1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 ** 120 ** iSrcLine is the source code line (from the __LINE__ macro) that 121 ** generated the VDBE instruction. This instrumentation assumes that all 122 ** source code is in a single file (the amalgamation). Special values 1 123 ** and 2 for the iSrcLine parameter mean that this particular branch is 124 ** always taken or never taken, respectively. 125 */ 126 #if !defined(SQLITE_VDBE_COVERAGE) 127 # define VdbeBranchTaken(I,M) 128 #else 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 132 M = iSrcLine; 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and 134 ** VdbeCoverageNeverTaken() */ 135 assert( (M & I)==I ); 136 }else{ 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 139 iSrcLine,I,M); 140 } 141 } 142 #endif 143 144 /* 145 ** Convert the given register into a string if it isn't one 146 ** already. Return non-zero if a malloc() fails. 147 */ 148 #define Stringify(P, enc) \ 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 150 { goto no_mem; } 151 152 /* 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 154 ** a pointer to a dynamically allocated string where some other entity 155 ** is responsible for deallocating that string. Because the register 156 ** does not control the string, it might be deleted without the register 157 ** knowing it. 158 ** 159 ** This routine converts an ephemeral string into a dynamically allocated 160 ** string that the register itself controls. In other words, it 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 162 */ 163 #define Deephemeralize(P) \ 164 if( ((P)->flags&MEM_Ephem)!=0 \ 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 166 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 168 #define isSorter(x) ((x)->pSorter!=0) 169 170 /* 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 172 ** if we run out of memory. 173 */ 174 static VdbeCursor *allocateCursor( 175 Vdbe *p, /* The virtual machine */ 176 int iCur, /* Index of the new VdbeCursor */ 177 int nField, /* Number of fields in the table or index */ 178 int iDb, /* Database the cursor belongs to, or -1 */ 179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 180 ){ 181 /* Find the memory cell that will be used to store the blob of memory 182 ** required for this VdbeCursor structure. It is convenient to use a 183 ** vdbe memory cell to manage the memory allocation required for a 184 ** VdbeCursor structure for the following reasons: 185 ** 186 ** * Sometimes cursor numbers are used for a couple of different 187 ** purposes in a vdbe program. The different uses might require 188 ** different sized allocations. Memory cells provide growable 189 ** allocations. 190 ** 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 192 ** be freed lazily via the sqlite3_release_memory() API. This 193 ** minimizes the number of malloc calls made by the system. 194 ** 195 ** Memory cells for cursors are allocated at the top of the address 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 198 */ 199 Mem *pMem = &p->aMem[p->nMem-iCur]; 200 201 int nByte; 202 VdbeCursor *pCx = 0; 203 nByte = 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 205 (isBtreeCursor?sqlite3BtreeCursorSize():0); 206 207 assert( iCur<p->nCursor ); 208 if( p->apCsr[iCur] ){ 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 210 p->apCsr[iCur] = 0; 211 } 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 214 memset(pCx, 0, sizeof(VdbeCursor)); 215 pCx->iDb = iDb; 216 pCx->nField = nField; 217 pCx->aOffset = &pCx->aType[nField]; 218 if( isBtreeCursor ){ 219 pCx->pCursor = (BtCursor*) 220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 221 sqlite3BtreeCursorZero(pCx->pCursor); 222 } 223 } 224 return pCx; 225 } 226 227 /* 228 ** Try to convert a value into a numeric representation if we can 229 ** do so without loss of information. In other words, if the string 230 ** looks like a number, convert it into a number. If it does not 231 ** look like a number, leave it alone. 232 ** 233 ** If the bTryForInt flag is true, then extra effort is made to give 234 ** an integer representation. Strings that look like floating point 235 ** values but which have no fractional component (example: '48.00') 236 ** will have a MEM_Int representation when bTryForInt is true. 237 ** 238 ** If bTryForInt is false, then if the input string contains a decimal 239 ** point or exponential notation, the result is only MEM_Real, even 240 ** if there is an exact integer representation of the quantity. 241 */ 242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 243 double rValue; 244 i64 iValue; 245 u8 enc = pRec->enc; 246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 249 pRec->u.i = iValue; 250 pRec->flags |= MEM_Int; 251 }else{ 252 pRec->u.r = rValue; 253 pRec->flags |= MEM_Real; 254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 255 } 256 } 257 258 /* 259 ** Processing is determine by the affinity parameter: 260 ** 261 ** SQLITE_AFF_INTEGER: 262 ** SQLITE_AFF_REAL: 263 ** SQLITE_AFF_NUMERIC: 264 ** Try to convert pRec to an integer representation or a 265 ** floating-point representation if an integer representation 266 ** is not possible. Note that the integer representation is 267 ** always preferred, even if the affinity is REAL, because 268 ** an integer representation is more space efficient on disk. 269 ** 270 ** SQLITE_AFF_TEXT: 271 ** Convert pRec to a text representation. 272 ** 273 ** SQLITE_AFF_NONE: 274 ** No-op. pRec is unchanged. 275 */ 276 static void applyAffinity( 277 Mem *pRec, /* The value to apply affinity to */ 278 char affinity, /* The affinity to be applied */ 279 u8 enc /* Use this text encoding */ 280 ){ 281 if( affinity>=SQLITE_AFF_NUMERIC ){ 282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 283 || affinity==SQLITE_AFF_NUMERIC ); 284 if( (pRec->flags & MEM_Int)==0 ){ 285 if( (pRec->flags & MEM_Real)==0 ){ 286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 287 }else{ 288 sqlite3VdbeIntegerAffinity(pRec); 289 } 290 } 291 }else if( affinity==SQLITE_AFF_TEXT ){ 292 /* Only attempt the conversion to TEXT if there is an integer or real 293 ** representation (blob and NULL do not get converted) but no string 294 ** representation. 295 */ 296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 297 sqlite3VdbeMemStringify(pRec, enc, 1); 298 } 299 } 300 } 301 302 /* 303 ** Try to convert the type of a function argument or a result column 304 ** into a numeric representation. Use either INTEGER or REAL whichever 305 ** is appropriate. But only do the conversion if it is possible without 306 ** loss of information and return the revised type of the argument. 307 */ 308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 309 int eType = sqlite3_value_type(pVal); 310 if( eType==SQLITE_TEXT ){ 311 Mem *pMem = (Mem*)pVal; 312 applyNumericAffinity(pMem, 0); 313 eType = sqlite3_value_type(pVal); 314 } 315 return eType; 316 } 317 318 /* 319 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 320 ** not the internal Mem* type. 321 */ 322 void sqlite3ValueApplyAffinity( 323 sqlite3_value *pVal, 324 u8 affinity, 325 u8 enc 326 ){ 327 applyAffinity((Mem *)pVal, affinity, enc); 328 } 329 330 /* 331 ** pMem currently only holds a string type (or maybe a BLOB that we can 332 ** interpret as a string if we want to). Compute its corresponding 333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 334 ** accordingly. 335 */ 336 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 340 return 0; 341 } 342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 343 return MEM_Int; 344 } 345 return MEM_Real; 346 } 347 348 /* 349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 350 ** none. 351 ** 352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 353 ** But it does set pMem->u.r and pMem->u.i appropriately. 354 */ 355 static u16 numericType(Mem *pMem){ 356 if( pMem->flags & (MEM_Int|MEM_Real) ){ 357 return pMem->flags & (MEM_Int|MEM_Real); 358 } 359 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 360 return computeNumericType(pMem); 361 } 362 return 0; 363 } 364 365 #ifdef SQLITE_DEBUG 366 /* 367 ** Write a nice string representation of the contents of cell pMem 368 ** into buffer zBuf, length nBuf. 369 */ 370 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 371 char *zCsr = zBuf; 372 int f = pMem->flags; 373 374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 375 376 if( f&MEM_Blob ){ 377 int i; 378 char c; 379 if( f & MEM_Dyn ){ 380 c = 'z'; 381 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 382 }else if( f & MEM_Static ){ 383 c = 't'; 384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 385 }else if( f & MEM_Ephem ){ 386 c = 'e'; 387 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 388 }else{ 389 c = 's'; 390 } 391 392 sqlite3_snprintf(100, zCsr, "%c", c); 393 zCsr += sqlite3Strlen30(zCsr); 394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 395 zCsr += sqlite3Strlen30(zCsr); 396 for(i=0; i<16 && i<pMem->n; i++){ 397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 398 zCsr += sqlite3Strlen30(zCsr); 399 } 400 for(i=0; i<16 && i<pMem->n; i++){ 401 char z = pMem->z[i]; 402 if( z<32 || z>126 ) *zCsr++ = '.'; 403 else *zCsr++ = z; 404 } 405 406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 407 zCsr += sqlite3Strlen30(zCsr); 408 if( f & MEM_Zero ){ 409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 410 zCsr += sqlite3Strlen30(zCsr); 411 } 412 *zCsr = '\0'; 413 }else if( f & MEM_Str ){ 414 int j, k; 415 zBuf[0] = ' '; 416 if( f & MEM_Dyn ){ 417 zBuf[1] = 'z'; 418 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 419 }else if( f & MEM_Static ){ 420 zBuf[1] = 't'; 421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 422 }else if( f & MEM_Ephem ){ 423 zBuf[1] = 'e'; 424 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 425 }else{ 426 zBuf[1] = 's'; 427 } 428 k = 2; 429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 430 k += sqlite3Strlen30(&zBuf[k]); 431 zBuf[k++] = '['; 432 for(j=0; j<15 && j<pMem->n; j++){ 433 u8 c = pMem->z[j]; 434 if( c>=0x20 && c<0x7f ){ 435 zBuf[k++] = c; 436 }else{ 437 zBuf[k++] = '.'; 438 } 439 } 440 zBuf[k++] = ']'; 441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 442 k += sqlite3Strlen30(&zBuf[k]); 443 zBuf[k++] = 0; 444 } 445 } 446 #endif 447 448 #ifdef SQLITE_DEBUG 449 /* 450 ** Print the value of a register for tracing purposes: 451 */ 452 static void memTracePrint(Mem *p){ 453 if( p->flags & MEM_Undefined ){ 454 printf(" undefined"); 455 }else if( p->flags & MEM_Null ){ 456 printf(" NULL"); 457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 458 printf(" si:%lld", p->u.i); 459 }else if( p->flags & MEM_Int ){ 460 printf(" i:%lld", p->u.i); 461 #ifndef SQLITE_OMIT_FLOATING_POINT 462 }else if( p->flags & MEM_Real ){ 463 printf(" r:%g", p->u.r); 464 #endif 465 }else if( p->flags & MEM_RowSet ){ 466 printf(" (rowset)"); 467 }else{ 468 char zBuf[200]; 469 sqlite3VdbeMemPrettyPrint(p, zBuf); 470 printf(" %s", zBuf); 471 } 472 } 473 static void registerTrace(int iReg, Mem *p){ 474 printf("REG[%d] = ", iReg); 475 memTracePrint(p); 476 printf("\n"); 477 } 478 #endif 479 480 #ifdef SQLITE_DEBUG 481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 482 #else 483 # define REGISTER_TRACE(R,M) 484 #endif 485 486 487 #ifdef VDBE_PROFILE 488 489 /* 490 ** hwtime.h contains inline assembler code for implementing 491 ** high-performance timing routines. 492 */ 493 #include "hwtime.h" 494 495 #endif 496 497 #ifndef NDEBUG 498 /* 499 ** This function is only called from within an assert() expression. It 500 ** checks that the sqlite3.nTransaction variable is correctly set to 501 ** the number of non-transaction savepoints currently in the 502 ** linked list starting at sqlite3.pSavepoint. 503 ** 504 ** Usage: 505 ** 506 ** assert( checkSavepointCount(db) ); 507 */ 508 static int checkSavepointCount(sqlite3 *db){ 509 int n = 0; 510 Savepoint *p; 511 for(p=db->pSavepoint; p; p=p->pNext) n++; 512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 513 return 1; 514 } 515 #endif 516 517 518 /* 519 ** Execute as much of a VDBE program as we can. 520 ** This is the core of sqlite3_step(). 521 */ 522 int sqlite3VdbeExec( 523 Vdbe *p /* The VDBE */ 524 ){ 525 int pc=0; /* The program counter */ 526 Op *aOp = p->aOp; /* Copy of p->aOp */ 527 Op *pOp; /* Current operation */ 528 int rc = SQLITE_OK; /* Value to return */ 529 sqlite3 *db = p->db; /* The database */ 530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 531 u8 encoding = ENC(db); /* The database encoding */ 532 int iCompare = 0; /* Result of last OP_Compare operation */ 533 unsigned nVmStep = 0; /* Number of virtual machine steps */ 534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 536 #endif 537 Mem *aMem = p->aMem; /* Copy of p->aMem */ 538 Mem *pIn1 = 0; /* 1st input operand */ 539 Mem *pIn2 = 0; /* 2nd input operand */ 540 Mem *pIn3 = 0; /* 3rd input operand */ 541 Mem *pOut = 0; /* Output operand */ 542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 544 #ifdef VDBE_PROFILE 545 u64 start; /* CPU clock count at start of opcode */ 546 #endif 547 /*** INSERT STACK UNION HERE ***/ 548 549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 550 sqlite3VdbeEnter(p); 551 if( p->rc==SQLITE_NOMEM ){ 552 /* This happens if a malloc() inside a call to sqlite3_column_text() or 553 ** sqlite3_column_text16() failed. */ 554 goto no_mem; 555 } 556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 557 assert( p->bIsReader || p->readOnly!=0 ); 558 p->rc = SQLITE_OK; 559 p->iCurrentTime = 0; 560 assert( p->explain==0 ); 561 p->pResultSet = 0; 562 db->busyHandler.nBusy = 0; 563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 564 sqlite3VdbeIOTraceSql(p); 565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 566 if( db->xProgress ){ 567 assert( 0 < db->nProgressOps ); 568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 569 if( nProgressLimit==0 ){ 570 nProgressLimit = db->nProgressOps; 571 }else{ 572 nProgressLimit %= (unsigned)db->nProgressOps; 573 } 574 } 575 #endif 576 #ifdef SQLITE_DEBUG 577 sqlite3BeginBenignMalloc(); 578 if( p->pc==0 579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 580 ){ 581 int i; 582 int once = 1; 583 sqlite3VdbePrintSql(p); 584 if( p->db->flags & SQLITE_VdbeListing ){ 585 printf("VDBE Program Listing:\n"); 586 for(i=0; i<p->nOp; i++){ 587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 588 } 589 } 590 if( p->db->flags & SQLITE_VdbeEQP ){ 591 for(i=0; i<p->nOp; i++){ 592 if( aOp[i].opcode==OP_Explain ){ 593 if( once ) printf("VDBE Query Plan:\n"); 594 printf("%s\n", aOp[i].p4.z); 595 once = 0; 596 } 597 } 598 } 599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 600 } 601 sqlite3EndBenignMalloc(); 602 #endif 603 for(pc=p->pc; rc==SQLITE_OK; pc++){ 604 assert( pc>=0 && pc<p->nOp ); 605 if( db->mallocFailed ) goto no_mem; 606 #ifdef VDBE_PROFILE 607 start = sqlite3Hwtime(); 608 #endif 609 nVmStep++; 610 pOp = &aOp[pc]; 611 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 612 if( p->anExec ) p->anExec[pc]++; 613 #endif 614 615 /* Only allow tracing if SQLITE_DEBUG is defined. 616 */ 617 #ifdef SQLITE_DEBUG 618 if( db->flags & SQLITE_VdbeTrace ){ 619 sqlite3VdbePrintOp(stdout, pc, pOp); 620 } 621 #endif 622 623 624 /* Check to see if we need to simulate an interrupt. This only happens 625 ** if we have a special test build. 626 */ 627 #ifdef SQLITE_TEST 628 if( sqlite3_interrupt_count>0 ){ 629 sqlite3_interrupt_count--; 630 if( sqlite3_interrupt_count==0 ){ 631 sqlite3_interrupt(db); 632 } 633 } 634 #endif 635 636 /* On any opcode with the "out2-prerelease" tag, free any 637 ** external allocations out of mem[p2] and set mem[p2] to be 638 ** an undefined integer. Opcodes will either fill in the integer 639 ** value or convert mem[p2] to a different type. 640 */ 641 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 642 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 643 assert( pOp->p2>0 ); 644 assert( pOp->p2<=(p->nMem-p->nCursor) ); 645 pOut = &aMem[pOp->p2]; 646 memAboutToChange(p, pOut); 647 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 648 pOut->flags = MEM_Int; 649 } 650 651 /* Sanity checking on other operands */ 652 #ifdef SQLITE_DEBUG 653 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 654 assert( pOp->p1>0 ); 655 assert( pOp->p1<=(p->nMem-p->nCursor) ); 656 assert( memIsValid(&aMem[pOp->p1]) ); 657 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 658 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 659 } 660 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 661 assert( pOp->p2>0 ); 662 assert( pOp->p2<=(p->nMem-p->nCursor) ); 663 assert( memIsValid(&aMem[pOp->p2]) ); 664 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 665 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 666 } 667 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 668 assert( pOp->p3>0 ); 669 assert( pOp->p3<=(p->nMem-p->nCursor) ); 670 assert( memIsValid(&aMem[pOp->p3]) ); 671 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 672 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 673 } 674 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 675 assert( pOp->p2>0 ); 676 assert( pOp->p2<=(p->nMem-p->nCursor) ); 677 memAboutToChange(p, &aMem[pOp->p2]); 678 } 679 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 680 assert( pOp->p3>0 ); 681 assert( pOp->p3<=(p->nMem-p->nCursor) ); 682 memAboutToChange(p, &aMem[pOp->p3]); 683 } 684 #endif 685 686 switch( pOp->opcode ){ 687 688 /***************************************************************************** 689 ** What follows is a massive switch statement where each case implements a 690 ** separate instruction in the virtual machine. If we follow the usual 691 ** indentation conventions, each case should be indented by 6 spaces. But 692 ** that is a lot of wasted space on the left margin. So the code within 693 ** the switch statement will break with convention and be flush-left. Another 694 ** big comment (similar to this one) will mark the point in the code where 695 ** we transition back to normal indentation. 696 ** 697 ** The formatting of each case is important. The makefile for SQLite 698 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 699 ** file looking for lines that begin with "case OP_". The opcodes.h files 700 ** will be filled with #defines that give unique integer values to each 701 ** opcode and the opcodes.c file is filled with an array of strings where 702 ** each string is the symbolic name for the corresponding opcode. If the 703 ** case statement is followed by a comment of the form "/# same as ... #/" 704 ** that comment is used to determine the particular value of the opcode. 705 ** 706 ** Other keywords in the comment that follows each case are used to 707 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 708 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 709 ** the mkopcodeh.awk script for additional information. 710 ** 711 ** Documentation about VDBE opcodes is generated by scanning this file 712 ** for lines of that contain "Opcode:". That line and all subsequent 713 ** comment lines are used in the generation of the opcode.html documentation 714 ** file. 715 ** 716 ** SUMMARY: 717 ** 718 ** Formatting is important to scripts that scan this file. 719 ** Do not deviate from the formatting style currently in use. 720 ** 721 *****************************************************************************/ 722 723 /* Opcode: Goto * P2 * * * 724 ** 725 ** An unconditional jump to address P2. 726 ** The next instruction executed will be 727 ** the one at index P2 from the beginning of 728 ** the program. 729 ** 730 ** The P1 parameter is not actually used by this opcode. However, it 731 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 732 ** that this Goto is the bottom of a loop and that the lines from P2 down 733 ** to the current line should be indented for EXPLAIN output. 734 */ 735 case OP_Goto: { /* jump */ 736 pc = pOp->p2 - 1; 737 738 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 739 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 740 ** completion. Check to see if sqlite3_interrupt() has been called 741 ** or if the progress callback needs to be invoked. 742 ** 743 ** This code uses unstructured "goto" statements and does not look clean. 744 ** But that is not due to sloppy coding habits. The code is written this 745 ** way for performance, to avoid having to run the interrupt and progress 746 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 747 ** faster according to "valgrind --tool=cachegrind" */ 748 check_for_interrupt: 749 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 750 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 751 /* Call the progress callback if it is configured and the required number 752 ** of VDBE ops have been executed (either since this invocation of 753 ** sqlite3VdbeExec() or since last time the progress callback was called). 754 ** If the progress callback returns non-zero, exit the virtual machine with 755 ** a return code SQLITE_ABORT. 756 */ 757 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 758 assert( db->nProgressOps!=0 ); 759 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 760 if( db->xProgress(db->pProgressArg) ){ 761 rc = SQLITE_INTERRUPT; 762 goto vdbe_error_halt; 763 } 764 } 765 #endif 766 767 break; 768 } 769 770 /* Opcode: Gosub P1 P2 * * * 771 ** 772 ** Write the current address onto register P1 773 ** and then jump to address P2. 774 */ 775 case OP_Gosub: { /* jump */ 776 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 777 pIn1 = &aMem[pOp->p1]; 778 assert( VdbeMemDynamic(pIn1)==0 ); 779 memAboutToChange(p, pIn1); 780 pIn1->flags = MEM_Int; 781 pIn1->u.i = pc; 782 REGISTER_TRACE(pOp->p1, pIn1); 783 pc = pOp->p2 - 1; 784 break; 785 } 786 787 /* Opcode: Return P1 * * * * 788 ** 789 ** Jump to the next instruction after the address in register P1. After 790 ** the jump, register P1 becomes undefined. 791 */ 792 case OP_Return: { /* in1 */ 793 pIn1 = &aMem[pOp->p1]; 794 assert( pIn1->flags==MEM_Int ); 795 pc = (int)pIn1->u.i; 796 pIn1->flags = MEM_Undefined; 797 break; 798 } 799 800 /* Opcode: InitCoroutine P1 P2 P3 * * 801 ** 802 ** Set up register P1 so that it will Yield to the coroutine 803 ** located at address P3. 804 ** 805 ** If P2!=0 then the coroutine implementation immediately follows 806 ** this opcode. So jump over the coroutine implementation to 807 ** address P2. 808 ** 809 ** See also: EndCoroutine 810 */ 811 case OP_InitCoroutine: { /* jump */ 812 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 813 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 814 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 815 pOut = &aMem[pOp->p1]; 816 assert( !VdbeMemDynamic(pOut) ); 817 pOut->u.i = pOp->p3 - 1; 818 pOut->flags = MEM_Int; 819 if( pOp->p2 ) pc = pOp->p2 - 1; 820 break; 821 } 822 823 /* Opcode: EndCoroutine P1 * * * * 824 ** 825 ** The instruction at the address in register P1 is a Yield. 826 ** Jump to the P2 parameter of that Yield. 827 ** After the jump, register P1 becomes undefined. 828 ** 829 ** See also: InitCoroutine 830 */ 831 case OP_EndCoroutine: { /* in1 */ 832 VdbeOp *pCaller; 833 pIn1 = &aMem[pOp->p1]; 834 assert( pIn1->flags==MEM_Int ); 835 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 836 pCaller = &aOp[pIn1->u.i]; 837 assert( pCaller->opcode==OP_Yield ); 838 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 839 pc = pCaller->p2 - 1; 840 pIn1->flags = MEM_Undefined; 841 break; 842 } 843 844 /* Opcode: Yield P1 P2 * * * 845 ** 846 ** Swap the program counter with the value in register P1. This 847 ** has the effect of yielding to a coroutine. 848 ** 849 ** If the coroutine that is launched by this instruction ends with 850 ** Yield or Return then continue to the next instruction. But if 851 ** the coroutine launched by this instruction ends with 852 ** EndCoroutine, then jump to P2 rather than continuing with the 853 ** next instruction. 854 ** 855 ** See also: InitCoroutine 856 */ 857 case OP_Yield: { /* in1, jump */ 858 int pcDest; 859 pIn1 = &aMem[pOp->p1]; 860 assert( VdbeMemDynamic(pIn1)==0 ); 861 pIn1->flags = MEM_Int; 862 pcDest = (int)pIn1->u.i; 863 pIn1->u.i = pc; 864 REGISTER_TRACE(pOp->p1, pIn1); 865 pc = pcDest; 866 break; 867 } 868 869 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 870 ** Synopsis: if r[P3]=null halt 871 ** 872 ** Check the value in register P3. If it is NULL then Halt using 873 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 874 ** value in register P3 is not NULL, then this routine is a no-op. 875 ** The P5 parameter should be 1. 876 */ 877 case OP_HaltIfNull: { /* in3 */ 878 pIn3 = &aMem[pOp->p3]; 879 if( (pIn3->flags & MEM_Null)==0 ) break; 880 /* Fall through into OP_Halt */ 881 } 882 883 /* Opcode: Halt P1 P2 * P4 P5 884 ** 885 ** Exit immediately. All open cursors, etc are closed 886 ** automatically. 887 ** 888 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 889 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 890 ** For errors, it can be some other value. If P1!=0 then P2 will determine 891 ** whether or not to rollback the current transaction. Do not rollback 892 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 893 ** then back out all changes that have occurred during this execution of the 894 ** VDBE, but do not rollback the transaction. 895 ** 896 ** If P4 is not null then it is an error message string. 897 ** 898 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 899 ** 900 ** 0: (no change) 901 ** 1: NOT NULL contraint failed: P4 902 ** 2: UNIQUE constraint failed: P4 903 ** 3: CHECK constraint failed: P4 904 ** 4: FOREIGN KEY constraint failed: P4 905 ** 906 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 907 ** omitted. 908 ** 909 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 910 ** every program. So a jump past the last instruction of the program 911 ** is the same as executing Halt. 912 */ 913 case OP_Halt: { 914 const char *zType; 915 const char *zLogFmt; 916 917 if( pOp->p1==SQLITE_OK && p->pFrame ){ 918 /* Halt the sub-program. Return control to the parent frame. */ 919 VdbeFrame *pFrame = p->pFrame; 920 p->pFrame = pFrame->pParent; 921 p->nFrame--; 922 sqlite3VdbeSetChanges(db, p->nChange); 923 pc = sqlite3VdbeFrameRestore(pFrame); 924 lastRowid = db->lastRowid; 925 if( pOp->p2==OE_Ignore ){ 926 /* Instruction pc is the OP_Program that invoked the sub-program 927 ** currently being halted. If the p2 instruction of this OP_Halt 928 ** instruction is set to OE_Ignore, then the sub-program is throwing 929 ** an IGNORE exception. In this case jump to the address specified 930 ** as the p2 of the calling OP_Program. */ 931 pc = p->aOp[pc].p2-1; 932 } 933 aOp = p->aOp; 934 aMem = p->aMem; 935 break; 936 } 937 p->rc = pOp->p1; 938 p->errorAction = (u8)pOp->p2; 939 p->pc = pc; 940 if( p->rc ){ 941 if( pOp->p5 ){ 942 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 943 "FOREIGN KEY" }; 944 assert( pOp->p5>=1 && pOp->p5<=4 ); 945 testcase( pOp->p5==1 ); 946 testcase( pOp->p5==2 ); 947 testcase( pOp->p5==3 ); 948 testcase( pOp->p5==4 ); 949 zType = azType[pOp->p5-1]; 950 }else{ 951 zType = 0; 952 } 953 assert( zType!=0 || pOp->p4.z!=0 ); 954 zLogFmt = "abort at %d in [%s]: %s"; 955 if( zType && pOp->p4.z ){ 956 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 957 zType, pOp->p4.z); 958 }else if( pOp->p4.z ){ 959 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 960 }else{ 961 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 962 } 963 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 964 } 965 rc = sqlite3VdbeHalt(p); 966 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 967 if( rc==SQLITE_BUSY ){ 968 p->rc = rc = SQLITE_BUSY; 969 }else{ 970 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 971 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 972 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 973 } 974 goto vdbe_return; 975 } 976 977 /* Opcode: Integer P1 P2 * * * 978 ** Synopsis: r[P2]=P1 979 ** 980 ** The 32-bit integer value P1 is written into register P2. 981 */ 982 case OP_Integer: { /* out2-prerelease */ 983 pOut->u.i = pOp->p1; 984 break; 985 } 986 987 /* Opcode: Int64 * P2 * P4 * 988 ** Synopsis: r[P2]=P4 989 ** 990 ** P4 is a pointer to a 64-bit integer value. 991 ** Write that value into register P2. 992 */ 993 case OP_Int64: { /* out2-prerelease */ 994 assert( pOp->p4.pI64!=0 ); 995 pOut->u.i = *pOp->p4.pI64; 996 break; 997 } 998 999 #ifndef SQLITE_OMIT_FLOATING_POINT 1000 /* Opcode: Real * P2 * P4 * 1001 ** Synopsis: r[P2]=P4 1002 ** 1003 ** P4 is a pointer to a 64-bit floating point value. 1004 ** Write that value into register P2. 1005 */ 1006 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 1007 pOut->flags = MEM_Real; 1008 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1009 pOut->u.r = *pOp->p4.pReal; 1010 break; 1011 } 1012 #endif 1013 1014 /* Opcode: String8 * P2 * P4 * 1015 ** Synopsis: r[P2]='P4' 1016 ** 1017 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1018 ** into a String opcode before it is executed for the first time. During 1019 ** this transformation, the length of string P4 is computed and stored 1020 ** as the P1 parameter. 1021 */ 1022 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 1023 assert( pOp->p4.z!=0 ); 1024 pOp->opcode = OP_String; 1025 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1026 1027 #ifndef SQLITE_OMIT_UTF16 1028 if( encoding!=SQLITE_UTF8 ){ 1029 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1030 if( rc==SQLITE_TOOBIG ) goto too_big; 1031 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1032 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1033 assert( VdbeMemDynamic(pOut)==0 ); 1034 pOut->szMalloc = 0; 1035 pOut->flags |= MEM_Static; 1036 if( pOp->p4type==P4_DYNAMIC ){ 1037 sqlite3DbFree(db, pOp->p4.z); 1038 } 1039 pOp->p4type = P4_DYNAMIC; 1040 pOp->p4.z = pOut->z; 1041 pOp->p1 = pOut->n; 1042 } 1043 #endif 1044 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1045 goto too_big; 1046 } 1047 /* Fall through to the next case, OP_String */ 1048 } 1049 1050 /* Opcode: String P1 P2 P3 P4 P5 1051 ** Synopsis: r[P2]='P4' (len=P1) 1052 ** 1053 ** The string value P4 of length P1 (bytes) is stored in register P2. 1054 ** 1055 ** If P5!=0 and the content of register P3 is greater than zero, then 1056 ** the datatype of the register P2 is converted to BLOB. The content is 1057 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1058 ** of a string, as if it had been CAST. 1059 */ 1060 case OP_String: { /* out2-prerelease */ 1061 assert( pOp->p4.z!=0 ); 1062 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1063 pOut->z = pOp->p4.z; 1064 pOut->n = pOp->p1; 1065 pOut->enc = encoding; 1066 UPDATE_MAX_BLOBSIZE(pOut); 1067 if( pOp->p5 ){ 1068 assert( pOp->p3>0 ); 1069 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1070 pIn3 = &aMem[pOp->p3]; 1071 assert( pIn3->flags & MEM_Int ); 1072 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1073 } 1074 break; 1075 } 1076 1077 /* Opcode: Null P1 P2 P3 * * 1078 ** Synopsis: r[P2..P3]=NULL 1079 ** 1080 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1081 ** NULL into register P3 and every register in between P2 and P3. If P3 1082 ** is less than P2 (typically P3 is zero) then only register P2 is 1083 ** set to NULL. 1084 ** 1085 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1086 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1087 ** OP_Ne or OP_Eq. 1088 */ 1089 case OP_Null: { /* out2-prerelease */ 1090 int cnt; 1091 u16 nullFlag; 1092 cnt = pOp->p3-pOp->p2; 1093 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1094 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1095 while( cnt>0 ){ 1096 pOut++; 1097 memAboutToChange(p, pOut); 1098 sqlite3VdbeMemSetNull(pOut); 1099 pOut->flags = nullFlag; 1100 cnt--; 1101 } 1102 break; 1103 } 1104 1105 /* Opcode: SoftNull P1 * * * * 1106 ** Synopsis: r[P1]=NULL 1107 ** 1108 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1109 ** instruction, but do not free any string or blob memory associated with 1110 ** the register, so that if the value was a string or blob that was 1111 ** previously copied using OP_SCopy, the copies will continue to be valid. 1112 */ 1113 case OP_SoftNull: { 1114 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1115 pOut = &aMem[pOp->p1]; 1116 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1117 break; 1118 } 1119 1120 /* Opcode: Blob P1 P2 * P4 * 1121 ** Synopsis: r[P2]=P4 (len=P1) 1122 ** 1123 ** P4 points to a blob of data P1 bytes long. Store this 1124 ** blob in register P2. 1125 */ 1126 case OP_Blob: { /* out2-prerelease */ 1127 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1128 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1129 pOut->enc = encoding; 1130 UPDATE_MAX_BLOBSIZE(pOut); 1131 break; 1132 } 1133 1134 /* Opcode: Variable P1 P2 * P4 * 1135 ** Synopsis: r[P2]=parameter(P1,P4) 1136 ** 1137 ** Transfer the values of bound parameter P1 into register P2 1138 ** 1139 ** If the parameter is named, then its name appears in P4. 1140 ** The P4 value is used by sqlite3_bind_parameter_name(). 1141 */ 1142 case OP_Variable: { /* out2-prerelease */ 1143 Mem *pVar; /* Value being transferred */ 1144 1145 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1146 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1147 pVar = &p->aVar[pOp->p1 - 1]; 1148 if( sqlite3VdbeMemTooBig(pVar) ){ 1149 goto too_big; 1150 } 1151 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1152 UPDATE_MAX_BLOBSIZE(pOut); 1153 break; 1154 } 1155 1156 /* Opcode: Move P1 P2 P3 * * 1157 ** Synopsis: r[P2@P3]=r[P1@P3] 1158 ** 1159 ** Move the P3 values in register P1..P1+P3-1 over into 1160 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1161 ** left holding a NULL. It is an error for register ranges 1162 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1163 ** for P3 to be less than 1. 1164 */ 1165 case OP_Move: { 1166 int n; /* Number of registers left to copy */ 1167 int p1; /* Register to copy from */ 1168 int p2; /* Register to copy to */ 1169 1170 n = pOp->p3; 1171 p1 = pOp->p1; 1172 p2 = pOp->p2; 1173 assert( n>0 && p1>0 && p2>0 ); 1174 assert( p1+n<=p2 || p2+n<=p1 ); 1175 1176 pIn1 = &aMem[p1]; 1177 pOut = &aMem[p2]; 1178 do{ 1179 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1180 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1181 assert( memIsValid(pIn1) ); 1182 memAboutToChange(p, pOut); 1183 sqlite3VdbeMemMove(pOut, pIn1); 1184 #ifdef SQLITE_DEBUG 1185 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1186 pOut->pScopyFrom += p1 - pOp->p2; 1187 } 1188 #endif 1189 REGISTER_TRACE(p2++, pOut); 1190 pIn1++; 1191 pOut++; 1192 }while( --n ); 1193 break; 1194 } 1195 1196 /* Opcode: Copy P1 P2 P3 * * 1197 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1198 ** 1199 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1200 ** 1201 ** This instruction makes a deep copy of the value. A duplicate 1202 ** is made of any string or blob constant. See also OP_SCopy. 1203 */ 1204 case OP_Copy: { 1205 int n; 1206 1207 n = pOp->p3; 1208 pIn1 = &aMem[pOp->p1]; 1209 pOut = &aMem[pOp->p2]; 1210 assert( pOut!=pIn1 ); 1211 while( 1 ){ 1212 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1213 Deephemeralize(pOut); 1214 #ifdef SQLITE_DEBUG 1215 pOut->pScopyFrom = 0; 1216 #endif 1217 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1218 if( (n--)==0 ) break; 1219 pOut++; 1220 pIn1++; 1221 } 1222 break; 1223 } 1224 1225 /* Opcode: SCopy P1 P2 * * * 1226 ** Synopsis: r[P2]=r[P1] 1227 ** 1228 ** Make a shallow copy of register P1 into register P2. 1229 ** 1230 ** This instruction makes a shallow copy of the value. If the value 1231 ** is a string or blob, then the copy is only a pointer to the 1232 ** original and hence if the original changes so will the copy. 1233 ** Worse, if the original is deallocated, the copy becomes invalid. 1234 ** Thus the program must guarantee that the original will not change 1235 ** during the lifetime of the copy. Use OP_Copy to make a complete 1236 ** copy. 1237 */ 1238 case OP_SCopy: { /* out2 */ 1239 pIn1 = &aMem[pOp->p1]; 1240 pOut = &aMem[pOp->p2]; 1241 assert( pOut!=pIn1 ); 1242 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1243 #ifdef SQLITE_DEBUG 1244 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1245 #endif 1246 break; 1247 } 1248 1249 /* Opcode: ResultRow P1 P2 * * * 1250 ** Synopsis: output=r[P1@P2] 1251 ** 1252 ** The registers P1 through P1+P2-1 contain a single row of 1253 ** results. This opcode causes the sqlite3_step() call to terminate 1254 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1255 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1256 ** the result row. 1257 */ 1258 case OP_ResultRow: { 1259 Mem *pMem; 1260 int i; 1261 assert( p->nResColumn==pOp->p2 ); 1262 assert( pOp->p1>0 ); 1263 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1264 1265 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1266 /* Run the progress counter just before returning. 1267 */ 1268 if( db->xProgress!=0 1269 && nVmStep>=nProgressLimit 1270 && db->xProgress(db->pProgressArg)!=0 1271 ){ 1272 rc = SQLITE_INTERRUPT; 1273 goto vdbe_error_halt; 1274 } 1275 #endif 1276 1277 /* If this statement has violated immediate foreign key constraints, do 1278 ** not return the number of rows modified. And do not RELEASE the statement 1279 ** transaction. It needs to be rolled back. */ 1280 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1281 assert( db->flags&SQLITE_CountRows ); 1282 assert( p->usesStmtJournal ); 1283 break; 1284 } 1285 1286 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1287 ** DML statements invoke this opcode to return the number of rows 1288 ** modified to the user. This is the only way that a VM that 1289 ** opens a statement transaction may invoke this opcode. 1290 ** 1291 ** In case this is such a statement, close any statement transaction 1292 ** opened by this VM before returning control to the user. This is to 1293 ** ensure that statement-transactions are always nested, not overlapping. 1294 ** If the open statement-transaction is not closed here, then the user 1295 ** may step another VM that opens its own statement transaction. This 1296 ** may lead to overlapping statement transactions. 1297 ** 1298 ** The statement transaction is never a top-level transaction. Hence 1299 ** the RELEASE call below can never fail. 1300 */ 1301 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1302 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1303 if( NEVER(rc!=SQLITE_OK) ){ 1304 break; 1305 } 1306 1307 /* Invalidate all ephemeral cursor row caches */ 1308 p->cacheCtr = (p->cacheCtr + 2)|1; 1309 1310 /* Make sure the results of the current row are \000 terminated 1311 ** and have an assigned type. The results are de-ephemeralized as 1312 ** a side effect. 1313 */ 1314 pMem = p->pResultSet = &aMem[pOp->p1]; 1315 for(i=0; i<pOp->p2; i++){ 1316 assert( memIsValid(&pMem[i]) ); 1317 Deephemeralize(&pMem[i]); 1318 assert( (pMem[i].flags & MEM_Ephem)==0 1319 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1320 sqlite3VdbeMemNulTerminate(&pMem[i]); 1321 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1322 } 1323 if( db->mallocFailed ) goto no_mem; 1324 1325 /* Return SQLITE_ROW 1326 */ 1327 p->pc = pc + 1; 1328 rc = SQLITE_ROW; 1329 goto vdbe_return; 1330 } 1331 1332 /* Opcode: Concat P1 P2 P3 * * 1333 ** Synopsis: r[P3]=r[P2]+r[P1] 1334 ** 1335 ** Add the text in register P1 onto the end of the text in 1336 ** register P2 and store the result in register P3. 1337 ** If either the P1 or P2 text are NULL then store NULL in P3. 1338 ** 1339 ** P3 = P2 || P1 1340 ** 1341 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1342 ** if P3 is the same register as P2, the implementation is able 1343 ** to avoid a memcpy(). 1344 */ 1345 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1346 i64 nByte; 1347 1348 pIn1 = &aMem[pOp->p1]; 1349 pIn2 = &aMem[pOp->p2]; 1350 pOut = &aMem[pOp->p3]; 1351 assert( pIn1!=pOut ); 1352 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1353 sqlite3VdbeMemSetNull(pOut); 1354 break; 1355 } 1356 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1357 Stringify(pIn1, encoding); 1358 Stringify(pIn2, encoding); 1359 nByte = pIn1->n + pIn2->n; 1360 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1361 goto too_big; 1362 } 1363 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1364 goto no_mem; 1365 } 1366 MemSetTypeFlag(pOut, MEM_Str); 1367 if( pOut!=pIn2 ){ 1368 memcpy(pOut->z, pIn2->z, pIn2->n); 1369 } 1370 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1371 pOut->z[nByte]=0; 1372 pOut->z[nByte+1] = 0; 1373 pOut->flags |= MEM_Term; 1374 pOut->n = (int)nByte; 1375 pOut->enc = encoding; 1376 UPDATE_MAX_BLOBSIZE(pOut); 1377 break; 1378 } 1379 1380 /* Opcode: Add P1 P2 P3 * * 1381 ** Synopsis: r[P3]=r[P1]+r[P2] 1382 ** 1383 ** Add the value in register P1 to the value in register P2 1384 ** and store the result in register P3. 1385 ** If either input is NULL, the result is NULL. 1386 */ 1387 /* Opcode: Multiply P1 P2 P3 * * 1388 ** Synopsis: r[P3]=r[P1]*r[P2] 1389 ** 1390 ** 1391 ** Multiply the value in register P1 by the value in register P2 1392 ** and store the result in register P3. 1393 ** If either input is NULL, the result is NULL. 1394 */ 1395 /* Opcode: Subtract P1 P2 P3 * * 1396 ** Synopsis: r[P3]=r[P2]-r[P1] 1397 ** 1398 ** Subtract the value in register P1 from the value in register P2 1399 ** and store the result in register P3. 1400 ** If either input is NULL, the result is NULL. 1401 */ 1402 /* Opcode: Divide P1 P2 P3 * * 1403 ** Synopsis: r[P3]=r[P2]/r[P1] 1404 ** 1405 ** Divide the value in register P1 by the value in register P2 1406 ** and store the result in register P3 (P3=P2/P1). If the value in 1407 ** register P1 is zero, then the result is NULL. If either input is 1408 ** NULL, the result is NULL. 1409 */ 1410 /* Opcode: Remainder P1 P2 P3 * * 1411 ** Synopsis: r[P3]=r[P2]%r[P1] 1412 ** 1413 ** Compute the remainder after integer register P2 is divided by 1414 ** register P1 and store the result in register P3. 1415 ** If the value in register P1 is zero the result is NULL. 1416 ** If either operand is NULL, the result is NULL. 1417 */ 1418 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1419 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1420 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1421 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1422 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1423 char bIntint; /* Started out as two integer operands */ 1424 u16 flags; /* Combined MEM_* flags from both inputs */ 1425 u16 type1; /* Numeric type of left operand */ 1426 u16 type2; /* Numeric type of right operand */ 1427 i64 iA; /* Integer value of left operand */ 1428 i64 iB; /* Integer value of right operand */ 1429 double rA; /* Real value of left operand */ 1430 double rB; /* Real value of right operand */ 1431 1432 pIn1 = &aMem[pOp->p1]; 1433 type1 = numericType(pIn1); 1434 pIn2 = &aMem[pOp->p2]; 1435 type2 = numericType(pIn2); 1436 pOut = &aMem[pOp->p3]; 1437 flags = pIn1->flags | pIn2->flags; 1438 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1439 if( (type1 & type2 & MEM_Int)!=0 ){ 1440 iA = pIn1->u.i; 1441 iB = pIn2->u.i; 1442 bIntint = 1; 1443 switch( pOp->opcode ){ 1444 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1445 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1446 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1447 case OP_Divide: { 1448 if( iA==0 ) goto arithmetic_result_is_null; 1449 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1450 iB /= iA; 1451 break; 1452 } 1453 default: { 1454 if( iA==0 ) goto arithmetic_result_is_null; 1455 if( iA==-1 ) iA = 1; 1456 iB %= iA; 1457 break; 1458 } 1459 } 1460 pOut->u.i = iB; 1461 MemSetTypeFlag(pOut, MEM_Int); 1462 }else{ 1463 bIntint = 0; 1464 fp_math: 1465 rA = sqlite3VdbeRealValue(pIn1); 1466 rB = sqlite3VdbeRealValue(pIn2); 1467 switch( pOp->opcode ){ 1468 case OP_Add: rB += rA; break; 1469 case OP_Subtract: rB -= rA; break; 1470 case OP_Multiply: rB *= rA; break; 1471 case OP_Divide: { 1472 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1473 if( rA==(double)0 ) goto arithmetic_result_is_null; 1474 rB /= rA; 1475 break; 1476 } 1477 default: { 1478 iA = (i64)rA; 1479 iB = (i64)rB; 1480 if( iA==0 ) goto arithmetic_result_is_null; 1481 if( iA==-1 ) iA = 1; 1482 rB = (double)(iB % iA); 1483 break; 1484 } 1485 } 1486 #ifdef SQLITE_OMIT_FLOATING_POINT 1487 pOut->u.i = rB; 1488 MemSetTypeFlag(pOut, MEM_Int); 1489 #else 1490 if( sqlite3IsNaN(rB) ){ 1491 goto arithmetic_result_is_null; 1492 } 1493 pOut->u.r = rB; 1494 MemSetTypeFlag(pOut, MEM_Real); 1495 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1496 sqlite3VdbeIntegerAffinity(pOut); 1497 } 1498 #endif 1499 } 1500 break; 1501 1502 arithmetic_result_is_null: 1503 sqlite3VdbeMemSetNull(pOut); 1504 break; 1505 } 1506 1507 /* Opcode: CollSeq P1 * * P4 1508 ** 1509 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1510 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1511 ** be returned. This is used by the built-in min(), max() and nullif() 1512 ** functions. 1513 ** 1514 ** If P1 is not zero, then it is a register that a subsequent min() or 1515 ** max() aggregate will set to 1 if the current row is not the minimum or 1516 ** maximum. The P1 register is initialized to 0 by this instruction. 1517 ** 1518 ** The interface used by the implementation of the aforementioned functions 1519 ** to retrieve the collation sequence set by this opcode is not available 1520 ** publicly, only to user functions defined in func.c. 1521 */ 1522 case OP_CollSeq: { 1523 assert( pOp->p4type==P4_COLLSEQ ); 1524 if( pOp->p1 ){ 1525 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1526 } 1527 break; 1528 } 1529 1530 /* Opcode: Function P1 P2 P3 P4 P5 1531 ** Synopsis: r[P3]=func(r[P2@P5]) 1532 ** 1533 ** Invoke a user function (P4 is a pointer to a Function structure that 1534 ** defines the function) with P5 arguments taken from register P2 and 1535 ** successors. The result of the function is stored in register P3. 1536 ** Register P3 must not be one of the function inputs. 1537 ** 1538 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1539 ** function was determined to be constant at compile time. If the first 1540 ** argument was constant then bit 0 of P1 is set. This is used to determine 1541 ** whether meta data associated with a user function argument using the 1542 ** sqlite3_set_auxdata() API may be safely retained until the next 1543 ** invocation of this opcode. 1544 ** 1545 ** See also: AggStep and AggFinal 1546 */ 1547 case OP_Function: { 1548 int i; 1549 Mem *pArg; 1550 sqlite3_context ctx; 1551 sqlite3_value **apVal; 1552 int n; 1553 1554 n = pOp->p5; 1555 apVal = p->apArg; 1556 assert( apVal || n==0 ); 1557 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1558 ctx.pOut = &aMem[pOp->p3]; 1559 memAboutToChange(p, ctx.pOut); 1560 1561 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1562 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1563 pArg = &aMem[pOp->p2]; 1564 for(i=0; i<n; i++, pArg++){ 1565 assert( memIsValid(pArg) ); 1566 apVal[i] = pArg; 1567 Deephemeralize(pArg); 1568 REGISTER_TRACE(pOp->p2+i, pArg); 1569 } 1570 1571 assert( pOp->p4type==P4_FUNCDEF ); 1572 ctx.pFunc = pOp->p4.pFunc; 1573 ctx.iOp = pc; 1574 ctx.pVdbe = p; 1575 MemSetTypeFlag(ctx.pOut, MEM_Null); 1576 ctx.fErrorOrAux = 0; 1577 db->lastRowid = lastRowid; 1578 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1579 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ 1580 1581 /* If the function returned an error, throw an exception */ 1582 if( ctx.fErrorOrAux ){ 1583 if( ctx.isError ){ 1584 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); 1585 rc = ctx.isError; 1586 } 1587 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1588 } 1589 1590 /* Copy the result of the function into register P3 */ 1591 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); 1592 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ 1593 goto too_big; 1594 } 1595 1596 REGISTER_TRACE(pOp->p3, ctx.pOut); 1597 UPDATE_MAX_BLOBSIZE(ctx.pOut); 1598 break; 1599 } 1600 1601 /* Opcode: BitAnd P1 P2 P3 * * 1602 ** Synopsis: r[P3]=r[P1]&r[P2] 1603 ** 1604 ** Take the bit-wise AND of the values in register P1 and P2 and 1605 ** store the result in register P3. 1606 ** If either input is NULL, the result is NULL. 1607 */ 1608 /* Opcode: BitOr P1 P2 P3 * * 1609 ** Synopsis: r[P3]=r[P1]|r[P2] 1610 ** 1611 ** Take the bit-wise OR of the values in register P1 and P2 and 1612 ** store the result in register P3. 1613 ** If either input is NULL, the result is NULL. 1614 */ 1615 /* Opcode: ShiftLeft P1 P2 P3 * * 1616 ** Synopsis: r[P3]=r[P2]<<r[P1] 1617 ** 1618 ** Shift the integer value in register P2 to the left by the 1619 ** number of bits specified by the integer in register P1. 1620 ** Store the result in register P3. 1621 ** If either input is NULL, the result is NULL. 1622 */ 1623 /* Opcode: ShiftRight P1 P2 P3 * * 1624 ** Synopsis: r[P3]=r[P2]>>r[P1] 1625 ** 1626 ** Shift the integer value in register P2 to the right by the 1627 ** number of bits specified by the integer in register P1. 1628 ** Store the result in register P3. 1629 ** If either input is NULL, the result is NULL. 1630 */ 1631 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1632 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1633 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1634 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1635 i64 iA; 1636 u64 uA; 1637 i64 iB; 1638 u8 op; 1639 1640 pIn1 = &aMem[pOp->p1]; 1641 pIn2 = &aMem[pOp->p2]; 1642 pOut = &aMem[pOp->p3]; 1643 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1644 sqlite3VdbeMemSetNull(pOut); 1645 break; 1646 } 1647 iA = sqlite3VdbeIntValue(pIn2); 1648 iB = sqlite3VdbeIntValue(pIn1); 1649 op = pOp->opcode; 1650 if( op==OP_BitAnd ){ 1651 iA &= iB; 1652 }else if( op==OP_BitOr ){ 1653 iA |= iB; 1654 }else if( iB!=0 ){ 1655 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1656 1657 /* If shifting by a negative amount, shift in the other direction */ 1658 if( iB<0 ){ 1659 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1660 op = 2*OP_ShiftLeft + 1 - op; 1661 iB = iB>(-64) ? -iB : 64; 1662 } 1663 1664 if( iB>=64 ){ 1665 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1666 }else{ 1667 memcpy(&uA, &iA, sizeof(uA)); 1668 if( op==OP_ShiftLeft ){ 1669 uA <<= iB; 1670 }else{ 1671 uA >>= iB; 1672 /* Sign-extend on a right shift of a negative number */ 1673 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1674 } 1675 memcpy(&iA, &uA, sizeof(iA)); 1676 } 1677 } 1678 pOut->u.i = iA; 1679 MemSetTypeFlag(pOut, MEM_Int); 1680 break; 1681 } 1682 1683 /* Opcode: AddImm P1 P2 * * * 1684 ** Synopsis: r[P1]=r[P1]+P2 1685 ** 1686 ** Add the constant P2 to the value in register P1. 1687 ** The result is always an integer. 1688 ** 1689 ** To force any register to be an integer, just add 0. 1690 */ 1691 case OP_AddImm: { /* in1 */ 1692 pIn1 = &aMem[pOp->p1]; 1693 memAboutToChange(p, pIn1); 1694 sqlite3VdbeMemIntegerify(pIn1); 1695 pIn1->u.i += pOp->p2; 1696 break; 1697 } 1698 1699 /* Opcode: MustBeInt P1 P2 * * * 1700 ** 1701 ** Force the value in register P1 to be an integer. If the value 1702 ** in P1 is not an integer and cannot be converted into an integer 1703 ** without data loss, then jump immediately to P2, or if P2==0 1704 ** raise an SQLITE_MISMATCH exception. 1705 */ 1706 case OP_MustBeInt: { /* jump, in1 */ 1707 pIn1 = &aMem[pOp->p1]; 1708 if( (pIn1->flags & MEM_Int)==0 ){ 1709 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1710 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1711 if( (pIn1->flags & MEM_Int)==0 ){ 1712 if( pOp->p2==0 ){ 1713 rc = SQLITE_MISMATCH; 1714 goto abort_due_to_error; 1715 }else{ 1716 pc = pOp->p2 - 1; 1717 break; 1718 } 1719 } 1720 } 1721 MemSetTypeFlag(pIn1, MEM_Int); 1722 break; 1723 } 1724 1725 #ifndef SQLITE_OMIT_FLOATING_POINT 1726 /* Opcode: RealAffinity P1 * * * * 1727 ** 1728 ** If register P1 holds an integer convert it to a real value. 1729 ** 1730 ** This opcode is used when extracting information from a column that 1731 ** has REAL affinity. Such column values may still be stored as 1732 ** integers, for space efficiency, but after extraction we want them 1733 ** to have only a real value. 1734 */ 1735 case OP_RealAffinity: { /* in1 */ 1736 pIn1 = &aMem[pOp->p1]; 1737 if( pIn1->flags & MEM_Int ){ 1738 sqlite3VdbeMemRealify(pIn1); 1739 } 1740 break; 1741 } 1742 #endif 1743 1744 #ifndef SQLITE_OMIT_CAST 1745 /* Opcode: Cast P1 P2 * * * 1746 ** Synopsis: affinity(r[P1]) 1747 ** 1748 ** Force the value in register P1 to be the type defined by P2. 1749 ** 1750 ** <ul> 1751 ** <li value="97"> TEXT 1752 ** <li value="98"> BLOB 1753 ** <li value="99"> NUMERIC 1754 ** <li value="100"> INTEGER 1755 ** <li value="101"> REAL 1756 ** </ul> 1757 ** 1758 ** A NULL value is not changed by this routine. It remains NULL. 1759 */ 1760 case OP_Cast: { /* in1 */ 1761 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); 1762 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1763 testcase( pOp->p2==SQLITE_AFF_NONE ); 1764 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1765 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1766 testcase( pOp->p2==SQLITE_AFF_REAL ); 1767 pIn1 = &aMem[pOp->p1]; 1768 memAboutToChange(p, pIn1); 1769 rc = ExpandBlob(pIn1); 1770 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1771 UPDATE_MAX_BLOBSIZE(pIn1); 1772 break; 1773 } 1774 #endif /* SQLITE_OMIT_CAST */ 1775 1776 /* Opcode: Lt P1 P2 P3 P4 P5 1777 ** Synopsis: if r[P1]<r[P3] goto P2 1778 ** 1779 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1780 ** jump to address P2. 1781 ** 1782 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1783 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1784 ** bit is clear then fall through if either operand is NULL. 1785 ** 1786 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1787 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1788 ** to coerce both inputs according to this affinity before the 1789 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1790 ** affinity is used. Note that the affinity conversions are stored 1791 ** back into the input registers P1 and P3. So this opcode can cause 1792 ** persistent changes to registers P1 and P3. 1793 ** 1794 ** Once any conversions have taken place, and neither value is NULL, 1795 ** the values are compared. If both values are blobs then memcmp() is 1796 ** used to determine the results of the comparison. If both values 1797 ** are text, then the appropriate collating function specified in 1798 ** P4 is used to do the comparison. If P4 is not specified then 1799 ** memcmp() is used to compare text string. If both values are 1800 ** numeric, then a numeric comparison is used. If the two values 1801 ** are of different types, then numbers are considered less than 1802 ** strings and strings are considered less than blobs. 1803 ** 1804 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1805 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1806 ** 1807 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1808 ** equal to one another, provided that they do not have their MEM_Cleared 1809 ** bit set. 1810 */ 1811 /* Opcode: Ne P1 P2 P3 P4 P5 1812 ** Synopsis: if r[P1]!=r[P3] goto P2 1813 ** 1814 ** This works just like the Lt opcode except that the jump is taken if 1815 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1816 ** additional information. 1817 ** 1818 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1819 ** true or false and is never NULL. If both operands are NULL then the result 1820 ** of comparison is false. If either operand is NULL then the result is true. 1821 ** If neither operand is NULL the result is the same as it would be if 1822 ** the SQLITE_NULLEQ flag were omitted from P5. 1823 */ 1824 /* Opcode: Eq P1 P2 P3 P4 P5 1825 ** Synopsis: if r[P1]==r[P3] goto P2 1826 ** 1827 ** This works just like the Lt opcode except that the jump is taken if 1828 ** the operands in registers P1 and P3 are equal. 1829 ** See the Lt opcode for additional information. 1830 ** 1831 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1832 ** true or false and is never NULL. If both operands are NULL then the result 1833 ** of comparison is true. If either operand is NULL then the result is false. 1834 ** If neither operand is NULL the result is the same as it would be if 1835 ** the SQLITE_NULLEQ flag were omitted from P5. 1836 */ 1837 /* Opcode: Le P1 P2 P3 P4 P5 1838 ** Synopsis: if r[P1]<=r[P3] goto P2 1839 ** 1840 ** This works just like the Lt opcode except that the jump is taken if 1841 ** the content of register P3 is less than or equal to the content of 1842 ** register P1. See the Lt opcode for additional information. 1843 */ 1844 /* Opcode: Gt P1 P2 P3 P4 P5 1845 ** Synopsis: if r[P1]>r[P3] goto P2 1846 ** 1847 ** This works just like the Lt opcode except that the jump is taken if 1848 ** the content of register P3 is greater than the content of 1849 ** register P1. See the Lt opcode for additional information. 1850 */ 1851 /* Opcode: Ge P1 P2 P3 P4 P5 1852 ** Synopsis: if r[P1]>=r[P3] goto P2 1853 ** 1854 ** This works just like the Lt opcode except that the jump is taken if 1855 ** the content of register P3 is greater than or equal to the content of 1856 ** register P1. See the Lt opcode for additional information. 1857 */ 1858 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1859 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1860 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1861 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1862 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1863 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1864 int res; /* Result of the comparison of pIn1 against pIn3 */ 1865 char affinity; /* Affinity to use for comparison */ 1866 u16 flags1; /* Copy of initial value of pIn1->flags */ 1867 u16 flags3; /* Copy of initial value of pIn3->flags */ 1868 1869 pIn1 = &aMem[pOp->p1]; 1870 pIn3 = &aMem[pOp->p3]; 1871 flags1 = pIn1->flags; 1872 flags3 = pIn3->flags; 1873 if( (flags1 | flags3)&MEM_Null ){ 1874 /* One or both operands are NULL */ 1875 if( pOp->p5 & SQLITE_NULLEQ ){ 1876 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1877 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1878 ** or not both operands are null. 1879 */ 1880 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1881 assert( (flags1 & MEM_Cleared)==0 ); 1882 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1883 if( (flags1&MEM_Null)!=0 1884 && (flags3&MEM_Null)!=0 1885 && (flags3&MEM_Cleared)==0 1886 ){ 1887 res = 0; /* Results are equal */ 1888 }else{ 1889 res = 1; /* Results are not equal */ 1890 } 1891 }else{ 1892 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1893 ** then the result is always NULL. 1894 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1895 */ 1896 if( pOp->p5 & SQLITE_STOREP2 ){ 1897 pOut = &aMem[pOp->p2]; 1898 MemSetTypeFlag(pOut, MEM_Null); 1899 REGISTER_TRACE(pOp->p2, pOut); 1900 }else{ 1901 VdbeBranchTaken(2,3); 1902 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1903 pc = pOp->p2-1; 1904 } 1905 } 1906 break; 1907 } 1908 }else{ 1909 /* Neither operand is NULL. Do a comparison. */ 1910 affinity = pOp->p5 & SQLITE_AFF_MASK; 1911 if( affinity>=SQLITE_AFF_NUMERIC ){ 1912 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1913 applyNumericAffinity(pIn1,0); 1914 } 1915 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1916 applyNumericAffinity(pIn3,0); 1917 } 1918 }else if( affinity==SQLITE_AFF_TEXT ){ 1919 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ 1920 testcase( pIn1->flags & MEM_Int ); 1921 testcase( pIn1->flags & MEM_Real ); 1922 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1923 } 1924 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ 1925 testcase( pIn3->flags & MEM_Int ); 1926 testcase( pIn3->flags & MEM_Real ); 1927 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1928 } 1929 } 1930 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1931 if( pIn1->flags & MEM_Zero ){ 1932 sqlite3VdbeMemExpandBlob(pIn1); 1933 flags1 &= ~MEM_Zero; 1934 } 1935 if( pIn3->flags & MEM_Zero ){ 1936 sqlite3VdbeMemExpandBlob(pIn3); 1937 flags3 &= ~MEM_Zero; 1938 } 1939 if( db->mallocFailed ) goto no_mem; 1940 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1941 } 1942 switch( pOp->opcode ){ 1943 case OP_Eq: res = res==0; break; 1944 case OP_Ne: res = res!=0; break; 1945 case OP_Lt: res = res<0; break; 1946 case OP_Le: res = res<=0; break; 1947 case OP_Gt: res = res>0; break; 1948 default: res = res>=0; break; 1949 } 1950 1951 if( pOp->p5 & SQLITE_STOREP2 ){ 1952 pOut = &aMem[pOp->p2]; 1953 memAboutToChange(p, pOut); 1954 MemSetTypeFlag(pOut, MEM_Int); 1955 pOut->u.i = res; 1956 REGISTER_TRACE(pOp->p2, pOut); 1957 }else{ 1958 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 1959 if( res ){ 1960 pc = pOp->p2-1; 1961 } 1962 } 1963 /* Undo any changes made by applyAffinity() to the input registers. */ 1964 pIn1->flags = flags1; 1965 pIn3->flags = flags3; 1966 break; 1967 } 1968 1969 /* Opcode: Permutation * * * P4 * 1970 ** 1971 ** Set the permutation used by the OP_Compare operator to be the array 1972 ** of integers in P4. 1973 ** 1974 ** The permutation is only valid until the next OP_Compare that has 1975 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 1976 ** occur immediately prior to the OP_Compare. 1977 */ 1978 case OP_Permutation: { 1979 assert( pOp->p4type==P4_INTARRAY ); 1980 assert( pOp->p4.ai ); 1981 aPermute = pOp->p4.ai; 1982 break; 1983 } 1984 1985 /* Opcode: Compare P1 P2 P3 P4 P5 1986 ** Synopsis: r[P1@P3] <-> r[P2@P3] 1987 ** 1988 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1989 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1990 ** the comparison for use by the next OP_Jump instruct. 1991 ** 1992 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 1993 ** determined by the most recent OP_Permutation operator. If the 1994 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 1995 ** order. 1996 ** 1997 ** P4 is a KeyInfo structure that defines collating sequences and sort 1998 ** orders for the comparison. The permutation applies to registers 1999 ** only. The KeyInfo elements are used sequentially. 2000 ** 2001 ** The comparison is a sort comparison, so NULLs compare equal, 2002 ** NULLs are less than numbers, numbers are less than strings, 2003 ** and strings are less than blobs. 2004 */ 2005 case OP_Compare: { 2006 int n; 2007 int i; 2008 int p1; 2009 int p2; 2010 const KeyInfo *pKeyInfo; 2011 int idx; 2012 CollSeq *pColl; /* Collating sequence to use on this term */ 2013 int bRev; /* True for DESCENDING sort order */ 2014 2015 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2016 n = pOp->p3; 2017 pKeyInfo = pOp->p4.pKeyInfo; 2018 assert( n>0 ); 2019 assert( pKeyInfo!=0 ); 2020 p1 = pOp->p1; 2021 p2 = pOp->p2; 2022 #if SQLITE_DEBUG 2023 if( aPermute ){ 2024 int k, mx = 0; 2025 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2026 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2027 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2028 }else{ 2029 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2030 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2031 } 2032 #endif /* SQLITE_DEBUG */ 2033 for(i=0; i<n; i++){ 2034 idx = aPermute ? aPermute[i] : i; 2035 assert( memIsValid(&aMem[p1+idx]) ); 2036 assert( memIsValid(&aMem[p2+idx]) ); 2037 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2038 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2039 assert( i<pKeyInfo->nField ); 2040 pColl = pKeyInfo->aColl[i]; 2041 bRev = pKeyInfo->aSortOrder[i]; 2042 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2043 if( iCompare ){ 2044 if( bRev ) iCompare = -iCompare; 2045 break; 2046 } 2047 } 2048 aPermute = 0; 2049 break; 2050 } 2051 2052 /* Opcode: Jump P1 P2 P3 * * 2053 ** 2054 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2055 ** in the most recent OP_Compare instruction the P1 vector was less than 2056 ** equal to, or greater than the P2 vector, respectively. 2057 */ 2058 case OP_Jump: { /* jump */ 2059 if( iCompare<0 ){ 2060 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); 2061 }else if( iCompare==0 ){ 2062 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); 2063 }else{ 2064 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); 2065 } 2066 break; 2067 } 2068 2069 /* Opcode: And P1 P2 P3 * * 2070 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2071 ** 2072 ** Take the logical AND of the values in registers P1 and P2 and 2073 ** write the result into register P3. 2074 ** 2075 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2076 ** the other input is NULL. A NULL and true or two NULLs give 2077 ** a NULL output. 2078 */ 2079 /* Opcode: Or P1 P2 P3 * * 2080 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2081 ** 2082 ** Take the logical OR of the values in register P1 and P2 and 2083 ** store the answer in register P3. 2084 ** 2085 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2086 ** even if the other input is NULL. A NULL and false or two NULLs 2087 ** give a NULL output. 2088 */ 2089 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2090 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2091 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2092 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2093 2094 pIn1 = &aMem[pOp->p1]; 2095 if( pIn1->flags & MEM_Null ){ 2096 v1 = 2; 2097 }else{ 2098 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2099 } 2100 pIn2 = &aMem[pOp->p2]; 2101 if( pIn2->flags & MEM_Null ){ 2102 v2 = 2; 2103 }else{ 2104 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2105 } 2106 if( pOp->opcode==OP_And ){ 2107 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2108 v1 = and_logic[v1*3+v2]; 2109 }else{ 2110 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2111 v1 = or_logic[v1*3+v2]; 2112 } 2113 pOut = &aMem[pOp->p3]; 2114 if( v1==2 ){ 2115 MemSetTypeFlag(pOut, MEM_Null); 2116 }else{ 2117 pOut->u.i = v1; 2118 MemSetTypeFlag(pOut, MEM_Int); 2119 } 2120 break; 2121 } 2122 2123 /* Opcode: Not P1 P2 * * * 2124 ** Synopsis: r[P2]= !r[P1] 2125 ** 2126 ** Interpret the value in register P1 as a boolean value. Store the 2127 ** boolean complement in register P2. If the value in register P1 is 2128 ** NULL, then a NULL is stored in P2. 2129 */ 2130 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2131 pIn1 = &aMem[pOp->p1]; 2132 pOut = &aMem[pOp->p2]; 2133 sqlite3VdbeMemSetNull(pOut); 2134 if( (pIn1->flags & MEM_Null)==0 ){ 2135 pOut->flags = MEM_Int; 2136 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2137 } 2138 break; 2139 } 2140 2141 /* Opcode: BitNot P1 P2 * * * 2142 ** Synopsis: r[P1]= ~r[P1] 2143 ** 2144 ** Interpret the content of register P1 as an integer. Store the 2145 ** ones-complement of the P1 value into register P2. If P1 holds 2146 ** a NULL then store a NULL in P2. 2147 */ 2148 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2149 pIn1 = &aMem[pOp->p1]; 2150 pOut = &aMem[pOp->p2]; 2151 sqlite3VdbeMemSetNull(pOut); 2152 if( (pIn1->flags & MEM_Null)==0 ){ 2153 pOut->flags = MEM_Int; 2154 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2155 } 2156 break; 2157 } 2158 2159 /* Opcode: Once P1 P2 * * * 2160 ** 2161 ** Check the "once" flag number P1. If it is set, jump to instruction P2. 2162 ** Otherwise, set the flag and fall through to the next instruction. 2163 ** In other words, this opcode causes all following opcodes up through P2 2164 ** (but not including P2) to run just once and to be skipped on subsequent 2165 ** times through the loop. 2166 ** 2167 ** All "once" flags are initially cleared whenever a prepared statement 2168 ** first begins to run. 2169 */ 2170 case OP_Once: { /* jump */ 2171 assert( pOp->p1<p->nOnceFlag ); 2172 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2173 if( p->aOnceFlag[pOp->p1] ){ 2174 pc = pOp->p2-1; 2175 }else{ 2176 p->aOnceFlag[pOp->p1] = 1; 2177 } 2178 break; 2179 } 2180 2181 /* Opcode: If P1 P2 P3 * * 2182 ** 2183 ** Jump to P2 if the value in register P1 is true. The value 2184 ** is considered true if it is numeric and non-zero. If the value 2185 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2186 */ 2187 /* Opcode: IfNot P1 P2 P3 * * 2188 ** 2189 ** Jump to P2 if the value in register P1 is False. The value 2190 ** is considered false if it has a numeric value of zero. If the value 2191 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2192 */ 2193 case OP_If: /* jump, in1 */ 2194 case OP_IfNot: { /* jump, in1 */ 2195 int c; 2196 pIn1 = &aMem[pOp->p1]; 2197 if( pIn1->flags & MEM_Null ){ 2198 c = pOp->p3; 2199 }else{ 2200 #ifdef SQLITE_OMIT_FLOATING_POINT 2201 c = sqlite3VdbeIntValue(pIn1)!=0; 2202 #else 2203 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2204 #endif 2205 if( pOp->opcode==OP_IfNot ) c = !c; 2206 } 2207 VdbeBranchTaken(c!=0, 2); 2208 if( c ){ 2209 pc = pOp->p2-1; 2210 } 2211 break; 2212 } 2213 2214 /* Opcode: IsNull P1 P2 * * * 2215 ** Synopsis: if r[P1]==NULL goto P2 2216 ** 2217 ** Jump to P2 if the value in register P1 is NULL. 2218 */ 2219 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2220 pIn1 = &aMem[pOp->p1]; 2221 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2222 if( (pIn1->flags & MEM_Null)!=0 ){ 2223 pc = pOp->p2 - 1; 2224 } 2225 break; 2226 } 2227 2228 /* Opcode: NotNull P1 P2 * * * 2229 ** Synopsis: if r[P1]!=NULL goto P2 2230 ** 2231 ** Jump to P2 if the value in register P1 is not NULL. 2232 */ 2233 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2234 pIn1 = &aMem[pOp->p1]; 2235 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2236 if( (pIn1->flags & MEM_Null)==0 ){ 2237 pc = pOp->p2 - 1; 2238 } 2239 break; 2240 } 2241 2242 /* Opcode: Column P1 P2 P3 P4 P5 2243 ** Synopsis: r[P3]=PX 2244 ** 2245 ** Interpret the data that cursor P1 points to as a structure built using 2246 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2247 ** information about the format of the data.) Extract the P2-th column 2248 ** from this record. If there are less that (P2+1) 2249 ** values in the record, extract a NULL. 2250 ** 2251 ** The value extracted is stored in register P3. 2252 ** 2253 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2254 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2255 ** the result. 2256 ** 2257 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2258 ** then the cache of the cursor is reset prior to extracting the column. 2259 ** The first OP_Column against a pseudo-table after the value of the content 2260 ** register has changed should have this bit set. 2261 ** 2262 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2263 ** the result is guaranteed to only be used as the argument of a length() 2264 ** or typeof() function, respectively. The loading of large blobs can be 2265 ** skipped for length() and all content loading can be skipped for typeof(). 2266 */ 2267 case OP_Column: { 2268 i64 payloadSize64; /* Number of bytes in the record */ 2269 int p2; /* column number to retrieve */ 2270 VdbeCursor *pC; /* The VDBE cursor */ 2271 BtCursor *pCrsr; /* The BTree cursor */ 2272 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2273 int len; /* The length of the serialized data for the column */ 2274 int i; /* Loop counter */ 2275 Mem *pDest; /* Where to write the extracted value */ 2276 Mem sMem; /* For storing the record being decoded */ 2277 const u8 *zData; /* Part of the record being decoded */ 2278 const u8 *zHdr; /* Next unparsed byte of the header */ 2279 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2280 u32 offset; /* Offset into the data */ 2281 u32 szField; /* Number of bytes in the content of a field */ 2282 u32 avail; /* Number of bytes of available data */ 2283 u32 t; /* A type code from the record header */ 2284 u16 fx; /* pDest->flags value */ 2285 Mem *pReg; /* PseudoTable input register */ 2286 2287 p2 = pOp->p2; 2288 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2289 pDest = &aMem[pOp->p3]; 2290 memAboutToChange(p, pDest); 2291 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2292 pC = p->apCsr[pOp->p1]; 2293 assert( pC!=0 ); 2294 assert( p2<pC->nField ); 2295 aOffset = pC->aOffset; 2296 #ifndef SQLITE_OMIT_VIRTUALTABLE 2297 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2298 #endif 2299 pCrsr = pC->pCursor; 2300 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ 2301 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ 2302 2303 /* If the cursor cache is stale, bring it up-to-date */ 2304 rc = sqlite3VdbeCursorMoveto(pC); 2305 if( rc ) goto abort_due_to_error; 2306 if( pC->cacheStatus!=p->cacheCtr ){ 2307 if( pC->nullRow ){ 2308 if( pCrsr==0 ){ 2309 assert( pC->pseudoTableReg>0 ); 2310 pReg = &aMem[pC->pseudoTableReg]; 2311 assert( pReg->flags & MEM_Blob ); 2312 assert( memIsValid(pReg) ); 2313 pC->payloadSize = pC->szRow = avail = pReg->n; 2314 pC->aRow = (u8*)pReg->z; 2315 }else{ 2316 sqlite3VdbeMemSetNull(pDest); 2317 goto op_column_out; 2318 } 2319 }else{ 2320 assert( pCrsr ); 2321 if( pC->isTable==0 ){ 2322 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2323 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2324 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2325 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2326 ** payload size, so it is impossible for payloadSize64 to be 2327 ** larger than 32 bits. */ 2328 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2329 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2330 pC->payloadSize = (u32)payloadSize64; 2331 }else{ 2332 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2333 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2334 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2335 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2336 } 2337 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2338 if( pC->payloadSize <= (u32)avail ){ 2339 pC->szRow = pC->payloadSize; 2340 }else{ 2341 pC->szRow = avail; 2342 } 2343 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2344 goto too_big; 2345 } 2346 } 2347 pC->cacheStatus = p->cacheCtr; 2348 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2349 pC->nHdrParsed = 0; 2350 aOffset[0] = offset; 2351 2352 /* Make sure a corrupt database has not given us an oversize header. 2353 ** Do this now to avoid an oversize memory allocation. 2354 ** 2355 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2356 ** types use so much data space that there can only be 4096 and 32 of 2357 ** them, respectively. So the maximum header length results from a 2358 ** 3-byte type for each of the maximum of 32768 columns plus three 2359 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2360 */ 2361 if( offset > 98307 || offset > pC->payloadSize ){ 2362 rc = SQLITE_CORRUPT_BKPT; 2363 goto op_column_error; 2364 } 2365 2366 if( avail<offset ){ 2367 /* pC->aRow does not have to hold the entire row, but it does at least 2368 ** need to cover the header of the record. If pC->aRow does not contain 2369 ** the complete header, then set it to zero, forcing the header to be 2370 ** dynamically allocated. */ 2371 pC->aRow = 0; 2372 pC->szRow = 0; 2373 } 2374 2375 /* The following goto is an optimization. It can be omitted and 2376 ** everything will still work. But OP_Column is measurably faster 2377 ** by skipping the subsequent conditional, which is always true. 2378 */ 2379 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2380 goto op_column_read_header; 2381 } 2382 2383 /* Make sure at least the first p2+1 entries of the header have been 2384 ** parsed and valid information is in aOffset[] and pC->aType[]. 2385 */ 2386 if( pC->nHdrParsed<=p2 ){ 2387 /* If there is more header available for parsing in the record, try 2388 ** to extract additional fields up through the p2+1-th field 2389 */ 2390 op_column_read_header: 2391 if( pC->iHdrOffset<aOffset[0] ){ 2392 /* Make sure zData points to enough of the record to cover the header. */ 2393 if( pC->aRow==0 ){ 2394 memset(&sMem, 0, sizeof(sMem)); 2395 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2396 !pC->isTable, &sMem); 2397 if( rc!=SQLITE_OK ){ 2398 goto op_column_error; 2399 } 2400 zData = (u8*)sMem.z; 2401 }else{ 2402 zData = pC->aRow; 2403 } 2404 2405 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2406 i = pC->nHdrParsed; 2407 offset = aOffset[i]; 2408 zHdr = zData + pC->iHdrOffset; 2409 zEndHdr = zData + aOffset[0]; 2410 assert( i<=p2 && zHdr<zEndHdr ); 2411 do{ 2412 if( zHdr[0]<0x80 ){ 2413 t = zHdr[0]; 2414 zHdr++; 2415 }else{ 2416 zHdr += sqlite3GetVarint32(zHdr, &t); 2417 } 2418 pC->aType[i] = t; 2419 szField = sqlite3VdbeSerialTypeLen(t); 2420 offset += szField; 2421 if( offset<szField ){ /* True if offset overflows */ 2422 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2423 break; 2424 } 2425 i++; 2426 aOffset[i] = offset; 2427 }while( i<=p2 && zHdr<zEndHdr ); 2428 pC->nHdrParsed = i; 2429 pC->iHdrOffset = (u32)(zHdr - zData); 2430 if( pC->aRow==0 ){ 2431 sqlite3VdbeMemRelease(&sMem); 2432 sMem.flags = MEM_Null; 2433 } 2434 2435 /* The record is corrupt if any of the following are true: 2436 ** (1) the bytes of the header extend past the declared header size 2437 ** (zHdr>zEndHdr) 2438 ** (2) the entire header was used but not all data was used 2439 ** (zHdr==zEndHdr && offset!=pC->payloadSize) 2440 ** (3) the end of the data extends beyond the end of the record. 2441 ** (offset > pC->payloadSize) 2442 */ 2443 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) 2444 || (offset > pC->payloadSize) 2445 ){ 2446 rc = SQLITE_CORRUPT_BKPT; 2447 goto op_column_error; 2448 } 2449 } 2450 2451 /* If after trying to extra new entries from the header, nHdrParsed is 2452 ** still not up to p2, that means that the record has fewer than p2 2453 ** columns. So the result will be either the default value or a NULL. 2454 */ 2455 if( pC->nHdrParsed<=p2 ){ 2456 if( pOp->p4type==P4_MEM ){ 2457 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2458 }else{ 2459 sqlite3VdbeMemSetNull(pDest); 2460 } 2461 goto op_column_out; 2462 } 2463 } 2464 2465 /* Extract the content for the p2+1-th column. Control can only 2466 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2467 ** all valid. 2468 */ 2469 assert( p2<pC->nHdrParsed ); 2470 assert( rc==SQLITE_OK ); 2471 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2472 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); 2473 t = pC->aType[p2]; 2474 if( pC->szRow>=aOffset[p2+1] ){ 2475 /* This is the common case where the desired content fits on the original 2476 ** page - where the content is not on an overflow page */ 2477 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); 2478 }else{ 2479 /* This branch happens only when content is on overflow pages */ 2480 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2481 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2482 || (len = sqlite3VdbeSerialTypeLen(t))==0 2483 ){ 2484 /* Content is irrelevant for 2485 ** 1. the typeof() function, 2486 ** 2. the length(X) function if X is a blob, and 2487 ** 3. if the content length is zero. 2488 ** So we might as well use bogus content rather than reading 2489 ** content from disk. NULL will work for the value for strings 2490 ** and blobs and whatever is in the payloadSize64 variable 2491 ** will work for everything else. */ 2492 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest); 2493 }else{ 2494 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2495 pDest); 2496 if( rc!=SQLITE_OK ){ 2497 goto op_column_error; 2498 } 2499 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2500 pDest->flags &= ~MEM_Ephem; 2501 } 2502 } 2503 pDest->enc = encoding; 2504 2505 op_column_out: 2506 /* If the column value is an ephemeral string, go ahead and persist 2507 ** that string in case the cursor moves before the column value is 2508 ** used. The following code does the equivalent of Deephemeralize() 2509 ** but does it faster. */ 2510 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){ 2511 fx = pDest->flags & (MEM_Str|MEM_Blob); 2512 assert( fx!=0 ); 2513 zData = (const u8*)pDest->z; 2514 len = pDest->n; 2515 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem; 2516 memcpy(pDest->z, zData, len); 2517 pDest->z[len] = 0; 2518 pDest->z[len+1] = 0; 2519 pDest->flags = fx|MEM_Term; 2520 } 2521 op_column_error: 2522 UPDATE_MAX_BLOBSIZE(pDest); 2523 REGISTER_TRACE(pOp->p3, pDest); 2524 break; 2525 } 2526 2527 /* Opcode: Affinity P1 P2 * P4 * 2528 ** Synopsis: affinity(r[P1@P2]) 2529 ** 2530 ** Apply affinities to a range of P2 registers starting with P1. 2531 ** 2532 ** P4 is a string that is P2 characters long. The nth character of the 2533 ** string indicates the column affinity that should be used for the nth 2534 ** memory cell in the range. 2535 */ 2536 case OP_Affinity: { 2537 const char *zAffinity; /* The affinity to be applied */ 2538 char cAff; /* A single character of affinity */ 2539 2540 zAffinity = pOp->p4.z; 2541 assert( zAffinity!=0 ); 2542 assert( zAffinity[pOp->p2]==0 ); 2543 pIn1 = &aMem[pOp->p1]; 2544 while( (cAff = *(zAffinity++))!=0 ){ 2545 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2546 assert( memIsValid(pIn1) ); 2547 applyAffinity(pIn1, cAff, encoding); 2548 pIn1++; 2549 } 2550 break; 2551 } 2552 2553 /* Opcode: MakeRecord P1 P2 P3 P4 * 2554 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2555 ** 2556 ** Convert P2 registers beginning with P1 into the [record format] 2557 ** use as a data record in a database table or as a key 2558 ** in an index. The OP_Column opcode can decode the record later. 2559 ** 2560 ** P4 may be a string that is P2 characters long. The nth character of the 2561 ** string indicates the column affinity that should be used for the nth 2562 ** field of the index key. 2563 ** 2564 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2565 ** macros defined in sqliteInt.h. 2566 ** 2567 ** If P4 is NULL then all index fields have the affinity NONE. 2568 */ 2569 case OP_MakeRecord: { 2570 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2571 Mem *pRec; /* The new record */ 2572 u64 nData; /* Number of bytes of data space */ 2573 int nHdr; /* Number of bytes of header space */ 2574 i64 nByte; /* Data space required for this record */ 2575 int nZero; /* Number of zero bytes at the end of the record */ 2576 int nVarint; /* Number of bytes in a varint */ 2577 u32 serial_type; /* Type field */ 2578 Mem *pData0; /* First field to be combined into the record */ 2579 Mem *pLast; /* Last field of the record */ 2580 int nField; /* Number of fields in the record */ 2581 char *zAffinity; /* The affinity string for the record */ 2582 int file_format; /* File format to use for encoding */ 2583 int i; /* Space used in zNewRecord[] header */ 2584 int j; /* Space used in zNewRecord[] content */ 2585 int len; /* Length of a field */ 2586 2587 /* Assuming the record contains N fields, the record format looks 2588 ** like this: 2589 ** 2590 ** ------------------------------------------------------------------------ 2591 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2592 ** ------------------------------------------------------------------------ 2593 ** 2594 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2595 ** and so forth. 2596 ** 2597 ** Each type field is a varint representing the serial type of the 2598 ** corresponding data element (see sqlite3VdbeSerialType()). The 2599 ** hdr-size field is also a varint which is the offset from the beginning 2600 ** of the record to data0. 2601 */ 2602 nData = 0; /* Number of bytes of data space */ 2603 nHdr = 0; /* Number of bytes of header space */ 2604 nZero = 0; /* Number of zero bytes at the end of the record */ 2605 nField = pOp->p1; 2606 zAffinity = pOp->p4.z; 2607 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2608 pData0 = &aMem[nField]; 2609 nField = pOp->p2; 2610 pLast = &pData0[nField-1]; 2611 file_format = p->minWriteFileFormat; 2612 2613 /* Identify the output register */ 2614 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2615 pOut = &aMem[pOp->p3]; 2616 memAboutToChange(p, pOut); 2617 2618 /* Apply the requested affinity to all inputs 2619 */ 2620 assert( pData0<=pLast ); 2621 if( zAffinity ){ 2622 pRec = pData0; 2623 do{ 2624 applyAffinity(pRec++, *(zAffinity++), encoding); 2625 assert( zAffinity[0]==0 || pRec<=pLast ); 2626 }while( zAffinity[0] ); 2627 } 2628 2629 /* Loop through the elements that will make up the record to figure 2630 ** out how much space is required for the new record. 2631 */ 2632 pRec = pLast; 2633 do{ 2634 assert( memIsValid(pRec) ); 2635 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); 2636 len = sqlite3VdbeSerialTypeLen(serial_type); 2637 if( pRec->flags & MEM_Zero ){ 2638 if( nData ){ 2639 sqlite3VdbeMemExpandBlob(pRec); 2640 }else{ 2641 nZero += pRec->u.nZero; 2642 len -= pRec->u.nZero; 2643 } 2644 } 2645 nData += len; 2646 testcase( serial_type==127 ); 2647 testcase( serial_type==128 ); 2648 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2649 }while( (--pRec)>=pData0 ); 2650 2651 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2652 ** which determines the total number of bytes in the header. The varint 2653 ** value is the size of the header in bytes including the size varint 2654 ** itself. */ 2655 testcase( nHdr==126 ); 2656 testcase( nHdr==127 ); 2657 if( nHdr<=126 ){ 2658 /* The common case */ 2659 nHdr += 1; 2660 }else{ 2661 /* Rare case of a really large header */ 2662 nVarint = sqlite3VarintLen(nHdr); 2663 nHdr += nVarint; 2664 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2665 } 2666 nByte = nHdr+nData; 2667 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2668 goto too_big; 2669 } 2670 2671 /* Make sure the output register has a buffer large enough to store 2672 ** the new record. The output register (pOp->p3) is not allowed to 2673 ** be one of the input registers (because the following call to 2674 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2675 */ 2676 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2677 goto no_mem; 2678 } 2679 zNewRecord = (u8 *)pOut->z; 2680 2681 /* Write the record */ 2682 i = putVarint32(zNewRecord, nHdr); 2683 j = nHdr; 2684 assert( pData0<=pLast ); 2685 pRec = pData0; 2686 do{ 2687 serial_type = pRec->uTemp; 2688 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2689 ** additional varints, one per column. */ 2690 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2691 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2692 ** immediately follow the header. */ 2693 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2694 }while( (++pRec)<=pLast ); 2695 assert( i==nHdr ); 2696 assert( j==nByte ); 2697 2698 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2699 pOut->n = (int)nByte; 2700 pOut->flags = MEM_Blob; 2701 if( nZero ){ 2702 pOut->u.nZero = nZero; 2703 pOut->flags |= MEM_Zero; 2704 } 2705 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2706 REGISTER_TRACE(pOp->p3, pOut); 2707 UPDATE_MAX_BLOBSIZE(pOut); 2708 break; 2709 } 2710 2711 /* Opcode: Count P1 P2 * * * 2712 ** Synopsis: r[P2]=count() 2713 ** 2714 ** Store the number of entries (an integer value) in the table or index 2715 ** opened by cursor P1 in register P2 2716 */ 2717 #ifndef SQLITE_OMIT_BTREECOUNT 2718 case OP_Count: { /* out2-prerelease */ 2719 i64 nEntry; 2720 BtCursor *pCrsr; 2721 2722 pCrsr = p->apCsr[pOp->p1]->pCursor; 2723 assert( pCrsr ); 2724 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2725 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2726 pOut->u.i = nEntry; 2727 break; 2728 } 2729 #endif 2730 2731 /* Opcode: Savepoint P1 * * P4 * 2732 ** 2733 ** Open, release or rollback the savepoint named by parameter P4, depending 2734 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2735 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2736 */ 2737 case OP_Savepoint: { 2738 int p1; /* Value of P1 operand */ 2739 char *zName; /* Name of savepoint */ 2740 int nName; 2741 Savepoint *pNew; 2742 Savepoint *pSavepoint; 2743 Savepoint *pTmp; 2744 int iSavepoint; 2745 int ii; 2746 2747 p1 = pOp->p1; 2748 zName = pOp->p4.z; 2749 2750 /* Assert that the p1 parameter is valid. Also that if there is no open 2751 ** transaction, then there cannot be any savepoints. 2752 */ 2753 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2754 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2755 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2756 assert( checkSavepointCount(db) ); 2757 assert( p->bIsReader ); 2758 2759 if( p1==SAVEPOINT_BEGIN ){ 2760 if( db->nVdbeWrite>0 ){ 2761 /* A new savepoint cannot be created if there are active write 2762 ** statements (i.e. open read/write incremental blob handles). 2763 */ 2764 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2765 "SQL statements in progress"); 2766 rc = SQLITE_BUSY; 2767 }else{ 2768 nName = sqlite3Strlen30(zName); 2769 2770 #ifndef SQLITE_OMIT_VIRTUALTABLE 2771 /* This call is Ok even if this savepoint is actually a transaction 2772 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2773 ** If this is a transaction savepoint being opened, it is guaranteed 2774 ** that the db->aVTrans[] array is empty. */ 2775 assert( db->autoCommit==0 || db->nVTrans==0 ); 2776 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2777 db->nStatement+db->nSavepoint); 2778 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2779 #endif 2780 2781 /* Create a new savepoint structure. */ 2782 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2783 if( pNew ){ 2784 pNew->zName = (char *)&pNew[1]; 2785 memcpy(pNew->zName, zName, nName+1); 2786 2787 /* If there is no open transaction, then mark this as a special 2788 ** "transaction savepoint". */ 2789 if( db->autoCommit ){ 2790 db->autoCommit = 0; 2791 db->isTransactionSavepoint = 1; 2792 }else{ 2793 db->nSavepoint++; 2794 } 2795 2796 /* Link the new savepoint into the database handle's list. */ 2797 pNew->pNext = db->pSavepoint; 2798 db->pSavepoint = pNew; 2799 pNew->nDeferredCons = db->nDeferredCons; 2800 pNew->nDeferredImmCons = db->nDeferredImmCons; 2801 } 2802 } 2803 }else{ 2804 iSavepoint = 0; 2805 2806 /* Find the named savepoint. If there is no such savepoint, then an 2807 ** an error is returned to the user. */ 2808 for( 2809 pSavepoint = db->pSavepoint; 2810 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2811 pSavepoint = pSavepoint->pNext 2812 ){ 2813 iSavepoint++; 2814 } 2815 if( !pSavepoint ){ 2816 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2817 rc = SQLITE_ERROR; 2818 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2819 /* It is not possible to release (commit) a savepoint if there are 2820 ** active write statements. 2821 */ 2822 sqlite3SetString(&p->zErrMsg, db, 2823 "cannot release savepoint - SQL statements in progress" 2824 ); 2825 rc = SQLITE_BUSY; 2826 }else{ 2827 2828 /* Determine whether or not this is a transaction savepoint. If so, 2829 ** and this is a RELEASE command, then the current transaction 2830 ** is committed. 2831 */ 2832 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2833 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2834 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2835 goto vdbe_return; 2836 } 2837 db->autoCommit = 1; 2838 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2839 p->pc = pc; 2840 db->autoCommit = 0; 2841 p->rc = rc = SQLITE_BUSY; 2842 goto vdbe_return; 2843 } 2844 db->isTransactionSavepoint = 0; 2845 rc = p->rc; 2846 }else{ 2847 int isSchemaChange; 2848 iSavepoint = db->nSavepoint - iSavepoint - 1; 2849 if( p1==SAVEPOINT_ROLLBACK ){ 2850 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; 2851 for(ii=0; ii<db->nDb; ii++){ 2852 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 2853 SQLITE_ABORT_ROLLBACK, 2854 isSchemaChange==0); 2855 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2856 } 2857 }else{ 2858 isSchemaChange = 0; 2859 } 2860 for(ii=0; ii<db->nDb; ii++){ 2861 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2862 if( rc!=SQLITE_OK ){ 2863 goto abort_due_to_error; 2864 } 2865 } 2866 if( isSchemaChange ){ 2867 sqlite3ExpirePreparedStatements(db); 2868 sqlite3ResetAllSchemasOfConnection(db); 2869 db->flags = (db->flags | SQLITE_InternChanges); 2870 } 2871 } 2872 2873 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2874 ** savepoints nested inside of the savepoint being operated on. */ 2875 while( db->pSavepoint!=pSavepoint ){ 2876 pTmp = db->pSavepoint; 2877 db->pSavepoint = pTmp->pNext; 2878 sqlite3DbFree(db, pTmp); 2879 db->nSavepoint--; 2880 } 2881 2882 /* If it is a RELEASE, then destroy the savepoint being operated on 2883 ** too. If it is a ROLLBACK TO, then set the number of deferred 2884 ** constraint violations present in the database to the value stored 2885 ** when the savepoint was created. */ 2886 if( p1==SAVEPOINT_RELEASE ){ 2887 assert( pSavepoint==db->pSavepoint ); 2888 db->pSavepoint = pSavepoint->pNext; 2889 sqlite3DbFree(db, pSavepoint); 2890 if( !isTransaction ){ 2891 db->nSavepoint--; 2892 } 2893 }else{ 2894 db->nDeferredCons = pSavepoint->nDeferredCons; 2895 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2896 } 2897 2898 if( !isTransaction ){ 2899 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2900 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2901 } 2902 } 2903 } 2904 2905 break; 2906 } 2907 2908 /* Opcode: AutoCommit P1 P2 * * * 2909 ** 2910 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2911 ** back any currently active btree transactions. If there are any active 2912 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2913 ** there are active writing VMs or active VMs that use shared cache. 2914 ** 2915 ** This instruction causes the VM to halt. 2916 */ 2917 case OP_AutoCommit: { 2918 int desiredAutoCommit; 2919 int iRollback; 2920 int turnOnAC; 2921 2922 desiredAutoCommit = pOp->p1; 2923 iRollback = pOp->p2; 2924 turnOnAC = desiredAutoCommit && !db->autoCommit; 2925 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2926 assert( desiredAutoCommit==1 || iRollback==0 ); 2927 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2928 assert( p->bIsReader ); 2929 2930 #if 0 2931 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2932 /* If this instruction implements a ROLLBACK and other VMs are 2933 ** still running, and a transaction is active, return an error indicating 2934 ** that the other VMs must complete first. 2935 */ 2936 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2937 "SQL statements in progress"); 2938 rc = SQLITE_BUSY; 2939 }else 2940 #endif 2941 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2942 /* If this instruction implements a COMMIT and other VMs are writing 2943 ** return an error indicating that the other VMs must complete first. 2944 */ 2945 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2946 "SQL statements in progress"); 2947 rc = SQLITE_BUSY; 2948 }else if( desiredAutoCommit!=db->autoCommit ){ 2949 if( iRollback ){ 2950 assert( desiredAutoCommit==1 ); 2951 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2952 db->autoCommit = 1; 2953 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2954 goto vdbe_return; 2955 }else{ 2956 db->autoCommit = (u8)desiredAutoCommit; 2957 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2958 p->pc = pc; 2959 db->autoCommit = (u8)(1-desiredAutoCommit); 2960 p->rc = rc = SQLITE_BUSY; 2961 goto vdbe_return; 2962 } 2963 } 2964 assert( db->nStatement==0 ); 2965 sqlite3CloseSavepoints(db); 2966 if( p->rc==SQLITE_OK ){ 2967 rc = SQLITE_DONE; 2968 }else{ 2969 rc = SQLITE_ERROR; 2970 } 2971 goto vdbe_return; 2972 }else{ 2973 sqlite3SetString(&p->zErrMsg, db, 2974 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2975 (iRollback)?"cannot rollback - no transaction is active": 2976 "cannot commit - no transaction is active")); 2977 2978 rc = SQLITE_ERROR; 2979 } 2980 break; 2981 } 2982 2983 /* Opcode: Transaction P1 P2 P3 P4 P5 2984 ** 2985 ** Begin a transaction on database P1 if a transaction is not already 2986 ** active. 2987 ** If P2 is non-zero, then a write-transaction is started, or if a 2988 ** read-transaction is already active, it is upgraded to a write-transaction. 2989 ** If P2 is zero, then a read-transaction is started. 2990 ** 2991 ** P1 is the index of the database file on which the transaction is 2992 ** started. Index 0 is the main database file and index 1 is the 2993 ** file used for temporary tables. Indices of 2 or more are used for 2994 ** attached databases. 2995 ** 2996 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2997 ** true (this flag is set if the Vdbe may modify more than one row and may 2998 ** throw an ABORT exception), a statement transaction may also be opened. 2999 ** More specifically, a statement transaction is opened iff the database 3000 ** connection is currently not in autocommit mode, or if there are other 3001 ** active statements. A statement transaction allows the changes made by this 3002 ** VDBE to be rolled back after an error without having to roll back the 3003 ** entire transaction. If no error is encountered, the statement transaction 3004 ** will automatically commit when the VDBE halts. 3005 ** 3006 ** If P5!=0 then this opcode also checks the schema cookie against P3 3007 ** and the schema generation counter against P4. 3008 ** The cookie changes its value whenever the database schema changes. 3009 ** This operation is used to detect when that the cookie has changed 3010 ** and that the current process needs to reread the schema. If the schema 3011 ** cookie in P3 differs from the schema cookie in the database header or 3012 ** if the schema generation counter in P4 differs from the current 3013 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3014 ** halts. The sqlite3_step() wrapper function might then reprepare the 3015 ** statement and rerun it from the beginning. 3016 */ 3017 case OP_Transaction: { 3018 Btree *pBt; 3019 int iMeta; 3020 int iGen; 3021 3022 assert( p->bIsReader ); 3023 assert( p->readOnly==0 || pOp->p2==0 ); 3024 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3025 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3026 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3027 rc = SQLITE_READONLY; 3028 goto abort_due_to_error; 3029 } 3030 pBt = db->aDb[pOp->p1].pBt; 3031 3032 if( pBt ){ 3033 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3034 if( rc==SQLITE_BUSY ){ 3035 p->pc = pc; 3036 p->rc = rc = SQLITE_BUSY; 3037 goto vdbe_return; 3038 } 3039 if( rc!=SQLITE_OK ){ 3040 goto abort_due_to_error; 3041 } 3042 3043 if( pOp->p2 && p->usesStmtJournal 3044 && (db->autoCommit==0 || db->nVdbeRead>1) 3045 ){ 3046 assert( sqlite3BtreeIsInTrans(pBt) ); 3047 if( p->iStatement==0 ){ 3048 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3049 db->nStatement++; 3050 p->iStatement = db->nSavepoint + db->nStatement; 3051 } 3052 3053 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3054 if( rc==SQLITE_OK ){ 3055 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3056 } 3057 3058 /* Store the current value of the database handles deferred constraint 3059 ** counter. If the statement transaction needs to be rolled back, 3060 ** the value of this counter needs to be restored too. */ 3061 p->nStmtDefCons = db->nDeferredCons; 3062 p->nStmtDefImmCons = db->nDeferredImmCons; 3063 } 3064 3065 /* Gather the schema version number for checking: 3066 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite 3067 ** each time a query is executed to ensure that the internal cache of the 3068 ** schema used when compiling the SQL query matches the schema of the 3069 ** database against which the compiled query is actually executed. 3070 */ 3071 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3072 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3073 }else{ 3074 iGen = iMeta = 0; 3075 } 3076 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3077 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3078 sqlite3DbFree(db, p->zErrMsg); 3079 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3080 /* If the schema-cookie from the database file matches the cookie 3081 ** stored with the in-memory representation of the schema, do 3082 ** not reload the schema from the database file. 3083 ** 3084 ** If virtual-tables are in use, this is not just an optimization. 3085 ** Often, v-tables store their data in other SQLite tables, which 3086 ** are queried from within xNext() and other v-table methods using 3087 ** prepared queries. If such a query is out-of-date, we do not want to 3088 ** discard the database schema, as the user code implementing the 3089 ** v-table would have to be ready for the sqlite3_vtab structure itself 3090 ** to be invalidated whenever sqlite3_step() is called from within 3091 ** a v-table method. 3092 */ 3093 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3094 sqlite3ResetOneSchema(db, pOp->p1); 3095 } 3096 p->expired = 1; 3097 rc = SQLITE_SCHEMA; 3098 } 3099 break; 3100 } 3101 3102 /* Opcode: ReadCookie P1 P2 P3 * * 3103 ** 3104 ** Read cookie number P3 from database P1 and write it into register P2. 3105 ** P3==1 is the schema version. P3==2 is the database format. 3106 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3107 ** the main database file and P1==1 is the database file used to store 3108 ** temporary tables. 3109 ** 3110 ** There must be a read-lock on the database (either a transaction 3111 ** must be started or there must be an open cursor) before 3112 ** executing this instruction. 3113 */ 3114 case OP_ReadCookie: { /* out2-prerelease */ 3115 int iMeta; 3116 int iDb; 3117 int iCookie; 3118 3119 assert( p->bIsReader ); 3120 iDb = pOp->p1; 3121 iCookie = pOp->p3; 3122 assert( pOp->p3<SQLITE_N_BTREE_META ); 3123 assert( iDb>=0 && iDb<db->nDb ); 3124 assert( db->aDb[iDb].pBt!=0 ); 3125 assert( DbMaskTest(p->btreeMask, iDb) ); 3126 3127 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3128 pOut->u.i = iMeta; 3129 break; 3130 } 3131 3132 /* Opcode: SetCookie P1 P2 P3 * * 3133 ** 3134 ** Write the content of register P3 (interpreted as an integer) 3135 ** into cookie number P2 of database P1. P2==1 is the schema version. 3136 ** P2==2 is the database format. P2==3 is the recommended pager cache 3137 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3138 ** database file used to store temporary tables. 3139 ** 3140 ** A transaction must be started before executing this opcode. 3141 */ 3142 case OP_SetCookie: { /* in3 */ 3143 Db *pDb; 3144 assert( pOp->p2<SQLITE_N_BTREE_META ); 3145 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3146 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3147 assert( p->readOnly==0 ); 3148 pDb = &db->aDb[pOp->p1]; 3149 assert( pDb->pBt!=0 ); 3150 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3151 pIn3 = &aMem[pOp->p3]; 3152 sqlite3VdbeMemIntegerify(pIn3); 3153 /* See note about index shifting on OP_ReadCookie */ 3154 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3155 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3156 /* When the schema cookie changes, record the new cookie internally */ 3157 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3158 db->flags |= SQLITE_InternChanges; 3159 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3160 /* Record changes in the file format */ 3161 pDb->pSchema->file_format = (u8)pIn3->u.i; 3162 } 3163 if( pOp->p1==1 ){ 3164 /* Invalidate all prepared statements whenever the TEMP database 3165 ** schema is changed. Ticket #1644 */ 3166 sqlite3ExpirePreparedStatements(db); 3167 p->expired = 0; 3168 } 3169 break; 3170 } 3171 3172 /* Opcode: OpenRead P1 P2 P3 P4 P5 3173 ** Synopsis: root=P2 iDb=P3 3174 ** 3175 ** Open a read-only cursor for the database table whose root page is 3176 ** P2 in a database file. The database file is determined by P3. 3177 ** P3==0 means the main database, P3==1 means the database used for 3178 ** temporary tables, and P3>1 means used the corresponding attached 3179 ** database. Give the new cursor an identifier of P1. The P1 3180 ** values need not be contiguous but all P1 values should be small integers. 3181 ** It is an error for P1 to be negative. 3182 ** 3183 ** If P5!=0 then use the content of register P2 as the root page, not 3184 ** the value of P2 itself. 3185 ** 3186 ** There will be a read lock on the database whenever there is an 3187 ** open cursor. If the database was unlocked prior to this instruction 3188 ** then a read lock is acquired as part of this instruction. A read 3189 ** lock allows other processes to read the database but prohibits 3190 ** any other process from modifying the database. The read lock is 3191 ** released when all cursors are closed. If this instruction attempts 3192 ** to get a read lock but fails, the script terminates with an 3193 ** SQLITE_BUSY error code. 3194 ** 3195 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3196 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3197 ** structure, then said structure defines the content and collating 3198 ** sequence of the index being opened. Otherwise, if P4 is an integer 3199 ** value, it is set to the number of columns in the table. 3200 ** 3201 ** See also: OpenWrite, ReopenIdx 3202 */ 3203 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3204 ** Synopsis: root=P2 iDb=P3 3205 ** 3206 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3207 ** checks to see if the cursor on P1 is already open with a root page 3208 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3209 ** if the cursor is already open, do not reopen it. 3210 ** 3211 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3212 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3213 ** every other ReopenIdx or OpenRead for the same cursor number. 3214 ** 3215 ** See the OpenRead opcode documentation for additional information. 3216 */ 3217 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3218 ** Synopsis: root=P2 iDb=P3 3219 ** 3220 ** Open a read/write cursor named P1 on the table or index whose root 3221 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3222 ** root page. 3223 ** 3224 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3225 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3226 ** structure, then said structure defines the content and collating 3227 ** sequence of the index being opened. Otherwise, if P4 is an integer 3228 ** value, it is set to the number of columns in the table, or to the 3229 ** largest index of any column of the table that is actually used. 3230 ** 3231 ** This instruction works just like OpenRead except that it opens the cursor 3232 ** in read/write mode. For a given table, there can be one or more read-only 3233 ** cursors or a single read/write cursor but not both. 3234 ** 3235 ** See also OpenRead. 3236 */ 3237 case OP_ReopenIdx: { 3238 VdbeCursor *pCur; 3239 3240 assert( pOp->p5==0 ); 3241 assert( pOp->p4type==P4_KEYINFO ); 3242 pCur = p->apCsr[pOp->p1]; 3243 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3244 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3245 break; 3246 } 3247 /* If the cursor is not currently open or is open on a different 3248 ** index, then fall through into OP_OpenRead to force a reopen */ 3249 } 3250 case OP_OpenRead: 3251 case OP_OpenWrite: { 3252 int nField; 3253 KeyInfo *pKeyInfo; 3254 int p2; 3255 int iDb; 3256 int wrFlag; 3257 Btree *pX; 3258 VdbeCursor *pCur; 3259 Db *pDb; 3260 3261 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3262 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3263 assert( p->bIsReader ); 3264 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3265 || p->readOnly==0 ); 3266 3267 if( p->expired ){ 3268 rc = SQLITE_ABORT_ROLLBACK; 3269 break; 3270 } 3271 3272 nField = 0; 3273 pKeyInfo = 0; 3274 p2 = pOp->p2; 3275 iDb = pOp->p3; 3276 assert( iDb>=0 && iDb<db->nDb ); 3277 assert( DbMaskTest(p->btreeMask, iDb) ); 3278 pDb = &db->aDb[iDb]; 3279 pX = pDb->pBt; 3280 assert( pX!=0 ); 3281 if( pOp->opcode==OP_OpenWrite ){ 3282 wrFlag = 1; 3283 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3284 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3285 p->minWriteFileFormat = pDb->pSchema->file_format; 3286 } 3287 }else{ 3288 wrFlag = 0; 3289 } 3290 if( pOp->p5 & OPFLAG_P2ISREG ){ 3291 assert( p2>0 ); 3292 assert( p2<=(p->nMem-p->nCursor) ); 3293 pIn2 = &aMem[p2]; 3294 assert( memIsValid(pIn2) ); 3295 assert( (pIn2->flags & MEM_Int)!=0 ); 3296 sqlite3VdbeMemIntegerify(pIn2); 3297 p2 = (int)pIn2->u.i; 3298 /* The p2 value always comes from a prior OP_CreateTable opcode and 3299 ** that opcode will always set the p2 value to 2 or more or else fail. 3300 ** If there were a failure, the prepared statement would have halted 3301 ** before reaching this instruction. */ 3302 if( NEVER(p2<2) ) { 3303 rc = SQLITE_CORRUPT_BKPT; 3304 goto abort_due_to_error; 3305 } 3306 } 3307 if( pOp->p4type==P4_KEYINFO ){ 3308 pKeyInfo = pOp->p4.pKeyInfo; 3309 assert( pKeyInfo->enc==ENC(db) ); 3310 assert( pKeyInfo->db==db ); 3311 nField = pKeyInfo->nField+pKeyInfo->nXField; 3312 }else if( pOp->p4type==P4_INT32 ){ 3313 nField = pOp->p4.i; 3314 } 3315 assert( pOp->p1>=0 ); 3316 assert( nField>=0 ); 3317 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3318 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3319 if( pCur==0 ) goto no_mem; 3320 pCur->nullRow = 1; 3321 pCur->isOrdered = 1; 3322 pCur->pgnoRoot = p2; 3323 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3324 pCur->pKeyInfo = pKeyInfo; 3325 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3326 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3327 3328 /* Set the VdbeCursor.isTable variable. Previous versions of 3329 ** SQLite used to check if the root-page flags were sane at this point 3330 ** and report database corruption if they were not, but this check has 3331 ** since moved into the btree layer. */ 3332 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3333 break; 3334 } 3335 3336 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3337 ** Synopsis: nColumn=P2 3338 ** 3339 ** Open a new cursor P1 to a transient table. 3340 ** The cursor is always opened read/write even if 3341 ** the main database is read-only. The ephemeral 3342 ** table is deleted automatically when the cursor is closed. 3343 ** 3344 ** P2 is the number of columns in the ephemeral table. 3345 ** The cursor points to a BTree table if P4==0 and to a BTree index 3346 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3347 ** that defines the format of keys in the index. 3348 ** 3349 ** The P5 parameter can be a mask of the BTREE_* flags defined 3350 ** in btree.h. These flags control aspects of the operation of 3351 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3352 ** added automatically. 3353 */ 3354 /* Opcode: OpenAutoindex P1 P2 * P4 * 3355 ** Synopsis: nColumn=P2 3356 ** 3357 ** This opcode works the same as OP_OpenEphemeral. It has a 3358 ** different name to distinguish its use. Tables created using 3359 ** by this opcode will be used for automatically created transient 3360 ** indices in joins. 3361 */ 3362 case OP_OpenAutoindex: 3363 case OP_OpenEphemeral: { 3364 VdbeCursor *pCx; 3365 KeyInfo *pKeyInfo; 3366 3367 static const int vfsFlags = 3368 SQLITE_OPEN_READWRITE | 3369 SQLITE_OPEN_CREATE | 3370 SQLITE_OPEN_EXCLUSIVE | 3371 SQLITE_OPEN_DELETEONCLOSE | 3372 SQLITE_OPEN_TRANSIENT_DB; 3373 assert( pOp->p1>=0 ); 3374 assert( pOp->p2>=0 ); 3375 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3376 if( pCx==0 ) goto no_mem; 3377 pCx->nullRow = 1; 3378 pCx->isEphemeral = 1; 3379 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3380 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3381 if( rc==SQLITE_OK ){ 3382 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3383 } 3384 if( rc==SQLITE_OK ){ 3385 /* If a transient index is required, create it by calling 3386 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3387 ** opening it. If a transient table is required, just use the 3388 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3389 */ 3390 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3391 int pgno; 3392 assert( pOp->p4type==P4_KEYINFO ); 3393 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3394 if( rc==SQLITE_OK ){ 3395 assert( pgno==MASTER_ROOT+1 ); 3396 assert( pKeyInfo->db==db ); 3397 assert( pKeyInfo->enc==ENC(db) ); 3398 pCx->pKeyInfo = pKeyInfo; 3399 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3400 } 3401 pCx->isTable = 0; 3402 }else{ 3403 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3404 pCx->isTable = 1; 3405 } 3406 } 3407 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3408 break; 3409 } 3410 3411 /* Opcode: SorterOpen P1 P2 P3 P4 * 3412 ** 3413 ** This opcode works like OP_OpenEphemeral except that it opens 3414 ** a transient index that is specifically designed to sort large 3415 ** tables using an external merge-sort algorithm. 3416 ** 3417 ** If argument P3 is non-zero, then it indicates that the sorter may 3418 ** assume that a stable sort considering the first P3 fields of each 3419 ** key is sufficient to produce the required results. 3420 */ 3421 case OP_SorterOpen: { 3422 VdbeCursor *pCx; 3423 3424 assert( pOp->p1>=0 ); 3425 assert( pOp->p2>=0 ); 3426 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3427 if( pCx==0 ) goto no_mem; 3428 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3429 assert( pCx->pKeyInfo->db==db ); 3430 assert( pCx->pKeyInfo->enc==ENC(db) ); 3431 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3432 break; 3433 } 3434 3435 /* Opcode: SequenceTest P1 P2 * * * 3436 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3437 ** 3438 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3439 ** to P2. Regardless of whether or not the jump is taken, increment the 3440 ** the sequence value. 3441 */ 3442 case OP_SequenceTest: { 3443 VdbeCursor *pC; 3444 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3445 pC = p->apCsr[pOp->p1]; 3446 assert( pC->pSorter ); 3447 if( (pC->seqCount++)==0 ){ 3448 pc = pOp->p2 - 1; 3449 } 3450 break; 3451 } 3452 3453 /* Opcode: OpenPseudo P1 P2 P3 * * 3454 ** Synopsis: P3 columns in r[P2] 3455 ** 3456 ** Open a new cursor that points to a fake table that contains a single 3457 ** row of data. The content of that one row is the content of memory 3458 ** register P2. In other words, cursor P1 becomes an alias for the 3459 ** MEM_Blob content contained in register P2. 3460 ** 3461 ** A pseudo-table created by this opcode is used to hold a single 3462 ** row output from the sorter so that the row can be decomposed into 3463 ** individual columns using the OP_Column opcode. The OP_Column opcode 3464 ** is the only cursor opcode that works with a pseudo-table. 3465 ** 3466 ** P3 is the number of fields in the records that will be stored by 3467 ** the pseudo-table. 3468 */ 3469 case OP_OpenPseudo: { 3470 VdbeCursor *pCx; 3471 3472 assert( pOp->p1>=0 ); 3473 assert( pOp->p3>=0 ); 3474 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3475 if( pCx==0 ) goto no_mem; 3476 pCx->nullRow = 1; 3477 pCx->pseudoTableReg = pOp->p2; 3478 pCx->isTable = 1; 3479 assert( pOp->p5==0 ); 3480 break; 3481 } 3482 3483 /* Opcode: Close P1 * * * * 3484 ** 3485 ** Close a cursor previously opened as P1. If P1 is not 3486 ** currently open, this instruction is a no-op. 3487 */ 3488 case OP_Close: { 3489 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3490 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3491 p->apCsr[pOp->p1] = 0; 3492 break; 3493 } 3494 3495 /* Opcode: SeekGE P1 P2 P3 P4 * 3496 ** Synopsis: key=r[P3@P4] 3497 ** 3498 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3499 ** use the value in register P3 as the key. If cursor P1 refers 3500 ** to an SQL index, then P3 is the first in an array of P4 registers 3501 ** that are used as an unpacked index key. 3502 ** 3503 ** Reposition cursor P1 so that it points to the smallest entry that 3504 ** is greater than or equal to the key value. If there are no records 3505 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3506 ** 3507 ** This opcode leaves the cursor configured to move in forward order, 3508 ** from the beginning toward the end. In other words, the cursor is 3509 ** configured to use Next, not Prev. 3510 ** 3511 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3512 */ 3513 /* Opcode: SeekGT P1 P2 P3 P4 * 3514 ** Synopsis: key=r[P3@P4] 3515 ** 3516 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3517 ** use the value in register P3 as a key. If cursor P1 refers 3518 ** to an SQL index, then P3 is the first in an array of P4 registers 3519 ** that are used as an unpacked index key. 3520 ** 3521 ** Reposition cursor P1 so that it points to the smallest entry that 3522 ** is greater than the key value. If there are no records greater than 3523 ** the key and P2 is not zero, then jump to P2. 3524 ** 3525 ** This opcode leaves the cursor configured to move in forward order, 3526 ** from the beginning toward the end. In other words, the cursor is 3527 ** configured to use Next, not Prev. 3528 ** 3529 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3530 */ 3531 /* Opcode: SeekLT P1 P2 P3 P4 * 3532 ** Synopsis: key=r[P3@P4] 3533 ** 3534 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3535 ** use the value in register P3 as a key. If cursor P1 refers 3536 ** to an SQL index, then P3 is the first in an array of P4 registers 3537 ** that are used as an unpacked index key. 3538 ** 3539 ** Reposition cursor P1 so that it points to the largest entry that 3540 ** is less than the key value. If there are no records less than 3541 ** the key and P2 is not zero, then jump to P2. 3542 ** 3543 ** This opcode leaves the cursor configured to move in reverse order, 3544 ** from the end toward the beginning. In other words, the cursor is 3545 ** configured to use Prev, not Next. 3546 ** 3547 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3548 */ 3549 /* Opcode: SeekLE P1 P2 P3 P4 * 3550 ** Synopsis: key=r[P3@P4] 3551 ** 3552 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3553 ** use the value in register P3 as a key. If cursor P1 refers 3554 ** to an SQL index, then P3 is the first in an array of P4 registers 3555 ** that are used as an unpacked index key. 3556 ** 3557 ** Reposition cursor P1 so that it points to the largest entry that 3558 ** is less than or equal to the key value. If there are no records 3559 ** less than or equal to the key and P2 is not zero, then jump to P2. 3560 ** 3561 ** This opcode leaves the cursor configured to move in reverse order, 3562 ** from the end toward the beginning. In other words, the cursor is 3563 ** configured to use Prev, not Next. 3564 ** 3565 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3566 */ 3567 case OP_SeekLT: /* jump, in3 */ 3568 case OP_SeekLE: /* jump, in3 */ 3569 case OP_SeekGE: /* jump, in3 */ 3570 case OP_SeekGT: { /* jump, in3 */ 3571 int res; 3572 int oc; 3573 VdbeCursor *pC; 3574 UnpackedRecord r; 3575 int nField; 3576 i64 iKey; /* The rowid we are to seek to */ 3577 3578 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3579 assert( pOp->p2!=0 ); 3580 pC = p->apCsr[pOp->p1]; 3581 assert( pC!=0 ); 3582 assert( pC->pseudoTableReg==0 ); 3583 assert( OP_SeekLE == OP_SeekLT+1 ); 3584 assert( OP_SeekGE == OP_SeekLT+2 ); 3585 assert( OP_SeekGT == OP_SeekLT+3 ); 3586 assert( pC->isOrdered ); 3587 assert( pC->pCursor!=0 ); 3588 oc = pOp->opcode; 3589 pC->nullRow = 0; 3590 #ifdef SQLITE_DEBUG 3591 pC->seekOp = pOp->opcode; 3592 #endif 3593 if( pC->isTable ){ 3594 /* The input value in P3 might be of any type: integer, real, string, 3595 ** blob, or NULL. But it needs to be an integer before we can do 3596 ** the seek, so convert it. */ 3597 pIn3 = &aMem[pOp->p3]; 3598 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3599 applyNumericAffinity(pIn3, 0); 3600 } 3601 iKey = sqlite3VdbeIntValue(pIn3); 3602 3603 /* If the P3 value could not be converted into an integer without 3604 ** loss of information, then special processing is required... */ 3605 if( (pIn3->flags & MEM_Int)==0 ){ 3606 if( (pIn3->flags & MEM_Real)==0 ){ 3607 /* If the P3 value cannot be converted into any kind of a number, 3608 ** then the seek is not possible, so jump to P2 */ 3609 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3610 break; 3611 } 3612 3613 /* If the approximation iKey is larger than the actual real search 3614 ** term, substitute >= for > and < for <=. e.g. if the search term 3615 ** is 4.9 and the integer approximation 5: 3616 ** 3617 ** (x > 4.9) -> (x >= 5) 3618 ** (x <= 4.9) -> (x < 5) 3619 */ 3620 if( pIn3->u.r<(double)iKey ){ 3621 assert( OP_SeekGE==(OP_SeekGT-1) ); 3622 assert( OP_SeekLT==(OP_SeekLE-1) ); 3623 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3624 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3625 } 3626 3627 /* If the approximation iKey is smaller than the actual real search 3628 ** term, substitute <= for < and > for >=. */ 3629 else if( pIn3->u.r>(double)iKey ){ 3630 assert( OP_SeekLE==(OP_SeekLT+1) ); 3631 assert( OP_SeekGT==(OP_SeekGE+1) ); 3632 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3633 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3634 } 3635 } 3636 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3637 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3638 if( rc!=SQLITE_OK ){ 3639 goto abort_due_to_error; 3640 } 3641 }else{ 3642 nField = pOp->p4.i; 3643 assert( pOp->p4type==P4_INT32 ); 3644 assert( nField>0 ); 3645 r.pKeyInfo = pC->pKeyInfo; 3646 r.nField = (u16)nField; 3647 3648 /* The next line of code computes as follows, only faster: 3649 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3650 ** r.default_rc = -1; 3651 ** }else{ 3652 ** r.default_rc = +1; 3653 ** } 3654 */ 3655 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3656 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3657 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3658 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3659 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3660 3661 r.aMem = &aMem[pOp->p3]; 3662 #ifdef SQLITE_DEBUG 3663 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3664 #endif 3665 ExpandBlob(r.aMem); 3666 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3667 if( rc!=SQLITE_OK ){ 3668 goto abort_due_to_error; 3669 } 3670 } 3671 pC->deferredMoveto = 0; 3672 pC->cacheStatus = CACHE_STALE; 3673 #ifdef SQLITE_TEST 3674 sqlite3_search_count++; 3675 #endif 3676 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3677 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3678 res = 0; 3679 rc = sqlite3BtreeNext(pC->pCursor, &res); 3680 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3681 }else{ 3682 res = 0; 3683 } 3684 }else{ 3685 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3686 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3687 res = 0; 3688 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3689 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3690 }else{ 3691 /* res might be negative because the table is empty. Check to 3692 ** see if this is the case. 3693 */ 3694 res = sqlite3BtreeEof(pC->pCursor); 3695 } 3696 } 3697 assert( pOp->p2>0 ); 3698 VdbeBranchTaken(res!=0,2); 3699 if( res ){ 3700 pc = pOp->p2 - 1; 3701 } 3702 break; 3703 } 3704 3705 /* Opcode: Seek P1 P2 * * * 3706 ** Synopsis: intkey=r[P2] 3707 ** 3708 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3709 ** for P1 to move so that it points to the rowid given by P2. 3710 ** 3711 ** This is actually a deferred seek. Nothing actually happens until 3712 ** the cursor is used to read a record. That way, if no reads 3713 ** occur, no unnecessary I/O happens. 3714 */ 3715 case OP_Seek: { /* in2 */ 3716 VdbeCursor *pC; 3717 3718 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3719 pC = p->apCsr[pOp->p1]; 3720 assert( pC!=0 ); 3721 assert( pC->pCursor!=0 ); 3722 assert( pC->isTable ); 3723 pC->nullRow = 0; 3724 pIn2 = &aMem[pOp->p2]; 3725 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3726 pC->deferredMoveto = 1; 3727 break; 3728 } 3729 3730 3731 /* Opcode: Found P1 P2 P3 P4 * 3732 ** Synopsis: key=r[P3@P4] 3733 ** 3734 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3735 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3736 ** record. 3737 ** 3738 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3739 ** is a prefix of any entry in P1 then a jump is made to P2 and 3740 ** P1 is left pointing at the matching entry. 3741 ** 3742 ** This operation leaves the cursor in a state where it can be 3743 ** advanced in the forward direction. The Next instruction will work, 3744 ** but not the Prev instruction. 3745 ** 3746 ** See also: NotFound, NoConflict, NotExists. SeekGe 3747 */ 3748 /* Opcode: NotFound P1 P2 P3 P4 * 3749 ** Synopsis: key=r[P3@P4] 3750 ** 3751 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3752 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3753 ** record. 3754 ** 3755 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3756 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3757 ** does contain an entry whose prefix matches the P3/P4 record then control 3758 ** falls through to the next instruction and P1 is left pointing at the 3759 ** matching entry. 3760 ** 3761 ** This operation leaves the cursor in a state where it cannot be 3762 ** advanced in either direction. In other words, the Next and Prev 3763 ** opcodes do not work after this operation. 3764 ** 3765 ** See also: Found, NotExists, NoConflict 3766 */ 3767 /* Opcode: NoConflict P1 P2 P3 P4 * 3768 ** Synopsis: key=r[P3@P4] 3769 ** 3770 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3771 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3772 ** record. 3773 ** 3774 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3775 ** contains any NULL value, jump immediately to P2. If all terms of the 3776 ** record are not-NULL then a check is done to determine if any row in the 3777 ** P1 index btree has a matching key prefix. If there are no matches, jump 3778 ** immediately to P2. If there is a match, fall through and leave the P1 3779 ** cursor pointing to the matching row. 3780 ** 3781 ** This opcode is similar to OP_NotFound with the exceptions that the 3782 ** branch is always taken if any part of the search key input is NULL. 3783 ** 3784 ** This operation leaves the cursor in a state where it cannot be 3785 ** advanced in either direction. In other words, the Next and Prev 3786 ** opcodes do not work after this operation. 3787 ** 3788 ** See also: NotFound, Found, NotExists 3789 */ 3790 case OP_NoConflict: /* jump, in3 */ 3791 case OP_NotFound: /* jump, in3 */ 3792 case OP_Found: { /* jump, in3 */ 3793 int alreadyExists; 3794 int ii; 3795 VdbeCursor *pC; 3796 int res; 3797 char *pFree; 3798 UnpackedRecord *pIdxKey; 3799 UnpackedRecord r; 3800 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3801 3802 #ifdef SQLITE_TEST 3803 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3804 #endif 3805 3806 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3807 assert( pOp->p4type==P4_INT32 ); 3808 pC = p->apCsr[pOp->p1]; 3809 assert( pC!=0 ); 3810 #ifdef SQLITE_DEBUG 3811 pC->seekOp = pOp->opcode; 3812 #endif 3813 pIn3 = &aMem[pOp->p3]; 3814 assert( pC->pCursor!=0 ); 3815 assert( pC->isTable==0 ); 3816 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3817 if( pOp->p4.i>0 ){ 3818 r.pKeyInfo = pC->pKeyInfo; 3819 r.nField = (u16)pOp->p4.i; 3820 r.aMem = pIn3; 3821 for(ii=0; ii<r.nField; ii++){ 3822 assert( memIsValid(&r.aMem[ii]) ); 3823 ExpandBlob(&r.aMem[ii]); 3824 #ifdef SQLITE_DEBUG 3825 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3826 #endif 3827 } 3828 pIdxKey = &r; 3829 }else{ 3830 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3831 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3832 ); 3833 if( pIdxKey==0 ) goto no_mem; 3834 assert( pIn3->flags & MEM_Blob ); 3835 ExpandBlob(pIn3); 3836 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3837 } 3838 pIdxKey->default_rc = 0; 3839 if( pOp->opcode==OP_NoConflict ){ 3840 /* For the OP_NoConflict opcode, take the jump if any of the 3841 ** input fields are NULL, since any key with a NULL will not 3842 ** conflict */ 3843 for(ii=0; ii<pIdxKey->nField; ii++){ 3844 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 3845 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3846 break; 3847 } 3848 } 3849 } 3850 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3851 if( pOp->p4.i==0 ){ 3852 sqlite3DbFree(db, pFree); 3853 } 3854 if( rc!=SQLITE_OK ){ 3855 break; 3856 } 3857 pC->seekResult = res; 3858 alreadyExists = (res==0); 3859 pC->nullRow = 1-alreadyExists; 3860 pC->deferredMoveto = 0; 3861 pC->cacheStatus = CACHE_STALE; 3862 if( pOp->opcode==OP_Found ){ 3863 VdbeBranchTaken(alreadyExists!=0,2); 3864 if( alreadyExists ) pc = pOp->p2 - 1; 3865 }else{ 3866 VdbeBranchTaken(alreadyExists==0,2); 3867 if( !alreadyExists ) pc = pOp->p2 - 1; 3868 } 3869 break; 3870 } 3871 3872 /* Opcode: NotExists P1 P2 P3 * * 3873 ** Synopsis: intkey=r[P3] 3874 ** 3875 ** P1 is the index of a cursor open on an SQL table btree (with integer 3876 ** keys). P3 is an integer rowid. If P1 does not contain a record with 3877 ** rowid P3 then jump immediately to P2. If P1 does contain a record 3878 ** with rowid P3 then leave the cursor pointing at that record and fall 3879 ** through to the next instruction. 3880 ** 3881 ** The OP_NotFound opcode performs the same operation on index btrees 3882 ** (with arbitrary multi-value keys). 3883 ** 3884 ** This opcode leaves the cursor in a state where it cannot be advanced 3885 ** in either direction. In other words, the Next and Prev opcodes will 3886 ** not work following this opcode. 3887 ** 3888 ** See also: Found, NotFound, NoConflict 3889 */ 3890 case OP_NotExists: { /* jump, in3 */ 3891 VdbeCursor *pC; 3892 BtCursor *pCrsr; 3893 int res; 3894 u64 iKey; 3895 3896 pIn3 = &aMem[pOp->p3]; 3897 assert( pIn3->flags & MEM_Int ); 3898 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3899 pC = p->apCsr[pOp->p1]; 3900 assert( pC!=0 ); 3901 #ifdef SQLITE_DEBUG 3902 pC->seekOp = 0; 3903 #endif 3904 assert( pC->isTable ); 3905 assert( pC->pseudoTableReg==0 ); 3906 pCrsr = pC->pCursor; 3907 assert( pCrsr!=0 ); 3908 res = 0; 3909 iKey = pIn3->u.i; 3910 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3911 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3912 pC->nullRow = 0; 3913 pC->cacheStatus = CACHE_STALE; 3914 pC->deferredMoveto = 0; 3915 VdbeBranchTaken(res!=0,2); 3916 if( res!=0 ){ 3917 pc = pOp->p2 - 1; 3918 } 3919 pC->seekResult = res; 3920 break; 3921 } 3922 3923 /* Opcode: Sequence P1 P2 * * * 3924 ** Synopsis: r[P2]=cursor[P1].ctr++ 3925 ** 3926 ** Find the next available sequence number for cursor P1. 3927 ** Write the sequence number into register P2. 3928 ** The sequence number on the cursor is incremented after this 3929 ** instruction. 3930 */ 3931 case OP_Sequence: { /* out2-prerelease */ 3932 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3933 assert( p->apCsr[pOp->p1]!=0 ); 3934 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3935 break; 3936 } 3937 3938 3939 /* Opcode: NewRowid P1 P2 P3 * * 3940 ** Synopsis: r[P2]=rowid 3941 ** 3942 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3943 ** The record number is not previously used as a key in the database 3944 ** table that cursor P1 points to. The new record number is written 3945 ** written to register P2. 3946 ** 3947 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3948 ** the largest previously generated record number. No new record numbers are 3949 ** allowed to be less than this value. When this value reaches its maximum, 3950 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3951 ** generated record number. This P3 mechanism is used to help implement the 3952 ** AUTOINCREMENT feature. 3953 */ 3954 case OP_NewRowid: { /* out2-prerelease */ 3955 i64 v; /* The new rowid */ 3956 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3957 int res; /* Result of an sqlite3BtreeLast() */ 3958 int cnt; /* Counter to limit the number of searches */ 3959 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3960 VdbeFrame *pFrame; /* Root frame of VDBE */ 3961 3962 v = 0; 3963 res = 0; 3964 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3965 pC = p->apCsr[pOp->p1]; 3966 assert( pC!=0 ); 3967 if( NEVER(pC->pCursor==0) ){ 3968 /* The zero initialization above is all that is needed */ 3969 }else{ 3970 /* The next rowid or record number (different terms for the same 3971 ** thing) is obtained in a two-step algorithm. 3972 ** 3973 ** First we attempt to find the largest existing rowid and add one 3974 ** to that. But if the largest existing rowid is already the maximum 3975 ** positive integer, we have to fall through to the second 3976 ** probabilistic algorithm 3977 ** 3978 ** The second algorithm is to select a rowid at random and see if 3979 ** it already exists in the table. If it does not exist, we have 3980 ** succeeded. If the random rowid does exist, we select a new one 3981 ** and try again, up to 100 times. 3982 */ 3983 assert( pC->isTable ); 3984 3985 #ifdef SQLITE_32BIT_ROWID 3986 # define MAX_ROWID 0x7fffffff 3987 #else 3988 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3989 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3990 ** to provide the constant while making all compilers happy. 3991 */ 3992 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3993 #endif 3994 3995 if( !pC->useRandomRowid ){ 3996 rc = sqlite3BtreeLast(pC->pCursor, &res); 3997 if( rc!=SQLITE_OK ){ 3998 goto abort_due_to_error; 3999 } 4000 if( res ){ 4001 v = 1; /* IMP: R-61914-48074 */ 4002 }else{ 4003 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 4004 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4005 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 4006 if( v>=MAX_ROWID ){ 4007 pC->useRandomRowid = 1; 4008 }else{ 4009 v++; /* IMP: R-29538-34987 */ 4010 } 4011 } 4012 } 4013 4014 #ifndef SQLITE_OMIT_AUTOINCREMENT 4015 if( pOp->p3 ){ 4016 /* Assert that P3 is a valid memory cell. */ 4017 assert( pOp->p3>0 ); 4018 if( p->pFrame ){ 4019 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4020 /* Assert that P3 is a valid memory cell. */ 4021 assert( pOp->p3<=pFrame->nMem ); 4022 pMem = &pFrame->aMem[pOp->p3]; 4023 }else{ 4024 /* Assert that P3 is a valid memory cell. */ 4025 assert( pOp->p3<=(p->nMem-p->nCursor) ); 4026 pMem = &aMem[pOp->p3]; 4027 memAboutToChange(p, pMem); 4028 } 4029 assert( memIsValid(pMem) ); 4030 4031 REGISTER_TRACE(pOp->p3, pMem); 4032 sqlite3VdbeMemIntegerify(pMem); 4033 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4034 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4035 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 4036 goto abort_due_to_error; 4037 } 4038 if( v<pMem->u.i+1 ){ 4039 v = pMem->u.i + 1; 4040 } 4041 pMem->u.i = v; 4042 } 4043 #endif 4044 if( pC->useRandomRowid ){ 4045 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4046 ** largest possible integer (9223372036854775807) then the database 4047 ** engine starts picking positive candidate ROWIDs at random until 4048 ** it finds one that is not previously used. */ 4049 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4050 ** an AUTOINCREMENT table. */ 4051 cnt = 0; 4052 do{ 4053 sqlite3_randomness(sizeof(v), &v); 4054 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4055 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 4056 0, &res))==SQLITE_OK) 4057 && (res==0) 4058 && (++cnt<100)); 4059 if( rc==SQLITE_OK && res==0 ){ 4060 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4061 goto abort_due_to_error; 4062 } 4063 assert( v>0 ); /* EV: R-40812-03570 */ 4064 } 4065 pC->deferredMoveto = 0; 4066 pC->cacheStatus = CACHE_STALE; 4067 } 4068 pOut->u.i = v; 4069 break; 4070 } 4071 4072 /* Opcode: Insert P1 P2 P3 P4 P5 4073 ** Synopsis: intkey=r[P3] data=r[P2] 4074 ** 4075 ** Write an entry into the table of cursor P1. A new entry is 4076 ** created if it doesn't already exist or the data for an existing 4077 ** entry is overwritten. The data is the value MEM_Blob stored in register 4078 ** number P2. The key is stored in register P3. The key must 4079 ** be a MEM_Int. 4080 ** 4081 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4082 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4083 ** then rowid is stored for subsequent return by the 4084 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4085 ** 4086 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4087 ** the last seek operation (OP_NotExists) was a success, then this 4088 ** operation will not attempt to find the appropriate row before doing 4089 ** the insert but will instead overwrite the row that the cursor is 4090 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4091 ** has already positioned the cursor correctly. This is an optimization 4092 ** that boosts performance by avoiding redundant seeks. 4093 ** 4094 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4095 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4096 ** is part of an INSERT operation. The difference is only important to 4097 ** the update hook. 4098 ** 4099 ** Parameter P4 may point to a string containing the table-name, or 4100 ** may be NULL. If it is not NULL, then the update-hook 4101 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4102 ** 4103 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4104 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4105 ** and register P2 becomes ephemeral. If the cursor is changed, the 4106 ** value of register P2 will then change. Make sure this does not 4107 ** cause any problems.) 4108 ** 4109 ** This instruction only works on tables. The equivalent instruction 4110 ** for indices is OP_IdxInsert. 4111 */ 4112 /* Opcode: InsertInt P1 P2 P3 P4 P5 4113 ** Synopsis: intkey=P3 data=r[P2] 4114 ** 4115 ** This works exactly like OP_Insert except that the key is the 4116 ** integer value P3, not the value of the integer stored in register P3. 4117 */ 4118 case OP_Insert: 4119 case OP_InsertInt: { 4120 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4121 Mem *pKey; /* MEM cell holding key for the record */ 4122 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4123 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4124 int nZero; /* Number of zero-bytes to append */ 4125 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4126 const char *zDb; /* database name - used by the update hook */ 4127 const char *zTbl; /* Table name - used by the opdate hook */ 4128 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4129 4130 pData = &aMem[pOp->p2]; 4131 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4132 assert( memIsValid(pData) ); 4133 pC = p->apCsr[pOp->p1]; 4134 assert( pC!=0 ); 4135 assert( pC->pCursor!=0 ); 4136 assert( pC->pseudoTableReg==0 ); 4137 assert( pC->isTable ); 4138 REGISTER_TRACE(pOp->p2, pData); 4139 4140 if( pOp->opcode==OP_Insert ){ 4141 pKey = &aMem[pOp->p3]; 4142 assert( pKey->flags & MEM_Int ); 4143 assert( memIsValid(pKey) ); 4144 REGISTER_TRACE(pOp->p3, pKey); 4145 iKey = pKey->u.i; 4146 }else{ 4147 assert( pOp->opcode==OP_InsertInt ); 4148 iKey = pOp->p3; 4149 } 4150 4151 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4152 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4153 if( pData->flags & MEM_Null ){ 4154 pData->z = 0; 4155 pData->n = 0; 4156 }else{ 4157 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4158 } 4159 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4160 if( pData->flags & MEM_Zero ){ 4161 nZero = pData->u.nZero; 4162 }else{ 4163 nZero = 0; 4164 } 4165 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4166 pData->z, pData->n, nZero, 4167 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4168 ); 4169 pC->deferredMoveto = 0; 4170 pC->cacheStatus = CACHE_STALE; 4171 4172 /* Invoke the update-hook if required. */ 4173 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4174 zDb = db->aDb[pC->iDb].zName; 4175 zTbl = pOp->p4.z; 4176 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4177 assert( pC->isTable ); 4178 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4179 assert( pC->iDb>=0 ); 4180 } 4181 break; 4182 } 4183 4184 /* Opcode: Delete P1 P2 * P4 * 4185 ** 4186 ** Delete the record at which the P1 cursor is currently pointing. 4187 ** 4188 ** The cursor will be left pointing at either the next or the previous 4189 ** record in the table. If it is left pointing at the next record, then 4190 ** the next Next instruction will be a no-op. Hence it is OK to delete 4191 ** a record from within a Next loop. 4192 ** 4193 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4194 ** incremented (otherwise not). 4195 ** 4196 ** P1 must not be pseudo-table. It has to be a real table with 4197 ** multiple rows. 4198 ** 4199 ** If P4 is not NULL, then it is the name of the table that P1 is 4200 ** pointing to. The update hook will be invoked, if it exists. 4201 ** If P4 is not NULL then the P1 cursor must have been positioned 4202 ** using OP_NotFound prior to invoking this opcode. 4203 */ 4204 case OP_Delete: { 4205 VdbeCursor *pC; 4206 4207 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4208 pC = p->apCsr[pOp->p1]; 4209 assert( pC!=0 ); 4210 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4211 assert( pC->deferredMoveto==0 ); 4212 4213 #ifdef SQLITE_DEBUG 4214 /* The seek operation that positioned the cursor prior to OP_Delete will 4215 ** have also set the pC->movetoTarget field to the rowid of the row that 4216 ** is being deleted */ 4217 if( pOp->p4.z && pC->isTable ){ 4218 i64 iKey = 0; 4219 sqlite3BtreeKeySize(pC->pCursor, &iKey); 4220 assert( pC->movetoTarget==iKey ); 4221 } 4222 #endif 4223 4224 rc = sqlite3BtreeDelete(pC->pCursor); 4225 pC->cacheStatus = CACHE_STALE; 4226 4227 /* Invoke the update-hook if required. */ 4228 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4229 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4230 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); 4231 assert( pC->iDb>=0 ); 4232 } 4233 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4234 break; 4235 } 4236 /* Opcode: ResetCount * * * * * 4237 ** 4238 ** The value of the change counter is copied to the database handle 4239 ** change counter (returned by subsequent calls to sqlite3_changes()). 4240 ** Then the VMs internal change counter resets to 0. 4241 ** This is used by trigger programs. 4242 */ 4243 case OP_ResetCount: { 4244 sqlite3VdbeSetChanges(db, p->nChange); 4245 p->nChange = 0; 4246 break; 4247 } 4248 4249 /* Opcode: SorterCompare P1 P2 P3 P4 4250 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4251 ** 4252 ** P1 is a sorter cursor. This instruction compares a prefix of the 4253 ** record blob in register P3 against a prefix of the entry that 4254 ** the sorter cursor currently points to. Only the first P4 fields 4255 ** of r[P3] and the sorter record are compared. 4256 ** 4257 ** If either P3 or the sorter contains a NULL in one of their significant 4258 ** fields (not counting the P4 fields at the end which are ignored) then 4259 ** the comparison is assumed to be equal. 4260 ** 4261 ** Fall through to next instruction if the two records compare equal to 4262 ** each other. Jump to P2 if they are different. 4263 */ 4264 case OP_SorterCompare: { 4265 VdbeCursor *pC; 4266 int res; 4267 int nKeyCol; 4268 4269 pC = p->apCsr[pOp->p1]; 4270 assert( isSorter(pC) ); 4271 assert( pOp->p4type==P4_INT32 ); 4272 pIn3 = &aMem[pOp->p3]; 4273 nKeyCol = pOp->p4.i; 4274 res = 0; 4275 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4276 VdbeBranchTaken(res!=0,2); 4277 if( res ){ 4278 pc = pOp->p2-1; 4279 } 4280 break; 4281 }; 4282 4283 /* Opcode: SorterData P1 P2 P3 * * 4284 ** Synopsis: r[P2]=data 4285 ** 4286 ** Write into register P2 the current sorter data for sorter cursor P1. 4287 ** Then clear the column header cache on cursor P3. 4288 ** 4289 ** This opcode is normally use to move a record out of the sorter and into 4290 ** a register that is the source for a pseudo-table cursor created using 4291 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4292 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4293 ** us from having to issue a separate NullRow instruction to clear that cache. 4294 */ 4295 case OP_SorterData: { 4296 VdbeCursor *pC; 4297 4298 pOut = &aMem[pOp->p2]; 4299 pC = p->apCsr[pOp->p1]; 4300 assert( isSorter(pC) ); 4301 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4302 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4303 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4304 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4305 break; 4306 } 4307 4308 /* Opcode: RowData P1 P2 * * * 4309 ** Synopsis: r[P2]=data 4310 ** 4311 ** Write into register P2 the complete row data for cursor P1. 4312 ** There is no interpretation of the data. 4313 ** It is just copied onto the P2 register exactly as 4314 ** it is found in the database file. 4315 ** 4316 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4317 ** of a real table, not a pseudo-table. 4318 */ 4319 /* Opcode: RowKey P1 P2 * * * 4320 ** Synopsis: r[P2]=key 4321 ** 4322 ** Write into register P2 the complete row key for cursor P1. 4323 ** There is no interpretation of the data. 4324 ** The key is copied onto the P2 register exactly as 4325 ** it is found in the database file. 4326 ** 4327 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4328 ** of a real table, not a pseudo-table. 4329 */ 4330 case OP_RowKey: 4331 case OP_RowData: { 4332 VdbeCursor *pC; 4333 BtCursor *pCrsr; 4334 u32 n; 4335 i64 n64; 4336 4337 pOut = &aMem[pOp->p2]; 4338 memAboutToChange(p, pOut); 4339 4340 /* Note that RowKey and RowData are really exactly the same instruction */ 4341 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4342 pC = p->apCsr[pOp->p1]; 4343 assert( isSorter(pC)==0 ); 4344 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4345 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4346 assert( pC!=0 ); 4347 assert( pC->nullRow==0 ); 4348 assert( pC->pseudoTableReg==0 ); 4349 assert( pC->pCursor!=0 ); 4350 pCrsr = pC->pCursor; 4351 4352 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4353 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4354 ** the cursor. If this where not the case, on of the following assert()s 4355 ** would fail. Should this ever change (because of changes in the code 4356 ** generator) then the fix would be to insert a call to 4357 ** sqlite3VdbeCursorMoveto(). 4358 */ 4359 assert( pC->deferredMoveto==0 ); 4360 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4361 #if 0 /* Not required due to the previous to assert() statements */ 4362 rc = sqlite3VdbeCursorMoveto(pC); 4363 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4364 #endif 4365 4366 if( pC->isTable==0 ){ 4367 assert( !pC->isTable ); 4368 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4369 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4370 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4371 goto too_big; 4372 } 4373 n = (u32)n64; 4374 }else{ 4375 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4376 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4377 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4378 goto too_big; 4379 } 4380 } 4381 testcase( n==0 ); 4382 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ 4383 goto no_mem; 4384 } 4385 pOut->n = n; 4386 MemSetTypeFlag(pOut, MEM_Blob); 4387 if( pC->isTable==0 ){ 4388 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4389 }else{ 4390 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4391 } 4392 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4393 UPDATE_MAX_BLOBSIZE(pOut); 4394 REGISTER_TRACE(pOp->p2, pOut); 4395 break; 4396 } 4397 4398 /* Opcode: Rowid P1 P2 * * * 4399 ** Synopsis: r[P2]=rowid 4400 ** 4401 ** Store in register P2 an integer which is the key of the table entry that 4402 ** P1 is currently point to. 4403 ** 4404 ** P1 can be either an ordinary table or a virtual table. There used to 4405 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4406 ** one opcode now works for both table types. 4407 */ 4408 case OP_Rowid: { /* out2-prerelease */ 4409 VdbeCursor *pC; 4410 i64 v; 4411 sqlite3_vtab *pVtab; 4412 const sqlite3_module *pModule; 4413 4414 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4415 pC = p->apCsr[pOp->p1]; 4416 assert( pC!=0 ); 4417 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4418 if( pC->nullRow ){ 4419 pOut->flags = MEM_Null; 4420 break; 4421 }else if( pC->deferredMoveto ){ 4422 v = pC->movetoTarget; 4423 #ifndef SQLITE_OMIT_VIRTUALTABLE 4424 }else if( pC->pVtabCursor ){ 4425 pVtab = pC->pVtabCursor->pVtab; 4426 pModule = pVtab->pModule; 4427 assert( pModule->xRowid ); 4428 rc = pModule->xRowid(pC->pVtabCursor, &v); 4429 sqlite3VtabImportErrmsg(p, pVtab); 4430 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4431 }else{ 4432 assert( pC->pCursor!=0 ); 4433 rc = sqlite3VdbeCursorRestore(pC); 4434 if( rc ) goto abort_due_to_error; 4435 if( pC->nullRow ){ 4436 pOut->flags = MEM_Null; 4437 break; 4438 } 4439 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4440 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ 4441 } 4442 pOut->u.i = v; 4443 break; 4444 } 4445 4446 /* Opcode: NullRow P1 * * * * 4447 ** 4448 ** Move the cursor P1 to a null row. Any OP_Column operations 4449 ** that occur while the cursor is on the null row will always 4450 ** write a NULL. 4451 */ 4452 case OP_NullRow: { 4453 VdbeCursor *pC; 4454 4455 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4456 pC = p->apCsr[pOp->p1]; 4457 assert( pC!=0 ); 4458 pC->nullRow = 1; 4459 pC->cacheStatus = CACHE_STALE; 4460 if( pC->pCursor ){ 4461 sqlite3BtreeClearCursor(pC->pCursor); 4462 } 4463 break; 4464 } 4465 4466 /* Opcode: Last P1 P2 * * * 4467 ** 4468 ** The next use of the Rowid or Column or Prev instruction for P1 4469 ** will refer to the last entry in the database table or index. 4470 ** If the table or index is empty and P2>0, then jump immediately to P2. 4471 ** If P2 is 0 or if the table or index is not empty, fall through 4472 ** to the following instruction. 4473 ** 4474 ** This opcode leaves the cursor configured to move in reverse order, 4475 ** from the end toward the beginning. In other words, the cursor is 4476 ** configured to use Prev, not Next. 4477 */ 4478 case OP_Last: { /* jump */ 4479 VdbeCursor *pC; 4480 BtCursor *pCrsr; 4481 int res; 4482 4483 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4484 pC = p->apCsr[pOp->p1]; 4485 assert( pC!=0 ); 4486 pCrsr = pC->pCursor; 4487 res = 0; 4488 assert( pCrsr!=0 ); 4489 rc = sqlite3BtreeLast(pCrsr, &res); 4490 pC->nullRow = (u8)res; 4491 pC->deferredMoveto = 0; 4492 pC->cacheStatus = CACHE_STALE; 4493 #ifdef SQLITE_DEBUG 4494 pC->seekOp = OP_Last; 4495 #endif 4496 if( pOp->p2>0 ){ 4497 VdbeBranchTaken(res!=0,2); 4498 if( res ) pc = pOp->p2 - 1; 4499 } 4500 break; 4501 } 4502 4503 4504 /* Opcode: Sort P1 P2 * * * 4505 ** 4506 ** This opcode does exactly the same thing as OP_Rewind except that 4507 ** it increments an undocumented global variable used for testing. 4508 ** 4509 ** Sorting is accomplished by writing records into a sorting index, 4510 ** then rewinding that index and playing it back from beginning to 4511 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4512 ** rewinding so that the global variable will be incremented and 4513 ** regression tests can determine whether or not the optimizer is 4514 ** correctly optimizing out sorts. 4515 */ 4516 case OP_SorterSort: /* jump */ 4517 case OP_Sort: { /* jump */ 4518 #ifdef SQLITE_TEST 4519 sqlite3_sort_count++; 4520 sqlite3_search_count--; 4521 #endif 4522 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4523 /* Fall through into OP_Rewind */ 4524 } 4525 /* Opcode: Rewind P1 P2 * * * 4526 ** 4527 ** The next use of the Rowid or Column or Next instruction for P1 4528 ** will refer to the first entry in the database table or index. 4529 ** If the table or index is empty, jump immediately to P2. 4530 ** If the table or index is not empty, fall through to the following 4531 ** instruction. 4532 ** 4533 ** This opcode leaves the cursor configured to move in forward order, 4534 ** from the beginning toward the end. In other words, the cursor is 4535 ** configured to use Next, not Prev. 4536 */ 4537 case OP_Rewind: { /* jump */ 4538 VdbeCursor *pC; 4539 BtCursor *pCrsr; 4540 int res; 4541 4542 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4543 pC = p->apCsr[pOp->p1]; 4544 assert( pC!=0 ); 4545 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4546 res = 1; 4547 #ifdef SQLITE_DEBUG 4548 pC->seekOp = OP_Rewind; 4549 #endif 4550 if( isSorter(pC) ){ 4551 rc = sqlite3VdbeSorterRewind(pC, &res); 4552 }else{ 4553 pCrsr = pC->pCursor; 4554 assert( pCrsr ); 4555 rc = sqlite3BtreeFirst(pCrsr, &res); 4556 pC->deferredMoveto = 0; 4557 pC->cacheStatus = CACHE_STALE; 4558 } 4559 pC->nullRow = (u8)res; 4560 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4561 VdbeBranchTaken(res!=0,2); 4562 if( res ){ 4563 pc = pOp->p2 - 1; 4564 } 4565 break; 4566 } 4567 4568 /* Opcode: Next P1 P2 P3 P4 P5 4569 ** 4570 ** Advance cursor P1 so that it points to the next key/data pair in its 4571 ** table or index. If there are no more key/value pairs then fall through 4572 ** to the following instruction. But if the cursor advance was successful, 4573 ** jump immediately to P2. 4574 ** 4575 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4576 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4577 ** to follow SeekLT, SeekLE, or OP_Last. 4578 ** 4579 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4580 ** been opened prior to this opcode or the program will segfault. 4581 ** 4582 ** The P3 value is a hint to the btree implementation. If P3==1, that 4583 ** means P1 is an SQL index and that this instruction could have been 4584 ** omitted if that index had been unique. P3 is usually 0. P3 is 4585 ** always either 0 or 1. 4586 ** 4587 ** P4 is always of type P4_ADVANCE. The function pointer points to 4588 ** sqlite3BtreeNext(). 4589 ** 4590 ** If P5 is positive and the jump is taken, then event counter 4591 ** number P5-1 in the prepared statement is incremented. 4592 ** 4593 ** See also: Prev, NextIfOpen 4594 */ 4595 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4596 ** 4597 ** This opcode works just like Next except that if cursor P1 is not 4598 ** open it behaves a no-op. 4599 */ 4600 /* Opcode: Prev P1 P2 P3 P4 P5 4601 ** 4602 ** Back up cursor P1 so that it points to the previous key/data pair in its 4603 ** table or index. If there is no previous key/value pairs then fall through 4604 ** to the following instruction. But if the cursor backup was successful, 4605 ** jump immediately to P2. 4606 ** 4607 ** 4608 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4609 ** OP_Last opcode used to position the cursor. Prev is not allowed 4610 ** to follow SeekGT, SeekGE, or OP_Rewind. 4611 ** 4612 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4613 ** not open then the behavior is undefined. 4614 ** 4615 ** The P3 value is a hint to the btree implementation. If P3==1, that 4616 ** means P1 is an SQL index and that this instruction could have been 4617 ** omitted if that index had been unique. P3 is usually 0. P3 is 4618 ** always either 0 or 1. 4619 ** 4620 ** P4 is always of type P4_ADVANCE. The function pointer points to 4621 ** sqlite3BtreePrevious(). 4622 ** 4623 ** If P5 is positive and the jump is taken, then event counter 4624 ** number P5-1 in the prepared statement is incremented. 4625 */ 4626 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4627 ** 4628 ** This opcode works just like Prev except that if cursor P1 is not 4629 ** open it behaves a no-op. 4630 */ 4631 case OP_SorterNext: { /* jump */ 4632 VdbeCursor *pC; 4633 int res; 4634 4635 pC = p->apCsr[pOp->p1]; 4636 assert( isSorter(pC) ); 4637 res = 0; 4638 rc = sqlite3VdbeSorterNext(db, pC, &res); 4639 goto next_tail; 4640 case OP_PrevIfOpen: /* jump */ 4641 case OP_NextIfOpen: /* jump */ 4642 if( p->apCsr[pOp->p1]==0 ) break; 4643 /* Fall through */ 4644 case OP_Prev: /* jump */ 4645 case OP_Next: /* jump */ 4646 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4647 assert( pOp->p5<ArraySize(p->aCounter) ); 4648 pC = p->apCsr[pOp->p1]; 4649 res = pOp->p3; 4650 assert( pC!=0 ); 4651 assert( pC->deferredMoveto==0 ); 4652 assert( pC->pCursor ); 4653 assert( res==0 || (res==1 && pC->isTable==0) ); 4654 testcase( res==1 ); 4655 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4656 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4657 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4658 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4659 4660 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4661 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4662 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4663 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4664 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4665 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4666 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4667 || pC->seekOp==OP_Last ); 4668 4669 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4670 next_tail: 4671 pC->cacheStatus = CACHE_STALE; 4672 VdbeBranchTaken(res==0,2); 4673 if( res==0 ){ 4674 pC->nullRow = 0; 4675 pc = pOp->p2 - 1; 4676 p->aCounter[pOp->p5]++; 4677 #ifdef SQLITE_TEST 4678 sqlite3_search_count++; 4679 #endif 4680 }else{ 4681 pC->nullRow = 1; 4682 } 4683 goto check_for_interrupt; 4684 } 4685 4686 /* Opcode: IdxInsert P1 P2 P3 * P5 4687 ** Synopsis: key=r[P2] 4688 ** 4689 ** Register P2 holds an SQL index key made using the 4690 ** MakeRecord instructions. This opcode writes that key 4691 ** into the index P1. Data for the entry is nil. 4692 ** 4693 ** P3 is a flag that provides a hint to the b-tree layer that this 4694 ** insert is likely to be an append. 4695 ** 4696 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4697 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4698 ** then the change counter is unchanged. 4699 ** 4700 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4701 ** just done a seek to the spot where the new entry is to be inserted. 4702 ** This flag avoids doing an extra seek. 4703 ** 4704 ** This instruction only works for indices. The equivalent instruction 4705 ** for tables is OP_Insert. 4706 */ 4707 case OP_SorterInsert: /* in2 */ 4708 case OP_IdxInsert: { /* in2 */ 4709 VdbeCursor *pC; 4710 BtCursor *pCrsr; 4711 int nKey; 4712 const char *zKey; 4713 4714 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4715 pC = p->apCsr[pOp->p1]; 4716 assert( pC!=0 ); 4717 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4718 pIn2 = &aMem[pOp->p2]; 4719 assert( pIn2->flags & MEM_Blob ); 4720 pCrsr = pC->pCursor; 4721 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4722 assert( pCrsr!=0 ); 4723 assert( pC->isTable==0 ); 4724 rc = ExpandBlob(pIn2); 4725 if( rc==SQLITE_OK ){ 4726 if( isSorter(pC) ){ 4727 rc = sqlite3VdbeSorterWrite(pC, pIn2); 4728 }else{ 4729 nKey = pIn2->n; 4730 zKey = pIn2->z; 4731 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4732 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4733 ); 4734 assert( pC->deferredMoveto==0 ); 4735 pC->cacheStatus = CACHE_STALE; 4736 } 4737 } 4738 break; 4739 } 4740 4741 /* Opcode: IdxDelete P1 P2 P3 * * 4742 ** Synopsis: key=r[P2@P3] 4743 ** 4744 ** The content of P3 registers starting at register P2 form 4745 ** an unpacked index key. This opcode removes that entry from the 4746 ** index opened by cursor P1. 4747 */ 4748 case OP_IdxDelete: { 4749 VdbeCursor *pC; 4750 BtCursor *pCrsr; 4751 int res; 4752 UnpackedRecord r; 4753 4754 assert( pOp->p3>0 ); 4755 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4756 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4757 pC = p->apCsr[pOp->p1]; 4758 assert( pC!=0 ); 4759 pCrsr = pC->pCursor; 4760 assert( pCrsr!=0 ); 4761 assert( pOp->p5==0 ); 4762 r.pKeyInfo = pC->pKeyInfo; 4763 r.nField = (u16)pOp->p3; 4764 r.default_rc = 0; 4765 r.aMem = &aMem[pOp->p2]; 4766 #ifdef SQLITE_DEBUG 4767 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4768 #endif 4769 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4770 if( rc==SQLITE_OK && res==0 ){ 4771 rc = sqlite3BtreeDelete(pCrsr); 4772 } 4773 assert( pC->deferredMoveto==0 ); 4774 pC->cacheStatus = CACHE_STALE; 4775 break; 4776 } 4777 4778 /* Opcode: IdxRowid P1 P2 * * * 4779 ** Synopsis: r[P2]=rowid 4780 ** 4781 ** Write into register P2 an integer which is the last entry in the record at 4782 ** the end of the index key pointed to by cursor P1. This integer should be 4783 ** the rowid of the table entry to which this index entry points. 4784 ** 4785 ** See also: Rowid, MakeRecord. 4786 */ 4787 case OP_IdxRowid: { /* out2-prerelease */ 4788 BtCursor *pCrsr; 4789 VdbeCursor *pC; 4790 i64 rowid; 4791 4792 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4793 pC = p->apCsr[pOp->p1]; 4794 assert( pC!=0 ); 4795 pCrsr = pC->pCursor; 4796 assert( pCrsr!=0 ); 4797 pOut->flags = MEM_Null; 4798 assert( pC->isTable==0 ); 4799 assert( pC->deferredMoveto==0 ); 4800 4801 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 4802 ** out from under the cursor. That will never happend for an IdxRowid 4803 ** opcode, hence the NEVER() arround the check of the return value. 4804 */ 4805 rc = sqlite3VdbeCursorRestore(pC); 4806 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4807 4808 if( !pC->nullRow ){ 4809 rowid = 0; /* Not needed. Only used to silence a warning. */ 4810 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4811 if( rc!=SQLITE_OK ){ 4812 goto abort_due_to_error; 4813 } 4814 pOut->u.i = rowid; 4815 pOut->flags = MEM_Int; 4816 } 4817 break; 4818 } 4819 4820 /* Opcode: IdxGE P1 P2 P3 P4 P5 4821 ** Synopsis: key=r[P3@P4] 4822 ** 4823 ** The P4 register values beginning with P3 form an unpacked index 4824 ** key that omits the PRIMARY KEY. Compare this key value against the index 4825 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4826 ** fields at the end. 4827 ** 4828 ** If the P1 index entry is greater than or equal to the key value 4829 ** then jump to P2. Otherwise fall through to the next instruction. 4830 */ 4831 /* Opcode: IdxGT P1 P2 P3 P4 P5 4832 ** Synopsis: key=r[P3@P4] 4833 ** 4834 ** The P4 register values beginning with P3 form an unpacked index 4835 ** key that omits the PRIMARY KEY. Compare this key value against the index 4836 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4837 ** fields at the end. 4838 ** 4839 ** If the P1 index entry is greater than the key value 4840 ** then jump to P2. Otherwise fall through to the next instruction. 4841 */ 4842 /* Opcode: IdxLT P1 P2 P3 P4 P5 4843 ** Synopsis: key=r[P3@P4] 4844 ** 4845 ** The P4 register values beginning with P3 form an unpacked index 4846 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4847 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4848 ** ROWID on the P1 index. 4849 ** 4850 ** If the P1 index entry is less than the key value then jump to P2. 4851 ** Otherwise fall through to the next instruction. 4852 */ 4853 /* Opcode: IdxLE P1 P2 P3 P4 P5 4854 ** Synopsis: key=r[P3@P4] 4855 ** 4856 ** The P4 register values beginning with P3 form an unpacked index 4857 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4858 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4859 ** ROWID on the P1 index. 4860 ** 4861 ** If the P1 index entry is less than or equal to the key value then jump 4862 ** to P2. Otherwise fall through to the next instruction. 4863 */ 4864 case OP_IdxLE: /* jump */ 4865 case OP_IdxGT: /* jump */ 4866 case OP_IdxLT: /* jump */ 4867 case OP_IdxGE: { /* jump */ 4868 VdbeCursor *pC; 4869 int res; 4870 UnpackedRecord r; 4871 4872 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4873 pC = p->apCsr[pOp->p1]; 4874 assert( pC!=0 ); 4875 assert( pC->isOrdered ); 4876 assert( pC->pCursor!=0); 4877 assert( pC->deferredMoveto==0 ); 4878 assert( pOp->p5==0 || pOp->p5==1 ); 4879 assert( pOp->p4type==P4_INT32 ); 4880 r.pKeyInfo = pC->pKeyInfo; 4881 r.nField = (u16)pOp->p4.i; 4882 if( pOp->opcode<OP_IdxLT ){ 4883 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 4884 r.default_rc = -1; 4885 }else{ 4886 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 4887 r.default_rc = 0; 4888 } 4889 r.aMem = &aMem[pOp->p3]; 4890 #ifdef SQLITE_DEBUG 4891 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4892 #endif 4893 res = 0; /* Not needed. Only used to silence a warning. */ 4894 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4895 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 4896 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 4897 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 4898 res = -res; 4899 }else{ 4900 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 4901 res++; 4902 } 4903 VdbeBranchTaken(res>0,2); 4904 if( res>0 ){ 4905 pc = pOp->p2 - 1 ; 4906 } 4907 break; 4908 } 4909 4910 /* Opcode: Destroy P1 P2 P3 * * 4911 ** 4912 ** Delete an entire database table or index whose root page in the database 4913 ** file is given by P1. 4914 ** 4915 ** The table being destroyed is in the main database file if P3==0. If 4916 ** P3==1 then the table to be clear is in the auxiliary database file 4917 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4918 ** 4919 ** If AUTOVACUUM is enabled then it is possible that another root page 4920 ** might be moved into the newly deleted root page in order to keep all 4921 ** root pages contiguous at the beginning of the database. The former 4922 ** value of the root page that moved - its value before the move occurred - 4923 ** is stored in register P2. If no page 4924 ** movement was required (because the table being dropped was already 4925 ** the last one in the database) then a zero is stored in register P2. 4926 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4927 ** 4928 ** See also: Clear 4929 */ 4930 case OP_Destroy: { /* out2-prerelease */ 4931 int iMoved; 4932 int iCnt; 4933 Vdbe *pVdbe; 4934 int iDb; 4935 4936 assert( p->readOnly==0 ); 4937 #ifndef SQLITE_OMIT_VIRTUALTABLE 4938 iCnt = 0; 4939 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4940 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4941 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4942 ){ 4943 iCnt++; 4944 } 4945 } 4946 #else 4947 iCnt = db->nVdbeRead; 4948 #endif 4949 pOut->flags = MEM_Null; 4950 if( iCnt>1 ){ 4951 rc = SQLITE_LOCKED; 4952 p->errorAction = OE_Abort; 4953 }else{ 4954 iDb = pOp->p3; 4955 assert( iCnt==1 ); 4956 assert( DbMaskTest(p->btreeMask, iDb) ); 4957 iMoved = 0; /* Not needed. Only to silence a warning. */ 4958 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4959 pOut->flags = MEM_Int; 4960 pOut->u.i = iMoved; 4961 #ifndef SQLITE_OMIT_AUTOVACUUM 4962 if( rc==SQLITE_OK && iMoved!=0 ){ 4963 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4964 /* All OP_Destroy operations occur on the same btree */ 4965 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4966 resetSchemaOnFault = iDb+1; 4967 } 4968 #endif 4969 } 4970 break; 4971 } 4972 4973 /* Opcode: Clear P1 P2 P3 4974 ** 4975 ** Delete all contents of the database table or index whose root page 4976 ** in the database file is given by P1. But, unlike Destroy, do not 4977 ** remove the table or index from the database file. 4978 ** 4979 ** The table being clear is in the main database file if P2==0. If 4980 ** P2==1 then the table to be clear is in the auxiliary database file 4981 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4982 ** 4983 ** If the P3 value is non-zero, then the table referred to must be an 4984 ** intkey table (an SQL table, not an index). In this case the row change 4985 ** count is incremented by the number of rows in the table being cleared. 4986 ** If P3 is greater than zero, then the value stored in register P3 is 4987 ** also incremented by the number of rows in the table being cleared. 4988 ** 4989 ** See also: Destroy 4990 */ 4991 case OP_Clear: { 4992 int nChange; 4993 4994 nChange = 0; 4995 assert( p->readOnly==0 ); 4996 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 4997 rc = sqlite3BtreeClearTable( 4998 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4999 ); 5000 if( pOp->p3 ){ 5001 p->nChange += nChange; 5002 if( pOp->p3>0 ){ 5003 assert( memIsValid(&aMem[pOp->p3]) ); 5004 memAboutToChange(p, &aMem[pOp->p3]); 5005 aMem[pOp->p3].u.i += nChange; 5006 } 5007 } 5008 break; 5009 } 5010 5011 /* Opcode: ResetSorter P1 * * * * 5012 ** 5013 ** Delete all contents from the ephemeral table or sorter 5014 ** that is open on cursor P1. 5015 ** 5016 ** This opcode only works for cursors used for sorting and 5017 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5018 */ 5019 case OP_ResetSorter: { 5020 VdbeCursor *pC; 5021 5022 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5023 pC = p->apCsr[pOp->p1]; 5024 assert( pC!=0 ); 5025 if( pC->pSorter ){ 5026 sqlite3VdbeSorterReset(db, pC->pSorter); 5027 }else{ 5028 assert( pC->isEphemeral ); 5029 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); 5030 } 5031 break; 5032 } 5033 5034 /* Opcode: CreateTable P1 P2 * * * 5035 ** Synopsis: r[P2]=root iDb=P1 5036 ** 5037 ** Allocate a new table in the main database file if P1==0 or in the 5038 ** auxiliary database file if P1==1 or in an attached database if 5039 ** P1>1. Write the root page number of the new table into 5040 ** register P2 5041 ** 5042 ** The difference between a table and an index is this: A table must 5043 ** have a 4-byte integer key and can have arbitrary data. An index 5044 ** has an arbitrary key but no data. 5045 ** 5046 ** See also: CreateIndex 5047 */ 5048 /* Opcode: CreateIndex P1 P2 * * * 5049 ** Synopsis: r[P2]=root iDb=P1 5050 ** 5051 ** Allocate a new index in the main database file if P1==0 or in the 5052 ** auxiliary database file if P1==1 or in an attached database if 5053 ** P1>1. Write the root page number of the new table into 5054 ** register P2. 5055 ** 5056 ** See documentation on OP_CreateTable for additional information. 5057 */ 5058 case OP_CreateIndex: /* out2-prerelease */ 5059 case OP_CreateTable: { /* out2-prerelease */ 5060 int pgno; 5061 int flags; 5062 Db *pDb; 5063 5064 pgno = 0; 5065 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5066 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5067 assert( p->readOnly==0 ); 5068 pDb = &db->aDb[pOp->p1]; 5069 assert( pDb->pBt!=0 ); 5070 if( pOp->opcode==OP_CreateTable ){ 5071 /* flags = BTREE_INTKEY; */ 5072 flags = BTREE_INTKEY; 5073 }else{ 5074 flags = BTREE_BLOBKEY; 5075 } 5076 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5077 pOut->u.i = pgno; 5078 break; 5079 } 5080 5081 /* Opcode: ParseSchema P1 * * P4 * 5082 ** 5083 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5084 ** that match the WHERE clause P4. 5085 ** 5086 ** This opcode invokes the parser to create a new virtual machine, 5087 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5088 */ 5089 case OP_ParseSchema: { 5090 int iDb; 5091 const char *zMaster; 5092 char *zSql; 5093 InitData initData; 5094 5095 /* Any prepared statement that invokes this opcode will hold mutexes 5096 ** on every btree. This is a prerequisite for invoking 5097 ** sqlite3InitCallback(). 5098 */ 5099 #ifdef SQLITE_DEBUG 5100 for(iDb=0; iDb<db->nDb; iDb++){ 5101 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5102 } 5103 #endif 5104 5105 iDb = pOp->p1; 5106 assert( iDb>=0 && iDb<db->nDb ); 5107 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5108 /* Used to be a conditional */ { 5109 zMaster = SCHEMA_TABLE(iDb); 5110 initData.db = db; 5111 initData.iDb = pOp->p1; 5112 initData.pzErrMsg = &p->zErrMsg; 5113 zSql = sqlite3MPrintf(db, 5114 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5115 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5116 if( zSql==0 ){ 5117 rc = SQLITE_NOMEM; 5118 }else{ 5119 assert( db->init.busy==0 ); 5120 db->init.busy = 1; 5121 initData.rc = SQLITE_OK; 5122 assert( !db->mallocFailed ); 5123 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5124 if( rc==SQLITE_OK ) rc = initData.rc; 5125 sqlite3DbFree(db, zSql); 5126 db->init.busy = 0; 5127 } 5128 } 5129 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 5130 if( rc==SQLITE_NOMEM ){ 5131 goto no_mem; 5132 } 5133 break; 5134 } 5135 5136 #if !defined(SQLITE_OMIT_ANALYZE) 5137 /* Opcode: LoadAnalysis P1 * * * * 5138 ** 5139 ** Read the sqlite_stat1 table for database P1 and load the content 5140 ** of that table into the internal index hash table. This will cause 5141 ** the analysis to be used when preparing all subsequent queries. 5142 */ 5143 case OP_LoadAnalysis: { 5144 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5145 rc = sqlite3AnalysisLoad(db, pOp->p1); 5146 break; 5147 } 5148 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5149 5150 /* Opcode: DropTable P1 * * P4 * 5151 ** 5152 ** Remove the internal (in-memory) data structures that describe 5153 ** the table named P4 in database P1. This is called after a table 5154 ** is dropped from disk (using the Destroy opcode) in order to keep 5155 ** the internal representation of the 5156 ** schema consistent with what is on disk. 5157 */ 5158 case OP_DropTable: { 5159 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5160 break; 5161 } 5162 5163 /* Opcode: DropIndex P1 * * P4 * 5164 ** 5165 ** Remove the internal (in-memory) data structures that describe 5166 ** the index named P4 in database P1. This is called after an index 5167 ** is dropped from disk (using the Destroy opcode) 5168 ** in order to keep the internal representation of the 5169 ** schema consistent with what is on disk. 5170 */ 5171 case OP_DropIndex: { 5172 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5173 break; 5174 } 5175 5176 /* Opcode: DropTrigger P1 * * P4 * 5177 ** 5178 ** Remove the internal (in-memory) data structures that describe 5179 ** the trigger named P4 in database P1. This is called after a trigger 5180 ** is dropped from disk (using the Destroy opcode) in order to keep 5181 ** the internal representation of the 5182 ** schema consistent with what is on disk. 5183 */ 5184 case OP_DropTrigger: { 5185 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5186 break; 5187 } 5188 5189 5190 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5191 /* Opcode: IntegrityCk P1 P2 P3 * P5 5192 ** 5193 ** Do an analysis of the currently open database. Store in 5194 ** register P1 the text of an error message describing any problems. 5195 ** If no problems are found, store a NULL in register P1. 5196 ** 5197 ** The register P3 contains the maximum number of allowed errors. 5198 ** At most reg(P3) errors will be reported. 5199 ** In other words, the analysis stops as soon as reg(P1) errors are 5200 ** seen. Reg(P1) is updated with the number of errors remaining. 5201 ** 5202 ** The root page numbers of all tables in the database are integer 5203 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5204 ** total. 5205 ** 5206 ** If P5 is not zero, the check is done on the auxiliary database 5207 ** file, not the main database file. 5208 ** 5209 ** This opcode is used to implement the integrity_check pragma. 5210 */ 5211 case OP_IntegrityCk: { 5212 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5213 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5214 int j; /* Loop counter */ 5215 int nErr; /* Number of errors reported */ 5216 char *z; /* Text of the error report */ 5217 Mem *pnErr; /* Register keeping track of errors remaining */ 5218 5219 assert( p->bIsReader ); 5220 nRoot = pOp->p2; 5221 assert( nRoot>0 ); 5222 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5223 if( aRoot==0 ) goto no_mem; 5224 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5225 pnErr = &aMem[pOp->p3]; 5226 assert( (pnErr->flags & MEM_Int)!=0 ); 5227 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5228 pIn1 = &aMem[pOp->p1]; 5229 for(j=0; j<nRoot; j++){ 5230 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5231 } 5232 aRoot[j] = 0; 5233 assert( pOp->p5<db->nDb ); 5234 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5235 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5236 (int)pnErr->u.i, &nErr); 5237 sqlite3DbFree(db, aRoot); 5238 pnErr->u.i -= nErr; 5239 sqlite3VdbeMemSetNull(pIn1); 5240 if( nErr==0 ){ 5241 assert( z==0 ); 5242 }else if( z==0 ){ 5243 goto no_mem; 5244 }else{ 5245 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5246 } 5247 UPDATE_MAX_BLOBSIZE(pIn1); 5248 sqlite3VdbeChangeEncoding(pIn1, encoding); 5249 break; 5250 } 5251 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5252 5253 /* Opcode: RowSetAdd P1 P2 * * * 5254 ** Synopsis: rowset(P1)=r[P2] 5255 ** 5256 ** Insert the integer value held by register P2 into a boolean index 5257 ** held in register P1. 5258 ** 5259 ** An assertion fails if P2 is not an integer. 5260 */ 5261 case OP_RowSetAdd: { /* in1, in2 */ 5262 pIn1 = &aMem[pOp->p1]; 5263 pIn2 = &aMem[pOp->p2]; 5264 assert( (pIn2->flags & MEM_Int)!=0 ); 5265 if( (pIn1->flags & MEM_RowSet)==0 ){ 5266 sqlite3VdbeMemSetRowSet(pIn1); 5267 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5268 } 5269 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5270 break; 5271 } 5272 5273 /* Opcode: RowSetRead P1 P2 P3 * * 5274 ** Synopsis: r[P3]=rowset(P1) 5275 ** 5276 ** Extract the smallest value from boolean index P1 and put that value into 5277 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5278 ** unchanged and jump to instruction P2. 5279 */ 5280 case OP_RowSetRead: { /* jump, in1, out3 */ 5281 i64 val; 5282 5283 pIn1 = &aMem[pOp->p1]; 5284 if( (pIn1->flags & MEM_RowSet)==0 5285 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5286 ){ 5287 /* The boolean index is empty */ 5288 sqlite3VdbeMemSetNull(pIn1); 5289 pc = pOp->p2 - 1; 5290 VdbeBranchTaken(1,2); 5291 }else{ 5292 /* A value was pulled from the index */ 5293 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5294 VdbeBranchTaken(0,2); 5295 } 5296 goto check_for_interrupt; 5297 } 5298 5299 /* Opcode: RowSetTest P1 P2 P3 P4 5300 ** Synopsis: if r[P3] in rowset(P1) goto P2 5301 ** 5302 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5303 ** contains a RowSet object and that RowSet object contains 5304 ** the value held in P3, jump to register P2. Otherwise, insert the 5305 ** integer in P3 into the RowSet and continue on to the 5306 ** next opcode. 5307 ** 5308 ** The RowSet object is optimized for the case where successive sets 5309 ** of integers, where each set contains no duplicates. Each set 5310 ** of values is identified by a unique P4 value. The first set 5311 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5312 ** non-negative. For non-negative values of P4 only the lower 4 5313 ** bits are significant. 5314 ** 5315 ** This allows optimizations: (a) when P4==0 there is no need to test 5316 ** the rowset object for P3, as it is guaranteed not to contain it, 5317 ** (b) when P4==-1 there is no need to insert the value, as it will 5318 ** never be tested for, and (c) when a value that is part of set X is 5319 ** inserted, there is no need to search to see if the same value was 5320 ** previously inserted as part of set X (only if it was previously 5321 ** inserted as part of some other set). 5322 */ 5323 case OP_RowSetTest: { /* jump, in1, in3 */ 5324 int iSet; 5325 int exists; 5326 5327 pIn1 = &aMem[pOp->p1]; 5328 pIn3 = &aMem[pOp->p3]; 5329 iSet = pOp->p4.i; 5330 assert( pIn3->flags&MEM_Int ); 5331 5332 /* If there is anything other than a rowset object in memory cell P1, 5333 ** delete it now and initialize P1 with an empty rowset 5334 */ 5335 if( (pIn1->flags & MEM_RowSet)==0 ){ 5336 sqlite3VdbeMemSetRowSet(pIn1); 5337 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5338 } 5339 5340 assert( pOp->p4type==P4_INT32 ); 5341 assert( iSet==-1 || iSet>=0 ); 5342 if( iSet ){ 5343 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5344 VdbeBranchTaken(exists!=0,2); 5345 if( exists ){ 5346 pc = pOp->p2 - 1; 5347 break; 5348 } 5349 } 5350 if( iSet>=0 ){ 5351 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5352 } 5353 break; 5354 } 5355 5356 5357 #ifndef SQLITE_OMIT_TRIGGER 5358 5359 /* Opcode: Program P1 P2 P3 P4 P5 5360 ** 5361 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5362 ** 5363 ** P1 contains the address of the memory cell that contains the first memory 5364 ** cell in an array of values used as arguments to the sub-program. P2 5365 ** contains the address to jump to if the sub-program throws an IGNORE 5366 ** exception using the RAISE() function. Register P3 contains the address 5367 ** of a memory cell in this (the parent) VM that is used to allocate the 5368 ** memory required by the sub-vdbe at runtime. 5369 ** 5370 ** P4 is a pointer to the VM containing the trigger program. 5371 ** 5372 ** If P5 is non-zero, then recursive program invocation is enabled. 5373 */ 5374 case OP_Program: { /* jump */ 5375 int nMem; /* Number of memory registers for sub-program */ 5376 int nByte; /* Bytes of runtime space required for sub-program */ 5377 Mem *pRt; /* Register to allocate runtime space */ 5378 Mem *pMem; /* Used to iterate through memory cells */ 5379 Mem *pEnd; /* Last memory cell in new array */ 5380 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5381 SubProgram *pProgram; /* Sub-program to execute */ 5382 void *t; /* Token identifying trigger */ 5383 5384 pProgram = pOp->p4.pProgram; 5385 pRt = &aMem[pOp->p3]; 5386 assert( pProgram->nOp>0 ); 5387 5388 /* If the p5 flag is clear, then recursive invocation of triggers is 5389 ** disabled for backwards compatibility (p5 is set if this sub-program 5390 ** is really a trigger, not a foreign key action, and the flag set 5391 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5392 ** 5393 ** It is recursive invocation of triggers, at the SQL level, that is 5394 ** disabled. In some cases a single trigger may generate more than one 5395 ** SubProgram (if the trigger may be executed with more than one different 5396 ** ON CONFLICT algorithm). SubProgram structures associated with a 5397 ** single trigger all have the same value for the SubProgram.token 5398 ** variable. */ 5399 if( pOp->p5 ){ 5400 t = pProgram->token; 5401 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5402 if( pFrame ) break; 5403 } 5404 5405 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5406 rc = SQLITE_ERROR; 5407 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5408 break; 5409 } 5410 5411 /* Register pRt is used to store the memory required to save the state 5412 ** of the current program, and the memory required at runtime to execute 5413 ** the trigger program. If this trigger has been fired before, then pRt 5414 ** is already allocated. Otherwise, it must be initialized. */ 5415 if( (pRt->flags&MEM_Frame)==0 ){ 5416 /* SubProgram.nMem is set to the number of memory cells used by the 5417 ** program stored in SubProgram.aOp. As well as these, one memory 5418 ** cell is required for each cursor used by the program. Set local 5419 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5420 */ 5421 nMem = pProgram->nMem + pProgram->nCsr; 5422 nByte = ROUND8(sizeof(VdbeFrame)) 5423 + nMem * sizeof(Mem) 5424 + pProgram->nCsr * sizeof(VdbeCursor *) 5425 + pProgram->nOnce * sizeof(u8); 5426 pFrame = sqlite3DbMallocZero(db, nByte); 5427 if( !pFrame ){ 5428 goto no_mem; 5429 } 5430 sqlite3VdbeMemRelease(pRt); 5431 pRt->flags = MEM_Frame; 5432 pRt->u.pFrame = pFrame; 5433 5434 pFrame->v = p; 5435 pFrame->nChildMem = nMem; 5436 pFrame->nChildCsr = pProgram->nCsr; 5437 pFrame->pc = pc; 5438 pFrame->aMem = p->aMem; 5439 pFrame->nMem = p->nMem; 5440 pFrame->apCsr = p->apCsr; 5441 pFrame->nCursor = p->nCursor; 5442 pFrame->aOp = p->aOp; 5443 pFrame->nOp = p->nOp; 5444 pFrame->token = pProgram->token; 5445 pFrame->aOnceFlag = p->aOnceFlag; 5446 pFrame->nOnceFlag = p->nOnceFlag; 5447 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5448 pFrame->anExec = p->anExec; 5449 #endif 5450 5451 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5452 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5453 pMem->flags = MEM_Undefined; 5454 pMem->db = db; 5455 } 5456 }else{ 5457 pFrame = pRt->u.pFrame; 5458 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5459 assert( pProgram->nCsr==pFrame->nChildCsr ); 5460 assert( pc==pFrame->pc ); 5461 } 5462 5463 p->nFrame++; 5464 pFrame->pParent = p->pFrame; 5465 pFrame->lastRowid = lastRowid; 5466 pFrame->nChange = p->nChange; 5467 pFrame->nDbChange = p->db->nChange; 5468 p->nChange = 0; 5469 p->pFrame = pFrame; 5470 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5471 p->nMem = pFrame->nChildMem; 5472 p->nCursor = (u16)pFrame->nChildCsr; 5473 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5474 p->aOp = aOp = pProgram->aOp; 5475 p->nOp = pProgram->nOp; 5476 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5477 p->nOnceFlag = pProgram->nOnce; 5478 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5479 p->anExec = 0; 5480 #endif 5481 pc = -1; 5482 memset(p->aOnceFlag, 0, p->nOnceFlag); 5483 5484 break; 5485 } 5486 5487 /* Opcode: Param P1 P2 * * * 5488 ** 5489 ** This opcode is only ever present in sub-programs called via the 5490 ** OP_Program instruction. Copy a value currently stored in a memory 5491 ** cell of the calling (parent) frame to cell P2 in the current frames 5492 ** address space. This is used by trigger programs to access the new.* 5493 ** and old.* values. 5494 ** 5495 ** The address of the cell in the parent frame is determined by adding 5496 ** the value of the P1 argument to the value of the P1 argument to the 5497 ** calling OP_Program instruction. 5498 */ 5499 case OP_Param: { /* out2-prerelease */ 5500 VdbeFrame *pFrame; 5501 Mem *pIn; 5502 pFrame = p->pFrame; 5503 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5504 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5505 break; 5506 } 5507 5508 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5509 5510 #ifndef SQLITE_OMIT_FOREIGN_KEY 5511 /* Opcode: FkCounter P1 P2 * * * 5512 ** Synopsis: fkctr[P1]+=P2 5513 ** 5514 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5515 ** If P1 is non-zero, the database constraint counter is incremented 5516 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5517 ** statement counter is incremented (immediate foreign key constraints). 5518 */ 5519 case OP_FkCounter: { 5520 if( db->flags & SQLITE_DeferFKs ){ 5521 db->nDeferredImmCons += pOp->p2; 5522 }else if( pOp->p1 ){ 5523 db->nDeferredCons += pOp->p2; 5524 }else{ 5525 p->nFkConstraint += pOp->p2; 5526 } 5527 break; 5528 } 5529 5530 /* Opcode: FkIfZero P1 P2 * * * 5531 ** Synopsis: if fkctr[P1]==0 goto P2 5532 ** 5533 ** This opcode tests if a foreign key constraint-counter is currently zero. 5534 ** If so, jump to instruction P2. Otherwise, fall through to the next 5535 ** instruction. 5536 ** 5537 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5538 ** is zero (the one that counts deferred constraint violations). If P1 is 5539 ** zero, the jump is taken if the statement constraint-counter is zero 5540 ** (immediate foreign key constraint violations). 5541 */ 5542 case OP_FkIfZero: { /* jump */ 5543 if( pOp->p1 ){ 5544 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5545 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5546 }else{ 5547 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5548 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5549 } 5550 break; 5551 } 5552 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5553 5554 #ifndef SQLITE_OMIT_AUTOINCREMENT 5555 /* Opcode: MemMax P1 P2 * * * 5556 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5557 ** 5558 ** P1 is a register in the root frame of this VM (the root frame is 5559 ** different from the current frame if this instruction is being executed 5560 ** within a sub-program). Set the value of register P1 to the maximum of 5561 ** its current value and the value in register P2. 5562 ** 5563 ** This instruction throws an error if the memory cell is not initially 5564 ** an integer. 5565 */ 5566 case OP_MemMax: { /* in2 */ 5567 VdbeFrame *pFrame; 5568 if( p->pFrame ){ 5569 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5570 pIn1 = &pFrame->aMem[pOp->p1]; 5571 }else{ 5572 pIn1 = &aMem[pOp->p1]; 5573 } 5574 assert( memIsValid(pIn1) ); 5575 sqlite3VdbeMemIntegerify(pIn1); 5576 pIn2 = &aMem[pOp->p2]; 5577 sqlite3VdbeMemIntegerify(pIn2); 5578 if( pIn1->u.i<pIn2->u.i){ 5579 pIn1->u.i = pIn2->u.i; 5580 } 5581 break; 5582 } 5583 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5584 5585 /* Opcode: IfPos P1 P2 * * * 5586 ** Synopsis: if r[P1]>0 goto P2 5587 ** 5588 ** Register P1 must contain an integer. 5589 ** If the value of register P1 is 1 or greater, jump to P2 and 5590 ** add the literal value P3 to register P1. 5591 ** 5592 ** If the initial value of register P1 is less than 1, then the 5593 ** value is unchanged and control passes through to the next instruction. 5594 */ 5595 case OP_IfPos: { /* jump, in1 */ 5596 pIn1 = &aMem[pOp->p1]; 5597 assert( pIn1->flags&MEM_Int ); 5598 VdbeBranchTaken( pIn1->u.i>0, 2); 5599 if( pIn1->u.i>0 ){ 5600 pc = pOp->p2 - 1; 5601 } 5602 break; 5603 } 5604 5605 /* Opcode: IfNeg P1 P2 P3 * * 5606 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 5607 ** 5608 ** Register P1 must contain an integer. Add literal P3 to the value in 5609 ** register P1 then if the value of register P1 is less than zero, jump to P2. 5610 */ 5611 case OP_IfNeg: { /* jump, in1 */ 5612 pIn1 = &aMem[pOp->p1]; 5613 assert( pIn1->flags&MEM_Int ); 5614 pIn1->u.i += pOp->p3; 5615 VdbeBranchTaken(pIn1->u.i<0, 2); 5616 if( pIn1->u.i<0 ){ 5617 pc = pOp->p2 - 1; 5618 } 5619 break; 5620 } 5621 5622 /* Opcode: IfNotZero P1 P2 P3 * * 5623 ** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 5624 ** 5625 ** Register P1 must contain an integer. If the content of register P1 is 5626 ** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is 5627 ** initially zero, leave it unchanged and fall through. 5628 */ 5629 case OP_IfNotZero: { /* jump, in1 */ 5630 pIn1 = &aMem[pOp->p1]; 5631 assert( pIn1->flags&MEM_Int ); 5632 VdbeBranchTaken(pIn1->u.i<0, 2); 5633 if( pIn1->u.i ){ 5634 pIn1->u.i += pOp->p3; 5635 pc = pOp->p2 - 1; 5636 } 5637 break; 5638 } 5639 5640 /* Opcode: DecrJumpZero P1 P2 * * * 5641 ** Synopsis: if (--r[P1])==0 goto P2 5642 ** 5643 ** Register P1 must hold an integer. Decrement the value in register P1 5644 ** then jump to P2 if the new value is exactly zero. 5645 */ 5646 case OP_DecrJumpZero: { /* jump, in1 */ 5647 pIn1 = &aMem[pOp->p1]; 5648 assert( pIn1->flags&MEM_Int ); 5649 pIn1->u.i--; 5650 VdbeBranchTaken(pIn1->u.i==0, 2); 5651 if( pIn1->u.i==0 ){ 5652 pc = pOp->p2 - 1; 5653 } 5654 break; 5655 } 5656 5657 5658 /* Opcode: JumpZeroIncr P1 P2 * * * 5659 ** Synopsis: if (r[P1]++)==0 ) goto P2 5660 ** 5661 ** The register P1 must contain an integer. If register P1 is initially 5662 ** zero, then jump to P2. Increment register P1 regardless of whether or 5663 ** not the jump is taken. 5664 */ 5665 case OP_JumpZeroIncr: { /* jump, in1 */ 5666 pIn1 = &aMem[pOp->p1]; 5667 assert( pIn1->flags&MEM_Int ); 5668 VdbeBranchTaken(pIn1->u.i==0, 2); 5669 if( (pIn1->u.i++)==0 ){ 5670 pc = pOp->p2 - 1; 5671 } 5672 break; 5673 } 5674 5675 /* Opcode: AggStep * P2 P3 P4 P5 5676 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5677 ** 5678 ** Execute the step function for an aggregate. The 5679 ** function has P5 arguments. P4 is a pointer to the FuncDef 5680 ** structure that specifies the function. Use register 5681 ** P3 as the accumulator. 5682 ** 5683 ** The P5 arguments are taken from register P2 and its 5684 ** successors. 5685 */ 5686 case OP_AggStep: { 5687 int n; 5688 int i; 5689 Mem *pMem; 5690 Mem *pRec; 5691 Mem t; 5692 sqlite3_context ctx; 5693 sqlite3_value **apVal; 5694 5695 n = pOp->p5; 5696 assert( n>=0 ); 5697 pRec = &aMem[pOp->p2]; 5698 apVal = p->apArg; 5699 assert( apVal || n==0 ); 5700 for(i=0; i<n; i++, pRec++){ 5701 assert( memIsValid(pRec) ); 5702 apVal[i] = pRec; 5703 memAboutToChange(p, pRec); 5704 } 5705 ctx.pFunc = pOp->p4.pFunc; 5706 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5707 ctx.pMem = pMem = &aMem[pOp->p3]; 5708 pMem->n++; 5709 sqlite3VdbeMemInit(&t, db, MEM_Null); 5710 ctx.pOut = &t; 5711 ctx.isError = 0; 5712 ctx.pVdbe = p; 5713 ctx.iOp = pc; 5714 ctx.skipFlag = 0; 5715 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5716 if( ctx.isError ){ 5717 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); 5718 rc = ctx.isError; 5719 } 5720 if( ctx.skipFlag ){ 5721 assert( pOp[-1].opcode==OP_CollSeq ); 5722 i = pOp[-1].p1; 5723 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5724 } 5725 sqlite3VdbeMemRelease(&t); 5726 break; 5727 } 5728 5729 /* Opcode: AggFinal P1 P2 * P4 * 5730 ** Synopsis: accum=r[P1] N=P2 5731 ** 5732 ** Execute the finalizer function for an aggregate. P1 is 5733 ** the memory location that is the accumulator for the aggregate. 5734 ** 5735 ** P2 is the number of arguments that the step function takes and 5736 ** P4 is a pointer to the FuncDef for this function. The P2 5737 ** argument is not used by this opcode. It is only there to disambiguate 5738 ** functions that can take varying numbers of arguments. The 5739 ** P4 argument is only needed for the degenerate case where 5740 ** the step function was not previously called. 5741 */ 5742 case OP_AggFinal: { 5743 Mem *pMem; 5744 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5745 pMem = &aMem[pOp->p1]; 5746 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5747 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5748 if( rc ){ 5749 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5750 } 5751 sqlite3VdbeChangeEncoding(pMem, encoding); 5752 UPDATE_MAX_BLOBSIZE(pMem); 5753 if( sqlite3VdbeMemTooBig(pMem) ){ 5754 goto too_big; 5755 } 5756 break; 5757 } 5758 5759 #ifndef SQLITE_OMIT_WAL 5760 /* Opcode: Checkpoint P1 P2 P3 * * 5761 ** 5762 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5763 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 5764 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 5765 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5766 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5767 ** in the WAL that have been checkpointed after the checkpoint 5768 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5769 ** mem[P3+2] are initialized to -1. 5770 */ 5771 case OP_Checkpoint: { 5772 int i; /* Loop counter */ 5773 int aRes[3]; /* Results */ 5774 Mem *pMem; /* Write results here */ 5775 5776 assert( p->readOnly==0 ); 5777 aRes[0] = 0; 5778 aRes[1] = aRes[2] = -1; 5779 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5780 || pOp->p2==SQLITE_CHECKPOINT_FULL 5781 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5782 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 5783 ); 5784 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5785 if( rc==SQLITE_BUSY ){ 5786 rc = SQLITE_OK; 5787 aRes[0] = 1; 5788 } 5789 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5790 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5791 } 5792 break; 5793 }; 5794 #endif 5795 5796 #ifndef SQLITE_OMIT_PRAGMA 5797 /* Opcode: JournalMode P1 P2 P3 * * 5798 ** 5799 ** Change the journal mode of database P1 to P3. P3 must be one of the 5800 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5801 ** modes (delete, truncate, persist, off and memory), this is a simple 5802 ** operation. No IO is required. 5803 ** 5804 ** If changing into or out of WAL mode the procedure is more complicated. 5805 ** 5806 ** Write a string containing the final journal-mode to register P2. 5807 */ 5808 case OP_JournalMode: { /* out2-prerelease */ 5809 Btree *pBt; /* Btree to change journal mode of */ 5810 Pager *pPager; /* Pager associated with pBt */ 5811 int eNew; /* New journal mode */ 5812 int eOld; /* The old journal mode */ 5813 #ifndef SQLITE_OMIT_WAL 5814 const char *zFilename; /* Name of database file for pPager */ 5815 #endif 5816 5817 eNew = pOp->p3; 5818 assert( eNew==PAGER_JOURNALMODE_DELETE 5819 || eNew==PAGER_JOURNALMODE_TRUNCATE 5820 || eNew==PAGER_JOURNALMODE_PERSIST 5821 || eNew==PAGER_JOURNALMODE_OFF 5822 || eNew==PAGER_JOURNALMODE_MEMORY 5823 || eNew==PAGER_JOURNALMODE_WAL 5824 || eNew==PAGER_JOURNALMODE_QUERY 5825 ); 5826 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5827 assert( p->readOnly==0 ); 5828 5829 pBt = db->aDb[pOp->p1].pBt; 5830 pPager = sqlite3BtreePager(pBt); 5831 eOld = sqlite3PagerGetJournalMode(pPager); 5832 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5833 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5834 5835 #ifndef SQLITE_OMIT_WAL 5836 zFilename = sqlite3PagerFilename(pPager, 1); 5837 5838 /* Do not allow a transition to journal_mode=WAL for a database 5839 ** in temporary storage or if the VFS does not support shared memory 5840 */ 5841 if( eNew==PAGER_JOURNALMODE_WAL 5842 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5843 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5844 ){ 5845 eNew = eOld; 5846 } 5847 5848 if( (eNew!=eOld) 5849 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5850 ){ 5851 if( !db->autoCommit || db->nVdbeRead>1 ){ 5852 rc = SQLITE_ERROR; 5853 sqlite3SetString(&p->zErrMsg, db, 5854 "cannot change %s wal mode from within a transaction", 5855 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5856 ); 5857 break; 5858 }else{ 5859 5860 if( eOld==PAGER_JOURNALMODE_WAL ){ 5861 /* If leaving WAL mode, close the log file. If successful, the call 5862 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5863 ** file. An EXCLUSIVE lock may still be held on the database file 5864 ** after a successful return. 5865 */ 5866 rc = sqlite3PagerCloseWal(pPager); 5867 if( rc==SQLITE_OK ){ 5868 sqlite3PagerSetJournalMode(pPager, eNew); 5869 } 5870 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5871 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5872 ** as an intermediate */ 5873 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5874 } 5875 5876 /* Open a transaction on the database file. Regardless of the journal 5877 ** mode, this transaction always uses a rollback journal. 5878 */ 5879 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5880 if( rc==SQLITE_OK ){ 5881 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5882 } 5883 } 5884 } 5885 #endif /* ifndef SQLITE_OMIT_WAL */ 5886 5887 if( rc ){ 5888 eNew = eOld; 5889 } 5890 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5891 5892 pOut = &aMem[pOp->p2]; 5893 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5894 pOut->z = (char *)sqlite3JournalModename(eNew); 5895 pOut->n = sqlite3Strlen30(pOut->z); 5896 pOut->enc = SQLITE_UTF8; 5897 sqlite3VdbeChangeEncoding(pOut, encoding); 5898 break; 5899 }; 5900 #endif /* SQLITE_OMIT_PRAGMA */ 5901 5902 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5903 /* Opcode: Vacuum * * * * * 5904 ** 5905 ** Vacuum the entire database. This opcode will cause other virtual 5906 ** machines to be created and run. It may not be called from within 5907 ** a transaction. 5908 */ 5909 case OP_Vacuum: { 5910 assert( p->readOnly==0 ); 5911 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5912 break; 5913 } 5914 #endif 5915 5916 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5917 /* Opcode: IncrVacuum P1 P2 * * * 5918 ** 5919 ** Perform a single step of the incremental vacuum procedure on 5920 ** the P1 database. If the vacuum has finished, jump to instruction 5921 ** P2. Otherwise, fall through to the next instruction. 5922 */ 5923 case OP_IncrVacuum: { /* jump */ 5924 Btree *pBt; 5925 5926 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5927 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5928 assert( p->readOnly==0 ); 5929 pBt = db->aDb[pOp->p1].pBt; 5930 rc = sqlite3BtreeIncrVacuum(pBt); 5931 VdbeBranchTaken(rc==SQLITE_DONE,2); 5932 if( rc==SQLITE_DONE ){ 5933 pc = pOp->p2 - 1; 5934 rc = SQLITE_OK; 5935 } 5936 break; 5937 } 5938 #endif 5939 5940 /* Opcode: Expire P1 * * * * 5941 ** 5942 ** Cause precompiled statements to expire. When an expired statement 5943 ** is executed using sqlite3_step() it will either automatically 5944 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 5945 ** or it will fail with SQLITE_SCHEMA. 5946 ** 5947 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5948 ** then only the currently executing statement is expired. 5949 */ 5950 case OP_Expire: { 5951 if( !pOp->p1 ){ 5952 sqlite3ExpirePreparedStatements(db); 5953 }else{ 5954 p->expired = 1; 5955 } 5956 break; 5957 } 5958 5959 #ifndef SQLITE_OMIT_SHARED_CACHE 5960 /* Opcode: TableLock P1 P2 P3 P4 * 5961 ** Synopsis: iDb=P1 root=P2 write=P3 5962 ** 5963 ** Obtain a lock on a particular table. This instruction is only used when 5964 ** the shared-cache feature is enabled. 5965 ** 5966 ** P1 is the index of the database in sqlite3.aDb[] of the database 5967 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5968 ** a write lock if P3==1. 5969 ** 5970 ** P2 contains the root-page of the table to lock. 5971 ** 5972 ** P4 contains a pointer to the name of the table being locked. This is only 5973 ** used to generate an error message if the lock cannot be obtained. 5974 */ 5975 case OP_TableLock: { 5976 u8 isWriteLock = (u8)pOp->p3; 5977 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5978 int p1 = pOp->p1; 5979 assert( p1>=0 && p1<db->nDb ); 5980 assert( DbMaskTest(p->btreeMask, p1) ); 5981 assert( isWriteLock==0 || isWriteLock==1 ); 5982 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5983 if( (rc&0xFF)==SQLITE_LOCKED ){ 5984 const char *z = pOp->p4.z; 5985 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5986 } 5987 } 5988 break; 5989 } 5990 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5991 5992 #ifndef SQLITE_OMIT_VIRTUALTABLE 5993 /* Opcode: VBegin * * * P4 * 5994 ** 5995 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5996 ** xBegin method for that table. 5997 ** 5998 ** Also, whether or not P4 is set, check that this is not being called from 5999 ** within a callback to a virtual table xSync() method. If it is, the error 6000 ** code will be set to SQLITE_LOCKED. 6001 */ 6002 case OP_VBegin: { 6003 VTable *pVTab; 6004 pVTab = pOp->p4.pVtab; 6005 rc = sqlite3VtabBegin(db, pVTab); 6006 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6007 break; 6008 } 6009 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6010 6011 #ifndef SQLITE_OMIT_VIRTUALTABLE 6012 /* Opcode: VCreate P1 * * P4 * 6013 ** 6014 ** P4 is the name of a virtual table in database P1. Call the xCreate method 6015 ** for that table. 6016 */ 6017 case OP_VCreate: { 6018 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 6019 break; 6020 } 6021 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6022 6023 #ifndef SQLITE_OMIT_VIRTUALTABLE 6024 /* Opcode: VDestroy P1 * * P4 * 6025 ** 6026 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6027 ** of that table. 6028 */ 6029 case OP_VDestroy: { 6030 p->inVtabMethod = 2; 6031 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6032 p->inVtabMethod = 0; 6033 break; 6034 } 6035 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6036 6037 #ifndef SQLITE_OMIT_VIRTUALTABLE 6038 /* Opcode: VOpen P1 * * P4 * 6039 ** 6040 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6041 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6042 ** table and stores that cursor in P1. 6043 */ 6044 case OP_VOpen: { 6045 VdbeCursor *pCur; 6046 sqlite3_vtab_cursor *pVtabCursor; 6047 sqlite3_vtab *pVtab; 6048 sqlite3_module *pModule; 6049 6050 assert( p->bIsReader ); 6051 pCur = 0; 6052 pVtabCursor = 0; 6053 pVtab = pOp->p4.pVtab->pVtab; 6054 pModule = (sqlite3_module *)pVtab->pModule; 6055 assert(pVtab && pModule); 6056 rc = pModule->xOpen(pVtab, &pVtabCursor); 6057 sqlite3VtabImportErrmsg(p, pVtab); 6058 if( SQLITE_OK==rc ){ 6059 /* Initialize sqlite3_vtab_cursor base class */ 6060 pVtabCursor->pVtab = pVtab; 6061 6062 /* Initialize vdbe cursor object */ 6063 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 6064 if( pCur ){ 6065 pCur->pVtabCursor = pVtabCursor; 6066 }else{ 6067 db->mallocFailed = 1; 6068 pModule->xClose(pVtabCursor); 6069 } 6070 } 6071 break; 6072 } 6073 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6074 6075 #ifndef SQLITE_OMIT_VIRTUALTABLE 6076 /* Opcode: VFilter P1 P2 P3 P4 * 6077 ** Synopsis: iplan=r[P3] zplan='P4' 6078 ** 6079 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6080 ** the filtered result set is empty. 6081 ** 6082 ** P4 is either NULL or a string that was generated by the xBestIndex 6083 ** method of the module. The interpretation of the P4 string is left 6084 ** to the module implementation. 6085 ** 6086 ** This opcode invokes the xFilter method on the virtual table specified 6087 ** by P1. The integer query plan parameter to xFilter is stored in register 6088 ** P3. Register P3+1 stores the argc parameter to be passed to the 6089 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6090 ** additional parameters which are passed to 6091 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6092 ** 6093 ** A jump is made to P2 if the result set after filtering would be empty. 6094 */ 6095 case OP_VFilter: { /* jump */ 6096 int nArg; 6097 int iQuery; 6098 const sqlite3_module *pModule; 6099 Mem *pQuery; 6100 Mem *pArgc; 6101 sqlite3_vtab_cursor *pVtabCursor; 6102 sqlite3_vtab *pVtab; 6103 VdbeCursor *pCur; 6104 int res; 6105 int i; 6106 Mem **apArg; 6107 6108 pQuery = &aMem[pOp->p3]; 6109 pArgc = &pQuery[1]; 6110 pCur = p->apCsr[pOp->p1]; 6111 assert( memIsValid(pQuery) ); 6112 REGISTER_TRACE(pOp->p3, pQuery); 6113 assert( pCur->pVtabCursor ); 6114 pVtabCursor = pCur->pVtabCursor; 6115 pVtab = pVtabCursor->pVtab; 6116 pModule = pVtab->pModule; 6117 6118 /* Grab the index number and argc parameters */ 6119 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6120 nArg = (int)pArgc->u.i; 6121 iQuery = (int)pQuery->u.i; 6122 6123 /* Invoke the xFilter method */ 6124 { 6125 res = 0; 6126 apArg = p->apArg; 6127 for(i = 0; i<nArg; i++){ 6128 apArg[i] = &pArgc[i+1]; 6129 } 6130 6131 p->inVtabMethod = 1; 6132 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 6133 p->inVtabMethod = 0; 6134 sqlite3VtabImportErrmsg(p, pVtab); 6135 if( rc==SQLITE_OK ){ 6136 res = pModule->xEof(pVtabCursor); 6137 } 6138 VdbeBranchTaken(res!=0,2); 6139 if( res ){ 6140 pc = pOp->p2 - 1; 6141 } 6142 } 6143 pCur->nullRow = 0; 6144 6145 break; 6146 } 6147 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6148 6149 #ifndef SQLITE_OMIT_VIRTUALTABLE 6150 /* Opcode: VColumn P1 P2 P3 * * 6151 ** Synopsis: r[P3]=vcolumn(P2) 6152 ** 6153 ** Store the value of the P2-th column of 6154 ** the row of the virtual-table that the 6155 ** P1 cursor is pointing to into register P3. 6156 */ 6157 case OP_VColumn: { 6158 sqlite3_vtab *pVtab; 6159 const sqlite3_module *pModule; 6160 Mem *pDest; 6161 sqlite3_context sContext; 6162 6163 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6164 assert( pCur->pVtabCursor ); 6165 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6166 pDest = &aMem[pOp->p3]; 6167 memAboutToChange(p, pDest); 6168 if( pCur->nullRow ){ 6169 sqlite3VdbeMemSetNull(pDest); 6170 break; 6171 } 6172 pVtab = pCur->pVtabCursor->pVtab; 6173 pModule = pVtab->pModule; 6174 assert( pModule->xColumn ); 6175 memset(&sContext, 0, sizeof(sContext)); 6176 sContext.pOut = pDest; 6177 MemSetTypeFlag(pDest, MEM_Null); 6178 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 6179 sqlite3VtabImportErrmsg(p, pVtab); 6180 if( sContext.isError ){ 6181 rc = sContext.isError; 6182 } 6183 sqlite3VdbeChangeEncoding(pDest, encoding); 6184 REGISTER_TRACE(pOp->p3, pDest); 6185 UPDATE_MAX_BLOBSIZE(pDest); 6186 6187 if( sqlite3VdbeMemTooBig(pDest) ){ 6188 goto too_big; 6189 } 6190 break; 6191 } 6192 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6193 6194 #ifndef SQLITE_OMIT_VIRTUALTABLE 6195 /* Opcode: VNext P1 P2 * * * 6196 ** 6197 ** Advance virtual table P1 to the next row in its result set and 6198 ** jump to instruction P2. Or, if the virtual table has reached 6199 ** the end of its result set, then fall through to the next instruction. 6200 */ 6201 case OP_VNext: { /* jump */ 6202 sqlite3_vtab *pVtab; 6203 const sqlite3_module *pModule; 6204 int res; 6205 VdbeCursor *pCur; 6206 6207 res = 0; 6208 pCur = p->apCsr[pOp->p1]; 6209 assert( pCur->pVtabCursor ); 6210 if( pCur->nullRow ){ 6211 break; 6212 } 6213 pVtab = pCur->pVtabCursor->pVtab; 6214 pModule = pVtab->pModule; 6215 assert( pModule->xNext ); 6216 6217 /* Invoke the xNext() method of the module. There is no way for the 6218 ** underlying implementation to return an error if one occurs during 6219 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6220 ** data is available) and the error code returned when xColumn or 6221 ** some other method is next invoked on the save virtual table cursor. 6222 */ 6223 p->inVtabMethod = 1; 6224 rc = pModule->xNext(pCur->pVtabCursor); 6225 p->inVtabMethod = 0; 6226 sqlite3VtabImportErrmsg(p, pVtab); 6227 if( rc==SQLITE_OK ){ 6228 res = pModule->xEof(pCur->pVtabCursor); 6229 } 6230 VdbeBranchTaken(!res,2); 6231 if( !res ){ 6232 /* If there is data, jump to P2 */ 6233 pc = pOp->p2 - 1; 6234 } 6235 goto check_for_interrupt; 6236 } 6237 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6238 6239 #ifndef SQLITE_OMIT_VIRTUALTABLE 6240 /* Opcode: VRename P1 * * P4 * 6241 ** 6242 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6243 ** This opcode invokes the corresponding xRename method. The value 6244 ** in register P1 is passed as the zName argument to the xRename method. 6245 */ 6246 case OP_VRename: { 6247 sqlite3_vtab *pVtab; 6248 Mem *pName; 6249 6250 pVtab = pOp->p4.pVtab->pVtab; 6251 pName = &aMem[pOp->p1]; 6252 assert( pVtab->pModule->xRename ); 6253 assert( memIsValid(pName) ); 6254 assert( p->readOnly==0 ); 6255 REGISTER_TRACE(pOp->p1, pName); 6256 assert( pName->flags & MEM_Str ); 6257 testcase( pName->enc==SQLITE_UTF8 ); 6258 testcase( pName->enc==SQLITE_UTF16BE ); 6259 testcase( pName->enc==SQLITE_UTF16LE ); 6260 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6261 if( rc==SQLITE_OK ){ 6262 rc = pVtab->pModule->xRename(pVtab, pName->z); 6263 sqlite3VtabImportErrmsg(p, pVtab); 6264 p->expired = 0; 6265 } 6266 break; 6267 } 6268 #endif 6269 6270 #ifndef SQLITE_OMIT_VIRTUALTABLE 6271 /* Opcode: VUpdate P1 P2 P3 P4 P5 6272 ** Synopsis: data=r[P3@P2] 6273 ** 6274 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6275 ** This opcode invokes the corresponding xUpdate method. P2 values 6276 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6277 ** invocation. The value in register (P3+P2-1) corresponds to the 6278 ** p2th element of the argv array passed to xUpdate. 6279 ** 6280 ** The xUpdate method will do a DELETE or an INSERT or both. 6281 ** The argv[0] element (which corresponds to memory cell P3) 6282 ** is the rowid of a row to delete. If argv[0] is NULL then no 6283 ** deletion occurs. The argv[1] element is the rowid of the new 6284 ** row. This can be NULL to have the virtual table select the new 6285 ** rowid for itself. The subsequent elements in the array are 6286 ** the values of columns in the new row. 6287 ** 6288 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6289 ** a row to delete. 6290 ** 6291 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6292 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6293 ** is set to the value of the rowid for the row just inserted. 6294 ** 6295 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6296 ** apply in the case of a constraint failure on an insert or update. 6297 */ 6298 case OP_VUpdate: { 6299 sqlite3_vtab *pVtab; 6300 sqlite3_module *pModule; 6301 int nArg; 6302 int i; 6303 sqlite_int64 rowid; 6304 Mem **apArg; 6305 Mem *pX; 6306 6307 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6308 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6309 ); 6310 assert( p->readOnly==0 ); 6311 pVtab = pOp->p4.pVtab->pVtab; 6312 pModule = (sqlite3_module *)pVtab->pModule; 6313 nArg = pOp->p2; 6314 assert( pOp->p4type==P4_VTAB ); 6315 if( ALWAYS(pModule->xUpdate) ){ 6316 u8 vtabOnConflict = db->vtabOnConflict; 6317 apArg = p->apArg; 6318 pX = &aMem[pOp->p3]; 6319 for(i=0; i<nArg; i++){ 6320 assert( memIsValid(pX) ); 6321 memAboutToChange(p, pX); 6322 apArg[i] = pX; 6323 pX++; 6324 } 6325 db->vtabOnConflict = pOp->p5; 6326 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6327 db->vtabOnConflict = vtabOnConflict; 6328 sqlite3VtabImportErrmsg(p, pVtab); 6329 if( rc==SQLITE_OK && pOp->p1 ){ 6330 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6331 db->lastRowid = lastRowid = rowid; 6332 } 6333 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6334 if( pOp->p5==OE_Ignore ){ 6335 rc = SQLITE_OK; 6336 }else{ 6337 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6338 } 6339 }else{ 6340 p->nChange++; 6341 } 6342 } 6343 break; 6344 } 6345 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6346 6347 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6348 /* Opcode: Pagecount P1 P2 * * * 6349 ** 6350 ** Write the current number of pages in database P1 to memory cell P2. 6351 */ 6352 case OP_Pagecount: { /* out2-prerelease */ 6353 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6354 break; 6355 } 6356 #endif 6357 6358 6359 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6360 /* Opcode: MaxPgcnt P1 P2 P3 * * 6361 ** 6362 ** Try to set the maximum page count for database P1 to the value in P3. 6363 ** Do not let the maximum page count fall below the current page count and 6364 ** do not change the maximum page count value if P3==0. 6365 ** 6366 ** Store the maximum page count after the change in register P2. 6367 */ 6368 case OP_MaxPgcnt: { /* out2-prerelease */ 6369 unsigned int newMax; 6370 Btree *pBt; 6371 6372 pBt = db->aDb[pOp->p1].pBt; 6373 newMax = 0; 6374 if( pOp->p3 ){ 6375 newMax = sqlite3BtreeLastPage(pBt); 6376 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6377 } 6378 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6379 break; 6380 } 6381 #endif 6382 6383 6384 /* Opcode: Init * P2 * P4 * 6385 ** Synopsis: Start at P2 6386 ** 6387 ** Programs contain a single instance of this opcode as the very first 6388 ** opcode. 6389 ** 6390 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6391 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6392 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6393 ** 6394 ** If P2 is not zero, jump to instruction P2. 6395 */ 6396 case OP_Init: { /* jump */ 6397 char *zTrace; 6398 char *z; 6399 6400 if( pOp->p2 ){ 6401 pc = pOp->p2 - 1; 6402 } 6403 #ifndef SQLITE_OMIT_TRACE 6404 if( db->xTrace 6405 && !p->doingRerun 6406 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6407 ){ 6408 z = sqlite3VdbeExpandSql(p, zTrace); 6409 db->xTrace(db->pTraceArg, z); 6410 sqlite3DbFree(db, z); 6411 } 6412 #ifdef SQLITE_USE_FCNTL_TRACE 6413 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6414 if( zTrace ){ 6415 int i; 6416 for(i=0; i<db->nDb; i++){ 6417 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6418 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6419 } 6420 } 6421 #endif /* SQLITE_USE_FCNTL_TRACE */ 6422 #ifdef SQLITE_DEBUG 6423 if( (db->flags & SQLITE_SqlTrace)!=0 6424 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6425 ){ 6426 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6427 } 6428 #endif /* SQLITE_DEBUG */ 6429 #endif /* SQLITE_OMIT_TRACE */ 6430 break; 6431 } 6432 6433 6434 /* Opcode: Noop * * * * * 6435 ** 6436 ** Do nothing. This instruction is often useful as a jump 6437 ** destination. 6438 */ 6439 /* 6440 ** The magic Explain opcode are only inserted when explain==2 (which 6441 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6442 ** This opcode records information from the optimizer. It is the 6443 ** the same as a no-op. This opcodesnever appears in a real VM program. 6444 */ 6445 default: { /* This is really OP_Noop and OP_Explain */ 6446 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6447 break; 6448 } 6449 6450 /***************************************************************************** 6451 ** The cases of the switch statement above this line should all be indented 6452 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6453 ** readability. From this point on down, the normal indentation rules are 6454 ** restored. 6455 *****************************************************************************/ 6456 } 6457 6458 #ifdef VDBE_PROFILE 6459 { 6460 u64 endTime = sqlite3Hwtime(); 6461 if( endTime>start ) pOp->cycles += endTime - start; 6462 pOp->cnt++; 6463 } 6464 #endif 6465 6466 /* The following code adds nothing to the actual functionality 6467 ** of the program. It is only here for testing and debugging. 6468 ** On the other hand, it does burn CPU cycles every time through 6469 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6470 */ 6471 #ifndef NDEBUG 6472 assert( pc>=-1 && pc<p->nOp ); 6473 6474 #ifdef SQLITE_DEBUG 6475 if( db->flags & SQLITE_VdbeTrace ){ 6476 if( rc!=0 ) printf("rc=%d\n",rc); 6477 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6478 registerTrace(pOp->p2, &aMem[pOp->p2]); 6479 } 6480 if( pOp->opflags & OPFLG_OUT3 ){ 6481 registerTrace(pOp->p3, &aMem[pOp->p3]); 6482 } 6483 } 6484 #endif /* SQLITE_DEBUG */ 6485 #endif /* NDEBUG */ 6486 } /* The end of the for(;;) loop the loops through opcodes */ 6487 6488 /* If we reach this point, it means that execution is finished with 6489 ** an error of some kind. 6490 */ 6491 vdbe_error_halt: 6492 assert( rc ); 6493 p->rc = rc; 6494 testcase( sqlite3GlobalConfig.xLog!=0 ); 6495 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6496 pc, p->zSql, p->zErrMsg); 6497 sqlite3VdbeHalt(p); 6498 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6499 rc = SQLITE_ERROR; 6500 if( resetSchemaOnFault>0 ){ 6501 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6502 } 6503 6504 /* This is the only way out of this procedure. We have to 6505 ** release the mutexes on btrees that were acquired at the 6506 ** top. */ 6507 vdbe_return: 6508 db->lastRowid = lastRowid; 6509 testcase( nVmStep>0 ); 6510 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6511 sqlite3VdbeLeave(p); 6512 return rc; 6513 6514 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6515 ** is encountered. 6516 */ 6517 too_big: 6518 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6519 rc = SQLITE_TOOBIG; 6520 goto vdbe_error_halt; 6521 6522 /* Jump to here if a malloc() fails. 6523 */ 6524 no_mem: 6525 db->mallocFailed = 1; 6526 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6527 rc = SQLITE_NOMEM; 6528 goto vdbe_error_halt; 6529 6530 /* Jump to here for any other kind of fatal error. The "rc" variable 6531 ** should hold the error number. 6532 */ 6533 abort_due_to_error: 6534 assert( p->zErrMsg==0 ); 6535 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6536 if( rc!=SQLITE_IOERR_NOMEM ){ 6537 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6538 } 6539 goto vdbe_error_halt; 6540 6541 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6542 ** flag. 6543 */ 6544 abort_due_to_interrupt: 6545 assert( db->u1.isInterrupted ); 6546 rc = SQLITE_INTERRUPT; 6547 p->rc = rc; 6548 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6549 goto vdbe_error_halt; 6550 } 6551