xref: /sqlite-3.40.0/src/vdbe.c (revision de7a820f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue = (double)rValue;
318   if( sqlite3RealSameAsInt(rValue,iValue) ){
319     *piValue = iValue;
320     return 1;
321   }
322   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
323 }
324 
325 /*
326 ** Try to convert a value into a numeric representation if we can
327 ** do so without loss of information.  In other words, if the string
328 ** looks like a number, convert it into a number.  If it does not
329 ** look like a number, leave it alone.
330 **
331 ** If the bTryForInt flag is true, then extra effort is made to give
332 ** an integer representation.  Strings that look like floating point
333 ** values but which have no fractional component (example: '48.00')
334 ** will have a MEM_Int representation when bTryForInt is true.
335 **
336 ** If bTryForInt is false, then if the input string contains a decimal
337 ** point or exponential notation, the result is only MEM_Real, even
338 ** if there is an exact integer representation of the quantity.
339 */
340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
341   double rValue;
342   u8 enc = pRec->enc;
343   int rc;
344   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
345   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
346   if( rc<=0 ) return;
347   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
348     pRec->flags |= MEM_Int;
349   }else{
350     pRec->u.r = rValue;
351     pRec->flags |= MEM_Real;
352     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
353   }
354   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
355   ** string representation after computing a numeric equivalent, because the
356   ** string representation might not be the canonical representation for the
357   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
358   pRec->flags &= ~MEM_Str;
359 }
360 
361 /*
362 ** Processing is determine by the affinity parameter:
363 **
364 ** SQLITE_AFF_INTEGER:
365 ** SQLITE_AFF_REAL:
366 ** SQLITE_AFF_NUMERIC:
367 **    Try to convert pRec to an integer representation or a
368 **    floating-point representation if an integer representation
369 **    is not possible.  Note that the integer representation is
370 **    always preferred, even if the affinity is REAL, because
371 **    an integer representation is more space efficient on disk.
372 **
373 ** SQLITE_AFF_TEXT:
374 **    Convert pRec to a text representation.
375 **
376 ** SQLITE_AFF_BLOB:
377 ** SQLITE_AFF_NONE:
378 **    No-op.  pRec is unchanged.
379 */
380 static void applyAffinity(
381   Mem *pRec,          /* The value to apply affinity to */
382   char affinity,      /* The affinity to be applied */
383   u8 enc              /* Use this text encoding */
384 ){
385   if( affinity>=SQLITE_AFF_NUMERIC ){
386     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
387              || affinity==SQLITE_AFF_NUMERIC );
388     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
389       if( (pRec->flags & MEM_Real)==0 ){
390         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
391       }else{
392         sqlite3VdbeIntegerAffinity(pRec);
393       }
394     }
395   }else if( affinity==SQLITE_AFF_TEXT ){
396     /* Only attempt the conversion to TEXT if there is an integer or real
397     ** representation (blob and NULL do not get converted) but no string
398     ** representation.  It would be harmless to repeat the conversion if
399     ** there is already a string rep, but it is pointless to waste those
400     ** CPU cycles. */
401     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
402       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
403         testcase( pRec->flags & MEM_Int );
404         testcase( pRec->flags & MEM_Real );
405         testcase( pRec->flags & MEM_IntReal );
406         sqlite3VdbeMemStringify(pRec, enc, 1);
407       }
408     }
409     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
410   }
411 }
412 
413 /*
414 ** Try to convert the type of a function argument or a result column
415 ** into a numeric representation.  Use either INTEGER or REAL whichever
416 ** is appropriate.  But only do the conversion if it is possible without
417 ** loss of information and return the revised type of the argument.
418 */
419 int sqlite3_value_numeric_type(sqlite3_value *pVal){
420   int eType = sqlite3_value_type(pVal);
421   if( eType==SQLITE_TEXT ){
422     Mem *pMem = (Mem*)pVal;
423     applyNumericAffinity(pMem, 0);
424     eType = sqlite3_value_type(pVal);
425   }
426   return eType;
427 }
428 
429 /*
430 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
431 ** not the internal Mem* type.
432 */
433 void sqlite3ValueApplyAffinity(
434   sqlite3_value *pVal,
435   u8 affinity,
436   u8 enc
437 ){
438   applyAffinity((Mem *)pVal, affinity, enc);
439 }
440 
441 /*
442 ** pMem currently only holds a string type (or maybe a BLOB that we can
443 ** interpret as a string if we want to).  Compute its corresponding
444 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
445 ** accordingly.
446 */
447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
448   int rc;
449   sqlite3_int64 ix;
450   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
451   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
452   if( ExpandBlob(pMem) ){
453     pMem->u.i = 0;
454     return MEM_Int;
455   }
456   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
457   if( rc<=0 ){
458     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
459       pMem->u.i = ix;
460       return MEM_Int;
461     }else{
462       return MEM_Real;
463     }
464   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
465     pMem->u.i = ix;
466     return MEM_Int;
467   }
468   return MEM_Real;
469 }
470 
471 /*
472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
473 ** none.
474 **
475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
476 ** But it does set pMem->u.r and pMem->u.i appropriately.
477 */
478 static u16 numericType(Mem *pMem){
479   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
480     testcase( pMem->flags & MEM_Int );
481     testcase( pMem->flags & MEM_Real );
482     testcase( pMem->flags & MEM_IntReal );
483     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
484   }
485   if( pMem->flags & (MEM_Str|MEM_Blob) ){
486     testcase( pMem->flags & MEM_Str );
487     testcase( pMem->flags & MEM_Blob );
488     return computeNumericType(pMem);
489   }
490   return 0;
491 }
492 
493 #ifdef SQLITE_DEBUG
494 /*
495 ** Write a nice string representation of the contents of cell pMem
496 ** into buffer zBuf, length nBuf.
497 */
498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
499   int f = pMem->flags;
500   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
501   if( f&MEM_Blob ){
502     int i;
503     char c;
504     if( f & MEM_Dyn ){
505       c = 'z';
506       assert( (f & (MEM_Static|MEM_Ephem))==0 );
507     }else if( f & MEM_Static ){
508       c = 't';
509       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
510     }else if( f & MEM_Ephem ){
511       c = 'e';
512       assert( (f & (MEM_Static|MEM_Dyn))==0 );
513     }else{
514       c = 's';
515     }
516     sqlite3_str_appendf(pStr, "%cx[", c);
517     for(i=0; i<25 && i<pMem->n; i++){
518       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
519     }
520     sqlite3_str_appendf(pStr, "|");
521     for(i=0; i<25 && i<pMem->n; i++){
522       char z = pMem->z[i];
523       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
524     }
525     sqlite3_str_appendf(pStr,"]");
526     if( f & MEM_Zero ){
527       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
528     }
529   }else if( f & MEM_Str ){
530     int j;
531     u8 c;
532     if( f & MEM_Dyn ){
533       c = 'z';
534       assert( (f & (MEM_Static|MEM_Ephem))==0 );
535     }else if( f & MEM_Static ){
536       c = 't';
537       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
538     }else if( f & MEM_Ephem ){
539       c = 'e';
540       assert( (f & (MEM_Static|MEM_Dyn))==0 );
541     }else{
542       c = 's';
543     }
544     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
545     for(j=0; j<25 && j<pMem->n; j++){
546       c = pMem->z[j];
547       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
548     }
549     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
550   }
551 }
552 #endif
553 
554 #ifdef SQLITE_DEBUG
555 /*
556 ** Print the value of a register for tracing purposes:
557 */
558 static void memTracePrint(Mem *p){
559   if( p->flags & MEM_Undefined ){
560     printf(" undefined");
561   }else if( p->flags & MEM_Null ){
562     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
563   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
564     printf(" si:%lld", p->u.i);
565   }else if( (p->flags & (MEM_IntReal))!=0 ){
566     printf(" ir:%lld", p->u.i);
567   }else if( p->flags & MEM_Int ){
568     printf(" i:%lld", p->u.i);
569 #ifndef SQLITE_OMIT_FLOATING_POINT
570   }else if( p->flags & MEM_Real ){
571     printf(" r:%.17g", p->u.r);
572 #endif
573   }else if( sqlite3VdbeMemIsRowSet(p) ){
574     printf(" (rowset)");
575   }else{
576     StrAccum acc;
577     char zBuf[1000];
578     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
579     sqlite3VdbeMemPrettyPrint(p, &acc);
580     printf(" %s", sqlite3StrAccumFinish(&acc));
581   }
582   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
583 }
584 static void registerTrace(int iReg, Mem *p){
585   printf("R[%d] = ", iReg);
586   memTracePrint(p);
587   if( p->pScopyFrom ){
588     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
589   }
590   printf("\n");
591   sqlite3VdbeCheckMemInvariants(p);
592 }
593 /**/ void sqlite3PrintMem(Mem *pMem){
594   memTracePrint(pMem);
595   printf("\n");
596   fflush(stdout);
597 }
598 #endif
599 
600 #ifdef SQLITE_DEBUG
601 /*
602 ** Show the values of all registers in the virtual machine.  Used for
603 ** interactive debugging.
604 */
605 void sqlite3VdbeRegisterDump(Vdbe *v){
606   int i;
607   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
608 }
609 #endif /* SQLITE_DEBUG */
610 
611 
612 #ifdef SQLITE_DEBUG
613 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
614 #else
615 #  define REGISTER_TRACE(R,M)
616 #endif
617 
618 
619 #ifdef VDBE_PROFILE
620 
621 /*
622 ** hwtime.h contains inline assembler code for implementing
623 ** high-performance timing routines.
624 */
625 #include "hwtime.h"
626 
627 #endif
628 
629 #ifndef NDEBUG
630 /*
631 ** This function is only called from within an assert() expression. It
632 ** checks that the sqlite3.nTransaction variable is correctly set to
633 ** the number of non-transaction savepoints currently in the
634 ** linked list starting at sqlite3.pSavepoint.
635 **
636 ** Usage:
637 **
638 **     assert( checkSavepointCount(db) );
639 */
640 static int checkSavepointCount(sqlite3 *db){
641   int n = 0;
642   Savepoint *p;
643   for(p=db->pSavepoint; p; p=p->pNext) n++;
644   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
645   return 1;
646 }
647 #endif
648 
649 /*
650 ** Return the register of pOp->p2 after first preparing it to be
651 ** overwritten with an integer value.
652 */
653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
654   sqlite3VdbeMemSetNull(pOut);
655   pOut->flags = MEM_Int;
656   return pOut;
657 }
658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
659   Mem *pOut;
660   assert( pOp->p2>0 );
661   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
662   pOut = &p->aMem[pOp->p2];
663   memAboutToChange(p, pOut);
664   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
665     return out2PrereleaseWithClear(pOut);
666   }else{
667     pOut->flags = MEM_Int;
668     return pOut;
669   }
670 }
671 
672 /*
673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
674 ** with pOp->p3.  Return the hash.
675 */
676 static u64 filterHash(const Mem *aMem, const Op *pOp){
677   int i, mx;
678   u64 h = 0;
679 
680   assert( pOp->p4type==P4_INT32 );
681   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
682     const Mem *p = &aMem[i];
683     if( p->flags & (MEM_Int|MEM_IntReal) ){
684       h += p->u.i;
685     }else if( p->flags & MEM_Real ){
686       h += sqlite3VdbeIntValue(p);
687     }else if( p->flags & (MEM_Str|MEM_Blob) ){
688       h += p->n;
689       if( p->flags & MEM_Zero ) h += p->u.nZero;
690     }
691   }
692   return h;
693 }
694 
695 /*
696 ** Return the symbolic name for the data type of a pMem
697 */
698 static const char *vdbeMemTypeName(Mem *pMem){
699   static const char *azTypes[] = {
700       /* SQLITE_INTEGER */ "INT",
701       /* SQLITE_FLOAT   */ "REAL",
702       /* SQLITE_TEXT    */ "TEXT",
703       /* SQLITE_BLOB    */ "BLOB",
704       /* SQLITE_NULL    */ "NULL"
705   };
706   return azTypes[sqlite3_value_type(pMem)-1];
707 }
708 
709 /*
710 ** Execute as much of a VDBE program as we can.
711 ** This is the core of sqlite3_step().
712 */
713 int sqlite3VdbeExec(
714   Vdbe *p                    /* The VDBE */
715 ){
716   Op *aOp = p->aOp;          /* Copy of p->aOp */
717   Op *pOp = aOp;             /* Current operation */
718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
719   Op *pOrigOp;               /* Value of pOp at the top of the loop */
720 #endif
721 #ifdef SQLITE_DEBUG
722   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
723 #endif
724   int rc = SQLITE_OK;        /* Value to return */
725   sqlite3 *db = p->db;       /* The database */
726   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
727   u8 encoding = ENC(db);     /* The database encoding */
728   int iCompare = 0;          /* Result of last comparison */
729   u64 nVmStep = 0;           /* Number of virtual machine steps */
730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
731   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
732 #endif
733   Mem *aMem = p->aMem;       /* Copy of p->aMem */
734   Mem *pIn1 = 0;             /* 1st input operand */
735   Mem *pIn2 = 0;             /* 2nd input operand */
736   Mem *pIn3 = 0;             /* 3rd input operand */
737   Mem *pOut = 0;             /* Output operand */
738 #ifdef VDBE_PROFILE
739   u64 start;                 /* CPU clock count at start of opcode */
740 #endif
741   /*** INSERT STACK UNION HERE ***/
742 
743   assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
744   sqlite3VdbeEnter(p);
745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
746   if( db->xProgress ){
747     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
748     assert( 0 < db->nProgressOps );
749     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
750   }else{
751     nProgressLimit = LARGEST_UINT64;
752   }
753 #endif
754   if( p->rc==SQLITE_NOMEM ){
755     /* This happens if a malloc() inside a call to sqlite3_column_text() or
756     ** sqlite3_column_text16() failed.  */
757     goto no_mem;
758   }
759   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
760   testcase( p->rc!=SQLITE_OK );
761   p->rc = SQLITE_OK;
762   assert( p->bIsReader || p->readOnly!=0 );
763   p->iCurrentTime = 0;
764   assert( p->explain==0 );
765   p->pResultSet = 0;
766   db->busyHandler.nBusy = 0;
767   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
768   sqlite3VdbeIOTraceSql(p);
769 #ifdef SQLITE_DEBUG
770   sqlite3BeginBenignMalloc();
771   if( p->pc==0
772    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
773   ){
774     int i;
775     int once = 1;
776     sqlite3VdbePrintSql(p);
777     if( p->db->flags & SQLITE_VdbeListing ){
778       printf("VDBE Program Listing:\n");
779       for(i=0; i<p->nOp; i++){
780         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
781       }
782     }
783     if( p->db->flags & SQLITE_VdbeEQP ){
784       for(i=0; i<p->nOp; i++){
785         if( aOp[i].opcode==OP_Explain ){
786           if( once ) printf("VDBE Query Plan:\n");
787           printf("%s\n", aOp[i].p4.z);
788           once = 0;
789         }
790       }
791     }
792     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
793   }
794   sqlite3EndBenignMalloc();
795 #endif
796   for(pOp=&aOp[p->pc]; 1; pOp++){
797     /* Errors are detected by individual opcodes, with an immediate
798     ** jumps to abort_due_to_error. */
799     assert( rc==SQLITE_OK );
800 
801     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
802 #ifdef VDBE_PROFILE
803     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
804 #endif
805     nVmStep++;
806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
807     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
808 #endif
809 
810     /* Only allow tracing if SQLITE_DEBUG is defined.
811     */
812 #ifdef SQLITE_DEBUG
813     if( db->flags & SQLITE_VdbeTrace ){
814       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
815       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
816     }
817 #endif
818 
819 
820     /* Check to see if we need to simulate an interrupt.  This only happens
821     ** if we have a special test build.
822     */
823 #ifdef SQLITE_TEST
824     if( sqlite3_interrupt_count>0 ){
825       sqlite3_interrupt_count--;
826       if( sqlite3_interrupt_count==0 ){
827         sqlite3_interrupt(db);
828       }
829     }
830 #endif
831 
832     /* Sanity checking on other operands */
833 #ifdef SQLITE_DEBUG
834     {
835       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
836       if( (opProperty & OPFLG_IN1)!=0 ){
837         assert( pOp->p1>0 );
838         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
839         assert( memIsValid(&aMem[pOp->p1]) );
840         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
841         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
842       }
843       if( (opProperty & OPFLG_IN2)!=0 ){
844         assert( pOp->p2>0 );
845         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
846         assert( memIsValid(&aMem[pOp->p2]) );
847         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
848         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
849       }
850       if( (opProperty & OPFLG_IN3)!=0 ){
851         assert( pOp->p3>0 );
852         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
853         assert( memIsValid(&aMem[pOp->p3]) );
854         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
855         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
856       }
857       if( (opProperty & OPFLG_OUT2)!=0 ){
858         assert( pOp->p2>0 );
859         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
860         memAboutToChange(p, &aMem[pOp->p2]);
861       }
862       if( (opProperty & OPFLG_OUT3)!=0 ){
863         assert( pOp->p3>0 );
864         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
865         memAboutToChange(p, &aMem[pOp->p3]);
866       }
867     }
868 #endif
869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
870     pOrigOp = pOp;
871 #endif
872 
873     switch( pOp->opcode ){
874 
875 /*****************************************************************************
876 ** What follows is a massive switch statement where each case implements a
877 ** separate instruction in the virtual machine.  If we follow the usual
878 ** indentation conventions, each case should be indented by 6 spaces.  But
879 ** that is a lot of wasted space on the left margin.  So the code within
880 ** the switch statement will break with convention and be flush-left. Another
881 ** big comment (similar to this one) will mark the point in the code where
882 ** we transition back to normal indentation.
883 **
884 ** The formatting of each case is important.  The makefile for SQLite
885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
886 ** file looking for lines that begin with "case OP_".  The opcodes.h files
887 ** will be filled with #defines that give unique integer values to each
888 ** opcode and the opcodes.c file is filled with an array of strings where
889 ** each string is the symbolic name for the corresponding opcode.  If the
890 ** case statement is followed by a comment of the form "/# same as ... #/"
891 ** that comment is used to determine the particular value of the opcode.
892 **
893 ** Other keywords in the comment that follows each case are used to
894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
895 ** Keywords include: in1, in2, in3, out2, out3.  See
896 ** the mkopcodeh.awk script for additional information.
897 **
898 ** Documentation about VDBE opcodes is generated by scanning this file
899 ** for lines of that contain "Opcode:".  That line and all subsequent
900 ** comment lines are used in the generation of the opcode.html documentation
901 ** file.
902 **
903 ** SUMMARY:
904 **
905 **     Formatting is important to scripts that scan this file.
906 **     Do not deviate from the formatting style currently in use.
907 **
908 *****************************************************************************/
909 
910 /* Opcode:  Goto * P2 * * *
911 **
912 ** An unconditional jump to address P2.
913 ** The next instruction executed will be
914 ** the one at index P2 from the beginning of
915 ** the program.
916 **
917 ** The P1 parameter is not actually used by this opcode.  However, it
918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
919 ** that this Goto is the bottom of a loop and that the lines from P2 down
920 ** to the current line should be indented for EXPLAIN output.
921 */
922 case OP_Goto: {             /* jump */
923 
924 #ifdef SQLITE_DEBUG
925   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
926   ** means we should really jump back to the preceeding OP_ReleaseReg
927   ** instruction. */
928   if( pOp->p5 ){
929     assert( pOp->p2 < (int)(pOp - aOp) );
930     assert( pOp->p2 > 1 );
931     pOp = &aOp[pOp->p2 - 2];
932     assert( pOp[1].opcode==OP_ReleaseReg );
933     goto check_for_interrupt;
934   }
935 #endif
936 
937 jump_to_p2_and_check_for_interrupt:
938   pOp = &aOp[pOp->p2 - 1];
939 
940   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
941   ** OP_VNext, or OP_SorterNext) all jump here upon
942   ** completion.  Check to see if sqlite3_interrupt() has been called
943   ** or if the progress callback needs to be invoked.
944   **
945   ** This code uses unstructured "goto" statements and does not look clean.
946   ** But that is not due to sloppy coding habits. The code is written this
947   ** way for performance, to avoid having to run the interrupt and progress
948   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
949   ** faster according to "valgrind --tool=cachegrind" */
950 check_for_interrupt:
951   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
953   /* Call the progress callback if it is configured and the required number
954   ** of VDBE ops have been executed (either since this invocation of
955   ** sqlite3VdbeExec() or since last time the progress callback was called).
956   ** If the progress callback returns non-zero, exit the virtual machine with
957   ** a return code SQLITE_ABORT.
958   */
959   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
960     assert( db->nProgressOps!=0 );
961     nProgressLimit += db->nProgressOps;
962     if( db->xProgress(db->pProgressArg) ){
963       nProgressLimit = LARGEST_UINT64;
964       rc = SQLITE_INTERRUPT;
965       goto abort_due_to_error;
966     }
967   }
968 #endif
969 
970   break;
971 }
972 
973 /* Opcode:  Gosub P1 P2 * * *
974 **
975 ** Write the current address onto register P1
976 ** and then jump to address P2.
977 */
978 case OP_Gosub: {            /* jump */
979   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
980   pIn1 = &aMem[pOp->p1];
981   assert( VdbeMemDynamic(pIn1)==0 );
982   memAboutToChange(p, pIn1);
983   pIn1->flags = MEM_Int;
984   pIn1->u.i = (int)(pOp-aOp);
985   REGISTER_TRACE(pOp->p1, pIn1);
986   goto jump_to_p2_and_check_for_interrupt;
987 }
988 
989 /* Opcode:  Return P1 P2 P3 * *
990 **
991 ** Jump to the address stored in register P1.  If P1 is a return address
992 ** register, then this accomplishes a return from a subroutine.
993 **
994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
995 ** values, otherwise execution falls through to the next opcode, and the
996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
997 ** integer or else an assert() is raised.  P3 should be set to 1 when
998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
999 ** otherwise.
1000 **
1001 ** The value in register P1 is unchanged by this opcode.
1002 **
1003 ** P2 is not used by the byte-code engine.  However, if P2 is positive
1004 ** and also less than the current address, then the "EXPLAIN" output
1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1006 ** to be not including the current Return.   P2 should be the first opcode
1007 ** in the subroutine from which this opcode is returnning.  Thus the P2
1008 ** value is a byte-code indentation hint.  See tag-20220407a in
1009 ** wherecode.c and shell.c.
1010 */
1011 case OP_Return: {           /* in1 */
1012   pIn1 = &aMem[pOp->p1];
1013   if( pIn1->flags & MEM_Int ){
1014     if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1015     pOp = &aOp[pIn1->u.i];
1016   }else if( ALWAYS(pOp->p3) ){
1017     VdbeBranchTaken(0, 2);
1018   }
1019   break;
1020 }
1021 
1022 /* Opcode: InitCoroutine P1 P2 P3 * *
1023 **
1024 ** Set up register P1 so that it will Yield to the coroutine
1025 ** located at address P3.
1026 **
1027 ** If P2!=0 then the coroutine implementation immediately follows
1028 ** this opcode.  So jump over the coroutine implementation to
1029 ** address P2.
1030 **
1031 ** See also: EndCoroutine
1032 */
1033 case OP_InitCoroutine: {     /* jump */
1034   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1035   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1036   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1037   pOut = &aMem[pOp->p1];
1038   assert( !VdbeMemDynamic(pOut) );
1039   pOut->u.i = pOp->p3 - 1;
1040   pOut->flags = MEM_Int;
1041   if( pOp->p2==0 ) break;
1042 
1043   /* Most jump operations do a goto to this spot in order to update
1044   ** the pOp pointer. */
1045 jump_to_p2:
1046   pOp = &aOp[pOp->p2 - 1];
1047   break;
1048 }
1049 
1050 /* Opcode:  EndCoroutine P1 * * * *
1051 **
1052 ** The instruction at the address in register P1 is a Yield.
1053 ** Jump to the P2 parameter of that Yield.
1054 ** After the jump, register P1 becomes undefined.
1055 **
1056 ** See also: InitCoroutine
1057 */
1058 case OP_EndCoroutine: {           /* in1 */
1059   VdbeOp *pCaller;
1060   pIn1 = &aMem[pOp->p1];
1061   assert( pIn1->flags==MEM_Int );
1062   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1063   pCaller = &aOp[pIn1->u.i];
1064   assert( pCaller->opcode==OP_Yield );
1065   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1066   pOp = &aOp[pCaller->p2 - 1];
1067   pIn1->flags = MEM_Undefined;
1068   break;
1069 }
1070 
1071 /* Opcode:  Yield P1 P2 * * *
1072 **
1073 ** Swap the program counter with the value in register P1.  This
1074 ** has the effect of yielding to a coroutine.
1075 **
1076 ** If the coroutine that is launched by this instruction ends with
1077 ** Yield or Return then continue to the next instruction.  But if
1078 ** the coroutine launched by this instruction ends with
1079 ** EndCoroutine, then jump to P2 rather than continuing with the
1080 ** next instruction.
1081 **
1082 ** See also: InitCoroutine
1083 */
1084 case OP_Yield: {            /* in1, jump */
1085   int pcDest;
1086   pIn1 = &aMem[pOp->p1];
1087   assert( VdbeMemDynamic(pIn1)==0 );
1088   pIn1->flags = MEM_Int;
1089   pcDest = (int)pIn1->u.i;
1090   pIn1->u.i = (int)(pOp - aOp);
1091   REGISTER_TRACE(pOp->p1, pIn1);
1092   pOp = &aOp[pcDest];
1093   break;
1094 }
1095 
1096 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1097 ** Synopsis: if r[P3]=null halt
1098 **
1099 ** Check the value in register P3.  If it is NULL then Halt using
1100 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1101 ** value in register P3 is not NULL, then this routine is a no-op.
1102 ** The P5 parameter should be 1.
1103 */
1104 case OP_HaltIfNull: {      /* in3 */
1105   pIn3 = &aMem[pOp->p3];
1106 #ifdef SQLITE_DEBUG
1107   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1108 #endif
1109   if( (pIn3->flags & MEM_Null)==0 ) break;
1110   /* Fall through into OP_Halt */
1111   /* no break */ deliberate_fall_through
1112 }
1113 
1114 /* Opcode:  Halt P1 P2 * P4 P5
1115 **
1116 ** Exit immediately.  All open cursors, etc are closed
1117 ** automatically.
1118 **
1119 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1120 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1121 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1122 ** whether or not to rollback the current transaction.  Do not rollback
1123 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1124 ** then back out all changes that have occurred during this execution of the
1125 ** VDBE, but do not rollback the transaction.
1126 **
1127 ** If P4 is not null then it is an error message string.
1128 **
1129 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1130 **
1131 **    0:  (no change)
1132 **    1:  NOT NULL contraint failed: P4
1133 **    2:  UNIQUE constraint failed: P4
1134 **    3:  CHECK constraint failed: P4
1135 **    4:  FOREIGN KEY constraint failed: P4
1136 **
1137 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1138 ** omitted.
1139 **
1140 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1141 ** every program.  So a jump past the last instruction of the program
1142 ** is the same as executing Halt.
1143 */
1144 case OP_Halt: {
1145   VdbeFrame *pFrame;
1146   int pcx;
1147 
1148 #ifdef SQLITE_DEBUG
1149   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1150 #endif
1151   if( p->pFrame && pOp->p1==SQLITE_OK ){
1152     /* Halt the sub-program. Return control to the parent frame. */
1153     pFrame = p->pFrame;
1154     p->pFrame = pFrame->pParent;
1155     p->nFrame--;
1156     sqlite3VdbeSetChanges(db, p->nChange);
1157     pcx = sqlite3VdbeFrameRestore(pFrame);
1158     if( pOp->p2==OE_Ignore ){
1159       /* Instruction pcx is the OP_Program that invoked the sub-program
1160       ** currently being halted. If the p2 instruction of this OP_Halt
1161       ** instruction is set to OE_Ignore, then the sub-program is throwing
1162       ** an IGNORE exception. In this case jump to the address specified
1163       ** as the p2 of the calling OP_Program.  */
1164       pcx = p->aOp[pcx].p2-1;
1165     }
1166     aOp = p->aOp;
1167     aMem = p->aMem;
1168     pOp = &aOp[pcx];
1169     break;
1170   }
1171   p->rc = pOp->p1;
1172   p->errorAction = (u8)pOp->p2;
1173   assert( pOp->p5<=4 );
1174   if( p->rc ){
1175     if( pOp->p5 ){
1176       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1177                                              "FOREIGN KEY" };
1178       testcase( pOp->p5==1 );
1179       testcase( pOp->p5==2 );
1180       testcase( pOp->p5==3 );
1181       testcase( pOp->p5==4 );
1182       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1183       if( pOp->p4.z ){
1184         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1185       }
1186     }else{
1187       sqlite3VdbeError(p, "%s", pOp->p4.z);
1188     }
1189     pcx = (int)(pOp - aOp);
1190     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1191   }
1192   rc = sqlite3VdbeHalt(p);
1193   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1194   if( rc==SQLITE_BUSY ){
1195     p->rc = SQLITE_BUSY;
1196   }else{
1197     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1198     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1199     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1200   }
1201   goto vdbe_return;
1202 }
1203 
1204 /* Opcode: Integer P1 P2 * * *
1205 ** Synopsis: r[P2]=P1
1206 **
1207 ** The 32-bit integer value P1 is written into register P2.
1208 */
1209 case OP_Integer: {         /* out2 */
1210   pOut = out2Prerelease(p, pOp);
1211   pOut->u.i = pOp->p1;
1212   break;
1213 }
1214 
1215 /* Opcode: Int64 * P2 * P4 *
1216 ** Synopsis: r[P2]=P4
1217 **
1218 ** P4 is a pointer to a 64-bit integer value.
1219 ** Write that value into register P2.
1220 */
1221 case OP_Int64: {           /* out2 */
1222   pOut = out2Prerelease(p, pOp);
1223   assert( pOp->p4.pI64!=0 );
1224   pOut->u.i = *pOp->p4.pI64;
1225   break;
1226 }
1227 
1228 #ifndef SQLITE_OMIT_FLOATING_POINT
1229 /* Opcode: Real * P2 * P4 *
1230 ** Synopsis: r[P2]=P4
1231 **
1232 ** P4 is a pointer to a 64-bit floating point value.
1233 ** Write that value into register P2.
1234 */
1235 case OP_Real: {            /* same as TK_FLOAT, out2 */
1236   pOut = out2Prerelease(p, pOp);
1237   pOut->flags = MEM_Real;
1238   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1239   pOut->u.r = *pOp->p4.pReal;
1240   break;
1241 }
1242 #endif
1243 
1244 /* Opcode: String8 * P2 * P4 *
1245 ** Synopsis: r[P2]='P4'
1246 **
1247 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1248 ** into a String opcode before it is executed for the first time.  During
1249 ** this transformation, the length of string P4 is computed and stored
1250 ** as the P1 parameter.
1251 */
1252 case OP_String8: {         /* same as TK_STRING, out2 */
1253   assert( pOp->p4.z!=0 );
1254   pOut = out2Prerelease(p, pOp);
1255   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1256 
1257 #ifndef SQLITE_OMIT_UTF16
1258   if( encoding!=SQLITE_UTF8 ){
1259     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1260     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1261     if( rc ) goto too_big;
1262     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1263     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1264     assert( VdbeMemDynamic(pOut)==0 );
1265     pOut->szMalloc = 0;
1266     pOut->flags |= MEM_Static;
1267     if( pOp->p4type==P4_DYNAMIC ){
1268       sqlite3DbFree(db, pOp->p4.z);
1269     }
1270     pOp->p4type = P4_DYNAMIC;
1271     pOp->p4.z = pOut->z;
1272     pOp->p1 = pOut->n;
1273   }
1274 #endif
1275   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1276     goto too_big;
1277   }
1278   pOp->opcode = OP_String;
1279   assert( rc==SQLITE_OK );
1280   /* Fall through to the next case, OP_String */
1281   /* no break */ deliberate_fall_through
1282 }
1283 
1284 /* Opcode: String P1 P2 P3 P4 P5
1285 ** Synopsis: r[P2]='P4' (len=P1)
1286 **
1287 ** The string value P4 of length P1 (bytes) is stored in register P2.
1288 **
1289 ** If P3 is not zero and the content of register P3 is equal to P5, then
1290 ** the datatype of the register P2 is converted to BLOB.  The content is
1291 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1292 ** of a string, as if it had been CAST.  In other words:
1293 **
1294 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1295 */
1296 case OP_String: {          /* out2 */
1297   assert( pOp->p4.z!=0 );
1298   pOut = out2Prerelease(p, pOp);
1299   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1300   pOut->z = pOp->p4.z;
1301   pOut->n = pOp->p1;
1302   pOut->enc = encoding;
1303   UPDATE_MAX_BLOBSIZE(pOut);
1304 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1305   if( pOp->p3>0 ){
1306     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1307     pIn3 = &aMem[pOp->p3];
1308     assert( pIn3->flags & MEM_Int );
1309     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1310   }
1311 #endif
1312   break;
1313 }
1314 
1315 /* Opcode: BeginSubrtn * P2 * * *
1316 ** Synopsis: r[P2]=NULL
1317 **
1318 ** Mark the beginning of a subroutine that can be entered in-line
1319 ** or that can be called using OP_Gosub.  The subroutine should
1320 ** be terminated by an OP_Return instruction that has a P1 operand that
1321 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1322 ** If the subroutine is entered in-line, then the OP_Return will simply
1323 ** fall through.  But if the subroutine is entered using OP_Gosub, then
1324 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1325 **
1326 ** This routine works by loading a NULL into the P2 register.  When the
1327 ** return address register contains a NULL, the OP_Return instruction is
1328 ** a no-op that simply falls through to the next instruction (assuming that
1329 ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
1330 ** entered in-line, then the OP_Return will cause in-line execution to
1331 ** continue.  But if the subroutine is entered via OP_Gosub, then the
1332 ** OP_Return will cause a return to the address following the OP_Gosub.
1333 **
1334 ** This opcode is identical to OP_Null.  It has a different name
1335 ** only to make the byte code easier to read and verify.
1336 */
1337 /* Opcode: Null P1 P2 P3 * *
1338 ** Synopsis: r[P2..P3]=NULL
1339 **
1340 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1341 ** NULL into register P3 and every register in between P2 and P3.  If P3
1342 ** is less than P2 (typically P3 is zero) then only register P2 is
1343 ** set to NULL.
1344 **
1345 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1346 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1347 ** OP_Ne or OP_Eq.
1348 */
1349 case OP_BeginSubrtn:
1350 case OP_Null: {           /* out2 */
1351   int cnt;
1352   u16 nullFlag;
1353   pOut = out2Prerelease(p, pOp);
1354   cnt = pOp->p3-pOp->p2;
1355   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1356   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1357   pOut->n = 0;
1358 #ifdef SQLITE_DEBUG
1359   pOut->uTemp = 0;
1360 #endif
1361   while( cnt>0 ){
1362     pOut++;
1363     memAboutToChange(p, pOut);
1364     sqlite3VdbeMemSetNull(pOut);
1365     pOut->flags = nullFlag;
1366     pOut->n = 0;
1367     cnt--;
1368   }
1369   break;
1370 }
1371 
1372 /* Opcode: SoftNull P1 * * * *
1373 ** Synopsis: r[P1]=NULL
1374 **
1375 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1376 ** instruction, but do not free any string or blob memory associated with
1377 ** the register, so that if the value was a string or blob that was
1378 ** previously copied using OP_SCopy, the copies will continue to be valid.
1379 */
1380 case OP_SoftNull: {
1381   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1382   pOut = &aMem[pOp->p1];
1383   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1384   break;
1385 }
1386 
1387 /* Opcode: Blob P1 P2 * P4 *
1388 ** Synopsis: r[P2]=P4 (len=P1)
1389 **
1390 ** P4 points to a blob of data P1 bytes long.  Store this
1391 ** blob in register P2.  If P4 is a NULL pointer, then construct
1392 ** a zero-filled blob that is P1 bytes long in P2.
1393 */
1394 case OP_Blob: {                /* out2 */
1395   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1396   pOut = out2Prerelease(p, pOp);
1397   if( pOp->p4.z==0 ){
1398     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1399     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1400   }else{
1401     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1402   }
1403   pOut->enc = encoding;
1404   UPDATE_MAX_BLOBSIZE(pOut);
1405   break;
1406 }
1407 
1408 /* Opcode: Variable P1 P2 * P4 *
1409 ** Synopsis: r[P2]=parameter(P1,P4)
1410 **
1411 ** Transfer the values of bound parameter P1 into register P2
1412 **
1413 ** If the parameter is named, then its name appears in P4.
1414 ** The P4 value is used by sqlite3_bind_parameter_name().
1415 */
1416 case OP_Variable: {            /* out2 */
1417   Mem *pVar;       /* Value being transferred */
1418 
1419   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1420   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1421   pVar = &p->aVar[pOp->p1 - 1];
1422   if( sqlite3VdbeMemTooBig(pVar) ){
1423     goto too_big;
1424   }
1425   pOut = &aMem[pOp->p2];
1426   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1427   memcpy(pOut, pVar, MEMCELLSIZE);
1428   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1429   pOut->flags |= MEM_Static|MEM_FromBind;
1430   UPDATE_MAX_BLOBSIZE(pOut);
1431   break;
1432 }
1433 
1434 /* Opcode: Move P1 P2 P3 * *
1435 ** Synopsis: r[P2@P3]=r[P1@P3]
1436 **
1437 ** Move the P3 values in register P1..P1+P3-1 over into
1438 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1439 ** left holding a NULL.  It is an error for register ranges
1440 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1441 ** for P3 to be less than 1.
1442 */
1443 case OP_Move: {
1444   int n;           /* Number of registers left to copy */
1445   int p1;          /* Register to copy from */
1446   int p2;          /* Register to copy to */
1447 
1448   n = pOp->p3;
1449   p1 = pOp->p1;
1450   p2 = pOp->p2;
1451   assert( n>0 && p1>0 && p2>0 );
1452   assert( p1+n<=p2 || p2+n<=p1 );
1453 
1454   pIn1 = &aMem[p1];
1455   pOut = &aMem[p2];
1456   do{
1457     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1458     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1459     assert( memIsValid(pIn1) );
1460     memAboutToChange(p, pOut);
1461     sqlite3VdbeMemMove(pOut, pIn1);
1462 #ifdef SQLITE_DEBUG
1463     pIn1->pScopyFrom = 0;
1464     { int i;
1465       for(i=1; i<p->nMem; i++){
1466         if( aMem[i].pScopyFrom==pIn1 ){
1467           aMem[i].pScopyFrom = pOut;
1468         }
1469       }
1470     }
1471 #endif
1472     Deephemeralize(pOut);
1473     REGISTER_TRACE(p2++, pOut);
1474     pIn1++;
1475     pOut++;
1476   }while( --n );
1477   break;
1478 }
1479 
1480 /* Opcode: Copy P1 P2 P3 * *
1481 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1482 **
1483 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1484 **
1485 ** This instruction makes a deep copy of the value.  A duplicate
1486 ** is made of any string or blob constant.  See also OP_SCopy.
1487 */
1488 case OP_Copy: {
1489   int n;
1490 
1491   n = pOp->p3;
1492   pIn1 = &aMem[pOp->p1];
1493   pOut = &aMem[pOp->p2];
1494   assert( pOut!=pIn1 );
1495   while( 1 ){
1496     memAboutToChange(p, pOut);
1497     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1498     Deephemeralize(pOut);
1499 #ifdef SQLITE_DEBUG
1500     pOut->pScopyFrom = 0;
1501 #endif
1502     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1503     if( (n--)==0 ) break;
1504     pOut++;
1505     pIn1++;
1506   }
1507   break;
1508 }
1509 
1510 /* Opcode: SCopy P1 P2 * * *
1511 ** Synopsis: r[P2]=r[P1]
1512 **
1513 ** Make a shallow copy of register P1 into register P2.
1514 **
1515 ** This instruction makes a shallow copy of the value.  If the value
1516 ** is a string or blob, then the copy is only a pointer to the
1517 ** original and hence if the original changes so will the copy.
1518 ** Worse, if the original is deallocated, the copy becomes invalid.
1519 ** Thus the program must guarantee that the original will not change
1520 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1521 ** copy.
1522 */
1523 case OP_SCopy: {            /* out2 */
1524   pIn1 = &aMem[pOp->p1];
1525   pOut = &aMem[pOp->p2];
1526   assert( pOut!=pIn1 );
1527   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1528 #ifdef SQLITE_DEBUG
1529   pOut->pScopyFrom = pIn1;
1530   pOut->mScopyFlags = pIn1->flags;
1531 #endif
1532   break;
1533 }
1534 
1535 /* Opcode: IntCopy P1 P2 * * *
1536 ** Synopsis: r[P2]=r[P1]
1537 **
1538 ** Transfer the integer value held in register P1 into register P2.
1539 **
1540 ** This is an optimized version of SCopy that works only for integer
1541 ** values.
1542 */
1543 case OP_IntCopy: {            /* out2 */
1544   pIn1 = &aMem[pOp->p1];
1545   assert( (pIn1->flags & MEM_Int)!=0 );
1546   pOut = &aMem[pOp->p2];
1547   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1548   break;
1549 }
1550 
1551 /* Opcode: FkCheck * * * * *
1552 **
1553 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1554 ** foreign key constraint violations.  If there are no foreign key
1555 ** constraint violations, this is a no-op.
1556 **
1557 ** FK constraint violations are also checked when the prepared statement
1558 ** exits.  This opcode is used to raise foreign key constraint errors prior
1559 ** to returning results such as a row change count or the result of a
1560 ** RETURNING clause.
1561 */
1562 case OP_FkCheck: {
1563   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1564     goto abort_due_to_error;
1565   }
1566   break;
1567 }
1568 
1569 /* Opcode: ResultRow P1 P2 * * *
1570 ** Synopsis: output=r[P1@P2]
1571 **
1572 ** The registers P1 through P1+P2-1 contain a single row of
1573 ** results. This opcode causes the sqlite3_step() call to terminate
1574 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1575 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1576 ** the result row.
1577 */
1578 case OP_ResultRow: {
1579   assert( p->nResColumn==pOp->p2 );
1580   assert( pOp->p1>0 || CORRUPT_DB );
1581   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1582 
1583   p->cacheCtr = (p->cacheCtr + 2)|1;
1584   p->pResultSet = &aMem[pOp->p1];
1585 #ifdef SQLITE_DEBUG
1586   {
1587     Mem *pMem = p->pResultSet;
1588     int i;
1589     for(i=0; i<pOp->p2; i++){
1590       assert( memIsValid(&pMem[i]) );
1591       REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1592       /* The registers in the result will not be used again when the
1593       ** prepared statement restarts.  This is because sqlite3_column()
1594       ** APIs might have caused type conversions of made other changes to
1595       ** the register values.  Therefore, we can go ahead and break any
1596       ** OP_SCopy dependencies. */
1597       pMem[i].pScopyFrom = 0;
1598     }
1599   }
1600 #endif
1601   if( db->mallocFailed ) goto no_mem;
1602   if( db->mTrace & SQLITE_TRACE_ROW ){
1603     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1604   }
1605   p->pc = (int)(pOp - aOp) + 1;
1606   rc = SQLITE_ROW;
1607   goto vdbe_return;
1608 }
1609 
1610 /* Opcode: Concat P1 P2 P3 * *
1611 ** Synopsis: r[P3]=r[P2]+r[P1]
1612 **
1613 ** Add the text in register P1 onto the end of the text in
1614 ** register P2 and store the result in register P3.
1615 ** If either the P1 or P2 text are NULL then store NULL in P3.
1616 **
1617 **   P3 = P2 || P1
1618 **
1619 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1620 ** if P3 is the same register as P2, the implementation is able
1621 ** to avoid a memcpy().
1622 */
1623 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1624   i64 nByte;          /* Total size of the output string or blob */
1625   u16 flags1;         /* Initial flags for P1 */
1626   u16 flags2;         /* Initial flags for P2 */
1627 
1628   pIn1 = &aMem[pOp->p1];
1629   pIn2 = &aMem[pOp->p2];
1630   pOut = &aMem[pOp->p3];
1631   testcase( pOut==pIn2 );
1632   assert( pIn1!=pOut );
1633   flags1 = pIn1->flags;
1634   testcase( flags1 & MEM_Null );
1635   testcase( pIn2->flags & MEM_Null );
1636   if( (flags1 | pIn2->flags) & MEM_Null ){
1637     sqlite3VdbeMemSetNull(pOut);
1638     break;
1639   }
1640   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1641     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1642     flags1 = pIn1->flags & ~MEM_Str;
1643   }else if( (flags1 & MEM_Zero)!=0 ){
1644     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1645     flags1 = pIn1->flags & ~MEM_Str;
1646   }
1647   flags2 = pIn2->flags;
1648   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1649     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1650     flags2 = pIn2->flags & ~MEM_Str;
1651   }else if( (flags2 & MEM_Zero)!=0 ){
1652     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1653     flags2 = pIn2->flags & ~MEM_Str;
1654   }
1655   nByte = pIn1->n + pIn2->n;
1656   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1657     goto too_big;
1658   }
1659   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1660     goto no_mem;
1661   }
1662   MemSetTypeFlag(pOut, MEM_Str);
1663   if( pOut!=pIn2 ){
1664     memcpy(pOut->z, pIn2->z, pIn2->n);
1665     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1666     pIn2->flags = flags2;
1667   }
1668   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1669   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1670   pIn1->flags = flags1;
1671   pOut->z[nByte]=0;
1672   pOut->z[nByte+1] = 0;
1673   pOut->z[nByte+2] = 0;
1674   pOut->flags |= MEM_Term;
1675   pOut->n = (int)nByte;
1676   pOut->enc = encoding;
1677   UPDATE_MAX_BLOBSIZE(pOut);
1678   break;
1679 }
1680 
1681 /* Opcode: Add P1 P2 P3 * *
1682 ** Synopsis: r[P3]=r[P1]+r[P2]
1683 **
1684 ** Add the value in register P1 to the value in register P2
1685 ** and store the result in register P3.
1686 ** If either input is NULL, the result is NULL.
1687 */
1688 /* Opcode: Multiply P1 P2 P3 * *
1689 ** Synopsis: r[P3]=r[P1]*r[P2]
1690 **
1691 **
1692 ** Multiply the value in register P1 by the value in register P2
1693 ** and store the result in register P3.
1694 ** If either input is NULL, the result is NULL.
1695 */
1696 /* Opcode: Subtract P1 P2 P3 * *
1697 ** Synopsis: r[P3]=r[P2]-r[P1]
1698 **
1699 ** Subtract the value in register P1 from the value in register P2
1700 ** and store the result in register P3.
1701 ** If either input is NULL, the result is NULL.
1702 */
1703 /* Opcode: Divide P1 P2 P3 * *
1704 ** Synopsis: r[P3]=r[P2]/r[P1]
1705 **
1706 ** Divide the value in register P1 by the value in register P2
1707 ** and store the result in register P3 (P3=P2/P1). If the value in
1708 ** register P1 is zero, then the result is NULL. If either input is
1709 ** NULL, the result is NULL.
1710 */
1711 /* Opcode: Remainder P1 P2 P3 * *
1712 ** Synopsis: r[P3]=r[P2]%r[P1]
1713 **
1714 ** Compute the remainder after integer register P2 is divided by
1715 ** register P1 and store the result in register P3.
1716 ** If the value in register P1 is zero the result is NULL.
1717 ** If either operand is NULL, the result is NULL.
1718 */
1719 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1720 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1721 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1722 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1723 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1724   u16 flags;      /* Combined MEM_* flags from both inputs */
1725   u16 type1;      /* Numeric type of left operand */
1726   u16 type2;      /* Numeric type of right operand */
1727   i64 iA;         /* Integer value of left operand */
1728   i64 iB;         /* Integer value of right operand */
1729   double rA;      /* Real value of left operand */
1730   double rB;      /* Real value of right operand */
1731 
1732   pIn1 = &aMem[pOp->p1];
1733   type1 = numericType(pIn1);
1734   pIn2 = &aMem[pOp->p2];
1735   type2 = numericType(pIn2);
1736   pOut = &aMem[pOp->p3];
1737   flags = pIn1->flags | pIn2->flags;
1738   if( (type1 & type2 & MEM_Int)!=0 ){
1739     iA = pIn1->u.i;
1740     iB = pIn2->u.i;
1741     switch( pOp->opcode ){
1742       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1743       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1744       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1745       case OP_Divide: {
1746         if( iA==0 ) goto arithmetic_result_is_null;
1747         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1748         iB /= iA;
1749         break;
1750       }
1751       default: {
1752         if( iA==0 ) goto arithmetic_result_is_null;
1753         if( iA==-1 ) iA = 1;
1754         iB %= iA;
1755         break;
1756       }
1757     }
1758     pOut->u.i = iB;
1759     MemSetTypeFlag(pOut, MEM_Int);
1760   }else if( (flags & MEM_Null)!=0 ){
1761     goto arithmetic_result_is_null;
1762   }else{
1763 fp_math:
1764     rA = sqlite3VdbeRealValue(pIn1);
1765     rB = sqlite3VdbeRealValue(pIn2);
1766     switch( pOp->opcode ){
1767       case OP_Add:         rB += rA;       break;
1768       case OP_Subtract:    rB -= rA;       break;
1769       case OP_Multiply:    rB *= rA;       break;
1770       case OP_Divide: {
1771         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1772         if( rA==(double)0 ) goto arithmetic_result_is_null;
1773         rB /= rA;
1774         break;
1775       }
1776       default: {
1777         iA = sqlite3VdbeIntValue(pIn1);
1778         iB = sqlite3VdbeIntValue(pIn2);
1779         if( iA==0 ) goto arithmetic_result_is_null;
1780         if( iA==-1 ) iA = 1;
1781         rB = (double)(iB % iA);
1782         break;
1783       }
1784     }
1785 #ifdef SQLITE_OMIT_FLOATING_POINT
1786     pOut->u.i = rB;
1787     MemSetTypeFlag(pOut, MEM_Int);
1788 #else
1789     if( sqlite3IsNaN(rB) ){
1790       goto arithmetic_result_is_null;
1791     }
1792     pOut->u.r = rB;
1793     MemSetTypeFlag(pOut, MEM_Real);
1794 #endif
1795   }
1796   break;
1797 
1798 arithmetic_result_is_null:
1799   sqlite3VdbeMemSetNull(pOut);
1800   break;
1801 }
1802 
1803 /* Opcode: CollSeq P1 * * P4
1804 **
1805 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1806 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1807 ** be returned. This is used by the built-in min(), max() and nullif()
1808 ** functions.
1809 **
1810 ** If P1 is not zero, then it is a register that a subsequent min() or
1811 ** max() aggregate will set to 1 if the current row is not the minimum or
1812 ** maximum.  The P1 register is initialized to 0 by this instruction.
1813 **
1814 ** The interface used by the implementation of the aforementioned functions
1815 ** to retrieve the collation sequence set by this opcode is not available
1816 ** publicly.  Only built-in functions have access to this feature.
1817 */
1818 case OP_CollSeq: {
1819   assert( pOp->p4type==P4_COLLSEQ );
1820   if( pOp->p1 ){
1821     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1822   }
1823   break;
1824 }
1825 
1826 /* Opcode: BitAnd P1 P2 P3 * *
1827 ** Synopsis: r[P3]=r[P1]&r[P2]
1828 **
1829 ** Take the bit-wise AND of the values in register P1 and P2 and
1830 ** store the result in register P3.
1831 ** If either input is NULL, the result is NULL.
1832 */
1833 /* Opcode: BitOr P1 P2 P3 * *
1834 ** Synopsis: r[P3]=r[P1]|r[P2]
1835 **
1836 ** Take the bit-wise OR of the values in register P1 and P2 and
1837 ** store the result in register P3.
1838 ** If either input is NULL, the result is NULL.
1839 */
1840 /* Opcode: ShiftLeft P1 P2 P3 * *
1841 ** Synopsis: r[P3]=r[P2]<<r[P1]
1842 **
1843 ** Shift the integer value in register P2 to the left by the
1844 ** number of bits specified by the integer in register P1.
1845 ** Store the result in register P3.
1846 ** If either input is NULL, the result is NULL.
1847 */
1848 /* Opcode: ShiftRight P1 P2 P3 * *
1849 ** Synopsis: r[P3]=r[P2]>>r[P1]
1850 **
1851 ** Shift the integer value in register P2 to the right by the
1852 ** number of bits specified by the integer in register P1.
1853 ** Store the result in register P3.
1854 ** If either input is NULL, the result is NULL.
1855 */
1856 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1857 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1858 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1859 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1860   i64 iA;
1861   u64 uA;
1862   i64 iB;
1863   u8 op;
1864 
1865   pIn1 = &aMem[pOp->p1];
1866   pIn2 = &aMem[pOp->p2];
1867   pOut = &aMem[pOp->p3];
1868   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1869     sqlite3VdbeMemSetNull(pOut);
1870     break;
1871   }
1872   iA = sqlite3VdbeIntValue(pIn2);
1873   iB = sqlite3VdbeIntValue(pIn1);
1874   op = pOp->opcode;
1875   if( op==OP_BitAnd ){
1876     iA &= iB;
1877   }else if( op==OP_BitOr ){
1878     iA |= iB;
1879   }else if( iB!=0 ){
1880     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1881 
1882     /* If shifting by a negative amount, shift in the other direction */
1883     if( iB<0 ){
1884       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1885       op = 2*OP_ShiftLeft + 1 - op;
1886       iB = iB>(-64) ? -iB : 64;
1887     }
1888 
1889     if( iB>=64 ){
1890       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1891     }else{
1892       memcpy(&uA, &iA, sizeof(uA));
1893       if( op==OP_ShiftLeft ){
1894         uA <<= iB;
1895       }else{
1896         uA >>= iB;
1897         /* Sign-extend on a right shift of a negative number */
1898         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1899       }
1900       memcpy(&iA, &uA, sizeof(iA));
1901     }
1902   }
1903   pOut->u.i = iA;
1904   MemSetTypeFlag(pOut, MEM_Int);
1905   break;
1906 }
1907 
1908 /* Opcode: AddImm  P1 P2 * * *
1909 ** Synopsis: r[P1]=r[P1]+P2
1910 **
1911 ** Add the constant P2 to the value in register P1.
1912 ** The result is always an integer.
1913 **
1914 ** To force any register to be an integer, just add 0.
1915 */
1916 case OP_AddImm: {            /* in1 */
1917   pIn1 = &aMem[pOp->p1];
1918   memAboutToChange(p, pIn1);
1919   sqlite3VdbeMemIntegerify(pIn1);
1920   pIn1->u.i += pOp->p2;
1921   break;
1922 }
1923 
1924 /* Opcode: MustBeInt P1 P2 * * *
1925 **
1926 ** Force the value in register P1 to be an integer.  If the value
1927 ** in P1 is not an integer and cannot be converted into an integer
1928 ** without data loss, then jump immediately to P2, or if P2==0
1929 ** raise an SQLITE_MISMATCH exception.
1930 */
1931 case OP_MustBeInt: {            /* jump, in1 */
1932   pIn1 = &aMem[pOp->p1];
1933   if( (pIn1->flags & MEM_Int)==0 ){
1934     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1935     if( (pIn1->flags & MEM_Int)==0 ){
1936       VdbeBranchTaken(1, 2);
1937       if( pOp->p2==0 ){
1938         rc = SQLITE_MISMATCH;
1939         goto abort_due_to_error;
1940       }else{
1941         goto jump_to_p2;
1942       }
1943     }
1944   }
1945   VdbeBranchTaken(0, 2);
1946   MemSetTypeFlag(pIn1, MEM_Int);
1947   break;
1948 }
1949 
1950 #ifndef SQLITE_OMIT_FLOATING_POINT
1951 /* Opcode: RealAffinity P1 * * * *
1952 **
1953 ** If register P1 holds an integer convert it to a real value.
1954 **
1955 ** This opcode is used when extracting information from a column that
1956 ** has REAL affinity.  Such column values may still be stored as
1957 ** integers, for space efficiency, but after extraction we want them
1958 ** to have only a real value.
1959 */
1960 case OP_RealAffinity: {                  /* in1 */
1961   pIn1 = &aMem[pOp->p1];
1962   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1963     testcase( pIn1->flags & MEM_Int );
1964     testcase( pIn1->flags & MEM_IntReal );
1965     sqlite3VdbeMemRealify(pIn1);
1966     REGISTER_TRACE(pOp->p1, pIn1);
1967   }
1968   break;
1969 }
1970 #endif
1971 
1972 #ifndef SQLITE_OMIT_CAST
1973 /* Opcode: Cast P1 P2 * * *
1974 ** Synopsis: affinity(r[P1])
1975 **
1976 ** Force the value in register P1 to be the type defined by P2.
1977 **
1978 ** <ul>
1979 ** <li> P2=='A' &rarr; BLOB
1980 ** <li> P2=='B' &rarr; TEXT
1981 ** <li> P2=='C' &rarr; NUMERIC
1982 ** <li> P2=='D' &rarr; INTEGER
1983 ** <li> P2=='E' &rarr; REAL
1984 ** </ul>
1985 **
1986 ** A NULL value is not changed by this routine.  It remains NULL.
1987 */
1988 case OP_Cast: {                  /* in1 */
1989   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1990   testcase( pOp->p2==SQLITE_AFF_TEXT );
1991   testcase( pOp->p2==SQLITE_AFF_BLOB );
1992   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1993   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1994   testcase( pOp->p2==SQLITE_AFF_REAL );
1995   pIn1 = &aMem[pOp->p1];
1996   memAboutToChange(p, pIn1);
1997   rc = ExpandBlob(pIn1);
1998   if( rc ) goto abort_due_to_error;
1999   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2000   if( rc ) goto abort_due_to_error;
2001   UPDATE_MAX_BLOBSIZE(pIn1);
2002   REGISTER_TRACE(pOp->p1, pIn1);
2003   break;
2004 }
2005 #endif /* SQLITE_OMIT_CAST */
2006 
2007 /* Opcode: Eq P1 P2 P3 P4 P5
2008 ** Synopsis: IF r[P3]==r[P1]
2009 **
2010 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
2011 ** jump to address P2.
2012 **
2013 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2014 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2015 ** to coerce both inputs according to this affinity before the
2016 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2017 ** affinity is used. Note that the affinity conversions are stored
2018 ** back into the input registers P1 and P3.  So this opcode can cause
2019 ** persistent changes to registers P1 and P3.
2020 **
2021 ** Once any conversions have taken place, and neither value is NULL,
2022 ** the values are compared. If both values are blobs then memcmp() is
2023 ** used to determine the results of the comparison.  If both values
2024 ** are text, then the appropriate collating function specified in
2025 ** P4 is used to do the comparison.  If P4 is not specified then
2026 ** memcmp() is used to compare text string.  If both values are
2027 ** numeric, then a numeric comparison is used. If the two values
2028 ** are of different types, then numbers are considered less than
2029 ** strings and strings are considered less than blobs.
2030 **
2031 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2032 ** true or false and is never NULL.  If both operands are NULL then the result
2033 ** of comparison is true.  If either operand is NULL then the result is false.
2034 ** If neither operand is NULL the result is the same as it would be if
2035 ** the SQLITE_NULLEQ flag were omitted from P5.
2036 **
2037 ** This opcode saves the result of comparison for use by the new
2038 ** OP_Jump opcode.
2039 */
2040 /* Opcode: Ne P1 P2 P3 P4 P5
2041 ** Synopsis: IF r[P3]!=r[P1]
2042 **
2043 ** This works just like the Eq opcode except that the jump is taken if
2044 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2045 ** additional information.
2046 */
2047 /* Opcode: Lt P1 P2 P3 P4 P5
2048 ** Synopsis: IF r[P3]<r[P1]
2049 **
2050 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2051 ** jump to address P2.
2052 **
2053 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2054 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2055 ** bit is clear then fall through if either operand is NULL.
2056 **
2057 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2058 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2059 ** to coerce both inputs according to this affinity before the
2060 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2061 ** affinity is used. Note that the affinity conversions are stored
2062 ** back into the input registers P1 and P3.  So this opcode can cause
2063 ** persistent changes to registers P1 and P3.
2064 **
2065 ** Once any conversions have taken place, and neither value is NULL,
2066 ** the values are compared. If both values are blobs then memcmp() is
2067 ** used to determine the results of the comparison.  If both values
2068 ** are text, then the appropriate collating function specified in
2069 ** P4 is  used to do the comparison.  If P4 is not specified then
2070 ** memcmp() is used to compare text string.  If both values are
2071 ** numeric, then a numeric comparison is used. If the two values
2072 ** are of different types, then numbers are considered less than
2073 ** strings and strings are considered less than blobs.
2074 **
2075 ** This opcode saves the result of comparison for use by the new
2076 ** OP_Jump opcode.
2077 */
2078 /* Opcode: Le P1 P2 P3 P4 P5
2079 ** Synopsis: IF r[P3]<=r[P1]
2080 **
2081 ** This works just like the Lt opcode except that the jump is taken if
2082 ** the content of register P3 is less than or equal to the content of
2083 ** register P1.  See the Lt opcode for additional information.
2084 */
2085 /* Opcode: Gt P1 P2 P3 P4 P5
2086 ** Synopsis: IF r[P3]>r[P1]
2087 **
2088 ** This works just like the Lt opcode except that the jump is taken if
2089 ** the content of register P3 is greater than the content of
2090 ** register P1.  See the Lt opcode for additional information.
2091 */
2092 /* Opcode: Ge P1 P2 P3 P4 P5
2093 ** Synopsis: IF r[P3]>=r[P1]
2094 **
2095 ** This works just like the Lt opcode except that the jump is taken if
2096 ** the content of register P3 is greater than or equal to the content of
2097 ** register P1.  See the Lt opcode for additional information.
2098 */
2099 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2100 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2101 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2102 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2103 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2104 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2105   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2106   char affinity;      /* Affinity to use for comparison */
2107   u16 flags1;         /* Copy of initial value of pIn1->flags */
2108   u16 flags3;         /* Copy of initial value of pIn3->flags */
2109 
2110   pIn1 = &aMem[pOp->p1];
2111   pIn3 = &aMem[pOp->p3];
2112   flags1 = pIn1->flags;
2113   flags3 = pIn3->flags;
2114   if( (flags1 & flags3 & MEM_Int)!=0 ){
2115     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2116     /* Common case of comparison of two integers */
2117     if( pIn3->u.i > pIn1->u.i ){
2118       if( sqlite3aGTb[pOp->opcode] ){
2119         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2120         goto jump_to_p2;
2121       }
2122       iCompare = +1;
2123     }else if( pIn3->u.i < pIn1->u.i ){
2124       if( sqlite3aLTb[pOp->opcode] ){
2125         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2126         goto jump_to_p2;
2127       }
2128       iCompare = -1;
2129     }else{
2130       if( sqlite3aEQb[pOp->opcode] ){
2131         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2132         goto jump_to_p2;
2133       }
2134       iCompare = 0;
2135     }
2136     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2137     break;
2138   }
2139   if( (flags1 | flags3)&MEM_Null ){
2140     /* One or both operands are NULL */
2141     if( pOp->p5 & SQLITE_NULLEQ ){
2142       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2143       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2144       ** or not both operands are null.
2145       */
2146       assert( (flags1 & MEM_Cleared)==0 );
2147       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2148       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2149       if( (flags1&flags3&MEM_Null)!=0
2150        && (flags3&MEM_Cleared)==0
2151       ){
2152         res = 0;  /* Operands are equal */
2153       }else{
2154         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2155       }
2156     }else{
2157       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2158       ** then the result is always NULL.
2159       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2160       */
2161       VdbeBranchTaken(2,3);
2162       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2163         goto jump_to_p2;
2164       }
2165       iCompare = 1;    /* Operands are not equal */
2166       break;
2167     }
2168   }else{
2169     /* Neither operand is NULL and we couldn't do the special high-speed
2170     ** integer comparison case.  So do a general-case comparison. */
2171     affinity = pOp->p5 & SQLITE_AFF_MASK;
2172     if( affinity>=SQLITE_AFF_NUMERIC ){
2173       if( (flags1 | flags3)&MEM_Str ){
2174         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2175           applyNumericAffinity(pIn1,0);
2176           testcase( flags3==pIn3->flags );
2177           flags3 = pIn3->flags;
2178         }
2179         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2180           applyNumericAffinity(pIn3,0);
2181         }
2182       }
2183     }else if( affinity==SQLITE_AFF_TEXT ){
2184       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2185         testcase( pIn1->flags & MEM_Int );
2186         testcase( pIn1->flags & MEM_Real );
2187         testcase( pIn1->flags & MEM_IntReal );
2188         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2189         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2190         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2191         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2192       }
2193       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2194         testcase( pIn3->flags & MEM_Int );
2195         testcase( pIn3->flags & MEM_Real );
2196         testcase( pIn3->flags & MEM_IntReal );
2197         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2198         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2199         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2200       }
2201     }
2202     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2203     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2204   }
2205 
2206   /* At this point, res is negative, zero, or positive if reg[P1] is
2207   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2208   ** the answer to this operator in res2, depending on what the comparison
2209   ** operator actually is.  The next block of code depends on the fact
2210   ** that the 6 comparison operators are consecutive integers in this
2211   ** order:  NE, EQ, GT, LE, LT, GE */
2212   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2213   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2214   if( res<0 ){
2215     res2 = sqlite3aLTb[pOp->opcode];
2216   }else if( res==0 ){
2217     res2 = sqlite3aEQb[pOp->opcode];
2218   }else{
2219     res2 = sqlite3aGTb[pOp->opcode];
2220   }
2221   iCompare = res;
2222 
2223   /* Undo any changes made by applyAffinity() to the input registers. */
2224   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2225   pIn3->flags = flags3;
2226   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2227   pIn1->flags = flags1;
2228 
2229   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2230   if( res2 ){
2231     goto jump_to_p2;
2232   }
2233   break;
2234 }
2235 
2236 /* Opcode: ElseEq * P2 * * *
2237 **
2238 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2239 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2240 ** opcodes are allowed to occur between this instruction and the previous
2241 ** OP_Lt or OP_Gt.
2242 **
2243 ** If result of an OP_Eq comparison on the same two operands as the
2244 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2245 ** If the result of an OP_Eq comparison on the two previous
2246 ** operands would have been false or NULL, then fall through.
2247 */
2248 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2249 
2250 #ifdef SQLITE_DEBUG
2251   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2252   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2253   int iAddr;
2254   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2255     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2256     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2257     break;
2258   }
2259 #endif /* SQLITE_DEBUG */
2260   VdbeBranchTaken(iCompare==0, 2);
2261   if( iCompare==0 ) goto jump_to_p2;
2262   break;
2263 }
2264 
2265 
2266 /* Opcode: Permutation * * * P4 *
2267 **
2268 ** Set the permutation used by the OP_Compare operator in the next
2269 ** instruction.  The permutation is stored in the P4 operand.
2270 **
2271 ** The permutation is only valid for the next opcode which must be
2272 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2273 **
2274 ** The first integer in the P4 integer array is the length of the array
2275 ** and does not become part of the permutation.
2276 */
2277 case OP_Permutation: {
2278   assert( pOp->p4type==P4_INTARRAY );
2279   assert( pOp->p4.ai );
2280   assert( pOp[1].opcode==OP_Compare );
2281   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2282   break;
2283 }
2284 
2285 /* Opcode: Compare P1 P2 P3 P4 P5
2286 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2287 **
2288 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2289 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2290 ** the comparison for use by the next OP_Jump instruct.
2291 **
2292 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2293 ** determined by the most recent OP_Permutation operator.  If the
2294 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2295 ** order.
2296 **
2297 ** P4 is a KeyInfo structure that defines collating sequences and sort
2298 ** orders for the comparison.  The permutation applies to registers
2299 ** only.  The KeyInfo elements are used sequentially.
2300 **
2301 ** The comparison is a sort comparison, so NULLs compare equal,
2302 ** NULLs are less than numbers, numbers are less than strings,
2303 ** and strings are less than blobs.
2304 **
2305 ** This opcode must be immediately followed by an OP_Jump opcode.
2306 */
2307 case OP_Compare: {
2308   int n;
2309   int i;
2310   int p1;
2311   int p2;
2312   const KeyInfo *pKeyInfo;
2313   u32 idx;
2314   CollSeq *pColl;    /* Collating sequence to use on this term */
2315   int bRev;          /* True for DESCENDING sort order */
2316   u32 *aPermute;     /* The permutation */
2317 
2318   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2319     aPermute = 0;
2320   }else{
2321     assert( pOp>aOp );
2322     assert( pOp[-1].opcode==OP_Permutation );
2323     assert( pOp[-1].p4type==P4_INTARRAY );
2324     aPermute = pOp[-1].p4.ai + 1;
2325     assert( aPermute!=0 );
2326   }
2327   n = pOp->p3;
2328   pKeyInfo = pOp->p4.pKeyInfo;
2329   assert( n>0 );
2330   assert( pKeyInfo!=0 );
2331   p1 = pOp->p1;
2332   p2 = pOp->p2;
2333 #ifdef SQLITE_DEBUG
2334   if( aPermute ){
2335     int k, mx = 0;
2336     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2337     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2338     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2339   }else{
2340     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2341     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2342   }
2343 #endif /* SQLITE_DEBUG */
2344   for(i=0; i<n; i++){
2345     idx = aPermute ? aPermute[i] : (u32)i;
2346     assert( memIsValid(&aMem[p1+idx]) );
2347     assert( memIsValid(&aMem[p2+idx]) );
2348     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2349     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2350     assert( i<pKeyInfo->nKeyField );
2351     pColl = pKeyInfo->aColl[i];
2352     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2353     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2354     if( iCompare ){
2355       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2356        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2357       ){
2358         iCompare = -iCompare;
2359       }
2360       if( bRev ) iCompare = -iCompare;
2361       break;
2362     }
2363   }
2364   assert( pOp[1].opcode==OP_Jump );
2365   break;
2366 }
2367 
2368 /* Opcode: Jump P1 P2 P3 * *
2369 **
2370 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2371 ** in the most recent OP_Compare instruction the P1 vector was less than
2372 ** equal to, or greater than the P2 vector, respectively.
2373 **
2374 ** This opcode must immediately follow an OP_Compare opcode.
2375 */
2376 case OP_Jump: {             /* jump */
2377   assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2378   if( iCompare<0 ){
2379     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2380   }else if( iCompare==0 ){
2381     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2382   }else{
2383     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2384   }
2385   break;
2386 }
2387 
2388 /* Opcode: And P1 P2 P3 * *
2389 ** Synopsis: r[P3]=(r[P1] && r[P2])
2390 **
2391 ** Take the logical AND of the values in registers P1 and P2 and
2392 ** write the result into register P3.
2393 **
2394 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2395 ** the other input is NULL.  A NULL and true or two NULLs give
2396 ** a NULL output.
2397 */
2398 /* Opcode: Or P1 P2 P3 * *
2399 ** Synopsis: r[P3]=(r[P1] || r[P2])
2400 **
2401 ** Take the logical OR of the values in register P1 and P2 and
2402 ** store the answer in register P3.
2403 **
2404 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2405 ** even if the other input is NULL.  A NULL and false or two NULLs
2406 ** give a NULL output.
2407 */
2408 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2409 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2410   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2411   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2412 
2413   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2414   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2415   if( pOp->opcode==OP_And ){
2416     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2417     v1 = and_logic[v1*3+v2];
2418   }else{
2419     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2420     v1 = or_logic[v1*3+v2];
2421   }
2422   pOut = &aMem[pOp->p3];
2423   if( v1==2 ){
2424     MemSetTypeFlag(pOut, MEM_Null);
2425   }else{
2426     pOut->u.i = v1;
2427     MemSetTypeFlag(pOut, MEM_Int);
2428   }
2429   break;
2430 }
2431 
2432 /* Opcode: IsTrue P1 P2 P3 P4 *
2433 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2434 **
2435 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2436 ** IS NOT FALSE operators.
2437 **
2438 ** Interpret the value in register P1 as a boolean value.  Store that
2439 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2440 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2441 ** is 1.
2442 **
2443 ** The logic is summarized like this:
2444 **
2445 ** <ul>
2446 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2447 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2448 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2449 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2450 ** </ul>
2451 */
2452 case OP_IsTrue: {               /* in1, out2 */
2453   assert( pOp->p4type==P4_INT32 );
2454   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2455   assert( pOp->p3==0 || pOp->p3==1 );
2456   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2457       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2458   break;
2459 }
2460 
2461 /* Opcode: Not P1 P2 * * *
2462 ** Synopsis: r[P2]= !r[P1]
2463 **
2464 ** Interpret the value in register P1 as a boolean value.  Store the
2465 ** boolean complement in register P2.  If the value in register P1 is
2466 ** NULL, then a NULL is stored in P2.
2467 */
2468 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2469   pIn1 = &aMem[pOp->p1];
2470   pOut = &aMem[pOp->p2];
2471   if( (pIn1->flags & MEM_Null)==0 ){
2472     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2473   }else{
2474     sqlite3VdbeMemSetNull(pOut);
2475   }
2476   break;
2477 }
2478 
2479 /* Opcode: BitNot P1 P2 * * *
2480 ** Synopsis: r[P2]= ~r[P1]
2481 **
2482 ** Interpret the content of register P1 as an integer.  Store the
2483 ** ones-complement of the P1 value into register P2.  If P1 holds
2484 ** a NULL then store a NULL in P2.
2485 */
2486 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2487   pIn1 = &aMem[pOp->p1];
2488   pOut = &aMem[pOp->p2];
2489   sqlite3VdbeMemSetNull(pOut);
2490   if( (pIn1->flags & MEM_Null)==0 ){
2491     pOut->flags = MEM_Int;
2492     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2493   }
2494   break;
2495 }
2496 
2497 /* Opcode: Once P1 P2 * * *
2498 **
2499 ** Fall through to the next instruction the first time this opcode is
2500 ** encountered on each invocation of the byte-code program.  Jump to P2
2501 ** on the second and all subsequent encounters during the same invocation.
2502 **
2503 ** Top-level programs determine first invocation by comparing the P1
2504 ** operand against the P1 operand on the OP_Init opcode at the beginning
2505 ** of the program.  If the P1 values differ, then fall through and make
2506 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2507 ** the same then take the jump.
2508 **
2509 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2510 ** whether or not the jump should be taken.  The bitmask is necessary
2511 ** because the self-altering code trick does not work for recursive
2512 ** triggers.
2513 */
2514 case OP_Once: {             /* jump */
2515   u32 iAddr;                /* Address of this instruction */
2516   assert( p->aOp[0].opcode==OP_Init );
2517   if( p->pFrame ){
2518     iAddr = (int)(pOp - p->aOp);
2519     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2520       VdbeBranchTaken(1, 2);
2521       goto jump_to_p2;
2522     }
2523     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2524   }else{
2525     if( p->aOp[0].p1==pOp->p1 ){
2526       VdbeBranchTaken(1, 2);
2527       goto jump_to_p2;
2528     }
2529   }
2530   VdbeBranchTaken(0, 2);
2531   pOp->p1 = p->aOp[0].p1;
2532   break;
2533 }
2534 
2535 /* Opcode: If P1 P2 P3 * *
2536 **
2537 ** Jump to P2 if the value in register P1 is true.  The value
2538 ** is considered true if it is numeric and non-zero.  If the value
2539 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2540 */
2541 case OP_If:  {               /* jump, in1 */
2542   int c;
2543   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2544   VdbeBranchTaken(c!=0, 2);
2545   if( c ) goto jump_to_p2;
2546   break;
2547 }
2548 
2549 /* Opcode: IfNot P1 P2 P3 * *
2550 **
2551 ** Jump to P2 if the value in register P1 is False.  The value
2552 ** is considered false if it has a numeric value of zero.  If the value
2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2554 */
2555 case OP_IfNot: {            /* jump, in1 */
2556   int c;
2557   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2558   VdbeBranchTaken(c!=0, 2);
2559   if( c ) goto jump_to_p2;
2560   break;
2561 }
2562 
2563 /* Opcode: IsNull P1 P2 * * *
2564 ** Synopsis: if r[P1]==NULL goto P2
2565 **
2566 ** Jump to P2 if the value in register P1 is NULL.
2567 */
2568 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2569   pIn1 = &aMem[pOp->p1];
2570   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2571   if( (pIn1->flags & MEM_Null)!=0 ){
2572     goto jump_to_p2;
2573   }
2574   break;
2575 }
2576 
2577 /* Opcode: IsNullOrType P1 P2 P3 * *
2578 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2579 **
2580 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2581 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2582 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2583 */
2584 case OP_IsNullOrType: {      /* jump, in1 */
2585   int doTheJump;
2586   pIn1 = &aMem[pOp->p1];
2587   doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
2588   VdbeBranchTaken( doTheJump, 2);
2589   if( doTheJump ) goto jump_to_p2;
2590   break;
2591 }
2592 
2593 /* Opcode: ZeroOrNull P1 P2 P3 * *
2594 ** Synopsis: r[P2] = 0 OR NULL
2595 **
2596 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2597 ** register P2.  If either registers P1 or P3 are NULL then put
2598 ** a NULL in register P2.
2599 */
2600 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2601   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2602    || (aMem[pOp->p3].flags & MEM_Null)!=0
2603   ){
2604     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2605   }else{
2606     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2607   }
2608   break;
2609 }
2610 
2611 /* Opcode: NotNull P1 P2 * * *
2612 ** Synopsis: if r[P1]!=NULL goto P2
2613 **
2614 ** Jump to P2 if the value in register P1 is not NULL.
2615 */
2616 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2617   pIn1 = &aMem[pOp->p1];
2618   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2619   if( (pIn1->flags & MEM_Null)==0 ){
2620     goto jump_to_p2;
2621   }
2622   break;
2623 }
2624 
2625 /* Opcode: IfNullRow P1 P2 P3 * *
2626 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2627 **
2628 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2629 ** If it is, then set register P3 to NULL and jump immediately to P2.
2630 ** If P1 is not on a NULL row, then fall through without making any
2631 ** changes.
2632 */
2633 case OP_IfNullRow: {         /* jump */
2634   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2635   assert( p->apCsr[pOp->p1]!=0 );
2636   if( p->apCsr[pOp->p1]->nullRow ){
2637     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2638     goto jump_to_p2;
2639   }
2640   break;
2641 }
2642 
2643 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2644 /* Opcode: Offset P1 P2 P3 * *
2645 ** Synopsis: r[P3] = sqlite_offset(P1)
2646 **
2647 ** Store in register r[P3] the byte offset into the database file that is the
2648 ** start of the payload for the record at which that cursor P1 is currently
2649 ** pointing.
2650 **
2651 ** P2 is the column number for the argument to the sqlite_offset() function.
2652 ** This opcode does not use P2 itself, but the P2 value is used by the
2653 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2654 ** same as for OP_Column.
2655 **
2656 ** This opcode is only available if SQLite is compiled with the
2657 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2658 */
2659 case OP_Offset: {          /* out3 */
2660   VdbeCursor *pC;    /* The VDBE cursor */
2661   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2662   pC = p->apCsr[pOp->p1];
2663   pOut = &p->aMem[pOp->p3];
2664   if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2665     sqlite3VdbeMemSetNull(pOut);
2666   }else{
2667     if( pC->deferredMoveto ){
2668       rc = sqlite3VdbeFinishMoveto(pC);
2669       if( rc ) goto abort_due_to_error;
2670     }
2671     if( sqlite3BtreeEof(pC->uc.pCursor) ){
2672       sqlite3VdbeMemSetNull(pOut);
2673     }else{
2674       sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2675     }
2676   }
2677   break;
2678 }
2679 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2680 
2681 /* Opcode: Column P1 P2 P3 P4 P5
2682 ** Synopsis: r[P3]=PX cursor P1 column P2
2683 **
2684 ** Interpret the data that cursor P1 points to as a structure built using
2685 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2686 ** information about the format of the data.)  Extract the P2-th column
2687 ** from this record.  If there are less that (P2+1)
2688 ** values in the record, extract a NULL.
2689 **
2690 ** The value extracted is stored in register P3.
2691 **
2692 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2693 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2694 ** the result.
2695 **
2696 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2697 ** the result is guaranteed to only be used as the argument of a length()
2698 ** or typeof() function, respectively.  The loading of large blobs can be
2699 ** skipped for length() and all content loading can be skipped for typeof().
2700 */
2701 case OP_Column: {
2702   u32 p2;            /* column number to retrieve */
2703   VdbeCursor *pC;    /* The VDBE cursor */
2704   BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
2705   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2706   int len;           /* The length of the serialized data for the column */
2707   int i;             /* Loop counter */
2708   Mem *pDest;        /* Where to write the extracted value */
2709   Mem sMem;          /* For storing the record being decoded */
2710   const u8 *zData;   /* Part of the record being decoded */
2711   const u8 *zHdr;    /* Next unparsed byte of the header */
2712   const u8 *zEndHdr; /* Pointer to first byte after the header */
2713   u64 offset64;      /* 64-bit offset */
2714   u32 t;             /* A type code from the record header */
2715   Mem *pReg;         /* PseudoTable input register */
2716 
2717   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2718   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2719   pC = p->apCsr[pOp->p1];
2720   p2 = (u32)pOp->p2;
2721 
2722 op_column_restart:
2723   assert( pC!=0 );
2724   assert( p2<(u32)pC->nField
2725        || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2726   aOffset = pC->aOffset;
2727   assert( aOffset==pC->aType+pC->nField );
2728   assert( pC->eCurType!=CURTYPE_VTAB );
2729   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2730   assert( pC->eCurType!=CURTYPE_SORTER );
2731 
2732   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2733     if( pC->nullRow ){
2734       if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2735         /* For the special case of as pseudo-cursor, the seekResult field
2736         ** identifies the register that holds the record */
2737         pReg = &aMem[pC->seekResult];
2738         assert( pReg->flags & MEM_Blob );
2739         assert( memIsValid(pReg) );
2740         pC->payloadSize = pC->szRow = pReg->n;
2741         pC->aRow = (u8*)pReg->z;
2742       }else{
2743         pDest = &aMem[pOp->p3];
2744         memAboutToChange(p, pDest);
2745         sqlite3VdbeMemSetNull(pDest);
2746         goto op_column_out;
2747       }
2748     }else{
2749       pCrsr = pC->uc.pCursor;
2750       if( pC->deferredMoveto ){
2751         u32 iMap;
2752         assert( !pC->isEphemeral );
2753         if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
2754           pC = pC->pAltCursor;
2755           p2 = iMap - 1;
2756           goto op_column_restart;
2757         }
2758         rc = sqlite3VdbeFinishMoveto(pC);
2759         if( rc ) goto abort_due_to_error;
2760       }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2761         rc = sqlite3VdbeHandleMovedCursor(pC);
2762         if( rc ) goto abort_due_to_error;
2763         goto op_column_restart;
2764       }
2765       assert( pC->eCurType==CURTYPE_BTREE );
2766       assert( pCrsr );
2767       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2768       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2769       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2770       assert( pC->szRow<=pC->payloadSize );
2771       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2772     }
2773     pC->cacheStatus = p->cacheCtr;
2774     if( (aOffset[0] = pC->aRow[0])<0x80 ){
2775       pC->iHdrOffset = 1;
2776     }else{
2777       pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2778     }
2779     pC->nHdrParsed = 0;
2780 
2781     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2782       /* pC->aRow does not have to hold the entire row, but it does at least
2783       ** need to cover the header of the record.  If pC->aRow does not contain
2784       ** the complete header, then set it to zero, forcing the header to be
2785       ** dynamically allocated. */
2786       pC->aRow = 0;
2787       pC->szRow = 0;
2788 
2789       /* Make sure a corrupt database has not given us an oversize header.
2790       ** Do this now to avoid an oversize memory allocation.
2791       **
2792       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2793       ** types use so much data space that there can only be 4096 and 32 of
2794       ** them, respectively.  So the maximum header length results from a
2795       ** 3-byte type for each of the maximum of 32768 columns plus three
2796       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2797       */
2798       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2799         goto op_column_corrupt;
2800       }
2801     }else{
2802       /* This is an optimization.  By skipping over the first few tests
2803       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2804       ** measurable performance gain.
2805       **
2806       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2807       ** generated by SQLite, and could be considered corruption, but we
2808       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2809       ** branch jumps to reads past the end of the record, but never more
2810       ** than a few bytes.  Even if the record occurs at the end of the page
2811       ** content area, the "page header" comes after the page content and so
2812       ** this overread is harmless.  Similar overreads can occur for a corrupt
2813       ** database file.
2814       */
2815       zData = pC->aRow;
2816       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2817       testcase( aOffset[0]==0 );
2818       goto op_column_read_header;
2819     }
2820   }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2821     rc = sqlite3VdbeHandleMovedCursor(pC);
2822     if( rc ) goto abort_due_to_error;
2823     goto op_column_restart;
2824   }
2825 
2826   /* Make sure at least the first p2+1 entries of the header have been
2827   ** parsed and valid information is in aOffset[] and pC->aType[].
2828   */
2829   if( pC->nHdrParsed<=p2 ){
2830     /* If there is more header available for parsing in the record, try
2831     ** to extract additional fields up through the p2+1-th field
2832     */
2833     if( pC->iHdrOffset<aOffset[0] ){
2834       /* Make sure zData points to enough of the record to cover the header. */
2835       if( pC->aRow==0 ){
2836         memset(&sMem, 0, sizeof(sMem));
2837         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2838         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2839         zData = (u8*)sMem.z;
2840       }else{
2841         zData = pC->aRow;
2842       }
2843 
2844       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2845     op_column_read_header:
2846       i = pC->nHdrParsed;
2847       offset64 = aOffset[i];
2848       zHdr = zData + pC->iHdrOffset;
2849       zEndHdr = zData + aOffset[0];
2850       testcase( zHdr>=zEndHdr );
2851       do{
2852         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2853           zHdr++;
2854           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2855         }else{
2856           zHdr += sqlite3GetVarint32(zHdr, &t);
2857           pC->aType[i] = t;
2858           offset64 += sqlite3VdbeSerialTypeLen(t);
2859         }
2860         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2861       }while( (u32)i<=p2 && zHdr<zEndHdr );
2862 
2863       /* The record is corrupt if any of the following are true:
2864       ** (1) the bytes of the header extend past the declared header size
2865       ** (2) the entire header was used but not all data was used
2866       ** (3) the end of the data extends beyond the end of the record.
2867       */
2868       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2869        || (offset64 > pC->payloadSize)
2870       ){
2871         if( aOffset[0]==0 ){
2872           i = 0;
2873           zHdr = zEndHdr;
2874         }else{
2875           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2876           goto op_column_corrupt;
2877         }
2878       }
2879 
2880       pC->nHdrParsed = i;
2881       pC->iHdrOffset = (u32)(zHdr - zData);
2882       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2883     }else{
2884       t = 0;
2885     }
2886 
2887     /* If after trying to extract new entries from the header, nHdrParsed is
2888     ** still not up to p2, that means that the record has fewer than p2
2889     ** columns.  So the result will be either the default value or a NULL.
2890     */
2891     if( pC->nHdrParsed<=p2 ){
2892       pDest = &aMem[pOp->p3];
2893       memAboutToChange(p, pDest);
2894       if( pOp->p4type==P4_MEM ){
2895         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2896       }else{
2897         sqlite3VdbeMemSetNull(pDest);
2898       }
2899       goto op_column_out;
2900     }
2901   }else{
2902     t = pC->aType[p2];
2903   }
2904 
2905   /* Extract the content for the p2+1-th column.  Control can only
2906   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2907   ** all valid.
2908   */
2909   assert( p2<pC->nHdrParsed );
2910   assert( rc==SQLITE_OK );
2911   pDest = &aMem[pOp->p3];
2912   memAboutToChange(p, pDest);
2913   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2914   if( VdbeMemDynamic(pDest) ){
2915     sqlite3VdbeMemSetNull(pDest);
2916   }
2917   assert( t==pC->aType[p2] );
2918   if( pC->szRow>=aOffset[p2+1] ){
2919     /* This is the common case where the desired content fits on the original
2920     ** page - where the content is not on an overflow page */
2921     zData = pC->aRow + aOffset[p2];
2922     if( t<12 ){
2923       sqlite3VdbeSerialGet(zData, t, pDest);
2924     }else{
2925       /* If the column value is a string, we need a persistent value, not
2926       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2927       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2928       */
2929       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2930       pDest->n = len = (t-12)/2;
2931       pDest->enc = encoding;
2932       if( pDest->szMalloc < len+2 ){
2933         if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2934         pDest->flags = MEM_Null;
2935         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2936       }else{
2937         pDest->z = pDest->zMalloc;
2938       }
2939       memcpy(pDest->z, zData, len);
2940       pDest->z[len] = 0;
2941       pDest->z[len+1] = 0;
2942       pDest->flags = aFlag[t&1];
2943     }
2944   }else{
2945     pDest->enc = encoding;
2946     /* This branch happens only when content is on overflow pages */
2947     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2948           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2949      || (len = sqlite3VdbeSerialTypeLen(t))==0
2950     ){
2951       /* Content is irrelevant for
2952       **    1. the typeof() function,
2953       **    2. the length(X) function if X is a blob, and
2954       **    3. if the content length is zero.
2955       ** So we might as well use bogus content rather than reading
2956       ** content from disk.
2957       **
2958       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2959       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2960       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2961       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2962       ** and it begins with a bunch of zeros.
2963       */
2964       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2965     }else{
2966       if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2967       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2968       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2969       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2970       pDest->flags &= ~MEM_Ephem;
2971     }
2972   }
2973 
2974 op_column_out:
2975   UPDATE_MAX_BLOBSIZE(pDest);
2976   REGISTER_TRACE(pOp->p3, pDest);
2977   break;
2978 
2979 op_column_corrupt:
2980   if( aOp[0].p3>0 ){
2981     pOp = &aOp[aOp[0].p3-1];
2982     break;
2983   }else{
2984     rc = SQLITE_CORRUPT_BKPT;
2985     goto abort_due_to_error;
2986   }
2987 }
2988 
2989 /* Opcode: TypeCheck P1 P2 P3 P4 *
2990 ** Synopsis: typecheck(r[P1@P2])
2991 **
2992 ** Apply affinities to the range of P2 registers beginning with P1.
2993 ** Take the affinities from the Table object in P4.  If any value
2994 ** cannot be coerced into the correct type, then raise an error.
2995 **
2996 ** This opcode is similar to OP_Affinity except that this opcode
2997 ** forces the register type to the Table column type.  This is used
2998 ** to implement "strict affinity".
2999 **
3000 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3001 ** is zero.  When P3 is non-zero, no type checking occurs for
3002 ** static generated columns.  Virtual columns are computed at query time
3003 ** and so they are never checked.
3004 **
3005 ** Preconditions:
3006 **
3007 ** <ul>
3008 ** <li> P2 should be the number of non-virtual columns in the
3009 **      table of P4.
3010 ** <li> Table P4 should be a STRICT table.
3011 ** </ul>
3012 **
3013 ** If any precondition is false, an assertion fault occurs.
3014 */
3015 case OP_TypeCheck: {
3016   Table *pTab;
3017   Column *aCol;
3018   int i;
3019 
3020   assert( pOp->p4type==P4_TABLE );
3021   pTab = pOp->p4.pTab;
3022   assert( pTab->tabFlags & TF_Strict );
3023   assert( pTab->nNVCol==pOp->p2 );
3024   aCol = pTab->aCol;
3025   pIn1 = &aMem[pOp->p1];
3026   for(i=0; i<pTab->nCol; i++){
3027     if( aCol[i].colFlags & COLFLAG_GENERATED ){
3028       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3029       if( pOp->p3 ){ pIn1++; continue; }
3030     }
3031     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3032     applyAffinity(pIn1, aCol[i].affinity, encoding);
3033     if( (pIn1->flags & MEM_Null)==0 ){
3034       switch( aCol[i].eCType ){
3035         case COLTYPE_BLOB: {
3036           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3037           break;
3038         }
3039         case COLTYPE_INTEGER:
3040         case COLTYPE_INT: {
3041           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3042           break;
3043         }
3044         case COLTYPE_TEXT: {
3045           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3046           break;
3047         }
3048         case COLTYPE_REAL: {
3049           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3050           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3051           if( pIn1->flags & MEM_Int ){
3052             /* When applying REAL affinity, if the result is still an MEM_Int
3053             ** that will fit in 6 bytes, then change the type to MEM_IntReal
3054             ** so that we keep the high-resolution integer value but know that
3055             ** the type really wants to be REAL. */
3056             testcase( pIn1->u.i==140737488355328LL );
3057             testcase( pIn1->u.i==140737488355327LL );
3058             testcase( pIn1->u.i==-140737488355328LL );
3059             testcase( pIn1->u.i==-140737488355329LL );
3060             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3061               pIn1->flags |= MEM_IntReal;
3062               pIn1->flags &= ~MEM_Int;
3063             }else{
3064               pIn1->u.r = (double)pIn1->u.i;
3065               pIn1->flags |= MEM_Real;
3066               pIn1->flags &= ~MEM_Int;
3067             }
3068           }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3069             goto vdbe_type_error;
3070           }
3071           break;
3072         }
3073         default: {
3074           /* COLTYPE_ANY.  Accept anything. */
3075           break;
3076         }
3077       }
3078     }
3079     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3080     pIn1++;
3081   }
3082   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3083   break;
3084 
3085 vdbe_type_error:
3086   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3087      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3088      pTab->zName, aCol[i].zCnName);
3089   rc = SQLITE_CONSTRAINT_DATATYPE;
3090   goto abort_due_to_error;
3091 }
3092 
3093 /* Opcode: Affinity P1 P2 * P4 *
3094 ** Synopsis: affinity(r[P1@P2])
3095 **
3096 ** Apply affinities to a range of P2 registers starting with P1.
3097 **
3098 ** P4 is a string that is P2 characters long. The N-th character of the
3099 ** string indicates the column affinity that should be used for the N-th
3100 ** memory cell in the range.
3101 */
3102 case OP_Affinity: {
3103   const char *zAffinity;   /* The affinity to be applied */
3104 
3105   zAffinity = pOp->p4.z;
3106   assert( zAffinity!=0 );
3107   assert( pOp->p2>0 );
3108   assert( zAffinity[pOp->p2]==0 );
3109   pIn1 = &aMem[pOp->p1];
3110   while( 1 /*exit-by-break*/ ){
3111     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3112     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3113     applyAffinity(pIn1, zAffinity[0], encoding);
3114     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3115       /* When applying REAL affinity, if the result is still an MEM_Int
3116       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3117       ** so that we keep the high-resolution integer value but know that
3118       ** the type really wants to be REAL. */
3119       testcase( pIn1->u.i==140737488355328LL );
3120       testcase( pIn1->u.i==140737488355327LL );
3121       testcase( pIn1->u.i==-140737488355328LL );
3122       testcase( pIn1->u.i==-140737488355329LL );
3123       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3124         pIn1->flags |= MEM_IntReal;
3125         pIn1->flags &= ~MEM_Int;
3126       }else{
3127         pIn1->u.r = (double)pIn1->u.i;
3128         pIn1->flags |= MEM_Real;
3129         pIn1->flags &= ~MEM_Int;
3130       }
3131     }
3132     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3133     zAffinity++;
3134     if( zAffinity[0]==0 ) break;
3135     pIn1++;
3136   }
3137   break;
3138 }
3139 
3140 /* Opcode: MakeRecord P1 P2 P3 P4 *
3141 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3142 **
3143 ** Convert P2 registers beginning with P1 into the [record format]
3144 ** use as a data record in a database table or as a key
3145 ** in an index.  The OP_Column opcode can decode the record later.
3146 **
3147 ** P4 may be a string that is P2 characters long.  The N-th character of the
3148 ** string indicates the column affinity that should be used for the N-th
3149 ** field of the index key.
3150 **
3151 ** The mapping from character to affinity is given by the SQLITE_AFF_
3152 ** macros defined in sqliteInt.h.
3153 **
3154 ** If P4 is NULL then all index fields have the affinity BLOB.
3155 **
3156 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3157 ** compile-time option is enabled:
3158 **
3159 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3160 **     of the right-most table that can be null-trimmed.
3161 **
3162 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3163 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3164 **     accept no-change records with serial_type 10.  This value is
3165 **     only used inside an assert() and does not affect the end result.
3166 */
3167 case OP_MakeRecord: {
3168   Mem *pRec;             /* The new record */
3169   u64 nData;             /* Number of bytes of data space */
3170   int nHdr;              /* Number of bytes of header space */
3171   i64 nByte;             /* Data space required for this record */
3172   i64 nZero;             /* Number of zero bytes at the end of the record */
3173   int nVarint;           /* Number of bytes in a varint */
3174   u32 serial_type;       /* Type field */
3175   Mem *pData0;           /* First field to be combined into the record */
3176   Mem *pLast;            /* Last field of the record */
3177   int nField;            /* Number of fields in the record */
3178   char *zAffinity;       /* The affinity string for the record */
3179   u32 len;               /* Length of a field */
3180   u8 *zHdr;              /* Where to write next byte of the header */
3181   u8 *zPayload;          /* Where to write next byte of the payload */
3182 
3183   /* Assuming the record contains N fields, the record format looks
3184   ** like this:
3185   **
3186   ** ------------------------------------------------------------------------
3187   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3188   ** ------------------------------------------------------------------------
3189   **
3190   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3191   ** and so forth.
3192   **
3193   ** Each type field is a varint representing the serial type of the
3194   ** corresponding data element (see sqlite3VdbeSerialType()). The
3195   ** hdr-size field is also a varint which is the offset from the beginning
3196   ** of the record to data0.
3197   */
3198   nData = 0;         /* Number of bytes of data space */
3199   nHdr = 0;          /* Number of bytes of header space */
3200   nZero = 0;         /* Number of zero bytes at the end of the record */
3201   nField = pOp->p1;
3202   zAffinity = pOp->p4.z;
3203   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3204   pData0 = &aMem[nField];
3205   nField = pOp->p2;
3206   pLast = &pData0[nField-1];
3207 
3208   /* Identify the output register */
3209   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3210   pOut = &aMem[pOp->p3];
3211   memAboutToChange(p, pOut);
3212 
3213   /* Apply the requested affinity to all inputs
3214   */
3215   assert( pData0<=pLast );
3216   if( zAffinity ){
3217     pRec = pData0;
3218     do{
3219       applyAffinity(pRec, zAffinity[0], encoding);
3220       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3221         pRec->flags |= MEM_IntReal;
3222         pRec->flags &= ~(MEM_Int);
3223       }
3224       REGISTER_TRACE((int)(pRec-aMem), pRec);
3225       zAffinity++;
3226       pRec++;
3227       assert( zAffinity[0]==0 || pRec<=pLast );
3228     }while( zAffinity[0] );
3229   }
3230 
3231 #ifdef SQLITE_ENABLE_NULL_TRIM
3232   /* NULLs can be safely trimmed from the end of the record, as long as
3233   ** as the schema format is 2 or more and none of the omitted columns
3234   ** have a non-NULL default value.  Also, the record must be left with
3235   ** at least one field.  If P5>0 then it will be one more than the
3236   ** index of the right-most column with a non-NULL default value */
3237   if( pOp->p5 ){
3238     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3239       pLast--;
3240       nField--;
3241     }
3242   }
3243 #endif
3244 
3245   /* Loop through the elements that will make up the record to figure
3246   ** out how much space is required for the new record.  After this loop,
3247   ** the Mem.uTemp field of each term should hold the serial-type that will
3248   ** be used for that term in the generated record:
3249   **
3250   **   Mem.uTemp value    type
3251   **   ---------------    ---------------
3252   **      0               NULL
3253   **      1               1-byte signed integer
3254   **      2               2-byte signed integer
3255   **      3               3-byte signed integer
3256   **      4               4-byte signed integer
3257   **      5               6-byte signed integer
3258   **      6               8-byte signed integer
3259   **      7               IEEE float
3260   **      8               Integer constant 0
3261   **      9               Integer constant 1
3262   **     10,11            reserved for expansion
3263   **    N>=12 and even    BLOB
3264   **    N>=13 and odd     text
3265   **
3266   ** The following additional values are computed:
3267   **     nHdr        Number of bytes needed for the record header
3268   **     nData       Number of bytes of data space needed for the record
3269   **     nZero       Zero bytes at the end of the record
3270   */
3271   pRec = pLast;
3272   do{
3273     assert( memIsValid(pRec) );
3274     if( pRec->flags & MEM_Null ){
3275       if( pRec->flags & MEM_Zero ){
3276         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3277         ** table methods that never invoke sqlite3_result_xxxxx() while
3278         ** computing an unchanging column value in an UPDATE statement.
3279         ** Give such values a special internal-use-only serial-type of 10
3280         ** so that they can be passed through to xUpdate and have
3281         ** a true sqlite3_value_nochange(). */
3282 #ifndef SQLITE_ENABLE_NULL_TRIM
3283         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3284 #endif
3285         pRec->uTemp = 10;
3286       }else{
3287         pRec->uTemp = 0;
3288       }
3289       nHdr++;
3290     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3291       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3292       i64 i = pRec->u.i;
3293       u64 uu;
3294       testcase( pRec->flags & MEM_Int );
3295       testcase( pRec->flags & MEM_IntReal );
3296       if( i<0 ){
3297         uu = ~i;
3298       }else{
3299         uu = i;
3300       }
3301       nHdr++;
3302       testcase( uu==127 );               testcase( uu==128 );
3303       testcase( uu==32767 );             testcase( uu==32768 );
3304       testcase( uu==8388607 );           testcase( uu==8388608 );
3305       testcase( uu==2147483647 );        testcase( uu==2147483648LL );
3306       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3307       if( uu<=127 ){
3308         if( (i&1)==i && p->minWriteFileFormat>=4 ){
3309           pRec->uTemp = 8+(u32)uu;
3310         }else{
3311           nData++;
3312           pRec->uTemp = 1;
3313         }
3314       }else if( uu<=32767 ){
3315         nData += 2;
3316         pRec->uTemp = 2;
3317       }else if( uu<=8388607 ){
3318         nData += 3;
3319         pRec->uTemp = 3;
3320       }else if( uu<=2147483647 ){
3321         nData += 4;
3322         pRec->uTemp = 4;
3323       }else if( uu<=140737488355327LL ){
3324         nData += 6;
3325         pRec->uTemp = 5;
3326       }else{
3327         nData += 8;
3328         if( pRec->flags & MEM_IntReal ){
3329           /* If the value is IntReal and is going to take up 8 bytes to store
3330           ** as an integer, then we might as well make it an 8-byte floating
3331           ** point value */
3332           pRec->u.r = (double)pRec->u.i;
3333           pRec->flags &= ~MEM_IntReal;
3334           pRec->flags |= MEM_Real;
3335           pRec->uTemp = 7;
3336         }else{
3337           pRec->uTemp = 6;
3338         }
3339       }
3340     }else if( pRec->flags & MEM_Real ){
3341       nHdr++;
3342       nData += 8;
3343       pRec->uTemp = 7;
3344     }else{
3345       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3346       assert( pRec->n>=0 );
3347       len = (u32)pRec->n;
3348       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3349       if( pRec->flags & MEM_Zero ){
3350         serial_type += pRec->u.nZero*2;
3351         if( nData ){
3352           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3353           len += pRec->u.nZero;
3354         }else{
3355           nZero += pRec->u.nZero;
3356         }
3357       }
3358       nData += len;
3359       nHdr += sqlite3VarintLen(serial_type);
3360       pRec->uTemp = serial_type;
3361     }
3362     if( pRec==pData0 ) break;
3363     pRec--;
3364   }while(1);
3365 
3366   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3367   ** which determines the total number of bytes in the header. The varint
3368   ** value is the size of the header in bytes including the size varint
3369   ** itself. */
3370   testcase( nHdr==126 );
3371   testcase( nHdr==127 );
3372   if( nHdr<=126 ){
3373     /* The common case */
3374     nHdr += 1;
3375   }else{
3376     /* Rare case of a really large header */
3377     nVarint = sqlite3VarintLen(nHdr);
3378     nHdr += nVarint;
3379     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3380   }
3381   nByte = nHdr+nData;
3382 
3383   /* Make sure the output register has a buffer large enough to store
3384   ** the new record. The output register (pOp->p3) is not allowed to
3385   ** be one of the input registers (because the following call to
3386   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3387   */
3388   if( nByte+nZero<=pOut->szMalloc ){
3389     /* The output register is already large enough to hold the record.
3390     ** No error checks or buffer enlargement is required */
3391     pOut->z = pOut->zMalloc;
3392   }else{
3393     /* Need to make sure that the output is not too big and then enlarge
3394     ** the output register to hold the full result */
3395     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3396       goto too_big;
3397     }
3398     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3399       goto no_mem;
3400     }
3401   }
3402   pOut->n = (int)nByte;
3403   pOut->flags = MEM_Blob;
3404   if( nZero ){
3405     pOut->u.nZero = nZero;
3406     pOut->flags |= MEM_Zero;
3407   }
3408   UPDATE_MAX_BLOBSIZE(pOut);
3409   zHdr = (u8 *)pOut->z;
3410   zPayload = zHdr + nHdr;
3411 
3412   /* Write the record */
3413   if( nHdr<0x80 ){
3414     *(zHdr++) = nHdr;
3415   }else{
3416     zHdr += sqlite3PutVarint(zHdr,nHdr);
3417   }
3418   assert( pData0<=pLast );
3419   pRec = pData0;
3420   while( 1 /*exit-by-break*/ ){
3421     serial_type = pRec->uTemp;
3422     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3423     ** additional varints, one per column.
3424     ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3425     ** immediately follow the header. */
3426     if( serial_type<=7 ){
3427       *(zHdr++) = serial_type;
3428       if( serial_type==0 ){
3429         /* NULL value.  No change in zPayload */
3430       }else{
3431         u64 v;
3432         u32 i;
3433         if( serial_type==7 ){
3434           assert( sizeof(v)==sizeof(pRec->u.r) );
3435           memcpy(&v, &pRec->u.r, sizeof(v));
3436           swapMixedEndianFloat(v);
3437         }else{
3438           v = pRec->u.i;
3439         }
3440         len = i = sqlite3SmallTypeSizes[serial_type];
3441         assert( i>0 );
3442         while( 1 /*exit-by-break*/ ){
3443           zPayload[--i] = (u8)(v&0xFF);
3444           if( i==0 ) break;
3445           v >>= 8;
3446         }
3447         zPayload += len;
3448       }
3449     }else if( serial_type<0x80 ){
3450       *(zHdr++) = serial_type;
3451       if( serial_type>=14 && pRec->n>0 ){
3452         assert( pRec->z!=0 );
3453         memcpy(zPayload, pRec->z, pRec->n);
3454         zPayload += pRec->n;
3455       }
3456     }else{
3457       zHdr += sqlite3PutVarint(zHdr, serial_type);
3458       if( pRec->n ){
3459         assert( pRec->z!=0 );
3460         memcpy(zPayload, pRec->z, pRec->n);
3461         zPayload += pRec->n;
3462       }
3463     }
3464     if( pRec==pLast ) break;
3465     pRec++;
3466   }
3467   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3468   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3469 
3470   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3471   REGISTER_TRACE(pOp->p3, pOut);
3472   break;
3473 }
3474 
3475 /* Opcode: Count P1 P2 P3 * *
3476 ** Synopsis: r[P2]=count()
3477 **
3478 ** Store the number of entries (an integer value) in the table or index
3479 ** opened by cursor P1 in register P2.
3480 **
3481 ** If P3==0, then an exact count is obtained, which involves visiting
3482 ** every btree page of the table.  But if P3 is non-zero, an estimate
3483 ** is returned based on the current cursor position.
3484 */
3485 case OP_Count: {         /* out2 */
3486   i64 nEntry;
3487   BtCursor *pCrsr;
3488 
3489   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3490   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3491   assert( pCrsr );
3492   if( pOp->p3 ){
3493     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3494   }else{
3495     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3496     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3497     if( rc ) goto abort_due_to_error;
3498   }
3499   pOut = out2Prerelease(p, pOp);
3500   pOut->u.i = nEntry;
3501   goto check_for_interrupt;
3502 }
3503 
3504 /* Opcode: Savepoint P1 * * P4 *
3505 **
3506 ** Open, release or rollback the savepoint named by parameter P4, depending
3507 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3508 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3509 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3510 */
3511 case OP_Savepoint: {
3512   int p1;                         /* Value of P1 operand */
3513   char *zName;                    /* Name of savepoint */
3514   int nName;
3515   Savepoint *pNew;
3516   Savepoint *pSavepoint;
3517   Savepoint *pTmp;
3518   int iSavepoint;
3519   int ii;
3520 
3521   p1 = pOp->p1;
3522   zName = pOp->p4.z;
3523 
3524   /* Assert that the p1 parameter is valid. Also that if there is no open
3525   ** transaction, then there cannot be any savepoints.
3526   */
3527   assert( db->pSavepoint==0 || db->autoCommit==0 );
3528   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3529   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3530   assert( checkSavepointCount(db) );
3531   assert( p->bIsReader );
3532 
3533   if( p1==SAVEPOINT_BEGIN ){
3534     if( db->nVdbeWrite>0 ){
3535       /* A new savepoint cannot be created if there are active write
3536       ** statements (i.e. open read/write incremental blob handles).
3537       */
3538       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3539       rc = SQLITE_BUSY;
3540     }else{
3541       nName = sqlite3Strlen30(zName);
3542 
3543 #ifndef SQLITE_OMIT_VIRTUALTABLE
3544       /* This call is Ok even if this savepoint is actually a transaction
3545       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3546       ** If this is a transaction savepoint being opened, it is guaranteed
3547       ** that the db->aVTrans[] array is empty.  */
3548       assert( db->autoCommit==0 || db->nVTrans==0 );
3549       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3550                                 db->nStatement+db->nSavepoint);
3551       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3552 #endif
3553 
3554       /* Create a new savepoint structure. */
3555       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3556       if( pNew ){
3557         pNew->zName = (char *)&pNew[1];
3558         memcpy(pNew->zName, zName, nName+1);
3559 
3560         /* If there is no open transaction, then mark this as a special
3561         ** "transaction savepoint". */
3562         if( db->autoCommit ){
3563           db->autoCommit = 0;
3564           db->isTransactionSavepoint = 1;
3565         }else{
3566           db->nSavepoint++;
3567         }
3568 
3569         /* Link the new savepoint into the database handle's list. */
3570         pNew->pNext = db->pSavepoint;
3571         db->pSavepoint = pNew;
3572         pNew->nDeferredCons = db->nDeferredCons;
3573         pNew->nDeferredImmCons = db->nDeferredImmCons;
3574       }
3575     }
3576   }else{
3577     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3578     iSavepoint = 0;
3579 
3580     /* Find the named savepoint. If there is no such savepoint, then an
3581     ** an error is returned to the user.  */
3582     for(
3583       pSavepoint = db->pSavepoint;
3584       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3585       pSavepoint = pSavepoint->pNext
3586     ){
3587       iSavepoint++;
3588     }
3589     if( !pSavepoint ){
3590       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3591       rc = SQLITE_ERROR;
3592     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3593       /* It is not possible to release (commit) a savepoint if there are
3594       ** active write statements.
3595       */
3596       sqlite3VdbeError(p, "cannot release savepoint - "
3597                           "SQL statements in progress");
3598       rc = SQLITE_BUSY;
3599     }else{
3600 
3601       /* Determine whether or not this is a transaction savepoint. If so,
3602       ** and this is a RELEASE command, then the current transaction
3603       ** is committed.
3604       */
3605       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3606       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3607         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3608           goto vdbe_return;
3609         }
3610         db->autoCommit = 1;
3611         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3612           p->pc = (int)(pOp - aOp);
3613           db->autoCommit = 0;
3614           p->rc = rc = SQLITE_BUSY;
3615           goto vdbe_return;
3616         }
3617         rc = p->rc;
3618         if( rc ){
3619           db->autoCommit = 0;
3620         }else{
3621           db->isTransactionSavepoint = 0;
3622         }
3623       }else{
3624         int isSchemaChange;
3625         iSavepoint = db->nSavepoint - iSavepoint - 1;
3626         if( p1==SAVEPOINT_ROLLBACK ){
3627           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3628           for(ii=0; ii<db->nDb; ii++){
3629             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3630                                        SQLITE_ABORT_ROLLBACK,
3631                                        isSchemaChange==0);
3632             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3633           }
3634         }else{
3635           assert( p1==SAVEPOINT_RELEASE );
3636           isSchemaChange = 0;
3637         }
3638         for(ii=0; ii<db->nDb; ii++){
3639           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3640           if( rc!=SQLITE_OK ){
3641             goto abort_due_to_error;
3642           }
3643         }
3644         if( isSchemaChange ){
3645           sqlite3ExpirePreparedStatements(db, 0);
3646           sqlite3ResetAllSchemasOfConnection(db);
3647           db->mDbFlags |= DBFLAG_SchemaChange;
3648         }
3649       }
3650       if( rc ) goto abort_due_to_error;
3651 
3652       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3653       ** savepoints nested inside of the savepoint being operated on. */
3654       while( db->pSavepoint!=pSavepoint ){
3655         pTmp = db->pSavepoint;
3656         db->pSavepoint = pTmp->pNext;
3657         sqlite3DbFree(db, pTmp);
3658         db->nSavepoint--;
3659       }
3660 
3661       /* If it is a RELEASE, then destroy the savepoint being operated on
3662       ** too. If it is a ROLLBACK TO, then set the number of deferred
3663       ** constraint violations present in the database to the value stored
3664       ** when the savepoint was created.  */
3665       if( p1==SAVEPOINT_RELEASE ){
3666         assert( pSavepoint==db->pSavepoint );
3667         db->pSavepoint = pSavepoint->pNext;
3668         sqlite3DbFree(db, pSavepoint);
3669         if( !isTransaction ){
3670           db->nSavepoint--;
3671         }
3672       }else{
3673         assert( p1==SAVEPOINT_ROLLBACK );
3674         db->nDeferredCons = pSavepoint->nDeferredCons;
3675         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3676       }
3677 
3678       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3679         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3680         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3681       }
3682     }
3683   }
3684   if( rc ) goto abort_due_to_error;
3685   if( p->eVdbeState==VDBE_HALT_STATE ){
3686     rc = SQLITE_DONE;
3687     goto vdbe_return;
3688   }
3689   break;
3690 }
3691 
3692 /* Opcode: AutoCommit P1 P2 * * *
3693 **
3694 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3695 ** back any currently active btree transactions. If there are any active
3696 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3697 ** there are active writing VMs or active VMs that use shared cache.
3698 **
3699 ** This instruction causes the VM to halt.
3700 */
3701 case OP_AutoCommit: {
3702   int desiredAutoCommit;
3703   int iRollback;
3704 
3705   desiredAutoCommit = pOp->p1;
3706   iRollback = pOp->p2;
3707   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3708   assert( desiredAutoCommit==1 || iRollback==0 );
3709   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3710   assert( p->bIsReader );
3711 
3712   if( desiredAutoCommit!=db->autoCommit ){
3713     if( iRollback ){
3714       assert( desiredAutoCommit==1 );
3715       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3716       db->autoCommit = 1;
3717     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3718       /* If this instruction implements a COMMIT and other VMs are writing
3719       ** return an error indicating that the other VMs must complete first.
3720       */
3721       sqlite3VdbeError(p, "cannot commit transaction - "
3722                           "SQL statements in progress");
3723       rc = SQLITE_BUSY;
3724       goto abort_due_to_error;
3725     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3726       goto vdbe_return;
3727     }else{
3728       db->autoCommit = (u8)desiredAutoCommit;
3729     }
3730     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3731       p->pc = (int)(pOp - aOp);
3732       db->autoCommit = (u8)(1-desiredAutoCommit);
3733       p->rc = rc = SQLITE_BUSY;
3734       goto vdbe_return;
3735     }
3736     sqlite3CloseSavepoints(db);
3737     if( p->rc==SQLITE_OK ){
3738       rc = SQLITE_DONE;
3739     }else{
3740       rc = SQLITE_ERROR;
3741     }
3742     goto vdbe_return;
3743   }else{
3744     sqlite3VdbeError(p,
3745         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3746         (iRollback)?"cannot rollback - no transaction is active":
3747                    "cannot commit - no transaction is active"));
3748 
3749     rc = SQLITE_ERROR;
3750     goto abort_due_to_error;
3751   }
3752   /*NOTREACHED*/ assert(0);
3753 }
3754 
3755 /* Opcode: Transaction P1 P2 P3 P4 P5
3756 **
3757 ** Begin a transaction on database P1 if a transaction is not already
3758 ** active.
3759 ** If P2 is non-zero, then a write-transaction is started, or if a
3760 ** read-transaction is already active, it is upgraded to a write-transaction.
3761 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3762 ** then an exclusive transaction is started.
3763 **
3764 ** P1 is the index of the database file on which the transaction is
3765 ** started.  Index 0 is the main database file and index 1 is the
3766 ** file used for temporary tables.  Indices of 2 or more are used for
3767 ** attached databases.
3768 **
3769 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3770 ** true (this flag is set if the Vdbe may modify more than one row and may
3771 ** throw an ABORT exception), a statement transaction may also be opened.
3772 ** More specifically, a statement transaction is opened iff the database
3773 ** connection is currently not in autocommit mode, or if there are other
3774 ** active statements. A statement transaction allows the changes made by this
3775 ** VDBE to be rolled back after an error without having to roll back the
3776 ** entire transaction. If no error is encountered, the statement transaction
3777 ** will automatically commit when the VDBE halts.
3778 **
3779 ** If P5!=0 then this opcode also checks the schema cookie against P3
3780 ** and the schema generation counter against P4.
3781 ** The cookie changes its value whenever the database schema changes.
3782 ** This operation is used to detect when that the cookie has changed
3783 ** and that the current process needs to reread the schema.  If the schema
3784 ** cookie in P3 differs from the schema cookie in the database header or
3785 ** if the schema generation counter in P4 differs from the current
3786 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3787 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3788 ** statement and rerun it from the beginning.
3789 */
3790 case OP_Transaction: {
3791   Btree *pBt;
3792   Db *pDb;
3793   int iMeta = 0;
3794 
3795   assert( p->bIsReader );
3796   assert( p->readOnly==0 || pOp->p2==0 );
3797   assert( pOp->p2>=0 && pOp->p2<=2 );
3798   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3799   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3800   assert( rc==SQLITE_OK );
3801   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3802     if( db->flags & SQLITE_QueryOnly ){
3803       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3804       rc = SQLITE_READONLY;
3805     }else{
3806       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3807       ** transaction */
3808       rc = SQLITE_CORRUPT;
3809     }
3810     goto abort_due_to_error;
3811   }
3812   pDb = &db->aDb[pOp->p1];
3813   pBt = pDb->pBt;
3814 
3815   if( pBt ){
3816     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3817     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3818     testcase( rc==SQLITE_BUSY_RECOVERY );
3819     if( rc!=SQLITE_OK ){
3820       if( (rc&0xff)==SQLITE_BUSY ){
3821         p->pc = (int)(pOp - aOp);
3822         p->rc = rc;
3823         goto vdbe_return;
3824       }
3825       goto abort_due_to_error;
3826     }
3827 
3828     if( p->usesStmtJournal
3829      && pOp->p2
3830      && (db->autoCommit==0 || db->nVdbeRead>1)
3831     ){
3832       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3833       if( p->iStatement==0 ){
3834         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3835         db->nStatement++;
3836         p->iStatement = db->nSavepoint + db->nStatement;
3837       }
3838 
3839       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3840       if( rc==SQLITE_OK ){
3841         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3842       }
3843 
3844       /* Store the current value of the database handles deferred constraint
3845       ** counter. If the statement transaction needs to be rolled back,
3846       ** the value of this counter needs to be restored too.  */
3847       p->nStmtDefCons = db->nDeferredCons;
3848       p->nStmtDefImmCons = db->nDeferredImmCons;
3849     }
3850   }
3851   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3852   if( rc==SQLITE_OK
3853    && pOp->p5
3854    && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3855   ){
3856     /*
3857     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3858     ** version is checked to ensure that the schema has not changed since the
3859     ** SQL statement was prepared.
3860     */
3861     sqlite3DbFree(db, p->zErrMsg);
3862     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3863     /* If the schema-cookie from the database file matches the cookie
3864     ** stored with the in-memory representation of the schema, do
3865     ** not reload the schema from the database file.
3866     **
3867     ** If virtual-tables are in use, this is not just an optimization.
3868     ** Often, v-tables store their data in other SQLite tables, which
3869     ** are queried from within xNext() and other v-table methods using
3870     ** prepared queries. If such a query is out-of-date, we do not want to
3871     ** discard the database schema, as the user code implementing the
3872     ** v-table would have to be ready for the sqlite3_vtab structure itself
3873     ** to be invalidated whenever sqlite3_step() is called from within
3874     ** a v-table method.
3875     */
3876     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3877       sqlite3ResetOneSchema(db, pOp->p1);
3878     }
3879     p->expired = 1;
3880     rc = SQLITE_SCHEMA;
3881   }
3882   if( rc ) goto abort_due_to_error;
3883   break;
3884 }
3885 
3886 /* Opcode: ReadCookie P1 P2 P3 * *
3887 **
3888 ** Read cookie number P3 from database P1 and write it into register P2.
3889 ** P3==1 is the schema version.  P3==2 is the database format.
3890 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3891 ** the main database file and P1==1 is the database file used to store
3892 ** temporary tables.
3893 **
3894 ** There must be a read-lock on the database (either a transaction
3895 ** must be started or there must be an open cursor) before
3896 ** executing this instruction.
3897 */
3898 case OP_ReadCookie: {               /* out2 */
3899   int iMeta;
3900   int iDb;
3901   int iCookie;
3902 
3903   assert( p->bIsReader );
3904   iDb = pOp->p1;
3905   iCookie = pOp->p3;
3906   assert( pOp->p3<SQLITE_N_BTREE_META );
3907   assert( iDb>=0 && iDb<db->nDb );
3908   assert( db->aDb[iDb].pBt!=0 );
3909   assert( DbMaskTest(p->btreeMask, iDb) );
3910 
3911   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3912   pOut = out2Prerelease(p, pOp);
3913   pOut->u.i = iMeta;
3914   break;
3915 }
3916 
3917 /* Opcode: SetCookie P1 P2 P3 * P5
3918 **
3919 ** Write the integer value P3 into cookie number P2 of database P1.
3920 ** P2==1 is the schema version.  P2==2 is the database format.
3921 ** P2==3 is the recommended pager cache
3922 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3923 ** database file used to store temporary tables.
3924 **
3925 ** A transaction must be started before executing this opcode.
3926 **
3927 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3928 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3929 ** has P5 set to 1, so that the internal schema version will be different
3930 ** from the database schema version, resulting in a schema reset.
3931 */
3932 case OP_SetCookie: {
3933   Db *pDb;
3934 
3935   sqlite3VdbeIncrWriteCounter(p, 0);
3936   assert( pOp->p2<SQLITE_N_BTREE_META );
3937   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3938   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3939   assert( p->readOnly==0 );
3940   pDb = &db->aDb[pOp->p1];
3941   assert( pDb->pBt!=0 );
3942   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3943   /* See note about index shifting on OP_ReadCookie */
3944   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3945   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3946     /* When the schema cookie changes, record the new cookie internally */
3947     pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
3948     db->mDbFlags |= DBFLAG_SchemaChange;
3949     sqlite3FkClearTriggerCache(db, pOp->p1);
3950   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3951     /* Record changes in the file format */
3952     pDb->pSchema->file_format = pOp->p3;
3953   }
3954   if( pOp->p1==1 ){
3955     /* Invalidate all prepared statements whenever the TEMP database
3956     ** schema is changed.  Ticket #1644 */
3957     sqlite3ExpirePreparedStatements(db, 0);
3958     p->expired = 0;
3959   }
3960   if( rc ) goto abort_due_to_error;
3961   break;
3962 }
3963 
3964 /* Opcode: OpenRead P1 P2 P3 P4 P5
3965 ** Synopsis: root=P2 iDb=P3
3966 **
3967 ** Open a read-only cursor for the database table whose root page is
3968 ** P2 in a database file.  The database file is determined by P3.
3969 ** P3==0 means the main database, P3==1 means the database used for
3970 ** temporary tables, and P3>1 means used the corresponding attached
3971 ** database.  Give the new cursor an identifier of P1.  The P1
3972 ** values need not be contiguous but all P1 values should be small integers.
3973 ** It is an error for P1 to be negative.
3974 **
3975 ** Allowed P5 bits:
3976 ** <ul>
3977 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3978 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3979 **       of OP_SeekLE/OP_IdxLT)
3980 ** </ul>
3981 **
3982 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3983 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3984 ** object, then table being opened must be an [index b-tree] where the
3985 ** KeyInfo object defines the content and collating
3986 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3987 ** value, then the table being opened must be a [table b-tree] with a
3988 ** number of columns no less than the value of P4.
3989 **
3990 ** See also: OpenWrite, ReopenIdx
3991 */
3992 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3993 ** Synopsis: root=P2 iDb=P3
3994 **
3995 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3996 ** checks to see if the cursor on P1 is already open on the same
3997 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3998 ** if the cursor is already open, do not reopen it.
3999 **
4000 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4001 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
4002 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4003 ** number.
4004 **
4005 ** Allowed P5 bits:
4006 ** <ul>
4007 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4008 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4009 **       of OP_SeekLE/OP_IdxLT)
4010 ** </ul>
4011 **
4012 ** See also: OP_OpenRead, OP_OpenWrite
4013 */
4014 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4015 ** Synopsis: root=P2 iDb=P3
4016 **
4017 ** Open a read/write cursor named P1 on the table or index whose root
4018 ** page is P2 (or whose root page is held in register P2 if the
4019 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4020 **
4021 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4022 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4023 ** object, then table being opened must be an [index b-tree] where the
4024 ** KeyInfo object defines the content and collating
4025 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4026 ** value, then the table being opened must be a [table b-tree] with a
4027 ** number of columns no less than the value of P4.
4028 **
4029 ** Allowed P5 bits:
4030 ** <ul>
4031 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4032 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4033 **       of OP_SeekLE/OP_IdxLT)
4034 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4035 **       and subsequently delete entries in an index btree.  This is a
4036 **       hint to the storage engine that the storage engine is allowed to
4037 **       ignore.  The hint is not used by the official SQLite b*tree storage
4038 **       engine, but is used by COMDB2.
4039 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4040 **       as the root page, not the value of P2 itself.
4041 ** </ul>
4042 **
4043 ** This instruction works like OpenRead except that it opens the cursor
4044 ** in read/write mode.
4045 **
4046 ** See also: OP_OpenRead, OP_ReopenIdx
4047 */
4048 case OP_ReopenIdx: {
4049   int nField;
4050   KeyInfo *pKeyInfo;
4051   u32 p2;
4052   int iDb;
4053   int wrFlag;
4054   Btree *pX;
4055   VdbeCursor *pCur;
4056   Db *pDb;
4057 
4058   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4059   assert( pOp->p4type==P4_KEYINFO );
4060   pCur = p->apCsr[pOp->p1];
4061   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4062     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
4063     assert( pCur->eCurType==CURTYPE_BTREE );
4064     sqlite3BtreeClearCursor(pCur->uc.pCursor);
4065     goto open_cursor_set_hints;
4066   }
4067   /* If the cursor is not currently open or is open on a different
4068   ** index, then fall through into OP_OpenRead to force a reopen */
4069 case OP_OpenRead:
4070 case OP_OpenWrite:
4071 
4072   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4073   assert( p->bIsReader );
4074   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4075           || p->readOnly==0 );
4076 
4077   if( p->expired==1 ){
4078     rc = SQLITE_ABORT_ROLLBACK;
4079     goto abort_due_to_error;
4080   }
4081 
4082   nField = 0;
4083   pKeyInfo = 0;
4084   p2 = (u32)pOp->p2;
4085   iDb = pOp->p3;
4086   assert( iDb>=0 && iDb<db->nDb );
4087   assert( DbMaskTest(p->btreeMask, iDb) );
4088   pDb = &db->aDb[iDb];
4089   pX = pDb->pBt;
4090   assert( pX!=0 );
4091   if( pOp->opcode==OP_OpenWrite ){
4092     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4093     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4094     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4095     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4096       p->minWriteFileFormat = pDb->pSchema->file_format;
4097     }
4098   }else{
4099     wrFlag = 0;
4100   }
4101   if( pOp->p5 & OPFLAG_P2ISREG ){
4102     assert( p2>0 );
4103     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4104     assert( pOp->opcode==OP_OpenWrite );
4105     pIn2 = &aMem[p2];
4106     assert( memIsValid(pIn2) );
4107     assert( (pIn2->flags & MEM_Int)!=0 );
4108     sqlite3VdbeMemIntegerify(pIn2);
4109     p2 = (int)pIn2->u.i;
4110     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4111     ** that opcode will always set the p2 value to 2 or more or else fail.
4112     ** If there were a failure, the prepared statement would have halted
4113     ** before reaching this instruction. */
4114     assert( p2>=2 );
4115   }
4116   if( pOp->p4type==P4_KEYINFO ){
4117     pKeyInfo = pOp->p4.pKeyInfo;
4118     assert( pKeyInfo->enc==ENC(db) );
4119     assert( pKeyInfo->db==db );
4120     nField = pKeyInfo->nAllField;
4121   }else if( pOp->p4type==P4_INT32 ){
4122     nField = pOp->p4.i;
4123   }
4124   assert( pOp->p1>=0 );
4125   assert( nField>=0 );
4126   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4127   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4128   if( pCur==0 ) goto no_mem;
4129   pCur->iDb = iDb;
4130   pCur->nullRow = 1;
4131   pCur->isOrdered = 1;
4132   pCur->pgnoRoot = p2;
4133 #ifdef SQLITE_DEBUG
4134   pCur->wrFlag = wrFlag;
4135 #endif
4136   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4137   pCur->pKeyInfo = pKeyInfo;
4138   /* Set the VdbeCursor.isTable variable. Previous versions of
4139   ** SQLite used to check if the root-page flags were sane at this point
4140   ** and report database corruption if they were not, but this check has
4141   ** since moved into the btree layer.  */
4142   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4143 
4144 open_cursor_set_hints:
4145   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4146   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4147   testcase( pOp->p5 & OPFLAG_BULKCSR );
4148   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4149   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4150                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4151   if( rc ) goto abort_due_to_error;
4152   break;
4153 }
4154 
4155 /* Opcode: OpenDup P1 P2 * * *
4156 **
4157 ** Open a new cursor P1 that points to the same ephemeral table as
4158 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4159 ** opcode.  Only ephemeral cursors may be duplicated.
4160 **
4161 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4162 */
4163 case OP_OpenDup: {
4164   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4165   VdbeCursor *pCx;      /* The new cursor */
4166 
4167   pOrig = p->apCsr[pOp->p2];
4168   assert( pOrig );
4169   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4170 
4171   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4172   if( pCx==0 ) goto no_mem;
4173   pCx->nullRow = 1;
4174   pCx->isEphemeral = 1;
4175   pCx->pKeyInfo = pOrig->pKeyInfo;
4176   pCx->isTable = pOrig->isTable;
4177   pCx->pgnoRoot = pOrig->pgnoRoot;
4178   pCx->isOrdered = pOrig->isOrdered;
4179   pCx->ub.pBtx = pOrig->ub.pBtx;
4180   pCx->hasBeenDuped = 1;
4181   pOrig->hasBeenDuped = 1;
4182   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4183                           pCx->pKeyInfo, pCx->uc.pCursor);
4184   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4185   ** opened for a database.  Since there is already an open cursor when this
4186   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4187   assert( rc==SQLITE_OK );
4188   break;
4189 }
4190 
4191 
4192 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4193 ** Synopsis: nColumn=P2
4194 **
4195 ** Open a new cursor P1 to a transient table.
4196 ** The cursor is always opened read/write even if
4197 ** the main database is read-only.  The ephemeral
4198 ** table is deleted automatically when the cursor is closed.
4199 **
4200 ** If the cursor P1 is already opened on an ephemeral table, the table
4201 ** is cleared (all content is erased).
4202 **
4203 ** P2 is the number of columns in the ephemeral table.
4204 ** The cursor points to a BTree table if P4==0 and to a BTree index
4205 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4206 ** that defines the format of keys in the index.
4207 **
4208 ** The P5 parameter can be a mask of the BTREE_* flags defined
4209 ** in btree.h.  These flags control aspects of the operation of
4210 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4211 ** added automatically.
4212 **
4213 ** If P3 is positive, then reg[P3] is modified slightly so that it
4214 ** can be used as zero-length data for OP_Insert.  This is an optimization
4215 ** that avoids an extra OP_Blob opcode to initialize that register.
4216 */
4217 /* Opcode: OpenAutoindex P1 P2 * P4 *
4218 ** Synopsis: nColumn=P2
4219 **
4220 ** This opcode works the same as OP_OpenEphemeral.  It has a
4221 ** different name to distinguish its use.  Tables created using
4222 ** by this opcode will be used for automatically created transient
4223 ** indices in joins.
4224 */
4225 case OP_OpenAutoindex:
4226 case OP_OpenEphemeral: {
4227   VdbeCursor *pCx;
4228   KeyInfo *pKeyInfo;
4229 
4230   static const int vfsFlags =
4231       SQLITE_OPEN_READWRITE |
4232       SQLITE_OPEN_CREATE |
4233       SQLITE_OPEN_EXCLUSIVE |
4234       SQLITE_OPEN_DELETEONCLOSE |
4235       SQLITE_OPEN_TRANSIENT_DB;
4236   assert( pOp->p1>=0 );
4237   assert( pOp->p2>=0 );
4238   if( pOp->p3>0 ){
4239     /* Make register reg[P3] into a value that can be used as the data
4240     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4241     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4242     assert( pOp->opcode==OP_OpenEphemeral );
4243     assert( aMem[pOp->p3].flags & MEM_Null );
4244     aMem[pOp->p3].n = 0;
4245     aMem[pOp->p3].z = "";
4246   }
4247   pCx = p->apCsr[pOp->p1];
4248   if( pCx && !pCx->hasBeenDuped &&  ALWAYS(pOp->p2<=pCx->nField) ){
4249     /* If the ephermeral table is already open and has no duplicates from
4250     ** OP_OpenDup, then erase all existing content so that the table is
4251     ** empty again, rather than creating a new table. */
4252     assert( pCx->isEphemeral );
4253     pCx->seqCount = 0;
4254     pCx->cacheStatus = CACHE_STALE;
4255     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4256   }else{
4257     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4258     if( pCx==0 ) goto no_mem;
4259     pCx->isEphemeral = 1;
4260     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4261                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4262                           vfsFlags);
4263     if( rc==SQLITE_OK ){
4264       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4265       if( rc==SQLITE_OK ){
4266         /* If a transient index is required, create it by calling
4267         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4268         ** opening it. If a transient table is required, just use the
4269         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4270         */
4271         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4272           assert( pOp->p4type==P4_KEYINFO );
4273           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4274               BTREE_BLOBKEY | pOp->p5);
4275           if( rc==SQLITE_OK ){
4276             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4277             assert( pKeyInfo->db==db );
4278             assert( pKeyInfo->enc==ENC(db) );
4279             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4280                 pKeyInfo, pCx->uc.pCursor);
4281           }
4282           pCx->isTable = 0;
4283         }else{
4284           pCx->pgnoRoot = SCHEMA_ROOT;
4285           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4286               0, pCx->uc.pCursor);
4287           pCx->isTable = 1;
4288         }
4289       }
4290       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4291       if( rc ){
4292         sqlite3BtreeClose(pCx->ub.pBtx);
4293       }
4294     }
4295   }
4296   if( rc ) goto abort_due_to_error;
4297   pCx->nullRow = 1;
4298   break;
4299 }
4300 
4301 /* Opcode: SorterOpen P1 P2 P3 P4 *
4302 **
4303 ** This opcode works like OP_OpenEphemeral except that it opens
4304 ** a transient index that is specifically designed to sort large
4305 ** tables using an external merge-sort algorithm.
4306 **
4307 ** If argument P3 is non-zero, then it indicates that the sorter may
4308 ** assume that a stable sort considering the first P3 fields of each
4309 ** key is sufficient to produce the required results.
4310 */
4311 case OP_SorterOpen: {
4312   VdbeCursor *pCx;
4313 
4314   assert( pOp->p1>=0 );
4315   assert( pOp->p2>=0 );
4316   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4317   if( pCx==0 ) goto no_mem;
4318   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4319   assert( pCx->pKeyInfo->db==db );
4320   assert( pCx->pKeyInfo->enc==ENC(db) );
4321   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4322   if( rc ) goto abort_due_to_error;
4323   break;
4324 }
4325 
4326 /* Opcode: SequenceTest P1 P2 * * *
4327 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4328 **
4329 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4330 ** to P2. Regardless of whether or not the jump is taken, increment the
4331 ** the sequence value.
4332 */
4333 case OP_SequenceTest: {
4334   VdbeCursor *pC;
4335   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4336   pC = p->apCsr[pOp->p1];
4337   assert( isSorter(pC) );
4338   if( (pC->seqCount++)==0 ){
4339     goto jump_to_p2;
4340   }
4341   break;
4342 }
4343 
4344 /* Opcode: OpenPseudo P1 P2 P3 * *
4345 ** Synopsis: P3 columns in r[P2]
4346 **
4347 ** Open a new cursor that points to a fake table that contains a single
4348 ** row of data.  The content of that one row is the content of memory
4349 ** register P2.  In other words, cursor P1 becomes an alias for the
4350 ** MEM_Blob content contained in register P2.
4351 **
4352 ** A pseudo-table created by this opcode is used to hold a single
4353 ** row output from the sorter so that the row can be decomposed into
4354 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4355 ** is the only cursor opcode that works with a pseudo-table.
4356 **
4357 ** P3 is the number of fields in the records that will be stored by
4358 ** the pseudo-table.
4359 */
4360 case OP_OpenPseudo: {
4361   VdbeCursor *pCx;
4362 
4363   assert( pOp->p1>=0 );
4364   assert( pOp->p3>=0 );
4365   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4366   if( pCx==0 ) goto no_mem;
4367   pCx->nullRow = 1;
4368   pCx->seekResult = pOp->p2;
4369   pCx->isTable = 1;
4370   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4371   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4372   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4373   ** which is a performance optimization */
4374   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4375   assert( pOp->p5==0 );
4376   break;
4377 }
4378 
4379 /* Opcode: Close P1 * * * *
4380 **
4381 ** Close a cursor previously opened as P1.  If P1 is not
4382 ** currently open, this instruction is a no-op.
4383 */
4384 case OP_Close: {
4385   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4386   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4387   p->apCsr[pOp->p1] = 0;
4388   break;
4389 }
4390 
4391 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4392 /* Opcode: ColumnsUsed P1 * * P4 *
4393 **
4394 ** This opcode (which only exists if SQLite was compiled with
4395 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4396 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4397 ** (P4_INT64) in which the first 63 bits are one for each of the
4398 ** first 63 columns of the table or index that are actually used
4399 ** by the cursor.  The high-order bit is set if any column after
4400 ** the 64th is used.
4401 */
4402 case OP_ColumnsUsed: {
4403   VdbeCursor *pC;
4404   pC = p->apCsr[pOp->p1];
4405   assert( pC->eCurType==CURTYPE_BTREE );
4406   pC->maskUsed = *(u64*)pOp->p4.pI64;
4407   break;
4408 }
4409 #endif
4410 
4411 /* Opcode: SeekGE P1 P2 P3 P4 *
4412 ** Synopsis: key=r[P3@P4]
4413 **
4414 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4415 ** use the value in register P3 as the key.  If cursor P1 refers
4416 ** to an SQL index, then P3 is the first in an array of P4 registers
4417 ** that are used as an unpacked index key.
4418 **
4419 ** Reposition cursor P1 so that  it points to the smallest entry that
4420 ** is greater than or equal to the key value. If there are no records
4421 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4422 **
4423 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4424 ** opcode will either land on a record that exactly matches the key, or
4425 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4426 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4427 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4428 ** IdxGT opcode will be used on subsequent loop iterations.  The
4429 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4430 ** is an equality search.
4431 **
4432 ** This opcode leaves the cursor configured to move in forward order,
4433 ** from the beginning toward the end.  In other words, the cursor is
4434 ** configured to use Next, not Prev.
4435 **
4436 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4437 */
4438 /* Opcode: SeekGT P1 P2 P3 P4 *
4439 ** Synopsis: key=r[P3@P4]
4440 **
4441 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4442 ** use the value in register P3 as a key. If cursor P1 refers
4443 ** to an SQL index, then P3 is the first in an array of P4 registers
4444 ** that are used as an unpacked index key.
4445 **
4446 ** Reposition cursor P1 so that it points to the smallest entry that
4447 ** is greater than the key value. If there are no records greater than
4448 ** the key and P2 is not zero, then jump to P2.
4449 **
4450 ** This opcode leaves the cursor configured to move in forward order,
4451 ** from the beginning toward the end.  In other words, the cursor is
4452 ** configured to use Next, not Prev.
4453 **
4454 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4455 */
4456 /* Opcode: SeekLT P1 P2 P3 P4 *
4457 ** Synopsis: key=r[P3@P4]
4458 **
4459 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4460 ** use the value in register P3 as a key. If cursor P1 refers
4461 ** to an SQL index, then P3 is the first in an array of P4 registers
4462 ** that are used as an unpacked index key.
4463 **
4464 ** Reposition cursor P1 so that  it points to the largest entry that
4465 ** is less than the key value. If there are no records less than
4466 ** the key and P2 is not zero, then jump to P2.
4467 **
4468 ** This opcode leaves the cursor configured to move in reverse order,
4469 ** from the end toward the beginning.  In other words, the cursor is
4470 ** configured to use Prev, not Next.
4471 **
4472 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4473 */
4474 /* Opcode: SeekLE P1 P2 P3 P4 *
4475 ** Synopsis: key=r[P3@P4]
4476 **
4477 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4478 ** use the value in register P3 as a key. If cursor P1 refers
4479 ** to an SQL index, then P3 is the first in an array of P4 registers
4480 ** that are used as an unpacked index key.
4481 **
4482 ** Reposition cursor P1 so that it points to the largest entry that
4483 ** is less than or equal to the key value. If there are no records
4484 ** less than or equal to the key and P2 is not zero, then jump to P2.
4485 **
4486 ** This opcode leaves the cursor configured to move in reverse order,
4487 ** from the end toward the beginning.  In other words, the cursor is
4488 ** configured to use Prev, not Next.
4489 **
4490 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4491 ** opcode will either land on a record that exactly matches the key, or
4492 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4493 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4494 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4495 ** IdxGE opcode will be used on subsequent loop iterations.  The
4496 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4497 ** is an equality search.
4498 **
4499 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4500 */
4501 case OP_SeekLT:         /* jump, in3, group */
4502 case OP_SeekLE:         /* jump, in3, group */
4503 case OP_SeekGE:         /* jump, in3, group */
4504 case OP_SeekGT: {       /* jump, in3, group */
4505   int res;           /* Comparison result */
4506   int oc;            /* Opcode */
4507   VdbeCursor *pC;    /* The cursor to seek */
4508   UnpackedRecord r;  /* The key to seek for */
4509   int nField;        /* Number of columns or fields in the key */
4510   i64 iKey;          /* The rowid we are to seek to */
4511   int eqOnly;        /* Only interested in == results */
4512 
4513   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4514   assert( pOp->p2!=0 );
4515   pC = p->apCsr[pOp->p1];
4516   assert( pC!=0 );
4517   assert( pC->eCurType==CURTYPE_BTREE );
4518   assert( OP_SeekLE == OP_SeekLT+1 );
4519   assert( OP_SeekGE == OP_SeekLT+2 );
4520   assert( OP_SeekGT == OP_SeekLT+3 );
4521   assert( pC->isOrdered );
4522   assert( pC->uc.pCursor!=0 );
4523   oc = pOp->opcode;
4524   eqOnly = 0;
4525   pC->nullRow = 0;
4526 #ifdef SQLITE_DEBUG
4527   pC->seekOp = pOp->opcode;
4528 #endif
4529 
4530   pC->deferredMoveto = 0;
4531   pC->cacheStatus = CACHE_STALE;
4532   if( pC->isTable ){
4533     u16 flags3, newType;
4534     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4535     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4536               || CORRUPT_DB );
4537 
4538     /* The input value in P3 might be of any type: integer, real, string,
4539     ** blob, or NULL.  But it needs to be an integer before we can do
4540     ** the seek, so convert it. */
4541     pIn3 = &aMem[pOp->p3];
4542     flags3 = pIn3->flags;
4543     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4544       applyNumericAffinity(pIn3, 0);
4545     }
4546     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4547     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4548     pIn3->flags = flags3;  /* But convert the type back to its original */
4549 
4550     /* If the P3 value could not be converted into an integer without
4551     ** loss of information, then special processing is required... */
4552     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4553       int c;
4554       if( (newType & MEM_Real)==0 ){
4555         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4556           VdbeBranchTaken(1,2);
4557           goto jump_to_p2;
4558         }else{
4559           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4560           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4561           goto seek_not_found;
4562         }
4563       }
4564       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4565 
4566       /* If the approximation iKey is larger than the actual real search
4567       ** term, substitute >= for > and < for <=. e.g. if the search term
4568       ** is 4.9 and the integer approximation 5:
4569       **
4570       **        (x >  4.9)    ->     (x >= 5)
4571       **        (x <= 4.9)    ->     (x <  5)
4572       */
4573       if( c>0 ){
4574         assert( OP_SeekGE==(OP_SeekGT-1) );
4575         assert( OP_SeekLT==(OP_SeekLE-1) );
4576         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4577         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4578       }
4579 
4580       /* If the approximation iKey is smaller than the actual real search
4581       ** term, substitute <= for < and > for >=.  */
4582       else if( c<0 ){
4583         assert( OP_SeekLE==(OP_SeekLT+1) );
4584         assert( OP_SeekGT==(OP_SeekGE+1) );
4585         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4586         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4587       }
4588     }
4589     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4590     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4591     if( rc!=SQLITE_OK ){
4592       goto abort_due_to_error;
4593     }
4594   }else{
4595     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4596     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4597     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4598     ** with the same key.
4599     */
4600     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4601       eqOnly = 1;
4602       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4603       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4604       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4605       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4606       assert( pOp[1].p1==pOp[0].p1 );
4607       assert( pOp[1].p2==pOp[0].p2 );
4608       assert( pOp[1].p3==pOp[0].p3 );
4609       assert( pOp[1].p4.i==pOp[0].p4.i );
4610     }
4611 
4612     nField = pOp->p4.i;
4613     assert( pOp->p4type==P4_INT32 );
4614     assert( nField>0 );
4615     r.pKeyInfo = pC->pKeyInfo;
4616     r.nField = (u16)nField;
4617 
4618     /* The next line of code computes as follows, only faster:
4619     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4620     **     r.default_rc = -1;
4621     **   }else{
4622     **     r.default_rc = +1;
4623     **   }
4624     */
4625     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4626     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4627     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4628     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4629     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4630 
4631     r.aMem = &aMem[pOp->p3];
4632 #ifdef SQLITE_DEBUG
4633     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4634 #endif
4635     r.eqSeen = 0;
4636     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4637     if( rc!=SQLITE_OK ){
4638       goto abort_due_to_error;
4639     }
4640     if( eqOnly && r.eqSeen==0 ){
4641       assert( res!=0 );
4642       goto seek_not_found;
4643     }
4644   }
4645 #ifdef SQLITE_TEST
4646   sqlite3_search_count++;
4647 #endif
4648   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4649     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4650       res = 0;
4651       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4652       if( rc!=SQLITE_OK ){
4653         if( rc==SQLITE_DONE ){
4654           rc = SQLITE_OK;
4655           res = 1;
4656         }else{
4657           goto abort_due_to_error;
4658         }
4659       }
4660     }else{
4661       res = 0;
4662     }
4663   }else{
4664     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4665     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4666       res = 0;
4667       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4668       if( rc!=SQLITE_OK ){
4669         if( rc==SQLITE_DONE ){
4670           rc = SQLITE_OK;
4671           res = 1;
4672         }else{
4673           goto abort_due_to_error;
4674         }
4675       }
4676     }else{
4677       /* res might be negative because the table is empty.  Check to
4678       ** see if this is the case.
4679       */
4680       res = sqlite3BtreeEof(pC->uc.pCursor);
4681     }
4682   }
4683 seek_not_found:
4684   assert( pOp->p2>0 );
4685   VdbeBranchTaken(res!=0,2);
4686   if( res ){
4687     goto jump_to_p2;
4688   }else if( eqOnly ){
4689     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4690     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4691   }
4692   break;
4693 }
4694 
4695 
4696 /* Opcode: SeekScan  P1 P2 * * *
4697 ** Synopsis: Scan-ahead up to P1 rows
4698 **
4699 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4700 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4701 ** checked by assert() statements.
4702 **
4703 ** This opcode uses the P1 through P4 operands of the subsequent
4704 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4705 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4706 ** the P1 and P2 operands of this opcode are also used, and  are called
4707 ** This.P1 and This.P2.
4708 **
4709 ** This opcode helps to optimize IN operators on a multi-column index
4710 ** where the IN operator is on the later terms of the index by avoiding
4711 ** unnecessary seeks on the btree, substituting steps to the next row
4712 ** of the b-tree instead.  A correct answer is obtained if this opcode
4713 ** is omitted or is a no-op.
4714 **
4715 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4716 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4717 ** to.  Call this SeekGE.P4/P5 row the "target".
4718 **
4719 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4720 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4721 **
4722 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4723 ** might be the target row, or it might be near and slightly before the
4724 ** target row.  This opcode attempts to position the cursor on the target
4725 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4726 ** between 0 and This.P1 times.
4727 **
4728 ** There are three possible outcomes from this opcode:<ol>
4729 **
4730 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4731 **      is earlier in the btree than the target row, then fall through
4732 **      into the subsquence OP_SeekGE opcode.
4733 **
4734 ** <li> If the cursor is successfully moved to the target row by 0 or more
4735 **      sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4736 **      past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4737 **
4738 ** <li> If the cursor ends up past the target row (indicating the the target
4739 **      row does not exist in the btree) then jump to SeekOP.P2.
4740 ** </ol>
4741 */
4742 case OP_SeekScan: {
4743   VdbeCursor *pC;
4744   int res;
4745   int nStep;
4746   UnpackedRecord r;
4747 
4748   assert( pOp[1].opcode==OP_SeekGE );
4749 
4750   /* pOp->p2 points to the first instruction past the OP_IdxGT that
4751   ** follows the OP_SeekGE.  */
4752   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4753   assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
4754   testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4755   assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4756   assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4757   assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4758 
4759   assert( pOp->p1>0 );
4760   pC = p->apCsr[pOp[1].p1];
4761   assert( pC!=0 );
4762   assert( pC->eCurType==CURTYPE_BTREE );
4763   assert( !pC->isTable );
4764   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4765 #ifdef SQLITE_DEBUG
4766      if( db->flags&SQLITE_VdbeTrace ){
4767        printf("... cursor not valid - fall through\n");
4768      }
4769 #endif
4770     break;
4771   }
4772   nStep = pOp->p1;
4773   assert( nStep>=1 );
4774   r.pKeyInfo = pC->pKeyInfo;
4775   r.nField = (u16)pOp[1].p4.i;
4776   r.default_rc = 0;
4777   r.aMem = &aMem[pOp[1].p3];
4778 #ifdef SQLITE_DEBUG
4779   {
4780     int i;
4781     for(i=0; i<r.nField; i++){
4782       assert( memIsValid(&r.aMem[i]) );
4783       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4784     }
4785   }
4786 #endif
4787   res = 0;  /* Not needed.  Only used to silence a warning. */
4788   while(1){
4789     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4790     if( rc ) goto abort_due_to_error;
4791     if( res>0 ){
4792       seekscan_search_fail:
4793 #ifdef SQLITE_DEBUG
4794       if( db->flags&SQLITE_VdbeTrace ){
4795         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4796       }
4797 #endif
4798       VdbeBranchTaken(1,3);
4799       pOp++;
4800       goto jump_to_p2;
4801     }
4802     if( res==0 ){
4803 #ifdef SQLITE_DEBUG
4804       if( db->flags&SQLITE_VdbeTrace ){
4805         printf("... %d steps and then success\n", pOp->p1 - nStep);
4806       }
4807 #endif
4808       VdbeBranchTaken(2,3);
4809       goto jump_to_p2;
4810       break;
4811     }
4812     if( nStep<=0 ){
4813 #ifdef SQLITE_DEBUG
4814       if( db->flags&SQLITE_VdbeTrace ){
4815         printf("... fall through after %d steps\n", pOp->p1);
4816       }
4817 #endif
4818       VdbeBranchTaken(0,3);
4819       break;
4820     }
4821     nStep--;
4822     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4823     if( rc ){
4824       if( rc==SQLITE_DONE ){
4825         rc = SQLITE_OK;
4826         goto seekscan_search_fail;
4827       }else{
4828         goto abort_due_to_error;
4829       }
4830     }
4831   }
4832 
4833   break;
4834 }
4835 
4836 
4837 /* Opcode: SeekHit P1 P2 P3 * *
4838 ** Synopsis: set P2<=seekHit<=P3
4839 **
4840 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4841 ** so that it is no less than P2 and no greater than P3.
4842 **
4843 ** The seekHit integer represents the maximum of terms in an index for which
4844 ** there is known to be at least one match.  If the seekHit value is smaller
4845 ** than the total number of equality terms in an index lookup, then the
4846 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4847 ** early, thus saving work.  This is part of the IN-early-out optimization.
4848 **
4849 ** P1 must be a valid b-tree cursor.
4850 */
4851 case OP_SeekHit: {
4852   VdbeCursor *pC;
4853   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4854   pC = p->apCsr[pOp->p1];
4855   assert( pC!=0 );
4856   assert( pOp->p3>=pOp->p2 );
4857   if( pC->seekHit<pOp->p2 ){
4858 #ifdef SQLITE_DEBUG
4859     if( db->flags&SQLITE_VdbeTrace ){
4860       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4861     }
4862 #endif
4863     pC->seekHit = pOp->p2;
4864   }else if( pC->seekHit>pOp->p3 ){
4865 #ifdef SQLITE_DEBUG
4866     if( db->flags&SQLITE_VdbeTrace ){
4867       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4868     }
4869 #endif
4870     pC->seekHit = pOp->p3;
4871   }
4872   break;
4873 }
4874 
4875 /* Opcode: IfNotOpen P1 P2 * * *
4876 ** Synopsis: if( !csr[P1] ) goto P2
4877 **
4878 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4879 */
4880 case OP_IfNotOpen: {        /* jump */
4881   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4882   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4883   if( !p->apCsr[pOp->p1] ){
4884     goto jump_to_p2_and_check_for_interrupt;
4885   }
4886   break;
4887 }
4888 
4889 /* Opcode: Found P1 P2 P3 P4 *
4890 ** Synopsis: key=r[P3@P4]
4891 **
4892 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4893 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4894 ** record.
4895 **
4896 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4897 ** is a prefix of any entry in P1 then a jump is made to P2 and
4898 ** P1 is left pointing at the matching entry.
4899 **
4900 ** This operation leaves the cursor in a state where it can be
4901 ** advanced in the forward direction.  The Next instruction will work,
4902 ** but not the Prev instruction.
4903 **
4904 ** See also: NotFound, NoConflict, NotExists. SeekGe
4905 */
4906 /* Opcode: NotFound P1 P2 P3 P4 *
4907 ** Synopsis: key=r[P3@P4]
4908 **
4909 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4910 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4911 ** record.
4912 **
4913 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4914 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4915 ** does contain an entry whose prefix matches the P3/P4 record then control
4916 ** falls through to the next instruction and P1 is left pointing at the
4917 ** matching entry.
4918 **
4919 ** This operation leaves the cursor in a state where it cannot be
4920 ** advanced in either direction.  In other words, the Next and Prev
4921 ** opcodes do not work after this operation.
4922 **
4923 ** See also: Found, NotExists, NoConflict, IfNoHope
4924 */
4925 /* Opcode: IfNoHope P1 P2 P3 P4 *
4926 ** Synopsis: key=r[P3@P4]
4927 **
4928 ** Register P3 is the first of P4 registers that form an unpacked
4929 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
4930 ** In other words, the operands to this opcode are the same as the
4931 ** operands to OP_NotFound and OP_IdxGT.
4932 **
4933 ** This opcode is an optimization attempt only.  If this opcode always
4934 ** falls through, the correct answer is still obtained, but extra works
4935 ** is performed.
4936 **
4937 ** A value of N in the seekHit flag of cursor P1 means that there exists
4938 ** a key P3:N that will match some record in the index.  We want to know
4939 ** if it is possible for a record P3:P4 to match some record in the
4940 ** index.  If it is not possible, we can skips some work.  So if seekHit
4941 ** is less than P4, attempt to find out if a match is possible by running
4942 ** OP_NotFound.
4943 **
4944 ** This opcode is used in IN clause processing for a multi-column key.
4945 ** If an IN clause is attached to an element of the key other than the
4946 ** left-most element, and if there are no matches on the most recent
4947 ** seek over the whole key, then it might be that one of the key element
4948 ** to the left is prohibiting a match, and hence there is "no hope" of
4949 ** any match regardless of how many IN clause elements are checked.
4950 ** In such a case, we abandon the IN clause search early, using this
4951 ** opcode.  The opcode name comes from the fact that the
4952 ** jump is taken if there is "no hope" of achieving a match.
4953 **
4954 ** See also: NotFound, SeekHit
4955 */
4956 /* Opcode: NoConflict P1 P2 P3 P4 *
4957 ** Synopsis: key=r[P3@P4]
4958 **
4959 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4960 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4961 ** record.
4962 **
4963 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4964 ** contains any NULL value, jump immediately to P2.  If all terms of the
4965 ** record are not-NULL then a check is done to determine if any row in the
4966 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4967 ** immediately to P2.  If there is a match, fall through and leave the P1
4968 ** cursor pointing to the matching row.
4969 **
4970 ** This opcode is similar to OP_NotFound with the exceptions that the
4971 ** branch is always taken if any part of the search key input is NULL.
4972 **
4973 ** This operation leaves the cursor in a state where it cannot be
4974 ** advanced in either direction.  In other words, the Next and Prev
4975 ** opcodes do not work after this operation.
4976 **
4977 ** See also: NotFound, Found, NotExists
4978 */
4979 case OP_IfNoHope: {     /* jump, in3 */
4980   VdbeCursor *pC;
4981   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4982   pC = p->apCsr[pOp->p1];
4983   assert( pC!=0 );
4984 #ifdef SQLITE_DEBUG
4985   if( db->flags&SQLITE_VdbeTrace ){
4986     printf("seekHit is %d\n", pC->seekHit);
4987   }
4988 #endif
4989   if( pC->seekHit>=pOp->p4.i ) break;
4990   /* Fall through into OP_NotFound */
4991   /* no break */ deliberate_fall_through
4992 }
4993 case OP_NoConflict:     /* jump, in3 */
4994 case OP_NotFound:       /* jump, in3 */
4995 case OP_Found: {        /* jump, in3 */
4996   int alreadyExists;
4997   int ii;
4998   VdbeCursor *pC;
4999   UnpackedRecord *pIdxKey;
5000   UnpackedRecord r;
5001 
5002 #ifdef SQLITE_TEST
5003   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5004 #endif
5005 
5006   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5007   assert( pOp->p4type==P4_INT32 );
5008   pC = p->apCsr[pOp->p1];
5009   assert( pC!=0 );
5010 #ifdef SQLITE_DEBUG
5011   pC->seekOp = pOp->opcode;
5012 #endif
5013   r.aMem = &aMem[pOp->p3];
5014   assert( pC->eCurType==CURTYPE_BTREE );
5015   assert( pC->uc.pCursor!=0 );
5016   assert( pC->isTable==0 );
5017   r.nField = (u16)pOp->p4.i;
5018   if( r.nField>0 ){
5019     /* Key values in an array of registers */
5020     r.pKeyInfo = pC->pKeyInfo;
5021     r.default_rc = 0;
5022 #ifdef SQLITE_DEBUG
5023     for(ii=0; ii<r.nField; ii++){
5024       assert( memIsValid(&r.aMem[ii]) );
5025       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5026       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5027     }
5028 #endif
5029     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5030   }else{
5031     /* Composite key generated by OP_MakeRecord */
5032     assert( r.aMem->flags & MEM_Blob );
5033     assert( pOp->opcode!=OP_NoConflict );
5034     rc = ExpandBlob(r.aMem);
5035     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5036     if( rc ) goto no_mem;
5037     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5038     if( pIdxKey==0 ) goto no_mem;
5039     sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5040     pIdxKey->default_rc = 0;
5041     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5042     sqlite3DbFreeNN(db, pIdxKey);
5043   }
5044   if( rc!=SQLITE_OK ){
5045     goto abort_due_to_error;
5046   }
5047   alreadyExists = (pC->seekResult==0);
5048   pC->nullRow = 1-alreadyExists;
5049   pC->deferredMoveto = 0;
5050   pC->cacheStatus = CACHE_STALE;
5051   if( pOp->opcode==OP_Found ){
5052     VdbeBranchTaken(alreadyExists!=0,2);
5053     if( alreadyExists ) goto jump_to_p2;
5054   }else{
5055     if( !alreadyExists ){
5056       VdbeBranchTaken(1,2);
5057       goto jump_to_p2;
5058     }
5059     if( pOp->opcode==OP_NoConflict ){
5060       /* For the OP_NoConflict opcode, take the jump if any of the
5061       ** input fields are NULL, since any key with a NULL will not
5062       ** conflict */
5063       for(ii=0; ii<r.nField; ii++){
5064         if( r.aMem[ii].flags & MEM_Null ){
5065           VdbeBranchTaken(1,2);
5066           goto jump_to_p2;
5067         }
5068       }
5069     }
5070     VdbeBranchTaken(0,2);
5071     if( pOp->opcode==OP_IfNoHope ){
5072       pC->seekHit = pOp->p4.i;
5073     }
5074   }
5075   break;
5076 }
5077 
5078 /* Opcode: SeekRowid P1 P2 P3 * *
5079 ** Synopsis: intkey=r[P3]
5080 **
5081 ** P1 is the index of a cursor open on an SQL table btree (with integer
5082 ** keys).  If register P3 does not contain an integer or if P1 does not
5083 ** contain a record with rowid P3 then jump immediately to P2.
5084 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5085 ** a record with rowid P3 then
5086 ** leave the cursor pointing at that record and fall through to the next
5087 ** instruction.
5088 **
5089 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5090 ** the P3 register must be guaranteed to contain an integer value.  With this
5091 ** opcode, register P3 might not contain an integer.
5092 **
5093 ** The OP_NotFound opcode performs the same operation on index btrees
5094 ** (with arbitrary multi-value keys).
5095 **
5096 ** This opcode leaves the cursor in a state where it cannot be advanced
5097 ** in either direction.  In other words, the Next and Prev opcodes will
5098 ** not work following this opcode.
5099 **
5100 ** See also: Found, NotFound, NoConflict, SeekRowid
5101 */
5102 /* Opcode: NotExists P1 P2 P3 * *
5103 ** Synopsis: intkey=r[P3]
5104 **
5105 ** P1 is the index of a cursor open on an SQL table btree (with integer
5106 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
5107 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5108 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5109 ** leave the cursor pointing at that record and fall through to the next
5110 ** instruction.
5111 **
5112 ** The OP_SeekRowid opcode performs the same operation but also allows the
5113 ** P3 register to contain a non-integer value, in which case the jump is
5114 ** always taken.  This opcode requires that P3 always contain an integer.
5115 **
5116 ** The OP_NotFound opcode performs the same operation on index btrees
5117 ** (with arbitrary multi-value keys).
5118 **
5119 ** This opcode leaves the cursor in a state where it cannot be advanced
5120 ** in either direction.  In other words, the Next and Prev opcodes will
5121 ** not work following this opcode.
5122 **
5123 ** See also: Found, NotFound, NoConflict, SeekRowid
5124 */
5125 case OP_SeekRowid: {        /* jump, in3 */
5126   VdbeCursor *pC;
5127   BtCursor *pCrsr;
5128   int res;
5129   u64 iKey;
5130 
5131   pIn3 = &aMem[pOp->p3];
5132   testcase( pIn3->flags & MEM_Int );
5133   testcase( pIn3->flags & MEM_IntReal );
5134   testcase( pIn3->flags & MEM_Real );
5135   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5136   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5137     /* If pIn3->u.i does not contain an integer, compute iKey as the
5138     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5139     ** into an integer without loss of information.  Take care to avoid
5140     ** changing the datatype of pIn3, however, as it is used by other
5141     ** parts of the prepared statement. */
5142     Mem x = pIn3[0];
5143     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5144     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5145     iKey = x.u.i;
5146     goto notExistsWithKey;
5147   }
5148   /* Fall through into OP_NotExists */
5149   /* no break */ deliberate_fall_through
5150 case OP_NotExists:          /* jump, in3 */
5151   pIn3 = &aMem[pOp->p3];
5152   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5153   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5154   iKey = pIn3->u.i;
5155 notExistsWithKey:
5156   pC = p->apCsr[pOp->p1];
5157   assert( pC!=0 );
5158 #ifdef SQLITE_DEBUG
5159   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5160 #endif
5161   assert( pC->isTable );
5162   assert( pC->eCurType==CURTYPE_BTREE );
5163   pCrsr = pC->uc.pCursor;
5164   assert( pCrsr!=0 );
5165   res = 0;
5166   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5167   assert( rc==SQLITE_OK || res==0 );
5168   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5169   pC->nullRow = 0;
5170   pC->cacheStatus = CACHE_STALE;
5171   pC->deferredMoveto = 0;
5172   VdbeBranchTaken(res!=0,2);
5173   pC->seekResult = res;
5174   if( res!=0 ){
5175     assert( rc==SQLITE_OK );
5176     if( pOp->p2==0 ){
5177       rc = SQLITE_CORRUPT_BKPT;
5178     }else{
5179       goto jump_to_p2;
5180     }
5181   }
5182   if( rc ) goto abort_due_to_error;
5183   break;
5184 }
5185 
5186 /* Opcode: Sequence P1 P2 * * *
5187 ** Synopsis: r[P2]=cursor[P1].ctr++
5188 **
5189 ** Find the next available sequence number for cursor P1.
5190 ** Write the sequence number into register P2.
5191 ** The sequence number on the cursor is incremented after this
5192 ** instruction.
5193 */
5194 case OP_Sequence: {           /* out2 */
5195   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5196   assert( p->apCsr[pOp->p1]!=0 );
5197   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5198   pOut = out2Prerelease(p, pOp);
5199   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5200   break;
5201 }
5202 
5203 
5204 /* Opcode: NewRowid P1 P2 P3 * *
5205 ** Synopsis: r[P2]=rowid
5206 **
5207 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5208 ** The record number is not previously used as a key in the database
5209 ** table that cursor P1 points to.  The new record number is written
5210 ** written to register P2.
5211 **
5212 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5213 ** the largest previously generated record number. No new record numbers are
5214 ** allowed to be less than this value. When this value reaches its maximum,
5215 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5216 ** generated record number. This P3 mechanism is used to help implement the
5217 ** AUTOINCREMENT feature.
5218 */
5219 case OP_NewRowid: {           /* out2 */
5220   i64 v;                 /* The new rowid */
5221   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5222   int res;               /* Result of an sqlite3BtreeLast() */
5223   int cnt;               /* Counter to limit the number of searches */
5224 #ifndef SQLITE_OMIT_AUTOINCREMENT
5225   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5226   VdbeFrame *pFrame;     /* Root frame of VDBE */
5227 #endif
5228 
5229   v = 0;
5230   res = 0;
5231   pOut = out2Prerelease(p, pOp);
5232   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5233   pC = p->apCsr[pOp->p1];
5234   assert( pC!=0 );
5235   assert( pC->isTable );
5236   assert( pC->eCurType==CURTYPE_BTREE );
5237   assert( pC->uc.pCursor!=0 );
5238   {
5239     /* The next rowid or record number (different terms for the same
5240     ** thing) is obtained in a two-step algorithm.
5241     **
5242     ** First we attempt to find the largest existing rowid and add one
5243     ** to that.  But if the largest existing rowid is already the maximum
5244     ** positive integer, we have to fall through to the second
5245     ** probabilistic algorithm
5246     **
5247     ** The second algorithm is to select a rowid at random and see if
5248     ** it already exists in the table.  If it does not exist, we have
5249     ** succeeded.  If the random rowid does exist, we select a new one
5250     ** and try again, up to 100 times.
5251     */
5252     assert( pC->isTable );
5253 
5254 #ifdef SQLITE_32BIT_ROWID
5255 #   define MAX_ROWID 0x7fffffff
5256 #else
5257     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5258     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5259     ** to provide the constant while making all compilers happy.
5260     */
5261 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5262 #endif
5263 
5264     if( !pC->useRandomRowid ){
5265       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5266       if( rc!=SQLITE_OK ){
5267         goto abort_due_to_error;
5268       }
5269       if( res ){
5270         v = 1;   /* IMP: R-61914-48074 */
5271       }else{
5272         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5273         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5274         if( v>=MAX_ROWID ){
5275           pC->useRandomRowid = 1;
5276         }else{
5277           v++;   /* IMP: R-29538-34987 */
5278         }
5279       }
5280     }
5281 
5282 #ifndef SQLITE_OMIT_AUTOINCREMENT
5283     if( pOp->p3 ){
5284       /* Assert that P3 is a valid memory cell. */
5285       assert( pOp->p3>0 );
5286       if( p->pFrame ){
5287         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5288         /* Assert that P3 is a valid memory cell. */
5289         assert( pOp->p3<=pFrame->nMem );
5290         pMem = &pFrame->aMem[pOp->p3];
5291       }else{
5292         /* Assert that P3 is a valid memory cell. */
5293         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5294         pMem = &aMem[pOp->p3];
5295         memAboutToChange(p, pMem);
5296       }
5297       assert( memIsValid(pMem) );
5298 
5299       REGISTER_TRACE(pOp->p3, pMem);
5300       sqlite3VdbeMemIntegerify(pMem);
5301       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5302       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5303         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5304         goto abort_due_to_error;
5305       }
5306       if( v<pMem->u.i+1 ){
5307         v = pMem->u.i + 1;
5308       }
5309       pMem->u.i = v;
5310     }
5311 #endif
5312     if( pC->useRandomRowid ){
5313       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5314       ** largest possible integer (9223372036854775807) then the database
5315       ** engine starts picking positive candidate ROWIDs at random until
5316       ** it finds one that is not previously used. */
5317       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5318                              ** an AUTOINCREMENT table. */
5319       cnt = 0;
5320       do{
5321         sqlite3_randomness(sizeof(v), &v);
5322         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5323       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5324                                                  0, &res))==SQLITE_OK)
5325             && (res==0)
5326             && (++cnt<100));
5327       if( rc ) goto abort_due_to_error;
5328       if( res==0 ){
5329         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5330         goto abort_due_to_error;
5331       }
5332       assert( v>0 );  /* EV: R-40812-03570 */
5333     }
5334     pC->deferredMoveto = 0;
5335     pC->cacheStatus = CACHE_STALE;
5336   }
5337   pOut->u.i = v;
5338   break;
5339 }
5340 
5341 /* Opcode: Insert P1 P2 P3 P4 P5
5342 ** Synopsis: intkey=r[P3] data=r[P2]
5343 **
5344 ** Write an entry into the table of cursor P1.  A new entry is
5345 ** created if it doesn't already exist or the data for an existing
5346 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5347 ** number P2. The key is stored in register P3. The key must
5348 ** be a MEM_Int.
5349 **
5350 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5351 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5352 ** then rowid is stored for subsequent return by the
5353 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5354 **
5355 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5356 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5357 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5358 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5359 **
5360 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5361 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5362 ** is part of an INSERT operation.  The difference is only important to
5363 ** the update hook.
5364 **
5365 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5366 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5367 ** following a successful insert.
5368 **
5369 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5370 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5371 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5372 ** value of register P2 will then change.  Make sure this does not
5373 ** cause any problems.)
5374 **
5375 ** This instruction only works on tables.  The equivalent instruction
5376 ** for indices is OP_IdxInsert.
5377 */
5378 case OP_Insert: {
5379   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5380   Mem *pKey;        /* MEM cell holding key  for the record */
5381   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5382   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5383   const char *zDb;  /* database name - used by the update hook */
5384   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5385   BtreePayload x;   /* Payload to be inserted */
5386 
5387   pData = &aMem[pOp->p2];
5388   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5389   assert( memIsValid(pData) );
5390   pC = p->apCsr[pOp->p1];
5391   assert( pC!=0 );
5392   assert( pC->eCurType==CURTYPE_BTREE );
5393   assert( pC->deferredMoveto==0 );
5394   assert( pC->uc.pCursor!=0 );
5395   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5396   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5397   REGISTER_TRACE(pOp->p2, pData);
5398   sqlite3VdbeIncrWriteCounter(p, pC);
5399 
5400   pKey = &aMem[pOp->p3];
5401   assert( pKey->flags & MEM_Int );
5402   assert( memIsValid(pKey) );
5403   REGISTER_TRACE(pOp->p3, pKey);
5404   x.nKey = pKey->u.i;
5405 
5406   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5407     assert( pC->iDb>=0 );
5408     zDb = db->aDb[pC->iDb].zDbSName;
5409     pTab = pOp->p4.pTab;
5410     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5411   }else{
5412     pTab = 0;
5413     zDb = 0;
5414   }
5415 
5416 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5417   /* Invoke the pre-update hook, if any */
5418   if( pTab ){
5419     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5420       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5421     }
5422     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5423       /* Prevent post-update hook from running in cases when it should not */
5424       pTab = 0;
5425     }
5426   }
5427   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5428 #endif
5429 
5430   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5431   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5432   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5433   x.pData = pData->z;
5434   x.nData = pData->n;
5435   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5436   if( pData->flags & MEM_Zero ){
5437     x.nZero = pData->u.nZero;
5438   }else{
5439     x.nZero = 0;
5440   }
5441   x.pKey = 0;
5442   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5443       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5444       seekResult
5445   );
5446   pC->deferredMoveto = 0;
5447   pC->cacheStatus = CACHE_STALE;
5448 
5449   /* Invoke the update-hook if required. */
5450   if( rc ) goto abort_due_to_error;
5451   if( pTab ){
5452     assert( db->xUpdateCallback!=0 );
5453     assert( pTab->aCol!=0 );
5454     db->xUpdateCallback(db->pUpdateArg,
5455            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5456            zDb, pTab->zName, x.nKey);
5457   }
5458   break;
5459 }
5460 
5461 /* Opcode: RowCell P1 P2 P3 * *
5462 **
5463 ** P1 and P2 are both open cursors. Both must be opened on the same type
5464 ** of table - intkey or index. This opcode is used as part of copying
5465 ** the current row from P2 into P1. If the cursors are opened on intkey
5466 ** tables, register P3 contains the rowid to use with the new record in
5467 ** P1. If they are opened on index tables, P3 is not used.
5468 **
5469 ** This opcode must be followed by either an Insert or InsertIdx opcode
5470 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5471 */
5472 case OP_RowCell: {
5473   VdbeCursor *pDest;              /* Cursor to write to */
5474   VdbeCursor *pSrc;               /* Cursor to read from */
5475   i64 iKey;                       /* Rowid value to insert with */
5476   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5477   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5478   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5479   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5480   pDest = p->apCsr[pOp->p1];
5481   pSrc = p->apCsr[pOp->p2];
5482   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5483   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5484   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5485   break;
5486 };
5487 
5488 /* Opcode: Delete P1 P2 P3 P4 P5
5489 **
5490 ** Delete the record at which the P1 cursor is currently pointing.
5491 **
5492 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5493 ** the cursor will be left pointing at  either the next or the previous
5494 ** record in the table. If it is left pointing at the next record, then
5495 ** the next Next instruction will be a no-op. As a result, in this case
5496 ** it is ok to delete a record from within a Next loop. If
5497 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5498 ** left in an undefined state.
5499 **
5500 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5501 ** delete one of several associated with deleting a table row and all its
5502 ** associated index entries.  Exactly one of those deletes is the "primary"
5503 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5504 ** marked with the AUXDELETE flag.
5505 **
5506 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5507 ** change count is incremented (otherwise not).
5508 **
5509 ** P1 must not be pseudo-table.  It has to be a real table with
5510 ** multiple rows.
5511 **
5512 ** If P4 is not NULL then it points to a Table object. In this case either
5513 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5514 ** have been positioned using OP_NotFound prior to invoking this opcode in
5515 ** this case. Specifically, if one is configured, the pre-update hook is
5516 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5517 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5518 **
5519 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5520 ** of the memory cell that contains the value that the rowid of the row will
5521 ** be set to by the update.
5522 */
5523 case OP_Delete: {
5524   VdbeCursor *pC;
5525   const char *zDb;
5526   Table *pTab;
5527   int opflags;
5528 
5529   opflags = pOp->p2;
5530   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5531   pC = p->apCsr[pOp->p1];
5532   assert( pC!=0 );
5533   assert( pC->eCurType==CURTYPE_BTREE );
5534   assert( pC->uc.pCursor!=0 );
5535   assert( pC->deferredMoveto==0 );
5536   sqlite3VdbeIncrWriteCounter(p, pC);
5537 
5538 #ifdef SQLITE_DEBUG
5539   if( pOp->p4type==P4_TABLE
5540    && HasRowid(pOp->p4.pTab)
5541    && pOp->p5==0
5542    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5543   ){
5544     /* If p5 is zero, the seek operation that positioned the cursor prior to
5545     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5546     ** the row that is being deleted */
5547     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5548     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5549   }
5550 #endif
5551 
5552   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5553   ** the name of the db to pass as to it. Also set local pTab to a copy
5554   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5555   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5556   ** VdbeCursor.movetoTarget to the current rowid.  */
5557   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5558     assert( pC->iDb>=0 );
5559     assert( pOp->p4.pTab!=0 );
5560     zDb = db->aDb[pC->iDb].zDbSName;
5561     pTab = pOp->p4.pTab;
5562     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5563       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5564     }
5565   }else{
5566     zDb = 0;
5567     pTab = 0;
5568   }
5569 
5570 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5571   /* Invoke the pre-update-hook if required. */
5572   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5573   if( db->xPreUpdateCallback && pTab ){
5574     assert( !(opflags & OPFLAG_ISUPDATE)
5575          || HasRowid(pTab)==0
5576          || (aMem[pOp->p3].flags & MEM_Int)
5577     );
5578     sqlite3VdbePreUpdateHook(p, pC,
5579         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5580         zDb, pTab, pC->movetoTarget,
5581         pOp->p3, -1
5582     );
5583   }
5584   if( opflags & OPFLAG_ISNOOP ) break;
5585 #endif
5586 
5587   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5588   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5589   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5590   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5591 
5592 #ifdef SQLITE_DEBUG
5593   if( p->pFrame==0 ){
5594     if( pC->isEphemeral==0
5595         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5596         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5597       ){
5598       nExtraDelete++;
5599     }
5600     if( pOp->p2 & OPFLAG_NCHANGE ){
5601       nExtraDelete--;
5602     }
5603   }
5604 #endif
5605 
5606   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5607   pC->cacheStatus = CACHE_STALE;
5608   pC->seekResult = 0;
5609   if( rc ) goto abort_due_to_error;
5610 
5611   /* Invoke the update-hook if required. */
5612   if( opflags & OPFLAG_NCHANGE ){
5613     p->nChange++;
5614     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5615       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5616           pC->movetoTarget);
5617       assert( pC->iDb>=0 );
5618     }
5619   }
5620 
5621   break;
5622 }
5623 /* Opcode: ResetCount * * * * *
5624 **
5625 ** The value of the change counter is copied to the database handle
5626 ** change counter (returned by subsequent calls to sqlite3_changes()).
5627 ** Then the VMs internal change counter resets to 0.
5628 ** This is used by trigger programs.
5629 */
5630 case OP_ResetCount: {
5631   sqlite3VdbeSetChanges(db, p->nChange);
5632   p->nChange = 0;
5633   break;
5634 }
5635 
5636 /* Opcode: SorterCompare P1 P2 P3 P4
5637 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5638 **
5639 ** P1 is a sorter cursor. This instruction compares a prefix of the
5640 ** record blob in register P3 against a prefix of the entry that
5641 ** the sorter cursor currently points to.  Only the first P4 fields
5642 ** of r[P3] and the sorter record are compared.
5643 **
5644 ** If either P3 or the sorter contains a NULL in one of their significant
5645 ** fields (not counting the P4 fields at the end which are ignored) then
5646 ** the comparison is assumed to be equal.
5647 **
5648 ** Fall through to next instruction if the two records compare equal to
5649 ** each other.  Jump to P2 if they are different.
5650 */
5651 case OP_SorterCompare: {
5652   VdbeCursor *pC;
5653   int res;
5654   int nKeyCol;
5655 
5656   pC = p->apCsr[pOp->p1];
5657   assert( isSorter(pC) );
5658   assert( pOp->p4type==P4_INT32 );
5659   pIn3 = &aMem[pOp->p3];
5660   nKeyCol = pOp->p4.i;
5661   res = 0;
5662   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5663   VdbeBranchTaken(res!=0,2);
5664   if( rc ) goto abort_due_to_error;
5665   if( res ) goto jump_to_p2;
5666   break;
5667 };
5668 
5669 /* Opcode: SorterData P1 P2 P3 * *
5670 ** Synopsis: r[P2]=data
5671 **
5672 ** Write into register P2 the current sorter data for sorter cursor P1.
5673 ** Then clear the column header cache on cursor P3.
5674 **
5675 ** This opcode is normally use to move a record out of the sorter and into
5676 ** a register that is the source for a pseudo-table cursor created using
5677 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5678 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5679 ** us from having to issue a separate NullRow instruction to clear that cache.
5680 */
5681 case OP_SorterData: {
5682   VdbeCursor *pC;
5683 
5684   pOut = &aMem[pOp->p2];
5685   pC = p->apCsr[pOp->p1];
5686   assert( isSorter(pC) );
5687   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5688   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5689   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5690   if( rc ) goto abort_due_to_error;
5691   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5692   break;
5693 }
5694 
5695 /* Opcode: RowData P1 P2 P3 * *
5696 ** Synopsis: r[P2]=data
5697 **
5698 ** Write into register P2 the complete row content for the row at
5699 ** which cursor P1 is currently pointing.
5700 ** There is no interpretation of the data.
5701 ** It is just copied onto the P2 register exactly as
5702 ** it is found in the database file.
5703 **
5704 ** If cursor P1 is an index, then the content is the key of the row.
5705 ** If cursor P2 is a table, then the content extracted is the data.
5706 **
5707 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5708 ** of a real table, not a pseudo-table.
5709 **
5710 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5711 ** into the database page.  That means that the content of the output
5712 ** register will be invalidated as soon as the cursor moves - including
5713 ** moves caused by other cursors that "save" the current cursors
5714 ** position in order that they can write to the same table.  If P3==0
5715 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5716 ** P3==0 is safer.
5717 **
5718 ** If P3!=0 then the content of the P2 register is unsuitable for use
5719 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5720 ** The P2 register content is invalidated by opcodes like OP_Function or
5721 ** by any use of another cursor pointing to the same table.
5722 */
5723 case OP_RowData: {
5724   VdbeCursor *pC;
5725   BtCursor *pCrsr;
5726   u32 n;
5727 
5728   pOut = out2Prerelease(p, pOp);
5729 
5730   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5731   pC = p->apCsr[pOp->p1];
5732   assert( pC!=0 );
5733   assert( pC->eCurType==CURTYPE_BTREE );
5734   assert( isSorter(pC)==0 );
5735   assert( pC->nullRow==0 );
5736   assert( pC->uc.pCursor!=0 );
5737   pCrsr = pC->uc.pCursor;
5738 
5739   /* The OP_RowData opcodes always follow OP_NotExists or
5740   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5741   ** that might invalidate the cursor.
5742   ** If this where not the case, on of the following assert()s
5743   ** would fail.  Should this ever change (because of changes in the code
5744   ** generator) then the fix would be to insert a call to
5745   ** sqlite3VdbeCursorMoveto().
5746   */
5747   assert( pC->deferredMoveto==0 );
5748   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5749 
5750   n = sqlite3BtreePayloadSize(pCrsr);
5751   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5752     goto too_big;
5753   }
5754   testcase( n==0 );
5755   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5756   if( rc ) goto abort_due_to_error;
5757   if( !pOp->p3 ) Deephemeralize(pOut);
5758   UPDATE_MAX_BLOBSIZE(pOut);
5759   REGISTER_TRACE(pOp->p2, pOut);
5760   break;
5761 }
5762 
5763 /* Opcode: Rowid P1 P2 * * *
5764 ** Synopsis: r[P2]=PX rowid of P1
5765 **
5766 ** Store in register P2 an integer which is the key of the table entry that
5767 ** P1 is currently point to.
5768 **
5769 ** P1 can be either an ordinary table or a virtual table.  There used to
5770 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5771 ** one opcode now works for both table types.
5772 */
5773 case OP_Rowid: {                 /* out2 */
5774   VdbeCursor *pC;
5775   i64 v;
5776   sqlite3_vtab *pVtab;
5777   const sqlite3_module *pModule;
5778 
5779   pOut = out2Prerelease(p, pOp);
5780   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5781   pC = p->apCsr[pOp->p1];
5782   assert( pC!=0 );
5783   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5784   if( pC->nullRow ){
5785     pOut->flags = MEM_Null;
5786     break;
5787   }else if( pC->deferredMoveto ){
5788     v = pC->movetoTarget;
5789 #ifndef SQLITE_OMIT_VIRTUALTABLE
5790   }else if( pC->eCurType==CURTYPE_VTAB ){
5791     assert( pC->uc.pVCur!=0 );
5792     pVtab = pC->uc.pVCur->pVtab;
5793     pModule = pVtab->pModule;
5794     assert( pModule->xRowid );
5795     rc = pModule->xRowid(pC->uc.pVCur, &v);
5796     sqlite3VtabImportErrmsg(p, pVtab);
5797     if( rc ) goto abort_due_to_error;
5798 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5799   }else{
5800     assert( pC->eCurType==CURTYPE_BTREE );
5801     assert( pC->uc.pCursor!=0 );
5802     rc = sqlite3VdbeCursorRestore(pC);
5803     if( rc ) goto abort_due_to_error;
5804     if( pC->nullRow ){
5805       pOut->flags = MEM_Null;
5806       break;
5807     }
5808     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5809   }
5810   pOut->u.i = v;
5811   break;
5812 }
5813 
5814 /* Opcode: NullRow P1 * * * *
5815 **
5816 ** Move the cursor P1 to a null row.  Any OP_Column operations
5817 ** that occur while the cursor is on the null row will always
5818 ** write a NULL.
5819 **
5820 ** If cursor P1 is not previously opened, open it now to a special
5821 ** pseudo-cursor that always returns NULL for every column.
5822 */
5823 case OP_NullRow: {
5824   VdbeCursor *pC;
5825 
5826   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5827   pC = p->apCsr[pOp->p1];
5828   if( pC==0 ){
5829     /* If the cursor is not already open, create a special kind of
5830     ** pseudo-cursor that always gives null rows. */
5831     pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5832     if( pC==0 ) goto no_mem;
5833     pC->seekResult = 0;
5834     pC->isTable = 1;
5835     pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5836   }
5837   pC->nullRow = 1;
5838   pC->cacheStatus = CACHE_STALE;
5839   if( pC->eCurType==CURTYPE_BTREE ){
5840     assert( pC->uc.pCursor!=0 );
5841     sqlite3BtreeClearCursor(pC->uc.pCursor);
5842   }
5843 #ifdef SQLITE_DEBUG
5844   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5845 #endif
5846   break;
5847 }
5848 
5849 /* Opcode: SeekEnd P1 * * * *
5850 **
5851 ** Position cursor P1 at the end of the btree for the purpose of
5852 ** appending a new entry onto the btree.
5853 **
5854 ** It is assumed that the cursor is used only for appending and so
5855 ** if the cursor is valid, then the cursor must already be pointing
5856 ** at the end of the btree and so no changes are made to
5857 ** the cursor.
5858 */
5859 /* Opcode: Last P1 P2 * * *
5860 **
5861 ** The next use of the Rowid or Column or Prev instruction for P1
5862 ** will refer to the last entry in the database table or index.
5863 ** If the table or index is empty and P2>0, then jump immediately to P2.
5864 ** If P2 is 0 or if the table or index is not empty, fall through
5865 ** to the following instruction.
5866 **
5867 ** This opcode leaves the cursor configured to move in reverse order,
5868 ** from the end toward the beginning.  In other words, the cursor is
5869 ** configured to use Prev, not Next.
5870 */
5871 case OP_SeekEnd:
5872 case OP_Last: {        /* jump */
5873   VdbeCursor *pC;
5874   BtCursor *pCrsr;
5875   int res;
5876 
5877   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5878   pC = p->apCsr[pOp->p1];
5879   assert( pC!=0 );
5880   assert( pC->eCurType==CURTYPE_BTREE );
5881   pCrsr = pC->uc.pCursor;
5882   res = 0;
5883   assert( pCrsr!=0 );
5884 #ifdef SQLITE_DEBUG
5885   pC->seekOp = pOp->opcode;
5886 #endif
5887   if( pOp->opcode==OP_SeekEnd ){
5888     assert( pOp->p2==0 );
5889     pC->seekResult = -1;
5890     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5891       break;
5892     }
5893   }
5894   rc = sqlite3BtreeLast(pCrsr, &res);
5895   pC->nullRow = (u8)res;
5896   pC->deferredMoveto = 0;
5897   pC->cacheStatus = CACHE_STALE;
5898   if( rc ) goto abort_due_to_error;
5899   if( pOp->p2>0 ){
5900     VdbeBranchTaken(res!=0,2);
5901     if( res ) goto jump_to_p2;
5902   }
5903   break;
5904 }
5905 
5906 /* Opcode: IfSmaller P1 P2 P3 * *
5907 **
5908 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5909 ** estimate is less than approximately 2**(0.1*P3).
5910 */
5911 case OP_IfSmaller: {        /* jump */
5912   VdbeCursor *pC;
5913   BtCursor *pCrsr;
5914   int res;
5915   i64 sz;
5916 
5917   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5918   pC = p->apCsr[pOp->p1];
5919   assert( pC!=0 );
5920   pCrsr = pC->uc.pCursor;
5921   assert( pCrsr );
5922   rc = sqlite3BtreeFirst(pCrsr, &res);
5923   if( rc ) goto abort_due_to_error;
5924   if( res==0 ){
5925     sz = sqlite3BtreeRowCountEst(pCrsr);
5926     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5927   }
5928   VdbeBranchTaken(res!=0,2);
5929   if( res ) goto jump_to_p2;
5930   break;
5931 }
5932 
5933 
5934 /* Opcode: SorterSort P1 P2 * * *
5935 **
5936 ** After all records have been inserted into the Sorter object
5937 ** identified by P1, invoke this opcode to actually do the sorting.
5938 ** Jump to P2 if there are no records to be sorted.
5939 **
5940 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5941 ** for Sorter objects.
5942 */
5943 /* Opcode: Sort P1 P2 * * *
5944 **
5945 ** This opcode does exactly the same thing as OP_Rewind except that
5946 ** it increments an undocumented global variable used for testing.
5947 **
5948 ** Sorting is accomplished by writing records into a sorting index,
5949 ** then rewinding that index and playing it back from beginning to
5950 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5951 ** rewinding so that the global variable will be incremented and
5952 ** regression tests can determine whether or not the optimizer is
5953 ** correctly optimizing out sorts.
5954 */
5955 case OP_SorterSort:    /* jump */
5956 case OP_Sort: {        /* jump */
5957 #ifdef SQLITE_TEST
5958   sqlite3_sort_count++;
5959   sqlite3_search_count--;
5960 #endif
5961   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5962   /* Fall through into OP_Rewind */
5963   /* no break */ deliberate_fall_through
5964 }
5965 /* Opcode: Rewind P1 P2 * * *
5966 **
5967 ** The next use of the Rowid or Column or Next instruction for P1
5968 ** will refer to the first entry in the database table or index.
5969 ** If the table or index is empty, jump immediately to P2.
5970 ** If the table or index is not empty, fall through to the following
5971 ** instruction.
5972 **
5973 ** This opcode leaves the cursor configured to move in forward order,
5974 ** from the beginning toward the end.  In other words, the cursor is
5975 ** configured to use Next, not Prev.
5976 */
5977 case OP_Rewind: {        /* jump */
5978   VdbeCursor *pC;
5979   BtCursor *pCrsr;
5980   int res;
5981 
5982   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5983   assert( pOp->p5==0 );
5984   pC = p->apCsr[pOp->p1];
5985   assert( pC!=0 );
5986   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5987   res = 1;
5988 #ifdef SQLITE_DEBUG
5989   pC->seekOp = OP_Rewind;
5990 #endif
5991   if( isSorter(pC) ){
5992     rc = sqlite3VdbeSorterRewind(pC, &res);
5993   }else{
5994     assert( pC->eCurType==CURTYPE_BTREE );
5995     pCrsr = pC->uc.pCursor;
5996     assert( pCrsr );
5997     rc = sqlite3BtreeFirst(pCrsr, &res);
5998     pC->deferredMoveto = 0;
5999     pC->cacheStatus = CACHE_STALE;
6000   }
6001   if( rc ) goto abort_due_to_error;
6002   pC->nullRow = (u8)res;
6003   assert( pOp->p2>0 && pOp->p2<p->nOp );
6004   VdbeBranchTaken(res!=0,2);
6005   if( res ) goto jump_to_p2;
6006   break;
6007 }
6008 
6009 /* Opcode: Next P1 P2 P3 * P5
6010 **
6011 ** Advance cursor P1 so that it points to the next key/data pair in its
6012 ** table or index.  If there are no more key/value pairs then fall through
6013 ** to the following instruction.  But if the cursor advance was successful,
6014 ** jump immediately to P2.
6015 **
6016 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6017 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
6018 ** to follow SeekLT, SeekLE, or OP_Last.
6019 **
6020 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
6021 ** been opened prior to this opcode or the program will segfault.
6022 **
6023 ** The P3 value is a hint to the btree implementation. If P3==1, that
6024 ** means P1 is an SQL index and that this instruction could have been
6025 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6026 ** always either 0 or 1.
6027 **
6028 ** If P5 is positive and the jump is taken, then event counter
6029 ** number P5-1 in the prepared statement is incremented.
6030 **
6031 ** See also: Prev
6032 */
6033 /* Opcode: Prev P1 P2 P3 * P5
6034 **
6035 ** Back up cursor P1 so that it points to the previous key/data pair in its
6036 ** table or index.  If there is no previous key/value pairs then fall through
6037 ** to the following instruction.  But if the cursor backup was successful,
6038 ** jump immediately to P2.
6039 **
6040 **
6041 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6042 ** OP_Last opcode used to position the cursor.  Prev is not allowed
6043 ** to follow SeekGT, SeekGE, or OP_Rewind.
6044 **
6045 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
6046 ** not open then the behavior is undefined.
6047 **
6048 ** The P3 value is a hint to the btree implementation. If P3==1, that
6049 ** means P1 is an SQL index and that this instruction could have been
6050 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6051 ** always either 0 or 1.
6052 **
6053 ** If P5 is positive and the jump is taken, then event counter
6054 ** number P5-1 in the prepared statement is incremented.
6055 */
6056 /* Opcode: SorterNext P1 P2 * * P5
6057 **
6058 ** This opcode works just like OP_Next except that P1 must be a
6059 ** sorter object for which the OP_SorterSort opcode has been
6060 ** invoked.  This opcode advances the cursor to the next sorted
6061 ** record, or jumps to P2 if there are no more sorted records.
6062 */
6063 case OP_SorterNext: {  /* jump */
6064   VdbeCursor *pC;
6065 
6066   pC = p->apCsr[pOp->p1];
6067   assert( isSorter(pC) );
6068   rc = sqlite3VdbeSorterNext(db, pC);
6069   goto next_tail;
6070 
6071 case OP_Prev:          /* jump */
6072   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6073   assert( pOp->p5<ArraySize(p->aCounter) );
6074   pC = p->apCsr[pOp->p1];
6075   assert( pC!=0 );
6076   assert( pC->deferredMoveto==0 );
6077   assert( pC->eCurType==CURTYPE_BTREE );
6078   assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6079        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
6080        || pC->seekOp==OP_NullRow);
6081   rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6082   goto next_tail;
6083 
6084 case OP_Next:          /* jump */
6085   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6086   assert( pOp->p5<ArraySize(p->aCounter) );
6087   pC = p->apCsr[pOp->p1];
6088   assert( pC!=0 );
6089   assert( pC->deferredMoveto==0 );
6090   assert( pC->eCurType==CURTYPE_BTREE );
6091   assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6092        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6093        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6094        || pC->seekOp==OP_IfNoHope);
6095   rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6096 
6097 next_tail:
6098   pC->cacheStatus = CACHE_STALE;
6099   VdbeBranchTaken(rc==SQLITE_OK,2);
6100   if( rc==SQLITE_OK ){
6101     pC->nullRow = 0;
6102     p->aCounter[pOp->p5]++;
6103 #ifdef SQLITE_TEST
6104     sqlite3_search_count++;
6105 #endif
6106     goto jump_to_p2_and_check_for_interrupt;
6107   }
6108   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6109   rc = SQLITE_OK;
6110   pC->nullRow = 1;
6111   goto check_for_interrupt;
6112 }
6113 
6114 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6115 ** Synopsis: key=r[P2]
6116 **
6117 ** Register P2 holds an SQL index key made using the
6118 ** MakeRecord instructions.  This opcode writes that key
6119 ** into the index P1.  Data for the entry is nil.
6120 **
6121 ** If P4 is not zero, then it is the number of values in the unpacked
6122 ** key of reg(P2).  In that case, P3 is the index of the first register
6123 ** for the unpacked key.  The availability of the unpacked key can sometimes
6124 ** be an optimization.
6125 **
6126 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6127 ** that this insert is likely to be an append.
6128 **
6129 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6130 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6131 ** then the change counter is unchanged.
6132 **
6133 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6134 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6135 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6136 ** seeks on the cursor or if the most recent seek used a key equivalent
6137 ** to P2.
6138 **
6139 ** This instruction only works for indices.  The equivalent instruction
6140 ** for tables is OP_Insert.
6141 */
6142 case OP_IdxInsert: {        /* in2 */
6143   VdbeCursor *pC;
6144   BtreePayload x;
6145 
6146   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6147   pC = p->apCsr[pOp->p1];
6148   sqlite3VdbeIncrWriteCounter(p, pC);
6149   assert( pC!=0 );
6150   assert( !isSorter(pC) );
6151   pIn2 = &aMem[pOp->p2];
6152   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6153   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6154   assert( pC->eCurType==CURTYPE_BTREE );
6155   assert( pC->isTable==0 );
6156   rc = ExpandBlob(pIn2);
6157   if( rc ) goto abort_due_to_error;
6158   x.nKey = pIn2->n;
6159   x.pKey = pIn2->z;
6160   x.aMem = aMem + pOp->p3;
6161   x.nMem = (u16)pOp->p4.i;
6162   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6163        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6164       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6165       );
6166   assert( pC->deferredMoveto==0 );
6167   pC->cacheStatus = CACHE_STALE;
6168   if( rc) goto abort_due_to_error;
6169   break;
6170 }
6171 
6172 /* Opcode: SorterInsert P1 P2 * * *
6173 ** Synopsis: key=r[P2]
6174 **
6175 ** Register P2 holds an SQL index key made using the
6176 ** MakeRecord instructions.  This opcode writes that key
6177 ** into the sorter P1.  Data for the entry is nil.
6178 */
6179 case OP_SorterInsert: {     /* in2 */
6180   VdbeCursor *pC;
6181 
6182   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6183   pC = p->apCsr[pOp->p1];
6184   sqlite3VdbeIncrWriteCounter(p, pC);
6185   assert( pC!=0 );
6186   assert( isSorter(pC) );
6187   pIn2 = &aMem[pOp->p2];
6188   assert( pIn2->flags & MEM_Blob );
6189   assert( pC->isTable==0 );
6190   rc = ExpandBlob(pIn2);
6191   if( rc ) goto abort_due_to_error;
6192   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6193   if( rc) goto abort_due_to_error;
6194   break;
6195 }
6196 
6197 /* Opcode: IdxDelete P1 P2 P3 * P5
6198 ** Synopsis: key=r[P2@P3]
6199 **
6200 ** The content of P3 registers starting at register P2 form
6201 ** an unpacked index key. This opcode removes that entry from the
6202 ** index opened by cursor P1.
6203 **
6204 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6205 ** if no matching index entry is found.  This happens when running
6206 ** an UPDATE or DELETE statement and the index entry to be updated
6207 ** or deleted is not found.  For some uses of IdxDelete
6208 ** (example:  the EXCEPT operator) it does not matter that no matching
6209 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6210 ** this (self-correcting and non-critical) error if in writable_schema mode.
6211 */
6212 case OP_IdxDelete: {
6213   VdbeCursor *pC;
6214   BtCursor *pCrsr;
6215   int res;
6216   UnpackedRecord r;
6217 
6218   assert( pOp->p3>0 );
6219   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6220   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6221   pC = p->apCsr[pOp->p1];
6222   assert( pC!=0 );
6223   assert( pC->eCurType==CURTYPE_BTREE );
6224   sqlite3VdbeIncrWriteCounter(p, pC);
6225   pCrsr = pC->uc.pCursor;
6226   assert( pCrsr!=0 );
6227   r.pKeyInfo = pC->pKeyInfo;
6228   r.nField = (u16)pOp->p3;
6229   r.default_rc = 0;
6230   r.aMem = &aMem[pOp->p2];
6231   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6232   if( rc ) goto abort_due_to_error;
6233   if( res==0 ){
6234     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6235     if( rc ) goto abort_due_to_error;
6236   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6237     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6238     goto abort_due_to_error;
6239   }
6240   assert( pC->deferredMoveto==0 );
6241   pC->cacheStatus = CACHE_STALE;
6242   pC->seekResult = 0;
6243   break;
6244 }
6245 
6246 /* Opcode: DeferredSeek P1 * P3 P4 *
6247 ** Synopsis: Move P3 to P1.rowid if needed
6248 **
6249 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6250 ** table.  This opcode does a deferred seek of the P3 table cursor
6251 ** to the row that corresponds to the current row of P1.
6252 **
6253 ** This is a deferred seek.  Nothing actually happens until
6254 ** the cursor is used to read a record.  That way, if no reads
6255 ** occur, no unnecessary I/O happens.
6256 **
6257 ** P4 may be an array of integers (type P4_INTARRAY) containing
6258 ** one entry for each column in the P3 table.  If array entry a(i)
6259 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6260 ** equivalent to performing the deferred seek and then reading column i
6261 ** from P1.  This information is stored in P3 and used to redirect
6262 ** reads against P3 over to P1, thus possibly avoiding the need to
6263 ** seek and read cursor P3.
6264 */
6265 /* Opcode: IdxRowid P1 P2 * * *
6266 ** Synopsis: r[P2]=rowid
6267 **
6268 ** Write into register P2 an integer which is the last entry in the record at
6269 ** the end of the index key pointed to by cursor P1.  This integer should be
6270 ** the rowid of the table entry to which this index entry points.
6271 **
6272 ** See also: Rowid, MakeRecord.
6273 */
6274 case OP_DeferredSeek:
6275 case OP_IdxRowid: {           /* out2 */
6276   VdbeCursor *pC;             /* The P1 index cursor */
6277   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6278   i64 rowid;                  /* Rowid that P1 current points to */
6279 
6280   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6281   pC = p->apCsr[pOp->p1];
6282   assert( pC!=0 );
6283   assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6284   assert( pC->uc.pCursor!=0 );
6285   assert( pC->isTable==0 || IsNullCursor(pC) );
6286   assert( pC->deferredMoveto==0 );
6287   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6288 
6289   /* The IdxRowid and Seek opcodes are combined because of the commonality
6290   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6291   rc = sqlite3VdbeCursorRestore(pC);
6292 
6293   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
6294   ** out from under the cursor.  That will never happens for an IdxRowid
6295   ** or Seek opcode */
6296   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
6297 
6298   if( !pC->nullRow ){
6299     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6300     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6301     if( rc!=SQLITE_OK ){
6302       goto abort_due_to_error;
6303     }
6304     if( pOp->opcode==OP_DeferredSeek ){
6305       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6306       pTabCur = p->apCsr[pOp->p3];
6307       assert( pTabCur!=0 );
6308       assert( pTabCur->eCurType==CURTYPE_BTREE );
6309       assert( pTabCur->uc.pCursor!=0 );
6310       assert( pTabCur->isTable );
6311       pTabCur->nullRow = 0;
6312       pTabCur->movetoTarget = rowid;
6313       pTabCur->deferredMoveto = 1;
6314       pTabCur->cacheStatus = CACHE_STALE;
6315       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6316       assert( !pTabCur->isEphemeral );
6317       pTabCur->ub.aAltMap = pOp->p4.ai;
6318       assert( !pC->isEphemeral );
6319       pTabCur->pAltCursor = pC;
6320     }else{
6321       pOut = out2Prerelease(p, pOp);
6322       pOut->u.i = rowid;
6323     }
6324   }else{
6325     assert( pOp->opcode==OP_IdxRowid );
6326     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6327   }
6328   break;
6329 }
6330 
6331 /* Opcode: FinishSeek P1 * * * *
6332 **
6333 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6334 ** seek operation now, without further delay.  If the cursor seek has
6335 ** already occurred, this instruction is a no-op.
6336 */
6337 case OP_FinishSeek: {
6338   VdbeCursor *pC;             /* The P1 index cursor */
6339 
6340   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6341   pC = p->apCsr[pOp->p1];
6342   if( pC->deferredMoveto ){
6343     rc = sqlite3VdbeFinishMoveto(pC);
6344     if( rc ) goto abort_due_to_error;
6345   }
6346   break;
6347 }
6348 
6349 /* Opcode: IdxGE P1 P2 P3 P4 *
6350 ** Synopsis: key=r[P3@P4]
6351 **
6352 ** The P4 register values beginning with P3 form an unpacked index
6353 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6354 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6355 ** fields at the end.
6356 **
6357 ** If the P1 index entry is greater than or equal to the key value
6358 ** then jump to P2.  Otherwise fall through to the next instruction.
6359 */
6360 /* Opcode: IdxGT P1 P2 P3 P4 *
6361 ** Synopsis: key=r[P3@P4]
6362 **
6363 ** The P4 register values beginning with P3 form an unpacked index
6364 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6365 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6366 ** fields at the end.
6367 **
6368 ** If the P1 index entry is greater than the key value
6369 ** then jump to P2.  Otherwise fall through to the next instruction.
6370 */
6371 /* Opcode: IdxLT P1 P2 P3 P4 *
6372 ** Synopsis: key=r[P3@P4]
6373 **
6374 ** The P4 register values beginning with P3 form an unpacked index
6375 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6376 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6377 ** ROWID on the P1 index.
6378 **
6379 ** If the P1 index entry is less than the key value then jump to P2.
6380 ** Otherwise fall through to the next instruction.
6381 */
6382 /* Opcode: IdxLE P1 P2 P3 P4 *
6383 ** Synopsis: key=r[P3@P4]
6384 **
6385 ** The P4 register values beginning with P3 form an unpacked index
6386 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6387 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6388 ** ROWID on the P1 index.
6389 **
6390 ** If the P1 index entry is less than or equal to the key value then jump
6391 ** to P2. Otherwise fall through to the next instruction.
6392 */
6393 case OP_IdxLE:          /* jump */
6394 case OP_IdxGT:          /* jump */
6395 case OP_IdxLT:          /* jump */
6396 case OP_IdxGE:  {       /* jump */
6397   VdbeCursor *pC;
6398   int res;
6399   UnpackedRecord r;
6400 
6401   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6402   pC = p->apCsr[pOp->p1];
6403   assert( pC!=0 );
6404   assert( pC->isOrdered );
6405   assert( pC->eCurType==CURTYPE_BTREE );
6406   assert( pC->uc.pCursor!=0);
6407   assert( pC->deferredMoveto==0 );
6408   assert( pOp->p4type==P4_INT32 );
6409   r.pKeyInfo = pC->pKeyInfo;
6410   r.nField = (u16)pOp->p4.i;
6411   if( pOp->opcode<OP_IdxLT ){
6412     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6413     r.default_rc = -1;
6414   }else{
6415     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6416     r.default_rc = 0;
6417   }
6418   r.aMem = &aMem[pOp->p3];
6419 #ifdef SQLITE_DEBUG
6420   {
6421     int i;
6422     for(i=0; i<r.nField; i++){
6423       assert( memIsValid(&r.aMem[i]) );
6424       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6425     }
6426   }
6427 #endif
6428 
6429   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6430   {
6431     i64 nCellKey = 0;
6432     BtCursor *pCur;
6433     Mem m;
6434 
6435     assert( pC->eCurType==CURTYPE_BTREE );
6436     pCur = pC->uc.pCursor;
6437     assert( sqlite3BtreeCursorIsValid(pCur) );
6438     nCellKey = sqlite3BtreePayloadSize(pCur);
6439     /* nCellKey will always be between 0 and 0xffffffff because of the way
6440     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6441     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6442       rc = SQLITE_CORRUPT_BKPT;
6443       goto abort_due_to_error;
6444     }
6445     sqlite3VdbeMemInit(&m, db, 0);
6446     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6447     if( rc ) goto abort_due_to_error;
6448     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6449     sqlite3VdbeMemReleaseMalloc(&m);
6450   }
6451   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6452 
6453   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6454   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6455     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6456     res = -res;
6457   }else{
6458     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6459     res++;
6460   }
6461   VdbeBranchTaken(res>0,2);
6462   assert( rc==SQLITE_OK );
6463   if( res>0 ) goto jump_to_p2;
6464   break;
6465 }
6466 
6467 /* Opcode: Destroy P1 P2 P3 * *
6468 **
6469 ** Delete an entire database table or index whose root page in the database
6470 ** file is given by P1.
6471 **
6472 ** The table being destroyed is in the main database file if P3==0.  If
6473 ** P3==1 then the table to be clear is in the auxiliary database file
6474 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6475 **
6476 ** If AUTOVACUUM is enabled then it is possible that another root page
6477 ** might be moved into the newly deleted root page in order to keep all
6478 ** root pages contiguous at the beginning of the database.  The former
6479 ** value of the root page that moved - its value before the move occurred -
6480 ** is stored in register P2. If no page movement was required (because the
6481 ** table being dropped was already the last one in the database) then a
6482 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6483 ** is stored in register P2.
6484 **
6485 ** This opcode throws an error if there are any active reader VMs when
6486 ** it is invoked. This is done to avoid the difficulty associated with
6487 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6488 ** database. This error is thrown even if the database is not an AUTOVACUUM
6489 ** db in order to avoid introducing an incompatibility between autovacuum
6490 ** and non-autovacuum modes.
6491 **
6492 ** See also: Clear
6493 */
6494 case OP_Destroy: {     /* out2 */
6495   int iMoved;
6496   int iDb;
6497 
6498   sqlite3VdbeIncrWriteCounter(p, 0);
6499   assert( p->readOnly==0 );
6500   assert( pOp->p1>1 );
6501   pOut = out2Prerelease(p, pOp);
6502   pOut->flags = MEM_Null;
6503   if( db->nVdbeRead > db->nVDestroy+1 ){
6504     rc = SQLITE_LOCKED;
6505     p->errorAction = OE_Abort;
6506     goto abort_due_to_error;
6507   }else{
6508     iDb = pOp->p3;
6509     assert( DbMaskTest(p->btreeMask, iDb) );
6510     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6511     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6512     pOut->flags = MEM_Int;
6513     pOut->u.i = iMoved;
6514     if( rc ) goto abort_due_to_error;
6515 #ifndef SQLITE_OMIT_AUTOVACUUM
6516     if( iMoved!=0 ){
6517       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6518       /* All OP_Destroy operations occur on the same btree */
6519       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6520       resetSchemaOnFault = iDb+1;
6521     }
6522 #endif
6523   }
6524   break;
6525 }
6526 
6527 /* Opcode: Clear P1 P2 P3
6528 **
6529 ** Delete all contents of the database table or index whose root page
6530 ** in the database file is given by P1.  But, unlike Destroy, do not
6531 ** remove the table or index from the database file.
6532 **
6533 ** The table being clear is in the main database file if P2==0.  If
6534 ** P2==1 then the table to be clear is in the auxiliary database file
6535 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6536 **
6537 ** If the P3 value is non-zero, then the row change count is incremented
6538 ** by the number of rows in the table being cleared. If P3 is greater
6539 ** than zero, then the value stored in register P3 is also incremented
6540 ** by the number of rows in the table being cleared.
6541 **
6542 ** See also: Destroy
6543 */
6544 case OP_Clear: {
6545   i64 nChange;
6546 
6547   sqlite3VdbeIncrWriteCounter(p, 0);
6548   nChange = 0;
6549   assert( p->readOnly==0 );
6550   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6551   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6552   if( pOp->p3 ){
6553     p->nChange += nChange;
6554     if( pOp->p3>0 ){
6555       assert( memIsValid(&aMem[pOp->p3]) );
6556       memAboutToChange(p, &aMem[pOp->p3]);
6557       aMem[pOp->p3].u.i += nChange;
6558     }
6559   }
6560   if( rc ) goto abort_due_to_error;
6561   break;
6562 }
6563 
6564 /* Opcode: ResetSorter P1 * * * *
6565 **
6566 ** Delete all contents from the ephemeral table or sorter
6567 ** that is open on cursor P1.
6568 **
6569 ** This opcode only works for cursors used for sorting and
6570 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6571 */
6572 case OP_ResetSorter: {
6573   VdbeCursor *pC;
6574 
6575   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6576   pC = p->apCsr[pOp->p1];
6577   assert( pC!=0 );
6578   if( isSorter(pC) ){
6579     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6580   }else{
6581     assert( pC->eCurType==CURTYPE_BTREE );
6582     assert( pC->isEphemeral );
6583     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6584     if( rc ) goto abort_due_to_error;
6585   }
6586   break;
6587 }
6588 
6589 /* Opcode: CreateBtree P1 P2 P3 * *
6590 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6591 **
6592 ** Allocate a new b-tree in the main database file if P1==0 or in the
6593 ** TEMP database file if P1==1 or in an attached database if
6594 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6595 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6596 ** The root page number of the new b-tree is stored in register P2.
6597 */
6598 case OP_CreateBtree: {          /* out2 */
6599   Pgno pgno;
6600   Db *pDb;
6601 
6602   sqlite3VdbeIncrWriteCounter(p, 0);
6603   pOut = out2Prerelease(p, pOp);
6604   pgno = 0;
6605   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6606   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6607   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6608   assert( p->readOnly==0 );
6609   pDb = &db->aDb[pOp->p1];
6610   assert( pDb->pBt!=0 );
6611   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6612   if( rc ) goto abort_due_to_error;
6613   pOut->u.i = pgno;
6614   break;
6615 }
6616 
6617 /* Opcode: SqlExec * * * P4 *
6618 **
6619 ** Run the SQL statement or statements specified in the P4 string.
6620 */
6621 case OP_SqlExec: {
6622   sqlite3VdbeIncrWriteCounter(p, 0);
6623   db->nSqlExec++;
6624   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6625   db->nSqlExec--;
6626   if( rc ) goto abort_due_to_error;
6627   break;
6628 }
6629 
6630 /* Opcode: ParseSchema P1 * * P4 *
6631 **
6632 ** Read and parse all entries from the schema table of database P1
6633 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6634 ** entire schema for P1 is reparsed.
6635 **
6636 ** This opcode invokes the parser to create a new virtual machine,
6637 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6638 */
6639 case OP_ParseSchema: {
6640   int iDb;
6641   const char *zSchema;
6642   char *zSql;
6643   InitData initData;
6644 
6645   /* Any prepared statement that invokes this opcode will hold mutexes
6646   ** on every btree.  This is a prerequisite for invoking
6647   ** sqlite3InitCallback().
6648   */
6649 #ifdef SQLITE_DEBUG
6650   for(iDb=0; iDb<db->nDb; iDb++){
6651     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6652   }
6653 #endif
6654 
6655   iDb = pOp->p1;
6656   assert( iDb>=0 && iDb<db->nDb );
6657   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6658            || db->mallocFailed
6659            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6660 
6661 #ifndef SQLITE_OMIT_ALTERTABLE
6662   if( pOp->p4.z==0 ){
6663     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6664     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6665     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6666     db->mDbFlags |= DBFLAG_SchemaChange;
6667     p->expired = 0;
6668   }else
6669 #endif
6670   {
6671     zSchema = LEGACY_SCHEMA_TABLE;
6672     initData.db = db;
6673     initData.iDb = iDb;
6674     initData.pzErrMsg = &p->zErrMsg;
6675     initData.mInitFlags = 0;
6676     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6677     zSql = sqlite3MPrintf(db,
6678        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6679        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6680     if( zSql==0 ){
6681       rc = SQLITE_NOMEM_BKPT;
6682     }else{
6683       assert( db->init.busy==0 );
6684       db->init.busy = 1;
6685       initData.rc = SQLITE_OK;
6686       initData.nInitRow = 0;
6687       assert( !db->mallocFailed );
6688       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6689       if( rc==SQLITE_OK ) rc = initData.rc;
6690       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6691         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6692         ** at least one SQL statement. Any less than that indicates that
6693         ** the sqlite_schema table is corrupt. */
6694         rc = SQLITE_CORRUPT_BKPT;
6695       }
6696       sqlite3DbFreeNN(db, zSql);
6697       db->init.busy = 0;
6698     }
6699   }
6700   if( rc ){
6701     sqlite3ResetAllSchemasOfConnection(db);
6702     if( rc==SQLITE_NOMEM ){
6703       goto no_mem;
6704     }
6705     goto abort_due_to_error;
6706   }
6707   break;
6708 }
6709 
6710 #if !defined(SQLITE_OMIT_ANALYZE)
6711 /* Opcode: LoadAnalysis P1 * * * *
6712 **
6713 ** Read the sqlite_stat1 table for database P1 and load the content
6714 ** of that table into the internal index hash table.  This will cause
6715 ** the analysis to be used when preparing all subsequent queries.
6716 */
6717 case OP_LoadAnalysis: {
6718   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6719   rc = sqlite3AnalysisLoad(db, pOp->p1);
6720   if( rc ) goto abort_due_to_error;
6721   break;
6722 }
6723 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6724 
6725 /* Opcode: DropTable P1 * * P4 *
6726 **
6727 ** Remove the internal (in-memory) data structures that describe
6728 ** the table named P4 in database P1.  This is called after a table
6729 ** is dropped from disk (using the Destroy opcode) in order to keep
6730 ** the internal representation of the
6731 ** schema consistent with what is on disk.
6732 */
6733 case OP_DropTable: {
6734   sqlite3VdbeIncrWriteCounter(p, 0);
6735   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6736   break;
6737 }
6738 
6739 /* Opcode: DropIndex P1 * * P4 *
6740 **
6741 ** Remove the internal (in-memory) data structures that describe
6742 ** the index named P4 in database P1.  This is called after an index
6743 ** is dropped from disk (using the Destroy opcode)
6744 ** in order to keep the internal representation of the
6745 ** schema consistent with what is on disk.
6746 */
6747 case OP_DropIndex: {
6748   sqlite3VdbeIncrWriteCounter(p, 0);
6749   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6750   break;
6751 }
6752 
6753 /* Opcode: DropTrigger P1 * * P4 *
6754 **
6755 ** Remove the internal (in-memory) data structures that describe
6756 ** the trigger named P4 in database P1.  This is called after a trigger
6757 ** is dropped from disk (using the Destroy opcode) in order to keep
6758 ** the internal representation of the
6759 ** schema consistent with what is on disk.
6760 */
6761 case OP_DropTrigger: {
6762   sqlite3VdbeIncrWriteCounter(p, 0);
6763   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6764   break;
6765 }
6766 
6767 
6768 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6769 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6770 **
6771 ** Do an analysis of the currently open database.  Store in
6772 ** register P1 the text of an error message describing any problems.
6773 ** If no problems are found, store a NULL in register P1.
6774 **
6775 ** The register P3 contains one less than the maximum number of allowed errors.
6776 ** At most reg(P3) errors will be reported.
6777 ** In other words, the analysis stops as soon as reg(P1) errors are
6778 ** seen.  Reg(P1) is updated with the number of errors remaining.
6779 **
6780 ** The root page numbers of all tables in the database are integers
6781 ** stored in P4_INTARRAY argument.
6782 **
6783 ** If P5 is not zero, the check is done on the auxiliary database
6784 ** file, not the main database file.
6785 **
6786 ** This opcode is used to implement the integrity_check pragma.
6787 */
6788 case OP_IntegrityCk: {
6789   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6790   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6791   int nErr;       /* Number of errors reported */
6792   char *z;        /* Text of the error report */
6793   Mem *pnErr;     /* Register keeping track of errors remaining */
6794 
6795   assert( p->bIsReader );
6796   nRoot = pOp->p2;
6797   aRoot = pOp->p4.ai;
6798   assert( nRoot>0 );
6799   assert( aRoot[0]==(Pgno)nRoot );
6800   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6801   pnErr = &aMem[pOp->p3];
6802   assert( (pnErr->flags & MEM_Int)!=0 );
6803   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6804   pIn1 = &aMem[pOp->p1];
6805   assert( pOp->p5<db->nDb );
6806   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6807   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6808                                  (int)pnErr->u.i+1, &nErr);
6809   sqlite3VdbeMemSetNull(pIn1);
6810   if( nErr==0 ){
6811     assert( z==0 );
6812   }else if( z==0 ){
6813     goto no_mem;
6814   }else{
6815     pnErr->u.i -= nErr-1;
6816     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6817   }
6818   UPDATE_MAX_BLOBSIZE(pIn1);
6819   sqlite3VdbeChangeEncoding(pIn1, encoding);
6820   goto check_for_interrupt;
6821 }
6822 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6823 
6824 /* Opcode: RowSetAdd P1 P2 * * *
6825 ** Synopsis: rowset(P1)=r[P2]
6826 **
6827 ** Insert the integer value held by register P2 into a RowSet object
6828 ** held in register P1.
6829 **
6830 ** An assertion fails if P2 is not an integer.
6831 */
6832 case OP_RowSetAdd: {       /* in1, in2 */
6833   pIn1 = &aMem[pOp->p1];
6834   pIn2 = &aMem[pOp->p2];
6835   assert( (pIn2->flags & MEM_Int)!=0 );
6836   if( (pIn1->flags & MEM_Blob)==0 ){
6837     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6838   }
6839   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6840   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6841   break;
6842 }
6843 
6844 /* Opcode: RowSetRead P1 P2 P3 * *
6845 ** Synopsis: r[P3]=rowset(P1)
6846 **
6847 ** Extract the smallest value from the RowSet object in P1
6848 ** and put that value into register P3.
6849 ** Or, if RowSet object P1 is initially empty, leave P3
6850 ** unchanged and jump to instruction P2.
6851 */
6852 case OP_RowSetRead: {       /* jump, in1, out3 */
6853   i64 val;
6854 
6855   pIn1 = &aMem[pOp->p1];
6856   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6857   if( (pIn1->flags & MEM_Blob)==0
6858    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6859   ){
6860     /* The boolean index is empty */
6861     sqlite3VdbeMemSetNull(pIn1);
6862     VdbeBranchTaken(1,2);
6863     goto jump_to_p2_and_check_for_interrupt;
6864   }else{
6865     /* A value was pulled from the index */
6866     VdbeBranchTaken(0,2);
6867     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6868   }
6869   goto check_for_interrupt;
6870 }
6871 
6872 /* Opcode: RowSetTest P1 P2 P3 P4
6873 ** Synopsis: if r[P3] in rowset(P1) goto P2
6874 **
6875 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6876 ** contains a RowSet object and that RowSet object contains
6877 ** the value held in P3, jump to register P2. Otherwise, insert the
6878 ** integer in P3 into the RowSet and continue on to the
6879 ** next opcode.
6880 **
6881 ** The RowSet object is optimized for the case where sets of integers
6882 ** are inserted in distinct phases, which each set contains no duplicates.
6883 ** Each set is identified by a unique P4 value. The first set
6884 ** must have P4==0, the final set must have P4==-1, and for all other sets
6885 ** must have P4>0.
6886 **
6887 ** This allows optimizations: (a) when P4==0 there is no need to test
6888 ** the RowSet object for P3, as it is guaranteed not to contain it,
6889 ** (b) when P4==-1 there is no need to insert the value, as it will
6890 ** never be tested for, and (c) when a value that is part of set X is
6891 ** inserted, there is no need to search to see if the same value was
6892 ** previously inserted as part of set X (only if it was previously
6893 ** inserted as part of some other set).
6894 */
6895 case OP_RowSetTest: {                     /* jump, in1, in3 */
6896   int iSet;
6897   int exists;
6898 
6899   pIn1 = &aMem[pOp->p1];
6900   pIn3 = &aMem[pOp->p3];
6901   iSet = pOp->p4.i;
6902   assert( pIn3->flags&MEM_Int );
6903 
6904   /* If there is anything other than a rowset object in memory cell P1,
6905   ** delete it now and initialize P1 with an empty rowset
6906   */
6907   if( (pIn1->flags & MEM_Blob)==0 ){
6908     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6909   }
6910   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6911   assert( pOp->p4type==P4_INT32 );
6912   assert( iSet==-1 || iSet>=0 );
6913   if( iSet ){
6914     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6915     VdbeBranchTaken(exists!=0,2);
6916     if( exists ) goto jump_to_p2;
6917   }
6918   if( iSet>=0 ){
6919     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6920   }
6921   break;
6922 }
6923 
6924 
6925 #ifndef SQLITE_OMIT_TRIGGER
6926 
6927 /* Opcode: Program P1 P2 P3 P4 P5
6928 **
6929 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6930 **
6931 ** P1 contains the address of the memory cell that contains the first memory
6932 ** cell in an array of values used as arguments to the sub-program. P2
6933 ** contains the address to jump to if the sub-program throws an IGNORE
6934 ** exception using the RAISE() function. Register P3 contains the address
6935 ** of a memory cell in this (the parent) VM that is used to allocate the
6936 ** memory required by the sub-vdbe at runtime.
6937 **
6938 ** P4 is a pointer to the VM containing the trigger program.
6939 **
6940 ** If P5 is non-zero, then recursive program invocation is enabled.
6941 */
6942 case OP_Program: {        /* jump */
6943   int nMem;               /* Number of memory registers for sub-program */
6944   int nByte;              /* Bytes of runtime space required for sub-program */
6945   Mem *pRt;               /* Register to allocate runtime space */
6946   Mem *pMem;              /* Used to iterate through memory cells */
6947   Mem *pEnd;              /* Last memory cell in new array */
6948   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6949   SubProgram *pProgram;   /* Sub-program to execute */
6950   void *t;                /* Token identifying trigger */
6951 
6952   pProgram = pOp->p4.pProgram;
6953   pRt = &aMem[pOp->p3];
6954   assert( pProgram->nOp>0 );
6955 
6956   /* If the p5 flag is clear, then recursive invocation of triggers is
6957   ** disabled for backwards compatibility (p5 is set if this sub-program
6958   ** is really a trigger, not a foreign key action, and the flag set
6959   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6960   **
6961   ** It is recursive invocation of triggers, at the SQL level, that is
6962   ** disabled. In some cases a single trigger may generate more than one
6963   ** SubProgram (if the trigger may be executed with more than one different
6964   ** ON CONFLICT algorithm). SubProgram structures associated with a
6965   ** single trigger all have the same value for the SubProgram.token
6966   ** variable.  */
6967   if( pOp->p5 ){
6968     t = pProgram->token;
6969     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6970     if( pFrame ) break;
6971   }
6972 
6973   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6974     rc = SQLITE_ERROR;
6975     sqlite3VdbeError(p, "too many levels of trigger recursion");
6976     goto abort_due_to_error;
6977   }
6978 
6979   /* Register pRt is used to store the memory required to save the state
6980   ** of the current program, and the memory required at runtime to execute
6981   ** the trigger program. If this trigger has been fired before, then pRt
6982   ** is already allocated. Otherwise, it must be initialized.  */
6983   if( (pRt->flags&MEM_Blob)==0 ){
6984     /* SubProgram.nMem is set to the number of memory cells used by the
6985     ** program stored in SubProgram.aOp. As well as these, one memory
6986     ** cell is required for each cursor used by the program. Set local
6987     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6988     */
6989     nMem = pProgram->nMem + pProgram->nCsr;
6990     assert( nMem>0 );
6991     if( pProgram->nCsr==0 ) nMem++;
6992     nByte = ROUND8(sizeof(VdbeFrame))
6993               + nMem * sizeof(Mem)
6994               + pProgram->nCsr * sizeof(VdbeCursor*)
6995               + (pProgram->nOp + 7)/8;
6996     pFrame = sqlite3DbMallocZero(db, nByte);
6997     if( !pFrame ){
6998       goto no_mem;
6999     }
7000     sqlite3VdbeMemRelease(pRt);
7001     pRt->flags = MEM_Blob|MEM_Dyn;
7002     pRt->z = (char*)pFrame;
7003     pRt->n = nByte;
7004     pRt->xDel = sqlite3VdbeFrameMemDel;
7005 
7006     pFrame->v = p;
7007     pFrame->nChildMem = nMem;
7008     pFrame->nChildCsr = pProgram->nCsr;
7009     pFrame->pc = (int)(pOp - aOp);
7010     pFrame->aMem = p->aMem;
7011     pFrame->nMem = p->nMem;
7012     pFrame->apCsr = p->apCsr;
7013     pFrame->nCursor = p->nCursor;
7014     pFrame->aOp = p->aOp;
7015     pFrame->nOp = p->nOp;
7016     pFrame->token = pProgram->token;
7017 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7018     pFrame->anExec = p->anExec;
7019 #endif
7020 #ifdef SQLITE_DEBUG
7021     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7022 #endif
7023 
7024     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7025     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7026       pMem->flags = MEM_Undefined;
7027       pMem->db = db;
7028     }
7029   }else{
7030     pFrame = (VdbeFrame*)pRt->z;
7031     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7032     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7033         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7034     assert( pProgram->nCsr==pFrame->nChildCsr );
7035     assert( (int)(pOp - aOp)==pFrame->pc );
7036   }
7037 
7038   p->nFrame++;
7039   pFrame->pParent = p->pFrame;
7040   pFrame->lastRowid = db->lastRowid;
7041   pFrame->nChange = p->nChange;
7042   pFrame->nDbChange = p->db->nChange;
7043   assert( pFrame->pAuxData==0 );
7044   pFrame->pAuxData = p->pAuxData;
7045   p->pAuxData = 0;
7046   p->nChange = 0;
7047   p->pFrame = pFrame;
7048   p->aMem = aMem = VdbeFrameMem(pFrame);
7049   p->nMem = pFrame->nChildMem;
7050   p->nCursor = (u16)pFrame->nChildCsr;
7051   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7052   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7053   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7054   p->aOp = aOp = pProgram->aOp;
7055   p->nOp = pProgram->nOp;
7056 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7057   p->anExec = 0;
7058 #endif
7059 #ifdef SQLITE_DEBUG
7060   /* Verify that second and subsequent executions of the same trigger do not
7061   ** try to reuse register values from the first use. */
7062   {
7063     int i;
7064     for(i=0; i<p->nMem; i++){
7065       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
7066       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7067     }
7068   }
7069 #endif
7070   pOp = &aOp[-1];
7071   goto check_for_interrupt;
7072 }
7073 
7074 /* Opcode: Param P1 P2 * * *
7075 **
7076 ** This opcode is only ever present in sub-programs called via the
7077 ** OP_Program instruction. Copy a value currently stored in a memory
7078 ** cell of the calling (parent) frame to cell P2 in the current frames
7079 ** address space. This is used by trigger programs to access the new.*
7080 ** and old.* values.
7081 **
7082 ** The address of the cell in the parent frame is determined by adding
7083 ** the value of the P1 argument to the value of the P1 argument to the
7084 ** calling OP_Program instruction.
7085 */
7086 case OP_Param: {           /* out2 */
7087   VdbeFrame *pFrame;
7088   Mem *pIn;
7089   pOut = out2Prerelease(p, pOp);
7090   pFrame = p->pFrame;
7091   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7092   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7093   break;
7094 }
7095 
7096 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7097 
7098 #ifndef SQLITE_OMIT_FOREIGN_KEY
7099 /* Opcode: FkCounter P1 P2 * * *
7100 ** Synopsis: fkctr[P1]+=P2
7101 **
7102 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7103 ** If P1 is non-zero, the database constraint counter is incremented
7104 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7105 ** statement counter is incremented (immediate foreign key constraints).
7106 */
7107 case OP_FkCounter: {
7108   if( db->flags & SQLITE_DeferFKs ){
7109     db->nDeferredImmCons += pOp->p2;
7110   }else if( pOp->p1 ){
7111     db->nDeferredCons += pOp->p2;
7112   }else{
7113     p->nFkConstraint += pOp->p2;
7114   }
7115   break;
7116 }
7117 
7118 /* Opcode: FkIfZero P1 P2 * * *
7119 ** Synopsis: if fkctr[P1]==0 goto P2
7120 **
7121 ** This opcode tests if a foreign key constraint-counter is currently zero.
7122 ** If so, jump to instruction P2. Otherwise, fall through to the next
7123 ** instruction.
7124 **
7125 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7126 ** is zero (the one that counts deferred constraint violations). If P1 is
7127 ** zero, the jump is taken if the statement constraint-counter is zero
7128 ** (immediate foreign key constraint violations).
7129 */
7130 case OP_FkIfZero: {         /* jump */
7131   if( pOp->p1 ){
7132     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7133     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7134   }else{
7135     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7136     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7137   }
7138   break;
7139 }
7140 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7141 
7142 #ifndef SQLITE_OMIT_AUTOINCREMENT
7143 /* Opcode: MemMax P1 P2 * * *
7144 ** Synopsis: r[P1]=max(r[P1],r[P2])
7145 **
7146 ** P1 is a register in the root frame of this VM (the root frame is
7147 ** different from the current frame if this instruction is being executed
7148 ** within a sub-program). Set the value of register P1 to the maximum of
7149 ** its current value and the value in register P2.
7150 **
7151 ** This instruction throws an error if the memory cell is not initially
7152 ** an integer.
7153 */
7154 case OP_MemMax: {        /* in2 */
7155   VdbeFrame *pFrame;
7156   if( p->pFrame ){
7157     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7158     pIn1 = &pFrame->aMem[pOp->p1];
7159   }else{
7160     pIn1 = &aMem[pOp->p1];
7161   }
7162   assert( memIsValid(pIn1) );
7163   sqlite3VdbeMemIntegerify(pIn1);
7164   pIn2 = &aMem[pOp->p2];
7165   sqlite3VdbeMemIntegerify(pIn2);
7166   if( pIn1->u.i<pIn2->u.i){
7167     pIn1->u.i = pIn2->u.i;
7168   }
7169   break;
7170 }
7171 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7172 
7173 /* Opcode: IfPos P1 P2 P3 * *
7174 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7175 **
7176 ** Register P1 must contain an integer.
7177 ** If the value of register P1 is 1 or greater, subtract P3 from the
7178 ** value in P1 and jump to P2.
7179 **
7180 ** If the initial value of register P1 is less than 1, then the
7181 ** value is unchanged and control passes through to the next instruction.
7182 */
7183 case OP_IfPos: {        /* jump, in1 */
7184   pIn1 = &aMem[pOp->p1];
7185   assert( pIn1->flags&MEM_Int );
7186   VdbeBranchTaken( pIn1->u.i>0, 2);
7187   if( pIn1->u.i>0 ){
7188     pIn1->u.i -= pOp->p3;
7189     goto jump_to_p2;
7190   }
7191   break;
7192 }
7193 
7194 /* Opcode: OffsetLimit P1 P2 P3 * *
7195 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7196 **
7197 ** This opcode performs a commonly used computation associated with
7198 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
7199 ** holds the offset counter.  The opcode computes the combined value
7200 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7201 ** value computed is the total number of rows that will need to be
7202 ** visited in order to complete the query.
7203 **
7204 ** If r[P3] is zero or negative, that means there is no OFFSET
7205 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7206 **
7207 ** if r[P1] is zero or negative, that means there is no LIMIT
7208 ** and r[P2] is set to -1.
7209 **
7210 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7211 */
7212 case OP_OffsetLimit: {    /* in1, out2, in3 */
7213   i64 x;
7214   pIn1 = &aMem[pOp->p1];
7215   pIn3 = &aMem[pOp->p3];
7216   pOut = out2Prerelease(p, pOp);
7217   assert( pIn1->flags & MEM_Int );
7218   assert( pIn3->flags & MEM_Int );
7219   x = pIn1->u.i;
7220   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7221     /* If the LIMIT is less than or equal to zero, loop forever.  This
7222     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7223     ** also loop forever.  This is undocumented.  In fact, one could argue
7224     ** that the loop should terminate.  But assuming 1 billion iterations
7225     ** per second (far exceeding the capabilities of any current hardware)
7226     ** it would take nearly 300 years to actually reach the limit.  So
7227     ** looping forever is a reasonable approximation. */
7228     pOut->u.i = -1;
7229   }else{
7230     pOut->u.i = x;
7231   }
7232   break;
7233 }
7234 
7235 /* Opcode: IfNotZero P1 P2 * * *
7236 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7237 **
7238 ** Register P1 must contain an integer.  If the content of register P1 is
7239 ** initially greater than zero, then decrement the value in register P1.
7240 ** If it is non-zero (negative or positive) and then also jump to P2.
7241 ** If register P1 is initially zero, leave it unchanged and fall through.
7242 */
7243 case OP_IfNotZero: {        /* jump, in1 */
7244   pIn1 = &aMem[pOp->p1];
7245   assert( pIn1->flags&MEM_Int );
7246   VdbeBranchTaken(pIn1->u.i<0, 2);
7247   if( pIn1->u.i ){
7248      if( pIn1->u.i>0 ) pIn1->u.i--;
7249      goto jump_to_p2;
7250   }
7251   break;
7252 }
7253 
7254 /* Opcode: DecrJumpZero P1 P2 * * *
7255 ** Synopsis: if (--r[P1])==0 goto P2
7256 **
7257 ** Register P1 must hold an integer.  Decrement the value in P1
7258 ** and jump to P2 if the new value is exactly zero.
7259 */
7260 case OP_DecrJumpZero: {      /* jump, in1 */
7261   pIn1 = &aMem[pOp->p1];
7262   assert( pIn1->flags&MEM_Int );
7263   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7264   VdbeBranchTaken(pIn1->u.i==0, 2);
7265   if( pIn1->u.i==0 ) goto jump_to_p2;
7266   break;
7267 }
7268 
7269 
7270 /* Opcode: AggStep * P2 P3 P4 P5
7271 ** Synopsis: accum=r[P3] step(r[P2@P5])
7272 **
7273 ** Execute the xStep function for an aggregate.
7274 ** The function has P5 arguments.  P4 is a pointer to the
7275 ** FuncDef structure that specifies the function.  Register P3 is the
7276 ** accumulator.
7277 **
7278 ** The P5 arguments are taken from register P2 and its
7279 ** successors.
7280 */
7281 /* Opcode: AggInverse * P2 P3 P4 P5
7282 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7283 **
7284 ** Execute the xInverse function for an aggregate.
7285 ** The function has P5 arguments.  P4 is a pointer to the
7286 ** FuncDef structure that specifies the function.  Register P3 is the
7287 ** accumulator.
7288 **
7289 ** The P5 arguments are taken from register P2 and its
7290 ** successors.
7291 */
7292 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7293 ** Synopsis: accum=r[P3] step(r[P2@P5])
7294 **
7295 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7296 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7297 ** FuncDef structure that specifies the function.  Register P3 is the
7298 ** accumulator.
7299 **
7300 ** The P5 arguments are taken from register P2 and its
7301 ** successors.
7302 **
7303 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7304 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7305 ** the opcode is changed.  In this way, the initialization of the
7306 ** sqlite3_context only happens once, instead of on each call to the
7307 ** step function.
7308 */
7309 case OP_AggInverse:
7310 case OP_AggStep: {
7311   int n;
7312   sqlite3_context *pCtx;
7313 
7314   assert( pOp->p4type==P4_FUNCDEF );
7315   n = pOp->p5;
7316   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7317   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7318   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7319   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7320                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7321   if( pCtx==0 ) goto no_mem;
7322   pCtx->pMem = 0;
7323   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7324   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7325   pCtx->pFunc = pOp->p4.pFunc;
7326   pCtx->iOp = (int)(pOp - aOp);
7327   pCtx->pVdbe = p;
7328   pCtx->skipFlag = 0;
7329   pCtx->isError = 0;
7330   pCtx->enc = encoding;
7331   pCtx->argc = n;
7332   pOp->p4type = P4_FUNCCTX;
7333   pOp->p4.pCtx = pCtx;
7334 
7335   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7336   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7337 
7338   pOp->opcode = OP_AggStep1;
7339   /* Fall through into OP_AggStep */
7340   /* no break */ deliberate_fall_through
7341 }
7342 case OP_AggStep1: {
7343   int i;
7344   sqlite3_context *pCtx;
7345   Mem *pMem;
7346 
7347   assert( pOp->p4type==P4_FUNCCTX );
7348   pCtx = pOp->p4.pCtx;
7349   pMem = &aMem[pOp->p3];
7350 
7351 #ifdef SQLITE_DEBUG
7352   if( pOp->p1 ){
7353     /* This is an OP_AggInverse call.  Verify that xStep has always
7354     ** been called at least once prior to any xInverse call. */
7355     assert( pMem->uTemp==0x1122e0e3 );
7356   }else{
7357     /* This is an OP_AggStep call.  Mark it as such. */
7358     pMem->uTemp = 0x1122e0e3;
7359   }
7360 #endif
7361 
7362   /* If this function is inside of a trigger, the register array in aMem[]
7363   ** might change from one evaluation to the next.  The next block of code
7364   ** checks to see if the register array has changed, and if so it
7365   ** reinitializes the relavant parts of the sqlite3_context object */
7366   if( pCtx->pMem != pMem ){
7367     pCtx->pMem = pMem;
7368     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7369   }
7370 
7371 #ifdef SQLITE_DEBUG
7372   for(i=0; i<pCtx->argc; i++){
7373     assert( memIsValid(pCtx->argv[i]) );
7374     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7375   }
7376 #endif
7377 
7378   pMem->n++;
7379   assert( pCtx->pOut->flags==MEM_Null );
7380   assert( pCtx->isError==0 );
7381   assert( pCtx->skipFlag==0 );
7382 #ifndef SQLITE_OMIT_WINDOWFUNC
7383   if( pOp->p1 ){
7384     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7385   }else
7386 #endif
7387   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7388 
7389   if( pCtx->isError ){
7390     if( pCtx->isError>0 ){
7391       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7392       rc = pCtx->isError;
7393     }
7394     if( pCtx->skipFlag ){
7395       assert( pOp[-1].opcode==OP_CollSeq );
7396       i = pOp[-1].p1;
7397       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7398       pCtx->skipFlag = 0;
7399     }
7400     sqlite3VdbeMemRelease(pCtx->pOut);
7401     pCtx->pOut->flags = MEM_Null;
7402     pCtx->isError = 0;
7403     if( rc ) goto abort_due_to_error;
7404   }
7405   assert( pCtx->pOut->flags==MEM_Null );
7406   assert( pCtx->skipFlag==0 );
7407   break;
7408 }
7409 
7410 /* Opcode: AggFinal P1 P2 * P4 *
7411 ** Synopsis: accum=r[P1] N=P2
7412 **
7413 ** P1 is the memory location that is the accumulator for an aggregate
7414 ** or window function.  Execute the finalizer function
7415 ** for an aggregate and store the result in P1.
7416 **
7417 ** P2 is the number of arguments that the step function takes and
7418 ** P4 is a pointer to the FuncDef for this function.  The P2
7419 ** argument is not used by this opcode.  It is only there to disambiguate
7420 ** functions that can take varying numbers of arguments.  The
7421 ** P4 argument is only needed for the case where
7422 ** the step function was not previously called.
7423 */
7424 /* Opcode: AggValue * P2 P3 P4 *
7425 ** Synopsis: r[P3]=value N=P2
7426 **
7427 ** Invoke the xValue() function and store the result in register P3.
7428 **
7429 ** P2 is the number of arguments that the step function takes and
7430 ** P4 is a pointer to the FuncDef for this function.  The P2
7431 ** argument is not used by this opcode.  It is only there to disambiguate
7432 ** functions that can take varying numbers of arguments.  The
7433 ** P4 argument is only needed for the case where
7434 ** the step function was not previously called.
7435 */
7436 case OP_AggValue:
7437 case OP_AggFinal: {
7438   Mem *pMem;
7439   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7440   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7441   pMem = &aMem[pOp->p1];
7442   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7443 #ifndef SQLITE_OMIT_WINDOWFUNC
7444   if( pOp->p3 ){
7445     memAboutToChange(p, &aMem[pOp->p3]);
7446     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7447     pMem = &aMem[pOp->p3];
7448   }else
7449 #endif
7450   {
7451     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7452   }
7453 
7454   if( rc ){
7455     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7456     goto abort_due_to_error;
7457   }
7458   sqlite3VdbeChangeEncoding(pMem, encoding);
7459   UPDATE_MAX_BLOBSIZE(pMem);
7460   break;
7461 }
7462 
7463 #ifndef SQLITE_OMIT_WAL
7464 /* Opcode: Checkpoint P1 P2 P3 * *
7465 **
7466 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7467 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7468 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7469 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7470 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7471 ** in the WAL that have been checkpointed after the checkpoint
7472 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7473 ** mem[P3+2] are initialized to -1.
7474 */
7475 case OP_Checkpoint: {
7476   int i;                          /* Loop counter */
7477   int aRes[3];                    /* Results */
7478   Mem *pMem;                      /* Write results here */
7479 
7480   assert( p->readOnly==0 );
7481   aRes[0] = 0;
7482   aRes[1] = aRes[2] = -1;
7483   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7484        || pOp->p2==SQLITE_CHECKPOINT_FULL
7485        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7486        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7487   );
7488   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7489   if( rc ){
7490     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7491     rc = SQLITE_OK;
7492     aRes[0] = 1;
7493   }
7494   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7495     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7496   }
7497   break;
7498 };
7499 #endif
7500 
7501 #ifndef SQLITE_OMIT_PRAGMA
7502 /* Opcode: JournalMode P1 P2 P3 * *
7503 **
7504 ** Change the journal mode of database P1 to P3. P3 must be one of the
7505 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7506 ** modes (delete, truncate, persist, off and memory), this is a simple
7507 ** operation. No IO is required.
7508 **
7509 ** If changing into or out of WAL mode the procedure is more complicated.
7510 **
7511 ** Write a string containing the final journal-mode to register P2.
7512 */
7513 case OP_JournalMode: {    /* out2 */
7514   Btree *pBt;                     /* Btree to change journal mode of */
7515   Pager *pPager;                  /* Pager associated with pBt */
7516   int eNew;                       /* New journal mode */
7517   int eOld;                       /* The old journal mode */
7518 #ifndef SQLITE_OMIT_WAL
7519   const char *zFilename;          /* Name of database file for pPager */
7520 #endif
7521 
7522   pOut = out2Prerelease(p, pOp);
7523   eNew = pOp->p3;
7524   assert( eNew==PAGER_JOURNALMODE_DELETE
7525        || eNew==PAGER_JOURNALMODE_TRUNCATE
7526        || eNew==PAGER_JOURNALMODE_PERSIST
7527        || eNew==PAGER_JOURNALMODE_OFF
7528        || eNew==PAGER_JOURNALMODE_MEMORY
7529        || eNew==PAGER_JOURNALMODE_WAL
7530        || eNew==PAGER_JOURNALMODE_QUERY
7531   );
7532   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7533   assert( p->readOnly==0 );
7534 
7535   pBt = db->aDb[pOp->p1].pBt;
7536   pPager = sqlite3BtreePager(pBt);
7537   eOld = sqlite3PagerGetJournalMode(pPager);
7538   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7539   assert( sqlite3BtreeHoldsMutex(pBt) );
7540   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7541 
7542 #ifndef SQLITE_OMIT_WAL
7543   zFilename = sqlite3PagerFilename(pPager, 1);
7544 
7545   /* Do not allow a transition to journal_mode=WAL for a database
7546   ** in temporary storage or if the VFS does not support shared memory
7547   */
7548   if( eNew==PAGER_JOURNALMODE_WAL
7549    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7550        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7551   ){
7552     eNew = eOld;
7553   }
7554 
7555   if( (eNew!=eOld)
7556    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7557   ){
7558     if( !db->autoCommit || db->nVdbeRead>1 ){
7559       rc = SQLITE_ERROR;
7560       sqlite3VdbeError(p,
7561           "cannot change %s wal mode from within a transaction",
7562           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7563       );
7564       goto abort_due_to_error;
7565     }else{
7566 
7567       if( eOld==PAGER_JOURNALMODE_WAL ){
7568         /* If leaving WAL mode, close the log file. If successful, the call
7569         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7570         ** file. An EXCLUSIVE lock may still be held on the database file
7571         ** after a successful return.
7572         */
7573         rc = sqlite3PagerCloseWal(pPager, db);
7574         if( rc==SQLITE_OK ){
7575           sqlite3PagerSetJournalMode(pPager, eNew);
7576         }
7577       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7578         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7579         ** as an intermediate */
7580         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7581       }
7582 
7583       /* Open a transaction on the database file. Regardless of the journal
7584       ** mode, this transaction always uses a rollback journal.
7585       */
7586       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7587       if( rc==SQLITE_OK ){
7588         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7589       }
7590     }
7591   }
7592 #endif /* ifndef SQLITE_OMIT_WAL */
7593 
7594   if( rc ) eNew = eOld;
7595   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7596 
7597   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7598   pOut->z = (char *)sqlite3JournalModename(eNew);
7599   pOut->n = sqlite3Strlen30(pOut->z);
7600   pOut->enc = SQLITE_UTF8;
7601   sqlite3VdbeChangeEncoding(pOut, encoding);
7602   if( rc ) goto abort_due_to_error;
7603   break;
7604 };
7605 #endif /* SQLITE_OMIT_PRAGMA */
7606 
7607 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7608 /* Opcode: Vacuum P1 P2 * * *
7609 **
7610 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7611 ** for an attached database.  The "temp" database may not be vacuumed.
7612 **
7613 ** If P2 is not zero, then it is a register holding a string which is
7614 ** the file into which the result of vacuum should be written.  When
7615 ** P2 is zero, the vacuum overwrites the original database.
7616 */
7617 case OP_Vacuum: {
7618   assert( p->readOnly==0 );
7619   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7620                         pOp->p2 ? &aMem[pOp->p2] : 0);
7621   if( rc ) goto abort_due_to_error;
7622   break;
7623 }
7624 #endif
7625 
7626 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7627 /* Opcode: IncrVacuum P1 P2 * * *
7628 **
7629 ** Perform a single step of the incremental vacuum procedure on
7630 ** the P1 database. If the vacuum has finished, jump to instruction
7631 ** P2. Otherwise, fall through to the next instruction.
7632 */
7633 case OP_IncrVacuum: {        /* jump */
7634   Btree *pBt;
7635 
7636   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7637   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7638   assert( p->readOnly==0 );
7639   pBt = db->aDb[pOp->p1].pBt;
7640   rc = sqlite3BtreeIncrVacuum(pBt);
7641   VdbeBranchTaken(rc==SQLITE_DONE,2);
7642   if( rc ){
7643     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7644     rc = SQLITE_OK;
7645     goto jump_to_p2;
7646   }
7647   break;
7648 }
7649 #endif
7650 
7651 /* Opcode: Expire P1 P2 * * *
7652 **
7653 ** Cause precompiled statements to expire.  When an expired statement
7654 ** is executed using sqlite3_step() it will either automatically
7655 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7656 ** or it will fail with SQLITE_SCHEMA.
7657 **
7658 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7659 ** then only the currently executing statement is expired.
7660 **
7661 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7662 ** then running SQL statements are allowed to continue to run to completion.
7663 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7664 ** that might help the statement run faster but which does not affect the
7665 ** correctness of operation.
7666 */
7667 case OP_Expire: {
7668   assert( pOp->p2==0 || pOp->p2==1 );
7669   if( !pOp->p1 ){
7670     sqlite3ExpirePreparedStatements(db, pOp->p2);
7671   }else{
7672     p->expired = pOp->p2+1;
7673   }
7674   break;
7675 }
7676 
7677 /* Opcode: CursorLock P1 * * * *
7678 **
7679 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7680 ** written by an other cursor.
7681 */
7682 case OP_CursorLock: {
7683   VdbeCursor *pC;
7684   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7685   pC = p->apCsr[pOp->p1];
7686   assert( pC!=0 );
7687   assert( pC->eCurType==CURTYPE_BTREE );
7688   sqlite3BtreeCursorPin(pC->uc.pCursor);
7689   break;
7690 }
7691 
7692 /* Opcode: CursorUnlock P1 * * * *
7693 **
7694 ** Unlock the btree to which cursor P1 is pointing so that it can be
7695 ** written by other cursors.
7696 */
7697 case OP_CursorUnlock: {
7698   VdbeCursor *pC;
7699   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7700   pC = p->apCsr[pOp->p1];
7701   assert( pC!=0 );
7702   assert( pC->eCurType==CURTYPE_BTREE );
7703   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7704   break;
7705 }
7706 
7707 #ifndef SQLITE_OMIT_SHARED_CACHE
7708 /* Opcode: TableLock P1 P2 P3 P4 *
7709 ** Synopsis: iDb=P1 root=P2 write=P3
7710 **
7711 ** Obtain a lock on a particular table. This instruction is only used when
7712 ** the shared-cache feature is enabled.
7713 **
7714 ** P1 is the index of the database in sqlite3.aDb[] of the database
7715 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7716 ** a write lock if P3==1.
7717 **
7718 ** P2 contains the root-page of the table to lock.
7719 **
7720 ** P4 contains a pointer to the name of the table being locked. This is only
7721 ** used to generate an error message if the lock cannot be obtained.
7722 */
7723 case OP_TableLock: {
7724   u8 isWriteLock = (u8)pOp->p3;
7725   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7726     int p1 = pOp->p1;
7727     assert( p1>=0 && p1<db->nDb );
7728     assert( DbMaskTest(p->btreeMask, p1) );
7729     assert( isWriteLock==0 || isWriteLock==1 );
7730     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7731     if( rc ){
7732       if( (rc&0xFF)==SQLITE_LOCKED ){
7733         const char *z = pOp->p4.z;
7734         sqlite3VdbeError(p, "database table is locked: %s", z);
7735       }
7736       goto abort_due_to_error;
7737     }
7738   }
7739   break;
7740 }
7741 #endif /* SQLITE_OMIT_SHARED_CACHE */
7742 
7743 #ifndef SQLITE_OMIT_VIRTUALTABLE
7744 /* Opcode: VBegin * * * P4 *
7745 **
7746 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7747 ** xBegin method for that table.
7748 **
7749 ** Also, whether or not P4 is set, check that this is not being called from
7750 ** within a callback to a virtual table xSync() method. If it is, the error
7751 ** code will be set to SQLITE_LOCKED.
7752 */
7753 case OP_VBegin: {
7754   VTable *pVTab;
7755   pVTab = pOp->p4.pVtab;
7756   rc = sqlite3VtabBegin(db, pVTab);
7757   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7758   if( rc ) goto abort_due_to_error;
7759   break;
7760 }
7761 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7762 
7763 #ifndef SQLITE_OMIT_VIRTUALTABLE
7764 /* Opcode: VCreate P1 P2 * * *
7765 **
7766 ** P2 is a register that holds the name of a virtual table in database
7767 ** P1. Call the xCreate method for that table.
7768 */
7769 case OP_VCreate: {
7770   Mem sMem;          /* For storing the record being decoded */
7771   const char *zTab;  /* Name of the virtual table */
7772 
7773   memset(&sMem, 0, sizeof(sMem));
7774   sMem.db = db;
7775   /* Because P2 is always a static string, it is impossible for the
7776   ** sqlite3VdbeMemCopy() to fail */
7777   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7778   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7779   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7780   assert( rc==SQLITE_OK );
7781   zTab = (const char*)sqlite3_value_text(&sMem);
7782   assert( zTab || db->mallocFailed );
7783   if( zTab ){
7784     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7785   }
7786   sqlite3VdbeMemRelease(&sMem);
7787   if( rc ) goto abort_due_to_error;
7788   break;
7789 }
7790 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7791 
7792 #ifndef SQLITE_OMIT_VIRTUALTABLE
7793 /* Opcode: VDestroy P1 * * P4 *
7794 **
7795 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7796 ** of that table.
7797 */
7798 case OP_VDestroy: {
7799   db->nVDestroy++;
7800   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7801   db->nVDestroy--;
7802   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7803   if( rc ) goto abort_due_to_error;
7804   break;
7805 }
7806 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7807 
7808 #ifndef SQLITE_OMIT_VIRTUALTABLE
7809 /* Opcode: VOpen P1 * * P4 *
7810 **
7811 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7812 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7813 ** table and stores that cursor in P1.
7814 */
7815 case OP_VOpen: {
7816   VdbeCursor *pCur;
7817   sqlite3_vtab_cursor *pVCur;
7818   sqlite3_vtab *pVtab;
7819   const sqlite3_module *pModule;
7820 
7821   assert( p->bIsReader );
7822   pCur = 0;
7823   pVCur = 0;
7824   pVtab = pOp->p4.pVtab->pVtab;
7825   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7826     rc = SQLITE_LOCKED;
7827     goto abort_due_to_error;
7828   }
7829   pModule = pVtab->pModule;
7830   rc = pModule->xOpen(pVtab, &pVCur);
7831   sqlite3VtabImportErrmsg(p, pVtab);
7832   if( rc ) goto abort_due_to_error;
7833 
7834   /* Initialize sqlite3_vtab_cursor base class */
7835   pVCur->pVtab = pVtab;
7836 
7837   /* Initialize vdbe cursor object */
7838   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7839   if( pCur ){
7840     pCur->uc.pVCur = pVCur;
7841     pVtab->nRef++;
7842   }else{
7843     assert( db->mallocFailed );
7844     pModule->xClose(pVCur);
7845     goto no_mem;
7846   }
7847   break;
7848 }
7849 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7850 
7851 #ifndef SQLITE_OMIT_VIRTUALTABLE
7852 /* Opcode: VInitIn P1 P2 P3 * *
7853 ** Synopsis: r[P2]=ValueList(P1,P3)
7854 **
7855 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7856 ** with cache register P3 and output register P3+1.  This ValueList object
7857 ** can be used as the first argument to sqlite3_vtab_in_first() and
7858 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7859 ** cursor.  Register P3 is used to hold the values returned by
7860 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7861 */
7862 case OP_VInitIn: {        /* out2 */
7863   VdbeCursor *pC;         /* The cursor containing the RHS values */
7864   ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
7865 
7866   pC = p->apCsr[pOp->p1];
7867   pRhs = sqlite3_malloc64( sizeof(*pRhs) );
7868   if( pRhs==0 ) goto no_mem;
7869   pRhs->pCsr = pC->uc.pCursor;
7870   pRhs->pOut = &aMem[pOp->p3];
7871   pOut = out2Prerelease(p, pOp);
7872   pOut->flags = MEM_Null;
7873   sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
7874   break;
7875 }
7876 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7877 
7878 
7879 #ifndef SQLITE_OMIT_VIRTUALTABLE
7880 /* Opcode: VFilter P1 P2 P3 P4 *
7881 ** Synopsis: iplan=r[P3] zplan='P4'
7882 **
7883 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7884 ** the filtered result set is empty.
7885 **
7886 ** P4 is either NULL or a string that was generated by the xBestIndex
7887 ** method of the module.  The interpretation of the P4 string is left
7888 ** to the module implementation.
7889 **
7890 ** This opcode invokes the xFilter method on the virtual table specified
7891 ** by P1.  The integer query plan parameter to xFilter is stored in register
7892 ** P3. Register P3+1 stores the argc parameter to be passed to the
7893 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7894 ** additional parameters which are passed to
7895 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7896 **
7897 ** A jump is made to P2 if the result set after filtering would be empty.
7898 */
7899 case OP_VFilter: {   /* jump */
7900   int nArg;
7901   int iQuery;
7902   const sqlite3_module *pModule;
7903   Mem *pQuery;
7904   Mem *pArgc;
7905   sqlite3_vtab_cursor *pVCur;
7906   sqlite3_vtab *pVtab;
7907   VdbeCursor *pCur;
7908   int res;
7909   int i;
7910   Mem **apArg;
7911 
7912   pQuery = &aMem[pOp->p3];
7913   pArgc = &pQuery[1];
7914   pCur = p->apCsr[pOp->p1];
7915   assert( memIsValid(pQuery) );
7916   REGISTER_TRACE(pOp->p3, pQuery);
7917   assert( pCur!=0 );
7918   assert( pCur->eCurType==CURTYPE_VTAB );
7919   pVCur = pCur->uc.pVCur;
7920   pVtab = pVCur->pVtab;
7921   pModule = pVtab->pModule;
7922 
7923   /* Grab the index number and argc parameters */
7924   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7925   nArg = (int)pArgc->u.i;
7926   iQuery = (int)pQuery->u.i;
7927 
7928   /* Invoke the xFilter method */
7929   apArg = p->apArg;
7930   for(i = 0; i<nArg; i++){
7931     apArg[i] = &pArgc[i+1];
7932   }
7933   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7934   sqlite3VtabImportErrmsg(p, pVtab);
7935   if( rc ) goto abort_due_to_error;
7936   res = pModule->xEof(pVCur);
7937   pCur->nullRow = 0;
7938   VdbeBranchTaken(res!=0,2);
7939   if( res ) goto jump_to_p2;
7940   break;
7941 }
7942 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7943 
7944 #ifndef SQLITE_OMIT_VIRTUALTABLE
7945 /* Opcode: VColumn P1 P2 P3 * P5
7946 ** Synopsis: r[P3]=vcolumn(P2)
7947 **
7948 ** Store in register P3 the value of the P2-th column of
7949 ** the current row of the virtual-table of cursor P1.
7950 **
7951 ** If the VColumn opcode is being used to fetch the value of
7952 ** an unchanging column during an UPDATE operation, then the P5
7953 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7954 ** function to return true inside the xColumn method of the virtual
7955 ** table implementation.  The P5 column might also contain other
7956 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7957 ** unused by OP_VColumn.
7958 */
7959 case OP_VColumn: {
7960   sqlite3_vtab *pVtab;
7961   const sqlite3_module *pModule;
7962   Mem *pDest;
7963   sqlite3_context sContext;
7964 
7965   VdbeCursor *pCur = p->apCsr[pOp->p1];
7966   assert( pCur!=0 );
7967   assert( pCur->eCurType==CURTYPE_VTAB );
7968   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7969   pDest = &aMem[pOp->p3];
7970   memAboutToChange(p, pDest);
7971   if( pCur->nullRow ){
7972     sqlite3VdbeMemSetNull(pDest);
7973     break;
7974   }
7975   pVtab = pCur->uc.pVCur->pVtab;
7976   pModule = pVtab->pModule;
7977   assert( pModule->xColumn );
7978   memset(&sContext, 0, sizeof(sContext));
7979   sContext.pOut = pDest;
7980   sContext.enc = encoding;
7981   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7982   if( pOp->p5 & OPFLAG_NOCHNG ){
7983     sqlite3VdbeMemSetNull(pDest);
7984     pDest->flags = MEM_Null|MEM_Zero;
7985     pDest->u.nZero = 0;
7986   }else{
7987     MemSetTypeFlag(pDest, MEM_Null);
7988   }
7989   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7990   sqlite3VtabImportErrmsg(p, pVtab);
7991   if( sContext.isError>0 ){
7992     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7993     rc = sContext.isError;
7994   }
7995   sqlite3VdbeChangeEncoding(pDest, encoding);
7996   REGISTER_TRACE(pOp->p3, pDest);
7997   UPDATE_MAX_BLOBSIZE(pDest);
7998 
7999   if( rc ) goto abort_due_to_error;
8000   break;
8001 }
8002 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8003 
8004 #ifndef SQLITE_OMIT_VIRTUALTABLE
8005 /* Opcode: VNext P1 P2 * * *
8006 **
8007 ** Advance virtual table P1 to the next row in its result set and
8008 ** jump to instruction P2.  Or, if the virtual table has reached
8009 ** the end of its result set, then fall through to the next instruction.
8010 */
8011 case OP_VNext: {   /* jump */
8012   sqlite3_vtab *pVtab;
8013   const sqlite3_module *pModule;
8014   int res;
8015   VdbeCursor *pCur;
8016 
8017   pCur = p->apCsr[pOp->p1];
8018   assert( pCur!=0 );
8019   assert( pCur->eCurType==CURTYPE_VTAB );
8020   if( pCur->nullRow ){
8021     break;
8022   }
8023   pVtab = pCur->uc.pVCur->pVtab;
8024   pModule = pVtab->pModule;
8025   assert( pModule->xNext );
8026 
8027   /* Invoke the xNext() method of the module. There is no way for the
8028   ** underlying implementation to return an error if one occurs during
8029   ** xNext(). Instead, if an error occurs, true is returned (indicating that
8030   ** data is available) and the error code returned when xColumn or
8031   ** some other method is next invoked on the save virtual table cursor.
8032   */
8033   rc = pModule->xNext(pCur->uc.pVCur);
8034   sqlite3VtabImportErrmsg(p, pVtab);
8035   if( rc ) goto abort_due_to_error;
8036   res = pModule->xEof(pCur->uc.pVCur);
8037   VdbeBranchTaken(!res,2);
8038   if( !res ){
8039     /* If there is data, jump to P2 */
8040     goto jump_to_p2_and_check_for_interrupt;
8041   }
8042   goto check_for_interrupt;
8043 }
8044 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8045 
8046 #ifndef SQLITE_OMIT_VIRTUALTABLE
8047 /* Opcode: VRename P1 * * P4 *
8048 **
8049 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8050 ** This opcode invokes the corresponding xRename method. The value
8051 ** in register P1 is passed as the zName argument to the xRename method.
8052 */
8053 case OP_VRename: {
8054   sqlite3_vtab *pVtab;
8055   Mem *pName;
8056   int isLegacy;
8057 
8058   isLegacy = (db->flags & SQLITE_LegacyAlter);
8059   db->flags |= SQLITE_LegacyAlter;
8060   pVtab = pOp->p4.pVtab->pVtab;
8061   pName = &aMem[pOp->p1];
8062   assert( pVtab->pModule->xRename );
8063   assert( memIsValid(pName) );
8064   assert( p->readOnly==0 );
8065   REGISTER_TRACE(pOp->p1, pName);
8066   assert( pName->flags & MEM_Str );
8067   testcase( pName->enc==SQLITE_UTF8 );
8068   testcase( pName->enc==SQLITE_UTF16BE );
8069   testcase( pName->enc==SQLITE_UTF16LE );
8070   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8071   if( rc ) goto abort_due_to_error;
8072   rc = pVtab->pModule->xRename(pVtab, pName->z);
8073   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8074   sqlite3VtabImportErrmsg(p, pVtab);
8075   p->expired = 0;
8076   if( rc ) goto abort_due_to_error;
8077   break;
8078 }
8079 #endif
8080 
8081 #ifndef SQLITE_OMIT_VIRTUALTABLE
8082 /* Opcode: VUpdate P1 P2 P3 P4 P5
8083 ** Synopsis: data=r[P3@P2]
8084 **
8085 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8086 ** This opcode invokes the corresponding xUpdate method. P2 values
8087 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8088 ** invocation. The value in register (P3+P2-1) corresponds to the
8089 ** p2th element of the argv array passed to xUpdate.
8090 **
8091 ** The xUpdate method will do a DELETE or an INSERT or both.
8092 ** The argv[0] element (which corresponds to memory cell P3)
8093 ** is the rowid of a row to delete.  If argv[0] is NULL then no
8094 ** deletion occurs.  The argv[1] element is the rowid of the new
8095 ** row.  This can be NULL to have the virtual table select the new
8096 ** rowid for itself.  The subsequent elements in the array are
8097 ** the values of columns in the new row.
8098 **
8099 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
8100 ** a row to delete.
8101 **
8102 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8103 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8104 ** is set to the value of the rowid for the row just inserted.
8105 **
8106 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8107 ** apply in the case of a constraint failure on an insert or update.
8108 */
8109 case OP_VUpdate: {
8110   sqlite3_vtab *pVtab;
8111   const sqlite3_module *pModule;
8112   int nArg;
8113   int i;
8114   sqlite_int64 rowid = 0;
8115   Mem **apArg;
8116   Mem *pX;
8117 
8118   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
8119        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8120   );
8121   assert( p->readOnly==0 );
8122   if( db->mallocFailed ) goto no_mem;
8123   sqlite3VdbeIncrWriteCounter(p, 0);
8124   pVtab = pOp->p4.pVtab->pVtab;
8125   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8126     rc = SQLITE_LOCKED;
8127     goto abort_due_to_error;
8128   }
8129   pModule = pVtab->pModule;
8130   nArg = pOp->p2;
8131   assert( pOp->p4type==P4_VTAB );
8132   if( ALWAYS(pModule->xUpdate) ){
8133     u8 vtabOnConflict = db->vtabOnConflict;
8134     apArg = p->apArg;
8135     pX = &aMem[pOp->p3];
8136     for(i=0; i<nArg; i++){
8137       assert( memIsValid(pX) );
8138       memAboutToChange(p, pX);
8139       apArg[i] = pX;
8140       pX++;
8141     }
8142     db->vtabOnConflict = pOp->p5;
8143     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8144     db->vtabOnConflict = vtabOnConflict;
8145     sqlite3VtabImportErrmsg(p, pVtab);
8146     if( rc==SQLITE_OK && pOp->p1 ){
8147       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8148       db->lastRowid = rowid;
8149     }
8150     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8151       if( pOp->p5==OE_Ignore ){
8152         rc = SQLITE_OK;
8153       }else{
8154         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8155       }
8156     }else{
8157       p->nChange++;
8158     }
8159     if( rc ) goto abort_due_to_error;
8160   }
8161   break;
8162 }
8163 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8164 
8165 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8166 /* Opcode: Pagecount P1 P2 * * *
8167 **
8168 ** Write the current number of pages in database P1 to memory cell P2.
8169 */
8170 case OP_Pagecount: {            /* out2 */
8171   pOut = out2Prerelease(p, pOp);
8172   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8173   break;
8174 }
8175 #endif
8176 
8177 
8178 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8179 /* Opcode: MaxPgcnt P1 P2 P3 * *
8180 **
8181 ** Try to set the maximum page count for database P1 to the value in P3.
8182 ** Do not let the maximum page count fall below the current page count and
8183 ** do not change the maximum page count value if P3==0.
8184 **
8185 ** Store the maximum page count after the change in register P2.
8186 */
8187 case OP_MaxPgcnt: {            /* out2 */
8188   unsigned int newMax;
8189   Btree *pBt;
8190 
8191   pOut = out2Prerelease(p, pOp);
8192   pBt = db->aDb[pOp->p1].pBt;
8193   newMax = 0;
8194   if( pOp->p3 ){
8195     newMax = sqlite3BtreeLastPage(pBt);
8196     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8197   }
8198   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8199   break;
8200 }
8201 #endif
8202 
8203 /* Opcode: Function P1 P2 P3 P4 *
8204 ** Synopsis: r[P3]=func(r[P2@NP])
8205 **
8206 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8207 ** contains a pointer to the function to be run) with arguments taken
8208 ** from register P2 and successors.  The number of arguments is in
8209 ** the sqlite3_context object that P4 points to.
8210 ** The result of the function is stored
8211 ** in register P3.  Register P3 must not be one of the function inputs.
8212 **
8213 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8214 ** function was determined to be constant at compile time. If the first
8215 ** argument was constant then bit 0 of P1 is set. This is used to determine
8216 ** whether meta data associated with a user function argument using the
8217 ** sqlite3_set_auxdata() API may be safely retained until the next
8218 ** invocation of this opcode.
8219 **
8220 ** See also: AggStep, AggFinal, PureFunc
8221 */
8222 /* Opcode: PureFunc P1 P2 P3 P4 *
8223 ** Synopsis: r[P3]=func(r[P2@NP])
8224 **
8225 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8226 ** contains a pointer to the function to be run) with arguments taken
8227 ** from register P2 and successors.  The number of arguments is in
8228 ** the sqlite3_context object that P4 points to.
8229 ** The result of the function is stored
8230 ** in register P3.  Register P3 must not be one of the function inputs.
8231 **
8232 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8233 ** function was determined to be constant at compile time. If the first
8234 ** argument was constant then bit 0 of P1 is set. This is used to determine
8235 ** whether meta data associated with a user function argument using the
8236 ** sqlite3_set_auxdata() API may be safely retained until the next
8237 ** invocation of this opcode.
8238 **
8239 ** This opcode works exactly like OP_Function.  The only difference is in
8240 ** its name.  This opcode is used in places where the function must be
8241 ** purely non-deterministic.  Some built-in date/time functions can be
8242 ** either determinitic of non-deterministic, depending on their arguments.
8243 ** When those function are used in a non-deterministic way, they will check
8244 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8245 ** if they were, they throw an error.
8246 **
8247 ** See also: AggStep, AggFinal, Function
8248 */
8249 case OP_PureFunc:              /* group */
8250 case OP_Function: {            /* group */
8251   int i;
8252   sqlite3_context *pCtx;
8253 
8254   assert( pOp->p4type==P4_FUNCCTX );
8255   pCtx = pOp->p4.pCtx;
8256 
8257   /* If this function is inside of a trigger, the register array in aMem[]
8258   ** might change from one evaluation to the next.  The next block of code
8259   ** checks to see if the register array has changed, and if so it
8260   ** reinitializes the relavant parts of the sqlite3_context object */
8261   pOut = &aMem[pOp->p3];
8262   if( pCtx->pOut != pOut ){
8263     pCtx->pVdbe = p;
8264     pCtx->pOut = pOut;
8265     pCtx->enc = encoding;
8266     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8267   }
8268   assert( pCtx->pVdbe==p );
8269 
8270   memAboutToChange(p, pOut);
8271 #ifdef SQLITE_DEBUG
8272   for(i=0; i<pCtx->argc; i++){
8273     assert( memIsValid(pCtx->argv[i]) );
8274     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8275   }
8276 #endif
8277   MemSetTypeFlag(pOut, MEM_Null);
8278   assert( pCtx->isError==0 );
8279   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8280 
8281   /* If the function returned an error, throw an exception */
8282   if( pCtx->isError ){
8283     if( pCtx->isError>0 ){
8284       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8285       rc = pCtx->isError;
8286     }
8287     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8288     pCtx->isError = 0;
8289     if( rc ) goto abort_due_to_error;
8290   }
8291 
8292   assert( (pOut->flags&MEM_Str)==0
8293        || pOut->enc==encoding
8294        || db->mallocFailed );
8295   assert( !sqlite3VdbeMemTooBig(pOut) );
8296 
8297   REGISTER_TRACE(pOp->p3, pOut);
8298   UPDATE_MAX_BLOBSIZE(pOut);
8299   break;
8300 }
8301 
8302 /* Opcode: FilterAdd P1 * P3 P4 *
8303 ** Synopsis: filter(P1) += key(P3@P4)
8304 **
8305 ** Compute a hash on the P4 registers starting with r[P3] and
8306 ** add that hash to the bloom filter contained in r[P1].
8307 */
8308 case OP_FilterAdd: {
8309   u64 h;
8310 
8311   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8312   pIn1 = &aMem[pOp->p1];
8313   assert( pIn1->flags & MEM_Blob );
8314   assert( pIn1->n>0 );
8315   h = filterHash(aMem, pOp);
8316 #ifdef SQLITE_DEBUG
8317   if( db->flags&SQLITE_VdbeTrace ){
8318     int ii;
8319     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8320       registerTrace(ii, &aMem[ii]);
8321     }
8322     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8323   }
8324 #endif
8325   h %= pIn1->n;
8326   pIn1->z[h/8] |= 1<<(h&7);
8327   break;
8328 }
8329 
8330 /* Opcode: Filter P1 P2 P3 P4 *
8331 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8332 **
8333 ** Compute a hash on the key contained in the P4 registers starting
8334 ** with r[P3].  Check to see if that hash is found in the
8335 ** bloom filter hosted by register P1.  If it is not present then
8336 ** maybe jump to P2.  Otherwise fall through.
8337 **
8338 ** False negatives are harmless.  It is always safe to fall through,
8339 ** even if the value is in the bloom filter.  A false negative causes
8340 ** more CPU cycles to be used, but it should still yield the correct
8341 ** answer.  However, an incorrect answer may well arise from a
8342 ** false positive - if the jump is taken when it should fall through.
8343 */
8344 case OP_Filter: {          /* jump */
8345   u64 h;
8346 
8347   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8348   pIn1 = &aMem[pOp->p1];
8349   assert( (pIn1->flags & MEM_Blob)!=0 );
8350   assert( pIn1->n >= 1 );
8351   h = filterHash(aMem, pOp);
8352 #ifdef SQLITE_DEBUG
8353   if( db->flags&SQLITE_VdbeTrace ){
8354     int ii;
8355     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8356       registerTrace(ii, &aMem[ii]);
8357     }
8358     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8359   }
8360 #endif
8361   h %= pIn1->n;
8362   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8363     VdbeBranchTaken(1, 2);
8364     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8365     goto jump_to_p2;
8366   }else{
8367     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8368     VdbeBranchTaken(0, 2);
8369   }
8370   break;
8371 }
8372 
8373 /* Opcode: Trace P1 P2 * P4 *
8374 **
8375 ** Write P4 on the statement trace output if statement tracing is
8376 ** enabled.
8377 **
8378 ** Operand P1 must be 0x7fffffff and P2 must positive.
8379 */
8380 /* Opcode: Init P1 P2 P3 P4 *
8381 ** Synopsis: Start at P2
8382 **
8383 ** Programs contain a single instance of this opcode as the very first
8384 ** opcode.
8385 **
8386 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8387 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8388 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8389 **
8390 ** If P2 is not zero, jump to instruction P2.
8391 **
8392 ** Increment the value of P1 so that OP_Once opcodes will jump the
8393 ** first time they are evaluated for this run.
8394 **
8395 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8396 ** error is encountered.
8397 */
8398 case OP_Trace:
8399 case OP_Init: {          /* jump */
8400   int i;
8401 #ifndef SQLITE_OMIT_TRACE
8402   char *zTrace;
8403 #endif
8404 
8405   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8406   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8407   **
8408   ** This assert() provides evidence for:
8409   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8410   ** would have been returned by the legacy sqlite3_trace() interface by
8411   ** using the X argument when X begins with "--" and invoking
8412   ** sqlite3_expanded_sql(P) otherwise.
8413   */
8414   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8415 
8416   /* OP_Init is always instruction 0 */
8417   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8418 
8419 #ifndef SQLITE_OMIT_TRACE
8420   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8421    && p->minWriteFileFormat!=254  /* tag-20220401a */
8422    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8423   ){
8424 #ifndef SQLITE_OMIT_DEPRECATED
8425     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8426       char *z = sqlite3VdbeExpandSql(p, zTrace);
8427       db->trace.xLegacy(db->pTraceArg, z);
8428       sqlite3_free(z);
8429     }else
8430 #endif
8431     if( db->nVdbeExec>1 ){
8432       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8433       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8434       sqlite3DbFree(db, z);
8435     }else{
8436       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8437     }
8438   }
8439 #ifdef SQLITE_USE_FCNTL_TRACE
8440   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8441   if( zTrace ){
8442     int j;
8443     for(j=0; j<db->nDb; j++){
8444       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8445       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8446     }
8447   }
8448 #endif /* SQLITE_USE_FCNTL_TRACE */
8449 #ifdef SQLITE_DEBUG
8450   if( (db->flags & SQLITE_SqlTrace)!=0
8451    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8452   ){
8453     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8454   }
8455 #endif /* SQLITE_DEBUG */
8456 #endif /* SQLITE_OMIT_TRACE */
8457   assert( pOp->p2>0 );
8458   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8459     if( pOp->opcode==OP_Trace ) break;
8460     for(i=1; i<p->nOp; i++){
8461       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8462     }
8463     pOp->p1 = 0;
8464   }
8465   pOp->p1++;
8466   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8467   goto jump_to_p2;
8468 }
8469 
8470 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8471 /* Opcode: CursorHint P1 * * P4 *
8472 **
8473 ** Provide a hint to cursor P1 that it only needs to return rows that
8474 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8475 ** to values currently held in registers.  TK_COLUMN terms in the P4
8476 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8477 */
8478 case OP_CursorHint: {
8479   VdbeCursor *pC;
8480 
8481   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8482   assert( pOp->p4type==P4_EXPR );
8483   pC = p->apCsr[pOp->p1];
8484   if( pC ){
8485     assert( pC->eCurType==CURTYPE_BTREE );
8486     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8487                            pOp->p4.pExpr, aMem);
8488   }
8489   break;
8490 }
8491 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8492 
8493 #ifdef SQLITE_DEBUG
8494 /* Opcode:  Abortable   * * * * *
8495 **
8496 ** Verify that an Abort can happen.  Assert if an Abort at this point
8497 ** might cause database corruption.  This opcode only appears in debugging
8498 ** builds.
8499 **
8500 ** An Abort is safe if either there have been no writes, or if there is
8501 ** an active statement journal.
8502 */
8503 case OP_Abortable: {
8504   sqlite3VdbeAssertAbortable(p);
8505   break;
8506 }
8507 #endif
8508 
8509 #ifdef SQLITE_DEBUG
8510 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8511 ** Synopsis: release r[P1@P2] mask P3
8512 **
8513 ** Release registers from service.  Any content that was in the
8514 ** the registers is unreliable after this opcode completes.
8515 **
8516 ** The registers released will be the P2 registers starting at P1,
8517 ** except if bit ii of P3 set, then do not release register P1+ii.
8518 ** In other words, P3 is a mask of registers to preserve.
8519 **
8520 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8521 ** that if the content of the released register was set using OP_SCopy,
8522 ** a change to the value of the source register for the OP_SCopy will no longer
8523 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8524 **
8525 ** If P5 is set, then all released registers have their type set
8526 ** to MEM_Undefined so that any subsequent attempt to read the released
8527 ** register (before it is reinitialized) will generate an assertion fault.
8528 **
8529 ** P5 ought to be set on every call to this opcode.
8530 ** However, there are places in the code generator will release registers
8531 ** before their are used, under the (valid) assumption that the registers
8532 ** will not be reallocated for some other purpose before they are used and
8533 ** hence are safe to release.
8534 **
8535 ** This opcode is only available in testing and debugging builds.  It is
8536 ** not generated for release builds.  The purpose of this opcode is to help
8537 ** validate the generated bytecode.  This opcode does not actually contribute
8538 ** to computing an answer.
8539 */
8540 case OP_ReleaseReg: {
8541   Mem *pMem;
8542   int i;
8543   u32 constMask;
8544   assert( pOp->p1>0 );
8545   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8546   pMem = &aMem[pOp->p1];
8547   constMask = pOp->p3;
8548   for(i=0; i<pOp->p2; i++, pMem++){
8549     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8550       pMem->pScopyFrom = 0;
8551       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8552     }
8553   }
8554   break;
8555 }
8556 #endif
8557 
8558 /* Opcode: Noop * * * * *
8559 **
8560 ** Do nothing.  This instruction is often useful as a jump
8561 ** destination.
8562 */
8563 /*
8564 ** The magic Explain opcode are only inserted when explain==2 (which
8565 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8566 ** This opcode records information from the optimizer.  It is the
8567 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8568 */
8569 default: {          /* This is really OP_Noop, OP_Explain */
8570   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8571 
8572   break;
8573 }
8574 
8575 /*****************************************************************************
8576 ** The cases of the switch statement above this line should all be indented
8577 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8578 ** readability.  From this point on down, the normal indentation rules are
8579 ** restored.
8580 *****************************************************************************/
8581     }
8582 
8583 #ifdef VDBE_PROFILE
8584     {
8585       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8586       if( endTime>start ) pOrigOp->cycles += endTime - start;
8587       pOrigOp->cnt++;
8588     }
8589 #endif
8590 
8591     /* The following code adds nothing to the actual functionality
8592     ** of the program.  It is only here for testing and debugging.
8593     ** On the other hand, it does burn CPU cycles every time through
8594     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8595     */
8596 #ifndef NDEBUG
8597     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8598 
8599 #ifdef SQLITE_DEBUG
8600     if( db->flags & SQLITE_VdbeTrace ){
8601       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8602       if( rc!=0 ) printf("rc=%d\n",rc);
8603       if( opProperty & (OPFLG_OUT2) ){
8604         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8605       }
8606       if( opProperty & OPFLG_OUT3 ){
8607         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8608       }
8609       if( opProperty==0xff ){
8610         /* Never happens.  This code exists to avoid a harmless linkage
8611         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8612         ** used. */
8613         sqlite3VdbeRegisterDump(p);
8614       }
8615     }
8616 #endif  /* SQLITE_DEBUG */
8617 #endif  /* NDEBUG */
8618   }  /* The end of the for(;;) loop the loops through opcodes */
8619 
8620   /* If we reach this point, it means that execution is finished with
8621   ** an error of some kind.
8622   */
8623 abort_due_to_error:
8624   if( db->mallocFailed ){
8625     rc = SQLITE_NOMEM_BKPT;
8626   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8627     rc = SQLITE_CORRUPT_BKPT;
8628   }
8629   assert( rc );
8630 #ifdef SQLITE_DEBUG
8631   if( db->flags & SQLITE_VdbeTrace ){
8632     const char *zTrace = p->zSql;
8633     if( zTrace==0 ){
8634       if( aOp[0].opcode==OP_Trace ){
8635         zTrace = aOp[0].p4.z;
8636       }
8637       if( zTrace==0 ) zTrace = "???";
8638     }
8639     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8640   }
8641 #endif
8642   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8643     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8644   }
8645   p->rc = rc;
8646   sqlite3SystemError(db, rc);
8647   testcase( sqlite3GlobalConfig.xLog!=0 );
8648   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8649                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8650   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8651   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8652   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8653     db->flags |= SQLITE_CorruptRdOnly;
8654   }
8655   rc = SQLITE_ERROR;
8656   if( resetSchemaOnFault>0 ){
8657     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8658   }
8659 
8660   /* This is the only way out of this procedure.  We have to
8661   ** release the mutexes on btrees that were acquired at the
8662   ** top. */
8663 vdbe_return:
8664 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8665   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8666     nProgressLimit += db->nProgressOps;
8667     if( db->xProgress(db->pProgressArg) ){
8668       nProgressLimit = LARGEST_UINT64;
8669       rc = SQLITE_INTERRUPT;
8670       goto abort_due_to_error;
8671     }
8672   }
8673 #endif
8674   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8675   sqlite3VdbeLeave(p);
8676   assert( rc!=SQLITE_OK || nExtraDelete==0
8677        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8678   );
8679   return rc;
8680 
8681   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8682   ** is encountered.
8683   */
8684 too_big:
8685   sqlite3VdbeError(p, "string or blob too big");
8686   rc = SQLITE_TOOBIG;
8687   goto abort_due_to_error;
8688 
8689   /* Jump to here if a malloc() fails.
8690   */
8691 no_mem:
8692   sqlite3OomFault(db);
8693   sqlite3VdbeError(p, "out of memory");
8694   rc = SQLITE_NOMEM_BKPT;
8695   goto abort_due_to_error;
8696 
8697   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8698   ** flag.
8699   */
8700 abort_due_to_interrupt:
8701   assert( AtomicLoad(&db->u1.isInterrupted) );
8702   rc = SQLITE_INTERRUPT;
8703   goto abort_due_to_error;
8704 }
8705