xref: /sqlite-3.40.0/src/vdbe.c (revision cd423525)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
95 */
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
99 
100 /*
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
103 */
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
109 
110 /*
111 ** Invoke the VDBE coverage callback, if that callback is defined.  This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
114 **
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go.  It is usually 2.  "I" is the direction the branch
117 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
118 ** second alternative branch is taken.
119 **
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction.  This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation).  Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
125 */
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132       M = iSrcLine;
133       /* Assert the truth of VdbeCoverageAlwaysTaken() and
134       ** VdbeCoverageNeverTaken() */
135       assert( (M & I)==I );
136     }else{
137       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
138       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139                                       iSrcLine,I,M);
140     }
141   }
142 #endif
143 
144 /*
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
147 */
148 #define Stringify(P, enc) \
149    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150      { goto no_mem; }
151 
152 /*
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string.  Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
158 **
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls.  In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */
163 #define Deephemeralize(P) \
164    if( ((P)->flags&MEM_Ephem)!=0 \
165        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166 
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
169 
170 /*
171 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
172 ** if we run out of memory.
173 */
174 static VdbeCursor *allocateCursor(
175   Vdbe *p,              /* The virtual machine */
176   int iCur,             /* Index of the new VdbeCursor */
177   int nField,           /* Number of fields in the table or index */
178   int iDb,              /* Database the cursor belongs to, or -1 */
179   u8 eCurType           /* Type of the new cursor */
180 ){
181   /* Find the memory cell that will be used to store the blob of memory
182   ** required for this VdbeCursor structure. It is convenient to use a
183   ** vdbe memory cell to manage the memory allocation required for a
184   ** VdbeCursor structure for the following reasons:
185   **
186   **   * Sometimes cursor numbers are used for a couple of different
187   **     purposes in a vdbe program. The different uses might require
188   **     different sized allocations. Memory cells provide growable
189   **     allocations.
190   **
191   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192   **     be freed lazily via the sqlite3_release_memory() API. This
193   **     minimizes the number of malloc calls made by the system.
194   **
195   ** Memory cells for cursors are allocated at the top of the address
196   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198   */
199   Mem *pMem = &p->aMem[p->nMem-iCur];
200 
201   int nByte;
202   VdbeCursor *pCx = 0;
203   nByte =
204       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
206 
207   assert( iCur<p->nCursor );
208   if( p->apCsr[iCur] ){
209     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210     p->apCsr[iCur] = 0;
211   }
212   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214     memset(pCx, 0, sizeof(VdbeCursor));
215     pCx->eCurType = eCurType;
216     pCx->iDb = iDb;
217     pCx->nField = nField;
218     pCx->aOffset = &pCx->aType[nField];
219     if( eCurType==CURTYPE_BTREE ){
220       pCx->uc.pCursor = (BtCursor*)
221           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
222       sqlite3BtreeCursorZero(pCx->uc.pCursor);
223     }
224   }
225   return pCx;
226 }
227 
228 /*
229 ** Try to convert a value into a numeric representation if we can
230 ** do so without loss of information.  In other words, if the string
231 ** looks like a number, convert it into a number.  If it does not
232 ** look like a number, leave it alone.
233 **
234 ** If the bTryForInt flag is true, then extra effort is made to give
235 ** an integer representation.  Strings that look like floating point
236 ** values but which have no fractional component (example: '48.00')
237 ** will have a MEM_Int representation when bTryForInt is true.
238 **
239 ** If bTryForInt is false, then if the input string contains a decimal
240 ** point or exponential notation, the result is only MEM_Real, even
241 ** if there is an exact integer representation of the quantity.
242 */
243 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
244   double rValue;
245   i64 iValue;
246   u8 enc = pRec->enc;
247   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
248   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
249   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
250     pRec->u.i = iValue;
251     pRec->flags |= MEM_Int;
252   }else{
253     pRec->u.r = rValue;
254     pRec->flags |= MEM_Real;
255     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
256   }
257 }
258 
259 /*
260 ** Processing is determine by the affinity parameter:
261 **
262 ** SQLITE_AFF_INTEGER:
263 ** SQLITE_AFF_REAL:
264 ** SQLITE_AFF_NUMERIC:
265 **    Try to convert pRec to an integer representation or a
266 **    floating-point representation if an integer representation
267 **    is not possible.  Note that the integer representation is
268 **    always preferred, even if the affinity is REAL, because
269 **    an integer representation is more space efficient on disk.
270 **
271 ** SQLITE_AFF_TEXT:
272 **    Convert pRec to a text representation.
273 **
274 ** SQLITE_AFF_BLOB:
275 **    No-op.  pRec is unchanged.
276 */
277 static void applyAffinity(
278   Mem *pRec,          /* The value to apply affinity to */
279   char affinity,      /* The affinity to be applied */
280   u8 enc              /* Use this text encoding */
281 ){
282   if( affinity>=SQLITE_AFF_NUMERIC ){
283     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
284              || affinity==SQLITE_AFF_NUMERIC );
285     if( (pRec->flags & MEM_Int)==0 ){
286       if( (pRec->flags & MEM_Real)==0 ){
287         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
288       }else{
289         sqlite3VdbeIntegerAffinity(pRec);
290       }
291     }
292   }else if( affinity==SQLITE_AFF_TEXT ){
293     /* Only attempt the conversion to TEXT if there is an integer or real
294     ** representation (blob and NULL do not get converted) but no string
295     ** representation.
296     */
297     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
298       sqlite3VdbeMemStringify(pRec, enc, 1);
299     }
300     pRec->flags &= ~(MEM_Real|MEM_Int);
301   }
302 }
303 
304 /*
305 ** Try to convert the type of a function argument or a result column
306 ** into a numeric representation.  Use either INTEGER or REAL whichever
307 ** is appropriate.  But only do the conversion if it is possible without
308 ** loss of information and return the revised type of the argument.
309 */
310 int sqlite3_value_numeric_type(sqlite3_value *pVal){
311   int eType = sqlite3_value_type(pVal);
312   if( eType==SQLITE_TEXT ){
313     Mem *pMem = (Mem*)pVal;
314     applyNumericAffinity(pMem, 0);
315     eType = sqlite3_value_type(pVal);
316   }
317   return eType;
318 }
319 
320 /*
321 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
322 ** not the internal Mem* type.
323 */
324 void sqlite3ValueApplyAffinity(
325   sqlite3_value *pVal,
326   u8 affinity,
327   u8 enc
328 ){
329   applyAffinity((Mem *)pVal, affinity, enc);
330 }
331 
332 /*
333 ** pMem currently only holds a string type (or maybe a BLOB that we can
334 ** interpret as a string if we want to).  Compute its corresponding
335 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
336 ** accordingly.
337 */
338 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
339   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
340   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
341   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
342     return 0;
343   }
344   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
345     return MEM_Int;
346   }
347   return MEM_Real;
348 }
349 
350 /*
351 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
352 ** none.
353 **
354 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
355 ** But it does set pMem->u.r and pMem->u.i appropriately.
356 */
357 static u16 numericType(Mem *pMem){
358   if( pMem->flags & (MEM_Int|MEM_Real) ){
359     return pMem->flags & (MEM_Int|MEM_Real);
360   }
361   if( pMem->flags & (MEM_Str|MEM_Blob) ){
362     return computeNumericType(pMem);
363   }
364   return 0;
365 }
366 
367 #ifdef SQLITE_DEBUG
368 /*
369 ** Write a nice string representation of the contents of cell pMem
370 ** into buffer zBuf, length nBuf.
371 */
372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
373   char *zCsr = zBuf;
374   int f = pMem->flags;
375 
376   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
377 
378   if( f&MEM_Blob ){
379     int i;
380     char c;
381     if( f & MEM_Dyn ){
382       c = 'z';
383       assert( (f & (MEM_Static|MEM_Ephem))==0 );
384     }else if( f & MEM_Static ){
385       c = 't';
386       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
387     }else if( f & MEM_Ephem ){
388       c = 'e';
389       assert( (f & (MEM_Static|MEM_Dyn))==0 );
390     }else{
391       c = 's';
392     }
393 
394     sqlite3_snprintf(100, zCsr, "%c", c);
395     zCsr += sqlite3Strlen30(zCsr);
396     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
397     zCsr += sqlite3Strlen30(zCsr);
398     for(i=0; i<16 && i<pMem->n; i++){
399       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
400       zCsr += sqlite3Strlen30(zCsr);
401     }
402     for(i=0; i<16 && i<pMem->n; i++){
403       char z = pMem->z[i];
404       if( z<32 || z>126 ) *zCsr++ = '.';
405       else *zCsr++ = z;
406     }
407 
408     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
409     zCsr += sqlite3Strlen30(zCsr);
410     if( f & MEM_Zero ){
411       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
412       zCsr += sqlite3Strlen30(zCsr);
413     }
414     *zCsr = '\0';
415   }else if( f & MEM_Str ){
416     int j, k;
417     zBuf[0] = ' ';
418     if( f & MEM_Dyn ){
419       zBuf[1] = 'z';
420       assert( (f & (MEM_Static|MEM_Ephem))==0 );
421     }else if( f & MEM_Static ){
422       zBuf[1] = 't';
423       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
424     }else if( f & MEM_Ephem ){
425       zBuf[1] = 'e';
426       assert( (f & (MEM_Static|MEM_Dyn))==0 );
427     }else{
428       zBuf[1] = 's';
429     }
430     k = 2;
431     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
432     k += sqlite3Strlen30(&zBuf[k]);
433     zBuf[k++] = '[';
434     for(j=0; j<15 && j<pMem->n; j++){
435       u8 c = pMem->z[j];
436       if( c>=0x20 && c<0x7f ){
437         zBuf[k++] = c;
438       }else{
439         zBuf[k++] = '.';
440       }
441     }
442     zBuf[k++] = ']';
443     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
444     k += sqlite3Strlen30(&zBuf[k]);
445     zBuf[k++] = 0;
446   }
447 }
448 #endif
449 
450 #ifdef SQLITE_DEBUG
451 /*
452 ** Print the value of a register for tracing purposes:
453 */
454 static void memTracePrint(Mem *p){
455   if( p->flags & MEM_Undefined ){
456     printf(" undefined");
457   }else if( p->flags & MEM_Null ){
458     printf(" NULL");
459   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
460     printf(" si:%lld", p->u.i);
461   }else if( p->flags & MEM_Int ){
462     printf(" i:%lld", p->u.i);
463 #ifndef SQLITE_OMIT_FLOATING_POINT
464   }else if( p->flags & MEM_Real ){
465     printf(" r:%g", p->u.r);
466 #endif
467   }else if( p->flags & MEM_RowSet ){
468     printf(" (rowset)");
469   }else{
470     char zBuf[200];
471     sqlite3VdbeMemPrettyPrint(p, zBuf);
472     printf(" %s", zBuf);
473   }
474   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
475 }
476 static void registerTrace(int iReg, Mem *p){
477   printf("REG[%d] = ", iReg);
478   memTracePrint(p);
479   printf("\n");
480 }
481 #endif
482 
483 #ifdef SQLITE_DEBUG
484 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
485 #else
486 #  define REGISTER_TRACE(R,M)
487 #endif
488 
489 
490 #ifdef VDBE_PROFILE
491 
492 /*
493 ** hwtime.h contains inline assembler code for implementing
494 ** high-performance timing routines.
495 */
496 #include "hwtime.h"
497 
498 #endif
499 
500 #ifndef NDEBUG
501 /*
502 ** This function is only called from within an assert() expression. It
503 ** checks that the sqlite3.nTransaction variable is correctly set to
504 ** the number of non-transaction savepoints currently in the
505 ** linked list starting at sqlite3.pSavepoint.
506 **
507 ** Usage:
508 **
509 **     assert( checkSavepointCount(db) );
510 */
511 static int checkSavepointCount(sqlite3 *db){
512   int n = 0;
513   Savepoint *p;
514   for(p=db->pSavepoint; p; p=p->pNext) n++;
515   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
516   return 1;
517 }
518 #endif
519 
520 /*
521 ** Return the register of pOp->p2 after first preparing it to be
522 ** overwritten with an integer value.
523 */
524 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
525   sqlite3VdbeMemSetNull(pOut);
526   pOut->flags = MEM_Int;
527   return pOut;
528 }
529 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
530   Mem *pOut;
531   assert( pOp->p2>0 );
532   assert( pOp->p2<=(p->nMem-p->nCursor) );
533   pOut = &p->aMem[pOp->p2];
534   memAboutToChange(p, pOut);
535   if( VdbeMemDynamic(pOut) ){
536     return out2PrereleaseWithClear(pOut);
537   }else{
538     pOut->flags = MEM_Int;
539     return pOut;
540   }
541 }
542 
543 
544 /*
545 ** Execute as much of a VDBE program as we can.
546 ** This is the core of sqlite3_step().
547 */
548 int sqlite3VdbeExec(
549   Vdbe *p                    /* The VDBE */
550 ){
551   Op *aOp = p->aOp;          /* Copy of p->aOp */
552   Op *pOp = aOp;             /* Current operation */
553 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
554   Op *pOrigOp;               /* Value of pOp at the top of the loop */
555 #endif
556 #ifdef SQLITE_DEBUG
557   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
558 #endif
559   int rc = SQLITE_OK;        /* Value to return */
560   sqlite3 *db = p->db;       /* The database */
561   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
562   u8 encoding = ENC(db);     /* The database encoding */
563   int iCompare = 0;          /* Result of last OP_Compare operation */
564   unsigned nVmStep = 0;      /* Number of virtual machine steps */
565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
566   unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
567 #endif
568   Mem *aMem = p->aMem;       /* Copy of p->aMem */
569   Mem *pIn1 = 0;             /* 1st input operand */
570   Mem *pIn2 = 0;             /* 2nd input operand */
571   Mem *pIn3 = 0;             /* 3rd input operand */
572   Mem *pOut = 0;             /* Output operand */
573   int *aPermute = 0;         /* Permutation of columns for OP_Compare */
574   i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
575 #ifdef VDBE_PROFILE
576   u64 start;                 /* CPU clock count at start of opcode */
577 #endif
578   /*** INSERT STACK UNION HERE ***/
579 
580   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
581   sqlite3VdbeEnter(p);
582   if( p->rc==SQLITE_NOMEM ){
583     /* This happens if a malloc() inside a call to sqlite3_column_text() or
584     ** sqlite3_column_text16() failed.  */
585     goto no_mem;
586   }
587   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
588   assert( p->bIsReader || p->readOnly!=0 );
589   p->rc = SQLITE_OK;
590   p->iCurrentTime = 0;
591   assert( p->explain==0 );
592   p->pResultSet = 0;
593   db->busyHandler.nBusy = 0;
594   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
595   sqlite3VdbeIOTraceSql(p);
596 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
597   if( db->xProgress ){
598     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
599     assert( 0 < db->nProgressOps );
600     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
601   }
602 #endif
603 #ifdef SQLITE_DEBUG
604   sqlite3BeginBenignMalloc();
605   if( p->pc==0
606    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
607   ){
608     int i;
609     int once = 1;
610     sqlite3VdbePrintSql(p);
611     if( p->db->flags & SQLITE_VdbeListing ){
612       printf("VDBE Program Listing:\n");
613       for(i=0; i<p->nOp; i++){
614         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
615       }
616     }
617     if( p->db->flags & SQLITE_VdbeEQP ){
618       for(i=0; i<p->nOp; i++){
619         if( aOp[i].opcode==OP_Explain ){
620           if( once ) printf("VDBE Query Plan:\n");
621           printf("%s\n", aOp[i].p4.z);
622           once = 0;
623         }
624       }
625     }
626     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
627   }
628   sqlite3EndBenignMalloc();
629 #endif
630   for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
631     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
632 #ifdef VDBE_PROFILE
633     start = sqlite3Hwtime();
634 #endif
635     nVmStep++;
636 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
637     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
638 #endif
639 
640     /* Only allow tracing if SQLITE_DEBUG is defined.
641     */
642 #ifdef SQLITE_DEBUG
643     if( db->flags & SQLITE_VdbeTrace ){
644       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
645     }
646 #endif
647 
648 
649     /* Check to see if we need to simulate an interrupt.  This only happens
650     ** if we have a special test build.
651     */
652 #ifdef SQLITE_TEST
653     if( sqlite3_interrupt_count>0 ){
654       sqlite3_interrupt_count--;
655       if( sqlite3_interrupt_count==0 ){
656         sqlite3_interrupt(db);
657       }
658     }
659 #endif
660 
661     /* Sanity checking on other operands */
662 #ifdef SQLITE_DEBUG
663     assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
664     if( (pOp->opflags & OPFLG_IN1)!=0 ){
665       assert( pOp->p1>0 );
666       assert( pOp->p1<=(p->nMem-p->nCursor) );
667       assert( memIsValid(&aMem[pOp->p1]) );
668       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
669       REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
670     }
671     if( (pOp->opflags & OPFLG_IN2)!=0 ){
672       assert( pOp->p2>0 );
673       assert( pOp->p2<=(p->nMem-p->nCursor) );
674       assert( memIsValid(&aMem[pOp->p2]) );
675       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
676       REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
677     }
678     if( (pOp->opflags & OPFLG_IN3)!=0 ){
679       assert( pOp->p3>0 );
680       assert( pOp->p3<=(p->nMem-p->nCursor) );
681       assert( memIsValid(&aMem[pOp->p3]) );
682       assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
683       REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
684     }
685     if( (pOp->opflags & OPFLG_OUT2)!=0 ){
686       assert( pOp->p2>0 );
687       assert( pOp->p2<=(p->nMem-p->nCursor) );
688       memAboutToChange(p, &aMem[pOp->p2]);
689     }
690     if( (pOp->opflags & OPFLG_OUT3)!=0 ){
691       assert( pOp->p3>0 );
692       assert( pOp->p3<=(p->nMem-p->nCursor) );
693       memAboutToChange(p, &aMem[pOp->p3]);
694     }
695 #endif
696 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
697     pOrigOp = pOp;
698 #endif
699 
700     switch( pOp->opcode ){
701 
702 /*****************************************************************************
703 ** What follows is a massive switch statement where each case implements a
704 ** separate instruction in the virtual machine.  If we follow the usual
705 ** indentation conventions, each case should be indented by 6 spaces.  But
706 ** that is a lot of wasted space on the left margin.  So the code within
707 ** the switch statement will break with convention and be flush-left. Another
708 ** big comment (similar to this one) will mark the point in the code where
709 ** we transition back to normal indentation.
710 **
711 ** The formatting of each case is important.  The makefile for SQLite
712 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
713 ** file looking for lines that begin with "case OP_".  The opcodes.h files
714 ** will be filled with #defines that give unique integer values to each
715 ** opcode and the opcodes.c file is filled with an array of strings where
716 ** each string is the symbolic name for the corresponding opcode.  If the
717 ** case statement is followed by a comment of the form "/# same as ... #/"
718 ** that comment is used to determine the particular value of the opcode.
719 **
720 ** Other keywords in the comment that follows each case are used to
721 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
722 ** Keywords include: in1, in2, in3, out2, out3.  See
723 ** the mkopcodeh.awk script for additional information.
724 **
725 ** Documentation about VDBE opcodes is generated by scanning this file
726 ** for lines of that contain "Opcode:".  That line and all subsequent
727 ** comment lines are used in the generation of the opcode.html documentation
728 ** file.
729 **
730 ** SUMMARY:
731 **
732 **     Formatting is important to scripts that scan this file.
733 **     Do not deviate from the formatting style currently in use.
734 **
735 *****************************************************************************/
736 
737 /* Opcode:  Goto * P2 * * *
738 **
739 ** An unconditional jump to address P2.
740 ** The next instruction executed will be
741 ** the one at index P2 from the beginning of
742 ** the program.
743 **
744 ** The P1 parameter is not actually used by this opcode.  However, it
745 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
746 ** that this Goto is the bottom of a loop and that the lines from P2 down
747 ** to the current line should be indented for EXPLAIN output.
748 */
749 case OP_Goto: {             /* jump */
750 jump_to_p2_and_check_for_interrupt:
751   pOp = &aOp[pOp->p2 - 1];
752 
753   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
754   ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
755   ** completion.  Check to see if sqlite3_interrupt() has been called
756   ** or if the progress callback needs to be invoked.
757   **
758   ** This code uses unstructured "goto" statements and does not look clean.
759   ** But that is not due to sloppy coding habits. The code is written this
760   ** way for performance, to avoid having to run the interrupt and progress
761   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
762   ** faster according to "valgrind --tool=cachegrind" */
763 check_for_interrupt:
764   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
765 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
766   /* Call the progress callback if it is configured and the required number
767   ** of VDBE ops have been executed (either since this invocation of
768   ** sqlite3VdbeExec() or since last time the progress callback was called).
769   ** If the progress callback returns non-zero, exit the virtual machine with
770   ** a return code SQLITE_ABORT.
771   */
772   if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
773     assert( db->nProgressOps!=0 );
774     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
775     if( db->xProgress(db->pProgressArg) ){
776       rc = SQLITE_INTERRUPT;
777       goto vdbe_error_halt;
778     }
779   }
780 #endif
781 
782   break;
783 }
784 
785 /* Opcode:  Gosub P1 P2 * * *
786 **
787 ** Write the current address onto register P1
788 ** and then jump to address P2.
789 */
790 case OP_Gosub: {            /* jump */
791   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
792   pIn1 = &aMem[pOp->p1];
793   assert( VdbeMemDynamic(pIn1)==0 );
794   memAboutToChange(p, pIn1);
795   pIn1->flags = MEM_Int;
796   pIn1->u.i = (int)(pOp-aOp);
797   REGISTER_TRACE(pOp->p1, pIn1);
798 
799   /* Most jump operations do a goto to this spot in order to update
800   ** the pOp pointer. */
801 jump_to_p2:
802   pOp = &aOp[pOp->p2 - 1];
803   break;
804 }
805 
806 /* Opcode:  Return P1 * * * *
807 **
808 ** Jump to the next instruction after the address in register P1.  After
809 ** the jump, register P1 becomes undefined.
810 */
811 case OP_Return: {           /* in1 */
812   pIn1 = &aMem[pOp->p1];
813   assert( pIn1->flags==MEM_Int );
814   pOp = &aOp[pIn1->u.i];
815   pIn1->flags = MEM_Undefined;
816   break;
817 }
818 
819 /* Opcode: InitCoroutine P1 P2 P3 * *
820 **
821 ** Set up register P1 so that it will Yield to the coroutine
822 ** located at address P3.
823 **
824 ** If P2!=0 then the coroutine implementation immediately follows
825 ** this opcode.  So jump over the coroutine implementation to
826 ** address P2.
827 **
828 ** See also: EndCoroutine
829 */
830 case OP_InitCoroutine: {     /* jump */
831   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
832   assert( pOp->p2>=0 && pOp->p2<p->nOp );
833   assert( pOp->p3>=0 && pOp->p3<p->nOp );
834   pOut = &aMem[pOp->p1];
835   assert( !VdbeMemDynamic(pOut) );
836   pOut->u.i = pOp->p3 - 1;
837   pOut->flags = MEM_Int;
838   if( pOp->p2 ) goto jump_to_p2;
839   break;
840 }
841 
842 /* Opcode:  EndCoroutine P1 * * * *
843 **
844 ** The instruction at the address in register P1 is a Yield.
845 ** Jump to the P2 parameter of that Yield.
846 ** After the jump, register P1 becomes undefined.
847 **
848 ** See also: InitCoroutine
849 */
850 case OP_EndCoroutine: {           /* in1 */
851   VdbeOp *pCaller;
852   pIn1 = &aMem[pOp->p1];
853   assert( pIn1->flags==MEM_Int );
854   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
855   pCaller = &aOp[pIn1->u.i];
856   assert( pCaller->opcode==OP_Yield );
857   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
858   pOp = &aOp[pCaller->p2 - 1];
859   pIn1->flags = MEM_Undefined;
860   break;
861 }
862 
863 /* Opcode:  Yield P1 P2 * * *
864 **
865 ** Swap the program counter with the value in register P1.  This
866 ** has the effect of yielding to a coroutine.
867 **
868 ** If the coroutine that is launched by this instruction ends with
869 ** Yield or Return then continue to the next instruction.  But if
870 ** the coroutine launched by this instruction ends with
871 ** EndCoroutine, then jump to P2 rather than continuing with the
872 ** next instruction.
873 **
874 ** See also: InitCoroutine
875 */
876 case OP_Yield: {            /* in1, jump */
877   int pcDest;
878   pIn1 = &aMem[pOp->p1];
879   assert( VdbeMemDynamic(pIn1)==0 );
880   pIn1->flags = MEM_Int;
881   pcDest = (int)pIn1->u.i;
882   pIn1->u.i = (int)(pOp - aOp);
883   REGISTER_TRACE(pOp->p1, pIn1);
884   pOp = &aOp[pcDest];
885   break;
886 }
887 
888 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
889 ** Synopsis:  if r[P3]=null halt
890 **
891 ** Check the value in register P3.  If it is NULL then Halt using
892 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
893 ** value in register P3 is not NULL, then this routine is a no-op.
894 ** The P5 parameter should be 1.
895 */
896 case OP_HaltIfNull: {      /* in3 */
897   pIn3 = &aMem[pOp->p3];
898   if( (pIn3->flags & MEM_Null)==0 ) break;
899   /* Fall through into OP_Halt */
900 }
901 
902 /* Opcode:  Halt P1 P2 * P4 P5
903 **
904 ** Exit immediately.  All open cursors, etc are closed
905 ** automatically.
906 **
907 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
908 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
909 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
910 ** whether or not to rollback the current transaction.  Do not rollback
911 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
912 ** then back out all changes that have occurred during this execution of the
913 ** VDBE, but do not rollback the transaction.
914 **
915 ** If P4 is not null then it is an error message string.
916 **
917 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
918 **
919 **    0:  (no change)
920 **    1:  NOT NULL contraint failed: P4
921 **    2:  UNIQUE constraint failed: P4
922 **    3:  CHECK constraint failed: P4
923 **    4:  FOREIGN KEY constraint failed: P4
924 **
925 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
926 ** omitted.
927 **
928 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
929 ** every program.  So a jump past the last instruction of the program
930 ** is the same as executing Halt.
931 */
932 case OP_Halt: {
933   const char *zType;
934   const char *zLogFmt;
935   VdbeFrame *pFrame;
936   int pcx;
937 
938   pcx = (int)(pOp - aOp);
939   if( pOp->p1==SQLITE_OK && p->pFrame ){
940     /* Halt the sub-program. Return control to the parent frame. */
941     pFrame = p->pFrame;
942     p->pFrame = pFrame->pParent;
943     p->nFrame--;
944     sqlite3VdbeSetChanges(db, p->nChange);
945     pcx = sqlite3VdbeFrameRestore(pFrame);
946     lastRowid = db->lastRowid;
947     if( pOp->p2==OE_Ignore ){
948       /* Instruction pcx is the OP_Program that invoked the sub-program
949       ** currently being halted. If the p2 instruction of this OP_Halt
950       ** instruction is set to OE_Ignore, then the sub-program is throwing
951       ** an IGNORE exception. In this case jump to the address specified
952       ** as the p2 of the calling OP_Program.  */
953       pcx = p->aOp[pcx].p2-1;
954     }
955     aOp = p->aOp;
956     aMem = p->aMem;
957     pOp = &aOp[pcx];
958     break;
959   }
960   p->rc = pOp->p1;
961   p->errorAction = (u8)pOp->p2;
962   p->pc = pcx;
963   if( p->rc ){
964     if( pOp->p5 ){
965       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
966                                              "FOREIGN KEY" };
967       assert( pOp->p5>=1 && pOp->p5<=4 );
968       testcase( pOp->p5==1 );
969       testcase( pOp->p5==2 );
970       testcase( pOp->p5==3 );
971       testcase( pOp->p5==4 );
972       zType = azType[pOp->p5-1];
973     }else{
974       zType = 0;
975     }
976     assert( zType!=0 || pOp->p4.z!=0 );
977     zLogFmt = "abort at %d in [%s]: %s";
978     if( zType && pOp->p4.z ){
979       sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
980     }else if( pOp->p4.z ){
981       sqlite3VdbeError(p, "%s", pOp->p4.z);
982     }else{
983       sqlite3VdbeError(p, "%s constraint failed", zType);
984     }
985     sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
986   }
987   rc = sqlite3VdbeHalt(p);
988   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
989   if( rc==SQLITE_BUSY ){
990     p->rc = rc = SQLITE_BUSY;
991   }else{
992     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
993     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
994     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
995   }
996   goto vdbe_return;
997 }
998 
999 /* Opcode: Integer P1 P2 * * *
1000 ** Synopsis: r[P2]=P1
1001 **
1002 ** The 32-bit integer value P1 is written into register P2.
1003 */
1004 case OP_Integer: {         /* out2 */
1005   pOut = out2Prerelease(p, pOp);
1006   pOut->u.i = pOp->p1;
1007   break;
1008 }
1009 
1010 /* Opcode: Int64 * P2 * P4 *
1011 ** Synopsis: r[P2]=P4
1012 **
1013 ** P4 is a pointer to a 64-bit integer value.
1014 ** Write that value into register P2.
1015 */
1016 case OP_Int64: {           /* out2 */
1017   pOut = out2Prerelease(p, pOp);
1018   assert( pOp->p4.pI64!=0 );
1019   pOut->u.i = *pOp->p4.pI64;
1020   break;
1021 }
1022 
1023 #ifndef SQLITE_OMIT_FLOATING_POINT
1024 /* Opcode: Real * P2 * P4 *
1025 ** Synopsis: r[P2]=P4
1026 **
1027 ** P4 is a pointer to a 64-bit floating point value.
1028 ** Write that value into register P2.
1029 */
1030 case OP_Real: {            /* same as TK_FLOAT, out2 */
1031   pOut = out2Prerelease(p, pOp);
1032   pOut->flags = MEM_Real;
1033   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1034   pOut->u.r = *pOp->p4.pReal;
1035   break;
1036 }
1037 #endif
1038 
1039 /* Opcode: String8 * P2 * P4 *
1040 ** Synopsis: r[P2]='P4'
1041 **
1042 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1043 ** into a String opcode before it is executed for the first time.  During
1044 ** this transformation, the length of string P4 is computed and stored
1045 ** as the P1 parameter.
1046 */
1047 case OP_String8: {         /* same as TK_STRING, out2 */
1048   assert( pOp->p4.z!=0 );
1049   pOut = out2Prerelease(p, pOp);
1050   pOp->opcode = OP_String;
1051   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1052 
1053 #ifndef SQLITE_OMIT_UTF16
1054   if( encoding!=SQLITE_UTF8 ){
1055     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1056     if( rc==SQLITE_TOOBIG ) goto too_big;
1057     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1058     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1059     assert( VdbeMemDynamic(pOut)==0 );
1060     pOut->szMalloc = 0;
1061     pOut->flags |= MEM_Static;
1062     if( pOp->p4type==P4_DYNAMIC ){
1063       sqlite3DbFree(db, pOp->p4.z);
1064     }
1065     pOp->p4type = P4_DYNAMIC;
1066     pOp->p4.z = pOut->z;
1067     pOp->p1 = pOut->n;
1068   }
1069 #endif
1070   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1071     goto too_big;
1072   }
1073   /* Fall through to the next case, OP_String */
1074 }
1075 
1076 /* Opcode: String P1 P2 P3 P4 P5
1077 ** Synopsis: r[P2]='P4' (len=P1)
1078 **
1079 ** The string value P4 of length P1 (bytes) is stored in register P2.
1080 **
1081 ** If P5!=0 and the content of register P3 is greater than zero, then
1082 ** the datatype of the register P2 is converted to BLOB.  The content is
1083 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1084 ** of a string, as if it had been CAST.
1085 */
1086 case OP_String: {          /* out2 */
1087   assert( pOp->p4.z!=0 );
1088   pOut = out2Prerelease(p, pOp);
1089   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1090   pOut->z = pOp->p4.z;
1091   pOut->n = pOp->p1;
1092   pOut->enc = encoding;
1093   UPDATE_MAX_BLOBSIZE(pOut);
1094 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1095   if( pOp->p5 ){
1096     assert( pOp->p3>0 );
1097     assert( pOp->p3<=(p->nMem-p->nCursor) );
1098     pIn3 = &aMem[pOp->p3];
1099     assert( pIn3->flags & MEM_Int );
1100     if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1101   }
1102 #endif
1103   break;
1104 }
1105 
1106 /* Opcode: Null P1 P2 P3 * *
1107 ** Synopsis:  r[P2..P3]=NULL
1108 **
1109 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1110 ** NULL into register P3 and every register in between P2 and P3.  If P3
1111 ** is less than P2 (typically P3 is zero) then only register P2 is
1112 ** set to NULL.
1113 **
1114 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1115 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1116 ** OP_Ne or OP_Eq.
1117 */
1118 case OP_Null: {           /* out2 */
1119   int cnt;
1120   u16 nullFlag;
1121   pOut = out2Prerelease(p, pOp);
1122   cnt = pOp->p3-pOp->p2;
1123   assert( pOp->p3<=(p->nMem-p->nCursor) );
1124   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1125   while( cnt>0 ){
1126     pOut++;
1127     memAboutToChange(p, pOut);
1128     sqlite3VdbeMemSetNull(pOut);
1129     pOut->flags = nullFlag;
1130     cnt--;
1131   }
1132   break;
1133 }
1134 
1135 /* Opcode: SoftNull P1 * * * *
1136 ** Synopsis:  r[P1]=NULL
1137 **
1138 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1139 ** instruction, but do not free any string or blob memory associated with
1140 ** the register, so that if the value was a string or blob that was
1141 ** previously copied using OP_SCopy, the copies will continue to be valid.
1142 */
1143 case OP_SoftNull: {
1144   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1145   pOut = &aMem[pOp->p1];
1146   pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1147   break;
1148 }
1149 
1150 /* Opcode: Blob P1 P2 * P4 *
1151 ** Synopsis: r[P2]=P4 (len=P1)
1152 **
1153 ** P4 points to a blob of data P1 bytes long.  Store this
1154 ** blob in register P2.
1155 */
1156 case OP_Blob: {                /* out2 */
1157   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1158   pOut = out2Prerelease(p, pOp);
1159   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1160   pOut->enc = encoding;
1161   UPDATE_MAX_BLOBSIZE(pOut);
1162   break;
1163 }
1164 
1165 /* Opcode: Variable P1 P2 * P4 *
1166 ** Synopsis: r[P2]=parameter(P1,P4)
1167 **
1168 ** Transfer the values of bound parameter P1 into register P2
1169 **
1170 ** If the parameter is named, then its name appears in P4.
1171 ** The P4 value is used by sqlite3_bind_parameter_name().
1172 */
1173 case OP_Variable: {            /* out2 */
1174   Mem *pVar;       /* Value being transferred */
1175 
1176   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1177   assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1178   pVar = &p->aVar[pOp->p1 - 1];
1179   if( sqlite3VdbeMemTooBig(pVar) ){
1180     goto too_big;
1181   }
1182   pOut = out2Prerelease(p, pOp);
1183   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1184   UPDATE_MAX_BLOBSIZE(pOut);
1185   break;
1186 }
1187 
1188 /* Opcode: Move P1 P2 P3 * *
1189 ** Synopsis:  r[P2@P3]=r[P1@P3]
1190 **
1191 ** Move the P3 values in register P1..P1+P3-1 over into
1192 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1193 ** left holding a NULL.  It is an error for register ranges
1194 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1195 ** for P3 to be less than 1.
1196 */
1197 case OP_Move: {
1198   int n;           /* Number of registers left to copy */
1199   int p1;          /* Register to copy from */
1200   int p2;          /* Register to copy to */
1201 
1202   n = pOp->p3;
1203   p1 = pOp->p1;
1204   p2 = pOp->p2;
1205   assert( n>0 && p1>0 && p2>0 );
1206   assert( p1+n<=p2 || p2+n<=p1 );
1207 
1208   pIn1 = &aMem[p1];
1209   pOut = &aMem[p2];
1210   do{
1211     assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1212     assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1213     assert( memIsValid(pIn1) );
1214     memAboutToChange(p, pOut);
1215     sqlite3VdbeMemMove(pOut, pIn1);
1216 #ifdef SQLITE_DEBUG
1217     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1218       pOut->pScopyFrom += pOp->p2 - p1;
1219     }
1220 #endif
1221     Deephemeralize(pOut);
1222     REGISTER_TRACE(p2++, pOut);
1223     pIn1++;
1224     pOut++;
1225   }while( --n );
1226   break;
1227 }
1228 
1229 /* Opcode: Copy P1 P2 P3 * *
1230 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1231 **
1232 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1233 **
1234 ** This instruction makes a deep copy of the value.  A duplicate
1235 ** is made of any string or blob constant.  See also OP_SCopy.
1236 */
1237 case OP_Copy: {
1238   int n;
1239 
1240   n = pOp->p3;
1241   pIn1 = &aMem[pOp->p1];
1242   pOut = &aMem[pOp->p2];
1243   assert( pOut!=pIn1 );
1244   while( 1 ){
1245     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1246     Deephemeralize(pOut);
1247 #ifdef SQLITE_DEBUG
1248     pOut->pScopyFrom = 0;
1249 #endif
1250     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1251     if( (n--)==0 ) break;
1252     pOut++;
1253     pIn1++;
1254   }
1255   break;
1256 }
1257 
1258 /* Opcode: SCopy P1 P2 * * *
1259 ** Synopsis: r[P2]=r[P1]
1260 **
1261 ** Make a shallow copy of register P1 into register P2.
1262 **
1263 ** This instruction makes a shallow copy of the value.  If the value
1264 ** is a string or blob, then the copy is only a pointer to the
1265 ** original and hence if the original changes so will the copy.
1266 ** Worse, if the original is deallocated, the copy becomes invalid.
1267 ** Thus the program must guarantee that the original will not change
1268 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1269 ** copy.
1270 */
1271 case OP_SCopy: {            /* out2 */
1272   pIn1 = &aMem[pOp->p1];
1273   pOut = &aMem[pOp->p2];
1274   assert( pOut!=pIn1 );
1275   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1276 #ifdef SQLITE_DEBUG
1277   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1278 #endif
1279   break;
1280 }
1281 
1282 /* Opcode: IntCopy P1 P2 * * *
1283 ** Synopsis: r[P2]=r[P1]
1284 **
1285 ** Transfer the integer value held in register P1 into register P2.
1286 **
1287 ** This is an optimized version of SCopy that works only for integer
1288 ** values.
1289 */
1290 case OP_IntCopy: {            /* out2 */
1291   pIn1 = &aMem[pOp->p1];
1292   assert( (pIn1->flags & MEM_Int)!=0 );
1293   pOut = &aMem[pOp->p2];
1294   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1295   break;
1296 }
1297 
1298 /* Opcode: ResultRow P1 P2 * * *
1299 ** Synopsis:  output=r[P1@P2]
1300 **
1301 ** The registers P1 through P1+P2-1 contain a single row of
1302 ** results. This opcode causes the sqlite3_step() call to terminate
1303 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1304 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1305 ** the result row.
1306 */
1307 case OP_ResultRow: {
1308   Mem *pMem;
1309   int i;
1310   assert( p->nResColumn==pOp->p2 );
1311   assert( pOp->p1>0 );
1312   assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1313 
1314 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1315   /* Run the progress counter just before returning.
1316   */
1317   if( db->xProgress!=0
1318    && nVmStep>=nProgressLimit
1319    && db->xProgress(db->pProgressArg)!=0
1320   ){
1321     rc = SQLITE_INTERRUPT;
1322     goto vdbe_error_halt;
1323   }
1324 #endif
1325 
1326   /* If this statement has violated immediate foreign key constraints, do
1327   ** not return the number of rows modified. And do not RELEASE the statement
1328   ** transaction. It needs to be rolled back.  */
1329   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1330     assert( db->flags&SQLITE_CountRows );
1331     assert( p->usesStmtJournal );
1332     break;
1333   }
1334 
1335   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1336   ** DML statements invoke this opcode to return the number of rows
1337   ** modified to the user. This is the only way that a VM that
1338   ** opens a statement transaction may invoke this opcode.
1339   **
1340   ** In case this is such a statement, close any statement transaction
1341   ** opened by this VM before returning control to the user. This is to
1342   ** ensure that statement-transactions are always nested, not overlapping.
1343   ** If the open statement-transaction is not closed here, then the user
1344   ** may step another VM that opens its own statement transaction. This
1345   ** may lead to overlapping statement transactions.
1346   **
1347   ** The statement transaction is never a top-level transaction.  Hence
1348   ** the RELEASE call below can never fail.
1349   */
1350   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1351   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1352   if( NEVER(rc!=SQLITE_OK) ){
1353     break;
1354   }
1355 
1356   /* Invalidate all ephemeral cursor row caches */
1357   p->cacheCtr = (p->cacheCtr + 2)|1;
1358 
1359   /* Make sure the results of the current row are \000 terminated
1360   ** and have an assigned type.  The results are de-ephemeralized as
1361   ** a side effect.
1362   */
1363   pMem = p->pResultSet = &aMem[pOp->p1];
1364   for(i=0; i<pOp->p2; i++){
1365     assert( memIsValid(&pMem[i]) );
1366     Deephemeralize(&pMem[i]);
1367     assert( (pMem[i].flags & MEM_Ephem)==0
1368             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1369     sqlite3VdbeMemNulTerminate(&pMem[i]);
1370     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1371   }
1372   if( db->mallocFailed ) goto no_mem;
1373 
1374   /* Return SQLITE_ROW
1375   */
1376   p->pc = (int)(pOp - aOp) + 1;
1377   rc = SQLITE_ROW;
1378   goto vdbe_return;
1379 }
1380 
1381 /* Opcode: Concat P1 P2 P3 * *
1382 ** Synopsis: r[P3]=r[P2]+r[P1]
1383 **
1384 ** Add the text in register P1 onto the end of the text in
1385 ** register P2 and store the result in register P3.
1386 ** If either the P1 or P2 text are NULL then store NULL in P3.
1387 **
1388 **   P3 = P2 || P1
1389 **
1390 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1391 ** if P3 is the same register as P2, the implementation is able
1392 ** to avoid a memcpy().
1393 */
1394 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1395   i64 nByte;
1396 
1397   pIn1 = &aMem[pOp->p1];
1398   pIn2 = &aMem[pOp->p2];
1399   pOut = &aMem[pOp->p3];
1400   assert( pIn1!=pOut );
1401   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1402     sqlite3VdbeMemSetNull(pOut);
1403     break;
1404   }
1405   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1406   Stringify(pIn1, encoding);
1407   Stringify(pIn2, encoding);
1408   nByte = pIn1->n + pIn2->n;
1409   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1410     goto too_big;
1411   }
1412   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1413     goto no_mem;
1414   }
1415   MemSetTypeFlag(pOut, MEM_Str);
1416   if( pOut!=pIn2 ){
1417     memcpy(pOut->z, pIn2->z, pIn2->n);
1418   }
1419   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1420   pOut->z[nByte]=0;
1421   pOut->z[nByte+1] = 0;
1422   pOut->flags |= MEM_Term;
1423   pOut->n = (int)nByte;
1424   pOut->enc = encoding;
1425   UPDATE_MAX_BLOBSIZE(pOut);
1426   break;
1427 }
1428 
1429 /* Opcode: Add P1 P2 P3 * *
1430 ** Synopsis:  r[P3]=r[P1]+r[P2]
1431 **
1432 ** Add the value in register P1 to the value in register P2
1433 ** and store the result in register P3.
1434 ** If either input is NULL, the result is NULL.
1435 */
1436 /* Opcode: Multiply P1 P2 P3 * *
1437 ** Synopsis:  r[P3]=r[P1]*r[P2]
1438 **
1439 **
1440 ** Multiply the value in register P1 by the value in register P2
1441 ** and store the result in register P3.
1442 ** If either input is NULL, the result is NULL.
1443 */
1444 /* Opcode: Subtract P1 P2 P3 * *
1445 ** Synopsis:  r[P3]=r[P2]-r[P1]
1446 **
1447 ** Subtract the value in register P1 from the value in register P2
1448 ** and store the result in register P3.
1449 ** If either input is NULL, the result is NULL.
1450 */
1451 /* Opcode: Divide P1 P2 P3 * *
1452 ** Synopsis:  r[P3]=r[P2]/r[P1]
1453 **
1454 ** Divide the value in register P1 by the value in register P2
1455 ** and store the result in register P3 (P3=P2/P1). If the value in
1456 ** register P1 is zero, then the result is NULL. If either input is
1457 ** NULL, the result is NULL.
1458 */
1459 /* Opcode: Remainder P1 P2 P3 * *
1460 ** Synopsis:  r[P3]=r[P2]%r[P1]
1461 **
1462 ** Compute the remainder after integer register P2 is divided by
1463 ** register P1 and store the result in register P3.
1464 ** If the value in register P1 is zero the result is NULL.
1465 ** If either operand is NULL, the result is NULL.
1466 */
1467 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1468 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1469 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1470 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1471 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1472   char bIntint;   /* Started out as two integer operands */
1473   u16 flags;      /* Combined MEM_* flags from both inputs */
1474   u16 type1;      /* Numeric type of left operand */
1475   u16 type2;      /* Numeric type of right operand */
1476   i64 iA;         /* Integer value of left operand */
1477   i64 iB;         /* Integer value of right operand */
1478   double rA;      /* Real value of left operand */
1479   double rB;      /* Real value of right operand */
1480 
1481   pIn1 = &aMem[pOp->p1];
1482   type1 = numericType(pIn1);
1483   pIn2 = &aMem[pOp->p2];
1484   type2 = numericType(pIn2);
1485   pOut = &aMem[pOp->p3];
1486   flags = pIn1->flags | pIn2->flags;
1487   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1488   if( (type1 & type2 & MEM_Int)!=0 ){
1489     iA = pIn1->u.i;
1490     iB = pIn2->u.i;
1491     bIntint = 1;
1492     switch( pOp->opcode ){
1493       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1494       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1495       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1496       case OP_Divide: {
1497         if( iA==0 ) goto arithmetic_result_is_null;
1498         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1499         iB /= iA;
1500         break;
1501       }
1502       default: {
1503         if( iA==0 ) goto arithmetic_result_is_null;
1504         if( iA==-1 ) iA = 1;
1505         iB %= iA;
1506         break;
1507       }
1508     }
1509     pOut->u.i = iB;
1510     MemSetTypeFlag(pOut, MEM_Int);
1511   }else{
1512     bIntint = 0;
1513 fp_math:
1514     rA = sqlite3VdbeRealValue(pIn1);
1515     rB = sqlite3VdbeRealValue(pIn2);
1516     switch( pOp->opcode ){
1517       case OP_Add:         rB += rA;       break;
1518       case OP_Subtract:    rB -= rA;       break;
1519       case OP_Multiply:    rB *= rA;       break;
1520       case OP_Divide: {
1521         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1522         if( rA==(double)0 ) goto arithmetic_result_is_null;
1523         rB /= rA;
1524         break;
1525       }
1526       default: {
1527         iA = (i64)rA;
1528         iB = (i64)rB;
1529         if( iA==0 ) goto arithmetic_result_is_null;
1530         if( iA==-1 ) iA = 1;
1531         rB = (double)(iB % iA);
1532         break;
1533       }
1534     }
1535 #ifdef SQLITE_OMIT_FLOATING_POINT
1536     pOut->u.i = rB;
1537     MemSetTypeFlag(pOut, MEM_Int);
1538 #else
1539     if( sqlite3IsNaN(rB) ){
1540       goto arithmetic_result_is_null;
1541     }
1542     pOut->u.r = rB;
1543     MemSetTypeFlag(pOut, MEM_Real);
1544     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1545       sqlite3VdbeIntegerAffinity(pOut);
1546     }
1547 #endif
1548   }
1549   break;
1550 
1551 arithmetic_result_is_null:
1552   sqlite3VdbeMemSetNull(pOut);
1553   break;
1554 }
1555 
1556 /* Opcode: CollSeq P1 * * P4
1557 **
1558 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1559 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1560 ** be returned. This is used by the built-in min(), max() and nullif()
1561 ** functions.
1562 **
1563 ** If P1 is not zero, then it is a register that a subsequent min() or
1564 ** max() aggregate will set to 1 if the current row is not the minimum or
1565 ** maximum.  The P1 register is initialized to 0 by this instruction.
1566 **
1567 ** The interface used by the implementation of the aforementioned functions
1568 ** to retrieve the collation sequence set by this opcode is not available
1569 ** publicly.  Only built-in functions have access to this feature.
1570 */
1571 case OP_CollSeq: {
1572   assert( pOp->p4type==P4_COLLSEQ );
1573   if( pOp->p1 ){
1574     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1575   }
1576   break;
1577 }
1578 
1579 /* Opcode: Function0 P1 P2 P3 P4 P5
1580 ** Synopsis: r[P3]=func(r[P2@P5])
1581 **
1582 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1583 ** defines the function) with P5 arguments taken from register P2 and
1584 ** successors.  The result of the function is stored in register P3.
1585 ** Register P3 must not be one of the function inputs.
1586 **
1587 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1588 ** function was determined to be constant at compile time. If the first
1589 ** argument was constant then bit 0 of P1 is set. This is used to determine
1590 ** whether meta data associated with a user function argument using the
1591 ** sqlite3_set_auxdata() API may be safely retained until the next
1592 ** invocation of this opcode.
1593 **
1594 ** See also: Function, AggStep, AggFinal
1595 */
1596 /* Opcode: Function P1 P2 P3 P4 P5
1597 ** Synopsis: r[P3]=func(r[P2@P5])
1598 **
1599 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1600 ** contains a pointer to the function to be run) with P5 arguments taken
1601 ** from register P2 and successors.  The result of the function is stored
1602 ** in register P3.  Register P3 must not be one of the function inputs.
1603 **
1604 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1605 ** function was determined to be constant at compile time. If the first
1606 ** argument was constant then bit 0 of P1 is set. This is used to determine
1607 ** whether meta data associated with a user function argument using the
1608 ** sqlite3_set_auxdata() API may be safely retained until the next
1609 ** invocation of this opcode.
1610 **
1611 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1612 ** to a FuncDef object.  But on first evaluation, the P4 operand is
1613 ** automatically converted into an sqlite3_context object and the operation
1614 ** changed to this OP_Function opcode.  In this way, the initialization of
1615 ** the sqlite3_context object occurs only once, rather than once for each
1616 ** evaluation of the function.
1617 **
1618 ** See also: Function0, AggStep, AggFinal
1619 */
1620 case OP_Function0: {
1621   int n;
1622   sqlite3_context *pCtx;
1623 
1624   assert( pOp->p4type==P4_FUNCDEF );
1625   n = pOp->p5;
1626   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1627   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1628   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1629   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1630   if( pCtx==0 ) goto no_mem;
1631   pCtx->pOut = 0;
1632   pCtx->pFunc = pOp->p4.pFunc;
1633   pCtx->iOp = (int)(pOp - aOp);
1634   pCtx->pVdbe = p;
1635   pCtx->argc = n;
1636   pOp->p4type = P4_FUNCCTX;
1637   pOp->p4.pCtx = pCtx;
1638   pOp->opcode = OP_Function;
1639   /* Fall through into OP_Function */
1640 }
1641 case OP_Function: {
1642   int i;
1643   sqlite3_context *pCtx;
1644 
1645   assert( pOp->p4type==P4_FUNCCTX );
1646   pCtx = pOp->p4.pCtx;
1647 
1648   /* If this function is inside of a trigger, the register array in aMem[]
1649   ** might change from one evaluation to the next.  The next block of code
1650   ** checks to see if the register array has changed, and if so it
1651   ** reinitializes the relavant parts of the sqlite3_context object */
1652   pOut = &aMem[pOp->p3];
1653   if( pCtx->pOut != pOut ){
1654     pCtx->pOut = pOut;
1655     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1656   }
1657 
1658   memAboutToChange(p, pCtx->pOut);
1659 #ifdef SQLITE_DEBUG
1660   for(i=0; i<pCtx->argc; i++){
1661     assert( memIsValid(pCtx->argv[i]) );
1662     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1663   }
1664 #endif
1665   MemSetTypeFlag(pCtx->pOut, MEM_Null);
1666   pCtx->fErrorOrAux = 0;
1667   db->lastRowid = lastRowid;
1668   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1669   lastRowid = db->lastRowid;  /* Remember rowid changes made by xSFunc */
1670 
1671   /* If the function returned an error, throw an exception */
1672   if( pCtx->fErrorOrAux ){
1673     if( pCtx->isError ){
1674       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1675       rc = pCtx->isError;
1676     }
1677     sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1678   }
1679 
1680   /* Copy the result of the function into register P3 */
1681   if( pOut->flags & (MEM_Str|MEM_Blob) ){
1682     sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1683     if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1684   }
1685 
1686   REGISTER_TRACE(pOp->p3, pCtx->pOut);
1687   UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1688   break;
1689 }
1690 
1691 /* Opcode: BitAnd P1 P2 P3 * *
1692 ** Synopsis:  r[P3]=r[P1]&r[P2]
1693 **
1694 ** Take the bit-wise AND of the values in register P1 and P2 and
1695 ** store the result in register P3.
1696 ** If either input is NULL, the result is NULL.
1697 */
1698 /* Opcode: BitOr P1 P2 P3 * *
1699 ** Synopsis:  r[P3]=r[P1]|r[P2]
1700 **
1701 ** Take the bit-wise OR of the values in register P1 and P2 and
1702 ** store the result in register P3.
1703 ** If either input is NULL, the result is NULL.
1704 */
1705 /* Opcode: ShiftLeft P1 P2 P3 * *
1706 ** Synopsis:  r[P3]=r[P2]<<r[P1]
1707 **
1708 ** Shift the integer value in register P2 to the left by the
1709 ** number of bits specified by the integer in register P1.
1710 ** Store the result in register P3.
1711 ** If either input is NULL, the result is NULL.
1712 */
1713 /* Opcode: ShiftRight P1 P2 P3 * *
1714 ** Synopsis:  r[P3]=r[P2]>>r[P1]
1715 **
1716 ** Shift the integer value in register P2 to the right by the
1717 ** number of bits specified by the integer in register P1.
1718 ** Store the result in register P3.
1719 ** If either input is NULL, the result is NULL.
1720 */
1721 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1722 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1723 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1724 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1725   i64 iA;
1726   u64 uA;
1727   i64 iB;
1728   u8 op;
1729 
1730   pIn1 = &aMem[pOp->p1];
1731   pIn2 = &aMem[pOp->p2];
1732   pOut = &aMem[pOp->p3];
1733   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1734     sqlite3VdbeMemSetNull(pOut);
1735     break;
1736   }
1737   iA = sqlite3VdbeIntValue(pIn2);
1738   iB = sqlite3VdbeIntValue(pIn1);
1739   op = pOp->opcode;
1740   if( op==OP_BitAnd ){
1741     iA &= iB;
1742   }else if( op==OP_BitOr ){
1743     iA |= iB;
1744   }else if( iB!=0 ){
1745     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1746 
1747     /* If shifting by a negative amount, shift in the other direction */
1748     if( iB<0 ){
1749       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1750       op = 2*OP_ShiftLeft + 1 - op;
1751       iB = iB>(-64) ? -iB : 64;
1752     }
1753 
1754     if( iB>=64 ){
1755       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1756     }else{
1757       memcpy(&uA, &iA, sizeof(uA));
1758       if( op==OP_ShiftLeft ){
1759         uA <<= iB;
1760       }else{
1761         uA >>= iB;
1762         /* Sign-extend on a right shift of a negative number */
1763         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1764       }
1765       memcpy(&iA, &uA, sizeof(iA));
1766     }
1767   }
1768   pOut->u.i = iA;
1769   MemSetTypeFlag(pOut, MEM_Int);
1770   break;
1771 }
1772 
1773 /* Opcode: AddImm  P1 P2 * * *
1774 ** Synopsis:  r[P1]=r[P1]+P2
1775 **
1776 ** Add the constant P2 to the value in register P1.
1777 ** The result is always an integer.
1778 **
1779 ** To force any register to be an integer, just add 0.
1780 */
1781 case OP_AddImm: {            /* in1 */
1782   pIn1 = &aMem[pOp->p1];
1783   memAboutToChange(p, pIn1);
1784   sqlite3VdbeMemIntegerify(pIn1);
1785   pIn1->u.i += pOp->p2;
1786   break;
1787 }
1788 
1789 /* Opcode: MustBeInt P1 P2 * * *
1790 **
1791 ** Force the value in register P1 to be an integer.  If the value
1792 ** in P1 is not an integer and cannot be converted into an integer
1793 ** without data loss, then jump immediately to P2, or if P2==0
1794 ** raise an SQLITE_MISMATCH exception.
1795 */
1796 case OP_MustBeInt: {            /* jump, in1 */
1797   pIn1 = &aMem[pOp->p1];
1798   if( (pIn1->flags & MEM_Int)==0 ){
1799     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1800     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1801     if( (pIn1->flags & MEM_Int)==0 ){
1802       if( pOp->p2==0 ){
1803         rc = SQLITE_MISMATCH;
1804         goto abort_due_to_error;
1805       }else{
1806         goto jump_to_p2;
1807       }
1808     }
1809   }
1810   MemSetTypeFlag(pIn1, MEM_Int);
1811   break;
1812 }
1813 
1814 #ifndef SQLITE_OMIT_FLOATING_POINT
1815 /* Opcode: RealAffinity P1 * * * *
1816 **
1817 ** If register P1 holds an integer convert it to a real value.
1818 **
1819 ** This opcode is used when extracting information from a column that
1820 ** has REAL affinity.  Such column values may still be stored as
1821 ** integers, for space efficiency, but after extraction we want them
1822 ** to have only a real value.
1823 */
1824 case OP_RealAffinity: {                  /* in1 */
1825   pIn1 = &aMem[pOp->p1];
1826   if( pIn1->flags & MEM_Int ){
1827     sqlite3VdbeMemRealify(pIn1);
1828   }
1829   break;
1830 }
1831 #endif
1832 
1833 #ifndef SQLITE_OMIT_CAST
1834 /* Opcode: Cast P1 P2 * * *
1835 ** Synopsis: affinity(r[P1])
1836 **
1837 ** Force the value in register P1 to be the type defined by P2.
1838 **
1839 ** <ul>
1840 ** <li value="97"> TEXT
1841 ** <li value="98"> BLOB
1842 ** <li value="99"> NUMERIC
1843 ** <li value="100"> INTEGER
1844 ** <li value="101"> REAL
1845 ** </ul>
1846 **
1847 ** A NULL value is not changed by this routine.  It remains NULL.
1848 */
1849 case OP_Cast: {                  /* in1 */
1850   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1851   testcase( pOp->p2==SQLITE_AFF_TEXT );
1852   testcase( pOp->p2==SQLITE_AFF_BLOB );
1853   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1854   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1855   testcase( pOp->p2==SQLITE_AFF_REAL );
1856   pIn1 = &aMem[pOp->p1];
1857   memAboutToChange(p, pIn1);
1858   rc = ExpandBlob(pIn1);
1859   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1860   UPDATE_MAX_BLOBSIZE(pIn1);
1861   break;
1862 }
1863 #endif /* SQLITE_OMIT_CAST */
1864 
1865 /* Opcode: Lt P1 P2 P3 P4 P5
1866 ** Synopsis: if r[P1]<r[P3] goto P2
1867 **
1868 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1869 ** jump to address P2.
1870 **
1871 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1872 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL
1873 ** bit is clear then fall through if either operand is NULL.
1874 **
1875 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1876 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1877 ** to coerce both inputs according to this affinity before the
1878 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1879 ** affinity is used. Note that the affinity conversions are stored
1880 ** back into the input registers P1 and P3.  So this opcode can cause
1881 ** persistent changes to registers P1 and P3.
1882 **
1883 ** Once any conversions have taken place, and neither value is NULL,
1884 ** the values are compared. If both values are blobs then memcmp() is
1885 ** used to determine the results of the comparison.  If both values
1886 ** are text, then the appropriate collating function specified in
1887 ** P4 is  used to do the comparison.  If P4 is not specified then
1888 ** memcmp() is used to compare text string.  If both values are
1889 ** numeric, then a numeric comparison is used. If the two values
1890 ** are of different types, then numbers are considered less than
1891 ** strings and strings are considered less than blobs.
1892 **
1893 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
1894 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1895 **
1896 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1897 ** equal to one another, provided that they do not have their MEM_Cleared
1898 ** bit set.
1899 */
1900 /* Opcode: Ne P1 P2 P3 P4 P5
1901 ** Synopsis: if r[P1]!=r[P3] goto P2
1902 **
1903 ** This works just like the Lt opcode except that the jump is taken if
1904 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
1905 ** additional information.
1906 **
1907 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1908 ** true or false and is never NULL.  If both operands are NULL then the result
1909 ** of comparison is false.  If either operand is NULL then the result is true.
1910 ** If neither operand is NULL the result is the same as it would be if
1911 ** the SQLITE_NULLEQ flag were omitted from P5.
1912 */
1913 /* Opcode: Eq P1 P2 P3 P4 P5
1914 ** Synopsis: if r[P1]==r[P3] goto P2
1915 **
1916 ** This works just like the Lt opcode except that the jump is taken if
1917 ** the operands in registers P1 and P3 are equal.
1918 ** See the Lt opcode for additional information.
1919 **
1920 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1921 ** true or false and is never NULL.  If both operands are NULL then the result
1922 ** of comparison is true.  If either operand is NULL then the result is false.
1923 ** If neither operand is NULL the result is the same as it would be if
1924 ** the SQLITE_NULLEQ flag were omitted from P5.
1925 */
1926 /* Opcode: Le P1 P2 P3 P4 P5
1927 ** Synopsis: if r[P1]<=r[P3] goto P2
1928 **
1929 ** This works just like the Lt opcode except that the jump is taken if
1930 ** the content of register P3 is less than or equal to the content of
1931 ** register P1.  See the Lt opcode for additional information.
1932 */
1933 /* Opcode: Gt P1 P2 P3 P4 P5
1934 ** Synopsis: if r[P1]>r[P3] goto P2
1935 **
1936 ** This works just like the Lt opcode except that the jump is taken if
1937 ** the content of register P3 is greater than the content of
1938 ** register P1.  See the Lt opcode for additional information.
1939 */
1940 /* Opcode: Ge P1 P2 P3 P4 P5
1941 ** Synopsis: if r[P1]>=r[P3] goto P2
1942 **
1943 ** This works just like the Lt opcode except that the jump is taken if
1944 ** the content of register P3 is greater than or equal to the content of
1945 ** register P1.  See the Lt opcode for additional information.
1946 */
1947 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1948 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1949 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1950 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1951 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1952 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1953   int res;            /* Result of the comparison of pIn1 against pIn3 */
1954   char affinity;      /* Affinity to use for comparison */
1955   u16 flags1;         /* Copy of initial value of pIn1->flags */
1956   u16 flags3;         /* Copy of initial value of pIn3->flags */
1957 
1958   pIn1 = &aMem[pOp->p1];
1959   pIn3 = &aMem[pOp->p3];
1960   flags1 = pIn1->flags;
1961   flags3 = pIn3->flags;
1962   if( (flags1 | flags3)&MEM_Null ){
1963     /* One or both operands are NULL */
1964     if( pOp->p5 & SQLITE_NULLEQ ){
1965       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1966       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1967       ** or not both operands are null.
1968       */
1969       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1970       assert( (flags1 & MEM_Cleared)==0 );
1971       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1972       if( (flags1&MEM_Null)!=0
1973        && (flags3&MEM_Null)!=0
1974        && (flags3&MEM_Cleared)==0
1975       ){
1976         res = 0;  /* Results are equal */
1977       }else{
1978         res = 1;  /* Results are not equal */
1979       }
1980     }else{
1981       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1982       ** then the result is always NULL.
1983       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1984       */
1985       if( pOp->p5 & SQLITE_STOREP2 ){
1986         pOut = &aMem[pOp->p2];
1987         memAboutToChange(p, pOut);
1988         MemSetTypeFlag(pOut, MEM_Null);
1989         REGISTER_TRACE(pOp->p2, pOut);
1990       }else{
1991         VdbeBranchTaken(2,3);
1992         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1993           goto jump_to_p2;
1994         }
1995       }
1996       break;
1997     }
1998   }else{
1999     /* Neither operand is NULL.  Do a comparison. */
2000     affinity = pOp->p5 & SQLITE_AFF_MASK;
2001     if( affinity>=SQLITE_AFF_NUMERIC ){
2002       if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2003         applyNumericAffinity(pIn1,0);
2004       }
2005       if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2006         applyNumericAffinity(pIn3,0);
2007       }
2008     }else if( affinity==SQLITE_AFF_TEXT ){
2009       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2010         testcase( pIn1->flags & MEM_Int );
2011         testcase( pIn1->flags & MEM_Real );
2012         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2013         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2014         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2015       }
2016       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2017         testcase( pIn3->flags & MEM_Int );
2018         testcase( pIn3->flags & MEM_Real );
2019         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2020         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2021         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2022       }
2023     }
2024     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2025     if( flags1 & MEM_Zero ){
2026       sqlite3VdbeMemExpandBlob(pIn1);
2027       flags1 &= ~MEM_Zero;
2028     }
2029     if( flags3 & MEM_Zero ){
2030       sqlite3VdbeMemExpandBlob(pIn3);
2031       flags3 &= ~MEM_Zero;
2032     }
2033     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2034   }
2035   switch( pOp->opcode ){
2036     case OP_Eq:    res = res==0;     break;
2037     case OP_Ne:    res = res!=0;     break;
2038     case OP_Lt:    res = res<0;      break;
2039     case OP_Le:    res = res<=0;     break;
2040     case OP_Gt:    res = res>0;      break;
2041     default:       res = res>=0;     break;
2042   }
2043 
2044   /* Undo any changes made by applyAffinity() to the input registers. */
2045   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2046   pIn1->flags = flags1;
2047   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2048   pIn3->flags = flags3;
2049 
2050   if( pOp->p5 & SQLITE_STOREP2 ){
2051     pOut = &aMem[pOp->p2];
2052     memAboutToChange(p, pOut);
2053     MemSetTypeFlag(pOut, MEM_Int);
2054     pOut->u.i = res;
2055     REGISTER_TRACE(pOp->p2, pOut);
2056   }else{
2057     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2058     if( res ){
2059       goto jump_to_p2;
2060     }
2061   }
2062   break;
2063 }
2064 
2065 /* Opcode: Permutation * * * P4 *
2066 **
2067 ** Set the permutation used by the OP_Compare operator to be the array
2068 ** of integers in P4.
2069 **
2070 ** The permutation is only valid until the next OP_Compare that has
2071 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2072 ** occur immediately prior to the OP_Compare.
2073 **
2074 ** The first integer in the P4 integer array is the length of the array
2075 ** and does not become part of the permutation.
2076 */
2077 case OP_Permutation: {
2078   assert( pOp->p4type==P4_INTARRAY );
2079   assert( pOp->p4.ai );
2080   aPermute = pOp->p4.ai + 1;
2081   break;
2082 }
2083 
2084 /* Opcode: Compare P1 P2 P3 P4 P5
2085 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2086 **
2087 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2088 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2089 ** the comparison for use by the next OP_Jump instruct.
2090 **
2091 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2092 ** determined by the most recent OP_Permutation operator.  If the
2093 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2094 ** order.
2095 **
2096 ** P4 is a KeyInfo structure that defines collating sequences and sort
2097 ** orders for the comparison.  The permutation applies to registers
2098 ** only.  The KeyInfo elements are used sequentially.
2099 **
2100 ** The comparison is a sort comparison, so NULLs compare equal,
2101 ** NULLs are less than numbers, numbers are less than strings,
2102 ** and strings are less than blobs.
2103 */
2104 case OP_Compare: {
2105   int n;
2106   int i;
2107   int p1;
2108   int p2;
2109   const KeyInfo *pKeyInfo;
2110   int idx;
2111   CollSeq *pColl;    /* Collating sequence to use on this term */
2112   int bRev;          /* True for DESCENDING sort order */
2113 
2114   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2115   n = pOp->p3;
2116   pKeyInfo = pOp->p4.pKeyInfo;
2117   assert( n>0 );
2118   assert( pKeyInfo!=0 );
2119   p1 = pOp->p1;
2120   p2 = pOp->p2;
2121 #if SQLITE_DEBUG
2122   if( aPermute ){
2123     int k, mx = 0;
2124     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2125     assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2126     assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2127   }else{
2128     assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2129     assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2130   }
2131 #endif /* SQLITE_DEBUG */
2132   for(i=0; i<n; i++){
2133     idx = aPermute ? aPermute[i] : i;
2134     assert( memIsValid(&aMem[p1+idx]) );
2135     assert( memIsValid(&aMem[p2+idx]) );
2136     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2137     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2138     assert( i<pKeyInfo->nField );
2139     pColl = pKeyInfo->aColl[i];
2140     bRev = pKeyInfo->aSortOrder[i];
2141     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2142     if( iCompare ){
2143       if( bRev ) iCompare = -iCompare;
2144       break;
2145     }
2146   }
2147   aPermute = 0;
2148   break;
2149 }
2150 
2151 /* Opcode: Jump P1 P2 P3 * *
2152 **
2153 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2154 ** in the most recent OP_Compare instruction the P1 vector was less than
2155 ** equal to, or greater than the P2 vector, respectively.
2156 */
2157 case OP_Jump: {             /* jump */
2158   if( iCompare<0 ){
2159     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2160   }else if( iCompare==0 ){
2161     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2162   }else{
2163     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2164   }
2165   break;
2166 }
2167 
2168 /* Opcode: And P1 P2 P3 * *
2169 ** Synopsis: r[P3]=(r[P1] && r[P2])
2170 **
2171 ** Take the logical AND of the values in registers P1 and P2 and
2172 ** write the result into register P3.
2173 **
2174 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2175 ** the other input is NULL.  A NULL and true or two NULLs give
2176 ** a NULL output.
2177 */
2178 /* Opcode: Or P1 P2 P3 * *
2179 ** Synopsis: r[P3]=(r[P1] || r[P2])
2180 **
2181 ** Take the logical OR of the values in register P1 and P2 and
2182 ** store the answer in register P3.
2183 **
2184 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2185 ** even if the other input is NULL.  A NULL and false or two NULLs
2186 ** give a NULL output.
2187 */
2188 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2189 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2190   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2191   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2192 
2193   pIn1 = &aMem[pOp->p1];
2194   if( pIn1->flags & MEM_Null ){
2195     v1 = 2;
2196   }else{
2197     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2198   }
2199   pIn2 = &aMem[pOp->p2];
2200   if( pIn2->flags & MEM_Null ){
2201     v2 = 2;
2202   }else{
2203     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2204   }
2205   if( pOp->opcode==OP_And ){
2206     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2207     v1 = and_logic[v1*3+v2];
2208   }else{
2209     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2210     v1 = or_logic[v1*3+v2];
2211   }
2212   pOut = &aMem[pOp->p3];
2213   if( v1==2 ){
2214     MemSetTypeFlag(pOut, MEM_Null);
2215   }else{
2216     pOut->u.i = v1;
2217     MemSetTypeFlag(pOut, MEM_Int);
2218   }
2219   break;
2220 }
2221 
2222 /* Opcode: Not P1 P2 * * *
2223 ** Synopsis: r[P2]= !r[P1]
2224 **
2225 ** Interpret the value in register P1 as a boolean value.  Store the
2226 ** boolean complement in register P2.  If the value in register P1 is
2227 ** NULL, then a NULL is stored in P2.
2228 */
2229 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2230   pIn1 = &aMem[pOp->p1];
2231   pOut = &aMem[pOp->p2];
2232   sqlite3VdbeMemSetNull(pOut);
2233   if( (pIn1->flags & MEM_Null)==0 ){
2234     pOut->flags = MEM_Int;
2235     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2236   }
2237   break;
2238 }
2239 
2240 /* Opcode: BitNot P1 P2 * * *
2241 ** Synopsis: r[P1]= ~r[P1]
2242 **
2243 ** Interpret the content of register P1 as an integer.  Store the
2244 ** ones-complement of the P1 value into register P2.  If P1 holds
2245 ** a NULL then store a NULL in P2.
2246 */
2247 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2248   pIn1 = &aMem[pOp->p1];
2249   pOut = &aMem[pOp->p2];
2250   sqlite3VdbeMemSetNull(pOut);
2251   if( (pIn1->flags & MEM_Null)==0 ){
2252     pOut->flags = MEM_Int;
2253     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2254   }
2255   break;
2256 }
2257 
2258 /* Opcode: Once P1 P2 * * *
2259 **
2260 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2261 ** Otherwise, set the flag and fall through to the next instruction.
2262 ** In other words, this opcode causes all following opcodes up through P2
2263 ** (but not including P2) to run just once and to be skipped on subsequent
2264 ** times through the loop.
2265 **
2266 ** All "once" flags are initially cleared whenever a prepared statement
2267 ** first begins to run.
2268 */
2269 case OP_Once: {             /* jump */
2270   assert( pOp->p1<p->nOnceFlag );
2271   VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2272   if( p->aOnceFlag[pOp->p1] ){
2273     goto jump_to_p2;
2274   }else{
2275     p->aOnceFlag[pOp->p1] = 1;
2276   }
2277   break;
2278 }
2279 
2280 /* Opcode: If P1 P2 P3 * *
2281 **
2282 ** Jump to P2 if the value in register P1 is true.  The value
2283 ** is considered true if it is numeric and non-zero.  If the value
2284 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2285 */
2286 /* Opcode: IfNot P1 P2 P3 * *
2287 **
2288 ** Jump to P2 if the value in register P1 is False.  The value
2289 ** is considered false if it has a numeric value of zero.  If the value
2290 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2291 */
2292 case OP_If:                 /* jump, in1 */
2293 case OP_IfNot: {            /* jump, in1 */
2294   int c;
2295   pIn1 = &aMem[pOp->p1];
2296   if( pIn1->flags & MEM_Null ){
2297     c = pOp->p3;
2298   }else{
2299 #ifdef SQLITE_OMIT_FLOATING_POINT
2300     c = sqlite3VdbeIntValue(pIn1)!=0;
2301 #else
2302     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2303 #endif
2304     if( pOp->opcode==OP_IfNot ) c = !c;
2305   }
2306   VdbeBranchTaken(c!=0, 2);
2307   if( c ){
2308     goto jump_to_p2;
2309   }
2310   break;
2311 }
2312 
2313 /* Opcode: IsNull P1 P2 * * *
2314 ** Synopsis:  if r[P1]==NULL goto P2
2315 **
2316 ** Jump to P2 if the value in register P1 is NULL.
2317 */
2318 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2319   pIn1 = &aMem[pOp->p1];
2320   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2321   if( (pIn1->flags & MEM_Null)!=0 ){
2322     goto jump_to_p2;
2323   }
2324   break;
2325 }
2326 
2327 /* Opcode: NotNull P1 P2 * * *
2328 ** Synopsis: if r[P1]!=NULL goto P2
2329 **
2330 ** Jump to P2 if the value in register P1 is not NULL.
2331 */
2332 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2333   pIn1 = &aMem[pOp->p1];
2334   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2335   if( (pIn1->flags & MEM_Null)==0 ){
2336     goto jump_to_p2;
2337   }
2338   break;
2339 }
2340 
2341 /* Opcode: Column P1 P2 P3 P4 P5
2342 ** Synopsis:  r[P3]=PX
2343 **
2344 ** Interpret the data that cursor P1 points to as a structure built using
2345 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2346 ** information about the format of the data.)  Extract the P2-th column
2347 ** from this record.  If there are less that (P2+1)
2348 ** values in the record, extract a NULL.
2349 **
2350 ** The value extracted is stored in register P3.
2351 **
2352 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
2353 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2354 ** the result.
2355 **
2356 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2357 ** then the cache of the cursor is reset prior to extracting the column.
2358 ** The first OP_Column against a pseudo-table after the value of the content
2359 ** register has changed should have this bit set.
2360 **
2361 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2362 ** the result is guaranteed to only be used as the argument of a length()
2363 ** or typeof() function, respectively.  The loading of large blobs can be
2364 ** skipped for length() and all content loading can be skipped for typeof().
2365 */
2366 case OP_Column: {
2367   i64 payloadSize64; /* Number of bytes in the record */
2368   int p2;            /* column number to retrieve */
2369   VdbeCursor *pC;    /* The VDBE cursor */
2370   BtCursor *pCrsr;   /* The BTree cursor */
2371   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2372   int len;           /* The length of the serialized data for the column */
2373   int i;             /* Loop counter */
2374   Mem *pDest;        /* Where to write the extracted value */
2375   Mem sMem;          /* For storing the record being decoded */
2376   const u8 *zData;   /* Part of the record being decoded */
2377   const u8 *zHdr;    /* Next unparsed byte of the header */
2378   const u8 *zEndHdr; /* Pointer to first byte after the header */
2379   u32 offset;        /* Offset into the data */
2380   u64 offset64;      /* 64-bit offset */
2381   u32 avail;         /* Number of bytes of available data */
2382   u32 t;             /* A type code from the record header */
2383   Mem *pReg;         /* PseudoTable input register */
2384 
2385   pC = p->apCsr[pOp->p1];
2386   p2 = pOp->p2;
2387 
2388   /* If the cursor cache is stale, bring it up-to-date */
2389   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2390 
2391   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2392   pDest = &aMem[pOp->p3];
2393   memAboutToChange(p, pDest);
2394   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2395   assert( pC!=0 );
2396   assert( p2<pC->nField );
2397   aOffset = pC->aOffset;
2398   assert( pC->eCurType!=CURTYPE_VTAB );
2399   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2400   assert( pC->eCurType!=CURTYPE_SORTER );
2401   pCrsr = pC->uc.pCursor;
2402 
2403   if( rc ) goto abort_due_to_error;
2404   if( pC->cacheStatus!=p->cacheCtr ){
2405     if( pC->nullRow ){
2406       if( pC->eCurType==CURTYPE_PSEUDO ){
2407         assert( pC->uc.pseudoTableReg>0 );
2408         pReg = &aMem[pC->uc.pseudoTableReg];
2409         assert( pReg->flags & MEM_Blob );
2410         assert( memIsValid(pReg) );
2411         pC->payloadSize = pC->szRow = avail = pReg->n;
2412         pC->aRow = (u8*)pReg->z;
2413       }else{
2414         sqlite3VdbeMemSetNull(pDest);
2415         goto op_column_out;
2416       }
2417     }else{
2418       assert( pC->eCurType==CURTYPE_BTREE );
2419       assert( pCrsr );
2420       if( pC->isTable==0 ){
2421         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2422         VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2423         assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2424         /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2425         ** payload size, so it is impossible for payloadSize64 to be
2426         ** larger than 32 bits. */
2427         assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2428         pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2429         pC->payloadSize = (u32)payloadSize64;
2430       }else{
2431         assert( sqlite3BtreeCursorIsValid(pCrsr) );
2432         VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2433         assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
2434         pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2435       }
2436       assert( avail<=65536 );  /* Maximum page size is 64KiB */
2437       if( pC->payloadSize <= (u32)avail ){
2438         pC->szRow = pC->payloadSize;
2439       }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2440         goto too_big;
2441       }else{
2442         pC->szRow = avail;
2443       }
2444     }
2445     pC->cacheStatus = p->cacheCtr;
2446     pC->iHdrOffset = getVarint32(pC->aRow, offset);
2447     pC->nHdrParsed = 0;
2448     aOffset[0] = offset;
2449 
2450 
2451     if( avail<offset ){
2452       /* pC->aRow does not have to hold the entire row, but it does at least
2453       ** need to cover the header of the record.  If pC->aRow does not contain
2454       ** the complete header, then set it to zero, forcing the header to be
2455       ** dynamically allocated. */
2456       pC->aRow = 0;
2457       pC->szRow = 0;
2458 
2459       /* Make sure a corrupt database has not given us an oversize header.
2460       ** Do this now to avoid an oversize memory allocation.
2461       **
2462       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2463       ** types use so much data space that there can only be 4096 and 32 of
2464       ** them, respectively.  So the maximum header length results from a
2465       ** 3-byte type for each of the maximum of 32768 columns plus three
2466       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2467       */
2468       if( offset > 98307 || offset > pC->payloadSize ){
2469         rc = SQLITE_CORRUPT_BKPT;
2470         goto op_column_error;
2471       }
2472     }
2473 
2474     /* The following goto is an optimization.  It can be omitted and
2475     ** everything will still work.  But OP_Column is measurably faster
2476     ** by skipping the subsequent conditional, which is always true.
2477     */
2478     assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2479     goto op_column_read_header;
2480   }
2481 
2482   /* Make sure at least the first p2+1 entries of the header have been
2483   ** parsed and valid information is in aOffset[] and pC->aType[].
2484   */
2485   if( pC->nHdrParsed<=p2 ){
2486     /* If there is more header available for parsing in the record, try
2487     ** to extract additional fields up through the p2+1-th field
2488     */
2489     op_column_read_header:
2490     if( pC->iHdrOffset<aOffset[0] ){
2491       /* Make sure zData points to enough of the record to cover the header. */
2492       if( pC->aRow==0 ){
2493         memset(&sMem, 0, sizeof(sMem));
2494         rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2495         if( rc!=SQLITE_OK ) goto op_column_error;
2496         zData = (u8*)sMem.z;
2497       }else{
2498         zData = pC->aRow;
2499       }
2500 
2501       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2502       i = pC->nHdrParsed;
2503       offset64 = aOffset[i];
2504       zHdr = zData + pC->iHdrOffset;
2505       zEndHdr = zData + aOffset[0];
2506       assert( i<=p2 && zHdr<zEndHdr );
2507       do{
2508         if( (t = zHdr[0])<0x80 ){
2509           zHdr++;
2510           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2511         }else{
2512           zHdr += sqlite3GetVarint32(zHdr, &t);
2513           offset64 += sqlite3VdbeSerialTypeLen(t);
2514         }
2515         pC->aType[i++] = t;
2516         aOffset[i] = (u32)(offset64 & 0xffffffff);
2517       }while( i<=p2 && zHdr<zEndHdr );
2518       pC->nHdrParsed = i;
2519       pC->iHdrOffset = (u32)(zHdr - zData);
2520       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2521 
2522       /* The record is corrupt if any of the following are true:
2523       ** (1) the bytes of the header extend past the declared header size
2524       ** (2) the entire header was used but not all data was used
2525       ** (3) the end of the data extends beyond the end of the record.
2526       */
2527       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2528        || (offset64 > pC->payloadSize)
2529       ){
2530         rc = SQLITE_CORRUPT_BKPT;
2531         goto op_column_error;
2532       }
2533     }else{
2534       t = 0;
2535     }
2536 
2537     /* If after trying to extract new entries from the header, nHdrParsed is
2538     ** still not up to p2, that means that the record has fewer than p2
2539     ** columns.  So the result will be either the default value or a NULL.
2540     */
2541     if( pC->nHdrParsed<=p2 ){
2542       if( pOp->p4type==P4_MEM ){
2543         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2544       }else{
2545         sqlite3VdbeMemSetNull(pDest);
2546       }
2547       goto op_column_out;
2548     }
2549   }else{
2550     t = pC->aType[p2];
2551   }
2552 
2553   /* Extract the content for the p2+1-th column.  Control can only
2554   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2555   ** all valid.
2556   */
2557   assert( p2<pC->nHdrParsed );
2558   assert( rc==SQLITE_OK );
2559   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2560   if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2561   assert( t==pC->aType[p2] );
2562   pDest->enc = encoding;
2563   if( pC->szRow>=aOffset[p2+1] ){
2564     /* This is the common case where the desired content fits on the original
2565     ** page - where the content is not on an overflow page */
2566     zData = pC->aRow + aOffset[p2];
2567     if( t<12 ){
2568       sqlite3VdbeSerialGet(zData, t, pDest);
2569     }else{
2570       /* If the column value is a string, we need a persistent value, not
2571       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2572       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2573       */
2574       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2575       pDest->n = len = (t-12)/2;
2576       if( pDest->szMalloc < len+2 ){
2577         pDest->flags = MEM_Null;
2578         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2579       }else{
2580         pDest->z = pDest->zMalloc;
2581       }
2582       memcpy(pDest->z, zData, len);
2583       pDest->z[len] = 0;
2584       pDest->z[len+1] = 0;
2585       pDest->flags = aFlag[t&1];
2586     }
2587   }else{
2588     /* This branch happens only when content is on overflow pages */
2589     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2590           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2591      || (len = sqlite3VdbeSerialTypeLen(t))==0
2592     ){
2593       /* Content is irrelevant for
2594       **    1. the typeof() function,
2595       **    2. the length(X) function if X is a blob, and
2596       **    3. if the content length is zero.
2597       ** So we might as well use bogus content rather than reading
2598       ** content from disk. */
2599       static u8 aZero[8];  /* This is the bogus content */
2600       sqlite3VdbeSerialGet(aZero, t, pDest);
2601     }else{
2602       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2603                                    pDest);
2604       if( rc==SQLITE_OK ){
2605         sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2606         pDest->flags &= ~MEM_Ephem;
2607       }
2608     }
2609   }
2610 
2611 op_column_out:
2612 op_column_error:
2613   UPDATE_MAX_BLOBSIZE(pDest);
2614   REGISTER_TRACE(pOp->p3, pDest);
2615   break;
2616 }
2617 
2618 /* Opcode: Affinity P1 P2 * P4 *
2619 ** Synopsis: affinity(r[P1@P2])
2620 **
2621 ** Apply affinities to a range of P2 registers starting with P1.
2622 **
2623 ** P4 is a string that is P2 characters long. The nth character of the
2624 ** string indicates the column affinity that should be used for the nth
2625 ** memory cell in the range.
2626 */
2627 case OP_Affinity: {
2628   const char *zAffinity;   /* The affinity to be applied */
2629   char cAff;               /* A single character of affinity */
2630 
2631   zAffinity = pOp->p4.z;
2632   assert( zAffinity!=0 );
2633   assert( zAffinity[pOp->p2]==0 );
2634   pIn1 = &aMem[pOp->p1];
2635   while( (cAff = *(zAffinity++))!=0 ){
2636     assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2637     assert( memIsValid(pIn1) );
2638     applyAffinity(pIn1, cAff, encoding);
2639     pIn1++;
2640   }
2641   break;
2642 }
2643 
2644 /* Opcode: MakeRecord P1 P2 P3 P4 *
2645 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2646 **
2647 ** Convert P2 registers beginning with P1 into the [record format]
2648 ** use as a data record in a database table or as a key
2649 ** in an index.  The OP_Column opcode can decode the record later.
2650 **
2651 ** P4 may be a string that is P2 characters long.  The nth character of the
2652 ** string indicates the column affinity that should be used for the nth
2653 ** field of the index key.
2654 **
2655 ** The mapping from character to affinity is given by the SQLITE_AFF_
2656 ** macros defined in sqliteInt.h.
2657 **
2658 ** If P4 is NULL then all index fields have the affinity BLOB.
2659 */
2660 case OP_MakeRecord: {
2661   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2662   Mem *pRec;             /* The new record */
2663   u64 nData;             /* Number of bytes of data space */
2664   int nHdr;              /* Number of bytes of header space */
2665   i64 nByte;             /* Data space required for this record */
2666   i64 nZero;             /* Number of zero bytes at the end of the record */
2667   int nVarint;           /* Number of bytes in a varint */
2668   u32 serial_type;       /* Type field */
2669   Mem *pData0;           /* First field to be combined into the record */
2670   Mem *pLast;            /* Last field of the record */
2671   int nField;            /* Number of fields in the record */
2672   char *zAffinity;       /* The affinity string for the record */
2673   int file_format;       /* File format to use for encoding */
2674   int i;                 /* Space used in zNewRecord[] header */
2675   int j;                 /* Space used in zNewRecord[] content */
2676   u32 len;               /* Length of a field */
2677 
2678   /* Assuming the record contains N fields, the record format looks
2679   ** like this:
2680   **
2681   ** ------------------------------------------------------------------------
2682   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2683   ** ------------------------------------------------------------------------
2684   **
2685   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2686   ** and so forth.
2687   **
2688   ** Each type field is a varint representing the serial type of the
2689   ** corresponding data element (see sqlite3VdbeSerialType()). The
2690   ** hdr-size field is also a varint which is the offset from the beginning
2691   ** of the record to data0.
2692   */
2693   nData = 0;         /* Number of bytes of data space */
2694   nHdr = 0;          /* Number of bytes of header space */
2695   nZero = 0;         /* Number of zero bytes at the end of the record */
2696   nField = pOp->p1;
2697   zAffinity = pOp->p4.z;
2698   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2699   pData0 = &aMem[nField];
2700   nField = pOp->p2;
2701   pLast = &pData0[nField-1];
2702   file_format = p->minWriteFileFormat;
2703 
2704   /* Identify the output register */
2705   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2706   pOut = &aMem[pOp->p3];
2707   memAboutToChange(p, pOut);
2708 
2709   /* Apply the requested affinity to all inputs
2710   */
2711   assert( pData0<=pLast );
2712   if( zAffinity ){
2713     pRec = pData0;
2714     do{
2715       applyAffinity(pRec++, *(zAffinity++), encoding);
2716       assert( zAffinity[0]==0 || pRec<=pLast );
2717     }while( zAffinity[0] );
2718   }
2719 
2720   /* Loop through the elements that will make up the record to figure
2721   ** out how much space is required for the new record.
2722   */
2723   pRec = pLast;
2724   do{
2725     assert( memIsValid(pRec) );
2726     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2727     if( pRec->flags & MEM_Zero ){
2728       if( nData ){
2729         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2730       }else{
2731         nZero += pRec->u.nZero;
2732         len -= pRec->u.nZero;
2733       }
2734     }
2735     nData += len;
2736     testcase( serial_type==127 );
2737     testcase( serial_type==128 );
2738     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2739   }while( (--pRec)>=pData0 );
2740 
2741   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2742   ** which determines the total number of bytes in the header. The varint
2743   ** value is the size of the header in bytes including the size varint
2744   ** itself. */
2745   testcase( nHdr==126 );
2746   testcase( nHdr==127 );
2747   if( nHdr<=126 ){
2748     /* The common case */
2749     nHdr += 1;
2750   }else{
2751     /* Rare case of a really large header */
2752     nVarint = sqlite3VarintLen(nHdr);
2753     nHdr += nVarint;
2754     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2755   }
2756   nByte = nHdr+nData;
2757   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2758     goto too_big;
2759   }
2760 
2761   /* Make sure the output register has a buffer large enough to store
2762   ** the new record. The output register (pOp->p3) is not allowed to
2763   ** be one of the input registers (because the following call to
2764   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2765   */
2766   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2767     goto no_mem;
2768   }
2769   zNewRecord = (u8 *)pOut->z;
2770 
2771   /* Write the record */
2772   i = putVarint32(zNewRecord, nHdr);
2773   j = nHdr;
2774   assert( pData0<=pLast );
2775   pRec = pData0;
2776   do{
2777     serial_type = pRec->uTemp;
2778     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2779     ** additional varints, one per column. */
2780     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2781     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2782     ** immediately follow the header. */
2783     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2784   }while( (++pRec)<=pLast );
2785   assert( i==nHdr );
2786   assert( j==nByte );
2787 
2788   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2789   pOut->n = (int)nByte;
2790   pOut->flags = MEM_Blob;
2791   if( nZero ){
2792     pOut->u.nZero = nZero;
2793     pOut->flags |= MEM_Zero;
2794   }
2795   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2796   REGISTER_TRACE(pOp->p3, pOut);
2797   UPDATE_MAX_BLOBSIZE(pOut);
2798   break;
2799 }
2800 
2801 /* Opcode: Count P1 P2 * * *
2802 ** Synopsis: r[P2]=count()
2803 **
2804 ** Store the number of entries (an integer value) in the table or index
2805 ** opened by cursor P1 in register P2
2806 */
2807 #ifndef SQLITE_OMIT_BTREECOUNT
2808 case OP_Count: {         /* out2 */
2809   i64 nEntry;
2810   BtCursor *pCrsr;
2811 
2812   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2813   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2814   assert( pCrsr );
2815   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2816   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2817   pOut = out2Prerelease(p, pOp);
2818   pOut->u.i = nEntry;
2819   break;
2820 }
2821 #endif
2822 
2823 /* Opcode: Savepoint P1 * * P4 *
2824 **
2825 ** Open, release or rollback the savepoint named by parameter P4, depending
2826 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2827 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2828 */
2829 case OP_Savepoint: {
2830   int p1;                         /* Value of P1 operand */
2831   char *zName;                    /* Name of savepoint */
2832   int nName;
2833   Savepoint *pNew;
2834   Savepoint *pSavepoint;
2835   Savepoint *pTmp;
2836   int iSavepoint;
2837   int ii;
2838 
2839   p1 = pOp->p1;
2840   zName = pOp->p4.z;
2841 
2842   /* Assert that the p1 parameter is valid. Also that if there is no open
2843   ** transaction, then there cannot be any savepoints.
2844   */
2845   assert( db->pSavepoint==0 || db->autoCommit==0 );
2846   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2847   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2848   assert( checkSavepointCount(db) );
2849   assert( p->bIsReader );
2850 
2851   if( p1==SAVEPOINT_BEGIN ){
2852     if( db->nVdbeWrite>0 ){
2853       /* A new savepoint cannot be created if there are active write
2854       ** statements (i.e. open read/write incremental blob handles).
2855       */
2856       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2857       rc = SQLITE_BUSY;
2858     }else{
2859       nName = sqlite3Strlen30(zName);
2860 
2861 #ifndef SQLITE_OMIT_VIRTUALTABLE
2862       /* This call is Ok even if this savepoint is actually a transaction
2863       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2864       ** If this is a transaction savepoint being opened, it is guaranteed
2865       ** that the db->aVTrans[] array is empty.  */
2866       assert( db->autoCommit==0 || db->nVTrans==0 );
2867       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2868                                 db->nStatement+db->nSavepoint);
2869       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2870 #endif
2871 
2872       /* Create a new savepoint structure. */
2873       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2874       if( pNew ){
2875         pNew->zName = (char *)&pNew[1];
2876         memcpy(pNew->zName, zName, nName+1);
2877 
2878         /* If there is no open transaction, then mark this as a special
2879         ** "transaction savepoint". */
2880         if( db->autoCommit ){
2881           db->autoCommit = 0;
2882           db->isTransactionSavepoint = 1;
2883         }else{
2884           db->nSavepoint++;
2885         }
2886 
2887         /* Link the new savepoint into the database handle's list. */
2888         pNew->pNext = db->pSavepoint;
2889         db->pSavepoint = pNew;
2890         pNew->nDeferredCons = db->nDeferredCons;
2891         pNew->nDeferredImmCons = db->nDeferredImmCons;
2892       }
2893     }
2894   }else{
2895     iSavepoint = 0;
2896 
2897     /* Find the named savepoint. If there is no such savepoint, then an
2898     ** an error is returned to the user.  */
2899     for(
2900       pSavepoint = db->pSavepoint;
2901       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2902       pSavepoint = pSavepoint->pNext
2903     ){
2904       iSavepoint++;
2905     }
2906     if( !pSavepoint ){
2907       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2908       rc = SQLITE_ERROR;
2909     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2910       /* It is not possible to release (commit) a savepoint if there are
2911       ** active write statements.
2912       */
2913       sqlite3VdbeError(p, "cannot release savepoint - "
2914                           "SQL statements in progress");
2915       rc = SQLITE_BUSY;
2916     }else{
2917 
2918       /* Determine whether or not this is a transaction savepoint. If so,
2919       ** and this is a RELEASE command, then the current transaction
2920       ** is committed.
2921       */
2922       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2923       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2924         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2925           goto vdbe_return;
2926         }
2927         db->autoCommit = 1;
2928         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2929           p->pc = (int)(pOp - aOp);
2930           db->autoCommit = 0;
2931           p->rc = rc = SQLITE_BUSY;
2932           goto vdbe_return;
2933         }
2934         db->isTransactionSavepoint = 0;
2935         rc = p->rc;
2936       }else{
2937         int isSchemaChange;
2938         iSavepoint = db->nSavepoint - iSavepoint - 1;
2939         if( p1==SAVEPOINT_ROLLBACK ){
2940           isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2941           for(ii=0; ii<db->nDb; ii++){
2942             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2943                                        SQLITE_ABORT_ROLLBACK,
2944                                        isSchemaChange==0);
2945             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2946           }
2947         }else{
2948           isSchemaChange = 0;
2949         }
2950         for(ii=0; ii<db->nDb; ii++){
2951           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2952           if( rc!=SQLITE_OK ){
2953             goto abort_due_to_error;
2954           }
2955         }
2956         if( isSchemaChange ){
2957           sqlite3ExpirePreparedStatements(db);
2958           sqlite3ResetAllSchemasOfConnection(db);
2959           db->flags = (db->flags | SQLITE_InternChanges);
2960         }
2961       }
2962 
2963       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2964       ** savepoints nested inside of the savepoint being operated on. */
2965       while( db->pSavepoint!=pSavepoint ){
2966         pTmp = db->pSavepoint;
2967         db->pSavepoint = pTmp->pNext;
2968         sqlite3DbFree(db, pTmp);
2969         db->nSavepoint--;
2970       }
2971 
2972       /* If it is a RELEASE, then destroy the savepoint being operated on
2973       ** too. If it is a ROLLBACK TO, then set the number of deferred
2974       ** constraint violations present in the database to the value stored
2975       ** when the savepoint was created.  */
2976       if( p1==SAVEPOINT_RELEASE ){
2977         assert( pSavepoint==db->pSavepoint );
2978         db->pSavepoint = pSavepoint->pNext;
2979         sqlite3DbFree(db, pSavepoint);
2980         if( !isTransaction ){
2981           db->nSavepoint--;
2982         }
2983       }else{
2984         db->nDeferredCons = pSavepoint->nDeferredCons;
2985         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2986       }
2987 
2988       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2989         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2990         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2991       }
2992     }
2993   }
2994 
2995   break;
2996 }
2997 
2998 /* Opcode: AutoCommit P1 P2 * * *
2999 **
3000 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3001 ** back any currently active btree transactions. If there are any active
3002 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3003 ** there are active writing VMs or active VMs that use shared cache.
3004 **
3005 ** This instruction causes the VM to halt.
3006 */
3007 case OP_AutoCommit: {
3008   int desiredAutoCommit;
3009   int iRollback;
3010 
3011   desiredAutoCommit = pOp->p1;
3012   iRollback = pOp->p2;
3013   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3014   assert( desiredAutoCommit==1 || iRollback==0 );
3015   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3016   assert( p->bIsReader );
3017 
3018   if( desiredAutoCommit!=db->autoCommit ){
3019     if( iRollback ){
3020       assert( desiredAutoCommit==1 );
3021       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3022       db->autoCommit = 1;
3023     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3024       /* If this instruction implements a COMMIT and other VMs are writing
3025       ** return an error indicating that the other VMs must complete first.
3026       */
3027       sqlite3VdbeError(p, "cannot commit transaction - "
3028                           "SQL statements in progress");
3029       rc = SQLITE_BUSY;
3030       break;
3031     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3032       goto vdbe_return;
3033     }else{
3034       db->autoCommit = (u8)desiredAutoCommit;
3035     }
3036     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3037       p->pc = (int)(pOp - aOp);
3038       db->autoCommit = (u8)(1-desiredAutoCommit);
3039       p->rc = rc = SQLITE_BUSY;
3040       goto vdbe_return;
3041     }
3042     assert( db->nStatement==0 );
3043     sqlite3CloseSavepoints(db);
3044     if( p->rc==SQLITE_OK ){
3045       rc = SQLITE_DONE;
3046     }else{
3047       rc = SQLITE_ERROR;
3048     }
3049     goto vdbe_return;
3050   }else{
3051     sqlite3VdbeError(p,
3052         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3053         (iRollback)?"cannot rollback - no transaction is active":
3054                    "cannot commit - no transaction is active"));
3055 
3056     rc = SQLITE_ERROR;
3057   }
3058   break;
3059 }
3060 
3061 /* Opcode: Transaction P1 P2 P3 P4 P5
3062 **
3063 ** Begin a transaction on database P1 if a transaction is not already
3064 ** active.
3065 ** If P2 is non-zero, then a write-transaction is started, or if a
3066 ** read-transaction is already active, it is upgraded to a write-transaction.
3067 ** If P2 is zero, then a read-transaction is started.
3068 **
3069 ** P1 is the index of the database file on which the transaction is
3070 ** started.  Index 0 is the main database file and index 1 is the
3071 ** file used for temporary tables.  Indices of 2 or more are used for
3072 ** attached databases.
3073 **
3074 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3075 ** true (this flag is set if the Vdbe may modify more than one row and may
3076 ** throw an ABORT exception), a statement transaction may also be opened.
3077 ** More specifically, a statement transaction is opened iff the database
3078 ** connection is currently not in autocommit mode, or if there are other
3079 ** active statements. A statement transaction allows the changes made by this
3080 ** VDBE to be rolled back after an error without having to roll back the
3081 ** entire transaction. If no error is encountered, the statement transaction
3082 ** will automatically commit when the VDBE halts.
3083 **
3084 ** If P5!=0 then this opcode also checks the schema cookie against P3
3085 ** and the schema generation counter against P4.
3086 ** The cookie changes its value whenever the database schema changes.
3087 ** This operation is used to detect when that the cookie has changed
3088 ** and that the current process needs to reread the schema.  If the schema
3089 ** cookie in P3 differs from the schema cookie in the database header or
3090 ** if the schema generation counter in P4 differs from the current
3091 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3092 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3093 ** statement and rerun it from the beginning.
3094 */
3095 case OP_Transaction: {
3096   Btree *pBt;
3097   int iMeta;
3098   int iGen;
3099 
3100   assert( p->bIsReader );
3101   assert( p->readOnly==0 || pOp->p2==0 );
3102   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3103   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3104   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3105     rc = SQLITE_READONLY;
3106     goto abort_due_to_error;
3107   }
3108   pBt = db->aDb[pOp->p1].pBt;
3109 
3110   if( pBt ){
3111     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3112     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3113     testcase( rc==SQLITE_BUSY_RECOVERY );
3114     if( (rc&0xff)==SQLITE_BUSY ){
3115       p->pc = (int)(pOp - aOp);
3116       p->rc = rc;
3117       goto vdbe_return;
3118     }
3119     if( rc!=SQLITE_OK ){
3120       goto abort_due_to_error;
3121     }
3122 
3123     if( pOp->p2 && p->usesStmtJournal
3124      && (db->autoCommit==0 || db->nVdbeRead>1)
3125     ){
3126       assert( sqlite3BtreeIsInTrans(pBt) );
3127       if( p->iStatement==0 ){
3128         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3129         db->nStatement++;
3130         p->iStatement = db->nSavepoint + db->nStatement;
3131       }
3132 
3133       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3134       if( rc==SQLITE_OK ){
3135         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3136       }
3137 
3138       /* Store the current value of the database handles deferred constraint
3139       ** counter. If the statement transaction needs to be rolled back,
3140       ** the value of this counter needs to be restored too.  */
3141       p->nStmtDefCons = db->nDeferredCons;
3142       p->nStmtDefImmCons = db->nDeferredImmCons;
3143     }
3144 
3145     /* Gather the schema version number for checking:
3146     ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3147     ** each time a query is executed to ensure that the internal cache of the
3148     ** schema used when compiling the SQL query matches the schema of the
3149     ** database against which the compiled query is actually executed.
3150     */
3151     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3152     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3153   }else{
3154     iGen = iMeta = 0;
3155   }
3156   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3157   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3158     sqlite3DbFree(db, p->zErrMsg);
3159     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3160     /* If the schema-cookie from the database file matches the cookie
3161     ** stored with the in-memory representation of the schema, do
3162     ** not reload the schema from the database file.
3163     **
3164     ** If virtual-tables are in use, this is not just an optimization.
3165     ** Often, v-tables store their data in other SQLite tables, which
3166     ** are queried from within xNext() and other v-table methods using
3167     ** prepared queries. If such a query is out-of-date, we do not want to
3168     ** discard the database schema, as the user code implementing the
3169     ** v-table would have to be ready for the sqlite3_vtab structure itself
3170     ** to be invalidated whenever sqlite3_step() is called from within
3171     ** a v-table method.
3172     */
3173     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3174       sqlite3ResetOneSchema(db, pOp->p1);
3175     }
3176     p->expired = 1;
3177     rc = SQLITE_SCHEMA;
3178   }
3179   break;
3180 }
3181 
3182 /* Opcode: ReadCookie P1 P2 P3 * *
3183 **
3184 ** Read cookie number P3 from database P1 and write it into register P2.
3185 ** P3==1 is the schema version.  P3==2 is the database format.
3186 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3187 ** the main database file and P1==1 is the database file used to store
3188 ** temporary tables.
3189 **
3190 ** There must be a read-lock on the database (either a transaction
3191 ** must be started or there must be an open cursor) before
3192 ** executing this instruction.
3193 */
3194 case OP_ReadCookie: {               /* out2 */
3195   int iMeta;
3196   int iDb;
3197   int iCookie;
3198 
3199   assert( p->bIsReader );
3200   iDb = pOp->p1;
3201   iCookie = pOp->p3;
3202   assert( pOp->p3<SQLITE_N_BTREE_META );
3203   assert( iDb>=0 && iDb<db->nDb );
3204   assert( db->aDb[iDb].pBt!=0 );
3205   assert( DbMaskTest(p->btreeMask, iDb) );
3206 
3207   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3208   pOut = out2Prerelease(p, pOp);
3209   pOut->u.i = iMeta;
3210   break;
3211 }
3212 
3213 /* Opcode: SetCookie P1 P2 P3 * *
3214 **
3215 ** Write the integer value P3 into cookie number P2 of database P1.
3216 ** P2==1 is the schema version.  P2==2 is the database format.
3217 ** P2==3 is the recommended pager cache
3218 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3219 ** database file used to store temporary tables.
3220 **
3221 ** A transaction must be started before executing this opcode.
3222 */
3223 case OP_SetCookie: {
3224   Db *pDb;
3225   assert( pOp->p2<SQLITE_N_BTREE_META );
3226   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3227   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3228   assert( p->readOnly==0 );
3229   pDb = &db->aDb[pOp->p1];
3230   assert( pDb->pBt!=0 );
3231   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3232   /* See note about index shifting on OP_ReadCookie */
3233   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3234   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3235     /* When the schema cookie changes, record the new cookie internally */
3236     pDb->pSchema->schema_cookie = pOp->p3;
3237     db->flags |= SQLITE_InternChanges;
3238   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3239     /* Record changes in the file format */
3240     pDb->pSchema->file_format = pOp->p3;
3241   }
3242   if( pOp->p1==1 ){
3243     /* Invalidate all prepared statements whenever the TEMP database
3244     ** schema is changed.  Ticket #1644 */
3245     sqlite3ExpirePreparedStatements(db);
3246     p->expired = 0;
3247   }
3248   break;
3249 }
3250 
3251 /* Opcode: OpenRead P1 P2 P3 P4 P5
3252 ** Synopsis: root=P2 iDb=P3
3253 **
3254 ** Open a read-only cursor for the database table whose root page is
3255 ** P2 in a database file.  The database file is determined by P3.
3256 ** P3==0 means the main database, P3==1 means the database used for
3257 ** temporary tables, and P3>1 means used the corresponding attached
3258 ** database.  Give the new cursor an identifier of P1.  The P1
3259 ** values need not be contiguous but all P1 values should be small integers.
3260 ** It is an error for P1 to be negative.
3261 **
3262 ** If P5!=0 then use the content of register P2 as the root page, not
3263 ** the value of P2 itself.
3264 **
3265 ** There will be a read lock on the database whenever there is an
3266 ** open cursor.  If the database was unlocked prior to this instruction
3267 ** then a read lock is acquired as part of this instruction.  A read
3268 ** lock allows other processes to read the database but prohibits
3269 ** any other process from modifying the database.  The read lock is
3270 ** released when all cursors are closed.  If this instruction attempts
3271 ** to get a read lock but fails, the script terminates with an
3272 ** SQLITE_BUSY error code.
3273 **
3274 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3275 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3276 ** structure, then said structure defines the content and collating
3277 ** sequence of the index being opened. Otherwise, if P4 is an integer
3278 ** value, it is set to the number of columns in the table.
3279 **
3280 ** See also: OpenWrite, ReopenIdx
3281 */
3282 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3283 ** Synopsis: root=P2 iDb=P3
3284 **
3285 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3286 ** checks to see if the cursor on P1 is already open with a root page
3287 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3288 ** if the cursor is already open, do not reopen it.
3289 **
3290 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3291 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3292 ** every other ReopenIdx or OpenRead for the same cursor number.
3293 **
3294 ** See the OpenRead opcode documentation for additional information.
3295 */
3296 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3297 ** Synopsis: root=P2 iDb=P3
3298 **
3299 ** Open a read/write cursor named P1 on the table or index whose root
3300 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3301 ** root page.
3302 **
3303 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3304 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3305 ** structure, then said structure defines the content and collating
3306 ** sequence of the index being opened. Otherwise, if P4 is an integer
3307 ** value, it is set to the number of columns in the table, or to the
3308 ** largest index of any column of the table that is actually used.
3309 **
3310 ** This instruction works just like OpenRead except that it opens the cursor
3311 ** in read/write mode.  For a given table, there can be one or more read-only
3312 ** cursors or a single read/write cursor but not both.
3313 **
3314 ** See also OpenRead.
3315 */
3316 case OP_ReopenIdx: {
3317   int nField;
3318   KeyInfo *pKeyInfo;
3319   int p2;
3320   int iDb;
3321   int wrFlag;
3322   Btree *pX;
3323   VdbeCursor *pCur;
3324   Db *pDb;
3325 
3326   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3327   assert( pOp->p4type==P4_KEYINFO );
3328   pCur = p->apCsr[pOp->p1];
3329   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3330     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3331     goto open_cursor_set_hints;
3332   }
3333   /* If the cursor is not currently open or is open on a different
3334   ** index, then fall through into OP_OpenRead to force a reopen */
3335 case OP_OpenRead:
3336 case OP_OpenWrite:
3337 
3338   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3339   assert( p->bIsReader );
3340   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3341           || p->readOnly==0 );
3342 
3343   if( p->expired ){
3344     rc = SQLITE_ABORT_ROLLBACK;
3345     break;
3346   }
3347 
3348   nField = 0;
3349   pKeyInfo = 0;
3350   p2 = pOp->p2;
3351   iDb = pOp->p3;
3352   assert( iDb>=0 && iDb<db->nDb );
3353   assert( DbMaskTest(p->btreeMask, iDb) );
3354   pDb = &db->aDb[iDb];
3355   pX = pDb->pBt;
3356   assert( pX!=0 );
3357   if( pOp->opcode==OP_OpenWrite ){
3358     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3359     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3360     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3361     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3362       p->minWriteFileFormat = pDb->pSchema->file_format;
3363     }
3364   }else{
3365     wrFlag = 0;
3366   }
3367   if( pOp->p5 & OPFLAG_P2ISREG ){
3368     assert( p2>0 );
3369     assert( p2<=(p->nMem-p->nCursor) );
3370     pIn2 = &aMem[p2];
3371     assert( memIsValid(pIn2) );
3372     assert( (pIn2->flags & MEM_Int)!=0 );
3373     sqlite3VdbeMemIntegerify(pIn2);
3374     p2 = (int)pIn2->u.i;
3375     /* The p2 value always comes from a prior OP_CreateTable opcode and
3376     ** that opcode will always set the p2 value to 2 or more or else fail.
3377     ** If there were a failure, the prepared statement would have halted
3378     ** before reaching this instruction. */
3379     if( NEVER(p2<2) ) {
3380       rc = SQLITE_CORRUPT_BKPT;
3381       goto abort_due_to_error;
3382     }
3383   }
3384   if( pOp->p4type==P4_KEYINFO ){
3385     pKeyInfo = pOp->p4.pKeyInfo;
3386     assert( pKeyInfo->enc==ENC(db) );
3387     assert( pKeyInfo->db==db );
3388     nField = pKeyInfo->nField+pKeyInfo->nXField;
3389   }else if( pOp->p4type==P4_INT32 ){
3390     nField = pOp->p4.i;
3391   }
3392   assert( pOp->p1>=0 );
3393   assert( nField>=0 );
3394   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3395   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3396   if( pCur==0 ) goto no_mem;
3397   pCur->nullRow = 1;
3398   pCur->isOrdered = 1;
3399   pCur->pgnoRoot = p2;
3400 #ifdef SQLITE_DEBUG
3401   pCur->wrFlag = wrFlag;
3402 #endif
3403   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3404   pCur->pKeyInfo = pKeyInfo;
3405   /* Set the VdbeCursor.isTable variable. Previous versions of
3406   ** SQLite used to check if the root-page flags were sane at this point
3407   ** and report database corruption if they were not, but this check has
3408   ** since moved into the btree layer.  */
3409   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3410 
3411 open_cursor_set_hints:
3412   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3413   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3414   testcase( pOp->p5 & OPFLAG_BULKCSR );
3415 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3416   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3417 #endif
3418   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3419                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3420   break;
3421 }
3422 
3423 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3424 ** Synopsis: nColumn=P2
3425 **
3426 ** Open a new cursor P1 to a transient table.
3427 ** The cursor is always opened read/write even if
3428 ** the main database is read-only.  The ephemeral
3429 ** table is deleted automatically when the cursor is closed.
3430 **
3431 ** P2 is the number of columns in the ephemeral table.
3432 ** The cursor points to a BTree table if P4==0 and to a BTree index
3433 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3434 ** that defines the format of keys in the index.
3435 **
3436 ** The P5 parameter can be a mask of the BTREE_* flags defined
3437 ** in btree.h.  These flags control aspects of the operation of
3438 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3439 ** added automatically.
3440 */
3441 /* Opcode: OpenAutoindex P1 P2 * P4 *
3442 ** Synopsis: nColumn=P2
3443 **
3444 ** This opcode works the same as OP_OpenEphemeral.  It has a
3445 ** different name to distinguish its use.  Tables created using
3446 ** by this opcode will be used for automatically created transient
3447 ** indices in joins.
3448 */
3449 case OP_OpenAutoindex:
3450 case OP_OpenEphemeral: {
3451   VdbeCursor *pCx;
3452   KeyInfo *pKeyInfo;
3453 
3454   static const int vfsFlags =
3455       SQLITE_OPEN_READWRITE |
3456       SQLITE_OPEN_CREATE |
3457       SQLITE_OPEN_EXCLUSIVE |
3458       SQLITE_OPEN_DELETEONCLOSE |
3459       SQLITE_OPEN_TRANSIENT_DB;
3460   assert( pOp->p1>=0 );
3461   assert( pOp->p2>=0 );
3462   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3463   if( pCx==0 ) goto no_mem;
3464   pCx->nullRow = 1;
3465   pCx->isEphemeral = 1;
3466   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3467                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3468   if( rc==SQLITE_OK ){
3469     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3470   }
3471   if( rc==SQLITE_OK ){
3472     /* If a transient index is required, create it by calling
3473     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3474     ** opening it. If a transient table is required, just use the
3475     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3476     */
3477     if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3478       int pgno;
3479       assert( pOp->p4type==P4_KEYINFO );
3480       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3481       if( rc==SQLITE_OK ){
3482         assert( pgno==MASTER_ROOT+1 );
3483         assert( pKeyInfo->db==db );
3484         assert( pKeyInfo->enc==ENC(db) );
3485         pCx->pKeyInfo = pKeyInfo;
3486         rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3487                                 pKeyInfo, pCx->uc.pCursor);
3488       }
3489       pCx->isTable = 0;
3490     }else{
3491       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3492                               0, pCx->uc.pCursor);
3493       pCx->isTable = 1;
3494     }
3495   }
3496   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3497   break;
3498 }
3499 
3500 /* Opcode: SorterOpen P1 P2 P3 P4 *
3501 **
3502 ** This opcode works like OP_OpenEphemeral except that it opens
3503 ** a transient index that is specifically designed to sort large
3504 ** tables using an external merge-sort algorithm.
3505 **
3506 ** If argument P3 is non-zero, then it indicates that the sorter may
3507 ** assume that a stable sort considering the first P3 fields of each
3508 ** key is sufficient to produce the required results.
3509 */
3510 case OP_SorterOpen: {
3511   VdbeCursor *pCx;
3512 
3513   assert( pOp->p1>=0 );
3514   assert( pOp->p2>=0 );
3515   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3516   if( pCx==0 ) goto no_mem;
3517   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3518   assert( pCx->pKeyInfo->db==db );
3519   assert( pCx->pKeyInfo->enc==ENC(db) );
3520   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3521   break;
3522 }
3523 
3524 /* Opcode: SequenceTest P1 P2 * * *
3525 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3526 **
3527 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3528 ** to P2. Regardless of whether or not the jump is taken, increment the
3529 ** the sequence value.
3530 */
3531 case OP_SequenceTest: {
3532   VdbeCursor *pC;
3533   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3534   pC = p->apCsr[pOp->p1];
3535   assert( isSorter(pC) );
3536   if( (pC->seqCount++)==0 ){
3537     goto jump_to_p2;
3538   }
3539   break;
3540 }
3541 
3542 /* Opcode: OpenPseudo P1 P2 P3 * *
3543 ** Synopsis: P3 columns in r[P2]
3544 **
3545 ** Open a new cursor that points to a fake table that contains a single
3546 ** row of data.  The content of that one row is the content of memory
3547 ** register P2.  In other words, cursor P1 becomes an alias for the
3548 ** MEM_Blob content contained in register P2.
3549 **
3550 ** A pseudo-table created by this opcode is used to hold a single
3551 ** row output from the sorter so that the row can be decomposed into
3552 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3553 ** is the only cursor opcode that works with a pseudo-table.
3554 **
3555 ** P3 is the number of fields in the records that will be stored by
3556 ** the pseudo-table.
3557 */
3558 case OP_OpenPseudo: {
3559   VdbeCursor *pCx;
3560 
3561   assert( pOp->p1>=0 );
3562   assert( pOp->p3>=0 );
3563   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3564   if( pCx==0 ) goto no_mem;
3565   pCx->nullRow = 1;
3566   pCx->uc.pseudoTableReg = pOp->p2;
3567   pCx->isTable = 1;
3568   assert( pOp->p5==0 );
3569   break;
3570 }
3571 
3572 /* Opcode: Close P1 * * * *
3573 **
3574 ** Close a cursor previously opened as P1.  If P1 is not
3575 ** currently open, this instruction is a no-op.
3576 */
3577 case OP_Close: {
3578   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3579   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3580   p->apCsr[pOp->p1] = 0;
3581   break;
3582 }
3583 
3584 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3585 /* Opcode: ColumnsUsed P1 * * P4 *
3586 **
3587 ** This opcode (which only exists if SQLite was compiled with
3588 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3589 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3590 ** (P4_INT64) in which the first 63 bits are one for each of the
3591 ** first 63 columns of the table or index that are actually used
3592 ** by the cursor.  The high-order bit is set if any column after
3593 ** the 64th is used.
3594 */
3595 case OP_ColumnsUsed: {
3596   VdbeCursor *pC;
3597   pC = p->apCsr[pOp->p1];
3598   assert( pC->eCurType==CURTYPE_BTREE );
3599   pC->maskUsed = *(u64*)pOp->p4.pI64;
3600   break;
3601 }
3602 #endif
3603 
3604 /* Opcode: SeekGE P1 P2 P3 P4 *
3605 ** Synopsis: key=r[P3@P4]
3606 **
3607 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3608 ** use the value in register P3 as the key.  If cursor P1 refers
3609 ** to an SQL index, then P3 is the first in an array of P4 registers
3610 ** that are used as an unpacked index key.
3611 **
3612 ** Reposition cursor P1 so that  it points to the smallest entry that
3613 ** is greater than or equal to the key value. If there are no records
3614 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3615 **
3616 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3617 ** opcode will always land on a record that equally equals the key, or
3618 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3619 ** opcode must be followed by an IdxLE opcode with the same arguments.
3620 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3621 ** IdxLE opcode will be used on subsequent loop iterations.
3622 **
3623 ** This opcode leaves the cursor configured to move in forward order,
3624 ** from the beginning toward the end.  In other words, the cursor is
3625 ** configured to use Next, not Prev.
3626 **
3627 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3628 */
3629 /* Opcode: SeekGT P1 P2 P3 P4 *
3630 ** Synopsis: key=r[P3@P4]
3631 **
3632 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3633 ** use the value in register P3 as a key. If cursor P1 refers
3634 ** to an SQL index, then P3 is the first in an array of P4 registers
3635 ** that are used as an unpacked index key.
3636 **
3637 ** Reposition cursor P1 so that  it points to the smallest entry that
3638 ** is greater than the key value. If there are no records greater than
3639 ** the key and P2 is not zero, then jump to P2.
3640 **
3641 ** This opcode leaves the cursor configured to move in forward order,
3642 ** from the beginning toward the end.  In other words, the cursor is
3643 ** configured to use Next, not Prev.
3644 **
3645 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3646 */
3647 /* Opcode: SeekLT P1 P2 P3 P4 *
3648 ** Synopsis: key=r[P3@P4]
3649 **
3650 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3651 ** use the value in register P3 as a key. If cursor P1 refers
3652 ** to an SQL index, then P3 is the first in an array of P4 registers
3653 ** that are used as an unpacked index key.
3654 **
3655 ** Reposition cursor P1 so that  it points to the largest entry that
3656 ** is less than the key value. If there are no records less than
3657 ** the key and P2 is not zero, then jump to P2.
3658 **
3659 ** This opcode leaves the cursor configured to move in reverse order,
3660 ** from the end toward the beginning.  In other words, the cursor is
3661 ** configured to use Prev, not Next.
3662 **
3663 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3664 */
3665 /* Opcode: SeekLE P1 P2 P3 P4 *
3666 ** Synopsis: key=r[P3@P4]
3667 **
3668 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3669 ** use the value in register P3 as a key. If cursor P1 refers
3670 ** to an SQL index, then P3 is the first in an array of P4 registers
3671 ** that are used as an unpacked index key.
3672 **
3673 ** Reposition cursor P1 so that it points to the largest entry that
3674 ** is less than or equal to the key value. If there are no records
3675 ** less than or equal to the key and P2 is not zero, then jump to P2.
3676 **
3677 ** This opcode leaves the cursor configured to move in reverse order,
3678 ** from the end toward the beginning.  In other words, the cursor is
3679 ** configured to use Prev, not Next.
3680 **
3681 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3682 ** opcode will always land on a record that equally equals the key, or
3683 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3684 ** opcode must be followed by an IdxGE opcode with the same arguments.
3685 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3686 ** IdxGE opcode will be used on subsequent loop iterations.
3687 **
3688 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3689 */
3690 case OP_SeekLT:         /* jump, in3 */
3691 case OP_SeekLE:         /* jump, in3 */
3692 case OP_SeekGE:         /* jump, in3 */
3693 case OP_SeekGT: {       /* jump, in3 */
3694   int res;           /* Comparison result */
3695   int oc;            /* Opcode */
3696   VdbeCursor *pC;    /* The cursor to seek */
3697   UnpackedRecord r;  /* The key to seek for */
3698   int nField;        /* Number of columns or fields in the key */
3699   i64 iKey;          /* The rowid we are to seek to */
3700   int eqOnly;        /* Only interested in == results */
3701 
3702   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3703   assert( pOp->p2!=0 );
3704   pC = p->apCsr[pOp->p1];
3705   assert( pC!=0 );
3706   assert( pC->eCurType==CURTYPE_BTREE );
3707   assert( OP_SeekLE == OP_SeekLT+1 );
3708   assert( OP_SeekGE == OP_SeekLT+2 );
3709   assert( OP_SeekGT == OP_SeekLT+3 );
3710   assert( pC->isOrdered );
3711   assert( pC->uc.pCursor!=0 );
3712   oc = pOp->opcode;
3713   eqOnly = 0;
3714   pC->nullRow = 0;
3715 #ifdef SQLITE_DEBUG
3716   pC->seekOp = pOp->opcode;
3717 #endif
3718 
3719   if( pC->isTable ){
3720     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3721     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3722 
3723     /* The input value in P3 might be of any type: integer, real, string,
3724     ** blob, or NULL.  But it needs to be an integer before we can do
3725     ** the seek, so convert it. */
3726     pIn3 = &aMem[pOp->p3];
3727     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3728       applyNumericAffinity(pIn3, 0);
3729     }
3730     iKey = sqlite3VdbeIntValue(pIn3);
3731 
3732     /* If the P3 value could not be converted into an integer without
3733     ** loss of information, then special processing is required... */
3734     if( (pIn3->flags & MEM_Int)==0 ){
3735       if( (pIn3->flags & MEM_Real)==0 ){
3736         /* If the P3 value cannot be converted into any kind of a number,
3737         ** then the seek is not possible, so jump to P2 */
3738         VdbeBranchTaken(1,2); goto jump_to_p2;
3739         break;
3740       }
3741 
3742       /* If the approximation iKey is larger than the actual real search
3743       ** term, substitute >= for > and < for <=. e.g. if the search term
3744       ** is 4.9 and the integer approximation 5:
3745       **
3746       **        (x >  4.9)    ->     (x >= 5)
3747       **        (x <= 4.9)    ->     (x <  5)
3748       */
3749       if( pIn3->u.r<(double)iKey ){
3750         assert( OP_SeekGE==(OP_SeekGT-1) );
3751         assert( OP_SeekLT==(OP_SeekLE-1) );
3752         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3753         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3754       }
3755 
3756       /* If the approximation iKey is smaller than the actual real search
3757       ** term, substitute <= for < and > for >=.  */
3758       else if( pIn3->u.r>(double)iKey ){
3759         assert( OP_SeekLE==(OP_SeekLT+1) );
3760         assert( OP_SeekGT==(OP_SeekGE+1) );
3761         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3762         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3763       }
3764     }
3765     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3766     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3767     if( rc!=SQLITE_OK ){
3768       goto abort_due_to_error;
3769     }
3770   }else{
3771     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3772     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3773     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3774     */
3775     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3776       eqOnly = 1;
3777       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3778       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3779       assert( pOp[1].p1==pOp[0].p1 );
3780       assert( pOp[1].p2==pOp[0].p2 );
3781       assert( pOp[1].p3==pOp[0].p3 );
3782       assert( pOp[1].p4.i==pOp[0].p4.i );
3783     }
3784 
3785     nField = pOp->p4.i;
3786     assert( pOp->p4type==P4_INT32 );
3787     assert( nField>0 );
3788     r.pKeyInfo = pC->pKeyInfo;
3789     r.nField = (u16)nField;
3790 
3791     /* The next line of code computes as follows, only faster:
3792     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3793     **     r.default_rc = -1;
3794     **   }else{
3795     **     r.default_rc = +1;
3796     **   }
3797     */
3798     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3799     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3800     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3801     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3802     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3803 
3804     r.aMem = &aMem[pOp->p3];
3805 #ifdef SQLITE_DEBUG
3806     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3807 #endif
3808     ExpandBlob(r.aMem);
3809     r.eqSeen = 0;
3810     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3811     if( rc!=SQLITE_OK ){
3812       goto abort_due_to_error;
3813     }
3814     if( eqOnly && r.eqSeen==0 ){
3815       assert( res!=0 );
3816       goto seek_not_found;
3817     }
3818   }
3819   pC->deferredMoveto = 0;
3820   pC->cacheStatus = CACHE_STALE;
3821 #ifdef SQLITE_TEST
3822   sqlite3_search_count++;
3823 #endif
3824   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3825     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3826       res = 0;
3827       rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3828       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3829     }else{
3830       res = 0;
3831     }
3832   }else{
3833     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3834     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3835       res = 0;
3836       rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3837       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3838     }else{
3839       /* res might be negative because the table is empty.  Check to
3840       ** see if this is the case.
3841       */
3842       res = sqlite3BtreeEof(pC->uc.pCursor);
3843     }
3844   }
3845 seek_not_found:
3846   assert( pOp->p2>0 );
3847   VdbeBranchTaken(res!=0,2);
3848   if( res ){
3849     goto jump_to_p2;
3850   }else if( eqOnly ){
3851     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3852     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3853   }
3854   break;
3855 }
3856 
3857 
3858 /* Opcode: Found P1 P2 P3 P4 *
3859 ** Synopsis: key=r[P3@P4]
3860 **
3861 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3862 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3863 ** record.
3864 **
3865 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3866 ** is a prefix of any entry in P1 then a jump is made to P2 and
3867 ** P1 is left pointing at the matching entry.
3868 **
3869 ** This operation leaves the cursor in a state where it can be
3870 ** advanced in the forward direction.  The Next instruction will work,
3871 ** but not the Prev instruction.
3872 **
3873 ** See also: NotFound, NoConflict, NotExists. SeekGe
3874 */
3875 /* Opcode: NotFound P1 P2 P3 P4 *
3876 ** Synopsis: key=r[P3@P4]
3877 **
3878 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3879 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3880 ** record.
3881 **
3882 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3883 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3884 ** does contain an entry whose prefix matches the P3/P4 record then control
3885 ** falls through to the next instruction and P1 is left pointing at the
3886 ** matching entry.
3887 **
3888 ** This operation leaves the cursor in a state where it cannot be
3889 ** advanced in either direction.  In other words, the Next and Prev
3890 ** opcodes do not work after this operation.
3891 **
3892 ** See also: Found, NotExists, NoConflict
3893 */
3894 /* Opcode: NoConflict P1 P2 P3 P4 *
3895 ** Synopsis: key=r[P3@P4]
3896 **
3897 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3898 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3899 ** record.
3900 **
3901 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3902 ** contains any NULL value, jump immediately to P2.  If all terms of the
3903 ** record are not-NULL then a check is done to determine if any row in the
3904 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3905 ** immediately to P2.  If there is a match, fall through and leave the P1
3906 ** cursor pointing to the matching row.
3907 **
3908 ** This opcode is similar to OP_NotFound with the exceptions that the
3909 ** branch is always taken if any part of the search key input is NULL.
3910 **
3911 ** This operation leaves the cursor in a state where it cannot be
3912 ** advanced in either direction.  In other words, the Next and Prev
3913 ** opcodes do not work after this operation.
3914 **
3915 ** See also: NotFound, Found, NotExists
3916 */
3917 case OP_NoConflict:     /* jump, in3 */
3918 case OP_NotFound:       /* jump, in3 */
3919 case OP_Found: {        /* jump, in3 */
3920   int alreadyExists;
3921   int takeJump;
3922   int ii;
3923   VdbeCursor *pC;
3924   int res;
3925   char *pFree;
3926   UnpackedRecord *pIdxKey;
3927   UnpackedRecord r;
3928   char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3929 
3930 #ifdef SQLITE_TEST
3931   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3932 #endif
3933 
3934   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3935   assert( pOp->p4type==P4_INT32 );
3936   pC = p->apCsr[pOp->p1];
3937   assert( pC!=0 );
3938 #ifdef SQLITE_DEBUG
3939   pC->seekOp = pOp->opcode;
3940 #endif
3941   pIn3 = &aMem[pOp->p3];
3942   assert( pC->eCurType==CURTYPE_BTREE );
3943   assert( pC->uc.pCursor!=0 );
3944   assert( pC->isTable==0 );
3945   pFree = 0;
3946   if( pOp->p4.i>0 ){
3947     r.pKeyInfo = pC->pKeyInfo;
3948     r.nField = (u16)pOp->p4.i;
3949     r.aMem = pIn3;
3950     for(ii=0; ii<r.nField; ii++){
3951       assert( memIsValid(&r.aMem[ii]) );
3952       ExpandBlob(&r.aMem[ii]);
3953 #ifdef SQLITE_DEBUG
3954       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3955 #endif
3956     }
3957     pIdxKey = &r;
3958   }else{
3959     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3960         pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3961     );
3962     if( pIdxKey==0 ) goto no_mem;
3963     assert( pIn3->flags & MEM_Blob );
3964     ExpandBlob(pIn3);
3965     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3966   }
3967   pIdxKey->default_rc = 0;
3968   takeJump = 0;
3969   if( pOp->opcode==OP_NoConflict ){
3970     /* For the OP_NoConflict opcode, take the jump if any of the
3971     ** input fields are NULL, since any key with a NULL will not
3972     ** conflict */
3973     for(ii=0; ii<pIdxKey->nField; ii++){
3974       if( pIdxKey->aMem[ii].flags & MEM_Null ){
3975         takeJump = 1;
3976         break;
3977       }
3978     }
3979   }
3980   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
3981   sqlite3DbFree(db, pFree);
3982   if( rc!=SQLITE_OK ){
3983     break;
3984   }
3985   pC->seekResult = res;
3986   alreadyExists = (res==0);
3987   pC->nullRow = 1-alreadyExists;
3988   pC->deferredMoveto = 0;
3989   pC->cacheStatus = CACHE_STALE;
3990   if( pOp->opcode==OP_Found ){
3991     VdbeBranchTaken(alreadyExists!=0,2);
3992     if( alreadyExists ) goto jump_to_p2;
3993   }else{
3994     VdbeBranchTaken(takeJump||alreadyExists==0,2);
3995     if( takeJump || !alreadyExists ) goto jump_to_p2;
3996   }
3997   break;
3998 }
3999 
4000 /* Opcode: NotExists P1 P2 P3 * *
4001 ** Synopsis: intkey=r[P3]
4002 **
4003 ** P1 is the index of a cursor open on an SQL table btree (with integer
4004 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4005 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4006 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4007 ** leave the cursor pointing at that record and fall through to the next
4008 ** instruction.
4009 **
4010 ** The OP_NotFound opcode performs the same operation on index btrees
4011 ** (with arbitrary multi-value keys).
4012 **
4013 ** This opcode leaves the cursor in a state where it cannot be advanced
4014 ** in either direction.  In other words, the Next and Prev opcodes will
4015 ** not work following this opcode.
4016 **
4017 ** See also: Found, NotFound, NoConflict
4018 */
4019 case OP_NotExists: {        /* jump, in3 */
4020   VdbeCursor *pC;
4021   BtCursor *pCrsr;
4022   int res;
4023   u64 iKey;
4024 
4025   pIn3 = &aMem[pOp->p3];
4026   assert( pIn3->flags & MEM_Int );
4027   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4028   pC = p->apCsr[pOp->p1];
4029   assert( pC!=0 );
4030 #ifdef SQLITE_DEBUG
4031   pC->seekOp = 0;
4032 #endif
4033   assert( pC->isTable );
4034   assert( pC->eCurType==CURTYPE_BTREE );
4035   pCrsr = pC->uc.pCursor;
4036   assert( pCrsr!=0 );
4037   res = 0;
4038   iKey = pIn3->u.i;
4039   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4040   assert( rc==SQLITE_OK || res==0 );
4041   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4042   pC->nullRow = 0;
4043   pC->cacheStatus = CACHE_STALE;
4044   pC->deferredMoveto = 0;
4045   VdbeBranchTaken(res!=0,2);
4046   pC->seekResult = res;
4047   if( res!=0 ){
4048     assert( rc==SQLITE_OK );
4049     if( pOp->p2==0 ){
4050       rc = SQLITE_CORRUPT_BKPT;
4051     }else{
4052       goto jump_to_p2;
4053     }
4054   }
4055   break;
4056 }
4057 
4058 /* Opcode: Sequence P1 P2 * * *
4059 ** Synopsis: r[P2]=cursor[P1].ctr++
4060 **
4061 ** Find the next available sequence number for cursor P1.
4062 ** Write the sequence number into register P2.
4063 ** The sequence number on the cursor is incremented after this
4064 ** instruction.
4065 */
4066 case OP_Sequence: {           /* out2 */
4067   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4068   assert( p->apCsr[pOp->p1]!=0 );
4069   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4070   pOut = out2Prerelease(p, pOp);
4071   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4072   break;
4073 }
4074 
4075 
4076 /* Opcode: NewRowid P1 P2 P3 * *
4077 ** Synopsis: r[P2]=rowid
4078 **
4079 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4080 ** The record number is not previously used as a key in the database
4081 ** table that cursor P1 points to.  The new record number is written
4082 ** written to register P2.
4083 **
4084 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4085 ** the largest previously generated record number. No new record numbers are
4086 ** allowed to be less than this value. When this value reaches its maximum,
4087 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4088 ** generated record number. This P3 mechanism is used to help implement the
4089 ** AUTOINCREMENT feature.
4090 */
4091 case OP_NewRowid: {           /* out2 */
4092   i64 v;                 /* The new rowid */
4093   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4094   int res;               /* Result of an sqlite3BtreeLast() */
4095   int cnt;               /* Counter to limit the number of searches */
4096   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4097   VdbeFrame *pFrame;     /* Root frame of VDBE */
4098 
4099   v = 0;
4100   res = 0;
4101   pOut = out2Prerelease(p, pOp);
4102   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4103   pC = p->apCsr[pOp->p1];
4104   assert( pC!=0 );
4105   assert( pC->eCurType==CURTYPE_BTREE );
4106   assert( pC->uc.pCursor!=0 );
4107   {
4108     /* The next rowid or record number (different terms for the same
4109     ** thing) is obtained in a two-step algorithm.
4110     **
4111     ** First we attempt to find the largest existing rowid and add one
4112     ** to that.  But if the largest existing rowid is already the maximum
4113     ** positive integer, we have to fall through to the second
4114     ** probabilistic algorithm
4115     **
4116     ** The second algorithm is to select a rowid at random and see if
4117     ** it already exists in the table.  If it does not exist, we have
4118     ** succeeded.  If the random rowid does exist, we select a new one
4119     ** and try again, up to 100 times.
4120     */
4121     assert( pC->isTable );
4122 
4123 #ifdef SQLITE_32BIT_ROWID
4124 #   define MAX_ROWID 0x7fffffff
4125 #else
4126     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4127     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4128     ** to provide the constant while making all compilers happy.
4129     */
4130 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4131 #endif
4132 
4133     if( !pC->useRandomRowid ){
4134       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4135       if( rc!=SQLITE_OK ){
4136         goto abort_due_to_error;
4137       }
4138       if( res ){
4139         v = 1;   /* IMP: R-61914-48074 */
4140       }else{
4141         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4142         rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4143         assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
4144         if( v>=MAX_ROWID ){
4145           pC->useRandomRowid = 1;
4146         }else{
4147           v++;   /* IMP: R-29538-34987 */
4148         }
4149       }
4150     }
4151 
4152 #ifndef SQLITE_OMIT_AUTOINCREMENT
4153     if( pOp->p3 ){
4154       /* Assert that P3 is a valid memory cell. */
4155       assert( pOp->p3>0 );
4156       if( p->pFrame ){
4157         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4158         /* Assert that P3 is a valid memory cell. */
4159         assert( pOp->p3<=pFrame->nMem );
4160         pMem = &pFrame->aMem[pOp->p3];
4161       }else{
4162         /* Assert that P3 is a valid memory cell. */
4163         assert( pOp->p3<=(p->nMem-p->nCursor) );
4164         pMem = &aMem[pOp->p3];
4165         memAboutToChange(p, pMem);
4166       }
4167       assert( memIsValid(pMem) );
4168 
4169       REGISTER_TRACE(pOp->p3, pMem);
4170       sqlite3VdbeMemIntegerify(pMem);
4171       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4172       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4173         rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
4174         goto abort_due_to_error;
4175       }
4176       if( v<pMem->u.i+1 ){
4177         v = pMem->u.i + 1;
4178       }
4179       pMem->u.i = v;
4180     }
4181 #endif
4182     if( pC->useRandomRowid ){
4183       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4184       ** largest possible integer (9223372036854775807) then the database
4185       ** engine starts picking positive candidate ROWIDs at random until
4186       ** it finds one that is not previously used. */
4187       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4188                              ** an AUTOINCREMENT table. */
4189       cnt = 0;
4190       do{
4191         sqlite3_randomness(sizeof(v), &v);
4192         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4193       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4194                                                  0, &res))==SQLITE_OK)
4195             && (res==0)
4196             && (++cnt<100));
4197       if( rc==SQLITE_OK && res==0 ){
4198         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4199         goto abort_due_to_error;
4200       }
4201       assert( v>0 );  /* EV: R-40812-03570 */
4202     }
4203     pC->deferredMoveto = 0;
4204     pC->cacheStatus = CACHE_STALE;
4205   }
4206   pOut->u.i = v;
4207   break;
4208 }
4209 
4210 /* Opcode: Insert P1 P2 P3 P4 P5
4211 ** Synopsis: intkey=r[P3] data=r[P2]
4212 **
4213 ** Write an entry into the table of cursor P1.  A new entry is
4214 ** created if it doesn't already exist or the data for an existing
4215 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4216 ** number P2. The key is stored in register P3. The key must
4217 ** be a MEM_Int.
4218 **
4219 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4220 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4221 ** then rowid is stored for subsequent return by the
4222 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4223 **
4224 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4225 ** the last seek operation (OP_NotExists) was a success, then this
4226 ** operation will not attempt to find the appropriate row before doing
4227 ** the insert but will instead overwrite the row that the cursor is
4228 ** currently pointing to.  Presumably, the prior OP_NotExists opcode
4229 ** has already positioned the cursor correctly.  This is an optimization
4230 ** that boosts performance by avoiding redundant seeks.
4231 **
4232 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4233 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4234 ** is part of an INSERT operation.  The difference is only important to
4235 ** the update hook.
4236 **
4237 ** Parameter P4 may point to a string containing the table-name, or
4238 ** may be NULL. If it is not NULL, then the update-hook
4239 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4240 **
4241 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4242 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4243 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4244 ** value of register P2 will then change.  Make sure this does not
4245 ** cause any problems.)
4246 **
4247 ** This instruction only works on tables.  The equivalent instruction
4248 ** for indices is OP_IdxInsert.
4249 */
4250 /* Opcode: InsertInt P1 P2 P3 P4 P5
4251 ** Synopsis:  intkey=P3 data=r[P2]
4252 **
4253 ** This works exactly like OP_Insert except that the key is the
4254 ** integer value P3, not the value of the integer stored in register P3.
4255 */
4256 case OP_Insert:
4257 case OP_InsertInt: {
4258   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4259   Mem *pKey;        /* MEM cell holding key  for the record */
4260   i64 iKey;         /* The integer ROWID or key for the record to be inserted */
4261   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4262   int nZero;        /* Number of zero-bytes to append */
4263   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4264   const char *zDb;  /* database name - used by the update hook */
4265   const char *zTbl; /* Table name - used by the opdate hook */
4266   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4267 
4268   pData = &aMem[pOp->p2];
4269   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4270   assert( memIsValid(pData) );
4271   pC = p->apCsr[pOp->p1];
4272   assert( pC!=0 );
4273   assert( pC->eCurType==CURTYPE_BTREE );
4274   assert( pC->uc.pCursor!=0 );
4275   assert( pC->isTable );
4276   REGISTER_TRACE(pOp->p2, pData);
4277 
4278   if( pOp->opcode==OP_Insert ){
4279     pKey = &aMem[pOp->p3];
4280     assert( pKey->flags & MEM_Int );
4281     assert( memIsValid(pKey) );
4282     REGISTER_TRACE(pOp->p3, pKey);
4283     iKey = pKey->u.i;
4284   }else{
4285     assert( pOp->opcode==OP_InsertInt );
4286     iKey = pOp->p3;
4287   }
4288 
4289   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4290   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4291   if( pData->flags & MEM_Null ){
4292     pData->z = 0;
4293     pData->n = 0;
4294   }else{
4295     assert( pData->flags & (MEM_Blob|MEM_Str) );
4296   }
4297   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4298   if( pData->flags & MEM_Zero ){
4299     nZero = pData->u.nZero;
4300   }else{
4301     nZero = 0;
4302   }
4303   rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
4304                           pData->z, pData->n, nZero,
4305                           (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4306   );
4307   pC->deferredMoveto = 0;
4308   pC->cacheStatus = CACHE_STALE;
4309 
4310   /* Invoke the update-hook if required. */
4311   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4312     zDb = db->aDb[pC->iDb].zName;
4313     zTbl = pOp->p4.z;
4314     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4315     assert( pC->isTable );
4316     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4317     assert( pC->iDb>=0 );
4318   }
4319   break;
4320 }
4321 
4322 /* Opcode: Delete P1 P2 * P4 P5
4323 **
4324 ** Delete the record at which the P1 cursor is currently pointing.
4325 **
4326 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4327 ** the cursor will be left pointing at  either the next or the previous
4328 ** record in the table. If it is left pointing at the next record, then
4329 ** the next Next instruction will be a no-op. As a result, in this case
4330 ** it is ok to delete a record from within a Next loop. If
4331 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4332 ** left in an undefined state.
4333 **
4334 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4335 ** delete one of several associated with deleting a table row and all its
4336 ** associated index entries.  Exactly one of those deletes is the "primary"
4337 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4338 ** marked with the AUXDELETE flag.
4339 **
4340 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4341 ** change count is incremented (otherwise not).
4342 **
4343 ** P1 must not be pseudo-table.  It has to be a real table with
4344 ** multiple rows.
4345 **
4346 ** If P4 is not NULL, then it is the name of the table that P1 is
4347 ** pointing to.  The update hook will be invoked, if it exists.
4348 ** If P4 is not NULL then the P1 cursor must have been positioned
4349 ** using OP_NotFound prior to invoking this opcode.
4350 */
4351 case OP_Delete: {
4352   VdbeCursor *pC;
4353   u8 hasUpdateCallback;
4354 
4355   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4356   pC = p->apCsr[pOp->p1];
4357   assert( pC!=0 );
4358   assert( pC->eCurType==CURTYPE_BTREE );
4359   assert( pC->uc.pCursor!=0 );
4360   assert( pC->deferredMoveto==0 );
4361 
4362   hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4363   if( pOp->p5 && hasUpdateCallback ){
4364     sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
4365   }
4366 
4367 #ifdef SQLITE_DEBUG
4368   /* The seek operation that positioned the cursor prior to OP_Delete will
4369   ** have also set the pC->movetoTarget field to the rowid of the row that
4370   ** is being deleted */
4371   if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
4372     i64 iKey = 0;
4373     sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
4374     assert( pC->movetoTarget==iKey );
4375   }
4376 #endif
4377 
4378   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4379   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4380   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4381   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4382 
4383 #ifdef SQLITE_DEBUG
4384   if( p->pFrame==0 ){
4385     if( pC->isEphemeral==0
4386         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4387         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4388       ){
4389       nExtraDelete++;
4390     }
4391     if( pOp->p2 & OPFLAG_NCHANGE ){
4392       nExtraDelete--;
4393     }
4394   }
4395 #endif
4396 
4397   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4398   pC->cacheStatus = CACHE_STALE;
4399 
4400   /* Invoke the update-hook if required. */
4401   if( rc==SQLITE_OK && hasUpdateCallback ){
4402     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4403                         db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4404     assert( pC->iDb>=0 );
4405   }
4406   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4407   break;
4408 }
4409 /* Opcode: ResetCount * * * * *
4410 **
4411 ** The value of the change counter is copied to the database handle
4412 ** change counter (returned by subsequent calls to sqlite3_changes()).
4413 ** Then the VMs internal change counter resets to 0.
4414 ** This is used by trigger programs.
4415 */
4416 case OP_ResetCount: {
4417   sqlite3VdbeSetChanges(db, p->nChange);
4418   p->nChange = 0;
4419   break;
4420 }
4421 
4422 /* Opcode: SorterCompare P1 P2 P3 P4
4423 ** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
4424 **
4425 ** P1 is a sorter cursor. This instruction compares a prefix of the
4426 ** record blob in register P3 against a prefix of the entry that
4427 ** the sorter cursor currently points to.  Only the first P4 fields
4428 ** of r[P3] and the sorter record are compared.
4429 **
4430 ** If either P3 or the sorter contains a NULL in one of their significant
4431 ** fields (not counting the P4 fields at the end which are ignored) then
4432 ** the comparison is assumed to be equal.
4433 **
4434 ** Fall through to next instruction if the two records compare equal to
4435 ** each other.  Jump to P2 if they are different.
4436 */
4437 case OP_SorterCompare: {
4438   VdbeCursor *pC;
4439   int res;
4440   int nKeyCol;
4441 
4442   pC = p->apCsr[pOp->p1];
4443   assert( isSorter(pC) );
4444   assert( pOp->p4type==P4_INT32 );
4445   pIn3 = &aMem[pOp->p3];
4446   nKeyCol = pOp->p4.i;
4447   res = 0;
4448   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4449   VdbeBranchTaken(res!=0,2);
4450   if( res ) goto jump_to_p2;
4451   break;
4452 };
4453 
4454 /* Opcode: SorterData P1 P2 P3 * *
4455 ** Synopsis: r[P2]=data
4456 **
4457 ** Write into register P2 the current sorter data for sorter cursor P1.
4458 ** Then clear the column header cache on cursor P3.
4459 **
4460 ** This opcode is normally use to move a record out of the sorter and into
4461 ** a register that is the source for a pseudo-table cursor created using
4462 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4463 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4464 ** us from having to issue a separate NullRow instruction to clear that cache.
4465 */
4466 case OP_SorterData: {
4467   VdbeCursor *pC;
4468 
4469   pOut = &aMem[pOp->p2];
4470   pC = p->apCsr[pOp->p1];
4471   assert( isSorter(pC) );
4472   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4473   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4474   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4475   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4476   break;
4477 }
4478 
4479 /* Opcode: RowData P1 P2 * * *
4480 ** Synopsis: r[P2]=data
4481 **
4482 ** Write into register P2 the complete row data for cursor P1.
4483 ** There is no interpretation of the data.
4484 ** It is just copied onto the P2 register exactly as
4485 ** it is found in the database file.
4486 **
4487 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4488 ** of a real table, not a pseudo-table.
4489 */
4490 /* Opcode: RowKey P1 P2 * * *
4491 ** Synopsis: r[P2]=key
4492 **
4493 ** Write into register P2 the complete row key for cursor P1.
4494 ** There is no interpretation of the data.
4495 ** The key is copied onto the P2 register exactly as
4496 ** it is found in the database file.
4497 **
4498 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4499 ** of a real table, not a pseudo-table.
4500 */
4501 case OP_RowKey:
4502 case OP_RowData: {
4503   VdbeCursor *pC;
4504   BtCursor *pCrsr;
4505   u32 n;
4506   i64 n64;
4507 
4508   pOut = &aMem[pOp->p2];
4509   memAboutToChange(p, pOut);
4510 
4511   /* Note that RowKey and RowData are really exactly the same instruction */
4512   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4513   pC = p->apCsr[pOp->p1];
4514   assert( pC!=0 );
4515   assert( pC->eCurType==CURTYPE_BTREE );
4516   assert( isSorter(pC)==0 );
4517   assert( pC->isTable || pOp->opcode!=OP_RowData );
4518   assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4519   assert( pC->nullRow==0 );
4520   assert( pC->uc.pCursor!=0 );
4521   pCrsr = pC->uc.pCursor;
4522 
4523   /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4524   ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4525   ** the cursor.  If this where not the case, on of the following assert()s
4526   ** would fail.  Should this ever change (because of changes in the code
4527   ** generator) then the fix would be to insert a call to
4528   ** sqlite3VdbeCursorMoveto().
4529   */
4530   assert( pC->deferredMoveto==0 );
4531   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4532 #if 0  /* Not required due to the previous to assert() statements */
4533   rc = sqlite3VdbeCursorMoveto(pC);
4534   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4535 #endif
4536 
4537   if( pC->isTable==0 ){
4538     assert( !pC->isTable );
4539     VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4540     assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
4541     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4542       goto too_big;
4543     }
4544     n = (u32)n64;
4545   }else{
4546     VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4547     assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
4548     if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4549       goto too_big;
4550     }
4551   }
4552   testcase( n==0 );
4553   if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4554     goto no_mem;
4555   }
4556   pOut->n = n;
4557   MemSetTypeFlag(pOut, MEM_Blob);
4558   if( pC->isTable==0 ){
4559     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4560   }else{
4561     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4562   }
4563   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
4564   UPDATE_MAX_BLOBSIZE(pOut);
4565   REGISTER_TRACE(pOp->p2, pOut);
4566   break;
4567 }
4568 
4569 /* Opcode: Rowid P1 P2 * * *
4570 ** Synopsis: r[P2]=rowid
4571 **
4572 ** Store in register P2 an integer which is the key of the table entry that
4573 ** P1 is currently point to.
4574 **
4575 ** P1 can be either an ordinary table or a virtual table.  There used to
4576 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4577 ** one opcode now works for both table types.
4578 */
4579 case OP_Rowid: {                 /* out2 */
4580   VdbeCursor *pC;
4581   i64 v;
4582   sqlite3_vtab *pVtab;
4583   const sqlite3_module *pModule;
4584 
4585   pOut = out2Prerelease(p, pOp);
4586   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4587   pC = p->apCsr[pOp->p1];
4588   assert( pC!=0 );
4589   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4590   if( pC->nullRow ){
4591     pOut->flags = MEM_Null;
4592     break;
4593   }else if( pC->deferredMoveto ){
4594     v = pC->movetoTarget;
4595 #ifndef SQLITE_OMIT_VIRTUALTABLE
4596   }else if( pC->eCurType==CURTYPE_VTAB ){
4597     assert( pC->uc.pVCur!=0 );
4598     pVtab = pC->uc.pVCur->pVtab;
4599     pModule = pVtab->pModule;
4600     assert( pModule->xRowid );
4601     rc = pModule->xRowid(pC->uc.pVCur, &v);
4602     sqlite3VtabImportErrmsg(p, pVtab);
4603 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4604   }else{
4605     assert( pC->eCurType==CURTYPE_BTREE );
4606     assert( pC->uc.pCursor!=0 );
4607     rc = sqlite3VdbeCursorRestore(pC);
4608     if( rc ) goto abort_due_to_error;
4609     if( pC->nullRow ){
4610       pOut->flags = MEM_Null;
4611       break;
4612     }
4613     rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4614     assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
4615   }
4616   pOut->u.i = v;
4617   break;
4618 }
4619 
4620 /* Opcode: NullRow P1 * * * *
4621 **
4622 ** Move the cursor P1 to a null row.  Any OP_Column operations
4623 ** that occur while the cursor is on the null row will always
4624 ** write a NULL.
4625 */
4626 case OP_NullRow: {
4627   VdbeCursor *pC;
4628 
4629   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4630   pC = p->apCsr[pOp->p1];
4631   assert( pC!=0 );
4632   pC->nullRow = 1;
4633   pC->cacheStatus = CACHE_STALE;
4634   if( pC->eCurType==CURTYPE_BTREE ){
4635     assert( pC->uc.pCursor!=0 );
4636     sqlite3BtreeClearCursor(pC->uc.pCursor);
4637   }
4638   break;
4639 }
4640 
4641 /* Opcode: Last P1 P2 P3 * *
4642 **
4643 ** The next use of the Rowid or Column or Prev instruction for P1
4644 ** will refer to the last entry in the database table or index.
4645 ** If the table or index is empty and P2>0, then jump immediately to P2.
4646 ** If P2 is 0 or if the table or index is not empty, fall through
4647 ** to the following instruction.
4648 **
4649 ** This opcode leaves the cursor configured to move in reverse order,
4650 ** from the end toward the beginning.  In other words, the cursor is
4651 ** configured to use Prev, not Next.
4652 */
4653 case OP_Last: {        /* jump */
4654   VdbeCursor *pC;
4655   BtCursor *pCrsr;
4656   int res;
4657 
4658   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4659   pC = p->apCsr[pOp->p1];
4660   assert( pC!=0 );
4661   assert( pC->eCurType==CURTYPE_BTREE );
4662   pCrsr = pC->uc.pCursor;
4663   res = 0;
4664   assert( pCrsr!=0 );
4665   rc = sqlite3BtreeLast(pCrsr, &res);
4666   pC->nullRow = (u8)res;
4667   pC->deferredMoveto = 0;
4668   pC->cacheStatus = CACHE_STALE;
4669   pC->seekResult = pOp->p3;
4670 #ifdef SQLITE_DEBUG
4671   pC->seekOp = OP_Last;
4672 #endif
4673   if( pOp->p2>0 ){
4674     VdbeBranchTaken(res!=0,2);
4675     if( res ) goto jump_to_p2;
4676   }
4677   break;
4678 }
4679 
4680 
4681 /* Opcode: Sort P1 P2 * * *
4682 **
4683 ** This opcode does exactly the same thing as OP_Rewind except that
4684 ** it increments an undocumented global variable used for testing.
4685 **
4686 ** Sorting is accomplished by writing records into a sorting index,
4687 ** then rewinding that index and playing it back from beginning to
4688 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4689 ** rewinding so that the global variable will be incremented and
4690 ** regression tests can determine whether or not the optimizer is
4691 ** correctly optimizing out sorts.
4692 */
4693 case OP_SorterSort:    /* jump */
4694 case OP_Sort: {        /* jump */
4695 #ifdef SQLITE_TEST
4696   sqlite3_sort_count++;
4697   sqlite3_search_count--;
4698 #endif
4699   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4700   /* Fall through into OP_Rewind */
4701 }
4702 /* Opcode: Rewind P1 P2 * * *
4703 **
4704 ** The next use of the Rowid or Column or Next instruction for P1
4705 ** will refer to the first entry in the database table or index.
4706 ** If the table or index is empty, jump immediately to P2.
4707 ** If the table or index is not empty, fall through to the following
4708 ** instruction.
4709 **
4710 ** This opcode leaves the cursor configured to move in forward order,
4711 ** from the beginning toward the end.  In other words, the cursor is
4712 ** configured to use Next, not Prev.
4713 */
4714 case OP_Rewind: {        /* jump */
4715   VdbeCursor *pC;
4716   BtCursor *pCrsr;
4717   int res;
4718 
4719   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4720   pC = p->apCsr[pOp->p1];
4721   assert( pC!=0 );
4722   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4723   res = 1;
4724 #ifdef SQLITE_DEBUG
4725   pC->seekOp = OP_Rewind;
4726 #endif
4727   if( isSorter(pC) ){
4728     rc = sqlite3VdbeSorterRewind(pC, &res);
4729   }else{
4730     assert( pC->eCurType==CURTYPE_BTREE );
4731     pCrsr = pC->uc.pCursor;
4732     assert( pCrsr );
4733     rc = sqlite3BtreeFirst(pCrsr, &res);
4734     pC->deferredMoveto = 0;
4735     pC->cacheStatus = CACHE_STALE;
4736   }
4737   pC->nullRow = (u8)res;
4738   assert( pOp->p2>0 && pOp->p2<p->nOp );
4739   VdbeBranchTaken(res!=0,2);
4740   if( res ) goto jump_to_p2;
4741   break;
4742 }
4743 
4744 /* Opcode: Next P1 P2 P3 P4 P5
4745 **
4746 ** Advance cursor P1 so that it points to the next key/data pair in its
4747 ** table or index.  If there are no more key/value pairs then fall through
4748 ** to the following instruction.  But if the cursor advance was successful,
4749 ** jump immediately to P2.
4750 **
4751 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4752 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4753 ** to follow SeekLT, SeekLE, or OP_Last.
4754 **
4755 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4756 ** been opened prior to this opcode or the program will segfault.
4757 **
4758 ** The P3 value is a hint to the btree implementation. If P3==1, that
4759 ** means P1 is an SQL index and that this instruction could have been
4760 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4761 ** always either 0 or 1.
4762 **
4763 ** P4 is always of type P4_ADVANCE. The function pointer points to
4764 ** sqlite3BtreeNext().
4765 **
4766 ** If P5 is positive and the jump is taken, then event counter
4767 ** number P5-1 in the prepared statement is incremented.
4768 **
4769 ** See also: Prev, NextIfOpen
4770 */
4771 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4772 **
4773 ** This opcode works just like Next except that if cursor P1 is not
4774 ** open it behaves a no-op.
4775 */
4776 /* Opcode: Prev P1 P2 P3 P4 P5
4777 **
4778 ** Back up cursor P1 so that it points to the previous key/data pair in its
4779 ** table or index.  If there is no previous key/value pairs then fall through
4780 ** to the following instruction.  But if the cursor backup was successful,
4781 ** jump immediately to P2.
4782 **
4783 **
4784 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4785 ** OP_Last opcode used to position the cursor.  Prev is not allowed
4786 ** to follow SeekGT, SeekGE, or OP_Rewind.
4787 **
4788 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
4789 ** not open then the behavior is undefined.
4790 **
4791 ** The P3 value is a hint to the btree implementation. If P3==1, that
4792 ** means P1 is an SQL index and that this instruction could have been
4793 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4794 ** always either 0 or 1.
4795 **
4796 ** P4 is always of type P4_ADVANCE. The function pointer points to
4797 ** sqlite3BtreePrevious().
4798 **
4799 ** If P5 is positive and the jump is taken, then event counter
4800 ** number P5-1 in the prepared statement is incremented.
4801 */
4802 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4803 **
4804 ** This opcode works just like Prev except that if cursor P1 is not
4805 ** open it behaves a no-op.
4806 */
4807 case OP_SorterNext: {  /* jump */
4808   VdbeCursor *pC;
4809   int res;
4810 
4811   pC = p->apCsr[pOp->p1];
4812   assert( isSorter(pC) );
4813   res = 0;
4814   rc = sqlite3VdbeSorterNext(db, pC, &res);
4815   goto next_tail;
4816 case OP_PrevIfOpen:    /* jump */
4817 case OP_NextIfOpen:    /* jump */
4818   if( p->apCsr[pOp->p1]==0 ) break;
4819   /* Fall through */
4820 case OP_Prev:          /* jump */
4821 case OP_Next:          /* jump */
4822   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4823   assert( pOp->p5<ArraySize(p->aCounter) );
4824   pC = p->apCsr[pOp->p1];
4825   res = pOp->p3;
4826   assert( pC!=0 );
4827   assert( pC->deferredMoveto==0 );
4828   assert( pC->eCurType==CURTYPE_BTREE );
4829   assert( res==0 || (res==1 && pC->isTable==0) );
4830   testcase( res==1 );
4831   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4832   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4833   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4834   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4835 
4836   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4837   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4838   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4839        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4840        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4841   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4842        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4843        || pC->seekOp==OP_Last );
4844 
4845   rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
4846 next_tail:
4847   pC->cacheStatus = CACHE_STALE;
4848   VdbeBranchTaken(res==0,2);
4849   if( res==0 ){
4850     pC->nullRow = 0;
4851     p->aCounter[pOp->p5]++;
4852 #ifdef SQLITE_TEST
4853     sqlite3_search_count++;
4854 #endif
4855     goto jump_to_p2_and_check_for_interrupt;
4856   }else{
4857     pC->nullRow = 1;
4858   }
4859   goto check_for_interrupt;
4860 }
4861 
4862 /* Opcode: IdxInsert P1 P2 P3 * P5
4863 ** Synopsis: key=r[P2]
4864 **
4865 ** Register P2 holds an SQL index key made using the
4866 ** MakeRecord instructions.  This opcode writes that key
4867 ** into the index P1.  Data for the entry is nil.
4868 **
4869 ** P3 is a flag that provides a hint to the b-tree layer that this
4870 ** insert is likely to be an append.
4871 **
4872 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4873 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
4874 ** then the change counter is unchanged.
4875 **
4876 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4877 ** just done a seek to the spot where the new entry is to be inserted.
4878 ** This flag avoids doing an extra seek.
4879 **
4880 ** This instruction only works for indices.  The equivalent instruction
4881 ** for tables is OP_Insert.
4882 */
4883 case OP_SorterInsert:       /* in2 */
4884 case OP_IdxInsert: {        /* in2 */
4885   VdbeCursor *pC;
4886   int nKey;
4887   const char *zKey;
4888 
4889   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4890   pC = p->apCsr[pOp->p1];
4891   assert( pC!=0 );
4892   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4893   pIn2 = &aMem[pOp->p2];
4894   assert( pIn2->flags & MEM_Blob );
4895   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4896   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
4897   assert( pC->isTable==0 );
4898   rc = ExpandBlob(pIn2);
4899   if( rc==SQLITE_OK ){
4900     if( pOp->opcode==OP_SorterInsert ){
4901       rc = sqlite3VdbeSorterWrite(pC, pIn2);
4902     }else{
4903       nKey = pIn2->n;
4904       zKey = pIn2->z;
4905       rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4906           ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4907           );
4908       assert( pC->deferredMoveto==0 );
4909       pC->cacheStatus = CACHE_STALE;
4910     }
4911   }
4912   break;
4913 }
4914 
4915 /* Opcode: IdxDelete P1 P2 P3 * *
4916 ** Synopsis: key=r[P2@P3]
4917 **
4918 ** The content of P3 registers starting at register P2 form
4919 ** an unpacked index key. This opcode removes that entry from the
4920 ** index opened by cursor P1.
4921 */
4922 case OP_IdxDelete: {
4923   VdbeCursor *pC;
4924   BtCursor *pCrsr;
4925   int res;
4926   UnpackedRecord r;
4927 
4928   assert( pOp->p3>0 );
4929   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4930   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4931   pC = p->apCsr[pOp->p1];
4932   assert( pC!=0 );
4933   assert( pC->eCurType==CURTYPE_BTREE );
4934   pCrsr = pC->uc.pCursor;
4935   assert( pCrsr!=0 );
4936   assert( pOp->p5==0 );
4937   r.pKeyInfo = pC->pKeyInfo;
4938   r.nField = (u16)pOp->p3;
4939   r.default_rc = 0;
4940   r.aMem = &aMem[pOp->p2];
4941   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4942   if( rc==SQLITE_OK && res==0 ){
4943     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
4944   }
4945   assert( pC->deferredMoveto==0 );
4946   pC->cacheStatus = CACHE_STALE;
4947   break;
4948 }
4949 
4950 /* Opcode: Seek P1 * P3 P4 *
4951 ** Synopsis:  Move P3 to P1.rowid
4952 **
4953 ** P1 is an open index cursor and P3 is a cursor on the corresponding
4954 ** table.  This opcode does a deferred seek of the P3 table cursor
4955 ** to the row that corresponds to the current row of P1.
4956 **
4957 ** This is a deferred seek.  Nothing actually happens until
4958 ** the cursor is used to read a record.  That way, if no reads
4959 ** occur, no unnecessary I/O happens.
4960 **
4961 ** P4 may be an array of integers (type P4_INTARRAY) containing
4962 ** one entry for each column in the P3 table.  If array entry a(i)
4963 ** is non-zero, then reading column a(i)-1 from cursor P3 is
4964 ** equivalent to performing the deferred seek and then reading column i
4965 ** from P1.  This information is stored in P3 and used to redirect
4966 ** reads against P3 over to P1, thus possibly avoiding the need to
4967 ** seek and read cursor P3.
4968 */
4969 /* Opcode: IdxRowid P1 P2 * * *
4970 ** Synopsis: r[P2]=rowid
4971 **
4972 ** Write into register P2 an integer which is the last entry in the record at
4973 ** the end of the index key pointed to by cursor P1.  This integer should be
4974 ** the rowid of the table entry to which this index entry points.
4975 **
4976 ** See also: Rowid, MakeRecord.
4977 */
4978 case OP_Seek:
4979 case OP_IdxRowid: {              /* out2 */
4980   VdbeCursor *pC;                /* The P1 index cursor */
4981   VdbeCursor *pTabCur;           /* The P2 table cursor (OP_Seek only) */
4982   i64 rowid;                     /* Rowid that P1 current points to */
4983 
4984   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4985   pC = p->apCsr[pOp->p1];
4986   assert( pC!=0 );
4987   assert( pC->eCurType==CURTYPE_BTREE );
4988   assert( pC->uc.pCursor!=0 );
4989   assert( pC->isTable==0 );
4990   assert( pC->deferredMoveto==0 );
4991   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
4992 
4993   /* The IdxRowid and Seek opcodes are combined because of the commonality
4994   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
4995   rc = sqlite3VdbeCursorRestore(pC);
4996 
4997   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4998   ** out from under the cursor.  That will never happens for an IdxRowid
4999   ** or Seek opcode */
5000   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5001 
5002   if( !pC->nullRow ){
5003     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5004     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5005     if( rc!=SQLITE_OK ){
5006       goto abort_due_to_error;
5007     }
5008     if( pOp->opcode==OP_Seek ){
5009       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5010       pTabCur = p->apCsr[pOp->p3];
5011       assert( pTabCur!=0 );
5012       assert( pTabCur->eCurType==CURTYPE_BTREE );
5013       assert( pTabCur->uc.pCursor!=0 );
5014       assert( pTabCur->isTable );
5015       pTabCur->nullRow = 0;
5016       pTabCur->movetoTarget = rowid;
5017       pTabCur->deferredMoveto = 1;
5018       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5019       pTabCur->aAltMap = pOp->p4.ai;
5020       pTabCur->pAltCursor = pC;
5021     }else{
5022       pOut = out2Prerelease(p, pOp);
5023       pOut->u.i = rowid;
5024       pOut->flags = MEM_Int;
5025     }
5026   }else{
5027     assert( pOp->opcode==OP_IdxRowid );
5028     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5029   }
5030   break;
5031 }
5032 
5033 /* Opcode: IdxGE P1 P2 P3 P4 P5
5034 ** Synopsis: key=r[P3@P4]
5035 **
5036 ** The P4 register values beginning with P3 form an unpacked index
5037 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5038 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5039 ** fields at the end.
5040 **
5041 ** If the P1 index entry is greater than or equal to the key value
5042 ** then jump to P2.  Otherwise fall through to the next instruction.
5043 */
5044 /* Opcode: IdxGT P1 P2 P3 P4 P5
5045 ** Synopsis: key=r[P3@P4]
5046 **
5047 ** The P4 register values beginning with P3 form an unpacked index
5048 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5049 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5050 ** fields at the end.
5051 **
5052 ** If the P1 index entry is greater than the key value
5053 ** then jump to P2.  Otherwise fall through to the next instruction.
5054 */
5055 /* Opcode: IdxLT P1 P2 P3 P4 P5
5056 ** Synopsis: key=r[P3@P4]
5057 **
5058 ** The P4 register values beginning with P3 form an unpacked index
5059 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5060 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5061 ** ROWID on the P1 index.
5062 **
5063 ** If the P1 index entry is less than the key value then jump to P2.
5064 ** Otherwise fall through to the next instruction.
5065 */
5066 /* Opcode: IdxLE P1 P2 P3 P4 P5
5067 ** Synopsis: key=r[P3@P4]
5068 **
5069 ** The P4 register values beginning with P3 form an unpacked index
5070 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5071 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5072 ** ROWID on the P1 index.
5073 **
5074 ** If the P1 index entry is less than or equal to the key value then jump
5075 ** to P2. Otherwise fall through to the next instruction.
5076 */
5077 case OP_IdxLE:          /* jump */
5078 case OP_IdxGT:          /* jump */
5079 case OP_IdxLT:          /* jump */
5080 case OP_IdxGE:  {       /* jump */
5081   VdbeCursor *pC;
5082   int res;
5083   UnpackedRecord r;
5084 
5085   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5086   pC = p->apCsr[pOp->p1];
5087   assert( pC!=0 );
5088   assert( pC->isOrdered );
5089   assert( pC->eCurType==CURTYPE_BTREE );
5090   assert( pC->uc.pCursor!=0);
5091   assert( pC->deferredMoveto==0 );
5092   assert( pOp->p5==0 || pOp->p5==1 );
5093   assert( pOp->p4type==P4_INT32 );
5094   r.pKeyInfo = pC->pKeyInfo;
5095   r.nField = (u16)pOp->p4.i;
5096   if( pOp->opcode<OP_IdxLT ){
5097     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5098     r.default_rc = -1;
5099   }else{
5100     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5101     r.default_rc = 0;
5102   }
5103   r.aMem = &aMem[pOp->p3];
5104 #ifdef SQLITE_DEBUG
5105   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5106 #endif
5107   res = 0;  /* Not needed.  Only used to silence a warning. */
5108   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5109   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5110   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5111     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5112     res = -res;
5113   }else{
5114     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5115     res++;
5116   }
5117   VdbeBranchTaken(res>0,2);
5118   if( res>0 ) goto jump_to_p2;
5119   break;
5120 }
5121 
5122 /* Opcode: Destroy P1 P2 P3 * *
5123 **
5124 ** Delete an entire database table or index whose root page in the database
5125 ** file is given by P1.
5126 **
5127 ** The table being destroyed is in the main database file if P3==0.  If
5128 ** P3==1 then the table to be clear is in the auxiliary database file
5129 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5130 **
5131 ** If AUTOVACUUM is enabled then it is possible that another root page
5132 ** might be moved into the newly deleted root page in order to keep all
5133 ** root pages contiguous at the beginning of the database.  The former
5134 ** value of the root page that moved - its value before the move occurred -
5135 ** is stored in register P2.  If no page
5136 ** movement was required (because the table being dropped was already
5137 ** the last one in the database) then a zero is stored in register P2.
5138 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5139 **
5140 ** See also: Clear
5141 */
5142 case OP_Destroy: {     /* out2 */
5143   int iMoved;
5144   int iDb;
5145 
5146   assert( p->readOnly==0 );
5147   assert( pOp->p1>1 );
5148   pOut = out2Prerelease(p, pOp);
5149   pOut->flags = MEM_Null;
5150   if( db->nVdbeRead > db->nVDestroy+1 ){
5151     rc = SQLITE_LOCKED;
5152     p->errorAction = OE_Abort;
5153   }else{
5154     iDb = pOp->p3;
5155     assert( DbMaskTest(p->btreeMask, iDb) );
5156     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5157     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5158     pOut->flags = MEM_Int;
5159     pOut->u.i = iMoved;
5160 #ifndef SQLITE_OMIT_AUTOVACUUM
5161     if( rc==SQLITE_OK && iMoved!=0 ){
5162       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5163       /* All OP_Destroy operations occur on the same btree */
5164       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5165       resetSchemaOnFault = iDb+1;
5166     }
5167 #endif
5168   }
5169   break;
5170 }
5171 
5172 /* Opcode: Clear P1 P2 P3
5173 **
5174 ** Delete all contents of the database table or index whose root page
5175 ** in the database file is given by P1.  But, unlike Destroy, do not
5176 ** remove the table or index from the database file.
5177 **
5178 ** The table being clear is in the main database file if P2==0.  If
5179 ** P2==1 then the table to be clear is in the auxiliary database file
5180 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5181 **
5182 ** If the P3 value is non-zero, then the table referred to must be an
5183 ** intkey table (an SQL table, not an index). In this case the row change
5184 ** count is incremented by the number of rows in the table being cleared.
5185 ** If P3 is greater than zero, then the value stored in register P3 is
5186 ** also incremented by the number of rows in the table being cleared.
5187 **
5188 ** See also: Destroy
5189 */
5190 case OP_Clear: {
5191   int nChange;
5192 
5193   nChange = 0;
5194   assert( p->readOnly==0 );
5195   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5196   rc = sqlite3BtreeClearTable(
5197       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5198   );
5199   if( pOp->p3 ){
5200     p->nChange += nChange;
5201     if( pOp->p3>0 ){
5202       assert( memIsValid(&aMem[pOp->p3]) );
5203       memAboutToChange(p, &aMem[pOp->p3]);
5204       aMem[pOp->p3].u.i += nChange;
5205     }
5206   }
5207   break;
5208 }
5209 
5210 /* Opcode: ResetSorter P1 * * * *
5211 **
5212 ** Delete all contents from the ephemeral table or sorter
5213 ** that is open on cursor P1.
5214 **
5215 ** This opcode only works for cursors used for sorting and
5216 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5217 */
5218 case OP_ResetSorter: {
5219   VdbeCursor *pC;
5220 
5221   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5222   pC = p->apCsr[pOp->p1];
5223   assert( pC!=0 );
5224   if( isSorter(pC) ){
5225     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5226   }else{
5227     assert( pC->eCurType==CURTYPE_BTREE );
5228     assert( pC->isEphemeral );
5229     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5230   }
5231   break;
5232 }
5233 
5234 /* Opcode: CreateTable P1 P2 * * *
5235 ** Synopsis: r[P2]=root iDb=P1
5236 **
5237 ** Allocate a new table in the main database file if P1==0 or in the
5238 ** auxiliary database file if P1==1 or in an attached database if
5239 ** P1>1.  Write the root page number of the new table into
5240 ** register P2
5241 **
5242 ** The difference between a table and an index is this:  A table must
5243 ** have a 4-byte integer key and can have arbitrary data.  An index
5244 ** has an arbitrary key but no data.
5245 **
5246 ** See also: CreateIndex
5247 */
5248 /* Opcode: CreateIndex P1 P2 * * *
5249 ** Synopsis: r[P2]=root iDb=P1
5250 **
5251 ** Allocate a new index in the main database file if P1==0 or in the
5252 ** auxiliary database file if P1==1 or in an attached database if
5253 ** P1>1.  Write the root page number of the new table into
5254 ** register P2.
5255 **
5256 ** See documentation on OP_CreateTable for additional information.
5257 */
5258 case OP_CreateIndex:            /* out2 */
5259 case OP_CreateTable: {          /* out2 */
5260   int pgno;
5261   int flags;
5262   Db *pDb;
5263 
5264   pOut = out2Prerelease(p, pOp);
5265   pgno = 0;
5266   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5267   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5268   assert( p->readOnly==0 );
5269   pDb = &db->aDb[pOp->p1];
5270   assert( pDb->pBt!=0 );
5271   if( pOp->opcode==OP_CreateTable ){
5272     /* flags = BTREE_INTKEY; */
5273     flags = BTREE_INTKEY;
5274   }else{
5275     flags = BTREE_BLOBKEY;
5276   }
5277   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5278   pOut->u.i = pgno;
5279   break;
5280 }
5281 
5282 /* Opcode: ParseSchema P1 * * P4 *
5283 **
5284 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5285 ** that match the WHERE clause P4.
5286 **
5287 ** This opcode invokes the parser to create a new virtual machine,
5288 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5289 */
5290 case OP_ParseSchema: {
5291   int iDb;
5292   const char *zMaster;
5293   char *zSql;
5294   InitData initData;
5295 
5296   /* Any prepared statement that invokes this opcode will hold mutexes
5297   ** on every btree.  This is a prerequisite for invoking
5298   ** sqlite3InitCallback().
5299   */
5300 #ifdef SQLITE_DEBUG
5301   for(iDb=0; iDb<db->nDb; iDb++){
5302     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5303   }
5304 #endif
5305 
5306   iDb = pOp->p1;
5307   assert( iDb>=0 && iDb<db->nDb );
5308   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5309   /* Used to be a conditional */ {
5310     zMaster = SCHEMA_TABLE(iDb);
5311     initData.db = db;
5312     initData.iDb = pOp->p1;
5313     initData.pzErrMsg = &p->zErrMsg;
5314     zSql = sqlite3MPrintf(db,
5315        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5316        db->aDb[iDb].zName, zMaster, pOp->p4.z);
5317     if( zSql==0 ){
5318       rc = SQLITE_NOMEM;
5319     }else{
5320       assert( db->init.busy==0 );
5321       db->init.busy = 1;
5322       initData.rc = SQLITE_OK;
5323       assert( !db->mallocFailed );
5324       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5325       if( rc==SQLITE_OK ) rc = initData.rc;
5326       sqlite3DbFree(db, zSql);
5327       db->init.busy = 0;
5328     }
5329   }
5330   if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5331   if( rc==SQLITE_NOMEM ){
5332     goto no_mem;
5333   }
5334   break;
5335 }
5336 
5337 #if !defined(SQLITE_OMIT_ANALYZE)
5338 /* Opcode: LoadAnalysis P1 * * * *
5339 **
5340 ** Read the sqlite_stat1 table for database P1 and load the content
5341 ** of that table into the internal index hash table.  This will cause
5342 ** the analysis to be used when preparing all subsequent queries.
5343 */
5344 case OP_LoadAnalysis: {
5345   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5346   rc = sqlite3AnalysisLoad(db, pOp->p1);
5347   break;
5348 }
5349 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5350 
5351 /* Opcode: DropTable P1 * * P4 *
5352 **
5353 ** Remove the internal (in-memory) data structures that describe
5354 ** the table named P4 in database P1.  This is called after a table
5355 ** is dropped from disk (using the Destroy opcode) in order to keep
5356 ** the internal representation of the
5357 ** schema consistent with what is on disk.
5358 */
5359 case OP_DropTable: {
5360   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5361   break;
5362 }
5363 
5364 /* Opcode: DropIndex P1 * * P4 *
5365 **
5366 ** Remove the internal (in-memory) data structures that describe
5367 ** the index named P4 in database P1.  This is called after an index
5368 ** is dropped from disk (using the Destroy opcode)
5369 ** in order to keep the internal representation of the
5370 ** schema consistent with what is on disk.
5371 */
5372 case OP_DropIndex: {
5373   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5374   break;
5375 }
5376 
5377 /* Opcode: DropTrigger P1 * * P4 *
5378 **
5379 ** Remove the internal (in-memory) data structures that describe
5380 ** the trigger named P4 in database P1.  This is called after a trigger
5381 ** is dropped from disk (using the Destroy opcode) in order to keep
5382 ** the internal representation of the
5383 ** schema consistent with what is on disk.
5384 */
5385 case OP_DropTrigger: {
5386   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5387   break;
5388 }
5389 
5390 
5391 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5392 /* Opcode: IntegrityCk P1 P2 P3 * P5
5393 **
5394 ** Do an analysis of the currently open database.  Store in
5395 ** register P1 the text of an error message describing any problems.
5396 ** If no problems are found, store a NULL in register P1.
5397 **
5398 ** The register P3 contains the maximum number of allowed errors.
5399 ** At most reg(P3) errors will be reported.
5400 ** In other words, the analysis stops as soon as reg(P1) errors are
5401 ** seen.  Reg(P1) is updated with the number of errors remaining.
5402 **
5403 ** The root page numbers of all tables in the database are integer
5404 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
5405 ** total.
5406 **
5407 ** If P5 is not zero, the check is done on the auxiliary database
5408 ** file, not the main database file.
5409 **
5410 ** This opcode is used to implement the integrity_check pragma.
5411 */
5412 case OP_IntegrityCk: {
5413   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5414   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5415   int j;          /* Loop counter */
5416   int nErr;       /* Number of errors reported */
5417   char *z;        /* Text of the error report */
5418   Mem *pnErr;     /* Register keeping track of errors remaining */
5419 
5420   assert( p->bIsReader );
5421   nRoot = pOp->p2;
5422   assert( nRoot>0 );
5423   aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(nRoot+1) );
5424   if( aRoot==0 ) goto no_mem;
5425   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5426   pnErr = &aMem[pOp->p3];
5427   assert( (pnErr->flags & MEM_Int)!=0 );
5428   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5429   pIn1 = &aMem[pOp->p1];
5430   for(j=0; j<nRoot; j++){
5431     aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5432   }
5433   aRoot[j] = 0;
5434   assert( pOp->p5<db->nDb );
5435   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5436   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5437                                  (int)pnErr->u.i, &nErr);
5438   sqlite3DbFree(db, aRoot);
5439   pnErr->u.i -= nErr;
5440   sqlite3VdbeMemSetNull(pIn1);
5441   if( nErr==0 ){
5442     assert( z==0 );
5443   }else if( z==0 ){
5444     goto no_mem;
5445   }else{
5446     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5447   }
5448   UPDATE_MAX_BLOBSIZE(pIn1);
5449   sqlite3VdbeChangeEncoding(pIn1, encoding);
5450   break;
5451 }
5452 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5453 
5454 /* Opcode: RowSetAdd P1 P2 * * *
5455 ** Synopsis:  rowset(P1)=r[P2]
5456 **
5457 ** Insert the integer value held by register P2 into a boolean index
5458 ** held in register P1.
5459 **
5460 ** An assertion fails if P2 is not an integer.
5461 */
5462 case OP_RowSetAdd: {       /* in1, in2 */
5463   pIn1 = &aMem[pOp->p1];
5464   pIn2 = &aMem[pOp->p2];
5465   assert( (pIn2->flags & MEM_Int)!=0 );
5466   if( (pIn1->flags & MEM_RowSet)==0 ){
5467     sqlite3VdbeMemSetRowSet(pIn1);
5468     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5469   }
5470   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5471   break;
5472 }
5473 
5474 /* Opcode: RowSetRead P1 P2 P3 * *
5475 ** Synopsis:  r[P3]=rowset(P1)
5476 **
5477 ** Extract the smallest value from boolean index P1 and put that value into
5478 ** register P3.  Or, if boolean index P1 is initially empty, leave P3
5479 ** unchanged and jump to instruction P2.
5480 */
5481 case OP_RowSetRead: {       /* jump, in1, out3 */
5482   i64 val;
5483 
5484   pIn1 = &aMem[pOp->p1];
5485   if( (pIn1->flags & MEM_RowSet)==0
5486    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5487   ){
5488     /* The boolean index is empty */
5489     sqlite3VdbeMemSetNull(pIn1);
5490     VdbeBranchTaken(1,2);
5491     goto jump_to_p2_and_check_for_interrupt;
5492   }else{
5493     /* A value was pulled from the index */
5494     VdbeBranchTaken(0,2);
5495     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5496   }
5497   goto check_for_interrupt;
5498 }
5499 
5500 /* Opcode: RowSetTest P1 P2 P3 P4
5501 ** Synopsis: if r[P3] in rowset(P1) goto P2
5502 **
5503 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5504 ** contains a RowSet object and that RowSet object contains
5505 ** the value held in P3, jump to register P2. Otherwise, insert the
5506 ** integer in P3 into the RowSet and continue on to the
5507 ** next opcode.
5508 **
5509 ** The RowSet object is optimized for the case where successive sets
5510 ** of integers, where each set contains no duplicates. Each set
5511 ** of values is identified by a unique P4 value. The first set
5512 ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
5513 ** non-negative.  For non-negative values of P4 only the lower 4
5514 ** bits are significant.
5515 **
5516 ** This allows optimizations: (a) when P4==0 there is no need to test
5517 ** the rowset object for P3, as it is guaranteed not to contain it,
5518 ** (b) when P4==-1 there is no need to insert the value, as it will
5519 ** never be tested for, and (c) when a value that is part of set X is
5520 ** inserted, there is no need to search to see if the same value was
5521 ** previously inserted as part of set X (only if it was previously
5522 ** inserted as part of some other set).
5523 */
5524 case OP_RowSetTest: {                     /* jump, in1, in3 */
5525   int iSet;
5526   int exists;
5527 
5528   pIn1 = &aMem[pOp->p1];
5529   pIn3 = &aMem[pOp->p3];
5530   iSet = pOp->p4.i;
5531   assert( pIn3->flags&MEM_Int );
5532 
5533   /* If there is anything other than a rowset object in memory cell P1,
5534   ** delete it now and initialize P1 with an empty rowset
5535   */
5536   if( (pIn1->flags & MEM_RowSet)==0 ){
5537     sqlite3VdbeMemSetRowSet(pIn1);
5538     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5539   }
5540 
5541   assert( pOp->p4type==P4_INT32 );
5542   assert( iSet==-1 || iSet>=0 );
5543   if( iSet ){
5544     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5545     VdbeBranchTaken(exists!=0,2);
5546     if( exists ) goto jump_to_p2;
5547   }
5548   if( iSet>=0 ){
5549     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5550   }
5551   break;
5552 }
5553 
5554 
5555 #ifndef SQLITE_OMIT_TRIGGER
5556 
5557 /* Opcode: Program P1 P2 P3 P4 P5
5558 **
5559 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5560 **
5561 ** P1 contains the address of the memory cell that contains the first memory
5562 ** cell in an array of values used as arguments to the sub-program. P2
5563 ** contains the address to jump to if the sub-program throws an IGNORE
5564 ** exception using the RAISE() function. Register P3 contains the address
5565 ** of a memory cell in this (the parent) VM that is used to allocate the
5566 ** memory required by the sub-vdbe at runtime.
5567 **
5568 ** P4 is a pointer to the VM containing the trigger program.
5569 **
5570 ** If P5 is non-zero, then recursive program invocation is enabled.
5571 */
5572 case OP_Program: {        /* jump */
5573   int nMem;               /* Number of memory registers for sub-program */
5574   int nByte;              /* Bytes of runtime space required for sub-program */
5575   Mem *pRt;               /* Register to allocate runtime space */
5576   Mem *pMem;              /* Used to iterate through memory cells */
5577   Mem *pEnd;              /* Last memory cell in new array */
5578   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5579   SubProgram *pProgram;   /* Sub-program to execute */
5580   void *t;                /* Token identifying trigger */
5581 
5582   pProgram = pOp->p4.pProgram;
5583   pRt = &aMem[pOp->p3];
5584   assert( pProgram->nOp>0 );
5585 
5586   /* If the p5 flag is clear, then recursive invocation of triggers is
5587   ** disabled for backwards compatibility (p5 is set if this sub-program
5588   ** is really a trigger, not a foreign key action, and the flag set
5589   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5590   **
5591   ** It is recursive invocation of triggers, at the SQL level, that is
5592   ** disabled. In some cases a single trigger may generate more than one
5593   ** SubProgram (if the trigger may be executed with more than one different
5594   ** ON CONFLICT algorithm). SubProgram structures associated with a
5595   ** single trigger all have the same value for the SubProgram.token
5596   ** variable.  */
5597   if( pOp->p5 ){
5598     t = pProgram->token;
5599     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5600     if( pFrame ) break;
5601   }
5602 
5603   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5604     rc = SQLITE_ERROR;
5605     sqlite3VdbeError(p, "too many levels of trigger recursion");
5606     break;
5607   }
5608 
5609   /* Register pRt is used to store the memory required to save the state
5610   ** of the current program, and the memory required at runtime to execute
5611   ** the trigger program. If this trigger has been fired before, then pRt
5612   ** is already allocated. Otherwise, it must be initialized.  */
5613   if( (pRt->flags&MEM_Frame)==0 ){
5614     /* SubProgram.nMem is set to the number of memory cells used by the
5615     ** program stored in SubProgram.aOp. As well as these, one memory
5616     ** cell is required for each cursor used by the program. Set local
5617     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5618     */
5619     nMem = pProgram->nMem + pProgram->nCsr;
5620     nByte = ROUND8(sizeof(VdbeFrame))
5621               + nMem * sizeof(Mem)
5622               + pProgram->nCsr * sizeof(VdbeCursor *)
5623               + pProgram->nOnce * sizeof(u8);
5624     pFrame = sqlite3DbMallocZero(db, nByte);
5625     if( !pFrame ){
5626       goto no_mem;
5627     }
5628     sqlite3VdbeMemRelease(pRt);
5629     pRt->flags = MEM_Frame;
5630     pRt->u.pFrame = pFrame;
5631 
5632     pFrame->v = p;
5633     pFrame->nChildMem = nMem;
5634     pFrame->nChildCsr = pProgram->nCsr;
5635     pFrame->pc = (int)(pOp - aOp);
5636     pFrame->aMem = p->aMem;
5637     pFrame->nMem = p->nMem;
5638     pFrame->apCsr = p->apCsr;
5639     pFrame->nCursor = p->nCursor;
5640     pFrame->aOp = p->aOp;
5641     pFrame->nOp = p->nOp;
5642     pFrame->token = pProgram->token;
5643     pFrame->aOnceFlag = p->aOnceFlag;
5644     pFrame->nOnceFlag = p->nOnceFlag;
5645 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5646     pFrame->anExec = p->anExec;
5647 #endif
5648 
5649     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5650     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5651       pMem->flags = MEM_Undefined;
5652       pMem->db = db;
5653     }
5654   }else{
5655     pFrame = pRt->u.pFrame;
5656     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5657     assert( pProgram->nCsr==pFrame->nChildCsr );
5658     assert( (int)(pOp - aOp)==pFrame->pc );
5659   }
5660 
5661   p->nFrame++;
5662   pFrame->pParent = p->pFrame;
5663   pFrame->lastRowid = lastRowid;
5664   pFrame->nChange = p->nChange;
5665   pFrame->nDbChange = p->db->nChange;
5666   p->nChange = 0;
5667   p->pFrame = pFrame;
5668   p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5669   p->nMem = pFrame->nChildMem;
5670   p->nCursor = (u16)pFrame->nChildCsr;
5671   p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5672   p->aOp = aOp = pProgram->aOp;
5673   p->nOp = pProgram->nOp;
5674   p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5675   p->nOnceFlag = pProgram->nOnce;
5676 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5677   p->anExec = 0;
5678 #endif
5679   pOp = &aOp[-1];
5680   memset(p->aOnceFlag, 0, p->nOnceFlag);
5681 
5682   break;
5683 }
5684 
5685 /* Opcode: Param P1 P2 * * *
5686 **
5687 ** This opcode is only ever present in sub-programs called via the
5688 ** OP_Program instruction. Copy a value currently stored in a memory
5689 ** cell of the calling (parent) frame to cell P2 in the current frames
5690 ** address space. This is used by trigger programs to access the new.*
5691 ** and old.* values.
5692 **
5693 ** The address of the cell in the parent frame is determined by adding
5694 ** the value of the P1 argument to the value of the P1 argument to the
5695 ** calling OP_Program instruction.
5696 */
5697 case OP_Param: {           /* out2 */
5698   VdbeFrame *pFrame;
5699   Mem *pIn;
5700   pOut = out2Prerelease(p, pOp);
5701   pFrame = p->pFrame;
5702   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5703   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5704   break;
5705 }
5706 
5707 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5708 
5709 #ifndef SQLITE_OMIT_FOREIGN_KEY
5710 /* Opcode: FkCounter P1 P2 * * *
5711 ** Synopsis: fkctr[P1]+=P2
5712 **
5713 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5714 ** If P1 is non-zero, the database constraint counter is incremented
5715 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5716 ** statement counter is incremented (immediate foreign key constraints).
5717 */
5718 case OP_FkCounter: {
5719   if( db->flags & SQLITE_DeferFKs ){
5720     db->nDeferredImmCons += pOp->p2;
5721   }else if( pOp->p1 ){
5722     db->nDeferredCons += pOp->p2;
5723   }else{
5724     p->nFkConstraint += pOp->p2;
5725   }
5726   break;
5727 }
5728 
5729 /* Opcode: FkIfZero P1 P2 * * *
5730 ** Synopsis: if fkctr[P1]==0 goto P2
5731 **
5732 ** This opcode tests if a foreign key constraint-counter is currently zero.
5733 ** If so, jump to instruction P2. Otherwise, fall through to the next
5734 ** instruction.
5735 **
5736 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5737 ** is zero (the one that counts deferred constraint violations). If P1 is
5738 ** zero, the jump is taken if the statement constraint-counter is zero
5739 ** (immediate foreign key constraint violations).
5740 */
5741 case OP_FkIfZero: {         /* jump */
5742   if( pOp->p1 ){
5743     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5744     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5745   }else{
5746     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5747     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5748   }
5749   break;
5750 }
5751 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5752 
5753 #ifndef SQLITE_OMIT_AUTOINCREMENT
5754 /* Opcode: MemMax P1 P2 * * *
5755 ** Synopsis: r[P1]=max(r[P1],r[P2])
5756 **
5757 ** P1 is a register in the root frame of this VM (the root frame is
5758 ** different from the current frame if this instruction is being executed
5759 ** within a sub-program). Set the value of register P1 to the maximum of
5760 ** its current value and the value in register P2.
5761 **
5762 ** This instruction throws an error if the memory cell is not initially
5763 ** an integer.
5764 */
5765 case OP_MemMax: {        /* in2 */
5766   VdbeFrame *pFrame;
5767   if( p->pFrame ){
5768     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5769     pIn1 = &pFrame->aMem[pOp->p1];
5770   }else{
5771     pIn1 = &aMem[pOp->p1];
5772   }
5773   assert( memIsValid(pIn1) );
5774   sqlite3VdbeMemIntegerify(pIn1);
5775   pIn2 = &aMem[pOp->p2];
5776   sqlite3VdbeMemIntegerify(pIn2);
5777   if( pIn1->u.i<pIn2->u.i){
5778     pIn1->u.i = pIn2->u.i;
5779   }
5780   break;
5781 }
5782 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5783 
5784 /* Opcode: IfPos P1 P2 P3 * *
5785 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5786 **
5787 ** Register P1 must contain an integer.
5788 ** If the value of register P1 is 1 or greater, subtract P3 from the
5789 ** value in P1 and jump to P2.
5790 **
5791 ** If the initial value of register P1 is less than 1, then the
5792 ** value is unchanged and control passes through to the next instruction.
5793 */
5794 case OP_IfPos: {        /* jump, in1 */
5795   pIn1 = &aMem[pOp->p1];
5796   assert( pIn1->flags&MEM_Int );
5797   VdbeBranchTaken( pIn1->u.i>0, 2);
5798   if( pIn1->u.i>0 ){
5799     pIn1->u.i -= pOp->p3;
5800     goto jump_to_p2;
5801   }
5802   break;
5803 }
5804 
5805 /* Opcode: OffsetLimit P1 P2 P3 * *
5806 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
5807 **
5808 ** This opcode performs a commonly used computation associated with
5809 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
5810 ** holds the offset counter.  The opcode computes the combined value
5811 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
5812 ** value computed is the total number of rows that will need to be
5813 ** visited in order to complete the query.
5814 **
5815 ** If r[P3] is zero or negative, that means there is no OFFSET
5816 ** and r[P2] is set to be the value of the LIMIT, r[P1].
5817 **
5818 ** if r[P1] is zero or negative, that means there is no LIMIT
5819 ** and r[P2] is set to -1.
5820 **
5821 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
5822 */
5823 case OP_OffsetLimit: {    /* in1, out2, in3 */
5824   pIn1 = &aMem[pOp->p1];
5825   pIn3 = &aMem[pOp->p3];
5826   pOut = out2Prerelease(p, pOp);
5827   assert( pIn1->flags & MEM_Int );
5828   assert( pIn3->flags & MEM_Int );
5829   pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
5830   break;
5831 }
5832 
5833 /* Opcode: IfNotZero P1 P2 P3 * *
5834 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5835 **
5836 ** Register P1 must contain an integer.  If the content of register P1 is
5837 ** initially nonzero, then subtract P3 from the value in register P1 and
5838 ** jump to P2.  If register P1 is initially zero, leave it unchanged
5839 ** and fall through.
5840 */
5841 case OP_IfNotZero: {        /* jump, in1 */
5842   pIn1 = &aMem[pOp->p1];
5843   assert( pIn1->flags&MEM_Int );
5844   VdbeBranchTaken(pIn1->u.i<0, 2);
5845   if( pIn1->u.i ){
5846      pIn1->u.i -= pOp->p3;
5847      goto jump_to_p2;
5848   }
5849   break;
5850 }
5851 
5852 /* Opcode: DecrJumpZero P1 P2 * * *
5853 ** Synopsis: if (--r[P1])==0 goto P2
5854 **
5855 ** Register P1 must hold an integer.  Decrement the value in register P1
5856 ** then jump to P2 if the new value is exactly zero.
5857 */
5858 case OP_DecrJumpZero: {      /* jump, in1 */
5859   pIn1 = &aMem[pOp->p1];
5860   assert( pIn1->flags&MEM_Int );
5861   pIn1->u.i--;
5862   VdbeBranchTaken(pIn1->u.i==0, 2);
5863   if( pIn1->u.i==0 ) goto jump_to_p2;
5864   break;
5865 }
5866 
5867 
5868 /* Opcode: JumpZeroIncr P1 P2 * * *
5869 ** Synopsis: if (r[P1]++)==0 ) goto P2
5870 **
5871 ** The register P1 must contain an integer.  If register P1 is initially
5872 ** zero, then jump to P2.  Increment register P1 regardless of whether or
5873 ** not the jump is taken.
5874 */
5875 case OP_JumpZeroIncr: {        /* jump, in1 */
5876   pIn1 = &aMem[pOp->p1];
5877   assert( pIn1->flags&MEM_Int );
5878   VdbeBranchTaken(pIn1->u.i==0, 2);
5879   if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5880   break;
5881 }
5882 
5883 /* Opcode: AggStep0 * P2 P3 P4 P5
5884 ** Synopsis: accum=r[P3] step(r[P2@P5])
5885 **
5886 ** Execute the step function for an aggregate.  The
5887 ** function has P5 arguments.   P4 is a pointer to the FuncDef
5888 ** structure that specifies the function.  Register P3 is the
5889 ** accumulator.
5890 **
5891 ** The P5 arguments are taken from register P2 and its
5892 ** successors.
5893 */
5894 /* Opcode: AggStep * P2 P3 P4 P5
5895 ** Synopsis: accum=r[P3] step(r[P2@P5])
5896 **
5897 ** Execute the step function for an aggregate.  The
5898 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
5899 ** object that is used to run the function.  Register P3 is
5900 ** as the accumulator.
5901 **
5902 ** The P5 arguments are taken from register P2 and its
5903 ** successors.
5904 **
5905 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
5906 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5907 ** the opcode is changed.  In this way, the initialization of the
5908 ** sqlite3_context only happens once, instead of on each call to the
5909 ** step function.
5910 */
5911 case OP_AggStep0: {
5912   int n;
5913   sqlite3_context *pCtx;
5914 
5915   assert( pOp->p4type==P4_FUNCDEF );
5916   n = pOp->p5;
5917   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5918   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5919   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5920   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5921   if( pCtx==0 ) goto no_mem;
5922   pCtx->pMem = 0;
5923   pCtx->pFunc = pOp->p4.pFunc;
5924   pCtx->iOp = (int)(pOp - aOp);
5925   pCtx->pVdbe = p;
5926   pCtx->argc = n;
5927   pOp->p4type = P4_FUNCCTX;
5928   pOp->p4.pCtx = pCtx;
5929   pOp->opcode = OP_AggStep;
5930   /* Fall through into OP_AggStep */
5931 }
5932 case OP_AggStep: {
5933   int i;
5934   sqlite3_context *pCtx;
5935   Mem *pMem;
5936   Mem t;
5937 
5938   assert( pOp->p4type==P4_FUNCCTX );
5939   pCtx = pOp->p4.pCtx;
5940   pMem = &aMem[pOp->p3];
5941 
5942   /* If this function is inside of a trigger, the register array in aMem[]
5943   ** might change from one evaluation to the next.  The next block of code
5944   ** checks to see if the register array has changed, and if so it
5945   ** reinitializes the relavant parts of the sqlite3_context object */
5946   if( pCtx->pMem != pMem ){
5947     pCtx->pMem = pMem;
5948     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5949   }
5950 
5951 #ifdef SQLITE_DEBUG
5952   for(i=0; i<pCtx->argc; i++){
5953     assert( memIsValid(pCtx->argv[i]) );
5954     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5955   }
5956 #endif
5957 
5958   pMem->n++;
5959   sqlite3VdbeMemInit(&t, db, MEM_Null);
5960   pCtx->pOut = &t;
5961   pCtx->fErrorOrAux = 0;
5962   pCtx->skipFlag = 0;
5963   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5964   if( pCtx->fErrorOrAux ){
5965     if( pCtx->isError ){
5966       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5967       rc = pCtx->isError;
5968     }
5969     sqlite3VdbeMemRelease(&t);
5970   }else{
5971     assert( t.flags==MEM_Null );
5972   }
5973   if( pCtx->skipFlag ){
5974     assert( pOp[-1].opcode==OP_CollSeq );
5975     i = pOp[-1].p1;
5976     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5977   }
5978   break;
5979 }
5980 
5981 /* Opcode: AggFinal P1 P2 * P4 *
5982 ** Synopsis: accum=r[P1] N=P2
5983 **
5984 ** Execute the finalizer function for an aggregate.  P1 is
5985 ** the memory location that is the accumulator for the aggregate.
5986 **
5987 ** P2 is the number of arguments that the step function takes and
5988 ** P4 is a pointer to the FuncDef for this function.  The P2
5989 ** argument is not used by this opcode.  It is only there to disambiguate
5990 ** functions that can take varying numbers of arguments.  The
5991 ** P4 argument is only needed for the degenerate case where
5992 ** the step function was not previously called.
5993 */
5994 case OP_AggFinal: {
5995   Mem *pMem;
5996   assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5997   pMem = &aMem[pOp->p1];
5998   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5999   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6000   if( rc ){
6001     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6002   }
6003   sqlite3VdbeChangeEncoding(pMem, encoding);
6004   UPDATE_MAX_BLOBSIZE(pMem);
6005   if( sqlite3VdbeMemTooBig(pMem) ){
6006     goto too_big;
6007   }
6008   break;
6009 }
6010 
6011 #ifndef SQLITE_OMIT_WAL
6012 /* Opcode: Checkpoint P1 P2 P3 * *
6013 **
6014 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6015 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6016 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6017 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6018 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6019 ** in the WAL that have been checkpointed after the checkpoint
6020 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6021 ** mem[P3+2] are initialized to -1.
6022 */
6023 case OP_Checkpoint: {
6024   int i;                          /* Loop counter */
6025   int aRes[3];                    /* Results */
6026   Mem *pMem;                      /* Write results here */
6027 
6028   assert( p->readOnly==0 );
6029   aRes[0] = 0;
6030   aRes[1] = aRes[2] = -1;
6031   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6032        || pOp->p2==SQLITE_CHECKPOINT_FULL
6033        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6034        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6035   );
6036   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6037   if( rc==SQLITE_BUSY ){
6038     rc = SQLITE_OK;
6039     aRes[0] = 1;
6040   }
6041   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6042     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6043   }
6044   break;
6045 };
6046 #endif
6047 
6048 #ifndef SQLITE_OMIT_PRAGMA
6049 /* Opcode: JournalMode P1 P2 P3 * *
6050 **
6051 ** Change the journal mode of database P1 to P3. P3 must be one of the
6052 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6053 ** modes (delete, truncate, persist, off and memory), this is a simple
6054 ** operation. No IO is required.
6055 **
6056 ** If changing into or out of WAL mode the procedure is more complicated.
6057 **
6058 ** Write a string containing the final journal-mode to register P2.
6059 */
6060 case OP_JournalMode: {    /* out2 */
6061   Btree *pBt;                     /* Btree to change journal mode of */
6062   Pager *pPager;                  /* Pager associated with pBt */
6063   int eNew;                       /* New journal mode */
6064   int eOld;                       /* The old journal mode */
6065 #ifndef SQLITE_OMIT_WAL
6066   const char *zFilename;          /* Name of database file for pPager */
6067 #endif
6068 
6069   pOut = out2Prerelease(p, pOp);
6070   eNew = pOp->p3;
6071   assert( eNew==PAGER_JOURNALMODE_DELETE
6072        || eNew==PAGER_JOURNALMODE_TRUNCATE
6073        || eNew==PAGER_JOURNALMODE_PERSIST
6074        || eNew==PAGER_JOURNALMODE_OFF
6075        || eNew==PAGER_JOURNALMODE_MEMORY
6076        || eNew==PAGER_JOURNALMODE_WAL
6077        || eNew==PAGER_JOURNALMODE_QUERY
6078   );
6079   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6080   assert( p->readOnly==0 );
6081 
6082   pBt = db->aDb[pOp->p1].pBt;
6083   pPager = sqlite3BtreePager(pBt);
6084   eOld = sqlite3PagerGetJournalMode(pPager);
6085   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6086   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6087 
6088 #ifndef SQLITE_OMIT_WAL
6089   zFilename = sqlite3PagerFilename(pPager, 1);
6090 
6091   /* Do not allow a transition to journal_mode=WAL for a database
6092   ** in temporary storage or if the VFS does not support shared memory
6093   */
6094   if( eNew==PAGER_JOURNALMODE_WAL
6095    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6096        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6097   ){
6098     eNew = eOld;
6099   }
6100 
6101   if( (eNew!=eOld)
6102    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6103   ){
6104     if( !db->autoCommit || db->nVdbeRead>1 ){
6105       rc = SQLITE_ERROR;
6106       sqlite3VdbeError(p,
6107           "cannot change %s wal mode from within a transaction",
6108           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6109       );
6110       break;
6111     }else{
6112 
6113       if( eOld==PAGER_JOURNALMODE_WAL ){
6114         /* If leaving WAL mode, close the log file. If successful, the call
6115         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6116         ** file. An EXCLUSIVE lock may still be held on the database file
6117         ** after a successful return.
6118         */
6119         rc = sqlite3PagerCloseWal(pPager);
6120         if( rc==SQLITE_OK ){
6121           sqlite3PagerSetJournalMode(pPager, eNew);
6122         }
6123       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6124         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6125         ** as an intermediate */
6126         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6127       }
6128 
6129       /* Open a transaction on the database file. Regardless of the journal
6130       ** mode, this transaction always uses a rollback journal.
6131       */
6132       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6133       if( rc==SQLITE_OK ){
6134         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6135       }
6136     }
6137   }
6138 #endif /* ifndef SQLITE_OMIT_WAL */
6139 
6140   if( rc ){
6141     eNew = eOld;
6142   }
6143   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6144 
6145   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6146   pOut->z = (char *)sqlite3JournalModename(eNew);
6147   pOut->n = sqlite3Strlen30(pOut->z);
6148   pOut->enc = SQLITE_UTF8;
6149   sqlite3VdbeChangeEncoding(pOut, encoding);
6150   break;
6151 };
6152 #endif /* SQLITE_OMIT_PRAGMA */
6153 
6154 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6155 /* Opcode: Vacuum * * * * *
6156 **
6157 ** Vacuum the entire database.  This opcode will cause other virtual
6158 ** machines to be created and run.  It may not be called from within
6159 ** a transaction.
6160 */
6161 case OP_Vacuum: {
6162   assert( p->readOnly==0 );
6163   rc = sqlite3RunVacuum(&p->zErrMsg, db);
6164   break;
6165 }
6166 #endif
6167 
6168 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6169 /* Opcode: IncrVacuum P1 P2 * * *
6170 **
6171 ** Perform a single step of the incremental vacuum procedure on
6172 ** the P1 database. If the vacuum has finished, jump to instruction
6173 ** P2. Otherwise, fall through to the next instruction.
6174 */
6175 case OP_IncrVacuum: {        /* jump */
6176   Btree *pBt;
6177 
6178   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6179   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6180   assert( p->readOnly==0 );
6181   pBt = db->aDb[pOp->p1].pBt;
6182   rc = sqlite3BtreeIncrVacuum(pBt);
6183   VdbeBranchTaken(rc==SQLITE_DONE,2);
6184   if( rc==SQLITE_DONE ){
6185     rc = SQLITE_OK;
6186     goto jump_to_p2;
6187   }
6188   break;
6189 }
6190 #endif
6191 
6192 /* Opcode: Expire P1 * * * *
6193 **
6194 ** Cause precompiled statements to expire.  When an expired statement
6195 ** is executed using sqlite3_step() it will either automatically
6196 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6197 ** or it will fail with SQLITE_SCHEMA.
6198 **
6199 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6200 ** then only the currently executing statement is expired.
6201 */
6202 case OP_Expire: {
6203   if( !pOp->p1 ){
6204     sqlite3ExpirePreparedStatements(db);
6205   }else{
6206     p->expired = 1;
6207   }
6208   break;
6209 }
6210 
6211 #ifndef SQLITE_OMIT_SHARED_CACHE
6212 /* Opcode: TableLock P1 P2 P3 P4 *
6213 ** Synopsis: iDb=P1 root=P2 write=P3
6214 **
6215 ** Obtain a lock on a particular table. This instruction is only used when
6216 ** the shared-cache feature is enabled.
6217 **
6218 ** P1 is the index of the database in sqlite3.aDb[] of the database
6219 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6220 ** a write lock if P3==1.
6221 **
6222 ** P2 contains the root-page of the table to lock.
6223 **
6224 ** P4 contains a pointer to the name of the table being locked. This is only
6225 ** used to generate an error message if the lock cannot be obtained.
6226 */
6227 case OP_TableLock: {
6228   u8 isWriteLock = (u8)pOp->p3;
6229   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6230     int p1 = pOp->p1;
6231     assert( p1>=0 && p1<db->nDb );
6232     assert( DbMaskTest(p->btreeMask, p1) );
6233     assert( isWriteLock==0 || isWriteLock==1 );
6234     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6235     if( (rc&0xFF)==SQLITE_LOCKED ){
6236       const char *z = pOp->p4.z;
6237       sqlite3VdbeError(p, "database table is locked: %s", z);
6238     }
6239   }
6240   break;
6241 }
6242 #endif /* SQLITE_OMIT_SHARED_CACHE */
6243 
6244 #ifndef SQLITE_OMIT_VIRTUALTABLE
6245 /* Opcode: VBegin * * * P4 *
6246 **
6247 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6248 ** xBegin method for that table.
6249 **
6250 ** Also, whether or not P4 is set, check that this is not being called from
6251 ** within a callback to a virtual table xSync() method. If it is, the error
6252 ** code will be set to SQLITE_LOCKED.
6253 */
6254 case OP_VBegin: {
6255   VTable *pVTab;
6256   pVTab = pOp->p4.pVtab;
6257   rc = sqlite3VtabBegin(db, pVTab);
6258   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6259   break;
6260 }
6261 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6262 
6263 #ifndef SQLITE_OMIT_VIRTUALTABLE
6264 /* Opcode: VCreate P1 P2 * * *
6265 **
6266 ** P2 is a register that holds the name of a virtual table in database
6267 ** P1. Call the xCreate method for that table.
6268 */
6269 case OP_VCreate: {
6270   Mem sMem;          /* For storing the record being decoded */
6271   const char *zTab;  /* Name of the virtual table */
6272 
6273   memset(&sMem, 0, sizeof(sMem));
6274   sMem.db = db;
6275   /* Because P2 is always a static string, it is impossible for the
6276   ** sqlite3VdbeMemCopy() to fail */
6277   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6278   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6279   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6280   assert( rc==SQLITE_OK );
6281   zTab = (const char*)sqlite3_value_text(&sMem);
6282   assert( zTab || db->mallocFailed );
6283   if( zTab ){
6284     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6285   }
6286   sqlite3VdbeMemRelease(&sMem);
6287   break;
6288 }
6289 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6290 
6291 #ifndef SQLITE_OMIT_VIRTUALTABLE
6292 /* Opcode: VDestroy P1 * * P4 *
6293 **
6294 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6295 ** of that table.
6296 */
6297 case OP_VDestroy: {
6298   db->nVDestroy++;
6299   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6300   db->nVDestroy--;
6301   break;
6302 }
6303 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6304 
6305 #ifndef SQLITE_OMIT_VIRTUALTABLE
6306 /* Opcode: VOpen P1 * * P4 *
6307 **
6308 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6309 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6310 ** table and stores that cursor in P1.
6311 */
6312 case OP_VOpen: {
6313   VdbeCursor *pCur;
6314   sqlite3_vtab_cursor *pVCur;
6315   sqlite3_vtab *pVtab;
6316   const sqlite3_module *pModule;
6317 
6318   assert( p->bIsReader );
6319   pCur = 0;
6320   pVCur = 0;
6321   pVtab = pOp->p4.pVtab->pVtab;
6322   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6323     rc = SQLITE_LOCKED;
6324     break;
6325   }
6326   pModule = pVtab->pModule;
6327   rc = pModule->xOpen(pVtab, &pVCur);
6328   sqlite3VtabImportErrmsg(p, pVtab);
6329   if( SQLITE_OK==rc ){
6330     /* Initialize sqlite3_vtab_cursor base class */
6331     pVCur->pVtab = pVtab;
6332 
6333     /* Initialize vdbe cursor object */
6334     pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6335     if( pCur ){
6336       pCur->uc.pVCur = pVCur;
6337       pVtab->nRef++;
6338     }else{
6339       assert( db->mallocFailed );
6340       pModule->xClose(pVCur);
6341       goto no_mem;
6342     }
6343   }
6344   break;
6345 }
6346 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6347 
6348 #ifndef SQLITE_OMIT_VIRTUALTABLE
6349 /* Opcode: VFilter P1 P2 P3 P4 *
6350 ** Synopsis: iplan=r[P3] zplan='P4'
6351 **
6352 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6353 ** the filtered result set is empty.
6354 **
6355 ** P4 is either NULL or a string that was generated by the xBestIndex
6356 ** method of the module.  The interpretation of the P4 string is left
6357 ** to the module implementation.
6358 **
6359 ** This opcode invokes the xFilter method on the virtual table specified
6360 ** by P1.  The integer query plan parameter to xFilter is stored in register
6361 ** P3. Register P3+1 stores the argc parameter to be passed to the
6362 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6363 ** additional parameters which are passed to
6364 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6365 **
6366 ** A jump is made to P2 if the result set after filtering would be empty.
6367 */
6368 case OP_VFilter: {   /* jump */
6369   int nArg;
6370   int iQuery;
6371   const sqlite3_module *pModule;
6372   Mem *pQuery;
6373   Mem *pArgc;
6374   sqlite3_vtab_cursor *pVCur;
6375   sqlite3_vtab *pVtab;
6376   VdbeCursor *pCur;
6377   int res;
6378   int i;
6379   Mem **apArg;
6380 
6381   pQuery = &aMem[pOp->p3];
6382   pArgc = &pQuery[1];
6383   pCur = p->apCsr[pOp->p1];
6384   assert( memIsValid(pQuery) );
6385   REGISTER_TRACE(pOp->p3, pQuery);
6386   assert( pCur->eCurType==CURTYPE_VTAB );
6387   pVCur = pCur->uc.pVCur;
6388   pVtab = pVCur->pVtab;
6389   pModule = pVtab->pModule;
6390 
6391   /* Grab the index number and argc parameters */
6392   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6393   nArg = (int)pArgc->u.i;
6394   iQuery = (int)pQuery->u.i;
6395 
6396   /* Invoke the xFilter method */
6397   res = 0;
6398   apArg = p->apArg;
6399   for(i = 0; i<nArg; i++){
6400     apArg[i] = &pArgc[i+1];
6401   }
6402   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6403   sqlite3VtabImportErrmsg(p, pVtab);
6404   if( rc==SQLITE_OK ){
6405     res = pModule->xEof(pVCur);
6406   }
6407   pCur->nullRow = 0;
6408   VdbeBranchTaken(res!=0,2);
6409   if( res ) goto jump_to_p2;
6410   break;
6411 }
6412 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6413 
6414 #ifndef SQLITE_OMIT_VIRTUALTABLE
6415 /* Opcode: VColumn P1 P2 P3 * *
6416 ** Synopsis: r[P3]=vcolumn(P2)
6417 **
6418 ** Store the value of the P2-th column of
6419 ** the row of the virtual-table that the
6420 ** P1 cursor is pointing to into register P3.
6421 */
6422 case OP_VColumn: {
6423   sqlite3_vtab *pVtab;
6424   const sqlite3_module *pModule;
6425   Mem *pDest;
6426   sqlite3_context sContext;
6427 
6428   VdbeCursor *pCur = p->apCsr[pOp->p1];
6429   assert( pCur->eCurType==CURTYPE_VTAB );
6430   assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6431   pDest = &aMem[pOp->p3];
6432   memAboutToChange(p, pDest);
6433   if( pCur->nullRow ){
6434     sqlite3VdbeMemSetNull(pDest);
6435     break;
6436   }
6437   pVtab = pCur->uc.pVCur->pVtab;
6438   pModule = pVtab->pModule;
6439   assert( pModule->xColumn );
6440   memset(&sContext, 0, sizeof(sContext));
6441   sContext.pOut = pDest;
6442   MemSetTypeFlag(pDest, MEM_Null);
6443   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6444   sqlite3VtabImportErrmsg(p, pVtab);
6445   if( sContext.isError ){
6446     rc = sContext.isError;
6447   }
6448   sqlite3VdbeChangeEncoding(pDest, encoding);
6449   REGISTER_TRACE(pOp->p3, pDest);
6450   UPDATE_MAX_BLOBSIZE(pDest);
6451 
6452   if( sqlite3VdbeMemTooBig(pDest) ){
6453     goto too_big;
6454   }
6455   break;
6456 }
6457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6458 
6459 #ifndef SQLITE_OMIT_VIRTUALTABLE
6460 /* Opcode: VNext P1 P2 * * *
6461 **
6462 ** Advance virtual table P1 to the next row in its result set and
6463 ** jump to instruction P2.  Or, if the virtual table has reached
6464 ** the end of its result set, then fall through to the next instruction.
6465 */
6466 case OP_VNext: {   /* jump */
6467   sqlite3_vtab *pVtab;
6468   const sqlite3_module *pModule;
6469   int res;
6470   VdbeCursor *pCur;
6471 
6472   res = 0;
6473   pCur = p->apCsr[pOp->p1];
6474   assert( pCur->eCurType==CURTYPE_VTAB );
6475   if( pCur->nullRow ){
6476     break;
6477   }
6478   pVtab = pCur->uc.pVCur->pVtab;
6479   pModule = pVtab->pModule;
6480   assert( pModule->xNext );
6481 
6482   /* Invoke the xNext() method of the module. There is no way for the
6483   ** underlying implementation to return an error if one occurs during
6484   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6485   ** data is available) and the error code returned when xColumn or
6486   ** some other method is next invoked on the save virtual table cursor.
6487   */
6488   rc = pModule->xNext(pCur->uc.pVCur);
6489   sqlite3VtabImportErrmsg(p, pVtab);
6490   if( rc==SQLITE_OK ){
6491     res = pModule->xEof(pCur->uc.pVCur);
6492   }
6493   VdbeBranchTaken(!res,2);
6494   if( !res ){
6495     /* If there is data, jump to P2 */
6496     goto jump_to_p2_and_check_for_interrupt;
6497   }
6498   goto check_for_interrupt;
6499 }
6500 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6501 
6502 #ifndef SQLITE_OMIT_VIRTUALTABLE
6503 /* Opcode: VRename P1 * * P4 *
6504 **
6505 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6506 ** This opcode invokes the corresponding xRename method. The value
6507 ** in register P1 is passed as the zName argument to the xRename method.
6508 */
6509 case OP_VRename: {
6510   sqlite3_vtab *pVtab;
6511   Mem *pName;
6512 
6513   pVtab = pOp->p4.pVtab->pVtab;
6514   pName = &aMem[pOp->p1];
6515   assert( pVtab->pModule->xRename );
6516   assert( memIsValid(pName) );
6517   assert( p->readOnly==0 );
6518   REGISTER_TRACE(pOp->p1, pName);
6519   assert( pName->flags & MEM_Str );
6520   testcase( pName->enc==SQLITE_UTF8 );
6521   testcase( pName->enc==SQLITE_UTF16BE );
6522   testcase( pName->enc==SQLITE_UTF16LE );
6523   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6524   if( rc==SQLITE_OK ){
6525     rc = pVtab->pModule->xRename(pVtab, pName->z);
6526     sqlite3VtabImportErrmsg(p, pVtab);
6527     p->expired = 0;
6528   }
6529   break;
6530 }
6531 #endif
6532 
6533 #ifndef SQLITE_OMIT_VIRTUALTABLE
6534 /* Opcode: VUpdate P1 P2 P3 P4 P5
6535 ** Synopsis: data=r[P3@P2]
6536 **
6537 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6538 ** This opcode invokes the corresponding xUpdate method. P2 values
6539 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6540 ** invocation. The value in register (P3+P2-1) corresponds to the
6541 ** p2th element of the argv array passed to xUpdate.
6542 **
6543 ** The xUpdate method will do a DELETE or an INSERT or both.
6544 ** The argv[0] element (which corresponds to memory cell P3)
6545 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6546 ** deletion occurs.  The argv[1] element is the rowid of the new
6547 ** row.  This can be NULL to have the virtual table select the new
6548 ** rowid for itself.  The subsequent elements in the array are
6549 ** the values of columns in the new row.
6550 **
6551 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6552 ** a row to delete.
6553 **
6554 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6555 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6556 ** is set to the value of the rowid for the row just inserted.
6557 **
6558 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6559 ** apply in the case of a constraint failure on an insert or update.
6560 */
6561 case OP_VUpdate: {
6562   sqlite3_vtab *pVtab;
6563   const sqlite3_module *pModule;
6564   int nArg;
6565   int i;
6566   sqlite_int64 rowid;
6567   Mem **apArg;
6568   Mem *pX;
6569 
6570   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6571        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6572   );
6573   assert( p->readOnly==0 );
6574   pVtab = pOp->p4.pVtab->pVtab;
6575   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6576     rc = SQLITE_LOCKED;
6577     break;
6578   }
6579   pModule = pVtab->pModule;
6580   nArg = pOp->p2;
6581   assert( pOp->p4type==P4_VTAB );
6582   if( ALWAYS(pModule->xUpdate) ){
6583     u8 vtabOnConflict = db->vtabOnConflict;
6584     apArg = p->apArg;
6585     pX = &aMem[pOp->p3];
6586     for(i=0; i<nArg; i++){
6587       assert( memIsValid(pX) );
6588       memAboutToChange(p, pX);
6589       apArg[i] = pX;
6590       pX++;
6591     }
6592     db->vtabOnConflict = pOp->p5;
6593     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6594     db->vtabOnConflict = vtabOnConflict;
6595     sqlite3VtabImportErrmsg(p, pVtab);
6596     if( rc==SQLITE_OK && pOp->p1 ){
6597       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6598       db->lastRowid = lastRowid = rowid;
6599     }
6600     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6601       if( pOp->p5==OE_Ignore ){
6602         rc = SQLITE_OK;
6603       }else{
6604         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6605       }
6606     }else{
6607       p->nChange++;
6608     }
6609   }
6610   break;
6611 }
6612 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6613 
6614 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6615 /* Opcode: Pagecount P1 P2 * * *
6616 **
6617 ** Write the current number of pages in database P1 to memory cell P2.
6618 */
6619 case OP_Pagecount: {            /* out2 */
6620   pOut = out2Prerelease(p, pOp);
6621   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6622   break;
6623 }
6624 #endif
6625 
6626 
6627 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6628 /* Opcode: MaxPgcnt P1 P2 P3 * *
6629 **
6630 ** Try to set the maximum page count for database P1 to the value in P3.
6631 ** Do not let the maximum page count fall below the current page count and
6632 ** do not change the maximum page count value if P3==0.
6633 **
6634 ** Store the maximum page count after the change in register P2.
6635 */
6636 case OP_MaxPgcnt: {            /* out2 */
6637   unsigned int newMax;
6638   Btree *pBt;
6639 
6640   pOut = out2Prerelease(p, pOp);
6641   pBt = db->aDb[pOp->p1].pBt;
6642   newMax = 0;
6643   if( pOp->p3 ){
6644     newMax = sqlite3BtreeLastPage(pBt);
6645     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6646   }
6647   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6648   break;
6649 }
6650 #endif
6651 
6652 
6653 /* Opcode: Init * P2 * P4 *
6654 ** Synopsis:  Start at P2
6655 **
6656 ** Programs contain a single instance of this opcode as the very first
6657 ** opcode.
6658 **
6659 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6660 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6661 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6662 **
6663 ** If P2 is not zero, jump to instruction P2.
6664 */
6665 case OP_Init: {          /* jump */
6666   char *zTrace;
6667   char *z;
6668 
6669 #ifndef SQLITE_OMIT_TRACE
6670   if( db->xTrace
6671    && !p->doingRerun
6672    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6673   ){
6674     z = sqlite3VdbeExpandSql(p, zTrace);
6675     db->xTrace(db->pTraceArg, z);
6676     sqlite3DbFree(db, z);
6677   }
6678 #ifdef SQLITE_USE_FCNTL_TRACE
6679   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6680   if( zTrace ){
6681     int i;
6682     for(i=0; i<db->nDb; i++){
6683       if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6684       sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6685     }
6686   }
6687 #endif /* SQLITE_USE_FCNTL_TRACE */
6688 #ifdef SQLITE_DEBUG
6689   if( (db->flags & SQLITE_SqlTrace)!=0
6690    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6691   ){
6692     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6693   }
6694 #endif /* SQLITE_DEBUG */
6695 #endif /* SQLITE_OMIT_TRACE */
6696   if( pOp->p2 ) goto jump_to_p2;
6697   break;
6698 }
6699 
6700 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6701 /* Opcode: CursorHint P1 * * P4 *
6702 **
6703 ** Provide a hint to cursor P1 that it only needs to return rows that
6704 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
6705 ** to values currently held in registers.  TK_COLUMN terms in the P4
6706 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6707 */
6708 case OP_CursorHint: {
6709   VdbeCursor *pC;
6710 
6711   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6712   assert( pOp->p4type==P4_EXPR );
6713   pC = p->apCsr[pOp->p1];
6714   if( pC ){
6715     assert( pC->eCurType==CURTYPE_BTREE );
6716     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6717                            pOp->p4.pExpr, aMem);
6718   }
6719   break;
6720 }
6721 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6722 
6723 /* Opcode: Noop * * * * *
6724 **
6725 ** Do nothing.  This instruction is often useful as a jump
6726 ** destination.
6727 */
6728 /*
6729 ** The magic Explain opcode are only inserted when explain==2 (which
6730 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6731 ** This opcode records information from the optimizer.  It is the
6732 ** the same as a no-op.  This opcodesnever appears in a real VM program.
6733 */
6734 default: {          /* This is really OP_Noop and OP_Explain */
6735   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6736   break;
6737 }
6738 
6739 /*****************************************************************************
6740 ** The cases of the switch statement above this line should all be indented
6741 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
6742 ** readability.  From this point on down, the normal indentation rules are
6743 ** restored.
6744 *****************************************************************************/
6745     }
6746 
6747 #ifdef VDBE_PROFILE
6748     {
6749       u64 endTime = sqlite3Hwtime();
6750       if( endTime>start ) pOrigOp->cycles += endTime - start;
6751       pOrigOp->cnt++;
6752     }
6753 #endif
6754 
6755     /* The following code adds nothing to the actual functionality
6756     ** of the program.  It is only here for testing and debugging.
6757     ** On the other hand, it does burn CPU cycles every time through
6758     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
6759     */
6760 #ifndef NDEBUG
6761     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6762 
6763 #ifdef SQLITE_DEBUG
6764     if( db->flags & SQLITE_VdbeTrace ){
6765       if( rc!=0 ) printf("rc=%d\n",rc);
6766       if( pOrigOp->opflags & (OPFLG_OUT2) ){
6767         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6768       }
6769       if( pOrigOp->opflags & OPFLG_OUT3 ){
6770         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6771       }
6772     }
6773 #endif  /* SQLITE_DEBUG */
6774 #endif  /* NDEBUG */
6775   }  /* The end of the for(;;) loop the loops through opcodes */
6776 
6777   /* If we reach this point, it means that execution is finished with
6778   ** an error of some kind.
6779   */
6780 vdbe_error_halt:
6781   assert( rc );
6782   p->rc = rc;
6783   testcase( sqlite3GlobalConfig.xLog!=0 );
6784   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6785                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
6786   sqlite3VdbeHalt(p);
6787   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
6788   rc = SQLITE_ERROR;
6789   if( resetSchemaOnFault>0 ){
6790     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6791   }
6792 
6793   /* This is the only way out of this procedure.  We have to
6794   ** release the mutexes on btrees that were acquired at the
6795   ** top. */
6796 vdbe_return:
6797   db->lastRowid = lastRowid;
6798   testcase( nVmStep>0 );
6799   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6800   sqlite3VdbeLeave(p);
6801   assert( rc!=SQLITE_OK || nExtraDelete==0
6802        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
6803   );
6804   return rc;
6805 
6806   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6807   ** is encountered.
6808   */
6809 too_big:
6810   sqlite3VdbeError(p, "string or blob too big");
6811   rc = SQLITE_TOOBIG;
6812   goto vdbe_error_halt;
6813 
6814   /* Jump to here if a malloc() fails.
6815   */
6816 no_mem:
6817   sqlite3OomFault(db);
6818   sqlite3VdbeError(p, "out of memory");
6819   rc = SQLITE_NOMEM;
6820   goto vdbe_error_halt;
6821 
6822   /* Jump to here for any other kind of fatal error.  The "rc" variable
6823   ** should hold the error number.
6824   */
6825 abort_due_to_error:
6826   assert( p->zErrMsg==0 );
6827   if( db->mallocFailed ) rc = SQLITE_NOMEM;
6828   if( rc!=SQLITE_IOERR_NOMEM ){
6829     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6830   }
6831   goto vdbe_error_halt;
6832 
6833   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6834   ** flag.
6835   */
6836 abort_due_to_interrupt:
6837   assert( db->u1.isInterrupted );
6838   rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_INTERRUPT;
6839   p->rc = rc;
6840   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6841   goto vdbe_error_halt;
6842 }
6843