1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** The next global variable is incremented each time the OP_Found opcode 91 ** is executed. This is used to test whether or not the foreign key 92 ** operation implemented using OP_FkIsZero is working. This variable 93 ** has no function other than to help verify the correct operation of the 94 ** library. 95 */ 96 #ifdef SQLITE_TEST 97 int sqlite3_found_count = 0; 98 #endif 99 100 /* 101 ** Test a register to see if it exceeds the current maximum blob size. 102 ** If it does, record the new maximum blob size. 103 */ 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 106 #else 107 # define UPDATE_MAX_BLOBSIZE(P) 108 #endif 109 110 /* 111 ** Invoke the VDBE coverage callback, if that callback is defined. This 112 ** feature is used for test suite validation only and does not appear an 113 ** production builds. 114 ** 115 ** M is an integer, 2 or 3, that indices how many different ways the 116 ** branch can go. It is usually 2. "I" is the direction the branch 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 118 ** second alternative branch is taken. 119 ** 120 ** iSrcLine is the source code line (from the __LINE__ macro) that 121 ** generated the VDBE instruction. This instrumentation assumes that all 122 ** source code is in a single file (the amalgamation). Special values 1 123 ** and 2 for the iSrcLine parameter mean that this particular branch is 124 ** always taken or never taken, respectively. 125 */ 126 #if !defined(SQLITE_VDBE_COVERAGE) 127 # define VdbeBranchTaken(I,M) 128 #else 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 132 M = iSrcLine; 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and 134 ** VdbeCoverageNeverTaken() */ 135 assert( (M & I)==I ); 136 }else{ 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 139 iSrcLine,I,M); 140 } 141 } 142 #endif 143 144 /* 145 ** Convert the given register into a string if it isn't one 146 ** already. Return non-zero if a malloc() fails. 147 */ 148 #define Stringify(P, enc) \ 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 150 { goto no_mem; } 151 152 /* 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 154 ** a pointer to a dynamically allocated string where some other entity 155 ** is responsible for deallocating that string. Because the register 156 ** does not control the string, it might be deleted without the register 157 ** knowing it. 158 ** 159 ** This routine converts an ephemeral string into a dynamically allocated 160 ** string that the register itself controls. In other words, it 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 162 */ 163 #define Deephemeralize(P) \ 164 if( ((P)->flags&MEM_Ephem)!=0 \ 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 166 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 168 #define isSorter(x) ((x)->pSorter!=0) 169 170 /* 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 172 ** if we run out of memory. 173 */ 174 static VdbeCursor *allocateCursor( 175 Vdbe *p, /* The virtual machine */ 176 int iCur, /* Index of the new VdbeCursor */ 177 int nField, /* Number of fields in the table or index */ 178 int iDb, /* Database the cursor belongs to, or -1 */ 179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 180 ){ 181 /* Find the memory cell that will be used to store the blob of memory 182 ** required for this VdbeCursor structure. It is convenient to use a 183 ** vdbe memory cell to manage the memory allocation required for a 184 ** VdbeCursor structure for the following reasons: 185 ** 186 ** * Sometimes cursor numbers are used for a couple of different 187 ** purposes in a vdbe program. The different uses might require 188 ** different sized allocations. Memory cells provide growable 189 ** allocations. 190 ** 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 192 ** be freed lazily via the sqlite3_release_memory() API. This 193 ** minimizes the number of malloc calls made by the system. 194 ** 195 ** Memory cells for cursors are allocated at the top of the address 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 198 */ 199 Mem *pMem = &p->aMem[p->nMem-iCur]; 200 201 int nByte; 202 VdbeCursor *pCx = 0; 203 nByte = 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 205 (isBtreeCursor?sqlite3BtreeCursorSize():0); 206 207 assert( iCur<p->nCursor ); 208 if( p->apCsr[iCur] ){ 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 210 p->apCsr[iCur] = 0; 211 } 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 214 memset(pCx, 0, sizeof(VdbeCursor)); 215 pCx->iDb = iDb; 216 pCx->nField = nField; 217 pCx->aOffset = &pCx->aType[nField]; 218 if( isBtreeCursor ){ 219 pCx->pCursor = (BtCursor*) 220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 221 sqlite3BtreeCursorZero(pCx->pCursor); 222 } 223 } 224 return pCx; 225 } 226 227 /* 228 ** Try to convert a value into a numeric representation if we can 229 ** do so without loss of information. In other words, if the string 230 ** looks like a number, convert it into a number. If it does not 231 ** look like a number, leave it alone. 232 ** 233 ** If the bTryForInt flag is true, then extra effort is made to give 234 ** an integer representation. Strings that look like floating point 235 ** values but which have no fractional component (example: '48.00') 236 ** will have a MEM_Int representation when bTryForInt is true. 237 ** 238 ** If bTryForInt is false, then if the input string contains a decimal 239 ** point or exponential notation, the result is only MEM_Real, even 240 ** if there is an exact integer representation of the quantity. 241 */ 242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 243 double rValue; 244 i64 iValue; 245 u8 enc = pRec->enc; 246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 249 pRec->u.i = iValue; 250 pRec->flags |= MEM_Int; 251 }else{ 252 pRec->u.r = rValue; 253 pRec->flags |= MEM_Real; 254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 255 } 256 } 257 258 /* 259 ** Processing is determine by the affinity parameter: 260 ** 261 ** SQLITE_AFF_INTEGER: 262 ** SQLITE_AFF_REAL: 263 ** SQLITE_AFF_NUMERIC: 264 ** Try to convert pRec to an integer representation or a 265 ** floating-point representation if an integer representation 266 ** is not possible. Note that the integer representation is 267 ** always preferred, even if the affinity is REAL, because 268 ** an integer representation is more space efficient on disk. 269 ** 270 ** SQLITE_AFF_TEXT: 271 ** Convert pRec to a text representation. 272 ** 273 ** SQLITE_AFF_NONE: 274 ** No-op. pRec is unchanged. 275 */ 276 static void applyAffinity( 277 Mem *pRec, /* The value to apply affinity to */ 278 char affinity, /* The affinity to be applied */ 279 u8 enc /* Use this text encoding */ 280 ){ 281 if( affinity>=SQLITE_AFF_NUMERIC ){ 282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 283 || affinity==SQLITE_AFF_NUMERIC ); 284 if( (pRec->flags & MEM_Int)==0 ){ 285 if( (pRec->flags & MEM_Real)==0 ){ 286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 287 }else{ 288 sqlite3VdbeIntegerAffinity(pRec); 289 } 290 } 291 }else if( affinity==SQLITE_AFF_TEXT ){ 292 /* Only attempt the conversion to TEXT if there is an integer or real 293 ** representation (blob and NULL do not get converted) but no string 294 ** representation. 295 */ 296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 297 sqlite3VdbeMemStringify(pRec, enc, 1); 298 } 299 } 300 } 301 302 /* 303 ** Try to convert the type of a function argument or a result column 304 ** into a numeric representation. Use either INTEGER or REAL whichever 305 ** is appropriate. But only do the conversion if it is possible without 306 ** loss of information and return the revised type of the argument. 307 */ 308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 309 int eType = sqlite3_value_type(pVal); 310 if( eType==SQLITE_TEXT ){ 311 Mem *pMem = (Mem*)pVal; 312 applyNumericAffinity(pMem, 0); 313 eType = sqlite3_value_type(pVal); 314 } 315 return eType; 316 } 317 318 /* 319 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 320 ** not the internal Mem* type. 321 */ 322 void sqlite3ValueApplyAffinity( 323 sqlite3_value *pVal, 324 u8 affinity, 325 u8 enc 326 ){ 327 applyAffinity((Mem *)pVal, affinity, enc); 328 } 329 330 /* 331 ** pMem currently only holds a string type (or maybe a BLOB that we can 332 ** interpret as a string if we want to). Compute its corresponding 333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 334 ** accordingly. 335 */ 336 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 340 return 0; 341 } 342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 343 return MEM_Int; 344 } 345 return MEM_Real; 346 } 347 348 /* 349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 350 ** none. 351 ** 352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 353 ** But it does set pMem->u.r and pMem->u.i appropriately. 354 */ 355 static u16 numericType(Mem *pMem){ 356 if( pMem->flags & (MEM_Int|MEM_Real) ){ 357 return pMem->flags & (MEM_Int|MEM_Real); 358 } 359 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 360 return computeNumericType(pMem); 361 } 362 return 0; 363 } 364 365 #ifdef SQLITE_DEBUG 366 /* 367 ** Write a nice string representation of the contents of cell pMem 368 ** into buffer zBuf, length nBuf. 369 */ 370 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 371 char *zCsr = zBuf; 372 int f = pMem->flags; 373 374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 375 376 if( f&MEM_Blob ){ 377 int i; 378 char c; 379 if( f & MEM_Dyn ){ 380 c = 'z'; 381 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 382 }else if( f & MEM_Static ){ 383 c = 't'; 384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 385 }else if( f & MEM_Ephem ){ 386 c = 'e'; 387 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 388 }else{ 389 c = 's'; 390 } 391 392 sqlite3_snprintf(100, zCsr, "%c", c); 393 zCsr += sqlite3Strlen30(zCsr); 394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 395 zCsr += sqlite3Strlen30(zCsr); 396 for(i=0; i<16 && i<pMem->n; i++){ 397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 398 zCsr += sqlite3Strlen30(zCsr); 399 } 400 for(i=0; i<16 && i<pMem->n; i++){ 401 char z = pMem->z[i]; 402 if( z<32 || z>126 ) *zCsr++ = '.'; 403 else *zCsr++ = z; 404 } 405 406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 407 zCsr += sqlite3Strlen30(zCsr); 408 if( f & MEM_Zero ){ 409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 410 zCsr += sqlite3Strlen30(zCsr); 411 } 412 *zCsr = '\0'; 413 }else if( f & MEM_Str ){ 414 int j, k; 415 zBuf[0] = ' '; 416 if( f & MEM_Dyn ){ 417 zBuf[1] = 'z'; 418 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 419 }else if( f & MEM_Static ){ 420 zBuf[1] = 't'; 421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 422 }else if( f & MEM_Ephem ){ 423 zBuf[1] = 'e'; 424 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 425 }else{ 426 zBuf[1] = 's'; 427 } 428 k = 2; 429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 430 k += sqlite3Strlen30(&zBuf[k]); 431 zBuf[k++] = '['; 432 for(j=0; j<15 && j<pMem->n; j++){ 433 u8 c = pMem->z[j]; 434 if( c>=0x20 && c<0x7f ){ 435 zBuf[k++] = c; 436 }else{ 437 zBuf[k++] = '.'; 438 } 439 } 440 zBuf[k++] = ']'; 441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 442 k += sqlite3Strlen30(&zBuf[k]); 443 zBuf[k++] = 0; 444 } 445 } 446 #endif 447 448 #ifdef SQLITE_DEBUG 449 /* 450 ** Print the value of a register for tracing purposes: 451 */ 452 static void memTracePrint(Mem *p){ 453 if( p->flags & MEM_Undefined ){ 454 printf(" undefined"); 455 }else if( p->flags & MEM_Null ){ 456 printf(" NULL"); 457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 458 printf(" si:%lld", p->u.i); 459 }else if( p->flags & MEM_Int ){ 460 printf(" i:%lld", p->u.i); 461 #ifndef SQLITE_OMIT_FLOATING_POINT 462 }else if( p->flags & MEM_Real ){ 463 printf(" r:%g", p->u.r); 464 #endif 465 }else if( p->flags & MEM_RowSet ){ 466 printf(" (rowset)"); 467 }else{ 468 char zBuf[200]; 469 sqlite3VdbeMemPrettyPrint(p, zBuf); 470 printf(" %s", zBuf); 471 } 472 } 473 static void registerTrace(int iReg, Mem *p){ 474 printf("REG[%d] = ", iReg); 475 memTracePrint(p); 476 printf("\n"); 477 } 478 #endif 479 480 #ifdef SQLITE_DEBUG 481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 482 #else 483 # define REGISTER_TRACE(R,M) 484 #endif 485 486 487 #ifdef VDBE_PROFILE 488 489 /* 490 ** hwtime.h contains inline assembler code for implementing 491 ** high-performance timing routines. 492 */ 493 #include "hwtime.h" 494 495 #endif 496 497 #ifndef NDEBUG 498 /* 499 ** This function is only called from within an assert() expression. It 500 ** checks that the sqlite3.nTransaction variable is correctly set to 501 ** the number of non-transaction savepoints currently in the 502 ** linked list starting at sqlite3.pSavepoint. 503 ** 504 ** Usage: 505 ** 506 ** assert( checkSavepointCount(db) ); 507 */ 508 static int checkSavepointCount(sqlite3 *db){ 509 int n = 0; 510 Savepoint *p; 511 for(p=db->pSavepoint; p; p=p->pNext) n++; 512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 513 return 1; 514 } 515 #endif 516 517 518 /* 519 ** Execute as much of a VDBE program as we can. 520 ** This is the core of sqlite3_step(). 521 */ 522 int sqlite3VdbeExec( 523 Vdbe *p /* The VDBE */ 524 ){ 525 int pc=0; /* The program counter */ 526 Op *aOp = p->aOp; /* Copy of p->aOp */ 527 Op *pOp; /* Current operation */ 528 int rc = SQLITE_OK; /* Value to return */ 529 sqlite3 *db = p->db; /* The database */ 530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 531 u8 encoding = ENC(db); /* The database encoding */ 532 int iCompare = 0; /* Result of last OP_Compare operation */ 533 unsigned nVmStep = 0; /* Number of virtual machine steps */ 534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 536 #endif 537 Mem *aMem = p->aMem; /* Copy of p->aMem */ 538 Mem *pIn1 = 0; /* 1st input operand */ 539 Mem *pIn2 = 0; /* 2nd input operand */ 540 Mem *pIn3 = 0; /* 3rd input operand */ 541 Mem *pOut = 0; /* Output operand */ 542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 544 #ifdef VDBE_PROFILE 545 u64 start; /* CPU clock count at start of opcode */ 546 #endif 547 /*** INSERT STACK UNION HERE ***/ 548 549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 550 sqlite3VdbeEnter(p); 551 if( p->rc==SQLITE_NOMEM ){ 552 /* This happens if a malloc() inside a call to sqlite3_column_text() or 553 ** sqlite3_column_text16() failed. */ 554 goto no_mem; 555 } 556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 557 assert( p->bIsReader || p->readOnly!=0 ); 558 p->rc = SQLITE_OK; 559 p->iCurrentTime = 0; 560 assert( p->explain==0 ); 561 p->pResultSet = 0; 562 db->busyHandler.nBusy = 0; 563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 564 sqlite3VdbeIOTraceSql(p); 565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 566 if( db->xProgress ){ 567 assert( 0 < db->nProgressOps ); 568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 569 if( nProgressLimit==0 ){ 570 nProgressLimit = db->nProgressOps; 571 }else{ 572 nProgressLimit %= (unsigned)db->nProgressOps; 573 } 574 } 575 #endif 576 #ifdef SQLITE_DEBUG 577 sqlite3BeginBenignMalloc(); 578 if( p->pc==0 579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 580 ){ 581 int i; 582 int once = 1; 583 sqlite3VdbePrintSql(p); 584 if( p->db->flags & SQLITE_VdbeListing ){ 585 printf("VDBE Program Listing:\n"); 586 for(i=0; i<p->nOp; i++){ 587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 588 } 589 } 590 if( p->db->flags & SQLITE_VdbeEQP ){ 591 for(i=0; i<p->nOp; i++){ 592 if( aOp[i].opcode==OP_Explain ){ 593 if( once ) printf("VDBE Query Plan:\n"); 594 printf("%s\n", aOp[i].p4.z); 595 once = 0; 596 } 597 } 598 } 599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 600 } 601 sqlite3EndBenignMalloc(); 602 #endif 603 for(pc=p->pc; rc==SQLITE_OK; pc++){ 604 assert( pc>=0 && pc<p->nOp ); 605 if( db->mallocFailed ) goto no_mem; 606 #ifdef VDBE_PROFILE 607 start = sqlite3Hwtime(); 608 #endif 609 nVmStep++; 610 pOp = &aOp[pc]; 611 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 612 if( p->anExec ) p->anExec[pc]++; 613 #endif 614 615 /* Only allow tracing if SQLITE_DEBUG is defined. 616 */ 617 #ifdef SQLITE_DEBUG 618 if( db->flags & SQLITE_VdbeTrace ){ 619 sqlite3VdbePrintOp(stdout, pc, pOp); 620 } 621 #endif 622 623 624 /* Check to see if we need to simulate an interrupt. This only happens 625 ** if we have a special test build. 626 */ 627 #ifdef SQLITE_TEST 628 if( sqlite3_interrupt_count>0 ){ 629 sqlite3_interrupt_count--; 630 if( sqlite3_interrupt_count==0 ){ 631 sqlite3_interrupt(db); 632 } 633 } 634 #endif 635 636 /* On any opcode with the "out2-prerelease" tag, free any 637 ** external allocations out of mem[p2] and set mem[p2] to be 638 ** an undefined integer. Opcodes will either fill in the integer 639 ** value or convert mem[p2] to a different type. 640 */ 641 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 642 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 643 assert( pOp->p2>0 ); 644 assert( pOp->p2<=(p->nMem-p->nCursor) ); 645 pOut = &aMem[pOp->p2]; 646 memAboutToChange(p, pOut); 647 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 648 pOut->flags = MEM_Int; 649 } 650 651 /* Sanity checking on other operands */ 652 #ifdef SQLITE_DEBUG 653 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 654 assert( pOp->p1>0 ); 655 assert( pOp->p1<=(p->nMem-p->nCursor) ); 656 assert( memIsValid(&aMem[pOp->p1]) ); 657 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 658 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 659 } 660 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 661 assert( pOp->p2>0 ); 662 assert( pOp->p2<=(p->nMem-p->nCursor) ); 663 assert( memIsValid(&aMem[pOp->p2]) ); 664 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 665 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 666 } 667 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 668 assert( pOp->p3>0 ); 669 assert( pOp->p3<=(p->nMem-p->nCursor) ); 670 assert( memIsValid(&aMem[pOp->p3]) ); 671 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 672 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 673 } 674 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 675 assert( pOp->p2>0 ); 676 assert( pOp->p2<=(p->nMem-p->nCursor) ); 677 memAboutToChange(p, &aMem[pOp->p2]); 678 } 679 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 680 assert( pOp->p3>0 ); 681 assert( pOp->p3<=(p->nMem-p->nCursor) ); 682 memAboutToChange(p, &aMem[pOp->p3]); 683 } 684 #endif 685 686 switch( pOp->opcode ){ 687 688 /***************************************************************************** 689 ** What follows is a massive switch statement where each case implements a 690 ** separate instruction in the virtual machine. If we follow the usual 691 ** indentation conventions, each case should be indented by 6 spaces. But 692 ** that is a lot of wasted space on the left margin. So the code within 693 ** the switch statement will break with convention and be flush-left. Another 694 ** big comment (similar to this one) will mark the point in the code where 695 ** we transition back to normal indentation. 696 ** 697 ** The formatting of each case is important. The makefile for SQLite 698 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 699 ** file looking for lines that begin with "case OP_". The opcodes.h files 700 ** will be filled with #defines that give unique integer values to each 701 ** opcode and the opcodes.c file is filled with an array of strings where 702 ** each string is the symbolic name for the corresponding opcode. If the 703 ** case statement is followed by a comment of the form "/# same as ... #/" 704 ** that comment is used to determine the particular value of the opcode. 705 ** 706 ** Other keywords in the comment that follows each case are used to 707 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 708 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 709 ** the mkopcodeh.awk script for additional information. 710 ** 711 ** Documentation about VDBE opcodes is generated by scanning this file 712 ** for lines of that contain "Opcode:". That line and all subsequent 713 ** comment lines are used in the generation of the opcode.html documentation 714 ** file. 715 ** 716 ** SUMMARY: 717 ** 718 ** Formatting is important to scripts that scan this file. 719 ** Do not deviate from the formatting style currently in use. 720 ** 721 *****************************************************************************/ 722 723 /* Opcode: Goto * P2 * * * 724 ** 725 ** An unconditional jump to address P2. 726 ** The next instruction executed will be 727 ** the one at index P2 from the beginning of 728 ** the program. 729 ** 730 ** The P1 parameter is not actually used by this opcode. However, it 731 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 732 ** that this Goto is the bottom of a loop and that the lines from P2 down 733 ** to the current line should be indented for EXPLAIN output. 734 */ 735 case OP_Goto: { /* jump */ 736 pc = pOp->p2 - 1; 737 738 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 739 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 740 ** completion. Check to see if sqlite3_interrupt() has been called 741 ** or if the progress callback needs to be invoked. 742 ** 743 ** This code uses unstructured "goto" statements and does not look clean. 744 ** But that is not due to sloppy coding habits. The code is written this 745 ** way for performance, to avoid having to run the interrupt and progress 746 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 747 ** faster according to "valgrind --tool=cachegrind" */ 748 check_for_interrupt: 749 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 750 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 751 /* Call the progress callback if it is configured and the required number 752 ** of VDBE ops have been executed (either since this invocation of 753 ** sqlite3VdbeExec() or since last time the progress callback was called). 754 ** If the progress callback returns non-zero, exit the virtual machine with 755 ** a return code SQLITE_ABORT. 756 */ 757 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 758 assert( db->nProgressOps!=0 ); 759 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 760 if( db->xProgress(db->pProgressArg) ){ 761 rc = SQLITE_INTERRUPT; 762 goto vdbe_error_halt; 763 } 764 } 765 #endif 766 767 break; 768 } 769 770 /* Opcode: Gosub P1 P2 * * * 771 ** 772 ** Write the current address onto register P1 773 ** and then jump to address P2. 774 */ 775 case OP_Gosub: { /* jump */ 776 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 777 pIn1 = &aMem[pOp->p1]; 778 assert( VdbeMemDynamic(pIn1)==0 ); 779 memAboutToChange(p, pIn1); 780 pIn1->flags = MEM_Int; 781 pIn1->u.i = pc; 782 REGISTER_TRACE(pOp->p1, pIn1); 783 pc = pOp->p2 - 1; 784 break; 785 } 786 787 /* Opcode: Return P1 * * * * 788 ** 789 ** Jump to the next instruction after the address in register P1. After 790 ** the jump, register P1 becomes undefined. 791 */ 792 case OP_Return: { /* in1 */ 793 pIn1 = &aMem[pOp->p1]; 794 assert( pIn1->flags==MEM_Int ); 795 pc = (int)pIn1->u.i; 796 pIn1->flags = MEM_Undefined; 797 break; 798 } 799 800 /* Opcode: InitCoroutine P1 P2 P3 * * 801 ** 802 ** Set up register P1 so that it will Yield to the coroutine 803 ** located at address P3. 804 ** 805 ** If P2!=0 then the coroutine implementation immediately follows 806 ** this opcode. So jump over the coroutine implementation to 807 ** address P2. 808 ** 809 ** See also: EndCoroutine 810 */ 811 case OP_InitCoroutine: { /* jump */ 812 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 813 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 814 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 815 pOut = &aMem[pOp->p1]; 816 assert( !VdbeMemDynamic(pOut) ); 817 pOut->u.i = pOp->p3 - 1; 818 pOut->flags = MEM_Int; 819 if( pOp->p2 ) pc = pOp->p2 - 1; 820 break; 821 } 822 823 /* Opcode: EndCoroutine P1 * * * * 824 ** 825 ** The instruction at the address in register P1 is a Yield. 826 ** Jump to the P2 parameter of that Yield. 827 ** After the jump, register P1 becomes undefined. 828 ** 829 ** See also: InitCoroutine 830 */ 831 case OP_EndCoroutine: { /* in1 */ 832 VdbeOp *pCaller; 833 pIn1 = &aMem[pOp->p1]; 834 assert( pIn1->flags==MEM_Int ); 835 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 836 pCaller = &aOp[pIn1->u.i]; 837 assert( pCaller->opcode==OP_Yield ); 838 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 839 pc = pCaller->p2 - 1; 840 pIn1->flags = MEM_Undefined; 841 break; 842 } 843 844 /* Opcode: Yield P1 P2 * * * 845 ** 846 ** Swap the program counter with the value in register P1. This 847 ** has the effect of yielding to a coroutine. 848 ** 849 ** If the coroutine that is launched by this instruction ends with 850 ** Yield or Return then continue to the next instruction. But if 851 ** the coroutine launched by this instruction ends with 852 ** EndCoroutine, then jump to P2 rather than continuing with the 853 ** next instruction. 854 ** 855 ** See also: InitCoroutine 856 */ 857 case OP_Yield: { /* in1, jump */ 858 int pcDest; 859 pIn1 = &aMem[pOp->p1]; 860 assert( VdbeMemDynamic(pIn1)==0 ); 861 pIn1->flags = MEM_Int; 862 pcDest = (int)pIn1->u.i; 863 pIn1->u.i = pc; 864 REGISTER_TRACE(pOp->p1, pIn1); 865 pc = pcDest; 866 break; 867 } 868 869 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 870 ** Synopsis: if r[P3]=null halt 871 ** 872 ** Check the value in register P3. If it is NULL then Halt using 873 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 874 ** value in register P3 is not NULL, then this routine is a no-op. 875 ** The P5 parameter should be 1. 876 */ 877 case OP_HaltIfNull: { /* in3 */ 878 pIn3 = &aMem[pOp->p3]; 879 if( (pIn3->flags & MEM_Null)==0 ) break; 880 /* Fall through into OP_Halt */ 881 } 882 883 /* Opcode: Halt P1 P2 * P4 P5 884 ** 885 ** Exit immediately. All open cursors, etc are closed 886 ** automatically. 887 ** 888 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 889 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 890 ** For errors, it can be some other value. If P1!=0 then P2 will determine 891 ** whether or not to rollback the current transaction. Do not rollback 892 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 893 ** then back out all changes that have occurred during this execution of the 894 ** VDBE, but do not rollback the transaction. 895 ** 896 ** If P4 is not null then it is an error message string. 897 ** 898 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 899 ** 900 ** 0: (no change) 901 ** 1: NOT NULL contraint failed: P4 902 ** 2: UNIQUE constraint failed: P4 903 ** 3: CHECK constraint failed: P4 904 ** 4: FOREIGN KEY constraint failed: P4 905 ** 906 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 907 ** omitted. 908 ** 909 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 910 ** every program. So a jump past the last instruction of the program 911 ** is the same as executing Halt. 912 */ 913 case OP_Halt: { 914 const char *zType; 915 const char *zLogFmt; 916 917 if( pOp->p1==SQLITE_OK && p->pFrame ){ 918 /* Halt the sub-program. Return control to the parent frame. */ 919 VdbeFrame *pFrame = p->pFrame; 920 p->pFrame = pFrame->pParent; 921 p->nFrame--; 922 sqlite3VdbeSetChanges(db, p->nChange); 923 pc = sqlite3VdbeFrameRestore(pFrame); 924 lastRowid = db->lastRowid; 925 if( pOp->p2==OE_Ignore ){ 926 /* Instruction pc is the OP_Program that invoked the sub-program 927 ** currently being halted. If the p2 instruction of this OP_Halt 928 ** instruction is set to OE_Ignore, then the sub-program is throwing 929 ** an IGNORE exception. In this case jump to the address specified 930 ** as the p2 of the calling OP_Program. */ 931 pc = p->aOp[pc].p2-1; 932 } 933 aOp = p->aOp; 934 aMem = p->aMem; 935 break; 936 } 937 p->rc = pOp->p1; 938 p->errorAction = (u8)pOp->p2; 939 p->pc = pc; 940 if( p->rc ){ 941 if( pOp->p5 ){ 942 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 943 "FOREIGN KEY" }; 944 assert( pOp->p5>=1 && pOp->p5<=4 ); 945 testcase( pOp->p5==1 ); 946 testcase( pOp->p5==2 ); 947 testcase( pOp->p5==3 ); 948 testcase( pOp->p5==4 ); 949 zType = azType[pOp->p5-1]; 950 }else{ 951 zType = 0; 952 } 953 assert( zType!=0 || pOp->p4.z!=0 ); 954 zLogFmt = "abort at %d in [%s]: %s"; 955 if( zType && pOp->p4.z ){ 956 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 957 zType, pOp->p4.z); 958 }else if( pOp->p4.z ){ 959 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 960 }else{ 961 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 962 } 963 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 964 } 965 rc = sqlite3VdbeHalt(p); 966 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 967 if( rc==SQLITE_BUSY ){ 968 p->rc = rc = SQLITE_BUSY; 969 }else{ 970 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 971 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 972 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 973 } 974 goto vdbe_return; 975 } 976 977 /* Opcode: Integer P1 P2 * * * 978 ** Synopsis: r[P2]=P1 979 ** 980 ** The 32-bit integer value P1 is written into register P2. 981 */ 982 case OP_Integer: { /* out2-prerelease */ 983 pOut->u.i = pOp->p1; 984 break; 985 } 986 987 /* Opcode: Int64 * P2 * P4 * 988 ** Synopsis: r[P2]=P4 989 ** 990 ** P4 is a pointer to a 64-bit integer value. 991 ** Write that value into register P2. 992 */ 993 case OP_Int64: { /* out2-prerelease */ 994 assert( pOp->p4.pI64!=0 ); 995 pOut->u.i = *pOp->p4.pI64; 996 break; 997 } 998 999 #ifndef SQLITE_OMIT_FLOATING_POINT 1000 /* Opcode: Real * P2 * P4 * 1001 ** Synopsis: r[P2]=P4 1002 ** 1003 ** P4 is a pointer to a 64-bit floating point value. 1004 ** Write that value into register P2. 1005 */ 1006 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 1007 pOut->flags = MEM_Real; 1008 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1009 pOut->u.r = *pOp->p4.pReal; 1010 break; 1011 } 1012 #endif 1013 1014 /* Opcode: String8 * P2 * P4 * 1015 ** Synopsis: r[P2]='P4' 1016 ** 1017 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1018 ** into a String before it is executed for the first time. During 1019 ** this transformation, the length of string P4 is computed and stored 1020 ** as the P1 parameter. 1021 */ 1022 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 1023 assert( pOp->p4.z!=0 ); 1024 pOp->opcode = OP_String; 1025 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1026 1027 #ifndef SQLITE_OMIT_UTF16 1028 if( encoding!=SQLITE_UTF8 ){ 1029 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1030 if( rc==SQLITE_TOOBIG ) goto too_big; 1031 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1032 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1033 assert( VdbeMemDynamic(pOut)==0 ); 1034 pOut->szMalloc = 0; 1035 pOut->flags |= MEM_Static; 1036 if( pOp->p4type==P4_DYNAMIC ){ 1037 sqlite3DbFree(db, pOp->p4.z); 1038 } 1039 pOp->p4type = P4_DYNAMIC; 1040 pOp->p4.z = pOut->z; 1041 pOp->p1 = pOut->n; 1042 } 1043 #endif 1044 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1045 goto too_big; 1046 } 1047 /* Fall through to the next case, OP_String */ 1048 } 1049 1050 /* Opcode: String P1 P2 * P4 * 1051 ** Synopsis: r[P2]='P4' (len=P1) 1052 ** 1053 ** The string value P4 of length P1 (bytes) is stored in register P2. 1054 */ 1055 case OP_String: { /* out2-prerelease */ 1056 assert( pOp->p4.z!=0 ); 1057 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1058 pOut->z = pOp->p4.z; 1059 pOut->n = pOp->p1; 1060 pOut->enc = encoding; 1061 UPDATE_MAX_BLOBSIZE(pOut); 1062 break; 1063 } 1064 1065 /* Opcode: Null P1 P2 P3 * * 1066 ** Synopsis: r[P2..P3]=NULL 1067 ** 1068 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1069 ** NULL into register P3 and every register in between P2 and P3. If P3 1070 ** is less than P2 (typically P3 is zero) then only register P2 is 1071 ** set to NULL. 1072 ** 1073 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1074 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1075 ** OP_Ne or OP_Eq. 1076 */ 1077 case OP_Null: { /* out2-prerelease */ 1078 int cnt; 1079 u16 nullFlag; 1080 cnt = pOp->p3-pOp->p2; 1081 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1082 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1083 while( cnt>0 ){ 1084 pOut++; 1085 memAboutToChange(p, pOut); 1086 sqlite3VdbeMemSetNull(pOut); 1087 pOut->flags = nullFlag; 1088 cnt--; 1089 } 1090 break; 1091 } 1092 1093 /* Opcode: SoftNull P1 * * * * 1094 ** Synopsis: r[P1]=NULL 1095 ** 1096 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1097 ** instruction, but do not free any string or blob memory associated with 1098 ** the register, so that if the value was a string or blob that was 1099 ** previously copied using OP_SCopy, the copies will continue to be valid. 1100 */ 1101 case OP_SoftNull: { 1102 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 1103 pOut = &aMem[pOp->p1]; 1104 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1105 break; 1106 } 1107 1108 /* Opcode: Blob P1 P2 * P4 * 1109 ** Synopsis: r[P2]=P4 (len=P1) 1110 ** 1111 ** P4 points to a blob of data P1 bytes long. Store this 1112 ** blob in register P2. 1113 */ 1114 case OP_Blob: { /* out2-prerelease */ 1115 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1116 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1117 pOut->enc = encoding; 1118 UPDATE_MAX_BLOBSIZE(pOut); 1119 break; 1120 } 1121 1122 /* Opcode: Variable P1 P2 * P4 * 1123 ** Synopsis: r[P2]=parameter(P1,P4) 1124 ** 1125 ** Transfer the values of bound parameter P1 into register P2 1126 ** 1127 ** If the parameter is named, then its name appears in P4. 1128 ** The P4 value is used by sqlite3_bind_parameter_name(). 1129 */ 1130 case OP_Variable: { /* out2-prerelease */ 1131 Mem *pVar; /* Value being transferred */ 1132 1133 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1134 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1135 pVar = &p->aVar[pOp->p1 - 1]; 1136 if( sqlite3VdbeMemTooBig(pVar) ){ 1137 goto too_big; 1138 } 1139 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1140 UPDATE_MAX_BLOBSIZE(pOut); 1141 break; 1142 } 1143 1144 /* Opcode: Move P1 P2 P3 * * 1145 ** Synopsis: r[P2@P3]=r[P1@P3] 1146 ** 1147 ** Move the P3 values in register P1..P1+P3-1 over into 1148 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1149 ** left holding a NULL. It is an error for register ranges 1150 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1151 ** for P3 to be less than 1. 1152 */ 1153 case OP_Move: { 1154 int n; /* Number of registers left to copy */ 1155 int p1; /* Register to copy from */ 1156 int p2; /* Register to copy to */ 1157 1158 n = pOp->p3; 1159 p1 = pOp->p1; 1160 p2 = pOp->p2; 1161 assert( n>0 && p1>0 && p2>0 ); 1162 assert( p1+n<=p2 || p2+n<=p1 ); 1163 1164 pIn1 = &aMem[p1]; 1165 pOut = &aMem[p2]; 1166 do{ 1167 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1168 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1169 assert( memIsValid(pIn1) ); 1170 memAboutToChange(p, pOut); 1171 sqlite3VdbeMemMove(pOut, pIn1); 1172 #ifdef SQLITE_DEBUG 1173 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1174 pOut->pScopyFrom += p1 - pOp->p2; 1175 } 1176 #endif 1177 REGISTER_TRACE(p2++, pOut); 1178 pIn1++; 1179 pOut++; 1180 }while( --n ); 1181 break; 1182 } 1183 1184 /* Opcode: Copy P1 P2 P3 * * 1185 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1186 ** 1187 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1188 ** 1189 ** This instruction makes a deep copy of the value. A duplicate 1190 ** is made of any string or blob constant. See also OP_SCopy. 1191 */ 1192 case OP_Copy: { 1193 int n; 1194 1195 n = pOp->p3; 1196 pIn1 = &aMem[pOp->p1]; 1197 pOut = &aMem[pOp->p2]; 1198 assert( pOut!=pIn1 ); 1199 while( 1 ){ 1200 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1201 Deephemeralize(pOut); 1202 #ifdef SQLITE_DEBUG 1203 pOut->pScopyFrom = 0; 1204 #endif 1205 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1206 if( (n--)==0 ) break; 1207 pOut++; 1208 pIn1++; 1209 } 1210 break; 1211 } 1212 1213 /* Opcode: SCopy P1 P2 * * * 1214 ** Synopsis: r[P2]=r[P1] 1215 ** 1216 ** Make a shallow copy of register P1 into register P2. 1217 ** 1218 ** This instruction makes a shallow copy of the value. If the value 1219 ** is a string or blob, then the copy is only a pointer to the 1220 ** original and hence if the original changes so will the copy. 1221 ** Worse, if the original is deallocated, the copy becomes invalid. 1222 ** Thus the program must guarantee that the original will not change 1223 ** during the lifetime of the copy. Use OP_Copy to make a complete 1224 ** copy. 1225 */ 1226 case OP_SCopy: { /* out2 */ 1227 pIn1 = &aMem[pOp->p1]; 1228 pOut = &aMem[pOp->p2]; 1229 assert( pOut!=pIn1 ); 1230 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1231 #ifdef SQLITE_DEBUG 1232 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1233 #endif 1234 break; 1235 } 1236 1237 /* Opcode: ResultRow P1 P2 * * * 1238 ** Synopsis: output=r[P1@P2] 1239 ** 1240 ** The registers P1 through P1+P2-1 contain a single row of 1241 ** results. This opcode causes the sqlite3_step() call to terminate 1242 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1243 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1244 ** the result row. 1245 */ 1246 case OP_ResultRow: { 1247 Mem *pMem; 1248 int i; 1249 assert( p->nResColumn==pOp->p2 ); 1250 assert( pOp->p1>0 ); 1251 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1252 1253 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1254 /* Run the progress counter just before returning. 1255 */ 1256 if( db->xProgress!=0 1257 && nVmStep>=nProgressLimit 1258 && db->xProgress(db->pProgressArg)!=0 1259 ){ 1260 rc = SQLITE_INTERRUPT; 1261 goto vdbe_error_halt; 1262 } 1263 #endif 1264 1265 /* If this statement has violated immediate foreign key constraints, do 1266 ** not return the number of rows modified. And do not RELEASE the statement 1267 ** transaction. It needs to be rolled back. */ 1268 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1269 assert( db->flags&SQLITE_CountRows ); 1270 assert( p->usesStmtJournal ); 1271 break; 1272 } 1273 1274 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1275 ** DML statements invoke this opcode to return the number of rows 1276 ** modified to the user. This is the only way that a VM that 1277 ** opens a statement transaction may invoke this opcode. 1278 ** 1279 ** In case this is such a statement, close any statement transaction 1280 ** opened by this VM before returning control to the user. This is to 1281 ** ensure that statement-transactions are always nested, not overlapping. 1282 ** If the open statement-transaction is not closed here, then the user 1283 ** may step another VM that opens its own statement transaction. This 1284 ** may lead to overlapping statement transactions. 1285 ** 1286 ** The statement transaction is never a top-level transaction. Hence 1287 ** the RELEASE call below can never fail. 1288 */ 1289 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1290 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1291 if( NEVER(rc!=SQLITE_OK) ){ 1292 break; 1293 } 1294 1295 /* Invalidate all ephemeral cursor row caches */ 1296 p->cacheCtr = (p->cacheCtr + 2)|1; 1297 1298 /* Make sure the results of the current row are \000 terminated 1299 ** and have an assigned type. The results are de-ephemeralized as 1300 ** a side effect. 1301 */ 1302 pMem = p->pResultSet = &aMem[pOp->p1]; 1303 for(i=0; i<pOp->p2; i++){ 1304 assert( memIsValid(&pMem[i]) ); 1305 Deephemeralize(&pMem[i]); 1306 assert( (pMem[i].flags & MEM_Ephem)==0 1307 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1308 sqlite3VdbeMemNulTerminate(&pMem[i]); 1309 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1310 } 1311 if( db->mallocFailed ) goto no_mem; 1312 1313 /* Return SQLITE_ROW 1314 */ 1315 p->pc = pc + 1; 1316 rc = SQLITE_ROW; 1317 goto vdbe_return; 1318 } 1319 1320 /* Opcode: Concat P1 P2 P3 * * 1321 ** Synopsis: r[P3]=r[P2]+r[P1] 1322 ** 1323 ** Add the text in register P1 onto the end of the text in 1324 ** register P2 and store the result in register P3. 1325 ** If either the P1 or P2 text are NULL then store NULL in P3. 1326 ** 1327 ** P3 = P2 || P1 1328 ** 1329 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1330 ** if P3 is the same register as P2, the implementation is able 1331 ** to avoid a memcpy(). 1332 */ 1333 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1334 i64 nByte; 1335 1336 pIn1 = &aMem[pOp->p1]; 1337 pIn2 = &aMem[pOp->p2]; 1338 pOut = &aMem[pOp->p3]; 1339 assert( pIn1!=pOut ); 1340 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1341 sqlite3VdbeMemSetNull(pOut); 1342 break; 1343 } 1344 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1345 Stringify(pIn1, encoding); 1346 Stringify(pIn2, encoding); 1347 nByte = pIn1->n + pIn2->n; 1348 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1349 goto too_big; 1350 } 1351 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1352 goto no_mem; 1353 } 1354 MemSetTypeFlag(pOut, MEM_Str); 1355 if( pOut!=pIn2 ){ 1356 memcpy(pOut->z, pIn2->z, pIn2->n); 1357 } 1358 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1359 pOut->z[nByte]=0; 1360 pOut->z[nByte+1] = 0; 1361 pOut->flags |= MEM_Term; 1362 pOut->n = (int)nByte; 1363 pOut->enc = encoding; 1364 UPDATE_MAX_BLOBSIZE(pOut); 1365 break; 1366 } 1367 1368 /* Opcode: Add P1 P2 P3 * * 1369 ** Synopsis: r[P3]=r[P1]+r[P2] 1370 ** 1371 ** Add the value in register P1 to the value in register P2 1372 ** and store the result in register P3. 1373 ** If either input is NULL, the result is NULL. 1374 */ 1375 /* Opcode: Multiply P1 P2 P3 * * 1376 ** Synopsis: r[P3]=r[P1]*r[P2] 1377 ** 1378 ** 1379 ** Multiply the value in register P1 by the value in register P2 1380 ** and store the result in register P3. 1381 ** If either input is NULL, the result is NULL. 1382 */ 1383 /* Opcode: Subtract P1 P2 P3 * * 1384 ** Synopsis: r[P3]=r[P2]-r[P1] 1385 ** 1386 ** Subtract the value in register P1 from the value in register P2 1387 ** and store the result in register P3. 1388 ** If either input is NULL, the result is NULL. 1389 */ 1390 /* Opcode: Divide P1 P2 P3 * * 1391 ** Synopsis: r[P3]=r[P2]/r[P1] 1392 ** 1393 ** Divide the value in register P1 by the value in register P2 1394 ** and store the result in register P3 (P3=P2/P1). If the value in 1395 ** register P1 is zero, then the result is NULL. If either input is 1396 ** NULL, the result is NULL. 1397 */ 1398 /* Opcode: Remainder P1 P2 P3 * * 1399 ** Synopsis: r[P3]=r[P2]%r[P1] 1400 ** 1401 ** Compute the remainder after integer register P2 is divided by 1402 ** register P1 and store the result in register P3. 1403 ** If the value in register P1 is zero the result is NULL. 1404 ** If either operand is NULL, the result is NULL. 1405 */ 1406 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1407 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1408 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1409 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1410 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1411 char bIntint; /* Started out as two integer operands */ 1412 u16 flags; /* Combined MEM_* flags from both inputs */ 1413 u16 type1; /* Numeric type of left operand */ 1414 u16 type2; /* Numeric type of right operand */ 1415 i64 iA; /* Integer value of left operand */ 1416 i64 iB; /* Integer value of right operand */ 1417 double rA; /* Real value of left operand */ 1418 double rB; /* Real value of right operand */ 1419 1420 pIn1 = &aMem[pOp->p1]; 1421 type1 = numericType(pIn1); 1422 pIn2 = &aMem[pOp->p2]; 1423 type2 = numericType(pIn2); 1424 pOut = &aMem[pOp->p3]; 1425 flags = pIn1->flags | pIn2->flags; 1426 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1427 if( (type1 & type2 & MEM_Int)!=0 ){ 1428 iA = pIn1->u.i; 1429 iB = pIn2->u.i; 1430 bIntint = 1; 1431 switch( pOp->opcode ){ 1432 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1433 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1434 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1435 case OP_Divide: { 1436 if( iA==0 ) goto arithmetic_result_is_null; 1437 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1438 iB /= iA; 1439 break; 1440 } 1441 default: { 1442 if( iA==0 ) goto arithmetic_result_is_null; 1443 if( iA==-1 ) iA = 1; 1444 iB %= iA; 1445 break; 1446 } 1447 } 1448 pOut->u.i = iB; 1449 MemSetTypeFlag(pOut, MEM_Int); 1450 }else{ 1451 bIntint = 0; 1452 fp_math: 1453 rA = sqlite3VdbeRealValue(pIn1); 1454 rB = sqlite3VdbeRealValue(pIn2); 1455 switch( pOp->opcode ){ 1456 case OP_Add: rB += rA; break; 1457 case OP_Subtract: rB -= rA; break; 1458 case OP_Multiply: rB *= rA; break; 1459 case OP_Divide: { 1460 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1461 if( rA==(double)0 ) goto arithmetic_result_is_null; 1462 rB /= rA; 1463 break; 1464 } 1465 default: { 1466 iA = (i64)rA; 1467 iB = (i64)rB; 1468 if( iA==0 ) goto arithmetic_result_is_null; 1469 if( iA==-1 ) iA = 1; 1470 rB = (double)(iB % iA); 1471 break; 1472 } 1473 } 1474 #ifdef SQLITE_OMIT_FLOATING_POINT 1475 pOut->u.i = rB; 1476 MemSetTypeFlag(pOut, MEM_Int); 1477 #else 1478 if( sqlite3IsNaN(rB) ){ 1479 goto arithmetic_result_is_null; 1480 } 1481 pOut->u.r = rB; 1482 MemSetTypeFlag(pOut, MEM_Real); 1483 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1484 sqlite3VdbeIntegerAffinity(pOut); 1485 } 1486 #endif 1487 } 1488 break; 1489 1490 arithmetic_result_is_null: 1491 sqlite3VdbeMemSetNull(pOut); 1492 break; 1493 } 1494 1495 /* Opcode: CollSeq P1 * * P4 1496 ** 1497 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1498 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1499 ** be returned. This is used by the built-in min(), max() and nullif() 1500 ** functions. 1501 ** 1502 ** If P1 is not zero, then it is a register that a subsequent min() or 1503 ** max() aggregate will set to 1 if the current row is not the minimum or 1504 ** maximum. The P1 register is initialized to 0 by this instruction. 1505 ** 1506 ** The interface used by the implementation of the aforementioned functions 1507 ** to retrieve the collation sequence set by this opcode is not available 1508 ** publicly, only to user functions defined in func.c. 1509 */ 1510 case OP_CollSeq: { 1511 assert( pOp->p4type==P4_COLLSEQ ); 1512 if( pOp->p1 ){ 1513 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1514 } 1515 break; 1516 } 1517 1518 /* Opcode: Function P1 P2 P3 P4 P5 1519 ** Synopsis: r[P3]=func(r[P2@P5]) 1520 ** 1521 ** Invoke a user function (P4 is a pointer to a Function structure that 1522 ** defines the function) with P5 arguments taken from register P2 and 1523 ** successors. The result of the function is stored in register P3. 1524 ** Register P3 must not be one of the function inputs. 1525 ** 1526 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1527 ** function was determined to be constant at compile time. If the first 1528 ** argument was constant then bit 0 of P1 is set. This is used to determine 1529 ** whether meta data associated with a user function argument using the 1530 ** sqlite3_set_auxdata() API may be safely retained until the next 1531 ** invocation of this opcode. 1532 ** 1533 ** See also: AggStep and AggFinal 1534 */ 1535 case OP_Function: { 1536 int i; 1537 Mem *pArg; 1538 sqlite3_context ctx; 1539 sqlite3_value **apVal; 1540 int n; 1541 1542 n = pOp->p5; 1543 apVal = p->apArg; 1544 assert( apVal || n==0 ); 1545 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1546 ctx.pOut = &aMem[pOp->p3]; 1547 memAboutToChange(p, ctx.pOut); 1548 1549 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1550 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1551 pArg = &aMem[pOp->p2]; 1552 for(i=0; i<n; i++, pArg++){ 1553 assert( memIsValid(pArg) ); 1554 apVal[i] = pArg; 1555 Deephemeralize(pArg); 1556 REGISTER_TRACE(pOp->p2+i, pArg); 1557 } 1558 1559 assert( pOp->p4type==P4_FUNCDEF ); 1560 ctx.pFunc = pOp->p4.pFunc; 1561 ctx.iOp = pc; 1562 ctx.pVdbe = p; 1563 MemSetTypeFlag(ctx.pOut, MEM_Null); 1564 ctx.fErrorOrAux = 0; 1565 db->lastRowid = lastRowid; 1566 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1567 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ 1568 1569 /* If the function returned an error, throw an exception */ 1570 if( ctx.fErrorOrAux ){ 1571 if( ctx.isError ){ 1572 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); 1573 rc = ctx.isError; 1574 } 1575 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1576 } 1577 1578 /* Copy the result of the function into register P3 */ 1579 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); 1580 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ 1581 goto too_big; 1582 } 1583 1584 REGISTER_TRACE(pOp->p3, ctx.pOut); 1585 UPDATE_MAX_BLOBSIZE(ctx.pOut); 1586 break; 1587 } 1588 1589 /* Opcode: BitAnd P1 P2 P3 * * 1590 ** Synopsis: r[P3]=r[P1]&r[P2] 1591 ** 1592 ** Take the bit-wise AND of the values in register P1 and P2 and 1593 ** store the result in register P3. 1594 ** If either input is NULL, the result is NULL. 1595 */ 1596 /* Opcode: BitOr P1 P2 P3 * * 1597 ** Synopsis: r[P3]=r[P1]|r[P2] 1598 ** 1599 ** Take the bit-wise OR of the values in register P1 and P2 and 1600 ** store the result in register P3. 1601 ** If either input is NULL, the result is NULL. 1602 */ 1603 /* Opcode: ShiftLeft P1 P2 P3 * * 1604 ** Synopsis: r[P3]=r[P2]<<r[P1] 1605 ** 1606 ** Shift the integer value in register P2 to the left by the 1607 ** number of bits specified by the integer in register P1. 1608 ** Store the result in register P3. 1609 ** If either input is NULL, the result is NULL. 1610 */ 1611 /* Opcode: ShiftRight P1 P2 P3 * * 1612 ** Synopsis: r[P3]=r[P2]>>r[P1] 1613 ** 1614 ** Shift the integer value in register P2 to the right by the 1615 ** number of bits specified by the integer in register P1. 1616 ** Store the result in register P3. 1617 ** If either input is NULL, the result is NULL. 1618 */ 1619 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1620 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1621 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1622 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1623 i64 iA; 1624 u64 uA; 1625 i64 iB; 1626 u8 op; 1627 1628 pIn1 = &aMem[pOp->p1]; 1629 pIn2 = &aMem[pOp->p2]; 1630 pOut = &aMem[pOp->p3]; 1631 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1632 sqlite3VdbeMemSetNull(pOut); 1633 break; 1634 } 1635 iA = sqlite3VdbeIntValue(pIn2); 1636 iB = sqlite3VdbeIntValue(pIn1); 1637 op = pOp->opcode; 1638 if( op==OP_BitAnd ){ 1639 iA &= iB; 1640 }else if( op==OP_BitOr ){ 1641 iA |= iB; 1642 }else if( iB!=0 ){ 1643 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1644 1645 /* If shifting by a negative amount, shift in the other direction */ 1646 if( iB<0 ){ 1647 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1648 op = 2*OP_ShiftLeft + 1 - op; 1649 iB = iB>(-64) ? -iB : 64; 1650 } 1651 1652 if( iB>=64 ){ 1653 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1654 }else{ 1655 memcpy(&uA, &iA, sizeof(uA)); 1656 if( op==OP_ShiftLeft ){ 1657 uA <<= iB; 1658 }else{ 1659 uA >>= iB; 1660 /* Sign-extend on a right shift of a negative number */ 1661 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1662 } 1663 memcpy(&iA, &uA, sizeof(iA)); 1664 } 1665 } 1666 pOut->u.i = iA; 1667 MemSetTypeFlag(pOut, MEM_Int); 1668 break; 1669 } 1670 1671 /* Opcode: AddImm P1 P2 * * * 1672 ** Synopsis: r[P1]=r[P1]+P2 1673 ** 1674 ** Add the constant P2 to the value in register P1. 1675 ** The result is always an integer. 1676 ** 1677 ** To force any register to be an integer, just add 0. 1678 */ 1679 case OP_AddImm: { /* in1 */ 1680 pIn1 = &aMem[pOp->p1]; 1681 memAboutToChange(p, pIn1); 1682 sqlite3VdbeMemIntegerify(pIn1); 1683 pIn1->u.i += pOp->p2; 1684 break; 1685 } 1686 1687 /* Opcode: MustBeInt P1 P2 * * * 1688 ** 1689 ** Force the value in register P1 to be an integer. If the value 1690 ** in P1 is not an integer and cannot be converted into an integer 1691 ** without data loss, then jump immediately to P2, or if P2==0 1692 ** raise an SQLITE_MISMATCH exception. 1693 */ 1694 case OP_MustBeInt: { /* jump, in1 */ 1695 pIn1 = &aMem[pOp->p1]; 1696 if( (pIn1->flags & MEM_Int)==0 ){ 1697 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1698 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1699 if( (pIn1->flags & MEM_Int)==0 ){ 1700 if( pOp->p2==0 ){ 1701 rc = SQLITE_MISMATCH; 1702 goto abort_due_to_error; 1703 }else{ 1704 pc = pOp->p2 - 1; 1705 break; 1706 } 1707 } 1708 } 1709 MemSetTypeFlag(pIn1, MEM_Int); 1710 break; 1711 } 1712 1713 #ifndef SQLITE_OMIT_FLOATING_POINT 1714 /* Opcode: RealAffinity P1 * * * * 1715 ** 1716 ** If register P1 holds an integer convert it to a real value. 1717 ** 1718 ** This opcode is used when extracting information from a column that 1719 ** has REAL affinity. Such column values may still be stored as 1720 ** integers, for space efficiency, but after extraction we want them 1721 ** to have only a real value. 1722 */ 1723 case OP_RealAffinity: { /* in1 */ 1724 pIn1 = &aMem[pOp->p1]; 1725 if( pIn1->flags & MEM_Int ){ 1726 sqlite3VdbeMemRealify(pIn1); 1727 } 1728 break; 1729 } 1730 #endif 1731 1732 #ifndef SQLITE_OMIT_CAST 1733 /* Opcode: Cast P1 P2 * * * 1734 ** Synopsis: affinity(r[P1]) 1735 ** 1736 ** Force the value in register P1 to be the type defined by P2. 1737 ** 1738 ** <ul> 1739 ** <li value="97"> TEXT 1740 ** <li value="98"> BLOB 1741 ** <li value="99"> NUMERIC 1742 ** <li value="100"> INTEGER 1743 ** <li value="101"> REAL 1744 ** </ul> 1745 ** 1746 ** A NULL value is not changed by this routine. It remains NULL. 1747 */ 1748 case OP_Cast: { /* in1 */ 1749 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); 1750 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1751 testcase( pOp->p2==SQLITE_AFF_NONE ); 1752 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1753 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1754 testcase( pOp->p2==SQLITE_AFF_REAL ); 1755 pIn1 = &aMem[pOp->p1]; 1756 memAboutToChange(p, pIn1); 1757 rc = ExpandBlob(pIn1); 1758 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1759 UPDATE_MAX_BLOBSIZE(pIn1); 1760 break; 1761 } 1762 #endif /* SQLITE_OMIT_CAST */ 1763 1764 /* Opcode: Lt P1 P2 P3 P4 P5 1765 ** Synopsis: if r[P1]<r[P3] goto P2 1766 ** 1767 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1768 ** jump to address P2. 1769 ** 1770 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1771 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1772 ** bit is clear then fall through if either operand is NULL. 1773 ** 1774 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1775 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1776 ** to coerce both inputs according to this affinity before the 1777 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1778 ** affinity is used. Note that the affinity conversions are stored 1779 ** back into the input registers P1 and P3. So this opcode can cause 1780 ** persistent changes to registers P1 and P3. 1781 ** 1782 ** Once any conversions have taken place, and neither value is NULL, 1783 ** the values are compared. If both values are blobs then memcmp() is 1784 ** used to determine the results of the comparison. If both values 1785 ** are text, then the appropriate collating function specified in 1786 ** P4 is used to do the comparison. If P4 is not specified then 1787 ** memcmp() is used to compare text string. If both values are 1788 ** numeric, then a numeric comparison is used. If the two values 1789 ** are of different types, then numbers are considered less than 1790 ** strings and strings are considered less than blobs. 1791 ** 1792 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1793 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1794 ** 1795 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1796 ** equal to one another, provided that they do not have their MEM_Cleared 1797 ** bit set. 1798 */ 1799 /* Opcode: Ne P1 P2 P3 P4 P5 1800 ** Synopsis: if r[P1]!=r[P3] goto P2 1801 ** 1802 ** This works just like the Lt opcode except that the jump is taken if 1803 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1804 ** additional information. 1805 ** 1806 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1807 ** true or false and is never NULL. If both operands are NULL then the result 1808 ** of comparison is false. If either operand is NULL then the result is true. 1809 ** If neither operand is NULL the result is the same as it would be if 1810 ** the SQLITE_NULLEQ flag were omitted from P5. 1811 */ 1812 /* Opcode: Eq P1 P2 P3 P4 P5 1813 ** Synopsis: if r[P1]==r[P3] goto P2 1814 ** 1815 ** This works just like the Lt opcode except that the jump is taken if 1816 ** the operands in registers P1 and P3 are equal. 1817 ** See the Lt opcode for additional information. 1818 ** 1819 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1820 ** true or false and is never NULL. If both operands are NULL then the result 1821 ** of comparison is true. If either operand is NULL then the result is false. 1822 ** If neither operand is NULL the result is the same as it would be if 1823 ** the SQLITE_NULLEQ flag were omitted from P5. 1824 */ 1825 /* Opcode: Le P1 P2 P3 P4 P5 1826 ** Synopsis: if r[P1]<=r[P3] goto P2 1827 ** 1828 ** This works just like the Lt opcode except that the jump is taken if 1829 ** the content of register P3 is less than or equal to the content of 1830 ** register P1. See the Lt opcode for additional information. 1831 */ 1832 /* Opcode: Gt P1 P2 P3 P4 P5 1833 ** Synopsis: if r[P1]>r[P3] goto P2 1834 ** 1835 ** This works just like the Lt opcode except that the jump is taken if 1836 ** the content of register P3 is greater than the content of 1837 ** register P1. See the Lt opcode for additional information. 1838 */ 1839 /* Opcode: Ge P1 P2 P3 P4 P5 1840 ** Synopsis: if r[P1]>=r[P3] goto P2 1841 ** 1842 ** This works just like the Lt opcode except that the jump is taken if 1843 ** the content of register P3 is greater than or equal to the content of 1844 ** register P1. See the Lt opcode for additional information. 1845 */ 1846 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1847 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1848 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1849 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1850 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1851 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1852 int res; /* Result of the comparison of pIn1 against pIn3 */ 1853 char affinity; /* Affinity to use for comparison */ 1854 u16 flags1; /* Copy of initial value of pIn1->flags */ 1855 u16 flags3; /* Copy of initial value of pIn3->flags */ 1856 1857 pIn1 = &aMem[pOp->p1]; 1858 pIn3 = &aMem[pOp->p3]; 1859 flags1 = pIn1->flags; 1860 flags3 = pIn3->flags; 1861 if( (flags1 | flags3)&MEM_Null ){ 1862 /* One or both operands are NULL */ 1863 if( pOp->p5 & SQLITE_NULLEQ ){ 1864 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1865 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1866 ** or not both operands are null. 1867 */ 1868 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1869 assert( (flags1 & MEM_Cleared)==0 ); 1870 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1871 if( (flags1&MEM_Null)!=0 1872 && (flags3&MEM_Null)!=0 1873 && (flags3&MEM_Cleared)==0 1874 ){ 1875 res = 0; /* Results are equal */ 1876 }else{ 1877 res = 1; /* Results are not equal */ 1878 } 1879 }else{ 1880 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1881 ** then the result is always NULL. 1882 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1883 */ 1884 if( pOp->p5 & SQLITE_STOREP2 ){ 1885 pOut = &aMem[pOp->p2]; 1886 MemSetTypeFlag(pOut, MEM_Null); 1887 REGISTER_TRACE(pOp->p2, pOut); 1888 }else{ 1889 VdbeBranchTaken(2,3); 1890 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1891 pc = pOp->p2-1; 1892 } 1893 } 1894 break; 1895 } 1896 }else{ 1897 /* Neither operand is NULL. Do a comparison. */ 1898 affinity = pOp->p5 & SQLITE_AFF_MASK; 1899 if( affinity>=SQLITE_AFF_NUMERIC ){ 1900 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1901 applyNumericAffinity(pIn1,0); 1902 } 1903 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1904 applyNumericAffinity(pIn3,0); 1905 } 1906 }else if( affinity==SQLITE_AFF_TEXT ){ 1907 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ 1908 testcase( pIn1->flags & MEM_Int ); 1909 testcase( pIn1->flags & MEM_Real ); 1910 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1911 } 1912 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ 1913 testcase( pIn3->flags & MEM_Int ); 1914 testcase( pIn3->flags & MEM_Real ); 1915 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1916 } 1917 } 1918 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1919 if( pIn1->flags & MEM_Zero ){ 1920 sqlite3VdbeMemExpandBlob(pIn1); 1921 flags1 &= ~MEM_Zero; 1922 } 1923 if( pIn3->flags & MEM_Zero ){ 1924 sqlite3VdbeMemExpandBlob(pIn3); 1925 flags3 &= ~MEM_Zero; 1926 } 1927 if( db->mallocFailed ) goto no_mem; 1928 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1929 } 1930 switch( pOp->opcode ){ 1931 case OP_Eq: res = res==0; break; 1932 case OP_Ne: res = res!=0; break; 1933 case OP_Lt: res = res<0; break; 1934 case OP_Le: res = res<=0; break; 1935 case OP_Gt: res = res>0; break; 1936 default: res = res>=0; break; 1937 } 1938 1939 if( pOp->p5 & SQLITE_STOREP2 ){ 1940 pOut = &aMem[pOp->p2]; 1941 memAboutToChange(p, pOut); 1942 MemSetTypeFlag(pOut, MEM_Int); 1943 pOut->u.i = res; 1944 REGISTER_TRACE(pOp->p2, pOut); 1945 }else{ 1946 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 1947 if( res ){ 1948 pc = pOp->p2-1; 1949 } 1950 } 1951 /* Undo any changes made by applyAffinity() to the input registers. */ 1952 pIn1->flags = flags1; 1953 pIn3->flags = flags3; 1954 break; 1955 } 1956 1957 /* Opcode: Permutation * * * P4 * 1958 ** 1959 ** Set the permutation used by the OP_Compare operator to be the array 1960 ** of integers in P4. 1961 ** 1962 ** The permutation is only valid until the next OP_Compare that has 1963 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 1964 ** occur immediately prior to the OP_Compare. 1965 */ 1966 case OP_Permutation: { 1967 assert( pOp->p4type==P4_INTARRAY ); 1968 assert( pOp->p4.ai ); 1969 aPermute = pOp->p4.ai; 1970 break; 1971 } 1972 1973 /* Opcode: Compare P1 P2 P3 P4 P5 1974 ** Synopsis: r[P1@P3] <-> r[P2@P3] 1975 ** 1976 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1977 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1978 ** the comparison for use by the next OP_Jump instruct. 1979 ** 1980 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 1981 ** determined by the most recent OP_Permutation operator. If the 1982 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 1983 ** order. 1984 ** 1985 ** P4 is a KeyInfo structure that defines collating sequences and sort 1986 ** orders for the comparison. The permutation applies to registers 1987 ** only. The KeyInfo elements are used sequentially. 1988 ** 1989 ** The comparison is a sort comparison, so NULLs compare equal, 1990 ** NULLs are less than numbers, numbers are less than strings, 1991 ** and strings are less than blobs. 1992 */ 1993 case OP_Compare: { 1994 int n; 1995 int i; 1996 int p1; 1997 int p2; 1998 const KeyInfo *pKeyInfo; 1999 int idx; 2000 CollSeq *pColl; /* Collating sequence to use on this term */ 2001 int bRev; /* True for DESCENDING sort order */ 2002 2003 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2004 n = pOp->p3; 2005 pKeyInfo = pOp->p4.pKeyInfo; 2006 assert( n>0 ); 2007 assert( pKeyInfo!=0 ); 2008 p1 = pOp->p1; 2009 p2 = pOp->p2; 2010 #if SQLITE_DEBUG 2011 if( aPermute ){ 2012 int k, mx = 0; 2013 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2014 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2015 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2016 }else{ 2017 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2018 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2019 } 2020 #endif /* SQLITE_DEBUG */ 2021 for(i=0; i<n; i++){ 2022 idx = aPermute ? aPermute[i] : i; 2023 assert( memIsValid(&aMem[p1+idx]) ); 2024 assert( memIsValid(&aMem[p2+idx]) ); 2025 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2026 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2027 assert( i<pKeyInfo->nField ); 2028 pColl = pKeyInfo->aColl[i]; 2029 bRev = pKeyInfo->aSortOrder[i]; 2030 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2031 if( iCompare ){ 2032 if( bRev ) iCompare = -iCompare; 2033 break; 2034 } 2035 } 2036 aPermute = 0; 2037 break; 2038 } 2039 2040 /* Opcode: Jump P1 P2 P3 * * 2041 ** 2042 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2043 ** in the most recent OP_Compare instruction the P1 vector was less than 2044 ** equal to, or greater than the P2 vector, respectively. 2045 */ 2046 case OP_Jump: { /* jump */ 2047 if( iCompare<0 ){ 2048 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); 2049 }else if( iCompare==0 ){ 2050 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); 2051 }else{ 2052 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); 2053 } 2054 break; 2055 } 2056 2057 /* Opcode: And P1 P2 P3 * * 2058 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2059 ** 2060 ** Take the logical AND of the values in registers P1 and P2 and 2061 ** write the result into register P3. 2062 ** 2063 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2064 ** the other input is NULL. A NULL and true or two NULLs give 2065 ** a NULL output. 2066 */ 2067 /* Opcode: Or P1 P2 P3 * * 2068 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2069 ** 2070 ** Take the logical OR of the values in register P1 and P2 and 2071 ** store the answer in register P3. 2072 ** 2073 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2074 ** even if the other input is NULL. A NULL and false or two NULLs 2075 ** give a NULL output. 2076 */ 2077 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2078 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2079 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2080 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2081 2082 pIn1 = &aMem[pOp->p1]; 2083 if( pIn1->flags & MEM_Null ){ 2084 v1 = 2; 2085 }else{ 2086 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2087 } 2088 pIn2 = &aMem[pOp->p2]; 2089 if( pIn2->flags & MEM_Null ){ 2090 v2 = 2; 2091 }else{ 2092 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2093 } 2094 if( pOp->opcode==OP_And ){ 2095 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2096 v1 = and_logic[v1*3+v2]; 2097 }else{ 2098 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2099 v1 = or_logic[v1*3+v2]; 2100 } 2101 pOut = &aMem[pOp->p3]; 2102 if( v1==2 ){ 2103 MemSetTypeFlag(pOut, MEM_Null); 2104 }else{ 2105 pOut->u.i = v1; 2106 MemSetTypeFlag(pOut, MEM_Int); 2107 } 2108 break; 2109 } 2110 2111 /* Opcode: Not P1 P2 * * * 2112 ** Synopsis: r[P2]= !r[P1] 2113 ** 2114 ** Interpret the value in register P1 as a boolean value. Store the 2115 ** boolean complement in register P2. If the value in register P1 is 2116 ** NULL, then a NULL is stored in P2. 2117 */ 2118 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2119 pIn1 = &aMem[pOp->p1]; 2120 pOut = &aMem[pOp->p2]; 2121 sqlite3VdbeMemSetNull(pOut); 2122 if( (pIn1->flags & MEM_Null)==0 ){ 2123 pOut->flags = MEM_Int; 2124 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2125 } 2126 break; 2127 } 2128 2129 /* Opcode: BitNot P1 P2 * * * 2130 ** Synopsis: r[P1]= ~r[P1] 2131 ** 2132 ** Interpret the content of register P1 as an integer. Store the 2133 ** ones-complement of the P1 value into register P2. If P1 holds 2134 ** a NULL then store a NULL in P2. 2135 */ 2136 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2137 pIn1 = &aMem[pOp->p1]; 2138 pOut = &aMem[pOp->p2]; 2139 sqlite3VdbeMemSetNull(pOut); 2140 if( (pIn1->flags & MEM_Null)==0 ){ 2141 pOut->flags = MEM_Int; 2142 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2143 } 2144 break; 2145 } 2146 2147 /* Opcode: Once P1 P2 * * * 2148 ** 2149 ** Check the "once" flag number P1. If it is set, jump to instruction P2. 2150 ** Otherwise, set the flag and fall through to the next instruction. 2151 ** In other words, this opcode causes all following opcodes up through P2 2152 ** (but not including P2) to run just once and to be skipped on subsequent 2153 ** times through the loop. 2154 ** 2155 ** All "once" flags are initially cleared whenever a prepared statement 2156 ** first begins to run. 2157 */ 2158 case OP_Once: { /* jump */ 2159 assert( pOp->p1<p->nOnceFlag ); 2160 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); 2161 if( p->aOnceFlag[pOp->p1] ){ 2162 pc = pOp->p2-1; 2163 }else{ 2164 p->aOnceFlag[pOp->p1] = 1; 2165 } 2166 break; 2167 } 2168 2169 /* Opcode: If P1 P2 P3 * * 2170 ** 2171 ** Jump to P2 if the value in register P1 is true. The value 2172 ** is considered true if it is numeric and non-zero. If the value 2173 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2174 */ 2175 /* Opcode: IfNot P1 P2 P3 * * 2176 ** 2177 ** Jump to P2 if the value in register P1 is False. The value 2178 ** is considered false if it has a numeric value of zero. If the value 2179 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2180 */ 2181 case OP_If: /* jump, in1 */ 2182 case OP_IfNot: { /* jump, in1 */ 2183 int c; 2184 pIn1 = &aMem[pOp->p1]; 2185 if( pIn1->flags & MEM_Null ){ 2186 c = pOp->p3; 2187 }else{ 2188 #ifdef SQLITE_OMIT_FLOATING_POINT 2189 c = sqlite3VdbeIntValue(pIn1)!=0; 2190 #else 2191 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2192 #endif 2193 if( pOp->opcode==OP_IfNot ) c = !c; 2194 } 2195 VdbeBranchTaken(c!=0, 2); 2196 if( c ){ 2197 pc = pOp->p2-1; 2198 } 2199 break; 2200 } 2201 2202 /* Opcode: IsNull P1 P2 * * * 2203 ** Synopsis: if r[P1]==NULL goto P2 2204 ** 2205 ** Jump to P2 if the value in register P1 is NULL. 2206 */ 2207 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2208 pIn1 = &aMem[pOp->p1]; 2209 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2210 if( (pIn1->flags & MEM_Null)!=0 ){ 2211 pc = pOp->p2 - 1; 2212 } 2213 break; 2214 } 2215 2216 /* Opcode: NotNull P1 P2 * * * 2217 ** Synopsis: if r[P1]!=NULL goto P2 2218 ** 2219 ** Jump to P2 if the value in register P1 is not NULL. 2220 */ 2221 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2222 pIn1 = &aMem[pOp->p1]; 2223 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2224 if( (pIn1->flags & MEM_Null)==0 ){ 2225 pc = pOp->p2 - 1; 2226 } 2227 break; 2228 } 2229 2230 /* Opcode: Column P1 P2 P3 P4 P5 2231 ** Synopsis: r[P3]=PX 2232 ** 2233 ** Interpret the data that cursor P1 points to as a structure built using 2234 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2235 ** information about the format of the data.) Extract the P2-th column 2236 ** from this record. If there are less that (P2+1) 2237 ** values in the record, extract a NULL. 2238 ** 2239 ** The value extracted is stored in register P3. 2240 ** 2241 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2242 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2243 ** the result. 2244 ** 2245 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2246 ** then the cache of the cursor is reset prior to extracting the column. 2247 ** The first OP_Column against a pseudo-table after the value of the content 2248 ** register has changed should have this bit set. 2249 ** 2250 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2251 ** the result is guaranteed to only be used as the argument of a length() 2252 ** or typeof() function, respectively. The loading of large blobs can be 2253 ** skipped for length() and all content loading can be skipped for typeof(). 2254 */ 2255 case OP_Column: { 2256 i64 payloadSize64; /* Number of bytes in the record */ 2257 int p2; /* column number to retrieve */ 2258 VdbeCursor *pC; /* The VDBE cursor */ 2259 BtCursor *pCrsr; /* The BTree cursor */ 2260 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2261 int len; /* The length of the serialized data for the column */ 2262 int i; /* Loop counter */ 2263 Mem *pDest; /* Where to write the extracted value */ 2264 Mem sMem; /* For storing the record being decoded */ 2265 const u8 *zData; /* Part of the record being decoded */ 2266 const u8 *zHdr; /* Next unparsed byte of the header */ 2267 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2268 u32 offset; /* Offset into the data */ 2269 u32 szField; /* Number of bytes in the content of a field */ 2270 u32 avail; /* Number of bytes of available data */ 2271 u32 t; /* A type code from the record header */ 2272 u16 fx; /* pDest->flags value */ 2273 Mem *pReg; /* PseudoTable input register */ 2274 2275 p2 = pOp->p2; 2276 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2277 pDest = &aMem[pOp->p3]; 2278 memAboutToChange(p, pDest); 2279 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2280 pC = p->apCsr[pOp->p1]; 2281 assert( pC!=0 ); 2282 assert( p2<pC->nField ); 2283 aOffset = pC->aOffset; 2284 #ifndef SQLITE_OMIT_VIRTUALTABLE 2285 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2286 #endif 2287 pCrsr = pC->pCursor; 2288 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ 2289 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ 2290 2291 /* If the cursor cache is stale, bring it up-to-date */ 2292 rc = sqlite3VdbeCursorMoveto(pC); 2293 if( rc ) goto abort_due_to_error; 2294 if( pC->cacheStatus!=p->cacheCtr ){ 2295 if( pC->nullRow ){ 2296 if( pCrsr==0 ){ 2297 assert( pC->pseudoTableReg>0 ); 2298 pReg = &aMem[pC->pseudoTableReg]; 2299 assert( pReg->flags & MEM_Blob ); 2300 assert( memIsValid(pReg) ); 2301 pC->payloadSize = pC->szRow = avail = pReg->n; 2302 pC->aRow = (u8*)pReg->z; 2303 }else{ 2304 sqlite3VdbeMemSetNull(pDest); 2305 goto op_column_out; 2306 } 2307 }else{ 2308 assert( pCrsr ); 2309 if( pC->isTable==0 ){ 2310 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2311 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2312 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2313 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2314 ** payload size, so it is impossible for payloadSize64 to be 2315 ** larger than 32 bits. */ 2316 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2317 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2318 pC->payloadSize = (u32)payloadSize64; 2319 }else{ 2320 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2321 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2322 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2323 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2324 } 2325 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2326 if( pC->payloadSize <= (u32)avail ){ 2327 pC->szRow = pC->payloadSize; 2328 }else{ 2329 pC->szRow = avail; 2330 } 2331 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2332 goto too_big; 2333 } 2334 } 2335 pC->cacheStatus = p->cacheCtr; 2336 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2337 pC->nHdrParsed = 0; 2338 aOffset[0] = offset; 2339 2340 /* Make sure a corrupt database has not given us an oversize header. 2341 ** Do this now to avoid an oversize memory allocation. 2342 ** 2343 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2344 ** types use so much data space that there can only be 4096 and 32 of 2345 ** them, respectively. So the maximum header length results from a 2346 ** 3-byte type for each of the maximum of 32768 columns plus three 2347 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2348 */ 2349 if( offset > 98307 || offset > pC->payloadSize ){ 2350 rc = SQLITE_CORRUPT_BKPT; 2351 goto op_column_error; 2352 } 2353 2354 if( avail<offset ){ 2355 /* pC->aRow does not have to hold the entire row, but it does at least 2356 ** need to cover the header of the record. If pC->aRow does not contain 2357 ** the complete header, then set it to zero, forcing the header to be 2358 ** dynamically allocated. */ 2359 pC->aRow = 0; 2360 pC->szRow = 0; 2361 } 2362 2363 /* The following goto is an optimization. It can be omitted and 2364 ** everything will still work. But OP_Column is measurably faster 2365 ** by skipping the subsequent conditional, which is always true. 2366 */ 2367 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2368 goto op_column_read_header; 2369 } 2370 2371 /* Make sure at least the first p2+1 entries of the header have been 2372 ** parsed and valid information is in aOffset[] and pC->aType[]. 2373 */ 2374 if( pC->nHdrParsed<=p2 ){ 2375 /* If there is more header available for parsing in the record, try 2376 ** to extract additional fields up through the p2+1-th field 2377 */ 2378 op_column_read_header: 2379 if( pC->iHdrOffset<aOffset[0] ){ 2380 /* Make sure zData points to enough of the record to cover the header. */ 2381 if( pC->aRow==0 ){ 2382 memset(&sMem, 0, sizeof(sMem)); 2383 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2384 !pC->isTable, &sMem); 2385 if( rc!=SQLITE_OK ){ 2386 goto op_column_error; 2387 } 2388 zData = (u8*)sMem.z; 2389 }else{ 2390 zData = pC->aRow; 2391 } 2392 2393 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2394 i = pC->nHdrParsed; 2395 offset = aOffset[i]; 2396 zHdr = zData + pC->iHdrOffset; 2397 zEndHdr = zData + aOffset[0]; 2398 assert( i<=p2 && zHdr<zEndHdr ); 2399 do{ 2400 if( zHdr[0]<0x80 ){ 2401 t = zHdr[0]; 2402 zHdr++; 2403 }else{ 2404 zHdr += sqlite3GetVarint32(zHdr, &t); 2405 } 2406 pC->aType[i] = t; 2407 szField = sqlite3VdbeSerialTypeLen(t); 2408 offset += szField; 2409 if( offset<szField ){ /* True if offset overflows */ 2410 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2411 break; 2412 } 2413 i++; 2414 aOffset[i] = offset; 2415 }while( i<=p2 && zHdr<zEndHdr ); 2416 pC->nHdrParsed = i; 2417 pC->iHdrOffset = (u32)(zHdr - zData); 2418 if( pC->aRow==0 ){ 2419 sqlite3VdbeMemRelease(&sMem); 2420 sMem.flags = MEM_Null; 2421 } 2422 2423 /* The record is corrupt if any of the following are true: 2424 ** (1) the bytes of the header extend past the declared header size 2425 ** (zHdr>zEndHdr) 2426 ** (2) the entire header was used but not all data was used 2427 ** (zHdr==zEndHdr && offset!=pC->payloadSize) 2428 ** (3) the end of the data extends beyond the end of the record. 2429 ** (offset > pC->payloadSize) 2430 */ 2431 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) 2432 || (offset > pC->payloadSize) 2433 ){ 2434 rc = SQLITE_CORRUPT_BKPT; 2435 goto op_column_error; 2436 } 2437 } 2438 2439 /* If after trying to extra new entries from the header, nHdrParsed is 2440 ** still not up to p2, that means that the record has fewer than p2 2441 ** columns. So the result will be either the default value or a NULL. 2442 */ 2443 if( pC->nHdrParsed<=p2 ){ 2444 if( pOp->p4type==P4_MEM ){ 2445 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2446 }else{ 2447 sqlite3VdbeMemSetNull(pDest); 2448 } 2449 goto op_column_out; 2450 } 2451 } 2452 2453 /* Extract the content for the p2+1-th column. Control can only 2454 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2455 ** all valid. 2456 */ 2457 assert( p2<pC->nHdrParsed ); 2458 assert( rc==SQLITE_OK ); 2459 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2460 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); 2461 t = pC->aType[p2]; 2462 if( pC->szRow>=aOffset[p2+1] ){ 2463 /* This is the common case where the desired content fits on the original 2464 ** page - where the content is not on an overflow page */ 2465 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); 2466 }else{ 2467 /* This branch happens only when content is on overflow pages */ 2468 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2469 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2470 || (len = sqlite3VdbeSerialTypeLen(t))==0 2471 ){ 2472 /* Content is irrelevant for 2473 ** 1. the typeof() function, 2474 ** 2. the length(X) function if X is a blob, and 2475 ** 3. if the content length is zero. 2476 ** So we might as well use bogus content rather than reading 2477 ** content from disk. NULL will work for the value for strings 2478 ** and blobs and whatever is in the payloadSize64 variable 2479 ** will work for everything else. */ 2480 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest); 2481 }else{ 2482 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2483 pDest); 2484 if( rc!=SQLITE_OK ){ 2485 goto op_column_error; 2486 } 2487 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2488 pDest->flags &= ~MEM_Ephem; 2489 } 2490 } 2491 pDest->enc = encoding; 2492 2493 op_column_out: 2494 /* If the column value is an ephemeral string, go ahead and persist 2495 ** that string in case the cursor moves before the column value is 2496 ** used. The following code does the equivalent of Deephemeralize() 2497 ** but does it faster. */ 2498 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){ 2499 fx = pDest->flags & (MEM_Str|MEM_Blob); 2500 assert( fx!=0 ); 2501 zData = (const u8*)pDest->z; 2502 len = pDest->n; 2503 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem; 2504 memcpy(pDest->z, zData, len); 2505 pDest->z[len] = 0; 2506 pDest->z[len+1] = 0; 2507 pDest->flags = fx|MEM_Term; 2508 } 2509 op_column_error: 2510 UPDATE_MAX_BLOBSIZE(pDest); 2511 REGISTER_TRACE(pOp->p3, pDest); 2512 break; 2513 } 2514 2515 /* Opcode: Affinity P1 P2 * P4 * 2516 ** Synopsis: affinity(r[P1@P2]) 2517 ** 2518 ** Apply affinities to a range of P2 registers starting with P1. 2519 ** 2520 ** P4 is a string that is P2 characters long. The nth character of the 2521 ** string indicates the column affinity that should be used for the nth 2522 ** memory cell in the range. 2523 */ 2524 case OP_Affinity: { 2525 const char *zAffinity; /* The affinity to be applied */ 2526 char cAff; /* A single character of affinity */ 2527 2528 zAffinity = pOp->p4.z; 2529 assert( zAffinity!=0 ); 2530 assert( zAffinity[pOp->p2]==0 ); 2531 pIn1 = &aMem[pOp->p1]; 2532 while( (cAff = *(zAffinity++))!=0 ){ 2533 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2534 assert( memIsValid(pIn1) ); 2535 applyAffinity(pIn1, cAff, encoding); 2536 pIn1++; 2537 } 2538 break; 2539 } 2540 2541 /* Opcode: MakeRecord P1 P2 P3 P4 * 2542 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2543 ** 2544 ** Convert P2 registers beginning with P1 into the [record format] 2545 ** use as a data record in a database table or as a key 2546 ** in an index. The OP_Column opcode can decode the record later. 2547 ** 2548 ** P4 may be a string that is P2 characters long. The nth character of the 2549 ** string indicates the column affinity that should be used for the nth 2550 ** field of the index key. 2551 ** 2552 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2553 ** macros defined in sqliteInt.h. 2554 ** 2555 ** If P4 is NULL then all index fields have the affinity NONE. 2556 */ 2557 case OP_MakeRecord: { 2558 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2559 Mem *pRec; /* The new record */ 2560 u64 nData; /* Number of bytes of data space */ 2561 int nHdr; /* Number of bytes of header space */ 2562 i64 nByte; /* Data space required for this record */ 2563 int nZero; /* Number of zero bytes at the end of the record */ 2564 int nVarint; /* Number of bytes in a varint */ 2565 u32 serial_type; /* Type field */ 2566 Mem *pData0; /* First field to be combined into the record */ 2567 Mem *pLast; /* Last field of the record */ 2568 int nField; /* Number of fields in the record */ 2569 char *zAffinity; /* The affinity string for the record */ 2570 int file_format; /* File format to use for encoding */ 2571 int i; /* Space used in zNewRecord[] header */ 2572 int j; /* Space used in zNewRecord[] content */ 2573 int len; /* Length of a field */ 2574 2575 /* Assuming the record contains N fields, the record format looks 2576 ** like this: 2577 ** 2578 ** ------------------------------------------------------------------------ 2579 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2580 ** ------------------------------------------------------------------------ 2581 ** 2582 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2583 ** and so forth. 2584 ** 2585 ** Each type field is a varint representing the serial type of the 2586 ** corresponding data element (see sqlite3VdbeSerialType()). The 2587 ** hdr-size field is also a varint which is the offset from the beginning 2588 ** of the record to data0. 2589 */ 2590 nData = 0; /* Number of bytes of data space */ 2591 nHdr = 0; /* Number of bytes of header space */ 2592 nZero = 0; /* Number of zero bytes at the end of the record */ 2593 nField = pOp->p1; 2594 zAffinity = pOp->p4.z; 2595 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2596 pData0 = &aMem[nField]; 2597 nField = pOp->p2; 2598 pLast = &pData0[nField-1]; 2599 file_format = p->minWriteFileFormat; 2600 2601 /* Identify the output register */ 2602 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2603 pOut = &aMem[pOp->p3]; 2604 memAboutToChange(p, pOut); 2605 2606 /* Apply the requested affinity to all inputs 2607 */ 2608 assert( pData0<=pLast ); 2609 if( zAffinity ){ 2610 pRec = pData0; 2611 do{ 2612 applyAffinity(pRec++, *(zAffinity++), encoding); 2613 assert( zAffinity[0]==0 || pRec<=pLast ); 2614 }while( zAffinity[0] ); 2615 } 2616 2617 /* Loop through the elements that will make up the record to figure 2618 ** out how much space is required for the new record. 2619 */ 2620 pRec = pLast; 2621 do{ 2622 assert( memIsValid(pRec) ); 2623 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); 2624 len = sqlite3VdbeSerialTypeLen(serial_type); 2625 if( pRec->flags & MEM_Zero ){ 2626 if( nData ){ 2627 sqlite3VdbeMemExpandBlob(pRec); 2628 }else{ 2629 nZero += pRec->u.nZero; 2630 len -= pRec->u.nZero; 2631 } 2632 } 2633 nData += len; 2634 testcase( serial_type==127 ); 2635 testcase( serial_type==128 ); 2636 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2637 }while( (--pRec)>=pData0 ); 2638 2639 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2640 ** which determines the total number of bytes in the header. The varint 2641 ** value is the size of the header in bytes including the size varint 2642 ** itself. */ 2643 testcase( nHdr==126 ); 2644 testcase( nHdr==127 ); 2645 if( nHdr<=126 ){ 2646 /* The common case */ 2647 nHdr += 1; 2648 }else{ 2649 /* Rare case of a really large header */ 2650 nVarint = sqlite3VarintLen(nHdr); 2651 nHdr += nVarint; 2652 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2653 } 2654 nByte = nHdr+nData; 2655 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2656 goto too_big; 2657 } 2658 2659 /* Make sure the output register has a buffer large enough to store 2660 ** the new record. The output register (pOp->p3) is not allowed to 2661 ** be one of the input registers (because the following call to 2662 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2663 */ 2664 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2665 goto no_mem; 2666 } 2667 zNewRecord = (u8 *)pOut->z; 2668 2669 /* Write the record */ 2670 i = putVarint32(zNewRecord, nHdr); 2671 j = nHdr; 2672 assert( pData0<=pLast ); 2673 pRec = pData0; 2674 do{ 2675 serial_type = pRec->uTemp; 2676 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2677 ** additional varints, one per column. */ 2678 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2679 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2680 ** immediately follow the header. */ 2681 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2682 }while( (++pRec)<=pLast ); 2683 assert( i==nHdr ); 2684 assert( j==nByte ); 2685 2686 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2687 pOut->n = (int)nByte; 2688 pOut->flags = MEM_Blob; 2689 if( nZero ){ 2690 pOut->u.nZero = nZero; 2691 pOut->flags |= MEM_Zero; 2692 } 2693 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2694 REGISTER_TRACE(pOp->p3, pOut); 2695 UPDATE_MAX_BLOBSIZE(pOut); 2696 break; 2697 } 2698 2699 /* Opcode: Count P1 P2 * * * 2700 ** Synopsis: r[P2]=count() 2701 ** 2702 ** Store the number of entries (an integer value) in the table or index 2703 ** opened by cursor P1 in register P2 2704 */ 2705 #ifndef SQLITE_OMIT_BTREECOUNT 2706 case OP_Count: { /* out2-prerelease */ 2707 i64 nEntry; 2708 BtCursor *pCrsr; 2709 2710 pCrsr = p->apCsr[pOp->p1]->pCursor; 2711 assert( pCrsr ); 2712 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2713 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2714 pOut->u.i = nEntry; 2715 break; 2716 } 2717 #endif 2718 2719 /* Opcode: Savepoint P1 * * P4 * 2720 ** 2721 ** Open, release or rollback the savepoint named by parameter P4, depending 2722 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2723 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2724 */ 2725 case OP_Savepoint: { 2726 int p1; /* Value of P1 operand */ 2727 char *zName; /* Name of savepoint */ 2728 int nName; 2729 Savepoint *pNew; 2730 Savepoint *pSavepoint; 2731 Savepoint *pTmp; 2732 int iSavepoint; 2733 int ii; 2734 2735 p1 = pOp->p1; 2736 zName = pOp->p4.z; 2737 2738 /* Assert that the p1 parameter is valid. Also that if there is no open 2739 ** transaction, then there cannot be any savepoints. 2740 */ 2741 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2742 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2743 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2744 assert( checkSavepointCount(db) ); 2745 assert( p->bIsReader ); 2746 2747 if( p1==SAVEPOINT_BEGIN ){ 2748 if( db->nVdbeWrite>0 ){ 2749 /* A new savepoint cannot be created if there are active write 2750 ** statements (i.e. open read/write incremental blob handles). 2751 */ 2752 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2753 "SQL statements in progress"); 2754 rc = SQLITE_BUSY; 2755 }else{ 2756 nName = sqlite3Strlen30(zName); 2757 2758 #ifndef SQLITE_OMIT_VIRTUALTABLE 2759 /* This call is Ok even if this savepoint is actually a transaction 2760 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2761 ** If this is a transaction savepoint being opened, it is guaranteed 2762 ** that the db->aVTrans[] array is empty. */ 2763 assert( db->autoCommit==0 || db->nVTrans==0 ); 2764 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2765 db->nStatement+db->nSavepoint); 2766 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2767 #endif 2768 2769 /* Create a new savepoint structure. */ 2770 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2771 if( pNew ){ 2772 pNew->zName = (char *)&pNew[1]; 2773 memcpy(pNew->zName, zName, nName+1); 2774 2775 /* If there is no open transaction, then mark this as a special 2776 ** "transaction savepoint". */ 2777 if( db->autoCommit ){ 2778 db->autoCommit = 0; 2779 db->isTransactionSavepoint = 1; 2780 }else{ 2781 db->nSavepoint++; 2782 } 2783 2784 /* Link the new savepoint into the database handle's list. */ 2785 pNew->pNext = db->pSavepoint; 2786 db->pSavepoint = pNew; 2787 pNew->nDeferredCons = db->nDeferredCons; 2788 pNew->nDeferredImmCons = db->nDeferredImmCons; 2789 } 2790 } 2791 }else{ 2792 iSavepoint = 0; 2793 2794 /* Find the named savepoint. If there is no such savepoint, then an 2795 ** an error is returned to the user. */ 2796 for( 2797 pSavepoint = db->pSavepoint; 2798 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2799 pSavepoint = pSavepoint->pNext 2800 ){ 2801 iSavepoint++; 2802 } 2803 if( !pSavepoint ){ 2804 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2805 rc = SQLITE_ERROR; 2806 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2807 /* It is not possible to release (commit) a savepoint if there are 2808 ** active write statements. 2809 */ 2810 sqlite3SetString(&p->zErrMsg, db, 2811 "cannot release savepoint - SQL statements in progress" 2812 ); 2813 rc = SQLITE_BUSY; 2814 }else{ 2815 2816 /* Determine whether or not this is a transaction savepoint. If so, 2817 ** and this is a RELEASE command, then the current transaction 2818 ** is committed. 2819 */ 2820 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2821 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2822 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2823 goto vdbe_return; 2824 } 2825 db->autoCommit = 1; 2826 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2827 p->pc = pc; 2828 db->autoCommit = 0; 2829 p->rc = rc = SQLITE_BUSY; 2830 goto vdbe_return; 2831 } 2832 db->isTransactionSavepoint = 0; 2833 rc = p->rc; 2834 }else{ 2835 int isSchemaChange; 2836 iSavepoint = db->nSavepoint - iSavepoint - 1; 2837 if( p1==SAVEPOINT_ROLLBACK ){ 2838 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; 2839 for(ii=0; ii<db->nDb; ii++){ 2840 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 2841 SQLITE_ABORT_ROLLBACK, 2842 isSchemaChange==0); 2843 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2844 } 2845 }else{ 2846 isSchemaChange = 0; 2847 } 2848 for(ii=0; ii<db->nDb; ii++){ 2849 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2850 if( rc!=SQLITE_OK ){ 2851 goto abort_due_to_error; 2852 } 2853 } 2854 if( isSchemaChange ){ 2855 sqlite3ExpirePreparedStatements(db); 2856 sqlite3ResetAllSchemasOfConnection(db); 2857 db->flags = (db->flags | SQLITE_InternChanges); 2858 } 2859 } 2860 2861 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2862 ** savepoints nested inside of the savepoint being operated on. */ 2863 while( db->pSavepoint!=pSavepoint ){ 2864 pTmp = db->pSavepoint; 2865 db->pSavepoint = pTmp->pNext; 2866 sqlite3DbFree(db, pTmp); 2867 db->nSavepoint--; 2868 } 2869 2870 /* If it is a RELEASE, then destroy the savepoint being operated on 2871 ** too. If it is a ROLLBACK TO, then set the number of deferred 2872 ** constraint violations present in the database to the value stored 2873 ** when the savepoint was created. */ 2874 if( p1==SAVEPOINT_RELEASE ){ 2875 assert( pSavepoint==db->pSavepoint ); 2876 db->pSavepoint = pSavepoint->pNext; 2877 sqlite3DbFree(db, pSavepoint); 2878 if( !isTransaction ){ 2879 db->nSavepoint--; 2880 } 2881 }else{ 2882 db->nDeferredCons = pSavepoint->nDeferredCons; 2883 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2884 } 2885 2886 if( !isTransaction ){ 2887 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2888 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2889 } 2890 } 2891 } 2892 2893 break; 2894 } 2895 2896 /* Opcode: AutoCommit P1 P2 * * * 2897 ** 2898 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2899 ** back any currently active btree transactions. If there are any active 2900 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2901 ** there are active writing VMs or active VMs that use shared cache. 2902 ** 2903 ** This instruction causes the VM to halt. 2904 */ 2905 case OP_AutoCommit: { 2906 int desiredAutoCommit; 2907 int iRollback; 2908 int turnOnAC; 2909 2910 desiredAutoCommit = pOp->p1; 2911 iRollback = pOp->p2; 2912 turnOnAC = desiredAutoCommit && !db->autoCommit; 2913 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2914 assert( desiredAutoCommit==1 || iRollback==0 ); 2915 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2916 assert( p->bIsReader ); 2917 2918 #if 0 2919 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2920 /* If this instruction implements a ROLLBACK and other VMs are 2921 ** still running, and a transaction is active, return an error indicating 2922 ** that the other VMs must complete first. 2923 */ 2924 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2925 "SQL statements in progress"); 2926 rc = SQLITE_BUSY; 2927 }else 2928 #endif 2929 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2930 /* If this instruction implements a COMMIT and other VMs are writing 2931 ** return an error indicating that the other VMs must complete first. 2932 */ 2933 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2934 "SQL statements in progress"); 2935 rc = SQLITE_BUSY; 2936 }else if( desiredAutoCommit!=db->autoCommit ){ 2937 if( iRollback ){ 2938 assert( desiredAutoCommit==1 ); 2939 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2940 db->autoCommit = 1; 2941 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2942 goto vdbe_return; 2943 }else{ 2944 db->autoCommit = (u8)desiredAutoCommit; 2945 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2946 p->pc = pc; 2947 db->autoCommit = (u8)(1-desiredAutoCommit); 2948 p->rc = rc = SQLITE_BUSY; 2949 goto vdbe_return; 2950 } 2951 } 2952 assert( db->nStatement==0 ); 2953 sqlite3CloseSavepoints(db); 2954 if( p->rc==SQLITE_OK ){ 2955 rc = SQLITE_DONE; 2956 }else{ 2957 rc = SQLITE_ERROR; 2958 } 2959 goto vdbe_return; 2960 }else{ 2961 sqlite3SetString(&p->zErrMsg, db, 2962 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2963 (iRollback)?"cannot rollback - no transaction is active": 2964 "cannot commit - no transaction is active")); 2965 2966 rc = SQLITE_ERROR; 2967 } 2968 break; 2969 } 2970 2971 /* Opcode: Transaction P1 P2 P3 P4 P5 2972 ** 2973 ** Begin a transaction on database P1 if a transaction is not already 2974 ** active. 2975 ** If P2 is non-zero, then a write-transaction is started, or if a 2976 ** read-transaction is already active, it is upgraded to a write-transaction. 2977 ** If P2 is zero, then a read-transaction is started. 2978 ** 2979 ** P1 is the index of the database file on which the transaction is 2980 ** started. Index 0 is the main database file and index 1 is the 2981 ** file used for temporary tables. Indices of 2 or more are used for 2982 ** attached databases. 2983 ** 2984 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2985 ** true (this flag is set if the Vdbe may modify more than one row and may 2986 ** throw an ABORT exception), a statement transaction may also be opened. 2987 ** More specifically, a statement transaction is opened iff the database 2988 ** connection is currently not in autocommit mode, or if there are other 2989 ** active statements. A statement transaction allows the changes made by this 2990 ** VDBE to be rolled back after an error without having to roll back the 2991 ** entire transaction. If no error is encountered, the statement transaction 2992 ** will automatically commit when the VDBE halts. 2993 ** 2994 ** If P5!=0 then this opcode also checks the schema cookie against P3 2995 ** and the schema generation counter against P4. 2996 ** The cookie changes its value whenever the database schema changes. 2997 ** This operation is used to detect when that the cookie has changed 2998 ** and that the current process needs to reread the schema. If the schema 2999 ** cookie in P3 differs from the schema cookie in the database header or 3000 ** if the schema generation counter in P4 differs from the current 3001 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3002 ** halts. The sqlite3_step() wrapper function might then reprepare the 3003 ** statement and rerun it from the beginning. 3004 */ 3005 case OP_Transaction: { 3006 Btree *pBt; 3007 int iMeta; 3008 int iGen; 3009 3010 assert( p->bIsReader ); 3011 assert( p->readOnly==0 || pOp->p2==0 ); 3012 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3013 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3014 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3015 rc = SQLITE_READONLY; 3016 goto abort_due_to_error; 3017 } 3018 pBt = db->aDb[pOp->p1].pBt; 3019 3020 if( pBt ){ 3021 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3022 if( rc==SQLITE_BUSY ){ 3023 p->pc = pc; 3024 p->rc = rc = SQLITE_BUSY; 3025 goto vdbe_return; 3026 } 3027 if( rc!=SQLITE_OK ){ 3028 goto abort_due_to_error; 3029 } 3030 3031 if( pOp->p2 && p->usesStmtJournal 3032 && (db->autoCommit==0 || db->nVdbeRead>1) 3033 ){ 3034 assert( sqlite3BtreeIsInTrans(pBt) ); 3035 if( p->iStatement==0 ){ 3036 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3037 db->nStatement++; 3038 p->iStatement = db->nSavepoint + db->nStatement; 3039 } 3040 3041 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3042 if( rc==SQLITE_OK ){ 3043 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3044 } 3045 3046 /* Store the current value of the database handles deferred constraint 3047 ** counter. If the statement transaction needs to be rolled back, 3048 ** the value of this counter needs to be restored too. */ 3049 p->nStmtDefCons = db->nDeferredCons; 3050 p->nStmtDefImmCons = db->nDeferredImmCons; 3051 } 3052 3053 /* Gather the schema version number for checking */ 3054 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3055 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3056 }else{ 3057 iGen = iMeta = 0; 3058 } 3059 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3060 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3061 sqlite3DbFree(db, p->zErrMsg); 3062 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3063 /* If the schema-cookie from the database file matches the cookie 3064 ** stored with the in-memory representation of the schema, do 3065 ** not reload the schema from the database file. 3066 ** 3067 ** If virtual-tables are in use, this is not just an optimization. 3068 ** Often, v-tables store their data in other SQLite tables, which 3069 ** are queried from within xNext() and other v-table methods using 3070 ** prepared queries. If such a query is out-of-date, we do not want to 3071 ** discard the database schema, as the user code implementing the 3072 ** v-table would have to be ready for the sqlite3_vtab structure itself 3073 ** to be invalidated whenever sqlite3_step() is called from within 3074 ** a v-table method. 3075 */ 3076 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3077 sqlite3ResetOneSchema(db, pOp->p1); 3078 } 3079 p->expired = 1; 3080 rc = SQLITE_SCHEMA; 3081 } 3082 break; 3083 } 3084 3085 /* Opcode: ReadCookie P1 P2 P3 * * 3086 ** 3087 ** Read cookie number P3 from database P1 and write it into register P2. 3088 ** P3==1 is the schema version. P3==2 is the database format. 3089 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3090 ** the main database file and P1==1 is the database file used to store 3091 ** temporary tables. 3092 ** 3093 ** There must be a read-lock on the database (either a transaction 3094 ** must be started or there must be an open cursor) before 3095 ** executing this instruction. 3096 */ 3097 case OP_ReadCookie: { /* out2-prerelease */ 3098 int iMeta; 3099 int iDb; 3100 int iCookie; 3101 3102 assert( p->bIsReader ); 3103 iDb = pOp->p1; 3104 iCookie = pOp->p3; 3105 assert( pOp->p3<SQLITE_N_BTREE_META ); 3106 assert( iDb>=0 && iDb<db->nDb ); 3107 assert( db->aDb[iDb].pBt!=0 ); 3108 assert( DbMaskTest(p->btreeMask, iDb) ); 3109 3110 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3111 pOut->u.i = iMeta; 3112 break; 3113 } 3114 3115 /* Opcode: SetCookie P1 P2 P3 * * 3116 ** 3117 ** Write the content of register P3 (interpreted as an integer) 3118 ** into cookie number P2 of database P1. P2==1 is the schema version. 3119 ** P2==2 is the database format. P2==3 is the recommended pager cache 3120 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3121 ** database file used to store temporary tables. 3122 ** 3123 ** A transaction must be started before executing this opcode. 3124 */ 3125 case OP_SetCookie: { /* in3 */ 3126 Db *pDb; 3127 assert( pOp->p2<SQLITE_N_BTREE_META ); 3128 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3129 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3130 assert( p->readOnly==0 ); 3131 pDb = &db->aDb[pOp->p1]; 3132 assert( pDb->pBt!=0 ); 3133 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3134 pIn3 = &aMem[pOp->p3]; 3135 sqlite3VdbeMemIntegerify(pIn3); 3136 /* See note about index shifting on OP_ReadCookie */ 3137 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3138 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3139 /* When the schema cookie changes, record the new cookie internally */ 3140 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3141 db->flags |= SQLITE_InternChanges; 3142 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3143 /* Record changes in the file format */ 3144 pDb->pSchema->file_format = (u8)pIn3->u.i; 3145 } 3146 if( pOp->p1==1 ){ 3147 /* Invalidate all prepared statements whenever the TEMP database 3148 ** schema is changed. Ticket #1644 */ 3149 sqlite3ExpirePreparedStatements(db); 3150 p->expired = 0; 3151 } 3152 break; 3153 } 3154 3155 /* Opcode: OpenRead P1 P2 P3 P4 P5 3156 ** Synopsis: root=P2 iDb=P3 3157 ** 3158 ** Open a read-only cursor for the database table whose root page is 3159 ** P2 in a database file. The database file is determined by P3. 3160 ** P3==0 means the main database, P3==1 means the database used for 3161 ** temporary tables, and P3>1 means used the corresponding attached 3162 ** database. Give the new cursor an identifier of P1. The P1 3163 ** values need not be contiguous but all P1 values should be small integers. 3164 ** It is an error for P1 to be negative. 3165 ** 3166 ** If P5!=0 then use the content of register P2 as the root page, not 3167 ** the value of P2 itself. 3168 ** 3169 ** There will be a read lock on the database whenever there is an 3170 ** open cursor. If the database was unlocked prior to this instruction 3171 ** then a read lock is acquired as part of this instruction. A read 3172 ** lock allows other processes to read the database but prohibits 3173 ** any other process from modifying the database. The read lock is 3174 ** released when all cursors are closed. If this instruction attempts 3175 ** to get a read lock but fails, the script terminates with an 3176 ** SQLITE_BUSY error code. 3177 ** 3178 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3179 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3180 ** structure, then said structure defines the content and collating 3181 ** sequence of the index being opened. Otherwise, if P4 is an integer 3182 ** value, it is set to the number of columns in the table. 3183 ** 3184 ** See also: OpenWrite, ReopenIdx 3185 */ 3186 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3187 ** Synopsis: root=P2 iDb=P3 3188 ** 3189 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3190 ** checks to see if the cursor on P1 is already open with a root page 3191 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3192 ** if the cursor is already open, do not reopen it. 3193 ** 3194 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3195 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3196 ** every other ReopenIdx or OpenRead for the same cursor number. 3197 ** 3198 ** See the OpenRead opcode documentation for additional information. 3199 */ 3200 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3201 ** Synopsis: root=P2 iDb=P3 3202 ** 3203 ** Open a read/write cursor named P1 on the table or index whose root 3204 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3205 ** root page. 3206 ** 3207 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3208 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3209 ** structure, then said structure defines the content and collating 3210 ** sequence of the index being opened. Otherwise, if P4 is an integer 3211 ** value, it is set to the number of columns in the table, or to the 3212 ** largest index of any column of the table that is actually used. 3213 ** 3214 ** This instruction works just like OpenRead except that it opens the cursor 3215 ** in read/write mode. For a given table, there can be one or more read-only 3216 ** cursors or a single read/write cursor but not both. 3217 ** 3218 ** See also OpenRead. 3219 */ 3220 case OP_ReopenIdx: { 3221 VdbeCursor *pCur; 3222 3223 assert( pOp->p5==0 ); 3224 assert( pOp->p4type==P4_KEYINFO ); 3225 pCur = p->apCsr[pOp->p1]; 3226 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3227 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3228 break; 3229 } 3230 /* If the cursor is not currently open or is open on a different 3231 ** index, then fall through into OP_OpenRead to force a reopen */ 3232 } 3233 case OP_OpenRead: 3234 case OP_OpenWrite: { 3235 int nField; 3236 KeyInfo *pKeyInfo; 3237 int p2; 3238 int iDb; 3239 int wrFlag; 3240 Btree *pX; 3241 VdbeCursor *pCur; 3242 Db *pDb; 3243 3244 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3245 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3246 assert( p->bIsReader ); 3247 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3248 || p->readOnly==0 ); 3249 3250 if( p->expired ){ 3251 rc = SQLITE_ABORT_ROLLBACK; 3252 break; 3253 } 3254 3255 nField = 0; 3256 pKeyInfo = 0; 3257 p2 = pOp->p2; 3258 iDb = pOp->p3; 3259 assert( iDb>=0 && iDb<db->nDb ); 3260 assert( DbMaskTest(p->btreeMask, iDb) ); 3261 pDb = &db->aDb[iDb]; 3262 pX = pDb->pBt; 3263 assert( pX!=0 ); 3264 if( pOp->opcode==OP_OpenWrite ){ 3265 wrFlag = 1; 3266 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3267 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3268 p->minWriteFileFormat = pDb->pSchema->file_format; 3269 } 3270 }else{ 3271 wrFlag = 0; 3272 } 3273 if( pOp->p5 & OPFLAG_P2ISREG ){ 3274 assert( p2>0 ); 3275 assert( p2<=(p->nMem-p->nCursor) ); 3276 pIn2 = &aMem[p2]; 3277 assert( memIsValid(pIn2) ); 3278 assert( (pIn2->flags & MEM_Int)!=0 ); 3279 sqlite3VdbeMemIntegerify(pIn2); 3280 p2 = (int)pIn2->u.i; 3281 /* The p2 value always comes from a prior OP_CreateTable opcode and 3282 ** that opcode will always set the p2 value to 2 or more or else fail. 3283 ** If there were a failure, the prepared statement would have halted 3284 ** before reaching this instruction. */ 3285 if( NEVER(p2<2) ) { 3286 rc = SQLITE_CORRUPT_BKPT; 3287 goto abort_due_to_error; 3288 } 3289 } 3290 if( pOp->p4type==P4_KEYINFO ){ 3291 pKeyInfo = pOp->p4.pKeyInfo; 3292 assert( pKeyInfo->enc==ENC(db) ); 3293 assert( pKeyInfo->db==db ); 3294 nField = pKeyInfo->nField+pKeyInfo->nXField; 3295 }else if( pOp->p4type==P4_INT32 ){ 3296 nField = pOp->p4.i; 3297 } 3298 assert( pOp->p1>=0 ); 3299 assert( nField>=0 ); 3300 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3301 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3302 if( pCur==0 ) goto no_mem; 3303 pCur->nullRow = 1; 3304 pCur->isOrdered = 1; 3305 pCur->pgnoRoot = p2; 3306 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3307 pCur->pKeyInfo = pKeyInfo; 3308 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3309 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3310 3311 /* Set the VdbeCursor.isTable variable. Previous versions of 3312 ** SQLite used to check if the root-page flags were sane at this point 3313 ** and report database corruption if they were not, but this check has 3314 ** since moved into the btree layer. */ 3315 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3316 break; 3317 } 3318 3319 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3320 ** Synopsis: nColumn=P2 3321 ** 3322 ** Open a new cursor P1 to a transient table. 3323 ** The cursor is always opened read/write even if 3324 ** the main database is read-only. The ephemeral 3325 ** table is deleted automatically when the cursor is closed. 3326 ** 3327 ** P2 is the number of columns in the ephemeral table. 3328 ** The cursor points to a BTree table if P4==0 and to a BTree index 3329 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3330 ** that defines the format of keys in the index. 3331 ** 3332 ** The P5 parameter can be a mask of the BTREE_* flags defined 3333 ** in btree.h. These flags control aspects of the operation of 3334 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3335 ** added automatically. 3336 */ 3337 /* Opcode: OpenAutoindex P1 P2 * P4 * 3338 ** Synopsis: nColumn=P2 3339 ** 3340 ** This opcode works the same as OP_OpenEphemeral. It has a 3341 ** different name to distinguish its use. Tables created using 3342 ** by this opcode will be used for automatically created transient 3343 ** indices in joins. 3344 */ 3345 case OP_OpenAutoindex: 3346 case OP_OpenEphemeral: { 3347 VdbeCursor *pCx; 3348 KeyInfo *pKeyInfo; 3349 3350 static const int vfsFlags = 3351 SQLITE_OPEN_READWRITE | 3352 SQLITE_OPEN_CREATE | 3353 SQLITE_OPEN_EXCLUSIVE | 3354 SQLITE_OPEN_DELETEONCLOSE | 3355 SQLITE_OPEN_TRANSIENT_DB; 3356 assert( pOp->p1>=0 ); 3357 assert( pOp->p2>=0 ); 3358 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3359 if( pCx==0 ) goto no_mem; 3360 pCx->nullRow = 1; 3361 pCx->isEphemeral = 1; 3362 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3363 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3364 if( rc==SQLITE_OK ){ 3365 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3366 } 3367 if( rc==SQLITE_OK ){ 3368 /* If a transient index is required, create it by calling 3369 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3370 ** opening it. If a transient table is required, just use the 3371 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3372 */ 3373 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3374 int pgno; 3375 assert( pOp->p4type==P4_KEYINFO ); 3376 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3377 if( rc==SQLITE_OK ){ 3378 assert( pgno==MASTER_ROOT+1 ); 3379 assert( pKeyInfo->db==db ); 3380 assert( pKeyInfo->enc==ENC(db) ); 3381 pCx->pKeyInfo = pKeyInfo; 3382 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3383 } 3384 pCx->isTable = 0; 3385 }else{ 3386 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3387 pCx->isTable = 1; 3388 } 3389 } 3390 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3391 break; 3392 } 3393 3394 /* Opcode: SorterOpen P1 P2 P3 P4 * 3395 ** 3396 ** This opcode works like OP_OpenEphemeral except that it opens 3397 ** a transient index that is specifically designed to sort large 3398 ** tables using an external merge-sort algorithm. 3399 ** 3400 ** If argument P3 is non-zero, then it indicates that the sorter may 3401 ** assume that a stable sort considering the first P3 fields of each 3402 ** key is sufficient to produce the required results. 3403 */ 3404 case OP_SorterOpen: { 3405 VdbeCursor *pCx; 3406 3407 assert( pOp->p1>=0 ); 3408 assert( pOp->p2>=0 ); 3409 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3410 if( pCx==0 ) goto no_mem; 3411 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3412 assert( pCx->pKeyInfo->db==db ); 3413 assert( pCx->pKeyInfo->enc==ENC(db) ); 3414 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3415 break; 3416 } 3417 3418 /* Opcode: SequenceTest P1 P2 * * * 3419 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3420 ** 3421 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3422 ** to P2. Regardless of whether or not the jump is taken, increment the 3423 ** the sequence value. 3424 */ 3425 case OP_SequenceTest: { 3426 VdbeCursor *pC; 3427 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3428 pC = p->apCsr[pOp->p1]; 3429 assert( pC->pSorter ); 3430 if( (pC->seqCount++)==0 ){ 3431 pc = pOp->p2 - 1; 3432 } 3433 break; 3434 } 3435 3436 /* Opcode: OpenPseudo P1 P2 P3 * * 3437 ** Synopsis: P3 columns in r[P2] 3438 ** 3439 ** Open a new cursor that points to a fake table that contains a single 3440 ** row of data. The content of that one row is the content of memory 3441 ** register P2. In other words, cursor P1 becomes an alias for the 3442 ** MEM_Blob content contained in register P2. 3443 ** 3444 ** A pseudo-table created by this opcode is used to hold a single 3445 ** row output from the sorter so that the row can be decomposed into 3446 ** individual columns using the OP_Column opcode. The OP_Column opcode 3447 ** is the only cursor opcode that works with a pseudo-table. 3448 ** 3449 ** P3 is the number of fields in the records that will be stored by 3450 ** the pseudo-table. 3451 */ 3452 case OP_OpenPseudo: { 3453 VdbeCursor *pCx; 3454 3455 assert( pOp->p1>=0 ); 3456 assert( pOp->p3>=0 ); 3457 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3458 if( pCx==0 ) goto no_mem; 3459 pCx->nullRow = 1; 3460 pCx->pseudoTableReg = pOp->p2; 3461 pCx->isTable = 1; 3462 assert( pOp->p5==0 ); 3463 break; 3464 } 3465 3466 /* Opcode: Close P1 * * * * 3467 ** 3468 ** Close a cursor previously opened as P1. If P1 is not 3469 ** currently open, this instruction is a no-op. 3470 */ 3471 case OP_Close: { 3472 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3473 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3474 p->apCsr[pOp->p1] = 0; 3475 break; 3476 } 3477 3478 /* Opcode: SeekGE P1 P2 P3 P4 * 3479 ** Synopsis: key=r[P3@P4] 3480 ** 3481 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3482 ** use the value in register P3 as the key. If cursor P1 refers 3483 ** to an SQL index, then P3 is the first in an array of P4 registers 3484 ** that are used as an unpacked index key. 3485 ** 3486 ** Reposition cursor P1 so that it points to the smallest entry that 3487 ** is greater than or equal to the key value. If there are no records 3488 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3489 ** 3490 ** This opcode leaves the cursor configured to move in forward order, 3491 ** from the beginning toward the end. In other words, the cursor is 3492 ** configured to use Next, not Prev. 3493 ** 3494 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3495 */ 3496 /* Opcode: SeekGT P1 P2 P3 P4 * 3497 ** Synopsis: key=r[P3@P4] 3498 ** 3499 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3500 ** use the value in register P3 as a key. If cursor P1 refers 3501 ** to an SQL index, then P3 is the first in an array of P4 registers 3502 ** that are used as an unpacked index key. 3503 ** 3504 ** Reposition cursor P1 so that it points to the smallest entry that 3505 ** is greater than the key value. If there are no records greater than 3506 ** the key and P2 is not zero, then jump to P2. 3507 ** 3508 ** This opcode leaves the cursor configured to move in forward order, 3509 ** from the beginning toward the end. In other words, the cursor is 3510 ** configured to use Next, not Prev. 3511 ** 3512 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3513 */ 3514 /* Opcode: SeekLT P1 P2 P3 P4 * 3515 ** Synopsis: key=r[P3@P4] 3516 ** 3517 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3518 ** use the value in register P3 as a key. If cursor P1 refers 3519 ** to an SQL index, then P3 is the first in an array of P4 registers 3520 ** that are used as an unpacked index key. 3521 ** 3522 ** Reposition cursor P1 so that it points to the largest entry that 3523 ** is less than the key value. If there are no records less than 3524 ** the key and P2 is not zero, then jump to P2. 3525 ** 3526 ** This opcode leaves the cursor configured to move in reverse order, 3527 ** from the end toward the beginning. In other words, the cursor is 3528 ** configured to use Prev, not Next. 3529 ** 3530 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3531 */ 3532 /* Opcode: SeekLE P1 P2 P3 P4 * 3533 ** Synopsis: key=r[P3@P4] 3534 ** 3535 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3536 ** use the value in register P3 as a key. If cursor P1 refers 3537 ** to an SQL index, then P3 is the first in an array of P4 registers 3538 ** that are used as an unpacked index key. 3539 ** 3540 ** Reposition cursor P1 so that it points to the largest entry that 3541 ** is less than or equal to the key value. If there are no records 3542 ** less than or equal to the key and P2 is not zero, then jump to P2. 3543 ** 3544 ** This opcode leaves the cursor configured to move in reverse order, 3545 ** from the end toward the beginning. In other words, the cursor is 3546 ** configured to use Prev, not Next. 3547 ** 3548 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3549 */ 3550 case OP_SeekLT: /* jump, in3 */ 3551 case OP_SeekLE: /* jump, in3 */ 3552 case OP_SeekGE: /* jump, in3 */ 3553 case OP_SeekGT: { /* jump, in3 */ 3554 int res; 3555 int oc; 3556 VdbeCursor *pC; 3557 UnpackedRecord r; 3558 int nField; 3559 i64 iKey; /* The rowid we are to seek to */ 3560 3561 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3562 assert( pOp->p2!=0 ); 3563 pC = p->apCsr[pOp->p1]; 3564 assert( pC!=0 ); 3565 assert( pC->pseudoTableReg==0 ); 3566 assert( OP_SeekLE == OP_SeekLT+1 ); 3567 assert( OP_SeekGE == OP_SeekLT+2 ); 3568 assert( OP_SeekGT == OP_SeekLT+3 ); 3569 assert( pC->isOrdered ); 3570 assert( pC->pCursor!=0 ); 3571 oc = pOp->opcode; 3572 pC->nullRow = 0; 3573 #ifdef SQLITE_DEBUG 3574 pC->seekOp = pOp->opcode; 3575 #endif 3576 if( pC->isTable ){ 3577 /* The input value in P3 might be of any type: integer, real, string, 3578 ** blob, or NULL. But it needs to be an integer before we can do 3579 ** the seek, so convert it. */ 3580 pIn3 = &aMem[pOp->p3]; 3581 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3582 applyNumericAffinity(pIn3, 0); 3583 } 3584 iKey = sqlite3VdbeIntValue(pIn3); 3585 3586 /* If the P3 value could not be converted into an integer without 3587 ** loss of information, then special processing is required... */ 3588 if( (pIn3->flags & MEM_Int)==0 ){ 3589 if( (pIn3->flags & MEM_Real)==0 ){ 3590 /* If the P3 value cannot be converted into any kind of a number, 3591 ** then the seek is not possible, so jump to P2 */ 3592 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3593 break; 3594 } 3595 3596 /* If the approximation iKey is larger than the actual real search 3597 ** term, substitute >= for > and < for <=. e.g. if the search term 3598 ** is 4.9 and the integer approximation 5: 3599 ** 3600 ** (x > 4.9) -> (x >= 5) 3601 ** (x <= 4.9) -> (x < 5) 3602 */ 3603 if( pIn3->u.r<(double)iKey ){ 3604 assert( OP_SeekGE==(OP_SeekGT-1) ); 3605 assert( OP_SeekLT==(OP_SeekLE-1) ); 3606 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3607 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3608 } 3609 3610 /* If the approximation iKey is smaller than the actual real search 3611 ** term, substitute <= for < and > for >=. */ 3612 else if( pIn3->u.r>(double)iKey ){ 3613 assert( OP_SeekLE==(OP_SeekLT+1) ); 3614 assert( OP_SeekGT==(OP_SeekGE+1) ); 3615 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3616 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3617 } 3618 } 3619 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3620 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3621 if( rc!=SQLITE_OK ){ 3622 goto abort_due_to_error; 3623 } 3624 }else{ 3625 nField = pOp->p4.i; 3626 assert( pOp->p4type==P4_INT32 ); 3627 assert( nField>0 ); 3628 r.pKeyInfo = pC->pKeyInfo; 3629 r.nField = (u16)nField; 3630 3631 /* The next line of code computes as follows, only faster: 3632 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3633 ** r.default_rc = -1; 3634 ** }else{ 3635 ** r.default_rc = +1; 3636 ** } 3637 */ 3638 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3639 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3640 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3641 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3642 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3643 3644 r.aMem = &aMem[pOp->p3]; 3645 #ifdef SQLITE_DEBUG 3646 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3647 #endif 3648 ExpandBlob(r.aMem); 3649 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3650 if( rc!=SQLITE_OK ){ 3651 goto abort_due_to_error; 3652 } 3653 } 3654 pC->deferredMoveto = 0; 3655 pC->cacheStatus = CACHE_STALE; 3656 #ifdef SQLITE_TEST 3657 sqlite3_search_count++; 3658 #endif 3659 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3660 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3661 res = 0; 3662 rc = sqlite3BtreeNext(pC->pCursor, &res); 3663 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3664 }else{ 3665 res = 0; 3666 } 3667 }else{ 3668 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3669 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3670 res = 0; 3671 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3672 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3673 }else{ 3674 /* res might be negative because the table is empty. Check to 3675 ** see if this is the case. 3676 */ 3677 res = sqlite3BtreeEof(pC->pCursor); 3678 } 3679 } 3680 assert( pOp->p2>0 ); 3681 VdbeBranchTaken(res!=0,2); 3682 if( res ){ 3683 pc = pOp->p2 - 1; 3684 } 3685 break; 3686 } 3687 3688 /* Opcode: Seek P1 P2 * * * 3689 ** Synopsis: intkey=r[P2] 3690 ** 3691 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3692 ** for P1 to move so that it points to the rowid given by P2. 3693 ** 3694 ** This is actually a deferred seek. Nothing actually happens until 3695 ** the cursor is used to read a record. That way, if no reads 3696 ** occur, no unnecessary I/O happens. 3697 */ 3698 case OP_Seek: { /* in2 */ 3699 VdbeCursor *pC; 3700 3701 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3702 pC = p->apCsr[pOp->p1]; 3703 assert( pC!=0 ); 3704 assert( pC->pCursor!=0 ); 3705 assert( pC->isTable ); 3706 pC->nullRow = 0; 3707 pIn2 = &aMem[pOp->p2]; 3708 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3709 pC->deferredMoveto = 1; 3710 break; 3711 } 3712 3713 3714 /* Opcode: Found P1 P2 P3 P4 * 3715 ** Synopsis: key=r[P3@P4] 3716 ** 3717 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3718 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3719 ** record. 3720 ** 3721 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3722 ** is a prefix of any entry in P1 then a jump is made to P2 and 3723 ** P1 is left pointing at the matching entry. 3724 ** 3725 ** This operation leaves the cursor in a state where it can be 3726 ** advanced in the forward direction. The Next instruction will work, 3727 ** but not the Prev instruction. 3728 ** 3729 ** See also: NotFound, NoConflict, NotExists. SeekGe 3730 */ 3731 /* Opcode: NotFound P1 P2 P3 P4 * 3732 ** Synopsis: key=r[P3@P4] 3733 ** 3734 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3735 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3736 ** record. 3737 ** 3738 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3739 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3740 ** does contain an entry whose prefix matches the P3/P4 record then control 3741 ** falls through to the next instruction and P1 is left pointing at the 3742 ** matching entry. 3743 ** 3744 ** This operation leaves the cursor in a state where it cannot be 3745 ** advanced in either direction. In other words, the Next and Prev 3746 ** opcodes do not work after this operation. 3747 ** 3748 ** See also: Found, NotExists, NoConflict 3749 */ 3750 /* Opcode: NoConflict P1 P2 P3 P4 * 3751 ** Synopsis: key=r[P3@P4] 3752 ** 3753 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3754 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3755 ** record. 3756 ** 3757 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3758 ** contains any NULL value, jump immediately to P2. If all terms of the 3759 ** record are not-NULL then a check is done to determine if any row in the 3760 ** P1 index btree has a matching key prefix. If there are no matches, jump 3761 ** immediately to P2. If there is a match, fall through and leave the P1 3762 ** cursor pointing to the matching row. 3763 ** 3764 ** This opcode is similar to OP_NotFound with the exceptions that the 3765 ** branch is always taken if any part of the search key input is NULL. 3766 ** 3767 ** This operation leaves the cursor in a state where it cannot be 3768 ** advanced in either direction. In other words, the Next and Prev 3769 ** opcodes do not work after this operation. 3770 ** 3771 ** See also: NotFound, Found, NotExists 3772 */ 3773 case OP_NoConflict: /* jump, in3 */ 3774 case OP_NotFound: /* jump, in3 */ 3775 case OP_Found: { /* jump, in3 */ 3776 int alreadyExists; 3777 int ii; 3778 VdbeCursor *pC; 3779 int res; 3780 char *pFree; 3781 UnpackedRecord *pIdxKey; 3782 UnpackedRecord r; 3783 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3784 3785 #ifdef SQLITE_TEST 3786 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3787 #endif 3788 3789 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3790 assert( pOp->p4type==P4_INT32 ); 3791 pC = p->apCsr[pOp->p1]; 3792 assert( pC!=0 ); 3793 #ifdef SQLITE_DEBUG 3794 pC->seekOp = pOp->opcode; 3795 #endif 3796 pIn3 = &aMem[pOp->p3]; 3797 assert( pC->pCursor!=0 ); 3798 assert( pC->isTable==0 ); 3799 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3800 if( pOp->p4.i>0 ){ 3801 r.pKeyInfo = pC->pKeyInfo; 3802 r.nField = (u16)pOp->p4.i; 3803 r.aMem = pIn3; 3804 for(ii=0; ii<r.nField; ii++){ 3805 assert( memIsValid(&r.aMem[ii]) ); 3806 ExpandBlob(&r.aMem[ii]); 3807 #ifdef SQLITE_DEBUG 3808 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 3809 #endif 3810 } 3811 pIdxKey = &r; 3812 }else{ 3813 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3814 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3815 ); 3816 if( pIdxKey==0 ) goto no_mem; 3817 assert( pIn3->flags & MEM_Blob ); 3818 ExpandBlob(pIn3); 3819 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3820 } 3821 pIdxKey->default_rc = 0; 3822 if( pOp->opcode==OP_NoConflict ){ 3823 /* For the OP_NoConflict opcode, take the jump if any of the 3824 ** input fields are NULL, since any key with a NULL will not 3825 ** conflict */ 3826 for(ii=0; ii<r.nField; ii++){ 3827 if( r.aMem[ii].flags & MEM_Null ){ 3828 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); 3829 break; 3830 } 3831 } 3832 } 3833 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3834 if( pOp->p4.i==0 ){ 3835 sqlite3DbFree(db, pFree); 3836 } 3837 if( rc!=SQLITE_OK ){ 3838 break; 3839 } 3840 pC->seekResult = res; 3841 alreadyExists = (res==0); 3842 pC->nullRow = 1-alreadyExists; 3843 pC->deferredMoveto = 0; 3844 pC->cacheStatus = CACHE_STALE; 3845 if( pOp->opcode==OP_Found ){ 3846 VdbeBranchTaken(alreadyExists!=0,2); 3847 if( alreadyExists ) pc = pOp->p2 - 1; 3848 }else{ 3849 VdbeBranchTaken(alreadyExists==0,2); 3850 if( !alreadyExists ) pc = pOp->p2 - 1; 3851 } 3852 break; 3853 } 3854 3855 /* Opcode: NotExists P1 P2 P3 * * 3856 ** Synopsis: intkey=r[P3] 3857 ** 3858 ** P1 is the index of a cursor open on an SQL table btree (with integer 3859 ** keys). P3 is an integer rowid. If P1 does not contain a record with 3860 ** rowid P3 then jump immediately to P2. If P1 does contain a record 3861 ** with rowid P3 then leave the cursor pointing at that record and fall 3862 ** through to the next instruction. 3863 ** 3864 ** The OP_NotFound opcode performs the same operation on index btrees 3865 ** (with arbitrary multi-value keys). 3866 ** 3867 ** This opcode leaves the cursor in a state where it cannot be advanced 3868 ** in either direction. In other words, the Next and Prev opcodes will 3869 ** not work following this opcode. 3870 ** 3871 ** See also: Found, NotFound, NoConflict 3872 */ 3873 case OP_NotExists: { /* jump, in3 */ 3874 VdbeCursor *pC; 3875 BtCursor *pCrsr; 3876 int res; 3877 u64 iKey; 3878 3879 pIn3 = &aMem[pOp->p3]; 3880 assert( pIn3->flags & MEM_Int ); 3881 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3882 pC = p->apCsr[pOp->p1]; 3883 assert( pC!=0 ); 3884 #ifdef SQLITE_DEBUG 3885 pC->seekOp = 0; 3886 #endif 3887 assert( pC->isTable ); 3888 assert( pC->pseudoTableReg==0 ); 3889 pCrsr = pC->pCursor; 3890 assert( pCrsr!=0 ); 3891 res = 0; 3892 iKey = pIn3->u.i; 3893 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3894 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3895 pC->nullRow = 0; 3896 pC->cacheStatus = CACHE_STALE; 3897 pC->deferredMoveto = 0; 3898 VdbeBranchTaken(res!=0,2); 3899 if( res!=0 ){ 3900 pc = pOp->p2 - 1; 3901 } 3902 pC->seekResult = res; 3903 break; 3904 } 3905 3906 /* Opcode: Sequence P1 P2 * * * 3907 ** Synopsis: r[P2]=cursor[P1].ctr++ 3908 ** 3909 ** Find the next available sequence number for cursor P1. 3910 ** Write the sequence number into register P2. 3911 ** The sequence number on the cursor is incremented after this 3912 ** instruction. 3913 */ 3914 case OP_Sequence: { /* out2-prerelease */ 3915 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3916 assert( p->apCsr[pOp->p1]!=0 ); 3917 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3918 break; 3919 } 3920 3921 3922 /* Opcode: NewRowid P1 P2 P3 * * 3923 ** Synopsis: r[P2]=rowid 3924 ** 3925 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3926 ** The record number is not previously used as a key in the database 3927 ** table that cursor P1 points to. The new record number is written 3928 ** written to register P2. 3929 ** 3930 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3931 ** the largest previously generated record number. No new record numbers are 3932 ** allowed to be less than this value. When this value reaches its maximum, 3933 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3934 ** generated record number. This P3 mechanism is used to help implement the 3935 ** AUTOINCREMENT feature. 3936 */ 3937 case OP_NewRowid: { /* out2-prerelease */ 3938 i64 v; /* The new rowid */ 3939 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3940 int res; /* Result of an sqlite3BtreeLast() */ 3941 int cnt; /* Counter to limit the number of searches */ 3942 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3943 VdbeFrame *pFrame; /* Root frame of VDBE */ 3944 3945 v = 0; 3946 res = 0; 3947 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3948 pC = p->apCsr[pOp->p1]; 3949 assert( pC!=0 ); 3950 if( NEVER(pC->pCursor==0) ){ 3951 /* The zero initialization above is all that is needed */ 3952 }else{ 3953 /* The next rowid or record number (different terms for the same 3954 ** thing) is obtained in a two-step algorithm. 3955 ** 3956 ** First we attempt to find the largest existing rowid and add one 3957 ** to that. But if the largest existing rowid is already the maximum 3958 ** positive integer, we have to fall through to the second 3959 ** probabilistic algorithm 3960 ** 3961 ** The second algorithm is to select a rowid at random and see if 3962 ** it already exists in the table. If it does not exist, we have 3963 ** succeeded. If the random rowid does exist, we select a new one 3964 ** and try again, up to 100 times. 3965 */ 3966 assert( pC->isTable ); 3967 3968 #ifdef SQLITE_32BIT_ROWID 3969 # define MAX_ROWID 0x7fffffff 3970 #else 3971 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3972 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3973 ** to provide the constant while making all compilers happy. 3974 */ 3975 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3976 #endif 3977 3978 if( !pC->useRandomRowid ){ 3979 rc = sqlite3BtreeLast(pC->pCursor, &res); 3980 if( rc!=SQLITE_OK ){ 3981 goto abort_due_to_error; 3982 } 3983 if( res ){ 3984 v = 1; /* IMP: R-61914-48074 */ 3985 }else{ 3986 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3987 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3988 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3989 if( v>=MAX_ROWID ){ 3990 pC->useRandomRowid = 1; 3991 }else{ 3992 v++; /* IMP: R-29538-34987 */ 3993 } 3994 } 3995 } 3996 3997 #ifndef SQLITE_OMIT_AUTOINCREMENT 3998 if( pOp->p3 ){ 3999 /* Assert that P3 is a valid memory cell. */ 4000 assert( pOp->p3>0 ); 4001 if( p->pFrame ){ 4002 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4003 /* Assert that P3 is a valid memory cell. */ 4004 assert( pOp->p3<=pFrame->nMem ); 4005 pMem = &pFrame->aMem[pOp->p3]; 4006 }else{ 4007 /* Assert that P3 is a valid memory cell. */ 4008 assert( pOp->p3<=(p->nMem-p->nCursor) ); 4009 pMem = &aMem[pOp->p3]; 4010 memAboutToChange(p, pMem); 4011 } 4012 assert( memIsValid(pMem) ); 4013 4014 REGISTER_TRACE(pOp->p3, pMem); 4015 sqlite3VdbeMemIntegerify(pMem); 4016 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4017 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4018 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 4019 goto abort_due_to_error; 4020 } 4021 if( v<pMem->u.i+1 ){ 4022 v = pMem->u.i + 1; 4023 } 4024 pMem->u.i = v; 4025 } 4026 #endif 4027 if( pC->useRandomRowid ){ 4028 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4029 ** largest possible integer (9223372036854775807) then the database 4030 ** engine starts picking positive candidate ROWIDs at random until 4031 ** it finds one that is not previously used. */ 4032 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4033 ** an AUTOINCREMENT table. */ 4034 cnt = 0; 4035 do{ 4036 sqlite3_randomness(sizeof(v), &v); 4037 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4038 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 4039 0, &res))==SQLITE_OK) 4040 && (res==0) 4041 && (++cnt<100)); 4042 if( rc==SQLITE_OK && res==0 ){ 4043 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4044 goto abort_due_to_error; 4045 } 4046 assert( v>0 ); /* EV: R-40812-03570 */ 4047 } 4048 pC->deferredMoveto = 0; 4049 pC->cacheStatus = CACHE_STALE; 4050 } 4051 pOut->u.i = v; 4052 break; 4053 } 4054 4055 /* Opcode: Insert P1 P2 P3 P4 P5 4056 ** Synopsis: intkey=r[P3] data=r[P2] 4057 ** 4058 ** Write an entry into the table of cursor P1. A new entry is 4059 ** created if it doesn't already exist or the data for an existing 4060 ** entry is overwritten. The data is the value MEM_Blob stored in register 4061 ** number P2. The key is stored in register P3. The key must 4062 ** be a MEM_Int. 4063 ** 4064 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4065 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4066 ** then rowid is stored for subsequent return by the 4067 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4068 ** 4069 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4070 ** the last seek operation (OP_NotExists) was a success, then this 4071 ** operation will not attempt to find the appropriate row before doing 4072 ** the insert but will instead overwrite the row that the cursor is 4073 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4074 ** has already positioned the cursor correctly. This is an optimization 4075 ** that boosts performance by avoiding redundant seeks. 4076 ** 4077 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4078 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4079 ** is part of an INSERT operation. The difference is only important to 4080 ** the update hook. 4081 ** 4082 ** Parameter P4 may point to a string containing the table-name, or 4083 ** may be NULL. If it is not NULL, then the update-hook 4084 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4085 ** 4086 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4087 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4088 ** and register P2 becomes ephemeral. If the cursor is changed, the 4089 ** value of register P2 will then change. Make sure this does not 4090 ** cause any problems.) 4091 ** 4092 ** This instruction only works on tables. The equivalent instruction 4093 ** for indices is OP_IdxInsert. 4094 */ 4095 /* Opcode: InsertInt P1 P2 P3 P4 P5 4096 ** Synopsis: intkey=P3 data=r[P2] 4097 ** 4098 ** This works exactly like OP_Insert except that the key is the 4099 ** integer value P3, not the value of the integer stored in register P3. 4100 */ 4101 case OP_Insert: 4102 case OP_InsertInt: { 4103 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4104 Mem *pKey; /* MEM cell holding key for the record */ 4105 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4106 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4107 int nZero; /* Number of zero-bytes to append */ 4108 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4109 const char *zDb; /* database name - used by the update hook */ 4110 const char *zTbl; /* Table name - used by the opdate hook */ 4111 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4112 4113 pData = &aMem[pOp->p2]; 4114 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4115 assert( memIsValid(pData) ); 4116 pC = p->apCsr[pOp->p1]; 4117 assert( pC!=0 ); 4118 assert( pC->pCursor!=0 ); 4119 assert( pC->pseudoTableReg==0 ); 4120 assert( pC->isTable ); 4121 REGISTER_TRACE(pOp->p2, pData); 4122 4123 if( pOp->opcode==OP_Insert ){ 4124 pKey = &aMem[pOp->p3]; 4125 assert( pKey->flags & MEM_Int ); 4126 assert( memIsValid(pKey) ); 4127 REGISTER_TRACE(pOp->p3, pKey); 4128 iKey = pKey->u.i; 4129 }else{ 4130 assert( pOp->opcode==OP_InsertInt ); 4131 iKey = pOp->p3; 4132 } 4133 4134 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4135 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4136 if( pData->flags & MEM_Null ){ 4137 pData->z = 0; 4138 pData->n = 0; 4139 }else{ 4140 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4141 } 4142 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4143 if( pData->flags & MEM_Zero ){ 4144 nZero = pData->u.nZero; 4145 }else{ 4146 nZero = 0; 4147 } 4148 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4149 pData->z, pData->n, nZero, 4150 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4151 ); 4152 pC->deferredMoveto = 0; 4153 pC->cacheStatus = CACHE_STALE; 4154 4155 /* Invoke the update-hook if required. */ 4156 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4157 zDb = db->aDb[pC->iDb].zName; 4158 zTbl = pOp->p4.z; 4159 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4160 assert( pC->isTable ); 4161 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4162 assert( pC->iDb>=0 ); 4163 } 4164 break; 4165 } 4166 4167 /* Opcode: Delete P1 P2 * P4 * 4168 ** 4169 ** Delete the record at which the P1 cursor is currently pointing. 4170 ** 4171 ** The cursor will be left pointing at either the next or the previous 4172 ** record in the table. If it is left pointing at the next record, then 4173 ** the next Next instruction will be a no-op. Hence it is OK to delete 4174 ** a record from within a Next loop. 4175 ** 4176 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4177 ** incremented (otherwise not). 4178 ** 4179 ** P1 must not be pseudo-table. It has to be a real table with 4180 ** multiple rows. 4181 ** 4182 ** If P4 is not NULL, then it is the name of the table that P1 is 4183 ** pointing to. The update hook will be invoked, if it exists. 4184 ** If P4 is not NULL then the P1 cursor must have been positioned 4185 ** using OP_NotFound prior to invoking this opcode. 4186 */ 4187 case OP_Delete: { 4188 VdbeCursor *pC; 4189 4190 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4191 pC = p->apCsr[pOp->p1]; 4192 assert( pC!=0 ); 4193 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4194 assert( pC->deferredMoveto==0 ); 4195 4196 #ifdef SQLITE_DEBUG 4197 /* The seek operation that positioned the cursor prior to OP_Delete will 4198 ** have also set the pC->movetoTarget field to the rowid of the row that 4199 ** is being deleted */ 4200 if( pOp->p4.z && pC->isTable ){ 4201 i64 iKey = 0; 4202 sqlite3BtreeKeySize(pC->pCursor, &iKey); 4203 assert( pC->movetoTarget==iKey ); 4204 } 4205 #endif 4206 4207 rc = sqlite3BtreeDelete(pC->pCursor); 4208 pC->cacheStatus = CACHE_STALE; 4209 4210 /* Invoke the update-hook if required. */ 4211 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4212 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4213 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); 4214 assert( pC->iDb>=0 ); 4215 } 4216 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4217 break; 4218 } 4219 /* Opcode: ResetCount * * * * * 4220 ** 4221 ** The value of the change counter is copied to the database handle 4222 ** change counter (returned by subsequent calls to sqlite3_changes()). 4223 ** Then the VMs internal change counter resets to 0. 4224 ** This is used by trigger programs. 4225 */ 4226 case OP_ResetCount: { 4227 sqlite3VdbeSetChanges(db, p->nChange); 4228 p->nChange = 0; 4229 break; 4230 } 4231 4232 /* Opcode: SorterCompare P1 P2 P3 P4 4233 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4234 ** 4235 ** P1 is a sorter cursor. This instruction compares a prefix of the 4236 ** record blob in register P3 against a prefix of the entry that 4237 ** the sorter cursor currently points to. Only the first P4 fields 4238 ** of r[P3] and the sorter record are compared. 4239 ** 4240 ** If either P3 or the sorter contains a NULL in one of their significant 4241 ** fields (not counting the P4 fields at the end which are ignored) then 4242 ** the comparison is assumed to be equal. 4243 ** 4244 ** Fall through to next instruction if the two records compare equal to 4245 ** each other. Jump to P2 if they are different. 4246 */ 4247 case OP_SorterCompare: { 4248 VdbeCursor *pC; 4249 int res; 4250 int nKeyCol; 4251 4252 pC = p->apCsr[pOp->p1]; 4253 assert( isSorter(pC) ); 4254 assert( pOp->p4type==P4_INT32 ); 4255 pIn3 = &aMem[pOp->p3]; 4256 nKeyCol = pOp->p4.i; 4257 res = 0; 4258 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4259 VdbeBranchTaken(res!=0,2); 4260 if( res ){ 4261 pc = pOp->p2-1; 4262 } 4263 break; 4264 }; 4265 4266 /* Opcode: SorterData P1 P2 P3 * * 4267 ** Synopsis: r[P2]=data 4268 ** 4269 ** Write into register P2 the current sorter data for sorter cursor P1. 4270 ** Then clear the column header cache on cursor P3. 4271 ** 4272 ** This opcode is normally use to move a record out of the sorter and into 4273 ** a register that is the source for a pseudo-table cursor created using 4274 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4275 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4276 ** us from having to issue a separate NullRow instruction to clear that cache. 4277 */ 4278 case OP_SorterData: { 4279 VdbeCursor *pC; 4280 4281 pOut = &aMem[pOp->p2]; 4282 pC = p->apCsr[pOp->p1]; 4283 assert( isSorter(pC) ); 4284 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4285 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4286 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4287 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4288 break; 4289 } 4290 4291 /* Opcode: RowData P1 P2 * * * 4292 ** Synopsis: r[P2]=data 4293 ** 4294 ** Write into register P2 the complete row data for cursor P1. 4295 ** There is no interpretation of the data. 4296 ** It is just copied onto the P2 register exactly as 4297 ** it is found in the database file. 4298 ** 4299 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4300 ** of a real table, not a pseudo-table. 4301 */ 4302 /* Opcode: RowKey P1 P2 * * * 4303 ** Synopsis: r[P2]=key 4304 ** 4305 ** Write into register P2 the complete row key for cursor P1. 4306 ** There is no interpretation of the data. 4307 ** The key is copied onto the P2 register exactly as 4308 ** it is found in the database file. 4309 ** 4310 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4311 ** of a real table, not a pseudo-table. 4312 */ 4313 case OP_RowKey: 4314 case OP_RowData: { 4315 VdbeCursor *pC; 4316 BtCursor *pCrsr; 4317 u32 n; 4318 i64 n64; 4319 4320 pOut = &aMem[pOp->p2]; 4321 memAboutToChange(p, pOut); 4322 4323 /* Note that RowKey and RowData are really exactly the same instruction */ 4324 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4325 pC = p->apCsr[pOp->p1]; 4326 assert( isSorter(pC)==0 ); 4327 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4328 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4329 assert( pC!=0 ); 4330 assert( pC->nullRow==0 ); 4331 assert( pC->pseudoTableReg==0 ); 4332 assert( pC->pCursor!=0 ); 4333 pCrsr = pC->pCursor; 4334 4335 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4336 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4337 ** the cursor. If this where not the case, on of the following assert()s 4338 ** would fail. Should this ever change (because of changes in the code 4339 ** generator) then the fix would be to insert a call to 4340 ** sqlite3VdbeCursorMoveto(). 4341 */ 4342 assert( pC->deferredMoveto==0 ); 4343 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4344 #if 0 /* Not required due to the previous to assert() statements */ 4345 rc = sqlite3VdbeCursorMoveto(pC); 4346 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4347 #endif 4348 4349 if( pC->isTable==0 ){ 4350 assert( !pC->isTable ); 4351 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4352 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4353 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4354 goto too_big; 4355 } 4356 n = (u32)n64; 4357 }else{ 4358 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4359 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4360 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4361 goto too_big; 4362 } 4363 } 4364 testcase( n==0 ); 4365 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ 4366 goto no_mem; 4367 } 4368 pOut->n = n; 4369 MemSetTypeFlag(pOut, MEM_Blob); 4370 if( pC->isTable==0 ){ 4371 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4372 }else{ 4373 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4374 } 4375 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4376 UPDATE_MAX_BLOBSIZE(pOut); 4377 REGISTER_TRACE(pOp->p2, pOut); 4378 break; 4379 } 4380 4381 /* Opcode: Rowid P1 P2 * * * 4382 ** Synopsis: r[P2]=rowid 4383 ** 4384 ** Store in register P2 an integer which is the key of the table entry that 4385 ** P1 is currently point to. 4386 ** 4387 ** P1 can be either an ordinary table or a virtual table. There used to 4388 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4389 ** one opcode now works for both table types. 4390 */ 4391 case OP_Rowid: { /* out2-prerelease */ 4392 VdbeCursor *pC; 4393 i64 v; 4394 sqlite3_vtab *pVtab; 4395 const sqlite3_module *pModule; 4396 4397 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4398 pC = p->apCsr[pOp->p1]; 4399 assert( pC!=0 ); 4400 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4401 if( pC->nullRow ){ 4402 pOut->flags = MEM_Null; 4403 break; 4404 }else if( pC->deferredMoveto ){ 4405 v = pC->movetoTarget; 4406 #ifndef SQLITE_OMIT_VIRTUALTABLE 4407 }else if( pC->pVtabCursor ){ 4408 pVtab = pC->pVtabCursor->pVtab; 4409 pModule = pVtab->pModule; 4410 assert( pModule->xRowid ); 4411 rc = pModule->xRowid(pC->pVtabCursor, &v); 4412 sqlite3VtabImportErrmsg(p, pVtab); 4413 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4414 }else{ 4415 assert( pC->pCursor!=0 ); 4416 rc = sqlite3VdbeCursorRestore(pC); 4417 if( rc ) goto abort_due_to_error; 4418 if( pC->nullRow ){ 4419 pOut->flags = MEM_Null; 4420 break; 4421 } 4422 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4423 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ 4424 } 4425 pOut->u.i = v; 4426 break; 4427 } 4428 4429 /* Opcode: NullRow P1 * * * * 4430 ** 4431 ** Move the cursor P1 to a null row. Any OP_Column operations 4432 ** that occur while the cursor is on the null row will always 4433 ** write a NULL. 4434 */ 4435 case OP_NullRow: { 4436 VdbeCursor *pC; 4437 4438 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4439 pC = p->apCsr[pOp->p1]; 4440 assert( pC!=0 ); 4441 pC->nullRow = 1; 4442 pC->cacheStatus = CACHE_STALE; 4443 if( pC->pCursor ){ 4444 sqlite3BtreeClearCursor(pC->pCursor); 4445 } 4446 break; 4447 } 4448 4449 /* Opcode: Last P1 P2 * * * 4450 ** 4451 ** The next use of the Rowid or Column or Prev instruction for P1 4452 ** will refer to the last entry in the database table or index. 4453 ** If the table or index is empty and P2>0, then jump immediately to P2. 4454 ** If P2 is 0 or if the table or index is not empty, fall through 4455 ** to the following instruction. 4456 ** 4457 ** This opcode leaves the cursor configured to move in reverse order, 4458 ** from the end toward the beginning. In other words, the cursor is 4459 ** configured to use Prev, not Next. 4460 */ 4461 case OP_Last: { /* jump */ 4462 VdbeCursor *pC; 4463 BtCursor *pCrsr; 4464 int res; 4465 4466 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4467 pC = p->apCsr[pOp->p1]; 4468 assert( pC!=0 ); 4469 pCrsr = pC->pCursor; 4470 res = 0; 4471 assert( pCrsr!=0 ); 4472 rc = sqlite3BtreeLast(pCrsr, &res); 4473 pC->nullRow = (u8)res; 4474 pC->deferredMoveto = 0; 4475 pC->cacheStatus = CACHE_STALE; 4476 #ifdef SQLITE_DEBUG 4477 pC->seekOp = OP_Last; 4478 #endif 4479 if( pOp->p2>0 ){ 4480 VdbeBranchTaken(res!=0,2); 4481 if( res ) pc = pOp->p2 - 1; 4482 } 4483 break; 4484 } 4485 4486 4487 /* Opcode: Sort P1 P2 * * * 4488 ** 4489 ** This opcode does exactly the same thing as OP_Rewind except that 4490 ** it increments an undocumented global variable used for testing. 4491 ** 4492 ** Sorting is accomplished by writing records into a sorting index, 4493 ** then rewinding that index and playing it back from beginning to 4494 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4495 ** rewinding so that the global variable will be incremented and 4496 ** regression tests can determine whether or not the optimizer is 4497 ** correctly optimizing out sorts. 4498 */ 4499 case OP_SorterSort: /* jump */ 4500 case OP_Sort: { /* jump */ 4501 #ifdef SQLITE_TEST 4502 sqlite3_sort_count++; 4503 sqlite3_search_count--; 4504 #endif 4505 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4506 /* Fall through into OP_Rewind */ 4507 } 4508 /* Opcode: Rewind P1 P2 * * * 4509 ** 4510 ** The next use of the Rowid or Column or Next instruction for P1 4511 ** will refer to the first entry in the database table or index. 4512 ** If the table or index is empty, jump immediately to P2. 4513 ** If the table or index is not empty, fall through to the following 4514 ** instruction. 4515 ** 4516 ** This opcode leaves the cursor configured to move in forward order, 4517 ** from the beginning toward the end. In other words, the cursor is 4518 ** configured to use Next, not Prev. 4519 */ 4520 case OP_Rewind: { /* jump */ 4521 VdbeCursor *pC; 4522 BtCursor *pCrsr; 4523 int res; 4524 4525 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4526 pC = p->apCsr[pOp->p1]; 4527 assert( pC!=0 ); 4528 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4529 res = 1; 4530 #ifdef SQLITE_DEBUG 4531 pC->seekOp = OP_Rewind; 4532 #endif 4533 if( isSorter(pC) ){ 4534 rc = sqlite3VdbeSorterRewind(pC, &res); 4535 }else{ 4536 pCrsr = pC->pCursor; 4537 assert( pCrsr ); 4538 rc = sqlite3BtreeFirst(pCrsr, &res); 4539 pC->deferredMoveto = 0; 4540 pC->cacheStatus = CACHE_STALE; 4541 } 4542 pC->nullRow = (u8)res; 4543 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4544 VdbeBranchTaken(res!=0,2); 4545 if( res ){ 4546 pc = pOp->p2 - 1; 4547 } 4548 break; 4549 } 4550 4551 /* Opcode: Next P1 P2 P3 P4 P5 4552 ** 4553 ** Advance cursor P1 so that it points to the next key/data pair in its 4554 ** table or index. If there are no more key/value pairs then fall through 4555 ** to the following instruction. But if the cursor advance was successful, 4556 ** jump immediately to P2. 4557 ** 4558 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4559 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4560 ** to follow SeekLT, SeekLE, or OP_Last. 4561 ** 4562 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4563 ** been opened prior to this opcode or the program will segfault. 4564 ** 4565 ** The P3 value is a hint to the btree implementation. If P3==1, that 4566 ** means P1 is an SQL index and that this instruction could have been 4567 ** omitted if that index had been unique. P3 is usually 0. P3 is 4568 ** always either 0 or 1. 4569 ** 4570 ** P4 is always of type P4_ADVANCE. The function pointer points to 4571 ** sqlite3BtreeNext(). 4572 ** 4573 ** If P5 is positive and the jump is taken, then event counter 4574 ** number P5-1 in the prepared statement is incremented. 4575 ** 4576 ** See also: Prev, NextIfOpen 4577 */ 4578 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4579 ** 4580 ** This opcode works just like Next except that if cursor P1 is not 4581 ** open it behaves a no-op. 4582 */ 4583 /* Opcode: Prev P1 P2 P3 P4 P5 4584 ** 4585 ** Back up cursor P1 so that it points to the previous key/data pair in its 4586 ** table or index. If there is no previous key/value pairs then fall through 4587 ** to the following instruction. But if the cursor backup was successful, 4588 ** jump immediately to P2. 4589 ** 4590 ** 4591 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4592 ** OP_Last opcode used to position the cursor. Prev is not allowed 4593 ** to follow SeekGT, SeekGE, or OP_Rewind. 4594 ** 4595 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4596 ** not open then the behavior is undefined. 4597 ** 4598 ** The P3 value is a hint to the btree implementation. If P3==1, that 4599 ** means P1 is an SQL index and that this instruction could have been 4600 ** omitted if that index had been unique. P3 is usually 0. P3 is 4601 ** always either 0 or 1. 4602 ** 4603 ** P4 is always of type P4_ADVANCE. The function pointer points to 4604 ** sqlite3BtreePrevious(). 4605 ** 4606 ** If P5 is positive and the jump is taken, then event counter 4607 ** number P5-1 in the prepared statement is incremented. 4608 */ 4609 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4610 ** 4611 ** This opcode works just like Prev except that if cursor P1 is not 4612 ** open it behaves a no-op. 4613 */ 4614 case OP_SorterNext: { /* jump */ 4615 VdbeCursor *pC; 4616 int res; 4617 4618 pC = p->apCsr[pOp->p1]; 4619 assert( isSorter(pC) ); 4620 res = 0; 4621 rc = sqlite3VdbeSorterNext(db, pC, &res); 4622 goto next_tail; 4623 case OP_PrevIfOpen: /* jump */ 4624 case OP_NextIfOpen: /* jump */ 4625 if( p->apCsr[pOp->p1]==0 ) break; 4626 /* Fall through */ 4627 case OP_Prev: /* jump */ 4628 case OP_Next: /* jump */ 4629 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4630 assert( pOp->p5<ArraySize(p->aCounter) ); 4631 pC = p->apCsr[pOp->p1]; 4632 res = pOp->p3; 4633 assert( pC!=0 ); 4634 assert( pC->deferredMoveto==0 ); 4635 assert( pC->pCursor ); 4636 assert( res==0 || (res==1 && pC->isTable==0) ); 4637 testcase( res==1 ); 4638 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4639 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4640 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4641 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4642 4643 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 4644 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 4645 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 4646 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 4647 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 4648 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 4649 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 4650 || pC->seekOp==OP_Last ); 4651 4652 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4653 next_tail: 4654 pC->cacheStatus = CACHE_STALE; 4655 VdbeBranchTaken(res==0,2); 4656 if( res==0 ){ 4657 pC->nullRow = 0; 4658 pc = pOp->p2 - 1; 4659 p->aCounter[pOp->p5]++; 4660 #ifdef SQLITE_TEST 4661 sqlite3_search_count++; 4662 #endif 4663 }else{ 4664 pC->nullRow = 1; 4665 } 4666 goto check_for_interrupt; 4667 } 4668 4669 /* Opcode: IdxInsert P1 P2 P3 * P5 4670 ** Synopsis: key=r[P2] 4671 ** 4672 ** Register P2 holds an SQL index key made using the 4673 ** MakeRecord instructions. This opcode writes that key 4674 ** into the index P1. Data for the entry is nil. 4675 ** 4676 ** P3 is a flag that provides a hint to the b-tree layer that this 4677 ** insert is likely to be an append. 4678 ** 4679 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 4680 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 4681 ** then the change counter is unchanged. 4682 ** 4683 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have 4684 ** just done a seek to the spot where the new entry is to be inserted. 4685 ** This flag avoids doing an extra seek. 4686 ** 4687 ** This instruction only works for indices. The equivalent instruction 4688 ** for tables is OP_Insert. 4689 */ 4690 case OP_SorterInsert: /* in2 */ 4691 case OP_IdxInsert: { /* in2 */ 4692 VdbeCursor *pC; 4693 BtCursor *pCrsr; 4694 int nKey; 4695 const char *zKey; 4696 4697 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4698 pC = p->apCsr[pOp->p1]; 4699 assert( pC!=0 ); 4700 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4701 pIn2 = &aMem[pOp->p2]; 4702 assert( pIn2->flags & MEM_Blob ); 4703 pCrsr = pC->pCursor; 4704 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4705 assert( pCrsr!=0 ); 4706 assert( pC->isTable==0 ); 4707 rc = ExpandBlob(pIn2); 4708 if( rc==SQLITE_OK ){ 4709 if( isSorter(pC) ){ 4710 rc = sqlite3VdbeSorterWrite(pC, pIn2); 4711 }else{ 4712 nKey = pIn2->n; 4713 zKey = pIn2->z; 4714 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4715 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4716 ); 4717 assert( pC->deferredMoveto==0 ); 4718 pC->cacheStatus = CACHE_STALE; 4719 } 4720 } 4721 break; 4722 } 4723 4724 /* Opcode: IdxDelete P1 P2 P3 * * 4725 ** Synopsis: key=r[P2@P3] 4726 ** 4727 ** The content of P3 registers starting at register P2 form 4728 ** an unpacked index key. This opcode removes that entry from the 4729 ** index opened by cursor P1. 4730 */ 4731 case OP_IdxDelete: { 4732 VdbeCursor *pC; 4733 BtCursor *pCrsr; 4734 int res; 4735 UnpackedRecord r; 4736 4737 assert( pOp->p3>0 ); 4738 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4739 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4740 pC = p->apCsr[pOp->p1]; 4741 assert( pC!=0 ); 4742 pCrsr = pC->pCursor; 4743 assert( pCrsr!=0 ); 4744 assert( pOp->p5==0 ); 4745 r.pKeyInfo = pC->pKeyInfo; 4746 r.nField = (u16)pOp->p3; 4747 r.default_rc = 0; 4748 r.aMem = &aMem[pOp->p2]; 4749 #ifdef SQLITE_DEBUG 4750 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4751 #endif 4752 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4753 if( rc==SQLITE_OK && res==0 ){ 4754 rc = sqlite3BtreeDelete(pCrsr); 4755 } 4756 assert( pC->deferredMoveto==0 ); 4757 pC->cacheStatus = CACHE_STALE; 4758 break; 4759 } 4760 4761 /* Opcode: IdxRowid P1 P2 * * * 4762 ** Synopsis: r[P2]=rowid 4763 ** 4764 ** Write into register P2 an integer which is the last entry in the record at 4765 ** the end of the index key pointed to by cursor P1. This integer should be 4766 ** the rowid of the table entry to which this index entry points. 4767 ** 4768 ** See also: Rowid, MakeRecord. 4769 */ 4770 case OP_IdxRowid: { /* out2-prerelease */ 4771 BtCursor *pCrsr; 4772 VdbeCursor *pC; 4773 i64 rowid; 4774 4775 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4776 pC = p->apCsr[pOp->p1]; 4777 assert( pC!=0 ); 4778 pCrsr = pC->pCursor; 4779 assert( pCrsr!=0 ); 4780 pOut->flags = MEM_Null; 4781 assert( pC->isTable==0 ); 4782 assert( pC->deferredMoveto==0 ); 4783 4784 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 4785 ** out from under the cursor. That will never happend for an IdxRowid 4786 ** opcode, hence the NEVER() arround the check of the return value. 4787 */ 4788 rc = sqlite3VdbeCursorRestore(pC); 4789 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4790 4791 if( !pC->nullRow ){ 4792 rowid = 0; /* Not needed. Only used to silence a warning. */ 4793 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4794 if( rc!=SQLITE_OK ){ 4795 goto abort_due_to_error; 4796 } 4797 pOut->u.i = rowid; 4798 pOut->flags = MEM_Int; 4799 } 4800 break; 4801 } 4802 4803 /* Opcode: IdxGE P1 P2 P3 P4 P5 4804 ** Synopsis: key=r[P3@P4] 4805 ** 4806 ** The P4 register values beginning with P3 form an unpacked index 4807 ** key that omits the PRIMARY KEY. Compare this key value against the index 4808 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4809 ** fields at the end. 4810 ** 4811 ** If the P1 index entry is greater than or equal to the key value 4812 ** then jump to P2. Otherwise fall through to the next instruction. 4813 */ 4814 /* Opcode: IdxGT P1 P2 P3 P4 P5 4815 ** Synopsis: key=r[P3@P4] 4816 ** 4817 ** The P4 register values beginning with P3 form an unpacked index 4818 ** key that omits the PRIMARY KEY. Compare this key value against the index 4819 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 4820 ** fields at the end. 4821 ** 4822 ** If the P1 index entry is greater than the key value 4823 ** then jump to P2. Otherwise fall through to the next instruction. 4824 */ 4825 /* Opcode: IdxLT P1 P2 P3 P4 P5 4826 ** Synopsis: key=r[P3@P4] 4827 ** 4828 ** The P4 register values beginning with P3 form an unpacked index 4829 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4830 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4831 ** ROWID on the P1 index. 4832 ** 4833 ** If the P1 index entry is less than the key value then jump to P2. 4834 ** Otherwise fall through to the next instruction. 4835 */ 4836 /* Opcode: IdxLE P1 P2 P3 P4 P5 4837 ** Synopsis: key=r[P3@P4] 4838 ** 4839 ** The P4 register values beginning with P3 form an unpacked index 4840 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 4841 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 4842 ** ROWID on the P1 index. 4843 ** 4844 ** If the P1 index entry is less than or equal to the key value then jump 4845 ** to P2. Otherwise fall through to the next instruction. 4846 */ 4847 case OP_IdxLE: /* jump */ 4848 case OP_IdxGT: /* jump */ 4849 case OP_IdxLT: /* jump */ 4850 case OP_IdxGE: { /* jump */ 4851 VdbeCursor *pC; 4852 int res; 4853 UnpackedRecord r; 4854 4855 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4856 pC = p->apCsr[pOp->p1]; 4857 assert( pC!=0 ); 4858 assert( pC->isOrdered ); 4859 assert( pC->pCursor!=0); 4860 assert( pC->deferredMoveto==0 ); 4861 assert( pOp->p5==0 || pOp->p5==1 ); 4862 assert( pOp->p4type==P4_INT32 ); 4863 r.pKeyInfo = pC->pKeyInfo; 4864 r.nField = (u16)pOp->p4.i; 4865 if( pOp->opcode<OP_IdxLT ){ 4866 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 4867 r.default_rc = -1; 4868 }else{ 4869 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 4870 r.default_rc = 0; 4871 } 4872 r.aMem = &aMem[pOp->p3]; 4873 #ifdef SQLITE_DEBUG 4874 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4875 #endif 4876 res = 0; /* Not needed. Only used to silence a warning. */ 4877 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4878 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 4879 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 4880 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 4881 res = -res; 4882 }else{ 4883 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 4884 res++; 4885 } 4886 VdbeBranchTaken(res>0,2); 4887 if( res>0 ){ 4888 pc = pOp->p2 - 1 ; 4889 } 4890 break; 4891 } 4892 4893 /* Opcode: Destroy P1 P2 P3 * * 4894 ** 4895 ** Delete an entire database table or index whose root page in the database 4896 ** file is given by P1. 4897 ** 4898 ** The table being destroyed is in the main database file if P3==0. If 4899 ** P3==1 then the table to be clear is in the auxiliary database file 4900 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4901 ** 4902 ** If AUTOVACUUM is enabled then it is possible that another root page 4903 ** might be moved into the newly deleted root page in order to keep all 4904 ** root pages contiguous at the beginning of the database. The former 4905 ** value of the root page that moved - its value before the move occurred - 4906 ** is stored in register P2. If no page 4907 ** movement was required (because the table being dropped was already 4908 ** the last one in the database) then a zero is stored in register P2. 4909 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4910 ** 4911 ** See also: Clear 4912 */ 4913 case OP_Destroy: { /* out2-prerelease */ 4914 int iMoved; 4915 int iCnt; 4916 Vdbe *pVdbe; 4917 int iDb; 4918 4919 assert( p->readOnly==0 ); 4920 #ifndef SQLITE_OMIT_VIRTUALTABLE 4921 iCnt = 0; 4922 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4923 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4924 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4925 ){ 4926 iCnt++; 4927 } 4928 } 4929 #else 4930 iCnt = db->nVdbeRead; 4931 #endif 4932 pOut->flags = MEM_Null; 4933 if( iCnt>1 ){ 4934 rc = SQLITE_LOCKED; 4935 p->errorAction = OE_Abort; 4936 }else{ 4937 iDb = pOp->p3; 4938 assert( iCnt==1 ); 4939 assert( DbMaskTest(p->btreeMask, iDb) ); 4940 iMoved = 0; /* Not needed. Only to silence a warning. */ 4941 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4942 pOut->flags = MEM_Int; 4943 pOut->u.i = iMoved; 4944 #ifndef SQLITE_OMIT_AUTOVACUUM 4945 if( rc==SQLITE_OK && iMoved!=0 ){ 4946 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4947 /* All OP_Destroy operations occur on the same btree */ 4948 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4949 resetSchemaOnFault = iDb+1; 4950 } 4951 #endif 4952 } 4953 break; 4954 } 4955 4956 /* Opcode: Clear P1 P2 P3 4957 ** 4958 ** Delete all contents of the database table or index whose root page 4959 ** in the database file is given by P1. But, unlike Destroy, do not 4960 ** remove the table or index from the database file. 4961 ** 4962 ** The table being clear is in the main database file if P2==0. If 4963 ** P2==1 then the table to be clear is in the auxiliary database file 4964 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4965 ** 4966 ** If the P3 value is non-zero, then the table referred to must be an 4967 ** intkey table (an SQL table, not an index). In this case the row change 4968 ** count is incremented by the number of rows in the table being cleared. 4969 ** If P3 is greater than zero, then the value stored in register P3 is 4970 ** also incremented by the number of rows in the table being cleared. 4971 ** 4972 ** See also: Destroy 4973 */ 4974 case OP_Clear: { 4975 int nChange; 4976 4977 nChange = 0; 4978 assert( p->readOnly==0 ); 4979 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 4980 rc = sqlite3BtreeClearTable( 4981 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4982 ); 4983 if( pOp->p3 ){ 4984 p->nChange += nChange; 4985 if( pOp->p3>0 ){ 4986 assert( memIsValid(&aMem[pOp->p3]) ); 4987 memAboutToChange(p, &aMem[pOp->p3]); 4988 aMem[pOp->p3].u.i += nChange; 4989 } 4990 } 4991 break; 4992 } 4993 4994 /* Opcode: ResetSorter P1 * * * * 4995 ** 4996 ** Delete all contents from the ephemeral table or sorter 4997 ** that is open on cursor P1. 4998 ** 4999 ** This opcode only works for cursors used for sorting and 5000 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5001 */ 5002 case OP_ResetSorter: { 5003 VdbeCursor *pC; 5004 5005 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5006 pC = p->apCsr[pOp->p1]; 5007 assert( pC!=0 ); 5008 if( pC->pSorter ){ 5009 sqlite3VdbeSorterReset(db, pC->pSorter); 5010 }else{ 5011 assert( pC->isEphemeral ); 5012 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); 5013 } 5014 break; 5015 } 5016 5017 /* Opcode: CreateTable P1 P2 * * * 5018 ** Synopsis: r[P2]=root iDb=P1 5019 ** 5020 ** Allocate a new table in the main database file if P1==0 or in the 5021 ** auxiliary database file if P1==1 or in an attached database if 5022 ** P1>1. Write the root page number of the new table into 5023 ** register P2 5024 ** 5025 ** The difference between a table and an index is this: A table must 5026 ** have a 4-byte integer key and can have arbitrary data. An index 5027 ** has an arbitrary key but no data. 5028 ** 5029 ** See also: CreateIndex 5030 */ 5031 /* Opcode: CreateIndex P1 P2 * * * 5032 ** Synopsis: r[P2]=root iDb=P1 5033 ** 5034 ** Allocate a new index in the main database file if P1==0 or in the 5035 ** auxiliary database file if P1==1 or in an attached database if 5036 ** P1>1. Write the root page number of the new table into 5037 ** register P2. 5038 ** 5039 ** See documentation on OP_CreateTable for additional information. 5040 */ 5041 case OP_CreateIndex: /* out2-prerelease */ 5042 case OP_CreateTable: { /* out2-prerelease */ 5043 int pgno; 5044 int flags; 5045 Db *pDb; 5046 5047 pgno = 0; 5048 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5049 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5050 assert( p->readOnly==0 ); 5051 pDb = &db->aDb[pOp->p1]; 5052 assert( pDb->pBt!=0 ); 5053 if( pOp->opcode==OP_CreateTable ){ 5054 /* flags = BTREE_INTKEY; */ 5055 flags = BTREE_INTKEY; 5056 }else{ 5057 flags = BTREE_BLOBKEY; 5058 } 5059 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5060 pOut->u.i = pgno; 5061 break; 5062 } 5063 5064 /* Opcode: ParseSchema P1 * * P4 * 5065 ** 5066 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5067 ** that match the WHERE clause P4. 5068 ** 5069 ** This opcode invokes the parser to create a new virtual machine, 5070 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5071 */ 5072 case OP_ParseSchema: { 5073 int iDb; 5074 const char *zMaster; 5075 char *zSql; 5076 InitData initData; 5077 5078 /* Any prepared statement that invokes this opcode will hold mutexes 5079 ** on every btree. This is a prerequisite for invoking 5080 ** sqlite3InitCallback(). 5081 */ 5082 #ifdef SQLITE_DEBUG 5083 for(iDb=0; iDb<db->nDb; iDb++){ 5084 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5085 } 5086 #endif 5087 5088 iDb = pOp->p1; 5089 assert( iDb>=0 && iDb<db->nDb ); 5090 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5091 /* Used to be a conditional */ { 5092 zMaster = SCHEMA_TABLE(iDb); 5093 initData.db = db; 5094 initData.iDb = pOp->p1; 5095 initData.pzErrMsg = &p->zErrMsg; 5096 zSql = sqlite3MPrintf(db, 5097 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5098 db->aDb[iDb].zName, zMaster, pOp->p4.z); 5099 if( zSql==0 ){ 5100 rc = SQLITE_NOMEM; 5101 }else{ 5102 assert( db->init.busy==0 ); 5103 db->init.busy = 1; 5104 initData.rc = SQLITE_OK; 5105 assert( !db->mallocFailed ); 5106 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5107 if( rc==SQLITE_OK ) rc = initData.rc; 5108 sqlite3DbFree(db, zSql); 5109 db->init.busy = 0; 5110 } 5111 } 5112 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 5113 if( rc==SQLITE_NOMEM ){ 5114 goto no_mem; 5115 } 5116 break; 5117 } 5118 5119 #if !defined(SQLITE_OMIT_ANALYZE) 5120 /* Opcode: LoadAnalysis P1 * * * * 5121 ** 5122 ** Read the sqlite_stat1 table for database P1 and load the content 5123 ** of that table into the internal index hash table. This will cause 5124 ** the analysis to be used when preparing all subsequent queries. 5125 */ 5126 case OP_LoadAnalysis: { 5127 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5128 rc = sqlite3AnalysisLoad(db, pOp->p1); 5129 break; 5130 } 5131 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5132 5133 /* Opcode: DropTable P1 * * P4 * 5134 ** 5135 ** Remove the internal (in-memory) data structures that describe 5136 ** the table named P4 in database P1. This is called after a table 5137 ** is dropped from disk (using the Destroy opcode) in order to keep 5138 ** the internal representation of the 5139 ** schema consistent with what is on disk. 5140 */ 5141 case OP_DropTable: { 5142 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5143 break; 5144 } 5145 5146 /* Opcode: DropIndex P1 * * P4 * 5147 ** 5148 ** Remove the internal (in-memory) data structures that describe 5149 ** the index named P4 in database P1. This is called after an index 5150 ** is dropped from disk (using the Destroy opcode) 5151 ** in order to keep the internal representation of the 5152 ** schema consistent with what is on disk. 5153 */ 5154 case OP_DropIndex: { 5155 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5156 break; 5157 } 5158 5159 /* Opcode: DropTrigger P1 * * P4 * 5160 ** 5161 ** Remove the internal (in-memory) data structures that describe 5162 ** the trigger named P4 in database P1. This is called after a trigger 5163 ** is dropped from disk (using the Destroy opcode) in order to keep 5164 ** the internal representation of the 5165 ** schema consistent with what is on disk. 5166 */ 5167 case OP_DropTrigger: { 5168 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5169 break; 5170 } 5171 5172 5173 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5174 /* Opcode: IntegrityCk P1 P2 P3 * P5 5175 ** 5176 ** Do an analysis of the currently open database. Store in 5177 ** register P1 the text of an error message describing any problems. 5178 ** If no problems are found, store a NULL in register P1. 5179 ** 5180 ** The register P3 contains the maximum number of allowed errors. 5181 ** At most reg(P3) errors will be reported. 5182 ** In other words, the analysis stops as soon as reg(P1) errors are 5183 ** seen. Reg(P1) is updated with the number of errors remaining. 5184 ** 5185 ** The root page numbers of all tables in the database are integer 5186 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5187 ** total. 5188 ** 5189 ** If P5 is not zero, the check is done on the auxiliary database 5190 ** file, not the main database file. 5191 ** 5192 ** This opcode is used to implement the integrity_check pragma. 5193 */ 5194 case OP_IntegrityCk: { 5195 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5196 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5197 int j; /* Loop counter */ 5198 int nErr; /* Number of errors reported */ 5199 char *z; /* Text of the error report */ 5200 Mem *pnErr; /* Register keeping track of errors remaining */ 5201 5202 assert( p->bIsReader ); 5203 nRoot = pOp->p2; 5204 assert( nRoot>0 ); 5205 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5206 if( aRoot==0 ) goto no_mem; 5207 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5208 pnErr = &aMem[pOp->p3]; 5209 assert( (pnErr->flags & MEM_Int)!=0 ); 5210 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5211 pIn1 = &aMem[pOp->p1]; 5212 for(j=0; j<nRoot; j++){ 5213 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5214 } 5215 aRoot[j] = 0; 5216 assert( pOp->p5<db->nDb ); 5217 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5218 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5219 (int)pnErr->u.i, &nErr); 5220 sqlite3DbFree(db, aRoot); 5221 pnErr->u.i -= nErr; 5222 sqlite3VdbeMemSetNull(pIn1); 5223 if( nErr==0 ){ 5224 assert( z==0 ); 5225 }else if( z==0 ){ 5226 goto no_mem; 5227 }else{ 5228 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5229 } 5230 UPDATE_MAX_BLOBSIZE(pIn1); 5231 sqlite3VdbeChangeEncoding(pIn1, encoding); 5232 break; 5233 } 5234 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5235 5236 /* Opcode: RowSetAdd P1 P2 * * * 5237 ** Synopsis: rowset(P1)=r[P2] 5238 ** 5239 ** Insert the integer value held by register P2 into a boolean index 5240 ** held in register P1. 5241 ** 5242 ** An assertion fails if P2 is not an integer. 5243 */ 5244 case OP_RowSetAdd: { /* in1, in2 */ 5245 pIn1 = &aMem[pOp->p1]; 5246 pIn2 = &aMem[pOp->p2]; 5247 assert( (pIn2->flags & MEM_Int)!=0 ); 5248 if( (pIn1->flags & MEM_RowSet)==0 ){ 5249 sqlite3VdbeMemSetRowSet(pIn1); 5250 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5251 } 5252 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5253 break; 5254 } 5255 5256 /* Opcode: RowSetRead P1 P2 P3 * * 5257 ** Synopsis: r[P3]=rowset(P1) 5258 ** 5259 ** Extract the smallest value from boolean index P1 and put that value into 5260 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5261 ** unchanged and jump to instruction P2. 5262 */ 5263 case OP_RowSetRead: { /* jump, in1, out3 */ 5264 i64 val; 5265 5266 pIn1 = &aMem[pOp->p1]; 5267 if( (pIn1->flags & MEM_RowSet)==0 5268 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5269 ){ 5270 /* The boolean index is empty */ 5271 sqlite3VdbeMemSetNull(pIn1); 5272 pc = pOp->p2 - 1; 5273 VdbeBranchTaken(1,2); 5274 }else{ 5275 /* A value was pulled from the index */ 5276 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5277 VdbeBranchTaken(0,2); 5278 } 5279 goto check_for_interrupt; 5280 } 5281 5282 /* Opcode: RowSetTest P1 P2 P3 P4 5283 ** Synopsis: if r[P3] in rowset(P1) goto P2 5284 ** 5285 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5286 ** contains a RowSet object and that RowSet object contains 5287 ** the value held in P3, jump to register P2. Otherwise, insert the 5288 ** integer in P3 into the RowSet and continue on to the 5289 ** next opcode. 5290 ** 5291 ** The RowSet object is optimized for the case where successive sets 5292 ** of integers, where each set contains no duplicates. Each set 5293 ** of values is identified by a unique P4 value. The first set 5294 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5295 ** non-negative. For non-negative values of P4 only the lower 4 5296 ** bits are significant. 5297 ** 5298 ** This allows optimizations: (a) when P4==0 there is no need to test 5299 ** the rowset object for P3, as it is guaranteed not to contain it, 5300 ** (b) when P4==-1 there is no need to insert the value, as it will 5301 ** never be tested for, and (c) when a value that is part of set X is 5302 ** inserted, there is no need to search to see if the same value was 5303 ** previously inserted as part of set X (only if it was previously 5304 ** inserted as part of some other set). 5305 */ 5306 case OP_RowSetTest: { /* jump, in1, in3 */ 5307 int iSet; 5308 int exists; 5309 5310 pIn1 = &aMem[pOp->p1]; 5311 pIn3 = &aMem[pOp->p3]; 5312 iSet = pOp->p4.i; 5313 assert( pIn3->flags&MEM_Int ); 5314 5315 /* If there is anything other than a rowset object in memory cell P1, 5316 ** delete it now and initialize P1 with an empty rowset 5317 */ 5318 if( (pIn1->flags & MEM_RowSet)==0 ){ 5319 sqlite3VdbeMemSetRowSet(pIn1); 5320 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5321 } 5322 5323 assert( pOp->p4type==P4_INT32 ); 5324 assert( iSet==-1 || iSet>=0 ); 5325 if( iSet ){ 5326 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5327 VdbeBranchTaken(exists!=0,2); 5328 if( exists ){ 5329 pc = pOp->p2 - 1; 5330 break; 5331 } 5332 } 5333 if( iSet>=0 ){ 5334 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5335 } 5336 break; 5337 } 5338 5339 5340 #ifndef SQLITE_OMIT_TRIGGER 5341 5342 /* Opcode: Program P1 P2 P3 P4 P5 5343 ** 5344 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5345 ** 5346 ** P1 contains the address of the memory cell that contains the first memory 5347 ** cell in an array of values used as arguments to the sub-program. P2 5348 ** contains the address to jump to if the sub-program throws an IGNORE 5349 ** exception using the RAISE() function. Register P3 contains the address 5350 ** of a memory cell in this (the parent) VM that is used to allocate the 5351 ** memory required by the sub-vdbe at runtime. 5352 ** 5353 ** P4 is a pointer to the VM containing the trigger program. 5354 ** 5355 ** If P5 is non-zero, then recursive program invocation is enabled. 5356 */ 5357 case OP_Program: { /* jump */ 5358 int nMem; /* Number of memory registers for sub-program */ 5359 int nByte; /* Bytes of runtime space required for sub-program */ 5360 Mem *pRt; /* Register to allocate runtime space */ 5361 Mem *pMem; /* Used to iterate through memory cells */ 5362 Mem *pEnd; /* Last memory cell in new array */ 5363 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5364 SubProgram *pProgram; /* Sub-program to execute */ 5365 void *t; /* Token identifying trigger */ 5366 5367 pProgram = pOp->p4.pProgram; 5368 pRt = &aMem[pOp->p3]; 5369 assert( pProgram->nOp>0 ); 5370 5371 /* If the p5 flag is clear, then recursive invocation of triggers is 5372 ** disabled for backwards compatibility (p5 is set if this sub-program 5373 ** is really a trigger, not a foreign key action, and the flag set 5374 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5375 ** 5376 ** It is recursive invocation of triggers, at the SQL level, that is 5377 ** disabled. In some cases a single trigger may generate more than one 5378 ** SubProgram (if the trigger may be executed with more than one different 5379 ** ON CONFLICT algorithm). SubProgram structures associated with a 5380 ** single trigger all have the same value for the SubProgram.token 5381 ** variable. */ 5382 if( pOp->p5 ){ 5383 t = pProgram->token; 5384 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5385 if( pFrame ) break; 5386 } 5387 5388 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5389 rc = SQLITE_ERROR; 5390 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5391 break; 5392 } 5393 5394 /* Register pRt is used to store the memory required to save the state 5395 ** of the current program, and the memory required at runtime to execute 5396 ** the trigger program. If this trigger has been fired before, then pRt 5397 ** is already allocated. Otherwise, it must be initialized. */ 5398 if( (pRt->flags&MEM_Frame)==0 ){ 5399 /* SubProgram.nMem is set to the number of memory cells used by the 5400 ** program stored in SubProgram.aOp. As well as these, one memory 5401 ** cell is required for each cursor used by the program. Set local 5402 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5403 */ 5404 nMem = pProgram->nMem + pProgram->nCsr; 5405 nByte = ROUND8(sizeof(VdbeFrame)) 5406 + nMem * sizeof(Mem) 5407 + pProgram->nCsr * sizeof(VdbeCursor *) 5408 + pProgram->nOnce * sizeof(u8); 5409 pFrame = sqlite3DbMallocZero(db, nByte); 5410 if( !pFrame ){ 5411 goto no_mem; 5412 } 5413 sqlite3VdbeMemRelease(pRt); 5414 pRt->flags = MEM_Frame; 5415 pRt->u.pFrame = pFrame; 5416 5417 pFrame->v = p; 5418 pFrame->nChildMem = nMem; 5419 pFrame->nChildCsr = pProgram->nCsr; 5420 pFrame->pc = pc; 5421 pFrame->aMem = p->aMem; 5422 pFrame->nMem = p->nMem; 5423 pFrame->apCsr = p->apCsr; 5424 pFrame->nCursor = p->nCursor; 5425 pFrame->aOp = p->aOp; 5426 pFrame->nOp = p->nOp; 5427 pFrame->token = pProgram->token; 5428 pFrame->aOnceFlag = p->aOnceFlag; 5429 pFrame->nOnceFlag = p->nOnceFlag; 5430 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5431 pFrame->anExec = p->anExec; 5432 #endif 5433 5434 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5435 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5436 pMem->flags = MEM_Undefined; 5437 pMem->db = db; 5438 } 5439 }else{ 5440 pFrame = pRt->u.pFrame; 5441 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5442 assert( pProgram->nCsr==pFrame->nChildCsr ); 5443 assert( pc==pFrame->pc ); 5444 } 5445 5446 p->nFrame++; 5447 pFrame->pParent = p->pFrame; 5448 pFrame->lastRowid = lastRowid; 5449 pFrame->nChange = p->nChange; 5450 pFrame->nDbChange = p->db->nChange; 5451 p->nChange = 0; 5452 p->pFrame = pFrame; 5453 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5454 p->nMem = pFrame->nChildMem; 5455 p->nCursor = (u16)pFrame->nChildCsr; 5456 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5457 p->aOp = aOp = pProgram->aOp; 5458 p->nOp = pProgram->nOp; 5459 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5460 p->nOnceFlag = pProgram->nOnce; 5461 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5462 p->anExec = 0; 5463 #endif 5464 pc = -1; 5465 memset(p->aOnceFlag, 0, p->nOnceFlag); 5466 5467 break; 5468 } 5469 5470 /* Opcode: Param P1 P2 * * * 5471 ** 5472 ** This opcode is only ever present in sub-programs called via the 5473 ** OP_Program instruction. Copy a value currently stored in a memory 5474 ** cell of the calling (parent) frame to cell P2 in the current frames 5475 ** address space. This is used by trigger programs to access the new.* 5476 ** and old.* values. 5477 ** 5478 ** The address of the cell in the parent frame is determined by adding 5479 ** the value of the P1 argument to the value of the P1 argument to the 5480 ** calling OP_Program instruction. 5481 */ 5482 case OP_Param: { /* out2-prerelease */ 5483 VdbeFrame *pFrame; 5484 Mem *pIn; 5485 pFrame = p->pFrame; 5486 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5487 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5488 break; 5489 } 5490 5491 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5492 5493 #ifndef SQLITE_OMIT_FOREIGN_KEY 5494 /* Opcode: FkCounter P1 P2 * * * 5495 ** Synopsis: fkctr[P1]+=P2 5496 ** 5497 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5498 ** If P1 is non-zero, the database constraint counter is incremented 5499 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5500 ** statement counter is incremented (immediate foreign key constraints). 5501 */ 5502 case OP_FkCounter: { 5503 if( db->flags & SQLITE_DeferFKs ){ 5504 db->nDeferredImmCons += pOp->p2; 5505 }else if( pOp->p1 ){ 5506 db->nDeferredCons += pOp->p2; 5507 }else{ 5508 p->nFkConstraint += pOp->p2; 5509 } 5510 break; 5511 } 5512 5513 /* Opcode: FkIfZero P1 P2 * * * 5514 ** Synopsis: if fkctr[P1]==0 goto P2 5515 ** 5516 ** This opcode tests if a foreign key constraint-counter is currently zero. 5517 ** If so, jump to instruction P2. Otherwise, fall through to the next 5518 ** instruction. 5519 ** 5520 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5521 ** is zero (the one that counts deferred constraint violations). If P1 is 5522 ** zero, the jump is taken if the statement constraint-counter is zero 5523 ** (immediate foreign key constraint violations). 5524 */ 5525 case OP_FkIfZero: { /* jump */ 5526 if( pOp->p1 ){ 5527 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5528 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5529 }else{ 5530 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5531 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5532 } 5533 break; 5534 } 5535 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5536 5537 #ifndef SQLITE_OMIT_AUTOINCREMENT 5538 /* Opcode: MemMax P1 P2 * * * 5539 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5540 ** 5541 ** P1 is a register in the root frame of this VM (the root frame is 5542 ** different from the current frame if this instruction is being executed 5543 ** within a sub-program). Set the value of register P1 to the maximum of 5544 ** its current value and the value in register P2. 5545 ** 5546 ** This instruction throws an error if the memory cell is not initially 5547 ** an integer. 5548 */ 5549 case OP_MemMax: { /* in2 */ 5550 VdbeFrame *pFrame; 5551 if( p->pFrame ){ 5552 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5553 pIn1 = &pFrame->aMem[pOp->p1]; 5554 }else{ 5555 pIn1 = &aMem[pOp->p1]; 5556 } 5557 assert( memIsValid(pIn1) ); 5558 sqlite3VdbeMemIntegerify(pIn1); 5559 pIn2 = &aMem[pOp->p2]; 5560 sqlite3VdbeMemIntegerify(pIn2); 5561 if( pIn1->u.i<pIn2->u.i){ 5562 pIn1->u.i = pIn2->u.i; 5563 } 5564 break; 5565 } 5566 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5567 5568 /* Opcode: IfPos P1 P2 * * * 5569 ** Synopsis: if r[P1]>0 goto P2 5570 ** 5571 ** If the value of register P1 is 1 or greater, jump to P2. 5572 ** 5573 ** It is illegal to use this instruction on a register that does 5574 ** not contain an integer. An assertion fault will result if you try. 5575 */ 5576 case OP_IfPos: { /* jump, in1 */ 5577 pIn1 = &aMem[pOp->p1]; 5578 assert( pIn1->flags&MEM_Int ); 5579 VdbeBranchTaken( pIn1->u.i>0, 2); 5580 if( pIn1->u.i>0 ){ 5581 pc = pOp->p2 - 1; 5582 } 5583 break; 5584 } 5585 5586 /* Opcode: IfNeg P1 P2 P3 * * 5587 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 5588 ** 5589 ** Register P1 must contain an integer. Add literal P3 to the value in 5590 ** register P1 then if the value of register P1 is less than zero, jump to P2. 5591 */ 5592 case OP_IfNeg: { /* jump, in1 */ 5593 pIn1 = &aMem[pOp->p1]; 5594 assert( pIn1->flags&MEM_Int ); 5595 pIn1->u.i += pOp->p3; 5596 VdbeBranchTaken(pIn1->u.i<0, 2); 5597 if( pIn1->u.i<0 ){ 5598 pc = pOp->p2 - 1; 5599 } 5600 break; 5601 } 5602 5603 /* Opcode: IfZero P1 P2 P3 * * 5604 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 5605 ** 5606 ** The register P1 must contain an integer. Add literal P3 to the 5607 ** value in register P1. If the result is exactly 0, jump to P2. 5608 */ 5609 case OP_IfZero: { /* jump, in1 */ 5610 pIn1 = &aMem[pOp->p1]; 5611 assert( pIn1->flags&MEM_Int ); 5612 pIn1->u.i += pOp->p3; 5613 VdbeBranchTaken(pIn1->u.i==0, 2); 5614 if( pIn1->u.i==0 ){ 5615 pc = pOp->p2 - 1; 5616 } 5617 break; 5618 } 5619 5620 /* Opcode: AggStep * P2 P3 P4 P5 5621 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5622 ** 5623 ** Execute the step function for an aggregate. The 5624 ** function has P5 arguments. P4 is a pointer to the FuncDef 5625 ** structure that specifies the function. Use register 5626 ** P3 as the accumulator. 5627 ** 5628 ** The P5 arguments are taken from register P2 and its 5629 ** successors. 5630 */ 5631 case OP_AggStep: { 5632 int n; 5633 int i; 5634 Mem *pMem; 5635 Mem *pRec; 5636 Mem t; 5637 sqlite3_context ctx; 5638 sqlite3_value **apVal; 5639 5640 n = pOp->p5; 5641 assert( n>=0 ); 5642 pRec = &aMem[pOp->p2]; 5643 apVal = p->apArg; 5644 assert( apVal || n==0 ); 5645 for(i=0; i<n; i++, pRec++){ 5646 assert( memIsValid(pRec) ); 5647 apVal[i] = pRec; 5648 memAboutToChange(p, pRec); 5649 } 5650 ctx.pFunc = pOp->p4.pFunc; 5651 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5652 ctx.pMem = pMem = &aMem[pOp->p3]; 5653 pMem->n++; 5654 sqlite3VdbeMemInit(&t, db, MEM_Null); 5655 ctx.pOut = &t; 5656 ctx.isError = 0; 5657 ctx.pVdbe = p; 5658 ctx.iOp = pc; 5659 ctx.skipFlag = 0; 5660 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5661 if( ctx.isError ){ 5662 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); 5663 rc = ctx.isError; 5664 } 5665 if( ctx.skipFlag ){ 5666 assert( pOp[-1].opcode==OP_CollSeq ); 5667 i = pOp[-1].p1; 5668 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5669 } 5670 sqlite3VdbeMemRelease(&t); 5671 break; 5672 } 5673 5674 /* Opcode: AggFinal P1 P2 * P4 * 5675 ** Synopsis: accum=r[P1] N=P2 5676 ** 5677 ** Execute the finalizer function for an aggregate. P1 is 5678 ** the memory location that is the accumulator for the aggregate. 5679 ** 5680 ** P2 is the number of arguments that the step function takes and 5681 ** P4 is a pointer to the FuncDef for this function. The P2 5682 ** argument is not used by this opcode. It is only there to disambiguate 5683 ** functions that can take varying numbers of arguments. The 5684 ** P4 argument is only needed for the degenerate case where 5685 ** the step function was not previously called. 5686 */ 5687 case OP_AggFinal: { 5688 Mem *pMem; 5689 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5690 pMem = &aMem[pOp->p1]; 5691 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5692 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5693 if( rc ){ 5694 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5695 } 5696 sqlite3VdbeChangeEncoding(pMem, encoding); 5697 UPDATE_MAX_BLOBSIZE(pMem); 5698 if( sqlite3VdbeMemTooBig(pMem) ){ 5699 goto too_big; 5700 } 5701 break; 5702 } 5703 5704 #ifndef SQLITE_OMIT_WAL 5705 /* Opcode: Checkpoint P1 P2 P3 * * 5706 ** 5707 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5708 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 5709 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 5710 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5711 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5712 ** in the WAL that have been checkpointed after the checkpoint 5713 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5714 ** mem[P3+2] are initialized to -1. 5715 */ 5716 case OP_Checkpoint: { 5717 int i; /* Loop counter */ 5718 int aRes[3]; /* Results */ 5719 Mem *pMem; /* Write results here */ 5720 5721 assert( p->readOnly==0 ); 5722 aRes[0] = 0; 5723 aRes[1] = aRes[2] = -1; 5724 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5725 || pOp->p2==SQLITE_CHECKPOINT_FULL 5726 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5727 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 5728 ); 5729 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5730 if( rc==SQLITE_BUSY ){ 5731 rc = SQLITE_OK; 5732 aRes[0] = 1; 5733 } 5734 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5735 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5736 } 5737 break; 5738 }; 5739 #endif 5740 5741 #ifndef SQLITE_OMIT_PRAGMA 5742 /* Opcode: JournalMode P1 P2 P3 * * 5743 ** 5744 ** Change the journal mode of database P1 to P3. P3 must be one of the 5745 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5746 ** modes (delete, truncate, persist, off and memory), this is a simple 5747 ** operation. No IO is required. 5748 ** 5749 ** If changing into or out of WAL mode the procedure is more complicated. 5750 ** 5751 ** Write a string containing the final journal-mode to register P2. 5752 */ 5753 case OP_JournalMode: { /* out2-prerelease */ 5754 Btree *pBt; /* Btree to change journal mode of */ 5755 Pager *pPager; /* Pager associated with pBt */ 5756 int eNew; /* New journal mode */ 5757 int eOld; /* The old journal mode */ 5758 #ifndef SQLITE_OMIT_WAL 5759 const char *zFilename; /* Name of database file for pPager */ 5760 #endif 5761 5762 eNew = pOp->p3; 5763 assert( eNew==PAGER_JOURNALMODE_DELETE 5764 || eNew==PAGER_JOURNALMODE_TRUNCATE 5765 || eNew==PAGER_JOURNALMODE_PERSIST 5766 || eNew==PAGER_JOURNALMODE_OFF 5767 || eNew==PAGER_JOURNALMODE_MEMORY 5768 || eNew==PAGER_JOURNALMODE_WAL 5769 || eNew==PAGER_JOURNALMODE_QUERY 5770 ); 5771 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5772 assert( p->readOnly==0 ); 5773 5774 pBt = db->aDb[pOp->p1].pBt; 5775 pPager = sqlite3BtreePager(pBt); 5776 eOld = sqlite3PagerGetJournalMode(pPager); 5777 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5778 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5779 5780 #ifndef SQLITE_OMIT_WAL 5781 zFilename = sqlite3PagerFilename(pPager, 1); 5782 5783 /* Do not allow a transition to journal_mode=WAL for a database 5784 ** in temporary storage or if the VFS does not support shared memory 5785 */ 5786 if( eNew==PAGER_JOURNALMODE_WAL 5787 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5788 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5789 ){ 5790 eNew = eOld; 5791 } 5792 5793 if( (eNew!=eOld) 5794 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5795 ){ 5796 if( !db->autoCommit || db->nVdbeRead>1 ){ 5797 rc = SQLITE_ERROR; 5798 sqlite3SetString(&p->zErrMsg, db, 5799 "cannot change %s wal mode from within a transaction", 5800 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5801 ); 5802 break; 5803 }else{ 5804 5805 if( eOld==PAGER_JOURNALMODE_WAL ){ 5806 /* If leaving WAL mode, close the log file. If successful, the call 5807 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5808 ** file. An EXCLUSIVE lock may still be held on the database file 5809 ** after a successful return. 5810 */ 5811 rc = sqlite3PagerCloseWal(pPager); 5812 if( rc==SQLITE_OK ){ 5813 sqlite3PagerSetJournalMode(pPager, eNew); 5814 } 5815 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5816 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5817 ** as an intermediate */ 5818 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5819 } 5820 5821 /* Open a transaction on the database file. Regardless of the journal 5822 ** mode, this transaction always uses a rollback journal. 5823 */ 5824 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5825 if( rc==SQLITE_OK ){ 5826 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5827 } 5828 } 5829 } 5830 #endif /* ifndef SQLITE_OMIT_WAL */ 5831 5832 if( rc ){ 5833 eNew = eOld; 5834 } 5835 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5836 5837 pOut = &aMem[pOp->p2]; 5838 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5839 pOut->z = (char *)sqlite3JournalModename(eNew); 5840 pOut->n = sqlite3Strlen30(pOut->z); 5841 pOut->enc = SQLITE_UTF8; 5842 sqlite3VdbeChangeEncoding(pOut, encoding); 5843 break; 5844 }; 5845 #endif /* SQLITE_OMIT_PRAGMA */ 5846 5847 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5848 /* Opcode: Vacuum * * * * * 5849 ** 5850 ** Vacuum the entire database. This opcode will cause other virtual 5851 ** machines to be created and run. It may not be called from within 5852 ** a transaction. 5853 */ 5854 case OP_Vacuum: { 5855 assert( p->readOnly==0 ); 5856 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5857 break; 5858 } 5859 #endif 5860 5861 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5862 /* Opcode: IncrVacuum P1 P2 * * * 5863 ** 5864 ** Perform a single step of the incremental vacuum procedure on 5865 ** the P1 database. If the vacuum has finished, jump to instruction 5866 ** P2. Otherwise, fall through to the next instruction. 5867 */ 5868 case OP_IncrVacuum: { /* jump */ 5869 Btree *pBt; 5870 5871 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5872 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5873 assert( p->readOnly==0 ); 5874 pBt = db->aDb[pOp->p1].pBt; 5875 rc = sqlite3BtreeIncrVacuum(pBt); 5876 VdbeBranchTaken(rc==SQLITE_DONE,2); 5877 if( rc==SQLITE_DONE ){ 5878 pc = pOp->p2 - 1; 5879 rc = SQLITE_OK; 5880 } 5881 break; 5882 } 5883 #endif 5884 5885 /* Opcode: Expire P1 * * * * 5886 ** 5887 ** Cause precompiled statements to expire. When an expired statement 5888 ** is executed using sqlite3_step() it will either automatically 5889 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 5890 ** or it will fail with SQLITE_SCHEMA. 5891 ** 5892 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5893 ** then only the currently executing statement is expired. 5894 */ 5895 case OP_Expire: { 5896 if( !pOp->p1 ){ 5897 sqlite3ExpirePreparedStatements(db); 5898 }else{ 5899 p->expired = 1; 5900 } 5901 break; 5902 } 5903 5904 #ifndef SQLITE_OMIT_SHARED_CACHE 5905 /* Opcode: TableLock P1 P2 P3 P4 * 5906 ** Synopsis: iDb=P1 root=P2 write=P3 5907 ** 5908 ** Obtain a lock on a particular table. This instruction is only used when 5909 ** the shared-cache feature is enabled. 5910 ** 5911 ** P1 is the index of the database in sqlite3.aDb[] of the database 5912 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5913 ** a write lock if P3==1. 5914 ** 5915 ** P2 contains the root-page of the table to lock. 5916 ** 5917 ** P4 contains a pointer to the name of the table being locked. This is only 5918 ** used to generate an error message if the lock cannot be obtained. 5919 */ 5920 case OP_TableLock: { 5921 u8 isWriteLock = (u8)pOp->p3; 5922 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5923 int p1 = pOp->p1; 5924 assert( p1>=0 && p1<db->nDb ); 5925 assert( DbMaskTest(p->btreeMask, p1) ); 5926 assert( isWriteLock==0 || isWriteLock==1 ); 5927 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5928 if( (rc&0xFF)==SQLITE_LOCKED ){ 5929 const char *z = pOp->p4.z; 5930 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5931 } 5932 } 5933 break; 5934 } 5935 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5936 5937 #ifndef SQLITE_OMIT_VIRTUALTABLE 5938 /* Opcode: VBegin * * * P4 * 5939 ** 5940 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5941 ** xBegin method for that table. 5942 ** 5943 ** Also, whether or not P4 is set, check that this is not being called from 5944 ** within a callback to a virtual table xSync() method. If it is, the error 5945 ** code will be set to SQLITE_LOCKED. 5946 */ 5947 case OP_VBegin: { 5948 VTable *pVTab; 5949 pVTab = pOp->p4.pVtab; 5950 rc = sqlite3VtabBegin(db, pVTab); 5951 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 5952 break; 5953 } 5954 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5955 5956 #ifndef SQLITE_OMIT_VIRTUALTABLE 5957 /* Opcode: VCreate P1 * * P4 * 5958 ** 5959 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5960 ** for that table. 5961 */ 5962 case OP_VCreate: { 5963 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5964 break; 5965 } 5966 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5967 5968 #ifndef SQLITE_OMIT_VIRTUALTABLE 5969 /* Opcode: VDestroy P1 * * P4 * 5970 ** 5971 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5972 ** of that table. 5973 */ 5974 case OP_VDestroy: { 5975 p->inVtabMethod = 2; 5976 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5977 p->inVtabMethod = 0; 5978 break; 5979 } 5980 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5981 5982 #ifndef SQLITE_OMIT_VIRTUALTABLE 5983 /* Opcode: VOpen P1 * * P4 * 5984 ** 5985 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5986 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5987 ** table and stores that cursor in P1. 5988 */ 5989 case OP_VOpen: { 5990 VdbeCursor *pCur; 5991 sqlite3_vtab_cursor *pVtabCursor; 5992 sqlite3_vtab *pVtab; 5993 sqlite3_module *pModule; 5994 5995 assert( p->bIsReader ); 5996 pCur = 0; 5997 pVtabCursor = 0; 5998 pVtab = pOp->p4.pVtab->pVtab; 5999 pModule = (sqlite3_module *)pVtab->pModule; 6000 assert(pVtab && pModule); 6001 rc = pModule->xOpen(pVtab, &pVtabCursor); 6002 sqlite3VtabImportErrmsg(p, pVtab); 6003 if( SQLITE_OK==rc ){ 6004 /* Initialize sqlite3_vtab_cursor base class */ 6005 pVtabCursor->pVtab = pVtab; 6006 6007 /* Initialize vdbe cursor object */ 6008 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 6009 if( pCur ){ 6010 pCur->pVtabCursor = pVtabCursor; 6011 }else{ 6012 db->mallocFailed = 1; 6013 pModule->xClose(pVtabCursor); 6014 } 6015 } 6016 break; 6017 } 6018 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6019 6020 #ifndef SQLITE_OMIT_VIRTUALTABLE 6021 /* Opcode: VFilter P1 P2 P3 P4 * 6022 ** Synopsis: iplan=r[P3] zplan='P4' 6023 ** 6024 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6025 ** the filtered result set is empty. 6026 ** 6027 ** P4 is either NULL or a string that was generated by the xBestIndex 6028 ** method of the module. The interpretation of the P4 string is left 6029 ** to the module implementation. 6030 ** 6031 ** This opcode invokes the xFilter method on the virtual table specified 6032 ** by P1. The integer query plan parameter to xFilter is stored in register 6033 ** P3. Register P3+1 stores the argc parameter to be passed to the 6034 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6035 ** additional parameters which are passed to 6036 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6037 ** 6038 ** A jump is made to P2 if the result set after filtering would be empty. 6039 */ 6040 case OP_VFilter: { /* jump */ 6041 int nArg; 6042 int iQuery; 6043 const sqlite3_module *pModule; 6044 Mem *pQuery; 6045 Mem *pArgc; 6046 sqlite3_vtab_cursor *pVtabCursor; 6047 sqlite3_vtab *pVtab; 6048 VdbeCursor *pCur; 6049 int res; 6050 int i; 6051 Mem **apArg; 6052 6053 pQuery = &aMem[pOp->p3]; 6054 pArgc = &pQuery[1]; 6055 pCur = p->apCsr[pOp->p1]; 6056 assert( memIsValid(pQuery) ); 6057 REGISTER_TRACE(pOp->p3, pQuery); 6058 assert( pCur->pVtabCursor ); 6059 pVtabCursor = pCur->pVtabCursor; 6060 pVtab = pVtabCursor->pVtab; 6061 pModule = pVtab->pModule; 6062 6063 /* Grab the index number and argc parameters */ 6064 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6065 nArg = (int)pArgc->u.i; 6066 iQuery = (int)pQuery->u.i; 6067 6068 /* Invoke the xFilter method */ 6069 { 6070 res = 0; 6071 apArg = p->apArg; 6072 for(i = 0; i<nArg; i++){ 6073 apArg[i] = &pArgc[i+1]; 6074 } 6075 6076 p->inVtabMethod = 1; 6077 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 6078 p->inVtabMethod = 0; 6079 sqlite3VtabImportErrmsg(p, pVtab); 6080 if( rc==SQLITE_OK ){ 6081 res = pModule->xEof(pVtabCursor); 6082 } 6083 VdbeBranchTaken(res!=0,2); 6084 if( res ){ 6085 pc = pOp->p2 - 1; 6086 } 6087 } 6088 pCur->nullRow = 0; 6089 6090 break; 6091 } 6092 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6093 6094 #ifndef SQLITE_OMIT_VIRTUALTABLE 6095 /* Opcode: VColumn P1 P2 P3 * * 6096 ** Synopsis: r[P3]=vcolumn(P2) 6097 ** 6098 ** Store the value of the P2-th column of 6099 ** the row of the virtual-table that the 6100 ** P1 cursor is pointing to into register P3. 6101 */ 6102 case OP_VColumn: { 6103 sqlite3_vtab *pVtab; 6104 const sqlite3_module *pModule; 6105 Mem *pDest; 6106 sqlite3_context sContext; 6107 6108 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6109 assert( pCur->pVtabCursor ); 6110 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 6111 pDest = &aMem[pOp->p3]; 6112 memAboutToChange(p, pDest); 6113 if( pCur->nullRow ){ 6114 sqlite3VdbeMemSetNull(pDest); 6115 break; 6116 } 6117 pVtab = pCur->pVtabCursor->pVtab; 6118 pModule = pVtab->pModule; 6119 assert( pModule->xColumn ); 6120 memset(&sContext, 0, sizeof(sContext)); 6121 sContext.pOut = pDest; 6122 MemSetTypeFlag(pDest, MEM_Null); 6123 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 6124 sqlite3VtabImportErrmsg(p, pVtab); 6125 if( sContext.isError ){ 6126 rc = sContext.isError; 6127 } 6128 sqlite3VdbeChangeEncoding(pDest, encoding); 6129 REGISTER_TRACE(pOp->p3, pDest); 6130 UPDATE_MAX_BLOBSIZE(pDest); 6131 6132 if( sqlite3VdbeMemTooBig(pDest) ){ 6133 goto too_big; 6134 } 6135 break; 6136 } 6137 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6138 6139 #ifndef SQLITE_OMIT_VIRTUALTABLE 6140 /* Opcode: VNext P1 P2 * * * 6141 ** 6142 ** Advance virtual table P1 to the next row in its result set and 6143 ** jump to instruction P2. Or, if the virtual table has reached 6144 ** the end of its result set, then fall through to the next instruction. 6145 */ 6146 case OP_VNext: { /* jump */ 6147 sqlite3_vtab *pVtab; 6148 const sqlite3_module *pModule; 6149 int res; 6150 VdbeCursor *pCur; 6151 6152 res = 0; 6153 pCur = p->apCsr[pOp->p1]; 6154 assert( pCur->pVtabCursor ); 6155 if( pCur->nullRow ){ 6156 break; 6157 } 6158 pVtab = pCur->pVtabCursor->pVtab; 6159 pModule = pVtab->pModule; 6160 assert( pModule->xNext ); 6161 6162 /* Invoke the xNext() method of the module. There is no way for the 6163 ** underlying implementation to return an error if one occurs during 6164 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6165 ** data is available) and the error code returned when xColumn or 6166 ** some other method is next invoked on the save virtual table cursor. 6167 */ 6168 p->inVtabMethod = 1; 6169 rc = pModule->xNext(pCur->pVtabCursor); 6170 p->inVtabMethod = 0; 6171 sqlite3VtabImportErrmsg(p, pVtab); 6172 if( rc==SQLITE_OK ){ 6173 res = pModule->xEof(pCur->pVtabCursor); 6174 } 6175 VdbeBranchTaken(!res,2); 6176 if( !res ){ 6177 /* If there is data, jump to P2 */ 6178 pc = pOp->p2 - 1; 6179 } 6180 goto check_for_interrupt; 6181 } 6182 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6183 6184 #ifndef SQLITE_OMIT_VIRTUALTABLE 6185 /* Opcode: VRename P1 * * P4 * 6186 ** 6187 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6188 ** This opcode invokes the corresponding xRename method. The value 6189 ** in register P1 is passed as the zName argument to the xRename method. 6190 */ 6191 case OP_VRename: { 6192 sqlite3_vtab *pVtab; 6193 Mem *pName; 6194 6195 pVtab = pOp->p4.pVtab->pVtab; 6196 pName = &aMem[pOp->p1]; 6197 assert( pVtab->pModule->xRename ); 6198 assert( memIsValid(pName) ); 6199 assert( p->readOnly==0 ); 6200 REGISTER_TRACE(pOp->p1, pName); 6201 assert( pName->flags & MEM_Str ); 6202 testcase( pName->enc==SQLITE_UTF8 ); 6203 testcase( pName->enc==SQLITE_UTF16BE ); 6204 testcase( pName->enc==SQLITE_UTF16LE ); 6205 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6206 if( rc==SQLITE_OK ){ 6207 rc = pVtab->pModule->xRename(pVtab, pName->z); 6208 sqlite3VtabImportErrmsg(p, pVtab); 6209 p->expired = 0; 6210 } 6211 break; 6212 } 6213 #endif 6214 6215 #ifndef SQLITE_OMIT_VIRTUALTABLE 6216 /* Opcode: VUpdate P1 P2 P3 P4 P5 6217 ** Synopsis: data=r[P3@P2] 6218 ** 6219 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6220 ** This opcode invokes the corresponding xUpdate method. P2 values 6221 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6222 ** invocation. The value in register (P3+P2-1) corresponds to the 6223 ** p2th element of the argv array passed to xUpdate. 6224 ** 6225 ** The xUpdate method will do a DELETE or an INSERT or both. 6226 ** The argv[0] element (which corresponds to memory cell P3) 6227 ** is the rowid of a row to delete. If argv[0] is NULL then no 6228 ** deletion occurs. The argv[1] element is the rowid of the new 6229 ** row. This can be NULL to have the virtual table select the new 6230 ** rowid for itself. The subsequent elements in the array are 6231 ** the values of columns in the new row. 6232 ** 6233 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6234 ** a row to delete. 6235 ** 6236 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6237 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6238 ** is set to the value of the rowid for the row just inserted. 6239 ** 6240 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6241 ** apply in the case of a constraint failure on an insert or update. 6242 */ 6243 case OP_VUpdate: { 6244 sqlite3_vtab *pVtab; 6245 sqlite3_module *pModule; 6246 int nArg; 6247 int i; 6248 sqlite_int64 rowid; 6249 Mem **apArg; 6250 Mem *pX; 6251 6252 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6253 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6254 ); 6255 assert( p->readOnly==0 ); 6256 pVtab = pOp->p4.pVtab->pVtab; 6257 pModule = (sqlite3_module *)pVtab->pModule; 6258 nArg = pOp->p2; 6259 assert( pOp->p4type==P4_VTAB ); 6260 if( ALWAYS(pModule->xUpdate) ){ 6261 u8 vtabOnConflict = db->vtabOnConflict; 6262 apArg = p->apArg; 6263 pX = &aMem[pOp->p3]; 6264 for(i=0; i<nArg; i++){ 6265 assert( memIsValid(pX) ); 6266 memAboutToChange(p, pX); 6267 apArg[i] = pX; 6268 pX++; 6269 } 6270 db->vtabOnConflict = pOp->p5; 6271 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6272 db->vtabOnConflict = vtabOnConflict; 6273 sqlite3VtabImportErrmsg(p, pVtab); 6274 if( rc==SQLITE_OK && pOp->p1 ){ 6275 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6276 db->lastRowid = lastRowid = rowid; 6277 } 6278 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6279 if( pOp->p5==OE_Ignore ){ 6280 rc = SQLITE_OK; 6281 }else{ 6282 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6283 } 6284 }else{ 6285 p->nChange++; 6286 } 6287 } 6288 break; 6289 } 6290 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6291 6292 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6293 /* Opcode: Pagecount P1 P2 * * * 6294 ** 6295 ** Write the current number of pages in database P1 to memory cell P2. 6296 */ 6297 case OP_Pagecount: { /* out2-prerelease */ 6298 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6299 break; 6300 } 6301 #endif 6302 6303 6304 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6305 /* Opcode: MaxPgcnt P1 P2 P3 * * 6306 ** 6307 ** Try to set the maximum page count for database P1 to the value in P3. 6308 ** Do not let the maximum page count fall below the current page count and 6309 ** do not change the maximum page count value if P3==0. 6310 ** 6311 ** Store the maximum page count after the change in register P2. 6312 */ 6313 case OP_MaxPgcnt: { /* out2-prerelease */ 6314 unsigned int newMax; 6315 Btree *pBt; 6316 6317 pBt = db->aDb[pOp->p1].pBt; 6318 newMax = 0; 6319 if( pOp->p3 ){ 6320 newMax = sqlite3BtreeLastPage(pBt); 6321 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6322 } 6323 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6324 break; 6325 } 6326 #endif 6327 6328 6329 /* Opcode: Init * P2 * P4 * 6330 ** Synopsis: Start at P2 6331 ** 6332 ** Programs contain a single instance of this opcode as the very first 6333 ** opcode. 6334 ** 6335 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6336 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6337 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6338 ** 6339 ** If P2 is not zero, jump to instruction P2. 6340 */ 6341 case OP_Init: { /* jump */ 6342 char *zTrace; 6343 char *z; 6344 6345 if( pOp->p2 ){ 6346 pc = pOp->p2 - 1; 6347 } 6348 #ifndef SQLITE_OMIT_TRACE 6349 if( db->xTrace 6350 && !p->doingRerun 6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6352 ){ 6353 z = sqlite3VdbeExpandSql(p, zTrace); 6354 db->xTrace(db->pTraceArg, z); 6355 sqlite3DbFree(db, z); 6356 } 6357 #ifdef SQLITE_USE_FCNTL_TRACE 6358 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6359 if( zTrace ){ 6360 int i; 6361 for(i=0; i<db->nDb; i++){ 6362 if( DbMaskTest(p->btreeMask, i)==0 ) continue; 6363 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6364 } 6365 } 6366 #endif /* SQLITE_USE_FCNTL_TRACE */ 6367 #ifdef SQLITE_DEBUG 6368 if( (db->flags & SQLITE_SqlTrace)!=0 6369 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6370 ){ 6371 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6372 } 6373 #endif /* SQLITE_DEBUG */ 6374 #endif /* SQLITE_OMIT_TRACE */ 6375 break; 6376 } 6377 6378 6379 /* Opcode: Noop * * * * * 6380 ** 6381 ** Do nothing. This instruction is often useful as a jump 6382 ** destination. 6383 */ 6384 /* 6385 ** The magic Explain opcode are only inserted when explain==2 (which 6386 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6387 ** This opcode records information from the optimizer. It is the 6388 ** the same as a no-op. This opcodesnever appears in a real VM program. 6389 */ 6390 default: { /* This is really OP_Noop and OP_Explain */ 6391 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6392 break; 6393 } 6394 6395 /***************************************************************************** 6396 ** The cases of the switch statement above this line should all be indented 6397 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6398 ** readability. From this point on down, the normal indentation rules are 6399 ** restored. 6400 *****************************************************************************/ 6401 } 6402 6403 #ifdef VDBE_PROFILE 6404 { 6405 u64 endTime = sqlite3Hwtime(); 6406 if( endTime>start ) pOp->cycles += endTime - start; 6407 pOp->cnt++; 6408 } 6409 #endif 6410 6411 /* The following code adds nothing to the actual functionality 6412 ** of the program. It is only here for testing and debugging. 6413 ** On the other hand, it does burn CPU cycles every time through 6414 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6415 */ 6416 #ifndef NDEBUG 6417 assert( pc>=-1 && pc<p->nOp ); 6418 6419 #ifdef SQLITE_DEBUG 6420 if( db->flags & SQLITE_VdbeTrace ){ 6421 if( rc!=0 ) printf("rc=%d\n",rc); 6422 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6423 registerTrace(pOp->p2, &aMem[pOp->p2]); 6424 } 6425 if( pOp->opflags & OPFLG_OUT3 ){ 6426 registerTrace(pOp->p3, &aMem[pOp->p3]); 6427 } 6428 } 6429 #endif /* SQLITE_DEBUG */ 6430 #endif /* NDEBUG */ 6431 } /* The end of the for(;;) loop the loops through opcodes */ 6432 6433 /* If we reach this point, it means that execution is finished with 6434 ** an error of some kind. 6435 */ 6436 vdbe_error_halt: 6437 assert( rc ); 6438 p->rc = rc; 6439 testcase( sqlite3GlobalConfig.xLog!=0 ); 6440 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6441 pc, p->zSql, p->zErrMsg); 6442 sqlite3VdbeHalt(p); 6443 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6444 rc = SQLITE_ERROR; 6445 if( resetSchemaOnFault>0 ){ 6446 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6447 } 6448 6449 /* This is the only way out of this procedure. We have to 6450 ** release the mutexes on btrees that were acquired at the 6451 ** top. */ 6452 vdbe_return: 6453 db->lastRowid = lastRowid; 6454 testcase( nVmStep>0 ); 6455 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6456 sqlite3VdbeLeave(p); 6457 return rc; 6458 6459 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6460 ** is encountered. 6461 */ 6462 too_big: 6463 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6464 rc = SQLITE_TOOBIG; 6465 goto vdbe_error_halt; 6466 6467 /* Jump to here if a malloc() fails. 6468 */ 6469 no_mem: 6470 db->mallocFailed = 1; 6471 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6472 rc = SQLITE_NOMEM; 6473 goto vdbe_error_halt; 6474 6475 /* Jump to here for any other kind of fatal error. The "rc" variable 6476 ** should hold the error number. 6477 */ 6478 abort_due_to_error: 6479 assert( p->zErrMsg==0 ); 6480 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6481 if( rc!=SQLITE_IOERR_NOMEM ){ 6482 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6483 } 6484 goto vdbe_error_halt; 6485 6486 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6487 ** flag. 6488 */ 6489 abort_due_to_interrupt: 6490 assert( db->u1.isInterrupted ); 6491 rc = SQLITE_INTERRUPT; 6492 p->rc = rc; 6493 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6494 goto vdbe_error_halt; 6495 } 6496