 2246 ** The first integer in the P4 integer array is the length of the array 2247 ** and does not become part of the permutation. 2248 */ 2249 case OP_Permutation: { 2250 assert( pOp->p4type==P4_INTARRAY ); 2251 assert( pOp->p4.ai ); 2252 assert( pOp[1].opcode==OP_Compare ); 2253 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2254 break; 2255 } 2256 2257 /* Opcode: Compare P1 P2 P3 P4 P5 2258 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2259 ** 2260 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2261 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2262 ** the comparison for use by the next OP_Jump instruct. 2263 ** 2264 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2265 ** determined by the most recent OP_Permutation operator. If the 2266 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2267 ** order. 2268 ** 2269 ** P4 is a KeyInfo structure that defines collating sequences and sort 2270 ** orders for the comparison. The permutation applies to registers 2271 ** only. The KeyInfo elements are used sequentially. 2272 ** 2273 ** The comparison is a sort comparison, so NULLs compare equal, 2274 ** NULLs are less than numbers, numbers are less than strings, 2275 ** and strings are less than blobs. 2276 */ 2277 case OP_Compare: { 2278 int n; 2279 int i; 2280 int p1; 2281 int p2; 2282 const KeyInfo *pKeyInfo; 2283 u32 idx; 2284 CollSeq *pColl; /* Collating sequence to use on this term */ 2285 int bRev; /* True for DESCENDING sort order */ 2286 u32 *aPermute; /* The permutation */ 2287 2288 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2289 aPermute = 0; 2290 }else{ 2291 assert( pOp>aOp ); 2292 assert( pOp[-1].opcode==OP_Permutation ); 2293 assert( pOp[-1].p4type==P4_INTARRAY ); 2294 aPermute = pOp[-1].p4.ai + 1; 2295 assert( aPermute!=0 ); 2296 } 2297 n = pOp->p3; 2298 pKeyInfo = pOp->p4.pKeyInfo; 2299 assert( n>0 ); 2300 assert( pKeyInfo!=0 ); 2301 p1 = pOp->p1; 2302 p2 = pOp->p2; 2303 #ifdef SQLITE_DEBUG 2304 if( aPermute ){ 2305 int k, mx = 0; 2306 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2307 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2308 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2309 }else{ 2310 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2311 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2312 } 2313 #endif /* SQLITE_DEBUG */ 2314 for(i=0; i<n; i++){ 2315 idx = aPermute ? aPermute[i] : (u32)i; 2316 assert( memIsValid(&aMem[p1+idx]) ); 2317 assert( memIsValid(&aMem[p2+idx]) ); 2318 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2319 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2320 assert( i<pKeyInfo->nKeyField ); 2321 pColl = pKeyInfo->aColl[i]; 2322 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2323 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2324 if( iCompare ){ 2325 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2326 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2327 ){ 2328 iCompare = -iCompare; 2329 } 2330 if( bRev ) iCompare = -iCompare; 2331 break; 2332 } 2333 } 2334 break; 2335 } 2336 2337 /* Opcode: Jump P1 P2 P3 * * 2338 ** 2339 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2340 ** in the most recent OP_Compare instruction the P1 vector was less than 2341 ** equal to, or greater than the P2 vector, respectively. 2342 */ 2343 case OP_Jump: { /* jump */ 2344 if( iCompare<0 ){ 2345 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2346 }else if( iCompare==0 ){ 2347 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2348 }else{ 2349 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2350 } 2351 break; 2352 } 2353 2354 /* Opcode: And P1 P2 P3 * * 2355 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2356 ** 2357 ** Take the logical AND of the values in registers P1 and P2 and 2358 ** write the result into register P3. 2359 ** 2360 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2361 ** the other input is NULL. A NULL and true or two NULLs give 2362 ** a NULL output. 2363 */ 2364 /* Opcode: Or P1 P2 P3 * * 2365 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2366 ** 2367 ** Take the logical OR of the values in register P1 and P2 and 2368 ** store the answer in register P3. 2369 ** 2370 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2371 ** even if the other input is NULL. A NULL and false or two NULLs 2372 ** give a NULL output. 2373 */ 2374 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2375 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2376 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2377 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2378 2379 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2380 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2381 if( pOp->opcode==OP_And ){ 2382 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2383 v1 = and_logic[v1*3+v2]; 2384 }else{ 2385 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2386 v1 = or_logic[v1*3+v2]; 2387 } 2388 pOut = &aMem[pOp->p3]; 2389 if( v1==2 ){ 2390 MemSetTypeFlag(pOut, MEM_Null); 2391 }else{ 2392 pOut->u.i = v1; 2393 MemSetTypeFlag(pOut, MEM_Int); 2394 } 2395 break; 2396 } 2397 2398 /* Opcode: IsTrue P1 P2 P3 P4 * 2399 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2400 ** 2401 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2402 ** IS NOT FALSE operators. 2403 ** 2404 ** Interpret the value in register P1 as a boolean value. Store that 2405 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2406 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2407 ** is 1. 2408 ** 2409 ** The logic is summarized like this: 2410 ** 2411 ** <ul> 2412 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2413 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2414 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2415 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2416 ** </ul> 2417 */ 2418 case OP_IsTrue: { /* in1, out2 */ 2419 assert( pOp->p4type==P4_INT32 ); 2420 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2421 assert( pOp->p3==0 || pOp->p3==1 ); 2422 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2423 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2424 break; 2425 } 2426 2427 /* Opcode: Not P1 P2 * * * 2428 ** Synopsis: r[P2]= !r[P1] 2429 ** 2430 ** Interpret the value in register P1 as a boolean value. Store the 2431 ** boolean complement in register P2. If the value in register P1 is 2432 ** NULL, then a NULL is stored in P2. 2433 */ 2434 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2435 pIn1 = &aMem[pOp->p1]; 2436 pOut = &aMem[pOp->p2]; 2437 if( (pIn1->flags & MEM_Null)==0 ){ 2438 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2439 }else{ 2440 sqlite3VdbeMemSetNull(pOut); 2441 } 2442 break; 2443 } 2444 2445 /* Opcode: BitNot P1 P2 * * * 2446 ** Synopsis: r[P2]= ~r[P1] 2447 ** 2448 ** Interpret the content of register P1 as an integer. Store the 2449 ** ones-complement of the P1 value into register P2. If P1 holds 2450 ** a NULL then store a NULL in P2. 2451 */ 2452 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2453 pIn1 = &aMem[pOp->p1]; 2454 pOut = &aMem[pOp->p2]; 2455 sqlite3VdbeMemSetNull(pOut); 2456 if( (pIn1->flags & MEM_Null)==0 ){ 2457 pOut->flags = MEM_Int; 2458 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2459 } 2460 break; 2461 } 2462 2463 /* Opcode: Once P1 P2 * * * 2464 ** 2465 ** Fall through to the next instruction the first time this opcode is 2466 ** encountered on each invocation of the byte-code program. Jump to P2 2467 ** on the second and all subsequent encounters during the same invocation. 2468 ** 2469 ** Top-level programs determine first invocation by comparing the P1 2470 ** operand against the P1 operand on the OP_Init opcode at the beginning 2471 ** of the program. If the P1 values differ, then fall through and make 2472 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2473 ** the same then take the jump. 2474 ** 2475 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2476 ** whether or not the jump should be taken. The bitmask is necessary 2477 ** because the self-altering code trick does not work for recursive 2478 ** triggers. 2479 */ 2480 case OP_Once: { /* jump */ 2481 u32 iAddr; /* Address of this instruction */ 2482 assert( p->aOp[0].opcode==OP_Init ); 2483 if( p->pFrame ){ 2484 iAddr = (int)(pOp - p->aOp); 2485 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2486 VdbeBranchTaken(1, 2); 2487 goto jump_to_p2; 2488 } 2489 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2490 }else{ 2491 if( p->aOp[0].p1==pOp->p1 ){ 2492 VdbeBranchTaken(1, 2); 2493 goto jump_to_p2; 2494 } 2495 } 2496 VdbeBranchTaken(0, 2); 2497 pOp->p1 = p->aOp[0].p1; 2498 break; 2499 } 2500 2501 /* Opcode: If P1 P2 P3 * * 2502 ** 2503 ** Jump to P2 if the value in register P1 is true. The value 2504 ** is considered true if it is numeric and non-zero. If the value 2505 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2506 */ 2507 case OP_If: { /* jump, in1 */ 2508 int c; 2509 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2510 VdbeBranchTaken(c!=0, 2); 2511 if( c ) goto jump_to_p2; 2512 break; 2513 } 2514 2515 /* Opcode: IfNot P1 P2 P3 * * 2516 ** 2517 ** Jump to P2 if the value in register P1 is False. The value 2518 ** is considered false if it has a numeric value of zero. If the value 2519 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2520 */ 2521 case OP_IfNot: { /* jump, in1 */ 2522 int c; 2523 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2524 VdbeBranchTaken(c!=0, 2); 2525 if( c ) goto jump_to_p2; 2526 break; 2527 } 2528 2529 /* Opcode: IsNull P1 P2 * * * 2530 ** Synopsis: if r[P1]==NULL goto P2 2531 ** 2532 ** Jump to P2 if the value in register P1 is NULL. 2533 */ 2534 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2535 pIn1 = &aMem[pOp->p1]; 2536 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2537 if( (pIn1->flags & MEM_Null)!=0 ){ 2538 goto jump_to_p2; 2539 } 2540 break; 2541 } 2542 2543 /* Opcode: IsNullOrType P1 P2 P3 * * 2544 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2545 ** 2546 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2547 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2548 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2549 */ 2550 case OP_IsNullOrType: { /* jump, in1 */ 2551 int doTheJump; 2552 pIn1 = &aMem[pOp->p1]; 2553 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2554 VdbeBranchTaken( doTheJump, 2); 2555 if( doTheJump ) goto jump_to_p2; 2556 break; 2557 } 2558 2559 /* Opcode: ZeroOrNull P1 P2 P3 * * 2560 ** Synopsis: r[P2] = 0 OR NULL 2561 ** 2562 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2563 ** register P2. If either registers P1 or P3 are NULL then put 2564 ** a NULL in register P2. 2565 */ 2566 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2567 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2568 || (aMem[pOp->p3].flags & MEM_Null)!=0 2569 ){ 2570 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2571 }else{ 2572 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2573 } 2574 break; 2575 } 2576 2577 /* Opcode: NotNull P1 P2 * * * 2578 ** Synopsis: if r[P1]!=NULL goto P2 2579 ** 2580 ** Jump to P2 if the value in register P1 is not NULL. 2581 */ 2582 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2583 pIn1 = &aMem[pOp->p1]; 2584 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2585 if( (pIn1->flags & MEM_Null)==0 ){ 2586 goto jump_to_p2; 2587 } 2588 break; 2589 } 2590 2591 /* Opcode: IfNullRow P1 P2 P3 * * 2592 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2593 ** 2594 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2595 ** If it is, then set register P3 to NULL and jump immediately to P2. 2596 ** If P1 is not on a NULL row, then fall through without making any 2597 ** changes. 2598 */ 2599 case OP_IfNullRow: { /* jump */ 2600 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2601 assert( p->apCsr[pOp->p1]!=0 ); 2602 if( p->apCsr[pOp->p1]->nullRow ){ 2603 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2604 goto jump_to_p2; 2605 } 2606 break; 2607 } 2608 2609 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2610 /* Opcode: Offset P1 P2 P3 * * 2611 ** Synopsis: r[P3] = sqlite_offset(P1) 2612 ** 2613 ** Store in register r[P3] the byte offset into the database file that is the 2614 ** start of the payload for the record at which that cursor P1 is currently 2615 ** pointing. 2616 ** 2617 ** P2 is the column number for the argument to the sqlite_offset() function. 2618 ** This opcode does not use P2 itself, but the P2 value is used by the 2619 ** code generator. The P1, P2, and P3 operands to this opcode are the 2620 ** same as for OP_Column. 2621 ** 2622 ** This opcode is only available if SQLite is compiled with the 2623 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2624 */ 2625 case OP_Offset: { /* out3 */ 2626 VdbeCursor *pC; /* The VDBE cursor */ 2627 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2628 pC = p->apCsr[pOp->p1]; 2629 pOut = &p->aMem[pOp->p3]; 2630 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2631 sqlite3VdbeMemSetNull(pOut); 2632 }else{ 2633 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2634 } 2635 break; 2636 } 2637 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2638 2639 /* Opcode: Column P1 P2 P3 P4 P5 2640 ** Synopsis: r[P3]=PX 2641 ** 2642 ** Interpret the data that cursor P1 points to as a structure built using 2643 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2644 ** information about the format of the data.) Extract the P2-th column 2645 ** from this record. If there are less that (P2+1) 2646 ** values in the record, extract a NULL. 2647 ** 2648 ** The value extracted is stored in register P3. 2649 ** 2650 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2651 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2652 ** the result. 2653 ** 2654 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2655 ** the result is guaranteed to only be used as the argument of a length() 2656 ** or typeof() function, respectively. The loading of large blobs can be 2657 ** skipped for length() and all content loading can be skipped for typeof(). 2658 */ 2659 case OP_Column: { 2660 u32 p2; /* column number to retrieve */ 2661 VdbeCursor *pC; /* The VDBE cursor */ 2662 BtCursor *pCrsr; /* The BTree cursor */ 2663 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2664 int len; /* The length of the serialized data for the column */ 2665 int i; /* Loop counter */ 2666 Mem *pDest; /* Where to write the extracted value */ 2667 Mem sMem; /* For storing the record being decoded */ 2668 const u8 *zData; /* Part of the record being decoded */ 2669 const u8 *zHdr; /* Next unparsed byte of the header */ 2670 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2671 u64 offset64; /* 64-bit offset */ 2672 u32 t; /* A type code from the record header */ 2673 Mem *pReg; /* PseudoTable input register */ 2674 2675 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2676 pC = p->apCsr[pOp->p1]; 2677 assert( pC!=0 ); 2678 p2 = (u32)pOp->p2; 2679 2680 /* If the cursor cache is stale (meaning it is not currently point at 2681 ** the correct row) then bring it up-to-date by doing the necessary 2682 ** B-Tree seek. */ 2683 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2684 if( rc ) goto abort_due_to_error; 2685 2686 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2687 pDest = &aMem[pOp->p3]; 2688 memAboutToChange(p, pDest); 2689 assert( pC!=0 ); 2690 assert( p2<(u32)pC->nField ); 2691 aOffset = pC->aOffset; 2692 assert( aOffset==pC->aType+pC->nField ); 2693 assert( pC->eCurType!=CURTYPE_VTAB ); 2694 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2695 assert( pC->eCurType!=CURTYPE_SORTER ); 2696 2697 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2698 if( pC->nullRow ){ 2699 if( pC->eCurType==CURTYPE_PSEUDO ){ 2700 /* For the special case of as pseudo-cursor, the seekResult field 2701 ** identifies the register that holds the record */ 2702 assert( pC->seekResult>0 ); 2703 pReg = &aMem[pC->seekResult]; 2704 assert( pReg->flags & MEM_Blob ); 2705 assert( memIsValid(pReg) ); 2706 pC->payloadSize = pC->szRow = pReg->n; 2707 pC->aRow = (u8*)pReg->z; 2708 }else{ 2709 sqlite3VdbeMemSetNull(pDest); 2710 goto op_column_out; 2711 } 2712 }else{ 2713 pCrsr = pC->uc.pCursor; 2714 assert( pC->eCurType==CURTYPE_BTREE ); 2715 assert( pCrsr ); 2716 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2717 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2718 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2719 assert( pC->szRow<=pC->payloadSize ); 2720 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2721 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2722 goto too_big; 2723 } 2724 } 2725 pC->cacheStatus = p->cacheCtr; 2726 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2727 pC->nHdrParsed = 0; 2728 2729 2730 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2731 /* pC->aRow does not have to hold the entire row, but it does at least 2732 ** need to cover the header of the record. If pC->aRow does not contain 2733 ** the complete header, then set it to zero, forcing the header to be 2734 ** dynamically allocated. */ 2735 pC->aRow = 0; 2736 pC->szRow = 0; 2737 2738 /* Make sure a corrupt database has not given us an oversize header. 2739 ** Do this now to avoid an oversize memory allocation. 2740 ** 2741 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2742 ** types use so much data space that there can only be 4096 and 32 of 2743 ** them, respectively. So the maximum header length results from a 2744 ** 3-byte type for each of the maximum of 32768 columns plus three 2745 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2746 */ 2747 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2748 goto op_column_corrupt; 2749 } 2750 }else{ 2751 /* This is an optimization. By skipping over the first few tests 2752 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2753 ** measurable performance gain. 2754 ** 2755 ** This branch is taken even if aOffset[0]==0. Such a record is never 2756 ** generated by SQLite, and could be considered corruption, but we 2757 ** accept it for historical reasons. When aOffset[0]==0, the code this 2758 ** branch jumps to reads past the end of the record, but never more 2759 ** than a few bytes. Even if the record occurs at the end of the page 2760 ** content area, the "page header" comes after the page content and so 2761 ** this overread is harmless. Similar overreads can occur for a corrupt 2762 ** database file. 2763 */ 2764 zData = pC->aRow; 2765 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2766 testcase( aOffset[0]==0 ); 2767 goto op_column_read_header; 2768 } 2769 } 2770 2771 /* Make sure at least the first p2+1 entries of the header have been 2772 ** parsed and valid information is in aOffset[] and pC->aType[]. 2773 */ 2774 if( pC->nHdrParsed<=p2 ){ 2775 /* If there is more header available for parsing in the record, try 2776 ** to extract additional fields up through the p2+1-th field 2777 */ 2778 if( pC->iHdrOffset<aOffset[0] ){ 2779 /* Make sure zData points to enough of the record to cover the header. */ 2780 if( pC->aRow==0 ){ 2781 memset(&sMem, 0, sizeof(sMem)); 2782 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2783 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2784 zData = (u8*)sMem.z; 2785 }else{ 2786 zData = pC->aRow; 2787 } 2788 2789 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2790 op_column_read_header: 2791 i = pC->nHdrParsed; 2792 offset64 = aOffset[i]; 2793 zHdr = zData + pC->iHdrOffset; 2794 zEndHdr = zData + aOffset[0]; 2795 testcase( zHdr>=zEndHdr ); 2796 do{ 2797 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2798 zHdr++; 2799 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2800 }else{ 2801 zHdr += sqlite3GetVarint32(zHdr, &t); 2802 pC->aType[i] = t; 2803 offset64 += sqlite3VdbeSerialTypeLen(t); 2804 } 2805 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2806 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2807 2808 /* The record is corrupt if any of the following are true: 2809 ** (1) the bytes of the header extend past the declared header size 2810 ** (2) the entire header was used but not all data was used 2811 ** (3) the end of the data extends beyond the end of the record. 2812 */ 2813 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2814 || (offset64 > pC->payloadSize) 2815 ){ 2816 if( aOffset[0]==0 ){ 2817 i = 0; 2818 zHdr = zEndHdr; 2819 }else{ 2820 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2821 goto op_column_corrupt; 2822 } 2823 } 2824 2825 pC->nHdrParsed = i; 2826 pC->iHdrOffset = (u32)(zHdr - zData); 2827 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2828 }else{ 2829 t = 0; 2830 } 2831 2832 /* If after trying to extract new entries from the header, nHdrParsed is 2833 ** still not up to p2, that means that the record has fewer than p2 2834 ** columns. So the result will be either the default value or a NULL. 2835 */ 2836 if( pC->nHdrParsed<=p2 ){ 2837 if( pOp->p4type==P4_MEM ){ 2838 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2839 }else{ 2840 sqlite3VdbeMemSetNull(pDest); 2841 } 2842 goto op_column_out; 2843 } 2844 }else{ 2845 t = pC->aType[p2]; 2846 } 2847 2848 /* Extract the content for the p2+1-th column. Control can only 2849 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2850 ** all valid. 2851 */ 2852 assert( p2<pC->nHdrParsed ); 2853 assert( rc==SQLITE_OK ); 2854 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2855 if( VdbeMemDynamic(pDest) ){ 2856 sqlite3VdbeMemSetNull(pDest); 2857 } 2858 assert( t==pC->aType[p2] ); 2859 if( pC->szRow>=aOffset[p2+1] ){ 2860 /* This is the common case where the desired content fits on the original 2861 ** page - where the content is not on an overflow page */ 2862 zData = pC->aRow + aOffset[p2]; 2863 if( t<12 ){ 2864 sqlite3VdbeSerialGet(zData, t, pDest); 2865 }else{ 2866 /* If the column value is a string, we need a persistent value, not 2867 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2868 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2869 */ 2870 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2871 pDest->n = len = (t-12)/2; 2872 pDest->enc = encoding; 2873 if( pDest->szMalloc < len+2 ){ 2874 pDest->flags = MEM_Null; 2875 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2876 }else{ 2877 pDest->z = pDest->zMalloc; 2878 } 2879 memcpy(pDest->z, zData, len); 2880 pDest->z[len] = 0; 2881 pDest->z[len+1] = 0; 2882 pDest->flags = aFlag[t&1]; 2883 } 2884 }else{ 2885 pDest->enc = encoding; 2886 /* This branch happens only when content is on overflow pages */ 2887 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2888 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2889 || (len = sqlite3VdbeSerialTypeLen(t))==0 2890 ){ 2891 /* Content is irrelevant for 2892 ** 1. the typeof() function, 2893 ** 2. the length(X) function if X is a blob, and 2894 ** 3. if the content length is zero. 2895 ** So we might as well use bogus content rather than reading 2896 ** content from disk. 2897 ** 2898 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2899 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2900 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2901 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2902 ** and it begins with a bunch of zeros. 2903 */ 2904 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2905 }else{ 2906 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2907 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2908 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2909 pDest->flags &= ~MEM_Ephem; 2910 } 2911 } 2912 2913 op_column_out: 2914 UPDATE_MAX_BLOBSIZE(pDest); 2915 REGISTER_TRACE(pOp->p3, pDest); 2916 break; 2917 2918 op_column_corrupt: 2919 if( aOp[0].p3>0 ){ 2920 pOp = &aOp[aOp[0].p3-1]; 2921 break; 2922 }else{ 2923 rc = SQLITE_CORRUPT_BKPT; 2924 goto abort_due_to_error; 2925 } 2926 } 2927 2928 /* Opcode: TypeCheck P1 P2 P3 P4 * 2929 ** Synopsis: typecheck(r[P1@P2]) 2930 ** 2931 ** Apply affinities to the range of P2 registers beginning with P1. 2932 ** Take the affinities from the Table object in P4. If any value 2933 ** cannot be coerced into the correct type, then raise an error. 2934 ** 2935 ** This opcode is similar to OP_Affinity except that this opcode 2936 ** forces the register type to the Table column type. This is used 2937 ** to implement "strict affinity". 2938 ** 2939 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 2940 ** is zero. When P3 is non-zero, no type checking occurs for 2941 ** static generated columns. Virtual columns are computed at query time 2942 ** and so they are never checked. 2943 ** 2944 ** Preconditions: 2945 ** 2946 ** <ul> 2947 ** <li> P2 should be the number of non-virtual columns in the 2948 ** table of P4. 2949 ** <li> Table P4 should be a STRICT table. 2950 ** </ul> 2951 ** 2952 ** If any precondition is false, an assertion fault occurs. 2953 */ 2954 case OP_TypeCheck: { 2955 Table *pTab; 2956 Column *aCol; 2957 int i; 2958 2959 assert( pOp->p4type==P4_TABLE ); 2960 pTab = pOp->p4.pTab; 2961 assert( pTab->tabFlags & TF_Strict ); 2962 assert( pTab->nNVCol==pOp->p2 ); 2963 aCol = pTab->aCol; 2964 pIn1 = &aMem[pOp->p1]; 2965 for(i=0; i<pTab->nCol; i++){ 2966 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 2967 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 2968 if( pOp->p3 ){ pIn1++; continue; } 2969 } 2970 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 2971 applyAffinity(pIn1, aCol[i].affinity, encoding); 2972 if( (pIn1->flags & MEM_Null)==0 ){ 2973 switch( aCol[i].eCType ){ 2974 case COLTYPE_BLOB: { 2975 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 2976 break; 2977 } 2978 case COLTYPE_INTEGER: 2979 case COLTYPE_INT: { 2980 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 2981 break; 2982 } 2983 case COLTYPE_TEXT: { 2984 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 2985 break; 2986 } 2987 case COLTYPE_REAL: { 2988 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 2989 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 2990 if( pIn1->flags & MEM_Int ){ 2991 /* When applying REAL affinity, if the result is still an MEM_Int 2992 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2993 ** so that we keep the high-resolution integer value but know that 2994 ** the type really wants to be REAL. */ 2995 testcase( pIn1->u.i==140737488355328LL ); 2996 testcase( pIn1->u.i==140737488355327LL ); 2997 testcase( pIn1->u.i==-140737488355328LL ); 2998 testcase( pIn1->u.i==-140737488355329LL ); 2999 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3000 pIn1->flags |= MEM_IntReal; 3001 pIn1->flags &= ~MEM_Int; 3002 }else{ 3003 pIn1->u.r = (double)pIn1->u.i; 3004 pIn1->flags |= MEM_Real; 3005 pIn1->flags &= ~MEM_Int; 3006 } 3007 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3008 goto vdbe_type_error; 3009 } 3010 break; 3011 } 3012 default: { 3013 /* COLTYPE_ANY. Accept anything. */ 3014 break; 3015 } 3016 } 3017 } 3018 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3019 pIn1++; 3020 } 3021 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3022 break; 3023 3024 vdbe_type_error: 3025 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3026 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3027 pTab->zName, aCol[i].zCnName); 3028 rc = SQLITE_CONSTRAINT_DATATYPE; 3029 goto abort_due_to_error; 3030 } 3031 3032 /* Opcode: Affinity P1 P2 * P4 * 3033 ** Synopsis: affinity(r[P1@P2]) 3034 ** 3035 ** Apply affinities to a range of P2 registers starting with P1. 3036 ** 3037 ** P4 is a string that is P2 characters long. The N-th character of the 3038 ** string indicates the column affinity that should be used for the N-th 3039 ** memory cell in the range. 3040 */ 3041 case OP_Affinity: { 3042 const char *zAffinity; /* The affinity to be applied */ 3043 3044 zAffinity = pOp->p4.z; 3045 assert( zAffinity!=0 ); 3046 assert( pOp->p2>0 ); 3047 assert( zAffinity[pOp->p2]==0 ); 3048 pIn1 = &aMem[pOp->p1]; 3049 while( 1 /*exit-by-break*/ ){ 3050 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3051 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3052 applyAffinity(pIn1, zAffinity[0], encoding); 3053 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3054 /* When applying REAL affinity, if the result is still an MEM_Int 3055 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3056 ** so that we keep the high-resolution integer value but know that 3057 ** the type really wants to be REAL. */ 3058 testcase( pIn1->u.i==140737488355328LL ); 3059 testcase( pIn1->u.i==140737488355327LL ); 3060 testcase( pIn1->u.i==-140737488355328LL ); 3061 testcase( pIn1->u.i==-140737488355329LL ); 3062 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3063 pIn1->flags |= MEM_IntReal; 3064 pIn1->flags &= ~MEM_Int; 3065 }else{ 3066 pIn1->u.r = (double)pIn1->u.i; 3067 pIn1->flags |= MEM_Real; 3068 pIn1->flags &= ~MEM_Int; 3069 } 3070 } 3071 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3072 zAffinity++; 3073 if( zAffinity[0]==0 ) break; 3074 pIn1++; 3075 } 3076 break; 3077 } 3078 3079 /* Opcode: MakeRecord P1 P2 P3 P4 * 3080 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3081 ** 3082 ** Convert P2 registers beginning with P1 into the [record format] 3083 ** use as a data record in a database table or as a key 3084 ** in an index. The OP_Column opcode can decode the record later. 3085 ** 3086 ** P4 may be a string that is P2 characters long. The N-th character of the 3087 ** string indicates the column affinity that should be used for the N-th 3088 ** field of the index key. 3089 ** 3090 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3091 ** macros defined in sqliteInt.h. 3092 ** 3093 ** If P4 is NULL then all index fields have the affinity BLOB. 3094 ** 3095 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3096 ** compile-time option is enabled: 3097 ** 3098 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3099 ** of the right-most table that can be null-trimmed. 3100 ** 3101 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3102 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3103 ** accept no-change records with serial_type 10. This value is 3104 ** only used inside an assert() and does not affect the end result. 3105 */ 3106 case OP_MakeRecord: { 3107 Mem *pRec; /* The new record */ 3108 u64 nData; /* Number of bytes of data space */ 3109 int nHdr; /* Number of bytes of header space */ 3110 i64 nByte; /* Data space required for this record */ 3111 i64 nZero; /* Number of zero bytes at the end of the record */ 3112 int nVarint; /* Number of bytes in a varint */ 3113 u32 serial_type; /* Type field */ 3114 Mem *pData0; /* First field to be combined into the record */ 3115 Mem *pLast; /* Last field of the record */ 3116 int nField; /* Number of fields in the record */ 3117 char *zAffinity; /* The affinity string for the record */ 3118 int file_format; /* File format to use for encoding */ 3119 u32 len; /* Length of a field */ 3120 u8 *zHdr; /* Where to write next byte of the header */ 3121 u8 *zPayload; /* Where to write next byte of the payload */ 3122 3123 /* Assuming the record contains N fields, the record format looks 3124 ** like this: 3125 ** 3126 ** ------------------------------------------------------------------------ 3127 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3128 ** ------------------------------------------------------------------------ 3129 ** 3130 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3131 ** and so forth. 3132 ** 3133 ** Each type field is a varint representing the serial type of the 3134 ** corresponding data element (see sqlite3VdbeSerialType()). The 3135 ** hdr-size field is also a varint which is the offset from the beginning 3136 ** of the record to data0. 3137 */ 3138 nData = 0; /* Number of bytes of data space */ 3139 nHdr = 0; /* Number of bytes of header space */ 3140 nZero = 0; /* Number of zero bytes at the end of the record */ 3141 nField = pOp->p1; 3142 zAffinity = pOp->p4.z; 3143 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3144 pData0 = &aMem[nField]; 3145 nField = pOp->p2; 3146 pLast = &pData0[nField-1]; 3147 file_format = p->minWriteFileFormat; 3148 3149 /* Identify the output register */ 3150 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3151 pOut = &aMem[pOp->p3]; 3152 memAboutToChange(p, pOut); 3153 3154 /* Apply the requested affinity to all inputs 3155 */ 3156 assert( pData0<=pLast ); 3157 if( zAffinity ){ 3158 pRec = pData0; 3159 do{ 3160 applyAffinity(pRec, zAffinity[0], encoding); 3161 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3162 pRec->flags |= MEM_IntReal; 3163 pRec->flags &= ~(MEM_Int); 3164 } 3165 REGISTER_TRACE((int)(pRec-aMem), pRec); 3166 zAffinity++; 3167 pRec++; 3168 assert( zAffinity[0]==0 || pRec<=pLast ); 3169 }while( zAffinity[0] ); 3170 } 3171 3172 #ifdef SQLITE_ENABLE_NULL_TRIM 3173 /* NULLs can be safely trimmed from the end of the record, as long as 3174 ** as the schema format is 2 or more and none of the omitted columns 3175 ** have a non-NULL default value. Also, the record must be left with 3176 ** at least one field. If P5>0 then it will be one more than the 3177 ** index of the right-most column with a non-NULL default value */ 3178 if( pOp->p5 ){ 3179 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3180 pLast--; 3181 nField--; 3182 } 3183 } 3184 #endif 3185 3186 /* Loop through the elements that will make up the record to figure 3187 ** out how much space is required for the new record. After this loop, 3188 ** the Mem.uTemp field of each term should hold the serial-type that will 3189 ** be used for that term in the generated record: 3190 ** 3191 ** Mem.uTemp value type 3192 ** --------------- --------------- 3193 ** 0 NULL 3194 ** 1 1-byte signed integer 3195 ** 2 2-byte signed integer 3196 ** 3 3-byte signed integer 3197 ** 4 4-byte signed integer 3198 ** 5 6-byte signed integer 3199 ** 6 8-byte signed integer 3200 ** 7 IEEE float 3201 ** 8 Integer constant 0 3202 ** 9 Integer constant 1 3203 ** 10,11 reserved for expansion 3204 ** N>=12 and even BLOB 3205 ** N>=13 and odd text 3206 ** 3207 ** The following additional values are computed: 3208 ** nHdr Number of bytes needed for the record header 3209 ** nData Number of bytes of data space needed for the record 3210 ** nZero Zero bytes at the end of the record 3211 */ 3212 pRec = pLast; 3213 do{ 3214 assert( memIsValid(pRec) ); 3215 if( pRec->flags & MEM_Null ){ 3216 if( pRec->flags & MEM_Zero ){ 3217 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3218 ** table methods that never invoke sqlite3_result_xxxxx() while 3219 ** computing an unchanging column value in an UPDATE statement. 3220 ** Give such values a special internal-use-only serial-type of 10 3221 ** so that they can be passed through to xUpdate and have 3222 ** a true sqlite3_value_nochange(). */ 3223 #ifndef SQLITE_ENABLE_NULL_TRIM 3224 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3225 #endif 3226 pRec->uTemp = 10; 3227 }else{ 3228 pRec->uTemp = 0; 3229 } 3230 nHdr++; 3231 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3232 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3233 i64 i = pRec->u.i; 3234 u64 uu; 3235 testcase( pRec->flags & MEM_Int ); 3236 testcase( pRec->flags & MEM_IntReal ); 3237 if( i<0 ){ 3238 uu = ~i; 3239 }else{ 3240 uu = i; 3241 } 3242 nHdr++; 3243 testcase( uu==127 ); testcase( uu==128 ); 3244 testcase( uu==32767 ); testcase( uu==32768 ); 3245 testcase( uu==8388607 ); testcase( uu==8388608 ); 3246 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3247 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3248 if( uu<=127 ){ 3249 if( (i&1)==i && file_format>=4 ){ 3250 pRec->uTemp = 8+(u32)uu; 3251 }else{ 3252 nData++; 3253 pRec->uTemp = 1; 3254 } 3255 }else if( uu<=32767 ){ 3256 nData += 2; 3257 pRec->uTemp = 2; 3258 }else if( uu<=8388607 ){ 3259 nData += 3; 3260 pRec->uTemp = 3; 3261 }else if( uu<=2147483647 ){ 3262 nData += 4; 3263 pRec->uTemp = 4; 3264 }else if( uu<=140737488355327LL ){ 3265 nData += 6; 3266 pRec->uTemp = 5; 3267 }else{ 3268 nData += 8; 3269 if( pRec->flags & MEM_IntReal ){ 3270 /* If the value is IntReal and is going to take up 8 bytes to store 3271 ** as an integer, then we might as well make it an 8-byte floating 3272 ** point value */ 3273 pRec->u.r = (double)pRec->u.i; 3274 pRec->flags &= ~MEM_IntReal; 3275 pRec->flags |= MEM_Real; 3276 pRec->uTemp = 7; 3277 }else{ 3278 pRec->uTemp = 6; 3279 } 3280 } 3281 }else if( pRec->flags & MEM_Real ){ 3282 nHdr++; 3283 nData += 8; 3284 pRec->uTemp = 7; 3285 }else{ 3286 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3287 assert( pRec->n>=0 ); 3288 len = (u32)pRec->n; 3289 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3290 if( pRec->flags & MEM_Zero ){ 3291 serial_type += pRec->u.nZero*2; 3292 if( nData ){ 3293 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3294 len += pRec->u.nZero; 3295 }else{ 3296 nZero += pRec->u.nZero; 3297 } 3298 } 3299 nData += len; 3300 nHdr += sqlite3VarintLen(serial_type); 3301 pRec->uTemp = serial_type; 3302 } 3303 if( pRec==pData0 ) break; 3304 pRec--; 3305 }while(1); 3306 3307 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3308 ** which determines the total number of bytes in the header. The varint 3309 ** value is the size of the header in bytes including the size varint 3310 ** itself. */ 3311 testcase( nHdr==126 ); 3312 testcase( nHdr==127 ); 3313 if( nHdr<=126 ){ 3314 /* The common case */ 3315 nHdr += 1; 3316 }else{ 3317 /* Rare case of a really large header */ 3318 nVarint = sqlite3VarintLen(nHdr); 3319 nHdr += nVarint; 3320 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3321 } 3322 nByte = nHdr+nData; 3323 3324 /* Make sure the output register has a buffer large enough to store 3325 ** the new record. The output register (pOp->p3) is not allowed to 3326 ** be one of the input registers (because the following call to 3327 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3328 */ 3329 if( nByte+nZero<=pOut->szMalloc ){ 3330 /* The output register is already large enough to hold the record. 3331 ** No error checks or buffer enlargement is required */ 3332 pOut->z = pOut->zMalloc; 3333 }else{ 3334 /* Need to make sure that the output is not too big and then enlarge 3335 ** the output register to hold the full result */ 3336 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3337 goto too_big; 3338 } 3339 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3340 goto no_mem; 3341 } 3342 } 3343 pOut->n = (int)nByte; 3344 pOut->flags = MEM_Blob; 3345 if( nZero ){ 3346 pOut->u.nZero = nZero; 3347 pOut->flags |= MEM_Zero; 3348 } 3349 UPDATE_MAX_BLOBSIZE(pOut); 3350 zHdr = (u8 *)pOut->z; 3351 zPayload = zHdr + nHdr; 3352 3353 /* Write the record */ 3354 zHdr += putVarint32(zHdr, nHdr); 3355 assert( pData0<=pLast ); 3356 pRec = pData0; 3357 do{ 3358 serial_type = pRec->uTemp; 3359 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3360 ** additional varints, one per column. */ 3361 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3362 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3363 ** immediately follow the header. */ 3364 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3365 }while( (++pRec)<=pLast ); 3366 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3367 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3368 3369 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3370 REGISTER_TRACE(pOp->p3, pOut); 3371 break; 3372 } 3373 3374 /* Opcode: Count P1 P2 P3 * * 3375 ** Synopsis: r[P2]=count() 3376 ** 3377 ** Store the number of entries (an integer value) in the table or index 3378 ** opened by cursor P1 in register P2. 3379 ** 3380 ** If P3==0, then an exact count is obtained, which involves visiting 3381 ** every btree page of the table. But if P3 is non-zero, an estimate 3382 ** is returned based on the current cursor position. 3383 */ 3384 case OP_Count: { /* out2 */ 3385 i64 nEntry; 3386 BtCursor *pCrsr; 3387 3388 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3389 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3390 assert( pCrsr ); 3391 if( pOp->p3 ){ 3392 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3393 }else{ 3394 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3395 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3396 if( rc ) goto abort_due_to_error; 3397 } 3398 pOut = out2Prerelease(p, pOp); 3399 pOut->u.i = nEntry; 3400 goto check_for_interrupt; 3401 } 3402 3403 /* Opcode: Savepoint P1 * * P4 * 3404 ** 3405 ** Open, release or rollback the savepoint named by parameter P4, depending 3406 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3407 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3408 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3409 */ 3410 case OP_Savepoint: { 3411 int p1; /* Value of P1 operand */ 3412 char *zName; /* Name of savepoint */ 3413 int nName; 3414 Savepoint *pNew; 3415 Savepoint *pSavepoint; 3416 Savepoint *pTmp; 3417 int iSavepoint; 3418 int ii; 3419 3420 p1 = pOp->p1; 3421 zName = pOp->p4.z; 3422 3423 /* Assert that the p1 parameter is valid. Also that if there is no open 3424 ** transaction, then there cannot be any savepoints. 3425 */ 3426 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3427 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3428 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3429 assert( checkSavepointCount(db) ); 3430 assert( p->bIsReader ); 3431 3432 if( p1==SAVEPOINT_BEGIN ){ 3433 if( db->nVdbeWrite>0 ){ 3434 /* A new savepoint cannot be created if there are active write 3435 ** statements (i.e. open read/write incremental blob handles). 3436 */ 3437 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3438 rc = SQLITE_BUSY; 3439 }else{ 3440 nName = sqlite3Strlen30(zName); 3441 3442 #ifndef SQLITE_OMIT_VIRTUALTABLE 3443 /* This call is Ok even if this savepoint is actually a transaction 3444 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3445 ** If this is a transaction savepoint being opened, it is guaranteed 3446 ** that the db->aVTrans[] array is empty. */ 3447 assert( db->autoCommit==0 || db->nVTrans==0 ); 3448 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3449 db->nStatement+db->nSavepoint); 3450 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3451 #endif 3452 3453 /* Create a new savepoint structure. */ 3454 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3455 if( pNew ){ 3456 pNew->zName = (char *)&pNew[1]; 3457 memcpy(pNew->zName, zName, nName+1); 3458 3459 /* If there is no open transaction, then mark this as a special 3460 ** "transaction savepoint". */ 3461 if( db->autoCommit ){ 3462 db->autoCommit = 0; 3463 db->isTransactionSavepoint = 1; 3464 }else{ 3465 db->nSavepoint++; 3466 } 3467 3468 /* Link the new savepoint into the database handle's list. */ 3469 pNew->pNext = db->pSavepoint; 3470 db->pSavepoint = pNew; 3471 pNew->nDeferredCons = db->nDeferredCons; 3472 pNew->nDeferredImmCons = db->nDeferredImmCons; 3473 } 3474 } 3475 }else{ 3476 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3477 iSavepoint = 0; 3478 3479 /* Find the named savepoint. If there is no such savepoint, then an 3480 ** an error is returned to the user. */ 3481 for( 3482 pSavepoint = db->pSavepoint; 3483 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3484 pSavepoint = pSavepoint->pNext 3485 ){ 3486 iSavepoint++; 3487 } 3488 if( !pSavepoint ){ 3489 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3490 rc = SQLITE_ERROR; 3491 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3492 /* It is not possible to release (commit) a savepoint if there are 3493 ** active write statements. 3494 */ 3495 sqlite3VdbeError(p, "cannot release savepoint - " 3496 "SQL statements in progress"); 3497 rc = SQLITE_BUSY; 3498 }else{ 3499 3500 /* Determine whether or not this is a transaction savepoint. If so, 3501 ** and this is a RELEASE command, then the current transaction 3502 ** is committed. 3503 */ 3504 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3505 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3506 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3507 goto vdbe_return; 3508 } 3509 db->autoCommit = 1; 3510 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3511 p->pc = (int)(pOp - aOp); 3512 db->autoCommit = 0; 3513 p->rc = rc = SQLITE_BUSY; 3514 goto vdbe_return; 3515 } 3516 rc = p->rc; 3517 if( rc ){ 3518 db->autoCommit = 0; 3519 }else{ 3520 db->isTransactionSavepoint = 0; 3521 } 3522 }else{ 3523 int isSchemaChange; 3524 iSavepoint = db->nSavepoint - iSavepoint - 1; 3525 if( p1==SAVEPOINT_ROLLBACK ){ 3526 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3527 for(ii=0; ii<db->nDb; ii++){ 3528 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3529 SQLITE_ABORT_ROLLBACK, 3530 isSchemaChange==0); 3531 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3532 } 3533 }else{ 3534 assert( p1==SAVEPOINT_RELEASE ); 3535 isSchemaChange = 0; 3536 } 3537 for(ii=0; ii<db->nDb; ii++){ 3538 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3539 if( rc!=SQLITE_OK ){ 3540 goto abort_due_to_error; 3541 } 3542 } 3543 if( isSchemaChange ){ 3544 sqlite3ExpirePreparedStatements(db, 0); 3545 sqlite3ResetAllSchemasOfConnection(db); 3546 db->mDbFlags |= DBFLAG_SchemaChange; 3547 } 3548 } 3549 if( rc ) goto abort_due_to_error; 3550 3551 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3552 ** savepoints nested inside of the savepoint being operated on. */ 3553 while( db->pSavepoint!=pSavepoint ){ 3554 pTmp = db->pSavepoint; 3555 db->pSavepoint = pTmp->pNext; 3556 sqlite3DbFree(db, pTmp); 3557 db->nSavepoint--; 3558 } 3559 3560 /* If it is a RELEASE, then destroy the savepoint being operated on 3561 ** too. If it is a ROLLBACK TO, then set the number of deferred 3562 ** constraint violations present in the database to the value stored 3563 ** when the savepoint was created. */ 3564 if( p1==SAVEPOINT_RELEASE ){ 3565 assert( pSavepoint==db->pSavepoint ); 3566 db->pSavepoint = pSavepoint->pNext; 3567 sqlite3DbFree(db, pSavepoint); 3568 if( !isTransaction ){ 3569 db->nSavepoint--; 3570 } 3571 }else{ 3572 assert( p1==SAVEPOINT_ROLLBACK ); 3573 db->nDeferredCons = pSavepoint->nDeferredCons; 3574 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3575 } 3576 3577 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3578 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3579 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3580 } 3581 } 3582 } 3583 if( rc ) goto abort_due_to_error; 3584 3585 break; 3586 } 3587 3588 /* Opcode: AutoCommit P1 P2 * * * 3589 ** 3590 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3591 ** back any currently active btree transactions. If there are any active 3592 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3593 ** there are active writing VMs or active VMs that use shared cache. 3594 ** 3595 ** This instruction causes the VM to halt. 3596 */ 3597 case OP_AutoCommit: { 3598 int desiredAutoCommit; 3599 int iRollback; 3600 3601 desiredAutoCommit = pOp->p1; 3602 iRollback = pOp->p2; 3603 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3604 assert( desiredAutoCommit==1 || iRollback==0 ); 3605 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3606 assert( p->bIsReader ); 3607 3608 if( desiredAutoCommit!=db->autoCommit ){ 3609 if( iRollback ){ 3610 assert( desiredAutoCommit==1 ); 3611 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3612 db->autoCommit = 1; 3613 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3614 /* If this instruction implements a COMMIT and other VMs are writing 3615 ** return an error indicating that the other VMs must complete first. 3616 */ 3617 sqlite3VdbeError(p, "cannot commit transaction - " 3618 "SQL statements in progress"); 3619 rc = SQLITE_BUSY; 3620 goto abort_due_to_error; 3621 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3622 goto vdbe_return; 3623 }else{ 3624 db->autoCommit = (u8)desiredAutoCommit; 3625 } 3626 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3627 p->pc = (int)(pOp - aOp); 3628 db->autoCommit = (u8)(1-desiredAutoCommit); 3629 p->rc = rc = SQLITE_BUSY; 3630 goto vdbe_return; 3631 } 3632 sqlite3CloseSavepoints(db); 3633 if( p->rc==SQLITE_OK ){ 3634 rc = SQLITE_DONE; 3635 }else{ 3636 rc = SQLITE_ERROR; 3637 } 3638 goto vdbe_return; 3639 }else{ 3640 sqlite3VdbeError(p, 3641 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3642 (iRollback)?"cannot rollback - no transaction is active": 3643 "cannot commit - no transaction is active")); 3644 3645 rc = SQLITE_ERROR; 3646 goto abort_due_to_error; 3647 } 3648 /*NOTREACHED*/ assert(0); 3649 } 3650 3651 /* Opcode: Transaction P1 P2 P3 P4 P5 3652 ** 3653 ** Begin a transaction on database P1 if a transaction is not already 3654 ** active. 3655 ** If P2 is non-zero, then a write-transaction is started, or if a 3656 ** read-transaction is already active, it is upgraded to a write-transaction. 3657 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3658 ** then an exclusive transaction is started. 3659 ** 3660 ** P1 is the index of the database file on which the transaction is 3661 ** started. Index 0 is the main database file and index 1 is the 3662 ** file used for temporary tables. Indices of 2 or more are used for 3663 ** attached databases. 3664 ** 3665 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3666 ** true (this flag is set if the Vdbe may modify more than one row and may 3667 ** throw an ABORT exception), a statement transaction may also be opened. 3668 ** More specifically, a statement transaction is opened iff the database 3669 ** connection is currently not in autocommit mode, or if there are other 3670 ** active statements. A statement transaction allows the changes made by this 3671 ** VDBE to be rolled back after an error without having to roll back the 3672 ** entire transaction. If no error is encountered, the statement transaction 3673 ** will automatically commit when the VDBE halts. 3674 ** 3675 ** If P5!=0 then this opcode also checks the schema cookie against P3 3676 ** and the schema generation counter against P4. 3677 ** The cookie changes its value whenever the database schema changes. 3678 ** This operation is used to detect when that the cookie has changed 3679 ** and that the current process needs to reread the schema. If the schema 3680 ** cookie in P3 differs from the schema cookie in the database header or 3681 ** if the schema generation counter in P4 differs from the current 3682 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3683 ** halts. The sqlite3_step() wrapper function might then reprepare the 3684 ** statement and rerun it from the beginning. 3685 */ 3686 case OP_Transaction: { 3687 Btree *pBt; 3688 int iMeta = 0; 3689 3690 assert( p->bIsReader ); 3691 assert( p->readOnly==0 || pOp->p2==0 ); 3692 assert( pOp->p2>=0 && pOp->p2<=2 ); 3693 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3694 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3695 assert( rc==SQLITE_OK ); 3696 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3697 if( db->flags & SQLITE_QueryOnly ){ 3698 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3699 rc = SQLITE_READONLY; 3700 }else{ 3701 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3702 ** transaction */ 3703 rc = SQLITE_CORRUPT; 3704 } 3705 goto abort_due_to_error; 3706 } 3707 pBt = db->aDb[pOp->p1].pBt; 3708 3709 if( pBt ){ 3710 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3711 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3712 testcase( rc==SQLITE_BUSY_RECOVERY ); 3713 if( rc!=SQLITE_OK ){ 3714 if( (rc&0xff)==SQLITE_BUSY ){ 3715 p->pc = (int)(pOp - aOp); 3716 p->rc = rc; 3717 goto vdbe_return; 3718 } 3719 goto abort_due_to_error; 3720 } 3721 3722 if( p->usesStmtJournal 3723 && pOp->p2 3724 && (db->autoCommit==0 || db->nVdbeRead>1) 3725 ){ 3726 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3727 if( p->iStatement==0 ){ 3728 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3729 db->nStatement++; 3730 p->iStatement = db->nSavepoint + db->nStatement; 3731 } 3732 3733 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3734 if( rc==SQLITE_OK ){ 3735 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3736 } 3737 3738 /* Store the current value of the database handles deferred constraint 3739 ** counter. If the statement transaction needs to be rolled back, 3740 ** the value of this counter needs to be restored too. */ 3741 p->nStmtDefCons = db->nDeferredCons; 3742 p->nStmtDefImmCons = db->nDeferredImmCons; 3743 } 3744 } 3745 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3746 if( rc==SQLITE_OK 3747 && pOp->p5 3748 && (iMeta!=pOp->p3 3749 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3750 ){ 3751 /* 3752 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3753 ** version is checked to ensure that the schema has not changed since the 3754 ** SQL statement was prepared. 3755 */ 3756 sqlite3DbFree(db, p->zErrMsg); 3757 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3758 /* If the schema-cookie from the database file matches the cookie 3759 ** stored with the in-memory representation of the schema, do 3760 ** not reload the schema from the database file. 3761 ** 3762 ** If virtual-tables are in use, this is not just an optimization. 3763 ** Often, v-tables store their data in other SQLite tables, which 3764 ** are queried from within xNext() and other v-table methods using 3765 ** prepared queries. If such a query is out-of-date, we do not want to 3766 ** discard the database schema, as the user code implementing the 3767 ** v-table would have to be ready for the sqlite3_vtab structure itself 3768 ** to be invalidated whenever sqlite3_step() is called from within 3769 ** a v-table method. 3770 */ 3771 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3772 sqlite3ResetOneSchema(db, pOp->p1); 3773 } 3774 p->expired = 1; 3775 rc = SQLITE_SCHEMA; 3776 } 3777 if( rc ) goto abort_due_to_error; 3778 break; 3779 } 3780 3781 /* Opcode: ReadCookie P1 P2 P3 * * 3782 ** 3783 ** Read cookie number P3 from database P1 and write it into register P2. 3784 ** P3==1 is the schema version. P3==2 is the database format. 3785 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3786 ** the main database file and P1==1 is the database file used to store 3787 ** temporary tables. 3788 ** 3789 ** There must be a read-lock on the database (either a transaction 3790 ** must be started or there must be an open cursor) before 3791 ** executing this instruction. 3792 */ 3793 case OP_ReadCookie: { /* out2 */ 3794 int iMeta; 3795 int iDb; 3796 int iCookie; 3797 3798 assert( p->bIsReader ); 3799 iDb = pOp->p1; 3800 iCookie = pOp->p3; 3801 assert( pOp->p3<SQLITE_N_BTREE_META ); 3802 assert( iDb>=0 && iDb<db->nDb ); 3803 assert( db->aDb[iDb].pBt!=0 ); 3804 assert( DbMaskTest(p->btreeMask, iDb) ); 3805 3806 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3807 pOut = out2Prerelease(p, pOp); 3808 pOut->u.i = iMeta; 3809 break; 3810 } 3811 3812 /* Opcode: SetCookie P1 P2 P3 * P5 3813 ** 3814 ** Write the integer value P3 into cookie number P2 of database P1. 3815 ** P2==1 is the schema version. P2==2 is the database format. 3816 ** P2==3 is the recommended pager cache 3817 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3818 ** database file used to store temporary tables. 3819 ** 3820 ** A transaction must be started before executing this opcode. 3821 ** 3822 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3823 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3824 ** has P5 set to 1, so that the internal schema version will be different 3825 ** from the database schema version, resulting in a schema reset. 3826 */ 3827 case OP_SetCookie: { 3828 Db *pDb; 3829 3830 sqlite3VdbeIncrWriteCounter(p, 0); 3831 assert( pOp->p2<SQLITE_N_BTREE_META ); 3832 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3833 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3834 assert( p->readOnly==0 ); 3835 pDb = &db->aDb[pOp->p1]; 3836 assert( pDb->pBt!=0 ); 3837 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3838 /* See note about index shifting on OP_ReadCookie */ 3839 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3840 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3841 /* When the schema cookie changes, record the new cookie internally */ 3842 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3843 db->mDbFlags |= DBFLAG_SchemaChange; 3844 sqlite3FkClearTriggerCache(db, pOp->p1); 3845 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3846 /* Record changes in the file format */ 3847 pDb->pSchema->file_format = pOp->p3; 3848 } 3849 if( pOp->p1==1 ){ 3850 /* Invalidate all prepared statements whenever the TEMP database 3851 ** schema is changed. Ticket #1644 */ 3852 sqlite3ExpirePreparedStatements(db, 0); 3853 p->expired = 0; 3854 } 3855 if( rc ) goto abort_due_to_error; 3856 break; 3857 } 3858 3859 /* Opcode: OpenRead P1 P2 P3 P4 P5 3860 ** Synopsis: root=P2 iDb=P3 3861 ** 3862 ** Open a read-only cursor for the database table whose root page is 3863 ** P2 in a database file. The database file is determined by P3. 3864 ** P3==0 means the main database, P3==1 means the database used for 3865 ** temporary tables, and P3>1 means used the corresponding attached 3866 ** database. Give the new cursor an identifier of P1. The P1 3867 ** values need not be contiguous but all P1 values should be small integers. 3868 ** It is an error for P1 to be negative. 3869 ** 3870 ** Allowed P5 bits: 3871 ** <ul> 3872 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3873 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3874 ** of OP_SeekLE/OP_IdxLT) 3875 ** </ul> 3876 ** 3877 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3878 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3879 ** object, then table being opened must be an [index b-tree] where the 3880 ** KeyInfo object defines the content and collating 3881 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3882 ** value, then the table being opened must be a [table b-tree] with a 3883 ** number of columns no less than the value of P4. 3884 ** 3885 ** See also: OpenWrite, ReopenIdx 3886 */ 3887 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3888 ** Synopsis: root=P2 iDb=P3 3889 ** 3890 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3891 ** checks to see if the cursor on P1 is already open on the same 3892 ** b-tree and if it is this opcode becomes a no-op. In other words, 3893 ** if the cursor is already open, do not reopen it. 3894 ** 3895 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3896 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3897 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3898 ** number. 3899 ** 3900 ** Allowed P5 bits: 3901 ** <ul> 3902 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3903 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3904 ** of OP_SeekLE/OP_IdxLT) 3905 ** </ul> 3906 ** 3907 ** See also: OP_OpenRead, OP_OpenWrite 3908 */ 3909 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3910 ** Synopsis: root=P2 iDb=P3 3911 ** 3912 ** Open a read/write cursor named P1 on the table or index whose root 3913 ** page is P2 (or whose root page is held in register P2 if the 3914 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3915 ** 3916 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3917 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3918 ** object, then table being opened must be an [index b-tree] where the 3919 ** KeyInfo object defines the content and collating 3920 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3921 ** value, then the table being opened must be a [table b-tree] with a 3922 ** number of columns no less than the value of P4. 3923 ** 3924 ** Allowed P5 bits: 3925 ** <ul> 3926 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3927 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3928 ** of OP_SeekLE/OP_IdxLT) 3929 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3930 ** and subsequently delete entries in an index btree. This is a 3931 ** hint to the storage engine that the storage engine is allowed to 3932 ** ignore. The hint is not used by the official SQLite b*tree storage 3933 ** engine, but is used by COMDB2. 3934 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3935 ** as the root page, not the value of P2 itself. 3936 ** </ul> 3937 ** 3938 ** This instruction works like OpenRead except that it opens the cursor 3939 ** in read/write mode. 3940 ** 3941 ** See also: OP_OpenRead, OP_ReopenIdx 3942 */ 3943 case OP_ReopenIdx: { 3944 int nField; 3945 KeyInfo *pKeyInfo; 3946 u32 p2; 3947 int iDb; 3948 int wrFlag; 3949 Btree *pX; 3950 VdbeCursor *pCur; 3951 Db *pDb; 3952 3953 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3954 assert( pOp->p4type==P4_KEYINFO ); 3955 pCur = p->apCsr[pOp->p1]; 3956 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3957 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3958 assert( pCur->eCurType==CURTYPE_BTREE ); 3959 sqlite3BtreeClearCursor(pCur->uc.pCursor); 3960 goto open_cursor_set_hints; 3961 } 3962 /* If the cursor is not currently open or is open on a different 3963 ** index, then fall through into OP_OpenRead to force a reopen */ 3964 case OP_OpenRead: 3965 case OP_OpenWrite: 3966 3967 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3968 assert( p->bIsReader ); 3969 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3970 || p->readOnly==0 ); 3971 3972 if( p->expired==1 ){ 3973 rc = SQLITE_ABORT_ROLLBACK; 3974 goto abort_due_to_error; 3975 } 3976 3977 nField = 0; 3978 pKeyInfo = 0; 3979 p2 = (u32)pOp->p2; 3980 iDb = pOp->p3; 3981 assert( iDb>=0 && iDb<db->nDb ); 3982 assert( DbMaskTest(p->btreeMask, iDb) ); 3983 pDb = &db->aDb[iDb]; 3984 pX = pDb->pBt; 3985 assert( pX!=0 ); 3986 if( pOp->opcode==OP_OpenWrite ){ 3987 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3988 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3989 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3990 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3991 p->minWriteFileFormat = pDb->pSchema->file_format; 3992 } 3993 }else{ 3994 wrFlag = 0; 3995 } 3996 if( pOp->p5 & OPFLAG_P2ISREG ){ 3997 assert( p2>0 ); 3998 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3999 assert( pOp->opcode==OP_OpenWrite ); 4000 pIn2 = &aMem[p2]; 4001 assert( memIsValid(pIn2) ); 4002 assert( (pIn2->flags & MEM_Int)!=0 ); 4003 sqlite3VdbeMemIntegerify(pIn2); 4004 p2 = (int)pIn2->u.i; 4005 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4006 ** that opcode will always set the p2 value to 2 or more or else fail. 4007 ** If there were a failure, the prepared statement would have halted 4008 ** before reaching this instruction. */ 4009 assert( p2>=2 ); 4010 } 4011 if( pOp->p4type==P4_KEYINFO ){ 4012 pKeyInfo = pOp->p4.pKeyInfo; 4013 assert( pKeyInfo->enc==ENC(db) ); 4014 assert( pKeyInfo->db==db ); 4015 nField = pKeyInfo->nAllField; 4016 }else if( pOp->p4type==P4_INT32 ){ 4017 nField = pOp->p4.i; 4018 } 4019 assert( pOp->p1>=0 ); 4020 assert( nField>=0 ); 4021 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4022 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4023 if( pCur==0 ) goto no_mem; 4024 pCur->iDb = iDb; 4025 pCur->nullRow = 1; 4026 pCur->isOrdered = 1; 4027 pCur->pgnoRoot = p2; 4028 #ifdef SQLITE_DEBUG 4029 pCur->wrFlag = wrFlag; 4030 #endif 4031 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4032 pCur->pKeyInfo = pKeyInfo; 4033 /* Set the VdbeCursor.isTable variable. Previous versions of 4034 ** SQLite used to check if the root-page flags were sane at this point 4035 ** and report database corruption if they were not, but this check has 4036 ** since moved into the btree layer. */ 4037 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4038 4039 open_cursor_set_hints: 4040 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4041 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4042 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4043 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4044 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4045 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4046 if( rc ) goto abort_due_to_error; 4047 break; 4048 } 4049 4050 /* Opcode: OpenDup P1 P2 * * * 4051 ** 4052 ** Open a new cursor P1 that points to the same ephemeral table as 4053 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4054 ** opcode. Only ephemeral cursors may be duplicated. 4055 ** 4056 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4057 */ 4058 case OP_OpenDup: { 4059 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4060 VdbeCursor *pCx; /* The new cursor */ 4061 4062 pOrig = p->apCsr[pOp->p2]; 4063 assert( pOrig ); 4064 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4065 4066 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4067 if( pCx==0 ) goto no_mem; 4068 pCx->nullRow = 1; 4069 pCx->isEphemeral = 1; 4070 pCx->pKeyInfo = pOrig->pKeyInfo; 4071 pCx->isTable = pOrig->isTable; 4072 pCx->pgnoRoot = pOrig->pgnoRoot; 4073 pCx->isOrdered = pOrig->isOrdered; 4074 pCx->ub.pBtx = pOrig->ub.pBtx; 4075 pCx->hasBeenDuped = 1; 4076 pOrig->hasBeenDuped = 1; 4077 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4078 pCx->pKeyInfo, pCx->uc.pCursor); 4079 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4080 ** opened for a database. Since there is already an open cursor when this 4081 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4082 assert( rc==SQLITE_OK ); 4083 break; 4084 } 4085 4086 4087 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4088 ** Synopsis: nColumn=P2 4089 ** 4090 ** Open a new cursor P1 to a transient table. 4091 ** The cursor is always opened read/write even if 4092 ** the main database is read-only. The ephemeral 4093 ** table is deleted automatically when the cursor is closed. 4094 ** 4095 ** If the cursor P1 is already opened on an ephemeral table, the table 4096 ** is cleared (all content is erased). 4097 ** 4098 ** P2 is the number of columns in the ephemeral table. 4099 ** The cursor points to a BTree table if P4==0 and to a BTree index 4100 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4101 ** that defines the format of keys in the index. 4102 ** 4103 ** The P5 parameter can be a mask of the BTREE_* flags defined 4104 ** in btree.h. These flags control aspects of the operation of 4105 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4106 ** added automatically. 4107 ** 4108 ** If P3 is positive, then reg[P3] is modified slightly so that it 4109 ** can be used as zero-length data for OP_Insert. This is an optimization 4110 ** that avoids an extra OP_Blob opcode to initialize that register. 4111 */ 4112 /* Opcode: OpenAutoindex P1 P2 * P4 * 4113 ** Synopsis: nColumn=P2 4114 ** 4115 ** This opcode works the same as OP_OpenEphemeral. It has a 4116 ** different name to distinguish its use. Tables created using 4117 ** by this opcode will be used for automatically created transient 4118 ** indices in joins. 4119 */ 4120 case OP_OpenAutoindex: 4121 case OP_OpenEphemeral: { 4122 VdbeCursor *pCx; 4123 KeyInfo *pKeyInfo; 4124 4125 static const int vfsFlags = 4126 SQLITE_OPEN_READWRITE | 4127 SQLITE_OPEN_CREATE | 4128 SQLITE_OPEN_EXCLUSIVE | 4129 SQLITE_OPEN_DELETEONCLOSE | 4130 SQLITE_OPEN_TRANSIENT_DB; 4131 assert( pOp->p1>=0 ); 4132 assert( pOp->p2>=0 ); 4133 if( pOp->p3>0 ){ 4134 /* Make register reg[P3] into a value that can be used as the data 4135 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4136 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4137 assert( pOp->opcode==OP_OpenEphemeral ); 4138 assert( aMem[pOp->p3].flags & MEM_Null ); 4139 aMem[pOp->p3].n = 0; 4140 aMem[pOp->p3].z = ""; 4141 } 4142 pCx = p->apCsr[pOp->p1]; 4143 if( pCx && !pCx->hasBeenDuped && ALWAYS(pOp->p2<=pCx->nField) ){ 4144 /* If the ephermeral table is already open and has no duplicates from 4145 ** OP_OpenDup, then erase all existing content so that the table is 4146 ** empty again, rather than creating a new table. */ 4147 assert( pCx->isEphemeral ); 4148 pCx->seqCount = 0; 4149 pCx->cacheStatus = CACHE_STALE; 4150 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4151 }else{ 4152 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4153 if( pCx==0 ) goto no_mem; 4154 pCx->isEphemeral = 1; 4155 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4156 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4157 vfsFlags); 4158 if( rc==SQLITE_OK ){ 4159 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4160 if( rc==SQLITE_OK ){ 4161 /* If a transient index is required, create it by calling 4162 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4163 ** opening it. If a transient table is required, just use the 4164 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4165 */ 4166 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4167 assert( pOp->p4type==P4_KEYINFO ); 4168 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4169 BTREE_BLOBKEY | pOp->p5); 4170 if( rc==SQLITE_OK ){ 4171 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4172 assert( pKeyInfo->db==db ); 4173 assert( pKeyInfo->enc==ENC(db) ); 4174 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4175 pKeyInfo, pCx->uc.pCursor); 4176 } 4177 pCx->isTable = 0; 4178 }else{ 4179 pCx->pgnoRoot = SCHEMA_ROOT; 4180 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4181 0, pCx->uc.pCursor); 4182 pCx->isTable = 1; 4183 } 4184 } 4185 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4186 if( rc ){ 4187 sqlite3BtreeClose(pCx->ub.pBtx); 4188 } 4189 } 4190 } 4191 if( rc ) goto abort_due_to_error; 4192 pCx->nullRow = 1; 4193 break; 4194 } 4195 4196 /* Opcode: SorterOpen P1 P2 P3 P4 * 4197 ** 4198 ** This opcode works like OP_OpenEphemeral except that it opens 4199 ** a transient index that is specifically designed to sort large 4200 ** tables using an external merge-sort algorithm. 4201 ** 4202 ** If argument P3 is non-zero, then it indicates that the sorter may 4203 ** assume that a stable sort considering the first P3 fields of each 4204 ** key is sufficient to produce the required results. 4205 */ 4206 case OP_SorterOpen: { 4207 VdbeCursor *pCx; 4208 4209 assert( pOp->p1>=0 ); 4210 assert( pOp->p2>=0 ); 4211 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4212 if( pCx==0 ) goto no_mem; 4213 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4214 assert( pCx->pKeyInfo->db==db ); 4215 assert( pCx->pKeyInfo->enc==ENC(db) ); 4216 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4217 if( rc ) goto abort_due_to_error; 4218 break; 4219 } 4220 4221 /* Opcode: SequenceTest P1 P2 * * * 4222 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4223 ** 4224 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4225 ** to P2. Regardless of whether or not the jump is taken, increment the 4226 ** the sequence value. 4227 */ 4228 case OP_SequenceTest: { 4229 VdbeCursor *pC; 4230 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4231 pC = p->apCsr[pOp->p1]; 4232 assert( isSorter(pC) ); 4233 if( (pC->seqCount++)==0 ){ 4234 goto jump_to_p2; 4235 } 4236 break; 4237 } 4238 4239 /* Opcode: OpenPseudo P1 P2 P3 * * 4240 ** Synopsis: P3 columns in r[P2] 4241 ** 4242 ** Open a new cursor that points to a fake table that contains a single 4243 ** row of data. The content of that one row is the content of memory 4244 ** register P2. In other words, cursor P1 becomes an alias for the 4245 ** MEM_Blob content contained in register P2. 4246 ** 4247 ** A pseudo-table created by this opcode is used to hold a single 4248 ** row output from the sorter so that the row can be decomposed into 4249 ** individual columns using the OP_Column opcode. The OP_Column opcode 4250 ** is the only cursor opcode that works with a pseudo-table. 4251 ** 4252 ** P3 is the number of fields in the records that will be stored by 4253 ** the pseudo-table. 4254 */ 4255 case OP_OpenPseudo: { 4256 VdbeCursor *pCx; 4257 4258 assert( pOp->p1>=0 ); 4259 assert( pOp->p3>=0 ); 4260 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4261 if( pCx==0 ) goto no_mem; 4262 pCx->nullRow = 1; 4263 pCx->seekResult = pOp->p2; 4264 pCx->isTable = 1; 4265 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4266 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4267 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4268 ** which is a performance optimization */ 4269 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4270 assert( pOp->p5==0 ); 4271 break; 4272 } 4273 4274 /* Opcode: Close P1 * * * * 4275 ** 4276 ** Close a cursor previously opened as P1. If P1 is not 4277 ** currently open, this instruction is a no-op. 4278 */ 4279 case OP_Close: { 4280 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4281 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4282 p->apCsr[pOp->p1] = 0; 4283 break; 4284 } 4285 4286 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4287 /* Opcode: ColumnsUsed P1 * * P4 * 4288 ** 4289 ** This opcode (which only exists if SQLite was compiled with 4290 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4291 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4292 ** (P4_INT64) in which the first 63 bits are one for each of the 4293 ** first 63 columns of the table or index that are actually used 4294 ** by the cursor. The high-order bit is set if any column after 4295 ** the 64th is used. 4296 */ 4297 case OP_ColumnsUsed: { 4298 VdbeCursor *pC; 4299 pC = p->apCsr[pOp->p1]; 4300 assert( pC->eCurType==CURTYPE_BTREE ); 4301 pC->maskUsed = *(u64*)pOp->p4.pI64; 4302 break; 4303 } 4304 #endif 4305 4306 /* Opcode: SeekGE P1 P2 P3 P4 * 4307 ** Synopsis: key=r[P3@P4] 4308 ** 4309 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4310 ** use the value in register P3 as the key. If cursor P1 refers 4311 ** to an SQL index, then P3 is the first in an array of P4 registers 4312 ** that are used as an unpacked index key. 4313 ** 4314 ** Reposition cursor P1 so that it points to the smallest entry that 4315 ** is greater than or equal to the key value. If there are no records 4316 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4317 ** 4318 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4319 ** opcode will either land on a record that exactly matches the key, or 4320 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4321 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4322 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4323 ** IdxGT opcode will be used on subsequent loop iterations. The 4324 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4325 ** is an equality search. 4326 ** 4327 ** This opcode leaves the cursor configured to move in forward order, 4328 ** from the beginning toward the end. In other words, the cursor is 4329 ** configured to use Next, not Prev. 4330 ** 4331 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4332 */ 4333 /* Opcode: SeekGT P1 P2 P3 P4 * 4334 ** Synopsis: key=r[P3@P4] 4335 ** 4336 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4337 ** use the value in register P3 as a key. If cursor P1 refers 4338 ** to an SQL index, then P3 is the first in an array of P4 registers 4339 ** that are used as an unpacked index key. 4340 ** 4341 ** Reposition cursor P1 so that it points to the smallest entry that 4342 ** is greater than the key value. If there are no records greater than 4343 ** the key and P2 is not zero, then jump to P2. 4344 ** 4345 ** This opcode leaves the cursor configured to move in forward order, 4346 ** from the beginning toward the end. In other words, the cursor is 4347 ** configured to use Next, not Prev. 4348 ** 4349 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4350 */ 4351 /* Opcode: SeekLT P1 P2 P3 P4 * 4352 ** Synopsis: key=r[P3@P4] 4353 ** 4354 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4355 ** use the value in register P3 as a key. If cursor P1 refers 4356 ** to an SQL index, then P3 is the first in an array of P4 registers 4357 ** that are used as an unpacked index key. 4358 ** 4359 ** Reposition cursor P1 so that it points to the largest entry that 4360 ** is less than the key value. If there are no records less than 4361 ** the key and P2 is not zero, then jump to P2. 4362 ** 4363 ** This opcode leaves the cursor configured to move in reverse order, 4364 ** from the end toward the beginning. In other words, the cursor is 4365 ** configured to use Prev, not Next. 4366 ** 4367 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4368 */ 4369 /* Opcode: SeekLE P1 P2 P3 P4 * 4370 ** Synopsis: key=r[P3@P4] 4371 ** 4372 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4373 ** use the value in register P3 as a key. If cursor P1 refers 4374 ** to an SQL index, then P3 is the first in an array of P4 registers 4375 ** that are used as an unpacked index key. 4376 ** 4377 ** Reposition cursor P1 so that it points to the largest entry that 4378 ** is less than or equal to the key value. If there are no records 4379 ** less than or equal to the key and P2 is not zero, then jump to P2. 4380 ** 4381 ** This opcode leaves the cursor configured to move in reverse order, 4382 ** from the end toward the beginning. In other words, the cursor is 4383 ** configured to use Prev, not Next. 4384 ** 4385 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4386 ** opcode will either land on a record that exactly matches the key, or 4387 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4388 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4389 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4390 ** IdxGE opcode will be used on subsequent loop iterations. The 4391 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4392 ** is an equality search. 4393 ** 4394 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4395 */ 4396 case OP_SeekLT: /* jump, in3, group */ 4397 case OP_SeekLE: /* jump, in3, group */ 4398 case OP_SeekGE: /* jump, in3, group */ 4399 case OP_SeekGT: { /* jump, in3, group */ 4400 int res; /* Comparison result */ 4401 int oc; /* Opcode */ 4402 VdbeCursor *pC; /* The cursor to seek */ 4403 UnpackedRecord r; /* The key to seek for */ 4404 int nField; /* Number of columns or fields in the key */ 4405 i64 iKey; /* The rowid we are to seek to */ 4406 int eqOnly; /* Only interested in == results */ 4407 4408 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4409 assert( pOp->p2!=0 ); 4410 pC = p->apCsr[pOp->p1]; 4411 assert( pC!=0 ); 4412 assert( pC->eCurType==CURTYPE_BTREE ); 4413 assert( OP_SeekLE == OP_SeekLT+1 ); 4414 assert( OP_SeekGE == OP_SeekLT+2 ); 4415 assert( OP_SeekGT == OP_SeekLT+3 ); 4416 assert( pC->isOrdered ); 4417 assert( pC->uc.pCursor!=0 ); 4418 oc = pOp->opcode; 4419 eqOnly = 0; 4420 pC->nullRow = 0; 4421 #ifdef SQLITE_DEBUG 4422 pC->seekOp = pOp->opcode; 4423 #endif 4424 4425 pC->deferredMoveto = 0; 4426 pC->cacheStatus = CACHE_STALE; 4427 if( pC->isTable ){ 4428 u16 flags3, newType; 4429 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4430 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4431 || CORRUPT_DB ); 4432 4433 /* The input value in P3 might be of any type: integer, real, string, 4434 ** blob, or NULL. But it needs to be an integer before we can do 4435 ** the seek, so convert it. */ 4436 pIn3 = &aMem[pOp->p3]; 4437 flags3 = pIn3->flags; 4438 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4439 applyNumericAffinity(pIn3, 0); 4440 } 4441 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4442 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4443 pIn3->flags = flags3; /* But convert the type back to its original */ 4444 4445 /* If the P3 value could not be converted into an integer without 4446 ** loss of information, then special processing is required... */ 4447 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4448 int c; 4449 if( (newType & MEM_Real)==0 ){ 4450 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4451 VdbeBranchTaken(1,2); 4452 goto jump_to_p2; 4453 }else{ 4454 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4455 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4456 goto seek_not_found; 4457 } 4458 } 4459 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4460 4461 /* If the approximation iKey is larger than the actual real search 4462 ** term, substitute >= for > and < for <=. e.g. if the search term 4463 ** is 4.9 and the integer approximation 5: 4464 ** 4465 ** (x > 4.9) -> (x >= 5) 4466 ** (x <= 4.9) -> (x < 5) 4467 */ 4468 if( c>0 ){ 4469 assert( OP_SeekGE==(OP_SeekGT-1) ); 4470 assert( OP_SeekLT==(OP_SeekLE-1) ); 4471 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4472 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4473 } 4474 4475 /* If the approximation iKey is smaller than the actual real search 4476 ** term, substitute <= for < and > for >=. */ 4477 else if( c<0 ){ 4478 assert( OP_SeekLE==(OP_SeekLT+1) ); 4479 assert( OP_SeekGT==(OP_SeekGE+1) ); 4480 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4481 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4482 } 4483 } 4484 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4485 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4486 if( rc!=SQLITE_OK ){ 4487 goto abort_due_to_error; 4488 } 4489 }else{ 4490 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4491 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4492 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4493 ** with the same key. 4494 */ 4495 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4496 eqOnly = 1; 4497 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4498 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4499 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4500 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4501 assert( pOp[1].p1==pOp[0].p1 ); 4502 assert( pOp[1].p2==pOp[0].p2 ); 4503 assert( pOp[1].p3==pOp[0].p3 ); 4504 assert( pOp[1].p4.i==pOp[0].p4.i ); 4505 } 4506 4507 nField = pOp->p4.i; 4508 assert( pOp->p4type==P4_INT32 ); 4509 assert( nField>0 ); 4510 r.pKeyInfo = pC->pKeyInfo; 4511 r.nField = (u16)nField; 4512 4513 /* The next line of code computes as follows, only faster: 4514 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4515 ** r.default_rc = -1; 4516 ** }else{ 4517 ** r.default_rc = +1; 4518 ** } 4519 */ 4520 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4521 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4522 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4523 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4524 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4525 4526 r.aMem = &aMem[pOp->p3]; 4527 #ifdef SQLITE_DEBUG 4528 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4529 #endif 4530 r.eqSeen = 0; 4531 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4532 if( rc!=SQLITE_OK ){ 4533 goto abort_due_to_error; 4534 } 4535 if( eqOnly && r.eqSeen==0 ){ 4536 assert( res!=0 ); 4537 goto seek_not_found; 4538 } 4539 } 4540 #ifdef SQLITE_TEST 4541 sqlite3_search_count++; 4542 #endif 4543 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4544 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4545 res = 0; 4546 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4547 if( rc!=SQLITE_OK ){ 4548 if( rc==SQLITE_DONE ){ 4549 rc = SQLITE_OK; 4550 res = 1; 4551 }else{ 4552 goto abort_due_to_error; 4553 } 4554 } 4555 }else{ 4556 res = 0; 4557 } 4558 }else{ 4559 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4560 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4561 res = 0; 4562 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4563 if( rc!=SQLITE_OK ){ 4564 if( rc==SQLITE_DONE ){ 4565 rc = SQLITE_OK; 4566 res = 1; 4567 }else{ 4568 goto abort_due_to_error; 4569 } 4570 } 4571 }else{ 4572 /* res might be negative because the table is empty. Check to 4573 ** see if this is the case. 4574 */ 4575 res = sqlite3BtreeEof(pC->uc.pCursor); 4576 } 4577 } 4578 seek_not_found: 4579 assert( pOp->p2>0 ); 4580 VdbeBranchTaken(res!=0,2); 4581 if( res ){ 4582 goto jump_to_p2; 4583 }else if( eqOnly ){ 4584 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4585 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4586 } 4587 break; 4588 } 4589 4590 4591 /* Opcode: SeekScan P1 P2 * * * 4592 ** Synopsis: Scan-ahead up to P1 rows 4593 ** 4594 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4595 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4596 ** checked by assert() statements. 4597 ** 4598 ** This opcode uses the P1 through P4 operands of the subsequent 4599 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4600 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4601 ** the P1 and P2 operands of this opcode are also used, and are called 4602 ** This.P1 and This.P2. 4603 ** 4604 ** This opcode helps to optimize IN operators on a multi-column index 4605 ** where the IN operator is on the later terms of the index by avoiding 4606 ** unnecessary seeks on the btree, substituting steps to the next row 4607 ** of the b-tree instead. A correct answer is obtained if this opcode 4608 ** is omitted or is a no-op. 4609 ** 4610 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4611 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4612 ** to. Call this SeekGE.P4/P5 row the "target". 4613 ** 4614 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4615 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4616 ** 4617 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4618 ** might be the target row, or it might be near and slightly before the 4619 ** target row. This opcode attempts to position the cursor on the target 4620 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4621 ** between 0 and This.P1 times. 4622 ** 4623 ** There are three possible outcomes from this opcode:<ol> 4624 ** 4625 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4626 ** is earlier in the btree than the target row, then fall through 4627 ** into the subsquence OP_SeekGE opcode. 4628 ** 4629 ** <li> If the cursor is successfully moved to the target row by 0 or more 4630 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4631 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4632 ** 4633 ** <li> If the cursor ends up past the target row (indicating the the target 4634 ** row does not exist in the btree) then jump to SeekOP.P2. 4635 ** </ol> 4636 */ 4637 case OP_SeekScan: { 4638 VdbeCursor *pC; 4639 int res; 4640 int nStep; 4641 UnpackedRecord r; 4642 4643 assert( pOp[1].opcode==OP_SeekGE ); 4644 4645 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4646 ** follows the OP_SeekGE. */ 4647 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4648 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4649 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4650 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4651 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4652 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4653 4654 assert( pOp->p1>0 ); 4655 pC = p->apCsr[pOp[1].p1]; 4656 assert( pC!=0 ); 4657 assert( pC->eCurType==CURTYPE_BTREE ); 4658 assert( !pC->isTable ); 4659 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4660 #ifdef SQLITE_DEBUG 4661 if( db->flags&SQLITE_VdbeTrace ){ 4662 printf("... cursor not valid - fall through\n"); 4663 } 4664 #endif 4665 break; 4666 } 4667 nStep = pOp->p1; 4668 assert( nStep>=1 ); 4669 r.pKeyInfo = pC->pKeyInfo; 4670 r.nField = (u16)pOp[1].p4.i; 4671 r.default_rc = 0; 4672 r.aMem = &aMem[pOp[1].p3]; 4673 #ifdef SQLITE_DEBUG 4674 { 4675 int i; 4676 for(i=0; i<r.nField; i++){ 4677 assert( memIsValid(&r.aMem[i]) ); 4678 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4679 } 4680 } 4681 #endif 4682 res = 0; /* Not needed. Only used to silence a warning. */ 4683 while(1){ 4684 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4685 if( rc ) goto abort_due_to_error; 4686 if( res>0 ){ 4687 seekscan_search_fail: 4688 #ifdef SQLITE_DEBUG 4689 if( db->flags&SQLITE_VdbeTrace ){ 4690 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4691 } 4692 #endif 4693 VdbeBranchTaken(1,3); 4694 pOp++; 4695 goto jump_to_p2; 4696 } 4697 if( res==0 ){ 4698 #ifdef SQLITE_DEBUG 4699 if( db->flags&SQLITE_VdbeTrace ){ 4700 printf("... %d steps and then success\n", pOp->p1 - nStep); 4701 } 4702 #endif 4703 VdbeBranchTaken(2,3); 4704 goto jump_to_p2; 4705 break; 4706 } 4707 if( nStep<=0 ){ 4708 #ifdef SQLITE_DEBUG 4709 if( db->flags&SQLITE_VdbeTrace ){ 4710 printf("... fall through after %d steps\n", pOp->p1); 4711 } 4712 #endif 4713 VdbeBranchTaken(0,3); 4714 break; 4715 } 4716 nStep--; 4717 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4718 if( rc ){ 4719 if( rc==SQLITE_DONE ){ 4720 rc = SQLITE_OK; 4721 goto seekscan_search_fail; 4722 }else{ 4723 goto abort_due_to_error; 4724 } 4725 } 4726 } 4727 4728 break; 4729 } 4730 4731 4732 /* Opcode: SeekHit P1 P2 P3 * * 4733 ** Synopsis: set P2<=seekHit<=P3 4734 ** 4735 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4736 ** so that it is no less than P2 and no greater than P3. 4737 ** 4738 ** The seekHit integer represents the maximum of terms in an index for which 4739 ** there is known to be at least one match. If the seekHit value is smaller 4740 ** than the total number of equality terms in an index lookup, then the 4741 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4742 ** early, thus saving work. This is part of the IN-early-out optimization. 4743 ** 4744 ** P1 must be a valid b-tree cursor. 4745 */ 4746 case OP_SeekHit: { 4747 VdbeCursor *pC; 4748 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4749 pC = p->apCsr[pOp->p1]; 4750 assert( pC!=0 ); 4751 assert( pOp->p3>=pOp->p2 ); 4752 if( pC->seekHit<pOp->p2 ){ 4753 #ifdef SQLITE_DEBUG 4754 if( db->flags&SQLITE_VdbeTrace ){ 4755 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4756 } 4757 #endif 4758 pC->seekHit = pOp->p2; 4759 }else if( pC->seekHit>pOp->p3 ){ 4760 #ifdef SQLITE_DEBUG 4761 if( db->flags&SQLITE_VdbeTrace ){ 4762 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4763 } 4764 #endif 4765 pC->seekHit = pOp->p3; 4766 } 4767 break; 4768 } 4769 4770 /* Opcode: IfNotOpen P1 P2 * * * 4771 ** Synopsis: if( !csr[P1] ) goto P2 4772 ** 4773 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4774 */ 4775 case OP_IfNotOpen: { /* jump */ 4776 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4777 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4778 if( !p->apCsr[pOp->p1] ){ 4779 goto jump_to_p2_and_check_for_interrupt; 4780 } 4781 break; 4782 } 4783 4784 /* Opcode: Found P1 P2 P3 P4 * 4785 ** Synopsis: key=r[P3@P4] 4786 ** 4787 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4788 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4789 ** record. 4790 ** 4791 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4792 ** is a prefix of any entry in P1 then a jump is made to P2 and 4793 ** P1 is left pointing at the matching entry. 4794 ** 4795 ** This operation leaves the cursor in a state where it can be 4796 ** advanced in the forward direction. The Next instruction will work, 4797 ** but not the Prev instruction. 4798 ** 4799 ** See also: NotFound, NoConflict, NotExists. SeekGe 4800 */ 4801 /* Opcode: NotFound P1 P2 P3 P4 * 4802 ** Synopsis: key=r[P3@P4] 4803 ** 4804 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4805 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4806 ** record. 4807 ** 4808 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4809 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4810 ** does contain an entry whose prefix matches the P3/P4 record then control 4811 ** falls through to the next instruction and P1 is left pointing at the 4812 ** matching entry. 4813 ** 4814 ** This operation leaves the cursor in a state where it cannot be 4815 ** advanced in either direction. In other words, the Next and Prev 4816 ** opcodes do not work after this operation. 4817 ** 4818 ** See also: Found, NotExists, NoConflict, IfNoHope 4819 */ 4820 /* Opcode: IfNoHope P1 P2 P3 P4 * 4821 ** Synopsis: key=r[P3@P4] 4822 ** 4823 ** Register P3 is the first of P4 registers that form an unpacked 4824 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4825 ** In other words, the operands to this opcode are the same as the 4826 ** operands to OP_NotFound and OP_IdxGT. 4827 ** 4828 ** This opcode is an optimization attempt only. If this opcode always 4829 ** falls through, the correct answer is still obtained, but extra works 4830 ** is performed. 4831 ** 4832 ** A value of N in the seekHit flag of cursor P1 means that there exists 4833 ** a key P3:N that will match some record in the index. We want to know 4834 ** if it is possible for a record P3:P4 to match some record in the 4835 ** index. If it is not possible, we can skips some work. So if seekHit 4836 ** is less than P4, attempt to find out if a match is possible by running 4837 ** OP_NotFound. 4838 ** 4839 ** This opcode is used in IN clause processing for a multi-column key. 4840 ** If an IN clause is attached to an element of the key other than the 4841 ** left-most element, and if there are no matches on the most recent 4842 ** seek over the whole key, then it might be that one of the key element 4843 ** to the left is prohibiting a match, and hence there is "no hope" of 4844 ** any match regardless of how many IN clause elements are checked. 4845 ** In such a case, we abandon the IN clause search early, using this 4846 ** opcode. The opcode name comes from the fact that the 4847 ** jump is taken if there is "no hope" of achieving a match. 4848 ** 4849 ** See also: NotFound, SeekHit 4850 */ 4851 /* Opcode: NoConflict P1 P2 P3 P4 * 4852 ** Synopsis: key=r[P3@P4] 4853 ** 4854 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4855 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4856 ** record. 4857 ** 4858 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4859 ** contains any NULL value, jump immediately to P2. If all terms of the 4860 ** record are not-NULL then a check is done to determine if any row in the 4861 ** P1 index btree has a matching key prefix. If there are no matches, jump 4862 ** immediately to P2. If there is a match, fall through and leave the P1 4863 ** cursor pointing to the matching row. 4864 ** 4865 ** This opcode is similar to OP_NotFound with the exceptions that the 4866 ** branch is always taken if any part of the search key input is NULL. 4867 ** 4868 ** This operation leaves the cursor in a state where it cannot be 4869 ** advanced in either direction. In other words, the Next and Prev 4870 ** opcodes do not work after this operation. 4871 ** 4872 ** See also: NotFound, Found, NotExists 4873 */ 4874 case OP_IfNoHope: { /* jump, in3 */ 4875 VdbeCursor *pC; 4876 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4877 pC = p->apCsr[pOp->p1]; 4878 assert( pC!=0 ); 4879 #ifdef SQLITE_DEBUG 4880 if( db->flags&SQLITE_VdbeTrace ){ 4881 printf("seekHit is %d\n", pC->seekHit); 4882 } 4883 #endif 4884 if( pC->seekHit>=pOp->p4.i ) break; 4885 /* Fall through into OP_NotFound */ 4886 /* no break */ deliberate_fall_through 4887 } 4888 case OP_NoConflict: /* jump, in3 */ 4889 case OP_NotFound: /* jump, in3 */ 4890 case OP_Found: { /* jump, in3 */ 4891 int alreadyExists; 4892 int takeJump; 4893 int ii; 4894 VdbeCursor *pC; 4895 int res; 4896 UnpackedRecord *pFree; 4897 UnpackedRecord *pIdxKey; 4898 UnpackedRecord r; 4899 4900 #ifdef SQLITE_TEST 4901 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4902 #endif 4903 4904 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4905 assert( pOp->p4type==P4_INT32 ); 4906 pC = p->apCsr[pOp->p1]; 4907 assert( pC!=0 ); 4908 #ifdef SQLITE_DEBUG 4909 pC->seekOp = pOp->opcode; 4910 #endif 4911 pIn3 = &aMem[pOp->p3]; 4912 assert( pC->eCurType==CURTYPE_BTREE ); 4913 assert( pC->uc.pCursor!=0 ); 4914 assert( pC->isTable==0 ); 4915 if( pOp->p4.i>0 ){ 4916 r.pKeyInfo = pC->pKeyInfo; 4917 r.nField = (u16)pOp->p4.i; 4918 r.aMem = pIn3; 4919 #ifdef SQLITE_DEBUG 4920 for(ii=0; ii<r.nField; ii++){ 4921 assert( memIsValid(&r.aMem[ii]) ); 4922 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4923 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4924 } 4925 #endif 4926 pIdxKey = &r; 4927 pFree = 0; 4928 }else{ 4929 assert( pIn3->flags & MEM_Blob ); 4930 rc = ExpandBlob(pIn3); 4931 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4932 if( rc ) goto no_mem; 4933 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4934 if( pIdxKey==0 ) goto no_mem; 4935 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4936 } 4937 pIdxKey->default_rc = 0; 4938 takeJump = 0; 4939 if( pOp->opcode==OP_NoConflict ){ 4940 /* For the OP_NoConflict opcode, take the jump if any of the 4941 ** input fields are NULL, since any key with a NULL will not 4942 ** conflict */ 4943 for(ii=0; ii<pIdxKey->nField; ii++){ 4944 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4945 takeJump = 1; 4946 break; 4947 } 4948 } 4949 } 4950 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res); 4951 if( pFree ) sqlite3DbFreeNN(db, pFree); 4952 if( rc!=SQLITE_OK ){ 4953 goto abort_due_to_error; 4954 } 4955 pC->seekResult = res; 4956 alreadyExists = (res==0); 4957 pC->nullRow = 1-alreadyExists; 4958 pC->deferredMoveto = 0; 4959 pC->cacheStatus = CACHE_STALE; 4960 if( pOp->opcode==OP_Found ){ 4961 VdbeBranchTaken(alreadyExists!=0,2); 4962 if( alreadyExists ) goto jump_to_p2; 4963 }else{ 4964 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4965 if( takeJump || !alreadyExists ) goto jump_to_p2; 4966 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4967 } 4968 break; 4969 } 4970 4971 /* Opcode: SeekRowid P1 P2 P3 * * 4972 ** Synopsis: intkey=r[P3] 4973 ** 4974 ** P1 is the index of a cursor open on an SQL table btree (with integer 4975 ** keys). If register P3 does not contain an integer or if P1 does not 4976 ** contain a record with rowid P3 then jump immediately to P2. 4977 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4978 ** a record with rowid P3 then 4979 ** leave the cursor pointing at that record and fall through to the next 4980 ** instruction. 4981 ** 4982 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4983 ** the P3 register must be guaranteed to contain an integer value. With this 4984 ** opcode, register P3 might not contain an integer. 4985 ** 4986 ** The OP_NotFound opcode performs the same operation on index btrees 4987 ** (with arbitrary multi-value keys). 4988 ** 4989 ** This opcode leaves the cursor in a state where it cannot be advanced 4990 ** in either direction. In other words, the Next and Prev opcodes will 4991 ** not work following this opcode. 4992 ** 4993 ** See also: Found, NotFound, NoConflict, SeekRowid 4994 */ 4995 /* Opcode: NotExists P1 P2 P3 * * 4996 ** Synopsis: intkey=r[P3] 4997 ** 4998 ** P1 is the index of a cursor open on an SQL table btree (with integer 4999 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5000 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5001 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5002 ** leave the cursor pointing at that record and fall through to the next 5003 ** instruction. 5004 ** 5005 ** The OP_SeekRowid opcode performs the same operation but also allows the 5006 ** P3 register to contain a non-integer value, in which case the jump is 5007 ** always taken. This opcode requires that P3 always contain an integer. 5008 ** 5009 ** The OP_NotFound opcode performs the same operation on index btrees 5010 ** (with arbitrary multi-value keys). 5011 ** 5012 ** This opcode leaves the cursor in a state where it cannot be advanced 5013 ** in either direction. In other words, the Next and Prev opcodes will 5014 ** not work following this opcode. 5015 ** 5016 ** See also: Found, NotFound, NoConflict, SeekRowid 5017 */ 5018 case OP_SeekRowid: { /* jump, in3 */ 5019 VdbeCursor *pC; 5020 BtCursor *pCrsr; 5021 int res; 5022 u64 iKey; 5023 5024 pIn3 = &aMem[pOp->p3]; 5025 testcase( pIn3->flags & MEM_Int ); 5026 testcase( pIn3->flags & MEM_IntReal ); 5027 testcase( pIn3->flags & MEM_Real ); 5028 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5029 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5030 /* If pIn3->u.i does not contain an integer, compute iKey as the 5031 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5032 ** into an integer without loss of information. Take care to avoid 5033 ** changing the datatype of pIn3, however, as it is used by other 5034 ** parts of the prepared statement. */ 5035 Mem x = pIn3[0]; 5036 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5037 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5038 iKey = x.u.i; 5039 goto notExistsWithKey; 5040 } 5041 /* Fall through into OP_NotExists */ 5042 /* no break */ deliberate_fall_through 5043 case OP_NotExists: /* jump, in3 */ 5044 pIn3 = &aMem[pOp->p3]; 5045 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5046 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5047 iKey = pIn3->u.i; 5048 notExistsWithKey: 5049 pC = p->apCsr[pOp->p1]; 5050 assert( pC!=0 ); 5051 #ifdef SQLITE_DEBUG 5052 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5053 #endif 5054 assert( pC->isTable ); 5055 assert( pC->eCurType==CURTYPE_BTREE ); 5056 pCrsr = pC->uc.pCursor; 5057 assert( pCrsr!=0 ); 5058 res = 0; 5059 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5060 assert( rc==SQLITE_OK || res==0 ); 5061 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5062 pC->nullRow = 0; 5063 pC->cacheStatus = CACHE_STALE; 5064 pC->deferredMoveto = 0; 5065 VdbeBranchTaken(res!=0,2); 5066 pC->seekResult = res; 5067 if( res!=0 ){ 5068 assert( rc==SQLITE_OK ); 5069 if( pOp->p2==0 ){ 5070 rc = SQLITE_CORRUPT_BKPT; 5071 }else{ 5072 goto jump_to_p2; 5073 } 5074 } 5075 if( rc ) goto abort_due_to_error; 5076 break; 5077 } 5078 5079 /* Opcode: Sequence P1 P2 * * * 5080 ** Synopsis: r[P2]=cursor[P1].ctr++ 5081 ** 5082 ** Find the next available sequence number for cursor P1. 5083 ** Write the sequence number into register P2. 5084 ** The sequence number on the cursor is incremented after this 5085 ** instruction. 5086 */ 5087 case OP_Sequence: { /* out2 */ 5088 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5089 assert( p->apCsr[pOp->p1]!=0 ); 5090 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5091 pOut = out2Prerelease(p, pOp); 5092 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5093 break; 5094 } 5095 5096 5097 /* Opcode: NewRowid P1 P2 P3 * * 5098 ** Synopsis: r[P2]=rowid 5099 ** 5100 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5101 ** The record number is not previously used as a key in the database 5102 ** table that cursor P1 points to. The new record number is written 5103 ** written to register P2. 5104 ** 5105 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5106 ** the largest previously generated record number. No new record numbers are 5107 ** allowed to be less than this value. When this value reaches its maximum, 5108 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5109 ** generated record number. This P3 mechanism is used to help implement the 5110 ** AUTOINCREMENT feature. 5111 */ 5112 case OP_NewRowid: { /* out2 */ 5113 i64 v; /* The new rowid */ 5114 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5115 int res; /* Result of an sqlite3BtreeLast() */ 5116 int cnt; /* Counter to limit the number of searches */ 5117 #ifndef SQLITE_OMIT_AUTOINCREMENT 5118 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5119 VdbeFrame *pFrame; /* Root frame of VDBE */ 5120 #endif 5121 5122 v = 0; 5123 res = 0; 5124 pOut = out2Prerelease(p, pOp); 5125 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5126 pC = p->apCsr[pOp->p1]; 5127 assert( pC!=0 ); 5128 assert( pC->isTable ); 5129 assert( pC->eCurType==CURTYPE_BTREE ); 5130 assert( pC->uc.pCursor!=0 ); 5131 { 5132 /* The next rowid or record number (different terms for the same 5133 ** thing) is obtained in a two-step algorithm. 5134 ** 5135 ** First we attempt to find the largest existing rowid and add one 5136 ** to that. But if the largest existing rowid is already the maximum 5137 ** positive integer, we have to fall through to the second 5138 ** probabilistic algorithm 5139 ** 5140 ** The second algorithm is to select a rowid at random and see if 5141 ** it already exists in the table. If it does not exist, we have 5142 ** succeeded. If the random rowid does exist, we select a new one 5143 ** and try again, up to 100 times. 5144 */ 5145 assert( pC->isTable ); 5146 5147 #ifdef SQLITE_32BIT_ROWID 5148 # define MAX_ROWID 0x7fffffff 5149 #else 5150 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5151 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5152 ** to provide the constant while making all compilers happy. 5153 */ 5154 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5155 #endif 5156 5157 if( !pC->useRandomRowid ){ 5158 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5159 if( rc!=SQLITE_OK ){ 5160 goto abort_due_to_error; 5161 } 5162 if( res ){ 5163 v = 1; /* IMP: R-61914-48074 */ 5164 }else{ 5165 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5166 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5167 if( v>=MAX_ROWID ){ 5168 pC->useRandomRowid = 1; 5169 }else{ 5170 v++; /* IMP: R-29538-34987 */ 5171 } 5172 } 5173 } 5174 5175 #ifndef SQLITE_OMIT_AUTOINCREMENT 5176 if( pOp->p3 ){ 5177 /* Assert that P3 is a valid memory cell. */ 5178 assert( pOp->p3>0 ); 5179 if( p->pFrame ){ 5180 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5181 /* Assert that P3 is a valid memory cell. */ 5182 assert( pOp->p3<=pFrame->nMem ); 5183 pMem = &pFrame->aMem[pOp->p3]; 5184 }else{ 5185 /* Assert that P3 is a valid memory cell. */ 5186 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5187 pMem = &aMem[pOp->p3]; 5188 memAboutToChange(p, pMem); 5189 } 5190 assert( memIsValid(pMem) ); 5191 5192 REGISTER_TRACE(pOp->p3, pMem); 5193 sqlite3VdbeMemIntegerify(pMem); 5194 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5195 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5196 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5197 goto abort_due_to_error; 5198 } 5199 if( v<pMem->u.i+1 ){ 5200 v = pMem->u.i + 1; 5201 } 5202 pMem->u.i = v; 5203 } 5204 #endif 5205 if( pC->useRandomRowid ){ 5206 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5207 ** largest possible integer (9223372036854775807) then the database 5208 ** engine starts picking positive candidate ROWIDs at random until 5209 ** it finds one that is not previously used. */ 5210 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5211 ** an AUTOINCREMENT table. */ 5212 cnt = 0; 5213 do{ 5214 sqlite3_randomness(sizeof(v), &v); 5215 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5216 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5217 0, &res))==SQLITE_OK) 5218 && (res==0) 5219 && (++cnt<100)); 5220 if( rc ) goto abort_due_to_error; 5221 if( res==0 ){ 5222 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5223 goto abort_due_to_error; 5224 } 5225 assert( v>0 ); /* EV: R-40812-03570 */ 5226 } 5227 pC->deferredMoveto = 0; 5228 pC->cacheStatus = CACHE_STALE; 5229 } 5230 pOut->u.i = v; 5231 break; 5232 } 5233 5234 /* Opcode: Insert P1 P2 P3 P4 P5 5235 ** Synopsis: intkey=r[P3] data=r[P2] 5236 ** 5237 ** Write an entry into the table of cursor P1. A new entry is 5238 ** created if it doesn't already exist or the data for an existing 5239 ** entry is overwritten. The data is the value MEM_Blob stored in register 5240 ** number P2. The key is stored in register P3. The key must 5241 ** be a MEM_Int. 5242 ** 5243 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5244 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5245 ** then rowid is stored for subsequent return by the 5246 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5247 ** 5248 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5249 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5250 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5251 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5252 ** 5253 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5254 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5255 ** is part of an INSERT operation. The difference is only important to 5256 ** the update hook. 5257 ** 5258 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5259 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5260 ** following a successful insert. 5261 ** 5262 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5263 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5264 ** and register P2 becomes ephemeral. If the cursor is changed, the 5265 ** value of register P2 will then change. Make sure this does not 5266 ** cause any problems.) 5267 ** 5268 ** This instruction only works on tables. The equivalent instruction 5269 ** for indices is OP_IdxInsert. 5270 */ 5271 case OP_Insert: { 5272 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5273 Mem *pKey; /* MEM cell holding key for the record */ 5274 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5275 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5276 const char *zDb; /* database name - used by the update hook */ 5277 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5278 BtreePayload x; /* Payload to be inserted */ 5279 5280 pData = &aMem[pOp->p2]; 5281 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5282 assert( memIsValid(pData) ); 5283 pC = p->apCsr[pOp->p1]; 5284 assert( pC!=0 ); 5285 assert( pC->eCurType==CURTYPE_BTREE ); 5286 assert( pC->deferredMoveto==0 ); 5287 assert( pC->uc.pCursor!=0 ); 5288 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5289 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5290 REGISTER_TRACE(pOp->p2, pData); 5291 sqlite3VdbeIncrWriteCounter(p, pC); 5292 5293 pKey = &aMem[pOp->p3]; 5294 assert( pKey->flags & MEM_Int ); 5295 assert( memIsValid(pKey) ); 5296 REGISTER_TRACE(pOp->p3, pKey); 5297 x.nKey = pKey->u.i; 5298 5299 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5300 assert( pC->iDb>=0 ); 5301 zDb = db->aDb[pC->iDb].zDbSName; 5302 pTab = pOp->p4.pTab; 5303 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5304 }else{ 5305 pTab = 0; 5306 zDb = 0; 5307 } 5308 5309 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5310 /* Invoke the pre-update hook, if any */ 5311 if( pTab ){ 5312 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5313 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5314 } 5315 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5316 /* Prevent post-update hook from running in cases when it should not */ 5317 pTab = 0; 5318 } 5319 } 5320 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5321 #endif 5322 5323 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5324 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5325 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5326 x.pData = pData->z; 5327 x.nData = pData->n; 5328 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5329 if( pData->flags & MEM_Zero ){ 5330 x.nZero = pData->u.nZero; 5331 }else{ 5332 x.nZero = 0; 5333 } 5334 x.pKey = 0; 5335 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5336 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5337 seekResult 5338 ); 5339 pC->deferredMoveto = 0; 5340 pC->cacheStatus = CACHE_STALE; 5341 5342 /* Invoke the update-hook if required. */ 5343 if( rc ) goto abort_due_to_error; 5344 if( pTab ){ 5345 assert( db->xUpdateCallback!=0 ); 5346 assert( pTab->aCol!=0 ); 5347 db->xUpdateCallback(db->pUpdateArg, 5348 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5349 zDb, pTab->zName, x.nKey); 5350 } 5351 break; 5352 } 5353 5354 /* Opcode: RowCell P1 P2 P3 * * 5355 ** 5356 ** P1 and P2 are both open cursors. Both must be opened on the same type 5357 ** of table - intkey or index. This opcode is used as part of copying 5358 ** the current row from P2 into P1. If the cursors are opened on intkey 5359 ** tables, register P3 contains the rowid to use with the new record in 5360 ** P1. If they are opened on index tables, P3 is not used. 5361 ** 5362 ** This opcode must be followed by either an Insert or InsertIdx opcode 5363 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5364 */ 5365 case OP_RowCell: { 5366 VdbeCursor *pDest; /* Cursor to write to */ 5367 VdbeCursor *pSrc; /* Cursor to read from */ 5368 i64 iKey; /* Rowid value to insert with */ 5369 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5370 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5371 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5372 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5373 pDest = p->apCsr[pOp->p1]; 5374 pSrc = p->apCsr[pOp->p2]; 5375 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5376 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5377 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5378 break; 5379 }; 5380 5381 /* Opcode: Delete P1 P2 P3 P4 P5 5382 ** 5383 ** Delete the record at which the P1 cursor is currently pointing. 5384 ** 5385 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5386 ** the cursor will be left pointing at either the next or the previous 5387 ** record in the table. If it is left pointing at the next record, then 5388 ** the next Next instruction will be a no-op. As a result, in this case 5389 ** it is ok to delete a record from within a Next loop. If 5390 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5391 ** left in an undefined state. 5392 ** 5393 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5394 ** delete one of several associated with deleting a table row and all its 5395 ** associated index entries. Exactly one of those deletes is the "primary" 5396 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5397 ** marked with the AUXDELETE flag. 5398 ** 5399 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5400 ** change count is incremented (otherwise not). 5401 ** 5402 ** P1 must not be pseudo-table. It has to be a real table with 5403 ** multiple rows. 5404 ** 5405 ** If P4 is not NULL then it points to a Table object. In this case either 5406 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5407 ** have been positioned using OP_NotFound prior to invoking this opcode in 5408 ** this case. Specifically, if one is configured, the pre-update hook is 5409 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5410 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5411 ** 5412 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5413 ** of the memory cell that contains the value that the rowid of the row will 5414 ** be set to by the update. 5415 */ 5416 case OP_Delete: { 5417 VdbeCursor *pC; 5418 const char *zDb; 5419 Table *pTab; 5420 int opflags; 5421 5422 opflags = pOp->p2; 5423 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5424 pC = p->apCsr[pOp->p1]; 5425 assert( pC!=0 ); 5426 assert( pC->eCurType==CURTYPE_BTREE ); 5427 assert( pC->uc.pCursor!=0 ); 5428 assert( pC->deferredMoveto==0 ); 5429 sqlite3VdbeIncrWriteCounter(p, pC); 5430 5431 #ifdef SQLITE_DEBUG 5432 if( pOp->p4type==P4_TABLE 5433 && HasRowid(pOp->p4.pTab) 5434 && pOp->p5==0 5435 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5436 ){ 5437 /* If p5 is zero, the seek operation that positioned the cursor prior to 5438 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5439 ** the row that is being deleted */ 5440 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5441 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5442 } 5443 #endif 5444 5445 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5446 ** the name of the db to pass as to it. Also set local pTab to a copy 5447 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5448 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5449 ** VdbeCursor.movetoTarget to the current rowid. */ 5450 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5451 assert( pC->iDb>=0 ); 5452 assert( pOp->p4.pTab!=0 ); 5453 zDb = db->aDb[pC->iDb].zDbSName; 5454 pTab = pOp->p4.pTab; 5455 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5456 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5457 } 5458 }else{ 5459 zDb = 0; 5460 pTab = 0; 5461 } 5462 5463 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5464 /* Invoke the pre-update-hook if required. */ 5465 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5466 if( db->xPreUpdateCallback && pTab ){ 5467 assert( !(opflags & OPFLAG_ISUPDATE) 5468 || HasRowid(pTab)==0 5469 || (aMem[pOp->p3].flags & MEM_Int) 5470 ); 5471 sqlite3VdbePreUpdateHook(p, pC, 5472 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5473 zDb, pTab, pC->movetoTarget, 5474 pOp->p3, -1 5475 ); 5476 } 5477 if( opflags & OPFLAG_ISNOOP ) break; 5478 #endif 5479 5480 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5481 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5482 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5483 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5484 5485 #ifdef SQLITE_DEBUG 5486 if( p->pFrame==0 ){ 5487 if( pC->isEphemeral==0 5488 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5489 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5490 ){ 5491 nExtraDelete++; 5492 } 5493 if( pOp->p2 & OPFLAG_NCHANGE ){ 5494 nExtraDelete--; 5495 } 5496 } 5497 #endif 5498 5499 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5500 pC->cacheStatus = CACHE_STALE; 5501 pC->seekResult = 0; 5502 if( rc ) goto abort_due_to_error; 5503 5504 /* Invoke the update-hook if required. */ 5505 if( opflags & OPFLAG_NCHANGE ){ 5506 p->nChange++; 5507 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5508 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5509 pC->movetoTarget); 5510 assert( pC->iDb>=0 ); 5511 } 5512 } 5513 5514 break; 5515 } 5516 /* Opcode: ResetCount * * * * * 5517 ** 5518 ** The value of the change counter is copied to the database handle 5519 ** change counter (returned by subsequent calls to sqlite3_changes()). 5520 ** Then the VMs internal change counter resets to 0. 5521 ** This is used by trigger programs. 5522 */ 5523 case OP_ResetCount: { 5524 sqlite3VdbeSetChanges(db, p->nChange); 5525 p->nChange = 0; 5526 break; 5527 } 5528 5529 /* Opcode: SorterCompare P1 P2 P3 P4 5530 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5531 ** 5532 ** P1 is a sorter cursor. This instruction compares a prefix of the 5533 ** record blob in register P3 against a prefix of the entry that 5534 ** the sorter cursor currently points to. Only the first P4 fields 5535 ** of r[P3] and the sorter record are compared. 5536 ** 5537 ** If either P3 or the sorter contains a NULL in one of their significant 5538 ** fields (not counting the P4 fields at the end which are ignored) then 5539 ** the comparison is assumed to be equal. 5540 ** 5541 ** Fall through to next instruction if the two records compare equal to 5542 ** each other. Jump to P2 if they are different. 5543 */ 5544 case OP_SorterCompare: { 5545 VdbeCursor *pC; 5546 int res; 5547 int nKeyCol; 5548 5549 pC = p->apCsr[pOp->p1]; 5550 assert( isSorter(pC) ); 5551 assert( pOp->p4type==P4_INT32 ); 5552 pIn3 = &aMem[pOp->p3]; 5553 nKeyCol = pOp->p4.i; 5554 res = 0; 5555 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5556 VdbeBranchTaken(res!=0,2); 5557 if( rc ) goto abort_due_to_error; 5558 if( res ) goto jump_to_p2; 5559 break; 5560 }; 5561 5562 /* Opcode: SorterData P1 P2 P3 * * 5563 ** Synopsis: r[P2]=data 5564 ** 5565 ** Write into register P2 the current sorter data for sorter cursor P1. 5566 ** Then clear the column header cache on cursor P3. 5567 ** 5568 ** This opcode is normally use to move a record out of the sorter and into 5569 ** a register that is the source for a pseudo-table cursor created using 5570 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5571 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5572 ** us from having to issue a separate NullRow instruction to clear that cache. 5573 */ 5574 case OP_SorterData: { 5575 VdbeCursor *pC; 5576 5577 pOut = &aMem[pOp->p2]; 5578 pC = p->apCsr[pOp->p1]; 5579 assert( isSorter(pC) ); 5580 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5581 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5582 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5583 if( rc ) goto abort_due_to_error; 5584 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5585 break; 5586 } 5587 5588 /* Opcode: RowData P1 P2 P3 * * 5589 ** Synopsis: r[P2]=data 5590 ** 5591 ** Write into register P2 the complete row content for the row at 5592 ** which cursor P1 is currently pointing. 5593 ** There is no interpretation of the data. 5594 ** It is just copied onto the P2 register exactly as 5595 ** it is found in the database file. 5596 ** 5597 ** If cursor P1 is an index, then the content is the key of the row. 5598 ** If cursor P2 is a table, then the content extracted is the data. 5599 ** 5600 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5601 ** of a real table, not a pseudo-table. 5602 ** 5603 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5604 ** into the database page. That means that the content of the output 5605 ** register will be invalidated as soon as the cursor moves - including 5606 ** moves caused by other cursors that "save" the current cursors 5607 ** position in order that they can write to the same table. If P3==0 5608 ** then a copy of the data is made into memory. P3!=0 is faster, but 5609 ** P3==0 is safer. 5610 ** 5611 ** If P3!=0 then the content of the P2 register is unsuitable for use 5612 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5613 ** The P2 register content is invalidated by opcodes like OP_Function or 5614 ** by any use of another cursor pointing to the same table. 5615 */ 5616 case OP_RowData: { 5617 VdbeCursor *pC; 5618 BtCursor *pCrsr; 5619 u32 n; 5620 5621 pOut = out2Prerelease(p, pOp); 5622 5623 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5624 pC = p->apCsr[pOp->p1]; 5625 assert( pC!=0 ); 5626 assert( pC->eCurType==CURTYPE_BTREE ); 5627 assert( isSorter(pC)==0 ); 5628 assert( pC->nullRow==0 ); 5629 assert( pC->uc.pCursor!=0 ); 5630 pCrsr = pC->uc.pCursor; 5631 5632 /* The OP_RowData opcodes always follow OP_NotExists or 5633 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5634 ** that might invalidate the cursor. 5635 ** If this where not the case, on of the following assert()s 5636 ** would fail. Should this ever change (because of changes in the code 5637 ** generator) then the fix would be to insert a call to 5638 ** sqlite3VdbeCursorMoveto(). 5639 */ 5640 assert( pC->deferredMoveto==0 ); 5641 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5642 5643 n = sqlite3BtreePayloadSize(pCrsr); 5644 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5645 goto too_big; 5646 } 5647 testcase( n==0 ); 5648 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5649 if( rc ) goto abort_due_to_error; 5650 if( !pOp->p3 ) Deephemeralize(pOut); 5651 UPDATE_MAX_BLOBSIZE(pOut); 5652 REGISTER_TRACE(pOp->p2, pOut); 5653 break; 5654 } 5655 5656 /* Opcode: Rowid P1 P2 * * * 5657 ** Synopsis: r[P2]=rowid 5658 ** 5659 ** Store in register P2 an integer which is the key of the table entry that 5660 ** P1 is currently point to. 5661 ** 5662 ** P1 can be either an ordinary table or a virtual table. There used to 5663 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5664 ** one opcode now works for both table types. 5665 */ 5666 case OP_Rowid: { /* out2 */ 5667 VdbeCursor *pC; 5668 i64 v; 5669 sqlite3_vtab *pVtab; 5670 const sqlite3_module *pModule; 5671 5672 pOut = out2Prerelease(p, pOp); 5673 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5674 pC = p->apCsr[pOp->p1]; 5675 assert( pC!=0 ); 5676 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5677 if( pC->nullRow ){ 5678 pOut->flags = MEM_Null; 5679 break; 5680 }else if( pC->deferredMoveto ){ 5681 v = pC->movetoTarget; 5682 #ifndef SQLITE_OMIT_VIRTUALTABLE 5683 }else if( pC->eCurType==CURTYPE_VTAB ){ 5684 assert( pC->uc.pVCur!=0 ); 5685 pVtab = pC->uc.pVCur->pVtab; 5686 pModule = pVtab->pModule; 5687 assert( pModule->xRowid ); 5688 rc = pModule->xRowid(pC->uc.pVCur, &v); 5689 sqlite3VtabImportErrmsg(p, pVtab); 5690 if( rc ) goto abort_due_to_error; 5691 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5692 }else{ 5693 assert( pC->eCurType==CURTYPE_BTREE ); 5694 assert( pC->uc.pCursor!=0 ); 5695 rc = sqlite3VdbeCursorRestore(pC); 5696 if( rc ) goto abort_due_to_error; 5697 if( pC->nullRow ){ 5698 pOut->flags = MEM_Null; 5699 break; 5700 } 5701 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5702 } 5703 pOut->u.i = v; 5704 break; 5705 } 5706 5707 /* Opcode: NullRow P1 * * * * 5708 ** 5709 ** Move the cursor P1 to a null row. Any OP_Column operations 5710 ** that occur while the cursor is on the null row will always 5711 ** write a NULL. 5712 */ 5713 case OP_NullRow: { 5714 VdbeCursor *pC; 5715 5716 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5717 pC = p->apCsr[pOp->p1]; 5718 assert( pC!=0 ); 5719 pC->nullRow = 1; 5720 pC->cacheStatus = CACHE_STALE; 5721 if( pC->eCurType==CURTYPE_BTREE ){ 5722 assert( pC->uc.pCursor!=0 ); 5723 sqlite3BtreeClearCursor(pC->uc.pCursor); 5724 } 5725 #ifdef SQLITE_DEBUG 5726 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5727 #endif 5728 break; 5729 } 5730 5731 /* Opcode: SeekEnd P1 * * * * 5732 ** 5733 ** Position cursor P1 at the end of the btree for the purpose of 5734 ** appending a new entry onto the btree. 5735 ** 5736 ** It is assumed that the cursor is used only for appending and so 5737 ** if the cursor is valid, then the cursor must already be pointing 5738 ** at the end of the btree and so no changes are made to 5739 ** the cursor. 5740 */ 5741 /* Opcode: Last P1 P2 * * * 5742 ** 5743 ** The next use of the Rowid or Column or Prev instruction for P1 5744 ** will refer to the last entry in the database table or index. 5745 ** If the table or index is empty and P2>0, then jump immediately to P2. 5746 ** If P2 is 0 or if the table or index is not empty, fall through 5747 ** to the following instruction. 5748 ** 5749 ** This opcode leaves the cursor configured to move in reverse order, 5750 ** from the end toward the beginning. In other words, the cursor is 5751 ** configured to use Prev, not Next. 5752 */ 5753 case OP_SeekEnd: 5754 case OP_Last: { /* jump */ 5755 VdbeCursor *pC; 5756 BtCursor *pCrsr; 5757 int res; 5758 5759 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5760 pC = p->apCsr[pOp->p1]; 5761 assert( pC!=0 ); 5762 assert( pC->eCurType==CURTYPE_BTREE ); 5763 pCrsr = pC->uc.pCursor; 5764 res = 0; 5765 assert( pCrsr!=0 ); 5766 #ifdef SQLITE_DEBUG 5767 pC->seekOp = pOp->opcode; 5768 #endif 5769 if( pOp->opcode==OP_SeekEnd ){ 5770 assert( pOp->p2==0 ); 5771 pC->seekResult = -1; 5772 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5773 break; 5774 } 5775 } 5776 rc = sqlite3BtreeLast(pCrsr, &res); 5777 pC->nullRow = (u8)res; 5778 pC->deferredMoveto = 0; 5779 pC->cacheStatus = CACHE_STALE; 5780 if( rc ) goto abort_due_to_error; 5781 if( pOp->p2>0 ){ 5782 VdbeBranchTaken(res!=0,2); 5783 if( res ) goto jump_to_p2; 5784 } 5785 break; 5786 } 5787 5788 /* Opcode: IfSmaller P1 P2 P3 * * 5789 ** 5790 ** Estimate the number of rows in the table P1. Jump to P2 if that 5791 ** estimate is less than approximately 2**(0.1*P3). 5792 */ 5793 case OP_IfSmaller: { /* jump */ 5794 VdbeCursor *pC; 5795 BtCursor *pCrsr; 5796 int res; 5797 i64 sz; 5798 5799 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5800 pC = p->apCsr[pOp->p1]; 5801 assert( pC!=0 ); 5802 pCrsr = pC->uc.pCursor; 5803 assert( pCrsr ); 5804 rc = sqlite3BtreeFirst(pCrsr, &res); 5805 if( rc ) goto abort_due_to_error; 5806 if( res==0 ){ 5807 sz = sqlite3BtreeRowCountEst(pCrsr); 5808 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5809 } 5810 VdbeBranchTaken(res!=0,2); 5811 if( res ) goto jump_to_p2; 5812 break; 5813 } 5814 5815 5816 /* Opcode: SorterSort P1 P2 * * * 5817 ** 5818 ** After all records have been inserted into the Sorter object 5819 ** identified by P1, invoke this opcode to actually do the sorting. 5820 ** Jump to P2 if there are no records to be sorted. 5821 ** 5822 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5823 ** for Sorter objects. 5824 */ 5825 /* Opcode: Sort P1 P2 * * * 5826 ** 5827 ** This opcode does exactly the same thing as OP_Rewind except that 5828 ** it increments an undocumented global variable used for testing. 5829 ** 5830 ** Sorting is accomplished by writing records into a sorting index, 5831 ** then rewinding that index and playing it back from beginning to 5832 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5833 ** rewinding so that the global variable will be incremented and 5834 ** regression tests can determine whether or not the optimizer is 5835 ** correctly optimizing out sorts. 5836 */ 5837 case OP_SorterSort: /* jump */ 5838 case OP_Sort: { /* jump */ 5839 #ifdef SQLITE_TEST 5840 sqlite3_sort_count++; 5841 sqlite3_search_count--; 5842 #endif 5843 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5844 /* Fall through into OP_Rewind */ 5845 /* no break */ deliberate_fall_through 5846 } 5847 /* Opcode: Rewind P1 P2 * * * 5848 ** 5849 ** The next use of the Rowid or Column or Next instruction for P1 5850 ** will refer to the first entry in the database table or index. 5851 ** If the table or index is empty, jump immediately to P2. 5852 ** If the table or index is not empty, fall through to the following 5853 ** instruction. 5854 ** 5855 ** This opcode leaves the cursor configured to move in forward order, 5856 ** from the beginning toward the end. In other words, the cursor is 5857 ** configured to use Next, not Prev. 5858 */ 5859 case OP_Rewind: { /* jump */ 5860 VdbeCursor *pC; 5861 BtCursor *pCrsr; 5862 int res; 5863 5864 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5865 assert( pOp->p5==0 ); 5866 pC = p->apCsr[pOp->p1]; 5867 assert( pC!=0 ); 5868 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5869 res = 1; 5870 #ifdef SQLITE_DEBUG 5871 pC->seekOp = OP_Rewind; 5872 #endif 5873 if( isSorter(pC) ){ 5874 rc = sqlite3VdbeSorterRewind(pC, &res); 5875 }else{ 5876 assert( pC->eCurType==CURTYPE_BTREE ); 5877 pCrsr = pC->uc.pCursor; 5878 assert( pCrsr ); 5879 rc = sqlite3BtreeFirst(pCrsr, &res); 5880 pC->deferredMoveto = 0; 5881 pC->cacheStatus = CACHE_STALE; 5882 } 5883 if( rc ) goto abort_due_to_error; 5884 pC->nullRow = (u8)res; 5885 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5886 VdbeBranchTaken(res!=0,2); 5887 if( res ) goto jump_to_p2; 5888 break; 5889 } 5890 5891 /* Opcode: Next P1 P2 P3 P4 P5 5892 ** 5893 ** Advance cursor P1 so that it points to the next key/data pair in its 5894 ** table or index. If there are no more key/value pairs then fall through 5895 ** to the following instruction. But if the cursor advance was successful, 5896 ** jump immediately to P2. 5897 ** 5898 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5899 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5900 ** to follow SeekLT, SeekLE, or OP_Last. 5901 ** 5902 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5903 ** been opened prior to this opcode or the program will segfault. 5904 ** 5905 ** The P3 value is a hint to the btree implementation. If P3==1, that 5906 ** means P1 is an SQL index and that this instruction could have been 5907 ** omitted if that index had been unique. P3 is usually 0. P3 is 5908 ** always either 0 or 1. 5909 ** 5910 ** P4 is always of type P4_ADVANCE. The function pointer points to 5911 ** sqlite3BtreeNext(). 5912 ** 5913 ** If P5 is positive and the jump is taken, then event counter 5914 ** number P5-1 in the prepared statement is incremented. 5915 ** 5916 ** See also: Prev 5917 */ 5918 /* Opcode: Prev P1 P2 P3 P4 P5 5919 ** 5920 ** Back up cursor P1 so that it points to the previous key/data pair in its 5921 ** table or index. If there is no previous key/value pairs then fall through 5922 ** to the following instruction. But if the cursor backup was successful, 5923 ** jump immediately to P2. 5924 ** 5925 ** 5926 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5927 ** OP_Last opcode used to position the cursor. Prev is not allowed 5928 ** to follow SeekGT, SeekGE, or OP_Rewind. 5929 ** 5930 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5931 ** not open then the behavior is undefined. 5932 ** 5933 ** The P3 value is a hint to the btree implementation. If P3==1, that 5934 ** means P1 is an SQL index and that this instruction could have been 5935 ** omitted if that index had been unique. P3 is usually 0. P3 is 5936 ** always either 0 or 1. 5937 ** 5938 ** P4 is always of type P4_ADVANCE. The function pointer points to 5939 ** sqlite3BtreePrevious(). 5940 ** 5941 ** If P5 is positive and the jump is taken, then event counter 5942 ** number P5-1 in the prepared statement is incremented. 5943 */ 5944 /* Opcode: SorterNext P1 P2 * * P5 5945 ** 5946 ** This opcode works just like OP_Next except that P1 must be a 5947 ** sorter object for which the OP_SorterSort opcode has been 5948 ** invoked. This opcode advances the cursor to the next sorted 5949 ** record, or jumps to P2 if there are no more sorted records. 5950 */ 5951 case OP_SorterNext: { /* jump */ 5952 VdbeCursor *pC; 5953 5954 pC = p->apCsr[pOp->p1]; 5955 assert( isSorter(pC) ); 5956 rc = sqlite3VdbeSorterNext(db, pC); 5957 goto next_tail; 5958 case OP_Prev: /* jump */ 5959 case OP_Next: /* jump */ 5960 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5961 assert( pOp->p5<ArraySize(p->aCounter) ); 5962 pC = p->apCsr[pOp->p1]; 5963 assert( pC!=0 ); 5964 assert( pC->deferredMoveto==0 ); 5965 assert( pC->eCurType==CURTYPE_BTREE ); 5966 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5967 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5968 5969 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5970 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5971 assert( pOp->opcode!=OP_Next 5972 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5973 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5974 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5975 || pC->seekOp==OP_IfNoHope); 5976 assert( pOp->opcode!=OP_Prev 5977 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5978 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5979 || pC->seekOp==OP_NullRow); 5980 5981 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5982 next_tail: 5983 pC->cacheStatus = CACHE_STALE; 5984 VdbeBranchTaken(rc==SQLITE_OK,2); 5985 if( rc==SQLITE_OK ){ 5986 pC->nullRow = 0; 5987 p->aCounter[pOp->p5]++; 5988 #ifdef SQLITE_TEST 5989 sqlite3_search_count++; 5990 #endif 5991 goto jump_to_p2_and_check_for_interrupt; 5992 } 5993 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5994 rc = SQLITE_OK; 5995 pC->nullRow = 1; 5996 goto check_for_interrupt; 5997 } 5998 5999 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6000 ** Synopsis: key=r[P2] 6001 ** 6002 ** Register P2 holds an SQL index key made using the 6003 ** MakeRecord instructions. This opcode writes that key 6004 ** into the index P1. Data for the entry is nil. 6005 ** 6006 ** If P4 is not zero, then it is the number of values in the unpacked 6007 ** key of reg(P2). In that case, P3 is the index of the first register 6008 ** for the unpacked key. The availability of the unpacked key can sometimes 6009 ** be an optimization. 6010 ** 6011 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6012 ** that this insert is likely to be an append. 6013 ** 6014 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6015 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6016 ** then the change counter is unchanged. 6017 ** 6018 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6019 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6020 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6021 ** seeks on the cursor or if the most recent seek used a key equivalent 6022 ** to P2. 6023 ** 6024 ** This instruction only works for indices. The equivalent instruction 6025 ** for tables is OP_Insert. 6026 */ 6027 case OP_IdxInsert: { /* in2 */ 6028 VdbeCursor *pC; 6029 BtreePayload x; 6030 6031 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6032 pC = p->apCsr[pOp->p1]; 6033 sqlite3VdbeIncrWriteCounter(p, pC); 6034 assert( pC!=0 ); 6035 assert( !isSorter(pC) ); 6036 pIn2 = &aMem[pOp->p2]; 6037 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6038 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6039 assert( pC->eCurType==CURTYPE_BTREE ); 6040 assert( pC->isTable==0 ); 6041 rc = ExpandBlob(pIn2); 6042 if( rc ) goto abort_due_to_error; 6043 x.nKey = pIn2->n; 6044 x.pKey = pIn2->z; 6045 x.aMem = aMem + pOp->p3; 6046 x.nMem = (u16)pOp->p4.i; 6047 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6048 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6049 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6050 ); 6051 assert( pC->deferredMoveto==0 ); 6052 pC->cacheStatus = CACHE_STALE; 6053 if( rc) goto abort_due_to_error; 6054 break; 6055 } 6056 6057 /* Opcode: SorterInsert P1 P2 * * * 6058 ** Synopsis: key=r[P2] 6059 ** 6060 ** Register P2 holds an SQL index key made using the 6061 ** MakeRecord instructions. This opcode writes that key 6062 ** into the sorter P1. Data for the entry is nil. 6063 */ 6064 case OP_SorterInsert: { /* in2 */ 6065 VdbeCursor *pC; 6066 6067 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6068 pC = p->apCsr[pOp->p1]; 6069 sqlite3VdbeIncrWriteCounter(p, pC); 6070 assert( pC!=0 ); 6071 assert( isSorter(pC) ); 6072 pIn2 = &aMem[pOp->p2]; 6073 assert( pIn2->flags & MEM_Blob ); 6074 assert( pC->isTable==0 ); 6075 rc = ExpandBlob(pIn2); 6076 if( rc ) goto abort_due_to_error; 6077 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6078 if( rc) goto abort_due_to_error; 6079 break; 6080 } 6081 6082 /* Opcode: IdxDelete P1 P2 P3 * P5 6083 ** Synopsis: key=r[P2@P3] 6084 ** 6085 ** The content of P3 registers starting at register P2 form 6086 ** an unpacked index key. This opcode removes that entry from the 6087 ** index opened by cursor P1. 6088 ** 6089 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6090 ** if no matching index entry is found. This happens when running 6091 ** an UPDATE or DELETE statement and the index entry to be updated 6092 ** or deleted is not found. For some uses of IdxDelete 6093 ** (example: the EXCEPT operator) it does not matter that no matching 6094 ** entry is found. For those cases, P5 is zero. Also, do not raise 6095 ** this (self-correcting and non-critical) error if in writable_schema mode. 6096 */ 6097 case OP_IdxDelete: { 6098 VdbeCursor *pC; 6099 BtCursor *pCrsr; 6100 int res; 6101 UnpackedRecord r; 6102 6103 assert( pOp->p3>0 ); 6104 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6105 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6106 pC = p->apCsr[pOp->p1]; 6107 assert( pC!=0 ); 6108 assert( pC->eCurType==CURTYPE_BTREE ); 6109 sqlite3VdbeIncrWriteCounter(p, pC); 6110 pCrsr = pC->uc.pCursor; 6111 assert( pCrsr!=0 ); 6112 r.pKeyInfo = pC->pKeyInfo; 6113 r.nField = (u16)pOp->p3; 6114 r.default_rc = 0; 6115 r.aMem = &aMem[pOp->p2]; 6116 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6117 if( rc ) goto abort_due_to_error; 6118 if( res==0 ){ 6119 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6120 if( rc ) goto abort_due_to_error; 6121 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6122 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6123 goto abort_due_to_error; 6124 } 6125 assert( pC->deferredMoveto==0 ); 6126 pC->cacheStatus = CACHE_STALE; 6127 pC->seekResult = 0; 6128 break; 6129 } 6130 6131 /* Opcode: DeferredSeek P1 * P3 P4 * 6132 ** Synopsis: Move P3 to P1.rowid if needed 6133 ** 6134 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6135 ** table. This opcode does a deferred seek of the P3 table cursor 6136 ** to the row that corresponds to the current row of P1. 6137 ** 6138 ** This is a deferred seek. Nothing actually happens until 6139 ** the cursor is used to read a record. That way, if no reads 6140 ** occur, no unnecessary I/O happens. 6141 ** 6142 ** P4 may be an array of integers (type P4_INTARRAY) containing 6143 ** one entry for each column in the P3 table. If array entry a(i) 6144 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6145 ** equivalent to performing the deferred seek and then reading column i 6146 ** from P1. This information is stored in P3 and used to redirect 6147 ** reads against P3 over to P1, thus possibly avoiding the need to 6148 ** seek and read cursor P3. 6149 */ 6150 /* Opcode: IdxRowid P1 P2 * * * 6151 ** Synopsis: r[P2]=rowid 6152 ** 6153 ** Write into register P2 an integer which is the last entry in the record at 6154 ** the end of the index key pointed to by cursor P1. This integer should be 6155 ** the rowid of the table entry to which this index entry points. 6156 ** 6157 ** See also: Rowid, MakeRecord. 6158 */ 6159 case OP_DeferredSeek: 6160 case OP_IdxRowid: { /* out2 */ 6161 VdbeCursor *pC; /* The P1 index cursor */ 6162 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6163 i64 rowid; /* Rowid that P1 current points to */ 6164 6165 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6166 pC = p->apCsr[pOp->p1]; 6167 assert( pC!=0 ); 6168 assert( pC->eCurType==CURTYPE_BTREE ); 6169 assert( pC->uc.pCursor!=0 ); 6170 assert( pC->isTable==0 ); 6171 assert( pC->deferredMoveto==0 ); 6172 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6173 6174 /* The IdxRowid and Seek opcodes are combined because of the commonality 6175 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6176 rc = sqlite3VdbeCursorRestore(pC); 6177 6178 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6179 ** out from under the cursor. That will never happens for an IdxRowid 6180 ** or Seek opcode */ 6181 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6182 6183 if( !pC->nullRow ){ 6184 rowid = 0; /* Not needed. Only used to silence a warning. */ 6185 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6186 if( rc!=SQLITE_OK ){ 6187 goto abort_due_to_error; 6188 } 6189 if( pOp->opcode==OP_DeferredSeek ){ 6190 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6191 pTabCur = p->apCsr[pOp->p3]; 6192 assert( pTabCur!=0 ); 6193 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6194 assert( pTabCur->uc.pCursor!=0 ); 6195 assert( pTabCur->isTable ); 6196 pTabCur->nullRow = 0; 6197 pTabCur->movetoTarget = rowid; 6198 pTabCur->deferredMoveto = 1; 6199 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6200 assert( !pTabCur->isEphemeral ); 6201 pTabCur->ub.aAltMap = pOp->p4.ai; 6202 assert( !pC->isEphemeral ); 6203 pTabCur->pAltCursor = pC; 6204 }else{ 6205 pOut = out2Prerelease(p, pOp); 6206 pOut->u.i = rowid; 6207 } 6208 }else{ 6209 assert( pOp->opcode==OP_IdxRowid ); 6210 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6211 } 6212 break; 6213 } 6214 6215 /* Opcode: FinishSeek P1 * * * * 6216 ** 6217 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6218 ** seek operation now, without further delay. If the cursor seek has 6219 ** already occurred, this instruction is a no-op. 6220 */ 6221 case OP_FinishSeek: { 6222 VdbeCursor *pC; /* The P1 index cursor */ 6223 6224 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6225 pC = p->apCsr[pOp->p1]; 6226 if( pC->deferredMoveto ){ 6227 rc = sqlite3VdbeFinishMoveto(pC); 6228 if( rc ) goto abort_due_to_error; 6229 } 6230 break; 6231 } 6232 6233 /* Opcode: IdxGE P1 P2 P3 P4 * 6234 ** Synopsis: key=r[P3@P4] 6235 ** 6236 ** The P4 register values beginning with P3 form an unpacked index 6237 ** key that omits the PRIMARY KEY. Compare this key value against the index 6238 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6239 ** fields at the end. 6240 ** 6241 ** If the P1 index entry is greater than or equal to the key value 6242 ** then jump to P2. Otherwise fall through to the next instruction. 6243 */ 6244 /* Opcode: IdxGT P1 P2 P3 P4 * 6245 ** Synopsis: key=r[P3@P4] 6246 ** 6247 ** The P4 register values beginning with P3 form an unpacked index 6248 ** key that omits the PRIMARY KEY. Compare this key value against the index 6249 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6250 ** fields at the end. 6251 ** 6252 ** If the P1 index entry is greater than the key value 6253 ** then jump to P2. Otherwise fall through to the next instruction. 6254 */ 6255 /* Opcode: IdxLT P1 P2 P3 P4 * 6256 ** Synopsis: key=r[P3@P4] 6257 ** 6258 ** The P4 register values beginning with P3 form an unpacked index 6259 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6260 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6261 ** ROWID on the P1 index. 6262 ** 6263 ** If the P1 index entry is less than the key value then jump to P2. 6264 ** Otherwise fall through to the next instruction. 6265 */ 6266 /* Opcode: IdxLE P1 P2 P3 P4 * 6267 ** Synopsis: key=r[P3@P4] 6268 ** 6269 ** The P4 register values beginning with P3 form an unpacked index 6270 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6271 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6272 ** ROWID on the P1 index. 6273 ** 6274 ** If the P1 index entry is less than or equal to the key value then jump 6275 ** to P2. Otherwise fall through to the next instruction. 6276 */ 6277 case OP_IdxLE: /* jump */ 6278 case OP_IdxGT: /* jump */ 6279 case OP_IdxLT: /* jump */ 6280 case OP_IdxGE: { /* jump */ 6281 VdbeCursor *pC; 6282 int res; 6283 UnpackedRecord r; 6284 6285 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6286 pC = p->apCsr[pOp->p1]; 6287 assert( pC!=0 ); 6288 assert( pC->isOrdered ); 6289 assert( pC->eCurType==CURTYPE_BTREE ); 6290 assert( pC->uc.pCursor!=0); 6291 assert( pC->deferredMoveto==0 ); 6292 assert( pOp->p4type==P4_INT32 ); 6293 r.pKeyInfo = pC->pKeyInfo; 6294 r.nField = (u16)pOp->p4.i; 6295 if( pOp->opcode<OP_IdxLT ){ 6296 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6297 r.default_rc = -1; 6298 }else{ 6299 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6300 r.default_rc = 0; 6301 } 6302 r.aMem = &aMem[pOp->p3]; 6303 #ifdef SQLITE_DEBUG 6304 { 6305 int i; 6306 for(i=0; i<r.nField; i++){ 6307 assert( memIsValid(&r.aMem[i]) ); 6308 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6309 } 6310 } 6311 #endif 6312 6313 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6314 { 6315 i64 nCellKey = 0; 6316 BtCursor *pCur; 6317 Mem m; 6318 6319 assert( pC->eCurType==CURTYPE_BTREE ); 6320 pCur = pC->uc.pCursor; 6321 assert( sqlite3BtreeCursorIsValid(pCur) ); 6322 nCellKey = sqlite3BtreePayloadSize(pCur); 6323 /* nCellKey will always be between 0 and 0xffffffff because of the way 6324 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6325 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6326 rc = SQLITE_CORRUPT_BKPT; 6327 goto abort_due_to_error; 6328 } 6329 sqlite3VdbeMemInit(&m, db, 0); 6330 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6331 if( rc ) goto abort_due_to_error; 6332 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6333 sqlite3VdbeMemRelease(&m); 6334 } 6335 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6336 6337 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6338 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6339 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6340 res = -res; 6341 }else{ 6342 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6343 res++; 6344 } 6345 VdbeBranchTaken(res>0,2); 6346 assert( rc==SQLITE_OK ); 6347 if( res>0 ) goto jump_to_p2; 6348 break; 6349 } 6350 6351 /* Opcode: Destroy P1 P2 P3 * * 6352 ** 6353 ** Delete an entire database table or index whose root page in the database 6354 ** file is given by P1. 6355 ** 6356 ** The table being destroyed is in the main database file if P3==0. If 6357 ** P3==1 then the table to be clear is in the auxiliary database file 6358 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6359 ** 6360 ** If AUTOVACUUM is enabled then it is possible that another root page 6361 ** might be moved into the newly deleted root page in order to keep all 6362 ** root pages contiguous at the beginning of the database. The former 6363 ** value of the root page that moved - its value before the move occurred - 6364 ** is stored in register P2. If no page movement was required (because the 6365 ** table being dropped was already the last one in the database) then a 6366 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6367 ** is stored in register P2. 6368 ** 6369 ** This opcode throws an error if there are any active reader VMs when 6370 ** it is invoked. This is done to avoid the difficulty associated with 6371 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6372 ** database. This error is thrown even if the database is not an AUTOVACUUM 6373 ** db in order to avoid introducing an incompatibility between autovacuum 6374 ** and non-autovacuum modes. 6375 ** 6376 ** See also: Clear 6377 */ 6378 case OP_Destroy: { /* out2 */ 6379 int iMoved; 6380 int iDb; 6381 6382 sqlite3VdbeIncrWriteCounter(p, 0); 6383 assert( p->readOnly==0 ); 6384 assert( pOp->p1>1 ); 6385 pOut = out2Prerelease(p, pOp); 6386 pOut->flags = MEM_Null; 6387 if( db->nVdbeRead > db->nVDestroy+1 ){ 6388 rc = SQLITE_LOCKED; 6389 p->errorAction = OE_Abort; 6390 goto abort_due_to_error; 6391 }else{ 6392 iDb = pOp->p3; 6393 assert( DbMaskTest(p->btreeMask, iDb) ); 6394 iMoved = 0; /* Not needed. Only to silence a warning. */ 6395 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6396 pOut->flags = MEM_Int; 6397 pOut->u.i = iMoved; 6398 if( rc ) goto abort_due_to_error; 6399 #ifndef SQLITE_OMIT_AUTOVACUUM 6400 if( iMoved!=0 ){ 6401 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6402 /* All OP_Destroy operations occur on the same btree */ 6403 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6404 resetSchemaOnFault = iDb+1; 6405 } 6406 #endif 6407 } 6408 break; 6409 } 6410 6411 /* Opcode: Clear P1 P2 P3 6412 ** 6413 ** Delete all contents of the database table or index whose root page 6414 ** in the database file is given by P1. But, unlike Destroy, do not 6415 ** remove the table or index from the database file. 6416 ** 6417 ** The table being clear is in the main database file if P2==0. If 6418 ** P2==1 then the table to be clear is in the auxiliary database file 6419 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6420 ** 6421 ** If the P3 value is non-zero, then the row change count is incremented 6422 ** by the number of rows in the table being cleared. If P3 is greater 6423 ** than zero, then the value stored in register P3 is also incremented 6424 ** by the number of rows in the table being cleared. 6425 ** 6426 ** See also: Destroy 6427 */ 6428 case OP_Clear: { 6429 i64 nChange; 6430 6431 sqlite3VdbeIncrWriteCounter(p, 0); 6432 nChange = 0; 6433 assert( p->readOnly==0 ); 6434 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6435 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6436 if( pOp->p3 ){ 6437 p->nChange += nChange; 6438 if( pOp->p3>0 ){ 6439 assert( memIsValid(&aMem[pOp->p3]) ); 6440 memAboutToChange(p, &aMem[pOp->p3]); 6441 aMem[pOp->p3].u.i += nChange; 6442 } 6443 } 6444 if( rc ) goto abort_due_to_error; 6445 break; 6446 } 6447 6448 /* Opcode: ResetSorter P1 * * * * 6449 ** 6450 ** Delete all contents from the ephemeral table or sorter 6451 ** that is open on cursor P1. 6452 ** 6453 ** This opcode only works for cursors used for sorting and 6454 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6455 */ 6456 case OP_ResetSorter: { 6457 VdbeCursor *pC; 6458 6459 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6460 pC = p->apCsr[pOp->p1]; 6461 assert( pC!=0 ); 6462 if( isSorter(pC) ){ 6463 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6464 }else{ 6465 assert( pC->eCurType==CURTYPE_BTREE ); 6466 assert( pC->isEphemeral ); 6467 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6468 if( rc ) goto abort_due_to_error; 6469 } 6470 break; 6471 } 6472 6473 /* Opcode: CreateBtree P1 P2 P3 * * 6474 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6475 ** 6476 ** Allocate a new b-tree in the main database file if P1==0 or in the 6477 ** TEMP database file if P1==1 or in an attached database if 6478 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6479 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6480 ** The root page number of the new b-tree is stored in register P2. 6481 */ 6482 case OP_CreateBtree: { /* out2 */ 6483 Pgno pgno; 6484 Db *pDb; 6485 6486 sqlite3VdbeIncrWriteCounter(p, 0); 6487 pOut = out2Prerelease(p, pOp); 6488 pgno = 0; 6489 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6490 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6491 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6492 assert( p->readOnly==0 ); 6493 pDb = &db->aDb[pOp->p1]; 6494 assert( pDb->pBt!=0 ); 6495 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6496 if( rc ) goto abort_due_to_error; 6497 pOut->u.i = pgno; 6498 break; 6499 } 6500 6501 /* Opcode: SqlExec * * * P4 * 6502 ** 6503 ** Run the SQL statement or statements specified in the P4 string. 6504 */ 6505 case OP_SqlExec: { 6506 sqlite3VdbeIncrWriteCounter(p, 0); 6507 db->nSqlExec++; 6508 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6509 db->nSqlExec--; 6510 if( rc ) goto abort_due_to_error; 6511 break; 6512 } 6513 6514 /* Opcode: ParseSchema P1 * * P4 * 6515 ** 6516 ** Read and parse all entries from the schema table of database P1 6517 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6518 ** entire schema for P1 is reparsed. 6519 ** 6520 ** This opcode invokes the parser to create a new virtual machine, 6521 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6522 */ 6523 case OP_ParseSchema: { 6524 int iDb; 6525 const char *zSchema; 6526 char *zSql; 6527 InitData initData; 6528 6529 /* Any prepared statement that invokes this opcode will hold mutexes 6530 ** on every btree. This is a prerequisite for invoking 6531 ** sqlite3InitCallback(). 6532 */ 6533 #ifdef SQLITE_DEBUG 6534 for(iDb=0; iDb<db->nDb; iDb++){ 6535 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6536 } 6537 #endif 6538 6539 iDb = pOp->p1; 6540 assert( iDb>=0 && iDb<db->nDb ); 6541 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6542 || db->mallocFailed 6543 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6544 6545 #ifndef SQLITE_OMIT_ALTERTABLE 6546 if( pOp->p4.z==0 ){ 6547 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6548 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6549 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6550 db->mDbFlags |= DBFLAG_SchemaChange; 6551 p->expired = 0; 6552 }else 6553 #endif 6554 { 6555 zSchema = LEGACY_SCHEMA_TABLE; 6556 initData.db = db; 6557 initData.iDb = iDb; 6558 initData.pzErrMsg = &p->zErrMsg; 6559 initData.mInitFlags = 0; 6560 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6561 zSql = sqlite3MPrintf(db, 6562 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6563 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6564 if( zSql==0 ){ 6565 rc = SQLITE_NOMEM_BKPT; 6566 }else{ 6567 assert( db->init.busy==0 ); 6568 db->init.busy = 1; 6569 initData.rc = SQLITE_OK; 6570 initData.nInitRow = 0; 6571 assert( !db->mallocFailed ); 6572 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6573 if( rc==SQLITE_OK ) rc = initData.rc; 6574 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6575 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6576 ** at least one SQL statement. Any less than that indicates that 6577 ** the sqlite_schema table is corrupt. */ 6578 rc = SQLITE_CORRUPT_BKPT; 6579 } 6580 sqlite3DbFreeNN(db, zSql); 6581 db->init.busy = 0; 6582 } 6583 } 6584 if( rc ){ 6585 sqlite3ResetAllSchemasOfConnection(db); 6586 if( rc==SQLITE_NOMEM ){ 6587 goto no_mem; 6588 } 6589 goto abort_due_to_error; 6590 } 6591 break; 6592 } 6593 6594 #if !defined(SQLITE_OMIT_ANALYZE) 6595 /* Opcode: LoadAnalysis P1 * * * * 6596 ** 6597 ** Read the sqlite_stat1 table for database P1 and load the content 6598 ** of that table into the internal index hash table. This will cause 6599 ** the analysis to be used when preparing all subsequent queries. 6600 */ 6601 case OP_LoadAnalysis: { 6602 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6603 rc = sqlite3AnalysisLoad(db, pOp->p1); 6604 if( rc ) goto abort_due_to_error; 6605 break; 6606 } 6607 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6608 6609 /* Opcode: DropTable P1 * * P4 * 6610 ** 6611 ** Remove the internal (in-memory) data structures that describe 6612 ** the table named P4 in database P1. This is called after a table 6613 ** is dropped from disk (using the Destroy opcode) in order to keep 6614 ** the internal representation of the 6615 ** schema consistent with what is on disk. 6616 */ 6617 case OP_DropTable: { 6618 sqlite3VdbeIncrWriteCounter(p, 0); 6619 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6620 break; 6621 } 6622 6623 /* Opcode: DropIndex P1 * * P4 * 6624 ** 6625 ** Remove the internal (in-memory) data structures that describe 6626 ** the index named P4 in database P1. This is called after an index 6627 ** is dropped from disk (using the Destroy opcode) 6628 ** in order to keep the internal representation of the 6629 ** schema consistent with what is on disk. 6630 */ 6631 case OP_DropIndex: { 6632 sqlite3VdbeIncrWriteCounter(p, 0); 6633 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6634 break; 6635 } 6636 6637 /* Opcode: DropTrigger P1 * * P4 * 6638 ** 6639 ** Remove the internal (in-memory) data structures that describe 6640 ** the trigger named P4 in database P1. This is called after a trigger 6641 ** is dropped from disk (using the Destroy opcode) in order to keep 6642 ** the internal representation of the 6643 ** schema consistent with what is on disk. 6644 */ 6645 case OP_DropTrigger: { 6646 sqlite3VdbeIncrWriteCounter(p, 0); 6647 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6648 break; 6649 } 6650 6651 6652 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6653 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6654 ** 6655 ** Do an analysis of the currently open database. Store in 6656 ** register P1 the text of an error message describing any problems. 6657 ** If no problems are found, store a NULL in register P1. 6658 ** 6659 ** The register P3 contains one less than the maximum number of allowed errors. 6660 ** At most reg(P3) errors will be reported. 6661 ** In other words, the analysis stops as soon as reg(P1) errors are 6662 ** seen. Reg(P1) is updated with the number of errors remaining. 6663 ** 6664 ** The root page numbers of all tables in the database are integers 6665 ** stored in P4_INTARRAY argument. 6666 ** 6667 ** If P5 is not zero, the check is done on the auxiliary database 6668 ** file, not the main database file. 6669 ** 6670 ** This opcode is used to implement the integrity_check pragma. 6671 */ 6672 case OP_IntegrityCk: { 6673 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6674 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6675 int nErr; /* Number of errors reported */ 6676 char *z; /* Text of the error report */ 6677 Mem *pnErr; /* Register keeping track of errors remaining */ 6678 6679 assert( p->bIsReader ); 6680 nRoot = pOp->p2; 6681 aRoot = pOp->p4.ai; 6682 assert( nRoot>0 ); 6683 assert( aRoot[0]==(Pgno)nRoot ); 6684 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6685 pnErr = &aMem[pOp->p3]; 6686 assert( (pnErr->flags & MEM_Int)!=0 ); 6687 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6688 pIn1 = &aMem[pOp->p1]; 6689 assert( pOp->p5<db->nDb ); 6690 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6691 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6692 (int)pnErr->u.i+1, &nErr); 6693 sqlite3VdbeMemSetNull(pIn1); 6694 if( nErr==0 ){ 6695 assert( z==0 ); 6696 }else if( z==0 ){ 6697 goto no_mem; 6698 }else{ 6699 pnErr->u.i -= nErr-1; 6700 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6701 } 6702 UPDATE_MAX_BLOBSIZE(pIn1); 6703 sqlite3VdbeChangeEncoding(pIn1, encoding); 6704 goto check_for_interrupt; 6705 } 6706 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6707 6708 /* Opcode: RowSetAdd P1 P2 * * * 6709 ** Synopsis: rowset(P1)=r[P2] 6710 ** 6711 ** Insert the integer value held by register P2 into a RowSet object 6712 ** held in register P1. 6713 ** 6714 ** An assertion fails if P2 is not an integer. 6715 */ 6716 case OP_RowSetAdd: { /* in1, in2 */ 6717 pIn1 = &aMem[pOp->p1]; 6718 pIn2 = &aMem[pOp->p2]; 6719 assert( (pIn2->flags & MEM_Int)!=0 ); 6720 if( (pIn1->flags & MEM_Blob)==0 ){ 6721 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6722 } 6723 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6724 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6725 break; 6726 } 6727 6728 /* Opcode: RowSetRead P1 P2 P3 * * 6729 ** Synopsis: r[P3]=rowset(P1) 6730 ** 6731 ** Extract the smallest value from the RowSet object in P1 6732 ** and put that value into register P3. 6733 ** Or, if RowSet object P1 is initially empty, leave P3 6734 ** unchanged and jump to instruction P2. 6735 */ 6736 case OP_RowSetRead: { /* jump, in1, out3 */ 6737 i64 val; 6738 6739 pIn1 = &aMem[pOp->p1]; 6740 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6741 if( (pIn1->flags & MEM_Blob)==0 6742 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6743 ){ 6744 /* The boolean index is empty */ 6745 sqlite3VdbeMemSetNull(pIn1); 6746 VdbeBranchTaken(1,2); 6747 goto jump_to_p2_and_check_for_interrupt; 6748 }else{ 6749 /* A value was pulled from the index */ 6750 VdbeBranchTaken(0,2); 6751 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6752 } 6753 goto check_for_interrupt; 6754 } 6755 6756 /* Opcode: RowSetTest P1 P2 P3 P4 6757 ** Synopsis: if r[P3] in rowset(P1) goto P2 6758 ** 6759 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6760 ** contains a RowSet object and that RowSet object contains 6761 ** the value held in P3, jump to register P2. Otherwise, insert the 6762 ** integer in P3 into the RowSet and continue on to the 6763 ** next opcode. 6764 ** 6765 ** The RowSet object is optimized for the case where sets of integers 6766 ** are inserted in distinct phases, which each set contains no duplicates. 6767 ** Each set is identified by a unique P4 value. The first set 6768 ** must have P4==0, the final set must have P4==-1, and for all other sets 6769 ** must have P4>0. 6770 ** 6771 ** This allows optimizations: (a) when P4==0 there is no need to test 6772 ** the RowSet object for P3, as it is guaranteed not to contain it, 6773 ** (b) when P4==-1 there is no need to insert the value, as it will 6774 ** never be tested for, and (c) when a value that is part of set X is 6775 ** inserted, there is no need to search to see if the same value was 6776 ** previously inserted as part of set X (only if it was previously 6777 ** inserted as part of some other set). 6778 */ 6779 case OP_RowSetTest: { /* jump, in1, in3 */ 6780 int iSet; 6781 int exists; 6782 6783 pIn1 = &aMem[pOp->p1]; 6784 pIn3 = &aMem[pOp->p3]; 6785 iSet = pOp->p4.i; 6786 assert( pIn3->flags&MEM_Int ); 6787 6788 /* If there is anything other than a rowset object in memory cell P1, 6789 ** delete it now and initialize P1 with an empty rowset 6790 */ 6791 if( (pIn1->flags & MEM_Blob)==0 ){ 6792 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6793 } 6794 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6795 assert( pOp->p4type==P4_INT32 ); 6796 assert( iSet==-1 || iSet>=0 ); 6797 if( iSet ){ 6798 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6799 VdbeBranchTaken(exists!=0,2); 6800 if( exists ) goto jump_to_p2; 6801 } 6802 if( iSet>=0 ){ 6803 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6804 } 6805 break; 6806 } 6807 6808 6809 #ifndef SQLITE_OMIT_TRIGGER 6810 6811 /* Opcode: Program P1 P2 P3 P4 P5 6812 ** 6813 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6814 ** 6815 ** P1 contains the address of the memory cell that contains the first memory 6816 ** cell in an array of values used as arguments to the sub-program. P2 6817 ** contains the address to jump to if the sub-program throws an IGNORE 6818 ** exception using the RAISE() function. Register P3 contains the address 6819 ** of a memory cell in this (the parent) VM that is used to allocate the 6820 ** memory required by the sub-vdbe at runtime. 6821 ** 6822 ** P4 is a pointer to the VM containing the trigger program. 6823 ** 6824 ** If P5 is non-zero, then recursive program invocation is enabled. 6825 */ 6826 case OP_Program: { /* jump */ 6827 int nMem; /* Number of memory registers for sub-program */ 6828 int nByte; /* Bytes of runtime space required for sub-program */ 6829 Mem *pRt; /* Register to allocate runtime space */ 6830 Mem *pMem; /* Used to iterate through memory cells */ 6831 Mem *pEnd; /* Last memory cell in new array */ 6832 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6833 SubProgram *pProgram; /* Sub-program to execute */ 6834 void *t; /* Token identifying trigger */ 6835 6836 pProgram = pOp->p4.pProgram; 6837 pRt = &aMem[pOp->p3]; 6838 assert( pProgram->nOp>0 ); 6839 6840 /* If the p5 flag is clear, then recursive invocation of triggers is 6841 ** disabled for backwards compatibility (p5 is set if this sub-program 6842 ** is really a trigger, not a foreign key action, and the flag set 6843 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6844 ** 6845 ** It is recursive invocation of triggers, at the SQL level, that is 6846 ** disabled. In some cases a single trigger may generate more than one 6847 ** SubProgram (if the trigger may be executed with more than one different 6848 ** ON CONFLICT algorithm). SubProgram structures associated with a 6849 ** single trigger all have the same value for the SubProgram.token 6850 ** variable. */ 6851 if( pOp->p5 ){ 6852 t = pProgram->token; 6853 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6854 if( pFrame ) break; 6855 } 6856 6857 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6858 rc = SQLITE_ERROR; 6859 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6860 goto abort_due_to_error; 6861 } 6862 6863 /* Register pRt is used to store the memory required to save the state 6864 ** of the current program, and the memory required at runtime to execute 6865 ** the trigger program. If this trigger has been fired before, then pRt 6866 ** is already allocated. Otherwise, it must be initialized. */ 6867 if( (pRt->flags&MEM_Blob)==0 ){ 6868 /* SubProgram.nMem is set to the number of memory cells used by the 6869 ** program stored in SubProgram.aOp. As well as these, one memory 6870 ** cell is required for each cursor used by the program. Set local 6871 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6872 */ 6873 nMem = pProgram->nMem + pProgram->nCsr; 6874 assert( nMem>0 ); 6875 if( pProgram->nCsr==0 ) nMem++; 6876 nByte = ROUND8(sizeof(VdbeFrame)) 6877 + nMem * sizeof(Mem) 6878 + pProgram->nCsr * sizeof(VdbeCursor*) 6879 + (pProgram->nOp + 7)/8; 6880 pFrame = sqlite3DbMallocZero(db, nByte); 6881 if( !pFrame ){ 6882 goto no_mem; 6883 } 6884 sqlite3VdbeMemRelease(pRt); 6885 pRt->flags = MEM_Blob|MEM_Dyn; 6886 pRt->z = (char*)pFrame; 6887 pRt->n = nByte; 6888 pRt->xDel = sqlite3VdbeFrameMemDel; 6889 6890 pFrame->v = p; 6891 pFrame->nChildMem = nMem; 6892 pFrame->nChildCsr = pProgram->nCsr; 6893 pFrame->pc = (int)(pOp - aOp); 6894 pFrame->aMem = p->aMem; 6895 pFrame->nMem = p->nMem; 6896 pFrame->apCsr = p->apCsr; 6897 pFrame->nCursor = p->nCursor; 6898 pFrame->aOp = p->aOp; 6899 pFrame->nOp = p->nOp; 6900 pFrame->token = pProgram->token; 6901 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6902 pFrame->anExec = p->anExec; 6903 #endif 6904 #ifdef SQLITE_DEBUG 6905 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6906 #endif 6907 6908 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6909 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6910 pMem->flags = MEM_Undefined; 6911 pMem->db = db; 6912 } 6913 }else{ 6914 pFrame = (VdbeFrame*)pRt->z; 6915 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6916 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6917 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6918 assert( pProgram->nCsr==pFrame->nChildCsr ); 6919 assert( (int)(pOp - aOp)==pFrame->pc ); 6920 } 6921 6922 p->nFrame++; 6923 pFrame->pParent = p->pFrame; 6924 pFrame->lastRowid = db->lastRowid; 6925 pFrame->nChange = p->nChange; 6926 pFrame->nDbChange = p->db->nChange; 6927 assert( pFrame->pAuxData==0 ); 6928 pFrame->pAuxData = p->pAuxData; 6929 p->pAuxData = 0; 6930 p->nChange = 0; 6931 p->pFrame = pFrame; 6932 p->aMem = aMem = VdbeFrameMem(pFrame); 6933 p->nMem = pFrame->nChildMem; 6934 p->nCursor = (u16)pFrame->nChildCsr; 6935 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6936 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6937 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6938 p->aOp = aOp = pProgram->aOp; 6939 p->nOp = pProgram->nOp; 6940 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6941 p->anExec = 0; 6942 #endif 6943 #ifdef SQLITE_DEBUG 6944 /* Verify that second and subsequent executions of the same trigger do not 6945 ** try to reuse register values from the first use. */ 6946 { 6947 int i; 6948 for(i=0; i<p->nMem; i++){ 6949 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6950 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6951 } 6952 } 6953 #endif 6954 pOp = &aOp[-1]; 6955 goto check_for_interrupt; 6956 } 6957 6958 /* Opcode: Param P1 P2 * * * 6959 ** 6960 ** This opcode is only ever present in sub-programs called via the 6961 ** OP_Program instruction. Copy a value currently stored in a memory 6962 ** cell of the calling (parent) frame to cell P2 in the current frames 6963 ** address space. This is used by trigger programs to access the new.* 6964 ** and old.* values. 6965 ** 6966 ** The address of the cell in the parent frame is determined by adding 6967 ** the value of the P1 argument to the value of the P1 argument to the 6968 ** calling OP_Program instruction. 6969 */ 6970 case OP_Param: { /* out2 */ 6971 VdbeFrame *pFrame; 6972 Mem *pIn; 6973 pOut = out2Prerelease(p, pOp); 6974 pFrame = p->pFrame; 6975 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6976 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6977 break; 6978 } 6979 6980 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6981 6982 #ifndef SQLITE_OMIT_FOREIGN_KEY 6983 /* Opcode: FkCounter P1 P2 * * * 6984 ** Synopsis: fkctr[P1]+=P2 6985 ** 6986 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6987 ** If P1 is non-zero, the database constraint counter is incremented 6988 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6989 ** statement counter is incremented (immediate foreign key constraints). 6990 */ 6991 case OP_FkCounter: { 6992 if( db->flags & SQLITE_DeferFKs ){ 6993 db->nDeferredImmCons += pOp->p2; 6994 }else if( pOp->p1 ){ 6995 db->nDeferredCons += pOp->p2; 6996 }else{ 6997 p->nFkConstraint += pOp->p2; 6998 } 6999 break; 7000 } 7001 7002 /* Opcode: FkIfZero P1 P2 * * * 7003 ** Synopsis: if fkctr[P1]==0 goto P2 7004 ** 7005 ** This opcode tests if a foreign key constraint-counter is currently zero. 7006 ** If so, jump to instruction P2. Otherwise, fall through to the next 7007 ** instruction. 7008 ** 7009 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7010 ** is zero (the one that counts deferred constraint violations). If P1 is 7011 ** zero, the jump is taken if the statement constraint-counter is zero 7012 ** (immediate foreign key constraint violations). 7013 */ 7014 case OP_FkIfZero: { /* jump */ 7015 if( pOp->p1 ){ 7016 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7017 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7018 }else{ 7019 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7020 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7021 } 7022 break; 7023 } 7024 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7025 7026 #ifndef SQLITE_OMIT_AUTOINCREMENT 7027 /* Opcode: MemMax P1 P2 * * * 7028 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7029 ** 7030 ** P1 is a register in the root frame of this VM (the root frame is 7031 ** different from the current frame if this instruction is being executed 7032 ** within a sub-program). Set the value of register P1 to the maximum of 7033 ** its current value and the value in register P2. 7034 ** 7035 ** This instruction throws an error if the memory cell is not initially 7036 ** an integer. 7037 */ 7038 case OP_MemMax: { /* in2 */ 7039 VdbeFrame *pFrame; 7040 if( p->pFrame ){ 7041 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7042 pIn1 = &pFrame->aMem[pOp->p1]; 7043 }else{ 7044 pIn1 = &aMem[pOp->p1]; 7045 } 7046 assert( memIsValid(pIn1) ); 7047 sqlite3VdbeMemIntegerify(pIn1); 7048 pIn2 = &aMem[pOp->p2]; 7049 sqlite3VdbeMemIntegerify(pIn2); 7050 if( pIn1->u.i<pIn2->u.i){ 7051 pIn1->u.i = pIn2->u.i; 7052 } 7053 break; 7054 } 7055 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7056 7057 /* Opcode: IfPos P1 P2 P3 * * 7058 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7059 ** 7060 ** Register P1 must contain an integer. 7061 ** If the value of register P1 is 1 or greater, subtract P3 from the 7062 ** value in P1 and jump to P2. 7063 ** 7064 ** If the initial value of register P1 is less than 1, then the 7065 ** value is unchanged and control passes through to the next instruction. 7066 */ 7067 case OP_IfPos: { /* jump, in1 */ 7068 pIn1 = &aMem[pOp->p1]; 7069 assert( pIn1->flags&MEM_Int ); 7070 VdbeBranchTaken( pIn1->u.i>0, 2); 7071 if( pIn1->u.i>0 ){ 7072 pIn1->u.i -= pOp->p3; 7073 goto jump_to_p2; 7074 } 7075 break; 7076 } 7077 7078 /* Opcode: OffsetLimit P1 P2 P3 * * 7079 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7080 ** 7081 ** This opcode performs a commonly used computation associated with 7082 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7083 ** holds the offset counter. The opcode computes the combined value 7084 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7085 ** value computed is the total number of rows that will need to be 7086 ** visited in order to complete the query. 7087 ** 7088 ** If r[P3] is zero or negative, that means there is no OFFSET 7089 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7090 ** 7091 ** if r[P1] is zero or negative, that means there is no LIMIT 7092 ** and r[P2] is set to -1. 7093 ** 7094 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7095 */ 7096 case OP_OffsetLimit: { /* in1, out2, in3 */ 7097 i64 x; 7098 pIn1 = &aMem[pOp->p1]; 7099 pIn3 = &aMem[pOp->p3]; 7100 pOut = out2Prerelease(p, pOp); 7101 assert( pIn1->flags & MEM_Int ); 7102 assert( pIn3->flags & MEM_Int ); 7103 x = pIn1->u.i; 7104 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7105 /* If the LIMIT is less than or equal to zero, loop forever. This 7106 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7107 ** also loop forever. This is undocumented. In fact, one could argue 7108 ** that the loop should terminate. But assuming 1 billion iterations 7109 ** per second (far exceeding the capabilities of any current hardware) 7110 ** it would take nearly 300 years to actually reach the limit. So 7111 ** looping forever is a reasonable approximation. */ 7112 pOut->u.i = -1; 7113 }else{ 7114 pOut->u.i = x; 7115 } 7116 break; 7117 } 7118 7119 /* Opcode: IfNotZero P1 P2 * * * 7120 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7121 ** 7122 ** Register P1 must contain an integer. If the content of register P1 is 7123 ** initially greater than zero, then decrement the value in register P1. 7124 ** If it is non-zero (negative or positive) and then also jump to P2. 7125 ** If register P1 is initially zero, leave it unchanged and fall through. 7126 */ 7127 case OP_IfNotZero: { /* jump, in1 */ 7128 pIn1 = &aMem[pOp->p1]; 7129 assert( pIn1->flags&MEM_Int ); 7130 VdbeBranchTaken(pIn1->u.i<0, 2); 7131 if( pIn1->u.i ){ 7132 if( pIn1->u.i>0 ) pIn1->u.i--; 7133 goto jump_to_p2; 7134 } 7135 break; 7136 } 7137 7138 /* Opcode: DecrJumpZero P1 P2 * * * 7139 ** Synopsis: if (--r[P1])==0 goto P2 7140 ** 7141 ** Register P1 must hold an integer. Decrement the value in P1 7142 ** and jump to P2 if the new value is exactly zero. 7143 */ 7144 case OP_DecrJumpZero: { /* jump, in1 */ 7145 pIn1 = &aMem[pOp->p1]; 7146 assert( pIn1->flags&MEM_Int ); 7147 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7148 VdbeBranchTaken(pIn1->u.i==0, 2); 7149 if( pIn1->u.i==0 ) goto jump_to_p2; 7150 break; 7151 } 7152 7153 7154 /* Opcode: AggStep * P2 P3 P4 P5 7155 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7156 ** 7157 ** Execute the xStep function for an aggregate. 7158 ** The function has P5 arguments. P4 is a pointer to the 7159 ** FuncDef structure that specifies the function. Register P3 is the 7160 ** accumulator. 7161 ** 7162 ** The P5 arguments are taken from register P2 and its 7163 ** successors. 7164 */ 7165 /* Opcode: AggInverse * P2 P3 P4 P5 7166 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7167 ** 7168 ** Execute the xInverse function for an aggregate. 7169 ** The function has P5 arguments. P4 is a pointer to the 7170 ** FuncDef structure that specifies the function. Register P3 is the 7171 ** accumulator. 7172 ** 7173 ** The P5 arguments are taken from register P2 and its 7174 ** successors. 7175 */ 7176 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7177 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7178 ** 7179 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7180 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7181 ** FuncDef structure that specifies the function. Register P3 is the 7182 ** accumulator. 7183 ** 7184 ** The P5 arguments are taken from register P2 and its 7185 ** successors. 7186 ** 7187 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7188 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7189 ** the opcode is changed. In this way, the initialization of the 7190 ** sqlite3_context only happens once, instead of on each call to the 7191 ** step function. 7192 */ 7193 case OP_AggInverse: 7194 case OP_AggStep: { 7195 int n; 7196 sqlite3_context *pCtx; 7197 7198 assert( pOp->p4type==P4_FUNCDEF ); 7199 n = pOp->p5; 7200 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7201 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7202 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7203 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7204 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7205 if( pCtx==0 ) goto no_mem; 7206 pCtx->pMem = 0; 7207 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7208 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7209 pCtx->pFunc = pOp->p4.pFunc; 7210 pCtx->iOp = (int)(pOp - aOp); 7211 pCtx->pVdbe = p; 7212 pCtx->skipFlag = 0; 7213 pCtx->isError = 0; 7214 pCtx->argc = n; 7215 pOp->p4type = P4_FUNCCTX; 7216 pOp->p4.pCtx = pCtx; 7217 7218 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7219 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7220 7221 pOp->opcode = OP_AggStep1; 7222 /* Fall through into OP_AggStep */ 7223 /* no break */ deliberate_fall_through 7224 } 7225 case OP_AggStep1: { 7226 int i; 7227 sqlite3_context *pCtx; 7228 Mem *pMem; 7229 7230 assert( pOp->p4type==P4_FUNCCTX ); 7231 pCtx = pOp->p4.pCtx; 7232 pMem = &aMem[pOp->p3]; 7233 7234 #ifdef SQLITE_DEBUG 7235 if( pOp->p1 ){ 7236 /* This is an OP_AggInverse call. Verify that xStep has always 7237 ** been called at least once prior to any xInverse call. */ 7238 assert( pMem->uTemp==0x1122e0e3 ); 7239 }else{ 7240 /* This is an OP_AggStep call. Mark it as such. */ 7241 pMem->uTemp = 0x1122e0e3; 7242 } 7243 #endif 7244 7245 /* If this function is inside of a trigger, the register array in aMem[] 7246 ** might change from one evaluation to the next. The next block of code 7247 ** checks to see if the register array has changed, and if so it 7248 ** reinitializes the relavant parts of the sqlite3_context object */ 7249 if( pCtx->pMem != pMem ){ 7250 pCtx->pMem = pMem; 7251 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7252 } 7253 7254 #ifdef SQLITE_DEBUG 7255 for(i=0; i<pCtx->argc; i++){ 7256 assert( memIsValid(pCtx->argv[i]) ); 7257 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7258 } 7259 #endif 7260 7261 pMem->n++; 7262 assert( pCtx->pOut->flags==MEM_Null ); 7263 assert( pCtx->isError==0 ); 7264 assert( pCtx->skipFlag==0 ); 7265 #ifndef SQLITE_OMIT_WINDOWFUNC 7266 if( pOp->p1 ){ 7267 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7268 }else 7269 #endif 7270 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7271 7272 if( pCtx->isError ){ 7273 if( pCtx->isError>0 ){ 7274 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7275 rc = pCtx->isError; 7276 } 7277 if( pCtx->skipFlag ){ 7278 assert( pOp[-1].opcode==OP_CollSeq ); 7279 i = pOp[-1].p1; 7280 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7281 pCtx->skipFlag = 0; 7282 } 7283 sqlite3VdbeMemRelease(pCtx->pOut); 7284 pCtx->pOut->flags = MEM_Null; 7285 pCtx->isError = 0; 7286 if( rc ) goto abort_due_to_error; 7287 } 7288 assert( pCtx->pOut->flags==MEM_Null ); 7289 assert( pCtx->skipFlag==0 ); 7290 break; 7291 } 7292 7293 /* Opcode: AggFinal P1 P2 * P4 * 7294 ** Synopsis: accum=r[P1] N=P2 7295 ** 7296 ** P1 is the memory location that is the accumulator for an aggregate 7297 ** or window function. Execute the finalizer function 7298 ** for an aggregate and store the result in P1. 7299 ** 7300 ** P2 is the number of arguments that the step function takes and 7301 ** P4 is a pointer to the FuncDef for this function. The P2 7302 ** argument is not used by this opcode. It is only there to disambiguate 7303 ** functions that can take varying numbers of arguments. The 7304 ** P4 argument is only needed for the case where 7305 ** the step function was not previously called. 7306 */ 7307 /* Opcode: AggValue * P2 P3 P4 * 7308 ** Synopsis: r[P3]=value N=P2 7309 ** 7310 ** Invoke the xValue() function and store the result in register P3. 7311 ** 7312 ** P2 is the number of arguments that the step function takes and 7313 ** P4 is a pointer to the FuncDef for this function. The P2 7314 ** argument is not used by this opcode. It is only there to disambiguate 7315 ** functions that can take varying numbers of arguments. The 7316 ** P4 argument is only needed for the case where 7317 ** the step function was not previously called. 7318 */ 7319 case OP_AggValue: 7320 case OP_AggFinal: { 7321 Mem *pMem; 7322 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7323 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7324 pMem = &aMem[pOp->p1]; 7325 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7326 #ifndef SQLITE_OMIT_WINDOWFUNC 7327 if( pOp->p3 ){ 7328 memAboutToChange(p, &aMem[pOp->p3]); 7329 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7330 pMem = &aMem[pOp->p3]; 7331 }else 7332 #endif 7333 { 7334 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7335 } 7336 7337 if( rc ){ 7338 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7339 goto abort_due_to_error; 7340 } 7341 sqlite3VdbeChangeEncoding(pMem, encoding); 7342 UPDATE_MAX_BLOBSIZE(pMem); 7343 if( sqlite3VdbeMemTooBig(pMem) ){ 7344 goto too_big; 7345 } 7346 break; 7347 } 7348 7349 #ifndef SQLITE_OMIT_WAL 7350 /* Opcode: Checkpoint P1 P2 P3 * * 7351 ** 7352 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7353 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7354 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7355 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7356 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7357 ** in the WAL that have been checkpointed after the checkpoint 7358 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7359 ** mem[P3+2] are initialized to -1. 7360 */ 7361 case OP_Checkpoint: { 7362 int i; /* Loop counter */ 7363 int aRes[3]; /* Results */ 7364 Mem *pMem; /* Write results here */ 7365 7366 assert( p->readOnly==0 ); 7367 aRes[0] = 0; 7368 aRes[1] = aRes[2] = -1; 7369 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7370 || pOp->p2==SQLITE_CHECKPOINT_FULL 7371 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7372 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7373 ); 7374 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7375 if( rc ){ 7376 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7377 rc = SQLITE_OK; 7378 aRes[0] = 1; 7379 } 7380 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7381 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7382 } 7383 break; 7384 }; 7385 #endif 7386 7387 #ifndef SQLITE_OMIT_PRAGMA 7388 /* Opcode: JournalMode P1 P2 P3 * * 7389 ** 7390 ** Change the journal mode of database P1 to P3. P3 must be one of the 7391 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7392 ** modes (delete, truncate, persist, off and memory), this is a simple 7393 ** operation. No IO is required. 7394 ** 7395 ** If changing into or out of WAL mode the procedure is more complicated. 7396 ** 7397 ** Write a string containing the final journal-mode to register P2. 7398 */ 7399 case OP_JournalMode: { /* out2 */ 7400 Btree *pBt; /* Btree to change journal mode of */ 7401 Pager *pPager; /* Pager associated with pBt */ 7402 int eNew; /* New journal mode */ 7403 int eOld; /* The old journal mode */ 7404 #ifndef SQLITE_OMIT_WAL 7405 const char *zFilename; /* Name of database file for pPager */ 7406 #endif 7407 7408 pOut = out2Prerelease(p, pOp); 7409 eNew = pOp->p3; 7410 assert( eNew==PAGER_JOURNALMODE_DELETE 7411 || eNew==PAGER_JOURNALMODE_TRUNCATE 7412 || eNew==PAGER_JOURNALMODE_PERSIST 7413 || eNew==PAGER_JOURNALMODE_OFF 7414 || eNew==PAGER_JOURNALMODE_MEMORY 7415 || eNew==PAGER_JOURNALMODE_WAL 7416 || eNew==PAGER_JOURNALMODE_QUERY 7417 ); 7418 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7419 assert( p->readOnly==0 ); 7420 7421 pBt = db->aDb[pOp->p1].pBt; 7422 pPager = sqlite3BtreePager(pBt); 7423 eOld = sqlite3PagerGetJournalMode(pPager); 7424 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7425 assert( sqlite3BtreeHoldsMutex(pBt) ); 7426 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7427 7428 #ifndef SQLITE_OMIT_WAL 7429 zFilename = sqlite3PagerFilename(pPager, 1); 7430 7431 /* Do not allow a transition to journal_mode=WAL for a database 7432 ** in temporary storage or if the VFS does not support shared memory 7433 */ 7434 if( eNew==PAGER_JOURNALMODE_WAL 7435 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7436 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7437 ){ 7438 eNew = eOld; 7439 } 7440 7441 if( (eNew!=eOld) 7442 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7443 ){ 7444 if( !db->autoCommit || db->nVdbeRead>1 ){ 7445 rc = SQLITE_ERROR; 7446 sqlite3VdbeError(p, 7447 "cannot change %s wal mode from within a transaction", 7448 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7449 ); 7450 goto abort_due_to_error; 7451 }else{ 7452 7453 if( eOld==PAGER_JOURNALMODE_WAL ){ 7454 /* If leaving WAL mode, close the log file. If successful, the call 7455 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7456 ** file. An EXCLUSIVE lock may still be held on the database file 7457 ** after a successful return. 7458 */ 7459 rc = sqlite3PagerCloseWal(pPager, db); 7460 if( rc==SQLITE_OK ){ 7461 sqlite3PagerSetJournalMode(pPager, eNew); 7462 } 7463 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7464 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7465 ** as an intermediate */ 7466 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7467 } 7468 7469 /* Open a transaction on the database file. Regardless of the journal 7470 ** mode, this transaction always uses a rollback journal. 7471 */ 7472 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7473 if( rc==SQLITE_OK ){ 7474 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7475 } 7476 } 7477 } 7478 #endif /* ifndef SQLITE_OMIT_WAL */ 7479 7480 if( rc ) eNew = eOld; 7481 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7482 7483 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7484 pOut->z = (char *)sqlite3JournalModename(eNew); 7485 pOut->n = sqlite3Strlen30(pOut->z); 7486 pOut->enc = SQLITE_UTF8; 7487 sqlite3VdbeChangeEncoding(pOut, encoding); 7488 if( rc ) goto abort_due_to_error; 7489 break; 7490 }; 7491 #endif /* SQLITE_OMIT_PRAGMA */ 7492 7493 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7494 /* Opcode: Vacuum P1 P2 * * * 7495 ** 7496 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7497 ** for an attached database. The "temp" database may not be vacuumed. 7498 ** 7499 ** If P2 is not zero, then it is a register holding a string which is 7500 ** the file into which the result of vacuum should be written. When 7501 ** P2 is zero, the vacuum overwrites the original database. 7502 */ 7503 case OP_Vacuum: { 7504 assert( p->readOnly==0 ); 7505 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7506 pOp->p2 ? &aMem[pOp->p2] : 0); 7507 if( rc ) goto abort_due_to_error; 7508 break; 7509 } 7510 #endif 7511 7512 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7513 /* Opcode: IncrVacuum P1 P2 * * * 7514 ** 7515 ** Perform a single step of the incremental vacuum procedure on 7516 ** the P1 database. If the vacuum has finished, jump to instruction 7517 ** P2. Otherwise, fall through to the next instruction. 7518 */ 7519 case OP_IncrVacuum: { /* jump */ 7520 Btree *pBt; 7521 7522 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7523 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7524 assert( p->readOnly==0 ); 7525 pBt = db->aDb[pOp->p1].pBt; 7526 rc = sqlite3BtreeIncrVacuum(pBt); 7527 VdbeBranchTaken(rc==SQLITE_DONE,2); 7528 if( rc ){ 7529 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7530 rc = SQLITE_OK; 7531 goto jump_to_p2; 7532 } 7533 break; 7534 } 7535 #endif 7536 7537 /* Opcode: Expire P1 P2 * * * 7538 ** 7539 ** Cause precompiled statements to expire. When an expired statement 7540 ** is executed using sqlite3_step() it will either automatically 7541 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7542 ** or it will fail with SQLITE_SCHEMA. 7543 ** 7544 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7545 ** then only the currently executing statement is expired. 7546 ** 7547 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7548 ** then running SQL statements are allowed to continue to run to completion. 7549 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7550 ** that might help the statement run faster but which does not affect the 7551 ** correctness of operation. 7552 */ 7553 case OP_Expire: { 7554 assert( pOp->p2==0 || pOp->p2==1 ); 7555 if( !pOp->p1 ){ 7556 sqlite3ExpirePreparedStatements(db, pOp->p2); 7557 }else{ 7558 p->expired = pOp->p2+1; 7559 } 7560 break; 7561 } 7562 7563 /* Opcode: CursorLock P1 * * * * 7564 ** 7565 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7566 ** written by an other cursor. 7567 */ 7568 case OP_CursorLock: { 7569 VdbeCursor *pC; 7570 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7571 pC = p->apCsr[pOp->p1]; 7572 assert( pC!=0 ); 7573 assert( pC->eCurType==CURTYPE_BTREE ); 7574 sqlite3BtreeCursorPin(pC->uc.pCursor); 7575 break; 7576 } 7577 7578 /* Opcode: CursorUnlock P1 * * * * 7579 ** 7580 ** Unlock the btree to which cursor P1 is pointing so that it can be 7581 ** written by other cursors. 7582 */ 7583 case OP_CursorUnlock: { 7584 VdbeCursor *pC; 7585 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7586 pC = p->apCsr[pOp->p1]; 7587 assert( pC!=0 ); 7588 assert( pC->eCurType==CURTYPE_BTREE ); 7589 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7590 break; 7591 } 7592 7593 #ifndef SQLITE_OMIT_SHARED_CACHE 7594 /* Opcode: TableLock P1 P2 P3 P4 * 7595 ** Synopsis: iDb=P1 root=P2 write=P3 7596 ** 7597 ** Obtain a lock on a particular table. This instruction is only used when 7598 ** the shared-cache feature is enabled. 7599 ** 7600 ** P1 is the index of the database in sqlite3.aDb[] of the database 7601 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7602 ** a write lock if P3==1. 7603 ** 7604 ** P2 contains the root-page of the table to lock. 7605 ** 7606 ** P4 contains a pointer to the name of the table being locked. This is only 7607 ** used to generate an error message if the lock cannot be obtained. 7608 */ 7609 case OP_TableLock: { 7610 u8 isWriteLock = (u8)pOp->p3; 7611 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7612 int p1 = pOp->p1; 7613 assert( p1>=0 && p1<db->nDb ); 7614 assert( DbMaskTest(p->btreeMask, p1) ); 7615 assert( isWriteLock==0 || isWriteLock==1 ); 7616 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7617 if( rc ){ 7618 if( (rc&0xFF)==SQLITE_LOCKED ){ 7619 const char *z = pOp->p4.z; 7620 sqlite3VdbeError(p, "database table is locked: %s", z); 7621 } 7622 goto abort_due_to_error; 7623 } 7624 } 7625 break; 7626 } 7627 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7628 7629 #ifndef SQLITE_OMIT_VIRTUALTABLE 7630 /* Opcode: VBegin * * * P4 * 7631 ** 7632 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7633 ** xBegin method for that table. 7634 ** 7635 ** Also, whether or not P4 is set, check that this is not being called from 7636 ** within a callback to a virtual table xSync() method. If it is, the error 7637 ** code will be set to SQLITE_LOCKED. 7638 */ 7639 case OP_VBegin: { 7640 VTable *pVTab; 7641 pVTab = pOp->p4.pVtab; 7642 rc = sqlite3VtabBegin(db, pVTab); 7643 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7644 if( rc ) goto abort_due_to_error; 7645 break; 7646 } 7647 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7648 7649 #ifndef SQLITE_OMIT_VIRTUALTABLE 7650 /* Opcode: VCreate P1 P2 * * * 7651 ** 7652 ** P2 is a register that holds the name of a virtual table in database 7653 ** P1. Call the xCreate method for that table. 7654 */ 7655 case OP_VCreate: { 7656 Mem sMem; /* For storing the record being decoded */ 7657 const char *zTab; /* Name of the virtual table */ 7658 7659 memset(&sMem, 0, sizeof(sMem)); 7660 sMem.db = db; 7661 /* Because P2 is always a static string, it is impossible for the 7662 ** sqlite3VdbeMemCopy() to fail */ 7663 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7664 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7665 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7666 assert( rc==SQLITE_OK ); 7667 zTab = (const char*)sqlite3_value_text(&sMem); 7668 assert( zTab || db->mallocFailed ); 7669 if( zTab ){ 7670 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7671 } 7672 sqlite3VdbeMemRelease(&sMem); 7673 if( rc ) goto abort_due_to_error; 7674 break; 7675 } 7676 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7677 7678 #ifndef SQLITE_OMIT_VIRTUALTABLE 7679 /* Opcode: VDestroy P1 * * P4 * 7680 ** 7681 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7682 ** of that table. 7683 */ 7684 case OP_VDestroy: { 7685 db->nVDestroy++; 7686 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7687 db->nVDestroy--; 7688 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7689 if( rc ) goto abort_due_to_error; 7690 break; 7691 } 7692 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7693 7694 #ifndef SQLITE_OMIT_VIRTUALTABLE 7695 /* Opcode: VOpen P1 * * P4 * 7696 ** 7697 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7698 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7699 ** table and stores that cursor in P1. 7700 */ 7701 case OP_VOpen: { 7702 VdbeCursor *pCur; 7703 sqlite3_vtab_cursor *pVCur; 7704 sqlite3_vtab *pVtab; 7705 const sqlite3_module *pModule; 7706 7707 assert( p->bIsReader ); 7708 pCur = 0; 7709 pVCur = 0; 7710 pVtab = pOp->p4.pVtab->pVtab; 7711 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7712 rc = SQLITE_LOCKED; 7713 goto abort_due_to_error; 7714 } 7715 pModule = pVtab->pModule; 7716 rc = pModule->xOpen(pVtab, &pVCur); 7717 sqlite3VtabImportErrmsg(p, pVtab); 7718 if( rc ) goto abort_due_to_error; 7719 7720 /* Initialize sqlite3_vtab_cursor base class */ 7721 pVCur->pVtab = pVtab; 7722 7723 /* Initialize vdbe cursor object */ 7724 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7725 if( pCur ){ 7726 pCur->uc.pVCur = pVCur; 7727 pVtab->nRef++; 7728 }else{ 7729 assert( db->mallocFailed ); 7730 pModule->xClose(pVCur); 7731 goto no_mem; 7732 } 7733 break; 7734 } 7735 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7736 7737 #ifndef SQLITE_OMIT_VIRTUALTABLE 7738 /* Opcode: VInitIn P1 P2 P3 * * 7739 ** Synopsis: r[P2]=ValueList(P1,P3) 7740 ** 7741 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7742 ** with cache register P3 and output register P3+1. This ValueList object 7743 ** can be used as the first argument to sqlite3_vtab_in_first() and 7744 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7745 ** cursor. Register P3 is used to hold the values returned by 7746 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7747 */ 7748 case OP_VInitIn: { /* out2 */ 7749 VdbeCursor *pC; /* The cursor containing the RHS values */ 7750 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7751 7752 pC = p->apCsr[pOp->p1]; 7753 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7754 if( pRhs==0 ) goto no_mem; 7755 pRhs->pCsr = pC->uc.pCursor; 7756 pRhs->pOut = &aMem[pOp->p3]; 7757 pOut = out2Prerelease(p, pOp); 7758 pOut->flags = MEM_Null; 7759 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7760 break; 7761 } 7762 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7763 7764 7765 #ifndef SQLITE_OMIT_VIRTUALTABLE 7766 /* Opcode: VFilter P1 P2 P3 P4 * 7767 ** Synopsis: iplan=r[P3] zplan='P4' 7768 ** 7769 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7770 ** the filtered result set is empty. 7771 ** 7772 ** P4 is either NULL or a string that was generated by the xBestIndex 7773 ** method of the module. The interpretation of the P4 string is left 7774 ** to the module implementation. 7775 ** 7776 ** This opcode invokes the xFilter method on the virtual table specified 7777 ** by P1. The integer query plan parameter to xFilter is stored in register 7778 ** P3. Register P3+1 stores the argc parameter to be passed to the 7779 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7780 ** additional parameters which are passed to 7781 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7782 ** 7783 ** A jump is made to P2 if the result set after filtering would be empty. 7784 */ 7785 case OP_VFilter: { /* jump */ 7786 int nArg; 7787 int iQuery; 7788 const sqlite3_module *pModule; 7789 Mem *pQuery; 7790 Mem *pArgc; 7791 sqlite3_vtab_cursor *pVCur; 7792 sqlite3_vtab *pVtab; 7793 VdbeCursor *pCur; 7794 int res; 7795 int i; 7796 Mem **apArg; 7797 7798 pQuery = &aMem[pOp->p3]; 7799 pArgc = &pQuery[1]; 7800 pCur = p->apCsr[pOp->p1]; 7801 assert( memIsValid(pQuery) ); 7802 REGISTER_TRACE(pOp->p3, pQuery); 7803 assert( pCur!=0 ); 7804 assert( pCur->eCurType==CURTYPE_VTAB ); 7805 pVCur = pCur->uc.pVCur; 7806 pVtab = pVCur->pVtab; 7807 pModule = pVtab->pModule; 7808 7809 /* Grab the index number and argc parameters */ 7810 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7811 nArg = (int)pArgc->u.i; 7812 iQuery = (int)pQuery->u.i; 7813 7814 /* Invoke the xFilter method */ 7815 apArg = p->apArg; 7816 for(i = 0; i<nArg; i++){ 7817 apArg[i] = &pArgc[i+1]; 7818 } 7819 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7820 sqlite3VtabImportErrmsg(p, pVtab); 7821 if( rc ) goto abort_due_to_error; 7822 res = pModule->xEof(pVCur); 7823 pCur->nullRow = 0; 7824 VdbeBranchTaken(res!=0,2); 7825 if( res ) goto jump_to_p2; 7826 break; 7827 } 7828 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7829 7830 #ifndef SQLITE_OMIT_VIRTUALTABLE 7831 /* Opcode: VColumn P1 P2 P3 * P5 7832 ** Synopsis: r[P3]=vcolumn(P2) 7833 ** 7834 ** Store in register P3 the value of the P2-th column of 7835 ** the current row of the virtual-table of cursor P1. 7836 ** 7837 ** If the VColumn opcode is being used to fetch the value of 7838 ** an unchanging column during an UPDATE operation, then the P5 7839 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7840 ** function to return true inside the xColumn method of the virtual 7841 ** table implementation. The P5 column might also contain other 7842 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7843 ** unused by OP_VColumn. 7844 */ 7845 case OP_VColumn: { 7846 sqlite3_vtab *pVtab; 7847 const sqlite3_module *pModule; 7848 Mem *pDest; 7849 sqlite3_context sContext; 7850 7851 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7852 assert( pCur!=0 ); 7853 assert( pCur->eCurType==CURTYPE_VTAB ); 7854 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7855 pDest = &aMem[pOp->p3]; 7856 memAboutToChange(p, pDest); 7857 if( pCur->nullRow ){ 7858 sqlite3VdbeMemSetNull(pDest); 7859 break; 7860 } 7861 pVtab = pCur->uc.pVCur->pVtab; 7862 pModule = pVtab->pModule; 7863 assert( pModule->xColumn ); 7864 memset(&sContext, 0, sizeof(sContext)); 7865 sContext.pOut = pDest; 7866 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7867 if( pOp->p5 & OPFLAG_NOCHNG ){ 7868 sqlite3VdbeMemSetNull(pDest); 7869 pDest->flags = MEM_Null|MEM_Zero; 7870 pDest->u.nZero = 0; 7871 }else{ 7872 MemSetTypeFlag(pDest, MEM_Null); 7873 } 7874 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7875 sqlite3VtabImportErrmsg(p, pVtab); 7876 if( sContext.isError>0 ){ 7877 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7878 rc = sContext.isError; 7879 } 7880 sqlite3VdbeChangeEncoding(pDest, encoding); 7881 REGISTER_TRACE(pOp->p3, pDest); 7882 UPDATE_MAX_BLOBSIZE(pDest); 7883 7884 if( sqlite3VdbeMemTooBig(pDest) ){ 7885 goto too_big; 7886 } 7887 if( rc ) goto abort_due_to_error; 7888 break; 7889 } 7890 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7891 7892 #ifndef SQLITE_OMIT_VIRTUALTABLE 7893 /* Opcode: VNext P1 P2 * * * 7894 ** 7895 ** Advance virtual table P1 to the next row in its result set and 7896 ** jump to instruction P2. Or, if the virtual table has reached 7897 ** the end of its result set, then fall through to the next instruction. 7898 */ 7899 case OP_VNext: { /* jump */ 7900 sqlite3_vtab *pVtab; 7901 const sqlite3_module *pModule; 7902 int res; 7903 VdbeCursor *pCur; 7904 7905 pCur = p->apCsr[pOp->p1]; 7906 assert( pCur!=0 ); 7907 assert( pCur->eCurType==CURTYPE_VTAB ); 7908 if( pCur->nullRow ){ 7909 break; 7910 } 7911 pVtab = pCur->uc.pVCur->pVtab; 7912 pModule = pVtab->pModule; 7913 assert( pModule->xNext ); 7914 7915 /* Invoke the xNext() method of the module. There is no way for the 7916 ** underlying implementation to return an error if one occurs during 7917 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7918 ** data is available) and the error code returned when xColumn or 7919 ** some other method is next invoked on the save virtual table cursor. 7920 */ 7921 rc = pModule->xNext(pCur->uc.pVCur); 7922 sqlite3VtabImportErrmsg(p, pVtab); 7923 if( rc ) goto abort_due_to_error; 7924 res = pModule->xEof(pCur->uc.pVCur); 7925 VdbeBranchTaken(!res,2); 7926 if( !res ){ 7927 /* If there is data, jump to P2 */ 7928 goto jump_to_p2_and_check_for_interrupt; 7929 } 7930 goto check_for_interrupt; 7931 } 7932 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7933 7934 #ifndef SQLITE_OMIT_VIRTUALTABLE 7935 /* Opcode: VRename P1 * * P4 * 7936 ** 7937 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7938 ** This opcode invokes the corresponding xRename method. The value 7939 ** in register P1 is passed as the zName argument to the xRename method. 7940 */ 7941 case OP_VRename: { 7942 sqlite3_vtab *pVtab; 7943 Mem *pName; 7944 int isLegacy; 7945 7946 isLegacy = (db->flags & SQLITE_LegacyAlter); 7947 db->flags |= SQLITE_LegacyAlter; 7948 pVtab = pOp->p4.pVtab->pVtab; 7949 pName = &aMem[pOp->p1]; 7950 assert( pVtab->pModule->xRename ); 7951 assert( memIsValid(pName) ); 7952 assert( p->readOnly==0 ); 7953 REGISTER_TRACE(pOp->p1, pName); 7954 assert( pName->flags & MEM_Str ); 7955 testcase( pName->enc==SQLITE_UTF8 ); 7956 testcase( pName->enc==SQLITE_UTF16BE ); 7957 testcase( pName->enc==SQLITE_UTF16LE ); 7958 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7959 if( rc ) goto abort_due_to_error; 7960 rc = pVtab->pModule->xRename(pVtab, pName->z); 7961 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7962 sqlite3VtabImportErrmsg(p, pVtab); 7963 p->expired = 0; 7964 if( rc ) goto abort_due_to_error; 7965 break; 7966 } 7967 #endif 7968 7969 #ifndef SQLITE_OMIT_VIRTUALTABLE 7970 /* Opcode: VUpdate P1 P2 P3 P4 P5 7971 ** Synopsis: data=r[P3@P2] 7972 ** 7973 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7974 ** This opcode invokes the corresponding xUpdate method. P2 values 7975 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7976 ** invocation. The value in register (P3+P2-1) corresponds to the 7977 ** p2th element of the argv array passed to xUpdate. 7978 ** 7979 ** The xUpdate method will do a DELETE or an INSERT or both. 7980 ** The argv[0] element (which corresponds to memory cell P3) 7981 ** is the rowid of a row to delete. If argv[0] is NULL then no 7982 ** deletion occurs. The argv[1] element is the rowid of the new 7983 ** row. This can be NULL to have the virtual table select the new 7984 ** rowid for itself. The subsequent elements in the array are 7985 ** the values of columns in the new row. 7986 ** 7987 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7988 ** a row to delete. 7989 ** 7990 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7991 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7992 ** is set to the value of the rowid for the row just inserted. 7993 ** 7994 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7995 ** apply in the case of a constraint failure on an insert or update. 7996 */ 7997 case OP_VUpdate: { 7998 sqlite3_vtab *pVtab; 7999 const sqlite3_module *pModule; 8000 int nArg; 8001 int i; 8002 sqlite_int64 rowid = 0; 8003 Mem **apArg; 8004 Mem *pX; 8005 8006 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8007 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8008 ); 8009 assert( p->readOnly==0 ); 8010 if( db->mallocFailed ) goto no_mem; 8011 sqlite3VdbeIncrWriteCounter(p, 0); 8012 pVtab = pOp->p4.pVtab->pVtab; 8013 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8014 rc = SQLITE_LOCKED; 8015 goto abort_due_to_error; 8016 } 8017 pModule = pVtab->pModule; 8018 nArg = pOp->p2; 8019 assert( pOp->p4type==P4_VTAB ); 8020 if( ALWAYS(pModule->xUpdate) ){ 8021 u8 vtabOnConflict = db->vtabOnConflict; 8022 apArg = p->apArg; 8023 pX = &aMem[pOp->p3]; 8024 for(i=0; i<nArg; i++){ 8025 assert( memIsValid(pX) ); 8026 memAboutToChange(p, pX); 8027 apArg[i] = pX; 8028 pX++; 8029 } 8030 db->vtabOnConflict = pOp->p5; 8031 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8032 db->vtabOnConflict = vtabOnConflict; 8033 sqlite3VtabImportErrmsg(p, pVtab); 8034 if( rc==SQLITE_OK && pOp->p1 ){ 8035 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8036 db->lastRowid = rowid; 8037 } 8038 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8039 if( pOp->p5==OE_Ignore ){ 8040 rc = SQLITE_OK; 8041 }else{ 8042 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8043 } 8044 }else{ 8045 p->nChange++; 8046 } 8047 if( rc ) goto abort_due_to_error; 8048 } 8049 break; 8050 } 8051 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8052 8053 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8054 /* Opcode: Pagecount P1 P2 * * * 8055 ** 8056 ** Write the current number of pages in database P1 to memory cell P2. 8057 */ 8058 case OP_Pagecount: { /* out2 */ 8059 pOut = out2Prerelease(p, pOp); 8060 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8061 break; 8062 } 8063 #endif 8064 8065 8066 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8067 /* Opcode: MaxPgcnt P1 P2 P3 * * 8068 ** 8069 ** Try to set the maximum page count for database P1 to the value in P3. 8070 ** Do not let the maximum page count fall below the current page count and 8071 ** do not change the maximum page count value if P3==0. 8072 ** 8073 ** Store the maximum page count after the change in register P2. 8074 */ 8075 case OP_MaxPgcnt: { /* out2 */ 8076 unsigned int newMax; 8077 Btree *pBt; 8078 8079 pOut = out2Prerelease(p, pOp); 8080 pBt = db->aDb[pOp->p1].pBt; 8081 newMax = 0; 8082 if( pOp->p3 ){ 8083 newMax = sqlite3BtreeLastPage(pBt); 8084 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8085 } 8086 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8087 break; 8088 } 8089 #endif 8090 8091 /* Opcode: Function P1 P2 P3 P4 * 8092 ** Synopsis: r[P3]=func(r[P2@NP]) 8093 ** 8094 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8095 ** contains a pointer to the function to be run) with arguments taken 8096 ** from register P2 and successors. The number of arguments is in 8097 ** the sqlite3_context object that P4 points to. 8098 ** The result of the function is stored 8099 ** in register P3. Register P3 must not be one of the function inputs. 8100 ** 8101 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8102 ** function was determined to be constant at compile time. If the first 8103 ** argument was constant then bit 0 of P1 is set. This is used to determine 8104 ** whether meta data associated with a user function argument using the 8105 ** sqlite3_set_auxdata() API may be safely retained until the next 8106 ** invocation of this opcode. 8107 ** 8108 ** See also: AggStep, AggFinal, PureFunc 8109 */ 8110 /* Opcode: PureFunc P1 P2 P3 P4 * 8111 ** Synopsis: r[P3]=func(r[P2@NP]) 8112 ** 8113 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8114 ** contains a pointer to the function to be run) with arguments taken 8115 ** from register P2 and successors. The number of arguments is in 8116 ** the sqlite3_context object that P4 points to. 8117 ** The result of the function is stored 8118 ** in register P3. Register P3 must not be one of the function inputs. 8119 ** 8120 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8121 ** function was determined to be constant at compile time. If the first 8122 ** argument was constant then bit 0 of P1 is set. This is used to determine 8123 ** whether meta data associated with a user function argument using the 8124 ** sqlite3_set_auxdata() API may be safely retained until the next 8125 ** invocation of this opcode. 8126 ** 8127 ** This opcode works exactly like OP_Function. The only difference is in 8128 ** its name. This opcode is used in places where the function must be 8129 ** purely non-deterministic. Some built-in date/time functions can be 8130 ** either determinitic of non-deterministic, depending on their arguments. 8131 ** When those function are used in a non-deterministic way, they will check 8132 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8133 ** if they were, they throw an error. 8134 ** 8135 ** See also: AggStep, AggFinal, Function 8136 */ 8137 case OP_PureFunc: /* group */ 8138 case OP_Function: { /* group */ 8139 int i; 8140 sqlite3_context *pCtx; 8141 8142 assert( pOp->p4type==P4_FUNCCTX ); 8143 pCtx = pOp->p4.pCtx; 8144 8145 /* If this function is inside of a trigger, the register array in aMem[] 8146 ** might change from one evaluation to the next. The next block of code 8147 ** checks to see if the register array has changed, and if so it 8148 ** reinitializes the relavant parts of the sqlite3_context object */ 8149 pOut = &aMem[pOp->p3]; 8150 if( pCtx->pOut != pOut ){ 8151 pCtx->pVdbe = p; 8152 pCtx->pOut = pOut; 8153 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8154 } 8155 assert( pCtx->pVdbe==p ); 8156 8157 memAboutToChange(p, pOut); 8158 #ifdef SQLITE_DEBUG 8159 for(i=0; i<pCtx->argc; i++){ 8160 assert( memIsValid(pCtx->argv[i]) ); 8161 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8162 } 8163 #endif 8164 MemSetTypeFlag(pOut, MEM_Null); 8165 assert( pCtx->isError==0 ); 8166 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8167 8168 /* If the function returned an error, throw an exception */ 8169 if( pCtx->isError ){ 8170 if( pCtx->isError>0 ){ 8171 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8172 rc = pCtx->isError; 8173 } 8174 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8175 pCtx->isError = 0; 8176 if( rc ) goto abort_due_to_error; 8177 } 8178 8179 /* Copy the result of the function into register P3 */ 8180 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 8181 sqlite3VdbeChangeEncoding(pOut, encoding); 8182 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 8183 } 8184 8185 REGISTER_TRACE(pOp->p3, pOut); 8186 UPDATE_MAX_BLOBSIZE(pOut); 8187 break; 8188 } 8189 8190 /* Opcode: FilterAdd P1 * P3 P4 * 8191 ** Synopsis: filter(P1) += key(P3@P4) 8192 ** 8193 ** Compute a hash on the P4 registers starting with r[P3] and 8194 ** add that hash to the bloom filter contained in r[P1]. 8195 */ 8196 case OP_FilterAdd: { 8197 u64 h; 8198 8199 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8200 pIn1 = &aMem[pOp->p1]; 8201 assert( pIn1->flags & MEM_Blob ); 8202 assert( pIn1->n>0 ); 8203 h = filterHash(aMem, pOp); 8204 #ifdef SQLITE_DEBUG 8205 if( db->flags&SQLITE_VdbeTrace ){ 8206 int ii; 8207 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8208 registerTrace(ii, &aMem[ii]); 8209 } 8210 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8211 } 8212 #endif 8213 h %= pIn1->n; 8214 pIn1->z[h/8] |= 1<<(h&7); 8215 break; 8216 } 8217 8218 /* Opcode: Filter P1 P2 P3 P4 * 8219 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8220 ** 8221 ** Compute a hash on the key contained in the P4 registers starting 8222 ** with r[P3]. Check to see if that hash is found in the 8223 ** bloom filter hosted by register P1. If it is not present then 8224 ** maybe jump to P2. Otherwise fall through. 8225 ** 8226 ** False negatives are harmless. It is always safe to fall through, 8227 ** even if the value is in the bloom filter. A false negative causes 8228 ** more CPU cycles to be used, but it should still yield the correct 8229 ** answer. However, an incorrect answer may well arise from a 8230 ** false positive - if the jump is taken when it should fall through. 8231 */ 8232 case OP_Filter: { /* jump */ 8233 u64 h; 8234 8235 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8236 pIn1 = &aMem[pOp->p1]; 8237 assert( (pIn1->flags & MEM_Blob)!=0 ); 8238 assert( pIn1->n >= 1 ); 8239 h = filterHash(aMem, pOp); 8240 #ifdef SQLITE_DEBUG 8241 if( db->flags&SQLITE_VdbeTrace ){ 8242 int ii; 8243 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8244 registerTrace(ii, &aMem[ii]); 8245 } 8246 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8247 } 8248 #endif 8249 h %= pIn1->n; 8250 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8251 VdbeBranchTaken(1, 2); 8252 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8253 goto jump_to_p2; 8254 }else{ 8255 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8256 VdbeBranchTaken(0, 2); 8257 } 8258 break; 8259 } 8260 8261 /* Opcode: Trace P1 P2 * P4 * 8262 ** 8263 ** Write P4 on the statement trace output if statement tracing is 8264 ** enabled. 8265 ** 8266 ** Operand P1 must be 0x7fffffff and P2 must positive. 8267 */ 8268 /* Opcode: Init P1 P2 P3 P4 * 8269 ** Synopsis: Start at P2 8270 ** 8271 ** Programs contain a single instance of this opcode as the very first 8272 ** opcode. 8273 ** 8274 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8275 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8276 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8277 ** 8278 ** If P2 is not zero, jump to instruction P2. 8279 ** 8280 ** Increment the value of P1 so that OP_Once opcodes will jump the 8281 ** first time they are evaluated for this run. 8282 ** 8283 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8284 ** error is encountered. 8285 */ 8286 case OP_Trace: 8287 case OP_Init: { /* jump */ 8288 int i; 8289 #ifndef SQLITE_OMIT_TRACE 8290 char *zTrace; 8291 #endif 8292 8293 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8294 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8295 ** 8296 ** This assert() provides evidence for: 8297 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8298 ** would have been returned by the legacy sqlite3_trace() interface by 8299 ** using the X argument when X begins with "--" and invoking 8300 ** sqlite3_expanded_sql(P) otherwise. 8301 */ 8302 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8303 8304 /* OP_Init is always instruction 0 */ 8305 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8306 8307 #ifndef SQLITE_OMIT_TRACE 8308 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8309 && !p->doingRerun 8310 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8311 ){ 8312 #ifndef SQLITE_OMIT_DEPRECATED 8313 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8314 char *z = sqlite3VdbeExpandSql(p, zTrace); 8315 db->trace.xLegacy(db->pTraceArg, z); 8316 sqlite3_free(z); 8317 }else 8318 #endif 8319 if( db->nVdbeExec>1 ){ 8320 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8321 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8322 sqlite3DbFree(db, z); 8323 }else{ 8324 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8325 } 8326 } 8327 #ifdef SQLITE_USE_FCNTL_TRACE 8328 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8329 if( zTrace ){ 8330 int j; 8331 for(j=0; j<db->nDb; j++){ 8332 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8333 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8334 } 8335 } 8336 #endif /* SQLITE_USE_FCNTL_TRACE */ 8337 #ifdef SQLITE_DEBUG 8338 if( (db->flags & SQLITE_SqlTrace)!=0 8339 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8340 ){ 8341 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8342 } 8343 #endif /* SQLITE_DEBUG */ 8344 #endif /* SQLITE_OMIT_TRACE */ 8345 assert( pOp->p2>0 ); 8346 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8347 if( pOp->opcode==OP_Trace ) break; 8348 for(i=1; i<p->nOp; i++){ 8349 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8350 } 8351 pOp->p1 = 0; 8352 } 8353 pOp->p1++; 8354 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8355 goto jump_to_p2; 8356 } 8357 8358 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8359 /* Opcode: CursorHint P1 * * P4 * 8360 ** 8361 ** Provide a hint to cursor P1 that it only needs to return rows that 8362 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8363 ** to values currently held in registers. TK_COLUMN terms in the P4 8364 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8365 */ 8366 case OP_CursorHint: { 8367 VdbeCursor *pC; 8368 8369 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8370 assert( pOp->p4type==P4_EXPR ); 8371 pC = p->apCsr[pOp->p1]; 8372 if( pC ){ 8373 assert( pC->eCurType==CURTYPE_BTREE ); 8374 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8375 pOp->p4.pExpr, aMem); 8376 } 8377 break; 8378 } 8379 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8380 8381 #ifdef SQLITE_DEBUG 8382 /* Opcode: Abortable * * * * * 8383 ** 8384 ** Verify that an Abort can happen. Assert if an Abort at this point 8385 ** might cause database corruption. This opcode only appears in debugging 8386 ** builds. 8387 ** 8388 ** An Abort is safe if either there have been no writes, or if there is 8389 ** an active statement journal. 8390 */ 8391 case OP_Abortable: { 8392 sqlite3VdbeAssertAbortable(p); 8393 break; 8394 } 8395 #endif 8396 8397 #ifdef SQLITE_DEBUG 8398 /* Opcode: ReleaseReg P1 P2 P3 * P5 8399 ** Synopsis: release r[P1@P2] mask P3 8400 ** 8401 ** Release registers from service. Any content that was in the 8402 ** the registers is unreliable after this opcode completes. 8403 ** 8404 ** The registers released will be the P2 registers starting at P1, 8405 ** except if bit ii of P3 set, then do not release register P1+ii. 8406 ** In other words, P3 is a mask of registers to preserve. 8407 ** 8408 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8409 ** that if the content of the released register was set using OP_SCopy, 8410 ** a change to the value of the source register for the OP_SCopy will no longer 8411 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8412 ** 8413 ** If P5 is set, then all released registers have their type set 8414 ** to MEM_Undefined so that any subsequent attempt to read the released 8415 ** register (before it is reinitialized) will generate an assertion fault. 8416 ** 8417 ** P5 ought to be set on every call to this opcode. 8418 ** However, there are places in the code generator will release registers 8419 ** before their are used, under the (valid) assumption that the registers 8420 ** will not be reallocated for some other purpose before they are used and 8421 ** hence are safe to release. 8422 ** 8423 ** This opcode is only available in testing and debugging builds. It is 8424 ** not generated for release builds. The purpose of this opcode is to help 8425 ** validate the generated bytecode. This opcode does not actually contribute 8426 ** to computing an answer. 8427 */ 8428 case OP_ReleaseReg: { 8429 Mem *pMem; 8430 int i; 8431 u32 constMask; 8432 assert( pOp->p1>0 ); 8433 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8434 pMem = &aMem[pOp->p1]; 8435 constMask = pOp->p3; 8436 for(i=0; i<pOp->p2; i++, pMem++){ 8437 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8438 pMem->pScopyFrom = 0; 8439 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8440 } 8441 } 8442 break; 8443 } 8444 #endif 8445 8446 /* Opcode: Noop * * * * * 8447 ** 8448 ** Do nothing. This instruction is often useful as a jump 8449 ** destination. 8450 */ 8451 /* 8452 ** The magic Explain opcode are only inserted when explain==2 (which 8453 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8454 ** This opcode records information from the optimizer. It is the 8455 ** the same as a no-op. This opcodesnever appears in a real VM program. 8456 */ 8457 default: { /* This is really OP_Noop, OP_Explain */ 8458 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8459 8460 break; 8461 } 8462 8463 /***************************************************************************** 8464 ** The cases of the switch statement above this line should all be indented 8465 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8466 ** readability. From this point on down, the normal indentation rules are 8467 ** restored. 8468 *****************************************************************************/ 8469 } 8470 8471 #ifdef VDBE_PROFILE 8472 { 8473 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8474 if( endTime>start ) pOrigOp->cycles += endTime - start; 8475 pOrigOp->cnt++; 8476 } 8477 #endif 8478 8479 /* The following code adds nothing to the actual functionality 8480 ** of the program. It is only here for testing and debugging. 8481 ** On the other hand, it does burn CPU cycles every time through 8482 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8483 */ 8484 #ifndef NDEBUG 8485 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8486 8487 #ifdef SQLITE_DEBUG 8488 if( db->flags & SQLITE_VdbeTrace ){ 8489 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8490 if( rc!=0 ) printf("rc=%d\n",rc); 8491 if( opProperty & (OPFLG_OUT2) ){ 8492 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8493 } 8494 if( opProperty & OPFLG_OUT3 ){ 8495 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8496 } 8497 if( opProperty==0xff ){ 8498 /* Never happens. This code exists to avoid a harmless linkage 8499 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8500 ** used. */ 8501 sqlite3VdbeRegisterDump(p); 8502 } 8503 } 8504 #endif /* SQLITE_DEBUG */ 8505 #endif /* NDEBUG */ 8506 } /* The end of the for(;;) loop the loops through opcodes */ 8507 8508 /* If we reach this point, it means that execution is finished with 8509 ** an error of some kind. 8510 */ 8511 abort_due_to_error: 8512 if( db->mallocFailed ){ 8513 rc = SQLITE_NOMEM_BKPT; 8514 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8515 rc = SQLITE_CORRUPT_BKPT; 8516 } 8517 assert( rc ); 8518 #ifdef SQLITE_DEBUG 8519 if( db->flags & SQLITE_VdbeTrace ){ 8520 const char *zTrace = p->zSql; 8521 if( zTrace==0 ){ 8522 if( aOp[0].opcode==OP_Trace ){ 8523 zTrace = aOp[0].p4.z; 8524 } 8525 if( zTrace==0 ) zTrace = "???"; 8526 } 8527 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8528 } 8529 #endif 8530 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8531 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8532 } 8533 p->rc = rc; 8534 sqlite3SystemError(db, rc); 8535 testcase( sqlite3GlobalConfig.xLog!=0 ); 8536 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8537 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8538 sqlite3VdbeHalt(p); 8539 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8540 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8541 db->flags |= SQLITE_CorruptRdOnly; 8542 } 8543 rc = SQLITE_ERROR; 8544 if( resetSchemaOnFault>0 ){ 8545 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8546 } 8547 8548 /* This is the only way out of this procedure. We have to 8549 ** release the mutexes on btrees that were acquired at the 8550 ** top. */ 8551 vdbe_return: 8552 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8553 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8554 nProgressLimit += db->nProgressOps; 8555 if( db->xProgress(db->pProgressArg) ){ 8556 nProgressLimit = LARGEST_UINT64; 8557 rc = SQLITE_INTERRUPT; 8558 goto abort_due_to_error; 8559 } 8560 } 8561 #endif 8562 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8563 sqlite3VdbeLeave(p); 8564 assert( rc!=SQLITE_OK || nExtraDelete==0 8565 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8566 ); 8567 return rc; 8568 8569 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8570 ** is encountered. 8571 */ 8572 too_big: 8573 sqlite3VdbeError(p, "string or blob too big"); 8574 rc = SQLITE_TOOBIG; 8575 goto abort_due_to_error; 8576 8577 /* Jump to here if a malloc() fails. 8578 */ 8579 no_mem: 8580 sqlite3OomFault(db); 8581 sqlite3VdbeError(p, "out of memory"); 8582 rc = SQLITE_NOMEM_BKPT; 8583 goto abort_due_to_error; 8584 8585 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8586 ** flag. 8587 */ 8588 abort_due_to_interrupt: 8589 assert( AtomicLoad(&db->u1.isInterrupted) ); 8590 rc = SQLITE_INTERRUPT; 8591 goto abort_due_to_error; 8592 } 8593