1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 ** 120 ** iSrcLine is the source code line (from the __LINE__ macro) that 121 ** generated the VDBE instruction. This instrumentation assumes that all 122 ** source code is in a single file (the amalgamation). Special values 1 123 ** and 2 for the iSrcLine parameter mean that this particular branch is 124 ** always taken or never taken, respectively. 125 */ 126 #if !defined(SQLITE_VDBE_COVERAGE) 127 # define VdbeBranchTaken(I,M) 128 #else 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 132 M = iSrcLine; 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and 134 ** VdbeCoverageNeverTaken() */ 135 assert( (M & I)==I ); 136 }else{ 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 139 iSrcLine,I,M); 140 } 141 } 142 #endif 143 144 /* 145 ** Convert the given register into a string if it isn't one 146 ** already. Return non-zero if a malloc() fails. 147 */ 148 #define Stringify(P, enc) \ 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 150 { goto no_mem; } 151 152 /* 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 154 ** a pointer to a dynamically allocated string where some other entity 155 ** is responsible for deallocating that string. Because the register 156 ** does not control the string, it might be deleted without the register 157 ** knowing it. 158 ** 159 ** This routine converts an ephemeral string into a dynamically allocated 160 ** string that the register itself controls. In other words, it 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 162 */ 163 #define Deephemeralize(P) \ 164 if( ((P)->flags&MEM_Ephem)!=0 \ 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 166 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 169 170 /* 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 172 ** if we run out of memory. 173 */ 174 static VdbeCursor *allocateCursor( 175 Vdbe *p, /* The virtual machine */ 176 int iCur, /* Index of the new VdbeCursor */ 177 int nField, /* Number of fields in the table or index */ 178 int iDb, /* Database the cursor belongs to, or -1 */ 179 u8 eCurType /* Type of the new cursor */ 180 ){ 181 /* Find the memory cell that will be used to store the blob of memory 182 ** required for this VdbeCursor structure. It is convenient to use a 183 ** vdbe memory cell to manage the memory allocation required for a 184 ** VdbeCursor structure for the following reasons: 185 ** 186 ** * Sometimes cursor numbers are used for a couple of different 187 ** purposes in a vdbe program. The different uses might require 188 ** different sized allocations. Memory cells provide growable 189 ** allocations. 190 ** 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 192 ** be freed lazily via the sqlite3_release_memory() API. This 193 ** minimizes the number of malloc calls made by the system. 194 ** 195 ** Memory cells for cursors are allocated at the top of the address 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 198 */ 199 Mem *pMem = &p->aMem[p->nMem-iCur]; 200 201 int nByte; 202 VdbeCursor *pCx = 0; 203 nByte = 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 205 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 206 207 assert( iCur<p->nCursor ); 208 if( p->apCsr[iCur] ){ 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 210 p->apCsr[iCur] = 0; 211 } 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 214 memset(pCx, 0, sizeof(VdbeCursor)); 215 pCx->eCurType = eCurType; 216 pCx->iDb = iDb; 217 pCx->nField = nField; 218 pCx->aOffset = &pCx->aType[nField]; 219 if( eCurType==CURTYPE_BTREE ){ 220 pCx->uc.pCursor = (BtCursor*) 221 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 222 sqlite3BtreeCursorZero(pCx->uc.pCursor); 223 } 224 } 225 return pCx; 226 } 227 228 /* 229 ** Try to convert a value into a numeric representation if we can 230 ** do so without loss of information. In other words, if the string 231 ** looks like a number, convert it into a number. If it does not 232 ** look like a number, leave it alone. 233 ** 234 ** If the bTryForInt flag is true, then extra effort is made to give 235 ** an integer representation. Strings that look like floating point 236 ** values but which have no fractional component (example: '48.00') 237 ** will have a MEM_Int representation when bTryForInt is true. 238 ** 239 ** If bTryForInt is false, then if the input string contains a decimal 240 ** point or exponential notation, the result is only MEM_Real, even 241 ** if there is an exact integer representation of the quantity. 242 */ 243 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 244 double rValue; 245 i64 iValue; 246 u8 enc = pRec->enc; 247 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 248 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 249 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 250 pRec->u.i = iValue; 251 pRec->flags |= MEM_Int; 252 }else{ 253 pRec->u.r = rValue; 254 pRec->flags |= MEM_Real; 255 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 256 } 257 } 258 259 /* 260 ** Processing is determine by the affinity parameter: 261 ** 262 ** SQLITE_AFF_INTEGER: 263 ** SQLITE_AFF_REAL: 264 ** SQLITE_AFF_NUMERIC: 265 ** Try to convert pRec to an integer representation or a 266 ** floating-point representation if an integer representation 267 ** is not possible. Note that the integer representation is 268 ** always preferred, even if the affinity is REAL, because 269 ** an integer representation is more space efficient on disk. 270 ** 271 ** SQLITE_AFF_TEXT: 272 ** Convert pRec to a text representation. 273 ** 274 ** SQLITE_AFF_BLOB: 275 ** No-op. pRec is unchanged. 276 */ 277 static void applyAffinity( 278 Mem *pRec, /* The value to apply affinity to */ 279 char affinity, /* The affinity to be applied */ 280 u8 enc /* Use this text encoding */ 281 ){ 282 if( affinity>=SQLITE_AFF_NUMERIC ){ 283 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 284 || affinity==SQLITE_AFF_NUMERIC ); 285 if( (pRec->flags & MEM_Int)==0 ){ 286 if( (pRec->flags & MEM_Real)==0 ){ 287 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 288 }else{ 289 sqlite3VdbeIntegerAffinity(pRec); 290 } 291 } 292 }else if( affinity==SQLITE_AFF_TEXT ){ 293 /* Only attempt the conversion to TEXT if there is an integer or real 294 ** representation (blob and NULL do not get converted) but no string 295 ** representation. 296 */ 297 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 298 sqlite3VdbeMemStringify(pRec, enc, 1); 299 } 300 pRec->flags &= ~(MEM_Real|MEM_Int); 301 } 302 } 303 304 /* 305 ** Try to convert the type of a function argument or a result column 306 ** into a numeric representation. Use either INTEGER or REAL whichever 307 ** is appropriate. But only do the conversion if it is possible without 308 ** loss of information and return the revised type of the argument. 309 */ 310 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 311 int eType = sqlite3_value_type(pVal); 312 if( eType==SQLITE_TEXT ){ 313 Mem *pMem = (Mem*)pVal; 314 applyNumericAffinity(pMem, 0); 315 eType = sqlite3_value_type(pVal); 316 } 317 return eType; 318 } 319 320 /* 321 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 322 ** not the internal Mem* type. 323 */ 324 void sqlite3ValueApplyAffinity( 325 sqlite3_value *pVal, 326 u8 affinity, 327 u8 enc 328 ){ 329 applyAffinity((Mem *)pVal, affinity, enc); 330 } 331 332 /* 333 ** pMem currently only holds a string type (or maybe a BLOB that we can 334 ** interpret as a string if we want to). Compute its corresponding 335 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 336 ** accordingly. 337 */ 338 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 339 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 340 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 341 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 342 return 0; 343 } 344 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 345 return MEM_Int; 346 } 347 return MEM_Real; 348 } 349 350 /* 351 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 352 ** none. 353 ** 354 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 355 ** But it does set pMem->u.r and pMem->u.i appropriately. 356 */ 357 static u16 numericType(Mem *pMem){ 358 if( pMem->flags & (MEM_Int|MEM_Real) ){ 359 return pMem->flags & (MEM_Int|MEM_Real); 360 } 361 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 362 return computeNumericType(pMem); 363 } 364 return 0; 365 } 366 367 #ifdef SQLITE_DEBUG 368 /* 369 ** Write a nice string representation of the contents of cell pMem 370 ** into buffer zBuf, length nBuf. 371 */ 372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 373 char *zCsr = zBuf; 374 int f = pMem->flags; 375 376 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 377 378 if( f&MEM_Blob ){ 379 int i; 380 char c; 381 if( f & MEM_Dyn ){ 382 c = 'z'; 383 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 384 }else if( f & MEM_Static ){ 385 c = 't'; 386 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 387 }else if( f & MEM_Ephem ){ 388 c = 'e'; 389 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 390 }else{ 391 c = 's'; 392 } 393 394 sqlite3_snprintf(100, zCsr, "%c", c); 395 zCsr += sqlite3Strlen30(zCsr); 396 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 397 zCsr += sqlite3Strlen30(zCsr); 398 for(i=0; i<16 && i<pMem->n; i++){ 399 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 400 zCsr += sqlite3Strlen30(zCsr); 401 } 402 for(i=0; i<16 && i<pMem->n; i++){ 403 char z = pMem->z[i]; 404 if( z<32 || z>126 ) *zCsr++ = '.'; 405 else *zCsr++ = z; 406 } 407 408 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 409 zCsr += sqlite3Strlen30(zCsr); 410 if( f & MEM_Zero ){ 411 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 412 zCsr += sqlite3Strlen30(zCsr); 413 } 414 *zCsr = '\0'; 415 }else if( f & MEM_Str ){ 416 int j, k; 417 zBuf[0] = ' '; 418 if( f & MEM_Dyn ){ 419 zBuf[1] = 'z'; 420 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 421 }else if( f & MEM_Static ){ 422 zBuf[1] = 't'; 423 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 424 }else if( f & MEM_Ephem ){ 425 zBuf[1] = 'e'; 426 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 427 }else{ 428 zBuf[1] = 's'; 429 } 430 k = 2; 431 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 432 k += sqlite3Strlen30(&zBuf[k]); 433 zBuf[k++] = '['; 434 for(j=0; j<15 && j<pMem->n; j++){ 435 u8 c = pMem->z[j]; 436 if( c>=0x20 && c<0x7f ){ 437 zBuf[k++] = c; 438 }else{ 439 zBuf[k++] = '.'; 440 } 441 } 442 zBuf[k++] = ']'; 443 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 444 k += sqlite3Strlen30(&zBuf[k]); 445 zBuf[k++] = 0; 446 } 447 } 448 #endif 449 450 #ifdef SQLITE_DEBUG 451 /* 452 ** Print the value of a register for tracing purposes: 453 */ 454 static void memTracePrint(Mem *p){ 455 if( p->flags & MEM_Undefined ){ 456 printf(" undefined"); 457 }else if( p->flags & MEM_Null ){ 458 printf(" NULL"); 459 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 460 printf(" si:%lld", p->u.i); 461 }else if( p->flags & MEM_Int ){ 462 printf(" i:%lld", p->u.i); 463 #ifndef SQLITE_OMIT_FLOATING_POINT 464 }else if( p->flags & MEM_Real ){ 465 printf(" r:%g", p->u.r); 466 #endif 467 }else if( p->flags & MEM_RowSet ){ 468 printf(" (rowset)"); 469 }else{ 470 char zBuf[200]; 471 sqlite3VdbeMemPrettyPrint(p, zBuf); 472 printf(" %s", zBuf); 473 } 474 } 475 static void registerTrace(int iReg, Mem *p){ 476 printf("REG[%d] = ", iReg); 477 memTracePrint(p); 478 printf("\n"); 479 } 480 #endif 481 482 #ifdef SQLITE_DEBUG 483 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 484 #else 485 # define REGISTER_TRACE(R,M) 486 #endif 487 488 489 #ifdef VDBE_PROFILE 490 491 /* 492 ** hwtime.h contains inline assembler code for implementing 493 ** high-performance timing routines. 494 */ 495 #include "hwtime.h" 496 497 #endif 498 499 #ifndef NDEBUG 500 /* 501 ** This function is only called from within an assert() expression. It 502 ** checks that the sqlite3.nTransaction variable is correctly set to 503 ** the number of non-transaction savepoints currently in the 504 ** linked list starting at sqlite3.pSavepoint. 505 ** 506 ** Usage: 507 ** 508 ** assert( checkSavepointCount(db) ); 509 */ 510 static int checkSavepointCount(sqlite3 *db){ 511 int n = 0; 512 Savepoint *p; 513 for(p=db->pSavepoint; p; p=p->pNext) n++; 514 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 515 return 1; 516 } 517 #endif 518 519 /* 520 ** Return the register of pOp->p2 after first preparing it to be 521 ** overwritten with an integer value. 522 */ 523 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 524 sqlite3VdbeMemSetNull(pOut); 525 pOut->flags = MEM_Int; 526 return pOut; 527 } 528 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 529 Mem *pOut; 530 assert( pOp->p2>0 ); 531 assert( pOp->p2<=(p->nMem-p->nCursor) ); 532 pOut = &p->aMem[pOp->p2]; 533 memAboutToChange(p, pOut); 534 if( VdbeMemDynamic(pOut) ){ 535 return out2PrereleaseWithClear(pOut); 536 }else{ 537 pOut->flags = MEM_Int; 538 return pOut; 539 } 540 } 541 542 543 /* 544 ** Execute as much of a VDBE program as we can. 545 ** This is the core of sqlite3_step(). 546 */ 547 int sqlite3VdbeExec( 548 Vdbe *p /* The VDBE */ 549 ){ 550 Op *aOp = p->aOp; /* Copy of p->aOp */ 551 Op *pOp = aOp; /* Current operation */ 552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 553 Op *pOrigOp; /* Value of pOp at the top of the loop */ 554 #endif 555 int rc = SQLITE_OK; /* Value to return */ 556 sqlite3 *db = p->db; /* The database */ 557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 558 u8 encoding = ENC(db); /* The database encoding */ 559 int iCompare = 0; /* Result of last OP_Compare operation */ 560 unsigned nVmStep = 0; /* Number of virtual machine steps */ 561 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 562 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 563 #endif 564 Mem *aMem = p->aMem; /* Copy of p->aMem */ 565 Mem *pIn1 = 0; /* 1st input operand */ 566 Mem *pIn2 = 0; /* 2nd input operand */ 567 Mem *pIn3 = 0; /* 3rd input operand */ 568 Mem *pOut = 0; /* Output operand */ 569 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 570 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 571 #ifdef VDBE_PROFILE 572 u64 start; /* CPU clock count at start of opcode */ 573 #endif 574 /*** INSERT STACK UNION HERE ***/ 575 576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 577 sqlite3VdbeEnter(p); 578 if( p->rc==SQLITE_NOMEM ){ 579 /* This happens if a malloc() inside a call to sqlite3_column_text() or 580 ** sqlite3_column_text16() failed. */ 581 goto no_mem; 582 } 583 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 584 assert( p->bIsReader || p->readOnly!=0 ); 585 p->rc = SQLITE_OK; 586 p->iCurrentTime = 0; 587 assert( p->explain==0 ); 588 p->pResultSet = 0; 589 db->busyHandler.nBusy = 0; 590 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 591 sqlite3VdbeIOTraceSql(p); 592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 593 if( db->xProgress ){ 594 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 595 assert( 0 < db->nProgressOps ); 596 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 597 } 598 #endif 599 #ifdef SQLITE_DEBUG 600 sqlite3BeginBenignMalloc(); 601 if( p->pc==0 602 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 603 ){ 604 int i; 605 int once = 1; 606 sqlite3VdbePrintSql(p); 607 if( p->db->flags & SQLITE_VdbeListing ){ 608 printf("VDBE Program Listing:\n"); 609 for(i=0; i<p->nOp; i++){ 610 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 611 } 612 } 613 if( p->db->flags & SQLITE_VdbeEQP ){ 614 for(i=0; i<p->nOp; i++){ 615 if( aOp[i].opcode==OP_Explain ){ 616 if( once ) printf("VDBE Query Plan:\n"); 617 printf("%s\n", aOp[i].p4.z); 618 once = 0; 619 } 620 } 621 } 622 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 623 } 624 sqlite3EndBenignMalloc(); 625 #endif 626 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){ 627 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 628 if( db->mallocFailed ) goto no_mem; 629 #ifdef VDBE_PROFILE 630 start = sqlite3Hwtime(); 631 #endif 632 nVmStep++; 633 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 634 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 635 #endif 636 637 /* Only allow tracing if SQLITE_DEBUG is defined. 638 */ 639 #ifdef SQLITE_DEBUG 640 if( db->flags & SQLITE_VdbeTrace ){ 641 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 642 } 643 #endif 644 645 646 /* Check to see if we need to simulate an interrupt. This only happens 647 ** if we have a special test build. 648 */ 649 #ifdef SQLITE_TEST 650 if( sqlite3_interrupt_count>0 ){ 651 sqlite3_interrupt_count--; 652 if( sqlite3_interrupt_count==0 ){ 653 sqlite3_interrupt(db); 654 } 655 } 656 #endif 657 658 /* Sanity checking on other operands */ 659 #ifdef SQLITE_DEBUG 660 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 661 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 662 assert( pOp->p1>0 ); 663 assert( pOp->p1<=(p->nMem-p->nCursor) ); 664 assert( memIsValid(&aMem[pOp->p1]) ); 665 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 666 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 667 } 668 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 669 assert( pOp->p2>0 ); 670 assert( pOp->p2<=(p->nMem-p->nCursor) ); 671 assert( memIsValid(&aMem[pOp->p2]) ); 672 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 673 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 674 } 675 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 676 assert( pOp->p3>0 ); 677 assert( pOp->p3<=(p->nMem-p->nCursor) ); 678 assert( memIsValid(&aMem[pOp->p3]) ); 679 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 680 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 681 } 682 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 683 assert( pOp->p2>0 ); 684 assert( pOp->p2<=(p->nMem-p->nCursor) ); 685 memAboutToChange(p, &aMem[pOp->p2]); 686 } 687 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 688 assert( pOp->p3>0 ); 689 assert( pOp->p3<=(p->nMem-p->nCursor) ); 690 memAboutToChange(p, &aMem[pOp->p3]); 691 } 692 #endif 693 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 694 pOrigOp = pOp; 695 #endif 696 697 switch( pOp->opcode ){ 698 699 /***************************************************************************** 700 ** What follows is a massive switch statement where each case implements a 701 ** separate instruction in the virtual machine. If we follow the usual 702 ** indentation conventions, each case should be indented by 6 spaces. But 703 ** that is a lot of wasted space on the left margin. So the code within 704 ** the switch statement will break with convention and be flush-left. Another 705 ** big comment (similar to this one) will mark the point in the code where 706 ** we transition back to normal indentation. 707 ** 708 ** The formatting of each case is important. The makefile for SQLite 709 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 710 ** file looking for lines that begin with "case OP_". The opcodes.h files 711 ** will be filled with #defines that give unique integer values to each 712 ** opcode and the opcodes.c file is filled with an array of strings where 713 ** each string is the symbolic name for the corresponding opcode. If the 714 ** case statement is followed by a comment of the form "/# same as ... #/" 715 ** that comment is used to determine the particular value of the opcode. 716 ** 717 ** Other keywords in the comment that follows each case are used to 718 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 719 ** Keywords include: in1, in2, in3, out2, out3. See 720 ** the mkopcodeh.awk script for additional information. 721 ** 722 ** Documentation about VDBE opcodes is generated by scanning this file 723 ** for lines of that contain "Opcode:". That line and all subsequent 724 ** comment lines are used in the generation of the opcode.html documentation 725 ** file. 726 ** 727 ** SUMMARY: 728 ** 729 ** Formatting is important to scripts that scan this file. 730 ** Do not deviate from the formatting style currently in use. 731 ** 732 *****************************************************************************/ 733 734 /* Opcode: Goto * P2 * * * 735 ** 736 ** An unconditional jump to address P2. 737 ** The next instruction executed will be 738 ** the one at index P2 from the beginning of 739 ** the program. 740 ** 741 ** The P1 parameter is not actually used by this opcode. However, it 742 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 743 ** that this Goto is the bottom of a loop and that the lines from P2 down 744 ** to the current line should be indented for EXPLAIN output. 745 */ 746 case OP_Goto: { /* jump */ 747 jump_to_p2_and_check_for_interrupt: 748 pOp = &aOp[pOp->p2 - 1]; 749 750 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 751 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 752 ** completion. Check to see if sqlite3_interrupt() has been called 753 ** or if the progress callback needs to be invoked. 754 ** 755 ** This code uses unstructured "goto" statements and does not look clean. 756 ** But that is not due to sloppy coding habits. The code is written this 757 ** way for performance, to avoid having to run the interrupt and progress 758 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 759 ** faster according to "valgrind --tool=cachegrind" */ 760 check_for_interrupt: 761 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 762 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 763 /* Call the progress callback if it is configured and the required number 764 ** of VDBE ops have been executed (either since this invocation of 765 ** sqlite3VdbeExec() or since last time the progress callback was called). 766 ** If the progress callback returns non-zero, exit the virtual machine with 767 ** a return code SQLITE_ABORT. 768 */ 769 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 770 assert( db->nProgressOps!=0 ); 771 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 772 if( db->xProgress(db->pProgressArg) ){ 773 rc = SQLITE_INTERRUPT; 774 goto vdbe_error_halt; 775 } 776 } 777 #endif 778 779 break; 780 } 781 782 /* Opcode: Gosub P1 P2 * * * 783 ** 784 ** Write the current address onto register P1 785 ** and then jump to address P2. 786 */ 787 case OP_Gosub: { /* jump */ 788 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 789 pIn1 = &aMem[pOp->p1]; 790 assert( VdbeMemDynamic(pIn1)==0 ); 791 memAboutToChange(p, pIn1); 792 pIn1->flags = MEM_Int; 793 pIn1->u.i = (int)(pOp-aOp); 794 REGISTER_TRACE(pOp->p1, pIn1); 795 796 /* Most jump operations do a goto to this spot in order to update 797 ** the pOp pointer. */ 798 jump_to_p2: 799 pOp = &aOp[pOp->p2 - 1]; 800 break; 801 } 802 803 /* Opcode: Return P1 * * * * 804 ** 805 ** Jump to the next instruction after the address in register P1. After 806 ** the jump, register P1 becomes undefined. 807 */ 808 case OP_Return: { /* in1 */ 809 pIn1 = &aMem[pOp->p1]; 810 assert( pIn1->flags==MEM_Int ); 811 pOp = &aOp[pIn1->u.i]; 812 pIn1->flags = MEM_Undefined; 813 break; 814 } 815 816 /* Opcode: InitCoroutine P1 P2 P3 * * 817 ** 818 ** Set up register P1 so that it will Yield to the coroutine 819 ** located at address P3. 820 ** 821 ** If P2!=0 then the coroutine implementation immediately follows 822 ** this opcode. So jump over the coroutine implementation to 823 ** address P2. 824 ** 825 ** See also: EndCoroutine 826 */ 827 case OP_InitCoroutine: { /* jump */ 828 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 829 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 830 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 831 pOut = &aMem[pOp->p1]; 832 assert( !VdbeMemDynamic(pOut) ); 833 pOut->u.i = pOp->p3 - 1; 834 pOut->flags = MEM_Int; 835 if( pOp->p2 ) goto jump_to_p2; 836 break; 837 } 838 839 /* Opcode: EndCoroutine P1 * * * * 840 ** 841 ** The instruction at the address in register P1 is a Yield. 842 ** Jump to the P2 parameter of that Yield. 843 ** After the jump, register P1 becomes undefined. 844 ** 845 ** See also: InitCoroutine 846 */ 847 case OP_EndCoroutine: { /* in1 */ 848 VdbeOp *pCaller; 849 pIn1 = &aMem[pOp->p1]; 850 assert( pIn1->flags==MEM_Int ); 851 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 852 pCaller = &aOp[pIn1->u.i]; 853 assert( pCaller->opcode==OP_Yield ); 854 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 855 pOp = &aOp[pCaller->p2 - 1]; 856 pIn1->flags = MEM_Undefined; 857 break; 858 } 859 860 /* Opcode: Yield P1 P2 * * * 861 ** 862 ** Swap the program counter with the value in register P1. This 863 ** has the effect of yielding to a coroutine. 864 ** 865 ** If the coroutine that is launched by this instruction ends with 866 ** Yield or Return then continue to the next instruction. But if 867 ** the coroutine launched by this instruction ends with 868 ** EndCoroutine, then jump to P2 rather than continuing with the 869 ** next instruction. 870 ** 871 ** See also: InitCoroutine 872 */ 873 case OP_Yield: { /* in1, jump */ 874 int pcDest; 875 pIn1 = &aMem[pOp->p1]; 876 assert( VdbeMemDynamic(pIn1)==0 ); 877 pIn1->flags = MEM_Int; 878 pcDest = (int)pIn1->u.i; 879 pIn1->u.i = (int)(pOp - aOp); 880 REGISTER_TRACE(pOp->p1, pIn1); 881 pOp = &aOp[pcDest]; 882 break; 883 } 884 885 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 886 ** Synopsis: if r[P3]=null halt 887 ** 888 ** Check the value in register P3. If it is NULL then Halt using 889 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 890 ** value in register P3 is not NULL, then this routine is a no-op. 891 ** The P5 parameter should be 1. 892 */ 893 case OP_HaltIfNull: { /* in3 */ 894 pIn3 = &aMem[pOp->p3]; 895 if( (pIn3->flags & MEM_Null)==0 ) break; 896 /* Fall through into OP_Halt */ 897 } 898 899 /* Opcode: Halt P1 P2 * P4 P5 900 ** 901 ** Exit immediately. All open cursors, etc are closed 902 ** automatically. 903 ** 904 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 905 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 906 ** For errors, it can be some other value. If P1!=0 then P2 will determine 907 ** whether or not to rollback the current transaction. Do not rollback 908 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 909 ** then back out all changes that have occurred during this execution of the 910 ** VDBE, but do not rollback the transaction. 911 ** 912 ** If P4 is not null then it is an error message string. 913 ** 914 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 915 ** 916 ** 0: (no change) 917 ** 1: NOT NULL contraint failed: P4 918 ** 2: UNIQUE constraint failed: P4 919 ** 3: CHECK constraint failed: P4 920 ** 4: FOREIGN KEY constraint failed: P4 921 ** 922 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 923 ** omitted. 924 ** 925 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 926 ** every program. So a jump past the last instruction of the program 927 ** is the same as executing Halt. 928 */ 929 case OP_Halt: { 930 const char *zType; 931 const char *zLogFmt; 932 VdbeFrame *pFrame; 933 int pcx; 934 935 pcx = (int)(pOp - aOp); 936 if( pOp->p1==SQLITE_OK && p->pFrame ){ 937 /* Halt the sub-program. Return control to the parent frame. */ 938 pFrame = p->pFrame; 939 p->pFrame = pFrame->pParent; 940 p->nFrame--; 941 sqlite3VdbeSetChanges(db, p->nChange); 942 pcx = sqlite3VdbeFrameRestore(pFrame); 943 lastRowid = db->lastRowid; 944 if( pOp->p2==OE_Ignore ){ 945 /* Instruction pcx is the OP_Program that invoked the sub-program 946 ** currently being halted. If the p2 instruction of this OP_Halt 947 ** instruction is set to OE_Ignore, then the sub-program is throwing 948 ** an IGNORE exception. In this case jump to the address specified 949 ** as the p2 of the calling OP_Program. */ 950 pcx = p->aOp[pcx].p2-1; 951 } 952 aOp = p->aOp; 953 aMem = p->aMem; 954 pOp = &aOp[pcx]; 955 break; 956 } 957 p->rc = pOp->p1; 958 p->errorAction = (u8)pOp->p2; 959 p->pc = pcx; 960 if( p->rc ){ 961 if( pOp->p5 ){ 962 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 963 "FOREIGN KEY" }; 964 assert( pOp->p5>=1 && pOp->p5<=4 ); 965 testcase( pOp->p5==1 ); 966 testcase( pOp->p5==2 ); 967 testcase( pOp->p5==3 ); 968 testcase( pOp->p5==4 ); 969 zType = azType[pOp->p5-1]; 970 }else{ 971 zType = 0; 972 } 973 assert( zType!=0 || pOp->p4.z!=0 ); 974 zLogFmt = "abort at %d in [%s]: %s"; 975 if( zType && pOp->p4.z ){ 976 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z); 977 }else if( pOp->p4.z ){ 978 sqlite3VdbeError(p, "%s", pOp->p4.z); 979 }else{ 980 sqlite3VdbeError(p, "%s constraint failed", zType); 981 } 982 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg); 983 } 984 rc = sqlite3VdbeHalt(p); 985 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 986 if( rc==SQLITE_BUSY ){ 987 p->rc = rc = SQLITE_BUSY; 988 }else{ 989 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 990 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 991 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 992 } 993 goto vdbe_return; 994 } 995 996 /* Opcode: Integer P1 P2 * * * 997 ** Synopsis: r[P2]=P1 998 ** 999 ** The 32-bit integer value P1 is written into register P2. 1000 */ 1001 case OP_Integer: { /* out2 */ 1002 pOut = out2Prerelease(p, pOp); 1003 pOut->u.i = pOp->p1; 1004 break; 1005 } 1006 1007 /* Opcode: Int64 * P2 * P4 * 1008 ** Synopsis: r[P2]=P4 1009 ** 1010 ** P4 is a pointer to a 64-bit integer value. 1011 ** Write that value into register P2. 1012 */ 1013 case OP_Int64: { /* out2 */ 1014 pOut = out2Prerelease(p, pOp); 1015 assert( pOp->p4.pI64!=0 ); 1016 pOut->u.i = *pOp->p4.pI64; 1017 break; 1018 } 1019 1020 #ifndef SQLITE_OMIT_FLOATING_POINT 1021 /* Opcode: Real * P2 * P4 * 1022 ** Synopsis: r[P2]=P4 1023 ** 1024 ** P4 is a pointer to a 64-bit floating point value. 1025 ** Write that value into register P2. 1026 */ 1027 case OP_Real: { /* same as TK_FLOAT, out2 */ 1028 pOut = out2Prerelease(p, pOp); 1029 pOut->flags = MEM_Real; 1030 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1031 pOut->u.r = *pOp->p4.pReal; 1032 break; 1033 } 1034 #endif 1035 1036 /* Opcode: String8 * P2 * P4 * 1037 ** Synopsis: r[P2]='P4' 1038 ** 1039 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1040 ** into a String opcode before it is executed for the first time. During 1041 ** this transformation, the length of string P4 is computed and stored 1042 ** as the P1 parameter. 1043 */ 1044 case OP_String8: { /* same as TK_STRING, out2 */ 1045 assert( pOp->p4.z!=0 ); 1046 pOut = out2Prerelease(p, pOp); 1047 pOp->opcode = OP_String; 1048 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1049 1050 #ifndef SQLITE_OMIT_UTF16 1051 if( encoding!=SQLITE_UTF8 ){ 1052 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1053 if( rc==SQLITE_TOOBIG ) goto too_big; 1054 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1055 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1056 assert( VdbeMemDynamic(pOut)==0 ); 1057 pOut->szMalloc = 0; 1058 pOut->flags |= MEM_Static; 1059 if( pOp->p4type==P4_DYNAMIC ){ 1060 sqlite3DbFree(db, pOp->p4.z); 1061 } 1062 pOp->p4type = P4_DYNAMIC; 1063 pOp->p4.z = pOut->z; 1064 pOp->p1 = pOut->n; 1065 } 1066 #endif 1067 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1068 goto too_big; 1069 } 1070 /* Fall through to the next case, OP_String */ 1071 } 1072 1073 /* Opcode: String P1 P2 P3 P4 P5 1074 ** Synopsis: r[P2]='P4' (len=P1) 1075 ** 1076 ** The string value P4 of length P1 (bytes) is stored in register P2. 1077 ** 1078 ** If P5!=0 and the content of register P3 is greater than zero, then 1079 ** the datatype of the register P2 is converted to BLOB. The content is 1080 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1081 ** of a string, as if it had been CAST. 1082 */ 1083 case OP_String: { /* out2 */ 1084 assert( pOp->p4.z!=0 ); 1085 pOut = out2Prerelease(p, pOp); 1086 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1087 pOut->z = pOp->p4.z; 1088 pOut->n = pOp->p1; 1089 pOut->enc = encoding; 1090 UPDATE_MAX_BLOBSIZE(pOut); 1091 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1092 if( pOp->p5 ){ 1093 assert( pOp->p3>0 ); 1094 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1095 pIn3 = &aMem[pOp->p3]; 1096 assert( pIn3->flags & MEM_Int ); 1097 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1098 } 1099 #endif 1100 break; 1101 } 1102 1103 /* Opcode: Null P1 P2 P3 * * 1104 ** Synopsis: r[P2..P3]=NULL 1105 ** 1106 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1107 ** NULL into register P3 and every register in between P2 and P3. If P3 1108 ** is less than P2 (typically P3 is zero) then only register P2 is 1109 ** set to NULL. 1110 ** 1111 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1112 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1113 ** OP_Ne or OP_Eq. 1114 */ 1115 case OP_Null: { /* out2 */ 1116 int cnt; 1117 u16 nullFlag; 1118 pOut = out2Prerelease(p, pOp); 1119 cnt = pOp->p3-pOp->p2; 1120 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1121 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1122 while( cnt>0 ){ 1123 pOut++; 1124 memAboutToChange(p, pOut); 1125 sqlite3VdbeMemSetNull(pOut); 1126 pOut->flags = nullFlag; 1127 cnt--; 1128 } 1129 break; 1130 } 1131 1132 /* Opcode: SoftNull P1 * * * * 1133 ** Synopsis: r[P1]=NULL 1134 ** 1135 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1136 ** instruction, but do not free any string or blob memory associated with 1137 ** the register, so that if the value was a string or blob that was 1138 ** previously copied using OP_SCopy, the copies will continue to be valid. 1139 */ 1140 case OP_SoftNull: { 1141 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1142 pOut = &aMem[pOp->p1]; 1143 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1144 break; 1145 } 1146 1147 /* Opcode: Blob P1 P2 * P4 * 1148 ** Synopsis: r[P2]=P4 (len=P1) 1149 ** 1150 ** P4 points to a blob of data P1 bytes long. Store this 1151 ** blob in register P2. 1152 */ 1153 case OP_Blob: { /* out2 */ 1154 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1155 pOut = out2Prerelease(p, pOp); 1156 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1157 pOut->enc = encoding; 1158 UPDATE_MAX_BLOBSIZE(pOut); 1159 break; 1160 } 1161 1162 /* Opcode: Variable P1 P2 * P4 * 1163 ** Synopsis: r[P2]=parameter(P1,P4) 1164 ** 1165 ** Transfer the values of bound parameter P1 into register P2 1166 ** 1167 ** If the parameter is named, then its name appears in P4. 1168 ** The P4 value is used by sqlite3_bind_parameter_name(). 1169 */ 1170 case OP_Variable: { /* out2 */ 1171 Mem *pVar; /* Value being transferred */ 1172 1173 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1174 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1175 pVar = &p->aVar[pOp->p1 - 1]; 1176 if( sqlite3VdbeMemTooBig(pVar) ){ 1177 goto too_big; 1178 } 1179 pOut = out2Prerelease(p, pOp); 1180 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1181 UPDATE_MAX_BLOBSIZE(pOut); 1182 break; 1183 } 1184 1185 /* Opcode: Move P1 P2 P3 * * 1186 ** Synopsis: r[P2@P3]=r[P1@P3] 1187 ** 1188 ** Move the P3 values in register P1..P1+P3-1 over into 1189 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1190 ** left holding a NULL. It is an error for register ranges 1191 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1192 ** for P3 to be less than 1. 1193 */ 1194 case OP_Move: { 1195 int n; /* Number of registers left to copy */ 1196 int p1; /* Register to copy from */ 1197 int p2; /* Register to copy to */ 1198 1199 n = pOp->p3; 1200 p1 = pOp->p1; 1201 p2 = pOp->p2; 1202 assert( n>0 && p1>0 && p2>0 ); 1203 assert( p1+n<=p2 || p2+n<=p1 ); 1204 1205 pIn1 = &aMem[p1]; 1206 pOut = &aMem[p2]; 1207 do{ 1208 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1209 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1210 assert( memIsValid(pIn1) ); 1211 memAboutToChange(p, pOut); 1212 sqlite3VdbeMemMove(pOut, pIn1); 1213 #ifdef SQLITE_DEBUG 1214 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1215 pOut->pScopyFrom += pOp->p2 - p1; 1216 } 1217 #endif 1218 Deephemeralize(pOut); 1219 REGISTER_TRACE(p2++, pOut); 1220 pIn1++; 1221 pOut++; 1222 }while( --n ); 1223 break; 1224 } 1225 1226 /* Opcode: Copy P1 P2 P3 * * 1227 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1228 ** 1229 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1230 ** 1231 ** This instruction makes a deep copy of the value. A duplicate 1232 ** is made of any string or blob constant. See also OP_SCopy. 1233 */ 1234 case OP_Copy: { 1235 int n; 1236 1237 n = pOp->p3; 1238 pIn1 = &aMem[pOp->p1]; 1239 pOut = &aMem[pOp->p2]; 1240 assert( pOut!=pIn1 ); 1241 while( 1 ){ 1242 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1243 Deephemeralize(pOut); 1244 #ifdef SQLITE_DEBUG 1245 pOut->pScopyFrom = 0; 1246 #endif 1247 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1248 if( (n--)==0 ) break; 1249 pOut++; 1250 pIn1++; 1251 } 1252 break; 1253 } 1254 1255 /* Opcode: SCopy P1 P2 * * * 1256 ** Synopsis: r[P2]=r[P1] 1257 ** 1258 ** Make a shallow copy of register P1 into register P2. 1259 ** 1260 ** This instruction makes a shallow copy of the value. If the value 1261 ** is a string or blob, then the copy is only a pointer to the 1262 ** original and hence if the original changes so will the copy. 1263 ** Worse, if the original is deallocated, the copy becomes invalid. 1264 ** Thus the program must guarantee that the original will not change 1265 ** during the lifetime of the copy. Use OP_Copy to make a complete 1266 ** copy. 1267 */ 1268 case OP_SCopy: { /* out2 */ 1269 pIn1 = &aMem[pOp->p1]; 1270 pOut = &aMem[pOp->p2]; 1271 assert( pOut!=pIn1 ); 1272 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1273 #ifdef SQLITE_DEBUG 1274 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1275 #endif 1276 break; 1277 } 1278 1279 /* Opcode: IntCopy P1 P2 * * * 1280 ** Synopsis: r[P2]=r[P1] 1281 ** 1282 ** Transfer the integer value held in register P1 into register P2. 1283 ** 1284 ** This is an optimized version of SCopy that works only for integer 1285 ** values. 1286 */ 1287 case OP_IntCopy: { /* out2 */ 1288 pIn1 = &aMem[pOp->p1]; 1289 assert( (pIn1->flags & MEM_Int)!=0 ); 1290 pOut = &aMem[pOp->p2]; 1291 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1292 break; 1293 } 1294 1295 /* Opcode: ResultRow P1 P2 * * * 1296 ** Synopsis: output=r[P1@P2] 1297 ** 1298 ** The registers P1 through P1+P2-1 contain a single row of 1299 ** results. This opcode causes the sqlite3_step() call to terminate 1300 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1301 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1302 ** the result row. 1303 */ 1304 case OP_ResultRow: { 1305 Mem *pMem; 1306 int i; 1307 assert( p->nResColumn==pOp->p2 ); 1308 assert( pOp->p1>0 ); 1309 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1310 1311 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1312 /* Run the progress counter just before returning. 1313 */ 1314 if( db->xProgress!=0 1315 && nVmStep>=nProgressLimit 1316 && db->xProgress(db->pProgressArg)!=0 1317 ){ 1318 rc = SQLITE_INTERRUPT; 1319 goto vdbe_error_halt; 1320 } 1321 #endif 1322 1323 /* If this statement has violated immediate foreign key constraints, do 1324 ** not return the number of rows modified. And do not RELEASE the statement 1325 ** transaction. It needs to be rolled back. */ 1326 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1327 assert( db->flags&SQLITE_CountRows ); 1328 assert( p->usesStmtJournal ); 1329 break; 1330 } 1331 1332 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1333 ** DML statements invoke this opcode to return the number of rows 1334 ** modified to the user. This is the only way that a VM that 1335 ** opens a statement transaction may invoke this opcode. 1336 ** 1337 ** In case this is such a statement, close any statement transaction 1338 ** opened by this VM before returning control to the user. This is to 1339 ** ensure that statement-transactions are always nested, not overlapping. 1340 ** If the open statement-transaction is not closed here, then the user 1341 ** may step another VM that opens its own statement transaction. This 1342 ** may lead to overlapping statement transactions. 1343 ** 1344 ** The statement transaction is never a top-level transaction. Hence 1345 ** the RELEASE call below can never fail. 1346 */ 1347 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1348 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1349 if( NEVER(rc!=SQLITE_OK) ){ 1350 break; 1351 } 1352 1353 /* Invalidate all ephemeral cursor row caches */ 1354 p->cacheCtr = (p->cacheCtr + 2)|1; 1355 1356 /* Make sure the results of the current row are \000 terminated 1357 ** and have an assigned type. The results are de-ephemeralized as 1358 ** a side effect. 1359 */ 1360 pMem = p->pResultSet = &aMem[pOp->p1]; 1361 for(i=0; i<pOp->p2; i++){ 1362 assert( memIsValid(&pMem[i]) ); 1363 Deephemeralize(&pMem[i]); 1364 assert( (pMem[i].flags & MEM_Ephem)==0 1365 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1366 sqlite3VdbeMemNulTerminate(&pMem[i]); 1367 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1368 } 1369 if( db->mallocFailed ) goto no_mem; 1370 1371 /* Return SQLITE_ROW 1372 */ 1373 p->pc = (int)(pOp - aOp) + 1; 1374 rc = SQLITE_ROW; 1375 goto vdbe_return; 1376 } 1377 1378 /* Opcode: Concat P1 P2 P3 * * 1379 ** Synopsis: r[P3]=r[P2]+r[P1] 1380 ** 1381 ** Add the text in register P1 onto the end of the text in 1382 ** register P2 and store the result in register P3. 1383 ** If either the P1 or P2 text are NULL then store NULL in P3. 1384 ** 1385 ** P3 = P2 || P1 1386 ** 1387 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1388 ** if P3 is the same register as P2, the implementation is able 1389 ** to avoid a memcpy(). 1390 */ 1391 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1392 i64 nByte; 1393 1394 pIn1 = &aMem[pOp->p1]; 1395 pIn2 = &aMem[pOp->p2]; 1396 pOut = &aMem[pOp->p3]; 1397 assert( pIn1!=pOut ); 1398 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1399 sqlite3VdbeMemSetNull(pOut); 1400 break; 1401 } 1402 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1403 Stringify(pIn1, encoding); 1404 Stringify(pIn2, encoding); 1405 nByte = pIn1->n + pIn2->n; 1406 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1407 goto too_big; 1408 } 1409 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1410 goto no_mem; 1411 } 1412 MemSetTypeFlag(pOut, MEM_Str); 1413 if( pOut!=pIn2 ){ 1414 memcpy(pOut->z, pIn2->z, pIn2->n); 1415 } 1416 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1417 pOut->z[nByte]=0; 1418 pOut->z[nByte+1] = 0; 1419 pOut->flags |= MEM_Term; 1420 pOut->n = (int)nByte; 1421 pOut->enc = encoding; 1422 UPDATE_MAX_BLOBSIZE(pOut); 1423 break; 1424 } 1425 1426 /* Opcode: Add P1 P2 P3 * * 1427 ** Synopsis: r[P3]=r[P1]+r[P2] 1428 ** 1429 ** Add the value in register P1 to the value in register P2 1430 ** and store the result in register P3. 1431 ** If either input is NULL, the result is NULL. 1432 */ 1433 /* Opcode: Multiply P1 P2 P3 * * 1434 ** Synopsis: r[P3]=r[P1]*r[P2] 1435 ** 1436 ** 1437 ** Multiply the value in register P1 by the value in register P2 1438 ** and store the result in register P3. 1439 ** If either input is NULL, the result is NULL. 1440 */ 1441 /* Opcode: Subtract P1 P2 P3 * * 1442 ** Synopsis: r[P3]=r[P2]-r[P1] 1443 ** 1444 ** Subtract the value in register P1 from the value in register P2 1445 ** and store the result in register P3. 1446 ** If either input is NULL, the result is NULL. 1447 */ 1448 /* Opcode: Divide P1 P2 P3 * * 1449 ** Synopsis: r[P3]=r[P2]/r[P1] 1450 ** 1451 ** Divide the value in register P1 by the value in register P2 1452 ** and store the result in register P3 (P3=P2/P1). If the value in 1453 ** register P1 is zero, then the result is NULL. If either input is 1454 ** NULL, the result is NULL. 1455 */ 1456 /* Opcode: Remainder P1 P2 P3 * * 1457 ** Synopsis: r[P3]=r[P2]%r[P1] 1458 ** 1459 ** Compute the remainder after integer register P2 is divided by 1460 ** register P1 and store the result in register P3. 1461 ** If the value in register P1 is zero the result is NULL. 1462 ** If either operand is NULL, the result is NULL. 1463 */ 1464 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1465 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1466 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1467 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1468 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1469 char bIntint; /* Started out as two integer operands */ 1470 u16 flags; /* Combined MEM_* flags from both inputs */ 1471 u16 type1; /* Numeric type of left operand */ 1472 u16 type2; /* Numeric type of right operand */ 1473 i64 iA; /* Integer value of left operand */ 1474 i64 iB; /* Integer value of right operand */ 1475 double rA; /* Real value of left operand */ 1476 double rB; /* Real value of right operand */ 1477 1478 pIn1 = &aMem[pOp->p1]; 1479 type1 = numericType(pIn1); 1480 pIn2 = &aMem[pOp->p2]; 1481 type2 = numericType(pIn2); 1482 pOut = &aMem[pOp->p3]; 1483 flags = pIn1->flags | pIn2->flags; 1484 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1485 if( (type1 & type2 & MEM_Int)!=0 ){ 1486 iA = pIn1->u.i; 1487 iB = pIn2->u.i; 1488 bIntint = 1; 1489 switch( pOp->opcode ){ 1490 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1491 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1492 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1493 case OP_Divide: { 1494 if( iA==0 ) goto arithmetic_result_is_null; 1495 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1496 iB /= iA; 1497 break; 1498 } 1499 default: { 1500 if( iA==0 ) goto arithmetic_result_is_null; 1501 if( iA==-1 ) iA = 1; 1502 iB %= iA; 1503 break; 1504 } 1505 } 1506 pOut->u.i = iB; 1507 MemSetTypeFlag(pOut, MEM_Int); 1508 }else{ 1509 bIntint = 0; 1510 fp_math: 1511 rA = sqlite3VdbeRealValue(pIn1); 1512 rB = sqlite3VdbeRealValue(pIn2); 1513 switch( pOp->opcode ){ 1514 case OP_Add: rB += rA; break; 1515 case OP_Subtract: rB -= rA; break; 1516 case OP_Multiply: rB *= rA; break; 1517 case OP_Divide: { 1518 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1519 if( rA==(double)0 ) goto arithmetic_result_is_null; 1520 rB /= rA; 1521 break; 1522 } 1523 default: { 1524 iA = (i64)rA; 1525 iB = (i64)rB; 1526 if( iA==0 ) goto arithmetic_result_is_null; 1527 if( iA==-1 ) iA = 1; 1528 rB = (double)(iB % iA); 1529 break; 1530 } 1531 } 1532 #ifdef SQLITE_OMIT_FLOATING_POINT 1533 pOut->u.i = rB; 1534 MemSetTypeFlag(pOut, MEM_Int); 1535 #else 1536 if( sqlite3IsNaN(rB) ){ 1537 goto arithmetic_result_is_null; 1538 } 1539 pOut->u.r = rB; 1540 MemSetTypeFlag(pOut, MEM_Real); 1541 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1542 sqlite3VdbeIntegerAffinity(pOut); 1543 } 1544 #endif 1545 } 1546 break; 1547 1548 arithmetic_result_is_null: 1549 sqlite3VdbeMemSetNull(pOut); 1550 break; 1551 } 1552 1553 /* Opcode: CollSeq P1 * * P4 1554 ** 1555 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1556 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1557 ** be returned. This is used by the built-in min(), max() and nullif() 1558 ** functions. 1559 ** 1560 ** If P1 is not zero, then it is a register that a subsequent min() or 1561 ** max() aggregate will set to 1 if the current row is not the minimum or 1562 ** maximum. The P1 register is initialized to 0 by this instruction. 1563 ** 1564 ** The interface used by the implementation of the aforementioned functions 1565 ** to retrieve the collation sequence set by this opcode is not available 1566 ** publicly. Only built-in functions have access to this feature. 1567 */ 1568 case OP_CollSeq: { 1569 assert( pOp->p4type==P4_COLLSEQ ); 1570 if( pOp->p1 ){ 1571 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1572 } 1573 break; 1574 } 1575 1576 /* Opcode: Function0 P1 P2 P3 P4 P5 1577 ** Synopsis: r[P3]=func(r[P2@P5]) 1578 ** 1579 ** Invoke a user function (P4 is a pointer to a FuncDef object that 1580 ** defines the function) with P5 arguments taken from register P2 and 1581 ** successors. The result of the function is stored in register P3. 1582 ** Register P3 must not be one of the function inputs. 1583 ** 1584 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1585 ** function was determined to be constant at compile time. If the first 1586 ** argument was constant then bit 0 of P1 is set. This is used to determine 1587 ** whether meta data associated with a user function argument using the 1588 ** sqlite3_set_auxdata() API may be safely retained until the next 1589 ** invocation of this opcode. 1590 ** 1591 ** See also: Function, AggStep, AggFinal 1592 */ 1593 /* Opcode: Function P1 P2 P3 P4 P5 1594 ** Synopsis: r[P3]=func(r[P2@P5]) 1595 ** 1596 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 1597 ** contains a pointer to the function to be run) with P5 arguments taken 1598 ** from register P2 and successors. The result of the function is stored 1599 ** in register P3. Register P3 must not be one of the function inputs. 1600 ** 1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1602 ** function was determined to be constant at compile time. If the first 1603 ** argument was constant then bit 0 of P1 is set. This is used to determine 1604 ** whether meta data associated with a user function argument using the 1605 ** sqlite3_set_auxdata() API may be safely retained until the next 1606 ** invocation of this opcode. 1607 ** 1608 ** SQL functions are initially coded as OP_Function0 with P4 pointing 1609 ** to a FuncDef object. But on first evaluation, the P4 operand is 1610 ** automatically converted into an sqlite3_context object and the operation 1611 ** changed to this OP_Function opcode. In this way, the initialization of 1612 ** the sqlite3_context object occurs only once, rather than once for each 1613 ** evaluation of the function. 1614 ** 1615 ** See also: Function0, AggStep, AggFinal 1616 */ 1617 case OP_Function0: { 1618 int n; 1619 sqlite3_context *pCtx; 1620 1621 assert( pOp->p4type==P4_FUNCDEF ); 1622 n = pOp->p5; 1623 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1624 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1625 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1626 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 1627 if( pCtx==0 ) goto no_mem; 1628 pCtx->pOut = 0; 1629 pCtx->pFunc = pOp->p4.pFunc; 1630 pCtx->iOp = (int)(pOp - aOp); 1631 pCtx->pVdbe = p; 1632 pCtx->argc = n; 1633 pOp->p4type = P4_FUNCCTX; 1634 pOp->p4.pCtx = pCtx; 1635 pOp->opcode = OP_Function; 1636 /* Fall through into OP_Function */ 1637 } 1638 case OP_Function: { 1639 int i; 1640 sqlite3_context *pCtx; 1641 1642 assert( pOp->p4type==P4_FUNCCTX ); 1643 pCtx = pOp->p4.pCtx; 1644 1645 /* If this function is inside of a trigger, the register array in aMem[] 1646 ** might change from one evaluation to the next. The next block of code 1647 ** checks to see if the register array has changed, and if so it 1648 ** reinitializes the relavant parts of the sqlite3_context object */ 1649 pOut = &aMem[pOp->p3]; 1650 if( pCtx->pOut != pOut ){ 1651 pCtx->pOut = pOut; 1652 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 1653 } 1654 1655 memAboutToChange(p, pCtx->pOut); 1656 #ifdef SQLITE_DEBUG 1657 for(i=0; i<pCtx->argc; i++){ 1658 assert( memIsValid(pCtx->argv[i]) ); 1659 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 1660 } 1661 #endif 1662 MemSetTypeFlag(pCtx->pOut, MEM_Null); 1663 pCtx->fErrorOrAux = 0; 1664 db->lastRowid = lastRowid; 1665 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 1666 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */ 1667 1668 /* If the function returned an error, throw an exception */ 1669 if( pCtx->fErrorOrAux ){ 1670 if( pCtx->isError ){ 1671 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 1672 rc = pCtx->isError; 1673 } 1674 sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1); 1675 } 1676 1677 /* Copy the result of the function into register P3 */ 1678 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 1679 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); 1680 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; 1681 } 1682 1683 REGISTER_TRACE(pOp->p3, pCtx->pOut); 1684 UPDATE_MAX_BLOBSIZE(pCtx->pOut); 1685 break; 1686 } 1687 1688 /* Opcode: BitAnd P1 P2 P3 * * 1689 ** Synopsis: r[P3]=r[P1]&r[P2] 1690 ** 1691 ** Take the bit-wise AND of the values in register P1 and P2 and 1692 ** store the result in register P3. 1693 ** If either input is NULL, the result is NULL. 1694 */ 1695 /* Opcode: BitOr P1 P2 P3 * * 1696 ** Synopsis: r[P3]=r[P1]|r[P2] 1697 ** 1698 ** Take the bit-wise OR of the values in register P1 and P2 and 1699 ** store the result in register P3. 1700 ** If either input is NULL, the result is NULL. 1701 */ 1702 /* Opcode: ShiftLeft P1 P2 P3 * * 1703 ** Synopsis: r[P3]=r[P2]<<r[P1] 1704 ** 1705 ** Shift the integer value in register P2 to the left by the 1706 ** number of bits specified by the integer in register P1. 1707 ** Store the result in register P3. 1708 ** If either input is NULL, the result is NULL. 1709 */ 1710 /* Opcode: ShiftRight P1 P2 P3 * * 1711 ** Synopsis: r[P3]=r[P2]>>r[P1] 1712 ** 1713 ** Shift the integer value in register P2 to the right by the 1714 ** number of bits specified by the integer in register P1. 1715 ** Store the result in register P3. 1716 ** If either input is NULL, the result is NULL. 1717 */ 1718 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1719 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1720 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1721 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1722 i64 iA; 1723 u64 uA; 1724 i64 iB; 1725 u8 op; 1726 1727 pIn1 = &aMem[pOp->p1]; 1728 pIn2 = &aMem[pOp->p2]; 1729 pOut = &aMem[pOp->p3]; 1730 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1731 sqlite3VdbeMemSetNull(pOut); 1732 break; 1733 } 1734 iA = sqlite3VdbeIntValue(pIn2); 1735 iB = sqlite3VdbeIntValue(pIn1); 1736 op = pOp->opcode; 1737 if( op==OP_BitAnd ){ 1738 iA &= iB; 1739 }else if( op==OP_BitOr ){ 1740 iA |= iB; 1741 }else if( iB!=0 ){ 1742 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1743 1744 /* If shifting by a negative amount, shift in the other direction */ 1745 if( iB<0 ){ 1746 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1747 op = 2*OP_ShiftLeft + 1 - op; 1748 iB = iB>(-64) ? -iB : 64; 1749 } 1750 1751 if( iB>=64 ){ 1752 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1753 }else{ 1754 memcpy(&uA, &iA, sizeof(uA)); 1755 if( op==OP_ShiftLeft ){ 1756 uA <<= iB; 1757 }else{ 1758 uA >>= iB; 1759 /* Sign-extend on a right shift of a negative number */ 1760 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1761 } 1762 memcpy(&iA, &uA, sizeof(iA)); 1763 } 1764 } 1765 pOut->u.i = iA; 1766 MemSetTypeFlag(pOut, MEM_Int); 1767 break; 1768 } 1769 1770 /* Opcode: AddImm P1 P2 * * * 1771 ** Synopsis: r[P1]=r[P1]+P2 1772 ** 1773 ** Add the constant P2 to the value in register P1. 1774 ** The result is always an integer. 1775 ** 1776 ** To force any register to be an integer, just add 0. 1777 */ 1778 case OP_AddImm: { /* in1 */ 1779 pIn1 = &aMem[pOp->p1]; 1780 memAboutToChange(p, pIn1); 1781 sqlite3VdbeMemIntegerify(pIn1); 1782 pIn1->u.i += pOp->p2; 1783 break; 1784 } 1785 1786 /* Opcode: MustBeInt P1 P2 * * * 1787 ** 1788 ** Force the value in register P1 to be an integer. If the value 1789 ** in P1 is not an integer and cannot be converted into an integer 1790 ** without data loss, then jump immediately to P2, or if P2==0 1791 ** raise an SQLITE_MISMATCH exception. 1792 */ 1793 case OP_MustBeInt: { /* jump, in1 */ 1794 pIn1 = &aMem[pOp->p1]; 1795 if( (pIn1->flags & MEM_Int)==0 ){ 1796 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1797 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1798 if( (pIn1->flags & MEM_Int)==0 ){ 1799 if( pOp->p2==0 ){ 1800 rc = SQLITE_MISMATCH; 1801 goto abort_due_to_error; 1802 }else{ 1803 goto jump_to_p2; 1804 } 1805 } 1806 } 1807 MemSetTypeFlag(pIn1, MEM_Int); 1808 break; 1809 } 1810 1811 #ifndef SQLITE_OMIT_FLOATING_POINT 1812 /* Opcode: RealAffinity P1 * * * * 1813 ** 1814 ** If register P1 holds an integer convert it to a real value. 1815 ** 1816 ** This opcode is used when extracting information from a column that 1817 ** has REAL affinity. Such column values may still be stored as 1818 ** integers, for space efficiency, but after extraction we want them 1819 ** to have only a real value. 1820 */ 1821 case OP_RealAffinity: { /* in1 */ 1822 pIn1 = &aMem[pOp->p1]; 1823 if( pIn1->flags & MEM_Int ){ 1824 sqlite3VdbeMemRealify(pIn1); 1825 } 1826 break; 1827 } 1828 #endif 1829 1830 #ifndef SQLITE_OMIT_CAST 1831 /* Opcode: Cast P1 P2 * * * 1832 ** Synopsis: affinity(r[P1]) 1833 ** 1834 ** Force the value in register P1 to be the type defined by P2. 1835 ** 1836 ** <ul> 1837 ** <li value="97"> TEXT 1838 ** <li value="98"> BLOB 1839 ** <li value="99"> NUMERIC 1840 ** <li value="100"> INTEGER 1841 ** <li value="101"> REAL 1842 ** </ul> 1843 ** 1844 ** A NULL value is not changed by this routine. It remains NULL. 1845 */ 1846 case OP_Cast: { /* in1 */ 1847 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1848 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1849 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1850 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1851 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1852 testcase( pOp->p2==SQLITE_AFF_REAL ); 1853 pIn1 = &aMem[pOp->p1]; 1854 memAboutToChange(p, pIn1); 1855 rc = ExpandBlob(pIn1); 1856 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1857 UPDATE_MAX_BLOBSIZE(pIn1); 1858 break; 1859 } 1860 #endif /* SQLITE_OMIT_CAST */ 1861 1862 /* Opcode: Lt P1 P2 P3 P4 P5 1863 ** Synopsis: if r[P1]<r[P3] goto P2 1864 ** 1865 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1866 ** jump to address P2. 1867 ** 1868 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1869 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1870 ** bit is clear then fall through if either operand is NULL. 1871 ** 1872 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1873 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1874 ** to coerce both inputs according to this affinity before the 1875 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1876 ** affinity is used. Note that the affinity conversions are stored 1877 ** back into the input registers P1 and P3. So this opcode can cause 1878 ** persistent changes to registers P1 and P3. 1879 ** 1880 ** Once any conversions have taken place, and neither value is NULL, 1881 ** the values are compared. If both values are blobs then memcmp() is 1882 ** used to determine the results of the comparison. If both values 1883 ** are text, then the appropriate collating function specified in 1884 ** P4 is used to do the comparison. If P4 is not specified then 1885 ** memcmp() is used to compare text string. If both values are 1886 ** numeric, then a numeric comparison is used. If the two values 1887 ** are of different types, then numbers are considered less than 1888 ** strings and strings are considered less than blobs. 1889 ** 1890 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1891 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1892 ** 1893 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1894 ** equal to one another, provided that they do not have their MEM_Cleared 1895 ** bit set. 1896 */ 1897 /* Opcode: Ne P1 P2 P3 P4 P5 1898 ** Synopsis: if r[P1]!=r[P3] goto P2 1899 ** 1900 ** This works just like the Lt opcode except that the jump is taken if 1901 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1902 ** additional information. 1903 ** 1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1905 ** true or false and is never NULL. If both operands are NULL then the result 1906 ** of comparison is false. If either operand is NULL then the result is true. 1907 ** If neither operand is NULL the result is the same as it would be if 1908 ** the SQLITE_NULLEQ flag were omitted from P5. 1909 */ 1910 /* Opcode: Eq P1 P2 P3 P4 P5 1911 ** Synopsis: if r[P1]==r[P3] goto P2 1912 ** 1913 ** This works just like the Lt opcode except that the jump is taken if 1914 ** the operands in registers P1 and P3 are equal. 1915 ** See the Lt opcode for additional information. 1916 ** 1917 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1918 ** true or false and is never NULL. If both operands are NULL then the result 1919 ** of comparison is true. If either operand is NULL then the result is false. 1920 ** If neither operand is NULL the result is the same as it would be if 1921 ** the SQLITE_NULLEQ flag were omitted from P5. 1922 */ 1923 /* Opcode: Le P1 P2 P3 P4 P5 1924 ** Synopsis: if r[P1]<=r[P3] goto P2 1925 ** 1926 ** This works just like the Lt opcode except that the jump is taken if 1927 ** the content of register P3 is less than or equal to the content of 1928 ** register P1. See the Lt opcode for additional information. 1929 */ 1930 /* Opcode: Gt P1 P2 P3 P4 P5 1931 ** Synopsis: if r[P1]>r[P3] goto P2 1932 ** 1933 ** This works just like the Lt opcode except that the jump is taken if 1934 ** the content of register P3 is greater than the content of 1935 ** register P1. See the Lt opcode for additional information. 1936 */ 1937 /* Opcode: Ge P1 P2 P3 P4 P5 1938 ** Synopsis: if r[P1]>=r[P3] goto P2 1939 ** 1940 ** This works just like the Lt opcode except that the jump is taken if 1941 ** the content of register P3 is greater than or equal to the content of 1942 ** register P1. See the Lt opcode for additional information. 1943 */ 1944 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1945 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1946 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1947 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1948 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1949 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1950 int res; /* Result of the comparison of pIn1 against pIn3 */ 1951 char affinity; /* Affinity to use for comparison */ 1952 u16 flags1; /* Copy of initial value of pIn1->flags */ 1953 u16 flags3; /* Copy of initial value of pIn3->flags */ 1954 1955 pIn1 = &aMem[pOp->p1]; 1956 pIn3 = &aMem[pOp->p3]; 1957 flags1 = pIn1->flags; 1958 flags3 = pIn3->flags; 1959 if( (flags1 | flags3)&MEM_Null ){ 1960 /* One or both operands are NULL */ 1961 if( pOp->p5 & SQLITE_NULLEQ ){ 1962 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1963 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1964 ** or not both operands are null. 1965 */ 1966 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1967 assert( (flags1 & MEM_Cleared)==0 ); 1968 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1969 if( (flags1&MEM_Null)!=0 1970 && (flags3&MEM_Null)!=0 1971 && (flags3&MEM_Cleared)==0 1972 ){ 1973 res = 0; /* Results are equal */ 1974 }else{ 1975 res = 1; /* Results are not equal */ 1976 } 1977 }else{ 1978 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1979 ** then the result is always NULL. 1980 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1981 */ 1982 if( pOp->p5 & SQLITE_STOREP2 ){ 1983 pOut = &aMem[pOp->p2]; 1984 memAboutToChange(p, pOut); 1985 MemSetTypeFlag(pOut, MEM_Null); 1986 REGISTER_TRACE(pOp->p2, pOut); 1987 }else{ 1988 VdbeBranchTaken(2,3); 1989 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1990 goto jump_to_p2; 1991 } 1992 } 1993 break; 1994 } 1995 }else{ 1996 /* Neither operand is NULL. Do a comparison. */ 1997 affinity = pOp->p5 & SQLITE_AFF_MASK; 1998 if( affinity>=SQLITE_AFF_NUMERIC ){ 1999 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2000 applyNumericAffinity(pIn1,0); 2001 } 2002 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2003 applyNumericAffinity(pIn3,0); 2004 } 2005 }else if( affinity==SQLITE_AFF_TEXT ){ 2006 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 2007 testcase( pIn1->flags & MEM_Int ); 2008 testcase( pIn1->flags & MEM_Real ); 2009 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2010 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2011 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2012 } 2013 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 2014 testcase( pIn3->flags & MEM_Int ); 2015 testcase( pIn3->flags & MEM_Real ); 2016 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2017 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2018 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2019 } 2020 } 2021 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2022 if( flags1 & MEM_Zero ){ 2023 sqlite3VdbeMemExpandBlob(pIn1); 2024 flags1 &= ~MEM_Zero; 2025 } 2026 if( flags3 & MEM_Zero ){ 2027 sqlite3VdbeMemExpandBlob(pIn3); 2028 flags3 &= ~MEM_Zero; 2029 } 2030 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2031 } 2032 switch( pOp->opcode ){ 2033 case OP_Eq: res = res==0; break; 2034 case OP_Ne: res = res!=0; break; 2035 case OP_Lt: res = res<0; break; 2036 case OP_Le: res = res<=0; break; 2037 case OP_Gt: res = res>0; break; 2038 default: res = res>=0; break; 2039 } 2040 2041 /* Undo any changes made by applyAffinity() to the input registers. */ 2042 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2043 pIn1->flags = flags1; 2044 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2045 pIn3->flags = flags3; 2046 2047 if( pOp->p5 & SQLITE_STOREP2 ){ 2048 pOut = &aMem[pOp->p2]; 2049 memAboutToChange(p, pOut); 2050 MemSetTypeFlag(pOut, MEM_Int); 2051 pOut->u.i = res; 2052 REGISTER_TRACE(pOp->p2, pOut); 2053 }else{ 2054 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2055 if( res ){ 2056 goto jump_to_p2; 2057 } 2058 } 2059 break; 2060 } 2061 2062 /* Opcode: Permutation * * * P4 * 2063 ** 2064 ** Set the permutation used by the OP_Compare operator to be the array 2065 ** of integers in P4. 2066 ** 2067 ** The permutation is only valid until the next OP_Compare that has 2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2069 ** occur immediately prior to the OP_Compare. 2070 */ 2071 case OP_Permutation: { 2072 assert( pOp->p4type==P4_INTARRAY ); 2073 assert( pOp->p4.ai ); 2074 aPermute = pOp->p4.ai; 2075 break; 2076 } 2077 2078 /* Opcode: Compare P1 P2 P3 P4 P5 2079 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2080 ** 2081 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2082 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2083 ** the comparison for use by the next OP_Jump instruct. 2084 ** 2085 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2086 ** determined by the most recent OP_Permutation operator. If the 2087 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2088 ** order. 2089 ** 2090 ** P4 is a KeyInfo structure that defines collating sequences and sort 2091 ** orders for the comparison. The permutation applies to registers 2092 ** only. The KeyInfo elements are used sequentially. 2093 ** 2094 ** The comparison is a sort comparison, so NULLs compare equal, 2095 ** NULLs are less than numbers, numbers are less than strings, 2096 ** and strings are less than blobs. 2097 */ 2098 case OP_Compare: { 2099 int n; 2100 int i; 2101 int p1; 2102 int p2; 2103 const KeyInfo *pKeyInfo; 2104 int idx; 2105 CollSeq *pColl; /* Collating sequence to use on this term */ 2106 int bRev; /* True for DESCENDING sort order */ 2107 2108 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2109 n = pOp->p3; 2110 pKeyInfo = pOp->p4.pKeyInfo; 2111 assert( n>0 ); 2112 assert( pKeyInfo!=0 ); 2113 p1 = pOp->p1; 2114 p2 = pOp->p2; 2115 #if SQLITE_DEBUG 2116 if( aPermute ){ 2117 int k, mx = 0; 2118 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2119 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2120 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2121 }else{ 2122 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2123 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2124 } 2125 #endif /* SQLITE_DEBUG */ 2126 for(i=0; i<n; i++){ 2127 idx = aPermute ? aPermute[i] : i; 2128 assert( memIsValid(&aMem[p1+idx]) ); 2129 assert( memIsValid(&aMem[p2+idx]) ); 2130 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2131 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2132 assert( i<pKeyInfo->nField ); 2133 pColl = pKeyInfo->aColl[i]; 2134 bRev = pKeyInfo->aSortOrder[i]; 2135 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2136 if( iCompare ){ 2137 if( bRev ) iCompare = -iCompare; 2138 break; 2139 } 2140 } 2141 aPermute = 0; 2142 break; 2143 } 2144 2145 /* Opcode: Jump P1 P2 P3 * * 2146 ** 2147 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2148 ** in the most recent OP_Compare instruction the P1 vector was less than 2149 ** equal to, or greater than the P2 vector, respectively. 2150 */ 2151 case OP_Jump: { /* jump */ 2152 if( iCompare<0 ){ 2153 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2154 }else if( iCompare==0 ){ 2155 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2156 }else{ 2157 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2158 } 2159 break; 2160 } 2161 2162 /* Opcode: And P1 P2 P3 * * 2163 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2164 ** 2165 ** Take the logical AND of the values in registers P1 and P2 and 2166 ** write the result into register P3. 2167 ** 2168 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2169 ** the other input is NULL. A NULL and true or two NULLs give 2170 ** a NULL output. 2171 */ 2172 /* Opcode: Or P1 P2 P3 * * 2173 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2174 ** 2175 ** Take the logical OR of the values in register P1 and P2 and 2176 ** store the answer in register P3. 2177 ** 2178 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2179 ** even if the other input is NULL. A NULL and false or two NULLs 2180 ** give a NULL output. 2181 */ 2182 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2183 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2184 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2185 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2186 2187 pIn1 = &aMem[pOp->p1]; 2188 if( pIn1->flags & MEM_Null ){ 2189 v1 = 2; 2190 }else{ 2191 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2192 } 2193 pIn2 = &aMem[pOp->p2]; 2194 if( pIn2->flags & MEM_Null ){ 2195 v2 = 2; 2196 }else{ 2197 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2198 } 2199 if( pOp->opcode==OP_And ){ 2200 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2201 v1 = and_logic[v1*3+v2]; 2202 }else{ 2203 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2204 v1 = or_logic[v1*3+v2]; 2205 } 2206 pOut = &aMem[pOp->p3]; 2207 if( v1==2 ){ 2208 MemSetTypeFlag(pOut, MEM_Null); 2209 }else{ 2210 pOut->u.i = v1; 2211 MemSetTypeFlag(pOut, MEM_Int); 2212 } 2213 break; 2214 } 2215 2216 /* Opcode: Not P1 P2 * * * 2217 ** Synopsis: r[P2]= !r[P1] 2218 ** 2219 ** Interpret the value in register P1 as a boolean value. Store the 2220 ** boolean complement in register P2. If the value in register P1 is 2221 ** NULL, then a NULL is stored in P2. 2222 */ 2223 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2224 pIn1 = &aMem[pOp->p1]; 2225 pOut = &aMem[pOp->p2]; 2226 sqlite3VdbeMemSetNull(pOut); 2227 if( (pIn1->flags & MEM_Null)==0 ){ 2228 pOut->flags = MEM_Int; 2229 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2230 } 2231 break; 2232 } 2233 2234 /* Opcode: BitNot P1 P2 * * * 2235 ** Synopsis: r[P1]= ~r[P1] 2236 ** 2237 ** Interpret the content of register P1 as an integer. Store the 2238 ** ones-complement of the P1 value into register P2. If P1 holds 2239 ** a NULL then store a NULL in P2. 2240 */ 2241 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2242 pIn1 = &aMem[pOp->p1]; 2243 pOut = &aMem[pOp->p2]; 2244 sqlite3VdbeMemSetNull(pOut); 2245 if( (pIn1->flags & MEM_Null)==0 ){ 2246 pOut->flags = MEM_Int; 2247 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2248 } 2249 break; 2250 } 2251 2252 /* Opcode: Once P1 P2 * * * 2253 ** 2254 ** Check the "once" flag number P1. If it is set, jump to instruction P2. 2255 ** Otherwise, set the flag and fall through to the next instruction. 2256 ** In other words, this opcode causes all following opcodes up through P2 2257 ** (but not including P2) to run just once and to be skipped on subsequent 2258 ** times through the loop. 2259 ** 2260 ** All "once" flags are initially cleared whenever a prepared statement 2261 ** first begins to run. 2262 */ 2263 case OP_Once: { /* jump */ 2264 assert( pOp->p1<p->nOnceFlag ); 2265 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2266 if( p->aOnceFlag[pOp->p1] ){ 2267 goto jump_to_p2; 2268 }else{ 2269 p->aOnceFlag[pOp->p1] = 1; 2270 } 2271 break; 2272 } 2273 2274 /* Opcode: If P1 P2 P3 * * 2275 ** 2276 ** Jump to P2 if the value in register P1 is true. The value 2277 ** is considered true if it is numeric and non-zero. If the value 2278 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2279 */ 2280 /* Opcode: IfNot P1 P2 P3 * * 2281 ** 2282 ** Jump to P2 if the value in register P1 is False. The value 2283 ** is considered false if it has a numeric value of zero. If the value 2284 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2285 */ 2286 case OP_If: /* jump, in1 */ 2287 case OP_IfNot: { /* jump, in1 */ 2288 int c; 2289 pIn1 = &aMem[pOp->p1]; 2290 if( pIn1->flags & MEM_Null ){ 2291 c = pOp->p3; 2292 }else{ 2293 #ifdef SQLITE_OMIT_FLOATING_POINT 2294 c = sqlite3VdbeIntValue(pIn1)!=0; 2295 #else 2296 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2297 #endif 2298 if( pOp->opcode==OP_IfNot ) c = !c; 2299 } 2300 VdbeBranchTaken(c!=0, 2); 2301 if( c ){ 2302 goto jump_to_p2; 2303 } 2304 break; 2305 } 2306 2307 /* Opcode: IsNull P1 P2 * * * 2308 ** Synopsis: if r[P1]==NULL goto P2 2309 ** 2310 ** Jump to P2 if the value in register P1 is NULL. 2311 */ 2312 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2313 pIn1 = &aMem[pOp->p1]; 2314 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2315 if( (pIn1->flags & MEM_Null)!=0 ){ 2316 goto jump_to_p2; 2317 } 2318 break; 2319 } 2320 2321 /* Opcode: NotNull P1 P2 * * * 2322 ** Synopsis: if r[P1]!=NULL goto P2 2323 ** 2324 ** Jump to P2 if the value in register P1 is not NULL. 2325 */ 2326 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2327 pIn1 = &aMem[pOp->p1]; 2328 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2329 if( (pIn1->flags & MEM_Null)==0 ){ 2330 goto jump_to_p2; 2331 } 2332 break; 2333 } 2334 2335 /* Opcode: Column P1 P2 P3 P4 P5 2336 ** Synopsis: r[P3]=PX 2337 ** 2338 ** Interpret the data that cursor P1 points to as a structure built using 2339 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2340 ** information about the format of the data.) Extract the P2-th column 2341 ** from this record. If there are less that (P2+1) 2342 ** values in the record, extract a NULL. 2343 ** 2344 ** The value extracted is stored in register P3. 2345 ** 2346 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2347 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2348 ** the result. 2349 ** 2350 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2351 ** then the cache of the cursor is reset prior to extracting the column. 2352 ** The first OP_Column against a pseudo-table after the value of the content 2353 ** register has changed should have this bit set. 2354 ** 2355 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2356 ** the result is guaranteed to only be used as the argument of a length() 2357 ** or typeof() function, respectively. The loading of large blobs can be 2358 ** skipped for length() and all content loading can be skipped for typeof(). 2359 */ 2360 case OP_Column: { 2361 i64 payloadSize64; /* Number of bytes in the record */ 2362 int p2; /* column number to retrieve */ 2363 VdbeCursor *pC; /* The VDBE cursor */ 2364 BtCursor *pCrsr; /* The BTree cursor */ 2365 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2366 int len; /* The length of the serialized data for the column */ 2367 int i; /* Loop counter */ 2368 Mem *pDest; /* Where to write the extracted value */ 2369 Mem sMem; /* For storing the record being decoded */ 2370 const u8 *zData; /* Part of the record being decoded */ 2371 const u8 *zHdr; /* Next unparsed byte of the header */ 2372 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2373 u32 offset; /* Offset into the data */ 2374 u64 offset64; /* 64-bit offset */ 2375 u32 avail; /* Number of bytes of available data */ 2376 u32 t; /* A type code from the record header */ 2377 Mem *pReg; /* PseudoTable input register */ 2378 2379 p2 = pOp->p2; 2380 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2381 pDest = &aMem[pOp->p3]; 2382 memAboutToChange(p, pDest); 2383 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2384 pC = p->apCsr[pOp->p1]; 2385 assert( pC!=0 ); 2386 assert( p2<pC->nField ); 2387 aOffset = pC->aOffset; 2388 assert( pC->eCurType!=CURTYPE_VTAB ); 2389 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2390 assert( pC->eCurType!=CURTYPE_SORTER ); 2391 pCrsr = pC->uc.pCursor; 2392 2393 /* If the cursor cache is stale, bring it up-to-date */ 2394 rc = sqlite3VdbeCursorMoveto(pC); 2395 if( rc ) goto abort_due_to_error; 2396 if( pC->cacheStatus!=p->cacheCtr ){ 2397 if( pC->nullRow ){ 2398 if( pC->eCurType==CURTYPE_PSEUDO ){ 2399 assert( pC->uc.pseudoTableReg>0 ); 2400 pReg = &aMem[pC->uc.pseudoTableReg]; 2401 assert( pReg->flags & MEM_Blob ); 2402 assert( memIsValid(pReg) ); 2403 pC->payloadSize = pC->szRow = avail = pReg->n; 2404 pC->aRow = (u8*)pReg->z; 2405 }else{ 2406 sqlite3VdbeMemSetNull(pDest); 2407 goto op_column_out; 2408 } 2409 }else{ 2410 assert( pC->eCurType==CURTYPE_BTREE ); 2411 assert( pCrsr ); 2412 if( pC->isTable==0 ){ 2413 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2414 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2415 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2416 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2417 ** payload size, so it is impossible for payloadSize64 to be 2418 ** larger than 32 bits. */ 2419 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2420 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2421 pC->payloadSize = (u32)payloadSize64; 2422 }else{ 2423 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2424 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2425 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2426 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2427 } 2428 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2429 if( pC->payloadSize <= (u32)avail ){ 2430 pC->szRow = pC->payloadSize; 2431 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2432 goto too_big; 2433 }else{ 2434 pC->szRow = avail; 2435 } 2436 } 2437 pC->cacheStatus = p->cacheCtr; 2438 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2439 pC->nHdrParsed = 0; 2440 aOffset[0] = offset; 2441 2442 2443 if( avail<offset ){ 2444 /* pC->aRow does not have to hold the entire row, but it does at least 2445 ** need to cover the header of the record. If pC->aRow does not contain 2446 ** the complete header, then set it to zero, forcing the header to be 2447 ** dynamically allocated. */ 2448 pC->aRow = 0; 2449 pC->szRow = 0; 2450 2451 /* Make sure a corrupt database has not given us an oversize header. 2452 ** Do this now to avoid an oversize memory allocation. 2453 ** 2454 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2455 ** types use so much data space that there can only be 4096 and 32 of 2456 ** them, respectively. So the maximum header length results from a 2457 ** 3-byte type for each of the maximum of 32768 columns plus three 2458 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2459 */ 2460 if( offset > 98307 || offset > pC->payloadSize ){ 2461 rc = SQLITE_CORRUPT_BKPT; 2462 goto op_column_error; 2463 } 2464 } 2465 2466 /* The following goto is an optimization. It can be omitted and 2467 ** everything will still work. But OP_Column is measurably faster 2468 ** by skipping the subsequent conditional, which is always true. 2469 */ 2470 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2471 goto op_column_read_header; 2472 } 2473 2474 /* Make sure at least the first p2+1 entries of the header have been 2475 ** parsed and valid information is in aOffset[] and pC->aType[]. 2476 */ 2477 if( pC->nHdrParsed<=p2 ){ 2478 /* If there is more header available for parsing in the record, try 2479 ** to extract additional fields up through the p2+1-th field 2480 */ 2481 op_column_read_header: 2482 if( pC->iHdrOffset<aOffset[0] ){ 2483 /* Make sure zData points to enough of the record to cover the header. */ 2484 if( pC->aRow==0 ){ 2485 memset(&sMem, 0, sizeof(sMem)); 2486 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem); 2487 if( rc!=SQLITE_OK ) goto op_column_error; 2488 zData = (u8*)sMem.z; 2489 }else{ 2490 zData = pC->aRow; 2491 } 2492 2493 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2494 i = pC->nHdrParsed; 2495 offset64 = aOffset[i]; 2496 zHdr = zData + pC->iHdrOffset; 2497 zEndHdr = zData + aOffset[0]; 2498 assert( i<=p2 && zHdr<zEndHdr ); 2499 do{ 2500 if( (t = zHdr[0])<0x80 ){ 2501 zHdr++; 2502 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2503 }else{ 2504 zHdr += sqlite3GetVarint32(zHdr, &t); 2505 offset64 += sqlite3VdbeSerialTypeLen(t); 2506 } 2507 pC->aType[i++] = t; 2508 aOffset[i] = (u32)(offset64 & 0xffffffff); 2509 }while( i<=p2 && zHdr<zEndHdr ); 2510 pC->nHdrParsed = i; 2511 pC->iHdrOffset = (u32)(zHdr - zData); 2512 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2513 2514 /* The record is corrupt if any of the following are true: 2515 ** (1) the bytes of the header extend past the declared header size 2516 ** (2) the entire header was used but not all data was used 2517 ** (3) the end of the data extends beyond the end of the record. 2518 */ 2519 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2520 || (offset64 > pC->payloadSize) 2521 ){ 2522 rc = SQLITE_CORRUPT_BKPT; 2523 goto op_column_error; 2524 } 2525 }else{ 2526 t = 0; 2527 } 2528 2529 /* If after trying to extract new entries from the header, nHdrParsed is 2530 ** still not up to p2, that means that the record has fewer than p2 2531 ** columns. So the result will be either the default value or a NULL. 2532 */ 2533 if( pC->nHdrParsed<=p2 ){ 2534 if( pOp->p4type==P4_MEM ){ 2535 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2536 }else{ 2537 sqlite3VdbeMemSetNull(pDest); 2538 } 2539 goto op_column_out; 2540 } 2541 }else{ 2542 t = pC->aType[p2]; 2543 } 2544 2545 /* Extract the content for the p2+1-th column. Control can only 2546 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2547 ** all valid. 2548 */ 2549 assert( p2<pC->nHdrParsed ); 2550 assert( rc==SQLITE_OK ); 2551 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2552 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); 2553 assert( t==pC->aType[p2] ); 2554 pDest->enc = encoding; 2555 if( pC->szRow>=aOffset[p2+1] ){ 2556 /* This is the common case where the desired content fits on the original 2557 ** page - where the content is not on an overflow page */ 2558 zData = pC->aRow + aOffset[p2]; 2559 if( t<12 ){ 2560 sqlite3VdbeSerialGet(zData, t, pDest); 2561 }else{ 2562 /* If the column value is a string, we need a persistent value, not 2563 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2564 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2565 */ 2566 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2567 pDest->n = len = (t-12)/2; 2568 if( pDest->szMalloc < len+2 ){ 2569 pDest->flags = MEM_Null; 2570 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2571 }else{ 2572 pDest->z = pDest->zMalloc; 2573 } 2574 memcpy(pDest->z, zData, len); 2575 pDest->z[len] = 0; 2576 pDest->z[len+1] = 0; 2577 pDest->flags = aFlag[t&1]; 2578 } 2579 }else{ 2580 /* This branch happens only when content is on overflow pages */ 2581 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2582 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2583 || (len = sqlite3VdbeSerialTypeLen(t))==0 2584 ){ 2585 /* Content is irrelevant for 2586 ** 1. the typeof() function, 2587 ** 2. the length(X) function if X is a blob, and 2588 ** 3. if the content length is zero. 2589 ** So we might as well use bogus content rather than reading 2590 ** content from disk. */ 2591 static u8 aZero[8]; /* This is the bogus content */ 2592 sqlite3VdbeSerialGet(aZero, t, pDest); 2593 }else{ 2594 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2595 pDest); 2596 if( rc==SQLITE_OK ){ 2597 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2598 pDest->flags &= ~MEM_Ephem; 2599 } 2600 } 2601 } 2602 2603 op_column_out: 2604 op_column_error: 2605 UPDATE_MAX_BLOBSIZE(pDest); 2606 REGISTER_TRACE(pOp->p3, pDest); 2607 break; 2608 } 2609 2610 /* Opcode: Affinity P1 P2 * P4 * 2611 ** Synopsis: affinity(r[P1@P2]) 2612 ** 2613 ** Apply affinities to a range of P2 registers starting with P1. 2614 ** 2615 ** P4 is a string that is P2 characters long. The nth character of the 2616 ** string indicates the column affinity that should be used for the nth 2617 ** memory cell in the range. 2618 */ 2619 case OP_Affinity: { 2620 const char *zAffinity; /* The affinity to be applied */ 2621 char cAff; /* A single character of affinity */ 2622 2623 zAffinity = pOp->p4.z; 2624 assert( zAffinity!=0 ); 2625 assert( zAffinity[pOp->p2]==0 ); 2626 pIn1 = &aMem[pOp->p1]; 2627 while( (cAff = *(zAffinity++))!=0 ){ 2628 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2629 assert( memIsValid(pIn1) ); 2630 applyAffinity(pIn1, cAff, encoding); 2631 pIn1++; 2632 } 2633 break; 2634 } 2635 2636 /* Opcode: MakeRecord P1 P2 P3 P4 * 2637 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2638 ** 2639 ** Convert P2 registers beginning with P1 into the [record format] 2640 ** use as a data record in a database table or as a key 2641 ** in an index. The OP_Column opcode can decode the record later. 2642 ** 2643 ** P4 may be a string that is P2 characters long. The nth character of the 2644 ** string indicates the column affinity that should be used for the nth 2645 ** field of the index key. 2646 ** 2647 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2648 ** macros defined in sqliteInt.h. 2649 ** 2650 ** If P4 is NULL then all index fields have the affinity BLOB. 2651 */ 2652 case OP_MakeRecord: { 2653 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2654 Mem *pRec; /* The new record */ 2655 u64 nData; /* Number of bytes of data space */ 2656 int nHdr; /* Number of bytes of header space */ 2657 i64 nByte; /* Data space required for this record */ 2658 i64 nZero; /* Number of zero bytes at the end of the record */ 2659 int nVarint; /* Number of bytes in a varint */ 2660 u32 serial_type; /* Type field */ 2661 Mem *pData0; /* First field to be combined into the record */ 2662 Mem *pLast; /* Last field of the record */ 2663 int nField; /* Number of fields in the record */ 2664 char *zAffinity; /* The affinity string for the record */ 2665 int file_format; /* File format to use for encoding */ 2666 int i; /* Space used in zNewRecord[] header */ 2667 int j; /* Space used in zNewRecord[] content */ 2668 u32 len; /* Length of a field */ 2669 2670 /* Assuming the record contains N fields, the record format looks 2671 ** like this: 2672 ** 2673 ** ------------------------------------------------------------------------ 2674 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2675 ** ------------------------------------------------------------------------ 2676 ** 2677 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2678 ** and so forth. 2679 ** 2680 ** Each type field is a varint representing the serial type of the 2681 ** corresponding data element (see sqlite3VdbeSerialType()). The 2682 ** hdr-size field is also a varint which is the offset from the beginning 2683 ** of the record to data0. 2684 */ 2685 nData = 0; /* Number of bytes of data space */ 2686 nHdr = 0; /* Number of bytes of header space */ 2687 nZero = 0; /* Number of zero bytes at the end of the record */ 2688 nField = pOp->p1; 2689 zAffinity = pOp->p4.z; 2690 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2691 pData0 = &aMem[nField]; 2692 nField = pOp->p2; 2693 pLast = &pData0[nField-1]; 2694 file_format = p->minWriteFileFormat; 2695 2696 /* Identify the output register */ 2697 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2698 pOut = &aMem[pOp->p3]; 2699 memAboutToChange(p, pOut); 2700 2701 /* Apply the requested affinity to all inputs 2702 */ 2703 assert( pData0<=pLast ); 2704 if( zAffinity ){ 2705 pRec = pData0; 2706 do{ 2707 applyAffinity(pRec++, *(zAffinity++), encoding); 2708 assert( zAffinity[0]==0 || pRec<=pLast ); 2709 }while( zAffinity[0] ); 2710 } 2711 2712 /* Loop through the elements that will make up the record to figure 2713 ** out how much space is required for the new record. 2714 */ 2715 pRec = pLast; 2716 do{ 2717 assert( memIsValid(pRec) ); 2718 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2719 if( pRec->flags & MEM_Zero ){ 2720 if( nData ){ 2721 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2722 }else{ 2723 nZero += pRec->u.nZero; 2724 len -= pRec->u.nZero; 2725 } 2726 } 2727 nData += len; 2728 testcase( serial_type==127 ); 2729 testcase( serial_type==128 ); 2730 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2731 }while( (--pRec)>=pData0 ); 2732 2733 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2734 ** which determines the total number of bytes in the header. The varint 2735 ** value is the size of the header in bytes including the size varint 2736 ** itself. */ 2737 testcase( nHdr==126 ); 2738 testcase( nHdr==127 ); 2739 if( nHdr<=126 ){ 2740 /* The common case */ 2741 nHdr += 1; 2742 }else{ 2743 /* Rare case of a really large header */ 2744 nVarint = sqlite3VarintLen(nHdr); 2745 nHdr += nVarint; 2746 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2747 } 2748 nByte = nHdr+nData; 2749 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2750 goto too_big; 2751 } 2752 2753 /* Make sure the output register has a buffer large enough to store 2754 ** the new record. The output register (pOp->p3) is not allowed to 2755 ** be one of the input registers (because the following call to 2756 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2757 */ 2758 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2759 goto no_mem; 2760 } 2761 zNewRecord = (u8 *)pOut->z; 2762 2763 /* Write the record */ 2764 i = putVarint32(zNewRecord, nHdr); 2765 j = nHdr; 2766 assert( pData0<=pLast ); 2767 pRec = pData0; 2768 do{ 2769 serial_type = pRec->uTemp; 2770 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2771 ** additional varints, one per column. */ 2772 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2773 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2774 ** immediately follow the header. */ 2775 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2776 }while( (++pRec)<=pLast ); 2777 assert( i==nHdr ); 2778 assert( j==nByte ); 2779 2780 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2781 pOut->n = (int)nByte; 2782 pOut->flags = MEM_Blob; 2783 if( nZero ){ 2784 pOut->u.nZero = nZero; 2785 pOut->flags |= MEM_Zero; 2786 } 2787 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2788 REGISTER_TRACE(pOp->p3, pOut); 2789 UPDATE_MAX_BLOBSIZE(pOut); 2790 break; 2791 } 2792 2793 /* Opcode: Count P1 P2 * * * 2794 ** Synopsis: r[P2]=count() 2795 ** 2796 ** Store the number of entries (an integer value) in the table or index 2797 ** opened by cursor P1 in register P2 2798 */ 2799 #ifndef SQLITE_OMIT_BTREECOUNT 2800 case OP_Count: { /* out2 */ 2801 i64 nEntry; 2802 BtCursor *pCrsr; 2803 2804 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2805 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2806 assert( pCrsr ); 2807 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2808 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2809 pOut = out2Prerelease(p, pOp); 2810 pOut->u.i = nEntry; 2811 break; 2812 } 2813 #endif 2814 2815 /* Opcode: Savepoint P1 * * P4 * 2816 ** 2817 ** Open, release or rollback the savepoint named by parameter P4, depending 2818 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2819 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2820 */ 2821 case OP_Savepoint: { 2822 int p1; /* Value of P1 operand */ 2823 char *zName; /* Name of savepoint */ 2824 int nName; 2825 Savepoint *pNew; 2826 Savepoint *pSavepoint; 2827 Savepoint *pTmp; 2828 int iSavepoint; 2829 int ii; 2830 2831 p1 = pOp->p1; 2832 zName = pOp->p4.z; 2833 2834 /* Assert that the p1 parameter is valid. Also that if there is no open 2835 ** transaction, then there cannot be any savepoints. 2836 */ 2837 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2838 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2839 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2840 assert( checkSavepointCount(db) ); 2841 assert( p->bIsReader ); 2842 2843 if( p1==SAVEPOINT_BEGIN ){ 2844 if( db->nVdbeWrite>0 ){ 2845 /* A new savepoint cannot be created if there are active write 2846 ** statements (i.e. open read/write incremental blob handles). 2847 */ 2848 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2849 rc = SQLITE_BUSY; 2850 }else{ 2851 nName = sqlite3Strlen30(zName); 2852 2853 #ifndef SQLITE_OMIT_VIRTUALTABLE 2854 /* This call is Ok even if this savepoint is actually a transaction 2855 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2856 ** If this is a transaction savepoint being opened, it is guaranteed 2857 ** that the db->aVTrans[] array is empty. */ 2858 assert( db->autoCommit==0 || db->nVTrans==0 ); 2859 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2860 db->nStatement+db->nSavepoint); 2861 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2862 #endif 2863 2864 /* Create a new savepoint structure. */ 2865 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2866 if( pNew ){ 2867 pNew->zName = (char *)&pNew[1]; 2868 memcpy(pNew->zName, zName, nName+1); 2869 2870 /* If there is no open transaction, then mark this as a special 2871 ** "transaction savepoint". */ 2872 if( db->autoCommit ){ 2873 db->autoCommit = 0; 2874 db->isTransactionSavepoint = 1; 2875 }else{ 2876 db->nSavepoint++; 2877 } 2878 2879 /* Link the new savepoint into the database handle's list. */ 2880 pNew->pNext = db->pSavepoint; 2881 db->pSavepoint = pNew; 2882 pNew->nDeferredCons = db->nDeferredCons; 2883 pNew->nDeferredImmCons = db->nDeferredImmCons; 2884 } 2885 } 2886 }else{ 2887 iSavepoint = 0; 2888 2889 /* Find the named savepoint. If there is no such savepoint, then an 2890 ** an error is returned to the user. */ 2891 for( 2892 pSavepoint = db->pSavepoint; 2893 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2894 pSavepoint = pSavepoint->pNext 2895 ){ 2896 iSavepoint++; 2897 } 2898 if( !pSavepoint ){ 2899 sqlite3VdbeError(p, "no such savepoint: %s", zName); 2900 rc = SQLITE_ERROR; 2901 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2902 /* It is not possible to release (commit) a savepoint if there are 2903 ** active write statements. 2904 */ 2905 sqlite3VdbeError(p, "cannot release savepoint - " 2906 "SQL statements in progress"); 2907 rc = SQLITE_BUSY; 2908 }else{ 2909 2910 /* Determine whether or not this is a transaction savepoint. If so, 2911 ** and this is a RELEASE command, then the current transaction 2912 ** is committed. 2913 */ 2914 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2915 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2916 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2917 goto vdbe_return; 2918 } 2919 db->autoCommit = 1; 2920 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2921 p->pc = (int)(pOp - aOp); 2922 db->autoCommit = 0; 2923 p->rc = rc = SQLITE_BUSY; 2924 goto vdbe_return; 2925 } 2926 db->isTransactionSavepoint = 0; 2927 rc = p->rc; 2928 }else{ 2929 int isSchemaChange; 2930 iSavepoint = db->nSavepoint - iSavepoint - 1; 2931 if( p1==SAVEPOINT_ROLLBACK ){ 2932 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; 2933 for(ii=0; ii<db->nDb; ii++){ 2934 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 2935 SQLITE_ABORT_ROLLBACK, 2936 isSchemaChange==0); 2937 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2938 } 2939 }else{ 2940 isSchemaChange = 0; 2941 } 2942 for(ii=0; ii<db->nDb; ii++){ 2943 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2944 if( rc!=SQLITE_OK ){ 2945 goto abort_due_to_error; 2946 } 2947 } 2948 if( isSchemaChange ){ 2949 sqlite3ExpirePreparedStatements(db); 2950 sqlite3ResetAllSchemasOfConnection(db); 2951 db->flags = (db->flags | SQLITE_InternChanges); 2952 } 2953 } 2954 2955 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2956 ** savepoints nested inside of the savepoint being operated on. */ 2957 while( db->pSavepoint!=pSavepoint ){ 2958 pTmp = db->pSavepoint; 2959 db->pSavepoint = pTmp->pNext; 2960 sqlite3DbFree(db, pTmp); 2961 db->nSavepoint--; 2962 } 2963 2964 /* If it is a RELEASE, then destroy the savepoint being operated on 2965 ** too. If it is a ROLLBACK TO, then set the number of deferred 2966 ** constraint violations present in the database to the value stored 2967 ** when the savepoint was created. */ 2968 if( p1==SAVEPOINT_RELEASE ){ 2969 assert( pSavepoint==db->pSavepoint ); 2970 db->pSavepoint = pSavepoint->pNext; 2971 sqlite3DbFree(db, pSavepoint); 2972 if( !isTransaction ){ 2973 db->nSavepoint--; 2974 } 2975 }else{ 2976 db->nDeferredCons = pSavepoint->nDeferredCons; 2977 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2978 } 2979 2980 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 2981 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2982 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2983 } 2984 } 2985 } 2986 2987 break; 2988 } 2989 2990 /* Opcode: AutoCommit P1 P2 * * * 2991 ** 2992 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2993 ** back any currently active btree transactions. If there are any active 2994 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2995 ** there are active writing VMs or active VMs that use shared cache. 2996 ** 2997 ** This instruction causes the VM to halt. 2998 */ 2999 case OP_AutoCommit: { 3000 int desiredAutoCommit; 3001 int iRollback; 3002 int turnOnAC; 3003 3004 desiredAutoCommit = pOp->p1; 3005 iRollback = pOp->p2; 3006 turnOnAC = desiredAutoCommit && !db->autoCommit; 3007 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3008 assert( desiredAutoCommit==1 || iRollback==0 ); 3009 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3010 assert( p->bIsReader ); 3011 3012 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 3013 /* If this instruction implements a COMMIT and other VMs are writing 3014 ** return an error indicating that the other VMs must complete first. 3015 */ 3016 sqlite3VdbeError(p, "cannot commit transaction - " 3017 "SQL statements in progress"); 3018 rc = SQLITE_BUSY; 3019 }else if( desiredAutoCommit!=db->autoCommit ){ 3020 if( iRollback ){ 3021 assert( desiredAutoCommit==1 ); 3022 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3023 db->autoCommit = 1; 3024 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3025 goto vdbe_return; 3026 }else{ 3027 db->autoCommit = (u8)desiredAutoCommit; 3028 } 3029 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3030 p->pc = (int)(pOp - aOp); 3031 db->autoCommit = (u8)(1-desiredAutoCommit); 3032 p->rc = rc = SQLITE_BUSY; 3033 goto vdbe_return; 3034 } 3035 assert( db->nStatement==0 ); 3036 sqlite3CloseSavepoints(db); 3037 if( p->rc==SQLITE_OK ){ 3038 rc = SQLITE_DONE; 3039 }else{ 3040 rc = SQLITE_ERROR; 3041 } 3042 goto vdbe_return; 3043 }else{ 3044 sqlite3VdbeError(p, 3045 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3046 (iRollback)?"cannot rollback - no transaction is active": 3047 "cannot commit - no transaction is active")); 3048 3049 rc = SQLITE_ERROR; 3050 } 3051 break; 3052 } 3053 3054 /* Opcode: Transaction P1 P2 P3 P4 P5 3055 ** 3056 ** Begin a transaction on database P1 if a transaction is not already 3057 ** active. 3058 ** If P2 is non-zero, then a write-transaction is started, or if a 3059 ** read-transaction is already active, it is upgraded to a write-transaction. 3060 ** If P2 is zero, then a read-transaction is started. 3061 ** 3062 ** P1 is the index of the database file on which the transaction is 3063 ** started. Index 0 is the main database file and index 1 is the 3064 ** file used for temporary tables. Indices of 2 or more are used for 3065 ** attached databases. 3066 ** 3067 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3068 ** true (this flag is set if the Vdbe may modify more than one row and may 3069 ** throw an ABORT exception), a statement transaction may also be opened. 3070 ** More specifically, a statement transaction is opened iff the database 3071 ** connection is currently not in autocommit mode, or if there are other 3072 ** active statements. A statement transaction allows the changes made by this 3073 ** VDBE to be rolled back after an error without having to roll back the 3074 ** entire transaction. If no error is encountered, the statement transaction 3075 ** will automatically commit when the VDBE halts. 3076 ** 3077 ** If P5!=0 then this opcode also checks the schema cookie against P3 3078 ** and the schema generation counter against P4. 3079 ** The cookie changes its value whenever the database schema changes. 3080 ** This operation is used to detect when that the cookie has changed 3081 ** and that the current process needs to reread the schema. If the schema 3082 ** cookie in P3 differs from the schema cookie in the database header or 3083 ** if the schema generation counter in P4 differs from the current 3084 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3085 ** halts. The sqlite3_step() wrapper function might then reprepare the 3086 ** statement and rerun it from the beginning. 3087 */ 3088 case OP_Transaction: { 3089 Btree *pBt; 3090 int iMeta; 3091 int iGen; 3092 3093 assert( p->bIsReader ); 3094 assert( p->readOnly==0 || pOp->p2==0 ); 3095 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3096 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3097 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3098 rc = SQLITE_READONLY; 3099 goto abort_due_to_error; 3100 } 3101 pBt = db->aDb[pOp->p1].pBt; 3102 3103 if( pBt ){ 3104 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3105 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3106 testcase( rc==SQLITE_BUSY_RECOVERY ); 3107 if( (rc&0xff)==SQLITE_BUSY ){ 3108 p->pc = (int)(pOp - aOp); 3109 p->rc = rc; 3110 goto vdbe_return; 3111 } 3112 if( rc!=SQLITE_OK ){ 3113 goto abort_due_to_error; 3114 } 3115 3116 if( pOp->p2 && p->usesStmtJournal 3117 && (db->autoCommit==0 || db->nVdbeRead>1) 3118 ){ 3119 assert( sqlite3BtreeIsInTrans(pBt) ); 3120 if( p->iStatement==0 ){ 3121 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3122 db->nStatement++; 3123 p->iStatement = db->nSavepoint + db->nStatement; 3124 } 3125 3126 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3127 if( rc==SQLITE_OK ){ 3128 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3129 } 3130 3131 /* Store the current value of the database handles deferred constraint 3132 ** counter. If the statement transaction needs to be rolled back, 3133 ** the value of this counter needs to be restored too. */ 3134 p->nStmtDefCons = db->nDeferredCons; 3135 p->nStmtDefImmCons = db->nDeferredImmCons; 3136 } 3137 3138 /* Gather the schema version number for checking: 3139 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite 3140 ** each time a query is executed to ensure that the internal cache of the 3141 ** schema used when compiling the SQL query matches the schema of the 3142 ** database against which the compiled query is actually executed. 3143 */ 3144 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3145 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3146 }else{ 3147 iGen = iMeta = 0; 3148 } 3149 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3150 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3151 sqlite3DbFree(db, p->zErrMsg); 3152 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3153 /* If the schema-cookie from the database file matches the cookie 3154 ** stored with the in-memory representation of the schema, do 3155 ** not reload the schema from the database file. 3156 ** 3157 ** If virtual-tables are in use, this is not just an optimization. 3158 ** Often, v-tables store their data in other SQLite tables, which 3159 ** are queried from within xNext() and other v-table methods using 3160 ** prepared queries. If such a query is out-of-date, we do not want to 3161 ** discard the database schema, as the user code implementing the 3162 ** v-table would have to be ready for the sqlite3_vtab structure itself 3163 ** to be invalidated whenever sqlite3_step() is called from within 3164 ** a v-table method. 3165 */ 3166 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3167 sqlite3ResetOneSchema(db, pOp->p1); 3168 } 3169 p->expired = 1; 3170 rc = SQLITE_SCHEMA; 3171 } 3172 break; 3173 } 3174 3175 /* Opcode: ReadCookie P1 P2 P3 * * 3176 ** 3177 ** Read cookie number P3 from database P1 and write it into register P2. 3178 ** P3==1 is the schema version. P3==2 is the database format. 3179 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3180 ** the main database file and P1==1 is the database file used to store 3181 ** temporary tables. 3182 ** 3183 ** There must be a read-lock on the database (either a transaction 3184 ** must be started or there must be an open cursor) before 3185 ** executing this instruction. 3186 */ 3187 case OP_ReadCookie: { /* out2 */ 3188 int iMeta; 3189 int iDb; 3190 int iCookie; 3191 3192 assert( p->bIsReader ); 3193 iDb = pOp->p1; 3194 iCookie = pOp->p3; 3195 assert( pOp->p3<SQLITE_N_BTREE_META ); 3196 assert( iDb>=0 && iDb<db->nDb ); 3197 assert( db->aDb[iDb].pBt!=0 ); 3198 assert( DbMaskTest(p->btreeMask, iDb) ); 3199 3200 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3201 pOut = out2Prerelease(p, pOp); 3202 pOut->u.i = iMeta; 3203 break; 3204 } 3205 3206 /* Opcode: SetCookie P1 P2 P3 * * 3207 ** 3208 ** Write the content of register P3 (interpreted as an integer) 3209 ** into cookie number P2 of database P1. P2==1 is the schema version. 3210 ** P2==2 is the database format. P2==3 is the recommended pager cache 3211 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3212 ** database file used to store temporary tables. 3213 ** 3214 ** A transaction must be started before executing this opcode. 3215 */ 3216 case OP_SetCookie: { /* in3 */ 3217 Db *pDb; 3218 assert( pOp->p2<SQLITE_N_BTREE_META ); 3219 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3220 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3221 assert( p->readOnly==0 ); 3222 pDb = &db->aDb[pOp->p1]; 3223 assert( pDb->pBt!=0 ); 3224 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3225 pIn3 = &aMem[pOp->p3]; 3226 sqlite3VdbeMemIntegerify(pIn3); 3227 /* See note about index shifting on OP_ReadCookie */ 3228 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3229 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3230 /* When the schema cookie changes, record the new cookie internally */ 3231 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3232 db->flags |= SQLITE_InternChanges; 3233 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3234 /* Record changes in the file format */ 3235 pDb->pSchema->file_format = (u8)pIn3->u.i; 3236 } 3237 if( pOp->p1==1 ){ 3238 /* Invalidate all prepared statements whenever the TEMP database 3239 ** schema is changed. Ticket #1644 */ 3240 sqlite3ExpirePreparedStatements(db); 3241 p->expired = 0; 3242 } 3243 break; 3244 } 3245 3246 /* Opcode: OpenRead P1 P2 P3 P4 P5 3247 ** Synopsis: root=P2 iDb=P3 3248 ** 3249 ** Open a read-only cursor for the database table whose root page is 3250 ** P2 in a database file. The database file is determined by P3. 3251 ** P3==0 means the main database, P3==1 means the database used for 3252 ** temporary tables, and P3>1 means used the corresponding attached 3253 ** database. Give the new cursor an identifier of P1. The P1 3254 ** values need not be contiguous but all P1 values should be small integers. 3255 ** It is an error for P1 to be negative. 3256 ** 3257 ** If P5!=0 then use the content of register P2 as the root page, not 3258 ** the value of P2 itself. 3259 ** 3260 ** There will be a read lock on the database whenever there is an 3261 ** open cursor. If the database was unlocked prior to this instruction 3262 ** then a read lock is acquired as part of this instruction. A read 3263 ** lock allows other processes to read the database but prohibits 3264 ** any other process from modifying the database. The read lock is 3265 ** released when all cursors are closed. If this instruction attempts 3266 ** to get a read lock but fails, the script terminates with an 3267 ** SQLITE_BUSY error code. 3268 ** 3269 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3270 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3271 ** structure, then said structure defines the content and collating 3272 ** sequence of the index being opened. Otherwise, if P4 is an integer 3273 ** value, it is set to the number of columns in the table. 3274 ** 3275 ** See also: OpenWrite, ReopenIdx 3276 */ 3277 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3278 ** Synopsis: root=P2 iDb=P3 3279 ** 3280 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3281 ** checks to see if the cursor on P1 is already open with a root page 3282 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3283 ** if the cursor is already open, do not reopen it. 3284 ** 3285 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3286 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3287 ** every other ReopenIdx or OpenRead for the same cursor number. 3288 ** 3289 ** See the OpenRead opcode documentation for additional information. 3290 */ 3291 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3292 ** Synopsis: root=P2 iDb=P3 3293 ** 3294 ** Open a read/write cursor named P1 on the table or index whose root 3295 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3296 ** root page. 3297 ** 3298 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3299 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3300 ** structure, then said structure defines the content and collating 3301 ** sequence of the index being opened. Otherwise, if P4 is an integer 3302 ** value, it is set to the number of columns in the table, or to the 3303 ** largest index of any column of the table that is actually used. 3304 ** 3305 ** This instruction works just like OpenRead except that it opens the cursor 3306 ** in read/write mode. For a given table, there can be one or more read-only 3307 ** cursors or a single read/write cursor but not both. 3308 ** 3309 ** See also OpenRead. 3310 */ 3311 case OP_ReopenIdx: { 3312 int nField; 3313 KeyInfo *pKeyInfo; 3314 int p2; 3315 int iDb; 3316 int wrFlag; 3317 Btree *pX; 3318 VdbeCursor *pCur; 3319 Db *pDb; 3320 3321 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3322 assert( pOp->p4type==P4_KEYINFO ); 3323 pCur = p->apCsr[pOp->p1]; 3324 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3325 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3326 goto open_cursor_set_hints; 3327 } 3328 /* If the cursor is not currently open or is open on a different 3329 ** index, then fall through into OP_OpenRead to force a reopen */ 3330 case OP_OpenRead: 3331 case OP_OpenWrite: 3332 3333 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3334 assert( p->bIsReader ); 3335 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3336 || p->readOnly==0 ); 3337 3338 if( p->expired ){ 3339 rc = SQLITE_ABORT_ROLLBACK; 3340 break; 3341 } 3342 3343 nField = 0; 3344 pKeyInfo = 0; 3345 p2 = pOp->p2; 3346 iDb = pOp->p3; 3347 assert( iDb>=0 && iDb<db->nDb ); 3348 assert( DbMaskTest(p->btreeMask, iDb) ); 3349 pDb = &db->aDb[iDb]; 3350 pX = pDb->pBt; 3351 assert( pX!=0 ); 3352 if( pOp->opcode==OP_OpenWrite ){ 3353 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3354 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3355 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3356 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3357 p->minWriteFileFormat = pDb->pSchema->file_format; 3358 } 3359 }else{ 3360 wrFlag = 0; 3361 } 3362 if( pOp->p5 & OPFLAG_P2ISREG ){ 3363 assert( p2>0 ); 3364 assert( p2<=(p->nMem-p->nCursor) ); 3365 pIn2 = &aMem[p2]; 3366 assert( memIsValid(pIn2) ); 3367 assert( (pIn2->flags & MEM_Int)!=0 ); 3368 sqlite3VdbeMemIntegerify(pIn2); 3369 p2 = (int)pIn2->u.i; 3370 /* The p2 value always comes from a prior OP_CreateTable opcode and 3371 ** that opcode will always set the p2 value to 2 or more or else fail. 3372 ** If there were a failure, the prepared statement would have halted 3373 ** before reaching this instruction. */ 3374 if( NEVER(p2<2) ) { 3375 rc = SQLITE_CORRUPT_BKPT; 3376 goto abort_due_to_error; 3377 } 3378 } 3379 if( pOp->p4type==P4_KEYINFO ){ 3380 pKeyInfo = pOp->p4.pKeyInfo; 3381 assert( pKeyInfo->enc==ENC(db) ); 3382 assert( pKeyInfo->db==db ); 3383 nField = pKeyInfo->nField+pKeyInfo->nXField; 3384 }else if( pOp->p4type==P4_INT32 ){ 3385 nField = pOp->p4.i; 3386 } 3387 assert( pOp->p1>=0 ); 3388 assert( nField>=0 ); 3389 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3390 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3391 if( pCur==0 ) goto no_mem; 3392 pCur->nullRow = 1; 3393 pCur->isOrdered = 1; 3394 pCur->pgnoRoot = p2; 3395 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3396 pCur->pKeyInfo = pKeyInfo; 3397 /* Set the VdbeCursor.isTable variable. Previous versions of 3398 ** SQLite used to check if the root-page flags were sane at this point 3399 ** and report database corruption if they were not, but this check has 3400 ** since moved into the btree layer. */ 3401 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3402 3403 open_cursor_set_hints: 3404 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3405 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3406 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3407 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3408 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3409 #endif 3410 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3411 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3412 break; 3413 } 3414 3415 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3416 ** Synopsis: nColumn=P2 3417 ** 3418 ** Open a new cursor P1 to a transient table. 3419 ** The cursor is always opened read/write even if 3420 ** the main database is read-only. The ephemeral 3421 ** table is deleted automatically when the cursor is closed. 3422 ** 3423 ** P2 is the number of columns in the ephemeral table. 3424 ** The cursor points to a BTree table if P4==0 and to a BTree index 3425 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3426 ** that defines the format of keys in the index. 3427 ** 3428 ** The P5 parameter can be a mask of the BTREE_* flags defined 3429 ** in btree.h. These flags control aspects of the operation of 3430 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3431 ** added automatically. 3432 */ 3433 /* Opcode: OpenAutoindex P1 P2 * P4 * 3434 ** Synopsis: nColumn=P2 3435 ** 3436 ** This opcode works the same as OP_OpenEphemeral. It has a 3437 ** different name to distinguish its use. Tables created using 3438 ** by this opcode will be used for automatically created transient 3439 ** indices in joins. 3440 */ 3441 case OP_OpenAutoindex: 3442 case OP_OpenEphemeral: { 3443 VdbeCursor *pCx; 3444 KeyInfo *pKeyInfo; 3445 3446 static const int vfsFlags = 3447 SQLITE_OPEN_READWRITE | 3448 SQLITE_OPEN_CREATE | 3449 SQLITE_OPEN_EXCLUSIVE | 3450 SQLITE_OPEN_DELETEONCLOSE | 3451 SQLITE_OPEN_TRANSIENT_DB; 3452 assert( pOp->p1>=0 ); 3453 assert( pOp->p2>=0 ); 3454 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3455 if( pCx==0 ) goto no_mem; 3456 pCx->nullRow = 1; 3457 pCx->isEphemeral = 1; 3458 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3459 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3460 if( rc==SQLITE_OK ){ 3461 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3462 } 3463 if( rc==SQLITE_OK ){ 3464 /* If a transient index is required, create it by calling 3465 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3466 ** opening it. If a transient table is required, just use the 3467 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3468 */ 3469 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3470 int pgno; 3471 assert( pOp->p4type==P4_KEYINFO ); 3472 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3473 if( rc==SQLITE_OK ){ 3474 assert( pgno==MASTER_ROOT+1 ); 3475 assert( pKeyInfo->db==db ); 3476 assert( pKeyInfo->enc==ENC(db) ); 3477 pCx->pKeyInfo = pKeyInfo; 3478 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR, 3479 pKeyInfo, pCx->uc.pCursor); 3480 } 3481 pCx->isTable = 0; 3482 }else{ 3483 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR, 3484 0, pCx->uc.pCursor); 3485 pCx->isTable = 1; 3486 } 3487 } 3488 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3489 break; 3490 } 3491 3492 /* Opcode: SorterOpen P1 P2 P3 P4 * 3493 ** 3494 ** This opcode works like OP_OpenEphemeral except that it opens 3495 ** a transient index that is specifically designed to sort large 3496 ** tables using an external merge-sort algorithm. 3497 ** 3498 ** If argument P3 is non-zero, then it indicates that the sorter may 3499 ** assume that a stable sort considering the first P3 fields of each 3500 ** key is sufficient to produce the required results. 3501 */ 3502 case OP_SorterOpen: { 3503 VdbeCursor *pCx; 3504 3505 assert( pOp->p1>=0 ); 3506 assert( pOp->p2>=0 ); 3507 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3508 if( pCx==0 ) goto no_mem; 3509 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3510 assert( pCx->pKeyInfo->db==db ); 3511 assert( pCx->pKeyInfo->enc==ENC(db) ); 3512 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3513 break; 3514 } 3515 3516 /* Opcode: SequenceTest P1 P2 * * * 3517 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3518 ** 3519 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3520 ** to P2. Regardless of whether or not the jump is taken, increment the 3521 ** the sequence value. 3522 */ 3523 case OP_SequenceTest: { 3524 VdbeCursor *pC; 3525 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3526 pC = p->apCsr[pOp->p1]; 3527 assert( isSorter(pC) ); 3528 if( (pC->seqCount++)==0 ){ 3529 goto jump_to_p2; 3530 } 3531 break; 3532 } 3533 3534 /* Opcode: OpenPseudo P1 P2 P3 * * 3535 ** Synopsis: P3 columns in r[P2] 3536 ** 3537 ** Open a new cursor that points to a fake table that contains a single 3538 ** row of data. The content of that one row is the content of memory 3539 ** register P2. In other words, cursor P1 becomes an alias for the 3540 ** MEM_Blob content contained in register P2. 3541 ** 3542 ** A pseudo-table created by this opcode is used to hold a single 3543 ** row output from the sorter so that the row can be decomposed into 3544 ** individual columns using the OP_Column opcode. The OP_Column opcode 3545 ** is the only cursor opcode that works with a pseudo-table. 3546 ** 3547 ** P3 is the number of fields in the records that will be stored by 3548 ** the pseudo-table. 3549 */ 3550 case OP_OpenPseudo: { 3551 VdbeCursor *pCx; 3552 3553 assert( pOp->p1>=0 ); 3554 assert( pOp->p3>=0 ); 3555 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3556 if( pCx==0 ) goto no_mem; 3557 pCx->nullRow = 1; 3558 pCx->uc.pseudoTableReg = pOp->p2; 3559 pCx->isTable = 1; 3560 assert( pOp->p5==0 ); 3561 break; 3562 } 3563 3564 /* Opcode: Close P1 * * * * 3565 ** 3566 ** Close a cursor previously opened as P1. If P1 is not 3567 ** currently open, this instruction is a no-op. 3568 */ 3569 case OP_Close: { 3570 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3571 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3572 p->apCsr[pOp->p1] = 0; 3573 break; 3574 } 3575 3576 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3577 /* Opcode: ColumnsUsed P1 * * P4 * 3578 ** 3579 ** This opcode (which only exists if SQLite was compiled with 3580 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3581 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3582 ** (P4_INT64) in which the first 63 bits are one for each of the 3583 ** first 63 columns of the table or index that are actually used 3584 ** by the cursor. The high-order bit is set if any column after 3585 ** the 64th is used. 3586 */ 3587 case OP_ColumnsUsed: { 3588 VdbeCursor *pC; 3589 pC = p->apCsr[pOp->p1]; 3590 assert( pC->eCurType==CURTYPE_BTREE ); 3591 pC->maskUsed = *(u64*)pOp->p4.pI64; 3592 break; 3593 } 3594 #endif 3595 3596 /* Opcode: SeekGE P1 P2 P3 P4 * 3597 ** Synopsis: key=r[P3@P4] 3598 ** 3599 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3600 ** use the value in register P3 as the key. If cursor P1 refers 3601 ** to an SQL index, then P3 is the first in an array of P4 registers 3602 ** that are used as an unpacked index key. 3603 ** 3604 ** Reposition cursor P1 so that it points to the smallest entry that 3605 ** is greater than or equal to the key value. If there are no records 3606 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3607 ** 3608 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3609 ** opcode will always land on a record that equally equals the key, or 3610 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3611 ** opcode must be followed by an IdxLE opcode with the same arguments. 3612 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3613 ** IdxLE opcode will be used on subsequent loop iterations. 3614 ** 3615 ** This opcode leaves the cursor configured to move in forward order, 3616 ** from the beginning toward the end. In other words, the cursor is 3617 ** configured to use Next, not Prev. 3618 ** 3619 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3620 */ 3621 /* Opcode: SeekGT P1 P2 P3 P4 * 3622 ** Synopsis: key=r[P3@P4] 3623 ** 3624 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3625 ** use the value in register P3 as a key. If cursor P1 refers 3626 ** to an SQL index, then P3 is the first in an array of P4 registers 3627 ** that are used as an unpacked index key. 3628 ** 3629 ** Reposition cursor P1 so that it points to the smallest entry that 3630 ** is greater than the key value. If there are no records greater than 3631 ** the key and P2 is not zero, then jump to P2. 3632 ** 3633 ** This opcode leaves the cursor configured to move in forward order, 3634 ** from the beginning toward the end. In other words, the cursor is 3635 ** configured to use Next, not Prev. 3636 ** 3637 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3638 */ 3639 /* Opcode: SeekLT P1 P2 P3 P4 * 3640 ** Synopsis: key=r[P3@P4] 3641 ** 3642 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3643 ** use the value in register P3 as a key. If cursor P1 refers 3644 ** to an SQL index, then P3 is the first in an array of P4 registers 3645 ** that are used as an unpacked index key. 3646 ** 3647 ** Reposition cursor P1 so that it points to the largest entry that 3648 ** is less than the key value. If there are no records less than 3649 ** the key and P2 is not zero, then jump to P2. 3650 ** 3651 ** This opcode leaves the cursor configured to move in reverse order, 3652 ** from the end toward the beginning. In other words, the cursor is 3653 ** configured to use Prev, not Next. 3654 ** 3655 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3656 */ 3657 /* Opcode: SeekLE P1 P2 P3 P4 * 3658 ** Synopsis: key=r[P3@P4] 3659 ** 3660 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3661 ** use the value in register P3 as a key. If cursor P1 refers 3662 ** to an SQL index, then P3 is the first in an array of P4 registers 3663 ** that are used as an unpacked index key. 3664 ** 3665 ** Reposition cursor P1 so that it points to the largest entry that 3666 ** is less than or equal to the key value. If there are no records 3667 ** less than or equal to the key and P2 is not zero, then jump to P2. 3668 ** 3669 ** This opcode leaves the cursor configured to move in reverse order, 3670 ** from the end toward the beginning. In other words, the cursor is 3671 ** configured to use Prev, not Next. 3672 ** 3673 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3674 ** opcode will always land on a record that equally equals the key, or 3675 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3676 ** opcode must be followed by an IdxGE opcode with the same arguments. 3677 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3678 ** IdxGE opcode will be used on subsequent loop iterations. 3679 ** 3680 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3681 */ 3682 case OP_SeekLT: /* jump, in3 */ 3683 case OP_SeekLE: /* jump, in3 */ 3684 case OP_SeekGE: /* jump, in3 */ 3685 case OP_SeekGT: { /* jump, in3 */ 3686 int res; /* Comparison result */ 3687 int oc; /* Opcode */ 3688 VdbeCursor *pC; /* The cursor to seek */ 3689 UnpackedRecord r; /* The key to seek for */ 3690 int nField; /* Number of columns or fields in the key */ 3691 i64 iKey; /* The rowid we are to seek to */ 3692 int eqOnly; /* Only interested in == results */ 3693 3694 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3695 assert( pOp->p2!=0 ); 3696 pC = p->apCsr[pOp->p1]; 3697 assert( pC!=0 ); 3698 assert( pC->eCurType==CURTYPE_BTREE ); 3699 assert( OP_SeekLE == OP_SeekLT+1 ); 3700 assert( OP_SeekGE == OP_SeekLT+2 ); 3701 assert( OP_SeekGT == OP_SeekLT+3 ); 3702 assert( pC->isOrdered ); 3703 assert( pC->uc.pCursor!=0 ); 3704 oc = pOp->opcode; 3705 eqOnly = 0; 3706 pC->nullRow = 0; 3707 #ifdef SQLITE_DEBUG 3708 pC->seekOp = pOp->opcode; 3709 #endif 3710 3711 if( pC->isTable ){ 3712 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3713 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 ); 3714 3715 /* The input value in P3 might be of any type: integer, real, string, 3716 ** blob, or NULL. But it needs to be an integer before we can do 3717 ** the seek, so convert it. */ 3718 pIn3 = &aMem[pOp->p3]; 3719 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3720 applyNumericAffinity(pIn3, 0); 3721 } 3722 iKey = sqlite3VdbeIntValue(pIn3); 3723 3724 /* If the P3 value could not be converted into an integer without 3725 ** loss of information, then special processing is required... */ 3726 if( (pIn3->flags & MEM_Int)==0 ){ 3727 if( (pIn3->flags & MEM_Real)==0 ){ 3728 /* If the P3 value cannot be converted into any kind of a number, 3729 ** then the seek is not possible, so jump to P2 */ 3730 VdbeBranchTaken(1,2); goto jump_to_p2; 3731 break; 3732 } 3733 3734 /* If the approximation iKey is larger than the actual real search 3735 ** term, substitute >= for > and < for <=. e.g. if the search term 3736 ** is 4.9 and the integer approximation 5: 3737 ** 3738 ** (x > 4.9) -> (x >= 5) 3739 ** (x <= 4.9) -> (x < 5) 3740 */ 3741 if( pIn3->u.r<(double)iKey ){ 3742 assert( OP_SeekGE==(OP_SeekGT-1) ); 3743 assert( OP_SeekLT==(OP_SeekLE-1) ); 3744 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3745 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3746 } 3747 3748 /* If the approximation iKey is smaller than the actual real search 3749 ** term, substitute <= for < and > for >=. */ 3750 else if( pIn3->u.r>(double)iKey ){ 3751 assert( OP_SeekLE==(OP_SeekLT+1) ); 3752 assert( OP_SeekGT==(OP_SeekGE+1) ); 3753 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3754 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3755 } 3756 } 3757 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3758 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3759 if( rc!=SQLITE_OK ){ 3760 goto abort_due_to_error; 3761 } 3762 }else{ 3763 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3764 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3765 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3766 */ 3767 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3768 eqOnly = 1; 3769 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3770 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3771 assert( pOp[1].p1==pOp[0].p1 ); 3772 assert( pOp[1].p2==pOp[0].p2 ); 3773 assert( pOp[1].p3==pOp[0].p3 ); 3774 assert( pOp[1].p4.i==pOp[0].p4.i ); 3775 } 3776 3777 nField = pOp->p4.i; 3778 assert( pOp->p4type==P4_INT32 ); 3779 assert( nField>0 ); 3780 r.pKeyInfo = pC->pKeyInfo; 3781 r.nField = (u16)nField; 3782 3783 /* The next line of code computes as follows, only faster: 3784 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3785 ** r.default_rc = -1; 3786 ** }else{ 3787 ** r.default_rc = +1; 3788 ** } 3789 */ 3790 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3791 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3792 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3793 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3794 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3795 3796 r.aMem = &aMem[pOp->p3]; 3797 #ifdef SQLITE_DEBUG 3798 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3799 #endif 3800 ExpandBlob(r.aMem); 3801 r.eqSeen = 0; 3802 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3803 if( rc!=SQLITE_OK ){ 3804 goto abort_due_to_error; 3805 } 3806 if( eqOnly && r.eqSeen==0 ){ 3807 assert( res!=0 ); 3808 goto seek_not_found; 3809 } 3810 } 3811 pC->deferredMoveto = 0; 3812 pC->cacheStatus = CACHE_STALE; 3813 #ifdef SQLITE_TEST 3814 sqlite3_search_count++; 3815 #endif 3816 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3817 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3818 res = 0; 3819 rc = sqlite3BtreeNext(pC->uc.pCursor, &res); 3820 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3821 }else{ 3822 res = 0; 3823 } 3824 }else{ 3825 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3826 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3827 res = 0; 3828 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); 3829 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3830 }else{ 3831 /* res might be negative because the table is empty. Check to 3832 ** see if this is the case. 3833 */ 3834 res = sqlite3BtreeEof(pC->uc.pCursor); 3835 } 3836 } 3837 seek_not_found: 3838 assert( pOp->p2>0 ); 3839 VdbeBranchTaken(res!=0,2); 3840 if( res ){ 3841 goto jump_to_p2; 3842 }else if( eqOnly ){ 3843 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3844 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 3845 } 3846 break; 3847 } 3848 3849 /* Opcode: Seek P1 P2 * * * 3850 ** Synopsis: intkey=r[P2] 3851 ** 3852 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3853 ** for P1 to move so that it points to the rowid given by P2. 3854 ** 3855 ** This is actually a deferred seek. Nothing actually happens until 3856 ** the cursor is used to read a record. That way, if no reads 3857 ** occur, no unnecessary I/O happens. 3858 */ 3859 case OP_Seek: { /* in2 */ 3860 VdbeCursor *pC; 3861 3862 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3863 pC = p->apCsr[pOp->p1]; 3864 assert( pC!=0 ); 3865 assert( pC->eCurType==CURTYPE_BTREE ); 3866 assert( pC->uc.pCursor!=0 ); 3867 assert( pC->isTable ); 3868 pC->nullRow = 0; 3869 pIn2 = &aMem[pOp->p2]; 3870 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3871 pC->deferredMoveto = 1; 3872 break; 3873 } 3874 3875 3876 /* Opcode: Found P1 P2 P3 P4 * 3877 ** Synopsis: key=r[P3@P4] 3878 ** 3879 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3880 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3881 ** record. 3882 ** 3883 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3884 ** is a prefix of any entry in P1 then a jump is made to P2 and 3885 ** P1 is left pointing at the matching entry. 3886 ** 3887 ** This operation leaves the cursor in a state where it can be 3888 ** advanced in the forward direction. The Next instruction will work, 3889 ** but not the Prev instruction. 3890 ** 3891 ** See also: NotFound, NoConflict, NotExists. SeekGe 3892 */ 3893 /* Opcode: NotFound P1 P2 P3 P4 * 3894 ** Synopsis: key=r[P3@P4] 3895 ** 3896 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3897 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3898 ** record. 3899 ** 3900 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3901 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3902 ** does contain an entry whose prefix matches the P3/P4 record then control 3903 ** falls through to the next instruction and P1 is left pointing at the 3904 ** matching entry. 3905 ** 3906 ** This operation leaves the cursor in a state where it cannot be 3907 ** advanced in either direction. In other words, the Next and Prev 3908 ** opcodes do not work after this operation. 3909 ** 3910 ** See also: Found, NotExists, NoConflict 3911 */ 3912 /* Opcode: NoConflict P1 P2 P3 P4 * 3913 ** Synopsis: key=r[P3@P4] 3914 ** 3915 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3916 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3917 ** record. 3918 ** 3919 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3920 ** contains any NULL value, jump immediately to P2. If all terms of the 3921 ** record are not-NULL then a check is done to determine if any row in the 3922 ** P1 index btree has a matching key prefix. If there are no matches, jump 3923 ** immediately to P2. If there is a match, fall through and leave the P1 3924 ** cursor pointing to the matching row. 3925 ** 3926 ** This opcode is similar to OP_NotFound with the exceptions that the 3927 ** branch is always taken if any part of the search key input is NULL. 3928 ** 3929 ** This operation leaves the cursor in a state where it cannot be 3930 ** advanced in either direction. In other words, the Next and Prev 3931 ** opcodes do not work after this operation. 3932 ** 3933 ** See also: NotFound, Found, NotExists 3934 */ 3935 case OP_NoConflict: /* jump, in3 */ 3936 case OP_NotFound: /* jump, in3 */ 3937 case OP_Found: { /* jump, in3 */ 3938 int alreadyExists; 3939 int takeJump; 3940 int ii; 3941 VdbeCursor *pC; 3942 int res; 3943 char *pFree; 3944 UnpackedRecord *pIdxKey; 3945 UnpackedRecord r; 3946 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3947 3948 #ifdef SQLITE_TEST 3949 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3950 #endif 3951 3952 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3953 assert( pOp->p4type==P4_INT32 ); 3954 pC = p->apCsr[pOp->p1]; 3955 assert( pC!=0 ); 3956 #ifdef SQLITE_DEBUG 3957 pC->seekOp = pOp->opcode; 3958 #endif 3959 pIn3 = &aMem[pOp->p3]; 3960 assert( pC->eCurType==CURTYPE_BTREE ); 3961 assert( pC->uc.pCursor!=0 ); 3962 assert( pC->isTable==0 ); 3963 pFree = 0; 3964 if( pOp->p4.i>0 ){ 3965 r.pKeyInfo = pC->pKeyInfo; 3966 r.nField = (u16)pOp->p4.i; 3967 r.aMem = pIn3; 3968 for(ii=0; ii<r.nField; ii++){ 3969 assert( memIsValid(&r.aMem[ii]) ); 3970 ExpandBlob(&r.aMem[ii]); 3971 #ifdef SQLITE_DEBUG 3972 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3973 #endif 3974 } 3975 pIdxKey = &r; 3976 }else{ 3977 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3978 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3979 ); 3980 if( pIdxKey==0 ) goto no_mem; 3981 assert( pIn3->flags & MEM_Blob ); 3982 ExpandBlob(pIn3); 3983 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3984 } 3985 pIdxKey->default_rc = 0; 3986 takeJump = 0; 3987 if( pOp->opcode==OP_NoConflict ){ 3988 /* For the OP_NoConflict opcode, take the jump if any of the 3989 ** input fields are NULL, since any key with a NULL will not 3990 ** conflict */ 3991 for(ii=0; ii<pIdxKey->nField; ii++){ 3992 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 3993 takeJump = 1; 3994 break; 3995 } 3996 } 3997 } 3998 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 3999 sqlite3DbFree(db, pFree); 4000 if( rc!=SQLITE_OK ){ 4001 break; 4002 } 4003 pC->seekResult = res; 4004 alreadyExists = (res==0); 4005 pC->nullRow = 1-alreadyExists; 4006 pC->deferredMoveto = 0; 4007 pC->cacheStatus = CACHE_STALE; 4008 if( pOp->opcode==OP_Found ){ 4009 VdbeBranchTaken(alreadyExists!=0,2); 4010 if( alreadyExists ) goto jump_to_p2; 4011 }else{ 4012 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4013 if( takeJump || !alreadyExists ) goto jump_to_p2; 4014 } 4015 break; 4016 } 4017 4018 /* Opcode: NotExists P1 P2 P3 * * 4019 ** Synopsis: intkey=r[P3] 4020 ** 4021 ** P1 is the index of a cursor open on an SQL table btree (with integer 4022 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4023 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4024 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4025 ** leave the cursor pointing at that record and fall through to the next 4026 ** instruction. 4027 ** 4028 ** The OP_NotFound opcode performs the same operation on index btrees 4029 ** (with arbitrary multi-value keys). 4030 ** 4031 ** This opcode leaves the cursor in a state where it cannot be advanced 4032 ** in either direction. In other words, the Next and Prev opcodes will 4033 ** not work following this opcode. 4034 ** 4035 ** See also: Found, NotFound, NoConflict 4036 */ 4037 case OP_NotExists: { /* jump, in3 */ 4038 VdbeCursor *pC; 4039 BtCursor *pCrsr; 4040 int res; 4041 u64 iKey; 4042 4043 pIn3 = &aMem[pOp->p3]; 4044 assert( pIn3->flags & MEM_Int ); 4045 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4046 pC = p->apCsr[pOp->p1]; 4047 assert( pC!=0 ); 4048 #ifdef SQLITE_DEBUG 4049 pC->seekOp = 0; 4050 #endif 4051 assert( pC->isTable ); 4052 assert( pC->eCurType==CURTYPE_BTREE ); 4053 pCrsr = pC->uc.pCursor; 4054 assert( pCrsr!=0 ); 4055 res = 0; 4056 iKey = pIn3->u.i; 4057 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4058 assert( rc==SQLITE_OK || res==0 ); 4059 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4060 pC->nullRow = 0; 4061 pC->cacheStatus = CACHE_STALE; 4062 pC->deferredMoveto = 0; 4063 VdbeBranchTaken(res!=0,2); 4064 pC->seekResult = res; 4065 if( res!=0 ){ 4066 assert( rc==SQLITE_OK ); 4067 if( pOp->p2==0 ){ 4068 rc = SQLITE_CORRUPT_BKPT; 4069 }else{ 4070 goto jump_to_p2; 4071 } 4072 } 4073 break; 4074 } 4075 4076 /* Opcode: Sequence P1 P2 * * * 4077 ** Synopsis: r[P2]=cursor[P1].ctr++ 4078 ** 4079 ** Find the next available sequence number for cursor P1. 4080 ** Write the sequence number into register P2. 4081 ** The sequence number on the cursor is incremented after this 4082 ** instruction. 4083 */ 4084 case OP_Sequence: { /* out2 */ 4085 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4086 assert( p->apCsr[pOp->p1]!=0 ); 4087 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4088 pOut = out2Prerelease(p, pOp); 4089 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4090 break; 4091 } 4092 4093 4094 /* Opcode: NewRowid P1 P2 P3 * * 4095 ** Synopsis: r[P2]=rowid 4096 ** 4097 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4098 ** The record number is not previously used as a key in the database 4099 ** table that cursor P1 points to. The new record number is written 4100 ** written to register P2. 4101 ** 4102 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4103 ** the largest previously generated record number. No new record numbers are 4104 ** allowed to be less than this value. When this value reaches its maximum, 4105 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4106 ** generated record number. This P3 mechanism is used to help implement the 4107 ** AUTOINCREMENT feature. 4108 */ 4109 case OP_NewRowid: { /* out2 */ 4110 i64 v; /* The new rowid */ 4111 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4112 int res; /* Result of an sqlite3BtreeLast() */ 4113 int cnt; /* Counter to limit the number of searches */ 4114 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4115 VdbeFrame *pFrame; /* Root frame of VDBE */ 4116 4117 v = 0; 4118 res = 0; 4119 pOut = out2Prerelease(p, pOp); 4120 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4121 pC = p->apCsr[pOp->p1]; 4122 assert( pC!=0 ); 4123 assert( pC->eCurType==CURTYPE_BTREE ); 4124 assert( pC->uc.pCursor!=0 ); 4125 { 4126 /* The next rowid or record number (different terms for the same 4127 ** thing) is obtained in a two-step algorithm. 4128 ** 4129 ** First we attempt to find the largest existing rowid and add one 4130 ** to that. But if the largest existing rowid is already the maximum 4131 ** positive integer, we have to fall through to the second 4132 ** probabilistic algorithm 4133 ** 4134 ** The second algorithm is to select a rowid at random and see if 4135 ** it already exists in the table. If it does not exist, we have 4136 ** succeeded. If the random rowid does exist, we select a new one 4137 ** and try again, up to 100 times. 4138 */ 4139 assert( pC->isTable ); 4140 4141 #ifdef SQLITE_32BIT_ROWID 4142 # define MAX_ROWID 0x7fffffff 4143 #else 4144 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4145 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4146 ** to provide the constant while making all compilers happy. 4147 */ 4148 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4149 #endif 4150 4151 if( !pC->useRandomRowid ){ 4152 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4153 if( rc!=SQLITE_OK ){ 4154 goto abort_due_to_error; 4155 } 4156 if( res ){ 4157 v = 1; /* IMP: R-61914-48074 */ 4158 }else{ 4159 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4160 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); 4161 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 4162 if( v>=MAX_ROWID ){ 4163 pC->useRandomRowid = 1; 4164 }else{ 4165 v++; /* IMP: R-29538-34987 */ 4166 } 4167 } 4168 } 4169 4170 #ifndef SQLITE_OMIT_AUTOINCREMENT 4171 if( pOp->p3 ){ 4172 /* Assert that P3 is a valid memory cell. */ 4173 assert( pOp->p3>0 ); 4174 if( p->pFrame ){ 4175 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4176 /* Assert that P3 is a valid memory cell. */ 4177 assert( pOp->p3<=pFrame->nMem ); 4178 pMem = &pFrame->aMem[pOp->p3]; 4179 }else{ 4180 /* Assert that P3 is a valid memory cell. */ 4181 assert( pOp->p3<=(p->nMem-p->nCursor) ); 4182 pMem = &aMem[pOp->p3]; 4183 memAboutToChange(p, pMem); 4184 } 4185 assert( memIsValid(pMem) ); 4186 4187 REGISTER_TRACE(pOp->p3, pMem); 4188 sqlite3VdbeMemIntegerify(pMem); 4189 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4190 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4191 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 4192 goto abort_due_to_error; 4193 } 4194 if( v<pMem->u.i+1 ){ 4195 v = pMem->u.i + 1; 4196 } 4197 pMem->u.i = v; 4198 } 4199 #endif 4200 if( pC->useRandomRowid ){ 4201 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4202 ** largest possible integer (9223372036854775807) then the database 4203 ** engine starts picking positive candidate ROWIDs at random until 4204 ** it finds one that is not previously used. */ 4205 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4206 ** an AUTOINCREMENT table. */ 4207 cnt = 0; 4208 do{ 4209 sqlite3_randomness(sizeof(v), &v); 4210 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4211 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4212 0, &res))==SQLITE_OK) 4213 && (res==0) 4214 && (++cnt<100)); 4215 if( rc==SQLITE_OK && res==0 ){ 4216 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4217 goto abort_due_to_error; 4218 } 4219 assert( v>0 ); /* EV: R-40812-03570 */ 4220 } 4221 pC->deferredMoveto = 0; 4222 pC->cacheStatus = CACHE_STALE; 4223 } 4224 pOut->u.i = v; 4225 break; 4226 } 4227 4228 /* Opcode: Insert P1 P2 P3 P4 P5 4229 ** Synopsis: intkey=r[P3] data=r[P2] 4230 ** 4231 ** Write an entry into the table of cursor P1. A new entry is 4232 ** created if it doesn't already exist or the data for an existing 4233 ** entry is overwritten. The data is the value MEM_Blob stored in register 4234 ** number P2. The key is stored in register P3. The key must 4235 ** be a MEM_Int. 4236 ** 4237 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4238 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4239 ** then rowid is stored for subsequent return by the 4240 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4241 ** 4242 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4243 ** the last seek operation (OP_NotExists) was a success, then this 4244 ** operation will not attempt to find the appropriate row before doing 4245 ** the insert but will instead overwrite the row that the cursor is 4246 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4247 ** has already positioned the cursor correctly. This is an optimization 4248 ** that boosts performance by avoiding redundant seeks. 4249 ** 4250 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4251 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4252 ** is part of an INSERT operation. The difference is only important to 4253 ** the update hook. 4254 ** 4255 ** Parameter P4 may point to a string containing the table-name, or 4256 ** may be NULL. If it is not NULL, then the update-hook 4257 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4258 ** 4259 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4260 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4261 ** and register P2 becomes ephemeral. If the cursor is changed, the 4262 ** value of register P2 will then change. Make sure this does not 4263 ** cause any problems.) 4264 ** 4265 ** This instruction only works on tables. The equivalent instruction 4266 ** for indices is OP_IdxInsert. 4267 */ 4268 /* Opcode: InsertInt P1 P2 P3 P4 P5 4269 ** Synopsis: intkey=P3 data=r[P2] 4270 ** 4271 ** This works exactly like OP_Insert except that the key is the 4272 ** integer value P3, not the value of the integer stored in register P3. 4273 */ 4274 case OP_Insert: 4275 case OP_InsertInt: { 4276 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4277 Mem *pKey; /* MEM cell holding key for the record */ 4278 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4279 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4280 int nZero; /* Number of zero-bytes to append */ 4281 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4282 const char *zDb; /* database name - used by the update hook */ 4283 const char *zTbl; /* Table name - used by the opdate hook */ 4284 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4285 4286 pData = &aMem[pOp->p2]; 4287 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4288 assert( memIsValid(pData) ); 4289 pC = p->apCsr[pOp->p1]; 4290 assert( pC!=0 ); 4291 assert( pC->eCurType==CURTYPE_BTREE ); 4292 assert( pC->uc.pCursor!=0 ); 4293 assert( pC->isTable ); 4294 REGISTER_TRACE(pOp->p2, pData); 4295 4296 if( pOp->opcode==OP_Insert ){ 4297 pKey = &aMem[pOp->p3]; 4298 assert( pKey->flags & MEM_Int ); 4299 assert( memIsValid(pKey) ); 4300 REGISTER_TRACE(pOp->p3, pKey); 4301 iKey = pKey->u.i; 4302 }else{ 4303 assert( pOp->opcode==OP_InsertInt ); 4304 iKey = pOp->p3; 4305 } 4306 4307 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4308 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4309 if( pData->flags & MEM_Null ){ 4310 pData->z = 0; 4311 pData->n = 0; 4312 }else{ 4313 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4314 } 4315 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4316 if( pData->flags & MEM_Zero ){ 4317 nZero = pData->u.nZero; 4318 }else{ 4319 nZero = 0; 4320 } 4321 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey, 4322 pData->z, pData->n, nZero, 4323 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4324 ); 4325 pC->deferredMoveto = 0; 4326 pC->cacheStatus = CACHE_STALE; 4327 4328 /* Invoke the update-hook if required. */ 4329 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4330 zDb = db->aDb[pC->iDb].zName; 4331 zTbl = pOp->p4.z; 4332 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4333 assert( pC->isTable ); 4334 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4335 assert( pC->iDb>=0 ); 4336 } 4337 break; 4338 } 4339 4340 /* Opcode: Delete P1 P2 * P4 P5 4341 ** 4342 ** Delete the record at which the P1 cursor is currently pointing. 4343 ** 4344 ** If the P5 parameter is non-zero, the cursor will be left pointing at 4345 ** either the next or the previous record in the table. If it is left 4346 ** pointing at the next record, then the next Next instruction will be a 4347 ** no-op. As a result, in this case it is OK to delete a record from within a 4348 ** Next loop. If P5 is zero, then the cursor is left in an undefined state. 4349 ** 4350 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4351 ** incremented (otherwise not). 4352 ** 4353 ** P1 must not be pseudo-table. It has to be a real table with 4354 ** multiple rows. 4355 ** 4356 ** If P4 is not NULL, then it is the name of the table that P1 is 4357 ** pointing to. The update hook will be invoked, if it exists. 4358 ** If P4 is not NULL then the P1 cursor must have been positioned 4359 ** using OP_NotFound prior to invoking this opcode. 4360 */ 4361 case OP_Delete: { 4362 VdbeCursor *pC; 4363 u8 hasUpdateCallback; 4364 4365 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4366 pC = p->apCsr[pOp->p1]; 4367 assert( pC!=0 ); 4368 assert( pC->eCurType==CURTYPE_BTREE ); 4369 assert( pC->uc.pCursor!=0 ); 4370 assert( pC->deferredMoveto==0 ); 4371 4372 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable; 4373 if( pOp->p5 && hasUpdateCallback ){ 4374 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget); 4375 } 4376 4377 #ifdef SQLITE_DEBUG 4378 /* The seek operation that positioned the cursor prior to OP_Delete will 4379 ** have also set the pC->movetoTarget field to the rowid of the row that 4380 ** is being deleted */ 4381 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){ 4382 i64 iKey = 0; 4383 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey); 4384 assert( pC->movetoTarget==iKey ); 4385 } 4386 #endif 4387 4388 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4389 pC->cacheStatus = CACHE_STALE; 4390 4391 /* Invoke the update-hook if required. */ 4392 if( rc==SQLITE_OK && hasUpdateCallback ){ 4393 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4394 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); 4395 assert( pC->iDb>=0 ); 4396 } 4397 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4398 break; 4399 } 4400 /* Opcode: ResetCount * * * * * 4401 ** 4402 ** The value of the change counter is copied to the database handle 4403 ** change counter (returned by subsequent calls to sqlite3_changes()). 4404 ** Then the VMs internal change counter resets to 0. 4405 ** This is used by trigger programs. 4406 */ 4407 case OP_ResetCount: { 4408 sqlite3VdbeSetChanges(db, p->nChange); 4409 p->nChange = 0; 4410 break; 4411 } 4412 4413 /* Opcode: SorterCompare P1 P2 P3 P4 4414 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4415 ** 4416 ** P1 is a sorter cursor. This instruction compares a prefix of the 4417 ** record blob in register P3 against a prefix of the entry that 4418 ** the sorter cursor currently points to. Only the first P4 fields 4419 ** of r[P3] and the sorter record are compared. 4420 ** 4421 ** If either P3 or the sorter contains a NULL in one of their significant 4422 ** fields (not counting the P4 fields at the end which are ignored) then 4423 ** the comparison is assumed to be equal. 4424 ** 4425 ** Fall through to next instruction if the two records compare equal to 4426 ** each other. Jump to P2 if they are different. 4427 */ 4428 case OP_SorterCompare: { 4429 VdbeCursor *pC; 4430 int res; 4431 int nKeyCol; 4432 4433 pC = p->apCsr[pOp->p1]; 4434 assert( isSorter(pC) ); 4435 assert( pOp->p4type==P4_INT32 ); 4436 pIn3 = &aMem[pOp->p3]; 4437 nKeyCol = pOp->p4.i; 4438 res = 0; 4439 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4440 VdbeBranchTaken(res!=0,2); 4441 if( res ) goto jump_to_p2; 4442 break; 4443 }; 4444 4445 /* Opcode: SorterData P1 P2 P3 * * 4446 ** Synopsis: r[P2]=data 4447 ** 4448 ** Write into register P2 the current sorter data for sorter cursor P1. 4449 ** Then clear the column header cache on cursor P3. 4450 ** 4451 ** This opcode is normally use to move a record out of the sorter and into 4452 ** a register that is the source for a pseudo-table cursor created using 4453 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4454 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4455 ** us from having to issue a separate NullRow instruction to clear that cache. 4456 */ 4457 case OP_SorterData: { 4458 VdbeCursor *pC; 4459 4460 pOut = &aMem[pOp->p2]; 4461 pC = p->apCsr[pOp->p1]; 4462 assert( isSorter(pC) ); 4463 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4464 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4465 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4466 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4467 break; 4468 } 4469 4470 /* Opcode: RowData P1 P2 * * * 4471 ** Synopsis: r[P2]=data 4472 ** 4473 ** Write into register P2 the complete row data for cursor P1. 4474 ** There is no interpretation of the data. 4475 ** It is just copied onto the P2 register exactly as 4476 ** it is found in the database file. 4477 ** 4478 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4479 ** of a real table, not a pseudo-table. 4480 */ 4481 /* Opcode: RowKey P1 P2 * * * 4482 ** Synopsis: r[P2]=key 4483 ** 4484 ** Write into register P2 the complete row key for cursor P1. 4485 ** There is no interpretation of the data. 4486 ** The key is copied onto the P2 register exactly as 4487 ** it is found in the database file. 4488 ** 4489 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4490 ** of a real table, not a pseudo-table. 4491 */ 4492 case OP_RowKey: 4493 case OP_RowData: { 4494 VdbeCursor *pC; 4495 BtCursor *pCrsr; 4496 u32 n; 4497 i64 n64; 4498 4499 pOut = &aMem[pOp->p2]; 4500 memAboutToChange(p, pOut); 4501 4502 /* Note that RowKey and RowData are really exactly the same instruction */ 4503 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4504 pC = p->apCsr[pOp->p1]; 4505 assert( pC!=0 ); 4506 assert( pC->eCurType==CURTYPE_BTREE ); 4507 assert( isSorter(pC)==0 ); 4508 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4509 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4510 assert( pC->nullRow==0 ); 4511 assert( pC->uc.pCursor!=0 ); 4512 pCrsr = pC->uc.pCursor; 4513 4514 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4515 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4516 ** the cursor. If this where not the case, on of the following assert()s 4517 ** would fail. Should this ever change (because of changes in the code 4518 ** generator) then the fix would be to insert a call to 4519 ** sqlite3VdbeCursorMoveto(). 4520 */ 4521 assert( pC->deferredMoveto==0 ); 4522 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4523 #if 0 /* Not required due to the previous to assert() statements */ 4524 rc = sqlite3VdbeCursorMoveto(pC); 4525 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4526 #endif 4527 4528 if( pC->isTable==0 ){ 4529 assert( !pC->isTable ); 4530 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4531 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4532 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4533 goto too_big; 4534 } 4535 n = (u32)n64; 4536 }else{ 4537 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4538 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4539 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4540 goto too_big; 4541 } 4542 } 4543 testcase( n==0 ); 4544 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ 4545 goto no_mem; 4546 } 4547 pOut->n = n; 4548 MemSetTypeFlag(pOut, MEM_Blob); 4549 if( pC->isTable==0 ){ 4550 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4551 }else{ 4552 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4553 } 4554 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4555 UPDATE_MAX_BLOBSIZE(pOut); 4556 REGISTER_TRACE(pOp->p2, pOut); 4557 break; 4558 } 4559 4560 /* Opcode: Rowid P1 P2 * * * 4561 ** Synopsis: r[P2]=rowid 4562 ** 4563 ** Store in register P2 an integer which is the key of the table entry that 4564 ** P1 is currently point to. 4565 ** 4566 ** P1 can be either an ordinary table or a virtual table. There used to 4567 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4568 ** one opcode now works for both table types. 4569 */ 4570 case OP_Rowid: { /* out2 */ 4571 VdbeCursor *pC; 4572 i64 v; 4573 sqlite3_vtab *pVtab; 4574 const sqlite3_module *pModule; 4575 4576 pOut = out2Prerelease(p, pOp); 4577 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4578 pC = p->apCsr[pOp->p1]; 4579 assert( pC!=0 ); 4580 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4581 if( pC->nullRow ){ 4582 pOut->flags = MEM_Null; 4583 break; 4584 }else if( pC->deferredMoveto ){ 4585 v = pC->movetoTarget; 4586 #ifndef SQLITE_OMIT_VIRTUALTABLE 4587 }else if( pC->eCurType==CURTYPE_VTAB ){ 4588 assert( pC->uc.pVCur!=0 ); 4589 pVtab = pC->uc.pVCur->pVtab; 4590 pModule = pVtab->pModule; 4591 assert( pModule->xRowid ); 4592 rc = pModule->xRowid(pC->uc.pVCur, &v); 4593 sqlite3VtabImportErrmsg(p, pVtab); 4594 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4595 }else{ 4596 assert( pC->eCurType==CURTYPE_BTREE ); 4597 assert( pC->uc.pCursor!=0 ); 4598 rc = sqlite3VdbeCursorRestore(pC); 4599 if( rc ) goto abort_due_to_error; 4600 if( pC->nullRow ){ 4601 pOut->flags = MEM_Null; 4602 break; 4603 } 4604 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v); 4605 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ 4606 } 4607 pOut->u.i = v; 4608 break; 4609 } 4610 4611 /* Opcode: NullRow P1 * * * * 4612 ** 4613 ** Move the cursor P1 to a null row. Any OP_Column operations 4614 ** that occur while the cursor is on the null row will always 4615 ** write a NULL. 4616 */ 4617 case OP_NullRow: { 4618 VdbeCursor *pC; 4619 4620 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4621 pC = p->apCsr[pOp->p1]; 4622 assert( pC!=0 ); 4623 pC->nullRow = 1; 4624 pC->cacheStatus = CACHE_STALE; 4625 if( pC->eCurType==CURTYPE_BTREE ){ 4626 assert( pC->uc.pCursor!=0 ); 4627 sqlite3BtreeClearCursor(pC->uc.pCursor); 4628 } 4629 break; 4630 } 4631 4632 /* Opcode: Last P1 P2 P3 * * 4633 ** 4634 ** The next use of the Rowid or Column or Prev instruction for P1 4635 ** will refer to the last entry in the database table or index. 4636 ** If the table or index is empty and P2>0, then jump immediately to P2. 4637 ** If P2 is 0 or if the table or index is not empty, fall through 4638 ** to the following instruction. 4639 ** 4640 ** This opcode leaves the cursor configured to move in reverse order, 4641 ** from the end toward the beginning. In other words, the cursor is 4642 ** configured to use Prev, not Next. 4643 */ 4644 case OP_Last: { /* jump */ 4645 VdbeCursor *pC; 4646 BtCursor *pCrsr; 4647 int res; 4648 4649 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4650 pC = p->apCsr[pOp->p1]; 4651 assert( pC!=0 ); 4652 assert( pC->eCurType==CURTYPE_BTREE ); 4653 pCrsr = pC->uc.pCursor; 4654 res = 0; 4655 assert( pCrsr!=0 ); 4656 rc = sqlite3BtreeLast(pCrsr, &res); 4657 pC->nullRow = (u8)res; 4658 pC->deferredMoveto = 0; 4659 pC->cacheStatus = CACHE_STALE; 4660 pC->seekResult = pOp->p3; 4661 #ifdef SQLITE_DEBUG 4662 pC->seekOp = OP_Last; 4663 #endif 4664 if( pOp->p2>0 ){ 4665 VdbeBranchTaken(res!=0,2); 4666 if( res ) goto jump_to_p2; 4667 } 4668 break; 4669 } 4670 4671 4672 /* Opcode: Sort P1 P2 * * * 4673 ** 4674 ** This opcode does exactly the same thing as OP_Rewind except that 4675 ** it increments an undocumented global variable used for testing. 4676 ** 4677 ** Sorting is accomplished by writing records into a sorting index, 4678 ** then rewinding that index and playing it back from beginning to 4679 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4680 ** rewinding so that the global variable will be incremented and 4681 ** regression tests can determine whether or not the optimizer is 4682 ** correctly optimizing out sorts. 4683 */ 4684 case OP_SorterSort: /* jump */ 4685 case OP_Sort: { /* jump */ 4686 #ifdef SQLITE_TEST 4687 sqlite3_sort_count++; 4688 sqlite3_search_count--; 4689 #endif 4690 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4691 /* Fall through into OP_Rewind */ 4692 } 4693 /* Opcode: Rewind P1 P2 * * * 4694 ** 4695 ** The next use of the Rowid or Column or Next instruction for P1 4696 ** will refer to the first entry in the database table or index. 4697 ** If the table or index is empty, jump immediately to P2. 4698 ** If the table or index is not empty, fall through to the following 4699 ** instruction. 4700 ** 4701 ** This opcode leaves the cursor configured to move in forward order, 4702 ** from the beginning toward the end. In other words, the cursor is 4703 ** configured to use Next, not Prev. 4704 */ 4705 case OP_Rewind: { /* jump */ 4706 VdbeCursor *pC; 4707 BtCursor *pCrsr; 4708 int res; 4709 4710 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4711 pC = p->apCsr[pOp->p1]; 4712 assert( pC!=0 ); 4713 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4714 res = 1; 4715 #ifdef SQLITE_DEBUG 4716 pC->seekOp = OP_Rewind; 4717 #endif 4718 if( isSorter(pC) ){ 4719 rc = sqlite3VdbeSorterRewind(pC, &res); 4720 }else{ 4721 assert( pC->eCurType==CURTYPE_BTREE ); 4722 pCrsr = pC->uc.pCursor; 4723 assert( pCrsr ); 4724 rc = sqlite3BtreeFirst(pCrsr, &res); 4725 pC->deferredMoveto = 0; 4726 pC->cacheStatus = CACHE_STALE; 4727 } 4728 pC->nullRow = (u8)res; 4729 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4730 VdbeBranchTaken(res!=0,2); 4731 if( res ) goto jump_to_p2; 4732 break; 4733 } 4734 4735 /* Opcode: Next P1 P2 P3 P4 P5 4736 ** 4737 ** Advance cursor P1 so that it points to the next key/data pair in its 4738 ** table or index. If there are no more key/value pairs then fall through 4739 ** to the following instruction. But if the cursor advance was successful, 4740 ** jump immediately to P2. 4741 ** 4742 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4743 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4744 ** to follow SeekLT, SeekLE, or OP_Last. 4745 ** 4746 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4747 ** been opened prior to this opcode or the program will segfault. 4748 ** 4749 ** The P3 value is a hint to the btree implementation. If P3==1, that 4750 ** means P1 is an SQL index and that this instruction could have been 4751 ** omitted if that index had been unique. P3 is usually 0. P3 is 4752 ** always either 0 or 1. 4753 ** 4754 ** P4 is always of type P4_ADVANCE. The function pointer points to 4755 ** sqlite3BtreeNext(). 4756 ** 4757 ** If P5 is positive and the jump is taken, then event counter 4758 ** number P5-1 in the prepared statement is incremented. 4759 ** 4760 ** See also: Prev, NextIfOpen 4761 */ 4762 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4763 ** 4764 ** This opcode works just like Next except that if cursor P1 is not 4765 ** open it behaves a no-op. 4766 */ 4767 /* Opcode: Prev P1 P2 P3 P4 P5 4768 ** 4769 ** Back up cursor P1 so that it points to the previous key/data pair in its 4770 ** table or index. If there is no previous key/value pairs then fall through 4771 ** to the following instruction. But if the cursor backup was successful, 4772 ** jump immediately to P2. 4773 ** 4774 ** 4775 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4776 ** OP_Last opcode used to position the cursor. Prev is not allowed 4777 ** to follow SeekGT, SeekGE, or OP_Rewind. 4778 ** 4779 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4780 ** not open then the behavior is undefined. 4781 ** 4782 ** The P3 value is a hint to the btree implementation. If P3==1, that 4783 ** means P1 is an SQL index and that this instruction could have been 4784 ** omitted if that index had been unique. P3 is usually 0. P3 is 4785 ** always either 0 or 1. 4786 ** 4787 ** P4 is always of type P4_ADVANCE. The function pointer points to 4788 ** sqlite3BtreePrevious(). 4789 ** 4790 ** If P5 is positive and the jump is taken, then event counter 4791 ** number P5-1 in the prepared statement is incremented. 4792 */ 4793 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4794 ** 4795 ** This opcode works just like Prev except that if cursor P1 is not 4796 ** open it behaves a no-op. 4797 */ 4798 case OP_SorterNext: { /* jump */ 4799 VdbeCursor *pC; 4800 int res; 4801 4802 pC = p->apCsr[pOp->p1]; 4803 assert( isSorter(pC) ); 4804 res = 0; 4805 rc = sqlite3VdbeSorterNext(db, pC, &res); 4806 goto next_tail; 4807 case OP_PrevIfOpen: /* jump */ 4808 case OP_NextIfOpen: /* jump */ 4809 if( p->apCsr[pOp->p1]==0 ) break; 4810 /* Fall through */ 4811 case OP_Prev: /* jump */ 4812 case OP_Next: /* jump */ 4813 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4814 assert( pOp->p5<ArraySize(p->aCounter) ); 4815 pC = p->apCsr[pOp->p1]; 4816 res = pOp->p3; 4817 assert( pC!=0 ); 4818 assert( pC->deferredMoveto==0 ); 4819 assert( pC->eCurType==CURTYPE_BTREE ); 4820 assert( res==0 || (res==1 && pC->isTable==0) ); 4821 testcase( res==1 ); 4822 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4823 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4824 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4825 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4826 4827 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4828 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4829 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4830 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4831 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4832 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4833 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4834 || pC->seekOp==OP_Last ); 4835 4836 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); 4837 next_tail: 4838 pC->cacheStatus = CACHE_STALE; 4839 VdbeBranchTaken(res==0,2); 4840 if( res==0 ){ 4841 pC->nullRow = 0; 4842 p->aCounter[pOp->p5]++; 4843 #ifdef SQLITE_TEST 4844 sqlite3_search_count++; 4845 #endif 4846 goto jump_to_p2_and_check_for_interrupt; 4847 }else{ 4848 pC->nullRow = 1; 4849 } 4850 goto check_for_interrupt; 4851 } 4852 4853 /* Opcode: IdxInsert P1 P2 P3 * P5 4854 ** Synopsis: key=r[P2] 4855 ** 4856 ** Register P2 holds an SQL index key made using the 4857 ** MakeRecord instructions. This opcode writes that key 4858 ** into the index P1. Data for the entry is nil. 4859 ** 4860 ** P3 is a flag that provides a hint to the b-tree layer that this 4861 ** insert is likely to be an append. 4862 ** 4863 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4864 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4865 ** then the change counter is unchanged. 4866 ** 4867 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4868 ** just done a seek to the spot where the new entry is to be inserted. 4869 ** This flag avoids doing an extra seek. 4870 ** 4871 ** This instruction only works for indices. The equivalent instruction 4872 ** for tables is OP_Insert. 4873 */ 4874 case OP_SorterInsert: /* in2 */ 4875 case OP_IdxInsert: { /* in2 */ 4876 VdbeCursor *pC; 4877 int nKey; 4878 const char *zKey; 4879 4880 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4881 pC = p->apCsr[pOp->p1]; 4882 assert( pC!=0 ); 4883 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4884 pIn2 = &aMem[pOp->p2]; 4885 assert( pIn2->flags & MEM_Blob ); 4886 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4887 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 4888 assert( pC->isTable==0 ); 4889 rc = ExpandBlob(pIn2); 4890 if( rc==SQLITE_OK ){ 4891 if( pOp->opcode==OP_SorterInsert ){ 4892 rc = sqlite3VdbeSorterWrite(pC, pIn2); 4893 }else{ 4894 nKey = pIn2->n; 4895 zKey = pIn2->z; 4896 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3, 4897 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4898 ); 4899 assert( pC->deferredMoveto==0 ); 4900 pC->cacheStatus = CACHE_STALE; 4901 } 4902 } 4903 break; 4904 } 4905 4906 /* Opcode: IdxDelete P1 P2 P3 * * 4907 ** Synopsis: key=r[P2@P3] 4908 ** 4909 ** The content of P3 registers starting at register P2 form 4910 ** an unpacked index key. This opcode removes that entry from the 4911 ** index opened by cursor P1. 4912 */ 4913 case OP_IdxDelete: { 4914 VdbeCursor *pC; 4915 BtCursor *pCrsr; 4916 int res; 4917 UnpackedRecord r; 4918 4919 assert( pOp->p3>0 ); 4920 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4921 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4922 pC = p->apCsr[pOp->p1]; 4923 assert( pC!=0 ); 4924 assert( pC->eCurType==CURTYPE_BTREE ); 4925 pCrsr = pC->uc.pCursor; 4926 assert( pCrsr!=0 ); 4927 assert( pOp->p5==0 ); 4928 r.pKeyInfo = pC->pKeyInfo; 4929 r.nField = (u16)pOp->p3; 4930 r.default_rc = 0; 4931 r.aMem = &aMem[pOp->p2]; 4932 #ifdef SQLITE_DEBUG 4933 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4934 #endif 4935 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4936 if( rc==SQLITE_OK && res==0 ){ 4937 rc = sqlite3BtreeDelete(pCrsr, 0); 4938 } 4939 assert( pC->deferredMoveto==0 ); 4940 pC->cacheStatus = CACHE_STALE; 4941 break; 4942 } 4943 4944 /* Opcode: IdxRowid P1 P2 * * * 4945 ** Synopsis: r[P2]=rowid 4946 ** 4947 ** Write into register P2 an integer which is the last entry in the record at 4948 ** the end of the index key pointed to by cursor P1. This integer should be 4949 ** the rowid of the table entry to which this index entry points. 4950 ** 4951 ** See also: Rowid, MakeRecord. 4952 */ 4953 case OP_IdxRowid: { /* out2 */ 4954 BtCursor *pCrsr; 4955 VdbeCursor *pC; 4956 i64 rowid; 4957 4958 pOut = out2Prerelease(p, pOp); 4959 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4960 pC = p->apCsr[pOp->p1]; 4961 assert( pC!=0 ); 4962 assert( pC->eCurType==CURTYPE_BTREE ); 4963 pCrsr = pC->uc.pCursor; 4964 assert( pCrsr!=0 ); 4965 pOut->flags = MEM_Null; 4966 assert( pC->isTable==0 ); 4967 assert( pC->deferredMoveto==0 ); 4968 4969 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 4970 ** out from under the cursor. That will never happend for an IdxRowid 4971 ** opcode, hence the NEVER() arround the check of the return value. 4972 */ 4973 rc = sqlite3VdbeCursorRestore(pC); 4974 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4975 4976 if( !pC->nullRow ){ 4977 rowid = 0; /* Not needed. Only used to silence a warning. */ 4978 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4979 if( rc!=SQLITE_OK ){ 4980 goto abort_due_to_error; 4981 } 4982 pOut->u.i = rowid; 4983 pOut->flags = MEM_Int; 4984 } 4985 break; 4986 } 4987 4988 /* Opcode: IdxGE P1 P2 P3 P4 P5 4989 ** Synopsis: key=r[P3@P4] 4990 ** 4991 ** The P4 register values beginning with P3 form an unpacked index 4992 ** key that omits the PRIMARY KEY. Compare this key value against the index 4993 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4994 ** fields at the end. 4995 ** 4996 ** If the P1 index entry is greater than or equal to the key value 4997 ** then jump to P2. Otherwise fall through to the next instruction. 4998 */ 4999 /* Opcode: IdxGT P1 P2 P3 P4 P5 5000 ** Synopsis: key=r[P3@P4] 5001 ** 5002 ** The P4 register values beginning with P3 form an unpacked index 5003 ** key that omits the PRIMARY KEY. Compare this key value against the index 5004 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5005 ** fields at the end. 5006 ** 5007 ** If the P1 index entry is greater than the key value 5008 ** then jump to P2. Otherwise fall through to the next instruction. 5009 */ 5010 /* Opcode: IdxLT P1 P2 P3 P4 P5 5011 ** Synopsis: key=r[P3@P4] 5012 ** 5013 ** The P4 register values beginning with P3 form an unpacked index 5014 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5015 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5016 ** ROWID on the P1 index. 5017 ** 5018 ** If the P1 index entry is less than the key value then jump to P2. 5019 ** Otherwise fall through to the next instruction. 5020 */ 5021 /* Opcode: IdxLE P1 P2 P3 P4 P5 5022 ** Synopsis: key=r[P3@P4] 5023 ** 5024 ** The P4 register values beginning with P3 form an unpacked index 5025 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5026 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5027 ** ROWID on the P1 index. 5028 ** 5029 ** If the P1 index entry is less than or equal to the key value then jump 5030 ** to P2. Otherwise fall through to the next instruction. 5031 */ 5032 case OP_IdxLE: /* jump */ 5033 case OP_IdxGT: /* jump */ 5034 case OP_IdxLT: /* jump */ 5035 case OP_IdxGE: { /* jump */ 5036 VdbeCursor *pC; 5037 int res; 5038 UnpackedRecord r; 5039 5040 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5041 pC = p->apCsr[pOp->p1]; 5042 assert( pC!=0 ); 5043 assert( pC->isOrdered ); 5044 assert( pC->eCurType==CURTYPE_BTREE ); 5045 assert( pC->uc.pCursor!=0); 5046 assert( pC->deferredMoveto==0 ); 5047 assert( pOp->p5==0 || pOp->p5==1 ); 5048 assert( pOp->p4type==P4_INT32 ); 5049 r.pKeyInfo = pC->pKeyInfo; 5050 r.nField = (u16)pOp->p4.i; 5051 if( pOp->opcode<OP_IdxLT ){ 5052 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5053 r.default_rc = -1; 5054 }else{ 5055 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5056 r.default_rc = 0; 5057 } 5058 r.aMem = &aMem[pOp->p3]; 5059 #ifdef SQLITE_DEBUG 5060 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5061 #endif 5062 res = 0; /* Not needed. Only used to silence a warning. */ 5063 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5064 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5065 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5066 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5067 res = -res; 5068 }else{ 5069 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5070 res++; 5071 } 5072 VdbeBranchTaken(res>0,2); 5073 if( res>0 ) goto jump_to_p2; 5074 break; 5075 } 5076 5077 /* Opcode: Destroy P1 P2 P3 * * 5078 ** 5079 ** Delete an entire database table or index whose root page in the database 5080 ** file is given by P1. 5081 ** 5082 ** The table being destroyed is in the main database file if P3==0. If 5083 ** P3==1 then the table to be clear is in the auxiliary database file 5084 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5085 ** 5086 ** If AUTOVACUUM is enabled then it is possible that another root page 5087 ** might be moved into the newly deleted root page in order to keep all 5088 ** root pages contiguous at the beginning of the database. The former 5089 ** value of the root page that moved - its value before the move occurred - 5090 ** is stored in register P2. If no page 5091 ** movement was required (because the table being dropped was already 5092 ** the last one in the database) then a zero is stored in register P2. 5093 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 5094 ** 5095 ** See also: Clear 5096 */ 5097 case OP_Destroy: { /* out2 */ 5098 int iMoved; 5099 int iDb; 5100 5101 assert( p->readOnly==0 ); 5102 assert( pOp->p1>1 ); 5103 pOut = out2Prerelease(p, pOp); 5104 pOut->flags = MEM_Null; 5105 if( db->nVdbeRead > db->nVDestroy+1 ){ 5106 rc = SQLITE_LOCKED; 5107 p->errorAction = OE_Abort; 5108 }else{ 5109 iDb = pOp->p3; 5110 assert( DbMaskTest(p->btreeMask, iDb) ); 5111 iMoved = 0; /* Not needed. Only to silence a warning. */ 5112 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5113 pOut->flags = MEM_Int; 5114 pOut->u.i = iMoved; 5115 #ifndef SQLITE_OMIT_AUTOVACUUM 5116 if( rc==SQLITE_OK && iMoved!=0 ){ 5117 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5118 /* All OP_Destroy operations occur on the same btree */ 5119 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5120 resetSchemaOnFault = iDb+1; 5121 } 5122 #endif 5123 } 5124 break; 5125 } 5126 5127 /* Opcode: Clear P1 P2 P3 5128 ** 5129 ** Delete all contents of the database table or index whose root page 5130 ** in the database file is given by P1. But, unlike Destroy, do not 5131 ** remove the table or index from the database file. 5132 ** 5133 ** The table being clear is in the main database file if P2==0. If 5134 ** P2==1 then the table to be clear is in the auxiliary database file 5135 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5136 ** 5137 ** If the P3 value is non-zero, then the table referred to must be an 5138 ** intkey table (an SQL table, not an index). In this case the row change 5139 ** count is incremented by the number of rows in the table being cleared. 5140 ** If P3 is greater than zero, then the value stored in register P3 is 5141 ** also incremented by the number of rows in the table being cleared. 5142 ** 5143 ** See also: Destroy 5144 */ 5145 case OP_Clear: { 5146 int nChange; 5147 5148 nChange = 0; 5149 assert( p->readOnly==0 ); 5150 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5151 rc = sqlite3BtreeClearTable( 5152 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5153 ); 5154 if( pOp->p3 ){ 5155 p->nChange += nChange; 5156 if( pOp->p3>0 ){ 5157 assert( memIsValid(&aMem[pOp->p3]) ); 5158 memAboutToChange(p, &aMem[pOp->p3]); 5159 aMem[pOp->p3].u.i += nChange; 5160 } 5161 } 5162 break; 5163 } 5164 5165 /* Opcode: ResetSorter P1 * * * * 5166 ** 5167 ** Delete all contents from the ephemeral table or sorter 5168 ** that is open on cursor P1. 5169 ** 5170 ** This opcode only works for cursors used for sorting and 5171 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5172 */ 5173 case OP_ResetSorter: { 5174 VdbeCursor *pC; 5175 5176 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5177 pC = p->apCsr[pOp->p1]; 5178 assert( pC!=0 ); 5179 if( isSorter(pC) ){ 5180 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5181 }else{ 5182 assert( pC->eCurType==CURTYPE_BTREE ); 5183 assert( pC->isEphemeral ); 5184 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5185 } 5186 break; 5187 } 5188 5189 /* Opcode: CreateTable P1 P2 * * * 5190 ** Synopsis: r[P2]=root iDb=P1 5191 ** 5192 ** Allocate a new table in the main database file if P1==0 or in the 5193 ** auxiliary database file if P1==1 or in an attached database if 5194 ** P1>1. Write the root page number of the new table into 5195 ** register P2 5196 ** 5197 ** The difference between a table and an index is this: A table must 5198 ** have a 4-byte integer key and can have arbitrary data. An index 5199 ** has an arbitrary key but no data. 5200 ** 5201 ** See also: CreateIndex 5202 */ 5203 /* Opcode: CreateIndex P1 P2 * * * 5204 ** Synopsis: r[P2]=root iDb=P1 5205 ** 5206 ** Allocate a new index in the main database file if P1==0 or in the 5207 ** auxiliary database file if P1==1 or in an attached database if 5208 ** P1>1. Write the root page number of the new table into 5209 ** register P2. 5210 ** 5211 ** See documentation on OP_CreateTable for additional information. 5212 */ 5213 case OP_CreateIndex: /* out2 */ 5214 case OP_CreateTable: { /* out2 */ 5215 int pgno; 5216 int flags; 5217 Db *pDb; 5218 5219 pOut = out2Prerelease(p, pOp); 5220 pgno = 0; 5221 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5222 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5223 assert( p->readOnly==0 ); 5224 pDb = &db->aDb[pOp->p1]; 5225 assert( pDb->pBt!=0 ); 5226 if( pOp->opcode==OP_CreateTable ){ 5227 /* flags = BTREE_INTKEY; */ 5228 flags = BTREE_INTKEY; 5229 }else{ 5230 flags = BTREE_BLOBKEY; 5231 } 5232 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5233 pOut->u.i = pgno; 5234 break; 5235 } 5236 5237 /* Opcode: ParseSchema P1 * * P4 * 5238 ** 5239 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5240 ** that match the WHERE clause P4. 5241 ** 5242 ** This opcode invokes the parser to create a new virtual machine, 5243 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5244 */ 5245 case OP_ParseSchema: { 5246 int iDb; 5247 const char *zMaster; 5248 char *zSql; 5249 InitData initData; 5250 5251 /* Any prepared statement that invokes this opcode will hold mutexes 5252 ** on every btree. This is a prerequisite for invoking 5253 ** sqlite3InitCallback(). 5254 */ 5255 #ifdef SQLITE_DEBUG 5256 for(iDb=0; iDb<db->nDb; iDb++){ 5257 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5258 } 5259 #endif 5260 5261 iDb = pOp->p1; 5262 assert( iDb>=0 && iDb<db->nDb ); 5263 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5264 /* Used to be a conditional */ { 5265 zMaster = SCHEMA_TABLE(iDb); 5266 initData.db = db; 5267 initData.iDb = pOp->p1; 5268 initData.pzErrMsg = &p->zErrMsg; 5269 zSql = sqlite3MPrintf(db, 5270 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5271 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5272 if( zSql==0 ){ 5273 rc = SQLITE_NOMEM; 5274 }else{ 5275 assert( db->init.busy==0 ); 5276 db->init.busy = 1; 5277 initData.rc = SQLITE_OK; 5278 assert( !db->mallocFailed ); 5279 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5280 if( rc==SQLITE_OK ) rc = initData.rc; 5281 sqlite3DbFree(db, zSql); 5282 db->init.busy = 0; 5283 } 5284 } 5285 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 5286 if( rc==SQLITE_NOMEM ){ 5287 goto no_mem; 5288 } 5289 break; 5290 } 5291 5292 #if !defined(SQLITE_OMIT_ANALYZE) 5293 /* Opcode: LoadAnalysis P1 * * * * 5294 ** 5295 ** Read the sqlite_stat1 table for database P1 and load the content 5296 ** of that table into the internal index hash table. This will cause 5297 ** the analysis to be used when preparing all subsequent queries. 5298 */ 5299 case OP_LoadAnalysis: { 5300 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5301 rc = sqlite3AnalysisLoad(db, pOp->p1); 5302 break; 5303 } 5304 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5305 5306 /* Opcode: DropTable P1 * * P4 * 5307 ** 5308 ** Remove the internal (in-memory) data structures that describe 5309 ** the table named P4 in database P1. This is called after a table 5310 ** is dropped from disk (using the Destroy opcode) in order to keep 5311 ** the internal representation of the 5312 ** schema consistent with what is on disk. 5313 */ 5314 case OP_DropTable: { 5315 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5316 break; 5317 } 5318 5319 /* Opcode: DropIndex P1 * * P4 * 5320 ** 5321 ** Remove the internal (in-memory) data structures that describe 5322 ** the index named P4 in database P1. This is called after an index 5323 ** is dropped from disk (using the Destroy opcode) 5324 ** in order to keep the internal representation of the 5325 ** schema consistent with what is on disk. 5326 */ 5327 case OP_DropIndex: { 5328 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5329 break; 5330 } 5331 5332 /* Opcode: DropTrigger P1 * * P4 * 5333 ** 5334 ** Remove the internal (in-memory) data structures that describe 5335 ** the trigger named P4 in database P1. This is called after a trigger 5336 ** is dropped from disk (using the Destroy opcode) in order to keep 5337 ** the internal representation of the 5338 ** schema consistent with what is on disk. 5339 */ 5340 case OP_DropTrigger: { 5341 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5342 break; 5343 } 5344 5345 5346 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5347 /* Opcode: IntegrityCk P1 P2 P3 * P5 5348 ** 5349 ** Do an analysis of the currently open database. Store in 5350 ** register P1 the text of an error message describing any problems. 5351 ** If no problems are found, store a NULL in register P1. 5352 ** 5353 ** The register P3 contains the maximum number of allowed errors. 5354 ** At most reg(P3) errors will be reported. 5355 ** In other words, the analysis stops as soon as reg(P1) errors are 5356 ** seen. Reg(P1) is updated with the number of errors remaining. 5357 ** 5358 ** The root page numbers of all tables in the database are integer 5359 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5360 ** total. 5361 ** 5362 ** If P5 is not zero, the check is done on the auxiliary database 5363 ** file, not the main database file. 5364 ** 5365 ** This opcode is used to implement the integrity_check pragma. 5366 */ 5367 case OP_IntegrityCk: { 5368 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5369 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5370 int j; /* Loop counter */ 5371 int nErr; /* Number of errors reported */ 5372 char *z; /* Text of the error report */ 5373 Mem *pnErr; /* Register keeping track of errors remaining */ 5374 5375 assert( p->bIsReader ); 5376 nRoot = pOp->p2; 5377 assert( nRoot>0 ); 5378 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5379 if( aRoot==0 ) goto no_mem; 5380 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5381 pnErr = &aMem[pOp->p3]; 5382 assert( (pnErr->flags & MEM_Int)!=0 ); 5383 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5384 pIn1 = &aMem[pOp->p1]; 5385 for(j=0; j<nRoot; j++){ 5386 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5387 } 5388 aRoot[j] = 0; 5389 assert( pOp->p5<db->nDb ); 5390 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5391 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5392 (int)pnErr->u.i, &nErr); 5393 sqlite3DbFree(db, aRoot); 5394 pnErr->u.i -= nErr; 5395 sqlite3VdbeMemSetNull(pIn1); 5396 if( nErr==0 ){ 5397 assert( z==0 ); 5398 }else if( z==0 ){ 5399 goto no_mem; 5400 }else{ 5401 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5402 } 5403 UPDATE_MAX_BLOBSIZE(pIn1); 5404 sqlite3VdbeChangeEncoding(pIn1, encoding); 5405 break; 5406 } 5407 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5408 5409 /* Opcode: RowSetAdd P1 P2 * * * 5410 ** Synopsis: rowset(P1)=r[P2] 5411 ** 5412 ** Insert the integer value held by register P2 into a boolean index 5413 ** held in register P1. 5414 ** 5415 ** An assertion fails if P2 is not an integer. 5416 */ 5417 case OP_RowSetAdd: { /* in1, in2 */ 5418 pIn1 = &aMem[pOp->p1]; 5419 pIn2 = &aMem[pOp->p2]; 5420 assert( (pIn2->flags & MEM_Int)!=0 ); 5421 if( (pIn1->flags & MEM_RowSet)==0 ){ 5422 sqlite3VdbeMemSetRowSet(pIn1); 5423 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5424 } 5425 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5426 break; 5427 } 5428 5429 /* Opcode: RowSetRead P1 P2 P3 * * 5430 ** Synopsis: r[P3]=rowset(P1) 5431 ** 5432 ** Extract the smallest value from boolean index P1 and put that value into 5433 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5434 ** unchanged and jump to instruction P2. 5435 */ 5436 case OP_RowSetRead: { /* jump, in1, out3 */ 5437 i64 val; 5438 5439 pIn1 = &aMem[pOp->p1]; 5440 if( (pIn1->flags & MEM_RowSet)==0 5441 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5442 ){ 5443 /* The boolean index is empty */ 5444 sqlite3VdbeMemSetNull(pIn1); 5445 VdbeBranchTaken(1,2); 5446 goto jump_to_p2_and_check_for_interrupt; 5447 }else{ 5448 /* A value was pulled from the index */ 5449 VdbeBranchTaken(0,2); 5450 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5451 } 5452 goto check_for_interrupt; 5453 } 5454 5455 /* Opcode: RowSetTest P1 P2 P3 P4 5456 ** Synopsis: if r[P3] in rowset(P1) goto P2 5457 ** 5458 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5459 ** contains a RowSet object and that RowSet object contains 5460 ** the value held in P3, jump to register P2. Otherwise, insert the 5461 ** integer in P3 into the RowSet and continue on to the 5462 ** next opcode. 5463 ** 5464 ** The RowSet object is optimized for the case where successive sets 5465 ** of integers, where each set contains no duplicates. Each set 5466 ** of values is identified by a unique P4 value. The first set 5467 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5468 ** non-negative. For non-negative values of P4 only the lower 4 5469 ** bits are significant. 5470 ** 5471 ** This allows optimizations: (a) when P4==0 there is no need to test 5472 ** the rowset object for P3, as it is guaranteed not to contain it, 5473 ** (b) when P4==-1 there is no need to insert the value, as it will 5474 ** never be tested for, and (c) when a value that is part of set X is 5475 ** inserted, there is no need to search to see if the same value was 5476 ** previously inserted as part of set X (only if it was previously 5477 ** inserted as part of some other set). 5478 */ 5479 case OP_RowSetTest: { /* jump, in1, in3 */ 5480 int iSet; 5481 int exists; 5482 5483 pIn1 = &aMem[pOp->p1]; 5484 pIn3 = &aMem[pOp->p3]; 5485 iSet = pOp->p4.i; 5486 assert( pIn3->flags&MEM_Int ); 5487 5488 /* If there is anything other than a rowset object in memory cell P1, 5489 ** delete it now and initialize P1 with an empty rowset 5490 */ 5491 if( (pIn1->flags & MEM_RowSet)==0 ){ 5492 sqlite3VdbeMemSetRowSet(pIn1); 5493 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5494 } 5495 5496 assert( pOp->p4type==P4_INT32 ); 5497 assert( iSet==-1 || iSet>=0 ); 5498 if( iSet ){ 5499 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5500 VdbeBranchTaken(exists!=0,2); 5501 if( exists ) goto jump_to_p2; 5502 } 5503 if( iSet>=0 ){ 5504 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5505 } 5506 break; 5507 } 5508 5509 5510 #ifndef SQLITE_OMIT_TRIGGER 5511 5512 /* Opcode: Program P1 P2 P3 P4 P5 5513 ** 5514 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5515 ** 5516 ** P1 contains the address of the memory cell that contains the first memory 5517 ** cell in an array of values used as arguments to the sub-program. P2 5518 ** contains the address to jump to if the sub-program throws an IGNORE 5519 ** exception using the RAISE() function. Register P3 contains the address 5520 ** of a memory cell in this (the parent) VM that is used to allocate the 5521 ** memory required by the sub-vdbe at runtime. 5522 ** 5523 ** P4 is a pointer to the VM containing the trigger program. 5524 ** 5525 ** If P5 is non-zero, then recursive program invocation is enabled. 5526 */ 5527 case OP_Program: { /* jump */ 5528 int nMem; /* Number of memory registers for sub-program */ 5529 int nByte; /* Bytes of runtime space required for sub-program */ 5530 Mem *pRt; /* Register to allocate runtime space */ 5531 Mem *pMem; /* Used to iterate through memory cells */ 5532 Mem *pEnd; /* Last memory cell in new array */ 5533 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5534 SubProgram *pProgram; /* Sub-program to execute */ 5535 void *t; /* Token identifying trigger */ 5536 5537 pProgram = pOp->p4.pProgram; 5538 pRt = &aMem[pOp->p3]; 5539 assert( pProgram->nOp>0 ); 5540 5541 /* If the p5 flag is clear, then recursive invocation of triggers is 5542 ** disabled for backwards compatibility (p5 is set if this sub-program 5543 ** is really a trigger, not a foreign key action, and the flag set 5544 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5545 ** 5546 ** It is recursive invocation of triggers, at the SQL level, that is 5547 ** disabled. In some cases a single trigger may generate more than one 5548 ** SubProgram (if the trigger may be executed with more than one different 5549 ** ON CONFLICT algorithm). SubProgram structures associated with a 5550 ** single trigger all have the same value for the SubProgram.token 5551 ** variable. */ 5552 if( pOp->p5 ){ 5553 t = pProgram->token; 5554 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5555 if( pFrame ) break; 5556 } 5557 5558 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5559 rc = SQLITE_ERROR; 5560 sqlite3VdbeError(p, "too many levels of trigger recursion"); 5561 break; 5562 } 5563 5564 /* Register pRt is used to store the memory required to save the state 5565 ** of the current program, and the memory required at runtime to execute 5566 ** the trigger program. If this trigger has been fired before, then pRt 5567 ** is already allocated. Otherwise, it must be initialized. */ 5568 if( (pRt->flags&MEM_Frame)==0 ){ 5569 /* SubProgram.nMem is set to the number of memory cells used by the 5570 ** program stored in SubProgram.aOp. As well as these, one memory 5571 ** cell is required for each cursor used by the program. Set local 5572 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5573 */ 5574 nMem = pProgram->nMem + pProgram->nCsr; 5575 nByte = ROUND8(sizeof(VdbeFrame)) 5576 + nMem * sizeof(Mem) 5577 + pProgram->nCsr * sizeof(VdbeCursor *) 5578 + pProgram->nOnce * sizeof(u8); 5579 pFrame = sqlite3DbMallocZero(db, nByte); 5580 if( !pFrame ){ 5581 goto no_mem; 5582 } 5583 sqlite3VdbeMemRelease(pRt); 5584 pRt->flags = MEM_Frame; 5585 pRt->u.pFrame = pFrame; 5586 5587 pFrame->v = p; 5588 pFrame->nChildMem = nMem; 5589 pFrame->nChildCsr = pProgram->nCsr; 5590 pFrame->pc = (int)(pOp - aOp); 5591 pFrame->aMem = p->aMem; 5592 pFrame->nMem = p->nMem; 5593 pFrame->apCsr = p->apCsr; 5594 pFrame->nCursor = p->nCursor; 5595 pFrame->aOp = p->aOp; 5596 pFrame->nOp = p->nOp; 5597 pFrame->token = pProgram->token; 5598 pFrame->aOnceFlag = p->aOnceFlag; 5599 pFrame->nOnceFlag = p->nOnceFlag; 5600 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5601 pFrame->anExec = p->anExec; 5602 #endif 5603 5604 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5605 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5606 pMem->flags = MEM_Undefined; 5607 pMem->db = db; 5608 } 5609 }else{ 5610 pFrame = pRt->u.pFrame; 5611 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5612 assert( pProgram->nCsr==pFrame->nChildCsr ); 5613 assert( (int)(pOp - aOp)==pFrame->pc ); 5614 } 5615 5616 p->nFrame++; 5617 pFrame->pParent = p->pFrame; 5618 pFrame->lastRowid = lastRowid; 5619 pFrame->nChange = p->nChange; 5620 pFrame->nDbChange = p->db->nChange; 5621 p->nChange = 0; 5622 p->pFrame = pFrame; 5623 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5624 p->nMem = pFrame->nChildMem; 5625 p->nCursor = (u16)pFrame->nChildCsr; 5626 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5627 p->aOp = aOp = pProgram->aOp; 5628 p->nOp = pProgram->nOp; 5629 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5630 p->nOnceFlag = pProgram->nOnce; 5631 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5632 p->anExec = 0; 5633 #endif 5634 pOp = &aOp[-1]; 5635 memset(p->aOnceFlag, 0, p->nOnceFlag); 5636 5637 break; 5638 } 5639 5640 /* Opcode: Param P1 P2 * * * 5641 ** 5642 ** This opcode is only ever present in sub-programs called via the 5643 ** OP_Program instruction. Copy a value currently stored in a memory 5644 ** cell of the calling (parent) frame to cell P2 in the current frames 5645 ** address space. This is used by trigger programs to access the new.* 5646 ** and old.* values. 5647 ** 5648 ** The address of the cell in the parent frame is determined by adding 5649 ** the value of the P1 argument to the value of the P1 argument to the 5650 ** calling OP_Program instruction. 5651 */ 5652 case OP_Param: { /* out2 */ 5653 VdbeFrame *pFrame; 5654 Mem *pIn; 5655 pOut = out2Prerelease(p, pOp); 5656 pFrame = p->pFrame; 5657 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5658 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5659 break; 5660 } 5661 5662 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5663 5664 #ifndef SQLITE_OMIT_FOREIGN_KEY 5665 /* Opcode: FkCounter P1 P2 * * * 5666 ** Synopsis: fkctr[P1]+=P2 5667 ** 5668 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5669 ** If P1 is non-zero, the database constraint counter is incremented 5670 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5671 ** statement counter is incremented (immediate foreign key constraints). 5672 */ 5673 case OP_FkCounter: { 5674 if( db->flags & SQLITE_DeferFKs ){ 5675 db->nDeferredImmCons += pOp->p2; 5676 }else if( pOp->p1 ){ 5677 db->nDeferredCons += pOp->p2; 5678 }else{ 5679 p->nFkConstraint += pOp->p2; 5680 } 5681 break; 5682 } 5683 5684 /* Opcode: FkIfZero P1 P2 * * * 5685 ** Synopsis: if fkctr[P1]==0 goto P2 5686 ** 5687 ** This opcode tests if a foreign key constraint-counter is currently zero. 5688 ** If so, jump to instruction P2. Otherwise, fall through to the next 5689 ** instruction. 5690 ** 5691 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5692 ** is zero (the one that counts deferred constraint violations). If P1 is 5693 ** zero, the jump is taken if the statement constraint-counter is zero 5694 ** (immediate foreign key constraint violations). 5695 */ 5696 case OP_FkIfZero: { /* jump */ 5697 if( pOp->p1 ){ 5698 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5699 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5700 }else{ 5701 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5702 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5703 } 5704 break; 5705 } 5706 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5707 5708 #ifndef SQLITE_OMIT_AUTOINCREMENT 5709 /* Opcode: MemMax P1 P2 * * * 5710 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5711 ** 5712 ** P1 is a register in the root frame of this VM (the root frame is 5713 ** different from the current frame if this instruction is being executed 5714 ** within a sub-program). Set the value of register P1 to the maximum of 5715 ** its current value and the value in register P2. 5716 ** 5717 ** This instruction throws an error if the memory cell is not initially 5718 ** an integer. 5719 */ 5720 case OP_MemMax: { /* in2 */ 5721 VdbeFrame *pFrame; 5722 if( p->pFrame ){ 5723 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5724 pIn1 = &pFrame->aMem[pOp->p1]; 5725 }else{ 5726 pIn1 = &aMem[pOp->p1]; 5727 } 5728 assert( memIsValid(pIn1) ); 5729 sqlite3VdbeMemIntegerify(pIn1); 5730 pIn2 = &aMem[pOp->p2]; 5731 sqlite3VdbeMemIntegerify(pIn2); 5732 if( pIn1->u.i<pIn2->u.i){ 5733 pIn1->u.i = pIn2->u.i; 5734 } 5735 break; 5736 } 5737 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5738 5739 /* Opcode: IfPos P1 P2 P3 * * 5740 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 5741 ** 5742 ** Register P1 must contain an integer. 5743 ** If the value of register P1 is 1 or greater, subtract P3 from the 5744 ** value in P1 and jump to P2. 5745 ** 5746 ** If the initial value of register P1 is less than 1, then the 5747 ** value is unchanged and control passes through to the next instruction. 5748 */ 5749 case OP_IfPos: { /* jump, in1 */ 5750 pIn1 = &aMem[pOp->p1]; 5751 assert( pIn1->flags&MEM_Int ); 5752 VdbeBranchTaken( pIn1->u.i>0, 2); 5753 if( pIn1->u.i>0 ){ 5754 pIn1->u.i -= pOp->p3; 5755 goto jump_to_p2; 5756 } 5757 break; 5758 } 5759 5760 /* Opcode: SetIfNotPos P1 P2 P3 * * 5761 ** Synopsis: if r[P1]<=0 then r[P2]=P3 5762 ** 5763 ** Register P1 must contain an integer. 5764 ** If the value of register P1 is not positive (if it is less than 1) then 5765 ** set the value of register P2 to be the integer P3. 5766 */ 5767 case OP_SetIfNotPos: { /* in1, in2 */ 5768 pIn1 = &aMem[pOp->p1]; 5769 assert( pIn1->flags&MEM_Int ); 5770 if( pIn1->u.i<=0 ){ 5771 pOut = out2Prerelease(p, pOp); 5772 pOut->u.i = pOp->p3; 5773 } 5774 break; 5775 } 5776 5777 /* Opcode: IfNotZero P1 P2 P3 * * 5778 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 5779 ** 5780 ** Register P1 must contain an integer. If the content of register P1 is 5781 ** initially nonzero, then subtract P3 from the value in register P1 and 5782 ** jump to P2. If register P1 is initially zero, leave it unchanged 5783 ** and fall through. 5784 */ 5785 case OP_IfNotZero: { /* jump, in1 */ 5786 pIn1 = &aMem[pOp->p1]; 5787 assert( pIn1->flags&MEM_Int ); 5788 VdbeBranchTaken(pIn1->u.i<0, 2); 5789 if( pIn1->u.i ){ 5790 pIn1->u.i -= pOp->p3; 5791 goto jump_to_p2; 5792 } 5793 break; 5794 } 5795 5796 /* Opcode: DecrJumpZero P1 P2 * * * 5797 ** Synopsis: if (--r[P1])==0 goto P2 5798 ** 5799 ** Register P1 must hold an integer. Decrement the value in register P1 5800 ** then jump to P2 if the new value is exactly zero. 5801 */ 5802 case OP_DecrJumpZero: { /* jump, in1 */ 5803 pIn1 = &aMem[pOp->p1]; 5804 assert( pIn1->flags&MEM_Int ); 5805 pIn1->u.i--; 5806 VdbeBranchTaken(pIn1->u.i==0, 2); 5807 if( pIn1->u.i==0 ) goto jump_to_p2; 5808 break; 5809 } 5810 5811 5812 /* Opcode: JumpZeroIncr P1 P2 * * * 5813 ** Synopsis: if (r[P1]++)==0 ) goto P2 5814 ** 5815 ** The register P1 must contain an integer. If register P1 is initially 5816 ** zero, then jump to P2. Increment register P1 regardless of whether or 5817 ** not the jump is taken. 5818 */ 5819 case OP_JumpZeroIncr: { /* jump, in1 */ 5820 pIn1 = &aMem[pOp->p1]; 5821 assert( pIn1->flags&MEM_Int ); 5822 VdbeBranchTaken(pIn1->u.i==0, 2); 5823 if( (pIn1->u.i++)==0 ) goto jump_to_p2; 5824 break; 5825 } 5826 5827 /* Opcode: AggStep0 * P2 P3 P4 P5 5828 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5829 ** 5830 ** Execute the step function for an aggregate. The 5831 ** function has P5 arguments. P4 is a pointer to the FuncDef 5832 ** structure that specifies the function. Register P3 is the 5833 ** accumulator. 5834 ** 5835 ** The P5 arguments are taken from register P2 and its 5836 ** successors. 5837 */ 5838 /* Opcode: AggStep * P2 P3 P4 P5 5839 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5840 ** 5841 ** Execute the step function for an aggregate. The 5842 ** function has P5 arguments. P4 is a pointer to an sqlite3_context 5843 ** object that is used to run the function. Register P3 is 5844 ** as the accumulator. 5845 ** 5846 ** The P5 arguments are taken from register P2 and its 5847 ** successors. 5848 ** 5849 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 5850 ** the FuncDef stored in P4 is converted into an sqlite3_context and 5851 ** the opcode is changed. In this way, the initialization of the 5852 ** sqlite3_context only happens once, instead of on each call to the 5853 ** step function. 5854 */ 5855 case OP_AggStep0: { 5856 int n; 5857 sqlite3_context *pCtx; 5858 5859 assert( pOp->p4type==P4_FUNCDEF ); 5860 n = pOp->p5; 5861 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5862 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 5863 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 5864 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 5865 if( pCtx==0 ) goto no_mem; 5866 pCtx->pMem = 0; 5867 pCtx->pFunc = pOp->p4.pFunc; 5868 pCtx->iOp = (int)(pOp - aOp); 5869 pCtx->pVdbe = p; 5870 pCtx->argc = n; 5871 pOp->p4type = P4_FUNCCTX; 5872 pOp->p4.pCtx = pCtx; 5873 pOp->opcode = OP_AggStep; 5874 /* Fall through into OP_AggStep */ 5875 } 5876 case OP_AggStep: { 5877 int i; 5878 sqlite3_context *pCtx; 5879 Mem *pMem; 5880 Mem t; 5881 5882 assert( pOp->p4type==P4_FUNCCTX ); 5883 pCtx = pOp->p4.pCtx; 5884 pMem = &aMem[pOp->p3]; 5885 5886 /* If this function is inside of a trigger, the register array in aMem[] 5887 ** might change from one evaluation to the next. The next block of code 5888 ** checks to see if the register array has changed, and if so it 5889 ** reinitializes the relavant parts of the sqlite3_context object */ 5890 if( pCtx->pMem != pMem ){ 5891 pCtx->pMem = pMem; 5892 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 5893 } 5894 5895 #ifdef SQLITE_DEBUG 5896 for(i=0; i<pCtx->argc; i++){ 5897 assert( memIsValid(pCtx->argv[i]) ); 5898 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 5899 } 5900 #endif 5901 5902 pMem->n++; 5903 sqlite3VdbeMemInit(&t, db, MEM_Null); 5904 pCtx->pOut = &t; 5905 pCtx->fErrorOrAux = 0; 5906 pCtx->skipFlag = 0; 5907 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 5908 if( pCtx->fErrorOrAux ){ 5909 if( pCtx->isError ){ 5910 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); 5911 rc = pCtx->isError; 5912 } 5913 sqlite3VdbeMemRelease(&t); 5914 }else{ 5915 assert( t.flags==MEM_Null ); 5916 } 5917 if( pCtx->skipFlag ){ 5918 assert( pOp[-1].opcode==OP_CollSeq ); 5919 i = pOp[-1].p1; 5920 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5921 } 5922 break; 5923 } 5924 5925 /* Opcode: AggFinal P1 P2 * P4 * 5926 ** Synopsis: accum=r[P1] N=P2 5927 ** 5928 ** Execute the finalizer function for an aggregate. P1 is 5929 ** the memory location that is the accumulator for the aggregate. 5930 ** 5931 ** P2 is the number of arguments that the step function takes and 5932 ** P4 is a pointer to the FuncDef for this function. The P2 5933 ** argument is not used by this opcode. It is only there to disambiguate 5934 ** functions that can take varying numbers of arguments. The 5935 ** P4 argument is only needed for the degenerate case where 5936 ** the step function was not previously called. 5937 */ 5938 case OP_AggFinal: { 5939 Mem *pMem; 5940 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5941 pMem = &aMem[pOp->p1]; 5942 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5943 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5944 if( rc ){ 5945 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 5946 } 5947 sqlite3VdbeChangeEncoding(pMem, encoding); 5948 UPDATE_MAX_BLOBSIZE(pMem); 5949 if( sqlite3VdbeMemTooBig(pMem) ){ 5950 goto too_big; 5951 } 5952 break; 5953 } 5954 5955 #ifndef SQLITE_OMIT_WAL 5956 /* Opcode: Checkpoint P1 P2 P3 * * 5957 ** 5958 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5959 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 5960 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 5961 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5962 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5963 ** in the WAL that have been checkpointed after the checkpoint 5964 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5965 ** mem[P3+2] are initialized to -1. 5966 */ 5967 case OP_Checkpoint: { 5968 int i; /* Loop counter */ 5969 int aRes[3]; /* Results */ 5970 Mem *pMem; /* Write results here */ 5971 5972 assert( p->readOnly==0 ); 5973 aRes[0] = 0; 5974 aRes[1] = aRes[2] = -1; 5975 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5976 || pOp->p2==SQLITE_CHECKPOINT_FULL 5977 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5978 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 5979 ); 5980 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5981 if( rc==SQLITE_BUSY ){ 5982 rc = SQLITE_OK; 5983 aRes[0] = 1; 5984 } 5985 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5986 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5987 } 5988 break; 5989 }; 5990 #endif 5991 5992 #ifndef SQLITE_OMIT_PRAGMA 5993 /* Opcode: JournalMode P1 P2 P3 * * 5994 ** 5995 ** Change the journal mode of database P1 to P3. P3 must be one of the 5996 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5997 ** modes (delete, truncate, persist, off and memory), this is a simple 5998 ** operation. No IO is required. 5999 ** 6000 ** If changing into or out of WAL mode the procedure is more complicated. 6001 ** 6002 ** Write a string containing the final journal-mode to register P2. 6003 */ 6004 case OP_JournalMode: { /* out2 */ 6005 Btree *pBt; /* Btree to change journal mode of */ 6006 Pager *pPager; /* Pager associated with pBt */ 6007 int eNew; /* New journal mode */ 6008 int eOld; /* The old journal mode */ 6009 #ifndef SQLITE_OMIT_WAL 6010 const char *zFilename; /* Name of database file for pPager */ 6011 #endif 6012 6013 pOut = out2Prerelease(p, pOp); 6014 eNew = pOp->p3; 6015 assert( eNew==PAGER_JOURNALMODE_DELETE 6016 || eNew==PAGER_JOURNALMODE_TRUNCATE 6017 || eNew==PAGER_JOURNALMODE_PERSIST 6018 || eNew==PAGER_JOURNALMODE_OFF 6019 || eNew==PAGER_JOURNALMODE_MEMORY 6020 || eNew==PAGER_JOURNALMODE_WAL 6021 || eNew==PAGER_JOURNALMODE_QUERY 6022 ); 6023 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6024 assert( p->readOnly==0 ); 6025 6026 pBt = db->aDb[pOp->p1].pBt; 6027 pPager = sqlite3BtreePager(pBt); 6028 eOld = sqlite3PagerGetJournalMode(pPager); 6029 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6030 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6031 6032 #ifndef SQLITE_OMIT_WAL 6033 zFilename = sqlite3PagerFilename(pPager, 1); 6034 6035 /* Do not allow a transition to journal_mode=WAL for a database 6036 ** in temporary storage or if the VFS does not support shared memory 6037 */ 6038 if( eNew==PAGER_JOURNALMODE_WAL 6039 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6040 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6041 ){ 6042 eNew = eOld; 6043 } 6044 6045 if( (eNew!=eOld) 6046 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6047 ){ 6048 if( !db->autoCommit || db->nVdbeRead>1 ){ 6049 rc = SQLITE_ERROR; 6050 sqlite3VdbeError(p, 6051 "cannot change %s wal mode from within a transaction", 6052 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6053 ); 6054 break; 6055 }else{ 6056 6057 if( eOld==PAGER_JOURNALMODE_WAL ){ 6058 /* If leaving WAL mode, close the log file. If successful, the call 6059 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6060 ** file. An EXCLUSIVE lock may still be held on the database file 6061 ** after a successful return. 6062 */ 6063 rc = sqlite3PagerCloseWal(pPager); 6064 if( rc==SQLITE_OK ){ 6065 sqlite3PagerSetJournalMode(pPager, eNew); 6066 } 6067 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6068 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6069 ** as an intermediate */ 6070 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6071 } 6072 6073 /* Open a transaction on the database file. Regardless of the journal 6074 ** mode, this transaction always uses a rollback journal. 6075 */ 6076 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6077 if( rc==SQLITE_OK ){ 6078 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6079 } 6080 } 6081 } 6082 #endif /* ifndef SQLITE_OMIT_WAL */ 6083 6084 if( rc ){ 6085 eNew = eOld; 6086 } 6087 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6088 6089 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6090 pOut->z = (char *)sqlite3JournalModename(eNew); 6091 pOut->n = sqlite3Strlen30(pOut->z); 6092 pOut->enc = SQLITE_UTF8; 6093 sqlite3VdbeChangeEncoding(pOut, encoding); 6094 break; 6095 }; 6096 #endif /* SQLITE_OMIT_PRAGMA */ 6097 6098 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6099 /* Opcode: Vacuum * * * * * 6100 ** 6101 ** Vacuum the entire database. This opcode will cause other virtual 6102 ** machines to be created and run. It may not be called from within 6103 ** a transaction. 6104 */ 6105 case OP_Vacuum: { 6106 assert( p->readOnly==0 ); 6107 rc = sqlite3RunVacuum(&p->zErrMsg, db); 6108 break; 6109 } 6110 #endif 6111 6112 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6113 /* Opcode: IncrVacuum P1 P2 * * * 6114 ** 6115 ** Perform a single step of the incremental vacuum procedure on 6116 ** the P1 database. If the vacuum has finished, jump to instruction 6117 ** P2. Otherwise, fall through to the next instruction. 6118 */ 6119 case OP_IncrVacuum: { /* jump */ 6120 Btree *pBt; 6121 6122 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6123 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6124 assert( p->readOnly==0 ); 6125 pBt = db->aDb[pOp->p1].pBt; 6126 rc = sqlite3BtreeIncrVacuum(pBt); 6127 VdbeBranchTaken(rc==SQLITE_DONE,2); 6128 if( rc==SQLITE_DONE ){ 6129 rc = SQLITE_OK; 6130 goto jump_to_p2; 6131 } 6132 break; 6133 } 6134 #endif 6135 6136 /* Opcode: Expire P1 * * * * 6137 ** 6138 ** Cause precompiled statements to expire. When an expired statement 6139 ** is executed using sqlite3_step() it will either automatically 6140 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6141 ** or it will fail with SQLITE_SCHEMA. 6142 ** 6143 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6144 ** then only the currently executing statement is expired. 6145 */ 6146 case OP_Expire: { 6147 if( !pOp->p1 ){ 6148 sqlite3ExpirePreparedStatements(db); 6149 }else{ 6150 p->expired = 1; 6151 } 6152 break; 6153 } 6154 6155 #ifndef SQLITE_OMIT_SHARED_CACHE 6156 /* Opcode: TableLock P1 P2 P3 P4 * 6157 ** Synopsis: iDb=P1 root=P2 write=P3 6158 ** 6159 ** Obtain a lock on a particular table. This instruction is only used when 6160 ** the shared-cache feature is enabled. 6161 ** 6162 ** P1 is the index of the database in sqlite3.aDb[] of the database 6163 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6164 ** a write lock if P3==1. 6165 ** 6166 ** P2 contains the root-page of the table to lock. 6167 ** 6168 ** P4 contains a pointer to the name of the table being locked. This is only 6169 ** used to generate an error message if the lock cannot be obtained. 6170 */ 6171 case OP_TableLock: { 6172 u8 isWriteLock = (u8)pOp->p3; 6173 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 6174 int p1 = pOp->p1; 6175 assert( p1>=0 && p1<db->nDb ); 6176 assert( DbMaskTest(p->btreeMask, p1) ); 6177 assert( isWriteLock==0 || isWriteLock==1 ); 6178 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6179 if( (rc&0xFF)==SQLITE_LOCKED ){ 6180 const char *z = pOp->p4.z; 6181 sqlite3VdbeError(p, "database table is locked: %s", z); 6182 } 6183 } 6184 break; 6185 } 6186 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6187 6188 #ifndef SQLITE_OMIT_VIRTUALTABLE 6189 /* Opcode: VBegin * * * P4 * 6190 ** 6191 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6192 ** xBegin method for that table. 6193 ** 6194 ** Also, whether or not P4 is set, check that this is not being called from 6195 ** within a callback to a virtual table xSync() method. If it is, the error 6196 ** code will be set to SQLITE_LOCKED. 6197 */ 6198 case OP_VBegin: { 6199 VTable *pVTab; 6200 pVTab = pOp->p4.pVtab; 6201 rc = sqlite3VtabBegin(db, pVTab); 6202 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6203 break; 6204 } 6205 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6206 6207 #ifndef SQLITE_OMIT_VIRTUALTABLE 6208 /* Opcode: VCreate P1 P2 * * * 6209 ** 6210 ** P2 is a register that holds the name of a virtual table in database 6211 ** P1. Call the xCreate method for that table. 6212 */ 6213 case OP_VCreate: { 6214 Mem sMem; /* For storing the record being decoded */ 6215 const char *zTab; /* Name of the virtual table */ 6216 6217 memset(&sMem, 0, sizeof(sMem)); 6218 sMem.db = db; 6219 /* Because P2 is always a static string, it is impossible for the 6220 ** sqlite3VdbeMemCopy() to fail */ 6221 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6222 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6223 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6224 assert( rc==SQLITE_OK ); 6225 zTab = (const char*)sqlite3_value_text(&sMem); 6226 assert( zTab || db->mallocFailed ); 6227 if( zTab ){ 6228 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6229 } 6230 sqlite3VdbeMemRelease(&sMem); 6231 break; 6232 } 6233 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6234 6235 #ifndef SQLITE_OMIT_VIRTUALTABLE 6236 /* Opcode: VDestroy P1 * * P4 * 6237 ** 6238 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6239 ** of that table. 6240 */ 6241 case OP_VDestroy: { 6242 db->nVDestroy++; 6243 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6244 db->nVDestroy--; 6245 break; 6246 } 6247 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6248 6249 #ifndef SQLITE_OMIT_VIRTUALTABLE 6250 /* Opcode: VOpen P1 * * P4 * 6251 ** 6252 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6253 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6254 ** table and stores that cursor in P1. 6255 */ 6256 case OP_VOpen: { 6257 VdbeCursor *pCur; 6258 sqlite3_vtab_cursor *pVCur; 6259 sqlite3_vtab *pVtab; 6260 const sqlite3_module *pModule; 6261 6262 assert( p->bIsReader ); 6263 pCur = 0; 6264 pVCur = 0; 6265 pVtab = pOp->p4.pVtab->pVtab; 6266 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6267 rc = SQLITE_LOCKED; 6268 break; 6269 } 6270 pModule = pVtab->pModule; 6271 rc = pModule->xOpen(pVtab, &pVCur); 6272 sqlite3VtabImportErrmsg(p, pVtab); 6273 if( SQLITE_OK==rc ){ 6274 /* Initialize sqlite3_vtab_cursor base class */ 6275 pVCur->pVtab = pVtab; 6276 6277 /* Initialize vdbe cursor object */ 6278 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6279 if( pCur ){ 6280 pCur->uc.pVCur = pVCur; 6281 pVtab->nRef++; 6282 }else{ 6283 assert( db->mallocFailed ); 6284 pModule->xClose(pVCur); 6285 goto no_mem; 6286 } 6287 } 6288 break; 6289 } 6290 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6291 6292 #ifndef SQLITE_OMIT_VIRTUALTABLE 6293 /* Opcode: VFilter P1 P2 P3 P4 * 6294 ** Synopsis: iplan=r[P3] zplan='P4' 6295 ** 6296 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6297 ** the filtered result set is empty. 6298 ** 6299 ** P4 is either NULL or a string that was generated by the xBestIndex 6300 ** method of the module. The interpretation of the P4 string is left 6301 ** to the module implementation. 6302 ** 6303 ** This opcode invokes the xFilter method on the virtual table specified 6304 ** by P1. The integer query plan parameter to xFilter is stored in register 6305 ** P3. Register P3+1 stores the argc parameter to be passed to the 6306 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6307 ** additional parameters which are passed to 6308 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6309 ** 6310 ** A jump is made to P2 if the result set after filtering would be empty. 6311 */ 6312 case OP_VFilter: { /* jump */ 6313 int nArg; 6314 int iQuery; 6315 const sqlite3_module *pModule; 6316 Mem *pQuery; 6317 Mem *pArgc; 6318 sqlite3_vtab_cursor *pVCur; 6319 sqlite3_vtab *pVtab; 6320 VdbeCursor *pCur; 6321 int res; 6322 int i; 6323 Mem **apArg; 6324 6325 pQuery = &aMem[pOp->p3]; 6326 pArgc = &pQuery[1]; 6327 pCur = p->apCsr[pOp->p1]; 6328 assert( memIsValid(pQuery) ); 6329 REGISTER_TRACE(pOp->p3, pQuery); 6330 assert( pCur->eCurType==CURTYPE_VTAB ); 6331 pVCur = pCur->uc.pVCur; 6332 pVtab = pVCur->pVtab; 6333 pModule = pVtab->pModule; 6334 6335 /* Grab the index number and argc parameters */ 6336 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6337 nArg = (int)pArgc->u.i; 6338 iQuery = (int)pQuery->u.i; 6339 6340 /* Invoke the xFilter method */ 6341 res = 0; 6342 apArg = p->apArg; 6343 for(i = 0; i<nArg; i++){ 6344 apArg[i] = &pArgc[i+1]; 6345 } 6346 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6347 sqlite3VtabImportErrmsg(p, pVtab); 6348 if( rc==SQLITE_OK ){ 6349 res = pModule->xEof(pVCur); 6350 } 6351 pCur->nullRow = 0; 6352 VdbeBranchTaken(res!=0,2); 6353 if( res ) goto jump_to_p2; 6354 break; 6355 } 6356 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6357 6358 #ifndef SQLITE_OMIT_VIRTUALTABLE 6359 /* Opcode: VColumn P1 P2 P3 * * 6360 ** Synopsis: r[P3]=vcolumn(P2) 6361 ** 6362 ** Store the value of the P2-th column of 6363 ** the row of the virtual-table that the 6364 ** P1 cursor is pointing to into register P3. 6365 */ 6366 case OP_VColumn: { 6367 sqlite3_vtab *pVtab; 6368 const sqlite3_module *pModule; 6369 Mem *pDest; 6370 sqlite3_context sContext; 6371 6372 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6373 assert( pCur->eCurType==CURTYPE_VTAB ); 6374 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6375 pDest = &aMem[pOp->p3]; 6376 memAboutToChange(p, pDest); 6377 if( pCur->nullRow ){ 6378 sqlite3VdbeMemSetNull(pDest); 6379 break; 6380 } 6381 pVtab = pCur->uc.pVCur->pVtab; 6382 pModule = pVtab->pModule; 6383 assert( pModule->xColumn ); 6384 memset(&sContext, 0, sizeof(sContext)); 6385 sContext.pOut = pDest; 6386 MemSetTypeFlag(pDest, MEM_Null); 6387 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6388 sqlite3VtabImportErrmsg(p, pVtab); 6389 if( sContext.isError ){ 6390 rc = sContext.isError; 6391 } 6392 sqlite3VdbeChangeEncoding(pDest, encoding); 6393 REGISTER_TRACE(pOp->p3, pDest); 6394 UPDATE_MAX_BLOBSIZE(pDest); 6395 6396 if( sqlite3VdbeMemTooBig(pDest) ){ 6397 goto too_big; 6398 } 6399 break; 6400 } 6401 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6402 6403 #ifndef SQLITE_OMIT_VIRTUALTABLE 6404 /* Opcode: VNext P1 P2 * * * 6405 ** 6406 ** Advance virtual table P1 to the next row in its result set and 6407 ** jump to instruction P2. Or, if the virtual table has reached 6408 ** the end of its result set, then fall through to the next instruction. 6409 */ 6410 case OP_VNext: { /* jump */ 6411 sqlite3_vtab *pVtab; 6412 const sqlite3_module *pModule; 6413 int res; 6414 VdbeCursor *pCur; 6415 6416 res = 0; 6417 pCur = p->apCsr[pOp->p1]; 6418 assert( pCur->eCurType==CURTYPE_VTAB ); 6419 if( pCur->nullRow ){ 6420 break; 6421 } 6422 pVtab = pCur->uc.pVCur->pVtab; 6423 pModule = pVtab->pModule; 6424 assert( pModule->xNext ); 6425 6426 /* Invoke the xNext() method of the module. There is no way for the 6427 ** underlying implementation to return an error if one occurs during 6428 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6429 ** data is available) and the error code returned when xColumn or 6430 ** some other method is next invoked on the save virtual table cursor. 6431 */ 6432 rc = pModule->xNext(pCur->uc.pVCur); 6433 sqlite3VtabImportErrmsg(p, pVtab); 6434 if( rc==SQLITE_OK ){ 6435 res = pModule->xEof(pCur->uc.pVCur); 6436 } 6437 VdbeBranchTaken(!res,2); 6438 if( !res ){ 6439 /* If there is data, jump to P2 */ 6440 goto jump_to_p2_and_check_for_interrupt; 6441 } 6442 goto check_for_interrupt; 6443 } 6444 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6445 6446 #ifndef SQLITE_OMIT_VIRTUALTABLE 6447 /* Opcode: VRename P1 * * P4 * 6448 ** 6449 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6450 ** This opcode invokes the corresponding xRename method. The value 6451 ** in register P1 is passed as the zName argument to the xRename method. 6452 */ 6453 case OP_VRename: { 6454 sqlite3_vtab *pVtab; 6455 Mem *pName; 6456 6457 pVtab = pOp->p4.pVtab->pVtab; 6458 pName = &aMem[pOp->p1]; 6459 assert( pVtab->pModule->xRename ); 6460 assert( memIsValid(pName) ); 6461 assert( p->readOnly==0 ); 6462 REGISTER_TRACE(pOp->p1, pName); 6463 assert( pName->flags & MEM_Str ); 6464 testcase( pName->enc==SQLITE_UTF8 ); 6465 testcase( pName->enc==SQLITE_UTF16BE ); 6466 testcase( pName->enc==SQLITE_UTF16LE ); 6467 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6468 if( rc==SQLITE_OK ){ 6469 rc = pVtab->pModule->xRename(pVtab, pName->z); 6470 sqlite3VtabImportErrmsg(p, pVtab); 6471 p->expired = 0; 6472 } 6473 break; 6474 } 6475 #endif 6476 6477 #ifndef SQLITE_OMIT_VIRTUALTABLE 6478 /* Opcode: VUpdate P1 P2 P3 P4 P5 6479 ** Synopsis: data=r[P3@P2] 6480 ** 6481 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6482 ** This opcode invokes the corresponding xUpdate method. P2 values 6483 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6484 ** invocation. The value in register (P3+P2-1) corresponds to the 6485 ** p2th element of the argv array passed to xUpdate. 6486 ** 6487 ** The xUpdate method will do a DELETE or an INSERT or both. 6488 ** The argv[0] element (which corresponds to memory cell P3) 6489 ** is the rowid of a row to delete. If argv[0] is NULL then no 6490 ** deletion occurs. The argv[1] element is the rowid of the new 6491 ** row. This can be NULL to have the virtual table select the new 6492 ** rowid for itself. The subsequent elements in the array are 6493 ** the values of columns in the new row. 6494 ** 6495 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6496 ** a row to delete. 6497 ** 6498 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6499 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6500 ** is set to the value of the rowid for the row just inserted. 6501 ** 6502 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6503 ** apply in the case of a constraint failure on an insert or update. 6504 */ 6505 case OP_VUpdate: { 6506 sqlite3_vtab *pVtab; 6507 const sqlite3_module *pModule; 6508 int nArg; 6509 int i; 6510 sqlite_int64 rowid; 6511 Mem **apArg; 6512 Mem *pX; 6513 6514 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6515 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6516 ); 6517 assert( p->readOnly==0 ); 6518 pVtab = pOp->p4.pVtab->pVtab; 6519 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6520 rc = SQLITE_LOCKED; 6521 break; 6522 } 6523 pModule = pVtab->pModule; 6524 nArg = pOp->p2; 6525 assert( pOp->p4type==P4_VTAB ); 6526 if( ALWAYS(pModule->xUpdate) ){ 6527 u8 vtabOnConflict = db->vtabOnConflict; 6528 apArg = p->apArg; 6529 pX = &aMem[pOp->p3]; 6530 for(i=0; i<nArg; i++){ 6531 assert( memIsValid(pX) ); 6532 memAboutToChange(p, pX); 6533 apArg[i] = pX; 6534 pX++; 6535 } 6536 db->vtabOnConflict = pOp->p5; 6537 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6538 db->vtabOnConflict = vtabOnConflict; 6539 sqlite3VtabImportErrmsg(p, pVtab); 6540 if( rc==SQLITE_OK && pOp->p1 ){ 6541 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6542 db->lastRowid = lastRowid = rowid; 6543 } 6544 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6545 if( pOp->p5==OE_Ignore ){ 6546 rc = SQLITE_OK; 6547 }else{ 6548 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6549 } 6550 }else{ 6551 p->nChange++; 6552 } 6553 } 6554 break; 6555 } 6556 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6557 6558 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6559 /* Opcode: Pagecount P1 P2 * * * 6560 ** 6561 ** Write the current number of pages in database P1 to memory cell P2. 6562 */ 6563 case OP_Pagecount: { /* out2 */ 6564 pOut = out2Prerelease(p, pOp); 6565 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6566 break; 6567 } 6568 #endif 6569 6570 6571 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6572 /* Opcode: MaxPgcnt P1 P2 P3 * * 6573 ** 6574 ** Try to set the maximum page count for database P1 to the value in P3. 6575 ** Do not let the maximum page count fall below the current page count and 6576 ** do not change the maximum page count value if P3==0. 6577 ** 6578 ** Store the maximum page count after the change in register P2. 6579 */ 6580 case OP_MaxPgcnt: { /* out2 */ 6581 unsigned int newMax; 6582 Btree *pBt; 6583 6584 pOut = out2Prerelease(p, pOp); 6585 pBt = db->aDb[pOp->p1].pBt; 6586 newMax = 0; 6587 if( pOp->p3 ){ 6588 newMax = sqlite3BtreeLastPage(pBt); 6589 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6590 } 6591 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6592 break; 6593 } 6594 #endif 6595 6596 6597 /* Opcode: Init * P2 * P4 * 6598 ** Synopsis: Start at P2 6599 ** 6600 ** Programs contain a single instance of this opcode as the very first 6601 ** opcode. 6602 ** 6603 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6604 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6605 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6606 ** 6607 ** If P2 is not zero, jump to instruction P2. 6608 */ 6609 case OP_Init: { /* jump */ 6610 char *zTrace; 6611 char *z; 6612 6613 #ifndef SQLITE_OMIT_TRACE 6614 if( db->xTrace 6615 && !p->doingRerun 6616 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6617 ){ 6618 z = sqlite3VdbeExpandSql(p, zTrace); 6619 db->xTrace(db->pTraceArg, z); 6620 sqlite3DbFree(db, z); 6621 } 6622 #ifdef SQLITE_USE_FCNTL_TRACE 6623 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6624 if( zTrace ){ 6625 int i; 6626 for(i=0; i<db->nDb; i++){ 6627 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6628 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6629 } 6630 } 6631 #endif /* SQLITE_USE_FCNTL_TRACE */ 6632 #ifdef SQLITE_DEBUG 6633 if( (db->flags & SQLITE_SqlTrace)!=0 6634 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6635 ){ 6636 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6637 } 6638 #endif /* SQLITE_DEBUG */ 6639 #endif /* SQLITE_OMIT_TRACE */ 6640 if( pOp->p2 ) goto jump_to_p2; 6641 break; 6642 } 6643 6644 #ifdef SQLITE_ENABLE_CURSOR_HINTS 6645 /* Opcode: CursorHint P1 * * P4 * 6646 ** 6647 ** Provide a hint to cursor P1 that it only needs to return rows that 6648 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 6649 ** to values currently held in registers. TK_COLUMN terms in the P4 6650 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 6651 */ 6652 case OP_CursorHint: { 6653 VdbeCursor *pC; 6654 6655 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6656 assert( pOp->p4type==P4_EXPR ); 6657 pC = p->apCsr[pOp->p1]; 6658 if( pC ){ 6659 assert( pC->eCurType==CURTYPE_BTREE ); 6660 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 6661 pOp->p4.pExpr, aMem); 6662 } 6663 break; 6664 } 6665 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 6666 6667 /* Opcode: Noop * * * * * 6668 ** 6669 ** Do nothing. This instruction is often useful as a jump 6670 ** destination. 6671 */ 6672 /* 6673 ** The magic Explain opcode are only inserted when explain==2 (which 6674 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6675 ** This opcode records information from the optimizer. It is the 6676 ** the same as a no-op. This opcodesnever appears in a real VM program. 6677 */ 6678 default: { /* This is really OP_Noop and OP_Explain */ 6679 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6680 break; 6681 } 6682 6683 /***************************************************************************** 6684 ** The cases of the switch statement above this line should all be indented 6685 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6686 ** readability. From this point on down, the normal indentation rules are 6687 ** restored. 6688 *****************************************************************************/ 6689 } 6690 6691 #ifdef VDBE_PROFILE 6692 { 6693 u64 endTime = sqlite3Hwtime(); 6694 if( endTime>start ) pOrigOp->cycles += endTime - start; 6695 pOrigOp->cnt++; 6696 } 6697 #endif 6698 6699 /* The following code adds nothing to the actual functionality 6700 ** of the program. It is only here for testing and debugging. 6701 ** On the other hand, it does burn CPU cycles every time through 6702 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6703 */ 6704 #ifndef NDEBUG 6705 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 6706 6707 #ifdef SQLITE_DEBUG 6708 if( db->flags & SQLITE_VdbeTrace ){ 6709 if( rc!=0 ) printf("rc=%d\n",rc); 6710 if( pOrigOp->opflags & (OPFLG_OUT2) ){ 6711 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 6712 } 6713 if( pOrigOp->opflags & OPFLG_OUT3 ){ 6714 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 6715 } 6716 } 6717 #endif /* SQLITE_DEBUG */ 6718 #endif /* NDEBUG */ 6719 } /* The end of the for(;;) loop the loops through opcodes */ 6720 6721 /* If we reach this point, it means that execution is finished with 6722 ** an error of some kind. 6723 */ 6724 vdbe_error_halt: 6725 assert( rc ); 6726 p->rc = rc; 6727 testcase( sqlite3GlobalConfig.xLog!=0 ); 6728 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6729 (int)(pOp - aOp), p->zSql, p->zErrMsg); 6730 sqlite3VdbeHalt(p); 6731 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6732 rc = SQLITE_ERROR; 6733 if( resetSchemaOnFault>0 ){ 6734 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6735 } 6736 6737 /* This is the only way out of this procedure. We have to 6738 ** release the mutexes on btrees that were acquired at the 6739 ** top. */ 6740 vdbe_return: 6741 db->lastRowid = lastRowid; 6742 testcase( nVmStep>0 ); 6743 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6744 sqlite3VdbeLeave(p); 6745 return rc; 6746 6747 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6748 ** is encountered. 6749 */ 6750 too_big: 6751 sqlite3VdbeError(p, "string or blob too big"); 6752 rc = SQLITE_TOOBIG; 6753 goto vdbe_error_halt; 6754 6755 /* Jump to here if a malloc() fails. 6756 */ 6757 no_mem: 6758 db->mallocFailed = 1; 6759 sqlite3VdbeError(p, "out of memory"); 6760 rc = SQLITE_NOMEM; 6761 goto vdbe_error_halt; 6762 6763 /* Jump to here for any other kind of fatal error. The "rc" variable 6764 ** should hold the error number. 6765 */ 6766 abort_due_to_error: 6767 assert( p->zErrMsg==0 ); 6768 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6769 if( rc!=SQLITE_IOERR_NOMEM ){ 6770 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 6771 } 6772 goto vdbe_error_halt; 6773 6774 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6775 ** flag. 6776 */ 6777 abort_due_to_interrupt: 6778 assert( db->u1.isInterrupted ); 6779 rc = SQLITE_INTERRUPT; 6780 p->rc = rc; 6781 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 6782 goto vdbe_error_halt; 6783 } 6784