xref: /sqlite-3.40.0/src/vdbe.c (revision cbf1c8c2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   int iDb,              /* Database the cursor belongs to, or -1 */
245   u8 eCurType           /* Type of the new cursor */
246 ){
247   /* Find the memory cell that will be used to store the blob of memory
248   ** required for this VdbeCursor structure. It is convenient to use a
249   ** vdbe memory cell to manage the memory allocation required for a
250   ** VdbeCursor structure for the following reasons:
251   **
252   **   * Sometimes cursor numbers are used for a couple of different
253   **     purposes in a vdbe program. The different uses might require
254   **     different sized allocations. Memory cells provide growable
255   **     allocations.
256   **
257   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258   **     be freed lazily via the sqlite3_release_memory() API. This
259   **     minimizes the number of malloc calls made by the system.
260   **
261   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
262   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
263   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264   */
265   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 
267   int nByte;
268   VdbeCursor *pCx = 0;
269   nByte =
270       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
271       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 
273   assert( iCur>=0 && iCur<p->nCursor );
274   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
275     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276     ** is clear. Otherwise, if this is an ephemeral cursor created by
277     ** OP_OpenDup, the cursor will not be closed and will still be part
278     ** of a BtShared.pCursor list.  */
279     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
280     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
281     p->apCsr[iCur] = 0;
282   }
283   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
284     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
285     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
286     pCx->eCurType = eCurType;
287     pCx->iDb = iDb;
288     pCx->nField = nField;
289     pCx->aOffset = &pCx->aType[nField];
290     if( eCurType==CURTYPE_BTREE ){
291       pCx->uc.pCursor = (BtCursor*)
292           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
293       sqlite3BtreeCursorZero(pCx->uc.pCursor);
294     }
295   }
296   return pCx;
297 }
298 
299 /*
300 ** The string in pRec is known to look like an integer and to have a
301 ** floating point value of rValue.  Return true and set *piValue to the
302 ** integer value if the string is in range to be an integer.  Otherwise,
303 ** return false.
304 */
305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306   i64 iValue = (double)rValue;
307   if( sqlite3RealSameAsInt(rValue,iValue) ){
308     *piValue = iValue;
309     return 1;
310   }
311   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312 }
313 
314 /*
315 ** Try to convert a value into a numeric representation if we can
316 ** do so without loss of information.  In other words, if the string
317 ** looks like a number, convert it into a number.  If it does not
318 ** look like a number, leave it alone.
319 **
320 ** If the bTryForInt flag is true, then extra effort is made to give
321 ** an integer representation.  Strings that look like floating point
322 ** values but which have no fractional component (example: '48.00')
323 ** will have a MEM_Int representation when bTryForInt is true.
324 **
325 ** If bTryForInt is false, then if the input string contains a decimal
326 ** point or exponential notation, the result is only MEM_Real, even
327 ** if there is an exact integer representation of the quantity.
328 */
329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
330   double rValue;
331   u8 enc = pRec->enc;
332   int rc;
333   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
334   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
335   if( rc<=0 ) return;
336   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
337     pRec->flags |= MEM_Int;
338   }else{
339     pRec->u.r = rValue;
340     pRec->flags |= MEM_Real;
341     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
342   }
343   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
344   ** string representation after computing a numeric equivalent, because the
345   ** string representation might not be the canonical representation for the
346   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
347   pRec->flags &= ~MEM_Str;
348 }
349 
350 /*
351 ** Processing is determine by the affinity parameter:
352 **
353 ** SQLITE_AFF_INTEGER:
354 ** SQLITE_AFF_REAL:
355 ** SQLITE_AFF_NUMERIC:
356 **    Try to convert pRec to an integer representation or a
357 **    floating-point representation if an integer representation
358 **    is not possible.  Note that the integer representation is
359 **    always preferred, even if the affinity is REAL, because
360 **    an integer representation is more space efficient on disk.
361 **
362 ** SQLITE_AFF_TEXT:
363 **    Convert pRec to a text representation.
364 **
365 ** SQLITE_AFF_BLOB:
366 ** SQLITE_AFF_NONE:
367 **    No-op.  pRec is unchanged.
368 */
369 static void applyAffinity(
370   Mem *pRec,          /* The value to apply affinity to */
371   char affinity,      /* The affinity to be applied */
372   u8 enc              /* Use this text encoding */
373 ){
374   if( affinity>=SQLITE_AFF_NUMERIC ){
375     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376              || affinity==SQLITE_AFF_NUMERIC );
377     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
378       if( (pRec->flags & MEM_Real)==0 ){
379         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
380       }else{
381         sqlite3VdbeIntegerAffinity(pRec);
382       }
383     }
384   }else if( affinity==SQLITE_AFF_TEXT ){
385     /* Only attempt the conversion to TEXT if there is an integer or real
386     ** representation (blob and NULL do not get converted) but no string
387     ** representation.  It would be harmless to repeat the conversion if
388     ** there is already a string rep, but it is pointless to waste those
389     ** CPU cycles. */
390     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
391       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
392         testcase( pRec->flags & MEM_Int );
393         testcase( pRec->flags & MEM_Real );
394         testcase( pRec->flags & MEM_IntReal );
395         sqlite3VdbeMemStringify(pRec, enc, 1);
396       }
397     }
398     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
399   }
400 }
401 
402 /*
403 ** Try to convert the type of a function argument or a result column
404 ** into a numeric representation.  Use either INTEGER or REAL whichever
405 ** is appropriate.  But only do the conversion if it is possible without
406 ** loss of information and return the revised type of the argument.
407 */
408 int sqlite3_value_numeric_type(sqlite3_value *pVal){
409   int eType = sqlite3_value_type(pVal);
410   if( eType==SQLITE_TEXT ){
411     Mem *pMem = (Mem*)pVal;
412     applyNumericAffinity(pMem, 0);
413     eType = sqlite3_value_type(pVal);
414   }
415   return eType;
416 }
417 
418 /*
419 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
420 ** not the internal Mem* type.
421 */
422 void sqlite3ValueApplyAffinity(
423   sqlite3_value *pVal,
424   u8 affinity,
425   u8 enc
426 ){
427   applyAffinity((Mem *)pVal, affinity, enc);
428 }
429 
430 /*
431 ** pMem currently only holds a string type (or maybe a BLOB that we can
432 ** interpret as a string if we want to).  Compute its corresponding
433 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
434 ** accordingly.
435 */
436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
437   int rc;
438   sqlite3_int64 ix;
439   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
440   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
441   ExpandBlob(pMem);
442   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443   if( rc<=0 ){
444     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445       pMem->u.i = ix;
446       return MEM_Int;
447     }else{
448       return MEM_Real;
449     }
450   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451     pMem->u.i = ix;
452     return MEM_Int;
453   }
454   return MEM_Real;
455 }
456 
457 /*
458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459 ** none.
460 **
461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
462 ** But it does set pMem->u.r and pMem->u.i appropriately.
463 */
464 static u16 numericType(Mem *pMem){
465   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
466     testcase( pMem->flags & MEM_Int );
467     testcase( pMem->flags & MEM_Real );
468     testcase( pMem->flags & MEM_IntReal );
469     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
470   }
471   if( pMem->flags & (MEM_Str|MEM_Blob) ){
472     testcase( pMem->flags & MEM_Str );
473     testcase( pMem->flags & MEM_Blob );
474     return computeNumericType(pMem);
475   }
476   return 0;
477 }
478 
479 #ifdef SQLITE_DEBUG
480 /*
481 ** Write a nice string representation of the contents of cell pMem
482 ** into buffer zBuf, length nBuf.
483 */
484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
485   int f = pMem->flags;
486   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
487   if( f&MEM_Blob ){
488     int i;
489     char c;
490     if( f & MEM_Dyn ){
491       c = 'z';
492       assert( (f & (MEM_Static|MEM_Ephem))==0 );
493     }else if( f & MEM_Static ){
494       c = 't';
495       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
496     }else if( f & MEM_Ephem ){
497       c = 'e';
498       assert( (f & (MEM_Static|MEM_Dyn))==0 );
499     }else{
500       c = 's';
501     }
502     sqlite3_str_appendf(pStr, "%cx[", c);
503     for(i=0; i<25 && i<pMem->n; i++){
504       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
505     }
506     sqlite3_str_appendf(pStr, "|");
507     for(i=0; i<25 && i<pMem->n; i++){
508       char z = pMem->z[i];
509       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
510     }
511     sqlite3_str_appendf(pStr,"]");
512     if( f & MEM_Zero ){
513       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
514     }
515   }else if( f & MEM_Str ){
516     int j;
517     u8 c;
518     if( f & MEM_Dyn ){
519       c = 'z';
520       assert( (f & (MEM_Static|MEM_Ephem))==0 );
521     }else if( f & MEM_Static ){
522       c = 't';
523       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
524     }else if( f & MEM_Ephem ){
525       c = 'e';
526       assert( (f & (MEM_Static|MEM_Dyn))==0 );
527     }else{
528       c = 's';
529     }
530     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
531     for(j=0; j<25 && j<pMem->n; j++){
532       c = pMem->z[j];
533       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
534     }
535     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
536   }
537 }
538 #endif
539 
540 #ifdef SQLITE_DEBUG
541 /*
542 ** Print the value of a register for tracing purposes:
543 */
544 static void memTracePrint(Mem *p){
545   if( p->flags & MEM_Undefined ){
546     printf(" undefined");
547   }else if( p->flags & MEM_Null ){
548     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
549   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
550     printf(" si:%lld", p->u.i);
551   }else if( (p->flags & (MEM_IntReal))!=0 ){
552     printf(" ir:%lld", p->u.i);
553   }else if( p->flags & MEM_Int ){
554     printf(" i:%lld", p->u.i);
555 #ifndef SQLITE_OMIT_FLOATING_POINT
556   }else if( p->flags & MEM_Real ){
557     printf(" r:%.17g", p->u.r);
558 #endif
559   }else if( sqlite3VdbeMemIsRowSet(p) ){
560     printf(" (rowset)");
561   }else{
562     StrAccum acc;
563     char zBuf[1000];
564     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
565     sqlite3VdbeMemPrettyPrint(p, &acc);
566     printf(" %s", sqlite3StrAccumFinish(&acc));
567   }
568   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
569 }
570 static void registerTrace(int iReg, Mem *p){
571   printf("R[%d] = ", iReg);
572   memTracePrint(p);
573   if( p->pScopyFrom ){
574     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
575   }
576   printf("\n");
577   sqlite3VdbeCheckMemInvariants(p);
578 }
579 #endif
580 
581 #ifdef SQLITE_DEBUG
582 /*
583 ** Show the values of all registers in the virtual machine.  Used for
584 ** interactive debugging.
585 */
586 void sqlite3VdbeRegisterDump(Vdbe *v){
587   int i;
588   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
589 }
590 #endif /* SQLITE_DEBUG */
591 
592 
593 #ifdef SQLITE_DEBUG
594 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
595 #else
596 #  define REGISTER_TRACE(R,M)
597 #endif
598 
599 
600 #ifdef VDBE_PROFILE
601 
602 /*
603 ** hwtime.h contains inline assembler code for implementing
604 ** high-performance timing routines.
605 */
606 #include "hwtime.h"
607 
608 #endif
609 
610 #ifndef NDEBUG
611 /*
612 ** This function is only called from within an assert() expression. It
613 ** checks that the sqlite3.nTransaction variable is correctly set to
614 ** the number of non-transaction savepoints currently in the
615 ** linked list starting at sqlite3.pSavepoint.
616 **
617 ** Usage:
618 **
619 **     assert( checkSavepointCount(db) );
620 */
621 static int checkSavepointCount(sqlite3 *db){
622   int n = 0;
623   Savepoint *p;
624   for(p=db->pSavepoint; p; p=p->pNext) n++;
625   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
626   return 1;
627 }
628 #endif
629 
630 /*
631 ** Return the register of pOp->p2 after first preparing it to be
632 ** overwritten with an integer value.
633 */
634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
635   sqlite3VdbeMemSetNull(pOut);
636   pOut->flags = MEM_Int;
637   return pOut;
638 }
639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
640   Mem *pOut;
641   assert( pOp->p2>0 );
642   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
643   pOut = &p->aMem[pOp->p2];
644   memAboutToChange(p, pOut);
645   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
646     return out2PrereleaseWithClear(pOut);
647   }else{
648     pOut->flags = MEM_Int;
649     return pOut;
650   }
651 }
652 
653 
654 /*
655 ** Execute as much of a VDBE program as we can.
656 ** This is the core of sqlite3_step().
657 */
658 int sqlite3VdbeExec(
659   Vdbe *p                    /* The VDBE */
660 ){
661   Op *aOp = p->aOp;          /* Copy of p->aOp */
662   Op *pOp = aOp;             /* Current operation */
663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
664   Op *pOrigOp;               /* Value of pOp at the top of the loop */
665 #endif
666 #ifdef SQLITE_DEBUG
667   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
668 #endif
669   int rc = SQLITE_OK;        /* Value to return */
670   sqlite3 *db = p->db;       /* The database */
671   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
672   u8 encoding = ENC(db);     /* The database encoding */
673   int iCompare = 0;          /* Result of last comparison */
674   unsigned nVmStep = 0;      /* Number of virtual machine steps */
675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
676   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
677 #endif
678   Mem *aMem = p->aMem;       /* Copy of p->aMem */
679   Mem *pIn1 = 0;             /* 1st input operand */
680   Mem *pIn2 = 0;             /* 2nd input operand */
681   Mem *pIn3 = 0;             /* 3rd input operand */
682   Mem *pOut = 0;             /* Output operand */
683 #ifdef VDBE_PROFILE
684   u64 start;                 /* CPU clock count at start of opcode */
685 #endif
686   /*** INSERT STACK UNION HERE ***/
687 
688   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
689   sqlite3VdbeEnter(p);
690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
691   if( db->xProgress ){
692     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
693     assert( 0 < db->nProgressOps );
694     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
695   }else{
696     nProgressLimit = 0xffffffff;
697   }
698 #endif
699   if( p->rc==SQLITE_NOMEM ){
700     /* This happens if a malloc() inside a call to sqlite3_column_text() or
701     ** sqlite3_column_text16() failed.  */
702     goto no_mem;
703   }
704   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
705   assert( p->bIsReader || p->readOnly!=0 );
706   p->iCurrentTime = 0;
707   assert( p->explain==0 );
708   p->pResultSet = 0;
709   db->busyHandler.nBusy = 0;
710   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
711   sqlite3VdbeIOTraceSql(p);
712 #ifdef SQLITE_DEBUG
713   sqlite3BeginBenignMalloc();
714   if( p->pc==0
715    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
716   ){
717     int i;
718     int once = 1;
719     sqlite3VdbePrintSql(p);
720     if( p->db->flags & SQLITE_VdbeListing ){
721       printf("VDBE Program Listing:\n");
722       for(i=0; i<p->nOp; i++){
723         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
724       }
725     }
726     if( p->db->flags & SQLITE_VdbeEQP ){
727       for(i=0; i<p->nOp; i++){
728         if( aOp[i].opcode==OP_Explain ){
729           if( once ) printf("VDBE Query Plan:\n");
730           printf("%s\n", aOp[i].p4.z);
731           once = 0;
732         }
733       }
734     }
735     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
736   }
737   sqlite3EndBenignMalloc();
738 #endif
739   for(pOp=&aOp[p->pc]; 1; pOp++){
740     /* Errors are detected by individual opcodes, with an immediate
741     ** jumps to abort_due_to_error. */
742     assert( rc==SQLITE_OK );
743 
744     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
745 #ifdef VDBE_PROFILE
746     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
747 #endif
748     nVmStep++;
749 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
750     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
751 #endif
752 
753     /* Only allow tracing if SQLITE_DEBUG is defined.
754     */
755 #ifdef SQLITE_DEBUG
756     if( db->flags & SQLITE_VdbeTrace ){
757       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
758       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
759     }
760 #endif
761 
762 
763     /* Check to see if we need to simulate an interrupt.  This only happens
764     ** if we have a special test build.
765     */
766 #ifdef SQLITE_TEST
767     if( sqlite3_interrupt_count>0 ){
768       sqlite3_interrupt_count--;
769       if( sqlite3_interrupt_count==0 ){
770         sqlite3_interrupt(db);
771       }
772     }
773 #endif
774 
775     /* Sanity checking on other operands */
776 #ifdef SQLITE_DEBUG
777     {
778       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
779       if( (opProperty & OPFLG_IN1)!=0 ){
780         assert( pOp->p1>0 );
781         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
782         assert( memIsValid(&aMem[pOp->p1]) );
783         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
784         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
785       }
786       if( (opProperty & OPFLG_IN2)!=0 ){
787         assert( pOp->p2>0 );
788         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
789         assert( memIsValid(&aMem[pOp->p2]) );
790         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
791         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
792       }
793       if( (opProperty & OPFLG_IN3)!=0 ){
794         assert( pOp->p3>0 );
795         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
796         assert( memIsValid(&aMem[pOp->p3]) );
797         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
798         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
799       }
800       if( (opProperty & OPFLG_OUT2)!=0 ){
801         assert( pOp->p2>0 );
802         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
803         memAboutToChange(p, &aMem[pOp->p2]);
804       }
805       if( (opProperty & OPFLG_OUT3)!=0 ){
806         assert( pOp->p3>0 );
807         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
808         memAboutToChange(p, &aMem[pOp->p3]);
809       }
810     }
811 #endif
812 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
813     pOrigOp = pOp;
814 #endif
815 
816     switch( pOp->opcode ){
817 
818 /*****************************************************************************
819 ** What follows is a massive switch statement where each case implements a
820 ** separate instruction in the virtual machine.  If we follow the usual
821 ** indentation conventions, each case should be indented by 6 spaces.  But
822 ** that is a lot of wasted space on the left margin.  So the code within
823 ** the switch statement will break with convention and be flush-left. Another
824 ** big comment (similar to this one) will mark the point in the code where
825 ** we transition back to normal indentation.
826 **
827 ** The formatting of each case is important.  The makefile for SQLite
828 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
829 ** file looking for lines that begin with "case OP_".  The opcodes.h files
830 ** will be filled with #defines that give unique integer values to each
831 ** opcode and the opcodes.c file is filled with an array of strings where
832 ** each string is the symbolic name for the corresponding opcode.  If the
833 ** case statement is followed by a comment of the form "/# same as ... #/"
834 ** that comment is used to determine the particular value of the opcode.
835 **
836 ** Other keywords in the comment that follows each case are used to
837 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
838 ** Keywords include: in1, in2, in3, out2, out3.  See
839 ** the mkopcodeh.awk script for additional information.
840 **
841 ** Documentation about VDBE opcodes is generated by scanning this file
842 ** for lines of that contain "Opcode:".  That line and all subsequent
843 ** comment lines are used in the generation of the opcode.html documentation
844 ** file.
845 **
846 ** SUMMARY:
847 **
848 **     Formatting is important to scripts that scan this file.
849 **     Do not deviate from the formatting style currently in use.
850 **
851 *****************************************************************************/
852 
853 /* Opcode:  Goto * P2 * * *
854 **
855 ** An unconditional jump to address P2.
856 ** The next instruction executed will be
857 ** the one at index P2 from the beginning of
858 ** the program.
859 **
860 ** The P1 parameter is not actually used by this opcode.  However, it
861 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
862 ** that this Goto is the bottom of a loop and that the lines from P2 down
863 ** to the current line should be indented for EXPLAIN output.
864 */
865 case OP_Goto: {             /* jump */
866 
867 #ifdef SQLITE_DEBUG
868   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
869   ** means we should really jump back to the preceeding OP_ReleaseReg
870   ** instruction. */
871   if( pOp->p5 ){
872     assert( pOp->p2 < (int)(pOp - aOp) );
873     assert( pOp->p2 > 1 );
874     pOp = &aOp[pOp->p2 - 2];
875     assert( pOp[1].opcode==OP_ReleaseReg );
876     goto check_for_interrupt;
877   }
878 #endif
879 
880 jump_to_p2_and_check_for_interrupt:
881   pOp = &aOp[pOp->p2 - 1];
882 
883   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
884   ** OP_VNext, or OP_SorterNext) all jump here upon
885   ** completion.  Check to see if sqlite3_interrupt() has been called
886   ** or if the progress callback needs to be invoked.
887   **
888   ** This code uses unstructured "goto" statements and does not look clean.
889   ** But that is not due to sloppy coding habits. The code is written this
890   ** way for performance, to avoid having to run the interrupt and progress
891   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
892   ** faster according to "valgrind --tool=cachegrind" */
893 check_for_interrupt:
894   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
896   /* Call the progress callback if it is configured and the required number
897   ** of VDBE ops have been executed (either since this invocation of
898   ** sqlite3VdbeExec() or since last time the progress callback was called).
899   ** If the progress callback returns non-zero, exit the virtual machine with
900   ** a return code SQLITE_ABORT.
901   */
902   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
903     assert( db->nProgressOps!=0 );
904     nProgressLimit += db->nProgressOps;
905     if( db->xProgress(db->pProgressArg) ){
906       nProgressLimit = 0xffffffff;
907       rc = SQLITE_INTERRUPT;
908       goto abort_due_to_error;
909     }
910   }
911 #endif
912 
913   break;
914 }
915 
916 /* Opcode:  Gosub P1 P2 * * *
917 **
918 ** Write the current address onto register P1
919 ** and then jump to address P2.
920 */
921 case OP_Gosub: {            /* jump */
922   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
923   pIn1 = &aMem[pOp->p1];
924   assert( VdbeMemDynamic(pIn1)==0 );
925   memAboutToChange(p, pIn1);
926   pIn1->flags = MEM_Int;
927   pIn1->u.i = (int)(pOp-aOp);
928   REGISTER_TRACE(pOp->p1, pIn1);
929 
930   /* Most jump operations do a goto to this spot in order to update
931   ** the pOp pointer. */
932 jump_to_p2:
933   pOp = &aOp[pOp->p2 - 1];
934   break;
935 }
936 
937 /* Opcode:  Return P1 * * * *
938 **
939 ** Jump to the next instruction after the address in register P1.  After
940 ** the jump, register P1 becomes undefined.
941 */
942 case OP_Return: {           /* in1 */
943   pIn1 = &aMem[pOp->p1];
944   assert( pIn1->flags==MEM_Int );
945   pOp = &aOp[pIn1->u.i];
946   pIn1->flags = MEM_Undefined;
947   break;
948 }
949 
950 /* Opcode: InitCoroutine P1 P2 P3 * *
951 **
952 ** Set up register P1 so that it will Yield to the coroutine
953 ** located at address P3.
954 **
955 ** If P2!=0 then the coroutine implementation immediately follows
956 ** this opcode.  So jump over the coroutine implementation to
957 ** address P2.
958 **
959 ** See also: EndCoroutine
960 */
961 case OP_InitCoroutine: {     /* jump */
962   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
963   assert( pOp->p2>=0 && pOp->p2<p->nOp );
964   assert( pOp->p3>=0 && pOp->p3<p->nOp );
965   pOut = &aMem[pOp->p1];
966   assert( !VdbeMemDynamic(pOut) );
967   pOut->u.i = pOp->p3 - 1;
968   pOut->flags = MEM_Int;
969   if( pOp->p2 ) goto jump_to_p2;
970   break;
971 }
972 
973 /* Opcode:  EndCoroutine P1 * * * *
974 **
975 ** The instruction at the address in register P1 is a Yield.
976 ** Jump to the P2 parameter of that Yield.
977 ** After the jump, register P1 becomes undefined.
978 **
979 ** See also: InitCoroutine
980 */
981 case OP_EndCoroutine: {           /* in1 */
982   VdbeOp *pCaller;
983   pIn1 = &aMem[pOp->p1];
984   assert( pIn1->flags==MEM_Int );
985   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
986   pCaller = &aOp[pIn1->u.i];
987   assert( pCaller->opcode==OP_Yield );
988   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
989   pOp = &aOp[pCaller->p2 - 1];
990   pIn1->flags = MEM_Undefined;
991   break;
992 }
993 
994 /* Opcode:  Yield P1 P2 * * *
995 **
996 ** Swap the program counter with the value in register P1.  This
997 ** has the effect of yielding to a coroutine.
998 **
999 ** If the coroutine that is launched by this instruction ends with
1000 ** Yield or Return then continue to the next instruction.  But if
1001 ** the coroutine launched by this instruction ends with
1002 ** EndCoroutine, then jump to P2 rather than continuing with the
1003 ** next instruction.
1004 **
1005 ** See also: InitCoroutine
1006 */
1007 case OP_Yield: {            /* in1, jump */
1008   int pcDest;
1009   pIn1 = &aMem[pOp->p1];
1010   assert( VdbeMemDynamic(pIn1)==0 );
1011   pIn1->flags = MEM_Int;
1012   pcDest = (int)pIn1->u.i;
1013   pIn1->u.i = (int)(pOp - aOp);
1014   REGISTER_TRACE(pOp->p1, pIn1);
1015   pOp = &aOp[pcDest];
1016   break;
1017 }
1018 
1019 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1020 ** Synopsis: if r[P3]=null halt
1021 **
1022 ** Check the value in register P3.  If it is NULL then Halt using
1023 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1024 ** value in register P3 is not NULL, then this routine is a no-op.
1025 ** The P5 parameter should be 1.
1026 */
1027 case OP_HaltIfNull: {      /* in3 */
1028   pIn3 = &aMem[pOp->p3];
1029 #ifdef SQLITE_DEBUG
1030   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1031 #endif
1032   if( (pIn3->flags & MEM_Null)==0 ) break;
1033   /* Fall through into OP_Halt */
1034 }
1035 
1036 /* Opcode:  Halt P1 P2 * P4 P5
1037 **
1038 ** Exit immediately.  All open cursors, etc are closed
1039 ** automatically.
1040 **
1041 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1042 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1043 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1044 ** whether or not to rollback the current transaction.  Do not rollback
1045 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1046 ** then back out all changes that have occurred during this execution of the
1047 ** VDBE, but do not rollback the transaction.
1048 **
1049 ** If P4 is not null then it is an error message string.
1050 **
1051 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1052 **
1053 **    0:  (no change)
1054 **    1:  NOT NULL contraint failed: P4
1055 **    2:  UNIQUE constraint failed: P4
1056 **    3:  CHECK constraint failed: P4
1057 **    4:  FOREIGN KEY constraint failed: P4
1058 **
1059 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1060 ** omitted.
1061 **
1062 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1063 ** every program.  So a jump past the last instruction of the program
1064 ** is the same as executing Halt.
1065 */
1066 case OP_Halt: {
1067   VdbeFrame *pFrame;
1068   int pcx;
1069 
1070   pcx = (int)(pOp - aOp);
1071 #ifdef SQLITE_DEBUG
1072   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1073 #endif
1074   if( pOp->p1==SQLITE_OK && p->pFrame ){
1075     /* Halt the sub-program. Return control to the parent frame. */
1076     pFrame = p->pFrame;
1077     p->pFrame = pFrame->pParent;
1078     p->nFrame--;
1079     sqlite3VdbeSetChanges(db, p->nChange);
1080     pcx = sqlite3VdbeFrameRestore(pFrame);
1081     if( pOp->p2==OE_Ignore ){
1082       /* Instruction pcx is the OP_Program that invoked the sub-program
1083       ** currently being halted. If the p2 instruction of this OP_Halt
1084       ** instruction is set to OE_Ignore, then the sub-program is throwing
1085       ** an IGNORE exception. In this case jump to the address specified
1086       ** as the p2 of the calling OP_Program.  */
1087       pcx = p->aOp[pcx].p2-1;
1088     }
1089     aOp = p->aOp;
1090     aMem = p->aMem;
1091     pOp = &aOp[pcx];
1092     break;
1093   }
1094   p->rc = pOp->p1;
1095   p->errorAction = (u8)pOp->p2;
1096   p->pc = pcx;
1097   assert( pOp->p5<=4 );
1098   if( p->rc ){
1099     if( pOp->p5 ){
1100       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1101                                              "FOREIGN KEY" };
1102       testcase( pOp->p5==1 );
1103       testcase( pOp->p5==2 );
1104       testcase( pOp->p5==3 );
1105       testcase( pOp->p5==4 );
1106       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1107       if( pOp->p4.z ){
1108         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1109       }
1110     }else{
1111       sqlite3VdbeError(p, "%s", pOp->p4.z);
1112     }
1113     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1114   }
1115   rc = sqlite3VdbeHalt(p);
1116   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1117   if( rc==SQLITE_BUSY ){
1118     p->rc = SQLITE_BUSY;
1119   }else{
1120     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1121     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1122     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1123   }
1124   goto vdbe_return;
1125 }
1126 
1127 /* Opcode: Integer P1 P2 * * *
1128 ** Synopsis: r[P2]=P1
1129 **
1130 ** The 32-bit integer value P1 is written into register P2.
1131 */
1132 case OP_Integer: {         /* out2 */
1133   pOut = out2Prerelease(p, pOp);
1134   pOut->u.i = pOp->p1;
1135   break;
1136 }
1137 
1138 /* Opcode: Int64 * P2 * P4 *
1139 ** Synopsis: r[P2]=P4
1140 **
1141 ** P4 is a pointer to a 64-bit integer value.
1142 ** Write that value into register P2.
1143 */
1144 case OP_Int64: {           /* out2 */
1145   pOut = out2Prerelease(p, pOp);
1146   assert( pOp->p4.pI64!=0 );
1147   pOut->u.i = *pOp->p4.pI64;
1148   break;
1149 }
1150 
1151 #ifndef SQLITE_OMIT_FLOATING_POINT
1152 /* Opcode: Real * P2 * P4 *
1153 ** Synopsis: r[P2]=P4
1154 **
1155 ** P4 is a pointer to a 64-bit floating point value.
1156 ** Write that value into register P2.
1157 */
1158 case OP_Real: {            /* same as TK_FLOAT, out2 */
1159   pOut = out2Prerelease(p, pOp);
1160   pOut->flags = MEM_Real;
1161   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1162   pOut->u.r = *pOp->p4.pReal;
1163   break;
1164 }
1165 #endif
1166 
1167 /* Opcode: String8 * P2 * P4 *
1168 ** Synopsis: r[P2]='P4'
1169 **
1170 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1171 ** into a String opcode before it is executed for the first time.  During
1172 ** this transformation, the length of string P4 is computed and stored
1173 ** as the P1 parameter.
1174 */
1175 case OP_String8: {         /* same as TK_STRING, out2 */
1176   assert( pOp->p4.z!=0 );
1177   pOut = out2Prerelease(p, pOp);
1178   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1179 
1180 #ifndef SQLITE_OMIT_UTF16
1181   if( encoding!=SQLITE_UTF8 ){
1182     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1183     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1184     if( rc ) goto too_big;
1185     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1186     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1187     assert( VdbeMemDynamic(pOut)==0 );
1188     pOut->szMalloc = 0;
1189     pOut->flags |= MEM_Static;
1190     if( pOp->p4type==P4_DYNAMIC ){
1191       sqlite3DbFree(db, pOp->p4.z);
1192     }
1193     pOp->p4type = P4_DYNAMIC;
1194     pOp->p4.z = pOut->z;
1195     pOp->p1 = pOut->n;
1196   }
1197 #endif
1198   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1199     goto too_big;
1200   }
1201   pOp->opcode = OP_String;
1202   assert( rc==SQLITE_OK );
1203   /* Fall through to the next case, OP_String */
1204 }
1205 
1206 /* Opcode: String P1 P2 P3 P4 P5
1207 ** Synopsis: r[P2]='P4' (len=P1)
1208 **
1209 ** The string value P4 of length P1 (bytes) is stored in register P2.
1210 **
1211 ** If P3 is not zero and the content of register P3 is equal to P5, then
1212 ** the datatype of the register P2 is converted to BLOB.  The content is
1213 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1214 ** of a string, as if it had been CAST.  In other words:
1215 **
1216 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1217 */
1218 case OP_String: {          /* out2 */
1219   assert( pOp->p4.z!=0 );
1220   pOut = out2Prerelease(p, pOp);
1221   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1222   pOut->z = pOp->p4.z;
1223   pOut->n = pOp->p1;
1224   pOut->enc = encoding;
1225   UPDATE_MAX_BLOBSIZE(pOut);
1226 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1227   if( pOp->p3>0 ){
1228     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1229     pIn3 = &aMem[pOp->p3];
1230     assert( pIn3->flags & MEM_Int );
1231     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1232   }
1233 #endif
1234   break;
1235 }
1236 
1237 /* Opcode: Null P1 P2 P3 * *
1238 ** Synopsis: r[P2..P3]=NULL
1239 **
1240 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1241 ** NULL into register P3 and every register in between P2 and P3.  If P3
1242 ** is less than P2 (typically P3 is zero) then only register P2 is
1243 ** set to NULL.
1244 **
1245 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1246 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1247 ** OP_Ne or OP_Eq.
1248 */
1249 case OP_Null: {           /* out2 */
1250   int cnt;
1251   u16 nullFlag;
1252   pOut = out2Prerelease(p, pOp);
1253   cnt = pOp->p3-pOp->p2;
1254   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1255   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1256   pOut->n = 0;
1257 #ifdef SQLITE_DEBUG
1258   pOut->uTemp = 0;
1259 #endif
1260   while( cnt>0 ){
1261     pOut++;
1262     memAboutToChange(p, pOut);
1263     sqlite3VdbeMemSetNull(pOut);
1264     pOut->flags = nullFlag;
1265     pOut->n = 0;
1266     cnt--;
1267   }
1268   break;
1269 }
1270 
1271 /* Opcode: SoftNull P1 * * * *
1272 ** Synopsis: r[P1]=NULL
1273 **
1274 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1275 ** instruction, but do not free any string or blob memory associated with
1276 ** the register, so that if the value was a string or blob that was
1277 ** previously copied using OP_SCopy, the copies will continue to be valid.
1278 */
1279 case OP_SoftNull: {
1280   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1281   pOut = &aMem[pOp->p1];
1282   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1283   break;
1284 }
1285 
1286 /* Opcode: Blob P1 P2 * P4 *
1287 ** Synopsis: r[P2]=P4 (len=P1)
1288 **
1289 ** P4 points to a blob of data P1 bytes long.  Store this
1290 ** blob in register P2.
1291 */
1292 case OP_Blob: {                /* out2 */
1293   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1294   pOut = out2Prerelease(p, pOp);
1295   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1296   pOut->enc = encoding;
1297   UPDATE_MAX_BLOBSIZE(pOut);
1298   break;
1299 }
1300 
1301 /* Opcode: Variable P1 P2 * P4 *
1302 ** Synopsis: r[P2]=parameter(P1,P4)
1303 **
1304 ** Transfer the values of bound parameter P1 into register P2
1305 **
1306 ** If the parameter is named, then its name appears in P4.
1307 ** The P4 value is used by sqlite3_bind_parameter_name().
1308 */
1309 case OP_Variable: {            /* out2 */
1310   Mem *pVar;       /* Value being transferred */
1311 
1312   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1313   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1314   pVar = &p->aVar[pOp->p1 - 1];
1315   if( sqlite3VdbeMemTooBig(pVar) ){
1316     goto too_big;
1317   }
1318   pOut = &aMem[pOp->p2];
1319   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1320   memcpy(pOut, pVar, MEMCELLSIZE);
1321   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1322   pOut->flags |= MEM_Static|MEM_FromBind;
1323   UPDATE_MAX_BLOBSIZE(pOut);
1324   break;
1325 }
1326 
1327 /* Opcode: Move P1 P2 P3 * *
1328 ** Synopsis: r[P2@P3]=r[P1@P3]
1329 **
1330 ** Move the P3 values in register P1..P1+P3-1 over into
1331 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1332 ** left holding a NULL.  It is an error for register ranges
1333 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1334 ** for P3 to be less than 1.
1335 */
1336 case OP_Move: {
1337   int n;           /* Number of registers left to copy */
1338   int p1;          /* Register to copy from */
1339   int p2;          /* Register to copy to */
1340 
1341   n = pOp->p3;
1342   p1 = pOp->p1;
1343   p2 = pOp->p2;
1344   assert( n>0 && p1>0 && p2>0 );
1345   assert( p1+n<=p2 || p2+n<=p1 );
1346 
1347   pIn1 = &aMem[p1];
1348   pOut = &aMem[p2];
1349   do{
1350     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1351     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1352     assert( memIsValid(pIn1) );
1353     memAboutToChange(p, pOut);
1354     sqlite3VdbeMemMove(pOut, pIn1);
1355 #ifdef SQLITE_DEBUG
1356     pIn1->pScopyFrom = 0;
1357     { int i;
1358       for(i=1; i<p->nMem; i++){
1359         if( aMem[i].pScopyFrom==pIn1 ){
1360           aMem[i].pScopyFrom = pOut;
1361         }
1362       }
1363     }
1364 #endif
1365     Deephemeralize(pOut);
1366     REGISTER_TRACE(p2++, pOut);
1367     pIn1++;
1368     pOut++;
1369   }while( --n );
1370   break;
1371 }
1372 
1373 /* Opcode: Copy P1 P2 P3 * *
1374 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1375 **
1376 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1377 **
1378 ** This instruction makes a deep copy of the value.  A duplicate
1379 ** is made of any string or blob constant.  See also OP_SCopy.
1380 */
1381 case OP_Copy: {
1382   int n;
1383 
1384   n = pOp->p3;
1385   pIn1 = &aMem[pOp->p1];
1386   pOut = &aMem[pOp->p2];
1387   assert( pOut!=pIn1 );
1388   while( 1 ){
1389     memAboutToChange(p, pOut);
1390     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1391     Deephemeralize(pOut);
1392 #ifdef SQLITE_DEBUG
1393     pOut->pScopyFrom = 0;
1394 #endif
1395     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1396     if( (n--)==0 ) break;
1397     pOut++;
1398     pIn1++;
1399   }
1400   break;
1401 }
1402 
1403 /* Opcode: SCopy P1 P2 * * *
1404 ** Synopsis: r[P2]=r[P1]
1405 **
1406 ** Make a shallow copy of register P1 into register P2.
1407 **
1408 ** This instruction makes a shallow copy of the value.  If the value
1409 ** is a string or blob, then the copy is only a pointer to the
1410 ** original and hence if the original changes so will the copy.
1411 ** Worse, if the original is deallocated, the copy becomes invalid.
1412 ** Thus the program must guarantee that the original will not change
1413 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1414 ** copy.
1415 */
1416 case OP_SCopy: {            /* out2 */
1417   pIn1 = &aMem[pOp->p1];
1418   pOut = &aMem[pOp->p2];
1419   assert( pOut!=pIn1 );
1420   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1421 #ifdef SQLITE_DEBUG
1422   pOut->pScopyFrom = pIn1;
1423   pOut->mScopyFlags = pIn1->flags;
1424 #endif
1425   break;
1426 }
1427 
1428 /* Opcode: IntCopy P1 P2 * * *
1429 ** Synopsis: r[P2]=r[P1]
1430 **
1431 ** Transfer the integer value held in register P1 into register P2.
1432 **
1433 ** This is an optimized version of SCopy that works only for integer
1434 ** values.
1435 */
1436 case OP_IntCopy: {            /* out2 */
1437   pIn1 = &aMem[pOp->p1];
1438   assert( (pIn1->flags & MEM_Int)!=0 );
1439   pOut = &aMem[pOp->p2];
1440   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1441   break;
1442 }
1443 
1444 /* Opcode: ResultRow P1 P2 * * *
1445 ** Synopsis: output=r[P1@P2]
1446 **
1447 ** The registers P1 through P1+P2-1 contain a single row of
1448 ** results. This opcode causes the sqlite3_step() call to terminate
1449 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1450 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1451 ** the result row.
1452 */
1453 case OP_ResultRow: {
1454   Mem *pMem;
1455   int i;
1456   assert( p->nResColumn==pOp->p2 );
1457   assert( pOp->p1>0 );
1458   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1459 
1460   /* If this statement has violated immediate foreign key constraints, do
1461   ** not return the number of rows modified. And do not RELEASE the statement
1462   ** transaction. It needs to be rolled back.  */
1463   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1464     assert( db->flags&SQLITE_CountRows );
1465     assert( p->usesStmtJournal );
1466     goto abort_due_to_error;
1467   }
1468 
1469   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1470   ** DML statements invoke this opcode to return the number of rows
1471   ** modified to the user. This is the only way that a VM that
1472   ** opens a statement transaction may invoke this opcode.
1473   **
1474   ** In case this is such a statement, close any statement transaction
1475   ** opened by this VM before returning control to the user. This is to
1476   ** ensure that statement-transactions are always nested, not overlapping.
1477   ** If the open statement-transaction is not closed here, then the user
1478   ** may step another VM that opens its own statement transaction. This
1479   ** may lead to overlapping statement transactions.
1480   **
1481   ** The statement transaction is never a top-level transaction.  Hence
1482   ** the RELEASE call below can never fail.
1483   */
1484   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1485   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1486   assert( rc==SQLITE_OK );
1487 
1488   /* Invalidate all ephemeral cursor row caches */
1489   p->cacheCtr = (p->cacheCtr + 2)|1;
1490 
1491   /* Make sure the results of the current row are \000 terminated
1492   ** and have an assigned type.  The results are de-ephemeralized as
1493   ** a side effect.
1494   */
1495   pMem = p->pResultSet = &aMem[pOp->p1];
1496   for(i=0; i<pOp->p2; i++){
1497     assert( memIsValid(&pMem[i]) );
1498     Deephemeralize(&pMem[i]);
1499     assert( (pMem[i].flags & MEM_Ephem)==0
1500             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1501     sqlite3VdbeMemNulTerminate(&pMem[i]);
1502     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1503 #ifdef SQLITE_DEBUG
1504     /* The registers in the result will not be used again when the
1505     ** prepared statement restarts.  This is because sqlite3_column()
1506     ** APIs might have caused type conversions of made other changes to
1507     ** the register values.  Therefore, we can go ahead and break any
1508     ** OP_SCopy dependencies. */
1509     pMem[i].pScopyFrom = 0;
1510 #endif
1511   }
1512   if( db->mallocFailed ) goto no_mem;
1513 
1514   if( db->mTrace & SQLITE_TRACE_ROW ){
1515     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1516   }
1517 
1518 
1519   /* Return SQLITE_ROW
1520   */
1521   p->pc = (int)(pOp - aOp) + 1;
1522   rc = SQLITE_ROW;
1523   goto vdbe_return;
1524 }
1525 
1526 /* Opcode: Concat P1 P2 P3 * *
1527 ** Synopsis: r[P3]=r[P2]+r[P1]
1528 **
1529 ** Add the text in register P1 onto the end of the text in
1530 ** register P2 and store the result in register P3.
1531 ** If either the P1 or P2 text are NULL then store NULL in P3.
1532 **
1533 **   P3 = P2 || P1
1534 **
1535 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1536 ** if P3 is the same register as P2, the implementation is able
1537 ** to avoid a memcpy().
1538 */
1539 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1540   i64 nByte;          /* Total size of the output string or blob */
1541   u16 flags1;         /* Initial flags for P1 */
1542   u16 flags2;         /* Initial flags for P2 */
1543 
1544   pIn1 = &aMem[pOp->p1];
1545   pIn2 = &aMem[pOp->p2];
1546   pOut = &aMem[pOp->p3];
1547   testcase( pIn1==pIn2 );
1548   testcase( pOut==pIn2 );
1549   assert( pIn1!=pOut );
1550   flags1 = pIn1->flags;
1551   testcase( flags1 & MEM_Null );
1552   testcase( pIn2->flags & MEM_Null );
1553   if( (flags1 | pIn2->flags) & MEM_Null ){
1554     sqlite3VdbeMemSetNull(pOut);
1555     break;
1556   }
1557   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1558     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1559     flags1 = pIn1->flags & ~MEM_Str;
1560   }else if( (flags1 & MEM_Zero)!=0 ){
1561     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1562     flags1 = pIn1->flags & ~MEM_Str;
1563   }
1564   flags2 = pIn2->flags;
1565   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1566     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1567     flags2 = pIn2->flags & ~MEM_Str;
1568   }else if( (flags2 & MEM_Zero)!=0 ){
1569     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1570     flags2 = pIn2->flags & ~MEM_Str;
1571   }
1572   nByte = pIn1->n + pIn2->n;
1573   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1574     goto too_big;
1575   }
1576   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1577     goto no_mem;
1578   }
1579   MemSetTypeFlag(pOut, MEM_Str);
1580   if( pOut!=pIn2 ){
1581     memcpy(pOut->z, pIn2->z, pIn2->n);
1582     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1583     pIn2->flags = flags2;
1584   }
1585   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1586   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1587   pIn1->flags = flags1;
1588   pOut->z[nByte]=0;
1589   pOut->z[nByte+1] = 0;
1590   pOut->z[nByte+2] = 0;
1591   pOut->flags |= MEM_Term;
1592   pOut->n = (int)nByte;
1593   pOut->enc = encoding;
1594   UPDATE_MAX_BLOBSIZE(pOut);
1595   break;
1596 }
1597 
1598 /* Opcode: Add P1 P2 P3 * *
1599 ** Synopsis: r[P3]=r[P1]+r[P2]
1600 **
1601 ** Add the value in register P1 to the value in register P2
1602 ** and store the result in register P3.
1603 ** If either input is NULL, the result is NULL.
1604 */
1605 /* Opcode: Multiply P1 P2 P3 * *
1606 ** Synopsis: r[P3]=r[P1]*r[P2]
1607 **
1608 **
1609 ** Multiply the value in register P1 by the value in register P2
1610 ** and store the result in register P3.
1611 ** If either input is NULL, the result is NULL.
1612 */
1613 /* Opcode: Subtract P1 P2 P3 * *
1614 ** Synopsis: r[P3]=r[P2]-r[P1]
1615 **
1616 ** Subtract the value in register P1 from the value in register P2
1617 ** and store the result in register P3.
1618 ** If either input is NULL, the result is NULL.
1619 */
1620 /* Opcode: Divide P1 P2 P3 * *
1621 ** Synopsis: r[P3]=r[P2]/r[P1]
1622 **
1623 ** Divide the value in register P1 by the value in register P2
1624 ** and store the result in register P3 (P3=P2/P1). If the value in
1625 ** register P1 is zero, then the result is NULL. If either input is
1626 ** NULL, the result is NULL.
1627 */
1628 /* Opcode: Remainder P1 P2 P3 * *
1629 ** Synopsis: r[P3]=r[P2]%r[P1]
1630 **
1631 ** Compute the remainder after integer register P2 is divided by
1632 ** register P1 and store the result in register P3.
1633 ** If the value in register P1 is zero the result is NULL.
1634 ** If either operand is NULL, the result is NULL.
1635 */
1636 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1637 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1638 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1639 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1640 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1641   u16 flags;      /* Combined MEM_* flags from both inputs */
1642   u16 type1;      /* Numeric type of left operand */
1643   u16 type2;      /* Numeric type of right operand */
1644   i64 iA;         /* Integer value of left operand */
1645   i64 iB;         /* Integer value of right operand */
1646   double rA;      /* Real value of left operand */
1647   double rB;      /* Real value of right operand */
1648 
1649   pIn1 = &aMem[pOp->p1];
1650   type1 = numericType(pIn1);
1651   pIn2 = &aMem[pOp->p2];
1652   type2 = numericType(pIn2);
1653   pOut = &aMem[pOp->p3];
1654   flags = pIn1->flags | pIn2->flags;
1655   if( (type1 & type2 & MEM_Int)!=0 ){
1656     iA = pIn1->u.i;
1657     iB = pIn2->u.i;
1658     switch( pOp->opcode ){
1659       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1660       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1661       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1662       case OP_Divide: {
1663         if( iA==0 ) goto arithmetic_result_is_null;
1664         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1665         iB /= iA;
1666         break;
1667       }
1668       default: {
1669         if( iA==0 ) goto arithmetic_result_is_null;
1670         if( iA==-1 ) iA = 1;
1671         iB %= iA;
1672         break;
1673       }
1674     }
1675     pOut->u.i = iB;
1676     MemSetTypeFlag(pOut, MEM_Int);
1677   }else if( (flags & MEM_Null)!=0 ){
1678     goto arithmetic_result_is_null;
1679   }else{
1680 fp_math:
1681     rA = sqlite3VdbeRealValue(pIn1);
1682     rB = sqlite3VdbeRealValue(pIn2);
1683     switch( pOp->opcode ){
1684       case OP_Add:         rB += rA;       break;
1685       case OP_Subtract:    rB -= rA;       break;
1686       case OP_Multiply:    rB *= rA;       break;
1687       case OP_Divide: {
1688         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1689         if( rA==(double)0 ) goto arithmetic_result_is_null;
1690         rB /= rA;
1691         break;
1692       }
1693       default: {
1694         iA = sqlite3VdbeIntValue(pIn1);
1695         iB = sqlite3VdbeIntValue(pIn2);
1696         if( iA==0 ) goto arithmetic_result_is_null;
1697         if( iA==-1 ) iA = 1;
1698         rB = (double)(iB % iA);
1699         break;
1700       }
1701     }
1702 #ifdef SQLITE_OMIT_FLOATING_POINT
1703     pOut->u.i = rB;
1704     MemSetTypeFlag(pOut, MEM_Int);
1705 #else
1706     if( sqlite3IsNaN(rB) ){
1707       goto arithmetic_result_is_null;
1708     }
1709     pOut->u.r = rB;
1710     MemSetTypeFlag(pOut, MEM_Real);
1711 #endif
1712   }
1713   break;
1714 
1715 arithmetic_result_is_null:
1716   sqlite3VdbeMemSetNull(pOut);
1717   break;
1718 }
1719 
1720 /* Opcode: CollSeq P1 * * P4
1721 **
1722 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1723 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1724 ** be returned. This is used by the built-in min(), max() and nullif()
1725 ** functions.
1726 **
1727 ** If P1 is not zero, then it is a register that a subsequent min() or
1728 ** max() aggregate will set to 1 if the current row is not the minimum or
1729 ** maximum.  The P1 register is initialized to 0 by this instruction.
1730 **
1731 ** The interface used by the implementation of the aforementioned functions
1732 ** to retrieve the collation sequence set by this opcode is not available
1733 ** publicly.  Only built-in functions have access to this feature.
1734 */
1735 case OP_CollSeq: {
1736   assert( pOp->p4type==P4_COLLSEQ );
1737   if( pOp->p1 ){
1738     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1739   }
1740   break;
1741 }
1742 
1743 /* Opcode: BitAnd P1 P2 P3 * *
1744 ** Synopsis: r[P3]=r[P1]&r[P2]
1745 **
1746 ** Take the bit-wise AND of the values in register P1 and P2 and
1747 ** store the result in register P3.
1748 ** If either input is NULL, the result is NULL.
1749 */
1750 /* Opcode: BitOr P1 P2 P3 * *
1751 ** Synopsis: r[P3]=r[P1]|r[P2]
1752 **
1753 ** Take the bit-wise OR of the values in register P1 and P2 and
1754 ** store the result in register P3.
1755 ** If either input is NULL, the result is NULL.
1756 */
1757 /* Opcode: ShiftLeft P1 P2 P3 * *
1758 ** Synopsis: r[P3]=r[P2]<<r[P1]
1759 **
1760 ** Shift the integer value in register P2 to the left by the
1761 ** number of bits specified by the integer in register P1.
1762 ** Store the result in register P3.
1763 ** If either input is NULL, the result is NULL.
1764 */
1765 /* Opcode: ShiftRight P1 P2 P3 * *
1766 ** Synopsis: r[P3]=r[P2]>>r[P1]
1767 **
1768 ** Shift the integer value in register P2 to the right by the
1769 ** number of bits specified by the integer in register P1.
1770 ** Store the result in register P3.
1771 ** If either input is NULL, the result is NULL.
1772 */
1773 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1774 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1775 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1776 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1777   i64 iA;
1778   u64 uA;
1779   i64 iB;
1780   u8 op;
1781 
1782   pIn1 = &aMem[pOp->p1];
1783   pIn2 = &aMem[pOp->p2];
1784   pOut = &aMem[pOp->p3];
1785   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1786     sqlite3VdbeMemSetNull(pOut);
1787     break;
1788   }
1789   iA = sqlite3VdbeIntValue(pIn2);
1790   iB = sqlite3VdbeIntValue(pIn1);
1791   op = pOp->opcode;
1792   if( op==OP_BitAnd ){
1793     iA &= iB;
1794   }else if( op==OP_BitOr ){
1795     iA |= iB;
1796   }else if( iB!=0 ){
1797     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1798 
1799     /* If shifting by a negative amount, shift in the other direction */
1800     if( iB<0 ){
1801       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1802       op = 2*OP_ShiftLeft + 1 - op;
1803       iB = iB>(-64) ? -iB : 64;
1804     }
1805 
1806     if( iB>=64 ){
1807       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1808     }else{
1809       memcpy(&uA, &iA, sizeof(uA));
1810       if( op==OP_ShiftLeft ){
1811         uA <<= iB;
1812       }else{
1813         uA >>= iB;
1814         /* Sign-extend on a right shift of a negative number */
1815         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1816       }
1817       memcpy(&iA, &uA, sizeof(iA));
1818     }
1819   }
1820   pOut->u.i = iA;
1821   MemSetTypeFlag(pOut, MEM_Int);
1822   break;
1823 }
1824 
1825 /* Opcode: AddImm  P1 P2 * * *
1826 ** Synopsis: r[P1]=r[P1]+P2
1827 **
1828 ** Add the constant P2 to the value in register P1.
1829 ** The result is always an integer.
1830 **
1831 ** To force any register to be an integer, just add 0.
1832 */
1833 case OP_AddImm: {            /* in1 */
1834   pIn1 = &aMem[pOp->p1];
1835   memAboutToChange(p, pIn1);
1836   sqlite3VdbeMemIntegerify(pIn1);
1837   pIn1->u.i += pOp->p2;
1838   break;
1839 }
1840 
1841 /* Opcode: MustBeInt P1 P2 * * *
1842 **
1843 ** Force the value in register P1 to be an integer.  If the value
1844 ** in P1 is not an integer and cannot be converted into an integer
1845 ** without data loss, then jump immediately to P2, or if P2==0
1846 ** raise an SQLITE_MISMATCH exception.
1847 */
1848 case OP_MustBeInt: {            /* jump, in1 */
1849   pIn1 = &aMem[pOp->p1];
1850   if( (pIn1->flags & MEM_Int)==0 ){
1851     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1852     if( (pIn1->flags & MEM_Int)==0 ){
1853       VdbeBranchTaken(1, 2);
1854       if( pOp->p2==0 ){
1855         rc = SQLITE_MISMATCH;
1856         goto abort_due_to_error;
1857       }else{
1858         goto jump_to_p2;
1859       }
1860     }
1861   }
1862   VdbeBranchTaken(0, 2);
1863   MemSetTypeFlag(pIn1, MEM_Int);
1864   break;
1865 }
1866 
1867 #ifndef SQLITE_OMIT_FLOATING_POINT
1868 /* Opcode: RealAffinity P1 * * * *
1869 **
1870 ** If register P1 holds an integer convert it to a real value.
1871 **
1872 ** This opcode is used when extracting information from a column that
1873 ** has REAL affinity.  Such column values may still be stored as
1874 ** integers, for space efficiency, but after extraction we want them
1875 ** to have only a real value.
1876 */
1877 case OP_RealAffinity: {                  /* in1 */
1878   pIn1 = &aMem[pOp->p1];
1879   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1880     testcase( pIn1->flags & MEM_Int );
1881     testcase( pIn1->flags & MEM_IntReal );
1882     sqlite3VdbeMemRealify(pIn1);
1883     REGISTER_TRACE(pOp->p1, pIn1);
1884   }
1885   break;
1886 }
1887 #endif
1888 
1889 #ifndef SQLITE_OMIT_CAST
1890 /* Opcode: Cast P1 P2 * * *
1891 ** Synopsis: affinity(r[P1])
1892 **
1893 ** Force the value in register P1 to be the type defined by P2.
1894 **
1895 ** <ul>
1896 ** <li> P2=='A' &rarr; BLOB
1897 ** <li> P2=='B' &rarr; TEXT
1898 ** <li> P2=='C' &rarr; NUMERIC
1899 ** <li> P2=='D' &rarr; INTEGER
1900 ** <li> P2=='E' &rarr; REAL
1901 ** </ul>
1902 **
1903 ** A NULL value is not changed by this routine.  It remains NULL.
1904 */
1905 case OP_Cast: {                  /* in1 */
1906   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1907   testcase( pOp->p2==SQLITE_AFF_TEXT );
1908   testcase( pOp->p2==SQLITE_AFF_BLOB );
1909   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1910   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1911   testcase( pOp->p2==SQLITE_AFF_REAL );
1912   pIn1 = &aMem[pOp->p1];
1913   memAboutToChange(p, pIn1);
1914   rc = ExpandBlob(pIn1);
1915   if( rc ) goto abort_due_to_error;
1916   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1917   if( rc ) goto abort_due_to_error;
1918   UPDATE_MAX_BLOBSIZE(pIn1);
1919   REGISTER_TRACE(pOp->p1, pIn1);
1920   break;
1921 }
1922 #endif /* SQLITE_OMIT_CAST */
1923 
1924 /* Opcode: Eq P1 P2 P3 P4 P5
1925 ** Synopsis: IF r[P3]==r[P1]
1926 **
1927 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1928 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1929 ** store the result of comparison in register P2.
1930 **
1931 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1932 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1933 ** to coerce both inputs according to this affinity before the
1934 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1935 ** affinity is used. Note that the affinity conversions are stored
1936 ** back into the input registers P1 and P3.  So this opcode can cause
1937 ** persistent changes to registers P1 and P3.
1938 **
1939 ** Once any conversions have taken place, and neither value is NULL,
1940 ** the values are compared. If both values are blobs then memcmp() is
1941 ** used to determine the results of the comparison.  If both values
1942 ** are text, then the appropriate collating function specified in
1943 ** P4 is used to do the comparison.  If P4 is not specified then
1944 ** memcmp() is used to compare text string.  If both values are
1945 ** numeric, then a numeric comparison is used. If the two values
1946 ** are of different types, then numbers are considered less than
1947 ** strings and strings are considered less than blobs.
1948 **
1949 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1950 ** true or false and is never NULL.  If both operands are NULL then the result
1951 ** of comparison is true.  If either operand is NULL then the result is false.
1952 ** If neither operand is NULL the result is the same as it would be if
1953 ** the SQLITE_NULLEQ flag were omitted from P5.
1954 **
1955 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1956 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1957 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1958 */
1959 /* Opcode: Ne P1 P2 P3 P4 P5
1960 ** Synopsis: IF r[P3]!=r[P1]
1961 **
1962 ** This works just like the Eq opcode except that the jump is taken if
1963 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1964 ** additional information.
1965 **
1966 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1967 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1968 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1969 */
1970 /* Opcode: Lt P1 P2 P3 P4 P5
1971 ** Synopsis: IF r[P3]<r[P1]
1972 **
1973 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1974 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1975 ** the result of comparison (0 or 1 or NULL) into register P2.
1976 **
1977 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1978 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1979 ** bit is clear then fall through if either operand is NULL.
1980 **
1981 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1982 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1983 ** to coerce both inputs according to this affinity before the
1984 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1985 ** affinity is used. Note that the affinity conversions are stored
1986 ** back into the input registers P1 and P3.  So this opcode can cause
1987 ** persistent changes to registers P1 and P3.
1988 **
1989 ** Once any conversions have taken place, and neither value is NULL,
1990 ** the values are compared. If both values are blobs then memcmp() is
1991 ** used to determine the results of the comparison.  If both values
1992 ** are text, then the appropriate collating function specified in
1993 ** P4 is  used to do the comparison.  If P4 is not specified then
1994 ** memcmp() is used to compare text string.  If both values are
1995 ** numeric, then a numeric comparison is used. If the two values
1996 ** are of different types, then numbers are considered less than
1997 ** strings and strings are considered less than blobs.
1998 */
1999 /* Opcode: Le P1 P2 P3 P4 P5
2000 ** Synopsis: IF r[P3]<=r[P1]
2001 **
2002 ** This works just like the Lt opcode except that the jump is taken if
2003 ** the content of register P3 is less than or equal to the content of
2004 ** register P1.  See the Lt opcode for additional information.
2005 */
2006 /* Opcode: Gt P1 P2 P3 P4 P5
2007 ** Synopsis: IF r[P3]>r[P1]
2008 **
2009 ** This works just like the Lt opcode except that the jump is taken if
2010 ** the content of register P3 is greater than the content of
2011 ** register P1.  See the Lt opcode for additional information.
2012 */
2013 /* Opcode: Ge P1 P2 P3 P4 P5
2014 ** Synopsis: IF r[P3]>=r[P1]
2015 **
2016 ** This works just like the Lt opcode except that the jump is taken if
2017 ** the content of register P3 is greater than or equal to the content of
2018 ** register P1.  See the Lt opcode for additional information.
2019 */
2020 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2021 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2022 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2023 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2024 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2025 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2026   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2027   char affinity;      /* Affinity to use for comparison */
2028   u16 flags1;         /* Copy of initial value of pIn1->flags */
2029   u16 flags3;         /* Copy of initial value of pIn3->flags */
2030 
2031   pIn1 = &aMem[pOp->p1];
2032   pIn3 = &aMem[pOp->p3];
2033   flags1 = pIn1->flags;
2034   flags3 = pIn3->flags;
2035   if( (flags1 | flags3)&MEM_Null ){
2036     /* One or both operands are NULL */
2037     if( pOp->p5 & SQLITE_NULLEQ ){
2038       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2039       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2040       ** or not both operands are null.
2041       */
2042       assert( (flags1 & MEM_Cleared)==0 );
2043       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2044       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2045       if( (flags1&flags3&MEM_Null)!=0
2046        && (flags3&MEM_Cleared)==0
2047       ){
2048         res = 0;  /* Operands are equal */
2049       }else{
2050         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2051       }
2052     }else{
2053       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2054       ** then the result is always NULL.
2055       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2056       */
2057       if( pOp->p5 & SQLITE_STOREP2 ){
2058         pOut = &aMem[pOp->p2];
2059         iCompare = 1;    /* Operands are not equal */
2060         memAboutToChange(p, pOut);
2061         MemSetTypeFlag(pOut, MEM_Null);
2062         REGISTER_TRACE(pOp->p2, pOut);
2063       }else{
2064         VdbeBranchTaken(2,3);
2065         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2066           goto jump_to_p2;
2067         }
2068       }
2069       break;
2070     }
2071   }else{
2072     /* Neither operand is NULL.  Do a comparison. */
2073     affinity = pOp->p5 & SQLITE_AFF_MASK;
2074     if( affinity>=SQLITE_AFF_NUMERIC ){
2075       if( (flags1 | flags3)&MEM_Str ){
2076         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2077           applyNumericAffinity(pIn1,0);
2078           testcase( flags3!=pIn3->flags );
2079           flags3 = pIn3->flags;
2080         }
2081         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2082           applyNumericAffinity(pIn3,0);
2083         }
2084       }
2085       /* Handle the common case of integer comparison here, as an
2086       ** optimization, to avoid a call to sqlite3MemCompare() */
2087       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2088         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2089         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2090         res = 0;
2091         goto compare_op;
2092       }
2093     }else if( affinity==SQLITE_AFF_TEXT ){
2094       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2095         testcase( pIn1->flags & MEM_Int );
2096         testcase( pIn1->flags & MEM_Real );
2097         testcase( pIn1->flags & MEM_IntReal );
2098         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2099         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2100         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2101         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2102       }
2103       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2104         testcase( pIn3->flags & MEM_Int );
2105         testcase( pIn3->flags & MEM_Real );
2106         testcase( pIn3->flags & MEM_IntReal );
2107         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2108         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2109         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2110       }
2111     }
2112     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2113     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2114   }
2115 compare_op:
2116   /* At this point, res is negative, zero, or positive if reg[P1] is
2117   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2118   ** the answer to this operator in res2, depending on what the comparison
2119   ** operator actually is.  The next block of code depends on the fact
2120   ** that the 6 comparison operators are consecutive integers in this
2121   ** order:  NE, EQ, GT, LE, LT, GE */
2122   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2123   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2124   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2125     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2126     res2 = aLTb[pOp->opcode - OP_Ne];
2127   }else if( res==0 ){
2128     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2129     res2 = aEQb[pOp->opcode - OP_Ne];
2130   }else{
2131     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2132     res2 = aGTb[pOp->opcode - OP_Ne];
2133   }
2134 
2135   /* Undo any changes made by applyAffinity() to the input registers. */
2136   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2137   pIn3->flags = flags3;
2138   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2139   pIn1->flags = flags1;
2140 
2141   if( pOp->p5 & SQLITE_STOREP2 ){
2142     pOut = &aMem[pOp->p2];
2143     iCompare = res;
2144     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2145       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2146       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2147       ** is only used in contexts where either:
2148       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2149       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2150       ** Therefore it is not necessary to check the content of r[P2] for
2151       ** NULL. */
2152       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2153       assert( res2==0 || res2==1 );
2154       testcase( res2==0 && pOp->opcode==OP_Eq );
2155       testcase( res2==1 && pOp->opcode==OP_Eq );
2156       testcase( res2==0 && pOp->opcode==OP_Ne );
2157       testcase( res2==1 && pOp->opcode==OP_Ne );
2158       if( (pOp->opcode==OP_Eq)==res2 ) break;
2159     }
2160     memAboutToChange(p, pOut);
2161     MemSetTypeFlag(pOut, MEM_Int);
2162     pOut->u.i = res2;
2163     REGISTER_TRACE(pOp->p2, pOut);
2164   }else{
2165     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2166     if( res2 ){
2167       goto jump_to_p2;
2168     }
2169   }
2170   break;
2171 }
2172 
2173 /* Opcode: ElseNotEq * P2 * * *
2174 **
2175 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2176 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2177 ** opcodes are allowed to occur between this instruction and the previous
2178 ** OP_Lt or OP_Gt.  Furthermore, the prior OP_Lt or OP_Gt must have the
2179 ** SQLITE_STOREP2 bit set in the P5 field.
2180 **
2181 ** If result of an OP_Eq comparison on the same two operands as the
2182 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2183 ** jump to P2.  If the result of an OP_Eq comparison on the two previous
2184 ** operands would have been true (1), then fall through.
2185 */
2186 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2187 
2188 #ifdef SQLITE_DEBUG
2189   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2190   ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2191   ** OP_ReleaseReg opcodes */
2192   int iAddr;
2193   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2194     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2195     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2196     assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2197     break;
2198   }
2199 #endif /* SQLITE_DEBUG */
2200   VdbeBranchTaken(iCompare!=0, 2);
2201   if( iCompare!=0 ) goto jump_to_p2;
2202   break;
2203 }
2204 
2205 
2206 /* Opcode: Permutation * * * P4 *
2207 **
2208 ** Set the permutation used by the OP_Compare operator in the next
2209 ** instruction.  The permutation is stored in the P4 operand.
2210 **
2211 ** The permutation is only valid until the next OP_Compare that has
2212 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2213 ** occur immediately prior to the OP_Compare.
2214 **
2215 ** The first integer in the P4 integer array is the length of the array
2216 ** and does not become part of the permutation.
2217 */
2218 case OP_Permutation: {
2219   assert( pOp->p4type==P4_INTARRAY );
2220   assert( pOp->p4.ai );
2221   assert( pOp[1].opcode==OP_Compare );
2222   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2223   break;
2224 }
2225 
2226 /* Opcode: Compare P1 P2 P3 P4 P5
2227 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2228 **
2229 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2230 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2231 ** the comparison for use by the next OP_Jump instruct.
2232 **
2233 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2234 ** determined by the most recent OP_Permutation operator.  If the
2235 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2236 ** order.
2237 **
2238 ** P4 is a KeyInfo structure that defines collating sequences and sort
2239 ** orders for the comparison.  The permutation applies to registers
2240 ** only.  The KeyInfo elements are used sequentially.
2241 **
2242 ** The comparison is a sort comparison, so NULLs compare equal,
2243 ** NULLs are less than numbers, numbers are less than strings,
2244 ** and strings are less than blobs.
2245 */
2246 case OP_Compare: {
2247   int n;
2248   int i;
2249   int p1;
2250   int p2;
2251   const KeyInfo *pKeyInfo;
2252   int idx;
2253   CollSeq *pColl;    /* Collating sequence to use on this term */
2254   int bRev;          /* True for DESCENDING sort order */
2255   int *aPermute;     /* The permutation */
2256 
2257   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2258     aPermute = 0;
2259   }else{
2260     assert( pOp>aOp );
2261     assert( pOp[-1].opcode==OP_Permutation );
2262     assert( pOp[-1].p4type==P4_INTARRAY );
2263     aPermute = pOp[-1].p4.ai + 1;
2264     assert( aPermute!=0 );
2265   }
2266   n = pOp->p3;
2267   pKeyInfo = pOp->p4.pKeyInfo;
2268   assert( n>0 );
2269   assert( pKeyInfo!=0 );
2270   p1 = pOp->p1;
2271   p2 = pOp->p2;
2272 #ifdef SQLITE_DEBUG
2273   if( aPermute ){
2274     int k, mx = 0;
2275     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2276     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2277     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2278   }else{
2279     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2280     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2281   }
2282 #endif /* SQLITE_DEBUG */
2283   for(i=0; i<n; i++){
2284     idx = aPermute ? aPermute[i] : i;
2285     assert( memIsValid(&aMem[p1+idx]) );
2286     assert( memIsValid(&aMem[p2+idx]) );
2287     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2288     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2289     assert( i<pKeyInfo->nKeyField );
2290     pColl = pKeyInfo->aColl[i];
2291     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2292     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2293     if( iCompare ){
2294       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2295        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2296       ){
2297         iCompare = -iCompare;
2298       }
2299       if( bRev ) iCompare = -iCompare;
2300       break;
2301     }
2302   }
2303   break;
2304 }
2305 
2306 /* Opcode: Jump P1 P2 P3 * *
2307 **
2308 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2309 ** in the most recent OP_Compare instruction the P1 vector was less than
2310 ** equal to, or greater than the P2 vector, respectively.
2311 */
2312 case OP_Jump: {             /* jump */
2313   if( iCompare<0 ){
2314     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2315   }else if( iCompare==0 ){
2316     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2317   }else{
2318     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2319   }
2320   break;
2321 }
2322 
2323 /* Opcode: And P1 P2 P3 * *
2324 ** Synopsis: r[P3]=(r[P1] && r[P2])
2325 **
2326 ** Take the logical AND of the values in registers P1 and P2 and
2327 ** write the result into register P3.
2328 **
2329 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2330 ** the other input is NULL.  A NULL and true or two NULLs give
2331 ** a NULL output.
2332 */
2333 /* Opcode: Or P1 P2 P3 * *
2334 ** Synopsis: r[P3]=(r[P1] || r[P2])
2335 **
2336 ** Take the logical OR of the values in register P1 and P2 and
2337 ** store the answer in register P3.
2338 **
2339 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2340 ** even if the other input is NULL.  A NULL and false or two NULLs
2341 ** give a NULL output.
2342 */
2343 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2344 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2345   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2346   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2347 
2348   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2349   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2350   if( pOp->opcode==OP_And ){
2351     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2352     v1 = and_logic[v1*3+v2];
2353   }else{
2354     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2355     v1 = or_logic[v1*3+v2];
2356   }
2357   pOut = &aMem[pOp->p3];
2358   if( v1==2 ){
2359     MemSetTypeFlag(pOut, MEM_Null);
2360   }else{
2361     pOut->u.i = v1;
2362     MemSetTypeFlag(pOut, MEM_Int);
2363   }
2364   break;
2365 }
2366 
2367 /* Opcode: IsTrue P1 P2 P3 P4 *
2368 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2369 **
2370 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2371 ** IS NOT FALSE operators.
2372 **
2373 ** Interpret the value in register P1 as a boolean value.  Store that
2374 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2375 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2376 ** is 1.
2377 **
2378 ** The logic is summarized like this:
2379 **
2380 ** <ul>
2381 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2382 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2383 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2384 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2385 ** </ul>
2386 */
2387 case OP_IsTrue: {               /* in1, out2 */
2388   assert( pOp->p4type==P4_INT32 );
2389   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2390   assert( pOp->p3==0 || pOp->p3==1 );
2391   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2392       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2393   break;
2394 }
2395 
2396 /* Opcode: Not P1 P2 * * *
2397 ** Synopsis: r[P2]= !r[P1]
2398 **
2399 ** Interpret the value in register P1 as a boolean value.  Store the
2400 ** boolean complement in register P2.  If the value in register P1 is
2401 ** NULL, then a NULL is stored in P2.
2402 */
2403 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2404   pIn1 = &aMem[pOp->p1];
2405   pOut = &aMem[pOp->p2];
2406   if( (pIn1->flags & MEM_Null)==0 ){
2407     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2408   }else{
2409     sqlite3VdbeMemSetNull(pOut);
2410   }
2411   break;
2412 }
2413 
2414 /* Opcode: BitNot P1 P2 * * *
2415 ** Synopsis: r[P2]= ~r[P1]
2416 **
2417 ** Interpret the content of register P1 as an integer.  Store the
2418 ** ones-complement of the P1 value into register P2.  If P1 holds
2419 ** a NULL then store a NULL in P2.
2420 */
2421 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2422   pIn1 = &aMem[pOp->p1];
2423   pOut = &aMem[pOp->p2];
2424   sqlite3VdbeMemSetNull(pOut);
2425   if( (pIn1->flags & MEM_Null)==0 ){
2426     pOut->flags = MEM_Int;
2427     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2428   }
2429   break;
2430 }
2431 
2432 /* Opcode: Once P1 P2 * * *
2433 **
2434 ** Fall through to the next instruction the first time this opcode is
2435 ** encountered on each invocation of the byte-code program.  Jump to P2
2436 ** on the second and all subsequent encounters during the same invocation.
2437 **
2438 ** Top-level programs determine first invocation by comparing the P1
2439 ** operand against the P1 operand on the OP_Init opcode at the beginning
2440 ** of the program.  If the P1 values differ, then fall through and make
2441 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2442 ** the same then take the jump.
2443 **
2444 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2445 ** whether or not the jump should be taken.  The bitmask is necessary
2446 ** because the self-altering code trick does not work for recursive
2447 ** triggers.
2448 */
2449 case OP_Once: {             /* jump */
2450   u32 iAddr;                /* Address of this instruction */
2451   assert( p->aOp[0].opcode==OP_Init );
2452   if( p->pFrame ){
2453     iAddr = (int)(pOp - p->aOp);
2454     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2455       VdbeBranchTaken(1, 2);
2456       goto jump_to_p2;
2457     }
2458     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2459   }else{
2460     if( p->aOp[0].p1==pOp->p1 ){
2461       VdbeBranchTaken(1, 2);
2462       goto jump_to_p2;
2463     }
2464   }
2465   VdbeBranchTaken(0, 2);
2466   pOp->p1 = p->aOp[0].p1;
2467   break;
2468 }
2469 
2470 /* Opcode: If P1 P2 P3 * *
2471 **
2472 ** Jump to P2 if the value in register P1 is true.  The value
2473 ** is considered true if it is numeric and non-zero.  If the value
2474 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2475 */
2476 case OP_If:  {               /* jump, in1 */
2477   int c;
2478   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2479   VdbeBranchTaken(c!=0, 2);
2480   if( c ) goto jump_to_p2;
2481   break;
2482 }
2483 
2484 /* Opcode: IfNot P1 P2 P3 * *
2485 **
2486 ** Jump to P2 if the value in register P1 is False.  The value
2487 ** is considered false if it has a numeric value of zero.  If the value
2488 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2489 */
2490 case OP_IfNot: {            /* jump, in1 */
2491   int c;
2492   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2493   VdbeBranchTaken(c!=0, 2);
2494   if( c ) goto jump_to_p2;
2495   break;
2496 }
2497 
2498 /* Opcode: IsNull P1 P2 * * *
2499 ** Synopsis: if r[P1]==NULL goto P2
2500 **
2501 ** Jump to P2 if the value in register P1 is NULL.
2502 */
2503 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2504   pIn1 = &aMem[pOp->p1];
2505   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2506   if( (pIn1->flags & MEM_Null)!=0 ){
2507     goto jump_to_p2;
2508   }
2509   break;
2510 }
2511 
2512 /* Opcode: NotNull P1 P2 * * *
2513 ** Synopsis: if r[P1]!=NULL goto P2
2514 **
2515 ** Jump to P2 if the value in register P1 is not NULL.
2516 */
2517 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2518   pIn1 = &aMem[pOp->p1];
2519   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2520   if( (pIn1->flags & MEM_Null)==0 ){
2521     goto jump_to_p2;
2522   }
2523   break;
2524 }
2525 
2526 /* Opcode: IfNullRow P1 P2 P3 * *
2527 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2528 **
2529 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2530 ** If it is, then set register P3 to NULL and jump immediately to P2.
2531 ** If P1 is not on a NULL row, then fall through without making any
2532 ** changes.
2533 */
2534 case OP_IfNullRow: {         /* jump */
2535   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2536   assert( p->apCsr[pOp->p1]!=0 );
2537   if( p->apCsr[pOp->p1]->nullRow ){
2538     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2539     goto jump_to_p2;
2540   }
2541   break;
2542 }
2543 
2544 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2545 /* Opcode: Offset P1 P2 P3 * *
2546 ** Synopsis: r[P3] = sqlite_offset(P1)
2547 **
2548 ** Store in register r[P3] the byte offset into the database file that is the
2549 ** start of the payload for the record at which that cursor P1 is currently
2550 ** pointing.
2551 **
2552 ** P2 is the column number for the argument to the sqlite_offset() function.
2553 ** This opcode does not use P2 itself, but the P2 value is used by the
2554 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2555 ** same as for OP_Column.
2556 **
2557 ** This opcode is only available if SQLite is compiled with the
2558 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2559 */
2560 case OP_Offset: {          /* out3 */
2561   VdbeCursor *pC;    /* The VDBE cursor */
2562   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2563   pC = p->apCsr[pOp->p1];
2564   pOut = &p->aMem[pOp->p3];
2565   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2566     sqlite3VdbeMemSetNull(pOut);
2567   }else{
2568     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2569   }
2570   break;
2571 }
2572 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2573 
2574 /* Opcode: Column P1 P2 P3 P4 P5
2575 ** Synopsis: r[P3]=PX
2576 **
2577 ** Interpret the data that cursor P1 points to as a structure built using
2578 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2579 ** information about the format of the data.)  Extract the P2-th column
2580 ** from this record.  If there are less that (P2+1)
2581 ** values in the record, extract a NULL.
2582 **
2583 ** The value extracted is stored in register P3.
2584 **
2585 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2586 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2587 ** the result.
2588 **
2589 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2590 ** the result is guaranteed to only be used as the argument of a length()
2591 ** or typeof() function, respectively.  The loading of large blobs can be
2592 ** skipped for length() and all content loading can be skipped for typeof().
2593 */
2594 case OP_Column: {
2595   int p2;            /* column number to retrieve */
2596   VdbeCursor *pC;    /* The VDBE cursor */
2597   BtCursor *pCrsr;   /* The BTree cursor */
2598   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2599   int len;           /* The length of the serialized data for the column */
2600   int i;             /* Loop counter */
2601   Mem *pDest;        /* Where to write the extracted value */
2602   Mem sMem;          /* For storing the record being decoded */
2603   const u8 *zData;   /* Part of the record being decoded */
2604   const u8 *zHdr;    /* Next unparsed byte of the header */
2605   const u8 *zEndHdr; /* Pointer to first byte after the header */
2606   u64 offset64;      /* 64-bit offset */
2607   u32 t;             /* A type code from the record header */
2608   Mem *pReg;         /* PseudoTable input register */
2609 
2610   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2611   pC = p->apCsr[pOp->p1];
2612   assert( pC!=0 );
2613   p2 = pOp->p2;
2614 
2615   /* If the cursor cache is stale (meaning it is not currently point at
2616   ** the correct row) then bring it up-to-date by doing the necessary
2617   ** B-Tree seek. */
2618   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2619   if( rc ) goto abort_due_to_error;
2620 
2621   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2622   pDest = &aMem[pOp->p3];
2623   memAboutToChange(p, pDest);
2624   assert( pC!=0 );
2625   assert( p2<pC->nField );
2626   aOffset = pC->aOffset;
2627   assert( pC->eCurType!=CURTYPE_VTAB );
2628   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2629   assert( pC->eCurType!=CURTYPE_SORTER );
2630 
2631   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2632     if( pC->nullRow ){
2633       if( pC->eCurType==CURTYPE_PSEUDO ){
2634         /* For the special case of as pseudo-cursor, the seekResult field
2635         ** identifies the register that holds the record */
2636         assert( pC->seekResult>0 );
2637         pReg = &aMem[pC->seekResult];
2638         assert( pReg->flags & MEM_Blob );
2639         assert( memIsValid(pReg) );
2640         pC->payloadSize = pC->szRow = pReg->n;
2641         pC->aRow = (u8*)pReg->z;
2642       }else{
2643         sqlite3VdbeMemSetNull(pDest);
2644         goto op_column_out;
2645       }
2646     }else{
2647       pCrsr = pC->uc.pCursor;
2648       assert( pC->eCurType==CURTYPE_BTREE );
2649       assert( pCrsr );
2650       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2651       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2652       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2653       assert( pC->szRow<=pC->payloadSize );
2654       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2655       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2656         goto too_big;
2657       }
2658     }
2659     pC->cacheStatus = p->cacheCtr;
2660     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2661     pC->nHdrParsed = 0;
2662 
2663 
2664     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2665       /* pC->aRow does not have to hold the entire row, but it does at least
2666       ** need to cover the header of the record.  If pC->aRow does not contain
2667       ** the complete header, then set it to zero, forcing the header to be
2668       ** dynamically allocated. */
2669       pC->aRow = 0;
2670       pC->szRow = 0;
2671 
2672       /* Make sure a corrupt database has not given us an oversize header.
2673       ** Do this now to avoid an oversize memory allocation.
2674       **
2675       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2676       ** types use so much data space that there can only be 4096 and 32 of
2677       ** them, respectively.  So the maximum header length results from a
2678       ** 3-byte type for each of the maximum of 32768 columns plus three
2679       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2680       */
2681       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2682         goto op_column_corrupt;
2683       }
2684     }else{
2685       /* This is an optimization.  By skipping over the first few tests
2686       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2687       ** measurable performance gain.
2688       **
2689       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2690       ** generated by SQLite, and could be considered corruption, but we
2691       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2692       ** branch jumps to reads past the end of the record, but never more
2693       ** than a few bytes.  Even if the record occurs at the end of the page
2694       ** content area, the "page header" comes after the page content and so
2695       ** this overread is harmless.  Similar overreads can occur for a corrupt
2696       ** database file.
2697       */
2698       zData = pC->aRow;
2699       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2700       testcase( aOffset[0]==0 );
2701       goto op_column_read_header;
2702     }
2703   }
2704 
2705   /* Make sure at least the first p2+1 entries of the header have been
2706   ** parsed and valid information is in aOffset[] and pC->aType[].
2707   */
2708   if( pC->nHdrParsed<=p2 ){
2709     /* If there is more header available for parsing in the record, try
2710     ** to extract additional fields up through the p2+1-th field
2711     */
2712     if( pC->iHdrOffset<aOffset[0] ){
2713       /* Make sure zData points to enough of the record to cover the header. */
2714       if( pC->aRow==0 ){
2715         memset(&sMem, 0, sizeof(sMem));
2716         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2717         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2718         zData = (u8*)sMem.z;
2719       }else{
2720         zData = pC->aRow;
2721       }
2722 
2723       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2724     op_column_read_header:
2725       i = pC->nHdrParsed;
2726       offset64 = aOffset[i];
2727       zHdr = zData + pC->iHdrOffset;
2728       zEndHdr = zData + aOffset[0];
2729       testcase( zHdr>=zEndHdr );
2730       do{
2731         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2732           zHdr++;
2733           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2734         }else{
2735           zHdr += sqlite3GetVarint32(zHdr, &t);
2736           pC->aType[i] = t;
2737           offset64 += sqlite3VdbeSerialTypeLen(t);
2738         }
2739         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2740       }while( i<=p2 && zHdr<zEndHdr );
2741 
2742       /* The record is corrupt if any of the following are true:
2743       ** (1) the bytes of the header extend past the declared header size
2744       ** (2) the entire header was used but not all data was used
2745       ** (3) the end of the data extends beyond the end of the record.
2746       */
2747       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2748        || (offset64 > pC->payloadSize)
2749       ){
2750         if( aOffset[0]==0 ){
2751           i = 0;
2752           zHdr = zEndHdr;
2753         }else{
2754           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2755           goto op_column_corrupt;
2756         }
2757       }
2758 
2759       pC->nHdrParsed = i;
2760       pC->iHdrOffset = (u32)(zHdr - zData);
2761       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2762     }else{
2763       t = 0;
2764     }
2765 
2766     /* If after trying to extract new entries from the header, nHdrParsed is
2767     ** still not up to p2, that means that the record has fewer than p2
2768     ** columns.  So the result will be either the default value or a NULL.
2769     */
2770     if( pC->nHdrParsed<=p2 ){
2771       if( pOp->p4type==P4_MEM ){
2772         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2773       }else{
2774         sqlite3VdbeMemSetNull(pDest);
2775       }
2776       goto op_column_out;
2777     }
2778   }else{
2779     t = pC->aType[p2];
2780   }
2781 
2782   /* Extract the content for the p2+1-th column.  Control can only
2783   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2784   ** all valid.
2785   */
2786   assert( p2<pC->nHdrParsed );
2787   assert( rc==SQLITE_OK );
2788   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2789   if( VdbeMemDynamic(pDest) ){
2790     sqlite3VdbeMemSetNull(pDest);
2791   }
2792   assert( t==pC->aType[p2] );
2793   if( pC->szRow>=aOffset[p2+1] ){
2794     /* This is the common case where the desired content fits on the original
2795     ** page - where the content is not on an overflow page */
2796     zData = pC->aRow + aOffset[p2];
2797     if( t<12 ){
2798       sqlite3VdbeSerialGet(zData, t, pDest);
2799     }else{
2800       /* If the column value is a string, we need a persistent value, not
2801       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2802       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2803       */
2804       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2805       pDest->n = len = (t-12)/2;
2806       pDest->enc = encoding;
2807       if( pDest->szMalloc < len+2 ){
2808         pDest->flags = MEM_Null;
2809         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2810       }else{
2811         pDest->z = pDest->zMalloc;
2812       }
2813       memcpy(pDest->z, zData, len);
2814       pDest->z[len] = 0;
2815       pDest->z[len+1] = 0;
2816       pDest->flags = aFlag[t&1];
2817     }
2818   }else{
2819     pDest->enc = encoding;
2820     /* This branch happens only when content is on overflow pages */
2821     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2822           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2823      || (len = sqlite3VdbeSerialTypeLen(t))==0
2824     ){
2825       /* Content is irrelevant for
2826       **    1. the typeof() function,
2827       **    2. the length(X) function if X is a blob, and
2828       **    3. if the content length is zero.
2829       ** So we might as well use bogus content rather than reading
2830       ** content from disk.
2831       **
2832       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2833       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2834       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2835       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2836       ** and it begins with a bunch of zeros.
2837       */
2838       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2839     }else{
2840       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2841       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2842       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2843       pDest->flags &= ~MEM_Ephem;
2844     }
2845   }
2846 
2847 op_column_out:
2848   UPDATE_MAX_BLOBSIZE(pDest);
2849   REGISTER_TRACE(pOp->p3, pDest);
2850   break;
2851 
2852 op_column_corrupt:
2853   if( aOp[0].p3>0 ){
2854     pOp = &aOp[aOp[0].p3-1];
2855     break;
2856   }else{
2857     rc = SQLITE_CORRUPT_BKPT;
2858     goto abort_due_to_error;
2859   }
2860 }
2861 
2862 /* Opcode: Affinity P1 P2 * P4 *
2863 ** Synopsis: affinity(r[P1@P2])
2864 **
2865 ** Apply affinities to a range of P2 registers starting with P1.
2866 **
2867 ** P4 is a string that is P2 characters long. The N-th character of the
2868 ** string indicates the column affinity that should be used for the N-th
2869 ** memory cell in the range.
2870 */
2871 case OP_Affinity: {
2872   const char *zAffinity;   /* The affinity to be applied */
2873 
2874   zAffinity = pOp->p4.z;
2875   assert( zAffinity!=0 );
2876   assert( pOp->p2>0 );
2877   assert( zAffinity[pOp->p2]==0 );
2878   pIn1 = &aMem[pOp->p1];
2879   while( 1 /*exit-by-break*/ ){
2880     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2881     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
2882     applyAffinity(pIn1, zAffinity[0], encoding);
2883     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2884       /* When applying REAL affinity, if the result is still an MEM_Int
2885       ** that will fit in 6 bytes, then change the type to MEM_IntReal
2886       ** so that we keep the high-resolution integer value but know that
2887       ** the type really wants to be REAL. */
2888       testcase( pIn1->u.i==140737488355328LL );
2889       testcase( pIn1->u.i==140737488355327LL );
2890       testcase( pIn1->u.i==-140737488355328LL );
2891       testcase( pIn1->u.i==-140737488355329LL );
2892       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2893         pIn1->flags |= MEM_IntReal;
2894         pIn1->flags &= ~MEM_Int;
2895       }else{
2896         pIn1->u.r = (double)pIn1->u.i;
2897         pIn1->flags |= MEM_Real;
2898         pIn1->flags &= ~MEM_Int;
2899       }
2900     }
2901     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2902     zAffinity++;
2903     if( zAffinity[0]==0 ) break;
2904     pIn1++;
2905   }
2906   break;
2907 }
2908 
2909 /* Opcode: MakeRecord P1 P2 P3 P4 *
2910 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2911 **
2912 ** Convert P2 registers beginning with P1 into the [record format]
2913 ** use as a data record in a database table or as a key
2914 ** in an index.  The OP_Column opcode can decode the record later.
2915 **
2916 ** P4 may be a string that is P2 characters long.  The N-th character of the
2917 ** string indicates the column affinity that should be used for the N-th
2918 ** field of the index key.
2919 **
2920 ** The mapping from character to affinity is given by the SQLITE_AFF_
2921 ** macros defined in sqliteInt.h.
2922 **
2923 ** If P4 is NULL then all index fields have the affinity BLOB.
2924 */
2925 case OP_MakeRecord: {
2926   Mem *pRec;             /* The new record */
2927   u64 nData;             /* Number of bytes of data space */
2928   int nHdr;              /* Number of bytes of header space */
2929   i64 nByte;             /* Data space required for this record */
2930   i64 nZero;             /* Number of zero bytes at the end of the record */
2931   int nVarint;           /* Number of bytes in a varint */
2932   u32 serial_type;       /* Type field */
2933   Mem *pData0;           /* First field to be combined into the record */
2934   Mem *pLast;            /* Last field of the record */
2935   int nField;            /* Number of fields in the record */
2936   char *zAffinity;       /* The affinity string for the record */
2937   int file_format;       /* File format to use for encoding */
2938   u32 len;               /* Length of a field */
2939   u8 *zHdr;              /* Where to write next byte of the header */
2940   u8 *zPayload;          /* Where to write next byte of the payload */
2941 
2942   /* Assuming the record contains N fields, the record format looks
2943   ** like this:
2944   **
2945   ** ------------------------------------------------------------------------
2946   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2947   ** ------------------------------------------------------------------------
2948   **
2949   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2950   ** and so forth.
2951   **
2952   ** Each type field is a varint representing the serial type of the
2953   ** corresponding data element (see sqlite3VdbeSerialType()). The
2954   ** hdr-size field is also a varint which is the offset from the beginning
2955   ** of the record to data0.
2956   */
2957   nData = 0;         /* Number of bytes of data space */
2958   nHdr = 0;          /* Number of bytes of header space */
2959   nZero = 0;         /* Number of zero bytes at the end of the record */
2960   nField = pOp->p1;
2961   zAffinity = pOp->p4.z;
2962   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2963   pData0 = &aMem[nField];
2964   nField = pOp->p2;
2965   pLast = &pData0[nField-1];
2966   file_format = p->minWriteFileFormat;
2967 
2968   /* Identify the output register */
2969   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2970   pOut = &aMem[pOp->p3];
2971   memAboutToChange(p, pOut);
2972 
2973   /* Apply the requested affinity to all inputs
2974   */
2975   assert( pData0<=pLast );
2976   if( zAffinity ){
2977     pRec = pData0;
2978     do{
2979       applyAffinity(pRec, zAffinity[0], encoding);
2980       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2981         pRec->flags |= MEM_IntReal;
2982         pRec->flags &= ~(MEM_Int);
2983       }
2984       REGISTER_TRACE((int)(pRec-aMem), pRec);
2985       zAffinity++;
2986       pRec++;
2987       assert( zAffinity[0]==0 || pRec<=pLast );
2988     }while( zAffinity[0] );
2989   }
2990 
2991 #ifdef SQLITE_ENABLE_NULL_TRIM
2992   /* NULLs can be safely trimmed from the end of the record, as long as
2993   ** as the schema format is 2 or more and none of the omitted columns
2994   ** have a non-NULL default value.  Also, the record must be left with
2995   ** at least one field.  If P5>0 then it will be one more than the
2996   ** index of the right-most column with a non-NULL default value */
2997   if( pOp->p5 ){
2998     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2999       pLast--;
3000       nField--;
3001     }
3002   }
3003 #endif
3004 
3005   /* Loop through the elements that will make up the record to figure
3006   ** out how much space is required for the new record.  After this loop,
3007   ** the Mem.uTemp field of each term should hold the serial-type that will
3008   ** be used for that term in the generated record:
3009   **
3010   **   Mem.uTemp value    type
3011   **   ---------------    ---------------
3012   **      0               NULL
3013   **      1               1-byte signed integer
3014   **      2               2-byte signed integer
3015   **      3               3-byte signed integer
3016   **      4               4-byte signed integer
3017   **      5               6-byte signed integer
3018   **      6               8-byte signed integer
3019   **      7               IEEE float
3020   **      8               Integer constant 0
3021   **      9               Integer constant 1
3022   **     10,11            reserved for expansion
3023   **    N>=12 and even    BLOB
3024   **    N>=13 and odd     text
3025   **
3026   ** The following additional values are computed:
3027   **     nHdr        Number of bytes needed for the record header
3028   **     nData       Number of bytes of data space needed for the record
3029   **     nZero       Zero bytes at the end of the record
3030   */
3031   pRec = pLast;
3032   do{
3033     assert( memIsValid(pRec) );
3034     if( pRec->flags & MEM_Null ){
3035       if( pRec->flags & MEM_Zero ){
3036         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3037         ** table methods that never invoke sqlite3_result_xxxxx() while
3038         ** computing an unchanging column value in an UPDATE statement.
3039         ** Give such values a special internal-use-only serial-type of 10
3040         ** so that they can be passed through to xUpdate and have
3041         ** a true sqlite3_value_nochange(). */
3042         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3043         pRec->uTemp = 10;
3044       }else{
3045         pRec->uTemp = 0;
3046       }
3047       nHdr++;
3048     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3049       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3050       i64 i = pRec->u.i;
3051       u64 uu;
3052       testcase( pRec->flags & MEM_Int );
3053       testcase( pRec->flags & MEM_IntReal );
3054       if( i<0 ){
3055         uu = ~i;
3056       }else{
3057         uu = i;
3058       }
3059       nHdr++;
3060       testcase( uu==127 );               testcase( uu==128 );
3061       testcase( uu==32767 );             testcase( uu==32768 );
3062       testcase( uu==8388607 );           testcase( uu==8388608 );
3063       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3064       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3065       if( uu<=127 ){
3066         if( (i&1)==i && file_format>=4 ){
3067           pRec->uTemp = 8+(u32)uu;
3068         }else{
3069           nData++;
3070           pRec->uTemp = 1;
3071         }
3072       }else if( uu<=32767 ){
3073         nData += 2;
3074         pRec->uTemp = 2;
3075       }else if( uu<=8388607 ){
3076         nData += 3;
3077         pRec->uTemp = 3;
3078       }else if( uu<=2147483647 ){
3079         nData += 4;
3080         pRec->uTemp = 4;
3081       }else if( uu<=140737488355327LL ){
3082         nData += 6;
3083         pRec->uTemp = 5;
3084       }else{
3085         nData += 8;
3086         if( pRec->flags & MEM_IntReal ){
3087           /* If the value is IntReal and is going to take up 8 bytes to store
3088           ** as an integer, then we might as well make it an 8-byte floating
3089           ** point value */
3090           pRec->u.r = (double)pRec->u.i;
3091           pRec->flags &= ~MEM_IntReal;
3092           pRec->flags |= MEM_Real;
3093           pRec->uTemp = 7;
3094         }else{
3095           pRec->uTemp = 6;
3096         }
3097       }
3098     }else if( pRec->flags & MEM_Real ){
3099       nHdr++;
3100       nData += 8;
3101       pRec->uTemp = 7;
3102     }else{
3103       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3104       assert( pRec->n>=0 );
3105       len = (u32)pRec->n;
3106       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3107       if( pRec->flags & MEM_Zero ){
3108         serial_type += pRec->u.nZero*2;
3109         if( nData ){
3110           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3111           len += pRec->u.nZero;
3112         }else{
3113           nZero += pRec->u.nZero;
3114         }
3115       }
3116       nData += len;
3117       nHdr += sqlite3VarintLen(serial_type);
3118       pRec->uTemp = serial_type;
3119     }
3120     if( pRec==pData0 ) break;
3121     pRec--;
3122   }while(1);
3123 
3124   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3125   ** which determines the total number of bytes in the header. The varint
3126   ** value is the size of the header in bytes including the size varint
3127   ** itself. */
3128   testcase( nHdr==126 );
3129   testcase( nHdr==127 );
3130   if( nHdr<=126 ){
3131     /* The common case */
3132     nHdr += 1;
3133   }else{
3134     /* Rare case of a really large header */
3135     nVarint = sqlite3VarintLen(nHdr);
3136     nHdr += nVarint;
3137     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3138   }
3139   nByte = nHdr+nData;
3140 
3141   /* Make sure the output register has a buffer large enough to store
3142   ** the new record. The output register (pOp->p3) is not allowed to
3143   ** be one of the input registers (because the following call to
3144   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3145   */
3146   if( nByte+nZero<=pOut->szMalloc ){
3147     /* The output register is already large enough to hold the record.
3148     ** No error checks or buffer enlargement is required */
3149     pOut->z = pOut->zMalloc;
3150   }else{
3151     /* Need to make sure that the output is not too big and then enlarge
3152     ** the output register to hold the full result */
3153     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3154       goto too_big;
3155     }
3156     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3157       goto no_mem;
3158     }
3159   }
3160   pOut->n = (int)nByte;
3161   pOut->flags = MEM_Blob;
3162   if( nZero ){
3163     pOut->u.nZero = nZero;
3164     pOut->flags |= MEM_Zero;
3165   }
3166   UPDATE_MAX_BLOBSIZE(pOut);
3167   zHdr = (u8 *)pOut->z;
3168   zPayload = zHdr + nHdr;
3169 
3170   /* Write the record */
3171   zHdr += putVarint32(zHdr, nHdr);
3172   assert( pData0<=pLast );
3173   pRec = pData0;
3174   do{
3175     serial_type = pRec->uTemp;
3176     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3177     ** additional varints, one per column. */
3178     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3179     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3180     ** immediately follow the header. */
3181     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3182   }while( (++pRec)<=pLast );
3183   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3184   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3185 
3186   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3187   REGISTER_TRACE(pOp->p3, pOut);
3188   break;
3189 }
3190 
3191 /* Opcode: Count P1 P2 * * *
3192 ** Synopsis: r[P2]=count()
3193 **
3194 ** Store the number of entries (an integer value) in the table or index
3195 ** opened by cursor P1 in register P2
3196 */
3197 #ifndef SQLITE_OMIT_BTREECOUNT
3198 case OP_Count: {         /* out2 */
3199   i64 nEntry;
3200   BtCursor *pCrsr;
3201 
3202   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3203   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3204   assert( pCrsr );
3205   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3206   rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3207   if( rc ) goto abort_due_to_error;
3208   pOut = out2Prerelease(p, pOp);
3209   pOut->u.i = nEntry;
3210   goto check_for_interrupt;
3211 }
3212 #endif
3213 
3214 /* Opcode: Savepoint P1 * * P4 *
3215 **
3216 ** Open, release or rollback the savepoint named by parameter P4, depending
3217 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3218 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3219 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3220 */
3221 case OP_Savepoint: {
3222   int p1;                         /* Value of P1 operand */
3223   char *zName;                    /* Name of savepoint */
3224   int nName;
3225   Savepoint *pNew;
3226   Savepoint *pSavepoint;
3227   Savepoint *pTmp;
3228   int iSavepoint;
3229   int ii;
3230 
3231   p1 = pOp->p1;
3232   zName = pOp->p4.z;
3233 
3234   /* Assert that the p1 parameter is valid. Also that if there is no open
3235   ** transaction, then there cannot be any savepoints.
3236   */
3237   assert( db->pSavepoint==0 || db->autoCommit==0 );
3238   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3239   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3240   assert( checkSavepointCount(db) );
3241   assert( p->bIsReader );
3242 
3243   if( p1==SAVEPOINT_BEGIN ){
3244     if( db->nVdbeWrite>0 ){
3245       /* A new savepoint cannot be created if there are active write
3246       ** statements (i.e. open read/write incremental blob handles).
3247       */
3248       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3249       rc = SQLITE_BUSY;
3250     }else{
3251       nName = sqlite3Strlen30(zName);
3252 
3253 #ifndef SQLITE_OMIT_VIRTUALTABLE
3254       /* This call is Ok even if this savepoint is actually a transaction
3255       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3256       ** If this is a transaction savepoint being opened, it is guaranteed
3257       ** that the db->aVTrans[] array is empty.  */
3258       assert( db->autoCommit==0 || db->nVTrans==0 );
3259       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3260                                 db->nStatement+db->nSavepoint);
3261       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3262 #endif
3263 
3264       /* Create a new savepoint structure. */
3265       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3266       if( pNew ){
3267         pNew->zName = (char *)&pNew[1];
3268         memcpy(pNew->zName, zName, nName+1);
3269 
3270         /* If there is no open transaction, then mark this as a special
3271         ** "transaction savepoint". */
3272         if( db->autoCommit ){
3273           db->autoCommit = 0;
3274           db->isTransactionSavepoint = 1;
3275         }else{
3276           db->nSavepoint++;
3277         }
3278 
3279         /* Link the new savepoint into the database handle's list. */
3280         pNew->pNext = db->pSavepoint;
3281         db->pSavepoint = pNew;
3282         pNew->nDeferredCons = db->nDeferredCons;
3283         pNew->nDeferredImmCons = db->nDeferredImmCons;
3284       }
3285     }
3286   }else{
3287     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3288     iSavepoint = 0;
3289 
3290     /* Find the named savepoint. If there is no such savepoint, then an
3291     ** an error is returned to the user.  */
3292     for(
3293       pSavepoint = db->pSavepoint;
3294       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3295       pSavepoint = pSavepoint->pNext
3296     ){
3297       iSavepoint++;
3298     }
3299     if( !pSavepoint ){
3300       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3301       rc = SQLITE_ERROR;
3302     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3303       /* It is not possible to release (commit) a savepoint if there are
3304       ** active write statements.
3305       */
3306       sqlite3VdbeError(p, "cannot release savepoint - "
3307                           "SQL statements in progress");
3308       rc = SQLITE_BUSY;
3309     }else{
3310 
3311       /* Determine whether or not this is a transaction savepoint. If so,
3312       ** and this is a RELEASE command, then the current transaction
3313       ** is committed.
3314       */
3315       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3316       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3317         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3318           goto vdbe_return;
3319         }
3320         db->autoCommit = 1;
3321         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3322           p->pc = (int)(pOp - aOp);
3323           db->autoCommit = 0;
3324           p->rc = rc = SQLITE_BUSY;
3325           goto vdbe_return;
3326         }
3327         rc = p->rc;
3328         if( rc ){
3329           db->autoCommit = 0;
3330         }else{
3331           db->isTransactionSavepoint = 0;
3332         }
3333       }else{
3334         int isSchemaChange;
3335         iSavepoint = db->nSavepoint - iSavepoint - 1;
3336         if( p1==SAVEPOINT_ROLLBACK ){
3337           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3338           for(ii=0; ii<db->nDb; ii++){
3339             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3340                                        SQLITE_ABORT_ROLLBACK,
3341                                        isSchemaChange==0);
3342             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3343           }
3344         }else{
3345           assert( p1==SAVEPOINT_RELEASE );
3346           isSchemaChange = 0;
3347         }
3348         for(ii=0; ii<db->nDb; ii++){
3349           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3350           if( rc!=SQLITE_OK ){
3351             goto abort_due_to_error;
3352           }
3353         }
3354         if( isSchemaChange ){
3355           sqlite3ExpirePreparedStatements(db, 0);
3356           sqlite3ResetAllSchemasOfConnection(db);
3357           db->mDbFlags |= DBFLAG_SchemaChange;
3358         }
3359       }
3360       if( rc ) goto abort_due_to_error;
3361 
3362       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3363       ** savepoints nested inside of the savepoint being operated on. */
3364       while( db->pSavepoint!=pSavepoint ){
3365         pTmp = db->pSavepoint;
3366         db->pSavepoint = pTmp->pNext;
3367         sqlite3DbFree(db, pTmp);
3368         db->nSavepoint--;
3369       }
3370 
3371       /* If it is a RELEASE, then destroy the savepoint being operated on
3372       ** too. If it is a ROLLBACK TO, then set the number of deferred
3373       ** constraint violations present in the database to the value stored
3374       ** when the savepoint was created.  */
3375       if( p1==SAVEPOINT_RELEASE ){
3376         assert( pSavepoint==db->pSavepoint );
3377         db->pSavepoint = pSavepoint->pNext;
3378         sqlite3DbFree(db, pSavepoint);
3379         if( !isTransaction ){
3380           db->nSavepoint--;
3381         }
3382       }else{
3383         assert( p1==SAVEPOINT_ROLLBACK );
3384         db->nDeferredCons = pSavepoint->nDeferredCons;
3385         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3386       }
3387 
3388       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3389         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3390         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3391       }
3392     }
3393   }
3394   if( rc ) goto abort_due_to_error;
3395 
3396   break;
3397 }
3398 
3399 /* Opcode: AutoCommit P1 P2 * * *
3400 **
3401 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3402 ** back any currently active btree transactions. If there are any active
3403 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3404 ** there are active writing VMs or active VMs that use shared cache.
3405 **
3406 ** This instruction causes the VM to halt.
3407 */
3408 case OP_AutoCommit: {
3409   int desiredAutoCommit;
3410   int iRollback;
3411 
3412   desiredAutoCommit = pOp->p1;
3413   iRollback = pOp->p2;
3414   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3415   assert( desiredAutoCommit==1 || iRollback==0 );
3416   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3417   assert( p->bIsReader );
3418 
3419   if( desiredAutoCommit!=db->autoCommit ){
3420     if( iRollback ){
3421       assert( desiredAutoCommit==1 );
3422       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3423       db->autoCommit = 1;
3424     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3425       /* If this instruction implements a COMMIT and other VMs are writing
3426       ** return an error indicating that the other VMs must complete first.
3427       */
3428       sqlite3VdbeError(p, "cannot commit transaction - "
3429                           "SQL statements in progress");
3430       rc = SQLITE_BUSY;
3431       goto abort_due_to_error;
3432     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3433       goto vdbe_return;
3434     }else{
3435       db->autoCommit = (u8)desiredAutoCommit;
3436     }
3437     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3438       p->pc = (int)(pOp - aOp);
3439       db->autoCommit = (u8)(1-desiredAutoCommit);
3440       p->rc = rc = SQLITE_BUSY;
3441       goto vdbe_return;
3442     }
3443     sqlite3CloseSavepoints(db);
3444     if( p->rc==SQLITE_OK ){
3445       rc = SQLITE_DONE;
3446     }else{
3447       rc = SQLITE_ERROR;
3448     }
3449     goto vdbe_return;
3450   }else{
3451     sqlite3VdbeError(p,
3452         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3453         (iRollback)?"cannot rollback - no transaction is active":
3454                    "cannot commit - no transaction is active"));
3455 
3456     rc = SQLITE_ERROR;
3457     goto abort_due_to_error;
3458   }
3459   /*NOTREACHED*/ assert(0);
3460 }
3461 
3462 /* Opcode: Transaction P1 P2 P3 P4 P5
3463 **
3464 ** Begin a transaction on database P1 if a transaction is not already
3465 ** active.
3466 ** If P2 is non-zero, then a write-transaction is started, or if a
3467 ** read-transaction is already active, it is upgraded to a write-transaction.
3468 ** If P2 is zero, then a read-transaction is started.
3469 **
3470 ** P1 is the index of the database file on which the transaction is
3471 ** started.  Index 0 is the main database file and index 1 is the
3472 ** file used for temporary tables.  Indices of 2 or more are used for
3473 ** attached databases.
3474 **
3475 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3476 ** true (this flag is set if the Vdbe may modify more than one row and may
3477 ** throw an ABORT exception), a statement transaction may also be opened.
3478 ** More specifically, a statement transaction is opened iff the database
3479 ** connection is currently not in autocommit mode, or if there are other
3480 ** active statements. A statement transaction allows the changes made by this
3481 ** VDBE to be rolled back after an error without having to roll back the
3482 ** entire transaction. If no error is encountered, the statement transaction
3483 ** will automatically commit when the VDBE halts.
3484 **
3485 ** If P5!=0 then this opcode also checks the schema cookie against P3
3486 ** and the schema generation counter against P4.
3487 ** The cookie changes its value whenever the database schema changes.
3488 ** This operation is used to detect when that the cookie has changed
3489 ** and that the current process needs to reread the schema.  If the schema
3490 ** cookie in P3 differs from the schema cookie in the database header or
3491 ** if the schema generation counter in P4 differs from the current
3492 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3493 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3494 ** statement and rerun it from the beginning.
3495 */
3496 case OP_Transaction: {
3497   Btree *pBt;
3498   int iMeta = 0;
3499 
3500   assert( p->bIsReader );
3501   assert( p->readOnly==0 || pOp->p2==0 );
3502   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3503   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3504   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3505     rc = SQLITE_READONLY;
3506     goto abort_due_to_error;
3507   }
3508   pBt = db->aDb[pOp->p1].pBt;
3509 
3510   if( pBt ){
3511     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3512     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3513     testcase( rc==SQLITE_BUSY_RECOVERY );
3514     if( rc!=SQLITE_OK ){
3515       if( (rc&0xff)==SQLITE_BUSY ){
3516         p->pc = (int)(pOp - aOp);
3517         p->rc = rc;
3518         goto vdbe_return;
3519       }
3520       goto abort_due_to_error;
3521     }
3522 
3523     if( p->usesStmtJournal
3524      && pOp->p2
3525      && (db->autoCommit==0 || db->nVdbeRead>1)
3526     ){
3527       assert( sqlite3BtreeIsInTrans(pBt) );
3528       if( p->iStatement==0 ){
3529         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3530         db->nStatement++;
3531         p->iStatement = db->nSavepoint + db->nStatement;
3532       }
3533 
3534       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3535       if( rc==SQLITE_OK ){
3536         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3537       }
3538 
3539       /* Store the current value of the database handles deferred constraint
3540       ** counter. If the statement transaction needs to be rolled back,
3541       ** the value of this counter needs to be restored too.  */
3542       p->nStmtDefCons = db->nDeferredCons;
3543       p->nStmtDefImmCons = db->nDeferredImmCons;
3544     }
3545   }
3546   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3547   if( pOp->p5
3548    && (iMeta!=pOp->p3
3549       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3550   ){
3551     /*
3552     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3553     ** version is checked to ensure that the schema has not changed since the
3554     ** SQL statement was prepared.
3555     */
3556     sqlite3DbFree(db, p->zErrMsg);
3557     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3558     /* If the schema-cookie from the database file matches the cookie
3559     ** stored with the in-memory representation of the schema, do
3560     ** not reload the schema from the database file.
3561     **
3562     ** If virtual-tables are in use, this is not just an optimization.
3563     ** Often, v-tables store their data in other SQLite tables, which
3564     ** are queried from within xNext() and other v-table methods using
3565     ** prepared queries. If such a query is out-of-date, we do not want to
3566     ** discard the database schema, as the user code implementing the
3567     ** v-table would have to be ready for the sqlite3_vtab structure itself
3568     ** to be invalidated whenever sqlite3_step() is called from within
3569     ** a v-table method.
3570     */
3571     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3572       sqlite3ResetOneSchema(db, pOp->p1);
3573     }
3574     p->expired = 1;
3575     rc = SQLITE_SCHEMA;
3576   }
3577   if( rc ) goto abort_due_to_error;
3578   break;
3579 }
3580 
3581 /* Opcode: ReadCookie P1 P2 P3 * *
3582 **
3583 ** Read cookie number P3 from database P1 and write it into register P2.
3584 ** P3==1 is the schema version.  P3==2 is the database format.
3585 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3586 ** the main database file and P1==1 is the database file used to store
3587 ** temporary tables.
3588 **
3589 ** There must be a read-lock on the database (either a transaction
3590 ** must be started or there must be an open cursor) before
3591 ** executing this instruction.
3592 */
3593 case OP_ReadCookie: {               /* out2 */
3594   int iMeta;
3595   int iDb;
3596   int iCookie;
3597 
3598   assert( p->bIsReader );
3599   iDb = pOp->p1;
3600   iCookie = pOp->p3;
3601   assert( pOp->p3<SQLITE_N_BTREE_META );
3602   assert( iDb>=0 && iDb<db->nDb );
3603   assert( db->aDb[iDb].pBt!=0 );
3604   assert( DbMaskTest(p->btreeMask, iDb) );
3605 
3606   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3607   pOut = out2Prerelease(p, pOp);
3608   pOut->u.i = iMeta;
3609   break;
3610 }
3611 
3612 /* Opcode: SetCookie P1 P2 P3 * *
3613 **
3614 ** Write the integer value P3 into cookie number P2 of database P1.
3615 ** P2==1 is the schema version.  P2==2 is the database format.
3616 ** P2==3 is the recommended pager cache
3617 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3618 ** database file used to store temporary tables.
3619 **
3620 ** A transaction must be started before executing this opcode.
3621 */
3622 case OP_SetCookie: {
3623   Db *pDb;
3624 
3625   sqlite3VdbeIncrWriteCounter(p, 0);
3626   assert( pOp->p2<SQLITE_N_BTREE_META );
3627   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3628   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3629   assert( p->readOnly==0 );
3630   pDb = &db->aDb[pOp->p1];
3631   assert( pDb->pBt!=0 );
3632   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3633   /* See note about index shifting on OP_ReadCookie */
3634   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3635   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3636     /* When the schema cookie changes, record the new cookie internally */
3637     pDb->pSchema->schema_cookie = pOp->p3;
3638     db->mDbFlags |= DBFLAG_SchemaChange;
3639   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3640     /* Record changes in the file format */
3641     pDb->pSchema->file_format = pOp->p3;
3642   }
3643   if( pOp->p1==1 ){
3644     /* Invalidate all prepared statements whenever the TEMP database
3645     ** schema is changed.  Ticket #1644 */
3646     sqlite3ExpirePreparedStatements(db, 0);
3647     p->expired = 0;
3648   }
3649   if( rc ) goto abort_due_to_error;
3650   break;
3651 }
3652 
3653 /* Opcode: OpenRead P1 P2 P3 P4 P5
3654 ** Synopsis: root=P2 iDb=P3
3655 **
3656 ** Open a read-only cursor for the database table whose root page is
3657 ** P2 in a database file.  The database file is determined by P3.
3658 ** P3==0 means the main database, P3==1 means the database used for
3659 ** temporary tables, and P3>1 means used the corresponding attached
3660 ** database.  Give the new cursor an identifier of P1.  The P1
3661 ** values need not be contiguous but all P1 values should be small integers.
3662 ** It is an error for P1 to be negative.
3663 **
3664 ** Allowed P5 bits:
3665 ** <ul>
3666 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3667 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3668 **       of OP_SeekLE/OP_IdxGT)
3669 ** </ul>
3670 **
3671 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3672 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3673 ** object, then table being opened must be an [index b-tree] where the
3674 ** KeyInfo object defines the content and collating
3675 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3676 ** value, then the table being opened must be a [table b-tree] with a
3677 ** number of columns no less than the value of P4.
3678 **
3679 ** See also: OpenWrite, ReopenIdx
3680 */
3681 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3682 ** Synopsis: root=P2 iDb=P3
3683 **
3684 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3685 ** checks to see if the cursor on P1 is already open on the same
3686 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3687 ** if the cursor is already open, do not reopen it.
3688 **
3689 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3690 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3691 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3692 ** number.
3693 **
3694 ** Allowed P5 bits:
3695 ** <ul>
3696 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3697 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3698 **       of OP_SeekLE/OP_IdxGT)
3699 ** </ul>
3700 **
3701 ** See also: OP_OpenRead, OP_OpenWrite
3702 */
3703 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3704 ** Synopsis: root=P2 iDb=P3
3705 **
3706 ** Open a read/write cursor named P1 on the table or index whose root
3707 ** page is P2 (or whose root page is held in register P2 if the
3708 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3709 **
3710 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3711 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3712 ** object, then table being opened must be an [index b-tree] where the
3713 ** KeyInfo object defines the content and collating
3714 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3715 ** value, then the table being opened must be a [table b-tree] with a
3716 ** number of columns no less than the value of P4.
3717 **
3718 ** Allowed P5 bits:
3719 ** <ul>
3720 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3721 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3722 **       of OP_SeekLE/OP_IdxGT)
3723 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3724 **       and subsequently delete entries in an index btree.  This is a
3725 **       hint to the storage engine that the storage engine is allowed to
3726 **       ignore.  The hint is not used by the official SQLite b*tree storage
3727 **       engine, but is used by COMDB2.
3728 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3729 **       as the root page, not the value of P2 itself.
3730 ** </ul>
3731 **
3732 ** This instruction works like OpenRead except that it opens the cursor
3733 ** in read/write mode.
3734 **
3735 ** See also: OP_OpenRead, OP_ReopenIdx
3736 */
3737 case OP_ReopenIdx: {
3738   int nField;
3739   KeyInfo *pKeyInfo;
3740   int p2;
3741   int iDb;
3742   int wrFlag;
3743   Btree *pX;
3744   VdbeCursor *pCur;
3745   Db *pDb;
3746 
3747   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3748   assert( pOp->p4type==P4_KEYINFO );
3749   pCur = p->apCsr[pOp->p1];
3750   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3751     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3752     goto open_cursor_set_hints;
3753   }
3754   /* If the cursor is not currently open or is open on a different
3755   ** index, then fall through into OP_OpenRead to force a reopen */
3756 case OP_OpenRead:
3757 case OP_OpenWrite:
3758 
3759   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3760   assert( p->bIsReader );
3761   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3762           || p->readOnly==0 );
3763 
3764   if( p->expired==1 ){
3765     rc = SQLITE_ABORT_ROLLBACK;
3766     goto abort_due_to_error;
3767   }
3768 
3769   nField = 0;
3770   pKeyInfo = 0;
3771   p2 = pOp->p2;
3772   iDb = pOp->p3;
3773   assert( iDb>=0 && iDb<db->nDb );
3774   assert( DbMaskTest(p->btreeMask, iDb) );
3775   pDb = &db->aDb[iDb];
3776   pX = pDb->pBt;
3777   assert( pX!=0 );
3778   if( pOp->opcode==OP_OpenWrite ){
3779     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3780     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3781     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3782     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3783       p->minWriteFileFormat = pDb->pSchema->file_format;
3784     }
3785   }else{
3786     wrFlag = 0;
3787   }
3788   if( pOp->p5 & OPFLAG_P2ISREG ){
3789     assert( p2>0 );
3790     assert( p2<=(p->nMem+1 - p->nCursor) );
3791     assert( pOp->opcode==OP_OpenWrite );
3792     pIn2 = &aMem[p2];
3793     assert( memIsValid(pIn2) );
3794     assert( (pIn2->flags & MEM_Int)!=0 );
3795     sqlite3VdbeMemIntegerify(pIn2);
3796     p2 = (int)pIn2->u.i;
3797     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3798     ** that opcode will always set the p2 value to 2 or more or else fail.
3799     ** If there were a failure, the prepared statement would have halted
3800     ** before reaching this instruction. */
3801     assert( p2>=2 );
3802   }
3803   if( pOp->p4type==P4_KEYINFO ){
3804     pKeyInfo = pOp->p4.pKeyInfo;
3805     assert( pKeyInfo->enc==ENC(db) );
3806     assert( pKeyInfo->db==db );
3807     nField = pKeyInfo->nAllField;
3808   }else if( pOp->p4type==P4_INT32 ){
3809     nField = pOp->p4.i;
3810   }
3811   assert( pOp->p1>=0 );
3812   assert( nField>=0 );
3813   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3814   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3815   if( pCur==0 ) goto no_mem;
3816   pCur->nullRow = 1;
3817   pCur->isOrdered = 1;
3818   pCur->pgnoRoot = p2;
3819 #ifdef SQLITE_DEBUG
3820   pCur->wrFlag = wrFlag;
3821 #endif
3822   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3823   pCur->pKeyInfo = pKeyInfo;
3824   /* Set the VdbeCursor.isTable variable. Previous versions of
3825   ** SQLite used to check if the root-page flags were sane at this point
3826   ** and report database corruption if they were not, but this check has
3827   ** since moved into the btree layer.  */
3828   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3829 
3830 open_cursor_set_hints:
3831   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3832   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3833   testcase( pOp->p5 & OPFLAG_BULKCSR );
3834 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3835   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3836 #endif
3837   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3838                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3839   if( rc ) goto abort_due_to_error;
3840   break;
3841 }
3842 
3843 /* Opcode: OpenDup P1 P2 * * *
3844 **
3845 ** Open a new cursor P1 that points to the same ephemeral table as
3846 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3847 ** opcode.  Only ephemeral cursors may be duplicated.
3848 **
3849 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3850 */
3851 case OP_OpenDup: {
3852   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3853   VdbeCursor *pCx;      /* The new cursor */
3854 
3855   pOrig = p->apCsr[pOp->p2];
3856   assert( pOrig );
3857   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3858 
3859   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3860   if( pCx==0 ) goto no_mem;
3861   pCx->nullRow = 1;
3862   pCx->isEphemeral = 1;
3863   pCx->pKeyInfo = pOrig->pKeyInfo;
3864   pCx->isTable = pOrig->isTable;
3865   pCx->pgnoRoot = pOrig->pgnoRoot;
3866   pCx->isOrdered = pOrig->isOrdered;
3867   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3868                           pCx->pKeyInfo, pCx->uc.pCursor);
3869   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3870   ** opened for a database.  Since there is already an open cursor when this
3871   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3872   assert( rc==SQLITE_OK );
3873   break;
3874 }
3875 
3876 
3877 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3878 ** Synopsis: nColumn=P2
3879 **
3880 ** Open a new cursor P1 to a transient table.
3881 ** The cursor is always opened read/write even if
3882 ** the main database is read-only.  The ephemeral
3883 ** table is deleted automatically when the cursor is closed.
3884 **
3885 ** If the cursor P1 is already opened on an ephemeral table, the table
3886 ** is cleared (all content is erased).
3887 **
3888 ** P2 is the number of columns in the ephemeral table.
3889 ** The cursor points to a BTree table if P4==0 and to a BTree index
3890 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3891 ** that defines the format of keys in the index.
3892 **
3893 ** The P5 parameter can be a mask of the BTREE_* flags defined
3894 ** in btree.h.  These flags control aspects of the operation of
3895 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3896 ** added automatically.
3897 */
3898 /* Opcode: OpenAutoindex P1 P2 * P4 *
3899 ** Synopsis: nColumn=P2
3900 **
3901 ** This opcode works the same as OP_OpenEphemeral.  It has a
3902 ** different name to distinguish its use.  Tables created using
3903 ** by this opcode will be used for automatically created transient
3904 ** indices in joins.
3905 */
3906 case OP_OpenAutoindex:
3907 case OP_OpenEphemeral: {
3908   VdbeCursor *pCx;
3909   KeyInfo *pKeyInfo;
3910 
3911   static const int vfsFlags =
3912       SQLITE_OPEN_READWRITE |
3913       SQLITE_OPEN_CREATE |
3914       SQLITE_OPEN_EXCLUSIVE |
3915       SQLITE_OPEN_DELETEONCLOSE |
3916       SQLITE_OPEN_TRANSIENT_DB;
3917   assert( pOp->p1>=0 );
3918   assert( pOp->p2>=0 );
3919   pCx = p->apCsr[pOp->p1];
3920   if( pCx && pCx->pBtx ){
3921     /* If the ephermeral table is already open, erase all existing content
3922     ** so that the table is empty again, rather than creating a new table. */
3923     assert( pCx->isEphemeral );
3924     pCx->seqCount = 0;
3925     pCx->cacheStatus = CACHE_STALE;
3926     rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3927   }else{
3928     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3929     if( pCx==0 ) goto no_mem;
3930     pCx->isEphemeral = 1;
3931     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3932                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3933                           vfsFlags);
3934     if( rc==SQLITE_OK ){
3935       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3936     }
3937     if( rc==SQLITE_OK ){
3938       /* If a transient index is required, create it by calling
3939       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3940       ** opening it. If a transient table is required, just use the
3941       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3942       */
3943       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3944         assert( pOp->p4type==P4_KEYINFO );
3945         rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3946                                      BTREE_BLOBKEY | pOp->p5);
3947         if( rc==SQLITE_OK ){
3948           assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3949           assert( pKeyInfo->db==db );
3950           assert( pKeyInfo->enc==ENC(db) );
3951           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3952                                   pKeyInfo, pCx->uc.pCursor);
3953         }
3954         pCx->isTable = 0;
3955       }else{
3956         pCx->pgnoRoot = MASTER_ROOT;
3957         rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3958                                 0, pCx->uc.pCursor);
3959         pCx->isTable = 1;
3960       }
3961     }
3962     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3963   }
3964   if( rc ) goto abort_due_to_error;
3965   pCx->nullRow = 1;
3966   break;
3967 }
3968 
3969 /* Opcode: SorterOpen P1 P2 P3 P4 *
3970 **
3971 ** This opcode works like OP_OpenEphemeral except that it opens
3972 ** a transient index that is specifically designed to sort large
3973 ** tables using an external merge-sort algorithm.
3974 **
3975 ** If argument P3 is non-zero, then it indicates that the sorter may
3976 ** assume that a stable sort considering the first P3 fields of each
3977 ** key is sufficient to produce the required results.
3978 */
3979 case OP_SorterOpen: {
3980   VdbeCursor *pCx;
3981 
3982   assert( pOp->p1>=0 );
3983   assert( pOp->p2>=0 );
3984   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3985   if( pCx==0 ) goto no_mem;
3986   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3987   assert( pCx->pKeyInfo->db==db );
3988   assert( pCx->pKeyInfo->enc==ENC(db) );
3989   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3990   if( rc ) goto abort_due_to_error;
3991   break;
3992 }
3993 
3994 /* Opcode: SequenceTest P1 P2 * * *
3995 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3996 **
3997 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3998 ** to P2. Regardless of whether or not the jump is taken, increment the
3999 ** the sequence value.
4000 */
4001 case OP_SequenceTest: {
4002   VdbeCursor *pC;
4003   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4004   pC = p->apCsr[pOp->p1];
4005   assert( isSorter(pC) );
4006   if( (pC->seqCount++)==0 ){
4007     goto jump_to_p2;
4008   }
4009   break;
4010 }
4011 
4012 /* Opcode: OpenPseudo P1 P2 P3 * *
4013 ** Synopsis: P3 columns in r[P2]
4014 **
4015 ** Open a new cursor that points to a fake table that contains a single
4016 ** row of data.  The content of that one row is the content of memory
4017 ** register P2.  In other words, cursor P1 becomes an alias for the
4018 ** MEM_Blob content contained in register P2.
4019 **
4020 ** A pseudo-table created by this opcode is used to hold a single
4021 ** row output from the sorter so that the row can be decomposed into
4022 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4023 ** is the only cursor opcode that works with a pseudo-table.
4024 **
4025 ** P3 is the number of fields in the records that will be stored by
4026 ** the pseudo-table.
4027 */
4028 case OP_OpenPseudo: {
4029   VdbeCursor *pCx;
4030 
4031   assert( pOp->p1>=0 );
4032   assert( pOp->p3>=0 );
4033   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
4034   if( pCx==0 ) goto no_mem;
4035   pCx->nullRow = 1;
4036   pCx->seekResult = pOp->p2;
4037   pCx->isTable = 1;
4038   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4039   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4040   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4041   ** which is a performance optimization */
4042   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4043   assert( pOp->p5==0 );
4044   break;
4045 }
4046 
4047 /* Opcode: Close P1 * * * *
4048 **
4049 ** Close a cursor previously opened as P1.  If P1 is not
4050 ** currently open, this instruction is a no-op.
4051 */
4052 case OP_Close: {
4053   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4054   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4055   p->apCsr[pOp->p1] = 0;
4056   break;
4057 }
4058 
4059 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4060 /* Opcode: ColumnsUsed P1 * * P4 *
4061 **
4062 ** This opcode (which only exists if SQLite was compiled with
4063 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4064 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4065 ** (P4_INT64) in which the first 63 bits are one for each of the
4066 ** first 63 columns of the table or index that are actually used
4067 ** by the cursor.  The high-order bit is set if any column after
4068 ** the 64th is used.
4069 */
4070 case OP_ColumnsUsed: {
4071   VdbeCursor *pC;
4072   pC = p->apCsr[pOp->p1];
4073   assert( pC->eCurType==CURTYPE_BTREE );
4074   pC->maskUsed = *(u64*)pOp->p4.pI64;
4075   break;
4076 }
4077 #endif
4078 
4079 /* Opcode: SeekGE P1 P2 P3 P4 *
4080 ** Synopsis: key=r[P3@P4]
4081 **
4082 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4083 ** use the value in register P3 as the key.  If cursor P1 refers
4084 ** to an SQL index, then P3 is the first in an array of P4 registers
4085 ** that are used as an unpacked index key.
4086 **
4087 ** Reposition cursor P1 so that  it points to the smallest entry that
4088 ** is greater than or equal to the key value. If there are no records
4089 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4090 **
4091 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4092 ** opcode will always land on a record that equally equals the key, or
4093 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4094 ** opcode must be followed by an IdxLE opcode with the same arguments.
4095 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
4096 ** IdxLE opcode will be used on subsequent loop iterations.
4097 **
4098 ** This opcode leaves the cursor configured to move in forward order,
4099 ** from the beginning toward the end.  In other words, the cursor is
4100 ** configured to use Next, not Prev.
4101 **
4102 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4103 */
4104 /* Opcode: SeekGT P1 P2 P3 P4 *
4105 ** Synopsis: key=r[P3@P4]
4106 **
4107 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4108 ** use the value in register P3 as a key. If cursor P1 refers
4109 ** to an SQL index, then P3 is the first in an array of P4 registers
4110 ** that are used as an unpacked index key.
4111 **
4112 ** Reposition cursor P1 so that  it points to the smallest entry that
4113 ** is greater than the key value. If there are no records greater than
4114 ** the key and P2 is not zero, then jump to P2.
4115 **
4116 ** This opcode leaves the cursor configured to move in forward order,
4117 ** from the beginning toward the end.  In other words, the cursor is
4118 ** configured to use Next, not Prev.
4119 **
4120 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4121 */
4122 /* Opcode: SeekLT P1 P2 P3 P4 *
4123 ** Synopsis: key=r[P3@P4]
4124 **
4125 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4126 ** use the value in register P3 as a key. If cursor P1 refers
4127 ** to an SQL index, then P3 is the first in an array of P4 registers
4128 ** that are used as an unpacked index key.
4129 **
4130 ** Reposition cursor P1 so that  it points to the largest entry that
4131 ** is less than the key value. If there are no records less than
4132 ** the key and P2 is not zero, then jump to P2.
4133 **
4134 ** This opcode leaves the cursor configured to move in reverse order,
4135 ** from the end toward the beginning.  In other words, the cursor is
4136 ** configured to use Prev, not Next.
4137 **
4138 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4139 */
4140 /* Opcode: SeekLE P1 P2 P3 P4 *
4141 ** Synopsis: key=r[P3@P4]
4142 **
4143 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4144 ** use the value in register P3 as a key. If cursor P1 refers
4145 ** to an SQL index, then P3 is the first in an array of P4 registers
4146 ** that are used as an unpacked index key.
4147 **
4148 ** Reposition cursor P1 so that it points to the largest entry that
4149 ** is less than or equal to the key value. If there are no records
4150 ** less than or equal to the key and P2 is not zero, then jump to P2.
4151 **
4152 ** This opcode leaves the cursor configured to move in reverse order,
4153 ** from the end toward the beginning.  In other words, the cursor is
4154 ** configured to use Prev, not Next.
4155 **
4156 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4157 ** opcode will always land on a record that equally equals the key, or
4158 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4159 ** opcode must be followed by an IdxGE opcode with the same arguments.
4160 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4161 ** IdxGE opcode will be used on subsequent loop iterations.
4162 **
4163 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4164 */
4165 case OP_SeekLT:         /* jump, in3, group */
4166 case OP_SeekLE:         /* jump, in3, group */
4167 case OP_SeekGE:         /* jump, in3, group */
4168 case OP_SeekGT: {       /* jump, in3, group */
4169   int res;           /* Comparison result */
4170   int oc;            /* Opcode */
4171   VdbeCursor *pC;    /* The cursor to seek */
4172   UnpackedRecord r;  /* The key to seek for */
4173   int nField;        /* Number of columns or fields in the key */
4174   i64 iKey;          /* The rowid we are to seek to */
4175   int eqOnly;        /* Only interested in == results */
4176 
4177   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4178   assert( pOp->p2!=0 );
4179   pC = p->apCsr[pOp->p1];
4180   assert( pC!=0 );
4181   assert( pC->eCurType==CURTYPE_BTREE );
4182   assert( OP_SeekLE == OP_SeekLT+1 );
4183   assert( OP_SeekGE == OP_SeekLT+2 );
4184   assert( OP_SeekGT == OP_SeekLT+3 );
4185   assert( pC->isOrdered );
4186   assert( pC->uc.pCursor!=0 );
4187   oc = pOp->opcode;
4188   eqOnly = 0;
4189   pC->nullRow = 0;
4190 #ifdef SQLITE_DEBUG
4191   pC->seekOp = pOp->opcode;
4192 #endif
4193 
4194   pC->deferredMoveto = 0;
4195   pC->cacheStatus = CACHE_STALE;
4196   if( pC->isTable ){
4197     u16 flags3, newType;
4198     /* The BTREE_SEEK_EQ flag is only set on index cursors */
4199     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4200               || CORRUPT_DB );
4201 
4202     /* The input value in P3 might be of any type: integer, real, string,
4203     ** blob, or NULL.  But it needs to be an integer before we can do
4204     ** the seek, so convert it. */
4205     pIn3 = &aMem[pOp->p3];
4206     flags3 = pIn3->flags;
4207     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4208       applyNumericAffinity(pIn3, 0);
4209     }
4210     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4211     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4212     pIn3->flags = flags3;  /* But convert the type back to its original */
4213 
4214     /* If the P3 value could not be converted into an integer without
4215     ** loss of information, then special processing is required... */
4216     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4217       if( (newType & MEM_Real)==0 ){
4218         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4219           VdbeBranchTaken(1,2);
4220           goto jump_to_p2;
4221         }else{
4222           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4223           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4224           goto seek_not_found;
4225         }
4226       }else
4227 
4228       /* If the approximation iKey is larger than the actual real search
4229       ** term, substitute >= for > and < for <=. e.g. if the search term
4230       ** is 4.9 and the integer approximation 5:
4231       **
4232       **        (x >  4.9)    ->     (x >= 5)
4233       **        (x <= 4.9)    ->     (x <  5)
4234       */
4235       if( pIn3->u.r<(double)iKey ){
4236         assert( OP_SeekGE==(OP_SeekGT-1) );
4237         assert( OP_SeekLT==(OP_SeekLE-1) );
4238         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4239         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4240       }
4241 
4242       /* If the approximation iKey is smaller than the actual real search
4243       ** term, substitute <= for < and > for >=.  */
4244       else if( pIn3->u.r>(double)iKey ){
4245         assert( OP_SeekLE==(OP_SeekLT+1) );
4246         assert( OP_SeekGT==(OP_SeekGE+1) );
4247         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4248         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4249       }
4250     }
4251     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4252     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4253     if( rc!=SQLITE_OK ){
4254       goto abort_due_to_error;
4255     }
4256   }else{
4257     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
4258     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
4259     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
4260     */
4261     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4262       eqOnly = 1;
4263       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4264       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4265       assert( pOp[1].p1==pOp[0].p1 );
4266       assert( pOp[1].p2==pOp[0].p2 );
4267       assert( pOp[1].p3==pOp[0].p3 );
4268       assert( pOp[1].p4.i==pOp[0].p4.i );
4269     }
4270 
4271     nField = pOp->p4.i;
4272     assert( pOp->p4type==P4_INT32 );
4273     assert( nField>0 );
4274     r.pKeyInfo = pC->pKeyInfo;
4275     r.nField = (u16)nField;
4276 
4277     /* The next line of code computes as follows, only faster:
4278     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4279     **     r.default_rc = -1;
4280     **   }else{
4281     **     r.default_rc = +1;
4282     **   }
4283     */
4284     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4285     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4286     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4287     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4288     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4289 
4290     r.aMem = &aMem[pOp->p3];
4291 #ifdef SQLITE_DEBUG
4292     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4293 #endif
4294     r.eqSeen = 0;
4295     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4296     if( rc!=SQLITE_OK ){
4297       goto abort_due_to_error;
4298     }
4299     if( eqOnly && r.eqSeen==0 ){
4300       assert( res!=0 );
4301       goto seek_not_found;
4302     }
4303   }
4304 #ifdef SQLITE_TEST
4305   sqlite3_search_count++;
4306 #endif
4307   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4308     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4309       res = 0;
4310       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4311       if( rc!=SQLITE_OK ){
4312         if( rc==SQLITE_DONE ){
4313           rc = SQLITE_OK;
4314           res = 1;
4315         }else{
4316           goto abort_due_to_error;
4317         }
4318       }
4319     }else{
4320       res = 0;
4321     }
4322   }else{
4323     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4324     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4325       res = 0;
4326       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4327       if( rc!=SQLITE_OK ){
4328         if( rc==SQLITE_DONE ){
4329           rc = SQLITE_OK;
4330           res = 1;
4331         }else{
4332           goto abort_due_to_error;
4333         }
4334       }
4335     }else{
4336       /* res might be negative because the table is empty.  Check to
4337       ** see if this is the case.
4338       */
4339       res = sqlite3BtreeEof(pC->uc.pCursor);
4340     }
4341   }
4342 seek_not_found:
4343   assert( pOp->p2>0 );
4344   VdbeBranchTaken(res!=0,2);
4345   if( res ){
4346     goto jump_to_p2;
4347   }else if( eqOnly ){
4348     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4349     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4350   }
4351   break;
4352 }
4353 
4354 /* Opcode: SeekHit P1 P2 * * *
4355 ** Synopsis: seekHit=P2
4356 **
4357 ** Set the seekHit flag on cursor P1 to the value in P2.
4358 * The seekHit flag is used by the IfNoHope opcode.
4359 **
4360 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4361 ** either 0 or 1.
4362 */
4363 case OP_SeekHit: {
4364   VdbeCursor *pC;
4365   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4366   pC = p->apCsr[pOp->p1];
4367   assert( pC!=0 );
4368   assert( pOp->p2==0 || pOp->p2==1 );
4369   pC->seekHit = pOp->p2 & 1;
4370   break;
4371 }
4372 
4373 /* Opcode: IfNotOpen P1 P2 * * *
4374 ** Synopsis: if( !csr[P1] ) goto P2
4375 **
4376 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4377 */
4378 case OP_IfNotOpen: {        /* jump */
4379   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4380   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4381   if( !p->apCsr[pOp->p1] ){
4382     goto jump_to_p2_and_check_for_interrupt;
4383   }
4384   break;
4385 }
4386 
4387 /* Opcode: Found P1 P2 P3 P4 *
4388 ** Synopsis: key=r[P3@P4]
4389 **
4390 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4391 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4392 ** record.
4393 **
4394 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4395 ** is a prefix of any entry in P1 then a jump is made to P2 and
4396 ** P1 is left pointing at the matching entry.
4397 **
4398 ** This operation leaves the cursor in a state where it can be
4399 ** advanced in the forward direction.  The Next instruction will work,
4400 ** but not the Prev instruction.
4401 **
4402 ** See also: NotFound, NoConflict, NotExists. SeekGe
4403 */
4404 /* Opcode: NotFound P1 P2 P3 P4 *
4405 ** Synopsis: key=r[P3@P4]
4406 **
4407 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4408 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4409 ** record.
4410 **
4411 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4412 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4413 ** does contain an entry whose prefix matches the P3/P4 record then control
4414 ** falls through to the next instruction and P1 is left pointing at the
4415 ** matching entry.
4416 **
4417 ** This operation leaves the cursor in a state where it cannot be
4418 ** advanced in either direction.  In other words, the Next and Prev
4419 ** opcodes do not work after this operation.
4420 **
4421 ** See also: Found, NotExists, NoConflict, IfNoHope
4422 */
4423 /* Opcode: IfNoHope P1 P2 P3 P4 *
4424 ** Synopsis: key=r[P3@P4]
4425 **
4426 ** Register P3 is the first of P4 registers that form an unpacked
4427 ** record.
4428 **
4429 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4430 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4431 ** check to see if there is any entry in P1 that matches the
4432 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4433 ** jump to P2.  Otherwise fall through.
4434 **
4435 ** This opcode behaves like OP_NotFound if the seekHit
4436 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4437 **
4438 ** This opcode is used in IN clause processing for a multi-column key.
4439 ** If an IN clause is attached to an element of the key other than the
4440 ** left-most element, and if there are no matches on the most recent
4441 ** seek over the whole key, then it might be that one of the key element
4442 ** to the left is prohibiting a match, and hence there is "no hope" of
4443 ** any match regardless of how many IN clause elements are checked.
4444 ** In such a case, we abandon the IN clause search early, using this
4445 ** opcode.  The opcode name comes from the fact that the
4446 ** jump is taken if there is "no hope" of achieving a match.
4447 **
4448 ** See also: NotFound, SeekHit
4449 */
4450 /* Opcode: NoConflict P1 P2 P3 P4 *
4451 ** Synopsis: key=r[P3@P4]
4452 **
4453 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4454 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4455 ** record.
4456 **
4457 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4458 ** contains any NULL value, jump immediately to P2.  If all terms of the
4459 ** record are not-NULL then a check is done to determine if any row in the
4460 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4461 ** immediately to P2.  If there is a match, fall through and leave the P1
4462 ** cursor pointing to the matching row.
4463 **
4464 ** This opcode is similar to OP_NotFound with the exceptions that the
4465 ** branch is always taken if any part of the search key input is NULL.
4466 **
4467 ** This operation leaves the cursor in a state where it cannot be
4468 ** advanced in either direction.  In other words, the Next and Prev
4469 ** opcodes do not work after this operation.
4470 **
4471 ** See also: NotFound, Found, NotExists
4472 */
4473 case OP_IfNoHope: {     /* jump, in3 */
4474   VdbeCursor *pC;
4475   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4476   pC = p->apCsr[pOp->p1];
4477   assert( pC!=0 );
4478   if( pC->seekHit ) break;
4479   /* Fall through into OP_NotFound */
4480 }
4481 case OP_NoConflict:     /* jump, in3 */
4482 case OP_NotFound:       /* jump, in3 */
4483 case OP_Found: {        /* jump, in3 */
4484   int alreadyExists;
4485   int takeJump;
4486   int ii;
4487   VdbeCursor *pC;
4488   int res;
4489   UnpackedRecord *pFree;
4490   UnpackedRecord *pIdxKey;
4491   UnpackedRecord r;
4492 
4493 #ifdef SQLITE_TEST
4494   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4495 #endif
4496 
4497   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4498   assert( pOp->p4type==P4_INT32 );
4499   pC = p->apCsr[pOp->p1];
4500   assert( pC!=0 );
4501 #ifdef SQLITE_DEBUG
4502   pC->seekOp = pOp->opcode;
4503 #endif
4504   pIn3 = &aMem[pOp->p3];
4505   assert( pC->eCurType==CURTYPE_BTREE );
4506   assert( pC->uc.pCursor!=0 );
4507   assert( pC->isTable==0 );
4508   if( pOp->p4.i>0 ){
4509     r.pKeyInfo = pC->pKeyInfo;
4510     r.nField = (u16)pOp->p4.i;
4511     r.aMem = pIn3;
4512 #ifdef SQLITE_DEBUG
4513     for(ii=0; ii<r.nField; ii++){
4514       assert( memIsValid(&r.aMem[ii]) );
4515       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4516       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4517     }
4518 #endif
4519     pIdxKey = &r;
4520     pFree = 0;
4521   }else{
4522     assert( pIn3->flags & MEM_Blob );
4523     rc = ExpandBlob(pIn3);
4524     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4525     if( rc ) goto no_mem;
4526     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4527     if( pIdxKey==0 ) goto no_mem;
4528     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4529   }
4530   pIdxKey->default_rc = 0;
4531   takeJump = 0;
4532   if( pOp->opcode==OP_NoConflict ){
4533     /* For the OP_NoConflict opcode, take the jump if any of the
4534     ** input fields are NULL, since any key with a NULL will not
4535     ** conflict */
4536     for(ii=0; ii<pIdxKey->nField; ii++){
4537       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4538         takeJump = 1;
4539         break;
4540       }
4541     }
4542   }
4543   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4544   if( pFree ) sqlite3DbFreeNN(db, pFree);
4545   if( rc!=SQLITE_OK ){
4546     goto abort_due_to_error;
4547   }
4548   pC->seekResult = res;
4549   alreadyExists = (res==0);
4550   pC->nullRow = 1-alreadyExists;
4551   pC->deferredMoveto = 0;
4552   pC->cacheStatus = CACHE_STALE;
4553   if( pOp->opcode==OP_Found ){
4554     VdbeBranchTaken(alreadyExists!=0,2);
4555     if( alreadyExists ) goto jump_to_p2;
4556   }else{
4557     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4558     if( takeJump || !alreadyExists ) goto jump_to_p2;
4559   }
4560   break;
4561 }
4562 
4563 /* Opcode: SeekRowid P1 P2 P3 * *
4564 ** Synopsis: intkey=r[P3]
4565 **
4566 ** P1 is the index of a cursor open on an SQL table btree (with integer
4567 ** keys).  If register P3 does not contain an integer or if P1 does not
4568 ** contain a record with rowid P3 then jump immediately to P2.
4569 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4570 ** a record with rowid P3 then
4571 ** leave the cursor pointing at that record and fall through to the next
4572 ** instruction.
4573 **
4574 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4575 ** the P3 register must be guaranteed to contain an integer value.  With this
4576 ** opcode, register P3 might not contain an integer.
4577 **
4578 ** The OP_NotFound opcode performs the same operation on index btrees
4579 ** (with arbitrary multi-value keys).
4580 **
4581 ** This opcode leaves the cursor in a state where it cannot be advanced
4582 ** in either direction.  In other words, the Next and Prev opcodes will
4583 ** not work following this opcode.
4584 **
4585 ** See also: Found, NotFound, NoConflict, SeekRowid
4586 */
4587 /* Opcode: NotExists P1 P2 P3 * *
4588 ** Synopsis: intkey=r[P3]
4589 **
4590 ** P1 is the index of a cursor open on an SQL table btree (with integer
4591 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4592 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4593 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4594 ** leave the cursor pointing at that record and fall through to the next
4595 ** instruction.
4596 **
4597 ** The OP_SeekRowid opcode performs the same operation but also allows the
4598 ** P3 register to contain a non-integer value, in which case the jump is
4599 ** always taken.  This opcode requires that P3 always contain an integer.
4600 **
4601 ** The OP_NotFound opcode performs the same operation on index btrees
4602 ** (with arbitrary multi-value keys).
4603 **
4604 ** This opcode leaves the cursor in a state where it cannot be advanced
4605 ** in either direction.  In other words, the Next and Prev opcodes will
4606 ** not work following this opcode.
4607 **
4608 ** See also: Found, NotFound, NoConflict, SeekRowid
4609 */
4610 case OP_SeekRowid: {        /* jump, in3 */
4611   VdbeCursor *pC;
4612   BtCursor *pCrsr;
4613   int res;
4614   u64 iKey;
4615 
4616   pIn3 = &aMem[pOp->p3];
4617   testcase( pIn3->flags & MEM_Int );
4618   testcase( pIn3->flags & MEM_IntReal );
4619   testcase( pIn3->flags & MEM_Real );
4620   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
4621   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4622     /* If pIn3->u.i does not contain an integer, compute iKey as the
4623     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
4624     ** into an integer without loss of information.  Take care to avoid
4625     ** changing the datatype of pIn3, however, as it is used by other
4626     ** parts of the prepared statement. */
4627     Mem x = pIn3[0];
4628     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4629     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4630     iKey = x.u.i;
4631     goto notExistsWithKey;
4632   }
4633   /* Fall through into OP_NotExists */
4634 case OP_NotExists:          /* jump, in3 */
4635   pIn3 = &aMem[pOp->p3];
4636   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4637   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4638   iKey = pIn3->u.i;
4639 notExistsWithKey:
4640   pC = p->apCsr[pOp->p1];
4641   assert( pC!=0 );
4642 #ifdef SQLITE_DEBUG
4643   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4644 #endif
4645   assert( pC->isTable );
4646   assert( pC->eCurType==CURTYPE_BTREE );
4647   pCrsr = pC->uc.pCursor;
4648   assert( pCrsr!=0 );
4649   res = 0;
4650   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4651   assert( rc==SQLITE_OK || res==0 );
4652   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4653   pC->nullRow = 0;
4654   pC->cacheStatus = CACHE_STALE;
4655   pC->deferredMoveto = 0;
4656   VdbeBranchTaken(res!=0,2);
4657   pC->seekResult = res;
4658   if( res!=0 ){
4659     assert( rc==SQLITE_OK );
4660     if( pOp->p2==0 ){
4661       rc = SQLITE_CORRUPT_BKPT;
4662     }else{
4663       goto jump_to_p2;
4664     }
4665   }
4666   if( rc ) goto abort_due_to_error;
4667   break;
4668 }
4669 
4670 /* Opcode: Sequence P1 P2 * * *
4671 ** Synopsis: r[P2]=cursor[P1].ctr++
4672 **
4673 ** Find the next available sequence number for cursor P1.
4674 ** Write the sequence number into register P2.
4675 ** The sequence number on the cursor is incremented after this
4676 ** instruction.
4677 */
4678 case OP_Sequence: {           /* out2 */
4679   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4680   assert( p->apCsr[pOp->p1]!=0 );
4681   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4682   pOut = out2Prerelease(p, pOp);
4683   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4684   break;
4685 }
4686 
4687 
4688 /* Opcode: NewRowid P1 P2 P3 * *
4689 ** Synopsis: r[P2]=rowid
4690 **
4691 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4692 ** The record number is not previously used as a key in the database
4693 ** table that cursor P1 points to.  The new record number is written
4694 ** written to register P2.
4695 **
4696 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4697 ** the largest previously generated record number. No new record numbers are
4698 ** allowed to be less than this value. When this value reaches its maximum,
4699 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4700 ** generated record number. This P3 mechanism is used to help implement the
4701 ** AUTOINCREMENT feature.
4702 */
4703 case OP_NewRowid: {           /* out2 */
4704   i64 v;                 /* The new rowid */
4705   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4706   int res;               /* Result of an sqlite3BtreeLast() */
4707   int cnt;               /* Counter to limit the number of searches */
4708   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4709   VdbeFrame *pFrame;     /* Root frame of VDBE */
4710 
4711   v = 0;
4712   res = 0;
4713   pOut = out2Prerelease(p, pOp);
4714   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4715   pC = p->apCsr[pOp->p1];
4716   assert( pC!=0 );
4717   assert( pC->isTable );
4718   assert( pC->eCurType==CURTYPE_BTREE );
4719   assert( pC->uc.pCursor!=0 );
4720   {
4721     /* The next rowid or record number (different terms for the same
4722     ** thing) is obtained in a two-step algorithm.
4723     **
4724     ** First we attempt to find the largest existing rowid and add one
4725     ** to that.  But if the largest existing rowid is already the maximum
4726     ** positive integer, we have to fall through to the second
4727     ** probabilistic algorithm
4728     **
4729     ** The second algorithm is to select a rowid at random and see if
4730     ** it already exists in the table.  If it does not exist, we have
4731     ** succeeded.  If the random rowid does exist, we select a new one
4732     ** and try again, up to 100 times.
4733     */
4734     assert( pC->isTable );
4735 
4736 #ifdef SQLITE_32BIT_ROWID
4737 #   define MAX_ROWID 0x7fffffff
4738 #else
4739     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4740     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4741     ** to provide the constant while making all compilers happy.
4742     */
4743 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4744 #endif
4745 
4746     if( !pC->useRandomRowid ){
4747       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4748       if( rc!=SQLITE_OK ){
4749         goto abort_due_to_error;
4750       }
4751       if( res ){
4752         v = 1;   /* IMP: R-61914-48074 */
4753       }else{
4754         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4755         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4756         if( v>=MAX_ROWID ){
4757           pC->useRandomRowid = 1;
4758         }else{
4759           v++;   /* IMP: R-29538-34987 */
4760         }
4761       }
4762     }
4763 
4764 #ifndef SQLITE_OMIT_AUTOINCREMENT
4765     if( pOp->p3 ){
4766       /* Assert that P3 is a valid memory cell. */
4767       assert( pOp->p3>0 );
4768       if( p->pFrame ){
4769         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4770         /* Assert that P3 is a valid memory cell. */
4771         assert( pOp->p3<=pFrame->nMem );
4772         pMem = &pFrame->aMem[pOp->p3];
4773       }else{
4774         /* Assert that P3 is a valid memory cell. */
4775         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4776         pMem = &aMem[pOp->p3];
4777         memAboutToChange(p, pMem);
4778       }
4779       assert( memIsValid(pMem) );
4780 
4781       REGISTER_TRACE(pOp->p3, pMem);
4782       sqlite3VdbeMemIntegerify(pMem);
4783       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4784       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4785         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4786         goto abort_due_to_error;
4787       }
4788       if( v<pMem->u.i+1 ){
4789         v = pMem->u.i + 1;
4790       }
4791       pMem->u.i = v;
4792     }
4793 #endif
4794     if( pC->useRandomRowid ){
4795       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4796       ** largest possible integer (9223372036854775807) then the database
4797       ** engine starts picking positive candidate ROWIDs at random until
4798       ** it finds one that is not previously used. */
4799       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4800                              ** an AUTOINCREMENT table. */
4801       cnt = 0;
4802       do{
4803         sqlite3_randomness(sizeof(v), &v);
4804         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4805       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4806                                                  0, &res))==SQLITE_OK)
4807             && (res==0)
4808             && (++cnt<100));
4809       if( rc ) goto abort_due_to_error;
4810       if( res==0 ){
4811         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4812         goto abort_due_to_error;
4813       }
4814       assert( v>0 );  /* EV: R-40812-03570 */
4815     }
4816     pC->deferredMoveto = 0;
4817     pC->cacheStatus = CACHE_STALE;
4818   }
4819   pOut->u.i = v;
4820   break;
4821 }
4822 
4823 /* Opcode: Insert P1 P2 P3 P4 P5
4824 ** Synopsis: intkey=r[P3] data=r[P2]
4825 **
4826 ** Write an entry into the table of cursor P1.  A new entry is
4827 ** created if it doesn't already exist or the data for an existing
4828 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4829 ** number P2. The key is stored in register P3. The key must
4830 ** be a MEM_Int.
4831 **
4832 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4833 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4834 ** then rowid is stored for subsequent return by the
4835 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4836 **
4837 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4838 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4839 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4840 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4841 **
4842 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4843 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4844 ** is part of an INSERT operation.  The difference is only important to
4845 ** the update hook.
4846 **
4847 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4848 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4849 ** following a successful insert.
4850 **
4851 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4852 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4853 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4854 ** value of register P2 will then change.  Make sure this does not
4855 ** cause any problems.)
4856 **
4857 ** This instruction only works on tables.  The equivalent instruction
4858 ** for indices is OP_IdxInsert.
4859 */
4860 case OP_Insert: {
4861   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4862   Mem *pKey;        /* MEM cell holding key  for the record */
4863   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4864   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4865   const char *zDb;  /* database name - used by the update hook */
4866   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4867   BtreePayload x;   /* Payload to be inserted */
4868 
4869   pData = &aMem[pOp->p2];
4870   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4871   assert( memIsValid(pData) );
4872   pC = p->apCsr[pOp->p1];
4873   assert( pC!=0 );
4874   assert( pC->eCurType==CURTYPE_BTREE );
4875   assert( pC->deferredMoveto==0 );
4876   assert( pC->uc.pCursor!=0 );
4877   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4878   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4879   REGISTER_TRACE(pOp->p2, pData);
4880   sqlite3VdbeIncrWriteCounter(p, pC);
4881 
4882   pKey = &aMem[pOp->p3];
4883   assert( pKey->flags & MEM_Int );
4884   assert( memIsValid(pKey) );
4885   REGISTER_TRACE(pOp->p3, pKey);
4886   x.nKey = pKey->u.i;
4887 
4888   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4889     assert( pC->iDb>=0 );
4890     zDb = db->aDb[pC->iDb].zDbSName;
4891     pTab = pOp->p4.pTab;
4892     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4893   }else{
4894     pTab = 0;
4895     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4896   }
4897 
4898 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4899   /* Invoke the pre-update hook, if any */
4900   if( pTab ){
4901     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4902       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4903     }
4904     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4905       /* Prevent post-update hook from running in cases when it should not */
4906       pTab = 0;
4907     }
4908   }
4909   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4910 #endif
4911 
4912   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4913   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4914   assert( pData->flags & (MEM_Blob|MEM_Str) );
4915   x.pData = pData->z;
4916   x.nData = pData->n;
4917   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4918   if( pData->flags & MEM_Zero ){
4919     x.nZero = pData->u.nZero;
4920   }else{
4921     x.nZero = 0;
4922   }
4923   x.pKey = 0;
4924   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4925       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4926   );
4927   pC->deferredMoveto = 0;
4928   pC->cacheStatus = CACHE_STALE;
4929 
4930   /* Invoke the update-hook if required. */
4931   if( rc ) goto abort_due_to_error;
4932   if( pTab ){
4933     assert( db->xUpdateCallback!=0 );
4934     assert( pTab->aCol!=0 );
4935     db->xUpdateCallback(db->pUpdateArg,
4936            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4937            zDb, pTab->zName, x.nKey);
4938   }
4939   break;
4940 }
4941 
4942 /* Opcode: Delete P1 P2 P3 P4 P5
4943 **
4944 ** Delete the record at which the P1 cursor is currently pointing.
4945 **
4946 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4947 ** the cursor will be left pointing at  either the next or the previous
4948 ** record in the table. If it is left pointing at the next record, then
4949 ** the next Next instruction will be a no-op. As a result, in this case
4950 ** it is ok to delete a record from within a Next loop. If
4951 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4952 ** left in an undefined state.
4953 **
4954 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4955 ** delete one of several associated with deleting a table row and all its
4956 ** associated index entries.  Exactly one of those deletes is the "primary"
4957 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4958 ** marked with the AUXDELETE flag.
4959 **
4960 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4961 ** change count is incremented (otherwise not).
4962 **
4963 ** P1 must not be pseudo-table.  It has to be a real table with
4964 ** multiple rows.
4965 **
4966 ** If P4 is not NULL then it points to a Table object. In this case either
4967 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4968 ** have been positioned using OP_NotFound prior to invoking this opcode in
4969 ** this case. Specifically, if one is configured, the pre-update hook is
4970 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4971 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4972 **
4973 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4974 ** of the memory cell that contains the value that the rowid of the row will
4975 ** be set to by the update.
4976 */
4977 case OP_Delete: {
4978   VdbeCursor *pC;
4979   const char *zDb;
4980   Table *pTab;
4981   int opflags;
4982 
4983   opflags = pOp->p2;
4984   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4985   pC = p->apCsr[pOp->p1];
4986   assert( pC!=0 );
4987   assert( pC->eCurType==CURTYPE_BTREE );
4988   assert( pC->uc.pCursor!=0 );
4989   assert( pC->deferredMoveto==0 );
4990   sqlite3VdbeIncrWriteCounter(p, pC);
4991 
4992 #ifdef SQLITE_DEBUG
4993   if( pOp->p4type==P4_TABLE
4994    && HasRowid(pOp->p4.pTab)
4995    && pOp->p5==0
4996    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
4997   ){
4998     /* If p5 is zero, the seek operation that positioned the cursor prior to
4999     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5000     ** the row that is being deleted */
5001     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5002     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5003   }
5004 #endif
5005 
5006   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5007   ** the name of the db to pass as to it. Also set local pTab to a copy
5008   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5009   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5010   ** VdbeCursor.movetoTarget to the current rowid.  */
5011   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5012     assert( pC->iDb>=0 );
5013     assert( pOp->p4.pTab!=0 );
5014     zDb = db->aDb[pC->iDb].zDbSName;
5015     pTab = pOp->p4.pTab;
5016     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5017       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5018     }
5019   }else{
5020     zDb = 0;   /* Not needed.  Silence a compiler warning. */
5021     pTab = 0;  /* Not needed.  Silence a compiler warning. */
5022   }
5023 
5024 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5025   /* Invoke the pre-update-hook if required. */
5026   if( db->xPreUpdateCallback && pOp->p4.pTab ){
5027     assert( !(opflags & OPFLAG_ISUPDATE)
5028          || HasRowid(pTab)==0
5029          || (aMem[pOp->p3].flags & MEM_Int)
5030     );
5031     sqlite3VdbePreUpdateHook(p, pC,
5032         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5033         zDb, pTab, pC->movetoTarget,
5034         pOp->p3
5035     );
5036   }
5037   if( opflags & OPFLAG_ISNOOP ) break;
5038 #endif
5039 
5040   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5041   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5042   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5043   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5044 
5045 #ifdef SQLITE_DEBUG
5046   if( p->pFrame==0 ){
5047     if( pC->isEphemeral==0
5048         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5049         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5050       ){
5051       nExtraDelete++;
5052     }
5053     if( pOp->p2 & OPFLAG_NCHANGE ){
5054       nExtraDelete--;
5055     }
5056   }
5057 #endif
5058 
5059   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5060   pC->cacheStatus = CACHE_STALE;
5061   pC->seekResult = 0;
5062   if( rc ) goto abort_due_to_error;
5063 
5064   /* Invoke the update-hook if required. */
5065   if( opflags & OPFLAG_NCHANGE ){
5066     p->nChange++;
5067     if( db->xUpdateCallback && HasRowid(pTab) ){
5068       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5069           pC->movetoTarget);
5070       assert( pC->iDb>=0 );
5071     }
5072   }
5073 
5074   break;
5075 }
5076 /* Opcode: ResetCount * * * * *
5077 **
5078 ** The value of the change counter is copied to the database handle
5079 ** change counter (returned by subsequent calls to sqlite3_changes()).
5080 ** Then the VMs internal change counter resets to 0.
5081 ** This is used by trigger programs.
5082 */
5083 case OP_ResetCount: {
5084   sqlite3VdbeSetChanges(db, p->nChange);
5085   p->nChange = 0;
5086   break;
5087 }
5088 
5089 /* Opcode: SorterCompare P1 P2 P3 P4
5090 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5091 **
5092 ** P1 is a sorter cursor. This instruction compares a prefix of the
5093 ** record blob in register P3 against a prefix of the entry that
5094 ** the sorter cursor currently points to.  Only the first P4 fields
5095 ** of r[P3] and the sorter record are compared.
5096 **
5097 ** If either P3 or the sorter contains a NULL in one of their significant
5098 ** fields (not counting the P4 fields at the end which are ignored) then
5099 ** the comparison is assumed to be equal.
5100 **
5101 ** Fall through to next instruction if the two records compare equal to
5102 ** each other.  Jump to P2 if they are different.
5103 */
5104 case OP_SorterCompare: {
5105   VdbeCursor *pC;
5106   int res;
5107   int nKeyCol;
5108 
5109   pC = p->apCsr[pOp->p1];
5110   assert( isSorter(pC) );
5111   assert( pOp->p4type==P4_INT32 );
5112   pIn3 = &aMem[pOp->p3];
5113   nKeyCol = pOp->p4.i;
5114   res = 0;
5115   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5116   VdbeBranchTaken(res!=0,2);
5117   if( rc ) goto abort_due_to_error;
5118   if( res ) goto jump_to_p2;
5119   break;
5120 };
5121 
5122 /* Opcode: SorterData P1 P2 P3 * *
5123 ** Synopsis: r[P2]=data
5124 **
5125 ** Write into register P2 the current sorter data for sorter cursor P1.
5126 ** Then clear the column header cache on cursor P3.
5127 **
5128 ** This opcode is normally use to move a record out of the sorter and into
5129 ** a register that is the source for a pseudo-table cursor created using
5130 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5131 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5132 ** us from having to issue a separate NullRow instruction to clear that cache.
5133 */
5134 case OP_SorterData: {
5135   VdbeCursor *pC;
5136 
5137   pOut = &aMem[pOp->p2];
5138   pC = p->apCsr[pOp->p1];
5139   assert( isSorter(pC) );
5140   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5141   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5142   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5143   if( rc ) goto abort_due_to_error;
5144   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5145   break;
5146 }
5147 
5148 /* Opcode: RowData P1 P2 P3 * *
5149 ** Synopsis: r[P2]=data
5150 **
5151 ** Write into register P2 the complete row content for the row at
5152 ** which cursor P1 is currently pointing.
5153 ** There is no interpretation of the data.
5154 ** It is just copied onto the P2 register exactly as
5155 ** it is found in the database file.
5156 **
5157 ** If cursor P1 is an index, then the content is the key of the row.
5158 ** If cursor P2 is a table, then the content extracted is the data.
5159 **
5160 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5161 ** of a real table, not a pseudo-table.
5162 **
5163 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5164 ** into the database page.  That means that the content of the output
5165 ** register will be invalidated as soon as the cursor moves - including
5166 ** moves caused by other cursors that "save" the current cursors
5167 ** position in order that they can write to the same table.  If P3==0
5168 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5169 ** P3==0 is safer.
5170 **
5171 ** If P3!=0 then the content of the P2 register is unsuitable for use
5172 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5173 ** The P2 register content is invalidated by opcodes like OP_Function or
5174 ** by any use of another cursor pointing to the same table.
5175 */
5176 case OP_RowData: {
5177   VdbeCursor *pC;
5178   BtCursor *pCrsr;
5179   u32 n;
5180 
5181   pOut = out2Prerelease(p, pOp);
5182 
5183   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5184   pC = p->apCsr[pOp->p1];
5185   assert( pC!=0 );
5186   assert( pC->eCurType==CURTYPE_BTREE );
5187   assert( isSorter(pC)==0 );
5188   assert( pC->nullRow==0 );
5189   assert( pC->uc.pCursor!=0 );
5190   pCrsr = pC->uc.pCursor;
5191 
5192   /* The OP_RowData opcodes always follow OP_NotExists or
5193   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5194   ** that might invalidate the cursor.
5195   ** If this where not the case, on of the following assert()s
5196   ** would fail.  Should this ever change (because of changes in the code
5197   ** generator) then the fix would be to insert a call to
5198   ** sqlite3VdbeCursorMoveto().
5199   */
5200   assert( pC->deferredMoveto==0 );
5201   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5202 #if 0  /* Not required due to the previous to assert() statements */
5203   rc = sqlite3VdbeCursorMoveto(pC);
5204   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5205 #endif
5206 
5207   n = sqlite3BtreePayloadSize(pCrsr);
5208   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5209     goto too_big;
5210   }
5211   testcase( n==0 );
5212   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
5213   if( rc ) goto abort_due_to_error;
5214   if( !pOp->p3 ) Deephemeralize(pOut);
5215   UPDATE_MAX_BLOBSIZE(pOut);
5216   REGISTER_TRACE(pOp->p2, pOut);
5217   break;
5218 }
5219 
5220 /* Opcode: Rowid P1 P2 * * *
5221 ** Synopsis: r[P2]=rowid
5222 **
5223 ** Store in register P2 an integer which is the key of the table entry that
5224 ** P1 is currently point to.
5225 **
5226 ** P1 can be either an ordinary table or a virtual table.  There used to
5227 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5228 ** one opcode now works for both table types.
5229 */
5230 case OP_Rowid: {                 /* out2 */
5231   VdbeCursor *pC;
5232   i64 v;
5233   sqlite3_vtab *pVtab;
5234   const sqlite3_module *pModule;
5235 
5236   pOut = out2Prerelease(p, pOp);
5237   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5238   pC = p->apCsr[pOp->p1];
5239   assert( pC!=0 );
5240   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5241   if( pC->nullRow ){
5242     pOut->flags = MEM_Null;
5243     break;
5244   }else if( pC->deferredMoveto ){
5245     v = pC->movetoTarget;
5246 #ifndef SQLITE_OMIT_VIRTUALTABLE
5247   }else if( pC->eCurType==CURTYPE_VTAB ){
5248     assert( pC->uc.pVCur!=0 );
5249     pVtab = pC->uc.pVCur->pVtab;
5250     pModule = pVtab->pModule;
5251     assert( pModule->xRowid );
5252     rc = pModule->xRowid(pC->uc.pVCur, &v);
5253     sqlite3VtabImportErrmsg(p, pVtab);
5254     if( rc ) goto abort_due_to_error;
5255 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5256   }else{
5257     assert( pC->eCurType==CURTYPE_BTREE );
5258     assert( pC->uc.pCursor!=0 );
5259     rc = sqlite3VdbeCursorRestore(pC);
5260     if( rc ) goto abort_due_to_error;
5261     if( pC->nullRow ){
5262       pOut->flags = MEM_Null;
5263       break;
5264     }
5265     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5266   }
5267   pOut->u.i = v;
5268   break;
5269 }
5270 
5271 /* Opcode: NullRow P1 * * * *
5272 **
5273 ** Move the cursor P1 to a null row.  Any OP_Column operations
5274 ** that occur while the cursor is on the null row will always
5275 ** write a NULL.
5276 */
5277 case OP_NullRow: {
5278   VdbeCursor *pC;
5279 
5280   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5281   pC = p->apCsr[pOp->p1];
5282   assert( pC!=0 );
5283   pC->nullRow = 1;
5284   pC->cacheStatus = CACHE_STALE;
5285   if( pC->eCurType==CURTYPE_BTREE ){
5286     assert( pC->uc.pCursor!=0 );
5287     sqlite3BtreeClearCursor(pC->uc.pCursor);
5288   }
5289 #ifdef SQLITE_DEBUG
5290   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5291 #endif
5292   break;
5293 }
5294 
5295 /* Opcode: SeekEnd P1 * * * *
5296 **
5297 ** Position cursor P1 at the end of the btree for the purpose of
5298 ** appending a new entry onto the btree.
5299 **
5300 ** It is assumed that the cursor is used only for appending and so
5301 ** if the cursor is valid, then the cursor must already be pointing
5302 ** at the end of the btree and so no changes are made to
5303 ** the cursor.
5304 */
5305 /* Opcode: Last P1 P2 * * *
5306 **
5307 ** The next use of the Rowid or Column or Prev instruction for P1
5308 ** will refer to the last entry in the database table or index.
5309 ** If the table or index is empty and P2>0, then jump immediately to P2.
5310 ** If P2 is 0 or if the table or index is not empty, fall through
5311 ** to the following instruction.
5312 **
5313 ** This opcode leaves the cursor configured to move in reverse order,
5314 ** from the end toward the beginning.  In other words, the cursor is
5315 ** configured to use Prev, not Next.
5316 */
5317 case OP_SeekEnd:
5318 case OP_Last: {        /* jump */
5319   VdbeCursor *pC;
5320   BtCursor *pCrsr;
5321   int res;
5322 
5323   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5324   pC = p->apCsr[pOp->p1];
5325   assert( pC!=0 );
5326   assert( pC->eCurType==CURTYPE_BTREE );
5327   pCrsr = pC->uc.pCursor;
5328   res = 0;
5329   assert( pCrsr!=0 );
5330 #ifdef SQLITE_DEBUG
5331   pC->seekOp = pOp->opcode;
5332 #endif
5333   if( pOp->opcode==OP_SeekEnd ){
5334     assert( pOp->p2==0 );
5335     pC->seekResult = -1;
5336     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5337       break;
5338     }
5339   }
5340   rc = sqlite3BtreeLast(pCrsr, &res);
5341   pC->nullRow = (u8)res;
5342   pC->deferredMoveto = 0;
5343   pC->cacheStatus = CACHE_STALE;
5344   if( rc ) goto abort_due_to_error;
5345   if( pOp->p2>0 ){
5346     VdbeBranchTaken(res!=0,2);
5347     if( res ) goto jump_to_p2;
5348   }
5349   break;
5350 }
5351 
5352 /* Opcode: IfSmaller P1 P2 P3 * *
5353 **
5354 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5355 ** estimate is less than approximately 2**(0.1*P3).
5356 */
5357 case OP_IfSmaller: {        /* jump */
5358   VdbeCursor *pC;
5359   BtCursor *pCrsr;
5360   int res;
5361   i64 sz;
5362 
5363   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5364   pC = p->apCsr[pOp->p1];
5365   assert( pC!=0 );
5366   pCrsr = pC->uc.pCursor;
5367   assert( pCrsr );
5368   rc = sqlite3BtreeFirst(pCrsr, &res);
5369   if( rc ) goto abort_due_to_error;
5370   if( res==0 ){
5371     sz = sqlite3BtreeRowCountEst(pCrsr);
5372     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5373   }
5374   VdbeBranchTaken(res!=0,2);
5375   if( res ) goto jump_to_p2;
5376   break;
5377 }
5378 
5379 
5380 /* Opcode: SorterSort P1 P2 * * *
5381 **
5382 ** After all records have been inserted into the Sorter object
5383 ** identified by P1, invoke this opcode to actually do the sorting.
5384 ** Jump to P2 if there are no records to be sorted.
5385 **
5386 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5387 ** for Sorter objects.
5388 */
5389 /* Opcode: Sort P1 P2 * * *
5390 **
5391 ** This opcode does exactly the same thing as OP_Rewind except that
5392 ** it increments an undocumented global variable used for testing.
5393 **
5394 ** Sorting is accomplished by writing records into a sorting index,
5395 ** then rewinding that index and playing it back from beginning to
5396 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5397 ** rewinding so that the global variable will be incremented and
5398 ** regression tests can determine whether or not the optimizer is
5399 ** correctly optimizing out sorts.
5400 */
5401 case OP_SorterSort:    /* jump */
5402 case OP_Sort: {        /* jump */
5403 #ifdef SQLITE_TEST
5404   sqlite3_sort_count++;
5405   sqlite3_search_count--;
5406 #endif
5407   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5408   /* Fall through into OP_Rewind */
5409 }
5410 /* Opcode: Rewind P1 P2 * * *
5411 **
5412 ** The next use of the Rowid or Column or Next instruction for P1
5413 ** will refer to the first entry in the database table or index.
5414 ** If the table or index is empty, jump immediately to P2.
5415 ** If the table or index is not empty, fall through to the following
5416 ** instruction.
5417 **
5418 ** This opcode leaves the cursor configured to move in forward order,
5419 ** from the beginning toward the end.  In other words, the cursor is
5420 ** configured to use Next, not Prev.
5421 */
5422 case OP_Rewind: {        /* jump */
5423   VdbeCursor *pC;
5424   BtCursor *pCrsr;
5425   int res;
5426 
5427   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5428   assert( pOp->p5==0 );
5429   pC = p->apCsr[pOp->p1];
5430   assert( pC!=0 );
5431   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5432   res = 1;
5433 #ifdef SQLITE_DEBUG
5434   pC->seekOp = OP_Rewind;
5435 #endif
5436   if( isSorter(pC) ){
5437     rc = sqlite3VdbeSorterRewind(pC, &res);
5438   }else{
5439     assert( pC->eCurType==CURTYPE_BTREE );
5440     pCrsr = pC->uc.pCursor;
5441     assert( pCrsr );
5442     rc = sqlite3BtreeFirst(pCrsr, &res);
5443     pC->deferredMoveto = 0;
5444     pC->cacheStatus = CACHE_STALE;
5445   }
5446   if( rc ) goto abort_due_to_error;
5447   pC->nullRow = (u8)res;
5448   assert( pOp->p2>0 && pOp->p2<p->nOp );
5449   VdbeBranchTaken(res!=0,2);
5450   if( res ) goto jump_to_p2;
5451   break;
5452 }
5453 
5454 /* Opcode: Next P1 P2 P3 P4 P5
5455 **
5456 ** Advance cursor P1 so that it points to the next key/data pair in its
5457 ** table or index.  If there are no more key/value pairs then fall through
5458 ** to the following instruction.  But if the cursor advance was successful,
5459 ** jump immediately to P2.
5460 **
5461 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5462 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5463 ** to follow SeekLT, SeekLE, or OP_Last.
5464 **
5465 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5466 ** been opened prior to this opcode or the program will segfault.
5467 **
5468 ** The P3 value is a hint to the btree implementation. If P3==1, that
5469 ** means P1 is an SQL index and that this instruction could have been
5470 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5471 ** always either 0 or 1.
5472 **
5473 ** P4 is always of type P4_ADVANCE. The function pointer points to
5474 ** sqlite3BtreeNext().
5475 **
5476 ** If P5 is positive and the jump is taken, then event counter
5477 ** number P5-1 in the prepared statement is incremented.
5478 **
5479 ** See also: Prev
5480 */
5481 /* Opcode: Prev P1 P2 P3 P4 P5
5482 **
5483 ** Back up cursor P1 so that it points to the previous key/data pair in its
5484 ** table or index.  If there is no previous key/value pairs then fall through
5485 ** to the following instruction.  But if the cursor backup was successful,
5486 ** jump immediately to P2.
5487 **
5488 **
5489 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5490 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5491 ** to follow SeekGT, SeekGE, or OP_Rewind.
5492 **
5493 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5494 ** not open then the behavior is undefined.
5495 **
5496 ** The P3 value is a hint to the btree implementation. If P3==1, that
5497 ** means P1 is an SQL index and that this instruction could have been
5498 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5499 ** always either 0 or 1.
5500 **
5501 ** P4 is always of type P4_ADVANCE. The function pointer points to
5502 ** sqlite3BtreePrevious().
5503 **
5504 ** If P5 is positive and the jump is taken, then event counter
5505 ** number P5-1 in the prepared statement is incremented.
5506 */
5507 /* Opcode: SorterNext P1 P2 * * P5
5508 **
5509 ** This opcode works just like OP_Next except that P1 must be a
5510 ** sorter object for which the OP_SorterSort opcode has been
5511 ** invoked.  This opcode advances the cursor to the next sorted
5512 ** record, or jumps to P2 if there are no more sorted records.
5513 */
5514 case OP_SorterNext: {  /* jump */
5515   VdbeCursor *pC;
5516 
5517   pC = p->apCsr[pOp->p1];
5518   assert( isSorter(pC) );
5519   rc = sqlite3VdbeSorterNext(db, pC);
5520   goto next_tail;
5521 case OP_Prev:          /* jump */
5522 case OP_Next:          /* jump */
5523   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5524   assert( pOp->p5<ArraySize(p->aCounter) );
5525   pC = p->apCsr[pOp->p1];
5526   assert( pC!=0 );
5527   assert( pC->deferredMoveto==0 );
5528   assert( pC->eCurType==CURTYPE_BTREE );
5529   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5530   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5531 
5532   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5533   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5534   assert( pOp->opcode!=OP_Next
5535        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5536        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5537        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5538        || pC->seekOp==OP_IfNoHope);
5539   assert( pOp->opcode!=OP_Prev
5540        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5541        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5542        || pC->seekOp==OP_NullRow);
5543 
5544   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5545 next_tail:
5546   pC->cacheStatus = CACHE_STALE;
5547   VdbeBranchTaken(rc==SQLITE_OK,2);
5548   if( rc==SQLITE_OK ){
5549     pC->nullRow = 0;
5550     p->aCounter[pOp->p5]++;
5551 #ifdef SQLITE_TEST
5552     sqlite3_search_count++;
5553 #endif
5554     goto jump_to_p2_and_check_for_interrupt;
5555   }
5556   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5557   rc = SQLITE_OK;
5558   pC->nullRow = 1;
5559   goto check_for_interrupt;
5560 }
5561 
5562 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5563 ** Synopsis: key=r[P2]
5564 **
5565 ** Register P2 holds an SQL index key made using the
5566 ** MakeRecord instructions.  This opcode writes that key
5567 ** into the index P1.  Data for the entry is nil.
5568 **
5569 ** If P4 is not zero, then it is the number of values in the unpacked
5570 ** key of reg(P2).  In that case, P3 is the index of the first register
5571 ** for the unpacked key.  The availability of the unpacked key can sometimes
5572 ** be an optimization.
5573 **
5574 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5575 ** that this insert is likely to be an append.
5576 **
5577 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5578 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5579 ** then the change counter is unchanged.
5580 **
5581 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5582 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5583 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5584 ** seeks on the cursor or if the most recent seek used a key equivalent
5585 ** to P2.
5586 **
5587 ** This instruction only works for indices.  The equivalent instruction
5588 ** for tables is OP_Insert.
5589 */
5590 /* Opcode: SorterInsert P1 P2 * * *
5591 ** Synopsis: key=r[P2]
5592 **
5593 ** Register P2 holds an SQL index key made using the
5594 ** MakeRecord instructions.  This opcode writes that key
5595 ** into the sorter P1.  Data for the entry is nil.
5596 */
5597 case OP_SorterInsert:       /* in2 */
5598 case OP_IdxInsert: {        /* in2 */
5599   VdbeCursor *pC;
5600   BtreePayload x;
5601 
5602   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5603   pC = p->apCsr[pOp->p1];
5604   sqlite3VdbeIncrWriteCounter(p, pC);
5605   assert( pC!=0 );
5606   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5607   pIn2 = &aMem[pOp->p2];
5608   assert( pIn2->flags & MEM_Blob );
5609   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5610   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5611   assert( pC->isTable==0 );
5612   rc = ExpandBlob(pIn2);
5613   if( rc ) goto abort_due_to_error;
5614   if( pOp->opcode==OP_SorterInsert ){
5615     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5616   }else{
5617     x.nKey = pIn2->n;
5618     x.pKey = pIn2->z;
5619     x.aMem = aMem + pOp->p3;
5620     x.nMem = (u16)pOp->p4.i;
5621     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5622          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5623         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5624         );
5625     assert( pC->deferredMoveto==0 );
5626     pC->cacheStatus = CACHE_STALE;
5627   }
5628   if( rc) goto abort_due_to_error;
5629   break;
5630 }
5631 
5632 /* Opcode: IdxDelete P1 P2 P3 * *
5633 ** Synopsis: key=r[P2@P3]
5634 **
5635 ** The content of P3 registers starting at register P2 form
5636 ** an unpacked index key. This opcode removes that entry from the
5637 ** index opened by cursor P1.
5638 */
5639 case OP_IdxDelete: {
5640   VdbeCursor *pC;
5641   BtCursor *pCrsr;
5642   int res;
5643   UnpackedRecord r;
5644 
5645   assert( pOp->p3>0 );
5646   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5647   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5648   pC = p->apCsr[pOp->p1];
5649   assert( pC!=0 );
5650   assert( pC->eCurType==CURTYPE_BTREE );
5651   sqlite3VdbeIncrWriteCounter(p, pC);
5652   pCrsr = pC->uc.pCursor;
5653   assert( pCrsr!=0 );
5654   assert( pOp->p5==0 );
5655   r.pKeyInfo = pC->pKeyInfo;
5656   r.nField = (u16)pOp->p3;
5657   r.default_rc = 0;
5658   r.aMem = &aMem[pOp->p2];
5659   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5660   if( rc ) goto abort_due_to_error;
5661   if( res==0 ){
5662     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5663     if( rc ) goto abort_due_to_error;
5664   }
5665   assert( pC->deferredMoveto==0 );
5666   pC->cacheStatus = CACHE_STALE;
5667   pC->seekResult = 0;
5668   break;
5669 }
5670 
5671 /* Opcode: DeferredSeek P1 * P3 P4 *
5672 ** Synopsis: Move P3 to P1.rowid if needed
5673 **
5674 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5675 ** table.  This opcode does a deferred seek of the P3 table cursor
5676 ** to the row that corresponds to the current row of P1.
5677 **
5678 ** This is a deferred seek.  Nothing actually happens until
5679 ** the cursor is used to read a record.  That way, if no reads
5680 ** occur, no unnecessary I/O happens.
5681 **
5682 ** P4 may be an array of integers (type P4_INTARRAY) containing
5683 ** one entry for each column in the P3 table.  If array entry a(i)
5684 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5685 ** equivalent to performing the deferred seek and then reading column i
5686 ** from P1.  This information is stored in P3 and used to redirect
5687 ** reads against P3 over to P1, thus possibly avoiding the need to
5688 ** seek and read cursor P3.
5689 */
5690 /* Opcode: IdxRowid P1 P2 * * *
5691 ** Synopsis: r[P2]=rowid
5692 **
5693 ** Write into register P2 an integer which is the last entry in the record at
5694 ** the end of the index key pointed to by cursor P1.  This integer should be
5695 ** the rowid of the table entry to which this index entry points.
5696 **
5697 ** See also: Rowid, MakeRecord.
5698 */
5699 case OP_DeferredSeek:
5700 case OP_IdxRowid: {           /* out2 */
5701   VdbeCursor *pC;             /* The P1 index cursor */
5702   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5703   i64 rowid;                  /* Rowid that P1 current points to */
5704 
5705   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5706   pC = p->apCsr[pOp->p1];
5707   assert( pC!=0 );
5708   assert( pC->eCurType==CURTYPE_BTREE );
5709   assert( pC->uc.pCursor!=0 );
5710   assert( pC->isTable==0 );
5711   assert( pC->deferredMoveto==0 );
5712   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5713 
5714   /* The IdxRowid and Seek opcodes are combined because of the commonality
5715   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5716   rc = sqlite3VdbeCursorRestore(pC);
5717 
5718   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5719   ** out from under the cursor.  That will never happens for an IdxRowid
5720   ** or Seek opcode */
5721   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5722 
5723   if( !pC->nullRow ){
5724     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5725     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5726     if( rc!=SQLITE_OK ){
5727       goto abort_due_to_error;
5728     }
5729     if( pOp->opcode==OP_DeferredSeek ){
5730       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5731       pTabCur = p->apCsr[pOp->p3];
5732       assert( pTabCur!=0 );
5733       assert( pTabCur->eCurType==CURTYPE_BTREE );
5734       assert( pTabCur->uc.pCursor!=0 );
5735       assert( pTabCur->isTable );
5736       pTabCur->nullRow = 0;
5737       pTabCur->movetoTarget = rowid;
5738       pTabCur->deferredMoveto = 1;
5739       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5740       pTabCur->aAltMap = pOp->p4.ai;
5741       pTabCur->pAltCursor = pC;
5742     }else{
5743       pOut = out2Prerelease(p, pOp);
5744       pOut->u.i = rowid;
5745     }
5746   }else{
5747     assert( pOp->opcode==OP_IdxRowid );
5748     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5749   }
5750   break;
5751 }
5752 
5753 /* Opcode: FinishSeek P1 * * * *
5754 **
5755 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5756 ** seek operation now, without further delay.  If the cursor seek has
5757 ** already occurred, this instruction is a no-op.
5758 */
5759 case OP_FinishSeek: {
5760   VdbeCursor *pC;             /* The P1 index cursor */
5761 
5762   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5763   pC = p->apCsr[pOp->p1];
5764   if( pC->deferredMoveto ){
5765     rc = sqlite3VdbeFinishMoveto(pC);
5766     if( rc ) goto abort_due_to_error;
5767   }
5768   break;
5769 }
5770 
5771 /* Opcode: IdxGE P1 P2 P3 P4 P5
5772 ** Synopsis: key=r[P3@P4]
5773 **
5774 ** The P4 register values beginning with P3 form an unpacked index
5775 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5776 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5777 ** fields at the end.
5778 **
5779 ** If the P1 index entry is greater than or equal to the key value
5780 ** then jump to P2.  Otherwise fall through to the next instruction.
5781 */
5782 /* Opcode: IdxGT P1 P2 P3 P4 P5
5783 ** Synopsis: key=r[P3@P4]
5784 **
5785 ** The P4 register values beginning with P3 form an unpacked index
5786 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5787 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5788 ** fields at the end.
5789 **
5790 ** If the P1 index entry is greater than the key value
5791 ** then jump to P2.  Otherwise fall through to the next instruction.
5792 */
5793 /* Opcode: IdxLT P1 P2 P3 P4 P5
5794 ** Synopsis: key=r[P3@P4]
5795 **
5796 ** The P4 register values beginning with P3 form an unpacked index
5797 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5798 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5799 ** ROWID on the P1 index.
5800 **
5801 ** If the P1 index entry is less than the key value then jump to P2.
5802 ** Otherwise fall through to the next instruction.
5803 */
5804 /* Opcode: IdxLE P1 P2 P3 P4 P5
5805 ** Synopsis: key=r[P3@P4]
5806 **
5807 ** The P4 register values beginning with P3 form an unpacked index
5808 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5809 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5810 ** ROWID on the P1 index.
5811 **
5812 ** If the P1 index entry is less than or equal to the key value then jump
5813 ** to P2. Otherwise fall through to the next instruction.
5814 */
5815 case OP_IdxLE:          /* jump */
5816 case OP_IdxGT:          /* jump */
5817 case OP_IdxLT:          /* jump */
5818 case OP_IdxGE:  {       /* jump */
5819   VdbeCursor *pC;
5820   int res;
5821   UnpackedRecord r;
5822 
5823   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5824   pC = p->apCsr[pOp->p1];
5825   assert( pC!=0 );
5826   assert( pC->isOrdered );
5827   assert( pC->eCurType==CURTYPE_BTREE );
5828   assert( pC->uc.pCursor!=0);
5829   assert( pC->deferredMoveto==0 );
5830   assert( pOp->p5==0 || pOp->p5==1 );
5831   assert( pOp->p4type==P4_INT32 );
5832   r.pKeyInfo = pC->pKeyInfo;
5833   r.nField = (u16)pOp->p4.i;
5834   if( pOp->opcode<OP_IdxLT ){
5835     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5836     r.default_rc = -1;
5837   }else{
5838     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5839     r.default_rc = 0;
5840   }
5841   r.aMem = &aMem[pOp->p3];
5842 #ifdef SQLITE_DEBUG
5843   {
5844     int i;
5845     for(i=0; i<r.nField; i++){
5846       assert( memIsValid(&r.aMem[i]) );
5847       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5848     }
5849   }
5850 #endif
5851   res = 0;  /* Not needed.  Only used to silence a warning. */
5852   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5853   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5854   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5855     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5856     res = -res;
5857   }else{
5858     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5859     res++;
5860   }
5861   VdbeBranchTaken(res>0,2);
5862   if( rc ) goto abort_due_to_error;
5863   if( res>0 ) goto jump_to_p2;
5864   break;
5865 }
5866 
5867 /* Opcode: Destroy P1 P2 P3 * *
5868 **
5869 ** Delete an entire database table or index whose root page in the database
5870 ** file is given by P1.
5871 **
5872 ** The table being destroyed is in the main database file if P3==0.  If
5873 ** P3==1 then the table to be clear is in the auxiliary database file
5874 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5875 **
5876 ** If AUTOVACUUM is enabled then it is possible that another root page
5877 ** might be moved into the newly deleted root page in order to keep all
5878 ** root pages contiguous at the beginning of the database.  The former
5879 ** value of the root page that moved - its value before the move occurred -
5880 ** is stored in register P2. If no page movement was required (because the
5881 ** table being dropped was already the last one in the database) then a
5882 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5883 ** is stored in register P2.
5884 **
5885 ** This opcode throws an error if there are any active reader VMs when
5886 ** it is invoked. This is done to avoid the difficulty associated with
5887 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5888 ** database. This error is thrown even if the database is not an AUTOVACUUM
5889 ** db in order to avoid introducing an incompatibility between autovacuum
5890 ** and non-autovacuum modes.
5891 **
5892 ** See also: Clear
5893 */
5894 case OP_Destroy: {     /* out2 */
5895   int iMoved;
5896   int iDb;
5897 
5898   sqlite3VdbeIncrWriteCounter(p, 0);
5899   assert( p->readOnly==0 );
5900   assert( pOp->p1>1 );
5901   pOut = out2Prerelease(p, pOp);
5902   pOut->flags = MEM_Null;
5903   if( db->nVdbeRead > db->nVDestroy+1 ){
5904     rc = SQLITE_LOCKED;
5905     p->errorAction = OE_Abort;
5906     goto abort_due_to_error;
5907   }else{
5908     iDb = pOp->p3;
5909     assert( DbMaskTest(p->btreeMask, iDb) );
5910     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5911     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5912     pOut->flags = MEM_Int;
5913     pOut->u.i = iMoved;
5914     if( rc ) goto abort_due_to_error;
5915 #ifndef SQLITE_OMIT_AUTOVACUUM
5916     if( iMoved!=0 ){
5917       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5918       /* All OP_Destroy operations occur on the same btree */
5919       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5920       resetSchemaOnFault = iDb+1;
5921     }
5922 #endif
5923   }
5924   break;
5925 }
5926 
5927 /* Opcode: Clear P1 P2 P3
5928 **
5929 ** Delete all contents of the database table or index whose root page
5930 ** in the database file is given by P1.  But, unlike Destroy, do not
5931 ** remove the table or index from the database file.
5932 **
5933 ** The table being clear is in the main database file if P2==0.  If
5934 ** P2==1 then the table to be clear is in the auxiliary database file
5935 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5936 **
5937 ** If the P3 value is non-zero, then the table referred to must be an
5938 ** intkey table (an SQL table, not an index). In this case the row change
5939 ** count is incremented by the number of rows in the table being cleared.
5940 ** If P3 is greater than zero, then the value stored in register P3 is
5941 ** also incremented by the number of rows in the table being cleared.
5942 **
5943 ** See also: Destroy
5944 */
5945 case OP_Clear: {
5946   int nChange;
5947 
5948   sqlite3VdbeIncrWriteCounter(p, 0);
5949   nChange = 0;
5950   assert( p->readOnly==0 );
5951   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5952   rc = sqlite3BtreeClearTable(
5953       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5954   );
5955   if( pOp->p3 ){
5956     p->nChange += nChange;
5957     if( pOp->p3>0 ){
5958       assert( memIsValid(&aMem[pOp->p3]) );
5959       memAboutToChange(p, &aMem[pOp->p3]);
5960       aMem[pOp->p3].u.i += nChange;
5961     }
5962   }
5963   if( rc ) goto abort_due_to_error;
5964   break;
5965 }
5966 
5967 /* Opcode: ResetSorter P1 * * * *
5968 **
5969 ** Delete all contents from the ephemeral table or sorter
5970 ** that is open on cursor P1.
5971 **
5972 ** This opcode only works for cursors used for sorting and
5973 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5974 */
5975 case OP_ResetSorter: {
5976   VdbeCursor *pC;
5977 
5978   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5979   pC = p->apCsr[pOp->p1];
5980   assert( pC!=0 );
5981   if( isSorter(pC) ){
5982     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5983   }else{
5984     assert( pC->eCurType==CURTYPE_BTREE );
5985     assert( pC->isEphemeral );
5986     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5987     if( rc ) goto abort_due_to_error;
5988   }
5989   break;
5990 }
5991 
5992 /* Opcode: CreateBtree P1 P2 P3 * *
5993 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5994 **
5995 ** Allocate a new b-tree in the main database file if P1==0 or in the
5996 ** TEMP database file if P1==1 or in an attached database if
5997 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5998 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
5999 ** The root page number of the new b-tree is stored in register P2.
6000 */
6001 case OP_CreateBtree: {          /* out2 */
6002   int pgno;
6003   Db *pDb;
6004 
6005   sqlite3VdbeIncrWriteCounter(p, 0);
6006   pOut = out2Prerelease(p, pOp);
6007   pgno = 0;
6008   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6009   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6010   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6011   assert( p->readOnly==0 );
6012   pDb = &db->aDb[pOp->p1];
6013   assert( pDb->pBt!=0 );
6014   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6015   if( rc ) goto abort_due_to_error;
6016   pOut->u.i = pgno;
6017   break;
6018 }
6019 
6020 /* Opcode: SqlExec * * * P4 *
6021 **
6022 ** Run the SQL statement or statements specified in the P4 string.
6023 */
6024 case OP_SqlExec: {
6025   sqlite3VdbeIncrWriteCounter(p, 0);
6026   db->nSqlExec++;
6027   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6028   db->nSqlExec--;
6029   if( rc ) goto abort_due_to_error;
6030   break;
6031 }
6032 
6033 /* Opcode: ParseSchema P1 * * P4 *
6034 **
6035 ** Read and parse all entries from the SQLITE_MASTER table of database P1
6036 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6037 ** entire schema for P1 is reparsed.
6038 **
6039 ** This opcode invokes the parser to create a new virtual machine,
6040 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6041 */
6042 case OP_ParseSchema: {
6043   int iDb;
6044   const char *zMaster;
6045   char *zSql;
6046   InitData initData;
6047 
6048   /* Any prepared statement that invokes this opcode will hold mutexes
6049   ** on every btree.  This is a prerequisite for invoking
6050   ** sqlite3InitCallback().
6051   */
6052 #ifdef SQLITE_DEBUG
6053   for(iDb=0; iDb<db->nDb; iDb++){
6054     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6055   }
6056 #endif
6057 
6058   iDb = pOp->p1;
6059   assert( iDb>=0 && iDb<db->nDb );
6060   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
6061 
6062 #ifndef SQLITE_OMIT_ALTERTABLE
6063   if( pOp->p4.z==0 ){
6064     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6065     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6066     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
6067     db->mDbFlags |= DBFLAG_SchemaChange;
6068     p->expired = 0;
6069   }else
6070 #endif
6071   {
6072     zMaster = MASTER_NAME;
6073     initData.db = db;
6074     initData.iDb = iDb;
6075     initData.pzErrMsg = &p->zErrMsg;
6076     initData.mInitFlags = 0;
6077     zSql = sqlite3MPrintf(db,
6078        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6079        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
6080     if( zSql==0 ){
6081       rc = SQLITE_NOMEM_BKPT;
6082     }else{
6083       assert( db->init.busy==0 );
6084       db->init.busy = 1;
6085       initData.rc = SQLITE_OK;
6086       initData.nInitRow = 0;
6087       assert( !db->mallocFailed );
6088       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6089       if( rc==SQLITE_OK ) rc = initData.rc;
6090       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6091         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6092         ** at least one SQL statement. Any less than that indicates that
6093         ** the sqlite_master table is corrupt. */
6094         rc = SQLITE_CORRUPT_BKPT;
6095       }
6096       sqlite3DbFreeNN(db, zSql);
6097       db->init.busy = 0;
6098     }
6099   }
6100   if( rc ){
6101     sqlite3ResetAllSchemasOfConnection(db);
6102     if( rc==SQLITE_NOMEM ){
6103       goto no_mem;
6104     }
6105     goto abort_due_to_error;
6106   }
6107   break;
6108 }
6109 
6110 #if !defined(SQLITE_OMIT_ANALYZE)
6111 /* Opcode: LoadAnalysis P1 * * * *
6112 **
6113 ** Read the sqlite_stat1 table for database P1 and load the content
6114 ** of that table into the internal index hash table.  This will cause
6115 ** the analysis to be used when preparing all subsequent queries.
6116 */
6117 case OP_LoadAnalysis: {
6118   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6119   rc = sqlite3AnalysisLoad(db, pOp->p1);
6120   if( rc ) goto abort_due_to_error;
6121   break;
6122 }
6123 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6124 
6125 /* Opcode: DropTable P1 * * P4 *
6126 **
6127 ** Remove the internal (in-memory) data structures that describe
6128 ** the table named P4 in database P1.  This is called after a table
6129 ** is dropped from disk (using the Destroy opcode) in order to keep
6130 ** the internal representation of the
6131 ** schema consistent with what is on disk.
6132 */
6133 case OP_DropTable: {
6134   sqlite3VdbeIncrWriteCounter(p, 0);
6135   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6136   break;
6137 }
6138 
6139 /* Opcode: DropIndex P1 * * P4 *
6140 **
6141 ** Remove the internal (in-memory) data structures that describe
6142 ** the index named P4 in database P1.  This is called after an index
6143 ** is dropped from disk (using the Destroy opcode)
6144 ** in order to keep the internal representation of the
6145 ** schema consistent with what is on disk.
6146 */
6147 case OP_DropIndex: {
6148   sqlite3VdbeIncrWriteCounter(p, 0);
6149   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6150   break;
6151 }
6152 
6153 /* Opcode: DropTrigger P1 * * P4 *
6154 **
6155 ** Remove the internal (in-memory) data structures that describe
6156 ** the trigger named P4 in database P1.  This is called after a trigger
6157 ** is dropped from disk (using the Destroy opcode) in order to keep
6158 ** the internal representation of the
6159 ** schema consistent with what is on disk.
6160 */
6161 case OP_DropTrigger: {
6162   sqlite3VdbeIncrWriteCounter(p, 0);
6163   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6164   break;
6165 }
6166 
6167 
6168 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6169 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6170 **
6171 ** Do an analysis of the currently open database.  Store in
6172 ** register P1 the text of an error message describing any problems.
6173 ** If no problems are found, store a NULL in register P1.
6174 **
6175 ** The register P3 contains one less than the maximum number of allowed errors.
6176 ** At most reg(P3) errors will be reported.
6177 ** In other words, the analysis stops as soon as reg(P1) errors are
6178 ** seen.  Reg(P1) is updated with the number of errors remaining.
6179 **
6180 ** The root page numbers of all tables in the database are integers
6181 ** stored in P4_INTARRAY argument.
6182 **
6183 ** If P5 is not zero, the check is done on the auxiliary database
6184 ** file, not the main database file.
6185 **
6186 ** This opcode is used to implement the integrity_check pragma.
6187 */
6188 case OP_IntegrityCk: {
6189   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6190   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
6191   int nErr;       /* Number of errors reported */
6192   char *z;        /* Text of the error report */
6193   Mem *pnErr;     /* Register keeping track of errors remaining */
6194 
6195   assert( p->bIsReader );
6196   nRoot = pOp->p2;
6197   aRoot = pOp->p4.ai;
6198   assert( nRoot>0 );
6199   assert( aRoot[0]==nRoot );
6200   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6201   pnErr = &aMem[pOp->p3];
6202   assert( (pnErr->flags & MEM_Int)!=0 );
6203   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6204   pIn1 = &aMem[pOp->p1];
6205   assert( pOp->p5<db->nDb );
6206   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6207   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6208                                  (int)pnErr->u.i+1, &nErr);
6209   sqlite3VdbeMemSetNull(pIn1);
6210   if( nErr==0 ){
6211     assert( z==0 );
6212   }else if( z==0 ){
6213     goto no_mem;
6214   }else{
6215     pnErr->u.i -= nErr-1;
6216     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6217   }
6218   UPDATE_MAX_BLOBSIZE(pIn1);
6219   sqlite3VdbeChangeEncoding(pIn1, encoding);
6220   goto check_for_interrupt;
6221 }
6222 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6223 
6224 /* Opcode: RowSetAdd P1 P2 * * *
6225 ** Synopsis: rowset(P1)=r[P2]
6226 **
6227 ** Insert the integer value held by register P2 into a RowSet object
6228 ** held in register P1.
6229 **
6230 ** An assertion fails if P2 is not an integer.
6231 */
6232 case OP_RowSetAdd: {       /* in1, in2 */
6233   pIn1 = &aMem[pOp->p1];
6234   pIn2 = &aMem[pOp->p2];
6235   assert( (pIn2->flags & MEM_Int)!=0 );
6236   if( (pIn1->flags & MEM_Blob)==0 ){
6237     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6238   }
6239   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6240   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6241   break;
6242 }
6243 
6244 /* Opcode: RowSetRead P1 P2 P3 * *
6245 ** Synopsis: r[P3]=rowset(P1)
6246 **
6247 ** Extract the smallest value from the RowSet object in P1
6248 ** and put that value into register P3.
6249 ** Or, if RowSet object P1 is initially empty, leave P3
6250 ** unchanged and jump to instruction P2.
6251 */
6252 case OP_RowSetRead: {       /* jump, in1, out3 */
6253   i64 val;
6254 
6255   pIn1 = &aMem[pOp->p1];
6256   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6257   if( (pIn1->flags & MEM_Blob)==0
6258    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6259   ){
6260     /* The boolean index is empty */
6261     sqlite3VdbeMemSetNull(pIn1);
6262     VdbeBranchTaken(1,2);
6263     goto jump_to_p2_and_check_for_interrupt;
6264   }else{
6265     /* A value was pulled from the index */
6266     VdbeBranchTaken(0,2);
6267     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6268   }
6269   goto check_for_interrupt;
6270 }
6271 
6272 /* Opcode: RowSetTest P1 P2 P3 P4
6273 ** Synopsis: if r[P3] in rowset(P1) goto P2
6274 **
6275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6276 ** contains a RowSet object and that RowSet object contains
6277 ** the value held in P3, jump to register P2. Otherwise, insert the
6278 ** integer in P3 into the RowSet and continue on to the
6279 ** next opcode.
6280 **
6281 ** The RowSet object is optimized for the case where sets of integers
6282 ** are inserted in distinct phases, which each set contains no duplicates.
6283 ** Each set is identified by a unique P4 value. The first set
6284 ** must have P4==0, the final set must have P4==-1, and for all other sets
6285 ** must have P4>0.
6286 **
6287 ** This allows optimizations: (a) when P4==0 there is no need to test
6288 ** the RowSet object for P3, as it is guaranteed not to contain it,
6289 ** (b) when P4==-1 there is no need to insert the value, as it will
6290 ** never be tested for, and (c) when a value that is part of set X is
6291 ** inserted, there is no need to search to see if the same value was
6292 ** previously inserted as part of set X (only if it was previously
6293 ** inserted as part of some other set).
6294 */
6295 case OP_RowSetTest: {                     /* jump, in1, in3 */
6296   int iSet;
6297   int exists;
6298 
6299   pIn1 = &aMem[pOp->p1];
6300   pIn3 = &aMem[pOp->p3];
6301   iSet = pOp->p4.i;
6302   assert( pIn3->flags&MEM_Int );
6303 
6304   /* If there is anything other than a rowset object in memory cell P1,
6305   ** delete it now and initialize P1 with an empty rowset
6306   */
6307   if( (pIn1->flags & MEM_Blob)==0 ){
6308     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6309   }
6310   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6311   assert( pOp->p4type==P4_INT32 );
6312   assert( iSet==-1 || iSet>=0 );
6313   if( iSet ){
6314     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6315     VdbeBranchTaken(exists!=0,2);
6316     if( exists ) goto jump_to_p2;
6317   }
6318   if( iSet>=0 ){
6319     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6320   }
6321   break;
6322 }
6323 
6324 
6325 #ifndef SQLITE_OMIT_TRIGGER
6326 
6327 /* Opcode: Program P1 P2 P3 P4 P5
6328 **
6329 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6330 **
6331 ** P1 contains the address of the memory cell that contains the first memory
6332 ** cell in an array of values used as arguments to the sub-program. P2
6333 ** contains the address to jump to if the sub-program throws an IGNORE
6334 ** exception using the RAISE() function. Register P3 contains the address
6335 ** of a memory cell in this (the parent) VM that is used to allocate the
6336 ** memory required by the sub-vdbe at runtime.
6337 **
6338 ** P4 is a pointer to the VM containing the trigger program.
6339 **
6340 ** If P5 is non-zero, then recursive program invocation is enabled.
6341 */
6342 case OP_Program: {        /* jump */
6343   int nMem;               /* Number of memory registers for sub-program */
6344   int nByte;              /* Bytes of runtime space required for sub-program */
6345   Mem *pRt;               /* Register to allocate runtime space */
6346   Mem *pMem;              /* Used to iterate through memory cells */
6347   Mem *pEnd;              /* Last memory cell in new array */
6348   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6349   SubProgram *pProgram;   /* Sub-program to execute */
6350   void *t;                /* Token identifying trigger */
6351 
6352   pProgram = pOp->p4.pProgram;
6353   pRt = &aMem[pOp->p3];
6354   assert( pProgram->nOp>0 );
6355 
6356   /* If the p5 flag is clear, then recursive invocation of triggers is
6357   ** disabled for backwards compatibility (p5 is set if this sub-program
6358   ** is really a trigger, not a foreign key action, and the flag set
6359   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6360   **
6361   ** It is recursive invocation of triggers, at the SQL level, that is
6362   ** disabled. In some cases a single trigger may generate more than one
6363   ** SubProgram (if the trigger may be executed with more than one different
6364   ** ON CONFLICT algorithm). SubProgram structures associated with a
6365   ** single trigger all have the same value for the SubProgram.token
6366   ** variable.  */
6367   if( pOp->p5 ){
6368     t = pProgram->token;
6369     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6370     if( pFrame ) break;
6371   }
6372 
6373   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6374     rc = SQLITE_ERROR;
6375     sqlite3VdbeError(p, "too many levels of trigger recursion");
6376     goto abort_due_to_error;
6377   }
6378 
6379   /* Register pRt is used to store the memory required to save the state
6380   ** of the current program, and the memory required at runtime to execute
6381   ** the trigger program. If this trigger has been fired before, then pRt
6382   ** is already allocated. Otherwise, it must be initialized.  */
6383   if( (pRt->flags&MEM_Blob)==0 ){
6384     /* SubProgram.nMem is set to the number of memory cells used by the
6385     ** program stored in SubProgram.aOp. As well as these, one memory
6386     ** cell is required for each cursor used by the program. Set local
6387     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6388     */
6389     nMem = pProgram->nMem + pProgram->nCsr;
6390     assert( nMem>0 );
6391     if( pProgram->nCsr==0 ) nMem++;
6392     nByte = ROUND8(sizeof(VdbeFrame))
6393               + nMem * sizeof(Mem)
6394               + pProgram->nCsr * sizeof(VdbeCursor*)
6395               + (pProgram->nOp + 7)/8;
6396     pFrame = sqlite3DbMallocZero(db, nByte);
6397     if( !pFrame ){
6398       goto no_mem;
6399     }
6400     sqlite3VdbeMemRelease(pRt);
6401     pRt->flags = MEM_Blob|MEM_Dyn;
6402     pRt->z = (char*)pFrame;
6403     pRt->n = nByte;
6404     pRt->xDel = sqlite3VdbeFrameMemDel;
6405 
6406     pFrame->v = p;
6407     pFrame->nChildMem = nMem;
6408     pFrame->nChildCsr = pProgram->nCsr;
6409     pFrame->pc = (int)(pOp - aOp);
6410     pFrame->aMem = p->aMem;
6411     pFrame->nMem = p->nMem;
6412     pFrame->apCsr = p->apCsr;
6413     pFrame->nCursor = p->nCursor;
6414     pFrame->aOp = p->aOp;
6415     pFrame->nOp = p->nOp;
6416     pFrame->token = pProgram->token;
6417 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6418     pFrame->anExec = p->anExec;
6419 #endif
6420 #ifdef SQLITE_DEBUG
6421     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6422 #endif
6423 
6424     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6425     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6426       pMem->flags = MEM_Undefined;
6427       pMem->db = db;
6428     }
6429   }else{
6430     pFrame = (VdbeFrame*)pRt->z;
6431     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6432     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6433         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6434     assert( pProgram->nCsr==pFrame->nChildCsr );
6435     assert( (int)(pOp - aOp)==pFrame->pc );
6436   }
6437 
6438   p->nFrame++;
6439   pFrame->pParent = p->pFrame;
6440   pFrame->lastRowid = db->lastRowid;
6441   pFrame->nChange = p->nChange;
6442   pFrame->nDbChange = p->db->nChange;
6443   assert( pFrame->pAuxData==0 );
6444   pFrame->pAuxData = p->pAuxData;
6445   p->pAuxData = 0;
6446   p->nChange = 0;
6447   p->pFrame = pFrame;
6448   p->aMem = aMem = VdbeFrameMem(pFrame);
6449   p->nMem = pFrame->nChildMem;
6450   p->nCursor = (u16)pFrame->nChildCsr;
6451   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6452   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6453   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6454   p->aOp = aOp = pProgram->aOp;
6455   p->nOp = pProgram->nOp;
6456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6457   p->anExec = 0;
6458 #endif
6459 #ifdef SQLITE_DEBUG
6460   /* Verify that second and subsequent executions of the same trigger do not
6461   ** try to reuse register values from the first use. */
6462   {
6463     int i;
6464     for(i=0; i<p->nMem; i++){
6465       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6466       aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
6467     }
6468   }
6469 #endif
6470   pOp = &aOp[-1];
6471   goto check_for_interrupt;
6472 }
6473 
6474 /* Opcode: Param P1 P2 * * *
6475 **
6476 ** This opcode is only ever present in sub-programs called via the
6477 ** OP_Program instruction. Copy a value currently stored in a memory
6478 ** cell of the calling (parent) frame to cell P2 in the current frames
6479 ** address space. This is used by trigger programs to access the new.*
6480 ** and old.* values.
6481 **
6482 ** The address of the cell in the parent frame is determined by adding
6483 ** the value of the P1 argument to the value of the P1 argument to the
6484 ** calling OP_Program instruction.
6485 */
6486 case OP_Param: {           /* out2 */
6487   VdbeFrame *pFrame;
6488   Mem *pIn;
6489   pOut = out2Prerelease(p, pOp);
6490   pFrame = p->pFrame;
6491   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6492   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6493   break;
6494 }
6495 
6496 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6497 
6498 #ifndef SQLITE_OMIT_FOREIGN_KEY
6499 /* Opcode: FkCounter P1 P2 * * *
6500 ** Synopsis: fkctr[P1]+=P2
6501 **
6502 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6503 ** If P1 is non-zero, the database constraint counter is incremented
6504 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6505 ** statement counter is incremented (immediate foreign key constraints).
6506 */
6507 case OP_FkCounter: {
6508   if( db->flags & SQLITE_DeferFKs ){
6509     db->nDeferredImmCons += pOp->p2;
6510   }else if( pOp->p1 ){
6511     db->nDeferredCons += pOp->p2;
6512   }else{
6513     p->nFkConstraint += pOp->p2;
6514   }
6515   break;
6516 }
6517 
6518 /* Opcode: FkIfZero P1 P2 * * *
6519 ** Synopsis: if fkctr[P1]==0 goto P2
6520 **
6521 ** This opcode tests if a foreign key constraint-counter is currently zero.
6522 ** If so, jump to instruction P2. Otherwise, fall through to the next
6523 ** instruction.
6524 **
6525 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6526 ** is zero (the one that counts deferred constraint violations). If P1 is
6527 ** zero, the jump is taken if the statement constraint-counter is zero
6528 ** (immediate foreign key constraint violations).
6529 */
6530 case OP_FkIfZero: {         /* jump */
6531   if( pOp->p1 ){
6532     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6533     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6534   }else{
6535     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6536     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6537   }
6538   break;
6539 }
6540 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6541 
6542 #ifndef SQLITE_OMIT_AUTOINCREMENT
6543 /* Opcode: MemMax P1 P2 * * *
6544 ** Synopsis: r[P1]=max(r[P1],r[P2])
6545 **
6546 ** P1 is a register in the root frame of this VM (the root frame is
6547 ** different from the current frame if this instruction is being executed
6548 ** within a sub-program). Set the value of register P1 to the maximum of
6549 ** its current value and the value in register P2.
6550 **
6551 ** This instruction throws an error if the memory cell is not initially
6552 ** an integer.
6553 */
6554 case OP_MemMax: {        /* in2 */
6555   VdbeFrame *pFrame;
6556   if( p->pFrame ){
6557     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6558     pIn1 = &pFrame->aMem[pOp->p1];
6559   }else{
6560     pIn1 = &aMem[pOp->p1];
6561   }
6562   assert( memIsValid(pIn1) );
6563   sqlite3VdbeMemIntegerify(pIn1);
6564   pIn2 = &aMem[pOp->p2];
6565   sqlite3VdbeMemIntegerify(pIn2);
6566   if( pIn1->u.i<pIn2->u.i){
6567     pIn1->u.i = pIn2->u.i;
6568   }
6569   break;
6570 }
6571 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6572 
6573 /* Opcode: IfPos P1 P2 P3 * *
6574 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6575 **
6576 ** Register P1 must contain an integer.
6577 ** If the value of register P1 is 1 or greater, subtract P3 from the
6578 ** value in P1 and jump to P2.
6579 **
6580 ** If the initial value of register P1 is less than 1, then the
6581 ** value is unchanged and control passes through to the next instruction.
6582 */
6583 case OP_IfPos: {        /* jump, in1 */
6584   pIn1 = &aMem[pOp->p1];
6585   assert( pIn1->flags&MEM_Int );
6586   VdbeBranchTaken( pIn1->u.i>0, 2);
6587   if( pIn1->u.i>0 ){
6588     pIn1->u.i -= pOp->p3;
6589     goto jump_to_p2;
6590   }
6591   break;
6592 }
6593 
6594 /* Opcode: OffsetLimit P1 P2 P3 * *
6595 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6596 **
6597 ** This opcode performs a commonly used computation associated with
6598 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6599 ** holds the offset counter.  The opcode computes the combined value
6600 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6601 ** value computed is the total number of rows that will need to be
6602 ** visited in order to complete the query.
6603 **
6604 ** If r[P3] is zero or negative, that means there is no OFFSET
6605 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6606 **
6607 ** if r[P1] is zero or negative, that means there is no LIMIT
6608 ** and r[P2] is set to -1.
6609 **
6610 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6611 */
6612 case OP_OffsetLimit: {    /* in1, out2, in3 */
6613   i64 x;
6614   pIn1 = &aMem[pOp->p1];
6615   pIn3 = &aMem[pOp->p3];
6616   pOut = out2Prerelease(p, pOp);
6617   assert( pIn1->flags & MEM_Int );
6618   assert( pIn3->flags & MEM_Int );
6619   x = pIn1->u.i;
6620   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6621     /* If the LIMIT is less than or equal to zero, loop forever.  This
6622     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6623     ** also loop forever.  This is undocumented.  In fact, one could argue
6624     ** that the loop should terminate.  But assuming 1 billion iterations
6625     ** per second (far exceeding the capabilities of any current hardware)
6626     ** it would take nearly 300 years to actually reach the limit.  So
6627     ** looping forever is a reasonable approximation. */
6628     pOut->u.i = -1;
6629   }else{
6630     pOut->u.i = x;
6631   }
6632   break;
6633 }
6634 
6635 /* Opcode: IfNotZero P1 P2 * * *
6636 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6637 **
6638 ** Register P1 must contain an integer.  If the content of register P1 is
6639 ** initially greater than zero, then decrement the value in register P1.
6640 ** If it is non-zero (negative or positive) and then also jump to P2.
6641 ** If register P1 is initially zero, leave it unchanged and fall through.
6642 */
6643 case OP_IfNotZero: {        /* jump, in1 */
6644   pIn1 = &aMem[pOp->p1];
6645   assert( pIn1->flags&MEM_Int );
6646   VdbeBranchTaken(pIn1->u.i<0, 2);
6647   if( pIn1->u.i ){
6648      if( pIn1->u.i>0 ) pIn1->u.i--;
6649      goto jump_to_p2;
6650   }
6651   break;
6652 }
6653 
6654 /* Opcode: DecrJumpZero P1 P2 * * *
6655 ** Synopsis: if (--r[P1])==0 goto P2
6656 **
6657 ** Register P1 must hold an integer.  Decrement the value in P1
6658 ** and jump to P2 if the new value is exactly zero.
6659 */
6660 case OP_DecrJumpZero: {      /* jump, in1 */
6661   pIn1 = &aMem[pOp->p1];
6662   assert( pIn1->flags&MEM_Int );
6663   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6664   VdbeBranchTaken(pIn1->u.i==0, 2);
6665   if( pIn1->u.i==0 ) goto jump_to_p2;
6666   break;
6667 }
6668 
6669 
6670 /* Opcode: AggStep * P2 P3 P4 P5
6671 ** Synopsis: accum=r[P3] step(r[P2@P5])
6672 **
6673 ** Execute the xStep function for an aggregate.
6674 ** The function has P5 arguments.  P4 is a pointer to the
6675 ** FuncDef structure that specifies the function.  Register P3 is the
6676 ** accumulator.
6677 **
6678 ** The P5 arguments are taken from register P2 and its
6679 ** successors.
6680 */
6681 /* Opcode: AggInverse * P2 P3 P4 P5
6682 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6683 **
6684 ** Execute the xInverse function for an aggregate.
6685 ** The function has P5 arguments.  P4 is a pointer to the
6686 ** FuncDef structure that specifies the function.  Register P3 is the
6687 ** accumulator.
6688 **
6689 ** The P5 arguments are taken from register P2 and its
6690 ** successors.
6691 */
6692 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6693 ** Synopsis: accum=r[P3] step(r[P2@P5])
6694 **
6695 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6696 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6697 ** FuncDef structure that specifies the function.  Register P3 is the
6698 ** accumulator.
6699 **
6700 ** The P5 arguments are taken from register P2 and its
6701 ** successors.
6702 **
6703 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6704 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6705 ** the opcode is changed.  In this way, the initialization of the
6706 ** sqlite3_context only happens once, instead of on each call to the
6707 ** step function.
6708 */
6709 case OP_AggInverse:
6710 case OP_AggStep: {
6711   int n;
6712   sqlite3_context *pCtx;
6713 
6714   assert( pOp->p4type==P4_FUNCDEF );
6715   n = pOp->p5;
6716   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6717   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6718   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6719   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6720                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6721   if( pCtx==0 ) goto no_mem;
6722   pCtx->pMem = 0;
6723   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6724   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6725   pCtx->pFunc = pOp->p4.pFunc;
6726   pCtx->iOp = (int)(pOp - aOp);
6727   pCtx->pVdbe = p;
6728   pCtx->skipFlag = 0;
6729   pCtx->isError = 0;
6730   pCtx->argc = n;
6731   pOp->p4type = P4_FUNCCTX;
6732   pOp->p4.pCtx = pCtx;
6733 
6734   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6735   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6736 
6737   pOp->opcode = OP_AggStep1;
6738   /* Fall through into OP_AggStep */
6739 }
6740 case OP_AggStep1: {
6741   int i;
6742   sqlite3_context *pCtx;
6743   Mem *pMem;
6744 
6745   assert( pOp->p4type==P4_FUNCCTX );
6746   pCtx = pOp->p4.pCtx;
6747   pMem = &aMem[pOp->p3];
6748 
6749 #ifdef SQLITE_DEBUG
6750   if( pOp->p1 ){
6751     /* This is an OP_AggInverse call.  Verify that xStep has always
6752     ** been called at least once prior to any xInverse call. */
6753     assert( pMem->uTemp==0x1122e0e3 );
6754   }else{
6755     /* This is an OP_AggStep call.  Mark it as such. */
6756     pMem->uTemp = 0x1122e0e3;
6757   }
6758 #endif
6759 
6760   /* If this function is inside of a trigger, the register array in aMem[]
6761   ** might change from one evaluation to the next.  The next block of code
6762   ** checks to see if the register array has changed, and if so it
6763   ** reinitializes the relavant parts of the sqlite3_context object */
6764   if( pCtx->pMem != pMem ){
6765     pCtx->pMem = pMem;
6766     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6767   }
6768 
6769 #ifdef SQLITE_DEBUG
6770   for(i=0; i<pCtx->argc; i++){
6771     assert( memIsValid(pCtx->argv[i]) );
6772     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6773   }
6774 #endif
6775 
6776   pMem->n++;
6777   assert( pCtx->pOut->flags==MEM_Null );
6778   assert( pCtx->isError==0 );
6779   assert( pCtx->skipFlag==0 );
6780 #ifndef SQLITE_OMIT_WINDOWFUNC
6781   if( pOp->p1 ){
6782     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6783   }else
6784 #endif
6785   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6786 
6787   if( pCtx->isError ){
6788     if( pCtx->isError>0 ){
6789       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6790       rc = pCtx->isError;
6791     }
6792     if( pCtx->skipFlag ){
6793       assert( pOp[-1].opcode==OP_CollSeq );
6794       i = pOp[-1].p1;
6795       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6796       pCtx->skipFlag = 0;
6797     }
6798     sqlite3VdbeMemRelease(pCtx->pOut);
6799     pCtx->pOut->flags = MEM_Null;
6800     pCtx->isError = 0;
6801     if( rc ) goto abort_due_to_error;
6802   }
6803   assert( pCtx->pOut->flags==MEM_Null );
6804   assert( pCtx->skipFlag==0 );
6805   break;
6806 }
6807 
6808 /* Opcode: AggFinal P1 P2 * P4 *
6809 ** Synopsis: accum=r[P1] N=P2
6810 **
6811 ** P1 is the memory location that is the accumulator for an aggregate
6812 ** or window function.  Execute the finalizer function
6813 ** for an aggregate and store the result in P1.
6814 **
6815 ** P2 is the number of arguments that the step function takes and
6816 ** P4 is a pointer to the FuncDef for this function.  The P2
6817 ** argument is not used by this opcode.  It is only there to disambiguate
6818 ** functions that can take varying numbers of arguments.  The
6819 ** P4 argument is only needed for the case where
6820 ** the step function was not previously called.
6821 */
6822 /* Opcode: AggValue * P2 P3 P4 *
6823 ** Synopsis: r[P3]=value N=P2
6824 **
6825 ** Invoke the xValue() function and store the result in register P3.
6826 **
6827 ** P2 is the number of arguments that the step function takes and
6828 ** P4 is a pointer to the FuncDef for this function.  The P2
6829 ** argument is not used by this opcode.  It is only there to disambiguate
6830 ** functions that can take varying numbers of arguments.  The
6831 ** P4 argument is only needed for the case where
6832 ** the step function was not previously called.
6833 */
6834 case OP_AggValue:
6835 case OP_AggFinal: {
6836   Mem *pMem;
6837   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6838   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6839   pMem = &aMem[pOp->p1];
6840   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6841 #ifndef SQLITE_OMIT_WINDOWFUNC
6842   if( pOp->p3 ){
6843     memAboutToChange(p, &aMem[pOp->p3]);
6844     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6845     pMem = &aMem[pOp->p3];
6846   }else
6847 #endif
6848   {
6849     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6850   }
6851 
6852   if( rc ){
6853     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6854     goto abort_due_to_error;
6855   }
6856   sqlite3VdbeChangeEncoding(pMem, encoding);
6857   UPDATE_MAX_BLOBSIZE(pMem);
6858   if( sqlite3VdbeMemTooBig(pMem) ){
6859     goto too_big;
6860   }
6861   break;
6862 }
6863 
6864 #ifndef SQLITE_OMIT_WAL
6865 /* Opcode: Checkpoint P1 P2 P3 * *
6866 **
6867 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6868 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6869 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6870 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6871 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6872 ** in the WAL that have been checkpointed after the checkpoint
6873 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6874 ** mem[P3+2] are initialized to -1.
6875 */
6876 case OP_Checkpoint: {
6877   int i;                          /* Loop counter */
6878   int aRes[3];                    /* Results */
6879   Mem *pMem;                      /* Write results here */
6880 
6881   assert( p->readOnly==0 );
6882   aRes[0] = 0;
6883   aRes[1] = aRes[2] = -1;
6884   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6885        || pOp->p2==SQLITE_CHECKPOINT_FULL
6886        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6887        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6888   );
6889   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6890   if( rc ){
6891     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6892     rc = SQLITE_OK;
6893     aRes[0] = 1;
6894   }
6895   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6896     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6897   }
6898   break;
6899 };
6900 #endif
6901 
6902 #ifndef SQLITE_OMIT_PRAGMA
6903 /* Opcode: JournalMode P1 P2 P3 * *
6904 **
6905 ** Change the journal mode of database P1 to P3. P3 must be one of the
6906 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6907 ** modes (delete, truncate, persist, off and memory), this is a simple
6908 ** operation. No IO is required.
6909 **
6910 ** If changing into or out of WAL mode the procedure is more complicated.
6911 **
6912 ** Write a string containing the final journal-mode to register P2.
6913 */
6914 case OP_JournalMode: {    /* out2 */
6915   Btree *pBt;                     /* Btree to change journal mode of */
6916   Pager *pPager;                  /* Pager associated with pBt */
6917   int eNew;                       /* New journal mode */
6918   int eOld;                       /* The old journal mode */
6919 #ifndef SQLITE_OMIT_WAL
6920   const char *zFilename;          /* Name of database file for pPager */
6921 #endif
6922 
6923   pOut = out2Prerelease(p, pOp);
6924   eNew = pOp->p3;
6925   assert( eNew==PAGER_JOURNALMODE_DELETE
6926        || eNew==PAGER_JOURNALMODE_TRUNCATE
6927        || eNew==PAGER_JOURNALMODE_PERSIST
6928        || eNew==PAGER_JOURNALMODE_OFF
6929        || eNew==PAGER_JOURNALMODE_MEMORY
6930        || eNew==PAGER_JOURNALMODE_WAL
6931        || eNew==PAGER_JOURNALMODE_QUERY
6932   );
6933   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6934   assert( p->readOnly==0 );
6935 
6936   pBt = db->aDb[pOp->p1].pBt;
6937   pPager = sqlite3BtreePager(pBt);
6938   eOld = sqlite3PagerGetJournalMode(pPager);
6939   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6940   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6941 
6942 #ifndef SQLITE_OMIT_WAL
6943   zFilename = sqlite3PagerFilename(pPager, 1);
6944 
6945   /* Do not allow a transition to journal_mode=WAL for a database
6946   ** in temporary storage or if the VFS does not support shared memory
6947   */
6948   if( eNew==PAGER_JOURNALMODE_WAL
6949    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6950        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6951   ){
6952     eNew = eOld;
6953   }
6954 
6955   if( (eNew!=eOld)
6956    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6957   ){
6958     if( !db->autoCommit || db->nVdbeRead>1 ){
6959       rc = SQLITE_ERROR;
6960       sqlite3VdbeError(p,
6961           "cannot change %s wal mode from within a transaction",
6962           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6963       );
6964       goto abort_due_to_error;
6965     }else{
6966 
6967       if( eOld==PAGER_JOURNALMODE_WAL ){
6968         /* If leaving WAL mode, close the log file. If successful, the call
6969         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6970         ** file. An EXCLUSIVE lock may still be held on the database file
6971         ** after a successful return.
6972         */
6973         rc = sqlite3PagerCloseWal(pPager, db);
6974         if( rc==SQLITE_OK ){
6975           sqlite3PagerSetJournalMode(pPager, eNew);
6976         }
6977       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6978         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6979         ** as an intermediate */
6980         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6981       }
6982 
6983       /* Open a transaction on the database file. Regardless of the journal
6984       ** mode, this transaction always uses a rollback journal.
6985       */
6986       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6987       if( rc==SQLITE_OK ){
6988         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6989       }
6990     }
6991   }
6992 #endif /* ifndef SQLITE_OMIT_WAL */
6993 
6994   if( rc ) eNew = eOld;
6995   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6996 
6997   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6998   pOut->z = (char *)sqlite3JournalModename(eNew);
6999   pOut->n = sqlite3Strlen30(pOut->z);
7000   pOut->enc = SQLITE_UTF8;
7001   sqlite3VdbeChangeEncoding(pOut, encoding);
7002   if( rc ) goto abort_due_to_error;
7003   break;
7004 };
7005 #endif /* SQLITE_OMIT_PRAGMA */
7006 
7007 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7008 /* Opcode: Vacuum P1 P2 * * *
7009 **
7010 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7011 ** for an attached database.  The "temp" database may not be vacuumed.
7012 **
7013 ** If P2 is not zero, then it is a register holding a string which is
7014 ** the file into which the result of vacuum should be written.  When
7015 ** P2 is zero, the vacuum overwrites the original database.
7016 */
7017 case OP_Vacuum: {
7018   assert( p->readOnly==0 );
7019   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7020                         pOp->p2 ? &aMem[pOp->p2] : 0);
7021   if( rc ) goto abort_due_to_error;
7022   break;
7023 }
7024 #endif
7025 
7026 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7027 /* Opcode: IncrVacuum P1 P2 * * *
7028 **
7029 ** Perform a single step of the incremental vacuum procedure on
7030 ** the P1 database. If the vacuum has finished, jump to instruction
7031 ** P2. Otherwise, fall through to the next instruction.
7032 */
7033 case OP_IncrVacuum: {        /* jump */
7034   Btree *pBt;
7035 
7036   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7037   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7038   assert( p->readOnly==0 );
7039   pBt = db->aDb[pOp->p1].pBt;
7040   rc = sqlite3BtreeIncrVacuum(pBt);
7041   VdbeBranchTaken(rc==SQLITE_DONE,2);
7042   if( rc ){
7043     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7044     rc = SQLITE_OK;
7045     goto jump_to_p2;
7046   }
7047   break;
7048 }
7049 #endif
7050 
7051 /* Opcode: Expire P1 P2 * * *
7052 **
7053 ** Cause precompiled statements to expire.  When an expired statement
7054 ** is executed using sqlite3_step() it will either automatically
7055 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7056 ** or it will fail with SQLITE_SCHEMA.
7057 **
7058 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7059 ** then only the currently executing statement is expired.
7060 **
7061 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7062 ** then running SQL statements are allowed to continue to run to completion.
7063 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7064 ** that might help the statement run faster but which does not affect the
7065 ** correctness of operation.
7066 */
7067 case OP_Expire: {
7068   assert( pOp->p2==0 || pOp->p2==1 );
7069   if( !pOp->p1 ){
7070     sqlite3ExpirePreparedStatements(db, pOp->p2);
7071   }else{
7072     p->expired = pOp->p2+1;
7073   }
7074   break;
7075 }
7076 
7077 /* Opcode: CursorLock P1 * * * *
7078 **
7079 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7080 ** written by an other cursor.
7081 */
7082 case OP_CursorLock: {
7083   VdbeCursor *pC;
7084   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7085   pC = p->apCsr[pOp->p1];
7086   assert( pC!=0 );
7087   assert( pC->eCurType==CURTYPE_BTREE );
7088   sqlite3BtreeCursorPin(pC->uc.pCursor);
7089   break;
7090 }
7091 
7092 /* Opcode: CursorUnlock P1 * * * *
7093 **
7094 ** Unlock the btree to which cursor P1 is pointing so that it can be
7095 ** written by other cursors.
7096 */
7097 case OP_CursorUnlock: {
7098   VdbeCursor *pC;
7099   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7100   pC = p->apCsr[pOp->p1];
7101   assert( pC!=0 );
7102   assert( pC->eCurType==CURTYPE_BTREE );
7103   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7104   break;
7105 }
7106 
7107 #ifndef SQLITE_OMIT_SHARED_CACHE
7108 /* Opcode: TableLock P1 P2 P3 P4 *
7109 ** Synopsis: iDb=P1 root=P2 write=P3
7110 **
7111 ** Obtain a lock on a particular table. This instruction is only used when
7112 ** the shared-cache feature is enabled.
7113 **
7114 ** P1 is the index of the database in sqlite3.aDb[] of the database
7115 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7116 ** a write lock if P3==1.
7117 **
7118 ** P2 contains the root-page of the table to lock.
7119 **
7120 ** P4 contains a pointer to the name of the table being locked. This is only
7121 ** used to generate an error message if the lock cannot be obtained.
7122 */
7123 case OP_TableLock: {
7124   u8 isWriteLock = (u8)pOp->p3;
7125   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7126     int p1 = pOp->p1;
7127     assert( p1>=0 && p1<db->nDb );
7128     assert( DbMaskTest(p->btreeMask, p1) );
7129     assert( isWriteLock==0 || isWriteLock==1 );
7130     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7131     if( rc ){
7132       if( (rc&0xFF)==SQLITE_LOCKED ){
7133         const char *z = pOp->p4.z;
7134         sqlite3VdbeError(p, "database table is locked: %s", z);
7135       }
7136       goto abort_due_to_error;
7137     }
7138   }
7139   break;
7140 }
7141 #endif /* SQLITE_OMIT_SHARED_CACHE */
7142 
7143 #ifndef SQLITE_OMIT_VIRTUALTABLE
7144 /* Opcode: VBegin * * * P4 *
7145 **
7146 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7147 ** xBegin method for that table.
7148 **
7149 ** Also, whether or not P4 is set, check that this is not being called from
7150 ** within a callback to a virtual table xSync() method. If it is, the error
7151 ** code will be set to SQLITE_LOCKED.
7152 */
7153 case OP_VBegin: {
7154   VTable *pVTab;
7155   pVTab = pOp->p4.pVtab;
7156   rc = sqlite3VtabBegin(db, pVTab);
7157   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7158   if( rc ) goto abort_due_to_error;
7159   break;
7160 }
7161 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7162 
7163 #ifndef SQLITE_OMIT_VIRTUALTABLE
7164 /* Opcode: VCreate P1 P2 * * *
7165 **
7166 ** P2 is a register that holds the name of a virtual table in database
7167 ** P1. Call the xCreate method for that table.
7168 */
7169 case OP_VCreate: {
7170   Mem sMem;          /* For storing the record being decoded */
7171   const char *zTab;  /* Name of the virtual table */
7172 
7173   memset(&sMem, 0, sizeof(sMem));
7174   sMem.db = db;
7175   /* Because P2 is always a static string, it is impossible for the
7176   ** sqlite3VdbeMemCopy() to fail */
7177   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7178   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7179   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7180   assert( rc==SQLITE_OK );
7181   zTab = (const char*)sqlite3_value_text(&sMem);
7182   assert( zTab || db->mallocFailed );
7183   if( zTab ){
7184     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7185   }
7186   sqlite3VdbeMemRelease(&sMem);
7187   if( rc ) goto abort_due_to_error;
7188   break;
7189 }
7190 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7191 
7192 #ifndef SQLITE_OMIT_VIRTUALTABLE
7193 /* Opcode: VDestroy P1 * * P4 *
7194 **
7195 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7196 ** of that table.
7197 */
7198 case OP_VDestroy: {
7199   db->nVDestroy++;
7200   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7201   db->nVDestroy--;
7202   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7203   if( rc ) goto abort_due_to_error;
7204   break;
7205 }
7206 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7207 
7208 #ifndef SQLITE_OMIT_VIRTUALTABLE
7209 /* Opcode: VOpen P1 * * P4 *
7210 **
7211 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7212 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7213 ** table and stores that cursor in P1.
7214 */
7215 case OP_VOpen: {
7216   VdbeCursor *pCur;
7217   sqlite3_vtab_cursor *pVCur;
7218   sqlite3_vtab *pVtab;
7219   const sqlite3_module *pModule;
7220 
7221   assert( p->bIsReader );
7222   pCur = 0;
7223   pVCur = 0;
7224   pVtab = pOp->p4.pVtab->pVtab;
7225   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7226     rc = SQLITE_LOCKED;
7227     goto abort_due_to_error;
7228   }
7229   pModule = pVtab->pModule;
7230   rc = pModule->xOpen(pVtab, &pVCur);
7231   sqlite3VtabImportErrmsg(p, pVtab);
7232   if( rc ) goto abort_due_to_error;
7233 
7234   /* Initialize sqlite3_vtab_cursor base class */
7235   pVCur->pVtab = pVtab;
7236 
7237   /* Initialize vdbe cursor object */
7238   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7239   if( pCur ){
7240     pCur->uc.pVCur = pVCur;
7241     pVtab->nRef++;
7242   }else{
7243     assert( db->mallocFailed );
7244     pModule->xClose(pVCur);
7245     goto no_mem;
7246   }
7247   break;
7248 }
7249 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7250 
7251 #ifndef SQLITE_OMIT_VIRTUALTABLE
7252 /* Opcode: VFilter P1 P2 P3 P4 *
7253 ** Synopsis: iplan=r[P3] zplan='P4'
7254 **
7255 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7256 ** the filtered result set is empty.
7257 **
7258 ** P4 is either NULL or a string that was generated by the xBestIndex
7259 ** method of the module.  The interpretation of the P4 string is left
7260 ** to the module implementation.
7261 **
7262 ** This opcode invokes the xFilter method on the virtual table specified
7263 ** by P1.  The integer query plan parameter to xFilter is stored in register
7264 ** P3. Register P3+1 stores the argc parameter to be passed to the
7265 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7266 ** additional parameters which are passed to
7267 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7268 **
7269 ** A jump is made to P2 if the result set after filtering would be empty.
7270 */
7271 case OP_VFilter: {   /* jump */
7272   int nArg;
7273   int iQuery;
7274   const sqlite3_module *pModule;
7275   Mem *pQuery;
7276   Mem *pArgc;
7277   sqlite3_vtab_cursor *pVCur;
7278   sqlite3_vtab *pVtab;
7279   VdbeCursor *pCur;
7280   int res;
7281   int i;
7282   Mem **apArg;
7283 
7284   pQuery = &aMem[pOp->p3];
7285   pArgc = &pQuery[1];
7286   pCur = p->apCsr[pOp->p1];
7287   assert( memIsValid(pQuery) );
7288   REGISTER_TRACE(pOp->p3, pQuery);
7289   assert( pCur->eCurType==CURTYPE_VTAB );
7290   pVCur = pCur->uc.pVCur;
7291   pVtab = pVCur->pVtab;
7292   pModule = pVtab->pModule;
7293 
7294   /* Grab the index number and argc parameters */
7295   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7296   nArg = (int)pArgc->u.i;
7297   iQuery = (int)pQuery->u.i;
7298 
7299   /* Invoke the xFilter method */
7300   res = 0;
7301   apArg = p->apArg;
7302   for(i = 0; i<nArg; i++){
7303     apArg[i] = &pArgc[i+1];
7304   }
7305   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7306   sqlite3VtabImportErrmsg(p, pVtab);
7307   if( rc ) goto abort_due_to_error;
7308   res = pModule->xEof(pVCur);
7309   pCur->nullRow = 0;
7310   VdbeBranchTaken(res!=0,2);
7311   if( res ) goto jump_to_p2;
7312   break;
7313 }
7314 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7315 
7316 #ifndef SQLITE_OMIT_VIRTUALTABLE
7317 /* Opcode: VColumn P1 P2 P3 * P5
7318 ** Synopsis: r[P3]=vcolumn(P2)
7319 **
7320 ** Store in register P3 the value of the P2-th column of
7321 ** the current row of the virtual-table of cursor P1.
7322 **
7323 ** If the VColumn opcode is being used to fetch the value of
7324 ** an unchanging column during an UPDATE operation, then the P5
7325 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7326 ** function to return true inside the xColumn method of the virtual
7327 ** table implementation.  The P5 column might also contain other
7328 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7329 ** unused by OP_VColumn.
7330 */
7331 case OP_VColumn: {
7332   sqlite3_vtab *pVtab;
7333   const sqlite3_module *pModule;
7334   Mem *pDest;
7335   sqlite3_context sContext;
7336 
7337   VdbeCursor *pCur = p->apCsr[pOp->p1];
7338   assert( pCur->eCurType==CURTYPE_VTAB );
7339   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7340   pDest = &aMem[pOp->p3];
7341   memAboutToChange(p, pDest);
7342   if( pCur->nullRow ){
7343     sqlite3VdbeMemSetNull(pDest);
7344     break;
7345   }
7346   pVtab = pCur->uc.pVCur->pVtab;
7347   pModule = pVtab->pModule;
7348   assert( pModule->xColumn );
7349   memset(&sContext, 0, sizeof(sContext));
7350   sContext.pOut = pDest;
7351   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7352   if( pOp->p5 & OPFLAG_NOCHNG ){
7353     sqlite3VdbeMemSetNull(pDest);
7354     pDest->flags = MEM_Null|MEM_Zero;
7355     pDest->u.nZero = 0;
7356   }else{
7357     MemSetTypeFlag(pDest, MEM_Null);
7358   }
7359   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7360   sqlite3VtabImportErrmsg(p, pVtab);
7361   if( sContext.isError>0 ){
7362     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7363     rc = sContext.isError;
7364   }
7365   sqlite3VdbeChangeEncoding(pDest, encoding);
7366   REGISTER_TRACE(pOp->p3, pDest);
7367   UPDATE_MAX_BLOBSIZE(pDest);
7368 
7369   if( sqlite3VdbeMemTooBig(pDest) ){
7370     goto too_big;
7371   }
7372   if( rc ) goto abort_due_to_error;
7373   break;
7374 }
7375 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7376 
7377 #ifndef SQLITE_OMIT_VIRTUALTABLE
7378 /* Opcode: VNext P1 P2 * * *
7379 **
7380 ** Advance virtual table P1 to the next row in its result set and
7381 ** jump to instruction P2.  Or, if the virtual table has reached
7382 ** the end of its result set, then fall through to the next instruction.
7383 */
7384 case OP_VNext: {   /* jump */
7385   sqlite3_vtab *pVtab;
7386   const sqlite3_module *pModule;
7387   int res;
7388   VdbeCursor *pCur;
7389 
7390   res = 0;
7391   pCur = p->apCsr[pOp->p1];
7392   assert( pCur->eCurType==CURTYPE_VTAB );
7393   if( pCur->nullRow ){
7394     break;
7395   }
7396   pVtab = pCur->uc.pVCur->pVtab;
7397   pModule = pVtab->pModule;
7398   assert( pModule->xNext );
7399 
7400   /* Invoke the xNext() method of the module. There is no way for the
7401   ** underlying implementation to return an error if one occurs during
7402   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7403   ** data is available) and the error code returned when xColumn or
7404   ** some other method is next invoked on the save virtual table cursor.
7405   */
7406   rc = pModule->xNext(pCur->uc.pVCur);
7407   sqlite3VtabImportErrmsg(p, pVtab);
7408   if( rc ) goto abort_due_to_error;
7409   res = pModule->xEof(pCur->uc.pVCur);
7410   VdbeBranchTaken(!res,2);
7411   if( !res ){
7412     /* If there is data, jump to P2 */
7413     goto jump_to_p2_and_check_for_interrupt;
7414   }
7415   goto check_for_interrupt;
7416 }
7417 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7418 
7419 #ifndef SQLITE_OMIT_VIRTUALTABLE
7420 /* Opcode: VRename P1 * * P4 *
7421 **
7422 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7423 ** This opcode invokes the corresponding xRename method. The value
7424 ** in register P1 is passed as the zName argument to the xRename method.
7425 */
7426 case OP_VRename: {
7427   sqlite3_vtab *pVtab;
7428   Mem *pName;
7429   int isLegacy;
7430 
7431   isLegacy = (db->flags & SQLITE_LegacyAlter);
7432   db->flags |= SQLITE_LegacyAlter;
7433   pVtab = pOp->p4.pVtab->pVtab;
7434   pName = &aMem[pOp->p1];
7435   assert( pVtab->pModule->xRename );
7436   assert( memIsValid(pName) );
7437   assert( p->readOnly==0 );
7438   REGISTER_TRACE(pOp->p1, pName);
7439   assert( pName->flags & MEM_Str );
7440   testcase( pName->enc==SQLITE_UTF8 );
7441   testcase( pName->enc==SQLITE_UTF16BE );
7442   testcase( pName->enc==SQLITE_UTF16LE );
7443   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7444   if( rc ) goto abort_due_to_error;
7445   rc = pVtab->pModule->xRename(pVtab, pName->z);
7446   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7447   sqlite3VtabImportErrmsg(p, pVtab);
7448   p->expired = 0;
7449   if( rc ) goto abort_due_to_error;
7450   break;
7451 }
7452 #endif
7453 
7454 #ifndef SQLITE_OMIT_VIRTUALTABLE
7455 /* Opcode: VUpdate P1 P2 P3 P4 P5
7456 ** Synopsis: data=r[P3@P2]
7457 **
7458 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7459 ** This opcode invokes the corresponding xUpdate method. P2 values
7460 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7461 ** invocation. The value in register (P3+P2-1) corresponds to the
7462 ** p2th element of the argv array passed to xUpdate.
7463 **
7464 ** The xUpdate method will do a DELETE or an INSERT or both.
7465 ** The argv[0] element (which corresponds to memory cell P3)
7466 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7467 ** deletion occurs.  The argv[1] element is the rowid of the new
7468 ** row.  This can be NULL to have the virtual table select the new
7469 ** rowid for itself.  The subsequent elements in the array are
7470 ** the values of columns in the new row.
7471 **
7472 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7473 ** a row to delete.
7474 **
7475 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7476 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7477 ** is set to the value of the rowid for the row just inserted.
7478 **
7479 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7480 ** apply in the case of a constraint failure on an insert or update.
7481 */
7482 case OP_VUpdate: {
7483   sqlite3_vtab *pVtab;
7484   const sqlite3_module *pModule;
7485   int nArg;
7486   int i;
7487   sqlite_int64 rowid;
7488   Mem **apArg;
7489   Mem *pX;
7490 
7491   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7492        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7493   );
7494   assert( p->readOnly==0 );
7495   if( db->mallocFailed ) goto no_mem;
7496   sqlite3VdbeIncrWriteCounter(p, 0);
7497   pVtab = pOp->p4.pVtab->pVtab;
7498   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7499     rc = SQLITE_LOCKED;
7500     goto abort_due_to_error;
7501   }
7502   pModule = pVtab->pModule;
7503   nArg = pOp->p2;
7504   assert( pOp->p4type==P4_VTAB );
7505   if( ALWAYS(pModule->xUpdate) ){
7506     u8 vtabOnConflict = db->vtabOnConflict;
7507     apArg = p->apArg;
7508     pX = &aMem[pOp->p3];
7509     for(i=0; i<nArg; i++){
7510       assert( memIsValid(pX) );
7511       memAboutToChange(p, pX);
7512       apArg[i] = pX;
7513       pX++;
7514     }
7515     db->vtabOnConflict = pOp->p5;
7516     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7517     db->vtabOnConflict = vtabOnConflict;
7518     sqlite3VtabImportErrmsg(p, pVtab);
7519     if( rc==SQLITE_OK && pOp->p1 ){
7520       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7521       db->lastRowid = rowid;
7522     }
7523     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7524       if( pOp->p5==OE_Ignore ){
7525         rc = SQLITE_OK;
7526       }else{
7527         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7528       }
7529     }else{
7530       p->nChange++;
7531     }
7532     if( rc ) goto abort_due_to_error;
7533   }
7534   break;
7535 }
7536 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7537 
7538 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7539 /* Opcode: Pagecount P1 P2 * * *
7540 **
7541 ** Write the current number of pages in database P1 to memory cell P2.
7542 */
7543 case OP_Pagecount: {            /* out2 */
7544   pOut = out2Prerelease(p, pOp);
7545   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7546   break;
7547 }
7548 #endif
7549 
7550 
7551 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7552 /* Opcode: MaxPgcnt P1 P2 P3 * *
7553 **
7554 ** Try to set the maximum page count for database P1 to the value in P3.
7555 ** Do not let the maximum page count fall below the current page count and
7556 ** do not change the maximum page count value if P3==0.
7557 **
7558 ** Store the maximum page count after the change in register P2.
7559 */
7560 case OP_MaxPgcnt: {            /* out2 */
7561   unsigned int newMax;
7562   Btree *pBt;
7563 
7564   pOut = out2Prerelease(p, pOp);
7565   pBt = db->aDb[pOp->p1].pBt;
7566   newMax = 0;
7567   if( pOp->p3 ){
7568     newMax = sqlite3BtreeLastPage(pBt);
7569     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7570   }
7571   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7572   break;
7573 }
7574 #endif
7575 
7576 /* Opcode: Function P1 P2 P3 P4 *
7577 ** Synopsis: r[P3]=func(r[P2@P5])
7578 **
7579 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7580 ** contains a pointer to the function to be run) with arguments taken
7581 ** from register P2 and successors.  The number of arguments is in
7582 ** the sqlite3_context object that P4 points to.
7583 ** The result of the function is stored
7584 ** in register P3.  Register P3 must not be one of the function inputs.
7585 **
7586 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7587 ** function was determined to be constant at compile time. If the first
7588 ** argument was constant then bit 0 of P1 is set. This is used to determine
7589 ** whether meta data associated with a user function argument using the
7590 ** sqlite3_set_auxdata() API may be safely retained until the next
7591 ** invocation of this opcode.
7592 **
7593 ** See also: AggStep, AggFinal, PureFunc
7594 */
7595 /* Opcode: PureFunc P1 P2 P3 P4 *
7596 ** Synopsis: r[P3]=func(r[P2@P5])
7597 **
7598 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7599 ** contains a pointer to the function to be run) with arguments taken
7600 ** from register P2 and successors.  The number of arguments is in
7601 ** the sqlite3_context object that P4 points to.
7602 ** The result of the function is stored
7603 ** in register P3.  Register P3 must not be one of the function inputs.
7604 **
7605 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7606 ** function was determined to be constant at compile time. If the first
7607 ** argument was constant then bit 0 of P1 is set. This is used to determine
7608 ** whether meta data associated with a user function argument using the
7609 ** sqlite3_set_auxdata() API may be safely retained until the next
7610 ** invocation of this opcode.
7611 **
7612 ** This opcode works exactly like OP_Function.  The only difference is in
7613 ** its name.  This opcode is used in places where the function must be
7614 ** purely non-deterministic.  Some built-in date/time functions can be
7615 ** either determinitic of non-deterministic, depending on their arguments.
7616 ** When those function are used in a non-deterministic way, they will check
7617 ** to see if they were called using OP_PureFunc instead of OP_Function, and
7618 ** if they were, they throw an error.
7619 **
7620 ** See also: AggStep, AggFinal, Function
7621 */
7622 case OP_PureFunc:              /* group */
7623 case OP_Function: {            /* group */
7624   int i;
7625   sqlite3_context *pCtx;
7626 
7627   assert( pOp->p4type==P4_FUNCCTX );
7628   pCtx = pOp->p4.pCtx;
7629 
7630   /* If this function is inside of a trigger, the register array in aMem[]
7631   ** might change from one evaluation to the next.  The next block of code
7632   ** checks to see if the register array has changed, and if so it
7633   ** reinitializes the relavant parts of the sqlite3_context object */
7634   pOut = &aMem[pOp->p3];
7635   if( pCtx->pOut != pOut ){
7636     pCtx->pVdbe = p;
7637     pCtx->pOut = pOut;
7638     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7639   }
7640   assert( pCtx->pVdbe==p );
7641 
7642   memAboutToChange(p, pOut);
7643 #ifdef SQLITE_DEBUG
7644   for(i=0; i<pCtx->argc; i++){
7645     assert( memIsValid(pCtx->argv[i]) );
7646     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7647   }
7648 #endif
7649   MemSetTypeFlag(pOut, MEM_Null);
7650   assert( pCtx->isError==0 );
7651   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7652 
7653   /* If the function returned an error, throw an exception */
7654   if( pCtx->isError ){
7655     if( pCtx->isError>0 ){
7656       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7657       rc = pCtx->isError;
7658     }
7659     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7660     pCtx->isError = 0;
7661     if( rc ) goto abort_due_to_error;
7662   }
7663 
7664   /* Copy the result of the function into register P3 */
7665   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7666     sqlite3VdbeChangeEncoding(pOut, encoding);
7667     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7668   }
7669 
7670   REGISTER_TRACE(pOp->p3, pOut);
7671   UPDATE_MAX_BLOBSIZE(pOut);
7672   break;
7673 }
7674 
7675 /* Opcode: Trace P1 P2 * P4 *
7676 **
7677 ** Write P4 on the statement trace output if statement tracing is
7678 ** enabled.
7679 **
7680 ** Operand P1 must be 0x7fffffff and P2 must positive.
7681 */
7682 /* Opcode: Init P1 P2 P3 P4 *
7683 ** Synopsis: Start at P2
7684 **
7685 ** Programs contain a single instance of this opcode as the very first
7686 ** opcode.
7687 **
7688 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7689 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7690 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7691 **
7692 ** If P2 is not zero, jump to instruction P2.
7693 **
7694 ** Increment the value of P1 so that OP_Once opcodes will jump the
7695 ** first time they are evaluated for this run.
7696 **
7697 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7698 ** error is encountered.
7699 */
7700 case OP_Trace:
7701 case OP_Init: {          /* jump */
7702   int i;
7703 #ifndef SQLITE_OMIT_TRACE
7704   char *zTrace;
7705 #endif
7706 
7707   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7708   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7709   **
7710   ** This assert() provides evidence for:
7711   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7712   ** would have been returned by the legacy sqlite3_trace() interface by
7713   ** using the X argument when X begins with "--" and invoking
7714   ** sqlite3_expanded_sql(P) otherwise.
7715   */
7716   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7717 
7718   /* OP_Init is always instruction 0 */
7719   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7720 
7721 #ifndef SQLITE_OMIT_TRACE
7722   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7723    && !p->doingRerun
7724    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7725   ){
7726 #ifndef SQLITE_OMIT_DEPRECATED
7727     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7728       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7729       char *z = sqlite3VdbeExpandSql(p, zTrace);
7730       x(db->pTraceArg, z);
7731       sqlite3_free(z);
7732     }else
7733 #endif
7734     if( db->nVdbeExec>1 ){
7735       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7736       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7737       sqlite3DbFree(db, z);
7738     }else{
7739       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7740     }
7741   }
7742 #ifdef SQLITE_USE_FCNTL_TRACE
7743   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7744   if( zTrace ){
7745     int j;
7746     for(j=0; j<db->nDb; j++){
7747       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7748       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7749     }
7750   }
7751 #endif /* SQLITE_USE_FCNTL_TRACE */
7752 #ifdef SQLITE_DEBUG
7753   if( (db->flags & SQLITE_SqlTrace)!=0
7754    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7755   ){
7756     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7757   }
7758 #endif /* SQLITE_DEBUG */
7759 #endif /* SQLITE_OMIT_TRACE */
7760   assert( pOp->p2>0 );
7761   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7762     if( pOp->opcode==OP_Trace ) break;
7763     for(i=1; i<p->nOp; i++){
7764       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7765     }
7766     pOp->p1 = 0;
7767   }
7768   pOp->p1++;
7769   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7770   goto jump_to_p2;
7771 }
7772 
7773 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7774 /* Opcode: CursorHint P1 * * P4 *
7775 **
7776 ** Provide a hint to cursor P1 that it only needs to return rows that
7777 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7778 ** to values currently held in registers.  TK_COLUMN terms in the P4
7779 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7780 */
7781 case OP_CursorHint: {
7782   VdbeCursor *pC;
7783 
7784   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7785   assert( pOp->p4type==P4_EXPR );
7786   pC = p->apCsr[pOp->p1];
7787   if( pC ){
7788     assert( pC->eCurType==CURTYPE_BTREE );
7789     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7790                            pOp->p4.pExpr, aMem);
7791   }
7792   break;
7793 }
7794 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7795 
7796 #ifdef SQLITE_DEBUG
7797 /* Opcode:  Abortable   * * * * *
7798 **
7799 ** Verify that an Abort can happen.  Assert if an Abort at this point
7800 ** might cause database corruption.  This opcode only appears in debugging
7801 ** builds.
7802 **
7803 ** An Abort is safe if either there have been no writes, or if there is
7804 ** an active statement journal.
7805 */
7806 case OP_Abortable: {
7807   sqlite3VdbeAssertAbortable(p);
7808   break;
7809 }
7810 #endif
7811 
7812 #ifdef SQLITE_DEBUG
7813 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
7814 ** Synopsis: release r[P1@P2] mask P3
7815 **
7816 ** Release registers from service.  Any content that was in the
7817 ** the registers is unreliable after this opcode completes.
7818 **
7819 ** The registers released will be the P2 registers starting at P1,
7820 ** except if bit ii of P3 set, then do not release register P1+ii.
7821 ** In other words, P3 is a mask of registers to preserve.
7822 **
7823 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
7824 ** that if the content of the released register was set using OP_SCopy,
7825 ** a change to the value of the source register for the OP_SCopy will no longer
7826 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7827 **
7828 ** If P5 is set, then all released registers have their type set
7829 ** to MEM_Undefined so that any subsequent attempt to read the released
7830 ** register (before it is reinitialized) will generate an assertion fault.
7831 **
7832 ** P5 ought to be set on every call to this opcode.
7833 ** However, there are places in the code generator will release registers
7834 ** before their are used, under the (valid) assumption that the registers
7835 ** will not be reallocated for some other purpose before they are used and
7836 ** hence are safe to release.
7837 **
7838 ** This opcode is only available in testing and debugging builds.  It is
7839 ** not generated for release builds.  The purpose of this opcode is to help
7840 ** validate the generated bytecode.  This opcode does not actually contribute
7841 ** to computing an answer.
7842 */
7843 case OP_ReleaseReg: {
7844   Mem *pMem;
7845   int i;
7846   u32 constMask;
7847   assert( pOp->p1>0 );
7848   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7849   pMem = &aMem[pOp->p1];
7850   constMask = pOp->p3;
7851   for(i=0; i<pOp->p2; i++, pMem++){
7852     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
7853       pMem->pScopyFrom = 0;
7854       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
7855     }
7856   }
7857   break;
7858 }
7859 #endif
7860 
7861 /* Opcode: Noop * * * * *
7862 **
7863 ** Do nothing.  This instruction is often useful as a jump
7864 ** destination.
7865 */
7866 /*
7867 ** The magic Explain opcode are only inserted when explain==2 (which
7868 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7869 ** This opcode records information from the optimizer.  It is the
7870 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7871 */
7872 default: {          /* This is really OP_Noop, OP_Explain */
7873   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7874 
7875   break;
7876 }
7877 
7878 /*****************************************************************************
7879 ** The cases of the switch statement above this line should all be indented
7880 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7881 ** readability.  From this point on down, the normal indentation rules are
7882 ** restored.
7883 *****************************************************************************/
7884     }
7885 
7886 #ifdef VDBE_PROFILE
7887     {
7888       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7889       if( endTime>start ) pOrigOp->cycles += endTime - start;
7890       pOrigOp->cnt++;
7891     }
7892 #endif
7893 
7894     /* The following code adds nothing to the actual functionality
7895     ** of the program.  It is only here for testing and debugging.
7896     ** On the other hand, it does burn CPU cycles every time through
7897     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7898     */
7899 #ifndef NDEBUG
7900     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7901 
7902 #ifdef SQLITE_DEBUG
7903     if( db->flags & SQLITE_VdbeTrace ){
7904       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7905       if( rc!=0 ) printf("rc=%d\n",rc);
7906       if( opProperty & (OPFLG_OUT2) ){
7907         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7908       }
7909       if( opProperty & OPFLG_OUT3 ){
7910         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7911       }
7912       if( opProperty==0xff ){
7913         /* Never happens.  This code exists to avoid a harmless linkage
7914         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
7915         ** used. */
7916         sqlite3VdbeRegisterDump(p);
7917       }
7918     }
7919 #endif  /* SQLITE_DEBUG */
7920 #endif  /* NDEBUG */
7921   }  /* The end of the for(;;) loop the loops through opcodes */
7922 
7923   /* If we reach this point, it means that execution is finished with
7924   ** an error of some kind.
7925   */
7926 abort_due_to_error:
7927   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7928   assert( rc );
7929   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7930     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7931   }
7932   p->rc = rc;
7933   sqlite3SystemError(db, rc);
7934   testcase( sqlite3GlobalConfig.xLog!=0 );
7935   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7936                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7937   sqlite3VdbeHalt(p);
7938   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7939   rc = SQLITE_ERROR;
7940   if( resetSchemaOnFault>0 ){
7941     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7942   }
7943 
7944   /* This is the only way out of this procedure.  We have to
7945   ** release the mutexes on btrees that were acquired at the
7946   ** top. */
7947 vdbe_return:
7948 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
7949   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7950     nProgressLimit += db->nProgressOps;
7951     if( db->xProgress(db->pProgressArg) ){
7952       nProgressLimit = 0xffffffff;
7953       rc = SQLITE_INTERRUPT;
7954       goto abort_due_to_error;
7955     }
7956   }
7957 #endif
7958   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7959   sqlite3VdbeLeave(p);
7960   assert( rc!=SQLITE_OK || nExtraDelete==0
7961        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7962   );
7963   return rc;
7964 
7965   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7966   ** is encountered.
7967   */
7968 too_big:
7969   sqlite3VdbeError(p, "string or blob too big");
7970   rc = SQLITE_TOOBIG;
7971   goto abort_due_to_error;
7972 
7973   /* Jump to here if a malloc() fails.
7974   */
7975 no_mem:
7976   sqlite3OomFault(db);
7977   sqlite3VdbeError(p, "out of memory");
7978   rc = SQLITE_NOMEM_BKPT;
7979   goto abort_due_to_error;
7980 
7981   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7982   ** flag.
7983   */
7984 abort_due_to_interrupt:
7985   assert( db->u1.isInterrupted );
7986   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7987   p->rc = rc;
7988   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7989   goto abort_due_to_error;
7990 }
7991