xref: /sqlite-3.40.0/src/vdbe.c (revision c2777abc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue;
318   iValue = sqlite3RealToI64(rValue);
319   if( sqlite3RealSameAsInt(rValue,iValue) ){
320     *piValue = iValue;
321     return 1;
322   }
323   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
324 }
325 
326 /*
327 ** Try to convert a value into a numeric representation if we can
328 ** do so without loss of information.  In other words, if the string
329 ** looks like a number, convert it into a number.  If it does not
330 ** look like a number, leave it alone.
331 **
332 ** If the bTryForInt flag is true, then extra effort is made to give
333 ** an integer representation.  Strings that look like floating point
334 ** values but which have no fractional component (example: '48.00')
335 ** will have a MEM_Int representation when bTryForInt is true.
336 **
337 ** If bTryForInt is false, then if the input string contains a decimal
338 ** point or exponential notation, the result is only MEM_Real, even
339 ** if there is an exact integer representation of the quantity.
340 */
341 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
342   double rValue;
343   u8 enc = pRec->enc;
344   int rc;
345   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
346   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
347   if( rc<=0 ) return;
348   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
349     pRec->flags |= MEM_Int;
350   }else{
351     pRec->u.r = rValue;
352     pRec->flags |= MEM_Real;
353     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
354   }
355   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
356   ** string representation after computing a numeric equivalent, because the
357   ** string representation might not be the canonical representation for the
358   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
359   pRec->flags &= ~MEM_Str;
360 }
361 
362 /*
363 ** Processing is determine by the affinity parameter:
364 **
365 ** SQLITE_AFF_INTEGER:
366 ** SQLITE_AFF_REAL:
367 ** SQLITE_AFF_NUMERIC:
368 **    Try to convert pRec to an integer representation or a
369 **    floating-point representation if an integer representation
370 **    is not possible.  Note that the integer representation is
371 **    always preferred, even if the affinity is REAL, because
372 **    an integer representation is more space efficient on disk.
373 **
374 ** SQLITE_AFF_TEXT:
375 **    Convert pRec to a text representation.
376 **
377 ** SQLITE_AFF_BLOB:
378 ** SQLITE_AFF_NONE:
379 **    No-op.  pRec is unchanged.
380 */
381 static void applyAffinity(
382   Mem *pRec,          /* The value to apply affinity to */
383   char affinity,      /* The affinity to be applied */
384   u8 enc              /* Use this text encoding */
385 ){
386   if( affinity>=SQLITE_AFF_NUMERIC ){
387     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
388              || affinity==SQLITE_AFF_NUMERIC );
389     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
390       if( (pRec->flags & MEM_Real)==0 ){
391         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
392       }else{
393         sqlite3VdbeIntegerAffinity(pRec);
394       }
395     }
396   }else if( affinity==SQLITE_AFF_TEXT ){
397     /* Only attempt the conversion to TEXT if there is an integer or real
398     ** representation (blob and NULL do not get converted) but no string
399     ** representation.  It would be harmless to repeat the conversion if
400     ** there is already a string rep, but it is pointless to waste those
401     ** CPU cycles. */
402     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
403       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
404         testcase( pRec->flags & MEM_Int );
405         testcase( pRec->flags & MEM_Real );
406         testcase( pRec->flags & MEM_IntReal );
407         sqlite3VdbeMemStringify(pRec, enc, 1);
408       }
409     }
410     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
411   }
412 }
413 
414 /*
415 ** Try to convert the type of a function argument or a result column
416 ** into a numeric representation.  Use either INTEGER or REAL whichever
417 ** is appropriate.  But only do the conversion if it is possible without
418 ** loss of information and return the revised type of the argument.
419 */
420 int sqlite3_value_numeric_type(sqlite3_value *pVal){
421   int eType = sqlite3_value_type(pVal);
422   if( eType==SQLITE_TEXT ){
423     Mem *pMem = (Mem*)pVal;
424     applyNumericAffinity(pMem, 0);
425     eType = sqlite3_value_type(pVal);
426   }
427   return eType;
428 }
429 
430 /*
431 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
432 ** not the internal Mem* type.
433 */
434 void sqlite3ValueApplyAffinity(
435   sqlite3_value *pVal,
436   u8 affinity,
437   u8 enc
438 ){
439   applyAffinity((Mem *)pVal, affinity, enc);
440 }
441 
442 /*
443 ** pMem currently only holds a string type (or maybe a BLOB that we can
444 ** interpret as a string if we want to).  Compute its corresponding
445 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
446 ** accordingly.
447 */
448 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
449   int rc;
450   sqlite3_int64 ix;
451   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
452   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
453   if( ExpandBlob(pMem) ){
454     pMem->u.i = 0;
455     return MEM_Int;
456   }
457   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
458   if( rc<=0 ){
459     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
460       pMem->u.i = ix;
461       return MEM_Int;
462     }else{
463       return MEM_Real;
464     }
465   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
466     pMem->u.i = ix;
467     return MEM_Int;
468   }
469   return MEM_Real;
470 }
471 
472 /*
473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
474 ** none.
475 **
476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
477 ** But it does set pMem->u.r and pMem->u.i appropriately.
478 */
479 static u16 numericType(Mem *pMem){
480   assert( (pMem->flags & MEM_Null)==0
481        || pMem->db==0 || pMem->db->mallocFailed );
482   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
483     testcase( pMem->flags & MEM_Int );
484     testcase( pMem->flags & MEM_Real );
485     testcase( pMem->flags & MEM_IntReal );
486     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
487   }
488   assert( pMem->flags & (MEM_Str|MEM_Blob) );
489   testcase( pMem->flags & MEM_Str );
490   testcase( pMem->flags & MEM_Blob );
491   return computeNumericType(pMem);
492   return 0;
493 }
494 
495 #ifdef SQLITE_DEBUG
496 /*
497 ** Write a nice string representation of the contents of cell pMem
498 ** into buffer zBuf, length nBuf.
499 */
500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
501   int f = pMem->flags;
502   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
503   if( f&MEM_Blob ){
504     int i;
505     char c;
506     if( f & MEM_Dyn ){
507       c = 'z';
508       assert( (f & (MEM_Static|MEM_Ephem))==0 );
509     }else if( f & MEM_Static ){
510       c = 't';
511       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
512     }else if( f & MEM_Ephem ){
513       c = 'e';
514       assert( (f & (MEM_Static|MEM_Dyn))==0 );
515     }else{
516       c = 's';
517     }
518     sqlite3_str_appendf(pStr, "%cx[", c);
519     for(i=0; i<25 && i<pMem->n; i++){
520       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
521     }
522     sqlite3_str_appendf(pStr, "|");
523     for(i=0; i<25 && i<pMem->n; i++){
524       char z = pMem->z[i];
525       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
526     }
527     sqlite3_str_appendf(pStr,"]");
528     if( f & MEM_Zero ){
529       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
530     }
531   }else if( f & MEM_Str ){
532     int j;
533     u8 c;
534     if( f & MEM_Dyn ){
535       c = 'z';
536       assert( (f & (MEM_Static|MEM_Ephem))==0 );
537     }else if( f & MEM_Static ){
538       c = 't';
539       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
540     }else if( f & MEM_Ephem ){
541       c = 'e';
542       assert( (f & (MEM_Static|MEM_Dyn))==0 );
543     }else{
544       c = 's';
545     }
546     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
547     for(j=0; j<25 && j<pMem->n; j++){
548       c = pMem->z[j];
549       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
550     }
551     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
552   }
553 }
554 #endif
555 
556 #ifdef SQLITE_DEBUG
557 /*
558 ** Print the value of a register for tracing purposes:
559 */
560 static void memTracePrint(Mem *p){
561   if( p->flags & MEM_Undefined ){
562     printf(" undefined");
563   }else if( p->flags & MEM_Null ){
564     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
565   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
566     printf(" si:%lld", p->u.i);
567   }else if( (p->flags & (MEM_IntReal))!=0 ){
568     printf(" ir:%lld", p->u.i);
569   }else if( p->flags & MEM_Int ){
570     printf(" i:%lld", p->u.i);
571 #ifndef SQLITE_OMIT_FLOATING_POINT
572   }else if( p->flags & MEM_Real ){
573     printf(" r:%.17g", p->u.r);
574 #endif
575   }else if( sqlite3VdbeMemIsRowSet(p) ){
576     printf(" (rowset)");
577   }else{
578     StrAccum acc;
579     char zBuf[1000];
580     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
581     sqlite3VdbeMemPrettyPrint(p, &acc);
582     printf(" %s", sqlite3StrAccumFinish(&acc));
583   }
584   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
585 }
586 static void registerTrace(int iReg, Mem *p){
587   printf("R[%d] = ", iReg);
588   memTracePrint(p);
589   if( p->pScopyFrom ){
590     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
591   }
592   printf("\n");
593   sqlite3VdbeCheckMemInvariants(p);
594 }
595 /**/ void sqlite3PrintMem(Mem *pMem){
596   memTracePrint(pMem);
597   printf("\n");
598   fflush(stdout);
599 }
600 #endif
601 
602 #ifdef SQLITE_DEBUG
603 /*
604 ** Show the values of all registers in the virtual machine.  Used for
605 ** interactive debugging.
606 */
607 void sqlite3VdbeRegisterDump(Vdbe *v){
608   int i;
609   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
610 }
611 #endif /* SQLITE_DEBUG */
612 
613 
614 #ifdef SQLITE_DEBUG
615 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
616 #else
617 #  define REGISTER_TRACE(R,M)
618 #endif
619 
620 
621 #ifdef VDBE_PROFILE
622 
623 /*
624 ** hwtime.h contains inline assembler code for implementing
625 ** high-performance timing routines.
626 */
627 #include "hwtime.h"
628 
629 #endif
630 
631 #ifndef NDEBUG
632 /*
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
637 **
638 ** Usage:
639 **
640 **     assert( checkSavepointCount(db) );
641 */
642 static int checkSavepointCount(sqlite3 *db){
643   int n = 0;
644   Savepoint *p;
645   for(p=db->pSavepoint; p; p=p->pNext) n++;
646   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
647   return 1;
648 }
649 #endif
650 
651 /*
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
654 */
655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
656   sqlite3VdbeMemSetNull(pOut);
657   pOut->flags = MEM_Int;
658   return pOut;
659 }
660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
661   Mem *pOut;
662   assert( pOp->p2>0 );
663   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
664   pOut = &p->aMem[pOp->p2];
665   memAboutToChange(p, pOut);
666   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
667     return out2PrereleaseWithClear(pOut);
668   }else{
669     pOut->flags = MEM_Int;
670     return pOut;
671   }
672 }
673 
674 /*
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3.  Return the hash.
677 */
678 static u64 filterHash(const Mem *aMem, const Op *pOp){
679   int i, mx;
680   u64 h = 0;
681 
682   assert( pOp->p4type==P4_INT32 );
683   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
684     const Mem *p = &aMem[i];
685     if( p->flags & (MEM_Int|MEM_IntReal) ){
686       h += p->u.i;
687     }else if( p->flags & MEM_Real ){
688       h += sqlite3VdbeIntValue(p);
689     }else if( p->flags & (MEM_Str|MEM_Blob) ){
690       h += p->n;
691       if( p->flags & MEM_Zero ) h += p->u.nZero;
692     }
693   }
694   return h;
695 }
696 
697 /*
698 ** Return the symbolic name for the data type of a pMem
699 */
700 static const char *vdbeMemTypeName(Mem *pMem){
701   static const char *azTypes[] = {
702       /* SQLITE_INTEGER */ "INT",
703       /* SQLITE_FLOAT   */ "REAL",
704       /* SQLITE_TEXT    */ "TEXT",
705       /* SQLITE_BLOB    */ "BLOB",
706       /* SQLITE_NULL    */ "NULL"
707   };
708   return azTypes[sqlite3_value_type(pMem)-1];
709 }
710 
711 /*
712 ** Execute as much of a VDBE program as we can.
713 ** This is the core of sqlite3_step().
714 */
715 int sqlite3VdbeExec(
716   Vdbe *p                    /* The VDBE */
717 ){
718   Op *aOp = p->aOp;          /* Copy of p->aOp */
719   Op *pOp = aOp;             /* Current operation */
720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
721   Op *pOrigOp;               /* Value of pOp at the top of the loop */
722 #endif
723 #ifdef SQLITE_DEBUG
724   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
725 #endif
726   int rc = SQLITE_OK;        /* Value to return */
727   sqlite3 *db = p->db;       /* The database */
728   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
729   u8 encoding = ENC(db);     /* The database encoding */
730   int iCompare = 0;          /* Result of last comparison */
731   u64 nVmStep = 0;           /* Number of virtual machine steps */
732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
733   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
734 #endif
735   Mem *aMem = p->aMem;       /* Copy of p->aMem */
736   Mem *pIn1 = 0;             /* 1st input operand */
737   Mem *pIn2 = 0;             /* 2nd input operand */
738   Mem *pIn3 = 0;             /* 3rd input operand */
739   Mem *pOut = 0;             /* Output operand */
740 #ifdef VDBE_PROFILE
741   u64 start;                 /* CPU clock count at start of opcode */
742 #endif
743   /*** INSERT STACK UNION HERE ***/
744 
745   assert( p->eVdbeState==VDBE_RUN_STATE );  /* sqlite3_step() verifies this */
746   sqlite3VdbeEnter(p);
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
748   if( db->xProgress ){
749     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
750     assert( 0 < db->nProgressOps );
751     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
752   }else{
753     nProgressLimit = LARGEST_UINT64;
754   }
755 #endif
756   if( p->rc==SQLITE_NOMEM ){
757     /* This happens if a malloc() inside a call to sqlite3_column_text() or
758     ** sqlite3_column_text16() failed.  */
759     goto no_mem;
760   }
761   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
762   testcase( p->rc!=SQLITE_OK );
763   p->rc = SQLITE_OK;
764   assert( p->bIsReader || p->readOnly!=0 );
765   p->iCurrentTime = 0;
766   assert( p->explain==0 );
767   p->pResultSet = 0;
768   db->busyHandler.nBusy = 0;
769   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
770   sqlite3VdbeIOTraceSql(p);
771 #ifdef SQLITE_DEBUG
772   sqlite3BeginBenignMalloc();
773   if( p->pc==0
774    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
775   ){
776     int i;
777     int once = 1;
778     sqlite3VdbePrintSql(p);
779     if( p->db->flags & SQLITE_VdbeListing ){
780       printf("VDBE Program Listing:\n");
781       for(i=0; i<p->nOp; i++){
782         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
783       }
784     }
785     if( p->db->flags & SQLITE_VdbeEQP ){
786       for(i=0; i<p->nOp; i++){
787         if( aOp[i].opcode==OP_Explain ){
788           if( once ) printf("VDBE Query Plan:\n");
789           printf("%s\n", aOp[i].p4.z);
790           once = 0;
791         }
792       }
793     }
794     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
795   }
796   sqlite3EndBenignMalloc();
797 #endif
798   for(pOp=&aOp[p->pc]; 1; pOp++){
799     /* Errors are detected by individual opcodes, with an immediate
800     ** jumps to abort_due_to_error. */
801     assert( rc==SQLITE_OK );
802 
803     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
804 #ifdef VDBE_PROFILE
805     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
806 #endif
807     nVmStep++;
808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
809     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
810 #endif
811 
812     /* Only allow tracing if SQLITE_DEBUG is defined.
813     */
814 #ifdef SQLITE_DEBUG
815     if( db->flags & SQLITE_VdbeTrace ){
816       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
817       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
818     }
819 #endif
820 
821 
822     /* Check to see if we need to simulate an interrupt.  This only happens
823     ** if we have a special test build.
824     */
825 #ifdef SQLITE_TEST
826     if( sqlite3_interrupt_count>0 ){
827       sqlite3_interrupt_count--;
828       if( sqlite3_interrupt_count==0 ){
829         sqlite3_interrupt(db);
830       }
831     }
832 #endif
833 
834     /* Sanity checking on other operands */
835 #ifdef SQLITE_DEBUG
836     {
837       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
838       if( (opProperty & OPFLG_IN1)!=0 ){
839         assert( pOp->p1>0 );
840         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
841         assert( memIsValid(&aMem[pOp->p1]) );
842         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
843         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
844       }
845       if( (opProperty & OPFLG_IN2)!=0 ){
846         assert( pOp->p2>0 );
847         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
848         assert( memIsValid(&aMem[pOp->p2]) );
849         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
850         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
851       }
852       if( (opProperty & OPFLG_IN3)!=0 ){
853         assert( pOp->p3>0 );
854         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
855         assert( memIsValid(&aMem[pOp->p3]) );
856         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
857         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
858       }
859       if( (opProperty & OPFLG_OUT2)!=0 ){
860         assert( pOp->p2>0 );
861         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
862         memAboutToChange(p, &aMem[pOp->p2]);
863       }
864       if( (opProperty & OPFLG_OUT3)!=0 ){
865         assert( pOp->p3>0 );
866         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
867         memAboutToChange(p, &aMem[pOp->p3]);
868       }
869     }
870 #endif
871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
872     pOrigOp = pOp;
873 #endif
874 
875     switch( pOp->opcode ){
876 
877 /*****************************************************************************
878 ** What follows is a massive switch statement where each case implements a
879 ** separate instruction in the virtual machine.  If we follow the usual
880 ** indentation conventions, each case should be indented by 6 spaces.  But
881 ** that is a lot of wasted space on the left margin.  So the code within
882 ** the switch statement will break with convention and be flush-left. Another
883 ** big comment (similar to this one) will mark the point in the code where
884 ** we transition back to normal indentation.
885 **
886 ** The formatting of each case is important.  The makefile for SQLite
887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
888 ** file looking for lines that begin with "case OP_".  The opcodes.h files
889 ** will be filled with #defines that give unique integer values to each
890 ** opcode and the opcodes.c file is filled with an array of strings where
891 ** each string is the symbolic name for the corresponding opcode.  If the
892 ** case statement is followed by a comment of the form "/# same as ... #/"
893 ** that comment is used to determine the particular value of the opcode.
894 **
895 ** Other keywords in the comment that follows each case are used to
896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
897 ** Keywords include: in1, in2, in3, out2, out3.  See
898 ** the mkopcodeh.awk script for additional information.
899 **
900 ** Documentation about VDBE opcodes is generated by scanning this file
901 ** for lines of that contain "Opcode:".  That line and all subsequent
902 ** comment lines are used in the generation of the opcode.html documentation
903 ** file.
904 **
905 ** SUMMARY:
906 **
907 **     Formatting is important to scripts that scan this file.
908 **     Do not deviate from the formatting style currently in use.
909 **
910 *****************************************************************************/
911 
912 /* Opcode:  Goto * P2 * * *
913 **
914 ** An unconditional jump to address P2.
915 ** The next instruction executed will be
916 ** the one at index P2 from the beginning of
917 ** the program.
918 **
919 ** The P1 parameter is not actually used by this opcode.  However, it
920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
921 ** that this Goto is the bottom of a loop and that the lines from P2 down
922 ** to the current line should be indented for EXPLAIN output.
923 */
924 case OP_Goto: {             /* jump */
925 
926 #ifdef SQLITE_DEBUG
927   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
928   ** means we should really jump back to the preceeding OP_ReleaseReg
929   ** instruction. */
930   if( pOp->p5 ){
931     assert( pOp->p2 < (int)(pOp - aOp) );
932     assert( pOp->p2 > 1 );
933     pOp = &aOp[pOp->p2 - 2];
934     assert( pOp[1].opcode==OP_ReleaseReg );
935     goto check_for_interrupt;
936   }
937 #endif
938 
939 jump_to_p2_and_check_for_interrupt:
940   pOp = &aOp[pOp->p2 - 1];
941 
942   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
943   ** OP_VNext, or OP_SorterNext) all jump here upon
944   ** completion.  Check to see if sqlite3_interrupt() has been called
945   ** or if the progress callback needs to be invoked.
946   **
947   ** This code uses unstructured "goto" statements and does not look clean.
948   ** But that is not due to sloppy coding habits. The code is written this
949   ** way for performance, to avoid having to run the interrupt and progress
950   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
951   ** faster according to "valgrind --tool=cachegrind" */
952 check_for_interrupt:
953   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
955   /* Call the progress callback if it is configured and the required number
956   ** of VDBE ops have been executed (either since this invocation of
957   ** sqlite3VdbeExec() or since last time the progress callback was called).
958   ** If the progress callback returns non-zero, exit the virtual machine with
959   ** a return code SQLITE_ABORT.
960   */
961   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
962     assert( db->nProgressOps!=0 );
963     nProgressLimit += db->nProgressOps;
964     if( db->xProgress(db->pProgressArg) ){
965       nProgressLimit = LARGEST_UINT64;
966       rc = SQLITE_INTERRUPT;
967       goto abort_due_to_error;
968     }
969   }
970 #endif
971 
972   break;
973 }
974 
975 /* Opcode:  Gosub P1 P2 * * *
976 **
977 ** Write the current address onto register P1
978 ** and then jump to address P2.
979 */
980 case OP_Gosub: {            /* jump */
981   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
982   pIn1 = &aMem[pOp->p1];
983   assert( VdbeMemDynamic(pIn1)==0 );
984   memAboutToChange(p, pIn1);
985   pIn1->flags = MEM_Int;
986   pIn1->u.i = (int)(pOp-aOp);
987   REGISTER_TRACE(pOp->p1, pIn1);
988   goto jump_to_p2_and_check_for_interrupt;
989 }
990 
991 /* Opcode:  Return P1 P2 P3 * *
992 **
993 ** Jump to the address stored in register P1.  If P1 is a return address
994 ** register, then this accomplishes a return from a subroutine.
995 **
996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
997 ** values, otherwise execution falls through to the next opcode, and the
998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
999 ** integer or else an assert() is raised.  P3 should be set to 1 when
1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1001 ** otherwise.
1002 **
1003 ** The value in register P1 is unchanged by this opcode.
1004 **
1005 ** P2 is not used by the byte-code engine.  However, if P2 is positive
1006 ** and also less than the current address, then the "EXPLAIN" output
1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1008 ** to be not including the current Return.   P2 should be the first opcode
1009 ** in the subroutine from which this opcode is returning.  Thus the P2
1010 ** value is a byte-code indentation hint.  See tag-20220407a in
1011 ** wherecode.c and shell.c.
1012 */
1013 case OP_Return: {           /* in1 */
1014   pIn1 = &aMem[pOp->p1];
1015   if( pIn1->flags & MEM_Int ){
1016     if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1017     pOp = &aOp[pIn1->u.i];
1018   }else if( ALWAYS(pOp->p3) ){
1019     VdbeBranchTaken(0, 2);
1020   }
1021   break;
1022 }
1023 
1024 /* Opcode: InitCoroutine P1 P2 P3 * *
1025 **
1026 ** Set up register P1 so that it will Yield to the coroutine
1027 ** located at address P3.
1028 **
1029 ** If P2!=0 then the coroutine implementation immediately follows
1030 ** this opcode.  So jump over the coroutine implementation to
1031 ** address P2.
1032 **
1033 ** See also: EndCoroutine
1034 */
1035 case OP_InitCoroutine: {     /* jump */
1036   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1037   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1038   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1039   pOut = &aMem[pOp->p1];
1040   assert( !VdbeMemDynamic(pOut) );
1041   pOut->u.i = pOp->p3 - 1;
1042   pOut->flags = MEM_Int;
1043   if( pOp->p2==0 ) break;
1044 
1045   /* Most jump operations do a goto to this spot in order to update
1046   ** the pOp pointer. */
1047 jump_to_p2:
1048   assert( pOp->p2>0 );       /* There are never any jumps to instruction 0 */
1049   assert( pOp->p2<p->nOp );  /* Jumps must be in range */
1050   pOp = &aOp[pOp->p2 - 1];
1051   break;
1052 }
1053 
1054 /* Opcode:  EndCoroutine P1 * * * *
1055 **
1056 ** The instruction at the address in register P1 is a Yield.
1057 ** Jump to the P2 parameter of that Yield.
1058 ** After the jump, register P1 becomes undefined.
1059 **
1060 ** See also: InitCoroutine
1061 */
1062 case OP_EndCoroutine: {           /* in1 */
1063   VdbeOp *pCaller;
1064   pIn1 = &aMem[pOp->p1];
1065   assert( pIn1->flags==MEM_Int );
1066   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1067   pCaller = &aOp[pIn1->u.i];
1068   assert( pCaller->opcode==OP_Yield );
1069   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1070   pOp = &aOp[pCaller->p2 - 1];
1071   pIn1->flags = MEM_Undefined;
1072   break;
1073 }
1074 
1075 /* Opcode:  Yield P1 P2 * * *
1076 **
1077 ** Swap the program counter with the value in register P1.  This
1078 ** has the effect of yielding to a coroutine.
1079 **
1080 ** If the coroutine that is launched by this instruction ends with
1081 ** Yield or Return then continue to the next instruction.  But if
1082 ** the coroutine launched by this instruction ends with
1083 ** EndCoroutine, then jump to P2 rather than continuing with the
1084 ** next instruction.
1085 **
1086 ** See also: InitCoroutine
1087 */
1088 case OP_Yield: {            /* in1, jump */
1089   int pcDest;
1090   pIn1 = &aMem[pOp->p1];
1091   assert( VdbeMemDynamic(pIn1)==0 );
1092   pIn1->flags = MEM_Int;
1093   pcDest = (int)pIn1->u.i;
1094   pIn1->u.i = (int)(pOp - aOp);
1095   REGISTER_TRACE(pOp->p1, pIn1);
1096   pOp = &aOp[pcDest];
1097   break;
1098 }
1099 
1100 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1101 ** Synopsis: if r[P3]=null halt
1102 **
1103 ** Check the value in register P3.  If it is NULL then Halt using
1104 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1105 ** value in register P3 is not NULL, then this routine is a no-op.
1106 ** The P5 parameter should be 1.
1107 */
1108 case OP_HaltIfNull: {      /* in3 */
1109   pIn3 = &aMem[pOp->p3];
1110 #ifdef SQLITE_DEBUG
1111   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1112 #endif
1113   if( (pIn3->flags & MEM_Null)==0 ) break;
1114   /* Fall through into OP_Halt */
1115   /* no break */ deliberate_fall_through
1116 }
1117 
1118 /* Opcode:  Halt P1 P2 * P4 P5
1119 **
1120 ** Exit immediately.  All open cursors, etc are closed
1121 ** automatically.
1122 **
1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1124 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1125 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1126 ** whether or not to rollback the current transaction.  Do not rollback
1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1128 ** then back out all changes that have occurred during this execution of the
1129 ** VDBE, but do not rollback the transaction.
1130 **
1131 ** If P4 is not null then it is an error message string.
1132 **
1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1134 **
1135 **    0:  (no change)
1136 **    1:  NOT NULL contraint failed: P4
1137 **    2:  UNIQUE constraint failed: P4
1138 **    3:  CHECK constraint failed: P4
1139 **    4:  FOREIGN KEY constraint failed: P4
1140 **
1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1142 ** omitted.
1143 **
1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1145 ** every program.  So a jump past the last instruction of the program
1146 ** is the same as executing Halt.
1147 */
1148 case OP_Halt: {
1149   VdbeFrame *pFrame;
1150   int pcx;
1151 
1152 #ifdef SQLITE_DEBUG
1153   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1154 #endif
1155   if( p->pFrame && pOp->p1==SQLITE_OK ){
1156     /* Halt the sub-program. Return control to the parent frame. */
1157     pFrame = p->pFrame;
1158     p->pFrame = pFrame->pParent;
1159     p->nFrame--;
1160     sqlite3VdbeSetChanges(db, p->nChange);
1161     pcx = sqlite3VdbeFrameRestore(pFrame);
1162     if( pOp->p2==OE_Ignore ){
1163       /* Instruction pcx is the OP_Program that invoked the sub-program
1164       ** currently being halted. If the p2 instruction of this OP_Halt
1165       ** instruction is set to OE_Ignore, then the sub-program is throwing
1166       ** an IGNORE exception. In this case jump to the address specified
1167       ** as the p2 of the calling OP_Program.  */
1168       pcx = p->aOp[pcx].p2-1;
1169     }
1170     aOp = p->aOp;
1171     aMem = p->aMem;
1172     pOp = &aOp[pcx];
1173     break;
1174   }
1175   p->rc = pOp->p1;
1176   p->errorAction = (u8)pOp->p2;
1177   assert( pOp->p5<=4 );
1178   if( p->rc ){
1179     if( pOp->p5 ){
1180       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1181                                              "FOREIGN KEY" };
1182       testcase( pOp->p5==1 );
1183       testcase( pOp->p5==2 );
1184       testcase( pOp->p5==3 );
1185       testcase( pOp->p5==4 );
1186       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1187       if( pOp->p4.z ){
1188         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1189       }
1190     }else{
1191       sqlite3VdbeError(p, "%s", pOp->p4.z);
1192     }
1193     pcx = (int)(pOp - aOp);
1194     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1195   }
1196   rc = sqlite3VdbeHalt(p);
1197   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1198   if( rc==SQLITE_BUSY ){
1199     p->rc = SQLITE_BUSY;
1200   }else{
1201     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1202     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1203     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1204   }
1205   goto vdbe_return;
1206 }
1207 
1208 /* Opcode: Integer P1 P2 * * *
1209 ** Synopsis: r[P2]=P1
1210 **
1211 ** The 32-bit integer value P1 is written into register P2.
1212 */
1213 case OP_Integer: {         /* out2 */
1214   pOut = out2Prerelease(p, pOp);
1215   pOut->u.i = pOp->p1;
1216   break;
1217 }
1218 
1219 /* Opcode: Int64 * P2 * P4 *
1220 ** Synopsis: r[P2]=P4
1221 **
1222 ** P4 is a pointer to a 64-bit integer value.
1223 ** Write that value into register P2.
1224 */
1225 case OP_Int64: {           /* out2 */
1226   pOut = out2Prerelease(p, pOp);
1227   assert( pOp->p4.pI64!=0 );
1228   pOut->u.i = *pOp->p4.pI64;
1229   break;
1230 }
1231 
1232 #ifndef SQLITE_OMIT_FLOATING_POINT
1233 /* Opcode: Real * P2 * P4 *
1234 ** Synopsis: r[P2]=P4
1235 **
1236 ** P4 is a pointer to a 64-bit floating point value.
1237 ** Write that value into register P2.
1238 */
1239 case OP_Real: {            /* same as TK_FLOAT, out2 */
1240   pOut = out2Prerelease(p, pOp);
1241   pOut->flags = MEM_Real;
1242   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1243   pOut->u.r = *pOp->p4.pReal;
1244   break;
1245 }
1246 #endif
1247 
1248 /* Opcode: String8 * P2 * P4 *
1249 ** Synopsis: r[P2]='P4'
1250 **
1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1252 ** into a String opcode before it is executed for the first time.  During
1253 ** this transformation, the length of string P4 is computed and stored
1254 ** as the P1 parameter.
1255 */
1256 case OP_String8: {         /* same as TK_STRING, out2 */
1257   assert( pOp->p4.z!=0 );
1258   pOut = out2Prerelease(p, pOp);
1259   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1260 
1261 #ifndef SQLITE_OMIT_UTF16
1262   if( encoding!=SQLITE_UTF8 ){
1263     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1264     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1265     if( rc ) goto too_big;
1266     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1267     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1268     assert( VdbeMemDynamic(pOut)==0 );
1269     pOut->szMalloc = 0;
1270     pOut->flags |= MEM_Static;
1271     if( pOp->p4type==P4_DYNAMIC ){
1272       sqlite3DbFree(db, pOp->p4.z);
1273     }
1274     pOp->p4type = P4_DYNAMIC;
1275     pOp->p4.z = pOut->z;
1276     pOp->p1 = pOut->n;
1277   }
1278 #endif
1279   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1280     goto too_big;
1281   }
1282   pOp->opcode = OP_String;
1283   assert( rc==SQLITE_OK );
1284   /* Fall through to the next case, OP_String */
1285   /* no break */ deliberate_fall_through
1286 }
1287 
1288 /* Opcode: String P1 P2 P3 P4 P5
1289 ** Synopsis: r[P2]='P4' (len=P1)
1290 **
1291 ** The string value P4 of length P1 (bytes) is stored in register P2.
1292 **
1293 ** If P3 is not zero and the content of register P3 is equal to P5, then
1294 ** the datatype of the register P2 is converted to BLOB.  The content is
1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1296 ** of a string, as if it had been CAST.  In other words:
1297 **
1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1299 */
1300 case OP_String: {          /* out2 */
1301   assert( pOp->p4.z!=0 );
1302   pOut = out2Prerelease(p, pOp);
1303   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1304   pOut->z = pOp->p4.z;
1305   pOut->n = pOp->p1;
1306   pOut->enc = encoding;
1307   UPDATE_MAX_BLOBSIZE(pOut);
1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1309   if( pOp->p3>0 ){
1310     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1311     pIn3 = &aMem[pOp->p3];
1312     assert( pIn3->flags & MEM_Int );
1313     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1314   }
1315 #endif
1316   break;
1317 }
1318 
1319 /* Opcode: BeginSubrtn * P2 * * *
1320 ** Synopsis: r[P2]=NULL
1321 **
1322 ** Mark the beginning of a subroutine that can be entered in-line
1323 ** or that can be called using OP_Gosub.  The subroutine should
1324 ** be terminated by an OP_Return instruction that has a P1 operand that
1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1326 ** If the subroutine is entered in-line, then the OP_Return will simply
1327 ** fall through.  But if the subroutine is entered using OP_Gosub, then
1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1329 **
1330 ** This routine works by loading a NULL into the P2 register.  When the
1331 ** return address register contains a NULL, the OP_Return instruction is
1332 ** a no-op that simply falls through to the next instruction (assuming that
1333 ** the OP_Return opcode has a P3 value of 1).  Thus if the subroutine is
1334 ** entered in-line, then the OP_Return will cause in-line execution to
1335 ** continue.  But if the subroutine is entered via OP_Gosub, then the
1336 ** OP_Return will cause a return to the address following the OP_Gosub.
1337 **
1338 ** This opcode is identical to OP_Null.  It has a different name
1339 ** only to make the byte code easier to read and verify.
1340 */
1341 /* Opcode: Null P1 P2 P3 * *
1342 ** Synopsis: r[P2..P3]=NULL
1343 **
1344 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1345 ** NULL into register P3 and every register in between P2 and P3.  If P3
1346 ** is less than P2 (typically P3 is zero) then only register P2 is
1347 ** set to NULL.
1348 **
1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1351 ** OP_Ne or OP_Eq.
1352 */
1353 case OP_BeginSubrtn:
1354 case OP_Null: {           /* out2 */
1355   int cnt;
1356   u16 nullFlag;
1357   pOut = out2Prerelease(p, pOp);
1358   cnt = pOp->p3-pOp->p2;
1359   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1360   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1361   pOut->n = 0;
1362 #ifdef SQLITE_DEBUG
1363   pOut->uTemp = 0;
1364 #endif
1365   while( cnt>0 ){
1366     pOut++;
1367     memAboutToChange(p, pOut);
1368     sqlite3VdbeMemSetNull(pOut);
1369     pOut->flags = nullFlag;
1370     pOut->n = 0;
1371     cnt--;
1372   }
1373   break;
1374 }
1375 
1376 /* Opcode: SoftNull P1 * * * *
1377 ** Synopsis: r[P1]=NULL
1378 **
1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1380 ** instruction, but do not free any string or blob memory associated with
1381 ** the register, so that if the value was a string or blob that was
1382 ** previously copied using OP_SCopy, the copies will continue to be valid.
1383 */
1384 case OP_SoftNull: {
1385   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1386   pOut = &aMem[pOp->p1];
1387   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1388   break;
1389 }
1390 
1391 /* Opcode: Blob P1 P2 * P4 *
1392 ** Synopsis: r[P2]=P4 (len=P1)
1393 **
1394 ** P4 points to a blob of data P1 bytes long.  Store this
1395 ** blob in register P2.  If P4 is a NULL pointer, then construct
1396 ** a zero-filled blob that is P1 bytes long in P2.
1397 */
1398 case OP_Blob: {                /* out2 */
1399   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1400   pOut = out2Prerelease(p, pOp);
1401   if( pOp->p4.z==0 ){
1402     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1403     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1404   }else{
1405     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1406   }
1407   pOut->enc = encoding;
1408   UPDATE_MAX_BLOBSIZE(pOut);
1409   break;
1410 }
1411 
1412 /* Opcode: Variable P1 P2 * P4 *
1413 ** Synopsis: r[P2]=parameter(P1,P4)
1414 **
1415 ** Transfer the values of bound parameter P1 into register P2
1416 **
1417 ** If the parameter is named, then its name appears in P4.
1418 ** The P4 value is used by sqlite3_bind_parameter_name().
1419 */
1420 case OP_Variable: {            /* out2 */
1421   Mem *pVar;       /* Value being transferred */
1422 
1423   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1424   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1425   pVar = &p->aVar[pOp->p1 - 1];
1426   if( sqlite3VdbeMemTooBig(pVar) ){
1427     goto too_big;
1428   }
1429   pOut = &aMem[pOp->p2];
1430   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1431   memcpy(pOut, pVar, MEMCELLSIZE);
1432   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1433   pOut->flags |= MEM_Static|MEM_FromBind;
1434   UPDATE_MAX_BLOBSIZE(pOut);
1435   break;
1436 }
1437 
1438 /* Opcode: Move P1 P2 P3 * *
1439 ** Synopsis: r[P2@P3]=r[P1@P3]
1440 **
1441 ** Move the P3 values in register P1..P1+P3-1 over into
1442 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1443 ** left holding a NULL.  It is an error for register ranges
1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1445 ** for P3 to be less than 1.
1446 */
1447 case OP_Move: {
1448   int n;           /* Number of registers left to copy */
1449   int p1;          /* Register to copy from */
1450   int p2;          /* Register to copy to */
1451 
1452   n = pOp->p3;
1453   p1 = pOp->p1;
1454   p2 = pOp->p2;
1455   assert( n>0 && p1>0 && p2>0 );
1456   assert( p1+n<=p2 || p2+n<=p1 );
1457 
1458   pIn1 = &aMem[p1];
1459   pOut = &aMem[p2];
1460   do{
1461     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1462     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1463     assert( memIsValid(pIn1) );
1464     memAboutToChange(p, pOut);
1465     sqlite3VdbeMemMove(pOut, pIn1);
1466 #ifdef SQLITE_DEBUG
1467     pIn1->pScopyFrom = 0;
1468     { int i;
1469       for(i=1; i<p->nMem; i++){
1470         if( aMem[i].pScopyFrom==pIn1 ){
1471           aMem[i].pScopyFrom = pOut;
1472         }
1473       }
1474     }
1475 #endif
1476     Deephemeralize(pOut);
1477     REGISTER_TRACE(p2++, pOut);
1478     pIn1++;
1479     pOut++;
1480   }while( --n );
1481   break;
1482 }
1483 
1484 /* Opcode: Copy P1 P2 P3 * P5
1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1486 **
1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1488 **
1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1490 ** destination.  The 0x0001 bit of P5 indicates that this Copy opcode cannot
1491 ** be merged.  The 0x0001 bit is used by the query planner and does not
1492 ** come into play during query execution.
1493 **
1494 ** This instruction makes a deep copy of the value.  A duplicate
1495 ** is made of any string or blob constant.  See also OP_SCopy.
1496 */
1497 case OP_Copy: {
1498   int n;
1499 
1500   n = pOp->p3;
1501   pIn1 = &aMem[pOp->p1];
1502   pOut = &aMem[pOp->p2];
1503   assert( pOut!=pIn1 );
1504   while( 1 ){
1505     memAboutToChange(p, pOut);
1506     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1507     Deephemeralize(pOut);
1508     if( (pOut->flags & MEM_Subtype)!=0 &&  (pOp->p5 & 0x0002)!=0 ){
1509       pOut->flags &= ~MEM_Subtype;
1510     }
1511 #ifdef SQLITE_DEBUG
1512     pOut->pScopyFrom = 0;
1513 #endif
1514     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1515     if( (n--)==0 ) break;
1516     pOut++;
1517     pIn1++;
1518   }
1519   break;
1520 }
1521 
1522 /* Opcode: SCopy P1 P2 * * *
1523 ** Synopsis: r[P2]=r[P1]
1524 **
1525 ** Make a shallow copy of register P1 into register P2.
1526 **
1527 ** This instruction makes a shallow copy of the value.  If the value
1528 ** is a string or blob, then the copy is only a pointer to the
1529 ** original and hence if the original changes so will the copy.
1530 ** Worse, if the original is deallocated, the copy becomes invalid.
1531 ** Thus the program must guarantee that the original will not change
1532 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1533 ** copy.
1534 */
1535 case OP_SCopy: {            /* out2 */
1536   pIn1 = &aMem[pOp->p1];
1537   pOut = &aMem[pOp->p2];
1538   assert( pOut!=pIn1 );
1539   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1540 #ifdef SQLITE_DEBUG
1541   pOut->pScopyFrom = pIn1;
1542   pOut->mScopyFlags = pIn1->flags;
1543 #endif
1544   break;
1545 }
1546 
1547 /* Opcode: IntCopy P1 P2 * * *
1548 ** Synopsis: r[P2]=r[P1]
1549 **
1550 ** Transfer the integer value held in register P1 into register P2.
1551 **
1552 ** This is an optimized version of SCopy that works only for integer
1553 ** values.
1554 */
1555 case OP_IntCopy: {            /* out2 */
1556   pIn1 = &aMem[pOp->p1];
1557   assert( (pIn1->flags & MEM_Int)!=0 );
1558   pOut = &aMem[pOp->p2];
1559   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1560   break;
1561 }
1562 
1563 /* Opcode: FkCheck * * * * *
1564 **
1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1566 ** foreign key constraint violations.  If there are no foreign key
1567 ** constraint violations, this is a no-op.
1568 **
1569 ** FK constraint violations are also checked when the prepared statement
1570 ** exits.  This opcode is used to raise foreign key constraint errors prior
1571 ** to returning results such as a row change count or the result of a
1572 ** RETURNING clause.
1573 */
1574 case OP_FkCheck: {
1575   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1576     goto abort_due_to_error;
1577   }
1578   break;
1579 }
1580 
1581 /* Opcode: ResultRow P1 P2 * * *
1582 ** Synopsis: output=r[P1@P2]
1583 **
1584 ** The registers P1 through P1+P2-1 contain a single row of
1585 ** results. This opcode causes the sqlite3_step() call to terminate
1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1588 ** the result row.
1589 */
1590 case OP_ResultRow: {
1591   assert( p->nResColumn==pOp->p2 );
1592   assert( pOp->p1>0 || CORRUPT_DB );
1593   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1594 
1595   p->cacheCtr = (p->cacheCtr + 2)|1;
1596   p->pResultSet = &aMem[pOp->p1];
1597 #ifdef SQLITE_DEBUG
1598   {
1599     Mem *pMem = p->pResultSet;
1600     int i;
1601     for(i=0; i<pOp->p2; i++){
1602       assert( memIsValid(&pMem[i]) );
1603       REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1604       /* The registers in the result will not be used again when the
1605       ** prepared statement restarts.  This is because sqlite3_column()
1606       ** APIs might have caused type conversions of made other changes to
1607       ** the register values.  Therefore, we can go ahead and break any
1608       ** OP_SCopy dependencies. */
1609       pMem[i].pScopyFrom = 0;
1610     }
1611   }
1612 #endif
1613   if( db->mallocFailed ) goto no_mem;
1614   if( db->mTrace & SQLITE_TRACE_ROW ){
1615     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1616   }
1617   p->pc = (int)(pOp - aOp) + 1;
1618   rc = SQLITE_ROW;
1619   goto vdbe_return;
1620 }
1621 
1622 /* Opcode: Concat P1 P2 P3 * *
1623 ** Synopsis: r[P3]=r[P2]+r[P1]
1624 **
1625 ** Add the text in register P1 onto the end of the text in
1626 ** register P2 and store the result in register P3.
1627 ** If either the P1 or P2 text are NULL then store NULL in P3.
1628 **
1629 **   P3 = P2 || P1
1630 **
1631 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1632 ** if P3 is the same register as P2, the implementation is able
1633 ** to avoid a memcpy().
1634 */
1635 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1636   i64 nByte;          /* Total size of the output string or blob */
1637   u16 flags1;         /* Initial flags for P1 */
1638   u16 flags2;         /* Initial flags for P2 */
1639 
1640   pIn1 = &aMem[pOp->p1];
1641   pIn2 = &aMem[pOp->p2];
1642   pOut = &aMem[pOp->p3];
1643   testcase( pOut==pIn2 );
1644   assert( pIn1!=pOut );
1645   flags1 = pIn1->flags;
1646   testcase( flags1 & MEM_Null );
1647   testcase( pIn2->flags & MEM_Null );
1648   if( (flags1 | pIn2->flags) & MEM_Null ){
1649     sqlite3VdbeMemSetNull(pOut);
1650     break;
1651   }
1652   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1653     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1654     flags1 = pIn1->flags & ~MEM_Str;
1655   }else if( (flags1 & MEM_Zero)!=0 ){
1656     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1657     flags1 = pIn1->flags & ~MEM_Str;
1658   }
1659   flags2 = pIn2->flags;
1660   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1661     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1662     flags2 = pIn2->flags & ~MEM_Str;
1663   }else if( (flags2 & MEM_Zero)!=0 ){
1664     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1665     flags2 = pIn2->flags & ~MEM_Str;
1666   }
1667   nByte = pIn1->n + pIn2->n;
1668   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1669     goto too_big;
1670   }
1671   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1672     goto no_mem;
1673   }
1674   MemSetTypeFlag(pOut, MEM_Str);
1675   if( pOut!=pIn2 ){
1676     memcpy(pOut->z, pIn2->z, pIn2->n);
1677     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1678     pIn2->flags = flags2;
1679   }
1680   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1681   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1682   pIn1->flags = flags1;
1683   if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1684   pOut->z[nByte]=0;
1685   pOut->z[nByte+1] = 0;
1686   pOut->flags |= MEM_Term;
1687   pOut->n = (int)nByte;
1688   pOut->enc = encoding;
1689   UPDATE_MAX_BLOBSIZE(pOut);
1690   break;
1691 }
1692 
1693 /* Opcode: Add P1 P2 P3 * *
1694 ** Synopsis: r[P3]=r[P1]+r[P2]
1695 **
1696 ** Add the value in register P1 to the value in register P2
1697 ** and store the result in register P3.
1698 ** If either input is NULL, the result is NULL.
1699 */
1700 /* Opcode: Multiply P1 P2 P3 * *
1701 ** Synopsis: r[P3]=r[P1]*r[P2]
1702 **
1703 **
1704 ** Multiply the value in register P1 by the value in register P2
1705 ** and store the result in register P3.
1706 ** If either input is NULL, the result is NULL.
1707 */
1708 /* Opcode: Subtract P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P2]-r[P1]
1710 **
1711 ** Subtract the value in register P1 from the value in register P2
1712 ** and store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1714 */
1715 /* Opcode: Divide P1 P2 P3 * *
1716 ** Synopsis: r[P3]=r[P2]/r[P1]
1717 **
1718 ** Divide the value in register P1 by the value in register P2
1719 ** and store the result in register P3 (P3=P2/P1). If the value in
1720 ** register P1 is zero, then the result is NULL. If either input is
1721 ** NULL, the result is NULL.
1722 */
1723 /* Opcode: Remainder P1 P2 P3 * *
1724 ** Synopsis: r[P3]=r[P2]%r[P1]
1725 **
1726 ** Compute the remainder after integer register P2 is divided by
1727 ** register P1 and store the result in register P3.
1728 ** If the value in register P1 is zero the result is NULL.
1729 ** If either operand is NULL, the result is NULL.
1730 */
1731 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1732 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1733 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1734 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1735 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1736   u16 type1;      /* Numeric type of left operand */
1737   u16 type2;      /* Numeric type of right operand */
1738   i64 iA;         /* Integer value of left operand */
1739   i64 iB;         /* Integer value of right operand */
1740   double rA;      /* Real value of left operand */
1741   double rB;      /* Real value of right operand */
1742 
1743   pIn1 = &aMem[pOp->p1];
1744   type1 = pIn1->flags;
1745   pIn2 = &aMem[pOp->p2];
1746   type2 = pIn2->flags;
1747   pOut = &aMem[pOp->p3];
1748   if( (type1 & type2 & MEM_Int)!=0 ){
1749 int_math:
1750     iA = pIn1->u.i;
1751     iB = pIn2->u.i;
1752     switch( pOp->opcode ){
1753       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1754       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1755       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1756       case OP_Divide: {
1757         if( iA==0 ) goto arithmetic_result_is_null;
1758         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1759         iB /= iA;
1760         break;
1761       }
1762       default: {
1763         if( iA==0 ) goto arithmetic_result_is_null;
1764         if( iA==-1 ) iA = 1;
1765         iB %= iA;
1766         break;
1767       }
1768     }
1769     pOut->u.i = iB;
1770     MemSetTypeFlag(pOut, MEM_Int);
1771   }else if( ((type1 | type2) & MEM_Null)!=0 ){
1772     goto arithmetic_result_is_null;
1773   }else{
1774     type1 = numericType(pIn1);
1775     type2 = numericType(pIn2);
1776     if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1777 fp_math:
1778     rA = sqlite3VdbeRealValue(pIn1);
1779     rB = sqlite3VdbeRealValue(pIn2);
1780     switch( pOp->opcode ){
1781       case OP_Add:         rB += rA;       break;
1782       case OP_Subtract:    rB -= rA;       break;
1783       case OP_Multiply:    rB *= rA;       break;
1784       case OP_Divide: {
1785         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1786         if( rA==(double)0 ) goto arithmetic_result_is_null;
1787         rB /= rA;
1788         break;
1789       }
1790       default: {
1791         iA = sqlite3VdbeIntValue(pIn1);
1792         iB = sqlite3VdbeIntValue(pIn2);
1793         if( iA==0 ) goto arithmetic_result_is_null;
1794         if( iA==-1 ) iA = 1;
1795         rB = (double)(iB % iA);
1796         break;
1797       }
1798     }
1799 #ifdef SQLITE_OMIT_FLOATING_POINT
1800     pOut->u.i = rB;
1801     MemSetTypeFlag(pOut, MEM_Int);
1802 #else
1803     if( sqlite3IsNaN(rB) ){
1804       goto arithmetic_result_is_null;
1805     }
1806     pOut->u.r = rB;
1807     MemSetTypeFlag(pOut, MEM_Real);
1808 #endif
1809   }
1810   break;
1811 
1812 arithmetic_result_is_null:
1813   sqlite3VdbeMemSetNull(pOut);
1814   break;
1815 }
1816 
1817 /* Opcode: CollSeq P1 * * P4
1818 **
1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1821 ** be returned. This is used by the built-in min(), max() and nullif()
1822 ** functions.
1823 **
1824 ** If P1 is not zero, then it is a register that a subsequent min() or
1825 ** max() aggregate will set to 1 if the current row is not the minimum or
1826 ** maximum.  The P1 register is initialized to 0 by this instruction.
1827 **
1828 ** The interface used by the implementation of the aforementioned functions
1829 ** to retrieve the collation sequence set by this opcode is not available
1830 ** publicly.  Only built-in functions have access to this feature.
1831 */
1832 case OP_CollSeq: {
1833   assert( pOp->p4type==P4_COLLSEQ );
1834   if( pOp->p1 ){
1835     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1836   }
1837   break;
1838 }
1839 
1840 /* Opcode: BitAnd P1 P2 P3 * *
1841 ** Synopsis: r[P3]=r[P1]&r[P2]
1842 **
1843 ** Take the bit-wise AND of the values in register P1 and P2 and
1844 ** store the result in register P3.
1845 ** If either input is NULL, the result is NULL.
1846 */
1847 /* Opcode: BitOr P1 P2 P3 * *
1848 ** Synopsis: r[P3]=r[P1]|r[P2]
1849 **
1850 ** Take the bit-wise OR of the values in register P1 and P2 and
1851 ** store the result in register P3.
1852 ** If either input is NULL, the result is NULL.
1853 */
1854 /* Opcode: ShiftLeft P1 P2 P3 * *
1855 ** Synopsis: r[P3]=r[P2]<<r[P1]
1856 **
1857 ** Shift the integer value in register P2 to the left by the
1858 ** number of bits specified by the integer in register P1.
1859 ** Store the result in register P3.
1860 ** If either input is NULL, the result is NULL.
1861 */
1862 /* Opcode: ShiftRight P1 P2 P3 * *
1863 ** Synopsis: r[P3]=r[P2]>>r[P1]
1864 **
1865 ** Shift the integer value in register P2 to the right by the
1866 ** number of bits specified by the integer in register P1.
1867 ** Store the result in register P3.
1868 ** If either input is NULL, the result is NULL.
1869 */
1870 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1871 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1872 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1873 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1874   i64 iA;
1875   u64 uA;
1876   i64 iB;
1877   u8 op;
1878 
1879   pIn1 = &aMem[pOp->p1];
1880   pIn2 = &aMem[pOp->p2];
1881   pOut = &aMem[pOp->p3];
1882   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1883     sqlite3VdbeMemSetNull(pOut);
1884     break;
1885   }
1886   iA = sqlite3VdbeIntValue(pIn2);
1887   iB = sqlite3VdbeIntValue(pIn1);
1888   op = pOp->opcode;
1889   if( op==OP_BitAnd ){
1890     iA &= iB;
1891   }else if( op==OP_BitOr ){
1892     iA |= iB;
1893   }else if( iB!=0 ){
1894     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1895 
1896     /* If shifting by a negative amount, shift in the other direction */
1897     if( iB<0 ){
1898       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1899       op = 2*OP_ShiftLeft + 1 - op;
1900       iB = iB>(-64) ? -iB : 64;
1901     }
1902 
1903     if( iB>=64 ){
1904       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1905     }else{
1906       memcpy(&uA, &iA, sizeof(uA));
1907       if( op==OP_ShiftLeft ){
1908         uA <<= iB;
1909       }else{
1910         uA >>= iB;
1911         /* Sign-extend on a right shift of a negative number */
1912         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1913       }
1914       memcpy(&iA, &uA, sizeof(iA));
1915     }
1916   }
1917   pOut->u.i = iA;
1918   MemSetTypeFlag(pOut, MEM_Int);
1919   break;
1920 }
1921 
1922 /* Opcode: AddImm  P1 P2 * * *
1923 ** Synopsis: r[P1]=r[P1]+P2
1924 **
1925 ** Add the constant P2 to the value in register P1.
1926 ** The result is always an integer.
1927 **
1928 ** To force any register to be an integer, just add 0.
1929 */
1930 case OP_AddImm: {            /* in1 */
1931   pIn1 = &aMem[pOp->p1];
1932   memAboutToChange(p, pIn1);
1933   sqlite3VdbeMemIntegerify(pIn1);
1934   pIn1->u.i += pOp->p2;
1935   break;
1936 }
1937 
1938 /* Opcode: MustBeInt P1 P2 * * *
1939 **
1940 ** Force the value in register P1 to be an integer.  If the value
1941 ** in P1 is not an integer and cannot be converted into an integer
1942 ** without data loss, then jump immediately to P2, or if P2==0
1943 ** raise an SQLITE_MISMATCH exception.
1944 */
1945 case OP_MustBeInt: {            /* jump, in1 */
1946   pIn1 = &aMem[pOp->p1];
1947   if( (pIn1->flags & MEM_Int)==0 ){
1948     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1949     if( (pIn1->flags & MEM_Int)==0 ){
1950       VdbeBranchTaken(1, 2);
1951       if( pOp->p2==0 ){
1952         rc = SQLITE_MISMATCH;
1953         goto abort_due_to_error;
1954       }else{
1955         goto jump_to_p2;
1956       }
1957     }
1958   }
1959   VdbeBranchTaken(0, 2);
1960   MemSetTypeFlag(pIn1, MEM_Int);
1961   break;
1962 }
1963 
1964 #ifndef SQLITE_OMIT_FLOATING_POINT
1965 /* Opcode: RealAffinity P1 * * * *
1966 **
1967 ** If register P1 holds an integer convert it to a real value.
1968 **
1969 ** This opcode is used when extracting information from a column that
1970 ** has REAL affinity.  Such column values may still be stored as
1971 ** integers, for space efficiency, but after extraction we want them
1972 ** to have only a real value.
1973 */
1974 case OP_RealAffinity: {                  /* in1 */
1975   pIn1 = &aMem[pOp->p1];
1976   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1977     testcase( pIn1->flags & MEM_Int );
1978     testcase( pIn1->flags & MEM_IntReal );
1979     sqlite3VdbeMemRealify(pIn1);
1980     REGISTER_TRACE(pOp->p1, pIn1);
1981   }
1982   break;
1983 }
1984 #endif
1985 
1986 #ifndef SQLITE_OMIT_CAST
1987 /* Opcode: Cast P1 P2 * * *
1988 ** Synopsis: affinity(r[P1])
1989 **
1990 ** Force the value in register P1 to be the type defined by P2.
1991 **
1992 ** <ul>
1993 ** <li> P2=='A' &rarr; BLOB
1994 ** <li> P2=='B' &rarr; TEXT
1995 ** <li> P2=='C' &rarr; NUMERIC
1996 ** <li> P2=='D' &rarr; INTEGER
1997 ** <li> P2=='E' &rarr; REAL
1998 ** </ul>
1999 **
2000 ** A NULL value is not changed by this routine.  It remains NULL.
2001 */
2002 case OP_Cast: {                  /* in1 */
2003   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2004   testcase( pOp->p2==SQLITE_AFF_TEXT );
2005   testcase( pOp->p2==SQLITE_AFF_BLOB );
2006   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2007   testcase( pOp->p2==SQLITE_AFF_INTEGER );
2008   testcase( pOp->p2==SQLITE_AFF_REAL );
2009   pIn1 = &aMem[pOp->p1];
2010   memAboutToChange(p, pIn1);
2011   rc = ExpandBlob(pIn1);
2012   if( rc ) goto abort_due_to_error;
2013   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2014   if( rc ) goto abort_due_to_error;
2015   UPDATE_MAX_BLOBSIZE(pIn1);
2016   REGISTER_TRACE(pOp->p1, pIn1);
2017   break;
2018 }
2019 #endif /* SQLITE_OMIT_CAST */
2020 
2021 /* Opcode: Eq P1 P2 P3 P4 P5
2022 ** Synopsis: IF r[P3]==r[P1]
2023 **
2024 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
2025 ** jump to address P2.
2026 **
2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2029 ** to coerce both inputs according to this affinity before the
2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2031 ** affinity is used. Note that the affinity conversions are stored
2032 ** back into the input registers P1 and P3.  So this opcode can cause
2033 ** persistent changes to registers P1 and P3.
2034 **
2035 ** Once any conversions have taken place, and neither value is NULL,
2036 ** the values are compared. If both values are blobs then memcmp() is
2037 ** used to determine the results of the comparison.  If both values
2038 ** are text, then the appropriate collating function specified in
2039 ** P4 is used to do the comparison.  If P4 is not specified then
2040 ** memcmp() is used to compare text string.  If both values are
2041 ** numeric, then a numeric comparison is used. If the two values
2042 ** are of different types, then numbers are considered less than
2043 ** strings and strings are considered less than blobs.
2044 **
2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2046 ** true or false and is never NULL.  If both operands are NULL then the result
2047 ** of comparison is true.  If either operand is NULL then the result is false.
2048 ** If neither operand is NULL the result is the same as it would be if
2049 ** the SQLITE_NULLEQ flag were omitted from P5.
2050 **
2051 ** This opcode saves the result of comparison for use by the new
2052 ** OP_Jump opcode.
2053 */
2054 /* Opcode: Ne P1 P2 P3 P4 P5
2055 ** Synopsis: IF r[P3]!=r[P1]
2056 **
2057 ** This works just like the Eq opcode except that the jump is taken if
2058 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2059 ** additional information.
2060 */
2061 /* Opcode: Lt P1 P2 P3 P4 P5
2062 ** Synopsis: IF r[P3]<r[P1]
2063 **
2064 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2065 ** jump to address P2.
2066 **
2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2068 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2069 ** bit is clear then fall through if either operand is NULL.
2070 **
2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2073 ** to coerce both inputs according to this affinity before the
2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2075 ** affinity is used. Note that the affinity conversions are stored
2076 ** back into the input registers P1 and P3.  So this opcode can cause
2077 ** persistent changes to registers P1 and P3.
2078 **
2079 ** Once any conversions have taken place, and neither value is NULL,
2080 ** the values are compared. If both values are blobs then memcmp() is
2081 ** used to determine the results of the comparison.  If both values
2082 ** are text, then the appropriate collating function specified in
2083 ** P4 is  used to do the comparison.  If P4 is not specified then
2084 ** memcmp() is used to compare text string.  If both values are
2085 ** numeric, then a numeric comparison is used. If the two values
2086 ** are of different types, then numbers are considered less than
2087 ** strings and strings are considered less than blobs.
2088 **
2089 ** This opcode saves the result of comparison for use by the new
2090 ** OP_Jump opcode.
2091 */
2092 /* Opcode: Le P1 P2 P3 P4 P5
2093 ** Synopsis: IF r[P3]<=r[P1]
2094 **
2095 ** This works just like the Lt opcode except that the jump is taken if
2096 ** the content of register P3 is less than or equal to the content of
2097 ** register P1.  See the Lt opcode for additional information.
2098 */
2099 /* Opcode: Gt P1 P2 P3 P4 P5
2100 ** Synopsis: IF r[P3]>r[P1]
2101 **
2102 ** This works just like the Lt opcode except that the jump is taken if
2103 ** the content of register P3 is greater than the content of
2104 ** register P1.  See the Lt opcode for additional information.
2105 */
2106 /* Opcode: Ge P1 P2 P3 P4 P5
2107 ** Synopsis: IF r[P3]>=r[P1]
2108 **
2109 ** This works just like the Lt opcode except that the jump is taken if
2110 ** the content of register P3 is greater than or equal to the content of
2111 ** register P1.  See the Lt opcode for additional information.
2112 */
2113 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2114 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2115 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2116 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2117 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2118 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2119   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2120   char affinity;      /* Affinity to use for comparison */
2121   u16 flags1;         /* Copy of initial value of pIn1->flags */
2122   u16 flags3;         /* Copy of initial value of pIn3->flags */
2123 
2124   pIn1 = &aMem[pOp->p1];
2125   pIn3 = &aMem[pOp->p3];
2126   flags1 = pIn1->flags;
2127   flags3 = pIn3->flags;
2128   if( (flags1 & flags3 & MEM_Int)!=0 ){
2129     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2130     /* Common case of comparison of two integers */
2131     if( pIn3->u.i > pIn1->u.i ){
2132       if( sqlite3aGTb[pOp->opcode] ){
2133         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2134         goto jump_to_p2;
2135       }
2136       iCompare = +1;
2137     }else if( pIn3->u.i < pIn1->u.i ){
2138       if( sqlite3aLTb[pOp->opcode] ){
2139         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2140         goto jump_to_p2;
2141       }
2142       iCompare = -1;
2143     }else{
2144       if( sqlite3aEQb[pOp->opcode] ){
2145         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2146         goto jump_to_p2;
2147       }
2148       iCompare = 0;
2149     }
2150     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2151     break;
2152   }
2153   if( (flags1 | flags3)&MEM_Null ){
2154     /* One or both operands are NULL */
2155     if( pOp->p5 & SQLITE_NULLEQ ){
2156       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2157       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2158       ** or not both operands are null.
2159       */
2160       assert( (flags1 & MEM_Cleared)==0 );
2161       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2162       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2163       if( (flags1&flags3&MEM_Null)!=0
2164        && (flags3&MEM_Cleared)==0
2165       ){
2166         res = 0;  /* Operands are equal */
2167       }else{
2168         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2169       }
2170     }else{
2171       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2172       ** then the result is always NULL.
2173       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2174       */
2175       VdbeBranchTaken(2,3);
2176       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2177         goto jump_to_p2;
2178       }
2179       iCompare = 1;    /* Operands are not equal */
2180       break;
2181     }
2182   }else{
2183     /* Neither operand is NULL and we couldn't do the special high-speed
2184     ** integer comparison case.  So do a general-case comparison. */
2185     affinity = pOp->p5 & SQLITE_AFF_MASK;
2186     if( affinity>=SQLITE_AFF_NUMERIC ){
2187       if( (flags1 | flags3)&MEM_Str ){
2188         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2189           applyNumericAffinity(pIn1,0);
2190           testcase( flags3==pIn3->flags );
2191           flags3 = pIn3->flags;
2192         }
2193         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2194           applyNumericAffinity(pIn3,0);
2195         }
2196       }
2197     }else if( affinity==SQLITE_AFF_TEXT ){
2198       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2199         testcase( pIn1->flags & MEM_Int );
2200         testcase( pIn1->flags & MEM_Real );
2201         testcase( pIn1->flags & MEM_IntReal );
2202         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2203         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2204         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2205         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2206       }
2207       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2208         testcase( pIn3->flags & MEM_Int );
2209         testcase( pIn3->flags & MEM_Real );
2210         testcase( pIn3->flags & MEM_IntReal );
2211         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2212         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2213         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2214       }
2215     }
2216     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2217     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2218   }
2219 
2220   /* At this point, res is negative, zero, or positive if reg[P1] is
2221   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2222   ** the answer to this operator in res2, depending on what the comparison
2223   ** operator actually is.  The next block of code depends on the fact
2224   ** that the 6 comparison operators are consecutive integers in this
2225   ** order:  NE, EQ, GT, LE, LT, GE */
2226   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2227   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2228   if( res<0 ){
2229     res2 = sqlite3aLTb[pOp->opcode];
2230   }else if( res==0 ){
2231     res2 = sqlite3aEQb[pOp->opcode];
2232   }else{
2233     res2 = sqlite3aGTb[pOp->opcode];
2234   }
2235   iCompare = res;
2236 
2237   /* Undo any changes made by applyAffinity() to the input registers. */
2238   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2239   pIn3->flags = flags3;
2240   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2241   pIn1->flags = flags1;
2242 
2243   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2244   if( res2 ){
2245     goto jump_to_p2;
2246   }
2247   break;
2248 }
2249 
2250 /* Opcode: ElseEq * P2 * * *
2251 **
2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2254 ** opcodes are allowed to occur between this instruction and the previous
2255 ** OP_Lt or OP_Gt.
2256 **
2257 ** If result of an OP_Eq comparison on the same two operands as the
2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2259 ** If the result of an OP_Eq comparison on the two previous
2260 ** operands would have been false or NULL, then fall through.
2261 */
2262 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2263 
2264 #ifdef SQLITE_DEBUG
2265   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2266   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2267   int iAddr;
2268   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2269     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2270     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2271     break;
2272   }
2273 #endif /* SQLITE_DEBUG */
2274   VdbeBranchTaken(iCompare==0, 2);
2275   if( iCompare==0 ) goto jump_to_p2;
2276   break;
2277 }
2278 
2279 
2280 /* Opcode: Permutation * * * P4 *
2281 **
2282 ** Set the permutation used by the OP_Compare operator in the next
2283 ** instruction.  The permutation is stored in the P4 operand.
2284 **
2285 ** The permutation is only valid for the next opcode which must be
2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2287 **
2288 ** The first integer in the P4 integer array is the length of the array
2289 ** and does not become part of the permutation.
2290 */
2291 case OP_Permutation: {
2292   assert( pOp->p4type==P4_INTARRAY );
2293   assert( pOp->p4.ai );
2294   assert( pOp[1].opcode==OP_Compare );
2295   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2296   break;
2297 }
2298 
2299 /* Opcode: Compare P1 P2 P3 P4 P5
2300 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2301 **
2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2304 ** the comparison for use by the next OP_Jump instruct.
2305 **
2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2307 ** determined by the most recent OP_Permutation operator.  If the
2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2309 ** order.
2310 **
2311 ** P4 is a KeyInfo structure that defines collating sequences and sort
2312 ** orders for the comparison.  The permutation applies to registers
2313 ** only.  The KeyInfo elements are used sequentially.
2314 **
2315 ** The comparison is a sort comparison, so NULLs compare equal,
2316 ** NULLs are less than numbers, numbers are less than strings,
2317 ** and strings are less than blobs.
2318 **
2319 ** This opcode must be immediately followed by an OP_Jump opcode.
2320 */
2321 case OP_Compare: {
2322   int n;
2323   int i;
2324   int p1;
2325   int p2;
2326   const KeyInfo *pKeyInfo;
2327   u32 idx;
2328   CollSeq *pColl;    /* Collating sequence to use on this term */
2329   int bRev;          /* True for DESCENDING sort order */
2330   u32 *aPermute;     /* The permutation */
2331 
2332   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2333     aPermute = 0;
2334   }else{
2335     assert( pOp>aOp );
2336     assert( pOp[-1].opcode==OP_Permutation );
2337     assert( pOp[-1].p4type==P4_INTARRAY );
2338     aPermute = pOp[-1].p4.ai + 1;
2339     assert( aPermute!=0 );
2340   }
2341   n = pOp->p3;
2342   pKeyInfo = pOp->p4.pKeyInfo;
2343   assert( n>0 );
2344   assert( pKeyInfo!=0 );
2345   p1 = pOp->p1;
2346   p2 = pOp->p2;
2347 #ifdef SQLITE_DEBUG
2348   if( aPermute ){
2349     int k, mx = 0;
2350     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2351     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2352     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2353   }else{
2354     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2355     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2356   }
2357 #endif /* SQLITE_DEBUG */
2358   for(i=0; i<n; i++){
2359     idx = aPermute ? aPermute[i] : (u32)i;
2360     assert( memIsValid(&aMem[p1+idx]) );
2361     assert( memIsValid(&aMem[p2+idx]) );
2362     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2363     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2364     assert( i<pKeyInfo->nKeyField );
2365     pColl = pKeyInfo->aColl[i];
2366     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2367     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2368     if( iCompare ){
2369       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2370        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2371       ){
2372         iCompare = -iCompare;
2373       }
2374       if( bRev ) iCompare = -iCompare;
2375       break;
2376     }
2377   }
2378   assert( pOp[1].opcode==OP_Jump );
2379   break;
2380 }
2381 
2382 /* Opcode: Jump P1 P2 P3 * *
2383 **
2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2385 ** in the most recent OP_Compare instruction the P1 vector was less than
2386 ** equal to, or greater than the P2 vector, respectively.
2387 **
2388 ** This opcode must immediately follow an OP_Compare opcode.
2389 */
2390 case OP_Jump: {             /* jump */
2391   assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2392   if( iCompare<0 ){
2393     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2394   }else if( iCompare==0 ){
2395     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2396   }else{
2397     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2398   }
2399   break;
2400 }
2401 
2402 /* Opcode: And P1 P2 P3 * *
2403 ** Synopsis: r[P3]=(r[P1] && r[P2])
2404 **
2405 ** Take the logical AND of the values in registers P1 and P2 and
2406 ** write the result into register P3.
2407 **
2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2409 ** the other input is NULL.  A NULL and true or two NULLs give
2410 ** a NULL output.
2411 */
2412 /* Opcode: Or P1 P2 P3 * *
2413 ** Synopsis: r[P3]=(r[P1] || r[P2])
2414 **
2415 ** Take the logical OR of the values in register P1 and P2 and
2416 ** store the answer in register P3.
2417 **
2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2419 ** even if the other input is NULL.  A NULL and false or two NULLs
2420 ** give a NULL output.
2421 */
2422 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2423 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2424   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2425   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2426 
2427   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2428   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2429   if( pOp->opcode==OP_And ){
2430     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2431     v1 = and_logic[v1*3+v2];
2432   }else{
2433     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2434     v1 = or_logic[v1*3+v2];
2435   }
2436   pOut = &aMem[pOp->p3];
2437   if( v1==2 ){
2438     MemSetTypeFlag(pOut, MEM_Null);
2439   }else{
2440     pOut->u.i = v1;
2441     MemSetTypeFlag(pOut, MEM_Int);
2442   }
2443   break;
2444 }
2445 
2446 /* Opcode: IsTrue P1 P2 P3 P4 *
2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2448 **
2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2450 ** IS NOT FALSE operators.
2451 **
2452 ** Interpret the value in register P1 as a boolean value.  Store that
2453 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2454 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2455 ** is 1.
2456 **
2457 ** The logic is summarized like this:
2458 **
2459 ** <ul>
2460 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2461 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2462 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2463 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2464 ** </ul>
2465 */
2466 case OP_IsTrue: {               /* in1, out2 */
2467   assert( pOp->p4type==P4_INT32 );
2468   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2469   assert( pOp->p3==0 || pOp->p3==1 );
2470   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2471       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2472   break;
2473 }
2474 
2475 /* Opcode: Not P1 P2 * * *
2476 ** Synopsis: r[P2]= !r[P1]
2477 **
2478 ** Interpret the value in register P1 as a boolean value.  Store the
2479 ** boolean complement in register P2.  If the value in register P1 is
2480 ** NULL, then a NULL is stored in P2.
2481 */
2482 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2483   pIn1 = &aMem[pOp->p1];
2484   pOut = &aMem[pOp->p2];
2485   if( (pIn1->flags & MEM_Null)==0 ){
2486     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2487   }else{
2488     sqlite3VdbeMemSetNull(pOut);
2489   }
2490   break;
2491 }
2492 
2493 /* Opcode: BitNot P1 P2 * * *
2494 ** Synopsis: r[P2]= ~r[P1]
2495 **
2496 ** Interpret the content of register P1 as an integer.  Store the
2497 ** ones-complement of the P1 value into register P2.  If P1 holds
2498 ** a NULL then store a NULL in P2.
2499 */
2500 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2501   pIn1 = &aMem[pOp->p1];
2502   pOut = &aMem[pOp->p2];
2503   sqlite3VdbeMemSetNull(pOut);
2504   if( (pIn1->flags & MEM_Null)==0 ){
2505     pOut->flags = MEM_Int;
2506     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2507   }
2508   break;
2509 }
2510 
2511 /* Opcode: Once P1 P2 * * *
2512 **
2513 ** Fall through to the next instruction the first time this opcode is
2514 ** encountered on each invocation of the byte-code program.  Jump to P2
2515 ** on the second and all subsequent encounters during the same invocation.
2516 **
2517 ** Top-level programs determine first invocation by comparing the P1
2518 ** operand against the P1 operand on the OP_Init opcode at the beginning
2519 ** of the program.  If the P1 values differ, then fall through and make
2520 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2521 ** the same then take the jump.
2522 **
2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2524 ** whether or not the jump should be taken.  The bitmask is necessary
2525 ** because the self-altering code trick does not work for recursive
2526 ** triggers.
2527 */
2528 case OP_Once: {             /* jump */
2529   u32 iAddr;                /* Address of this instruction */
2530   assert( p->aOp[0].opcode==OP_Init );
2531   if( p->pFrame ){
2532     iAddr = (int)(pOp - p->aOp);
2533     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2534       VdbeBranchTaken(1, 2);
2535       goto jump_to_p2;
2536     }
2537     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2538   }else{
2539     if( p->aOp[0].p1==pOp->p1 ){
2540       VdbeBranchTaken(1, 2);
2541       goto jump_to_p2;
2542     }
2543   }
2544   VdbeBranchTaken(0, 2);
2545   pOp->p1 = p->aOp[0].p1;
2546   break;
2547 }
2548 
2549 /* Opcode: If P1 P2 P3 * *
2550 **
2551 ** Jump to P2 if the value in register P1 is true.  The value
2552 ** is considered true if it is numeric and non-zero.  If the value
2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2554 */
2555 case OP_If:  {               /* jump, in1 */
2556   int c;
2557   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2558   VdbeBranchTaken(c!=0, 2);
2559   if( c ) goto jump_to_p2;
2560   break;
2561 }
2562 
2563 /* Opcode: IfNot P1 P2 P3 * *
2564 **
2565 ** Jump to P2 if the value in register P1 is False.  The value
2566 ** is considered false if it has a numeric value of zero.  If the value
2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2568 */
2569 case OP_IfNot: {            /* jump, in1 */
2570   int c;
2571   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2572   VdbeBranchTaken(c!=0, 2);
2573   if( c ) goto jump_to_p2;
2574   break;
2575 }
2576 
2577 /* Opcode: IsNull P1 P2 * * *
2578 ** Synopsis: if r[P1]==NULL goto P2
2579 **
2580 ** Jump to P2 if the value in register P1 is NULL.
2581 */
2582 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2583   pIn1 = &aMem[pOp->p1];
2584   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2585   if( (pIn1->flags & MEM_Null)!=0 ){
2586     goto jump_to_p2;
2587   }
2588   break;
2589 }
2590 
2591 /* Opcode: IsType P1 P2 P3 P4 P5
2592 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2593 **
2594 ** Jump to P2 if the type of a column in a btree is one of the types specified
2595 ** by the P5 bitmask.
2596 **
2597 ** P1 is normally a cursor on a btree for which the row decode cache is
2598 ** valid through at least column P3.  In other words, there should have been
2599 ** a prior OP_Column for column P3 or greater.  If the cursor is not valid,
2600 ** then this opcode might give spurious results.
2601 ** The the btree row has fewer than P3 columns, then use P4 as the
2602 ** datatype.
2603 **
2604 ** If P1 is -1, then P3 is a register number and the datatype is taken
2605 ** from the value in that register.
2606 **
2607 ** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
2608 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2609 ** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
2610 **
2611 ** Take the jump to address P2 if and only if the datatype of the
2612 ** value determined by P1 and P3 corresponds to one of the bits in the
2613 ** P5 bitmask.
2614 **
2615 */
2616 case OP_IsType: {        /* jump */
2617   VdbeCursor *pC;
2618   u16 typeMask;
2619   u32 serialType;
2620 
2621   assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
2622   assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
2623   if( pOp->p1>=0 ){
2624     pC = p->apCsr[pOp->p1];
2625     assert( pC!=0 );
2626     assert( pOp->p3>=0 );
2627     if( pOp->p3<pC->nHdrParsed ){
2628       serialType = pC->aType[pOp->p3];
2629       if( serialType>=12 ){
2630         if( serialType&1 ){
2631           typeMask = 0x04;   /* SQLITE_TEXT */
2632         }else{
2633           typeMask = 0x08;   /* SQLITE_BLOB */
2634         }
2635       }else{
2636         static const unsigned char aMask[] = {
2637            0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2638            0x01, 0x01, 0x10, 0x10
2639         };
2640         testcase( serialType==0 );
2641         testcase( serialType==1 );
2642         testcase( serialType==2 );
2643         testcase( serialType==3 );
2644         testcase( serialType==4 );
2645         testcase( serialType==5 );
2646         testcase( serialType==6 );
2647         testcase( serialType==7 );
2648         testcase( serialType==8 );
2649         testcase( serialType==9 );
2650         testcase( serialType==10 );
2651         testcase( serialType==11 );
2652         typeMask = aMask[serialType];
2653       }
2654     }else{
2655       typeMask = 1 << (pOp->p4.i - 1);
2656       testcase( typeMask==0x01 );
2657       testcase( typeMask==0x02 );
2658       testcase( typeMask==0x04 );
2659       testcase( typeMask==0x08 );
2660       testcase( typeMask==0x10 );
2661     }
2662   }else{
2663     assert( memIsValid(&aMem[pOp->p3]) );
2664     typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
2665     testcase( typeMask==0x01 );
2666     testcase( typeMask==0x02 );
2667     testcase( typeMask==0x04 );
2668     testcase( typeMask==0x08 );
2669     testcase( typeMask==0x10 );
2670   }
2671   VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
2672   if( typeMask & pOp->p5 ){
2673     goto jump_to_p2;
2674   }
2675   break;
2676 }
2677 
2678 /* Opcode: ZeroOrNull P1 P2 P3 * *
2679 ** Synopsis: r[P2] = 0 OR NULL
2680 **
2681 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2682 ** register P2.  If either registers P1 or P3 are NULL then put
2683 ** a NULL in register P2.
2684 */
2685 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2686   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2687    || (aMem[pOp->p3].flags & MEM_Null)!=0
2688   ){
2689     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2690   }else{
2691     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2692   }
2693   break;
2694 }
2695 
2696 /* Opcode: NotNull P1 P2 * * *
2697 ** Synopsis: if r[P1]!=NULL goto P2
2698 **
2699 ** Jump to P2 if the value in register P1 is not NULL.
2700 */
2701 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2702   pIn1 = &aMem[pOp->p1];
2703   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2704   if( (pIn1->flags & MEM_Null)==0 ){
2705     goto jump_to_p2;
2706   }
2707   break;
2708 }
2709 
2710 /* Opcode: IfNullRow P1 P2 P3 * *
2711 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2712 **
2713 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2714 ** If it is, then set register P3 to NULL and jump immediately to P2.
2715 ** If P1 is not on a NULL row, then fall through without making any
2716 ** changes.
2717 **
2718 ** If P1 is not an open cursor, then this opcode is a no-op.
2719 */
2720 case OP_IfNullRow: {         /* jump */
2721   VdbeCursor *pC;
2722   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2723   pC = p->apCsr[pOp->p1];
2724   if( ALWAYS(pC) && pC->nullRow ){
2725     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2726     goto jump_to_p2;
2727   }
2728   break;
2729 }
2730 
2731 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2732 /* Opcode: Offset P1 P2 P3 * *
2733 ** Synopsis: r[P3] = sqlite_offset(P1)
2734 **
2735 ** Store in register r[P3] the byte offset into the database file that is the
2736 ** start of the payload for the record at which that cursor P1 is currently
2737 ** pointing.
2738 **
2739 ** P2 is the column number for the argument to the sqlite_offset() function.
2740 ** This opcode does not use P2 itself, but the P2 value is used by the
2741 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2742 ** same as for OP_Column.
2743 **
2744 ** This opcode is only available if SQLite is compiled with the
2745 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2746 */
2747 case OP_Offset: {          /* out3 */
2748   VdbeCursor *pC;    /* The VDBE cursor */
2749   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2750   pC = p->apCsr[pOp->p1];
2751   pOut = &p->aMem[pOp->p3];
2752   if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2753     sqlite3VdbeMemSetNull(pOut);
2754   }else{
2755     if( pC->deferredMoveto ){
2756       rc = sqlite3VdbeFinishMoveto(pC);
2757       if( rc ) goto abort_due_to_error;
2758     }
2759     if( sqlite3BtreeEof(pC->uc.pCursor) ){
2760       sqlite3VdbeMemSetNull(pOut);
2761     }else{
2762       sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2763     }
2764   }
2765   break;
2766 }
2767 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2768 
2769 /* Opcode: Column P1 P2 P3 P4 P5
2770 ** Synopsis: r[P3]=PX cursor P1 column P2
2771 **
2772 ** Interpret the data that cursor P1 points to as a structure built using
2773 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2774 ** information about the format of the data.)  Extract the P2-th column
2775 ** from this record.  If there are less that (P2+1)
2776 ** values in the record, extract a NULL.
2777 **
2778 ** The value extracted is stored in register P3.
2779 **
2780 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2781 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2782 ** the result.
2783 **
2784 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2785 ** the result is guaranteed to only be used as the argument of a length()
2786 ** or typeof() function, respectively.  The loading of large blobs can be
2787 ** skipped for length() and all content loading can be skipped for typeof().
2788 */
2789 case OP_Column: {
2790   u32 p2;            /* column number to retrieve */
2791   VdbeCursor *pC;    /* The VDBE cursor */
2792   BtCursor *pCrsr;   /* The B-Tree cursor corresponding to pC */
2793   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2794   int len;           /* The length of the serialized data for the column */
2795   int i;             /* Loop counter */
2796   Mem *pDest;        /* Where to write the extracted value */
2797   Mem sMem;          /* For storing the record being decoded */
2798   const u8 *zData;   /* Part of the record being decoded */
2799   const u8 *zHdr;    /* Next unparsed byte of the header */
2800   const u8 *zEndHdr; /* Pointer to first byte after the header */
2801   u64 offset64;      /* 64-bit offset */
2802   u32 t;             /* A type code from the record header */
2803   Mem *pReg;         /* PseudoTable input register */
2804 
2805   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2806   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2807   pC = p->apCsr[pOp->p1];
2808   p2 = (u32)pOp->p2;
2809 
2810 op_column_restart:
2811   assert( pC!=0 );
2812   assert( p2<(u32)pC->nField
2813        || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2814   aOffset = pC->aOffset;
2815   assert( aOffset==pC->aType+pC->nField );
2816   assert( pC->eCurType!=CURTYPE_VTAB );
2817   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2818   assert( pC->eCurType!=CURTYPE_SORTER );
2819 
2820   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2821     if( pC->nullRow ){
2822       if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2823         /* For the special case of as pseudo-cursor, the seekResult field
2824         ** identifies the register that holds the record */
2825         pReg = &aMem[pC->seekResult];
2826         assert( pReg->flags & MEM_Blob );
2827         assert( memIsValid(pReg) );
2828         pC->payloadSize = pC->szRow = pReg->n;
2829         pC->aRow = (u8*)pReg->z;
2830       }else{
2831         pDest = &aMem[pOp->p3];
2832         memAboutToChange(p, pDest);
2833         sqlite3VdbeMemSetNull(pDest);
2834         goto op_column_out;
2835       }
2836     }else{
2837       pCrsr = pC->uc.pCursor;
2838       if( pC->deferredMoveto ){
2839         u32 iMap;
2840         assert( !pC->isEphemeral );
2841         if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0  ){
2842           pC = pC->pAltCursor;
2843           p2 = iMap - 1;
2844           goto op_column_restart;
2845         }
2846         rc = sqlite3VdbeFinishMoveto(pC);
2847         if( rc ) goto abort_due_to_error;
2848       }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2849         rc = sqlite3VdbeHandleMovedCursor(pC);
2850         if( rc ) goto abort_due_to_error;
2851         goto op_column_restart;
2852       }
2853       assert( pC->eCurType==CURTYPE_BTREE );
2854       assert( pCrsr );
2855       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2856       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2857       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2858       assert( pC->szRow<=pC->payloadSize );
2859       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2860     }
2861     pC->cacheStatus = p->cacheCtr;
2862     if( (aOffset[0] = pC->aRow[0])<0x80 ){
2863       pC->iHdrOffset = 1;
2864     }else{
2865       pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2866     }
2867     pC->nHdrParsed = 0;
2868 
2869     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2870       /* pC->aRow does not have to hold the entire row, but it does at least
2871       ** need to cover the header of the record.  If pC->aRow does not contain
2872       ** the complete header, then set it to zero, forcing the header to be
2873       ** dynamically allocated. */
2874       pC->aRow = 0;
2875       pC->szRow = 0;
2876 
2877       /* Make sure a corrupt database has not given us an oversize header.
2878       ** Do this now to avoid an oversize memory allocation.
2879       **
2880       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2881       ** types use so much data space that there can only be 4096 and 32 of
2882       ** them, respectively.  So the maximum header length results from a
2883       ** 3-byte type for each of the maximum of 32768 columns plus three
2884       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2885       */
2886       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2887         goto op_column_corrupt;
2888       }
2889     }else{
2890       /* This is an optimization.  By skipping over the first few tests
2891       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2892       ** measurable performance gain.
2893       **
2894       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2895       ** generated by SQLite, and could be considered corruption, but we
2896       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2897       ** branch jumps to reads past the end of the record, but never more
2898       ** than a few bytes.  Even if the record occurs at the end of the page
2899       ** content area, the "page header" comes after the page content and so
2900       ** this overread is harmless.  Similar overreads can occur for a corrupt
2901       ** database file.
2902       */
2903       zData = pC->aRow;
2904       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2905       testcase( aOffset[0]==0 );
2906       goto op_column_read_header;
2907     }
2908   }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2909     rc = sqlite3VdbeHandleMovedCursor(pC);
2910     if( rc ) goto abort_due_to_error;
2911     goto op_column_restart;
2912   }
2913 
2914   /* Make sure at least the first p2+1 entries of the header have been
2915   ** parsed and valid information is in aOffset[] and pC->aType[].
2916   */
2917   if( pC->nHdrParsed<=p2 ){
2918     /* If there is more header available for parsing in the record, try
2919     ** to extract additional fields up through the p2+1-th field
2920     */
2921     if( pC->iHdrOffset<aOffset[0] ){
2922       /* Make sure zData points to enough of the record to cover the header. */
2923       if( pC->aRow==0 ){
2924         memset(&sMem, 0, sizeof(sMem));
2925         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2926         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2927         zData = (u8*)sMem.z;
2928       }else{
2929         zData = pC->aRow;
2930       }
2931 
2932       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2933     op_column_read_header:
2934       i = pC->nHdrParsed;
2935       offset64 = aOffset[i];
2936       zHdr = zData + pC->iHdrOffset;
2937       zEndHdr = zData + aOffset[0];
2938       testcase( zHdr>=zEndHdr );
2939       do{
2940         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2941           zHdr++;
2942           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2943         }else{
2944           zHdr += sqlite3GetVarint32(zHdr, &t);
2945           pC->aType[i] = t;
2946           offset64 += sqlite3VdbeSerialTypeLen(t);
2947         }
2948         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2949       }while( (u32)i<=p2 && zHdr<zEndHdr );
2950 
2951       /* The record is corrupt if any of the following are true:
2952       ** (1) the bytes of the header extend past the declared header size
2953       ** (2) the entire header was used but not all data was used
2954       ** (3) the end of the data extends beyond the end of the record.
2955       */
2956       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2957        || (offset64 > pC->payloadSize)
2958       ){
2959         if( aOffset[0]==0 ){
2960           i = 0;
2961           zHdr = zEndHdr;
2962         }else{
2963           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2964           goto op_column_corrupt;
2965         }
2966       }
2967 
2968       pC->nHdrParsed = i;
2969       pC->iHdrOffset = (u32)(zHdr - zData);
2970       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2971     }else{
2972       t = 0;
2973     }
2974 
2975     /* If after trying to extract new entries from the header, nHdrParsed is
2976     ** still not up to p2, that means that the record has fewer than p2
2977     ** columns.  So the result will be either the default value or a NULL.
2978     */
2979     if( pC->nHdrParsed<=p2 ){
2980       pDest = &aMem[pOp->p3];
2981       memAboutToChange(p, pDest);
2982       if( pOp->p4type==P4_MEM ){
2983         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2984       }else{
2985         sqlite3VdbeMemSetNull(pDest);
2986       }
2987       goto op_column_out;
2988     }
2989   }else{
2990     t = pC->aType[p2];
2991   }
2992 
2993   /* Extract the content for the p2+1-th column.  Control can only
2994   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2995   ** all valid.
2996   */
2997   assert( p2<pC->nHdrParsed );
2998   assert( rc==SQLITE_OK );
2999   pDest = &aMem[pOp->p3];
3000   memAboutToChange(p, pDest);
3001   assert( sqlite3VdbeCheckMemInvariants(pDest) );
3002   if( VdbeMemDynamic(pDest) ){
3003     sqlite3VdbeMemSetNull(pDest);
3004   }
3005   assert( t==pC->aType[p2] );
3006   if( pC->szRow>=aOffset[p2+1] ){
3007     /* This is the common case where the desired content fits on the original
3008     ** page - where the content is not on an overflow page */
3009     zData = pC->aRow + aOffset[p2];
3010     if( t<12 ){
3011       sqlite3VdbeSerialGet(zData, t, pDest);
3012     }else{
3013       /* If the column value is a string, we need a persistent value, not
3014       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
3015       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3016       */
3017       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
3018       pDest->n = len = (t-12)/2;
3019       pDest->enc = encoding;
3020       if( pDest->szMalloc < len+2 ){
3021         if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3022         pDest->flags = MEM_Null;
3023         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
3024       }else{
3025         pDest->z = pDest->zMalloc;
3026       }
3027       memcpy(pDest->z, zData, len);
3028       pDest->z[len] = 0;
3029       pDest->z[len+1] = 0;
3030       pDest->flags = aFlag[t&1];
3031     }
3032   }else{
3033     pDest->enc = encoding;
3034     /* This branch happens only when content is on overflow pages */
3035     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
3036           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
3037      || (len = sqlite3VdbeSerialTypeLen(t))==0
3038     ){
3039       /* Content is irrelevant for
3040       **    1. the typeof() function,
3041       **    2. the length(X) function if X is a blob, and
3042       **    3. if the content length is zero.
3043       ** So we might as well use bogus content rather than reading
3044       ** content from disk.
3045       **
3046       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3047       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3048       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
3049       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3050       ** and it begins with a bunch of zeros.
3051       */
3052       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
3053     }else{
3054       if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3055       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
3056       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3057       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
3058       pDest->flags &= ~MEM_Ephem;
3059     }
3060   }
3061 
3062 op_column_out:
3063   UPDATE_MAX_BLOBSIZE(pDest);
3064   REGISTER_TRACE(pOp->p3, pDest);
3065   break;
3066 
3067 op_column_corrupt:
3068   if( aOp[0].p3>0 ){
3069     pOp = &aOp[aOp[0].p3-1];
3070     break;
3071   }else{
3072     rc = SQLITE_CORRUPT_BKPT;
3073     goto abort_due_to_error;
3074   }
3075 }
3076 
3077 /* Opcode: TypeCheck P1 P2 P3 P4 *
3078 ** Synopsis: typecheck(r[P1@P2])
3079 **
3080 ** Apply affinities to the range of P2 registers beginning with P1.
3081 ** Take the affinities from the Table object in P4.  If any value
3082 ** cannot be coerced into the correct type, then raise an error.
3083 **
3084 ** This opcode is similar to OP_Affinity except that this opcode
3085 ** forces the register type to the Table column type.  This is used
3086 ** to implement "strict affinity".
3087 **
3088 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3089 ** is zero.  When P3 is non-zero, no type checking occurs for
3090 ** static generated columns.  Virtual columns are computed at query time
3091 ** and so they are never checked.
3092 **
3093 ** Preconditions:
3094 **
3095 ** <ul>
3096 ** <li> P2 should be the number of non-virtual columns in the
3097 **      table of P4.
3098 ** <li> Table P4 should be a STRICT table.
3099 ** </ul>
3100 **
3101 ** If any precondition is false, an assertion fault occurs.
3102 */
3103 case OP_TypeCheck: {
3104   Table *pTab;
3105   Column *aCol;
3106   int i;
3107 
3108   assert( pOp->p4type==P4_TABLE );
3109   pTab = pOp->p4.pTab;
3110   assert( pTab->tabFlags & TF_Strict );
3111   assert( pTab->nNVCol==pOp->p2 );
3112   aCol = pTab->aCol;
3113   pIn1 = &aMem[pOp->p1];
3114   for(i=0; i<pTab->nCol; i++){
3115     if( aCol[i].colFlags & COLFLAG_GENERATED ){
3116       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3117       if( pOp->p3 ){ pIn1++; continue; }
3118     }
3119     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3120     applyAffinity(pIn1, aCol[i].affinity, encoding);
3121     if( (pIn1->flags & MEM_Null)==0 ){
3122       switch( aCol[i].eCType ){
3123         case COLTYPE_BLOB: {
3124           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3125           break;
3126         }
3127         case COLTYPE_INTEGER:
3128         case COLTYPE_INT: {
3129           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3130           break;
3131         }
3132         case COLTYPE_TEXT: {
3133           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3134           break;
3135         }
3136         case COLTYPE_REAL: {
3137           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3138           testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3139           if( pIn1->flags & MEM_Int ){
3140             /* When applying REAL affinity, if the result is still an MEM_Int
3141             ** that will fit in 6 bytes, then change the type to MEM_IntReal
3142             ** so that we keep the high-resolution integer value but know that
3143             ** the type really wants to be REAL. */
3144             testcase( pIn1->u.i==140737488355328LL );
3145             testcase( pIn1->u.i==140737488355327LL );
3146             testcase( pIn1->u.i==-140737488355328LL );
3147             testcase( pIn1->u.i==-140737488355329LL );
3148             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3149               pIn1->flags |= MEM_IntReal;
3150               pIn1->flags &= ~MEM_Int;
3151             }else{
3152               pIn1->u.r = (double)pIn1->u.i;
3153               pIn1->flags |= MEM_Real;
3154               pIn1->flags &= ~MEM_Int;
3155             }
3156           }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3157             goto vdbe_type_error;
3158           }
3159           break;
3160         }
3161         default: {
3162           /* COLTYPE_ANY.  Accept anything. */
3163           break;
3164         }
3165       }
3166     }
3167     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3168     pIn1++;
3169   }
3170   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3171   break;
3172 
3173 vdbe_type_error:
3174   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3175      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3176      pTab->zName, aCol[i].zCnName);
3177   rc = SQLITE_CONSTRAINT_DATATYPE;
3178   goto abort_due_to_error;
3179 }
3180 
3181 /* Opcode: Affinity P1 P2 * P4 *
3182 ** Synopsis: affinity(r[P1@P2])
3183 **
3184 ** Apply affinities to a range of P2 registers starting with P1.
3185 **
3186 ** P4 is a string that is P2 characters long. The N-th character of the
3187 ** string indicates the column affinity that should be used for the N-th
3188 ** memory cell in the range.
3189 */
3190 case OP_Affinity: {
3191   const char *zAffinity;   /* The affinity to be applied */
3192 
3193   zAffinity = pOp->p4.z;
3194   assert( zAffinity!=0 );
3195   assert( pOp->p2>0 );
3196   assert( zAffinity[pOp->p2]==0 );
3197   pIn1 = &aMem[pOp->p1];
3198   while( 1 /*exit-by-break*/ ){
3199     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3200     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3201     applyAffinity(pIn1, zAffinity[0], encoding);
3202     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3203       /* When applying REAL affinity, if the result is still an MEM_Int
3204       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3205       ** so that we keep the high-resolution integer value but know that
3206       ** the type really wants to be REAL. */
3207       testcase( pIn1->u.i==140737488355328LL );
3208       testcase( pIn1->u.i==140737488355327LL );
3209       testcase( pIn1->u.i==-140737488355328LL );
3210       testcase( pIn1->u.i==-140737488355329LL );
3211       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3212         pIn1->flags |= MEM_IntReal;
3213         pIn1->flags &= ~MEM_Int;
3214       }else{
3215         pIn1->u.r = (double)pIn1->u.i;
3216         pIn1->flags |= MEM_Real;
3217         pIn1->flags &= ~MEM_Int;
3218       }
3219     }
3220     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3221     zAffinity++;
3222     if( zAffinity[0]==0 ) break;
3223     pIn1++;
3224   }
3225   break;
3226 }
3227 
3228 /* Opcode: MakeRecord P1 P2 P3 P4 *
3229 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3230 **
3231 ** Convert P2 registers beginning with P1 into the [record format]
3232 ** use as a data record in a database table or as a key
3233 ** in an index.  The OP_Column opcode can decode the record later.
3234 **
3235 ** P4 may be a string that is P2 characters long.  The N-th character of the
3236 ** string indicates the column affinity that should be used for the N-th
3237 ** field of the index key.
3238 **
3239 ** The mapping from character to affinity is given by the SQLITE_AFF_
3240 ** macros defined in sqliteInt.h.
3241 **
3242 ** If P4 is NULL then all index fields have the affinity BLOB.
3243 **
3244 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3245 ** compile-time option is enabled:
3246 **
3247 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3248 **     of the right-most table that can be null-trimmed.
3249 **
3250 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3251 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3252 **     accept no-change records with serial_type 10.  This value is
3253 **     only used inside an assert() and does not affect the end result.
3254 */
3255 case OP_MakeRecord: {
3256   Mem *pRec;             /* The new record */
3257   u64 nData;             /* Number of bytes of data space */
3258   int nHdr;              /* Number of bytes of header space */
3259   i64 nByte;             /* Data space required for this record */
3260   i64 nZero;             /* Number of zero bytes at the end of the record */
3261   int nVarint;           /* Number of bytes in a varint */
3262   u32 serial_type;       /* Type field */
3263   Mem *pData0;           /* First field to be combined into the record */
3264   Mem *pLast;            /* Last field of the record */
3265   int nField;            /* Number of fields in the record */
3266   char *zAffinity;       /* The affinity string for the record */
3267   u32 len;               /* Length of a field */
3268   u8 *zHdr;              /* Where to write next byte of the header */
3269   u8 *zPayload;          /* Where to write next byte of the payload */
3270 
3271   /* Assuming the record contains N fields, the record format looks
3272   ** like this:
3273   **
3274   ** ------------------------------------------------------------------------
3275   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3276   ** ------------------------------------------------------------------------
3277   **
3278   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3279   ** and so forth.
3280   **
3281   ** Each type field is a varint representing the serial type of the
3282   ** corresponding data element (see sqlite3VdbeSerialType()). The
3283   ** hdr-size field is also a varint which is the offset from the beginning
3284   ** of the record to data0.
3285   */
3286   nData = 0;         /* Number of bytes of data space */
3287   nHdr = 0;          /* Number of bytes of header space */
3288   nZero = 0;         /* Number of zero bytes at the end of the record */
3289   nField = pOp->p1;
3290   zAffinity = pOp->p4.z;
3291   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3292   pData0 = &aMem[nField];
3293   nField = pOp->p2;
3294   pLast = &pData0[nField-1];
3295 
3296   /* Identify the output register */
3297   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3298   pOut = &aMem[pOp->p3];
3299   memAboutToChange(p, pOut);
3300 
3301   /* Apply the requested affinity to all inputs
3302   */
3303   assert( pData0<=pLast );
3304   if( zAffinity ){
3305     pRec = pData0;
3306     do{
3307       applyAffinity(pRec, zAffinity[0], encoding);
3308       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3309         pRec->flags |= MEM_IntReal;
3310         pRec->flags &= ~(MEM_Int);
3311       }
3312       REGISTER_TRACE((int)(pRec-aMem), pRec);
3313       zAffinity++;
3314       pRec++;
3315       assert( zAffinity[0]==0 || pRec<=pLast );
3316     }while( zAffinity[0] );
3317   }
3318 
3319 #ifdef SQLITE_ENABLE_NULL_TRIM
3320   /* NULLs can be safely trimmed from the end of the record, as long as
3321   ** as the schema format is 2 or more and none of the omitted columns
3322   ** have a non-NULL default value.  Also, the record must be left with
3323   ** at least one field.  If P5>0 then it will be one more than the
3324   ** index of the right-most column with a non-NULL default value */
3325   if( pOp->p5 ){
3326     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3327       pLast--;
3328       nField--;
3329     }
3330   }
3331 #endif
3332 
3333   /* Loop through the elements that will make up the record to figure
3334   ** out how much space is required for the new record.  After this loop,
3335   ** the Mem.uTemp field of each term should hold the serial-type that will
3336   ** be used for that term in the generated record:
3337   **
3338   **   Mem.uTemp value    type
3339   **   ---------------    ---------------
3340   **      0               NULL
3341   **      1               1-byte signed integer
3342   **      2               2-byte signed integer
3343   **      3               3-byte signed integer
3344   **      4               4-byte signed integer
3345   **      5               6-byte signed integer
3346   **      6               8-byte signed integer
3347   **      7               IEEE float
3348   **      8               Integer constant 0
3349   **      9               Integer constant 1
3350   **     10,11            reserved for expansion
3351   **    N>=12 and even    BLOB
3352   **    N>=13 and odd     text
3353   **
3354   ** The following additional values are computed:
3355   **     nHdr        Number of bytes needed for the record header
3356   **     nData       Number of bytes of data space needed for the record
3357   **     nZero       Zero bytes at the end of the record
3358   */
3359   pRec = pLast;
3360   do{
3361     assert( memIsValid(pRec) );
3362     if( pRec->flags & MEM_Null ){
3363       if( pRec->flags & MEM_Zero ){
3364         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3365         ** table methods that never invoke sqlite3_result_xxxxx() while
3366         ** computing an unchanging column value in an UPDATE statement.
3367         ** Give such values a special internal-use-only serial-type of 10
3368         ** so that they can be passed through to xUpdate and have
3369         ** a true sqlite3_value_nochange(). */
3370 #ifndef SQLITE_ENABLE_NULL_TRIM
3371         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3372 #endif
3373         pRec->uTemp = 10;
3374       }else{
3375         pRec->uTemp = 0;
3376       }
3377       nHdr++;
3378     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3379       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3380       i64 i = pRec->u.i;
3381       u64 uu;
3382       testcase( pRec->flags & MEM_Int );
3383       testcase( pRec->flags & MEM_IntReal );
3384       if( i<0 ){
3385         uu = ~i;
3386       }else{
3387         uu = i;
3388       }
3389       nHdr++;
3390       testcase( uu==127 );               testcase( uu==128 );
3391       testcase( uu==32767 );             testcase( uu==32768 );
3392       testcase( uu==8388607 );           testcase( uu==8388608 );
3393       testcase( uu==2147483647 );        testcase( uu==2147483648LL );
3394       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3395       if( uu<=127 ){
3396         if( (i&1)==i && p->minWriteFileFormat>=4 ){
3397           pRec->uTemp = 8+(u32)uu;
3398         }else{
3399           nData++;
3400           pRec->uTemp = 1;
3401         }
3402       }else if( uu<=32767 ){
3403         nData += 2;
3404         pRec->uTemp = 2;
3405       }else if( uu<=8388607 ){
3406         nData += 3;
3407         pRec->uTemp = 3;
3408       }else if( uu<=2147483647 ){
3409         nData += 4;
3410         pRec->uTemp = 4;
3411       }else if( uu<=140737488355327LL ){
3412         nData += 6;
3413         pRec->uTemp = 5;
3414       }else{
3415         nData += 8;
3416         if( pRec->flags & MEM_IntReal ){
3417           /* If the value is IntReal and is going to take up 8 bytes to store
3418           ** as an integer, then we might as well make it an 8-byte floating
3419           ** point value */
3420           pRec->u.r = (double)pRec->u.i;
3421           pRec->flags &= ~MEM_IntReal;
3422           pRec->flags |= MEM_Real;
3423           pRec->uTemp = 7;
3424         }else{
3425           pRec->uTemp = 6;
3426         }
3427       }
3428     }else if( pRec->flags & MEM_Real ){
3429       nHdr++;
3430       nData += 8;
3431       pRec->uTemp = 7;
3432     }else{
3433       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3434       assert( pRec->n>=0 );
3435       len = (u32)pRec->n;
3436       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3437       if( pRec->flags & MEM_Zero ){
3438         serial_type += pRec->u.nZero*2;
3439         if( nData ){
3440           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3441           len += pRec->u.nZero;
3442         }else{
3443           nZero += pRec->u.nZero;
3444         }
3445       }
3446       nData += len;
3447       nHdr += sqlite3VarintLen(serial_type);
3448       pRec->uTemp = serial_type;
3449     }
3450     if( pRec==pData0 ) break;
3451     pRec--;
3452   }while(1);
3453 
3454   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3455   ** which determines the total number of bytes in the header. The varint
3456   ** value is the size of the header in bytes including the size varint
3457   ** itself. */
3458   testcase( nHdr==126 );
3459   testcase( nHdr==127 );
3460   if( nHdr<=126 ){
3461     /* The common case */
3462     nHdr += 1;
3463   }else{
3464     /* Rare case of a really large header */
3465     nVarint = sqlite3VarintLen(nHdr);
3466     nHdr += nVarint;
3467     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3468   }
3469   nByte = nHdr+nData;
3470 
3471   /* Make sure the output register has a buffer large enough to store
3472   ** the new record. The output register (pOp->p3) is not allowed to
3473   ** be one of the input registers (because the following call to
3474   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3475   */
3476   if( nByte+nZero<=pOut->szMalloc ){
3477     /* The output register is already large enough to hold the record.
3478     ** No error checks or buffer enlargement is required */
3479     pOut->z = pOut->zMalloc;
3480   }else{
3481     /* Need to make sure that the output is not too big and then enlarge
3482     ** the output register to hold the full result */
3483     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3484       goto too_big;
3485     }
3486     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3487       goto no_mem;
3488     }
3489   }
3490   pOut->n = (int)nByte;
3491   pOut->flags = MEM_Blob;
3492   if( nZero ){
3493     pOut->u.nZero = nZero;
3494     pOut->flags |= MEM_Zero;
3495   }
3496   UPDATE_MAX_BLOBSIZE(pOut);
3497   zHdr = (u8 *)pOut->z;
3498   zPayload = zHdr + nHdr;
3499 
3500   /* Write the record */
3501   if( nHdr<0x80 ){
3502     *(zHdr++) = nHdr;
3503   }else{
3504     zHdr += sqlite3PutVarint(zHdr,nHdr);
3505   }
3506   assert( pData0<=pLast );
3507   pRec = pData0;
3508   while( 1 /*exit-by-break*/ ){
3509     serial_type = pRec->uTemp;
3510     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3511     ** additional varints, one per column.
3512     ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3513     ** immediately follow the header. */
3514     if( serial_type<=7 ){
3515       *(zHdr++) = serial_type;
3516       if( serial_type==0 ){
3517         /* NULL value.  No change in zPayload */
3518       }else{
3519         u64 v;
3520         u32 i;
3521         if( serial_type==7 ){
3522           assert( sizeof(v)==sizeof(pRec->u.r) );
3523           memcpy(&v, &pRec->u.r, sizeof(v));
3524           swapMixedEndianFloat(v);
3525         }else{
3526           v = pRec->u.i;
3527         }
3528         len = i = sqlite3SmallTypeSizes[serial_type];
3529         assert( i>0 );
3530         while( 1 /*exit-by-break*/ ){
3531           zPayload[--i] = (u8)(v&0xFF);
3532           if( i==0 ) break;
3533           v >>= 8;
3534         }
3535         zPayload += len;
3536       }
3537     }else if( serial_type<0x80 ){
3538       *(zHdr++) = serial_type;
3539       if( serial_type>=14 && pRec->n>0 ){
3540         assert( pRec->z!=0 );
3541         memcpy(zPayload, pRec->z, pRec->n);
3542         zPayload += pRec->n;
3543       }
3544     }else{
3545       zHdr += sqlite3PutVarint(zHdr, serial_type);
3546       if( pRec->n ){
3547         assert( pRec->z!=0 );
3548         memcpy(zPayload, pRec->z, pRec->n);
3549         zPayload += pRec->n;
3550       }
3551     }
3552     if( pRec==pLast ) break;
3553     pRec++;
3554   }
3555   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3556   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3557 
3558   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3559   REGISTER_TRACE(pOp->p3, pOut);
3560   break;
3561 }
3562 
3563 /* Opcode: Count P1 P2 P3 * *
3564 ** Synopsis: r[P2]=count()
3565 **
3566 ** Store the number of entries (an integer value) in the table or index
3567 ** opened by cursor P1 in register P2.
3568 **
3569 ** If P3==0, then an exact count is obtained, which involves visiting
3570 ** every btree page of the table.  But if P3 is non-zero, an estimate
3571 ** is returned based on the current cursor position.
3572 */
3573 case OP_Count: {         /* out2 */
3574   i64 nEntry;
3575   BtCursor *pCrsr;
3576 
3577   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3578   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3579   assert( pCrsr );
3580   if( pOp->p3 ){
3581     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3582   }else{
3583     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3584     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3585     if( rc ) goto abort_due_to_error;
3586   }
3587   pOut = out2Prerelease(p, pOp);
3588   pOut->u.i = nEntry;
3589   goto check_for_interrupt;
3590 }
3591 
3592 /* Opcode: Savepoint P1 * * P4 *
3593 **
3594 ** Open, release or rollback the savepoint named by parameter P4, depending
3595 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3596 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3597 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3598 */
3599 case OP_Savepoint: {
3600   int p1;                         /* Value of P1 operand */
3601   char *zName;                    /* Name of savepoint */
3602   int nName;
3603   Savepoint *pNew;
3604   Savepoint *pSavepoint;
3605   Savepoint *pTmp;
3606   int iSavepoint;
3607   int ii;
3608 
3609   p1 = pOp->p1;
3610   zName = pOp->p4.z;
3611 
3612   /* Assert that the p1 parameter is valid. Also that if there is no open
3613   ** transaction, then there cannot be any savepoints.
3614   */
3615   assert( db->pSavepoint==0 || db->autoCommit==0 );
3616   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3617   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3618   assert( checkSavepointCount(db) );
3619   assert( p->bIsReader );
3620 
3621   if( p1==SAVEPOINT_BEGIN ){
3622     if( db->nVdbeWrite>0 ){
3623       /* A new savepoint cannot be created if there are active write
3624       ** statements (i.e. open read/write incremental blob handles).
3625       */
3626       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3627       rc = SQLITE_BUSY;
3628     }else{
3629       nName = sqlite3Strlen30(zName);
3630 
3631 #ifndef SQLITE_OMIT_VIRTUALTABLE
3632       /* This call is Ok even if this savepoint is actually a transaction
3633       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3634       ** If this is a transaction savepoint being opened, it is guaranteed
3635       ** that the db->aVTrans[] array is empty.  */
3636       assert( db->autoCommit==0 || db->nVTrans==0 );
3637       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3638                                 db->nStatement+db->nSavepoint);
3639       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3640 #endif
3641 
3642       /* Create a new savepoint structure. */
3643       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3644       if( pNew ){
3645         pNew->zName = (char *)&pNew[1];
3646         memcpy(pNew->zName, zName, nName+1);
3647 
3648         /* If there is no open transaction, then mark this as a special
3649         ** "transaction savepoint". */
3650         if( db->autoCommit ){
3651           db->autoCommit = 0;
3652           db->isTransactionSavepoint = 1;
3653         }else{
3654           db->nSavepoint++;
3655         }
3656 
3657         /* Link the new savepoint into the database handle's list. */
3658         pNew->pNext = db->pSavepoint;
3659         db->pSavepoint = pNew;
3660         pNew->nDeferredCons = db->nDeferredCons;
3661         pNew->nDeferredImmCons = db->nDeferredImmCons;
3662       }
3663     }
3664   }else{
3665     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3666     iSavepoint = 0;
3667 
3668     /* Find the named savepoint. If there is no such savepoint, then an
3669     ** an error is returned to the user.  */
3670     for(
3671       pSavepoint = db->pSavepoint;
3672       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3673       pSavepoint = pSavepoint->pNext
3674     ){
3675       iSavepoint++;
3676     }
3677     if( !pSavepoint ){
3678       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3679       rc = SQLITE_ERROR;
3680     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3681       /* It is not possible to release (commit) a savepoint if there are
3682       ** active write statements.
3683       */
3684       sqlite3VdbeError(p, "cannot release savepoint - "
3685                           "SQL statements in progress");
3686       rc = SQLITE_BUSY;
3687     }else{
3688 
3689       /* Determine whether or not this is a transaction savepoint. If so,
3690       ** and this is a RELEASE command, then the current transaction
3691       ** is committed.
3692       */
3693       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3694       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3695         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3696           goto vdbe_return;
3697         }
3698         db->autoCommit = 1;
3699         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3700           p->pc = (int)(pOp - aOp);
3701           db->autoCommit = 0;
3702           p->rc = rc = SQLITE_BUSY;
3703           goto vdbe_return;
3704         }
3705         rc = p->rc;
3706         if( rc ){
3707           db->autoCommit = 0;
3708         }else{
3709           db->isTransactionSavepoint = 0;
3710         }
3711       }else{
3712         int isSchemaChange;
3713         iSavepoint = db->nSavepoint - iSavepoint - 1;
3714         if( p1==SAVEPOINT_ROLLBACK ){
3715           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3716           for(ii=0; ii<db->nDb; ii++){
3717             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3718                                        SQLITE_ABORT_ROLLBACK,
3719                                        isSchemaChange==0);
3720             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3721           }
3722         }else{
3723           assert( p1==SAVEPOINT_RELEASE );
3724           isSchemaChange = 0;
3725         }
3726         for(ii=0; ii<db->nDb; ii++){
3727           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3728           if( rc!=SQLITE_OK ){
3729             goto abort_due_to_error;
3730           }
3731         }
3732         if( isSchemaChange ){
3733           sqlite3ExpirePreparedStatements(db, 0);
3734           sqlite3ResetAllSchemasOfConnection(db);
3735           db->mDbFlags |= DBFLAG_SchemaChange;
3736         }
3737       }
3738       if( rc ) goto abort_due_to_error;
3739 
3740       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3741       ** savepoints nested inside of the savepoint being operated on. */
3742       while( db->pSavepoint!=pSavepoint ){
3743         pTmp = db->pSavepoint;
3744         db->pSavepoint = pTmp->pNext;
3745         sqlite3DbFree(db, pTmp);
3746         db->nSavepoint--;
3747       }
3748 
3749       /* If it is a RELEASE, then destroy the savepoint being operated on
3750       ** too. If it is a ROLLBACK TO, then set the number of deferred
3751       ** constraint violations present in the database to the value stored
3752       ** when the savepoint was created.  */
3753       if( p1==SAVEPOINT_RELEASE ){
3754         assert( pSavepoint==db->pSavepoint );
3755         db->pSavepoint = pSavepoint->pNext;
3756         sqlite3DbFree(db, pSavepoint);
3757         if( !isTransaction ){
3758           db->nSavepoint--;
3759         }
3760       }else{
3761         assert( p1==SAVEPOINT_ROLLBACK );
3762         db->nDeferredCons = pSavepoint->nDeferredCons;
3763         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3764       }
3765 
3766       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3767         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3768         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3769       }
3770     }
3771   }
3772   if( rc ) goto abort_due_to_error;
3773   if( p->eVdbeState==VDBE_HALT_STATE ){
3774     rc = SQLITE_DONE;
3775     goto vdbe_return;
3776   }
3777   break;
3778 }
3779 
3780 /* Opcode: AutoCommit P1 P2 * * *
3781 **
3782 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3783 ** back any currently active btree transactions. If there are any active
3784 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3785 ** there are active writing VMs or active VMs that use shared cache.
3786 **
3787 ** This instruction causes the VM to halt.
3788 */
3789 case OP_AutoCommit: {
3790   int desiredAutoCommit;
3791   int iRollback;
3792 
3793   desiredAutoCommit = pOp->p1;
3794   iRollback = pOp->p2;
3795   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3796   assert( desiredAutoCommit==1 || iRollback==0 );
3797   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3798   assert( p->bIsReader );
3799 
3800   if( desiredAutoCommit!=db->autoCommit ){
3801     if( iRollback ){
3802       assert( desiredAutoCommit==1 );
3803       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3804       db->autoCommit = 1;
3805     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3806       /* If this instruction implements a COMMIT and other VMs are writing
3807       ** return an error indicating that the other VMs must complete first.
3808       */
3809       sqlite3VdbeError(p, "cannot commit transaction - "
3810                           "SQL statements in progress");
3811       rc = SQLITE_BUSY;
3812       goto abort_due_to_error;
3813     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3814       goto vdbe_return;
3815     }else{
3816       db->autoCommit = (u8)desiredAutoCommit;
3817     }
3818     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3819       p->pc = (int)(pOp - aOp);
3820       db->autoCommit = (u8)(1-desiredAutoCommit);
3821       p->rc = rc = SQLITE_BUSY;
3822       goto vdbe_return;
3823     }
3824     sqlite3CloseSavepoints(db);
3825     if( p->rc==SQLITE_OK ){
3826       rc = SQLITE_DONE;
3827     }else{
3828       rc = SQLITE_ERROR;
3829     }
3830     goto vdbe_return;
3831   }else{
3832     sqlite3VdbeError(p,
3833         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3834         (iRollback)?"cannot rollback - no transaction is active":
3835                    "cannot commit - no transaction is active"));
3836 
3837     rc = SQLITE_ERROR;
3838     goto abort_due_to_error;
3839   }
3840   /*NOTREACHED*/ assert(0);
3841 }
3842 
3843 /* Opcode: Transaction P1 P2 P3 P4 P5
3844 **
3845 ** Begin a transaction on database P1 if a transaction is not already
3846 ** active.
3847 ** If P2 is non-zero, then a write-transaction is started, or if a
3848 ** read-transaction is already active, it is upgraded to a write-transaction.
3849 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3850 ** then an exclusive transaction is started.
3851 **
3852 ** P1 is the index of the database file on which the transaction is
3853 ** started.  Index 0 is the main database file and index 1 is the
3854 ** file used for temporary tables.  Indices of 2 or more are used for
3855 ** attached databases.
3856 **
3857 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3858 ** true (this flag is set if the Vdbe may modify more than one row and may
3859 ** throw an ABORT exception), a statement transaction may also be opened.
3860 ** More specifically, a statement transaction is opened iff the database
3861 ** connection is currently not in autocommit mode, or if there are other
3862 ** active statements. A statement transaction allows the changes made by this
3863 ** VDBE to be rolled back after an error without having to roll back the
3864 ** entire transaction. If no error is encountered, the statement transaction
3865 ** will automatically commit when the VDBE halts.
3866 **
3867 ** If P5!=0 then this opcode also checks the schema cookie against P3
3868 ** and the schema generation counter against P4.
3869 ** The cookie changes its value whenever the database schema changes.
3870 ** This operation is used to detect when that the cookie has changed
3871 ** and that the current process needs to reread the schema.  If the schema
3872 ** cookie in P3 differs from the schema cookie in the database header or
3873 ** if the schema generation counter in P4 differs from the current
3874 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3875 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3876 ** statement and rerun it from the beginning.
3877 */
3878 case OP_Transaction: {
3879   Btree *pBt;
3880   Db *pDb;
3881   int iMeta = 0;
3882 
3883   assert( p->bIsReader );
3884   assert( p->readOnly==0 || pOp->p2==0 );
3885   assert( pOp->p2>=0 && pOp->p2<=2 );
3886   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3887   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3888   assert( rc==SQLITE_OK );
3889   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3890     if( db->flags & SQLITE_QueryOnly ){
3891       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3892       rc = SQLITE_READONLY;
3893     }else{
3894       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3895       ** transaction */
3896       rc = SQLITE_CORRUPT;
3897     }
3898     goto abort_due_to_error;
3899   }
3900   pDb = &db->aDb[pOp->p1];
3901   pBt = pDb->pBt;
3902 
3903   if( pBt ){
3904     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3905     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3906     testcase( rc==SQLITE_BUSY_RECOVERY );
3907     if( rc!=SQLITE_OK ){
3908       if( (rc&0xff)==SQLITE_BUSY ){
3909         p->pc = (int)(pOp - aOp);
3910         p->rc = rc;
3911         goto vdbe_return;
3912       }
3913       goto abort_due_to_error;
3914     }
3915 
3916     if( p->usesStmtJournal
3917      && pOp->p2
3918      && (db->autoCommit==0 || db->nVdbeRead>1)
3919     ){
3920       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3921       if( p->iStatement==0 ){
3922         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3923         db->nStatement++;
3924         p->iStatement = db->nSavepoint + db->nStatement;
3925       }
3926 
3927       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3928       if( rc==SQLITE_OK ){
3929         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3930       }
3931 
3932       /* Store the current value of the database handles deferred constraint
3933       ** counter. If the statement transaction needs to be rolled back,
3934       ** the value of this counter needs to be restored too.  */
3935       p->nStmtDefCons = db->nDeferredCons;
3936       p->nStmtDefImmCons = db->nDeferredImmCons;
3937     }
3938   }
3939   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3940   if( rc==SQLITE_OK
3941    && pOp->p5
3942    && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3943   ){
3944     /*
3945     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3946     ** version is checked to ensure that the schema has not changed since the
3947     ** SQL statement was prepared.
3948     */
3949     sqlite3DbFree(db, p->zErrMsg);
3950     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3951     /* If the schema-cookie from the database file matches the cookie
3952     ** stored with the in-memory representation of the schema, do
3953     ** not reload the schema from the database file.
3954     **
3955     ** If virtual-tables are in use, this is not just an optimization.
3956     ** Often, v-tables store their data in other SQLite tables, which
3957     ** are queried from within xNext() and other v-table methods using
3958     ** prepared queries. If such a query is out-of-date, we do not want to
3959     ** discard the database schema, as the user code implementing the
3960     ** v-table would have to be ready for the sqlite3_vtab structure itself
3961     ** to be invalidated whenever sqlite3_step() is called from within
3962     ** a v-table method.
3963     */
3964     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3965       sqlite3ResetOneSchema(db, pOp->p1);
3966     }
3967     p->expired = 1;
3968     rc = SQLITE_SCHEMA;
3969 
3970     /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3971     ** from being modified in sqlite3VdbeHalt(). If this statement is
3972     ** reprepared, changeCntOn will be set again. */
3973     p->changeCntOn = 0;
3974   }
3975   if( rc ) goto abort_due_to_error;
3976   break;
3977 }
3978 
3979 /* Opcode: ReadCookie P1 P2 P3 * *
3980 **
3981 ** Read cookie number P3 from database P1 and write it into register P2.
3982 ** P3==1 is the schema version.  P3==2 is the database format.
3983 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3984 ** the main database file and P1==1 is the database file used to store
3985 ** temporary tables.
3986 **
3987 ** There must be a read-lock on the database (either a transaction
3988 ** must be started or there must be an open cursor) before
3989 ** executing this instruction.
3990 */
3991 case OP_ReadCookie: {               /* out2 */
3992   int iMeta;
3993   int iDb;
3994   int iCookie;
3995 
3996   assert( p->bIsReader );
3997   iDb = pOp->p1;
3998   iCookie = pOp->p3;
3999   assert( pOp->p3<SQLITE_N_BTREE_META );
4000   assert( iDb>=0 && iDb<db->nDb );
4001   assert( db->aDb[iDb].pBt!=0 );
4002   assert( DbMaskTest(p->btreeMask, iDb) );
4003 
4004   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
4005   pOut = out2Prerelease(p, pOp);
4006   pOut->u.i = iMeta;
4007   break;
4008 }
4009 
4010 /* Opcode: SetCookie P1 P2 P3 * P5
4011 **
4012 ** Write the integer value P3 into cookie number P2 of database P1.
4013 ** P2==1 is the schema version.  P2==2 is the database format.
4014 ** P2==3 is the recommended pager cache
4015 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
4016 ** database file used to store temporary tables.
4017 **
4018 ** A transaction must be started before executing this opcode.
4019 **
4020 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4021 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
4022 ** has P5 set to 1, so that the internal schema version will be different
4023 ** from the database schema version, resulting in a schema reset.
4024 */
4025 case OP_SetCookie: {
4026   Db *pDb;
4027 
4028   sqlite3VdbeIncrWriteCounter(p, 0);
4029   assert( pOp->p2<SQLITE_N_BTREE_META );
4030   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4031   assert( DbMaskTest(p->btreeMask, pOp->p1) );
4032   assert( p->readOnly==0 );
4033   pDb = &db->aDb[pOp->p1];
4034   assert( pDb->pBt!=0 );
4035   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4036   /* See note about index shifting on OP_ReadCookie */
4037   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
4038   if( pOp->p2==BTREE_SCHEMA_VERSION ){
4039     /* When the schema cookie changes, record the new cookie internally */
4040     *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
4041     db->mDbFlags |= DBFLAG_SchemaChange;
4042     sqlite3FkClearTriggerCache(db, pOp->p1);
4043   }else if( pOp->p2==BTREE_FILE_FORMAT ){
4044     /* Record changes in the file format */
4045     pDb->pSchema->file_format = pOp->p3;
4046   }
4047   if( pOp->p1==1 ){
4048     /* Invalidate all prepared statements whenever the TEMP database
4049     ** schema is changed.  Ticket #1644 */
4050     sqlite3ExpirePreparedStatements(db, 0);
4051     p->expired = 0;
4052   }
4053   if( rc ) goto abort_due_to_error;
4054   break;
4055 }
4056 
4057 /* Opcode: OpenRead P1 P2 P3 P4 P5
4058 ** Synopsis: root=P2 iDb=P3
4059 **
4060 ** Open a read-only cursor for the database table whose root page is
4061 ** P2 in a database file.  The database file is determined by P3.
4062 ** P3==0 means the main database, P3==1 means the database used for
4063 ** temporary tables, and P3>1 means used the corresponding attached
4064 ** database.  Give the new cursor an identifier of P1.  The P1
4065 ** values need not be contiguous but all P1 values should be small integers.
4066 ** It is an error for P1 to be negative.
4067 **
4068 ** Allowed P5 bits:
4069 ** <ul>
4070 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4071 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4072 **       of OP_SeekLE/OP_IdxLT)
4073 ** </ul>
4074 **
4075 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4076 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4077 ** object, then table being opened must be an [index b-tree] where the
4078 ** KeyInfo object defines the content and collating
4079 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4080 ** value, then the table being opened must be a [table b-tree] with a
4081 ** number of columns no less than the value of P4.
4082 **
4083 ** See also: OpenWrite, ReopenIdx
4084 */
4085 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4086 ** Synopsis: root=P2 iDb=P3
4087 **
4088 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4089 ** checks to see if the cursor on P1 is already open on the same
4090 ** b-tree and if it is this opcode becomes a no-op.  In other words,
4091 ** if the cursor is already open, do not reopen it.
4092 **
4093 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4094 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
4095 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4096 ** number.
4097 **
4098 ** Allowed P5 bits:
4099 ** <ul>
4100 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4101 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4102 **       of OP_SeekLE/OP_IdxLT)
4103 ** </ul>
4104 **
4105 ** See also: OP_OpenRead, OP_OpenWrite
4106 */
4107 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4108 ** Synopsis: root=P2 iDb=P3
4109 **
4110 ** Open a read/write cursor named P1 on the table or index whose root
4111 ** page is P2 (or whose root page is held in register P2 if the
4112 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4113 **
4114 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4115 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4116 ** object, then table being opened must be an [index b-tree] where the
4117 ** KeyInfo object defines the content and collating
4118 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4119 ** value, then the table being opened must be a [table b-tree] with a
4120 ** number of columns no less than the value of P4.
4121 **
4122 ** Allowed P5 bits:
4123 ** <ul>
4124 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4125 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4126 **       of OP_SeekLE/OP_IdxLT)
4127 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4128 **       and subsequently delete entries in an index btree.  This is a
4129 **       hint to the storage engine that the storage engine is allowed to
4130 **       ignore.  The hint is not used by the official SQLite b*tree storage
4131 **       engine, but is used by COMDB2.
4132 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4133 **       as the root page, not the value of P2 itself.
4134 ** </ul>
4135 **
4136 ** This instruction works like OpenRead except that it opens the cursor
4137 ** in read/write mode.
4138 **
4139 ** See also: OP_OpenRead, OP_ReopenIdx
4140 */
4141 case OP_ReopenIdx: {
4142   int nField;
4143   KeyInfo *pKeyInfo;
4144   u32 p2;
4145   int iDb;
4146   int wrFlag;
4147   Btree *pX;
4148   VdbeCursor *pCur;
4149   Db *pDb;
4150 
4151   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4152   assert( pOp->p4type==P4_KEYINFO );
4153   pCur = p->apCsr[pOp->p1];
4154   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4155     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
4156     assert( pCur->eCurType==CURTYPE_BTREE );
4157     sqlite3BtreeClearCursor(pCur->uc.pCursor);
4158     goto open_cursor_set_hints;
4159   }
4160   /* If the cursor is not currently open or is open on a different
4161   ** index, then fall through into OP_OpenRead to force a reopen */
4162 case OP_OpenRead:
4163 case OP_OpenWrite:
4164 
4165   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4166   assert( p->bIsReader );
4167   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4168           || p->readOnly==0 );
4169 
4170   if( p->expired==1 ){
4171     rc = SQLITE_ABORT_ROLLBACK;
4172     goto abort_due_to_error;
4173   }
4174 
4175   nField = 0;
4176   pKeyInfo = 0;
4177   p2 = (u32)pOp->p2;
4178   iDb = pOp->p3;
4179   assert( iDb>=0 && iDb<db->nDb );
4180   assert( DbMaskTest(p->btreeMask, iDb) );
4181   pDb = &db->aDb[iDb];
4182   pX = pDb->pBt;
4183   assert( pX!=0 );
4184   if( pOp->opcode==OP_OpenWrite ){
4185     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4186     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4187     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4188     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4189       p->minWriteFileFormat = pDb->pSchema->file_format;
4190     }
4191   }else{
4192     wrFlag = 0;
4193   }
4194   if( pOp->p5 & OPFLAG_P2ISREG ){
4195     assert( p2>0 );
4196     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4197     assert( pOp->opcode==OP_OpenWrite );
4198     pIn2 = &aMem[p2];
4199     assert( memIsValid(pIn2) );
4200     assert( (pIn2->flags & MEM_Int)!=0 );
4201     sqlite3VdbeMemIntegerify(pIn2);
4202     p2 = (int)pIn2->u.i;
4203     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4204     ** that opcode will always set the p2 value to 2 or more or else fail.
4205     ** If there were a failure, the prepared statement would have halted
4206     ** before reaching this instruction. */
4207     assert( p2>=2 );
4208   }
4209   if( pOp->p4type==P4_KEYINFO ){
4210     pKeyInfo = pOp->p4.pKeyInfo;
4211     assert( pKeyInfo->enc==ENC(db) );
4212     assert( pKeyInfo->db==db );
4213     nField = pKeyInfo->nAllField;
4214   }else if( pOp->p4type==P4_INT32 ){
4215     nField = pOp->p4.i;
4216   }
4217   assert( pOp->p1>=0 );
4218   assert( nField>=0 );
4219   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4220   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4221   if( pCur==0 ) goto no_mem;
4222   pCur->iDb = iDb;
4223   pCur->nullRow = 1;
4224   pCur->isOrdered = 1;
4225   pCur->pgnoRoot = p2;
4226 #ifdef SQLITE_DEBUG
4227   pCur->wrFlag = wrFlag;
4228 #endif
4229   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4230   pCur->pKeyInfo = pKeyInfo;
4231   /* Set the VdbeCursor.isTable variable. Previous versions of
4232   ** SQLite used to check if the root-page flags were sane at this point
4233   ** and report database corruption if they were not, but this check has
4234   ** since moved into the btree layer.  */
4235   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4236 
4237 open_cursor_set_hints:
4238   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4239   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4240   testcase( pOp->p5 & OPFLAG_BULKCSR );
4241   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4242   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4243                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4244   if( rc ) goto abort_due_to_error;
4245   break;
4246 }
4247 
4248 /* Opcode: OpenDup P1 P2 * * *
4249 **
4250 ** Open a new cursor P1 that points to the same ephemeral table as
4251 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4252 ** opcode.  Only ephemeral cursors may be duplicated.
4253 **
4254 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4255 */
4256 case OP_OpenDup: {
4257   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4258   VdbeCursor *pCx;      /* The new cursor */
4259 
4260   pOrig = p->apCsr[pOp->p2];
4261   assert( pOrig );
4262   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4263 
4264   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4265   if( pCx==0 ) goto no_mem;
4266   pCx->nullRow = 1;
4267   pCx->isEphemeral = 1;
4268   pCx->pKeyInfo = pOrig->pKeyInfo;
4269   pCx->isTable = pOrig->isTable;
4270   pCx->pgnoRoot = pOrig->pgnoRoot;
4271   pCx->isOrdered = pOrig->isOrdered;
4272   pCx->ub.pBtx = pOrig->ub.pBtx;
4273   pCx->noReuse = 1;
4274   pOrig->noReuse = 1;
4275   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4276                           pCx->pKeyInfo, pCx->uc.pCursor);
4277   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4278   ** opened for a database.  Since there is already an open cursor when this
4279   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4280   assert( rc==SQLITE_OK );
4281   break;
4282 }
4283 
4284 
4285 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4286 ** Synopsis: nColumn=P2
4287 **
4288 ** Open a new cursor P1 to a transient table.
4289 ** The cursor is always opened read/write even if
4290 ** the main database is read-only.  The ephemeral
4291 ** table is deleted automatically when the cursor is closed.
4292 **
4293 ** If the cursor P1 is already opened on an ephemeral table, the table
4294 ** is cleared (all content is erased).
4295 **
4296 ** P2 is the number of columns in the ephemeral table.
4297 ** The cursor points to a BTree table if P4==0 and to a BTree index
4298 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4299 ** that defines the format of keys in the index.
4300 **
4301 ** The P5 parameter can be a mask of the BTREE_* flags defined
4302 ** in btree.h.  These flags control aspects of the operation of
4303 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4304 ** added automatically.
4305 **
4306 ** If P3 is positive, then reg[P3] is modified slightly so that it
4307 ** can be used as zero-length data for OP_Insert.  This is an optimization
4308 ** that avoids an extra OP_Blob opcode to initialize that register.
4309 */
4310 /* Opcode: OpenAutoindex P1 P2 * P4 *
4311 ** Synopsis: nColumn=P2
4312 **
4313 ** This opcode works the same as OP_OpenEphemeral.  It has a
4314 ** different name to distinguish its use.  Tables created using
4315 ** by this opcode will be used for automatically created transient
4316 ** indices in joins.
4317 */
4318 case OP_OpenAutoindex:
4319 case OP_OpenEphemeral: {
4320   VdbeCursor *pCx;
4321   KeyInfo *pKeyInfo;
4322 
4323   static const int vfsFlags =
4324       SQLITE_OPEN_READWRITE |
4325       SQLITE_OPEN_CREATE |
4326       SQLITE_OPEN_EXCLUSIVE |
4327       SQLITE_OPEN_DELETEONCLOSE |
4328       SQLITE_OPEN_TRANSIENT_DB;
4329   assert( pOp->p1>=0 );
4330   assert( pOp->p2>=0 );
4331   if( pOp->p3>0 ){
4332     /* Make register reg[P3] into a value that can be used as the data
4333     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4334     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4335     assert( pOp->opcode==OP_OpenEphemeral );
4336     assert( aMem[pOp->p3].flags & MEM_Null );
4337     aMem[pOp->p3].n = 0;
4338     aMem[pOp->p3].z = "";
4339   }
4340   pCx = p->apCsr[pOp->p1];
4341   if( pCx && !pCx->noReuse &&  ALWAYS(pOp->p2<=pCx->nField) ){
4342     /* If the ephermeral table is already open and has no duplicates from
4343     ** OP_OpenDup, then erase all existing content so that the table is
4344     ** empty again, rather than creating a new table. */
4345     assert( pCx->isEphemeral );
4346     pCx->seqCount = 0;
4347     pCx->cacheStatus = CACHE_STALE;
4348     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4349   }else{
4350     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4351     if( pCx==0 ) goto no_mem;
4352     pCx->isEphemeral = 1;
4353     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4354                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4355                           vfsFlags);
4356     if( rc==SQLITE_OK ){
4357       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4358       if( rc==SQLITE_OK ){
4359         /* If a transient index is required, create it by calling
4360         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4361         ** opening it. If a transient table is required, just use the
4362         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4363         */
4364         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4365           assert( pOp->p4type==P4_KEYINFO );
4366           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4367               BTREE_BLOBKEY | pOp->p5);
4368           if( rc==SQLITE_OK ){
4369             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4370             assert( pKeyInfo->db==db );
4371             assert( pKeyInfo->enc==ENC(db) );
4372             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4373                 pKeyInfo, pCx->uc.pCursor);
4374           }
4375           pCx->isTable = 0;
4376         }else{
4377           pCx->pgnoRoot = SCHEMA_ROOT;
4378           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4379               0, pCx->uc.pCursor);
4380           pCx->isTable = 1;
4381         }
4382       }
4383       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4384       if( rc ){
4385         sqlite3BtreeClose(pCx->ub.pBtx);
4386       }
4387     }
4388   }
4389   if( rc ) goto abort_due_to_error;
4390   pCx->nullRow = 1;
4391   break;
4392 }
4393 
4394 /* Opcode: SorterOpen P1 P2 P3 P4 *
4395 **
4396 ** This opcode works like OP_OpenEphemeral except that it opens
4397 ** a transient index that is specifically designed to sort large
4398 ** tables using an external merge-sort algorithm.
4399 **
4400 ** If argument P3 is non-zero, then it indicates that the sorter may
4401 ** assume that a stable sort considering the first P3 fields of each
4402 ** key is sufficient to produce the required results.
4403 */
4404 case OP_SorterOpen: {
4405   VdbeCursor *pCx;
4406 
4407   assert( pOp->p1>=0 );
4408   assert( pOp->p2>=0 );
4409   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4410   if( pCx==0 ) goto no_mem;
4411   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4412   assert( pCx->pKeyInfo->db==db );
4413   assert( pCx->pKeyInfo->enc==ENC(db) );
4414   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4415   if( rc ) goto abort_due_to_error;
4416   break;
4417 }
4418 
4419 /* Opcode: SequenceTest P1 P2 * * *
4420 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4421 **
4422 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4423 ** to P2. Regardless of whether or not the jump is taken, increment the
4424 ** the sequence value.
4425 */
4426 case OP_SequenceTest: {
4427   VdbeCursor *pC;
4428   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4429   pC = p->apCsr[pOp->p1];
4430   assert( isSorter(pC) );
4431   if( (pC->seqCount++)==0 ){
4432     goto jump_to_p2;
4433   }
4434   break;
4435 }
4436 
4437 /* Opcode: OpenPseudo P1 P2 P3 * *
4438 ** Synopsis: P3 columns in r[P2]
4439 **
4440 ** Open a new cursor that points to a fake table that contains a single
4441 ** row of data.  The content of that one row is the content of memory
4442 ** register P2.  In other words, cursor P1 becomes an alias for the
4443 ** MEM_Blob content contained in register P2.
4444 **
4445 ** A pseudo-table created by this opcode is used to hold a single
4446 ** row output from the sorter so that the row can be decomposed into
4447 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4448 ** is the only cursor opcode that works with a pseudo-table.
4449 **
4450 ** P3 is the number of fields in the records that will be stored by
4451 ** the pseudo-table.
4452 */
4453 case OP_OpenPseudo: {
4454   VdbeCursor *pCx;
4455 
4456   assert( pOp->p1>=0 );
4457   assert( pOp->p3>=0 );
4458   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4459   if( pCx==0 ) goto no_mem;
4460   pCx->nullRow = 1;
4461   pCx->seekResult = pOp->p2;
4462   pCx->isTable = 1;
4463   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4464   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4465   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4466   ** which is a performance optimization */
4467   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4468   assert( pOp->p5==0 );
4469   break;
4470 }
4471 
4472 /* Opcode: Close P1 * * * *
4473 **
4474 ** Close a cursor previously opened as P1.  If P1 is not
4475 ** currently open, this instruction is a no-op.
4476 */
4477 case OP_Close: {
4478   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4479   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4480   p->apCsr[pOp->p1] = 0;
4481   break;
4482 }
4483 
4484 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4485 /* Opcode: ColumnsUsed P1 * * P4 *
4486 **
4487 ** This opcode (which only exists if SQLite was compiled with
4488 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4489 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4490 ** (P4_INT64) in which the first 63 bits are one for each of the
4491 ** first 63 columns of the table or index that are actually used
4492 ** by the cursor.  The high-order bit is set if any column after
4493 ** the 64th is used.
4494 */
4495 case OP_ColumnsUsed: {
4496   VdbeCursor *pC;
4497   pC = p->apCsr[pOp->p1];
4498   assert( pC->eCurType==CURTYPE_BTREE );
4499   pC->maskUsed = *(u64*)pOp->p4.pI64;
4500   break;
4501 }
4502 #endif
4503 
4504 /* Opcode: SeekGE P1 P2 P3 P4 *
4505 ** Synopsis: key=r[P3@P4]
4506 **
4507 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4508 ** use the value in register P3 as the key.  If cursor P1 refers
4509 ** to an SQL index, then P3 is the first in an array of P4 registers
4510 ** that are used as an unpacked index key.
4511 **
4512 ** Reposition cursor P1 so that  it points to the smallest entry that
4513 ** is greater than or equal to the key value. If there are no records
4514 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4515 **
4516 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4517 ** opcode will either land on a record that exactly matches the key, or
4518 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4519 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4520 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4521 ** IdxGT opcode will be used on subsequent loop iterations.  The
4522 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4523 ** is an equality search.
4524 **
4525 ** This opcode leaves the cursor configured to move in forward order,
4526 ** from the beginning toward the end.  In other words, the cursor is
4527 ** configured to use Next, not Prev.
4528 **
4529 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4530 */
4531 /* Opcode: SeekGT P1 P2 P3 P4 *
4532 ** Synopsis: key=r[P3@P4]
4533 **
4534 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4535 ** use the value in register P3 as a key. If cursor P1 refers
4536 ** to an SQL index, then P3 is the first in an array of P4 registers
4537 ** that are used as an unpacked index key.
4538 **
4539 ** Reposition cursor P1 so that it points to the smallest entry that
4540 ** is greater than the key value. If there are no records greater than
4541 ** the key and P2 is not zero, then jump to P2.
4542 **
4543 ** This opcode leaves the cursor configured to move in forward order,
4544 ** from the beginning toward the end.  In other words, the cursor is
4545 ** configured to use Next, not Prev.
4546 **
4547 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4548 */
4549 /* Opcode: SeekLT P1 P2 P3 P4 *
4550 ** Synopsis: key=r[P3@P4]
4551 **
4552 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4553 ** use the value in register P3 as a key. If cursor P1 refers
4554 ** to an SQL index, then P3 is the first in an array of P4 registers
4555 ** that are used as an unpacked index key.
4556 **
4557 ** Reposition cursor P1 so that  it points to the largest entry that
4558 ** is less than the key value. If there are no records less than
4559 ** the key and P2 is not zero, then jump to P2.
4560 **
4561 ** This opcode leaves the cursor configured to move in reverse order,
4562 ** from the end toward the beginning.  In other words, the cursor is
4563 ** configured to use Prev, not Next.
4564 **
4565 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4566 */
4567 /* Opcode: SeekLE P1 P2 P3 P4 *
4568 ** Synopsis: key=r[P3@P4]
4569 **
4570 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4571 ** use the value in register P3 as a key. If cursor P1 refers
4572 ** to an SQL index, then P3 is the first in an array of P4 registers
4573 ** that are used as an unpacked index key.
4574 **
4575 ** Reposition cursor P1 so that it points to the largest entry that
4576 ** is less than or equal to the key value. If there are no records
4577 ** less than or equal to the key and P2 is not zero, then jump to P2.
4578 **
4579 ** This opcode leaves the cursor configured to move in reverse order,
4580 ** from the end toward the beginning.  In other words, the cursor is
4581 ** configured to use Prev, not Next.
4582 **
4583 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4584 ** opcode will either land on a record that exactly matches the key, or
4585 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4586 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4587 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4588 ** IdxGE opcode will be used on subsequent loop iterations.  The
4589 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4590 ** is an equality search.
4591 **
4592 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4593 */
4594 case OP_SeekLT:         /* jump, in3, group */
4595 case OP_SeekLE:         /* jump, in3, group */
4596 case OP_SeekGE:         /* jump, in3, group */
4597 case OP_SeekGT: {       /* jump, in3, group */
4598   int res;           /* Comparison result */
4599   int oc;            /* Opcode */
4600   VdbeCursor *pC;    /* The cursor to seek */
4601   UnpackedRecord r;  /* The key to seek for */
4602   int nField;        /* Number of columns or fields in the key */
4603   i64 iKey;          /* The rowid we are to seek to */
4604   int eqOnly;        /* Only interested in == results */
4605 
4606   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4607   assert( pOp->p2!=0 );
4608   pC = p->apCsr[pOp->p1];
4609   assert( pC!=0 );
4610   assert( pC->eCurType==CURTYPE_BTREE );
4611   assert( OP_SeekLE == OP_SeekLT+1 );
4612   assert( OP_SeekGE == OP_SeekLT+2 );
4613   assert( OP_SeekGT == OP_SeekLT+3 );
4614   assert( pC->isOrdered );
4615   assert( pC->uc.pCursor!=0 );
4616   oc = pOp->opcode;
4617   eqOnly = 0;
4618   pC->nullRow = 0;
4619 #ifdef SQLITE_DEBUG
4620   pC->seekOp = pOp->opcode;
4621 #endif
4622 
4623   pC->deferredMoveto = 0;
4624   pC->cacheStatus = CACHE_STALE;
4625   if( pC->isTable ){
4626     u16 flags3, newType;
4627     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4628     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4629               || CORRUPT_DB );
4630 
4631     /* The input value in P3 might be of any type: integer, real, string,
4632     ** blob, or NULL.  But it needs to be an integer before we can do
4633     ** the seek, so convert it. */
4634     pIn3 = &aMem[pOp->p3];
4635     flags3 = pIn3->flags;
4636     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4637       applyNumericAffinity(pIn3, 0);
4638     }
4639     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4640     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4641     pIn3->flags = flags3;  /* But convert the type back to its original */
4642 
4643     /* If the P3 value could not be converted into an integer without
4644     ** loss of information, then special processing is required... */
4645     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4646       int c;
4647       if( (newType & MEM_Real)==0 ){
4648         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4649           VdbeBranchTaken(1,2);
4650           goto jump_to_p2;
4651         }else{
4652           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4653           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4654           goto seek_not_found;
4655         }
4656       }
4657       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4658 
4659       /* If the approximation iKey is larger than the actual real search
4660       ** term, substitute >= for > and < for <=. e.g. if the search term
4661       ** is 4.9 and the integer approximation 5:
4662       **
4663       **        (x >  4.9)    ->     (x >= 5)
4664       **        (x <= 4.9)    ->     (x <  5)
4665       */
4666       if( c>0 ){
4667         assert( OP_SeekGE==(OP_SeekGT-1) );
4668         assert( OP_SeekLT==(OP_SeekLE-1) );
4669         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4670         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4671       }
4672 
4673       /* If the approximation iKey is smaller than the actual real search
4674       ** term, substitute <= for < and > for >=.  */
4675       else if( c<0 ){
4676         assert( OP_SeekLE==(OP_SeekLT+1) );
4677         assert( OP_SeekGT==(OP_SeekGE+1) );
4678         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4679         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4680       }
4681     }
4682     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4683     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4684     if( rc!=SQLITE_OK ){
4685       goto abort_due_to_error;
4686     }
4687   }else{
4688     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4689     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4690     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4691     ** with the same key.
4692     */
4693     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4694       eqOnly = 1;
4695       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4696       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4697       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4698       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4699       assert( pOp[1].p1==pOp[0].p1 );
4700       assert( pOp[1].p2==pOp[0].p2 );
4701       assert( pOp[1].p3==pOp[0].p3 );
4702       assert( pOp[1].p4.i==pOp[0].p4.i );
4703     }
4704 
4705     nField = pOp->p4.i;
4706     assert( pOp->p4type==P4_INT32 );
4707     assert( nField>0 );
4708     r.pKeyInfo = pC->pKeyInfo;
4709     r.nField = (u16)nField;
4710 
4711     /* The next line of code computes as follows, only faster:
4712     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4713     **     r.default_rc = -1;
4714     **   }else{
4715     **     r.default_rc = +1;
4716     **   }
4717     */
4718     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4719     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4720     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4721     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4722     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4723 
4724     r.aMem = &aMem[pOp->p3];
4725 #ifdef SQLITE_DEBUG
4726     {
4727       int i;
4728       for(i=0; i<r.nField; i++){
4729         assert( memIsValid(&r.aMem[i]) );
4730         if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
4731       }
4732     }
4733 #endif
4734     r.eqSeen = 0;
4735     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4736     if( rc!=SQLITE_OK ){
4737       goto abort_due_to_error;
4738     }
4739     if( eqOnly && r.eqSeen==0 ){
4740       assert( res!=0 );
4741       goto seek_not_found;
4742     }
4743   }
4744 #ifdef SQLITE_TEST
4745   sqlite3_search_count++;
4746 #endif
4747   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4748     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4749       res = 0;
4750       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4751       if( rc!=SQLITE_OK ){
4752         if( rc==SQLITE_DONE ){
4753           rc = SQLITE_OK;
4754           res = 1;
4755         }else{
4756           goto abort_due_to_error;
4757         }
4758       }
4759     }else{
4760       res = 0;
4761     }
4762   }else{
4763     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4764     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4765       res = 0;
4766       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4767       if( rc!=SQLITE_OK ){
4768         if( rc==SQLITE_DONE ){
4769           rc = SQLITE_OK;
4770           res = 1;
4771         }else{
4772           goto abort_due_to_error;
4773         }
4774       }
4775     }else{
4776       /* res might be negative because the table is empty.  Check to
4777       ** see if this is the case.
4778       */
4779       res = sqlite3BtreeEof(pC->uc.pCursor);
4780     }
4781   }
4782 seek_not_found:
4783   assert( pOp->p2>0 );
4784   VdbeBranchTaken(res!=0,2);
4785   if( res ){
4786     goto jump_to_p2;
4787   }else if( eqOnly ){
4788     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4789     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4790   }
4791   break;
4792 }
4793 
4794 
4795 /* Opcode: SeekScan  P1 P2 * * P5
4796 ** Synopsis: Scan-ahead up to P1 rows
4797 **
4798 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4799 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4800 ** checked by assert() statements.
4801 **
4802 ** This opcode uses the P1 through P4 operands of the subsequent
4803 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4804 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4805 ** the P1, P2 and P5 operands of this opcode are also used, and  are called
4806 ** This.P1, This.P2 and This.P5.
4807 **
4808 ** This opcode helps to optimize IN operators on a multi-column index
4809 ** where the IN operator is on the later terms of the index by avoiding
4810 ** unnecessary seeks on the btree, substituting steps to the next row
4811 ** of the b-tree instead.  A correct answer is obtained if this opcode
4812 ** is omitted or is a no-op.
4813 **
4814 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4815 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4816 ** to.  Call this SeekGE.P3/P4 row the "target".
4817 **
4818 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4819 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4820 **
4821 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4822 ** might be the target row, or it might be near and slightly before the
4823 ** target row, or it might be after the target row.  If the cursor is
4824 ** currently before the target row, then this opcode attempts to position
4825 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4826 ** on the cursor between 1 and This.P1 times.
4827 **
4828 ** The This.P5 parameter is a flag that indicates what to do if the
4829 ** cursor ends up pointing at a valid row that is past the target
4830 ** row.  If This.P5 is false (0) then a jump is made to SeekGE.P2.  If
4831 ** This.P5 is true (non-zero) then a jump is made to This.P2.  The P5==0
4832 ** case occurs when there are no inequality constraints to the right of
4833 ** the IN constraing.  The jump to SeekGE.P2 ends the loop.  The P5!=0 case
4834 ** occurs when there are inequality constraints to the right of the IN
4835 ** operator.  In that case, the This.P2 will point either directly to or
4836 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4837 ** loop terminate.
4838 **
4839 ** Possible outcomes from this opcode:<ol>
4840 **
4841 ** <li> If the cursor is initally not pointed to any valid row, then
4842 **      fall through into the subsequent OP_SeekGE opcode.
4843 **
4844 ** <li> If the cursor is left pointing to a row that is before the target
4845 **      row, even after making as many as This.P1 calls to
4846 **      sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4847 **
4848 ** <li> If the cursor is left pointing at the target row, either because it
4849 **      was at the target row to begin with or because one or more
4850 **      sqlite3BtreeNext() calls moved the cursor to the target row,
4851 **      then jump to This.P2..,
4852 **
4853 ** <li> If the cursor started out before the target row and a call to
4854 **      to sqlite3BtreeNext() moved the cursor off the end of the index
4855 **      (indicating that the target row definitely does not exist in the
4856 **      btree) then jump to SeekGE.P2, ending the loop.
4857 **
4858 ** <li> If the cursor ends up on a valid row that is past the target row
4859 **      (indicating that the target row does not exist in the btree) then
4860 **      jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4861 ** </ol>
4862 */
4863 case OP_SeekScan: {
4864   VdbeCursor *pC;
4865   int res;
4866   int nStep;
4867   UnpackedRecord r;
4868 
4869   assert( pOp[1].opcode==OP_SeekGE );
4870 
4871   /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4872   ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4873   ** opcode past the OP_SeekGE itself.  */
4874   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4875 #ifdef SQLITE_DEBUG
4876   if( pOp->p5==0 ){
4877     /* There are no inequality constraints following the IN constraint. */
4878     assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4879     assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4880     assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4881     assert( aOp[pOp->p2-1].opcode==OP_IdxGT
4882          || aOp[pOp->p2-1].opcode==OP_IdxGE );
4883     testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4884   }else{
4885     /* There are inequality constraints.  */
4886     assert( pOp->p2==(int)(pOp-aOp)+2 );
4887     assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
4888   }
4889 #endif
4890 
4891   assert( pOp->p1>0 );
4892   pC = p->apCsr[pOp[1].p1];
4893   assert( pC!=0 );
4894   assert( pC->eCurType==CURTYPE_BTREE );
4895   assert( !pC->isTable );
4896   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4897 #ifdef SQLITE_DEBUG
4898      if( db->flags&SQLITE_VdbeTrace ){
4899        printf("... cursor not valid - fall through\n");
4900      }
4901 #endif
4902     break;
4903   }
4904   nStep = pOp->p1;
4905   assert( nStep>=1 );
4906   r.pKeyInfo = pC->pKeyInfo;
4907   r.nField = (u16)pOp[1].p4.i;
4908   r.default_rc = 0;
4909   r.aMem = &aMem[pOp[1].p3];
4910 #ifdef SQLITE_DEBUG
4911   {
4912     int i;
4913     for(i=0; i<r.nField; i++){
4914       assert( memIsValid(&r.aMem[i]) );
4915       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4916     }
4917   }
4918 #endif
4919   res = 0;  /* Not needed.  Only used to silence a warning. */
4920   while(1){
4921     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4922     if( rc ) goto abort_due_to_error;
4923     if( res>0 && pOp->p5==0 ){
4924       seekscan_search_fail:
4925       /* Jump to SeekGE.P2, ending the loop */
4926 #ifdef SQLITE_DEBUG
4927       if( db->flags&SQLITE_VdbeTrace ){
4928         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4929       }
4930 #endif
4931       VdbeBranchTaken(1,3);
4932       pOp++;
4933       goto jump_to_p2;
4934     }
4935     if( res>=0 ){
4936       /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4937 #ifdef SQLITE_DEBUG
4938       if( db->flags&SQLITE_VdbeTrace ){
4939         printf("... %d steps and then success\n", pOp->p1 - nStep);
4940       }
4941 #endif
4942       VdbeBranchTaken(2,3);
4943       goto jump_to_p2;
4944       break;
4945     }
4946     if( nStep<=0 ){
4947 #ifdef SQLITE_DEBUG
4948       if( db->flags&SQLITE_VdbeTrace ){
4949         printf("... fall through after %d steps\n", pOp->p1);
4950       }
4951 #endif
4952       VdbeBranchTaken(0,3);
4953       break;
4954     }
4955     nStep--;
4956     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4957     if( rc ){
4958       if( rc==SQLITE_DONE ){
4959         rc = SQLITE_OK;
4960         goto seekscan_search_fail;
4961       }else{
4962         goto abort_due_to_error;
4963       }
4964     }
4965   }
4966 
4967   break;
4968 }
4969 
4970 
4971 /* Opcode: SeekHit P1 P2 P3 * *
4972 ** Synopsis: set P2<=seekHit<=P3
4973 **
4974 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4975 ** so that it is no less than P2 and no greater than P3.
4976 **
4977 ** The seekHit integer represents the maximum of terms in an index for which
4978 ** there is known to be at least one match.  If the seekHit value is smaller
4979 ** than the total number of equality terms in an index lookup, then the
4980 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4981 ** early, thus saving work.  This is part of the IN-early-out optimization.
4982 **
4983 ** P1 must be a valid b-tree cursor.
4984 */
4985 case OP_SeekHit: {
4986   VdbeCursor *pC;
4987   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4988   pC = p->apCsr[pOp->p1];
4989   assert( pC!=0 );
4990   assert( pOp->p3>=pOp->p2 );
4991   if( pC->seekHit<pOp->p2 ){
4992 #ifdef SQLITE_DEBUG
4993     if( db->flags&SQLITE_VdbeTrace ){
4994       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4995     }
4996 #endif
4997     pC->seekHit = pOp->p2;
4998   }else if( pC->seekHit>pOp->p3 ){
4999 #ifdef SQLITE_DEBUG
5000     if( db->flags&SQLITE_VdbeTrace ){
5001       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
5002     }
5003 #endif
5004     pC->seekHit = pOp->p3;
5005   }
5006   break;
5007 }
5008 
5009 /* Opcode: IfNotOpen P1 P2 * * *
5010 ** Synopsis: if( !csr[P1] ) goto P2
5011 **
5012 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5013 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5014 */
5015 case OP_IfNotOpen: {        /* jump */
5016   VdbeCursor *pCur;
5017 
5018   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5019   pCur = p->apCsr[pOp->p1];
5020   VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
5021   if( pCur==0 || pCur->nullRow ){
5022     goto jump_to_p2_and_check_for_interrupt;
5023   }
5024   break;
5025 }
5026 
5027 /* Opcode: Found P1 P2 P3 P4 *
5028 ** Synopsis: key=r[P3@P4]
5029 **
5030 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5031 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5032 ** record.
5033 **
5034 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5035 ** is a prefix of any entry in P1 then a jump is made to P2 and
5036 ** P1 is left pointing at the matching entry.
5037 **
5038 ** This operation leaves the cursor in a state where it can be
5039 ** advanced in the forward direction.  The Next instruction will work,
5040 ** but not the Prev instruction.
5041 **
5042 ** See also: NotFound, NoConflict, NotExists. SeekGe
5043 */
5044 /* Opcode: NotFound P1 P2 P3 P4 *
5045 ** Synopsis: key=r[P3@P4]
5046 **
5047 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5048 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5049 ** record.
5050 **
5051 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5052 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
5053 ** does contain an entry whose prefix matches the P3/P4 record then control
5054 ** falls through to the next instruction and P1 is left pointing at the
5055 ** matching entry.
5056 **
5057 ** This operation leaves the cursor in a state where it cannot be
5058 ** advanced in either direction.  In other words, the Next and Prev
5059 ** opcodes do not work after this operation.
5060 **
5061 ** See also: Found, NotExists, NoConflict, IfNoHope
5062 */
5063 /* Opcode: IfNoHope P1 P2 P3 P4 *
5064 ** Synopsis: key=r[P3@P4]
5065 **
5066 ** Register P3 is the first of P4 registers that form an unpacked
5067 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
5068 ** In other words, the operands to this opcode are the same as the
5069 ** operands to OP_NotFound and OP_IdxGT.
5070 **
5071 ** This opcode is an optimization attempt only.  If this opcode always
5072 ** falls through, the correct answer is still obtained, but extra works
5073 ** is performed.
5074 **
5075 ** A value of N in the seekHit flag of cursor P1 means that there exists
5076 ** a key P3:N that will match some record in the index.  We want to know
5077 ** if it is possible for a record P3:P4 to match some record in the
5078 ** index.  If it is not possible, we can skips some work.  So if seekHit
5079 ** is less than P4, attempt to find out if a match is possible by running
5080 ** OP_NotFound.
5081 **
5082 ** This opcode is used in IN clause processing for a multi-column key.
5083 ** If an IN clause is attached to an element of the key other than the
5084 ** left-most element, and if there are no matches on the most recent
5085 ** seek over the whole key, then it might be that one of the key element
5086 ** to the left is prohibiting a match, and hence there is "no hope" of
5087 ** any match regardless of how many IN clause elements are checked.
5088 ** In such a case, we abandon the IN clause search early, using this
5089 ** opcode.  The opcode name comes from the fact that the
5090 ** jump is taken if there is "no hope" of achieving a match.
5091 **
5092 ** See also: NotFound, SeekHit
5093 */
5094 /* Opcode: NoConflict P1 P2 P3 P4 *
5095 ** Synopsis: key=r[P3@P4]
5096 **
5097 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
5098 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5099 ** record.
5100 **
5101 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
5102 ** contains any NULL value, jump immediately to P2.  If all terms of the
5103 ** record are not-NULL then a check is done to determine if any row in the
5104 ** P1 index btree has a matching key prefix.  If there are no matches, jump
5105 ** immediately to P2.  If there is a match, fall through and leave the P1
5106 ** cursor pointing to the matching row.
5107 **
5108 ** This opcode is similar to OP_NotFound with the exceptions that the
5109 ** branch is always taken if any part of the search key input is NULL.
5110 **
5111 ** This operation leaves the cursor in a state where it cannot be
5112 ** advanced in either direction.  In other words, the Next and Prev
5113 ** opcodes do not work after this operation.
5114 **
5115 ** See also: NotFound, Found, NotExists
5116 */
5117 case OP_IfNoHope: {     /* jump, in3 */
5118   VdbeCursor *pC;
5119   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5120   pC = p->apCsr[pOp->p1];
5121   assert( pC!=0 );
5122 #ifdef SQLITE_DEBUG
5123   if( db->flags&SQLITE_VdbeTrace ){
5124     printf("seekHit is %d\n", pC->seekHit);
5125   }
5126 #endif
5127   if( pC->seekHit>=pOp->p4.i ) break;
5128   /* Fall through into OP_NotFound */
5129   /* no break */ deliberate_fall_through
5130 }
5131 case OP_NoConflict:     /* jump, in3 */
5132 case OP_NotFound:       /* jump, in3 */
5133 case OP_Found: {        /* jump, in3 */
5134   int alreadyExists;
5135   int ii;
5136   VdbeCursor *pC;
5137   UnpackedRecord *pIdxKey;
5138   UnpackedRecord r;
5139 
5140 #ifdef SQLITE_TEST
5141   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5142 #endif
5143 
5144   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5145   assert( pOp->p4type==P4_INT32 );
5146   pC = p->apCsr[pOp->p1];
5147   assert( pC!=0 );
5148 #ifdef SQLITE_DEBUG
5149   pC->seekOp = pOp->opcode;
5150 #endif
5151   r.aMem = &aMem[pOp->p3];
5152   assert( pC->eCurType==CURTYPE_BTREE );
5153   assert( pC->uc.pCursor!=0 );
5154   assert( pC->isTable==0 );
5155   r.nField = (u16)pOp->p4.i;
5156   if( r.nField>0 ){
5157     /* Key values in an array of registers */
5158     r.pKeyInfo = pC->pKeyInfo;
5159     r.default_rc = 0;
5160 #ifdef SQLITE_DEBUG
5161     for(ii=0; ii<r.nField; ii++){
5162       assert( memIsValid(&r.aMem[ii]) );
5163       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5164       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5165     }
5166 #endif
5167     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5168   }else{
5169     /* Composite key generated by OP_MakeRecord */
5170     assert( r.aMem->flags & MEM_Blob );
5171     assert( pOp->opcode!=OP_NoConflict );
5172     rc = ExpandBlob(r.aMem);
5173     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5174     if( rc ) goto no_mem;
5175     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5176     if( pIdxKey==0 ) goto no_mem;
5177     sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5178     pIdxKey->default_rc = 0;
5179     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5180     sqlite3DbFreeNN(db, pIdxKey);
5181   }
5182   if( rc!=SQLITE_OK ){
5183     goto abort_due_to_error;
5184   }
5185   alreadyExists = (pC->seekResult==0);
5186   pC->nullRow = 1-alreadyExists;
5187   pC->deferredMoveto = 0;
5188   pC->cacheStatus = CACHE_STALE;
5189   if( pOp->opcode==OP_Found ){
5190     VdbeBranchTaken(alreadyExists!=0,2);
5191     if( alreadyExists ) goto jump_to_p2;
5192   }else{
5193     if( !alreadyExists ){
5194       VdbeBranchTaken(1,2);
5195       goto jump_to_p2;
5196     }
5197     if( pOp->opcode==OP_NoConflict ){
5198       /* For the OP_NoConflict opcode, take the jump if any of the
5199       ** input fields are NULL, since any key with a NULL will not
5200       ** conflict */
5201       for(ii=0; ii<r.nField; ii++){
5202         if( r.aMem[ii].flags & MEM_Null ){
5203           VdbeBranchTaken(1,2);
5204           goto jump_to_p2;
5205         }
5206       }
5207     }
5208     VdbeBranchTaken(0,2);
5209     if( pOp->opcode==OP_IfNoHope ){
5210       pC->seekHit = pOp->p4.i;
5211     }
5212   }
5213   break;
5214 }
5215 
5216 /* Opcode: SeekRowid P1 P2 P3 * *
5217 ** Synopsis: intkey=r[P3]
5218 **
5219 ** P1 is the index of a cursor open on an SQL table btree (with integer
5220 ** keys).  If register P3 does not contain an integer or if P1 does not
5221 ** contain a record with rowid P3 then jump immediately to P2.
5222 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5223 ** a record with rowid P3 then
5224 ** leave the cursor pointing at that record and fall through to the next
5225 ** instruction.
5226 **
5227 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5228 ** the P3 register must be guaranteed to contain an integer value.  With this
5229 ** opcode, register P3 might not contain an integer.
5230 **
5231 ** The OP_NotFound opcode performs the same operation on index btrees
5232 ** (with arbitrary multi-value keys).
5233 **
5234 ** This opcode leaves the cursor in a state where it cannot be advanced
5235 ** in either direction.  In other words, the Next and Prev opcodes will
5236 ** not work following this opcode.
5237 **
5238 ** See also: Found, NotFound, NoConflict, SeekRowid
5239 */
5240 /* Opcode: NotExists P1 P2 P3 * *
5241 ** Synopsis: intkey=r[P3]
5242 **
5243 ** P1 is the index of a cursor open on an SQL table btree (with integer
5244 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
5245 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5246 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5247 ** leave the cursor pointing at that record and fall through to the next
5248 ** instruction.
5249 **
5250 ** The OP_SeekRowid opcode performs the same operation but also allows the
5251 ** P3 register to contain a non-integer value, in which case the jump is
5252 ** always taken.  This opcode requires that P3 always contain an integer.
5253 **
5254 ** The OP_NotFound opcode performs the same operation on index btrees
5255 ** (with arbitrary multi-value keys).
5256 **
5257 ** This opcode leaves the cursor in a state where it cannot be advanced
5258 ** in either direction.  In other words, the Next and Prev opcodes will
5259 ** not work following this opcode.
5260 **
5261 ** See also: Found, NotFound, NoConflict, SeekRowid
5262 */
5263 case OP_SeekRowid: {        /* jump, in3 */
5264   VdbeCursor *pC;
5265   BtCursor *pCrsr;
5266   int res;
5267   u64 iKey;
5268 
5269   pIn3 = &aMem[pOp->p3];
5270   testcase( pIn3->flags & MEM_Int );
5271   testcase( pIn3->flags & MEM_IntReal );
5272   testcase( pIn3->flags & MEM_Real );
5273   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5274   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5275     /* If pIn3->u.i does not contain an integer, compute iKey as the
5276     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5277     ** into an integer without loss of information.  Take care to avoid
5278     ** changing the datatype of pIn3, however, as it is used by other
5279     ** parts of the prepared statement. */
5280     Mem x = pIn3[0];
5281     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5282     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5283     iKey = x.u.i;
5284     goto notExistsWithKey;
5285   }
5286   /* Fall through into OP_NotExists */
5287   /* no break */ deliberate_fall_through
5288 case OP_NotExists:          /* jump, in3 */
5289   pIn3 = &aMem[pOp->p3];
5290   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5291   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5292   iKey = pIn3->u.i;
5293 notExistsWithKey:
5294   pC = p->apCsr[pOp->p1];
5295   assert( pC!=0 );
5296 #ifdef SQLITE_DEBUG
5297   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5298 #endif
5299   assert( pC->isTable );
5300   assert( pC->eCurType==CURTYPE_BTREE );
5301   pCrsr = pC->uc.pCursor;
5302   assert( pCrsr!=0 );
5303   res = 0;
5304   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5305   assert( rc==SQLITE_OK || res==0 );
5306   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5307   pC->nullRow = 0;
5308   pC->cacheStatus = CACHE_STALE;
5309   pC->deferredMoveto = 0;
5310   VdbeBranchTaken(res!=0,2);
5311   pC->seekResult = res;
5312   if( res!=0 ){
5313     assert( rc==SQLITE_OK );
5314     if( pOp->p2==0 ){
5315       rc = SQLITE_CORRUPT_BKPT;
5316     }else{
5317       goto jump_to_p2;
5318     }
5319   }
5320   if( rc ) goto abort_due_to_error;
5321   break;
5322 }
5323 
5324 /* Opcode: Sequence P1 P2 * * *
5325 ** Synopsis: r[P2]=cursor[P1].ctr++
5326 **
5327 ** Find the next available sequence number for cursor P1.
5328 ** Write the sequence number into register P2.
5329 ** The sequence number on the cursor is incremented after this
5330 ** instruction.
5331 */
5332 case OP_Sequence: {           /* out2 */
5333   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5334   assert( p->apCsr[pOp->p1]!=0 );
5335   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5336   pOut = out2Prerelease(p, pOp);
5337   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5338   break;
5339 }
5340 
5341 
5342 /* Opcode: NewRowid P1 P2 P3 * *
5343 ** Synopsis: r[P2]=rowid
5344 **
5345 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5346 ** The record number is not previously used as a key in the database
5347 ** table that cursor P1 points to.  The new record number is written
5348 ** written to register P2.
5349 **
5350 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5351 ** the largest previously generated record number. No new record numbers are
5352 ** allowed to be less than this value. When this value reaches its maximum,
5353 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5354 ** generated record number. This P3 mechanism is used to help implement the
5355 ** AUTOINCREMENT feature.
5356 */
5357 case OP_NewRowid: {           /* out2 */
5358   i64 v;                 /* The new rowid */
5359   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5360   int res;               /* Result of an sqlite3BtreeLast() */
5361   int cnt;               /* Counter to limit the number of searches */
5362 #ifndef SQLITE_OMIT_AUTOINCREMENT
5363   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5364   VdbeFrame *pFrame;     /* Root frame of VDBE */
5365 #endif
5366 
5367   v = 0;
5368   res = 0;
5369   pOut = out2Prerelease(p, pOp);
5370   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5371   pC = p->apCsr[pOp->p1];
5372   assert( pC!=0 );
5373   assert( pC->isTable );
5374   assert( pC->eCurType==CURTYPE_BTREE );
5375   assert( pC->uc.pCursor!=0 );
5376   {
5377     /* The next rowid or record number (different terms for the same
5378     ** thing) is obtained in a two-step algorithm.
5379     **
5380     ** First we attempt to find the largest existing rowid and add one
5381     ** to that.  But if the largest existing rowid is already the maximum
5382     ** positive integer, we have to fall through to the second
5383     ** probabilistic algorithm
5384     **
5385     ** The second algorithm is to select a rowid at random and see if
5386     ** it already exists in the table.  If it does not exist, we have
5387     ** succeeded.  If the random rowid does exist, we select a new one
5388     ** and try again, up to 100 times.
5389     */
5390     assert( pC->isTable );
5391 
5392 #ifdef SQLITE_32BIT_ROWID
5393 #   define MAX_ROWID 0x7fffffff
5394 #else
5395     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5396     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5397     ** to provide the constant while making all compilers happy.
5398     */
5399 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5400 #endif
5401 
5402     if( !pC->useRandomRowid ){
5403       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5404       if( rc!=SQLITE_OK ){
5405         goto abort_due_to_error;
5406       }
5407       if( res ){
5408         v = 1;   /* IMP: R-61914-48074 */
5409       }else{
5410         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5411         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5412         if( v>=MAX_ROWID ){
5413           pC->useRandomRowid = 1;
5414         }else{
5415           v++;   /* IMP: R-29538-34987 */
5416         }
5417       }
5418     }
5419 
5420 #ifndef SQLITE_OMIT_AUTOINCREMENT
5421     if( pOp->p3 ){
5422       /* Assert that P3 is a valid memory cell. */
5423       assert( pOp->p3>0 );
5424       if( p->pFrame ){
5425         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5426         /* Assert that P3 is a valid memory cell. */
5427         assert( pOp->p3<=pFrame->nMem );
5428         pMem = &pFrame->aMem[pOp->p3];
5429       }else{
5430         /* Assert that P3 is a valid memory cell. */
5431         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5432         pMem = &aMem[pOp->p3];
5433         memAboutToChange(p, pMem);
5434       }
5435       assert( memIsValid(pMem) );
5436 
5437       REGISTER_TRACE(pOp->p3, pMem);
5438       sqlite3VdbeMemIntegerify(pMem);
5439       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5440       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5441         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5442         goto abort_due_to_error;
5443       }
5444       if( v<pMem->u.i+1 ){
5445         v = pMem->u.i + 1;
5446       }
5447       pMem->u.i = v;
5448     }
5449 #endif
5450     if( pC->useRandomRowid ){
5451       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5452       ** largest possible integer (9223372036854775807) then the database
5453       ** engine starts picking positive candidate ROWIDs at random until
5454       ** it finds one that is not previously used. */
5455       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5456                              ** an AUTOINCREMENT table. */
5457       cnt = 0;
5458       do{
5459         sqlite3_randomness(sizeof(v), &v);
5460         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5461       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5462                                                  0, &res))==SQLITE_OK)
5463             && (res==0)
5464             && (++cnt<100));
5465       if( rc ) goto abort_due_to_error;
5466       if( res==0 ){
5467         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5468         goto abort_due_to_error;
5469       }
5470       assert( v>0 );  /* EV: R-40812-03570 */
5471     }
5472     pC->deferredMoveto = 0;
5473     pC->cacheStatus = CACHE_STALE;
5474   }
5475   pOut->u.i = v;
5476   break;
5477 }
5478 
5479 /* Opcode: Insert P1 P2 P3 P4 P5
5480 ** Synopsis: intkey=r[P3] data=r[P2]
5481 **
5482 ** Write an entry into the table of cursor P1.  A new entry is
5483 ** created if it doesn't already exist or the data for an existing
5484 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5485 ** number P2. The key is stored in register P3. The key must
5486 ** be a MEM_Int.
5487 **
5488 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5489 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5490 ** then rowid is stored for subsequent return by the
5491 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5492 **
5493 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5494 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5495 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5496 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5497 **
5498 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5499 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5500 ** is part of an INSERT operation.  The difference is only important to
5501 ** the update hook.
5502 **
5503 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5504 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5505 ** following a successful insert.
5506 **
5507 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5508 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5509 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5510 ** value of register P2 will then change.  Make sure this does not
5511 ** cause any problems.)
5512 **
5513 ** This instruction only works on tables.  The equivalent instruction
5514 ** for indices is OP_IdxInsert.
5515 */
5516 case OP_Insert: {
5517   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5518   Mem *pKey;        /* MEM cell holding key  for the record */
5519   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5520   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5521   const char *zDb;  /* database name - used by the update hook */
5522   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5523   BtreePayload x;   /* Payload to be inserted */
5524 
5525   pData = &aMem[pOp->p2];
5526   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5527   assert( memIsValid(pData) );
5528   pC = p->apCsr[pOp->p1];
5529   assert( pC!=0 );
5530   assert( pC->eCurType==CURTYPE_BTREE );
5531   assert( pC->deferredMoveto==0 );
5532   assert( pC->uc.pCursor!=0 );
5533   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5534   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5535   REGISTER_TRACE(pOp->p2, pData);
5536   sqlite3VdbeIncrWriteCounter(p, pC);
5537 
5538   pKey = &aMem[pOp->p3];
5539   assert( pKey->flags & MEM_Int );
5540   assert( memIsValid(pKey) );
5541   REGISTER_TRACE(pOp->p3, pKey);
5542   x.nKey = pKey->u.i;
5543 
5544   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5545     assert( pC->iDb>=0 );
5546     zDb = db->aDb[pC->iDb].zDbSName;
5547     pTab = pOp->p4.pTab;
5548     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5549   }else{
5550     pTab = 0;
5551     zDb = 0;
5552   }
5553 
5554 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5555   /* Invoke the pre-update hook, if any */
5556   if( pTab ){
5557     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5558       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5559     }
5560     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5561       /* Prevent post-update hook from running in cases when it should not */
5562       pTab = 0;
5563     }
5564   }
5565   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5566 #endif
5567 
5568   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5569   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5570   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5571   x.pData = pData->z;
5572   x.nData = pData->n;
5573   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5574   if( pData->flags & MEM_Zero ){
5575     x.nZero = pData->u.nZero;
5576   }else{
5577     x.nZero = 0;
5578   }
5579   x.pKey = 0;
5580   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5581       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5582       seekResult
5583   );
5584   pC->deferredMoveto = 0;
5585   pC->cacheStatus = CACHE_STALE;
5586 
5587   /* Invoke the update-hook if required. */
5588   if( rc ) goto abort_due_to_error;
5589   if( pTab ){
5590     assert( db->xUpdateCallback!=0 );
5591     assert( pTab->aCol!=0 );
5592     db->xUpdateCallback(db->pUpdateArg,
5593            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5594            zDb, pTab->zName, x.nKey);
5595   }
5596   break;
5597 }
5598 
5599 /* Opcode: RowCell P1 P2 P3 * *
5600 **
5601 ** P1 and P2 are both open cursors. Both must be opened on the same type
5602 ** of table - intkey or index. This opcode is used as part of copying
5603 ** the current row from P2 into P1. If the cursors are opened on intkey
5604 ** tables, register P3 contains the rowid to use with the new record in
5605 ** P1. If they are opened on index tables, P3 is not used.
5606 **
5607 ** This opcode must be followed by either an Insert or InsertIdx opcode
5608 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5609 */
5610 case OP_RowCell: {
5611   VdbeCursor *pDest;              /* Cursor to write to */
5612   VdbeCursor *pSrc;               /* Cursor to read from */
5613   i64 iKey;                       /* Rowid value to insert with */
5614   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5615   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5616   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5617   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5618   pDest = p->apCsr[pOp->p1];
5619   pSrc = p->apCsr[pOp->p2];
5620   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5621   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5622   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5623   break;
5624 };
5625 
5626 /* Opcode: Delete P1 P2 P3 P4 P5
5627 **
5628 ** Delete the record at which the P1 cursor is currently pointing.
5629 **
5630 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5631 ** the cursor will be left pointing at  either the next or the previous
5632 ** record in the table. If it is left pointing at the next record, then
5633 ** the next Next instruction will be a no-op. As a result, in this case
5634 ** it is ok to delete a record from within a Next loop. If
5635 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5636 ** left in an undefined state.
5637 **
5638 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5639 ** delete one of several associated with deleting a table row and all its
5640 ** associated index entries.  Exactly one of those deletes is the "primary"
5641 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5642 ** marked with the AUXDELETE flag.
5643 **
5644 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5645 ** change count is incremented (otherwise not).
5646 **
5647 ** P1 must not be pseudo-table.  It has to be a real table with
5648 ** multiple rows.
5649 **
5650 ** If P4 is not NULL then it points to a Table object. In this case either
5651 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5652 ** have been positioned using OP_NotFound prior to invoking this opcode in
5653 ** this case. Specifically, if one is configured, the pre-update hook is
5654 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5655 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5656 **
5657 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5658 ** of the memory cell that contains the value that the rowid of the row will
5659 ** be set to by the update.
5660 */
5661 case OP_Delete: {
5662   VdbeCursor *pC;
5663   const char *zDb;
5664   Table *pTab;
5665   int opflags;
5666 
5667   opflags = pOp->p2;
5668   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5669   pC = p->apCsr[pOp->p1];
5670   assert( pC!=0 );
5671   assert( pC->eCurType==CURTYPE_BTREE );
5672   assert( pC->uc.pCursor!=0 );
5673   assert( pC->deferredMoveto==0 );
5674   sqlite3VdbeIncrWriteCounter(p, pC);
5675 
5676 #ifdef SQLITE_DEBUG
5677   if( pOp->p4type==P4_TABLE
5678    && HasRowid(pOp->p4.pTab)
5679    && pOp->p5==0
5680    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5681   ){
5682     /* If p5 is zero, the seek operation that positioned the cursor prior to
5683     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5684     ** the row that is being deleted */
5685     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5686     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5687   }
5688 #endif
5689 
5690   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5691   ** the name of the db to pass as to it. Also set local pTab to a copy
5692   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5693   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5694   ** VdbeCursor.movetoTarget to the current rowid.  */
5695   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5696     assert( pC->iDb>=0 );
5697     assert( pOp->p4.pTab!=0 );
5698     zDb = db->aDb[pC->iDb].zDbSName;
5699     pTab = pOp->p4.pTab;
5700     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5701       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5702     }
5703   }else{
5704     zDb = 0;
5705     pTab = 0;
5706   }
5707 
5708 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5709   /* Invoke the pre-update-hook if required. */
5710   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5711   if( db->xPreUpdateCallback && pTab ){
5712     assert( !(opflags & OPFLAG_ISUPDATE)
5713          || HasRowid(pTab)==0
5714          || (aMem[pOp->p3].flags & MEM_Int)
5715     );
5716     sqlite3VdbePreUpdateHook(p, pC,
5717         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5718         zDb, pTab, pC->movetoTarget,
5719         pOp->p3, -1
5720     );
5721   }
5722   if( opflags & OPFLAG_ISNOOP ) break;
5723 #endif
5724 
5725   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5726   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5727   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5728   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5729 
5730 #ifdef SQLITE_DEBUG
5731   if( p->pFrame==0 ){
5732     if( pC->isEphemeral==0
5733         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5734         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5735       ){
5736       nExtraDelete++;
5737     }
5738     if( pOp->p2 & OPFLAG_NCHANGE ){
5739       nExtraDelete--;
5740     }
5741   }
5742 #endif
5743 
5744   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5745   pC->cacheStatus = CACHE_STALE;
5746   pC->seekResult = 0;
5747   if( rc ) goto abort_due_to_error;
5748 
5749   /* Invoke the update-hook if required. */
5750   if( opflags & OPFLAG_NCHANGE ){
5751     p->nChange++;
5752     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5753       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5754           pC->movetoTarget);
5755       assert( pC->iDb>=0 );
5756     }
5757   }
5758 
5759   break;
5760 }
5761 /* Opcode: ResetCount * * * * *
5762 **
5763 ** The value of the change counter is copied to the database handle
5764 ** change counter (returned by subsequent calls to sqlite3_changes()).
5765 ** Then the VMs internal change counter resets to 0.
5766 ** This is used by trigger programs.
5767 */
5768 case OP_ResetCount: {
5769   sqlite3VdbeSetChanges(db, p->nChange);
5770   p->nChange = 0;
5771   break;
5772 }
5773 
5774 /* Opcode: SorterCompare P1 P2 P3 P4
5775 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5776 **
5777 ** P1 is a sorter cursor. This instruction compares a prefix of the
5778 ** record blob in register P3 against a prefix of the entry that
5779 ** the sorter cursor currently points to.  Only the first P4 fields
5780 ** of r[P3] and the sorter record are compared.
5781 **
5782 ** If either P3 or the sorter contains a NULL in one of their significant
5783 ** fields (not counting the P4 fields at the end which are ignored) then
5784 ** the comparison is assumed to be equal.
5785 **
5786 ** Fall through to next instruction if the two records compare equal to
5787 ** each other.  Jump to P2 if they are different.
5788 */
5789 case OP_SorterCompare: {
5790   VdbeCursor *pC;
5791   int res;
5792   int nKeyCol;
5793 
5794   pC = p->apCsr[pOp->p1];
5795   assert( isSorter(pC) );
5796   assert( pOp->p4type==P4_INT32 );
5797   pIn3 = &aMem[pOp->p3];
5798   nKeyCol = pOp->p4.i;
5799   res = 0;
5800   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5801   VdbeBranchTaken(res!=0,2);
5802   if( rc ) goto abort_due_to_error;
5803   if( res ) goto jump_to_p2;
5804   break;
5805 };
5806 
5807 /* Opcode: SorterData P1 P2 P3 * *
5808 ** Synopsis: r[P2]=data
5809 **
5810 ** Write into register P2 the current sorter data for sorter cursor P1.
5811 ** Then clear the column header cache on cursor P3.
5812 **
5813 ** This opcode is normally use to move a record out of the sorter and into
5814 ** a register that is the source for a pseudo-table cursor created using
5815 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5816 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5817 ** us from having to issue a separate NullRow instruction to clear that cache.
5818 */
5819 case OP_SorterData: {
5820   VdbeCursor *pC;
5821 
5822   pOut = &aMem[pOp->p2];
5823   pC = p->apCsr[pOp->p1];
5824   assert( isSorter(pC) );
5825   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5826   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5827   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5828   if( rc ) goto abort_due_to_error;
5829   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5830   break;
5831 }
5832 
5833 /* Opcode: RowData P1 P2 P3 * *
5834 ** Synopsis: r[P2]=data
5835 **
5836 ** Write into register P2 the complete row content for the row at
5837 ** which cursor P1 is currently pointing.
5838 ** There is no interpretation of the data.
5839 ** It is just copied onto the P2 register exactly as
5840 ** it is found in the database file.
5841 **
5842 ** If cursor P1 is an index, then the content is the key of the row.
5843 ** If cursor P2 is a table, then the content extracted is the data.
5844 **
5845 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5846 ** of a real table, not a pseudo-table.
5847 **
5848 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5849 ** into the database page.  That means that the content of the output
5850 ** register will be invalidated as soon as the cursor moves - including
5851 ** moves caused by other cursors that "save" the current cursors
5852 ** position in order that they can write to the same table.  If P3==0
5853 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5854 ** P3==0 is safer.
5855 **
5856 ** If P3!=0 then the content of the P2 register is unsuitable for use
5857 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5858 ** The P2 register content is invalidated by opcodes like OP_Function or
5859 ** by any use of another cursor pointing to the same table.
5860 */
5861 case OP_RowData: {
5862   VdbeCursor *pC;
5863   BtCursor *pCrsr;
5864   u32 n;
5865 
5866   pOut = out2Prerelease(p, pOp);
5867 
5868   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5869   pC = p->apCsr[pOp->p1];
5870   assert( pC!=0 );
5871   assert( pC->eCurType==CURTYPE_BTREE );
5872   assert( isSorter(pC)==0 );
5873   assert( pC->nullRow==0 );
5874   assert( pC->uc.pCursor!=0 );
5875   pCrsr = pC->uc.pCursor;
5876 
5877   /* The OP_RowData opcodes always follow OP_NotExists or
5878   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5879   ** that might invalidate the cursor.
5880   ** If this where not the case, on of the following assert()s
5881   ** would fail.  Should this ever change (because of changes in the code
5882   ** generator) then the fix would be to insert a call to
5883   ** sqlite3VdbeCursorMoveto().
5884   */
5885   assert( pC->deferredMoveto==0 );
5886   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5887 
5888   n = sqlite3BtreePayloadSize(pCrsr);
5889   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5890     goto too_big;
5891   }
5892   testcase( n==0 );
5893   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5894   if( rc ) goto abort_due_to_error;
5895   if( !pOp->p3 ) Deephemeralize(pOut);
5896   UPDATE_MAX_BLOBSIZE(pOut);
5897   REGISTER_TRACE(pOp->p2, pOut);
5898   break;
5899 }
5900 
5901 /* Opcode: Rowid P1 P2 * * *
5902 ** Synopsis: r[P2]=PX rowid of P1
5903 **
5904 ** Store in register P2 an integer which is the key of the table entry that
5905 ** P1 is currently point to.
5906 **
5907 ** P1 can be either an ordinary table or a virtual table.  There used to
5908 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5909 ** one opcode now works for both table types.
5910 */
5911 case OP_Rowid: {                 /* out2 */
5912   VdbeCursor *pC;
5913   i64 v;
5914   sqlite3_vtab *pVtab;
5915   const sqlite3_module *pModule;
5916 
5917   pOut = out2Prerelease(p, pOp);
5918   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5919   pC = p->apCsr[pOp->p1];
5920   assert( pC!=0 );
5921   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5922   if( pC->nullRow ){
5923     pOut->flags = MEM_Null;
5924     break;
5925   }else if( pC->deferredMoveto ){
5926     v = pC->movetoTarget;
5927 #ifndef SQLITE_OMIT_VIRTUALTABLE
5928   }else if( pC->eCurType==CURTYPE_VTAB ){
5929     assert( pC->uc.pVCur!=0 );
5930     pVtab = pC->uc.pVCur->pVtab;
5931     pModule = pVtab->pModule;
5932     assert( pModule->xRowid );
5933     rc = pModule->xRowid(pC->uc.pVCur, &v);
5934     sqlite3VtabImportErrmsg(p, pVtab);
5935     if( rc ) goto abort_due_to_error;
5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5937   }else{
5938     assert( pC->eCurType==CURTYPE_BTREE );
5939     assert( pC->uc.pCursor!=0 );
5940     rc = sqlite3VdbeCursorRestore(pC);
5941     if( rc ) goto abort_due_to_error;
5942     if( pC->nullRow ){
5943       pOut->flags = MEM_Null;
5944       break;
5945     }
5946     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5947   }
5948   pOut->u.i = v;
5949   break;
5950 }
5951 
5952 /* Opcode: NullRow P1 * * * *
5953 **
5954 ** Move the cursor P1 to a null row.  Any OP_Column operations
5955 ** that occur while the cursor is on the null row will always
5956 ** write a NULL.
5957 **
5958 ** If cursor P1 is not previously opened, open it now to a special
5959 ** pseudo-cursor that always returns NULL for every column.
5960 */
5961 case OP_NullRow: {
5962   VdbeCursor *pC;
5963 
5964   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5965   pC = p->apCsr[pOp->p1];
5966   if( pC==0 ){
5967     /* If the cursor is not already open, create a special kind of
5968     ** pseudo-cursor that always gives null rows. */
5969     pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5970     if( pC==0 ) goto no_mem;
5971     pC->seekResult = 0;
5972     pC->isTable = 1;
5973     pC->noReuse = 1;
5974     pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5975   }
5976   pC->nullRow = 1;
5977   pC->cacheStatus = CACHE_STALE;
5978   if( pC->eCurType==CURTYPE_BTREE ){
5979     assert( pC->uc.pCursor!=0 );
5980     sqlite3BtreeClearCursor(pC->uc.pCursor);
5981   }
5982 #ifdef SQLITE_DEBUG
5983   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5984 #endif
5985   break;
5986 }
5987 
5988 /* Opcode: SeekEnd P1 * * * *
5989 **
5990 ** Position cursor P1 at the end of the btree for the purpose of
5991 ** appending a new entry onto the btree.
5992 **
5993 ** It is assumed that the cursor is used only for appending and so
5994 ** if the cursor is valid, then the cursor must already be pointing
5995 ** at the end of the btree and so no changes are made to
5996 ** the cursor.
5997 */
5998 /* Opcode: Last P1 P2 * * *
5999 **
6000 ** The next use of the Rowid or Column or Prev instruction for P1
6001 ** will refer to the last entry in the database table or index.
6002 ** If the table or index is empty and P2>0, then jump immediately to P2.
6003 ** If P2 is 0 or if the table or index is not empty, fall through
6004 ** to the following instruction.
6005 **
6006 ** This opcode leaves the cursor configured to move in reverse order,
6007 ** from the end toward the beginning.  In other words, the cursor is
6008 ** configured to use Prev, not Next.
6009 */
6010 case OP_SeekEnd:
6011 case OP_Last: {        /* jump */
6012   VdbeCursor *pC;
6013   BtCursor *pCrsr;
6014   int res;
6015 
6016   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6017   pC = p->apCsr[pOp->p1];
6018   assert( pC!=0 );
6019   assert( pC->eCurType==CURTYPE_BTREE );
6020   pCrsr = pC->uc.pCursor;
6021   res = 0;
6022   assert( pCrsr!=0 );
6023 #ifdef SQLITE_DEBUG
6024   pC->seekOp = pOp->opcode;
6025 #endif
6026   if( pOp->opcode==OP_SeekEnd ){
6027     assert( pOp->p2==0 );
6028     pC->seekResult = -1;
6029     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
6030       break;
6031     }
6032   }
6033   rc = sqlite3BtreeLast(pCrsr, &res);
6034   pC->nullRow = (u8)res;
6035   pC->deferredMoveto = 0;
6036   pC->cacheStatus = CACHE_STALE;
6037   if( rc ) goto abort_due_to_error;
6038   if( pOp->p2>0 ){
6039     VdbeBranchTaken(res!=0,2);
6040     if( res ) goto jump_to_p2;
6041   }
6042   break;
6043 }
6044 
6045 /* Opcode: IfSmaller P1 P2 P3 * *
6046 **
6047 ** Estimate the number of rows in the table P1.  Jump to P2 if that
6048 ** estimate is less than approximately 2**(0.1*P3).
6049 */
6050 case OP_IfSmaller: {        /* jump */
6051   VdbeCursor *pC;
6052   BtCursor *pCrsr;
6053   int res;
6054   i64 sz;
6055 
6056   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6057   pC = p->apCsr[pOp->p1];
6058   assert( pC!=0 );
6059   pCrsr = pC->uc.pCursor;
6060   assert( pCrsr );
6061   rc = sqlite3BtreeFirst(pCrsr, &res);
6062   if( rc ) goto abort_due_to_error;
6063   if( res==0 ){
6064     sz = sqlite3BtreeRowCountEst(pCrsr);
6065     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
6066   }
6067   VdbeBranchTaken(res!=0,2);
6068   if( res ) goto jump_to_p2;
6069   break;
6070 }
6071 
6072 
6073 /* Opcode: SorterSort P1 P2 * * *
6074 **
6075 ** After all records have been inserted into the Sorter object
6076 ** identified by P1, invoke this opcode to actually do the sorting.
6077 ** Jump to P2 if there are no records to be sorted.
6078 **
6079 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6080 ** for Sorter objects.
6081 */
6082 /* Opcode: Sort P1 P2 * * *
6083 **
6084 ** This opcode does exactly the same thing as OP_Rewind except that
6085 ** it increments an undocumented global variable used for testing.
6086 **
6087 ** Sorting is accomplished by writing records into a sorting index,
6088 ** then rewinding that index and playing it back from beginning to
6089 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
6090 ** rewinding so that the global variable will be incremented and
6091 ** regression tests can determine whether or not the optimizer is
6092 ** correctly optimizing out sorts.
6093 */
6094 case OP_SorterSort:    /* jump */
6095 case OP_Sort: {        /* jump */
6096 #ifdef SQLITE_TEST
6097   sqlite3_sort_count++;
6098   sqlite3_search_count--;
6099 #endif
6100   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
6101   /* Fall through into OP_Rewind */
6102   /* no break */ deliberate_fall_through
6103 }
6104 /* Opcode: Rewind P1 P2 * * *
6105 **
6106 ** The next use of the Rowid or Column or Next instruction for P1
6107 ** will refer to the first entry in the database table or index.
6108 ** If the table or index is empty, jump immediately to P2.
6109 ** If the table or index is not empty, fall through to the following
6110 ** instruction.
6111 **
6112 ** This opcode leaves the cursor configured to move in forward order,
6113 ** from the beginning toward the end.  In other words, the cursor is
6114 ** configured to use Next, not Prev.
6115 */
6116 case OP_Rewind: {        /* jump */
6117   VdbeCursor *pC;
6118   BtCursor *pCrsr;
6119   int res;
6120 
6121   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6122   assert( pOp->p5==0 );
6123   pC = p->apCsr[pOp->p1];
6124   assert( pC!=0 );
6125   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6126   res = 1;
6127 #ifdef SQLITE_DEBUG
6128   pC->seekOp = OP_Rewind;
6129 #endif
6130   if( isSorter(pC) ){
6131     rc = sqlite3VdbeSorterRewind(pC, &res);
6132   }else{
6133     assert( pC->eCurType==CURTYPE_BTREE );
6134     pCrsr = pC->uc.pCursor;
6135     assert( pCrsr );
6136     rc = sqlite3BtreeFirst(pCrsr, &res);
6137     pC->deferredMoveto = 0;
6138     pC->cacheStatus = CACHE_STALE;
6139   }
6140   if( rc ) goto abort_due_to_error;
6141   pC->nullRow = (u8)res;
6142   assert( pOp->p2>0 && pOp->p2<p->nOp );
6143   VdbeBranchTaken(res!=0,2);
6144   if( res ) goto jump_to_p2;
6145   break;
6146 }
6147 
6148 /* Opcode: Next P1 P2 P3 * P5
6149 **
6150 ** Advance cursor P1 so that it points to the next key/data pair in its
6151 ** table or index.  If there are no more key/value pairs then fall through
6152 ** to the following instruction.  But if the cursor advance was successful,
6153 ** jump immediately to P2.
6154 **
6155 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6156 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
6157 ** to follow SeekLT, SeekLE, or OP_Last.
6158 **
6159 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
6160 ** been opened prior to this opcode or the program will segfault.
6161 **
6162 ** The P3 value is a hint to the btree implementation. If P3==1, that
6163 ** means P1 is an SQL index and that this instruction could have been
6164 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6165 ** always either 0 or 1.
6166 **
6167 ** If P5 is positive and the jump is taken, then event counter
6168 ** number P5-1 in the prepared statement is incremented.
6169 **
6170 ** See also: Prev
6171 */
6172 /* Opcode: Prev P1 P2 P3 * P5
6173 **
6174 ** Back up cursor P1 so that it points to the previous key/data pair in its
6175 ** table or index.  If there is no previous key/value pairs then fall through
6176 ** to the following instruction.  But if the cursor backup was successful,
6177 ** jump immediately to P2.
6178 **
6179 **
6180 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6181 ** OP_Last opcode used to position the cursor.  Prev is not allowed
6182 ** to follow SeekGT, SeekGE, or OP_Rewind.
6183 **
6184 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
6185 ** not open then the behavior is undefined.
6186 **
6187 ** The P3 value is a hint to the btree implementation. If P3==1, that
6188 ** means P1 is an SQL index and that this instruction could have been
6189 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
6190 ** always either 0 or 1.
6191 **
6192 ** If P5 is positive and the jump is taken, then event counter
6193 ** number P5-1 in the prepared statement is incremented.
6194 */
6195 /* Opcode: SorterNext P1 P2 * * P5
6196 **
6197 ** This opcode works just like OP_Next except that P1 must be a
6198 ** sorter object for which the OP_SorterSort opcode has been
6199 ** invoked.  This opcode advances the cursor to the next sorted
6200 ** record, or jumps to P2 if there are no more sorted records.
6201 */
6202 case OP_SorterNext: {  /* jump */
6203   VdbeCursor *pC;
6204 
6205   pC = p->apCsr[pOp->p1];
6206   assert( isSorter(pC) );
6207   rc = sqlite3VdbeSorterNext(db, pC);
6208   goto next_tail;
6209 
6210 case OP_Prev:          /* jump */
6211   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6212   assert( pOp->p5==0
6213        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6214        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6215   pC = p->apCsr[pOp->p1];
6216   assert( pC!=0 );
6217   assert( pC->deferredMoveto==0 );
6218   assert( pC->eCurType==CURTYPE_BTREE );
6219   assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6220        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
6221        || pC->seekOp==OP_NullRow);
6222   rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6223   goto next_tail;
6224 
6225 case OP_Next:          /* jump */
6226   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6227   assert( pOp->p5==0
6228        || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6229        || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6230   pC = p->apCsr[pOp->p1];
6231   assert( pC!=0 );
6232   assert( pC->deferredMoveto==0 );
6233   assert( pC->eCurType==CURTYPE_BTREE );
6234   assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6235        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6236        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6237        || pC->seekOp==OP_IfNoHope);
6238   rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6239 
6240 next_tail:
6241   pC->cacheStatus = CACHE_STALE;
6242   VdbeBranchTaken(rc==SQLITE_OK,2);
6243   if( rc==SQLITE_OK ){
6244     pC->nullRow = 0;
6245     p->aCounter[pOp->p5]++;
6246 #ifdef SQLITE_TEST
6247     sqlite3_search_count++;
6248 #endif
6249     goto jump_to_p2_and_check_for_interrupt;
6250   }
6251   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6252   rc = SQLITE_OK;
6253   pC->nullRow = 1;
6254   goto check_for_interrupt;
6255 }
6256 
6257 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6258 ** Synopsis: key=r[P2]
6259 **
6260 ** Register P2 holds an SQL index key made using the
6261 ** MakeRecord instructions.  This opcode writes that key
6262 ** into the index P1.  Data for the entry is nil.
6263 **
6264 ** If P4 is not zero, then it is the number of values in the unpacked
6265 ** key of reg(P2).  In that case, P3 is the index of the first register
6266 ** for the unpacked key.  The availability of the unpacked key can sometimes
6267 ** be an optimization.
6268 **
6269 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6270 ** that this insert is likely to be an append.
6271 **
6272 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6273 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6274 ** then the change counter is unchanged.
6275 **
6276 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6277 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6278 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6279 ** seeks on the cursor or if the most recent seek used a key equivalent
6280 ** to P2.
6281 **
6282 ** This instruction only works for indices.  The equivalent instruction
6283 ** for tables is OP_Insert.
6284 */
6285 case OP_IdxInsert: {        /* in2 */
6286   VdbeCursor *pC;
6287   BtreePayload x;
6288 
6289   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6290   pC = p->apCsr[pOp->p1];
6291   sqlite3VdbeIncrWriteCounter(p, pC);
6292   assert( pC!=0 );
6293   assert( !isSorter(pC) );
6294   pIn2 = &aMem[pOp->p2];
6295   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6296   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6297   assert( pC->eCurType==CURTYPE_BTREE );
6298   assert( pC->isTable==0 );
6299   rc = ExpandBlob(pIn2);
6300   if( rc ) goto abort_due_to_error;
6301   x.nKey = pIn2->n;
6302   x.pKey = pIn2->z;
6303   x.aMem = aMem + pOp->p3;
6304   x.nMem = (u16)pOp->p4.i;
6305   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6306        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6307       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6308       );
6309   assert( pC->deferredMoveto==0 );
6310   pC->cacheStatus = CACHE_STALE;
6311   if( rc) goto abort_due_to_error;
6312   break;
6313 }
6314 
6315 /* Opcode: SorterInsert P1 P2 * * *
6316 ** Synopsis: key=r[P2]
6317 **
6318 ** Register P2 holds an SQL index key made using the
6319 ** MakeRecord instructions.  This opcode writes that key
6320 ** into the sorter P1.  Data for the entry is nil.
6321 */
6322 case OP_SorterInsert: {     /* in2 */
6323   VdbeCursor *pC;
6324 
6325   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6326   pC = p->apCsr[pOp->p1];
6327   sqlite3VdbeIncrWriteCounter(p, pC);
6328   assert( pC!=0 );
6329   assert( isSorter(pC) );
6330   pIn2 = &aMem[pOp->p2];
6331   assert( pIn2->flags & MEM_Blob );
6332   assert( pC->isTable==0 );
6333   rc = ExpandBlob(pIn2);
6334   if( rc ) goto abort_due_to_error;
6335   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6336   if( rc) goto abort_due_to_error;
6337   break;
6338 }
6339 
6340 /* Opcode: IdxDelete P1 P2 P3 * P5
6341 ** Synopsis: key=r[P2@P3]
6342 **
6343 ** The content of P3 registers starting at register P2 form
6344 ** an unpacked index key. This opcode removes that entry from the
6345 ** index opened by cursor P1.
6346 **
6347 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6348 ** if no matching index entry is found.  This happens when running
6349 ** an UPDATE or DELETE statement and the index entry to be updated
6350 ** or deleted is not found.  For some uses of IdxDelete
6351 ** (example:  the EXCEPT operator) it does not matter that no matching
6352 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6353 ** this (self-correcting and non-critical) error if in writable_schema mode.
6354 */
6355 case OP_IdxDelete: {
6356   VdbeCursor *pC;
6357   BtCursor *pCrsr;
6358   int res;
6359   UnpackedRecord r;
6360 
6361   assert( pOp->p3>0 );
6362   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6363   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6364   pC = p->apCsr[pOp->p1];
6365   assert( pC!=0 );
6366   assert( pC->eCurType==CURTYPE_BTREE );
6367   sqlite3VdbeIncrWriteCounter(p, pC);
6368   pCrsr = pC->uc.pCursor;
6369   assert( pCrsr!=0 );
6370   r.pKeyInfo = pC->pKeyInfo;
6371   r.nField = (u16)pOp->p3;
6372   r.default_rc = 0;
6373   r.aMem = &aMem[pOp->p2];
6374   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6375   if( rc ) goto abort_due_to_error;
6376   if( res==0 ){
6377     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6378     if( rc ) goto abort_due_to_error;
6379   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6380     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6381     goto abort_due_to_error;
6382   }
6383   assert( pC->deferredMoveto==0 );
6384   pC->cacheStatus = CACHE_STALE;
6385   pC->seekResult = 0;
6386   break;
6387 }
6388 
6389 /* Opcode: DeferredSeek P1 * P3 P4 *
6390 ** Synopsis: Move P3 to P1.rowid if needed
6391 **
6392 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6393 ** table.  This opcode does a deferred seek of the P3 table cursor
6394 ** to the row that corresponds to the current row of P1.
6395 **
6396 ** This is a deferred seek.  Nothing actually happens until
6397 ** the cursor is used to read a record.  That way, if no reads
6398 ** occur, no unnecessary I/O happens.
6399 **
6400 ** P4 may be an array of integers (type P4_INTARRAY) containing
6401 ** one entry for each column in the P3 table.  If array entry a(i)
6402 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6403 ** equivalent to performing the deferred seek and then reading column i
6404 ** from P1.  This information is stored in P3 and used to redirect
6405 ** reads against P3 over to P1, thus possibly avoiding the need to
6406 ** seek and read cursor P3.
6407 */
6408 /* Opcode: IdxRowid P1 P2 * * *
6409 ** Synopsis: r[P2]=rowid
6410 **
6411 ** Write into register P2 an integer which is the last entry in the record at
6412 ** the end of the index key pointed to by cursor P1.  This integer should be
6413 ** the rowid of the table entry to which this index entry points.
6414 **
6415 ** See also: Rowid, MakeRecord.
6416 */
6417 case OP_DeferredSeek:
6418 case OP_IdxRowid: {           /* out2 */
6419   VdbeCursor *pC;             /* The P1 index cursor */
6420   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6421   i64 rowid;                  /* Rowid that P1 current points to */
6422 
6423   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6424   pC = p->apCsr[pOp->p1];
6425   assert( pC!=0 );
6426   assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6427   assert( pC->uc.pCursor!=0 );
6428   assert( pC->isTable==0 || IsNullCursor(pC) );
6429   assert( pC->deferredMoveto==0 );
6430   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6431 
6432   /* The IdxRowid and Seek opcodes are combined because of the commonality
6433   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6434   rc = sqlite3VdbeCursorRestore(pC);
6435 
6436   /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6437   ** since it was last positioned and an error (e.g. OOM or an IO error)
6438   ** occurs while trying to reposition it. */
6439   if( rc!=SQLITE_OK ) goto abort_due_to_error;
6440 
6441   if( !pC->nullRow ){
6442     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6443     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6444     if( rc!=SQLITE_OK ){
6445       goto abort_due_to_error;
6446     }
6447     if( pOp->opcode==OP_DeferredSeek ){
6448       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6449       pTabCur = p->apCsr[pOp->p3];
6450       assert( pTabCur!=0 );
6451       assert( pTabCur->eCurType==CURTYPE_BTREE );
6452       assert( pTabCur->uc.pCursor!=0 );
6453       assert( pTabCur->isTable );
6454       pTabCur->nullRow = 0;
6455       pTabCur->movetoTarget = rowid;
6456       pTabCur->deferredMoveto = 1;
6457       pTabCur->cacheStatus = CACHE_STALE;
6458       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6459       assert( !pTabCur->isEphemeral );
6460       pTabCur->ub.aAltMap = pOp->p4.ai;
6461       assert( !pC->isEphemeral );
6462       pTabCur->pAltCursor = pC;
6463     }else{
6464       pOut = out2Prerelease(p, pOp);
6465       pOut->u.i = rowid;
6466     }
6467   }else{
6468     assert( pOp->opcode==OP_IdxRowid );
6469     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6470   }
6471   break;
6472 }
6473 
6474 /* Opcode: FinishSeek P1 * * * *
6475 **
6476 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6477 ** seek operation now, without further delay.  If the cursor seek has
6478 ** already occurred, this instruction is a no-op.
6479 */
6480 case OP_FinishSeek: {
6481   VdbeCursor *pC;             /* The P1 index cursor */
6482 
6483   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6484   pC = p->apCsr[pOp->p1];
6485   if( pC->deferredMoveto ){
6486     rc = sqlite3VdbeFinishMoveto(pC);
6487     if( rc ) goto abort_due_to_error;
6488   }
6489   break;
6490 }
6491 
6492 /* Opcode: IdxGE P1 P2 P3 P4 *
6493 ** Synopsis: key=r[P3@P4]
6494 **
6495 ** The P4 register values beginning with P3 form an unpacked index
6496 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6497 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6498 ** fields at the end.
6499 **
6500 ** If the P1 index entry is greater than or equal to the key value
6501 ** then jump to P2.  Otherwise fall through to the next instruction.
6502 */
6503 /* Opcode: IdxGT P1 P2 P3 P4 *
6504 ** Synopsis: key=r[P3@P4]
6505 **
6506 ** The P4 register values beginning with P3 form an unpacked index
6507 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6508 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6509 ** fields at the end.
6510 **
6511 ** If the P1 index entry is greater than the key value
6512 ** then jump to P2.  Otherwise fall through to the next instruction.
6513 */
6514 /* Opcode: IdxLT P1 P2 P3 P4 *
6515 ** Synopsis: key=r[P3@P4]
6516 **
6517 ** The P4 register values beginning with P3 form an unpacked index
6518 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6519 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6520 ** ROWID on the P1 index.
6521 **
6522 ** If the P1 index entry is less than the key value then jump to P2.
6523 ** Otherwise fall through to the next instruction.
6524 */
6525 /* Opcode: IdxLE P1 P2 P3 P4 *
6526 ** Synopsis: key=r[P3@P4]
6527 **
6528 ** The P4 register values beginning with P3 form an unpacked index
6529 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6530 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6531 ** ROWID on the P1 index.
6532 **
6533 ** If the P1 index entry is less than or equal to the key value then jump
6534 ** to P2. Otherwise fall through to the next instruction.
6535 */
6536 case OP_IdxLE:          /* jump */
6537 case OP_IdxGT:          /* jump */
6538 case OP_IdxLT:          /* jump */
6539 case OP_IdxGE:  {       /* jump */
6540   VdbeCursor *pC;
6541   int res;
6542   UnpackedRecord r;
6543 
6544   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6545   pC = p->apCsr[pOp->p1];
6546   assert( pC!=0 );
6547   assert( pC->isOrdered );
6548   assert( pC->eCurType==CURTYPE_BTREE );
6549   assert( pC->uc.pCursor!=0);
6550   assert( pC->deferredMoveto==0 );
6551   assert( pOp->p4type==P4_INT32 );
6552   r.pKeyInfo = pC->pKeyInfo;
6553   r.nField = (u16)pOp->p4.i;
6554   if( pOp->opcode<OP_IdxLT ){
6555     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6556     r.default_rc = -1;
6557   }else{
6558     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6559     r.default_rc = 0;
6560   }
6561   r.aMem = &aMem[pOp->p3];
6562 #ifdef SQLITE_DEBUG
6563   {
6564     int i;
6565     for(i=0; i<r.nField; i++){
6566       assert( memIsValid(&r.aMem[i]) );
6567       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6568     }
6569   }
6570 #endif
6571 
6572   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6573   {
6574     i64 nCellKey = 0;
6575     BtCursor *pCur;
6576     Mem m;
6577 
6578     assert( pC->eCurType==CURTYPE_BTREE );
6579     pCur = pC->uc.pCursor;
6580     assert( sqlite3BtreeCursorIsValid(pCur) );
6581     nCellKey = sqlite3BtreePayloadSize(pCur);
6582     /* nCellKey will always be between 0 and 0xffffffff because of the way
6583     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6584     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6585       rc = SQLITE_CORRUPT_BKPT;
6586       goto abort_due_to_error;
6587     }
6588     sqlite3VdbeMemInit(&m, db, 0);
6589     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6590     if( rc ) goto abort_due_to_error;
6591     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6592     sqlite3VdbeMemReleaseMalloc(&m);
6593   }
6594   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6595 
6596   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6597   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6598     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6599     res = -res;
6600   }else{
6601     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6602     res++;
6603   }
6604   VdbeBranchTaken(res>0,2);
6605   assert( rc==SQLITE_OK );
6606   if( res>0 ) goto jump_to_p2;
6607   break;
6608 }
6609 
6610 /* Opcode: Destroy P1 P2 P3 * *
6611 **
6612 ** Delete an entire database table or index whose root page in the database
6613 ** file is given by P1.
6614 **
6615 ** The table being destroyed is in the main database file if P3==0.  If
6616 ** P3==1 then the table to be clear is in the auxiliary database file
6617 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6618 **
6619 ** If AUTOVACUUM is enabled then it is possible that another root page
6620 ** might be moved into the newly deleted root page in order to keep all
6621 ** root pages contiguous at the beginning of the database.  The former
6622 ** value of the root page that moved - its value before the move occurred -
6623 ** is stored in register P2. If no page movement was required (because the
6624 ** table being dropped was already the last one in the database) then a
6625 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6626 ** is stored in register P2.
6627 **
6628 ** This opcode throws an error if there are any active reader VMs when
6629 ** it is invoked. This is done to avoid the difficulty associated with
6630 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6631 ** database. This error is thrown even if the database is not an AUTOVACUUM
6632 ** db in order to avoid introducing an incompatibility between autovacuum
6633 ** and non-autovacuum modes.
6634 **
6635 ** See also: Clear
6636 */
6637 case OP_Destroy: {     /* out2 */
6638   int iMoved;
6639   int iDb;
6640 
6641   sqlite3VdbeIncrWriteCounter(p, 0);
6642   assert( p->readOnly==0 );
6643   assert( pOp->p1>1 );
6644   pOut = out2Prerelease(p, pOp);
6645   pOut->flags = MEM_Null;
6646   if( db->nVdbeRead > db->nVDestroy+1 ){
6647     rc = SQLITE_LOCKED;
6648     p->errorAction = OE_Abort;
6649     goto abort_due_to_error;
6650   }else{
6651     iDb = pOp->p3;
6652     assert( DbMaskTest(p->btreeMask, iDb) );
6653     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6654     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6655     pOut->flags = MEM_Int;
6656     pOut->u.i = iMoved;
6657     if( rc ) goto abort_due_to_error;
6658 #ifndef SQLITE_OMIT_AUTOVACUUM
6659     if( iMoved!=0 ){
6660       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6661       /* All OP_Destroy operations occur on the same btree */
6662       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6663       resetSchemaOnFault = iDb+1;
6664     }
6665 #endif
6666   }
6667   break;
6668 }
6669 
6670 /* Opcode: Clear P1 P2 P3
6671 **
6672 ** Delete all contents of the database table or index whose root page
6673 ** in the database file is given by P1.  But, unlike Destroy, do not
6674 ** remove the table or index from the database file.
6675 **
6676 ** The table being clear is in the main database file if P2==0.  If
6677 ** P2==1 then the table to be clear is in the auxiliary database file
6678 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6679 **
6680 ** If the P3 value is non-zero, then the row change count is incremented
6681 ** by the number of rows in the table being cleared. If P3 is greater
6682 ** than zero, then the value stored in register P3 is also incremented
6683 ** by the number of rows in the table being cleared.
6684 **
6685 ** See also: Destroy
6686 */
6687 case OP_Clear: {
6688   i64 nChange;
6689 
6690   sqlite3VdbeIncrWriteCounter(p, 0);
6691   nChange = 0;
6692   assert( p->readOnly==0 );
6693   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6694   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6695   if( pOp->p3 ){
6696     p->nChange += nChange;
6697     if( pOp->p3>0 ){
6698       assert( memIsValid(&aMem[pOp->p3]) );
6699       memAboutToChange(p, &aMem[pOp->p3]);
6700       aMem[pOp->p3].u.i += nChange;
6701     }
6702   }
6703   if( rc ) goto abort_due_to_error;
6704   break;
6705 }
6706 
6707 /* Opcode: ResetSorter P1 * * * *
6708 **
6709 ** Delete all contents from the ephemeral table or sorter
6710 ** that is open on cursor P1.
6711 **
6712 ** This opcode only works for cursors used for sorting and
6713 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6714 */
6715 case OP_ResetSorter: {
6716   VdbeCursor *pC;
6717 
6718   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6719   pC = p->apCsr[pOp->p1];
6720   assert( pC!=0 );
6721   if( isSorter(pC) ){
6722     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6723   }else{
6724     assert( pC->eCurType==CURTYPE_BTREE );
6725     assert( pC->isEphemeral );
6726     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6727     if( rc ) goto abort_due_to_error;
6728   }
6729   break;
6730 }
6731 
6732 /* Opcode: CreateBtree P1 P2 P3 * *
6733 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6734 **
6735 ** Allocate a new b-tree in the main database file if P1==0 or in the
6736 ** TEMP database file if P1==1 or in an attached database if
6737 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6738 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6739 ** The root page number of the new b-tree is stored in register P2.
6740 */
6741 case OP_CreateBtree: {          /* out2 */
6742   Pgno pgno;
6743   Db *pDb;
6744 
6745   sqlite3VdbeIncrWriteCounter(p, 0);
6746   pOut = out2Prerelease(p, pOp);
6747   pgno = 0;
6748   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6749   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6750   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6751   assert( p->readOnly==0 );
6752   pDb = &db->aDb[pOp->p1];
6753   assert( pDb->pBt!=0 );
6754   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6755   if( rc ) goto abort_due_to_error;
6756   pOut->u.i = pgno;
6757   break;
6758 }
6759 
6760 /* Opcode: SqlExec * * * P4 *
6761 **
6762 ** Run the SQL statement or statements specified in the P4 string.
6763 */
6764 case OP_SqlExec: {
6765   sqlite3VdbeIncrWriteCounter(p, 0);
6766   db->nSqlExec++;
6767   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6768   db->nSqlExec--;
6769   if( rc ) goto abort_due_to_error;
6770   break;
6771 }
6772 
6773 /* Opcode: ParseSchema P1 * * P4 *
6774 **
6775 ** Read and parse all entries from the schema table of database P1
6776 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6777 ** entire schema for P1 is reparsed.
6778 **
6779 ** This opcode invokes the parser to create a new virtual machine,
6780 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6781 */
6782 case OP_ParseSchema: {
6783   int iDb;
6784   const char *zSchema;
6785   char *zSql;
6786   InitData initData;
6787 
6788   /* Any prepared statement that invokes this opcode will hold mutexes
6789   ** on every btree.  This is a prerequisite for invoking
6790   ** sqlite3InitCallback().
6791   */
6792 #ifdef SQLITE_DEBUG
6793   for(iDb=0; iDb<db->nDb; iDb++){
6794     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6795   }
6796 #endif
6797 
6798   iDb = pOp->p1;
6799   assert( iDb>=0 && iDb<db->nDb );
6800   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6801            || db->mallocFailed
6802            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6803 
6804 #ifndef SQLITE_OMIT_ALTERTABLE
6805   if( pOp->p4.z==0 ){
6806     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6807     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6808     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6809     db->mDbFlags |= DBFLAG_SchemaChange;
6810     p->expired = 0;
6811   }else
6812 #endif
6813   {
6814     zSchema = LEGACY_SCHEMA_TABLE;
6815     initData.db = db;
6816     initData.iDb = iDb;
6817     initData.pzErrMsg = &p->zErrMsg;
6818     initData.mInitFlags = 0;
6819     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6820     zSql = sqlite3MPrintf(db,
6821        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6822        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6823     if( zSql==0 ){
6824       rc = SQLITE_NOMEM_BKPT;
6825     }else{
6826       assert( db->init.busy==0 );
6827       db->init.busy = 1;
6828       initData.rc = SQLITE_OK;
6829       initData.nInitRow = 0;
6830       assert( !db->mallocFailed );
6831       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6832       if( rc==SQLITE_OK ) rc = initData.rc;
6833       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6834         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6835         ** at least one SQL statement. Any less than that indicates that
6836         ** the sqlite_schema table is corrupt. */
6837         rc = SQLITE_CORRUPT_BKPT;
6838       }
6839       sqlite3DbFreeNN(db, zSql);
6840       db->init.busy = 0;
6841     }
6842   }
6843   if( rc ){
6844     sqlite3ResetAllSchemasOfConnection(db);
6845     if( rc==SQLITE_NOMEM ){
6846       goto no_mem;
6847     }
6848     goto abort_due_to_error;
6849   }
6850   break;
6851 }
6852 
6853 #if !defined(SQLITE_OMIT_ANALYZE)
6854 /* Opcode: LoadAnalysis P1 * * * *
6855 **
6856 ** Read the sqlite_stat1 table for database P1 and load the content
6857 ** of that table into the internal index hash table.  This will cause
6858 ** the analysis to be used when preparing all subsequent queries.
6859 */
6860 case OP_LoadAnalysis: {
6861   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6862   rc = sqlite3AnalysisLoad(db, pOp->p1);
6863   if( rc ) goto abort_due_to_error;
6864   break;
6865 }
6866 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6867 
6868 /* Opcode: DropTable P1 * * P4 *
6869 **
6870 ** Remove the internal (in-memory) data structures that describe
6871 ** the table named P4 in database P1.  This is called after a table
6872 ** is dropped from disk (using the Destroy opcode) in order to keep
6873 ** the internal representation of the
6874 ** schema consistent with what is on disk.
6875 */
6876 case OP_DropTable: {
6877   sqlite3VdbeIncrWriteCounter(p, 0);
6878   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6879   break;
6880 }
6881 
6882 /* Opcode: DropIndex P1 * * P4 *
6883 **
6884 ** Remove the internal (in-memory) data structures that describe
6885 ** the index named P4 in database P1.  This is called after an index
6886 ** is dropped from disk (using the Destroy opcode)
6887 ** in order to keep the internal representation of the
6888 ** schema consistent with what is on disk.
6889 */
6890 case OP_DropIndex: {
6891   sqlite3VdbeIncrWriteCounter(p, 0);
6892   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6893   break;
6894 }
6895 
6896 /* Opcode: DropTrigger P1 * * P4 *
6897 **
6898 ** Remove the internal (in-memory) data structures that describe
6899 ** the trigger named P4 in database P1.  This is called after a trigger
6900 ** is dropped from disk (using the Destroy opcode) in order to keep
6901 ** the internal representation of the
6902 ** schema consistent with what is on disk.
6903 */
6904 case OP_DropTrigger: {
6905   sqlite3VdbeIncrWriteCounter(p, 0);
6906   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6907   break;
6908 }
6909 
6910 
6911 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6912 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6913 **
6914 ** Do an analysis of the currently open database.  Store in
6915 ** register P1 the text of an error message describing any problems.
6916 ** If no problems are found, store a NULL in register P1.
6917 **
6918 ** The register P3 contains one less than the maximum number of allowed errors.
6919 ** At most reg(P3) errors will be reported.
6920 ** In other words, the analysis stops as soon as reg(P1) errors are
6921 ** seen.  Reg(P1) is updated with the number of errors remaining.
6922 **
6923 ** The root page numbers of all tables in the database are integers
6924 ** stored in P4_INTARRAY argument.
6925 **
6926 ** If P5 is not zero, the check is done on the auxiliary database
6927 ** file, not the main database file.
6928 **
6929 ** This opcode is used to implement the integrity_check pragma.
6930 */
6931 case OP_IntegrityCk: {
6932   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6933   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6934   int nErr;       /* Number of errors reported */
6935   char *z;        /* Text of the error report */
6936   Mem *pnErr;     /* Register keeping track of errors remaining */
6937 
6938   assert( p->bIsReader );
6939   nRoot = pOp->p2;
6940   aRoot = pOp->p4.ai;
6941   assert( nRoot>0 );
6942   assert( aRoot[0]==(Pgno)nRoot );
6943   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6944   pnErr = &aMem[pOp->p3];
6945   assert( (pnErr->flags & MEM_Int)!=0 );
6946   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6947   pIn1 = &aMem[pOp->p1];
6948   assert( pOp->p5<db->nDb );
6949   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6950   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6951                                  (int)pnErr->u.i+1, &nErr);
6952   sqlite3VdbeMemSetNull(pIn1);
6953   if( nErr==0 ){
6954     assert( z==0 );
6955   }else if( z==0 ){
6956     goto no_mem;
6957   }else{
6958     pnErr->u.i -= nErr-1;
6959     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6960   }
6961   UPDATE_MAX_BLOBSIZE(pIn1);
6962   sqlite3VdbeChangeEncoding(pIn1, encoding);
6963   goto check_for_interrupt;
6964 }
6965 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6966 
6967 /* Opcode: RowSetAdd P1 P2 * * *
6968 ** Synopsis: rowset(P1)=r[P2]
6969 **
6970 ** Insert the integer value held by register P2 into a RowSet object
6971 ** held in register P1.
6972 **
6973 ** An assertion fails if P2 is not an integer.
6974 */
6975 case OP_RowSetAdd: {       /* in1, in2 */
6976   pIn1 = &aMem[pOp->p1];
6977   pIn2 = &aMem[pOp->p2];
6978   assert( (pIn2->flags & MEM_Int)!=0 );
6979   if( (pIn1->flags & MEM_Blob)==0 ){
6980     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6981   }
6982   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6983   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6984   break;
6985 }
6986 
6987 /* Opcode: RowSetRead P1 P2 P3 * *
6988 ** Synopsis: r[P3]=rowset(P1)
6989 **
6990 ** Extract the smallest value from the RowSet object in P1
6991 ** and put that value into register P3.
6992 ** Or, if RowSet object P1 is initially empty, leave P3
6993 ** unchanged and jump to instruction P2.
6994 */
6995 case OP_RowSetRead: {       /* jump, in1, out3 */
6996   i64 val;
6997 
6998   pIn1 = &aMem[pOp->p1];
6999   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
7000   if( (pIn1->flags & MEM_Blob)==0
7001    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
7002   ){
7003     /* The boolean index is empty */
7004     sqlite3VdbeMemSetNull(pIn1);
7005     VdbeBranchTaken(1,2);
7006     goto jump_to_p2_and_check_for_interrupt;
7007   }else{
7008     /* A value was pulled from the index */
7009     VdbeBranchTaken(0,2);
7010     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
7011   }
7012   goto check_for_interrupt;
7013 }
7014 
7015 /* Opcode: RowSetTest P1 P2 P3 P4
7016 ** Synopsis: if r[P3] in rowset(P1) goto P2
7017 **
7018 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7019 ** contains a RowSet object and that RowSet object contains
7020 ** the value held in P3, jump to register P2. Otherwise, insert the
7021 ** integer in P3 into the RowSet and continue on to the
7022 ** next opcode.
7023 **
7024 ** The RowSet object is optimized for the case where sets of integers
7025 ** are inserted in distinct phases, which each set contains no duplicates.
7026 ** Each set is identified by a unique P4 value. The first set
7027 ** must have P4==0, the final set must have P4==-1, and for all other sets
7028 ** must have P4>0.
7029 **
7030 ** This allows optimizations: (a) when P4==0 there is no need to test
7031 ** the RowSet object for P3, as it is guaranteed not to contain it,
7032 ** (b) when P4==-1 there is no need to insert the value, as it will
7033 ** never be tested for, and (c) when a value that is part of set X is
7034 ** inserted, there is no need to search to see if the same value was
7035 ** previously inserted as part of set X (only if it was previously
7036 ** inserted as part of some other set).
7037 */
7038 case OP_RowSetTest: {                     /* jump, in1, in3 */
7039   int iSet;
7040   int exists;
7041 
7042   pIn1 = &aMem[pOp->p1];
7043   pIn3 = &aMem[pOp->p3];
7044   iSet = pOp->p4.i;
7045   assert( pIn3->flags&MEM_Int );
7046 
7047   /* If there is anything other than a rowset object in memory cell P1,
7048   ** delete it now and initialize P1 with an empty rowset
7049   */
7050   if( (pIn1->flags & MEM_Blob)==0 ){
7051     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7052   }
7053   assert( sqlite3VdbeMemIsRowSet(pIn1) );
7054   assert( pOp->p4type==P4_INT32 );
7055   assert( iSet==-1 || iSet>=0 );
7056   if( iSet ){
7057     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
7058     VdbeBranchTaken(exists!=0,2);
7059     if( exists ) goto jump_to_p2;
7060   }
7061   if( iSet>=0 ){
7062     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
7063   }
7064   break;
7065 }
7066 
7067 
7068 #ifndef SQLITE_OMIT_TRIGGER
7069 
7070 /* Opcode: Program P1 P2 P3 P4 P5
7071 **
7072 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7073 **
7074 ** P1 contains the address of the memory cell that contains the first memory
7075 ** cell in an array of values used as arguments to the sub-program. P2
7076 ** contains the address to jump to if the sub-program throws an IGNORE
7077 ** exception using the RAISE() function. Register P3 contains the address
7078 ** of a memory cell in this (the parent) VM that is used to allocate the
7079 ** memory required by the sub-vdbe at runtime.
7080 **
7081 ** P4 is a pointer to the VM containing the trigger program.
7082 **
7083 ** If P5 is non-zero, then recursive program invocation is enabled.
7084 */
7085 case OP_Program: {        /* jump */
7086   int nMem;               /* Number of memory registers for sub-program */
7087   int nByte;              /* Bytes of runtime space required for sub-program */
7088   Mem *pRt;               /* Register to allocate runtime space */
7089   Mem *pMem;              /* Used to iterate through memory cells */
7090   Mem *pEnd;              /* Last memory cell in new array */
7091   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
7092   SubProgram *pProgram;   /* Sub-program to execute */
7093   void *t;                /* Token identifying trigger */
7094 
7095   pProgram = pOp->p4.pProgram;
7096   pRt = &aMem[pOp->p3];
7097   assert( pProgram->nOp>0 );
7098 
7099   /* If the p5 flag is clear, then recursive invocation of triggers is
7100   ** disabled for backwards compatibility (p5 is set if this sub-program
7101   ** is really a trigger, not a foreign key action, and the flag set
7102   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7103   **
7104   ** It is recursive invocation of triggers, at the SQL level, that is
7105   ** disabled. In some cases a single trigger may generate more than one
7106   ** SubProgram (if the trigger may be executed with more than one different
7107   ** ON CONFLICT algorithm). SubProgram structures associated with a
7108   ** single trigger all have the same value for the SubProgram.token
7109   ** variable.  */
7110   if( pOp->p5 ){
7111     t = pProgram->token;
7112     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
7113     if( pFrame ) break;
7114   }
7115 
7116   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7117     rc = SQLITE_ERROR;
7118     sqlite3VdbeError(p, "too many levels of trigger recursion");
7119     goto abort_due_to_error;
7120   }
7121 
7122   /* Register pRt is used to store the memory required to save the state
7123   ** of the current program, and the memory required at runtime to execute
7124   ** the trigger program. If this trigger has been fired before, then pRt
7125   ** is already allocated. Otherwise, it must be initialized.  */
7126   if( (pRt->flags&MEM_Blob)==0 ){
7127     /* SubProgram.nMem is set to the number of memory cells used by the
7128     ** program stored in SubProgram.aOp. As well as these, one memory
7129     ** cell is required for each cursor used by the program. Set local
7130     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7131     */
7132     nMem = pProgram->nMem + pProgram->nCsr;
7133     assert( nMem>0 );
7134     if( pProgram->nCsr==0 ) nMem++;
7135     nByte = ROUND8(sizeof(VdbeFrame))
7136               + nMem * sizeof(Mem)
7137               + pProgram->nCsr * sizeof(VdbeCursor*)
7138               + (pProgram->nOp + 7)/8;
7139     pFrame = sqlite3DbMallocZero(db, nByte);
7140     if( !pFrame ){
7141       goto no_mem;
7142     }
7143     sqlite3VdbeMemRelease(pRt);
7144     pRt->flags = MEM_Blob|MEM_Dyn;
7145     pRt->z = (char*)pFrame;
7146     pRt->n = nByte;
7147     pRt->xDel = sqlite3VdbeFrameMemDel;
7148 
7149     pFrame->v = p;
7150     pFrame->nChildMem = nMem;
7151     pFrame->nChildCsr = pProgram->nCsr;
7152     pFrame->pc = (int)(pOp - aOp);
7153     pFrame->aMem = p->aMem;
7154     pFrame->nMem = p->nMem;
7155     pFrame->apCsr = p->apCsr;
7156     pFrame->nCursor = p->nCursor;
7157     pFrame->aOp = p->aOp;
7158     pFrame->nOp = p->nOp;
7159     pFrame->token = pProgram->token;
7160 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7161     pFrame->anExec = p->anExec;
7162 #endif
7163 #ifdef SQLITE_DEBUG
7164     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7165 #endif
7166 
7167     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7168     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7169       pMem->flags = MEM_Undefined;
7170       pMem->db = db;
7171     }
7172   }else{
7173     pFrame = (VdbeFrame*)pRt->z;
7174     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7175     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7176         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7177     assert( pProgram->nCsr==pFrame->nChildCsr );
7178     assert( (int)(pOp - aOp)==pFrame->pc );
7179   }
7180 
7181   p->nFrame++;
7182   pFrame->pParent = p->pFrame;
7183   pFrame->lastRowid = db->lastRowid;
7184   pFrame->nChange = p->nChange;
7185   pFrame->nDbChange = p->db->nChange;
7186   assert( pFrame->pAuxData==0 );
7187   pFrame->pAuxData = p->pAuxData;
7188   p->pAuxData = 0;
7189   p->nChange = 0;
7190   p->pFrame = pFrame;
7191   p->aMem = aMem = VdbeFrameMem(pFrame);
7192   p->nMem = pFrame->nChildMem;
7193   p->nCursor = (u16)pFrame->nChildCsr;
7194   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7195   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7196   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7197   p->aOp = aOp = pProgram->aOp;
7198   p->nOp = pProgram->nOp;
7199 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7200   p->anExec = 0;
7201 #endif
7202 #ifdef SQLITE_DEBUG
7203   /* Verify that second and subsequent executions of the same trigger do not
7204   ** try to reuse register values from the first use. */
7205   {
7206     int i;
7207     for(i=0; i<p->nMem; i++){
7208       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
7209       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7210     }
7211   }
7212 #endif
7213   pOp = &aOp[-1];
7214   goto check_for_interrupt;
7215 }
7216 
7217 /* Opcode: Param P1 P2 * * *
7218 **
7219 ** This opcode is only ever present in sub-programs called via the
7220 ** OP_Program instruction. Copy a value currently stored in a memory
7221 ** cell of the calling (parent) frame to cell P2 in the current frames
7222 ** address space. This is used by trigger programs to access the new.*
7223 ** and old.* values.
7224 **
7225 ** The address of the cell in the parent frame is determined by adding
7226 ** the value of the P1 argument to the value of the P1 argument to the
7227 ** calling OP_Program instruction.
7228 */
7229 case OP_Param: {           /* out2 */
7230   VdbeFrame *pFrame;
7231   Mem *pIn;
7232   pOut = out2Prerelease(p, pOp);
7233   pFrame = p->pFrame;
7234   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7235   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7236   break;
7237 }
7238 
7239 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7240 
7241 #ifndef SQLITE_OMIT_FOREIGN_KEY
7242 /* Opcode: FkCounter P1 P2 * * *
7243 ** Synopsis: fkctr[P1]+=P2
7244 **
7245 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7246 ** If P1 is non-zero, the database constraint counter is incremented
7247 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7248 ** statement counter is incremented (immediate foreign key constraints).
7249 */
7250 case OP_FkCounter: {
7251   if( db->flags & SQLITE_DeferFKs ){
7252     db->nDeferredImmCons += pOp->p2;
7253   }else if( pOp->p1 ){
7254     db->nDeferredCons += pOp->p2;
7255   }else{
7256     p->nFkConstraint += pOp->p2;
7257   }
7258   break;
7259 }
7260 
7261 /* Opcode: FkIfZero P1 P2 * * *
7262 ** Synopsis: if fkctr[P1]==0 goto P2
7263 **
7264 ** This opcode tests if a foreign key constraint-counter is currently zero.
7265 ** If so, jump to instruction P2. Otherwise, fall through to the next
7266 ** instruction.
7267 **
7268 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7269 ** is zero (the one that counts deferred constraint violations). If P1 is
7270 ** zero, the jump is taken if the statement constraint-counter is zero
7271 ** (immediate foreign key constraint violations).
7272 */
7273 case OP_FkIfZero: {         /* jump */
7274   if( pOp->p1 ){
7275     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7276     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7277   }else{
7278     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7279     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7280   }
7281   break;
7282 }
7283 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7284 
7285 #ifndef SQLITE_OMIT_AUTOINCREMENT
7286 /* Opcode: MemMax P1 P2 * * *
7287 ** Synopsis: r[P1]=max(r[P1],r[P2])
7288 **
7289 ** P1 is a register in the root frame of this VM (the root frame is
7290 ** different from the current frame if this instruction is being executed
7291 ** within a sub-program). Set the value of register P1 to the maximum of
7292 ** its current value and the value in register P2.
7293 **
7294 ** This instruction throws an error if the memory cell is not initially
7295 ** an integer.
7296 */
7297 case OP_MemMax: {        /* in2 */
7298   VdbeFrame *pFrame;
7299   if( p->pFrame ){
7300     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7301     pIn1 = &pFrame->aMem[pOp->p1];
7302   }else{
7303     pIn1 = &aMem[pOp->p1];
7304   }
7305   assert( memIsValid(pIn1) );
7306   sqlite3VdbeMemIntegerify(pIn1);
7307   pIn2 = &aMem[pOp->p2];
7308   sqlite3VdbeMemIntegerify(pIn2);
7309   if( pIn1->u.i<pIn2->u.i){
7310     pIn1->u.i = pIn2->u.i;
7311   }
7312   break;
7313 }
7314 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7315 
7316 /* Opcode: IfPos P1 P2 P3 * *
7317 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7318 **
7319 ** Register P1 must contain an integer.
7320 ** If the value of register P1 is 1 or greater, subtract P3 from the
7321 ** value in P1 and jump to P2.
7322 **
7323 ** If the initial value of register P1 is less than 1, then the
7324 ** value is unchanged and control passes through to the next instruction.
7325 */
7326 case OP_IfPos: {        /* jump, in1 */
7327   pIn1 = &aMem[pOp->p1];
7328   assert( pIn1->flags&MEM_Int );
7329   VdbeBranchTaken( pIn1->u.i>0, 2);
7330   if( pIn1->u.i>0 ){
7331     pIn1->u.i -= pOp->p3;
7332     goto jump_to_p2;
7333   }
7334   break;
7335 }
7336 
7337 /* Opcode: OffsetLimit P1 P2 P3 * *
7338 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7339 **
7340 ** This opcode performs a commonly used computation associated with
7341 ** LIMIT and OFFSET processing.  r[P1] holds the limit counter.  r[P3]
7342 ** holds the offset counter.  The opcode computes the combined value
7343 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7344 ** value computed is the total number of rows that will need to be
7345 ** visited in order to complete the query.
7346 **
7347 ** If r[P3] is zero or negative, that means there is no OFFSET
7348 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7349 **
7350 ** if r[P1] is zero or negative, that means there is no LIMIT
7351 ** and r[P2] is set to -1.
7352 **
7353 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7354 */
7355 case OP_OffsetLimit: {    /* in1, out2, in3 */
7356   i64 x;
7357   pIn1 = &aMem[pOp->p1];
7358   pIn3 = &aMem[pOp->p3];
7359   pOut = out2Prerelease(p, pOp);
7360   assert( pIn1->flags & MEM_Int );
7361   assert( pIn3->flags & MEM_Int );
7362   x = pIn1->u.i;
7363   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7364     /* If the LIMIT is less than or equal to zero, loop forever.  This
7365     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7366     ** also loop forever.  This is undocumented.  In fact, one could argue
7367     ** that the loop should terminate.  But assuming 1 billion iterations
7368     ** per second (far exceeding the capabilities of any current hardware)
7369     ** it would take nearly 300 years to actually reach the limit.  So
7370     ** looping forever is a reasonable approximation. */
7371     pOut->u.i = -1;
7372   }else{
7373     pOut->u.i = x;
7374   }
7375   break;
7376 }
7377 
7378 /* Opcode: IfNotZero P1 P2 * * *
7379 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7380 **
7381 ** Register P1 must contain an integer.  If the content of register P1 is
7382 ** initially greater than zero, then decrement the value in register P1.
7383 ** If it is non-zero (negative or positive) and then also jump to P2.
7384 ** If register P1 is initially zero, leave it unchanged and fall through.
7385 */
7386 case OP_IfNotZero: {        /* jump, in1 */
7387   pIn1 = &aMem[pOp->p1];
7388   assert( pIn1->flags&MEM_Int );
7389   VdbeBranchTaken(pIn1->u.i<0, 2);
7390   if( pIn1->u.i ){
7391      if( pIn1->u.i>0 ) pIn1->u.i--;
7392      goto jump_to_p2;
7393   }
7394   break;
7395 }
7396 
7397 /* Opcode: DecrJumpZero P1 P2 * * *
7398 ** Synopsis: if (--r[P1])==0 goto P2
7399 **
7400 ** Register P1 must hold an integer.  Decrement the value in P1
7401 ** and jump to P2 if the new value is exactly zero.
7402 */
7403 case OP_DecrJumpZero: {      /* jump, in1 */
7404   pIn1 = &aMem[pOp->p1];
7405   assert( pIn1->flags&MEM_Int );
7406   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7407   VdbeBranchTaken(pIn1->u.i==0, 2);
7408   if( pIn1->u.i==0 ) goto jump_to_p2;
7409   break;
7410 }
7411 
7412 
7413 /* Opcode: AggStep * P2 P3 P4 P5
7414 ** Synopsis: accum=r[P3] step(r[P2@P5])
7415 **
7416 ** Execute the xStep function for an aggregate.
7417 ** The function has P5 arguments.  P4 is a pointer to the
7418 ** FuncDef structure that specifies the function.  Register P3 is the
7419 ** accumulator.
7420 **
7421 ** The P5 arguments are taken from register P2 and its
7422 ** successors.
7423 */
7424 /* Opcode: AggInverse * P2 P3 P4 P5
7425 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7426 **
7427 ** Execute the xInverse function for an aggregate.
7428 ** The function has P5 arguments.  P4 is a pointer to the
7429 ** FuncDef structure that specifies the function.  Register P3 is the
7430 ** accumulator.
7431 **
7432 ** The P5 arguments are taken from register P2 and its
7433 ** successors.
7434 */
7435 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7436 ** Synopsis: accum=r[P3] step(r[P2@P5])
7437 **
7438 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7439 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7440 ** FuncDef structure that specifies the function.  Register P3 is the
7441 ** accumulator.
7442 **
7443 ** The P5 arguments are taken from register P2 and its
7444 ** successors.
7445 **
7446 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7447 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7448 ** the opcode is changed.  In this way, the initialization of the
7449 ** sqlite3_context only happens once, instead of on each call to the
7450 ** step function.
7451 */
7452 case OP_AggInverse:
7453 case OP_AggStep: {
7454   int n;
7455   sqlite3_context *pCtx;
7456 
7457   assert( pOp->p4type==P4_FUNCDEF );
7458   n = pOp->p5;
7459   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7460   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7461   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7462   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7463                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7464   if( pCtx==0 ) goto no_mem;
7465   pCtx->pMem = 0;
7466   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7467   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7468   pCtx->pFunc = pOp->p4.pFunc;
7469   pCtx->iOp = (int)(pOp - aOp);
7470   pCtx->pVdbe = p;
7471   pCtx->skipFlag = 0;
7472   pCtx->isError = 0;
7473   pCtx->enc = encoding;
7474   pCtx->argc = n;
7475   pOp->p4type = P4_FUNCCTX;
7476   pOp->p4.pCtx = pCtx;
7477 
7478   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7479   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7480 
7481   pOp->opcode = OP_AggStep1;
7482   /* Fall through into OP_AggStep */
7483   /* no break */ deliberate_fall_through
7484 }
7485 case OP_AggStep1: {
7486   int i;
7487   sqlite3_context *pCtx;
7488   Mem *pMem;
7489 
7490   assert( pOp->p4type==P4_FUNCCTX );
7491   pCtx = pOp->p4.pCtx;
7492   pMem = &aMem[pOp->p3];
7493 
7494 #ifdef SQLITE_DEBUG
7495   if( pOp->p1 ){
7496     /* This is an OP_AggInverse call.  Verify that xStep has always
7497     ** been called at least once prior to any xInverse call. */
7498     assert( pMem->uTemp==0x1122e0e3 );
7499   }else{
7500     /* This is an OP_AggStep call.  Mark it as such. */
7501     pMem->uTemp = 0x1122e0e3;
7502   }
7503 #endif
7504 
7505   /* If this function is inside of a trigger, the register array in aMem[]
7506   ** might change from one evaluation to the next.  The next block of code
7507   ** checks to see if the register array has changed, and if so it
7508   ** reinitializes the relavant parts of the sqlite3_context object */
7509   if( pCtx->pMem != pMem ){
7510     pCtx->pMem = pMem;
7511     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7512   }
7513 
7514 #ifdef SQLITE_DEBUG
7515   for(i=0; i<pCtx->argc; i++){
7516     assert( memIsValid(pCtx->argv[i]) );
7517     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7518   }
7519 #endif
7520 
7521   pMem->n++;
7522   assert( pCtx->pOut->flags==MEM_Null );
7523   assert( pCtx->isError==0 );
7524   assert( pCtx->skipFlag==0 );
7525 #ifndef SQLITE_OMIT_WINDOWFUNC
7526   if( pOp->p1 ){
7527     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7528   }else
7529 #endif
7530   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7531 
7532   if( pCtx->isError ){
7533     if( pCtx->isError>0 ){
7534       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7535       rc = pCtx->isError;
7536     }
7537     if( pCtx->skipFlag ){
7538       assert( pOp[-1].opcode==OP_CollSeq );
7539       i = pOp[-1].p1;
7540       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7541       pCtx->skipFlag = 0;
7542     }
7543     sqlite3VdbeMemRelease(pCtx->pOut);
7544     pCtx->pOut->flags = MEM_Null;
7545     pCtx->isError = 0;
7546     if( rc ) goto abort_due_to_error;
7547   }
7548   assert( pCtx->pOut->flags==MEM_Null );
7549   assert( pCtx->skipFlag==0 );
7550   break;
7551 }
7552 
7553 /* Opcode: AggFinal P1 P2 * P4 *
7554 ** Synopsis: accum=r[P1] N=P2
7555 **
7556 ** P1 is the memory location that is the accumulator for an aggregate
7557 ** or window function.  Execute the finalizer function
7558 ** for an aggregate and store the result in P1.
7559 **
7560 ** P2 is the number of arguments that the step function takes and
7561 ** P4 is a pointer to the FuncDef for this function.  The P2
7562 ** argument is not used by this opcode.  It is only there to disambiguate
7563 ** functions that can take varying numbers of arguments.  The
7564 ** P4 argument is only needed for the case where
7565 ** the step function was not previously called.
7566 */
7567 /* Opcode: AggValue * P2 P3 P4 *
7568 ** Synopsis: r[P3]=value N=P2
7569 **
7570 ** Invoke the xValue() function and store the result in register P3.
7571 **
7572 ** P2 is the number of arguments that the step function takes and
7573 ** P4 is a pointer to the FuncDef for this function.  The P2
7574 ** argument is not used by this opcode.  It is only there to disambiguate
7575 ** functions that can take varying numbers of arguments.  The
7576 ** P4 argument is only needed for the case where
7577 ** the step function was not previously called.
7578 */
7579 case OP_AggValue:
7580 case OP_AggFinal: {
7581   Mem *pMem;
7582   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7583   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7584   pMem = &aMem[pOp->p1];
7585   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7586 #ifndef SQLITE_OMIT_WINDOWFUNC
7587   if( pOp->p3 ){
7588     memAboutToChange(p, &aMem[pOp->p3]);
7589     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7590     pMem = &aMem[pOp->p3];
7591   }else
7592 #endif
7593   {
7594     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7595   }
7596 
7597   if( rc ){
7598     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7599     goto abort_due_to_error;
7600   }
7601   sqlite3VdbeChangeEncoding(pMem, encoding);
7602   UPDATE_MAX_BLOBSIZE(pMem);
7603   break;
7604 }
7605 
7606 #ifndef SQLITE_OMIT_WAL
7607 /* Opcode: Checkpoint P1 P2 P3 * *
7608 **
7609 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7610 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7611 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7612 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7613 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7614 ** in the WAL that have been checkpointed after the checkpoint
7615 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7616 ** mem[P3+2] are initialized to -1.
7617 */
7618 case OP_Checkpoint: {
7619   int i;                          /* Loop counter */
7620   int aRes[3];                    /* Results */
7621   Mem *pMem;                      /* Write results here */
7622 
7623   assert( p->readOnly==0 );
7624   aRes[0] = 0;
7625   aRes[1] = aRes[2] = -1;
7626   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7627        || pOp->p2==SQLITE_CHECKPOINT_FULL
7628        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7629        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7630   );
7631   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7632   if( rc ){
7633     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7634     rc = SQLITE_OK;
7635     aRes[0] = 1;
7636   }
7637   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7638     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7639   }
7640   break;
7641 };
7642 #endif
7643 
7644 #ifndef SQLITE_OMIT_PRAGMA
7645 /* Opcode: JournalMode P1 P2 P3 * *
7646 **
7647 ** Change the journal mode of database P1 to P3. P3 must be one of the
7648 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7649 ** modes (delete, truncate, persist, off and memory), this is a simple
7650 ** operation. No IO is required.
7651 **
7652 ** If changing into or out of WAL mode the procedure is more complicated.
7653 **
7654 ** Write a string containing the final journal-mode to register P2.
7655 */
7656 case OP_JournalMode: {    /* out2 */
7657   Btree *pBt;                     /* Btree to change journal mode of */
7658   Pager *pPager;                  /* Pager associated with pBt */
7659   int eNew;                       /* New journal mode */
7660   int eOld;                       /* The old journal mode */
7661 #ifndef SQLITE_OMIT_WAL
7662   const char *zFilename;          /* Name of database file for pPager */
7663 #endif
7664 
7665   pOut = out2Prerelease(p, pOp);
7666   eNew = pOp->p3;
7667   assert( eNew==PAGER_JOURNALMODE_DELETE
7668        || eNew==PAGER_JOURNALMODE_TRUNCATE
7669        || eNew==PAGER_JOURNALMODE_PERSIST
7670        || eNew==PAGER_JOURNALMODE_OFF
7671        || eNew==PAGER_JOURNALMODE_MEMORY
7672        || eNew==PAGER_JOURNALMODE_WAL
7673        || eNew==PAGER_JOURNALMODE_QUERY
7674   );
7675   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7676   assert( p->readOnly==0 );
7677 
7678   pBt = db->aDb[pOp->p1].pBt;
7679   pPager = sqlite3BtreePager(pBt);
7680   eOld = sqlite3PagerGetJournalMode(pPager);
7681   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7682   assert( sqlite3BtreeHoldsMutex(pBt) );
7683   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7684 
7685 #ifndef SQLITE_OMIT_WAL
7686   zFilename = sqlite3PagerFilename(pPager, 1);
7687 
7688   /* Do not allow a transition to journal_mode=WAL for a database
7689   ** in temporary storage or if the VFS does not support shared memory
7690   */
7691   if( eNew==PAGER_JOURNALMODE_WAL
7692    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7693        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7694   ){
7695     eNew = eOld;
7696   }
7697 
7698   if( (eNew!=eOld)
7699    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7700   ){
7701     if( !db->autoCommit || db->nVdbeRead>1 ){
7702       rc = SQLITE_ERROR;
7703       sqlite3VdbeError(p,
7704           "cannot change %s wal mode from within a transaction",
7705           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7706       );
7707       goto abort_due_to_error;
7708     }else{
7709 
7710       if( eOld==PAGER_JOURNALMODE_WAL ){
7711         /* If leaving WAL mode, close the log file. If successful, the call
7712         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7713         ** file. An EXCLUSIVE lock may still be held on the database file
7714         ** after a successful return.
7715         */
7716         rc = sqlite3PagerCloseWal(pPager, db);
7717         if( rc==SQLITE_OK ){
7718           sqlite3PagerSetJournalMode(pPager, eNew);
7719         }
7720       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7721         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7722         ** as an intermediate */
7723         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7724       }
7725 
7726       /* Open a transaction on the database file. Regardless of the journal
7727       ** mode, this transaction always uses a rollback journal.
7728       */
7729       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7730       if( rc==SQLITE_OK ){
7731         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7732       }
7733     }
7734   }
7735 #endif /* ifndef SQLITE_OMIT_WAL */
7736 
7737   if( rc ) eNew = eOld;
7738   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7739 
7740   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7741   pOut->z = (char *)sqlite3JournalModename(eNew);
7742   pOut->n = sqlite3Strlen30(pOut->z);
7743   pOut->enc = SQLITE_UTF8;
7744   sqlite3VdbeChangeEncoding(pOut, encoding);
7745   if( rc ) goto abort_due_to_error;
7746   break;
7747 };
7748 #endif /* SQLITE_OMIT_PRAGMA */
7749 
7750 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7751 /* Opcode: Vacuum P1 P2 * * *
7752 **
7753 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7754 ** for an attached database.  The "temp" database may not be vacuumed.
7755 **
7756 ** If P2 is not zero, then it is a register holding a string which is
7757 ** the file into which the result of vacuum should be written.  When
7758 ** P2 is zero, the vacuum overwrites the original database.
7759 */
7760 case OP_Vacuum: {
7761   assert( p->readOnly==0 );
7762   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7763                         pOp->p2 ? &aMem[pOp->p2] : 0);
7764   if( rc ) goto abort_due_to_error;
7765   break;
7766 }
7767 #endif
7768 
7769 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7770 /* Opcode: IncrVacuum P1 P2 * * *
7771 **
7772 ** Perform a single step of the incremental vacuum procedure on
7773 ** the P1 database. If the vacuum has finished, jump to instruction
7774 ** P2. Otherwise, fall through to the next instruction.
7775 */
7776 case OP_IncrVacuum: {        /* jump */
7777   Btree *pBt;
7778 
7779   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7780   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7781   assert( p->readOnly==0 );
7782   pBt = db->aDb[pOp->p1].pBt;
7783   rc = sqlite3BtreeIncrVacuum(pBt);
7784   VdbeBranchTaken(rc==SQLITE_DONE,2);
7785   if( rc ){
7786     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7787     rc = SQLITE_OK;
7788     goto jump_to_p2;
7789   }
7790   break;
7791 }
7792 #endif
7793 
7794 /* Opcode: Expire P1 P2 * * *
7795 **
7796 ** Cause precompiled statements to expire.  When an expired statement
7797 ** is executed using sqlite3_step() it will either automatically
7798 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7799 ** or it will fail with SQLITE_SCHEMA.
7800 **
7801 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7802 ** then only the currently executing statement is expired.
7803 **
7804 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7805 ** then running SQL statements are allowed to continue to run to completion.
7806 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7807 ** that might help the statement run faster but which does not affect the
7808 ** correctness of operation.
7809 */
7810 case OP_Expire: {
7811   assert( pOp->p2==0 || pOp->p2==1 );
7812   if( !pOp->p1 ){
7813     sqlite3ExpirePreparedStatements(db, pOp->p2);
7814   }else{
7815     p->expired = pOp->p2+1;
7816   }
7817   break;
7818 }
7819 
7820 /* Opcode: CursorLock P1 * * * *
7821 **
7822 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7823 ** written by an other cursor.
7824 */
7825 case OP_CursorLock: {
7826   VdbeCursor *pC;
7827   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7828   pC = p->apCsr[pOp->p1];
7829   assert( pC!=0 );
7830   assert( pC->eCurType==CURTYPE_BTREE );
7831   sqlite3BtreeCursorPin(pC->uc.pCursor);
7832   break;
7833 }
7834 
7835 /* Opcode: CursorUnlock P1 * * * *
7836 **
7837 ** Unlock the btree to which cursor P1 is pointing so that it can be
7838 ** written by other cursors.
7839 */
7840 case OP_CursorUnlock: {
7841   VdbeCursor *pC;
7842   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7843   pC = p->apCsr[pOp->p1];
7844   assert( pC!=0 );
7845   assert( pC->eCurType==CURTYPE_BTREE );
7846   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7847   break;
7848 }
7849 
7850 #ifndef SQLITE_OMIT_SHARED_CACHE
7851 /* Opcode: TableLock P1 P2 P3 P4 *
7852 ** Synopsis: iDb=P1 root=P2 write=P3
7853 **
7854 ** Obtain a lock on a particular table. This instruction is only used when
7855 ** the shared-cache feature is enabled.
7856 **
7857 ** P1 is the index of the database in sqlite3.aDb[] of the database
7858 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7859 ** a write lock if P3==1.
7860 **
7861 ** P2 contains the root-page of the table to lock.
7862 **
7863 ** P4 contains a pointer to the name of the table being locked. This is only
7864 ** used to generate an error message if the lock cannot be obtained.
7865 */
7866 case OP_TableLock: {
7867   u8 isWriteLock = (u8)pOp->p3;
7868   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7869     int p1 = pOp->p1;
7870     assert( p1>=0 && p1<db->nDb );
7871     assert( DbMaskTest(p->btreeMask, p1) );
7872     assert( isWriteLock==0 || isWriteLock==1 );
7873     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7874     if( rc ){
7875       if( (rc&0xFF)==SQLITE_LOCKED ){
7876         const char *z = pOp->p4.z;
7877         sqlite3VdbeError(p, "database table is locked: %s", z);
7878       }
7879       goto abort_due_to_error;
7880     }
7881   }
7882   break;
7883 }
7884 #endif /* SQLITE_OMIT_SHARED_CACHE */
7885 
7886 #ifndef SQLITE_OMIT_VIRTUALTABLE
7887 /* Opcode: VBegin * * * P4 *
7888 **
7889 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7890 ** xBegin method for that table.
7891 **
7892 ** Also, whether or not P4 is set, check that this is not being called from
7893 ** within a callback to a virtual table xSync() method. If it is, the error
7894 ** code will be set to SQLITE_LOCKED.
7895 */
7896 case OP_VBegin: {
7897   VTable *pVTab;
7898   pVTab = pOp->p4.pVtab;
7899   rc = sqlite3VtabBegin(db, pVTab);
7900   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7901   if( rc ) goto abort_due_to_error;
7902   break;
7903 }
7904 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7905 
7906 #ifndef SQLITE_OMIT_VIRTUALTABLE
7907 /* Opcode: VCreate P1 P2 * * *
7908 **
7909 ** P2 is a register that holds the name of a virtual table in database
7910 ** P1. Call the xCreate method for that table.
7911 */
7912 case OP_VCreate: {
7913   Mem sMem;          /* For storing the record being decoded */
7914   const char *zTab;  /* Name of the virtual table */
7915 
7916   memset(&sMem, 0, sizeof(sMem));
7917   sMem.db = db;
7918   /* Because P2 is always a static string, it is impossible for the
7919   ** sqlite3VdbeMemCopy() to fail */
7920   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7921   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7922   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7923   assert( rc==SQLITE_OK );
7924   zTab = (const char*)sqlite3_value_text(&sMem);
7925   assert( zTab || db->mallocFailed );
7926   if( zTab ){
7927     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7928   }
7929   sqlite3VdbeMemRelease(&sMem);
7930   if( rc ) goto abort_due_to_error;
7931   break;
7932 }
7933 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7934 
7935 #ifndef SQLITE_OMIT_VIRTUALTABLE
7936 /* Opcode: VDestroy P1 * * P4 *
7937 **
7938 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7939 ** of that table.
7940 */
7941 case OP_VDestroy: {
7942   db->nVDestroy++;
7943   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7944   db->nVDestroy--;
7945   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7946   if( rc ) goto abort_due_to_error;
7947   break;
7948 }
7949 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7950 
7951 #ifndef SQLITE_OMIT_VIRTUALTABLE
7952 /* Opcode: VOpen P1 * * P4 *
7953 **
7954 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7955 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7956 ** table and stores that cursor in P1.
7957 */
7958 case OP_VOpen: {
7959   VdbeCursor *pCur;
7960   sqlite3_vtab_cursor *pVCur;
7961   sqlite3_vtab *pVtab;
7962   const sqlite3_module *pModule;
7963 
7964   assert( p->bIsReader );
7965   pCur = 0;
7966   pVCur = 0;
7967   pVtab = pOp->p4.pVtab->pVtab;
7968   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7969     rc = SQLITE_LOCKED;
7970     goto abort_due_to_error;
7971   }
7972   pModule = pVtab->pModule;
7973   rc = pModule->xOpen(pVtab, &pVCur);
7974   sqlite3VtabImportErrmsg(p, pVtab);
7975   if( rc ) goto abort_due_to_error;
7976 
7977   /* Initialize sqlite3_vtab_cursor base class */
7978   pVCur->pVtab = pVtab;
7979 
7980   /* Initialize vdbe cursor object */
7981   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7982   if( pCur ){
7983     pCur->uc.pVCur = pVCur;
7984     pVtab->nRef++;
7985   }else{
7986     assert( db->mallocFailed );
7987     pModule->xClose(pVCur);
7988     goto no_mem;
7989   }
7990   break;
7991 }
7992 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7993 
7994 #ifndef SQLITE_OMIT_VIRTUALTABLE
7995 /* Opcode: VInitIn P1 P2 P3 * *
7996 ** Synopsis: r[P2]=ValueList(P1,P3)
7997 **
7998 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7999 ** with cache register P3 and output register P3+1.  This ValueList object
8000 ** can be used as the first argument to sqlite3_vtab_in_first() and
8001 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8002 ** cursor.  Register P3 is used to hold the values returned by
8003 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8004 */
8005 case OP_VInitIn: {        /* out2 */
8006   VdbeCursor *pC;         /* The cursor containing the RHS values */
8007   ValueList *pRhs;        /* New ValueList object to put in reg[P2] */
8008 
8009   pC = p->apCsr[pOp->p1];
8010   pRhs = sqlite3_malloc64( sizeof(*pRhs) );
8011   if( pRhs==0 ) goto no_mem;
8012   pRhs->pCsr = pC->uc.pCursor;
8013   pRhs->pOut = &aMem[pOp->p3];
8014   pOut = out2Prerelease(p, pOp);
8015   pOut->flags = MEM_Null;
8016   sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
8017   break;
8018 }
8019 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8020 
8021 
8022 #ifndef SQLITE_OMIT_VIRTUALTABLE
8023 /* Opcode: VFilter P1 P2 P3 P4 *
8024 ** Synopsis: iplan=r[P3] zplan='P4'
8025 **
8026 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
8027 ** the filtered result set is empty.
8028 **
8029 ** P4 is either NULL or a string that was generated by the xBestIndex
8030 ** method of the module.  The interpretation of the P4 string is left
8031 ** to the module implementation.
8032 **
8033 ** This opcode invokes the xFilter method on the virtual table specified
8034 ** by P1.  The integer query plan parameter to xFilter is stored in register
8035 ** P3. Register P3+1 stores the argc parameter to be passed to the
8036 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8037 ** additional parameters which are passed to
8038 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8039 **
8040 ** A jump is made to P2 if the result set after filtering would be empty.
8041 */
8042 case OP_VFilter: {   /* jump */
8043   int nArg;
8044   int iQuery;
8045   const sqlite3_module *pModule;
8046   Mem *pQuery;
8047   Mem *pArgc;
8048   sqlite3_vtab_cursor *pVCur;
8049   sqlite3_vtab *pVtab;
8050   VdbeCursor *pCur;
8051   int res;
8052   int i;
8053   Mem **apArg;
8054 
8055   pQuery = &aMem[pOp->p3];
8056   pArgc = &pQuery[1];
8057   pCur = p->apCsr[pOp->p1];
8058   assert( memIsValid(pQuery) );
8059   REGISTER_TRACE(pOp->p3, pQuery);
8060   assert( pCur!=0 );
8061   assert( pCur->eCurType==CURTYPE_VTAB );
8062   pVCur = pCur->uc.pVCur;
8063   pVtab = pVCur->pVtab;
8064   pModule = pVtab->pModule;
8065 
8066   /* Grab the index number and argc parameters */
8067   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
8068   nArg = (int)pArgc->u.i;
8069   iQuery = (int)pQuery->u.i;
8070 
8071   /* Invoke the xFilter method */
8072   apArg = p->apArg;
8073   for(i = 0; i<nArg; i++){
8074     apArg[i] = &pArgc[i+1];
8075   }
8076   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
8077   sqlite3VtabImportErrmsg(p, pVtab);
8078   if( rc ) goto abort_due_to_error;
8079   res = pModule->xEof(pVCur);
8080   pCur->nullRow = 0;
8081   VdbeBranchTaken(res!=0,2);
8082   if( res ) goto jump_to_p2;
8083   break;
8084 }
8085 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8086 
8087 #ifndef SQLITE_OMIT_VIRTUALTABLE
8088 /* Opcode: VColumn P1 P2 P3 * P5
8089 ** Synopsis: r[P3]=vcolumn(P2)
8090 **
8091 ** Store in register P3 the value of the P2-th column of
8092 ** the current row of the virtual-table of cursor P1.
8093 **
8094 ** If the VColumn opcode is being used to fetch the value of
8095 ** an unchanging column during an UPDATE operation, then the P5
8096 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
8097 ** function to return true inside the xColumn method of the virtual
8098 ** table implementation.  The P5 column might also contain other
8099 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8100 ** unused by OP_VColumn.
8101 */
8102 case OP_VColumn: {
8103   sqlite3_vtab *pVtab;
8104   const sqlite3_module *pModule;
8105   Mem *pDest;
8106   sqlite3_context sContext;
8107 
8108   VdbeCursor *pCur = p->apCsr[pOp->p1];
8109   assert( pCur!=0 );
8110   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
8111   pDest = &aMem[pOp->p3];
8112   memAboutToChange(p, pDest);
8113   if( pCur->nullRow ){
8114     sqlite3VdbeMemSetNull(pDest);
8115     break;
8116   }
8117   assert( pCur->eCurType==CURTYPE_VTAB );
8118   pVtab = pCur->uc.pVCur->pVtab;
8119   pModule = pVtab->pModule;
8120   assert( pModule->xColumn );
8121   memset(&sContext, 0, sizeof(sContext));
8122   sContext.pOut = pDest;
8123   sContext.enc = encoding;
8124   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8125   if( pOp->p5 & OPFLAG_NOCHNG ){
8126     sqlite3VdbeMemSetNull(pDest);
8127     pDest->flags = MEM_Null|MEM_Zero;
8128     pDest->u.nZero = 0;
8129   }else{
8130     MemSetTypeFlag(pDest, MEM_Null);
8131   }
8132   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8133   sqlite3VtabImportErrmsg(p, pVtab);
8134   if( sContext.isError>0 ){
8135     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8136     rc = sContext.isError;
8137   }
8138   sqlite3VdbeChangeEncoding(pDest, encoding);
8139   REGISTER_TRACE(pOp->p3, pDest);
8140   UPDATE_MAX_BLOBSIZE(pDest);
8141 
8142   if( rc ) goto abort_due_to_error;
8143   break;
8144 }
8145 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8146 
8147 #ifndef SQLITE_OMIT_VIRTUALTABLE
8148 /* Opcode: VNext P1 P2 * * *
8149 **
8150 ** Advance virtual table P1 to the next row in its result set and
8151 ** jump to instruction P2.  Or, if the virtual table has reached
8152 ** the end of its result set, then fall through to the next instruction.
8153 */
8154 case OP_VNext: {   /* jump */
8155   sqlite3_vtab *pVtab;
8156   const sqlite3_module *pModule;
8157   int res;
8158   VdbeCursor *pCur;
8159 
8160   pCur = p->apCsr[pOp->p1];
8161   assert( pCur!=0 );
8162   assert( pCur->eCurType==CURTYPE_VTAB );
8163   if( pCur->nullRow ){
8164     break;
8165   }
8166   pVtab = pCur->uc.pVCur->pVtab;
8167   pModule = pVtab->pModule;
8168   assert( pModule->xNext );
8169 
8170   /* Invoke the xNext() method of the module. There is no way for the
8171   ** underlying implementation to return an error if one occurs during
8172   ** xNext(). Instead, if an error occurs, true is returned (indicating that
8173   ** data is available) and the error code returned when xColumn or
8174   ** some other method is next invoked on the save virtual table cursor.
8175   */
8176   rc = pModule->xNext(pCur->uc.pVCur);
8177   sqlite3VtabImportErrmsg(p, pVtab);
8178   if( rc ) goto abort_due_to_error;
8179   res = pModule->xEof(pCur->uc.pVCur);
8180   VdbeBranchTaken(!res,2);
8181   if( !res ){
8182     /* If there is data, jump to P2 */
8183     goto jump_to_p2_and_check_for_interrupt;
8184   }
8185   goto check_for_interrupt;
8186 }
8187 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8188 
8189 #ifndef SQLITE_OMIT_VIRTUALTABLE
8190 /* Opcode: VRename P1 * * P4 *
8191 **
8192 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8193 ** This opcode invokes the corresponding xRename method. The value
8194 ** in register P1 is passed as the zName argument to the xRename method.
8195 */
8196 case OP_VRename: {
8197   sqlite3_vtab *pVtab;
8198   Mem *pName;
8199   int isLegacy;
8200 
8201   isLegacy = (db->flags & SQLITE_LegacyAlter);
8202   db->flags |= SQLITE_LegacyAlter;
8203   pVtab = pOp->p4.pVtab->pVtab;
8204   pName = &aMem[pOp->p1];
8205   assert( pVtab->pModule->xRename );
8206   assert( memIsValid(pName) );
8207   assert( p->readOnly==0 );
8208   REGISTER_TRACE(pOp->p1, pName);
8209   assert( pName->flags & MEM_Str );
8210   testcase( pName->enc==SQLITE_UTF8 );
8211   testcase( pName->enc==SQLITE_UTF16BE );
8212   testcase( pName->enc==SQLITE_UTF16LE );
8213   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8214   if( rc ) goto abort_due_to_error;
8215   rc = pVtab->pModule->xRename(pVtab, pName->z);
8216   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8217   sqlite3VtabImportErrmsg(p, pVtab);
8218   p->expired = 0;
8219   if( rc ) goto abort_due_to_error;
8220   break;
8221 }
8222 #endif
8223 
8224 #ifndef SQLITE_OMIT_VIRTUALTABLE
8225 /* Opcode: VUpdate P1 P2 P3 P4 P5
8226 ** Synopsis: data=r[P3@P2]
8227 **
8228 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8229 ** This opcode invokes the corresponding xUpdate method. P2 values
8230 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8231 ** invocation. The value in register (P3+P2-1) corresponds to the
8232 ** p2th element of the argv array passed to xUpdate.
8233 **
8234 ** The xUpdate method will do a DELETE or an INSERT or both.
8235 ** The argv[0] element (which corresponds to memory cell P3)
8236 ** is the rowid of a row to delete.  If argv[0] is NULL then no
8237 ** deletion occurs.  The argv[1] element is the rowid of the new
8238 ** row.  This can be NULL to have the virtual table select the new
8239 ** rowid for itself.  The subsequent elements in the array are
8240 ** the values of columns in the new row.
8241 **
8242 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
8243 ** a row to delete.
8244 **
8245 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8246 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8247 ** is set to the value of the rowid for the row just inserted.
8248 **
8249 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8250 ** apply in the case of a constraint failure on an insert or update.
8251 */
8252 case OP_VUpdate: {
8253   sqlite3_vtab *pVtab;
8254   const sqlite3_module *pModule;
8255   int nArg;
8256   int i;
8257   sqlite_int64 rowid = 0;
8258   Mem **apArg;
8259   Mem *pX;
8260 
8261   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
8262        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8263   );
8264   assert( p->readOnly==0 );
8265   if( db->mallocFailed ) goto no_mem;
8266   sqlite3VdbeIncrWriteCounter(p, 0);
8267   pVtab = pOp->p4.pVtab->pVtab;
8268   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8269     rc = SQLITE_LOCKED;
8270     goto abort_due_to_error;
8271   }
8272   pModule = pVtab->pModule;
8273   nArg = pOp->p2;
8274   assert( pOp->p4type==P4_VTAB );
8275   if( ALWAYS(pModule->xUpdate) ){
8276     u8 vtabOnConflict = db->vtabOnConflict;
8277     apArg = p->apArg;
8278     pX = &aMem[pOp->p3];
8279     for(i=0; i<nArg; i++){
8280       assert( memIsValid(pX) );
8281       memAboutToChange(p, pX);
8282       apArg[i] = pX;
8283       pX++;
8284     }
8285     db->vtabOnConflict = pOp->p5;
8286     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8287     db->vtabOnConflict = vtabOnConflict;
8288     sqlite3VtabImportErrmsg(p, pVtab);
8289     if( rc==SQLITE_OK && pOp->p1 ){
8290       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8291       db->lastRowid = rowid;
8292     }
8293     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8294       if( pOp->p5==OE_Ignore ){
8295         rc = SQLITE_OK;
8296       }else{
8297         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8298       }
8299     }else{
8300       p->nChange++;
8301     }
8302     if( rc ) goto abort_due_to_error;
8303   }
8304   break;
8305 }
8306 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8307 
8308 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8309 /* Opcode: Pagecount P1 P2 * * *
8310 **
8311 ** Write the current number of pages in database P1 to memory cell P2.
8312 */
8313 case OP_Pagecount: {            /* out2 */
8314   pOut = out2Prerelease(p, pOp);
8315   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8316   break;
8317 }
8318 #endif
8319 
8320 
8321 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8322 /* Opcode: MaxPgcnt P1 P2 P3 * *
8323 **
8324 ** Try to set the maximum page count for database P1 to the value in P3.
8325 ** Do not let the maximum page count fall below the current page count and
8326 ** do not change the maximum page count value if P3==0.
8327 **
8328 ** Store the maximum page count after the change in register P2.
8329 */
8330 case OP_MaxPgcnt: {            /* out2 */
8331   unsigned int newMax;
8332   Btree *pBt;
8333 
8334   pOut = out2Prerelease(p, pOp);
8335   pBt = db->aDb[pOp->p1].pBt;
8336   newMax = 0;
8337   if( pOp->p3 ){
8338     newMax = sqlite3BtreeLastPage(pBt);
8339     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8340   }
8341   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8342   break;
8343 }
8344 #endif
8345 
8346 /* Opcode: Function P1 P2 P3 P4 *
8347 ** Synopsis: r[P3]=func(r[P2@NP])
8348 **
8349 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8350 ** contains a pointer to the function to be run) with arguments taken
8351 ** from register P2 and successors.  The number of arguments is in
8352 ** the sqlite3_context object that P4 points to.
8353 ** The result of the function is stored
8354 ** in register P3.  Register P3 must not be one of the function inputs.
8355 **
8356 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8357 ** function was determined to be constant at compile time. If the first
8358 ** argument was constant then bit 0 of P1 is set. This is used to determine
8359 ** whether meta data associated with a user function argument using the
8360 ** sqlite3_set_auxdata() API may be safely retained until the next
8361 ** invocation of this opcode.
8362 **
8363 ** See also: AggStep, AggFinal, PureFunc
8364 */
8365 /* Opcode: PureFunc P1 P2 P3 P4 *
8366 ** Synopsis: r[P3]=func(r[P2@NP])
8367 **
8368 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8369 ** contains a pointer to the function to be run) with arguments taken
8370 ** from register P2 and successors.  The number of arguments is in
8371 ** the sqlite3_context object that P4 points to.
8372 ** The result of the function is stored
8373 ** in register P3.  Register P3 must not be one of the function inputs.
8374 **
8375 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8376 ** function was determined to be constant at compile time. If the first
8377 ** argument was constant then bit 0 of P1 is set. This is used to determine
8378 ** whether meta data associated with a user function argument using the
8379 ** sqlite3_set_auxdata() API may be safely retained until the next
8380 ** invocation of this opcode.
8381 **
8382 ** This opcode works exactly like OP_Function.  The only difference is in
8383 ** its name.  This opcode is used in places where the function must be
8384 ** purely non-deterministic.  Some built-in date/time functions can be
8385 ** either determinitic of non-deterministic, depending on their arguments.
8386 ** When those function are used in a non-deterministic way, they will check
8387 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8388 ** if they were, they throw an error.
8389 **
8390 ** See also: AggStep, AggFinal, Function
8391 */
8392 case OP_PureFunc:              /* group */
8393 case OP_Function: {            /* group */
8394   int i;
8395   sqlite3_context *pCtx;
8396 
8397   assert( pOp->p4type==P4_FUNCCTX );
8398   pCtx = pOp->p4.pCtx;
8399 
8400   /* If this function is inside of a trigger, the register array in aMem[]
8401   ** might change from one evaluation to the next.  The next block of code
8402   ** checks to see if the register array has changed, and if so it
8403   ** reinitializes the relavant parts of the sqlite3_context object */
8404   pOut = &aMem[pOp->p3];
8405   if( pCtx->pOut != pOut ){
8406     pCtx->pVdbe = p;
8407     pCtx->pOut = pOut;
8408     pCtx->enc = encoding;
8409     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8410   }
8411   assert( pCtx->pVdbe==p );
8412 
8413   memAboutToChange(p, pOut);
8414 #ifdef SQLITE_DEBUG
8415   for(i=0; i<pCtx->argc; i++){
8416     assert( memIsValid(pCtx->argv[i]) );
8417     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8418   }
8419 #endif
8420   MemSetTypeFlag(pOut, MEM_Null);
8421   assert( pCtx->isError==0 );
8422   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8423 
8424   /* If the function returned an error, throw an exception */
8425   if( pCtx->isError ){
8426     if( pCtx->isError>0 ){
8427       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8428       rc = pCtx->isError;
8429     }
8430     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8431     pCtx->isError = 0;
8432     if( rc ) goto abort_due_to_error;
8433   }
8434 
8435   assert( (pOut->flags&MEM_Str)==0
8436        || pOut->enc==encoding
8437        || db->mallocFailed );
8438   assert( !sqlite3VdbeMemTooBig(pOut) );
8439 
8440   REGISTER_TRACE(pOp->p3, pOut);
8441   UPDATE_MAX_BLOBSIZE(pOut);
8442   break;
8443 }
8444 
8445 /* Opcode: ClrSubtype P1 * * * *
8446 ** Synopsis:  r[P1].subtype = 0
8447 **
8448 ** Clear the subtype from register P1.
8449 */
8450 case OP_ClrSubtype: {   /* in1 */
8451   pIn1 = &aMem[pOp->p1];
8452   pIn1->flags &= ~MEM_Subtype;
8453   break;
8454 }
8455 
8456 /* Opcode: FilterAdd P1 * P3 P4 *
8457 ** Synopsis: filter(P1) += key(P3@P4)
8458 **
8459 ** Compute a hash on the P4 registers starting with r[P3] and
8460 ** add that hash to the bloom filter contained in r[P1].
8461 */
8462 case OP_FilterAdd: {
8463   u64 h;
8464 
8465   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8466   pIn1 = &aMem[pOp->p1];
8467   assert( pIn1->flags & MEM_Blob );
8468   assert( pIn1->n>0 );
8469   h = filterHash(aMem, pOp);
8470 #ifdef SQLITE_DEBUG
8471   if( db->flags&SQLITE_VdbeTrace ){
8472     int ii;
8473     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8474       registerTrace(ii, &aMem[ii]);
8475     }
8476     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8477   }
8478 #endif
8479   h %= pIn1->n;
8480   pIn1->z[h/8] |= 1<<(h&7);
8481   break;
8482 }
8483 
8484 /* Opcode: Filter P1 P2 P3 P4 *
8485 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8486 **
8487 ** Compute a hash on the key contained in the P4 registers starting
8488 ** with r[P3].  Check to see if that hash is found in the
8489 ** bloom filter hosted by register P1.  If it is not present then
8490 ** maybe jump to P2.  Otherwise fall through.
8491 **
8492 ** False negatives are harmless.  It is always safe to fall through,
8493 ** even if the value is in the bloom filter.  A false negative causes
8494 ** more CPU cycles to be used, but it should still yield the correct
8495 ** answer.  However, an incorrect answer may well arise from a
8496 ** false positive - if the jump is taken when it should fall through.
8497 */
8498 case OP_Filter: {          /* jump */
8499   u64 h;
8500 
8501   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8502   pIn1 = &aMem[pOp->p1];
8503   assert( (pIn1->flags & MEM_Blob)!=0 );
8504   assert( pIn1->n >= 1 );
8505   h = filterHash(aMem, pOp);
8506 #ifdef SQLITE_DEBUG
8507   if( db->flags&SQLITE_VdbeTrace ){
8508     int ii;
8509     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8510       registerTrace(ii, &aMem[ii]);
8511     }
8512     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8513   }
8514 #endif
8515   h %= pIn1->n;
8516   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8517     VdbeBranchTaken(1, 2);
8518     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8519     goto jump_to_p2;
8520   }else{
8521     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8522     VdbeBranchTaken(0, 2);
8523   }
8524   break;
8525 }
8526 
8527 /* Opcode: Trace P1 P2 * P4 *
8528 **
8529 ** Write P4 on the statement trace output if statement tracing is
8530 ** enabled.
8531 **
8532 ** Operand P1 must be 0x7fffffff and P2 must positive.
8533 */
8534 /* Opcode: Init P1 P2 P3 P4 *
8535 ** Synopsis: Start at P2
8536 **
8537 ** Programs contain a single instance of this opcode as the very first
8538 ** opcode.
8539 **
8540 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8541 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8542 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8543 **
8544 ** If P2 is not zero, jump to instruction P2.
8545 **
8546 ** Increment the value of P1 so that OP_Once opcodes will jump the
8547 ** first time they are evaluated for this run.
8548 **
8549 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8550 ** error is encountered.
8551 */
8552 case OP_Trace:
8553 case OP_Init: {          /* jump */
8554   int i;
8555 #ifndef SQLITE_OMIT_TRACE
8556   char *zTrace;
8557 #endif
8558 
8559   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8560   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8561   **
8562   ** This assert() provides evidence for:
8563   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8564   ** would have been returned by the legacy sqlite3_trace() interface by
8565   ** using the X argument when X begins with "--" and invoking
8566   ** sqlite3_expanded_sql(P) otherwise.
8567   */
8568   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8569 
8570   /* OP_Init is always instruction 0 */
8571   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8572 
8573 #ifndef SQLITE_OMIT_TRACE
8574   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8575    && p->minWriteFileFormat!=254  /* tag-20220401a */
8576    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8577   ){
8578 #ifndef SQLITE_OMIT_DEPRECATED
8579     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8580       char *z = sqlite3VdbeExpandSql(p, zTrace);
8581       db->trace.xLegacy(db->pTraceArg, z);
8582       sqlite3_free(z);
8583     }else
8584 #endif
8585     if( db->nVdbeExec>1 ){
8586       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8587       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8588       sqlite3DbFree(db, z);
8589     }else{
8590       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8591     }
8592   }
8593 #ifdef SQLITE_USE_FCNTL_TRACE
8594   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8595   if( zTrace ){
8596     int j;
8597     for(j=0; j<db->nDb; j++){
8598       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8599       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8600     }
8601   }
8602 #endif /* SQLITE_USE_FCNTL_TRACE */
8603 #ifdef SQLITE_DEBUG
8604   if( (db->flags & SQLITE_SqlTrace)!=0
8605    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8606   ){
8607     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8608   }
8609 #endif /* SQLITE_DEBUG */
8610 #endif /* SQLITE_OMIT_TRACE */
8611   assert( pOp->p2>0 );
8612   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8613     if( pOp->opcode==OP_Trace ) break;
8614     for(i=1; i<p->nOp; i++){
8615       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8616     }
8617     pOp->p1 = 0;
8618   }
8619   pOp->p1++;
8620   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8621   goto jump_to_p2;
8622 }
8623 
8624 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8625 /* Opcode: CursorHint P1 * * P4 *
8626 **
8627 ** Provide a hint to cursor P1 that it only needs to return rows that
8628 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8629 ** to values currently held in registers.  TK_COLUMN terms in the P4
8630 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8631 */
8632 case OP_CursorHint: {
8633   VdbeCursor *pC;
8634 
8635   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8636   assert( pOp->p4type==P4_EXPR );
8637   pC = p->apCsr[pOp->p1];
8638   if( pC ){
8639     assert( pC->eCurType==CURTYPE_BTREE );
8640     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8641                            pOp->p4.pExpr, aMem);
8642   }
8643   break;
8644 }
8645 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8646 
8647 #ifdef SQLITE_DEBUG
8648 /* Opcode:  Abortable   * * * * *
8649 **
8650 ** Verify that an Abort can happen.  Assert if an Abort at this point
8651 ** might cause database corruption.  This opcode only appears in debugging
8652 ** builds.
8653 **
8654 ** An Abort is safe if either there have been no writes, or if there is
8655 ** an active statement journal.
8656 */
8657 case OP_Abortable: {
8658   sqlite3VdbeAssertAbortable(p);
8659   break;
8660 }
8661 #endif
8662 
8663 #ifdef SQLITE_DEBUG
8664 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8665 ** Synopsis: release r[P1@P2] mask P3
8666 **
8667 ** Release registers from service.  Any content that was in the
8668 ** the registers is unreliable after this opcode completes.
8669 **
8670 ** The registers released will be the P2 registers starting at P1,
8671 ** except if bit ii of P3 set, then do not release register P1+ii.
8672 ** In other words, P3 is a mask of registers to preserve.
8673 **
8674 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8675 ** that if the content of the released register was set using OP_SCopy,
8676 ** a change to the value of the source register for the OP_SCopy will no longer
8677 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8678 **
8679 ** If P5 is set, then all released registers have their type set
8680 ** to MEM_Undefined so that any subsequent attempt to read the released
8681 ** register (before it is reinitialized) will generate an assertion fault.
8682 **
8683 ** P5 ought to be set on every call to this opcode.
8684 ** However, there are places in the code generator will release registers
8685 ** before their are used, under the (valid) assumption that the registers
8686 ** will not be reallocated for some other purpose before they are used and
8687 ** hence are safe to release.
8688 **
8689 ** This opcode is only available in testing and debugging builds.  It is
8690 ** not generated for release builds.  The purpose of this opcode is to help
8691 ** validate the generated bytecode.  This opcode does not actually contribute
8692 ** to computing an answer.
8693 */
8694 case OP_ReleaseReg: {
8695   Mem *pMem;
8696   int i;
8697   u32 constMask;
8698   assert( pOp->p1>0 );
8699   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8700   pMem = &aMem[pOp->p1];
8701   constMask = pOp->p3;
8702   for(i=0; i<pOp->p2; i++, pMem++){
8703     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8704       pMem->pScopyFrom = 0;
8705       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8706     }
8707   }
8708   break;
8709 }
8710 #endif
8711 
8712 /* Opcode: Noop * * * * *
8713 **
8714 ** Do nothing.  This instruction is often useful as a jump
8715 ** destination.
8716 */
8717 /*
8718 ** The magic Explain opcode are only inserted when explain==2 (which
8719 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8720 ** This opcode records information from the optimizer.  It is the
8721 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8722 */
8723 default: {          /* This is really OP_Noop, OP_Explain */
8724   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8725 
8726   break;
8727 }
8728 
8729 /*****************************************************************************
8730 ** The cases of the switch statement above this line should all be indented
8731 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8732 ** readability.  From this point on down, the normal indentation rules are
8733 ** restored.
8734 *****************************************************************************/
8735     }
8736 
8737 #ifdef VDBE_PROFILE
8738     {
8739       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8740       if( endTime>start ) pOrigOp->cycles += endTime - start;
8741       pOrigOp->cnt++;
8742     }
8743 #endif
8744 
8745     /* The following code adds nothing to the actual functionality
8746     ** of the program.  It is only here for testing and debugging.
8747     ** On the other hand, it does burn CPU cycles every time through
8748     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8749     */
8750 #ifndef NDEBUG
8751     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8752 
8753 #ifdef SQLITE_DEBUG
8754     if( db->flags & SQLITE_VdbeTrace ){
8755       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8756       if( rc!=0 ) printf("rc=%d\n",rc);
8757       if( opProperty & (OPFLG_OUT2) ){
8758         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8759       }
8760       if( opProperty & OPFLG_OUT3 ){
8761         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8762       }
8763       if( opProperty==0xff ){
8764         /* Never happens.  This code exists to avoid a harmless linkage
8765         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8766         ** used. */
8767         sqlite3VdbeRegisterDump(p);
8768       }
8769     }
8770 #endif  /* SQLITE_DEBUG */
8771 #endif  /* NDEBUG */
8772   }  /* The end of the for(;;) loop the loops through opcodes */
8773 
8774   /* If we reach this point, it means that execution is finished with
8775   ** an error of some kind.
8776   */
8777 abort_due_to_error:
8778   if( db->mallocFailed ){
8779     rc = SQLITE_NOMEM_BKPT;
8780   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8781     rc = SQLITE_CORRUPT_BKPT;
8782   }
8783   assert( rc );
8784 #ifdef SQLITE_DEBUG
8785   if( db->flags & SQLITE_VdbeTrace ){
8786     const char *zTrace = p->zSql;
8787     if( zTrace==0 ){
8788       if( aOp[0].opcode==OP_Trace ){
8789         zTrace = aOp[0].p4.z;
8790       }
8791       if( zTrace==0 ) zTrace = "???";
8792     }
8793     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8794   }
8795 #endif
8796   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8797     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8798   }
8799   p->rc = rc;
8800   sqlite3SystemError(db, rc);
8801   testcase( sqlite3GlobalConfig.xLog!=0 );
8802   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8803                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8804   if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8805   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8806   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8807     db->flags |= SQLITE_CorruptRdOnly;
8808   }
8809   rc = SQLITE_ERROR;
8810   if( resetSchemaOnFault>0 ){
8811     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8812   }
8813 
8814   /* This is the only way out of this procedure.  We have to
8815   ** release the mutexes on btrees that were acquired at the
8816   ** top. */
8817 vdbe_return:
8818 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8819   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8820     nProgressLimit += db->nProgressOps;
8821     if( db->xProgress(db->pProgressArg) ){
8822       nProgressLimit = LARGEST_UINT64;
8823       rc = SQLITE_INTERRUPT;
8824       goto abort_due_to_error;
8825     }
8826   }
8827 #endif
8828   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8829   sqlite3VdbeLeave(p);
8830   assert( rc!=SQLITE_OK || nExtraDelete==0
8831        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8832   );
8833   return rc;
8834 
8835   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8836   ** is encountered.
8837   */
8838 too_big:
8839   sqlite3VdbeError(p, "string or blob too big");
8840   rc = SQLITE_TOOBIG;
8841   goto abort_due_to_error;
8842 
8843   /* Jump to here if a malloc() fails.
8844   */
8845 no_mem:
8846   sqlite3OomFault(db);
8847   sqlite3VdbeError(p, "out of memory");
8848   rc = SQLITE_NOMEM_BKPT;
8849   goto abort_due_to_error;
8850 
8851   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8852   ** flag.
8853   */
8854 abort_due_to_interrupt:
8855   assert( AtomicLoad(&db->u1.isInterrupted) );
8856   rc = SQLITE_INTERRUPT;
8857   goto abort_due_to_error;
8858 }
8859