1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 276 p->apCsr[iCur] = 0; 277 } 278 279 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 280 ** the pMem used to hold space for the cursor has enough storage available 281 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 282 ** to hold cursors, it is faster to in-line the logic. */ 283 assert( pMem->flags==MEM_Undefined ); 284 assert( (pMem->flags & MEM_Dyn)==0 ); 285 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 286 if( pMem->szMalloc<nByte ){ 287 if( pMem->szMalloc>0 ){ 288 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 289 } 290 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 291 if( pMem->zMalloc==0 ){ 292 pMem->szMalloc = 0; 293 return 0; 294 } 295 pMem->szMalloc = nByte; 296 } 297 298 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 299 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 300 pCx->eCurType = eCurType; 301 pCx->iDb = iDb; 302 pCx->nField = nField; 303 pCx->aOffset = &pCx->aType[nField]; 304 if( eCurType==CURTYPE_BTREE ){ 305 pCx->uc.pCursor = (BtCursor*) 306 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 307 sqlite3BtreeCursorZero(pCx->uc.pCursor); 308 } 309 return pCx; 310 } 311 312 /* 313 ** The string in pRec is known to look like an integer and to have a 314 ** floating point value of rValue. Return true and set *piValue to the 315 ** integer value if the string is in range to be an integer. Otherwise, 316 ** return false. 317 */ 318 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 319 i64 iValue = (double)rValue; 320 if( sqlite3RealSameAsInt(rValue,iValue) ){ 321 *piValue = iValue; 322 return 1; 323 } 324 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 325 } 326 327 /* 328 ** Try to convert a value into a numeric representation if we can 329 ** do so without loss of information. In other words, if the string 330 ** looks like a number, convert it into a number. If it does not 331 ** look like a number, leave it alone. 332 ** 333 ** If the bTryForInt flag is true, then extra effort is made to give 334 ** an integer representation. Strings that look like floating point 335 ** values but which have no fractional component (example: '48.00') 336 ** will have a MEM_Int representation when bTryForInt is true. 337 ** 338 ** If bTryForInt is false, then if the input string contains a decimal 339 ** point or exponential notation, the result is only MEM_Real, even 340 ** if there is an exact integer representation of the quantity. 341 */ 342 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 343 double rValue; 344 u8 enc = pRec->enc; 345 int rc; 346 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 347 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 348 if( rc<=0 ) return; 349 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 350 pRec->flags |= MEM_Int; 351 }else{ 352 pRec->u.r = rValue; 353 pRec->flags |= MEM_Real; 354 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 355 } 356 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 357 ** string representation after computing a numeric equivalent, because the 358 ** string representation might not be the canonical representation for the 359 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 360 pRec->flags &= ~MEM_Str; 361 } 362 363 /* 364 ** Processing is determine by the affinity parameter: 365 ** 366 ** SQLITE_AFF_INTEGER: 367 ** SQLITE_AFF_REAL: 368 ** SQLITE_AFF_NUMERIC: 369 ** Try to convert pRec to an integer representation or a 370 ** floating-point representation if an integer representation 371 ** is not possible. Note that the integer representation is 372 ** always preferred, even if the affinity is REAL, because 373 ** an integer representation is more space efficient on disk. 374 ** 375 ** SQLITE_AFF_TEXT: 376 ** Convert pRec to a text representation. 377 ** 378 ** SQLITE_AFF_BLOB: 379 ** SQLITE_AFF_NONE: 380 ** No-op. pRec is unchanged. 381 */ 382 static void applyAffinity( 383 Mem *pRec, /* The value to apply affinity to */ 384 char affinity, /* The affinity to be applied */ 385 u8 enc /* Use this text encoding */ 386 ){ 387 if( affinity>=SQLITE_AFF_NUMERIC ){ 388 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 389 || affinity==SQLITE_AFF_NUMERIC ); 390 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 391 if( (pRec->flags & MEM_Real)==0 ){ 392 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 393 }else{ 394 sqlite3VdbeIntegerAffinity(pRec); 395 } 396 } 397 }else if( affinity==SQLITE_AFF_TEXT ){ 398 /* Only attempt the conversion to TEXT if there is an integer or real 399 ** representation (blob and NULL do not get converted) but no string 400 ** representation. It would be harmless to repeat the conversion if 401 ** there is already a string rep, but it is pointless to waste those 402 ** CPU cycles. */ 403 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 404 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 405 testcase( pRec->flags & MEM_Int ); 406 testcase( pRec->flags & MEM_Real ); 407 testcase( pRec->flags & MEM_IntReal ); 408 sqlite3VdbeMemStringify(pRec, enc, 1); 409 } 410 } 411 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 412 } 413 } 414 415 /* 416 ** Try to convert the type of a function argument or a result column 417 ** into a numeric representation. Use either INTEGER or REAL whichever 418 ** is appropriate. But only do the conversion if it is possible without 419 ** loss of information and return the revised type of the argument. 420 */ 421 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 422 int eType = sqlite3_value_type(pVal); 423 if( eType==SQLITE_TEXT ){ 424 Mem *pMem = (Mem*)pVal; 425 applyNumericAffinity(pMem, 0); 426 eType = sqlite3_value_type(pVal); 427 } 428 return eType; 429 } 430 431 /* 432 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 433 ** not the internal Mem* type. 434 */ 435 void sqlite3ValueApplyAffinity( 436 sqlite3_value *pVal, 437 u8 affinity, 438 u8 enc 439 ){ 440 applyAffinity((Mem *)pVal, affinity, enc); 441 } 442 443 /* 444 ** pMem currently only holds a string type (or maybe a BLOB that we can 445 ** interpret as a string if we want to). Compute its corresponding 446 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 447 ** accordingly. 448 */ 449 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 450 int rc; 451 sqlite3_int64 ix; 452 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 453 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 454 if( ExpandBlob(pMem) ){ 455 pMem->u.i = 0; 456 return MEM_Int; 457 } 458 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 459 if( rc<=0 ){ 460 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 461 pMem->u.i = ix; 462 return MEM_Int; 463 }else{ 464 return MEM_Real; 465 } 466 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 467 pMem->u.i = ix; 468 return MEM_Int; 469 } 470 return MEM_Real; 471 } 472 473 /* 474 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 475 ** none. 476 ** 477 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 478 ** But it does set pMem->u.r and pMem->u.i appropriately. 479 */ 480 static u16 numericType(Mem *pMem){ 481 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 482 testcase( pMem->flags & MEM_Int ); 483 testcase( pMem->flags & MEM_Real ); 484 testcase( pMem->flags & MEM_IntReal ); 485 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 486 } 487 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 488 testcase( pMem->flags & MEM_Str ); 489 testcase( pMem->flags & MEM_Blob ); 490 return computeNumericType(pMem); 491 } 492 return 0; 493 } 494 495 #ifdef SQLITE_DEBUG 496 /* 497 ** Write a nice string representation of the contents of cell pMem 498 ** into buffer zBuf, length nBuf. 499 */ 500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 501 int f = pMem->flags; 502 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 503 if( f&MEM_Blob ){ 504 int i; 505 char c; 506 if( f & MEM_Dyn ){ 507 c = 'z'; 508 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 509 }else if( f & MEM_Static ){ 510 c = 't'; 511 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 512 }else if( f & MEM_Ephem ){ 513 c = 'e'; 514 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 515 }else{ 516 c = 's'; 517 } 518 sqlite3_str_appendf(pStr, "%cx[", c); 519 for(i=0; i<25 && i<pMem->n; i++){ 520 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 521 } 522 sqlite3_str_appendf(pStr, "|"); 523 for(i=0; i<25 && i<pMem->n; i++){ 524 char z = pMem->z[i]; 525 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 526 } 527 sqlite3_str_appendf(pStr,"]"); 528 if( f & MEM_Zero ){ 529 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 530 } 531 }else if( f & MEM_Str ){ 532 int j; 533 u8 c; 534 if( f & MEM_Dyn ){ 535 c = 'z'; 536 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 537 }else if( f & MEM_Static ){ 538 c = 't'; 539 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 540 }else if( f & MEM_Ephem ){ 541 c = 'e'; 542 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 543 }else{ 544 c = 's'; 545 } 546 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 547 for(j=0; j<25 && j<pMem->n; j++){ 548 c = pMem->z[j]; 549 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 550 } 551 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 552 } 553 } 554 #endif 555 556 #ifdef SQLITE_DEBUG 557 /* 558 ** Print the value of a register for tracing purposes: 559 */ 560 static void memTracePrint(Mem *p){ 561 if( p->flags & MEM_Undefined ){ 562 printf(" undefined"); 563 }else if( p->flags & MEM_Null ){ 564 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 565 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 566 printf(" si:%lld", p->u.i); 567 }else if( (p->flags & (MEM_IntReal))!=0 ){ 568 printf(" ir:%lld", p->u.i); 569 }else if( p->flags & MEM_Int ){ 570 printf(" i:%lld", p->u.i); 571 #ifndef SQLITE_OMIT_FLOATING_POINT 572 }else if( p->flags & MEM_Real ){ 573 printf(" r:%.17g", p->u.r); 574 #endif 575 }else if( sqlite3VdbeMemIsRowSet(p) ){ 576 printf(" (rowset)"); 577 }else{ 578 StrAccum acc; 579 char zBuf[1000]; 580 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 581 sqlite3VdbeMemPrettyPrint(p, &acc); 582 printf(" %s", sqlite3StrAccumFinish(&acc)); 583 } 584 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 585 } 586 static void registerTrace(int iReg, Mem *p){ 587 printf("R[%d] = ", iReg); 588 memTracePrint(p); 589 if( p->pScopyFrom ){ 590 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 591 } 592 printf("\n"); 593 sqlite3VdbeCheckMemInvariants(p); 594 } 595 /**/ void sqlite3PrintMem(Mem *pMem){ 596 memTracePrint(pMem); 597 printf("\n"); 598 fflush(stdout); 599 } 600 #endif 601 602 #ifdef SQLITE_DEBUG 603 /* 604 ** Show the values of all registers in the virtual machine. Used for 605 ** interactive debugging. 606 */ 607 void sqlite3VdbeRegisterDump(Vdbe *v){ 608 int i; 609 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 610 } 611 #endif /* SQLITE_DEBUG */ 612 613 614 #ifdef SQLITE_DEBUG 615 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 616 #else 617 # define REGISTER_TRACE(R,M) 618 #endif 619 620 621 #ifdef VDBE_PROFILE 622 623 /* 624 ** hwtime.h contains inline assembler code for implementing 625 ** high-performance timing routines. 626 */ 627 #include "hwtime.h" 628 629 #endif 630 631 #ifndef NDEBUG 632 /* 633 ** This function is only called from within an assert() expression. It 634 ** checks that the sqlite3.nTransaction variable is correctly set to 635 ** the number of non-transaction savepoints currently in the 636 ** linked list starting at sqlite3.pSavepoint. 637 ** 638 ** Usage: 639 ** 640 ** assert( checkSavepointCount(db) ); 641 */ 642 static int checkSavepointCount(sqlite3 *db){ 643 int n = 0; 644 Savepoint *p; 645 for(p=db->pSavepoint; p; p=p->pNext) n++; 646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 647 return 1; 648 } 649 #endif 650 651 /* 652 ** Return the register of pOp->p2 after first preparing it to be 653 ** overwritten with an integer value. 654 */ 655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 656 sqlite3VdbeMemSetNull(pOut); 657 pOut->flags = MEM_Int; 658 return pOut; 659 } 660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 661 Mem *pOut; 662 assert( pOp->p2>0 ); 663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 664 pOut = &p->aMem[pOp->p2]; 665 memAboutToChange(p, pOut); 666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 667 return out2PrereleaseWithClear(pOut); 668 }else{ 669 pOut->flags = MEM_Int; 670 return pOut; 671 } 672 } 673 674 /* 675 ** Return the symbolic name for the data type of a pMem 676 */ 677 static const char *vdbeMemTypeName(Mem *pMem){ 678 static const char *azTypes[] = { 679 /* SQLITE_INTEGER */ "INT", 680 /* SQLITE_FLOAT */ "REAL", 681 /* SQLITE_TEXT */ "TEXT", 682 /* SQLITE_BLOB */ "BLOB", 683 /* SQLITE_NULL */ "NULL" 684 }; 685 return azTypes[sqlite3_value_type(pMem)-1]; 686 } 687 688 /* 689 ** Execute as much of a VDBE program as we can. 690 ** This is the core of sqlite3_step(). 691 */ 692 int sqlite3VdbeExec( 693 Vdbe *p /* The VDBE */ 694 ){ 695 Op *aOp = p->aOp; /* Copy of p->aOp */ 696 Op *pOp = aOp; /* Current operation */ 697 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 698 Op *pOrigOp; /* Value of pOp at the top of the loop */ 699 #endif 700 #ifdef SQLITE_DEBUG 701 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 702 #endif 703 int rc = SQLITE_OK; /* Value to return */ 704 sqlite3 *db = p->db; /* The database */ 705 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 706 u8 encoding = ENC(db); /* The database encoding */ 707 int iCompare = 0; /* Result of last comparison */ 708 u64 nVmStep = 0; /* Number of virtual machine steps */ 709 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 710 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 711 #endif 712 Mem *aMem = p->aMem; /* Copy of p->aMem */ 713 Mem *pIn1 = 0; /* 1st input operand */ 714 Mem *pIn2 = 0; /* 2nd input operand */ 715 Mem *pIn3 = 0; /* 3rd input operand */ 716 Mem *pOut = 0; /* Output operand */ 717 #ifdef VDBE_PROFILE 718 u64 start; /* CPU clock count at start of opcode */ 719 #endif 720 /*** INSERT STACK UNION HERE ***/ 721 722 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 723 sqlite3VdbeEnter(p); 724 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 725 if( db->xProgress ){ 726 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 727 assert( 0 < db->nProgressOps ); 728 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 729 }else{ 730 nProgressLimit = LARGEST_UINT64; 731 } 732 #endif 733 if( p->rc==SQLITE_NOMEM ){ 734 /* This happens if a malloc() inside a call to sqlite3_column_text() or 735 ** sqlite3_column_text16() failed. */ 736 goto no_mem; 737 } 738 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 739 testcase( p->rc!=SQLITE_OK ); 740 p->rc = SQLITE_OK; 741 assert( p->bIsReader || p->readOnly!=0 ); 742 p->iCurrentTime = 0; 743 assert( p->explain==0 ); 744 p->pResultSet = 0; 745 db->busyHandler.nBusy = 0; 746 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 747 sqlite3VdbeIOTraceSql(p); 748 #ifdef SQLITE_DEBUG 749 sqlite3BeginBenignMalloc(); 750 if( p->pc==0 751 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 752 ){ 753 int i; 754 int once = 1; 755 sqlite3VdbePrintSql(p); 756 if( p->db->flags & SQLITE_VdbeListing ){ 757 printf("VDBE Program Listing:\n"); 758 for(i=0; i<p->nOp; i++){ 759 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 760 } 761 } 762 if( p->db->flags & SQLITE_VdbeEQP ){ 763 for(i=0; i<p->nOp; i++){ 764 if( aOp[i].opcode==OP_Explain ){ 765 if( once ) printf("VDBE Query Plan:\n"); 766 printf("%s\n", aOp[i].p4.z); 767 once = 0; 768 } 769 } 770 } 771 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 772 } 773 sqlite3EndBenignMalloc(); 774 #endif 775 for(pOp=&aOp[p->pc]; 1; pOp++){ 776 /* Errors are detected by individual opcodes, with an immediate 777 ** jumps to abort_due_to_error. */ 778 assert( rc==SQLITE_OK ); 779 780 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 781 #ifdef VDBE_PROFILE 782 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 783 #endif 784 nVmStep++; 785 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 786 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 787 #endif 788 789 /* Only allow tracing if SQLITE_DEBUG is defined. 790 */ 791 #ifdef SQLITE_DEBUG 792 if( db->flags & SQLITE_VdbeTrace ){ 793 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 794 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 795 } 796 #endif 797 798 799 /* Check to see if we need to simulate an interrupt. This only happens 800 ** if we have a special test build. 801 */ 802 #ifdef SQLITE_TEST 803 if( sqlite3_interrupt_count>0 ){ 804 sqlite3_interrupt_count--; 805 if( sqlite3_interrupt_count==0 ){ 806 sqlite3_interrupt(db); 807 } 808 } 809 #endif 810 811 /* Sanity checking on other operands */ 812 #ifdef SQLITE_DEBUG 813 { 814 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 815 if( (opProperty & OPFLG_IN1)!=0 ){ 816 assert( pOp->p1>0 ); 817 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 818 assert( memIsValid(&aMem[pOp->p1]) ); 819 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 820 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 821 } 822 if( (opProperty & OPFLG_IN2)!=0 ){ 823 assert( pOp->p2>0 ); 824 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 825 assert( memIsValid(&aMem[pOp->p2]) ); 826 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 827 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 828 } 829 if( (opProperty & OPFLG_IN3)!=0 ){ 830 assert( pOp->p3>0 ); 831 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 832 assert( memIsValid(&aMem[pOp->p3]) ); 833 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 834 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 835 } 836 if( (opProperty & OPFLG_OUT2)!=0 ){ 837 assert( pOp->p2>0 ); 838 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 839 memAboutToChange(p, &aMem[pOp->p2]); 840 } 841 if( (opProperty & OPFLG_OUT3)!=0 ){ 842 assert( pOp->p3>0 ); 843 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 844 memAboutToChange(p, &aMem[pOp->p3]); 845 } 846 } 847 #endif 848 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 849 pOrigOp = pOp; 850 #endif 851 852 switch( pOp->opcode ){ 853 854 /***************************************************************************** 855 ** What follows is a massive switch statement where each case implements a 856 ** separate instruction in the virtual machine. If we follow the usual 857 ** indentation conventions, each case should be indented by 6 spaces. But 858 ** that is a lot of wasted space on the left margin. So the code within 859 ** the switch statement will break with convention and be flush-left. Another 860 ** big comment (similar to this one) will mark the point in the code where 861 ** we transition back to normal indentation. 862 ** 863 ** The formatting of each case is important. The makefile for SQLite 864 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 865 ** file looking for lines that begin with "case OP_". The opcodes.h files 866 ** will be filled with #defines that give unique integer values to each 867 ** opcode and the opcodes.c file is filled with an array of strings where 868 ** each string is the symbolic name for the corresponding opcode. If the 869 ** case statement is followed by a comment of the form "/# same as ... #/" 870 ** that comment is used to determine the particular value of the opcode. 871 ** 872 ** Other keywords in the comment that follows each case are used to 873 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 874 ** Keywords include: in1, in2, in3, out2, out3. See 875 ** the mkopcodeh.awk script for additional information. 876 ** 877 ** Documentation about VDBE opcodes is generated by scanning this file 878 ** for lines of that contain "Opcode:". That line and all subsequent 879 ** comment lines are used in the generation of the opcode.html documentation 880 ** file. 881 ** 882 ** SUMMARY: 883 ** 884 ** Formatting is important to scripts that scan this file. 885 ** Do not deviate from the formatting style currently in use. 886 ** 887 *****************************************************************************/ 888 889 /* Opcode: Goto * P2 * * * 890 ** 891 ** An unconditional jump to address P2. 892 ** The next instruction executed will be 893 ** the one at index P2 from the beginning of 894 ** the program. 895 ** 896 ** The P1 parameter is not actually used by this opcode. However, it 897 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 898 ** that this Goto is the bottom of a loop and that the lines from P2 down 899 ** to the current line should be indented for EXPLAIN output. 900 */ 901 case OP_Goto: { /* jump */ 902 903 #ifdef SQLITE_DEBUG 904 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 905 ** means we should really jump back to the preceeding OP_ReleaseReg 906 ** instruction. */ 907 if( pOp->p5 ){ 908 assert( pOp->p2 < (int)(pOp - aOp) ); 909 assert( pOp->p2 > 1 ); 910 pOp = &aOp[pOp->p2 - 2]; 911 assert( pOp[1].opcode==OP_ReleaseReg ); 912 goto check_for_interrupt; 913 } 914 #endif 915 916 jump_to_p2_and_check_for_interrupt: 917 pOp = &aOp[pOp->p2 - 1]; 918 919 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 920 ** OP_VNext, or OP_SorterNext) all jump here upon 921 ** completion. Check to see if sqlite3_interrupt() has been called 922 ** or if the progress callback needs to be invoked. 923 ** 924 ** This code uses unstructured "goto" statements and does not look clean. 925 ** But that is not due to sloppy coding habits. The code is written this 926 ** way for performance, to avoid having to run the interrupt and progress 927 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 928 ** faster according to "valgrind --tool=cachegrind" */ 929 check_for_interrupt: 930 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 931 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 932 /* Call the progress callback if it is configured and the required number 933 ** of VDBE ops have been executed (either since this invocation of 934 ** sqlite3VdbeExec() or since last time the progress callback was called). 935 ** If the progress callback returns non-zero, exit the virtual machine with 936 ** a return code SQLITE_ABORT. 937 */ 938 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 939 assert( db->nProgressOps!=0 ); 940 nProgressLimit += db->nProgressOps; 941 if( db->xProgress(db->pProgressArg) ){ 942 nProgressLimit = LARGEST_UINT64; 943 rc = SQLITE_INTERRUPT; 944 goto abort_due_to_error; 945 } 946 } 947 #endif 948 949 break; 950 } 951 952 /* Opcode: Gosub P1 P2 * * * 953 ** 954 ** Write the current address onto register P1 955 ** and then jump to address P2. 956 */ 957 case OP_Gosub: { /* jump */ 958 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 959 pIn1 = &aMem[pOp->p1]; 960 assert( VdbeMemDynamic(pIn1)==0 ); 961 memAboutToChange(p, pIn1); 962 pIn1->flags = MEM_Int; 963 pIn1->u.i = (int)(pOp-aOp); 964 REGISTER_TRACE(pOp->p1, pIn1); 965 966 /* Most jump operations do a goto to this spot in order to update 967 ** the pOp pointer. */ 968 jump_to_p2: 969 pOp = &aOp[pOp->p2 - 1]; 970 break; 971 } 972 973 /* Opcode: Return P1 * * * * 974 ** 975 ** Jump to the next instruction after the address in register P1. After 976 ** the jump, register P1 becomes undefined. 977 */ 978 case OP_Return: { /* in1 */ 979 pIn1 = &aMem[pOp->p1]; 980 assert( pIn1->flags==MEM_Int ); 981 pOp = &aOp[pIn1->u.i]; 982 pIn1->flags = MEM_Undefined; 983 break; 984 } 985 986 /* Opcode: InitCoroutine P1 P2 P3 * * 987 ** 988 ** Set up register P1 so that it will Yield to the coroutine 989 ** located at address P3. 990 ** 991 ** If P2!=0 then the coroutine implementation immediately follows 992 ** this opcode. So jump over the coroutine implementation to 993 ** address P2. 994 ** 995 ** See also: EndCoroutine 996 */ 997 case OP_InitCoroutine: { /* jump */ 998 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 999 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1000 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1001 pOut = &aMem[pOp->p1]; 1002 assert( !VdbeMemDynamic(pOut) ); 1003 pOut->u.i = pOp->p3 - 1; 1004 pOut->flags = MEM_Int; 1005 if( pOp->p2 ) goto jump_to_p2; 1006 break; 1007 } 1008 1009 /* Opcode: EndCoroutine P1 * * * * 1010 ** 1011 ** The instruction at the address in register P1 is a Yield. 1012 ** Jump to the P2 parameter of that Yield. 1013 ** After the jump, register P1 becomes undefined. 1014 ** 1015 ** See also: InitCoroutine 1016 */ 1017 case OP_EndCoroutine: { /* in1 */ 1018 VdbeOp *pCaller; 1019 pIn1 = &aMem[pOp->p1]; 1020 assert( pIn1->flags==MEM_Int ); 1021 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1022 pCaller = &aOp[pIn1->u.i]; 1023 assert( pCaller->opcode==OP_Yield ); 1024 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1025 pOp = &aOp[pCaller->p2 - 1]; 1026 pIn1->flags = MEM_Undefined; 1027 break; 1028 } 1029 1030 /* Opcode: Yield P1 P2 * * * 1031 ** 1032 ** Swap the program counter with the value in register P1. This 1033 ** has the effect of yielding to a coroutine. 1034 ** 1035 ** If the coroutine that is launched by this instruction ends with 1036 ** Yield or Return then continue to the next instruction. But if 1037 ** the coroutine launched by this instruction ends with 1038 ** EndCoroutine, then jump to P2 rather than continuing with the 1039 ** next instruction. 1040 ** 1041 ** See also: InitCoroutine 1042 */ 1043 case OP_Yield: { /* in1, jump */ 1044 int pcDest; 1045 pIn1 = &aMem[pOp->p1]; 1046 assert( VdbeMemDynamic(pIn1)==0 ); 1047 pIn1->flags = MEM_Int; 1048 pcDest = (int)pIn1->u.i; 1049 pIn1->u.i = (int)(pOp - aOp); 1050 REGISTER_TRACE(pOp->p1, pIn1); 1051 pOp = &aOp[pcDest]; 1052 break; 1053 } 1054 1055 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1056 ** Synopsis: if r[P3]=null halt 1057 ** 1058 ** Check the value in register P3. If it is NULL then Halt using 1059 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1060 ** value in register P3 is not NULL, then this routine is a no-op. 1061 ** The P5 parameter should be 1. 1062 */ 1063 case OP_HaltIfNull: { /* in3 */ 1064 pIn3 = &aMem[pOp->p3]; 1065 #ifdef SQLITE_DEBUG 1066 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1067 #endif 1068 if( (pIn3->flags & MEM_Null)==0 ) break; 1069 /* Fall through into OP_Halt */ 1070 /* no break */ deliberate_fall_through 1071 } 1072 1073 /* Opcode: Halt P1 P2 * P4 P5 1074 ** 1075 ** Exit immediately. All open cursors, etc are closed 1076 ** automatically. 1077 ** 1078 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1079 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1080 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1081 ** whether or not to rollback the current transaction. Do not rollback 1082 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1083 ** then back out all changes that have occurred during this execution of the 1084 ** VDBE, but do not rollback the transaction. 1085 ** 1086 ** If P4 is not null then it is an error message string. 1087 ** 1088 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1089 ** 1090 ** 0: (no change) 1091 ** 1: NOT NULL contraint failed: P4 1092 ** 2: UNIQUE constraint failed: P4 1093 ** 3: CHECK constraint failed: P4 1094 ** 4: FOREIGN KEY constraint failed: P4 1095 ** 1096 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1097 ** omitted. 1098 ** 1099 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1100 ** every program. So a jump past the last instruction of the program 1101 ** is the same as executing Halt. 1102 */ 1103 case OP_Halt: { 1104 VdbeFrame *pFrame; 1105 int pcx; 1106 1107 pcx = (int)(pOp - aOp); 1108 #ifdef SQLITE_DEBUG 1109 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1110 #endif 1111 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1112 /* Halt the sub-program. Return control to the parent frame. */ 1113 pFrame = p->pFrame; 1114 p->pFrame = pFrame->pParent; 1115 p->nFrame--; 1116 sqlite3VdbeSetChanges(db, p->nChange); 1117 pcx = sqlite3VdbeFrameRestore(pFrame); 1118 if( pOp->p2==OE_Ignore ){ 1119 /* Instruction pcx is the OP_Program that invoked the sub-program 1120 ** currently being halted. If the p2 instruction of this OP_Halt 1121 ** instruction is set to OE_Ignore, then the sub-program is throwing 1122 ** an IGNORE exception. In this case jump to the address specified 1123 ** as the p2 of the calling OP_Program. */ 1124 pcx = p->aOp[pcx].p2-1; 1125 } 1126 aOp = p->aOp; 1127 aMem = p->aMem; 1128 pOp = &aOp[pcx]; 1129 break; 1130 } 1131 p->rc = pOp->p1; 1132 p->errorAction = (u8)pOp->p2; 1133 p->pc = pcx; 1134 assert( pOp->p5<=4 ); 1135 if( p->rc ){ 1136 if( pOp->p5 ){ 1137 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1138 "FOREIGN KEY" }; 1139 testcase( pOp->p5==1 ); 1140 testcase( pOp->p5==2 ); 1141 testcase( pOp->p5==3 ); 1142 testcase( pOp->p5==4 ); 1143 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1144 if( pOp->p4.z ){ 1145 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1146 } 1147 }else{ 1148 sqlite3VdbeError(p, "%s", pOp->p4.z); 1149 } 1150 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1151 } 1152 rc = sqlite3VdbeHalt(p); 1153 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1154 if( rc==SQLITE_BUSY ){ 1155 p->rc = SQLITE_BUSY; 1156 }else{ 1157 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1158 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1159 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1160 } 1161 goto vdbe_return; 1162 } 1163 1164 /* Opcode: Integer P1 P2 * * * 1165 ** Synopsis: r[P2]=P1 1166 ** 1167 ** The 32-bit integer value P1 is written into register P2. 1168 */ 1169 case OP_Integer: { /* out2 */ 1170 pOut = out2Prerelease(p, pOp); 1171 pOut->u.i = pOp->p1; 1172 break; 1173 } 1174 1175 /* Opcode: Int64 * P2 * P4 * 1176 ** Synopsis: r[P2]=P4 1177 ** 1178 ** P4 is a pointer to a 64-bit integer value. 1179 ** Write that value into register P2. 1180 */ 1181 case OP_Int64: { /* out2 */ 1182 pOut = out2Prerelease(p, pOp); 1183 assert( pOp->p4.pI64!=0 ); 1184 pOut->u.i = *pOp->p4.pI64; 1185 break; 1186 } 1187 1188 #ifndef SQLITE_OMIT_FLOATING_POINT 1189 /* Opcode: Real * P2 * P4 * 1190 ** Synopsis: r[P2]=P4 1191 ** 1192 ** P4 is a pointer to a 64-bit floating point value. 1193 ** Write that value into register P2. 1194 */ 1195 case OP_Real: { /* same as TK_FLOAT, out2 */ 1196 pOut = out2Prerelease(p, pOp); 1197 pOut->flags = MEM_Real; 1198 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1199 pOut->u.r = *pOp->p4.pReal; 1200 break; 1201 } 1202 #endif 1203 1204 /* Opcode: String8 * P2 * P4 * 1205 ** Synopsis: r[P2]='P4' 1206 ** 1207 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1208 ** into a String opcode before it is executed for the first time. During 1209 ** this transformation, the length of string P4 is computed and stored 1210 ** as the P1 parameter. 1211 */ 1212 case OP_String8: { /* same as TK_STRING, out2 */ 1213 assert( pOp->p4.z!=0 ); 1214 pOut = out2Prerelease(p, pOp); 1215 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1216 1217 #ifndef SQLITE_OMIT_UTF16 1218 if( encoding!=SQLITE_UTF8 ){ 1219 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1220 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1221 if( rc ) goto too_big; 1222 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1223 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1224 assert( VdbeMemDynamic(pOut)==0 ); 1225 pOut->szMalloc = 0; 1226 pOut->flags |= MEM_Static; 1227 if( pOp->p4type==P4_DYNAMIC ){ 1228 sqlite3DbFree(db, pOp->p4.z); 1229 } 1230 pOp->p4type = P4_DYNAMIC; 1231 pOp->p4.z = pOut->z; 1232 pOp->p1 = pOut->n; 1233 } 1234 #endif 1235 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1236 goto too_big; 1237 } 1238 pOp->opcode = OP_String; 1239 assert( rc==SQLITE_OK ); 1240 /* Fall through to the next case, OP_String */ 1241 /* no break */ deliberate_fall_through 1242 } 1243 1244 /* Opcode: String P1 P2 P3 P4 P5 1245 ** Synopsis: r[P2]='P4' (len=P1) 1246 ** 1247 ** The string value P4 of length P1 (bytes) is stored in register P2. 1248 ** 1249 ** If P3 is not zero and the content of register P3 is equal to P5, then 1250 ** the datatype of the register P2 is converted to BLOB. The content is 1251 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1252 ** of a string, as if it had been CAST. In other words: 1253 ** 1254 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1255 */ 1256 case OP_String: { /* out2 */ 1257 assert( pOp->p4.z!=0 ); 1258 pOut = out2Prerelease(p, pOp); 1259 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1260 pOut->z = pOp->p4.z; 1261 pOut->n = pOp->p1; 1262 pOut->enc = encoding; 1263 UPDATE_MAX_BLOBSIZE(pOut); 1264 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1265 if( pOp->p3>0 ){ 1266 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1267 pIn3 = &aMem[pOp->p3]; 1268 assert( pIn3->flags & MEM_Int ); 1269 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1270 } 1271 #endif 1272 break; 1273 } 1274 1275 /* Opcode: Null P1 P2 P3 * * 1276 ** Synopsis: r[P2..P3]=NULL 1277 ** 1278 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1279 ** NULL into register P3 and every register in between P2 and P3. If P3 1280 ** is less than P2 (typically P3 is zero) then only register P2 is 1281 ** set to NULL. 1282 ** 1283 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1284 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1285 ** OP_Ne or OP_Eq. 1286 */ 1287 case OP_Null: { /* out2 */ 1288 int cnt; 1289 u16 nullFlag; 1290 pOut = out2Prerelease(p, pOp); 1291 cnt = pOp->p3-pOp->p2; 1292 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1293 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1294 pOut->n = 0; 1295 #ifdef SQLITE_DEBUG 1296 pOut->uTemp = 0; 1297 #endif 1298 while( cnt>0 ){ 1299 pOut++; 1300 memAboutToChange(p, pOut); 1301 sqlite3VdbeMemSetNull(pOut); 1302 pOut->flags = nullFlag; 1303 pOut->n = 0; 1304 cnt--; 1305 } 1306 break; 1307 } 1308 1309 /* Opcode: SoftNull P1 * * * * 1310 ** Synopsis: r[P1]=NULL 1311 ** 1312 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1313 ** instruction, but do not free any string or blob memory associated with 1314 ** the register, so that if the value was a string or blob that was 1315 ** previously copied using OP_SCopy, the copies will continue to be valid. 1316 */ 1317 case OP_SoftNull: { 1318 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1319 pOut = &aMem[pOp->p1]; 1320 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1321 break; 1322 } 1323 1324 /* Opcode: Blob P1 P2 * P4 * 1325 ** Synopsis: r[P2]=P4 (len=P1) 1326 ** 1327 ** P4 points to a blob of data P1 bytes long. Store this 1328 ** blob in register P2. 1329 */ 1330 case OP_Blob: { /* out2 */ 1331 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1332 pOut = out2Prerelease(p, pOp); 1333 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1334 pOut->enc = encoding; 1335 UPDATE_MAX_BLOBSIZE(pOut); 1336 break; 1337 } 1338 1339 /* Opcode: Variable P1 P2 * P4 * 1340 ** Synopsis: r[P2]=parameter(P1,P4) 1341 ** 1342 ** Transfer the values of bound parameter P1 into register P2 1343 ** 1344 ** If the parameter is named, then its name appears in P4. 1345 ** The P4 value is used by sqlite3_bind_parameter_name(). 1346 */ 1347 case OP_Variable: { /* out2 */ 1348 Mem *pVar; /* Value being transferred */ 1349 1350 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1351 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1352 pVar = &p->aVar[pOp->p1 - 1]; 1353 if( sqlite3VdbeMemTooBig(pVar) ){ 1354 goto too_big; 1355 } 1356 pOut = &aMem[pOp->p2]; 1357 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1358 memcpy(pOut, pVar, MEMCELLSIZE); 1359 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1360 pOut->flags |= MEM_Static|MEM_FromBind; 1361 UPDATE_MAX_BLOBSIZE(pOut); 1362 break; 1363 } 1364 1365 /* Opcode: Move P1 P2 P3 * * 1366 ** Synopsis: r[P2@P3]=r[P1@P3] 1367 ** 1368 ** Move the P3 values in register P1..P1+P3-1 over into 1369 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1370 ** left holding a NULL. It is an error for register ranges 1371 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1372 ** for P3 to be less than 1. 1373 */ 1374 case OP_Move: { 1375 int n; /* Number of registers left to copy */ 1376 int p1; /* Register to copy from */ 1377 int p2; /* Register to copy to */ 1378 1379 n = pOp->p3; 1380 p1 = pOp->p1; 1381 p2 = pOp->p2; 1382 assert( n>0 && p1>0 && p2>0 ); 1383 assert( p1+n<=p2 || p2+n<=p1 ); 1384 1385 pIn1 = &aMem[p1]; 1386 pOut = &aMem[p2]; 1387 do{ 1388 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1389 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1390 assert( memIsValid(pIn1) ); 1391 memAboutToChange(p, pOut); 1392 sqlite3VdbeMemMove(pOut, pIn1); 1393 #ifdef SQLITE_DEBUG 1394 pIn1->pScopyFrom = 0; 1395 { int i; 1396 for(i=1; i<p->nMem; i++){ 1397 if( aMem[i].pScopyFrom==pIn1 ){ 1398 aMem[i].pScopyFrom = pOut; 1399 } 1400 } 1401 } 1402 #endif 1403 Deephemeralize(pOut); 1404 REGISTER_TRACE(p2++, pOut); 1405 pIn1++; 1406 pOut++; 1407 }while( --n ); 1408 break; 1409 } 1410 1411 /* Opcode: Copy P1 P2 P3 * * 1412 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1413 ** 1414 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1415 ** 1416 ** This instruction makes a deep copy of the value. A duplicate 1417 ** is made of any string or blob constant. See also OP_SCopy. 1418 */ 1419 case OP_Copy: { 1420 int n; 1421 1422 n = pOp->p3; 1423 pIn1 = &aMem[pOp->p1]; 1424 pOut = &aMem[pOp->p2]; 1425 assert( pOut!=pIn1 ); 1426 while( 1 ){ 1427 memAboutToChange(p, pOut); 1428 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1429 Deephemeralize(pOut); 1430 #ifdef SQLITE_DEBUG 1431 pOut->pScopyFrom = 0; 1432 #endif 1433 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1434 if( (n--)==0 ) break; 1435 pOut++; 1436 pIn1++; 1437 } 1438 break; 1439 } 1440 1441 /* Opcode: SCopy P1 P2 * * * 1442 ** Synopsis: r[P2]=r[P1] 1443 ** 1444 ** Make a shallow copy of register P1 into register P2. 1445 ** 1446 ** This instruction makes a shallow copy of the value. If the value 1447 ** is a string or blob, then the copy is only a pointer to the 1448 ** original and hence if the original changes so will the copy. 1449 ** Worse, if the original is deallocated, the copy becomes invalid. 1450 ** Thus the program must guarantee that the original will not change 1451 ** during the lifetime of the copy. Use OP_Copy to make a complete 1452 ** copy. 1453 */ 1454 case OP_SCopy: { /* out2 */ 1455 pIn1 = &aMem[pOp->p1]; 1456 pOut = &aMem[pOp->p2]; 1457 assert( pOut!=pIn1 ); 1458 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1459 #ifdef SQLITE_DEBUG 1460 pOut->pScopyFrom = pIn1; 1461 pOut->mScopyFlags = pIn1->flags; 1462 #endif 1463 break; 1464 } 1465 1466 /* Opcode: IntCopy P1 P2 * * * 1467 ** Synopsis: r[P2]=r[P1] 1468 ** 1469 ** Transfer the integer value held in register P1 into register P2. 1470 ** 1471 ** This is an optimized version of SCopy that works only for integer 1472 ** values. 1473 */ 1474 case OP_IntCopy: { /* out2 */ 1475 pIn1 = &aMem[pOp->p1]; 1476 assert( (pIn1->flags & MEM_Int)!=0 ); 1477 pOut = &aMem[pOp->p2]; 1478 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1479 break; 1480 } 1481 1482 /* Opcode: ChngCntRow P1 P2 * * * 1483 ** Synopsis: output=r[P1] 1484 ** 1485 ** Output value in register P1 as the chance count for a DML statement, 1486 ** due to the "PRAGMA count_changes=ON" setting. Or, if there was a 1487 ** foreign key error in the statement, trigger the error now. 1488 ** 1489 ** This opcode is a variant of OP_ResultRow that checks the foreign key 1490 ** immediate constraint count and throws an error if the count is 1491 ** non-zero. The P2 opcode must be 1. 1492 */ 1493 case OP_ChngCntRow: { 1494 assert( pOp->p2==1 ); 1495 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1496 goto abort_due_to_error; 1497 } 1498 /* Fall through to the next case, OP_ResultRow */ 1499 /* no break */ deliberate_fall_through 1500 } 1501 1502 /* Opcode: ResultRow P1 P2 * * * 1503 ** Synopsis: output=r[P1@P2] 1504 ** 1505 ** The registers P1 through P1+P2-1 contain a single row of 1506 ** results. This opcode causes the sqlite3_step() call to terminate 1507 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1508 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1509 ** the result row. 1510 */ 1511 case OP_ResultRow: { 1512 Mem *pMem; 1513 int i; 1514 assert( p->nResColumn==pOp->p2 ); 1515 assert( pOp->p1>0 || CORRUPT_DB ); 1516 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1517 1518 /* Invalidate all ephemeral cursor row caches */ 1519 p->cacheCtr = (p->cacheCtr + 2)|1; 1520 1521 /* Make sure the results of the current row are \000 terminated 1522 ** and have an assigned type. The results are de-ephemeralized as 1523 ** a side effect. 1524 */ 1525 pMem = p->pResultSet = &aMem[pOp->p1]; 1526 for(i=0; i<pOp->p2; i++){ 1527 assert( memIsValid(&pMem[i]) ); 1528 Deephemeralize(&pMem[i]); 1529 assert( (pMem[i].flags & MEM_Ephem)==0 1530 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1531 sqlite3VdbeMemNulTerminate(&pMem[i]); 1532 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1533 #ifdef SQLITE_DEBUG 1534 /* The registers in the result will not be used again when the 1535 ** prepared statement restarts. This is because sqlite3_column() 1536 ** APIs might have caused type conversions of made other changes to 1537 ** the register values. Therefore, we can go ahead and break any 1538 ** OP_SCopy dependencies. */ 1539 pMem[i].pScopyFrom = 0; 1540 #endif 1541 } 1542 if( db->mallocFailed ) goto no_mem; 1543 1544 if( db->mTrace & SQLITE_TRACE_ROW ){ 1545 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1546 } 1547 1548 1549 /* Return SQLITE_ROW 1550 */ 1551 p->pc = (int)(pOp - aOp) + 1; 1552 rc = SQLITE_ROW; 1553 goto vdbe_return; 1554 } 1555 1556 /* Opcode: Concat P1 P2 P3 * * 1557 ** Synopsis: r[P3]=r[P2]+r[P1] 1558 ** 1559 ** Add the text in register P1 onto the end of the text in 1560 ** register P2 and store the result in register P3. 1561 ** If either the P1 or P2 text are NULL then store NULL in P3. 1562 ** 1563 ** P3 = P2 || P1 1564 ** 1565 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1566 ** if P3 is the same register as P2, the implementation is able 1567 ** to avoid a memcpy(). 1568 */ 1569 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1570 i64 nByte; /* Total size of the output string or blob */ 1571 u16 flags1; /* Initial flags for P1 */ 1572 u16 flags2; /* Initial flags for P2 */ 1573 1574 pIn1 = &aMem[pOp->p1]; 1575 pIn2 = &aMem[pOp->p2]; 1576 pOut = &aMem[pOp->p3]; 1577 testcase( pOut==pIn2 ); 1578 assert( pIn1!=pOut ); 1579 flags1 = pIn1->flags; 1580 testcase( flags1 & MEM_Null ); 1581 testcase( pIn2->flags & MEM_Null ); 1582 if( (flags1 | pIn2->flags) & MEM_Null ){ 1583 sqlite3VdbeMemSetNull(pOut); 1584 break; 1585 } 1586 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1587 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1588 flags1 = pIn1->flags & ~MEM_Str; 1589 }else if( (flags1 & MEM_Zero)!=0 ){ 1590 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1591 flags1 = pIn1->flags & ~MEM_Str; 1592 } 1593 flags2 = pIn2->flags; 1594 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1595 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1596 flags2 = pIn2->flags & ~MEM_Str; 1597 }else if( (flags2 & MEM_Zero)!=0 ){ 1598 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1599 flags2 = pIn2->flags & ~MEM_Str; 1600 } 1601 nByte = pIn1->n + pIn2->n; 1602 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1603 goto too_big; 1604 } 1605 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1606 goto no_mem; 1607 } 1608 MemSetTypeFlag(pOut, MEM_Str); 1609 if( pOut!=pIn2 ){ 1610 memcpy(pOut->z, pIn2->z, pIn2->n); 1611 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1612 pIn2->flags = flags2; 1613 } 1614 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1615 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1616 pIn1->flags = flags1; 1617 pOut->z[nByte]=0; 1618 pOut->z[nByte+1] = 0; 1619 pOut->z[nByte+2] = 0; 1620 pOut->flags |= MEM_Term; 1621 pOut->n = (int)nByte; 1622 pOut->enc = encoding; 1623 UPDATE_MAX_BLOBSIZE(pOut); 1624 break; 1625 } 1626 1627 /* Opcode: Add P1 P2 P3 * * 1628 ** Synopsis: r[P3]=r[P1]+r[P2] 1629 ** 1630 ** Add the value in register P1 to the value in register P2 1631 ** and store the result in register P3. 1632 ** If either input is NULL, the result is NULL. 1633 */ 1634 /* Opcode: Multiply P1 P2 P3 * * 1635 ** Synopsis: r[P3]=r[P1]*r[P2] 1636 ** 1637 ** 1638 ** Multiply the value in register P1 by the value in register P2 1639 ** and store the result in register P3. 1640 ** If either input is NULL, the result is NULL. 1641 */ 1642 /* Opcode: Subtract P1 P2 P3 * * 1643 ** Synopsis: r[P3]=r[P2]-r[P1] 1644 ** 1645 ** Subtract the value in register P1 from the value in register P2 1646 ** and store the result in register P3. 1647 ** If either input is NULL, the result is NULL. 1648 */ 1649 /* Opcode: Divide P1 P2 P3 * * 1650 ** Synopsis: r[P3]=r[P2]/r[P1] 1651 ** 1652 ** Divide the value in register P1 by the value in register P2 1653 ** and store the result in register P3 (P3=P2/P1). If the value in 1654 ** register P1 is zero, then the result is NULL. If either input is 1655 ** NULL, the result is NULL. 1656 */ 1657 /* Opcode: Remainder P1 P2 P3 * * 1658 ** Synopsis: r[P3]=r[P2]%r[P1] 1659 ** 1660 ** Compute the remainder after integer register P2 is divided by 1661 ** register P1 and store the result in register P3. 1662 ** If the value in register P1 is zero the result is NULL. 1663 ** If either operand is NULL, the result is NULL. 1664 */ 1665 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1666 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1667 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1668 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1669 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1670 u16 flags; /* Combined MEM_* flags from both inputs */ 1671 u16 type1; /* Numeric type of left operand */ 1672 u16 type2; /* Numeric type of right operand */ 1673 i64 iA; /* Integer value of left operand */ 1674 i64 iB; /* Integer value of right operand */ 1675 double rA; /* Real value of left operand */ 1676 double rB; /* Real value of right operand */ 1677 1678 pIn1 = &aMem[pOp->p1]; 1679 type1 = numericType(pIn1); 1680 pIn2 = &aMem[pOp->p2]; 1681 type2 = numericType(pIn2); 1682 pOut = &aMem[pOp->p3]; 1683 flags = pIn1->flags | pIn2->flags; 1684 if( (type1 & type2 & MEM_Int)!=0 ){ 1685 iA = pIn1->u.i; 1686 iB = pIn2->u.i; 1687 switch( pOp->opcode ){ 1688 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1689 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1690 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1691 case OP_Divide: { 1692 if( iA==0 ) goto arithmetic_result_is_null; 1693 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1694 iB /= iA; 1695 break; 1696 } 1697 default: { 1698 if( iA==0 ) goto arithmetic_result_is_null; 1699 if( iA==-1 ) iA = 1; 1700 iB %= iA; 1701 break; 1702 } 1703 } 1704 pOut->u.i = iB; 1705 MemSetTypeFlag(pOut, MEM_Int); 1706 }else if( (flags & MEM_Null)!=0 ){ 1707 goto arithmetic_result_is_null; 1708 }else{ 1709 fp_math: 1710 rA = sqlite3VdbeRealValue(pIn1); 1711 rB = sqlite3VdbeRealValue(pIn2); 1712 switch( pOp->opcode ){ 1713 case OP_Add: rB += rA; break; 1714 case OP_Subtract: rB -= rA; break; 1715 case OP_Multiply: rB *= rA; break; 1716 case OP_Divide: { 1717 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1718 if( rA==(double)0 ) goto arithmetic_result_is_null; 1719 rB /= rA; 1720 break; 1721 } 1722 default: { 1723 iA = sqlite3VdbeIntValue(pIn1); 1724 iB = sqlite3VdbeIntValue(pIn2); 1725 if( iA==0 ) goto arithmetic_result_is_null; 1726 if( iA==-1 ) iA = 1; 1727 rB = (double)(iB % iA); 1728 break; 1729 } 1730 } 1731 #ifdef SQLITE_OMIT_FLOATING_POINT 1732 pOut->u.i = rB; 1733 MemSetTypeFlag(pOut, MEM_Int); 1734 #else 1735 if( sqlite3IsNaN(rB) ){ 1736 goto arithmetic_result_is_null; 1737 } 1738 pOut->u.r = rB; 1739 MemSetTypeFlag(pOut, MEM_Real); 1740 #endif 1741 } 1742 break; 1743 1744 arithmetic_result_is_null: 1745 sqlite3VdbeMemSetNull(pOut); 1746 break; 1747 } 1748 1749 /* Opcode: CollSeq P1 * * P4 1750 ** 1751 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1752 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1753 ** be returned. This is used by the built-in min(), max() and nullif() 1754 ** functions. 1755 ** 1756 ** If P1 is not zero, then it is a register that a subsequent min() or 1757 ** max() aggregate will set to 1 if the current row is not the minimum or 1758 ** maximum. The P1 register is initialized to 0 by this instruction. 1759 ** 1760 ** The interface used by the implementation of the aforementioned functions 1761 ** to retrieve the collation sequence set by this opcode is not available 1762 ** publicly. Only built-in functions have access to this feature. 1763 */ 1764 case OP_CollSeq: { 1765 assert( pOp->p4type==P4_COLLSEQ ); 1766 if( pOp->p1 ){ 1767 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1768 } 1769 break; 1770 } 1771 1772 /* Opcode: BitAnd P1 P2 P3 * * 1773 ** Synopsis: r[P3]=r[P1]&r[P2] 1774 ** 1775 ** Take the bit-wise AND of the values in register P1 and P2 and 1776 ** store the result in register P3. 1777 ** If either input is NULL, the result is NULL. 1778 */ 1779 /* Opcode: BitOr P1 P2 P3 * * 1780 ** Synopsis: r[P3]=r[P1]|r[P2] 1781 ** 1782 ** Take the bit-wise OR of the values in register P1 and P2 and 1783 ** store the result in register P3. 1784 ** If either input is NULL, the result is NULL. 1785 */ 1786 /* Opcode: ShiftLeft P1 P2 P3 * * 1787 ** Synopsis: r[P3]=r[P2]<<r[P1] 1788 ** 1789 ** Shift the integer value in register P2 to the left by the 1790 ** number of bits specified by the integer in register P1. 1791 ** Store the result in register P3. 1792 ** If either input is NULL, the result is NULL. 1793 */ 1794 /* Opcode: ShiftRight P1 P2 P3 * * 1795 ** Synopsis: r[P3]=r[P2]>>r[P1] 1796 ** 1797 ** Shift the integer value in register P2 to the right by the 1798 ** number of bits specified by the integer in register P1. 1799 ** Store the result in register P3. 1800 ** If either input is NULL, the result is NULL. 1801 */ 1802 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1803 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1804 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1805 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1806 i64 iA; 1807 u64 uA; 1808 i64 iB; 1809 u8 op; 1810 1811 pIn1 = &aMem[pOp->p1]; 1812 pIn2 = &aMem[pOp->p2]; 1813 pOut = &aMem[pOp->p3]; 1814 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1815 sqlite3VdbeMemSetNull(pOut); 1816 break; 1817 } 1818 iA = sqlite3VdbeIntValue(pIn2); 1819 iB = sqlite3VdbeIntValue(pIn1); 1820 op = pOp->opcode; 1821 if( op==OP_BitAnd ){ 1822 iA &= iB; 1823 }else if( op==OP_BitOr ){ 1824 iA |= iB; 1825 }else if( iB!=0 ){ 1826 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1827 1828 /* If shifting by a negative amount, shift in the other direction */ 1829 if( iB<0 ){ 1830 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1831 op = 2*OP_ShiftLeft + 1 - op; 1832 iB = iB>(-64) ? -iB : 64; 1833 } 1834 1835 if( iB>=64 ){ 1836 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1837 }else{ 1838 memcpy(&uA, &iA, sizeof(uA)); 1839 if( op==OP_ShiftLeft ){ 1840 uA <<= iB; 1841 }else{ 1842 uA >>= iB; 1843 /* Sign-extend on a right shift of a negative number */ 1844 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1845 } 1846 memcpy(&iA, &uA, sizeof(iA)); 1847 } 1848 } 1849 pOut->u.i = iA; 1850 MemSetTypeFlag(pOut, MEM_Int); 1851 break; 1852 } 1853 1854 /* Opcode: AddImm P1 P2 * * * 1855 ** Synopsis: r[P1]=r[P1]+P2 1856 ** 1857 ** Add the constant P2 to the value in register P1. 1858 ** The result is always an integer. 1859 ** 1860 ** To force any register to be an integer, just add 0. 1861 */ 1862 case OP_AddImm: { /* in1 */ 1863 pIn1 = &aMem[pOp->p1]; 1864 memAboutToChange(p, pIn1); 1865 sqlite3VdbeMemIntegerify(pIn1); 1866 pIn1->u.i += pOp->p2; 1867 break; 1868 } 1869 1870 /* Opcode: MustBeInt P1 P2 * * * 1871 ** 1872 ** Force the value in register P1 to be an integer. If the value 1873 ** in P1 is not an integer and cannot be converted into an integer 1874 ** without data loss, then jump immediately to P2, or if P2==0 1875 ** raise an SQLITE_MISMATCH exception. 1876 */ 1877 case OP_MustBeInt: { /* jump, in1 */ 1878 pIn1 = &aMem[pOp->p1]; 1879 if( (pIn1->flags & MEM_Int)==0 ){ 1880 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1881 if( (pIn1->flags & MEM_Int)==0 ){ 1882 VdbeBranchTaken(1, 2); 1883 if( pOp->p2==0 ){ 1884 rc = SQLITE_MISMATCH; 1885 goto abort_due_to_error; 1886 }else{ 1887 goto jump_to_p2; 1888 } 1889 } 1890 } 1891 VdbeBranchTaken(0, 2); 1892 MemSetTypeFlag(pIn1, MEM_Int); 1893 break; 1894 } 1895 1896 #ifndef SQLITE_OMIT_FLOATING_POINT 1897 /* Opcode: RealAffinity P1 * * * * 1898 ** 1899 ** If register P1 holds an integer convert it to a real value. 1900 ** 1901 ** This opcode is used when extracting information from a column that 1902 ** has REAL affinity. Such column values may still be stored as 1903 ** integers, for space efficiency, but after extraction we want them 1904 ** to have only a real value. 1905 */ 1906 case OP_RealAffinity: { /* in1 */ 1907 pIn1 = &aMem[pOp->p1]; 1908 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1909 testcase( pIn1->flags & MEM_Int ); 1910 testcase( pIn1->flags & MEM_IntReal ); 1911 sqlite3VdbeMemRealify(pIn1); 1912 REGISTER_TRACE(pOp->p1, pIn1); 1913 } 1914 break; 1915 } 1916 #endif 1917 1918 #ifndef SQLITE_OMIT_CAST 1919 /* Opcode: Cast P1 P2 * * * 1920 ** Synopsis: affinity(r[P1]) 1921 ** 1922 ** Force the value in register P1 to be the type defined by P2. 1923 ** 1924 ** <ul> 1925 ** <li> P2=='A' → BLOB 1926 ** <li> P2=='B' → TEXT 1927 ** <li> P2=='C' → NUMERIC 1928 ** <li> P2=='D' → INTEGER 1929 ** <li> P2=='E' → REAL 1930 ** </ul> 1931 ** 1932 ** A NULL value is not changed by this routine. It remains NULL. 1933 */ 1934 case OP_Cast: { /* in1 */ 1935 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1936 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1937 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1938 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1939 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1940 testcase( pOp->p2==SQLITE_AFF_REAL ); 1941 pIn1 = &aMem[pOp->p1]; 1942 memAboutToChange(p, pIn1); 1943 rc = ExpandBlob(pIn1); 1944 if( rc ) goto abort_due_to_error; 1945 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1946 if( rc ) goto abort_due_to_error; 1947 UPDATE_MAX_BLOBSIZE(pIn1); 1948 REGISTER_TRACE(pOp->p1, pIn1); 1949 break; 1950 } 1951 #endif /* SQLITE_OMIT_CAST */ 1952 1953 /* Opcode: Eq P1 P2 P3 P4 P5 1954 ** Synopsis: IF r[P3]==r[P1] 1955 ** 1956 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1957 ** jump to address P2. 1958 ** 1959 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1960 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1961 ** to coerce both inputs according to this affinity before the 1962 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1963 ** affinity is used. Note that the affinity conversions are stored 1964 ** back into the input registers P1 and P3. So this opcode can cause 1965 ** persistent changes to registers P1 and P3. 1966 ** 1967 ** Once any conversions have taken place, and neither value is NULL, 1968 ** the values are compared. If both values are blobs then memcmp() is 1969 ** used to determine the results of the comparison. If both values 1970 ** are text, then the appropriate collating function specified in 1971 ** P4 is used to do the comparison. If P4 is not specified then 1972 ** memcmp() is used to compare text string. If both values are 1973 ** numeric, then a numeric comparison is used. If the two values 1974 ** are of different types, then numbers are considered less than 1975 ** strings and strings are considered less than blobs. 1976 ** 1977 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1978 ** true or false and is never NULL. If both operands are NULL then the result 1979 ** of comparison is true. If either operand is NULL then the result is false. 1980 ** If neither operand is NULL the result is the same as it would be if 1981 ** the SQLITE_NULLEQ flag were omitted from P5. 1982 ** 1983 ** This opcode saves the result of comparison for use by the new 1984 ** OP_Jump opcode. 1985 */ 1986 /* Opcode: Ne P1 P2 P3 P4 P5 1987 ** Synopsis: IF r[P3]!=r[P1] 1988 ** 1989 ** This works just like the Eq opcode except that the jump is taken if 1990 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1991 ** additional information. 1992 */ 1993 /* Opcode: Lt P1 P2 P3 P4 P5 1994 ** Synopsis: IF r[P3]<r[P1] 1995 ** 1996 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1997 ** jump to address P2. 1998 ** 1999 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2000 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2001 ** bit is clear then fall through if either operand is NULL. 2002 ** 2003 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2004 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2005 ** to coerce both inputs according to this affinity before the 2006 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2007 ** affinity is used. Note that the affinity conversions are stored 2008 ** back into the input registers P1 and P3. So this opcode can cause 2009 ** persistent changes to registers P1 and P3. 2010 ** 2011 ** Once any conversions have taken place, and neither value is NULL, 2012 ** the values are compared. If both values are blobs then memcmp() is 2013 ** used to determine the results of the comparison. If both values 2014 ** are text, then the appropriate collating function specified in 2015 ** P4 is used to do the comparison. If P4 is not specified then 2016 ** memcmp() is used to compare text string. If both values are 2017 ** numeric, then a numeric comparison is used. If the two values 2018 ** are of different types, then numbers are considered less than 2019 ** strings and strings are considered less than blobs. 2020 ** 2021 ** This opcode saves the result of comparison for use by the new 2022 ** OP_Jump opcode. 2023 */ 2024 /* Opcode: Le P1 P2 P3 P4 P5 2025 ** Synopsis: IF r[P3]<=r[P1] 2026 ** 2027 ** This works just like the Lt opcode except that the jump is taken if 2028 ** the content of register P3 is less than or equal to the content of 2029 ** register P1. See the Lt opcode for additional information. 2030 */ 2031 /* Opcode: Gt P1 P2 P3 P4 P5 2032 ** Synopsis: IF r[P3]>r[P1] 2033 ** 2034 ** This works just like the Lt opcode except that the jump is taken if 2035 ** the content of register P3 is greater than the content of 2036 ** register P1. See the Lt opcode for additional information. 2037 */ 2038 /* Opcode: Ge P1 P2 P3 P4 P5 2039 ** Synopsis: IF r[P3]>=r[P1] 2040 ** 2041 ** This works just like the Lt opcode except that the jump is taken if 2042 ** the content of register P3 is greater than or equal to the content of 2043 ** register P1. See the Lt opcode for additional information. 2044 */ 2045 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2046 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2047 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2048 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2049 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2050 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2051 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2052 char affinity; /* Affinity to use for comparison */ 2053 u16 flags1; /* Copy of initial value of pIn1->flags */ 2054 u16 flags3; /* Copy of initial value of pIn3->flags */ 2055 2056 pIn1 = &aMem[pOp->p1]; 2057 pIn3 = &aMem[pOp->p3]; 2058 flags1 = pIn1->flags; 2059 flags3 = pIn3->flags; 2060 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2061 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2062 /* Common case of comparison of two integers */ 2063 if( pIn3->u.i > pIn1->u.i ){ 2064 iCompare = +1; 2065 if( sqlite3aGTb[pOp->opcode] ){ 2066 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2067 goto jump_to_p2; 2068 } 2069 }else if( pIn3->u.i < pIn1->u.i ){ 2070 iCompare = -1; 2071 if( sqlite3aLTb[pOp->opcode] ){ 2072 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2073 goto jump_to_p2; 2074 } 2075 }else{ 2076 iCompare = 0; 2077 if( sqlite3aEQb[pOp->opcode] ){ 2078 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2079 goto jump_to_p2; 2080 } 2081 } 2082 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2083 break; 2084 } 2085 if( (flags1 | flags3)&MEM_Null ){ 2086 /* One or both operands are NULL */ 2087 if( pOp->p5 & SQLITE_NULLEQ ){ 2088 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2089 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2090 ** or not both operands are null. 2091 */ 2092 assert( (flags1 & MEM_Cleared)==0 ); 2093 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2094 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2095 if( (flags1&flags3&MEM_Null)!=0 2096 && (flags3&MEM_Cleared)==0 2097 ){ 2098 res = 0; /* Operands are equal */ 2099 }else{ 2100 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2101 } 2102 }else{ 2103 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2104 ** then the result is always NULL. 2105 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2106 */ 2107 iCompare = 1; /* Operands are not equal */ 2108 VdbeBranchTaken(2,3); 2109 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2110 goto jump_to_p2; 2111 } 2112 break; 2113 } 2114 }else{ 2115 /* Neither operand is NULL and we couldn't do the special high-speed 2116 ** integer comparison case. So do a general-case comparison. */ 2117 affinity = pOp->p5 & SQLITE_AFF_MASK; 2118 if( affinity>=SQLITE_AFF_NUMERIC ){ 2119 if( (flags1 | flags3)&MEM_Str ){ 2120 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2121 applyNumericAffinity(pIn1,0); 2122 testcase( flags3==pIn3->flags ); 2123 flags3 = pIn3->flags; 2124 } 2125 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2126 applyNumericAffinity(pIn3,0); 2127 } 2128 } 2129 }else if( affinity==SQLITE_AFF_TEXT ){ 2130 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2131 testcase( pIn1->flags & MEM_Int ); 2132 testcase( pIn1->flags & MEM_Real ); 2133 testcase( pIn1->flags & MEM_IntReal ); 2134 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2135 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2136 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2137 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2138 } 2139 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2140 testcase( pIn3->flags & MEM_Int ); 2141 testcase( pIn3->flags & MEM_Real ); 2142 testcase( pIn3->flags & MEM_IntReal ); 2143 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2144 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2145 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2146 } 2147 } 2148 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2149 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2150 } 2151 2152 /* At this point, res is negative, zero, or positive if reg[P1] is 2153 ** less than, equal to, or greater than reg[P3], respectively. Compute 2154 ** the answer to this operator in res2, depending on what the comparison 2155 ** operator actually is. The next block of code depends on the fact 2156 ** that the 6 comparison operators are consecutive integers in this 2157 ** order: NE, EQ, GT, LE, LT, GE */ 2158 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2159 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2160 if( res<0 ){ 2161 res2 = sqlite3aLTb[pOp->opcode]; 2162 }else if( res==0 ){ 2163 res2 = sqlite3aEQb[pOp->opcode]; 2164 }else{ 2165 res2 = sqlite3aGTb[pOp->opcode]; 2166 } 2167 iCompare = res; 2168 2169 /* Undo any changes made by applyAffinity() to the input registers. */ 2170 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2171 pIn3->flags = flags3; 2172 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2173 pIn1->flags = flags1; 2174 2175 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2176 if( res2 ){ 2177 goto jump_to_p2; 2178 } 2179 break; 2180 } 2181 2182 /* Opcode: ElseEq * P2 * * * 2183 ** 2184 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2185 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2186 ** opcodes are allowed to occur between this instruction and the previous 2187 ** OP_Lt or OP_Gt. 2188 ** 2189 ** If result of an OP_Eq comparison on the same two operands as the 2190 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2191 ** If the result of an OP_Eq comparison on the two previous 2192 ** operands would have been false or NULL, then fall through. 2193 */ 2194 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2195 2196 #ifdef SQLITE_DEBUG 2197 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2198 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2199 int iAddr; 2200 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2201 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2202 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2203 break; 2204 } 2205 #endif /* SQLITE_DEBUG */ 2206 VdbeBranchTaken(iCompare==0, 2); 2207 if( iCompare==0 ) goto jump_to_p2; 2208 break; 2209 } 2210 2211 2212 /* Opcode: Permutation * * * P4 * 2213 ** 2214 ** Set the permutation used by the OP_Compare operator in the next 2215 ** instruction. The permutation is stored in the P4 operand. 2216 ** 2217 ** The permutation is only valid until the next OP_Compare that has 2218 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2219 ** occur immediately prior to the OP_Compare. 2220 ** 2221 ** The first integer in the P4 integer array is the length of the array 2222 ** and does not become part of the permutation. 2223 */ 2224 case OP_Permutation: { 2225 assert( pOp->p4type==P4_INTARRAY ); 2226 assert( pOp->p4.ai ); 2227 assert( pOp[1].opcode==OP_Compare ); 2228 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2229 break; 2230 } 2231 2232 /* Opcode: Compare P1 P2 P3 P4 P5 2233 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2234 ** 2235 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2236 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2237 ** the comparison for use by the next OP_Jump instruct. 2238 ** 2239 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2240 ** determined by the most recent OP_Permutation operator. If the 2241 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2242 ** order. 2243 ** 2244 ** P4 is a KeyInfo structure that defines collating sequences and sort 2245 ** orders for the comparison. The permutation applies to registers 2246 ** only. The KeyInfo elements are used sequentially. 2247 ** 2248 ** The comparison is a sort comparison, so NULLs compare equal, 2249 ** NULLs are less than numbers, numbers are less than strings, 2250 ** and strings are less than blobs. 2251 */ 2252 case OP_Compare: { 2253 int n; 2254 int i; 2255 int p1; 2256 int p2; 2257 const KeyInfo *pKeyInfo; 2258 u32 idx; 2259 CollSeq *pColl; /* Collating sequence to use on this term */ 2260 int bRev; /* True for DESCENDING sort order */ 2261 u32 *aPermute; /* The permutation */ 2262 2263 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2264 aPermute = 0; 2265 }else{ 2266 assert( pOp>aOp ); 2267 assert( pOp[-1].opcode==OP_Permutation ); 2268 assert( pOp[-1].p4type==P4_INTARRAY ); 2269 aPermute = pOp[-1].p4.ai + 1; 2270 assert( aPermute!=0 ); 2271 } 2272 n = pOp->p3; 2273 pKeyInfo = pOp->p4.pKeyInfo; 2274 assert( n>0 ); 2275 assert( pKeyInfo!=0 ); 2276 p1 = pOp->p1; 2277 p2 = pOp->p2; 2278 #ifdef SQLITE_DEBUG 2279 if( aPermute ){ 2280 int k, mx = 0; 2281 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2282 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2283 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2284 }else{ 2285 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2286 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2287 } 2288 #endif /* SQLITE_DEBUG */ 2289 for(i=0; i<n; i++){ 2290 idx = aPermute ? aPermute[i] : (u32)i; 2291 assert( memIsValid(&aMem[p1+idx]) ); 2292 assert( memIsValid(&aMem[p2+idx]) ); 2293 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2294 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2295 assert( i<pKeyInfo->nKeyField ); 2296 pColl = pKeyInfo->aColl[i]; 2297 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2298 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2299 if( iCompare ){ 2300 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2301 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2302 ){ 2303 iCompare = -iCompare; 2304 } 2305 if( bRev ) iCompare = -iCompare; 2306 break; 2307 } 2308 } 2309 break; 2310 } 2311 2312 /* Opcode: Jump P1 P2 P3 * * 2313 ** 2314 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2315 ** in the most recent OP_Compare instruction the P1 vector was less than 2316 ** equal to, or greater than the P2 vector, respectively. 2317 */ 2318 case OP_Jump: { /* jump */ 2319 if( iCompare<0 ){ 2320 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2321 }else if( iCompare==0 ){ 2322 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2323 }else{ 2324 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2325 } 2326 break; 2327 } 2328 2329 /* Opcode: And P1 P2 P3 * * 2330 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2331 ** 2332 ** Take the logical AND of the values in registers P1 and P2 and 2333 ** write the result into register P3. 2334 ** 2335 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2336 ** the other input is NULL. A NULL and true or two NULLs give 2337 ** a NULL output. 2338 */ 2339 /* Opcode: Or P1 P2 P3 * * 2340 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2341 ** 2342 ** Take the logical OR of the values in register P1 and P2 and 2343 ** store the answer in register P3. 2344 ** 2345 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2346 ** even if the other input is NULL. A NULL and false or two NULLs 2347 ** give a NULL output. 2348 */ 2349 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2350 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2351 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2352 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2353 2354 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2355 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2356 if( pOp->opcode==OP_And ){ 2357 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2358 v1 = and_logic[v1*3+v2]; 2359 }else{ 2360 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2361 v1 = or_logic[v1*3+v2]; 2362 } 2363 pOut = &aMem[pOp->p3]; 2364 if( v1==2 ){ 2365 MemSetTypeFlag(pOut, MEM_Null); 2366 }else{ 2367 pOut->u.i = v1; 2368 MemSetTypeFlag(pOut, MEM_Int); 2369 } 2370 break; 2371 } 2372 2373 /* Opcode: IsTrue P1 P2 P3 P4 * 2374 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2375 ** 2376 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2377 ** IS NOT FALSE operators. 2378 ** 2379 ** Interpret the value in register P1 as a boolean value. Store that 2380 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2381 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2382 ** is 1. 2383 ** 2384 ** The logic is summarized like this: 2385 ** 2386 ** <ul> 2387 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2388 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2389 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2390 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2391 ** </ul> 2392 */ 2393 case OP_IsTrue: { /* in1, out2 */ 2394 assert( pOp->p4type==P4_INT32 ); 2395 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2396 assert( pOp->p3==0 || pOp->p3==1 ); 2397 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2398 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2399 break; 2400 } 2401 2402 /* Opcode: Not P1 P2 * * * 2403 ** Synopsis: r[P2]= !r[P1] 2404 ** 2405 ** Interpret the value in register P1 as a boolean value. Store the 2406 ** boolean complement in register P2. If the value in register P1 is 2407 ** NULL, then a NULL is stored in P2. 2408 */ 2409 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2410 pIn1 = &aMem[pOp->p1]; 2411 pOut = &aMem[pOp->p2]; 2412 if( (pIn1->flags & MEM_Null)==0 ){ 2413 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2414 }else{ 2415 sqlite3VdbeMemSetNull(pOut); 2416 } 2417 break; 2418 } 2419 2420 /* Opcode: BitNot P1 P2 * * * 2421 ** Synopsis: r[P2]= ~r[P1] 2422 ** 2423 ** Interpret the content of register P1 as an integer. Store the 2424 ** ones-complement of the P1 value into register P2. If P1 holds 2425 ** a NULL then store a NULL in P2. 2426 */ 2427 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2428 pIn1 = &aMem[pOp->p1]; 2429 pOut = &aMem[pOp->p2]; 2430 sqlite3VdbeMemSetNull(pOut); 2431 if( (pIn1->flags & MEM_Null)==0 ){ 2432 pOut->flags = MEM_Int; 2433 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2434 } 2435 break; 2436 } 2437 2438 /* Opcode: Once P1 P2 * * * 2439 ** 2440 ** Fall through to the next instruction the first time this opcode is 2441 ** encountered on each invocation of the byte-code program. Jump to P2 2442 ** on the second and all subsequent encounters during the same invocation. 2443 ** 2444 ** Top-level programs determine first invocation by comparing the P1 2445 ** operand against the P1 operand on the OP_Init opcode at the beginning 2446 ** of the program. If the P1 values differ, then fall through and make 2447 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2448 ** the same then take the jump. 2449 ** 2450 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2451 ** whether or not the jump should be taken. The bitmask is necessary 2452 ** because the self-altering code trick does not work for recursive 2453 ** triggers. 2454 */ 2455 case OP_Once: { /* jump */ 2456 u32 iAddr; /* Address of this instruction */ 2457 assert( p->aOp[0].opcode==OP_Init ); 2458 if( p->pFrame ){ 2459 iAddr = (int)(pOp - p->aOp); 2460 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2461 VdbeBranchTaken(1, 2); 2462 goto jump_to_p2; 2463 } 2464 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2465 }else{ 2466 if( p->aOp[0].p1==pOp->p1 ){ 2467 VdbeBranchTaken(1, 2); 2468 goto jump_to_p2; 2469 } 2470 } 2471 VdbeBranchTaken(0, 2); 2472 pOp->p1 = p->aOp[0].p1; 2473 break; 2474 } 2475 2476 /* Opcode: If P1 P2 P3 * * 2477 ** 2478 ** Jump to P2 if the value in register P1 is true. The value 2479 ** is considered true if it is numeric and non-zero. If the value 2480 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2481 */ 2482 case OP_If: { /* jump, in1 */ 2483 int c; 2484 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2485 VdbeBranchTaken(c!=0, 2); 2486 if( c ) goto jump_to_p2; 2487 break; 2488 } 2489 2490 /* Opcode: IfNot P1 P2 P3 * * 2491 ** 2492 ** Jump to P2 if the value in register P1 is False. The value 2493 ** is considered false if it has a numeric value of zero. If the value 2494 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2495 */ 2496 case OP_IfNot: { /* jump, in1 */ 2497 int c; 2498 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2499 VdbeBranchTaken(c!=0, 2); 2500 if( c ) goto jump_to_p2; 2501 break; 2502 } 2503 2504 /* Opcode: IsNull P1 P2 * * * 2505 ** Synopsis: if r[P1]==NULL goto P2 2506 ** 2507 ** Jump to P2 if the value in register P1 is NULL. 2508 */ 2509 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2510 pIn1 = &aMem[pOp->p1]; 2511 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2512 if( (pIn1->flags & MEM_Null)!=0 ){ 2513 goto jump_to_p2; 2514 } 2515 break; 2516 } 2517 2518 /* Opcode: IsNullOrType P1 P2 P3 * * 2519 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2520 ** 2521 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2522 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2523 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2524 */ 2525 case OP_IsNullOrType: { /* jump, in1 */ 2526 int doTheJump; 2527 pIn1 = &aMem[pOp->p1]; 2528 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2529 VdbeBranchTaken( doTheJump, 2); 2530 if( doTheJump ) goto jump_to_p2; 2531 break; 2532 } 2533 2534 /* Opcode: ZeroOrNull P1 P2 P3 * * 2535 ** Synopsis: r[P2] = 0 OR NULL 2536 ** 2537 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2538 ** register P2. If either registers P1 or P3 are NULL then put 2539 ** a NULL in register P2. 2540 */ 2541 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2542 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2543 || (aMem[pOp->p3].flags & MEM_Null)!=0 2544 ){ 2545 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2546 }else{ 2547 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2548 } 2549 break; 2550 } 2551 2552 /* Opcode: NotNull P1 P2 * * * 2553 ** Synopsis: if r[P1]!=NULL goto P2 2554 ** 2555 ** Jump to P2 if the value in register P1 is not NULL. 2556 */ 2557 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2558 pIn1 = &aMem[pOp->p1]; 2559 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2560 if( (pIn1->flags & MEM_Null)==0 ){ 2561 goto jump_to_p2; 2562 } 2563 break; 2564 } 2565 2566 /* Opcode: IfNullRow P1 P2 P3 * * 2567 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2568 ** 2569 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2570 ** If it is, then set register P3 to NULL and jump immediately to P2. 2571 ** If P1 is not on a NULL row, then fall through without making any 2572 ** changes. 2573 */ 2574 case OP_IfNullRow: { /* jump */ 2575 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2576 assert( p->apCsr[pOp->p1]!=0 ); 2577 if( p->apCsr[pOp->p1]->nullRow ){ 2578 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2579 goto jump_to_p2; 2580 } 2581 break; 2582 } 2583 2584 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2585 /* Opcode: Offset P1 P2 P3 * * 2586 ** Synopsis: r[P3] = sqlite_offset(P1) 2587 ** 2588 ** Store in register r[P3] the byte offset into the database file that is the 2589 ** start of the payload for the record at which that cursor P1 is currently 2590 ** pointing. 2591 ** 2592 ** P2 is the column number for the argument to the sqlite_offset() function. 2593 ** This opcode does not use P2 itself, but the P2 value is used by the 2594 ** code generator. The P1, P2, and P3 operands to this opcode are the 2595 ** same as for OP_Column. 2596 ** 2597 ** This opcode is only available if SQLite is compiled with the 2598 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2599 */ 2600 case OP_Offset: { /* out3 */ 2601 VdbeCursor *pC; /* The VDBE cursor */ 2602 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2603 pC = p->apCsr[pOp->p1]; 2604 pOut = &p->aMem[pOp->p3]; 2605 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2606 sqlite3VdbeMemSetNull(pOut); 2607 }else{ 2608 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2609 } 2610 break; 2611 } 2612 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2613 2614 /* Opcode: Column P1 P2 P3 P4 P5 2615 ** Synopsis: r[P3]=PX 2616 ** 2617 ** Interpret the data that cursor P1 points to as a structure built using 2618 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2619 ** information about the format of the data.) Extract the P2-th column 2620 ** from this record. If there are less that (P2+1) 2621 ** values in the record, extract a NULL. 2622 ** 2623 ** The value extracted is stored in register P3. 2624 ** 2625 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2626 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2627 ** the result. 2628 ** 2629 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2630 ** the result is guaranteed to only be used as the argument of a length() 2631 ** or typeof() function, respectively. The loading of large blobs can be 2632 ** skipped for length() and all content loading can be skipped for typeof(). 2633 */ 2634 case OP_Column: { 2635 u32 p2; /* column number to retrieve */ 2636 VdbeCursor *pC; /* The VDBE cursor */ 2637 BtCursor *pCrsr; /* The BTree cursor */ 2638 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2639 int len; /* The length of the serialized data for the column */ 2640 int i; /* Loop counter */ 2641 Mem *pDest; /* Where to write the extracted value */ 2642 Mem sMem; /* For storing the record being decoded */ 2643 const u8 *zData; /* Part of the record being decoded */ 2644 const u8 *zHdr; /* Next unparsed byte of the header */ 2645 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2646 u64 offset64; /* 64-bit offset */ 2647 u32 t; /* A type code from the record header */ 2648 Mem *pReg; /* PseudoTable input register */ 2649 2650 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2651 pC = p->apCsr[pOp->p1]; 2652 assert( pC!=0 ); 2653 p2 = (u32)pOp->p2; 2654 2655 /* If the cursor cache is stale (meaning it is not currently point at 2656 ** the correct row) then bring it up-to-date by doing the necessary 2657 ** B-Tree seek. */ 2658 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2659 if( rc ) goto abort_due_to_error; 2660 2661 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2662 pDest = &aMem[pOp->p3]; 2663 memAboutToChange(p, pDest); 2664 assert( pC!=0 ); 2665 assert( p2<(u32)pC->nField ); 2666 aOffset = pC->aOffset; 2667 assert( pC->eCurType!=CURTYPE_VTAB ); 2668 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2669 assert( pC->eCurType!=CURTYPE_SORTER ); 2670 2671 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2672 if( pC->nullRow ){ 2673 if( pC->eCurType==CURTYPE_PSEUDO ){ 2674 /* For the special case of as pseudo-cursor, the seekResult field 2675 ** identifies the register that holds the record */ 2676 assert( pC->seekResult>0 ); 2677 pReg = &aMem[pC->seekResult]; 2678 assert( pReg->flags & MEM_Blob ); 2679 assert( memIsValid(pReg) ); 2680 pC->payloadSize = pC->szRow = pReg->n; 2681 pC->aRow = (u8*)pReg->z; 2682 }else{ 2683 sqlite3VdbeMemSetNull(pDest); 2684 goto op_column_out; 2685 } 2686 }else{ 2687 pCrsr = pC->uc.pCursor; 2688 assert( pC->eCurType==CURTYPE_BTREE ); 2689 assert( pCrsr ); 2690 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2691 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2692 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2693 assert( pC->szRow<=pC->payloadSize ); 2694 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2695 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2696 goto too_big; 2697 } 2698 } 2699 pC->cacheStatus = p->cacheCtr; 2700 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2701 pC->nHdrParsed = 0; 2702 2703 2704 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2705 /* pC->aRow does not have to hold the entire row, but it does at least 2706 ** need to cover the header of the record. If pC->aRow does not contain 2707 ** the complete header, then set it to zero, forcing the header to be 2708 ** dynamically allocated. */ 2709 pC->aRow = 0; 2710 pC->szRow = 0; 2711 2712 /* Make sure a corrupt database has not given us an oversize header. 2713 ** Do this now to avoid an oversize memory allocation. 2714 ** 2715 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2716 ** types use so much data space that there can only be 4096 and 32 of 2717 ** them, respectively. So the maximum header length results from a 2718 ** 3-byte type for each of the maximum of 32768 columns plus three 2719 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2720 */ 2721 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2722 goto op_column_corrupt; 2723 } 2724 }else{ 2725 /* This is an optimization. By skipping over the first few tests 2726 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2727 ** measurable performance gain. 2728 ** 2729 ** This branch is taken even if aOffset[0]==0. Such a record is never 2730 ** generated by SQLite, and could be considered corruption, but we 2731 ** accept it for historical reasons. When aOffset[0]==0, the code this 2732 ** branch jumps to reads past the end of the record, but never more 2733 ** than a few bytes. Even if the record occurs at the end of the page 2734 ** content area, the "page header" comes after the page content and so 2735 ** this overread is harmless. Similar overreads can occur for a corrupt 2736 ** database file. 2737 */ 2738 zData = pC->aRow; 2739 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2740 testcase( aOffset[0]==0 ); 2741 goto op_column_read_header; 2742 } 2743 } 2744 2745 /* Make sure at least the first p2+1 entries of the header have been 2746 ** parsed and valid information is in aOffset[] and pC->aType[]. 2747 */ 2748 if( pC->nHdrParsed<=p2 ){ 2749 /* If there is more header available for parsing in the record, try 2750 ** to extract additional fields up through the p2+1-th field 2751 */ 2752 if( pC->iHdrOffset<aOffset[0] ){ 2753 /* Make sure zData points to enough of the record to cover the header. */ 2754 if( pC->aRow==0 ){ 2755 memset(&sMem, 0, sizeof(sMem)); 2756 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2757 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2758 zData = (u8*)sMem.z; 2759 }else{ 2760 zData = pC->aRow; 2761 } 2762 2763 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2764 op_column_read_header: 2765 i = pC->nHdrParsed; 2766 offset64 = aOffset[i]; 2767 zHdr = zData + pC->iHdrOffset; 2768 zEndHdr = zData + aOffset[0]; 2769 testcase( zHdr>=zEndHdr ); 2770 do{ 2771 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2772 zHdr++; 2773 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2774 }else{ 2775 zHdr += sqlite3GetVarint32(zHdr, &t); 2776 pC->aType[i] = t; 2777 offset64 += sqlite3VdbeSerialTypeLen(t); 2778 } 2779 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2780 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2781 2782 /* The record is corrupt if any of the following are true: 2783 ** (1) the bytes of the header extend past the declared header size 2784 ** (2) the entire header was used but not all data was used 2785 ** (3) the end of the data extends beyond the end of the record. 2786 */ 2787 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2788 || (offset64 > pC->payloadSize) 2789 ){ 2790 if( aOffset[0]==0 ){ 2791 i = 0; 2792 zHdr = zEndHdr; 2793 }else{ 2794 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2795 goto op_column_corrupt; 2796 } 2797 } 2798 2799 pC->nHdrParsed = i; 2800 pC->iHdrOffset = (u32)(zHdr - zData); 2801 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2802 }else{ 2803 t = 0; 2804 } 2805 2806 /* If after trying to extract new entries from the header, nHdrParsed is 2807 ** still not up to p2, that means that the record has fewer than p2 2808 ** columns. So the result will be either the default value or a NULL. 2809 */ 2810 if( pC->nHdrParsed<=p2 ){ 2811 if( pOp->p4type==P4_MEM ){ 2812 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2813 }else{ 2814 sqlite3VdbeMemSetNull(pDest); 2815 } 2816 goto op_column_out; 2817 } 2818 }else{ 2819 t = pC->aType[p2]; 2820 } 2821 2822 /* Extract the content for the p2+1-th column. Control can only 2823 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2824 ** all valid. 2825 */ 2826 assert( p2<pC->nHdrParsed ); 2827 assert( rc==SQLITE_OK ); 2828 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2829 if( VdbeMemDynamic(pDest) ){ 2830 sqlite3VdbeMemSetNull(pDest); 2831 } 2832 assert( t==pC->aType[p2] ); 2833 if( pC->szRow>=aOffset[p2+1] ){ 2834 /* This is the common case where the desired content fits on the original 2835 ** page - where the content is not on an overflow page */ 2836 zData = pC->aRow + aOffset[p2]; 2837 if( t<12 ){ 2838 sqlite3VdbeSerialGet(zData, t, pDest); 2839 }else{ 2840 /* If the column value is a string, we need a persistent value, not 2841 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2842 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2843 */ 2844 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2845 pDest->n = len = (t-12)/2; 2846 pDest->enc = encoding; 2847 if( pDest->szMalloc < len+2 ){ 2848 pDest->flags = MEM_Null; 2849 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2850 }else{ 2851 pDest->z = pDest->zMalloc; 2852 } 2853 memcpy(pDest->z, zData, len); 2854 pDest->z[len] = 0; 2855 pDest->z[len+1] = 0; 2856 pDest->flags = aFlag[t&1]; 2857 } 2858 }else{ 2859 pDest->enc = encoding; 2860 /* This branch happens only when content is on overflow pages */ 2861 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2862 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2863 || (len = sqlite3VdbeSerialTypeLen(t))==0 2864 ){ 2865 /* Content is irrelevant for 2866 ** 1. the typeof() function, 2867 ** 2. the length(X) function if X is a blob, and 2868 ** 3. if the content length is zero. 2869 ** So we might as well use bogus content rather than reading 2870 ** content from disk. 2871 ** 2872 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2873 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2874 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2875 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2876 ** and it begins with a bunch of zeros. 2877 */ 2878 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2879 }else{ 2880 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2881 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2882 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2883 pDest->flags &= ~MEM_Ephem; 2884 } 2885 } 2886 2887 op_column_out: 2888 UPDATE_MAX_BLOBSIZE(pDest); 2889 REGISTER_TRACE(pOp->p3, pDest); 2890 break; 2891 2892 op_column_corrupt: 2893 if( aOp[0].p3>0 ){ 2894 pOp = &aOp[aOp[0].p3-1]; 2895 break; 2896 }else{ 2897 rc = SQLITE_CORRUPT_BKPT; 2898 goto abort_due_to_error; 2899 } 2900 } 2901 2902 /* Opcode: TypeCheck P1 P2 P3 P4 * 2903 ** Synopsis: typecheck(r[P1@P2]) 2904 ** 2905 ** Apply affinities to the range of P2 registers beginning with P1. 2906 ** Take the affinities from the Table object in P4. If any value 2907 ** cannot be coerced into the correct type, then raise an error. 2908 ** 2909 ** This opcode is similar to OP_Affinity except that this opcode 2910 ** forces the register type to the Table column type. This is used 2911 ** to implement "strict affinity". 2912 ** 2913 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 2914 ** is zero. When P3 is non-zero, no type checking occurs for 2915 ** static generated columns. Virtual columns are computed at query time 2916 ** and so they are never checked. 2917 ** 2918 ** Preconditions: 2919 ** 2920 ** <ul> 2921 ** <li> P2 should be the number of non-virtual columns in the 2922 ** table of P4. 2923 ** <li> Table P4 should be a STRICT table. 2924 ** </ul> 2925 ** 2926 ** If any precondition is false, an assertion fault occurs. 2927 */ 2928 case OP_TypeCheck: { 2929 Table *pTab; 2930 Column *aCol; 2931 int i; 2932 2933 assert( pOp->p4type==P4_TABLE ); 2934 pTab = pOp->p4.pTab; 2935 assert( pTab->tabFlags & TF_Strict ); 2936 assert( pTab->nNVCol==pOp->p2 ); 2937 aCol = pTab->aCol; 2938 pIn1 = &aMem[pOp->p1]; 2939 for(i=0; i<pTab->nCol; i++){ 2940 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 2941 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 2942 if( pOp->p3 ){ pIn1++; continue; } 2943 } 2944 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 2945 applyAffinity(pIn1, aCol[i].affinity, encoding); 2946 if( (pIn1->flags & MEM_Null)==0 ){ 2947 switch( aCol[i].eCType ){ 2948 case COLTYPE_BLOB: { 2949 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 2950 break; 2951 } 2952 case COLTYPE_INTEGER: 2953 case COLTYPE_INT: { 2954 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 2955 break; 2956 } 2957 case COLTYPE_TEXT: { 2958 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 2959 break; 2960 } 2961 case COLTYPE_REAL: { 2962 if( pIn1->flags & MEM_Int ){ 2963 /* When applying REAL affinity, if the result is still an MEM_Int 2964 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2965 ** so that we keep the high-resolution integer value but know that 2966 ** the type really wants to be REAL. */ 2967 testcase( pIn1->u.i==140737488355328LL ); 2968 testcase( pIn1->u.i==140737488355327LL ); 2969 testcase( pIn1->u.i==-140737488355328LL ); 2970 testcase( pIn1->u.i==-140737488355329LL ); 2971 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 2972 pIn1->flags |= MEM_IntReal; 2973 pIn1->flags &= ~MEM_Int; 2974 }else{ 2975 pIn1->u.r = (double)pIn1->u.i; 2976 pIn1->flags |= MEM_Real; 2977 pIn1->flags &= ~MEM_Int; 2978 } 2979 }else if( (pIn1->flags & MEM_Real)==0 ){ 2980 goto vdbe_type_error; 2981 } 2982 break; 2983 } 2984 default: { 2985 /* COLTYPE_ANY. Accept anything. */ 2986 break; 2987 } 2988 } 2989 } 2990 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2991 pIn1++; 2992 } 2993 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 2994 break; 2995 2996 vdbe_type_error: 2997 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 2998 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 2999 pTab->zName, aCol[i].zCnName); 3000 rc = SQLITE_CONSTRAINT_DATATYPE; 3001 goto abort_due_to_error; 3002 } 3003 3004 /* Opcode: Affinity P1 P2 * P4 * 3005 ** Synopsis: affinity(r[P1@P2]) 3006 ** 3007 ** Apply affinities to a range of P2 registers starting with P1. 3008 ** 3009 ** P4 is a string that is P2 characters long. The N-th character of the 3010 ** string indicates the column affinity that should be used for the N-th 3011 ** memory cell in the range. 3012 */ 3013 case OP_Affinity: { 3014 const char *zAffinity; /* The affinity to be applied */ 3015 3016 zAffinity = pOp->p4.z; 3017 assert( zAffinity!=0 ); 3018 assert( pOp->p2>0 ); 3019 assert( zAffinity[pOp->p2]==0 ); 3020 pIn1 = &aMem[pOp->p1]; 3021 while( 1 /*exit-by-break*/ ){ 3022 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3023 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3024 applyAffinity(pIn1, zAffinity[0], encoding); 3025 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3026 /* When applying REAL affinity, if the result is still an MEM_Int 3027 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3028 ** so that we keep the high-resolution integer value but know that 3029 ** the type really wants to be REAL. */ 3030 testcase( pIn1->u.i==140737488355328LL ); 3031 testcase( pIn1->u.i==140737488355327LL ); 3032 testcase( pIn1->u.i==-140737488355328LL ); 3033 testcase( pIn1->u.i==-140737488355329LL ); 3034 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3035 pIn1->flags |= MEM_IntReal; 3036 pIn1->flags &= ~MEM_Int; 3037 }else{ 3038 pIn1->u.r = (double)pIn1->u.i; 3039 pIn1->flags |= MEM_Real; 3040 pIn1->flags &= ~MEM_Int; 3041 } 3042 } 3043 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3044 zAffinity++; 3045 if( zAffinity[0]==0 ) break; 3046 pIn1++; 3047 } 3048 break; 3049 } 3050 3051 /* Opcode: MakeRecord P1 P2 P3 P4 * 3052 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3053 ** 3054 ** Convert P2 registers beginning with P1 into the [record format] 3055 ** use as a data record in a database table or as a key 3056 ** in an index. The OP_Column opcode can decode the record later. 3057 ** 3058 ** P4 may be a string that is P2 characters long. The N-th character of the 3059 ** string indicates the column affinity that should be used for the N-th 3060 ** field of the index key. 3061 ** 3062 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3063 ** macros defined in sqliteInt.h. 3064 ** 3065 ** If P4 is NULL then all index fields have the affinity BLOB. 3066 ** 3067 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3068 ** compile-time option is enabled: 3069 ** 3070 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3071 ** of the right-most table that can be null-trimmed. 3072 ** 3073 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3074 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3075 ** accept no-change records with serial_type 10. This value is 3076 ** only used inside an assert() and does not affect the end result. 3077 */ 3078 case OP_MakeRecord: { 3079 Mem *pRec; /* The new record */ 3080 u64 nData; /* Number of bytes of data space */ 3081 int nHdr; /* Number of bytes of header space */ 3082 i64 nByte; /* Data space required for this record */ 3083 i64 nZero; /* Number of zero bytes at the end of the record */ 3084 int nVarint; /* Number of bytes in a varint */ 3085 u32 serial_type; /* Type field */ 3086 Mem *pData0; /* First field to be combined into the record */ 3087 Mem *pLast; /* Last field of the record */ 3088 int nField; /* Number of fields in the record */ 3089 char *zAffinity; /* The affinity string for the record */ 3090 int file_format; /* File format to use for encoding */ 3091 u32 len; /* Length of a field */ 3092 u8 *zHdr; /* Where to write next byte of the header */ 3093 u8 *zPayload; /* Where to write next byte of the payload */ 3094 3095 /* Assuming the record contains N fields, the record format looks 3096 ** like this: 3097 ** 3098 ** ------------------------------------------------------------------------ 3099 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3100 ** ------------------------------------------------------------------------ 3101 ** 3102 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3103 ** and so forth. 3104 ** 3105 ** Each type field is a varint representing the serial type of the 3106 ** corresponding data element (see sqlite3VdbeSerialType()). The 3107 ** hdr-size field is also a varint which is the offset from the beginning 3108 ** of the record to data0. 3109 */ 3110 nData = 0; /* Number of bytes of data space */ 3111 nHdr = 0; /* Number of bytes of header space */ 3112 nZero = 0; /* Number of zero bytes at the end of the record */ 3113 nField = pOp->p1; 3114 zAffinity = pOp->p4.z; 3115 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3116 pData0 = &aMem[nField]; 3117 nField = pOp->p2; 3118 pLast = &pData0[nField-1]; 3119 file_format = p->minWriteFileFormat; 3120 3121 /* Identify the output register */ 3122 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3123 pOut = &aMem[pOp->p3]; 3124 memAboutToChange(p, pOut); 3125 3126 /* Apply the requested affinity to all inputs 3127 */ 3128 assert( pData0<=pLast ); 3129 if( zAffinity ){ 3130 pRec = pData0; 3131 do{ 3132 applyAffinity(pRec, zAffinity[0], encoding); 3133 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3134 pRec->flags |= MEM_IntReal; 3135 pRec->flags &= ~(MEM_Int); 3136 } 3137 REGISTER_TRACE((int)(pRec-aMem), pRec); 3138 zAffinity++; 3139 pRec++; 3140 assert( zAffinity[0]==0 || pRec<=pLast ); 3141 }while( zAffinity[0] ); 3142 } 3143 3144 #ifdef SQLITE_ENABLE_NULL_TRIM 3145 /* NULLs can be safely trimmed from the end of the record, as long as 3146 ** as the schema format is 2 or more and none of the omitted columns 3147 ** have a non-NULL default value. Also, the record must be left with 3148 ** at least one field. If P5>0 then it will be one more than the 3149 ** index of the right-most column with a non-NULL default value */ 3150 if( pOp->p5 ){ 3151 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3152 pLast--; 3153 nField--; 3154 } 3155 } 3156 #endif 3157 3158 /* Loop through the elements that will make up the record to figure 3159 ** out how much space is required for the new record. After this loop, 3160 ** the Mem.uTemp field of each term should hold the serial-type that will 3161 ** be used for that term in the generated record: 3162 ** 3163 ** Mem.uTemp value type 3164 ** --------------- --------------- 3165 ** 0 NULL 3166 ** 1 1-byte signed integer 3167 ** 2 2-byte signed integer 3168 ** 3 3-byte signed integer 3169 ** 4 4-byte signed integer 3170 ** 5 6-byte signed integer 3171 ** 6 8-byte signed integer 3172 ** 7 IEEE float 3173 ** 8 Integer constant 0 3174 ** 9 Integer constant 1 3175 ** 10,11 reserved for expansion 3176 ** N>=12 and even BLOB 3177 ** N>=13 and odd text 3178 ** 3179 ** The following additional values are computed: 3180 ** nHdr Number of bytes needed for the record header 3181 ** nData Number of bytes of data space needed for the record 3182 ** nZero Zero bytes at the end of the record 3183 */ 3184 pRec = pLast; 3185 do{ 3186 assert( memIsValid(pRec) ); 3187 if( pRec->flags & MEM_Null ){ 3188 if( pRec->flags & MEM_Zero ){ 3189 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3190 ** table methods that never invoke sqlite3_result_xxxxx() while 3191 ** computing an unchanging column value in an UPDATE statement. 3192 ** Give such values a special internal-use-only serial-type of 10 3193 ** so that they can be passed through to xUpdate and have 3194 ** a true sqlite3_value_nochange(). */ 3195 #ifndef SQLITE_ENABLE_NULL_TRIM 3196 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3197 #endif 3198 pRec->uTemp = 10; 3199 }else{ 3200 pRec->uTemp = 0; 3201 } 3202 nHdr++; 3203 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3204 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3205 i64 i = pRec->u.i; 3206 u64 uu; 3207 testcase( pRec->flags & MEM_Int ); 3208 testcase( pRec->flags & MEM_IntReal ); 3209 if( i<0 ){ 3210 uu = ~i; 3211 }else{ 3212 uu = i; 3213 } 3214 nHdr++; 3215 testcase( uu==127 ); testcase( uu==128 ); 3216 testcase( uu==32767 ); testcase( uu==32768 ); 3217 testcase( uu==8388607 ); testcase( uu==8388608 ); 3218 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3219 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3220 if( uu<=127 ){ 3221 if( (i&1)==i && file_format>=4 ){ 3222 pRec->uTemp = 8+(u32)uu; 3223 }else{ 3224 nData++; 3225 pRec->uTemp = 1; 3226 } 3227 }else if( uu<=32767 ){ 3228 nData += 2; 3229 pRec->uTemp = 2; 3230 }else if( uu<=8388607 ){ 3231 nData += 3; 3232 pRec->uTemp = 3; 3233 }else if( uu<=2147483647 ){ 3234 nData += 4; 3235 pRec->uTemp = 4; 3236 }else if( uu<=140737488355327LL ){ 3237 nData += 6; 3238 pRec->uTemp = 5; 3239 }else{ 3240 nData += 8; 3241 if( pRec->flags & MEM_IntReal ){ 3242 /* If the value is IntReal and is going to take up 8 bytes to store 3243 ** as an integer, then we might as well make it an 8-byte floating 3244 ** point value */ 3245 pRec->u.r = (double)pRec->u.i; 3246 pRec->flags &= ~MEM_IntReal; 3247 pRec->flags |= MEM_Real; 3248 pRec->uTemp = 7; 3249 }else{ 3250 pRec->uTemp = 6; 3251 } 3252 } 3253 }else if( pRec->flags & MEM_Real ){ 3254 nHdr++; 3255 nData += 8; 3256 pRec->uTemp = 7; 3257 }else{ 3258 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3259 assert( pRec->n>=0 ); 3260 len = (u32)pRec->n; 3261 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3262 if( pRec->flags & MEM_Zero ){ 3263 serial_type += pRec->u.nZero*2; 3264 if( nData ){ 3265 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3266 len += pRec->u.nZero; 3267 }else{ 3268 nZero += pRec->u.nZero; 3269 } 3270 } 3271 nData += len; 3272 nHdr += sqlite3VarintLen(serial_type); 3273 pRec->uTemp = serial_type; 3274 } 3275 if( pRec==pData0 ) break; 3276 pRec--; 3277 }while(1); 3278 3279 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3280 ** which determines the total number of bytes in the header. The varint 3281 ** value is the size of the header in bytes including the size varint 3282 ** itself. */ 3283 testcase( nHdr==126 ); 3284 testcase( nHdr==127 ); 3285 if( nHdr<=126 ){ 3286 /* The common case */ 3287 nHdr += 1; 3288 }else{ 3289 /* Rare case of a really large header */ 3290 nVarint = sqlite3VarintLen(nHdr); 3291 nHdr += nVarint; 3292 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3293 } 3294 nByte = nHdr+nData; 3295 3296 /* Make sure the output register has a buffer large enough to store 3297 ** the new record. The output register (pOp->p3) is not allowed to 3298 ** be one of the input registers (because the following call to 3299 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3300 */ 3301 if( nByte+nZero<=pOut->szMalloc ){ 3302 /* The output register is already large enough to hold the record. 3303 ** No error checks or buffer enlargement is required */ 3304 pOut->z = pOut->zMalloc; 3305 }else{ 3306 /* Need to make sure that the output is not too big and then enlarge 3307 ** the output register to hold the full result */ 3308 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3309 goto too_big; 3310 } 3311 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3312 goto no_mem; 3313 } 3314 } 3315 pOut->n = (int)nByte; 3316 pOut->flags = MEM_Blob; 3317 if( nZero ){ 3318 pOut->u.nZero = nZero; 3319 pOut->flags |= MEM_Zero; 3320 } 3321 UPDATE_MAX_BLOBSIZE(pOut); 3322 zHdr = (u8 *)pOut->z; 3323 zPayload = zHdr + nHdr; 3324 3325 /* Write the record */ 3326 zHdr += putVarint32(zHdr, nHdr); 3327 assert( pData0<=pLast ); 3328 pRec = pData0; 3329 do{ 3330 serial_type = pRec->uTemp; 3331 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3332 ** additional varints, one per column. */ 3333 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3334 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3335 ** immediately follow the header. */ 3336 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3337 }while( (++pRec)<=pLast ); 3338 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3339 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3340 3341 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3342 REGISTER_TRACE(pOp->p3, pOut); 3343 break; 3344 } 3345 3346 /* Opcode: Count P1 P2 p3 * * 3347 ** Synopsis: r[P2]=count() 3348 ** 3349 ** Store the number of entries (an integer value) in the table or index 3350 ** opened by cursor P1 in register P2. 3351 ** 3352 ** If P3==0, then an exact count is obtained, which involves visiting 3353 ** every btree page of the table. But if P3 is non-zero, an estimate 3354 ** is returned based on the current cursor position. 3355 */ 3356 case OP_Count: { /* out2 */ 3357 i64 nEntry; 3358 BtCursor *pCrsr; 3359 3360 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3361 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3362 assert( pCrsr ); 3363 if( pOp->p3 ){ 3364 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3365 }else{ 3366 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3367 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3368 if( rc ) goto abort_due_to_error; 3369 } 3370 pOut = out2Prerelease(p, pOp); 3371 pOut->u.i = nEntry; 3372 goto check_for_interrupt; 3373 } 3374 3375 /* Opcode: Savepoint P1 * * P4 * 3376 ** 3377 ** Open, release or rollback the savepoint named by parameter P4, depending 3378 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3379 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3380 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3381 */ 3382 case OP_Savepoint: { 3383 int p1; /* Value of P1 operand */ 3384 char *zName; /* Name of savepoint */ 3385 int nName; 3386 Savepoint *pNew; 3387 Savepoint *pSavepoint; 3388 Savepoint *pTmp; 3389 int iSavepoint; 3390 int ii; 3391 3392 p1 = pOp->p1; 3393 zName = pOp->p4.z; 3394 3395 /* Assert that the p1 parameter is valid. Also that if there is no open 3396 ** transaction, then there cannot be any savepoints. 3397 */ 3398 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3399 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3400 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3401 assert( checkSavepointCount(db) ); 3402 assert( p->bIsReader ); 3403 3404 if( p1==SAVEPOINT_BEGIN ){ 3405 if( db->nVdbeWrite>0 ){ 3406 /* A new savepoint cannot be created if there are active write 3407 ** statements (i.e. open read/write incremental blob handles). 3408 */ 3409 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3410 rc = SQLITE_BUSY; 3411 }else{ 3412 nName = sqlite3Strlen30(zName); 3413 3414 #ifndef SQLITE_OMIT_VIRTUALTABLE 3415 /* This call is Ok even if this savepoint is actually a transaction 3416 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3417 ** If this is a transaction savepoint being opened, it is guaranteed 3418 ** that the db->aVTrans[] array is empty. */ 3419 assert( db->autoCommit==0 || db->nVTrans==0 ); 3420 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3421 db->nStatement+db->nSavepoint); 3422 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3423 #endif 3424 3425 /* Create a new savepoint structure. */ 3426 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3427 if( pNew ){ 3428 pNew->zName = (char *)&pNew[1]; 3429 memcpy(pNew->zName, zName, nName+1); 3430 3431 /* If there is no open transaction, then mark this as a special 3432 ** "transaction savepoint". */ 3433 if( db->autoCommit ){ 3434 db->autoCommit = 0; 3435 db->isTransactionSavepoint = 1; 3436 }else{ 3437 db->nSavepoint++; 3438 } 3439 3440 /* Link the new savepoint into the database handle's list. */ 3441 pNew->pNext = db->pSavepoint; 3442 db->pSavepoint = pNew; 3443 pNew->nDeferredCons = db->nDeferredCons; 3444 pNew->nDeferredImmCons = db->nDeferredImmCons; 3445 } 3446 } 3447 }else{ 3448 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3449 iSavepoint = 0; 3450 3451 /* Find the named savepoint. If there is no such savepoint, then an 3452 ** an error is returned to the user. */ 3453 for( 3454 pSavepoint = db->pSavepoint; 3455 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3456 pSavepoint = pSavepoint->pNext 3457 ){ 3458 iSavepoint++; 3459 } 3460 if( !pSavepoint ){ 3461 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3462 rc = SQLITE_ERROR; 3463 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3464 /* It is not possible to release (commit) a savepoint if there are 3465 ** active write statements. 3466 */ 3467 sqlite3VdbeError(p, "cannot release savepoint - " 3468 "SQL statements in progress"); 3469 rc = SQLITE_BUSY; 3470 }else{ 3471 3472 /* Determine whether or not this is a transaction savepoint. If so, 3473 ** and this is a RELEASE command, then the current transaction 3474 ** is committed. 3475 */ 3476 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3477 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3478 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3479 goto vdbe_return; 3480 } 3481 db->autoCommit = 1; 3482 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3483 p->pc = (int)(pOp - aOp); 3484 db->autoCommit = 0; 3485 p->rc = rc = SQLITE_BUSY; 3486 goto vdbe_return; 3487 } 3488 rc = p->rc; 3489 if( rc ){ 3490 db->autoCommit = 0; 3491 }else{ 3492 db->isTransactionSavepoint = 0; 3493 } 3494 }else{ 3495 int isSchemaChange; 3496 iSavepoint = db->nSavepoint - iSavepoint - 1; 3497 if( p1==SAVEPOINT_ROLLBACK ){ 3498 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3499 for(ii=0; ii<db->nDb; ii++){ 3500 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3501 SQLITE_ABORT_ROLLBACK, 3502 isSchemaChange==0); 3503 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3504 } 3505 }else{ 3506 assert( p1==SAVEPOINT_RELEASE ); 3507 isSchemaChange = 0; 3508 } 3509 for(ii=0; ii<db->nDb; ii++){ 3510 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3511 if( rc!=SQLITE_OK ){ 3512 goto abort_due_to_error; 3513 } 3514 } 3515 if( isSchemaChange ){ 3516 sqlite3ExpirePreparedStatements(db, 0); 3517 sqlite3ResetAllSchemasOfConnection(db); 3518 db->mDbFlags |= DBFLAG_SchemaChange; 3519 } 3520 } 3521 if( rc ) goto abort_due_to_error; 3522 3523 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3524 ** savepoints nested inside of the savepoint being operated on. */ 3525 while( db->pSavepoint!=pSavepoint ){ 3526 pTmp = db->pSavepoint; 3527 db->pSavepoint = pTmp->pNext; 3528 sqlite3DbFree(db, pTmp); 3529 db->nSavepoint--; 3530 } 3531 3532 /* If it is a RELEASE, then destroy the savepoint being operated on 3533 ** too. If it is a ROLLBACK TO, then set the number of deferred 3534 ** constraint violations present in the database to the value stored 3535 ** when the savepoint was created. */ 3536 if( p1==SAVEPOINT_RELEASE ){ 3537 assert( pSavepoint==db->pSavepoint ); 3538 db->pSavepoint = pSavepoint->pNext; 3539 sqlite3DbFree(db, pSavepoint); 3540 if( !isTransaction ){ 3541 db->nSavepoint--; 3542 } 3543 }else{ 3544 assert( p1==SAVEPOINT_ROLLBACK ); 3545 db->nDeferredCons = pSavepoint->nDeferredCons; 3546 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3547 } 3548 3549 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3550 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3551 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3552 } 3553 } 3554 } 3555 if( rc ) goto abort_due_to_error; 3556 3557 break; 3558 } 3559 3560 /* Opcode: AutoCommit P1 P2 * * * 3561 ** 3562 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3563 ** back any currently active btree transactions. If there are any active 3564 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3565 ** there are active writing VMs or active VMs that use shared cache. 3566 ** 3567 ** This instruction causes the VM to halt. 3568 */ 3569 case OP_AutoCommit: { 3570 int desiredAutoCommit; 3571 int iRollback; 3572 3573 desiredAutoCommit = pOp->p1; 3574 iRollback = pOp->p2; 3575 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3576 assert( desiredAutoCommit==1 || iRollback==0 ); 3577 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3578 assert( p->bIsReader ); 3579 3580 if( desiredAutoCommit!=db->autoCommit ){ 3581 if( iRollback ){ 3582 assert( desiredAutoCommit==1 ); 3583 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3584 db->autoCommit = 1; 3585 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3586 /* If this instruction implements a COMMIT and other VMs are writing 3587 ** return an error indicating that the other VMs must complete first. 3588 */ 3589 sqlite3VdbeError(p, "cannot commit transaction - " 3590 "SQL statements in progress"); 3591 rc = SQLITE_BUSY; 3592 goto abort_due_to_error; 3593 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3594 goto vdbe_return; 3595 }else{ 3596 db->autoCommit = (u8)desiredAutoCommit; 3597 } 3598 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3599 p->pc = (int)(pOp - aOp); 3600 db->autoCommit = (u8)(1-desiredAutoCommit); 3601 p->rc = rc = SQLITE_BUSY; 3602 goto vdbe_return; 3603 } 3604 sqlite3CloseSavepoints(db); 3605 if( p->rc==SQLITE_OK ){ 3606 rc = SQLITE_DONE; 3607 }else{ 3608 rc = SQLITE_ERROR; 3609 } 3610 goto vdbe_return; 3611 }else{ 3612 sqlite3VdbeError(p, 3613 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3614 (iRollback)?"cannot rollback - no transaction is active": 3615 "cannot commit - no transaction is active")); 3616 3617 rc = SQLITE_ERROR; 3618 goto abort_due_to_error; 3619 } 3620 /*NOTREACHED*/ assert(0); 3621 } 3622 3623 /* Opcode: Transaction P1 P2 P3 P4 P5 3624 ** 3625 ** Begin a transaction on database P1 if a transaction is not already 3626 ** active. 3627 ** If P2 is non-zero, then a write-transaction is started, or if a 3628 ** read-transaction is already active, it is upgraded to a write-transaction. 3629 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3630 ** then an exclusive transaction is started. 3631 ** 3632 ** P1 is the index of the database file on which the transaction is 3633 ** started. Index 0 is the main database file and index 1 is the 3634 ** file used for temporary tables. Indices of 2 or more are used for 3635 ** attached databases. 3636 ** 3637 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3638 ** true (this flag is set if the Vdbe may modify more than one row and may 3639 ** throw an ABORT exception), a statement transaction may also be opened. 3640 ** More specifically, a statement transaction is opened iff the database 3641 ** connection is currently not in autocommit mode, or if there are other 3642 ** active statements. A statement transaction allows the changes made by this 3643 ** VDBE to be rolled back after an error without having to roll back the 3644 ** entire transaction. If no error is encountered, the statement transaction 3645 ** will automatically commit when the VDBE halts. 3646 ** 3647 ** If P5!=0 then this opcode also checks the schema cookie against P3 3648 ** and the schema generation counter against P4. 3649 ** The cookie changes its value whenever the database schema changes. 3650 ** This operation is used to detect when that the cookie has changed 3651 ** and that the current process needs to reread the schema. If the schema 3652 ** cookie in P3 differs from the schema cookie in the database header or 3653 ** if the schema generation counter in P4 differs from the current 3654 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3655 ** halts. The sqlite3_step() wrapper function might then reprepare the 3656 ** statement and rerun it from the beginning. 3657 */ 3658 case OP_Transaction: { 3659 Btree *pBt; 3660 int iMeta = 0; 3661 3662 assert( p->bIsReader ); 3663 assert( p->readOnly==0 || pOp->p2==0 ); 3664 assert( pOp->p2>=0 && pOp->p2<=2 ); 3665 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3666 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3667 assert( rc==SQLITE_OK ); 3668 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3669 if( db->flags & SQLITE_QueryOnly ){ 3670 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3671 rc = SQLITE_READONLY; 3672 }else{ 3673 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3674 ** transaction */ 3675 rc = SQLITE_CORRUPT; 3676 } 3677 goto abort_due_to_error; 3678 } 3679 pBt = db->aDb[pOp->p1].pBt; 3680 3681 if( pBt ){ 3682 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3683 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3684 testcase( rc==SQLITE_BUSY_RECOVERY ); 3685 if( rc!=SQLITE_OK ){ 3686 if( (rc&0xff)==SQLITE_BUSY ){ 3687 p->pc = (int)(pOp - aOp); 3688 p->rc = rc; 3689 goto vdbe_return; 3690 } 3691 goto abort_due_to_error; 3692 } 3693 3694 if( p->usesStmtJournal 3695 && pOp->p2 3696 && (db->autoCommit==0 || db->nVdbeRead>1) 3697 ){ 3698 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3699 if( p->iStatement==0 ){ 3700 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3701 db->nStatement++; 3702 p->iStatement = db->nSavepoint + db->nStatement; 3703 } 3704 3705 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3706 if( rc==SQLITE_OK ){ 3707 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3708 } 3709 3710 /* Store the current value of the database handles deferred constraint 3711 ** counter. If the statement transaction needs to be rolled back, 3712 ** the value of this counter needs to be restored too. */ 3713 p->nStmtDefCons = db->nDeferredCons; 3714 p->nStmtDefImmCons = db->nDeferredImmCons; 3715 } 3716 } 3717 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3718 if( rc==SQLITE_OK 3719 && pOp->p5 3720 && (iMeta!=pOp->p3 3721 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3722 ){ 3723 /* 3724 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3725 ** version is checked to ensure that the schema has not changed since the 3726 ** SQL statement was prepared. 3727 */ 3728 sqlite3DbFree(db, p->zErrMsg); 3729 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3730 /* If the schema-cookie from the database file matches the cookie 3731 ** stored with the in-memory representation of the schema, do 3732 ** not reload the schema from the database file. 3733 ** 3734 ** If virtual-tables are in use, this is not just an optimization. 3735 ** Often, v-tables store their data in other SQLite tables, which 3736 ** are queried from within xNext() and other v-table methods using 3737 ** prepared queries. If such a query is out-of-date, we do not want to 3738 ** discard the database schema, as the user code implementing the 3739 ** v-table would have to be ready for the sqlite3_vtab structure itself 3740 ** to be invalidated whenever sqlite3_step() is called from within 3741 ** a v-table method. 3742 */ 3743 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3744 sqlite3ResetOneSchema(db, pOp->p1); 3745 } 3746 p->expired = 1; 3747 rc = SQLITE_SCHEMA; 3748 } 3749 if( rc ) goto abort_due_to_error; 3750 break; 3751 } 3752 3753 /* Opcode: ReadCookie P1 P2 P3 * * 3754 ** 3755 ** Read cookie number P3 from database P1 and write it into register P2. 3756 ** P3==1 is the schema version. P3==2 is the database format. 3757 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3758 ** the main database file and P1==1 is the database file used to store 3759 ** temporary tables. 3760 ** 3761 ** There must be a read-lock on the database (either a transaction 3762 ** must be started or there must be an open cursor) before 3763 ** executing this instruction. 3764 */ 3765 case OP_ReadCookie: { /* out2 */ 3766 int iMeta; 3767 int iDb; 3768 int iCookie; 3769 3770 assert( p->bIsReader ); 3771 iDb = pOp->p1; 3772 iCookie = pOp->p3; 3773 assert( pOp->p3<SQLITE_N_BTREE_META ); 3774 assert( iDb>=0 && iDb<db->nDb ); 3775 assert( db->aDb[iDb].pBt!=0 ); 3776 assert( DbMaskTest(p->btreeMask, iDb) ); 3777 3778 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3779 pOut = out2Prerelease(p, pOp); 3780 pOut->u.i = iMeta; 3781 break; 3782 } 3783 3784 /* Opcode: SetCookie P1 P2 P3 * P5 3785 ** 3786 ** Write the integer value P3 into cookie number P2 of database P1. 3787 ** P2==1 is the schema version. P2==2 is the database format. 3788 ** P2==3 is the recommended pager cache 3789 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3790 ** database file used to store temporary tables. 3791 ** 3792 ** A transaction must be started before executing this opcode. 3793 ** 3794 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3795 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3796 ** has P5 set to 1, so that the internal schema version will be different 3797 ** from the database schema version, resulting in a schema reset. 3798 */ 3799 case OP_SetCookie: { 3800 Db *pDb; 3801 3802 sqlite3VdbeIncrWriteCounter(p, 0); 3803 assert( pOp->p2<SQLITE_N_BTREE_META ); 3804 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3805 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3806 assert( p->readOnly==0 ); 3807 pDb = &db->aDb[pOp->p1]; 3808 assert( pDb->pBt!=0 ); 3809 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3810 /* See note about index shifting on OP_ReadCookie */ 3811 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3812 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3813 /* When the schema cookie changes, record the new cookie internally */ 3814 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3815 db->mDbFlags |= DBFLAG_SchemaChange; 3816 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3817 /* Record changes in the file format */ 3818 pDb->pSchema->file_format = pOp->p3; 3819 } 3820 if( pOp->p1==1 ){ 3821 /* Invalidate all prepared statements whenever the TEMP database 3822 ** schema is changed. Ticket #1644 */ 3823 sqlite3ExpirePreparedStatements(db, 0); 3824 p->expired = 0; 3825 } 3826 if( rc ) goto abort_due_to_error; 3827 break; 3828 } 3829 3830 /* Opcode: OpenRead P1 P2 P3 P4 P5 3831 ** Synopsis: root=P2 iDb=P3 3832 ** 3833 ** Open a read-only cursor for the database table whose root page is 3834 ** P2 in a database file. The database file is determined by P3. 3835 ** P3==0 means the main database, P3==1 means the database used for 3836 ** temporary tables, and P3>1 means used the corresponding attached 3837 ** database. Give the new cursor an identifier of P1. The P1 3838 ** values need not be contiguous but all P1 values should be small integers. 3839 ** It is an error for P1 to be negative. 3840 ** 3841 ** Allowed P5 bits: 3842 ** <ul> 3843 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3844 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3845 ** of OP_SeekLE/OP_IdxLT) 3846 ** </ul> 3847 ** 3848 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3849 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3850 ** object, then table being opened must be an [index b-tree] where the 3851 ** KeyInfo object defines the content and collating 3852 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3853 ** value, then the table being opened must be a [table b-tree] with a 3854 ** number of columns no less than the value of P4. 3855 ** 3856 ** See also: OpenWrite, ReopenIdx 3857 */ 3858 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3859 ** Synopsis: root=P2 iDb=P3 3860 ** 3861 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3862 ** checks to see if the cursor on P1 is already open on the same 3863 ** b-tree and if it is this opcode becomes a no-op. In other words, 3864 ** if the cursor is already open, do not reopen it. 3865 ** 3866 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3867 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3868 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3869 ** number. 3870 ** 3871 ** Allowed P5 bits: 3872 ** <ul> 3873 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3874 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3875 ** of OP_SeekLE/OP_IdxLT) 3876 ** </ul> 3877 ** 3878 ** See also: OP_OpenRead, OP_OpenWrite 3879 */ 3880 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3881 ** Synopsis: root=P2 iDb=P3 3882 ** 3883 ** Open a read/write cursor named P1 on the table or index whose root 3884 ** page is P2 (or whose root page is held in register P2 if the 3885 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3886 ** 3887 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3888 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3889 ** object, then table being opened must be an [index b-tree] where the 3890 ** KeyInfo object defines the content and collating 3891 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3892 ** value, then the table being opened must be a [table b-tree] with a 3893 ** number of columns no less than the value of P4. 3894 ** 3895 ** Allowed P5 bits: 3896 ** <ul> 3897 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3898 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3899 ** of OP_SeekLE/OP_IdxLT) 3900 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3901 ** and subsequently delete entries in an index btree. This is a 3902 ** hint to the storage engine that the storage engine is allowed to 3903 ** ignore. The hint is not used by the official SQLite b*tree storage 3904 ** engine, but is used by COMDB2. 3905 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3906 ** as the root page, not the value of P2 itself. 3907 ** </ul> 3908 ** 3909 ** This instruction works like OpenRead except that it opens the cursor 3910 ** in read/write mode. 3911 ** 3912 ** See also: OP_OpenRead, OP_ReopenIdx 3913 */ 3914 case OP_ReopenIdx: { 3915 int nField; 3916 KeyInfo *pKeyInfo; 3917 u32 p2; 3918 int iDb; 3919 int wrFlag; 3920 Btree *pX; 3921 VdbeCursor *pCur; 3922 Db *pDb; 3923 3924 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3925 assert( pOp->p4type==P4_KEYINFO ); 3926 pCur = p->apCsr[pOp->p1]; 3927 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3928 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3929 assert( pCur->eCurType==CURTYPE_BTREE ); 3930 sqlite3BtreeClearCursor(pCur->uc.pCursor); 3931 goto open_cursor_set_hints; 3932 } 3933 /* If the cursor is not currently open or is open on a different 3934 ** index, then fall through into OP_OpenRead to force a reopen */ 3935 case OP_OpenRead: 3936 case OP_OpenWrite: 3937 3938 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3939 assert( p->bIsReader ); 3940 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3941 || p->readOnly==0 ); 3942 3943 if( p->expired==1 ){ 3944 rc = SQLITE_ABORT_ROLLBACK; 3945 goto abort_due_to_error; 3946 } 3947 3948 nField = 0; 3949 pKeyInfo = 0; 3950 p2 = (u32)pOp->p2; 3951 iDb = pOp->p3; 3952 assert( iDb>=0 && iDb<db->nDb ); 3953 assert( DbMaskTest(p->btreeMask, iDb) ); 3954 pDb = &db->aDb[iDb]; 3955 pX = pDb->pBt; 3956 assert( pX!=0 ); 3957 if( pOp->opcode==OP_OpenWrite ){ 3958 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3959 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3960 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3961 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3962 p->minWriteFileFormat = pDb->pSchema->file_format; 3963 } 3964 }else{ 3965 wrFlag = 0; 3966 } 3967 if( pOp->p5 & OPFLAG_P2ISREG ){ 3968 assert( p2>0 ); 3969 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3970 assert( pOp->opcode==OP_OpenWrite ); 3971 pIn2 = &aMem[p2]; 3972 assert( memIsValid(pIn2) ); 3973 assert( (pIn2->flags & MEM_Int)!=0 ); 3974 sqlite3VdbeMemIntegerify(pIn2); 3975 p2 = (int)pIn2->u.i; 3976 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3977 ** that opcode will always set the p2 value to 2 or more or else fail. 3978 ** If there were a failure, the prepared statement would have halted 3979 ** before reaching this instruction. */ 3980 assert( p2>=2 ); 3981 } 3982 if( pOp->p4type==P4_KEYINFO ){ 3983 pKeyInfo = pOp->p4.pKeyInfo; 3984 assert( pKeyInfo->enc==ENC(db) ); 3985 assert( pKeyInfo->db==db ); 3986 nField = pKeyInfo->nAllField; 3987 }else if( pOp->p4type==P4_INT32 ){ 3988 nField = pOp->p4.i; 3989 } 3990 assert( pOp->p1>=0 ); 3991 assert( nField>=0 ); 3992 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3993 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3994 if( pCur==0 ) goto no_mem; 3995 pCur->nullRow = 1; 3996 pCur->isOrdered = 1; 3997 pCur->pgnoRoot = p2; 3998 #ifdef SQLITE_DEBUG 3999 pCur->wrFlag = wrFlag; 4000 #endif 4001 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4002 pCur->pKeyInfo = pKeyInfo; 4003 /* Set the VdbeCursor.isTable variable. Previous versions of 4004 ** SQLite used to check if the root-page flags were sane at this point 4005 ** and report database corruption if they were not, but this check has 4006 ** since moved into the btree layer. */ 4007 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4008 4009 open_cursor_set_hints: 4010 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4011 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4012 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4013 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4014 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4015 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4016 if( rc ) goto abort_due_to_error; 4017 break; 4018 } 4019 4020 /* Opcode: OpenDup P1 P2 * * * 4021 ** 4022 ** Open a new cursor P1 that points to the same ephemeral table as 4023 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4024 ** opcode. Only ephemeral cursors may be duplicated. 4025 ** 4026 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4027 */ 4028 case OP_OpenDup: { 4029 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4030 VdbeCursor *pCx; /* The new cursor */ 4031 4032 pOrig = p->apCsr[pOp->p2]; 4033 assert( pOrig ); 4034 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4035 4036 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 4037 if( pCx==0 ) goto no_mem; 4038 pCx->nullRow = 1; 4039 pCx->isEphemeral = 1; 4040 pCx->pKeyInfo = pOrig->pKeyInfo; 4041 pCx->isTable = pOrig->isTable; 4042 pCx->pgnoRoot = pOrig->pgnoRoot; 4043 pCx->isOrdered = pOrig->isOrdered; 4044 pCx->pBtx = pOrig->pBtx; 4045 pCx->hasBeenDuped = 1; 4046 pOrig->hasBeenDuped = 1; 4047 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4048 pCx->pKeyInfo, pCx->uc.pCursor); 4049 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4050 ** opened for a database. Since there is already an open cursor when this 4051 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4052 assert( rc==SQLITE_OK ); 4053 break; 4054 } 4055 4056 4057 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4058 ** Synopsis: nColumn=P2 4059 ** 4060 ** Open a new cursor P1 to a transient table. 4061 ** The cursor is always opened read/write even if 4062 ** the main database is read-only. The ephemeral 4063 ** table is deleted automatically when the cursor is closed. 4064 ** 4065 ** If the cursor P1 is already opened on an ephemeral table, the table 4066 ** is cleared (all content is erased). 4067 ** 4068 ** P2 is the number of columns in the ephemeral table. 4069 ** The cursor points to a BTree table if P4==0 and to a BTree index 4070 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4071 ** that defines the format of keys in the index. 4072 ** 4073 ** The P5 parameter can be a mask of the BTREE_* flags defined 4074 ** in btree.h. These flags control aspects of the operation of 4075 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4076 ** added automatically. 4077 ** 4078 ** If P3 is positive, then reg[P3] is modified slightly so that it 4079 ** can be used as zero-length data for OP_Insert. This is an optimization 4080 ** that avoids an extra OP_Blob opcode to initialize that register. 4081 */ 4082 /* Opcode: OpenAutoindex P1 P2 * P4 * 4083 ** Synopsis: nColumn=P2 4084 ** 4085 ** This opcode works the same as OP_OpenEphemeral. It has a 4086 ** different name to distinguish its use. Tables created using 4087 ** by this opcode will be used for automatically created transient 4088 ** indices in joins. 4089 */ 4090 case OP_OpenAutoindex: 4091 case OP_OpenEphemeral: { 4092 VdbeCursor *pCx; 4093 KeyInfo *pKeyInfo; 4094 4095 static const int vfsFlags = 4096 SQLITE_OPEN_READWRITE | 4097 SQLITE_OPEN_CREATE | 4098 SQLITE_OPEN_EXCLUSIVE | 4099 SQLITE_OPEN_DELETEONCLOSE | 4100 SQLITE_OPEN_TRANSIENT_DB; 4101 assert( pOp->p1>=0 ); 4102 assert( pOp->p2>=0 ); 4103 if( pOp->p3>0 ){ 4104 /* Make register reg[P3] into a value that can be used as the data 4105 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4106 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4107 assert( pOp->opcode==OP_OpenEphemeral ); 4108 assert( aMem[pOp->p3].flags & MEM_Null ); 4109 aMem[pOp->p3].n = 0; 4110 aMem[pOp->p3].z = ""; 4111 } 4112 pCx = p->apCsr[pOp->p1]; 4113 if( pCx && !pCx->hasBeenDuped && ALWAYS(pOp->p2<=pCx->nField) ){ 4114 /* If the ephermeral table is already open and has no duplicates from 4115 ** OP_OpenDup, then erase all existing content so that the table is 4116 ** empty again, rather than creating a new table. */ 4117 assert( pCx->isEphemeral ); 4118 pCx->seqCount = 0; 4119 pCx->cacheStatus = CACHE_STALE; 4120 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 4121 }else{ 4122 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 4123 if( pCx==0 ) goto no_mem; 4124 pCx->isEphemeral = 1; 4125 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 4126 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4127 vfsFlags); 4128 if( rc==SQLITE_OK ){ 4129 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 4130 if( rc==SQLITE_OK ){ 4131 /* If a transient index is required, create it by calling 4132 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4133 ** opening it. If a transient table is required, just use the 4134 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4135 */ 4136 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4137 assert( pOp->p4type==P4_KEYINFO ); 4138 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot, 4139 BTREE_BLOBKEY | pOp->p5); 4140 if( rc==SQLITE_OK ){ 4141 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4142 assert( pKeyInfo->db==db ); 4143 assert( pKeyInfo->enc==ENC(db) ); 4144 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4145 pKeyInfo, pCx->uc.pCursor); 4146 } 4147 pCx->isTable = 0; 4148 }else{ 4149 pCx->pgnoRoot = SCHEMA_ROOT; 4150 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4151 0, pCx->uc.pCursor); 4152 pCx->isTable = 1; 4153 } 4154 } 4155 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4156 if( rc ){ 4157 sqlite3BtreeClose(pCx->pBtx); 4158 } 4159 } 4160 } 4161 if( rc ) goto abort_due_to_error; 4162 pCx->nullRow = 1; 4163 break; 4164 } 4165 4166 /* Opcode: SorterOpen P1 P2 P3 P4 * 4167 ** 4168 ** This opcode works like OP_OpenEphemeral except that it opens 4169 ** a transient index that is specifically designed to sort large 4170 ** tables using an external merge-sort algorithm. 4171 ** 4172 ** If argument P3 is non-zero, then it indicates that the sorter may 4173 ** assume that a stable sort considering the first P3 fields of each 4174 ** key is sufficient to produce the required results. 4175 */ 4176 case OP_SorterOpen: { 4177 VdbeCursor *pCx; 4178 4179 assert( pOp->p1>=0 ); 4180 assert( pOp->p2>=0 ); 4181 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 4182 if( pCx==0 ) goto no_mem; 4183 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4184 assert( pCx->pKeyInfo->db==db ); 4185 assert( pCx->pKeyInfo->enc==ENC(db) ); 4186 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4187 if( rc ) goto abort_due_to_error; 4188 break; 4189 } 4190 4191 /* Opcode: SequenceTest P1 P2 * * * 4192 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4193 ** 4194 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4195 ** to P2. Regardless of whether or not the jump is taken, increment the 4196 ** the sequence value. 4197 */ 4198 case OP_SequenceTest: { 4199 VdbeCursor *pC; 4200 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4201 pC = p->apCsr[pOp->p1]; 4202 assert( isSorter(pC) ); 4203 if( (pC->seqCount++)==0 ){ 4204 goto jump_to_p2; 4205 } 4206 break; 4207 } 4208 4209 /* Opcode: OpenPseudo P1 P2 P3 * * 4210 ** Synopsis: P3 columns in r[P2] 4211 ** 4212 ** Open a new cursor that points to a fake table that contains a single 4213 ** row of data. The content of that one row is the content of memory 4214 ** register P2. In other words, cursor P1 becomes an alias for the 4215 ** MEM_Blob content contained in register P2. 4216 ** 4217 ** A pseudo-table created by this opcode is used to hold a single 4218 ** row output from the sorter so that the row can be decomposed into 4219 ** individual columns using the OP_Column opcode. The OP_Column opcode 4220 ** is the only cursor opcode that works with a pseudo-table. 4221 ** 4222 ** P3 is the number of fields in the records that will be stored by 4223 ** the pseudo-table. 4224 */ 4225 case OP_OpenPseudo: { 4226 VdbeCursor *pCx; 4227 4228 assert( pOp->p1>=0 ); 4229 assert( pOp->p3>=0 ); 4230 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4231 if( pCx==0 ) goto no_mem; 4232 pCx->nullRow = 1; 4233 pCx->seekResult = pOp->p2; 4234 pCx->isTable = 1; 4235 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4236 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4237 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4238 ** which is a performance optimization */ 4239 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4240 assert( pOp->p5==0 ); 4241 break; 4242 } 4243 4244 /* Opcode: Close P1 * * * * 4245 ** 4246 ** Close a cursor previously opened as P1. If P1 is not 4247 ** currently open, this instruction is a no-op. 4248 */ 4249 case OP_Close: { 4250 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4251 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4252 p->apCsr[pOp->p1] = 0; 4253 break; 4254 } 4255 4256 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4257 /* Opcode: ColumnsUsed P1 * * P4 * 4258 ** 4259 ** This opcode (which only exists if SQLite was compiled with 4260 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4261 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4262 ** (P4_INT64) in which the first 63 bits are one for each of the 4263 ** first 63 columns of the table or index that are actually used 4264 ** by the cursor. The high-order bit is set if any column after 4265 ** the 64th is used. 4266 */ 4267 case OP_ColumnsUsed: { 4268 VdbeCursor *pC; 4269 pC = p->apCsr[pOp->p1]; 4270 assert( pC->eCurType==CURTYPE_BTREE ); 4271 pC->maskUsed = *(u64*)pOp->p4.pI64; 4272 break; 4273 } 4274 #endif 4275 4276 /* Opcode: SeekGE P1 P2 P3 P4 * 4277 ** Synopsis: key=r[P3@P4] 4278 ** 4279 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4280 ** use the value in register P3 as the key. If cursor P1 refers 4281 ** to an SQL index, then P3 is the first in an array of P4 registers 4282 ** that are used as an unpacked index key. 4283 ** 4284 ** Reposition cursor P1 so that it points to the smallest entry that 4285 ** is greater than or equal to the key value. If there are no records 4286 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4287 ** 4288 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4289 ** opcode will either land on a record that exactly matches the key, or 4290 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4291 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4292 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4293 ** IdxGT opcode will be used on subsequent loop iterations. The 4294 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4295 ** is an equality search. 4296 ** 4297 ** This opcode leaves the cursor configured to move in forward order, 4298 ** from the beginning toward the end. In other words, the cursor is 4299 ** configured to use Next, not Prev. 4300 ** 4301 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4302 */ 4303 /* Opcode: SeekGT P1 P2 P3 P4 * 4304 ** Synopsis: key=r[P3@P4] 4305 ** 4306 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4307 ** use the value in register P3 as a key. If cursor P1 refers 4308 ** to an SQL index, then P3 is the first in an array of P4 registers 4309 ** that are used as an unpacked index key. 4310 ** 4311 ** Reposition cursor P1 so that it points to the smallest entry that 4312 ** is greater than the key value. If there are no records greater than 4313 ** the key and P2 is not zero, then jump to P2. 4314 ** 4315 ** This opcode leaves the cursor configured to move in forward order, 4316 ** from the beginning toward the end. In other words, the cursor is 4317 ** configured to use Next, not Prev. 4318 ** 4319 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4320 */ 4321 /* Opcode: SeekLT P1 P2 P3 P4 * 4322 ** Synopsis: key=r[P3@P4] 4323 ** 4324 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4325 ** use the value in register P3 as a key. If cursor P1 refers 4326 ** to an SQL index, then P3 is the first in an array of P4 registers 4327 ** that are used as an unpacked index key. 4328 ** 4329 ** Reposition cursor P1 so that it points to the largest entry that 4330 ** is less than the key value. If there are no records less than 4331 ** the key and P2 is not zero, then jump to P2. 4332 ** 4333 ** This opcode leaves the cursor configured to move in reverse order, 4334 ** from the end toward the beginning. In other words, the cursor is 4335 ** configured to use Prev, not Next. 4336 ** 4337 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4338 */ 4339 /* Opcode: SeekLE P1 P2 P3 P4 * 4340 ** Synopsis: key=r[P3@P4] 4341 ** 4342 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4343 ** use the value in register P3 as a key. If cursor P1 refers 4344 ** to an SQL index, then P3 is the first in an array of P4 registers 4345 ** that are used as an unpacked index key. 4346 ** 4347 ** Reposition cursor P1 so that it points to the largest entry that 4348 ** is less than or equal to the key value. If there are no records 4349 ** less than or equal to the key and P2 is not zero, then jump to P2. 4350 ** 4351 ** This opcode leaves the cursor configured to move in reverse order, 4352 ** from the end toward the beginning. In other words, the cursor is 4353 ** configured to use Prev, not Next. 4354 ** 4355 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4356 ** opcode will either land on a record that exactly matches the key, or 4357 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4358 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4359 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4360 ** IdxGE opcode will be used on subsequent loop iterations. The 4361 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4362 ** is an equality search. 4363 ** 4364 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4365 */ 4366 case OP_SeekLT: /* jump, in3, group */ 4367 case OP_SeekLE: /* jump, in3, group */ 4368 case OP_SeekGE: /* jump, in3, group */ 4369 case OP_SeekGT: { /* jump, in3, group */ 4370 int res; /* Comparison result */ 4371 int oc; /* Opcode */ 4372 VdbeCursor *pC; /* The cursor to seek */ 4373 UnpackedRecord r; /* The key to seek for */ 4374 int nField; /* Number of columns or fields in the key */ 4375 i64 iKey; /* The rowid we are to seek to */ 4376 int eqOnly; /* Only interested in == results */ 4377 4378 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4379 assert( pOp->p2!=0 ); 4380 pC = p->apCsr[pOp->p1]; 4381 assert( pC!=0 ); 4382 assert( pC->eCurType==CURTYPE_BTREE ); 4383 assert( OP_SeekLE == OP_SeekLT+1 ); 4384 assert( OP_SeekGE == OP_SeekLT+2 ); 4385 assert( OP_SeekGT == OP_SeekLT+3 ); 4386 assert( pC->isOrdered ); 4387 assert( pC->uc.pCursor!=0 ); 4388 oc = pOp->opcode; 4389 eqOnly = 0; 4390 pC->nullRow = 0; 4391 #ifdef SQLITE_DEBUG 4392 pC->seekOp = pOp->opcode; 4393 #endif 4394 4395 pC->deferredMoveto = 0; 4396 pC->cacheStatus = CACHE_STALE; 4397 if( pC->isTable ){ 4398 u16 flags3, newType; 4399 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4400 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4401 || CORRUPT_DB ); 4402 4403 /* The input value in P3 might be of any type: integer, real, string, 4404 ** blob, or NULL. But it needs to be an integer before we can do 4405 ** the seek, so convert it. */ 4406 pIn3 = &aMem[pOp->p3]; 4407 flags3 = pIn3->flags; 4408 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4409 applyNumericAffinity(pIn3, 0); 4410 } 4411 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4412 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4413 pIn3->flags = flags3; /* But convert the type back to its original */ 4414 4415 /* If the P3 value could not be converted into an integer without 4416 ** loss of information, then special processing is required... */ 4417 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4418 int c; 4419 if( (newType & MEM_Real)==0 ){ 4420 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4421 VdbeBranchTaken(1,2); 4422 goto jump_to_p2; 4423 }else{ 4424 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4425 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4426 goto seek_not_found; 4427 } 4428 } 4429 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4430 4431 /* If the approximation iKey is larger than the actual real search 4432 ** term, substitute >= for > and < for <=. e.g. if the search term 4433 ** is 4.9 and the integer approximation 5: 4434 ** 4435 ** (x > 4.9) -> (x >= 5) 4436 ** (x <= 4.9) -> (x < 5) 4437 */ 4438 if( c>0 ){ 4439 assert( OP_SeekGE==(OP_SeekGT-1) ); 4440 assert( OP_SeekLT==(OP_SeekLE-1) ); 4441 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4442 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4443 } 4444 4445 /* If the approximation iKey is smaller than the actual real search 4446 ** term, substitute <= for < and > for >=. */ 4447 else if( c<0 ){ 4448 assert( OP_SeekLE==(OP_SeekLT+1) ); 4449 assert( OP_SeekGT==(OP_SeekGE+1) ); 4450 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4451 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4452 } 4453 } 4454 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4455 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4456 if( rc!=SQLITE_OK ){ 4457 goto abort_due_to_error; 4458 } 4459 }else{ 4460 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4461 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4462 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4463 ** with the same key. 4464 */ 4465 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4466 eqOnly = 1; 4467 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4468 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4469 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4470 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4471 assert( pOp[1].p1==pOp[0].p1 ); 4472 assert( pOp[1].p2==pOp[0].p2 ); 4473 assert( pOp[1].p3==pOp[0].p3 ); 4474 assert( pOp[1].p4.i==pOp[0].p4.i ); 4475 } 4476 4477 nField = pOp->p4.i; 4478 assert( pOp->p4type==P4_INT32 ); 4479 assert( nField>0 ); 4480 r.pKeyInfo = pC->pKeyInfo; 4481 r.nField = (u16)nField; 4482 4483 /* The next line of code computes as follows, only faster: 4484 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4485 ** r.default_rc = -1; 4486 ** }else{ 4487 ** r.default_rc = +1; 4488 ** } 4489 */ 4490 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4491 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4492 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4493 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4494 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4495 4496 r.aMem = &aMem[pOp->p3]; 4497 #ifdef SQLITE_DEBUG 4498 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4499 #endif 4500 r.eqSeen = 0; 4501 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4502 if( rc!=SQLITE_OK ){ 4503 goto abort_due_to_error; 4504 } 4505 if( eqOnly && r.eqSeen==0 ){ 4506 assert( res!=0 ); 4507 goto seek_not_found; 4508 } 4509 } 4510 #ifdef SQLITE_TEST 4511 sqlite3_search_count++; 4512 #endif 4513 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4514 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4515 res = 0; 4516 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4517 if( rc!=SQLITE_OK ){ 4518 if( rc==SQLITE_DONE ){ 4519 rc = SQLITE_OK; 4520 res = 1; 4521 }else{ 4522 goto abort_due_to_error; 4523 } 4524 } 4525 }else{ 4526 res = 0; 4527 } 4528 }else{ 4529 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4530 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4531 res = 0; 4532 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4533 if( rc!=SQLITE_OK ){ 4534 if( rc==SQLITE_DONE ){ 4535 rc = SQLITE_OK; 4536 res = 1; 4537 }else{ 4538 goto abort_due_to_error; 4539 } 4540 } 4541 }else{ 4542 /* res might be negative because the table is empty. Check to 4543 ** see if this is the case. 4544 */ 4545 res = sqlite3BtreeEof(pC->uc.pCursor); 4546 } 4547 } 4548 seek_not_found: 4549 assert( pOp->p2>0 ); 4550 VdbeBranchTaken(res!=0,2); 4551 if( res ){ 4552 goto jump_to_p2; 4553 }else if( eqOnly ){ 4554 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4555 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4556 } 4557 break; 4558 } 4559 4560 4561 /* Opcode: SeekScan P1 P2 * * * 4562 ** Synopsis: Scan-ahead up to P1 rows 4563 ** 4564 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4565 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4566 ** checked by assert() statements. 4567 ** 4568 ** This opcode uses the P1 through P4 operands of the subsequent 4569 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4570 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4571 ** the P1 and P2 operands of this opcode are also used, and are called 4572 ** This.P1 and This.P2. 4573 ** 4574 ** This opcode helps to optimize IN operators on a multi-column index 4575 ** where the IN operator is on the later terms of the index by avoiding 4576 ** unnecessary seeks on the btree, substituting steps to the next row 4577 ** of the b-tree instead. A correct answer is obtained if this opcode 4578 ** is omitted or is a no-op. 4579 ** 4580 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4581 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4582 ** to. Call this SeekGE.P4/P5 row the "target". 4583 ** 4584 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4585 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4586 ** 4587 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4588 ** might be the target row, or it might be near and slightly before the 4589 ** target row. This opcode attempts to position the cursor on the target 4590 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4591 ** between 0 and This.P1 times. 4592 ** 4593 ** There are three possible outcomes from this opcode:<ol> 4594 ** 4595 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4596 ** is earlier in the btree than the target row, then fall through 4597 ** into the subsquence OP_SeekGE opcode. 4598 ** 4599 ** <li> If the cursor is successfully moved to the target row by 0 or more 4600 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4601 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4602 ** 4603 ** <li> If the cursor ends up past the target row (indicating the the target 4604 ** row does not exist in the btree) then jump to SeekOP.P2. 4605 ** </ol> 4606 */ 4607 case OP_SeekScan: { 4608 VdbeCursor *pC; 4609 int res; 4610 int nStep; 4611 UnpackedRecord r; 4612 4613 assert( pOp[1].opcode==OP_SeekGE ); 4614 4615 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4616 ** follows the OP_SeekGE. */ 4617 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4618 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4619 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4620 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4621 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4622 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4623 4624 assert( pOp->p1>0 ); 4625 pC = p->apCsr[pOp[1].p1]; 4626 assert( pC!=0 ); 4627 assert( pC->eCurType==CURTYPE_BTREE ); 4628 assert( !pC->isTable ); 4629 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4630 #ifdef SQLITE_DEBUG 4631 if( db->flags&SQLITE_VdbeTrace ){ 4632 printf("... cursor not valid - fall through\n"); 4633 } 4634 #endif 4635 break; 4636 } 4637 nStep = pOp->p1; 4638 assert( nStep>=1 ); 4639 r.pKeyInfo = pC->pKeyInfo; 4640 r.nField = (u16)pOp[1].p4.i; 4641 r.default_rc = 0; 4642 r.aMem = &aMem[pOp[1].p3]; 4643 #ifdef SQLITE_DEBUG 4644 { 4645 int i; 4646 for(i=0; i<r.nField; i++){ 4647 assert( memIsValid(&r.aMem[i]) ); 4648 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4649 } 4650 } 4651 #endif 4652 res = 0; /* Not needed. Only used to silence a warning. */ 4653 while(1){ 4654 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4655 if( rc ) goto abort_due_to_error; 4656 if( res>0 ){ 4657 seekscan_search_fail: 4658 #ifdef SQLITE_DEBUG 4659 if( db->flags&SQLITE_VdbeTrace ){ 4660 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4661 } 4662 #endif 4663 VdbeBranchTaken(1,3); 4664 pOp++; 4665 goto jump_to_p2; 4666 } 4667 if( res==0 ){ 4668 #ifdef SQLITE_DEBUG 4669 if( db->flags&SQLITE_VdbeTrace ){ 4670 printf("... %d steps and then success\n", pOp->p1 - nStep); 4671 } 4672 #endif 4673 VdbeBranchTaken(2,3); 4674 goto jump_to_p2; 4675 break; 4676 } 4677 if( nStep<=0 ){ 4678 #ifdef SQLITE_DEBUG 4679 if( db->flags&SQLITE_VdbeTrace ){ 4680 printf("... fall through after %d steps\n", pOp->p1); 4681 } 4682 #endif 4683 VdbeBranchTaken(0,3); 4684 break; 4685 } 4686 nStep--; 4687 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4688 if( rc ){ 4689 if( rc==SQLITE_DONE ){ 4690 rc = SQLITE_OK; 4691 goto seekscan_search_fail; 4692 }else{ 4693 goto abort_due_to_error; 4694 } 4695 } 4696 } 4697 4698 break; 4699 } 4700 4701 4702 /* Opcode: SeekHit P1 P2 P3 * * 4703 ** Synopsis: set P2<=seekHit<=P3 4704 ** 4705 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4706 ** so that it is no less than P2 and no greater than P3. 4707 ** 4708 ** The seekHit integer represents the maximum of terms in an index for which 4709 ** there is known to be at least one match. If the seekHit value is smaller 4710 ** than the total number of equality terms in an index lookup, then the 4711 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4712 ** early, thus saving work. This is part of the IN-early-out optimization. 4713 ** 4714 ** P1 must be a valid b-tree cursor. 4715 */ 4716 case OP_SeekHit: { 4717 VdbeCursor *pC; 4718 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4719 pC = p->apCsr[pOp->p1]; 4720 assert( pC!=0 ); 4721 assert( pOp->p3>=pOp->p2 ); 4722 if( pC->seekHit<pOp->p2 ){ 4723 #ifdef SQLITE_DEBUG 4724 if( db->flags&SQLITE_VdbeTrace ){ 4725 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4726 } 4727 #endif 4728 pC->seekHit = pOp->p2; 4729 }else if( pC->seekHit>pOp->p3 ){ 4730 #ifdef SQLITE_DEBUG 4731 if( db->flags&SQLITE_VdbeTrace ){ 4732 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4733 } 4734 #endif 4735 pC->seekHit = pOp->p3; 4736 } 4737 break; 4738 } 4739 4740 /* Opcode: IfNotOpen P1 P2 * * * 4741 ** Synopsis: if( !csr[P1] ) goto P2 4742 ** 4743 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4744 */ 4745 case OP_IfNotOpen: { /* jump */ 4746 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4747 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4748 if( !p->apCsr[pOp->p1] ){ 4749 goto jump_to_p2_and_check_for_interrupt; 4750 } 4751 break; 4752 } 4753 4754 /* Opcode: Found P1 P2 P3 P4 * 4755 ** Synopsis: key=r[P3@P4] 4756 ** 4757 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4758 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4759 ** record. 4760 ** 4761 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4762 ** is a prefix of any entry in P1 then a jump is made to P2 and 4763 ** P1 is left pointing at the matching entry. 4764 ** 4765 ** This operation leaves the cursor in a state where it can be 4766 ** advanced in the forward direction. The Next instruction will work, 4767 ** but not the Prev instruction. 4768 ** 4769 ** See also: NotFound, NoConflict, NotExists. SeekGe 4770 */ 4771 /* Opcode: NotFound P1 P2 P3 P4 * 4772 ** Synopsis: key=r[P3@P4] 4773 ** 4774 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4775 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4776 ** record. 4777 ** 4778 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4779 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4780 ** does contain an entry whose prefix matches the P3/P4 record then control 4781 ** falls through to the next instruction and P1 is left pointing at the 4782 ** matching entry. 4783 ** 4784 ** This operation leaves the cursor in a state where it cannot be 4785 ** advanced in either direction. In other words, the Next and Prev 4786 ** opcodes do not work after this operation. 4787 ** 4788 ** See also: Found, NotExists, NoConflict, IfNoHope 4789 */ 4790 /* Opcode: IfNoHope P1 P2 P3 P4 * 4791 ** Synopsis: key=r[P3@P4] 4792 ** 4793 ** Register P3 is the first of P4 registers that form an unpacked 4794 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4795 ** In other words, the operands to this opcode are the same as the 4796 ** operands to OP_NotFound and OP_IdxGT. 4797 ** 4798 ** This opcode is an optimization attempt only. If this opcode always 4799 ** falls through, the correct answer is still obtained, but extra works 4800 ** is performed. 4801 ** 4802 ** A value of N in the seekHit flag of cursor P1 means that there exists 4803 ** a key P3:N that will match some record in the index. We want to know 4804 ** if it is possible for a record P3:P4 to match some record in the 4805 ** index. If it is not possible, we can skips some work. So if seekHit 4806 ** is less than P4, attempt to find out if a match is possible by running 4807 ** OP_NotFound. 4808 ** 4809 ** This opcode is used in IN clause processing for a multi-column key. 4810 ** If an IN clause is attached to an element of the key other than the 4811 ** left-most element, and if there are no matches on the most recent 4812 ** seek over the whole key, then it might be that one of the key element 4813 ** to the left is prohibiting a match, and hence there is "no hope" of 4814 ** any match regardless of how many IN clause elements are checked. 4815 ** In such a case, we abandon the IN clause search early, using this 4816 ** opcode. The opcode name comes from the fact that the 4817 ** jump is taken if there is "no hope" of achieving a match. 4818 ** 4819 ** See also: NotFound, SeekHit 4820 */ 4821 /* Opcode: NoConflict P1 P2 P3 P4 * 4822 ** Synopsis: key=r[P3@P4] 4823 ** 4824 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4825 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4826 ** record. 4827 ** 4828 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4829 ** contains any NULL value, jump immediately to P2. If all terms of the 4830 ** record are not-NULL then a check is done to determine if any row in the 4831 ** P1 index btree has a matching key prefix. If there are no matches, jump 4832 ** immediately to P2. If there is a match, fall through and leave the P1 4833 ** cursor pointing to the matching row. 4834 ** 4835 ** This opcode is similar to OP_NotFound with the exceptions that the 4836 ** branch is always taken if any part of the search key input is NULL. 4837 ** 4838 ** This operation leaves the cursor in a state where it cannot be 4839 ** advanced in either direction. In other words, the Next and Prev 4840 ** opcodes do not work after this operation. 4841 ** 4842 ** See also: NotFound, Found, NotExists 4843 */ 4844 case OP_IfNoHope: { /* jump, in3 */ 4845 VdbeCursor *pC; 4846 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4847 pC = p->apCsr[pOp->p1]; 4848 assert( pC!=0 ); 4849 #ifdef SQLITE_DEBUG 4850 if( db->flags&SQLITE_VdbeTrace ){ 4851 printf("seekHit is %d\n", pC->seekHit); 4852 } 4853 #endif 4854 if( pC->seekHit>=pOp->p4.i ) break; 4855 /* Fall through into OP_NotFound */ 4856 /* no break */ deliberate_fall_through 4857 } 4858 case OP_NoConflict: /* jump, in3 */ 4859 case OP_NotFound: /* jump, in3 */ 4860 case OP_Found: { /* jump, in3 */ 4861 int alreadyExists; 4862 int takeJump; 4863 int ii; 4864 VdbeCursor *pC; 4865 int res; 4866 UnpackedRecord *pFree; 4867 UnpackedRecord *pIdxKey; 4868 UnpackedRecord r; 4869 4870 #ifdef SQLITE_TEST 4871 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4872 #endif 4873 4874 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4875 assert( pOp->p4type==P4_INT32 ); 4876 pC = p->apCsr[pOp->p1]; 4877 assert( pC!=0 ); 4878 #ifdef SQLITE_DEBUG 4879 pC->seekOp = pOp->opcode; 4880 #endif 4881 pIn3 = &aMem[pOp->p3]; 4882 assert( pC->eCurType==CURTYPE_BTREE ); 4883 assert( pC->uc.pCursor!=0 ); 4884 assert( pC->isTable==0 ); 4885 if( pOp->p4.i>0 ){ 4886 r.pKeyInfo = pC->pKeyInfo; 4887 r.nField = (u16)pOp->p4.i; 4888 r.aMem = pIn3; 4889 #ifdef SQLITE_DEBUG 4890 for(ii=0; ii<r.nField; ii++){ 4891 assert( memIsValid(&r.aMem[ii]) ); 4892 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4893 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4894 } 4895 #endif 4896 pIdxKey = &r; 4897 pFree = 0; 4898 }else{ 4899 assert( pIn3->flags & MEM_Blob ); 4900 rc = ExpandBlob(pIn3); 4901 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4902 if( rc ) goto no_mem; 4903 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4904 if( pIdxKey==0 ) goto no_mem; 4905 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4906 } 4907 pIdxKey->default_rc = 0; 4908 takeJump = 0; 4909 if( pOp->opcode==OP_NoConflict ){ 4910 /* For the OP_NoConflict opcode, take the jump if any of the 4911 ** input fields are NULL, since any key with a NULL will not 4912 ** conflict */ 4913 for(ii=0; ii<pIdxKey->nField; ii++){ 4914 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4915 takeJump = 1; 4916 break; 4917 } 4918 } 4919 } 4920 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res); 4921 if( pFree ) sqlite3DbFreeNN(db, pFree); 4922 if( rc!=SQLITE_OK ){ 4923 goto abort_due_to_error; 4924 } 4925 pC->seekResult = res; 4926 alreadyExists = (res==0); 4927 pC->nullRow = 1-alreadyExists; 4928 pC->deferredMoveto = 0; 4929 pC->cacheStatus = CACHE_STALE; 4930 if( pOp->opcode==OP_Found ){ 4931 VdbeBranchTaken(alreadyExists!=0,2); 4932 if( alreadyExists ) goto jump_to_p2; 4933 }else{ 4934 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4935 if( takeJump || !alreadyExists ) goto jump_to_p2; 4936 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4937 } 4938 break; 4939 } 4940 4941 /* Opcode: SeekRowid P1 P2 P3 * * 4942 ** Synopsis: intkey=r[P3] 4943 ** 4944 ** P1 is the index of a cursor open on an SQL table btree (with integer 4945 ** keys). If register P3 does not contain an integer or if P1 does not 4946 ** contain a record with rowid P3 then jump immediately to P2. 4947 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4948 ** a record with rowid P3 then 4949 ** leave the cursor pointing at that record and fall through to the next 4950 ** instruction. 4951 ** 4952 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4953 ** the P3 register must be guaranteed to contain an integer value. With this 4954 ** opcode, register P3 might not contain an integer. 4955 ** 4956 ** The OP_NotFound opcode performs the same operation on index btrees 4957 ** (with arbitrary multi-value keys). 4958 ** 4959 ** This opcode leaves the cursor in a state where it cannot be advanced 4960 ** in either direction. In other words, the Next and Prev opcodes will 4961 ** not work following this opcode. 4962 ** 4963 ** See also: Found, NotFound, NoConflict, SeekRowid 4964 */ 4965 /* Opcode: NotExists P1 P2 P3 * * 4966 ** Synopsis: intkey=r[P3] 4967 ** 4968 ** P1 is the index of a cursor open on an SQL table btree (with integer 4969 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4970 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4971 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4972 ** leave the cursor pointing at that record and fall through to the next 4973 ** instruction. 4974 ** 4975 ** The OP_SeekRowid opcode performs the same operation but also allows the 4976 ** P3 register to contain a non-integer value, in which case the jump is 4977 ** always taken. This opcode requires that P3 always contain an integer. 4978 ** 4979 ** The OP_NotFound opcode performs the same operation on index btrees 4980 ** (with arbitrary multi-value keys). 4981 ** 4982 ** This opcode leaves the cursor in a state where it cannot be advanced 4983 ** in either direction. In other words, the Next and Prev opcodes will 4984 ** not work following this opcode. 4985 ** 4986 ** See also: Found, NotFound, NoConflict, SeekRowid 4987 */ 4988 case OP_SeekRowid: { /* jump, in3 */ 4989 VdbeCursor *pC; 4990 BtCursor *pCrsr; 4991 int res; 4992 u64 iKey; 4993 4994 pIn3 = &aMem[pOp->p3]; 4995 testcase( pIn3->flags & MEM_Int ); 4996 testcase( pIn3->flags & MEM_IntReal ); 4997 testcase( pIn3->flags & MEM_Real ); 4998 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4999 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5000 /* If pIn3->u.i does not contain an integer, compute iKey as the 5001 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5002 ** into an integer without loss of information. Take care to avoid 5003 ** changing the datatype of pIn3, however, as it is used by other 5004 ** parts of the prepared statement. */ 5005 Mem x = pIn3[0]; 5006 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5007 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5008 iKey = x.u.i; 5009 goto notExistsWithKey; 5010 } 5011 /* Fall through into OP_NotExists */ 5012 /* no break */ deliberate_fall_through 5013 case OP_NotExists: /* jump, in3 */ 5014 pIn3 = &aMem[pOp->p3]; 5015 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5016 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5017 iKey = pIn3->u.i; 5018 notExistsWithKey: 5019 pC = p->apCsr[pOp->p1]; 5020 assert( pC!=0 ); 5021 #ifdef SQLITE_DEBUG 5022 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5023 #endif 5024 assert( pC->isTable ); 5025 assert( pC->eCurType==CURTYPE_BTREE ); 5026 pCrsr = pC->uc.pCursor; 5027 assert( pCrsr!=0 ); 5028 res = 0; 5029 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5030 assert( rc==SQLITE_OK || res==0 ); 5031 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5032 pC->nullRow = 0; 5033 pC->cacheStatus = CACHE_STALE; 5034 pC->deferredMoveto = 0; 5035 VdbeBranchTaken(res!=0,2); 5036 pC->seekResult = res; 5037 if( res!=0 ){ 5038 assert( rc==SQLITE_OK ); 5039 if( pOp->p2==0 ){ 5040 rc = SQLITE_CORRUPT_BKPT; 5041 }else{ 5042 goto jump_to_p2; 5043 } 5044 } 5045 if( rc ) goto abort_due_to_error; 5046 break; 5047 } 5048 5049 /* Opcode: Sequence P1 P2 * * * 5050 ** Synopsis: r[P2]=cursor[P1].ctr++ 5051 ** 5052 ** Find the next available sequence number for cursor P1. 5053 ** Write the sequence number into register P2. 5054 ** The sequence number on the cursor is incremented after this 5055 ** instruction. 5056 */ 5057 case OP_Sequence: { /* out2 */ 5058 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5059 assert( p->apCsr[pOp->p1]!=0 ); 5060 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5061 pOut = out2Prerelease(p, pOp); 5062 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5063 break; 5064 } 5065 5066 5067 /* Opcode: NewRowid P1 P2 P3 * * 5068 ** Synopsis: r[P2]=rowid 5069 ** 5070 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5071 ** The record number is not previously used as a key in the database 5072 ** table that cursor P1 points to. The new record number is written 5073 ** written to register P2. 5074 ** 5075 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5076 ** the largest previously generated record number. No new record numbers are 5077 ** allowed to be less than this value. When this value reaches its maximum, 5078 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5079 ** generated record number. This P3 mechanism is used to help implement the 5080 ** AUTOINCREMENT feature. 5081 */ 5082 case OP_NewRowid: { /* out2 */ 5083 i64 v; /* The new rowid */ 5084 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5085 int res; /* Result of an sqlite3BtreeLast() */ 5086 int cnt; /* Counter to limit the number of searches */ 5087 #ifndef SQLITE_OMIT_AUTOINCREMENT 5088 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5089 VdbeFrame *pFrame; /* Root frame of VDBE */ 5090 #endif 5091 5092 v = 0; 5093 res = 0; 5094 pOut = out2Prerelease(p, pOp); 5095 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5096 pC = p->apCsr[pOp->p1]; 5097 assert( pC!=0 ); 5098 assert( pC->isTable ); 5099 assert( pC->eCurType==CURTYPE_BTREE ); 5100 assert( pC->uc.pCursor!=0 ); 5101 { 5102 /* The next rowid or record number (different terms for the same 5103 ** thing) is obtained in a two-step algorithm. 5104 ** 5105 ** First we attempt to find the largest existing rowid and add one 5106 ** to that. But if the largest existing rowid is already the maximum 5107 ** positive integer, we have to fall through to the second 5108 ** probabilistic algorithm 5109 ** 5110 ** The second algorithm is to select a rowid at random and see if 5111 ** it already exists in the table. If it does not exist, we have 5112 ** succeeded. If the random rowid does exist, we select a new one 5113 ** and try again, up to 100 times. 5114 */ 5115 assert( pC->isTable ); 5116 5117 #ifdef SQLITE_32BIT_ROWID 5118 # define MAX_ROWID 0x7fffffff 5119 #else 5120 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5121 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5122 ** to provide the constant while making all compilers happy. 5123 */ 5124 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5125 #endif 5126 5127 if( !pC->useRandomRowid ){ 5128 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5129 if( rc!=SQLITE_OK ){ 5130 goto abort_due_to_error; 5131 } 5132 if( res ){ 5133 v = 1; /* IMP: R-61914-48074 */ 5134 }else{ 5135 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5136 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5137 if( v>=MAX_ROWID ){ 5138 pC->useRandomRowid = 1; 5139 }else{ 5140 v++; /* IMP: R-29538-34987 */ 5141 } 5142 } 5143 } 5144 5145 #ifndef SQLITE_OMIT_AUTOINCREMENT 5146 if( pOp->p3 ){ 5147 /* Assert that P3 is a valid memory cell. */ 5148 assert( pOp->p3>0 ); 5149 if( p->pFrame ){ 5150 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5151 /* Assert that P3 is a valid memory cell. */ 5152 assert( pOp->p3<=pFrame->nMem ); 5153 pMem = &pFrame->aMem[pOp->p3]; 5154 }else{ 5155 /* Assert that P3 is a valid memory cell. */ 5156 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5157 pMem = &aMem[pOp->p3]; 5158 memAboutToChange(p, pMem); 5159 } 5160 assert( memIsValid(pMem) ); 5161 5162 REGISTER_TRACE(pOp->p3, pMem); 5163 sqlite3VdbeMemIntegerify(pMem); 5164 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5165 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5166 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5167 goto abort_due_to_error; 5168 } 5169 if( v<pMem->u.i+1 ){ 5170 v = pMem->u.i + 1; 5171 } 5172 pMem->u.i = v; 5173 } 5174 #endif 5175 if( pC->useRandomRowid ){ 5176 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5177 ** largest possible integer (9223372036854775807) then the database 5178 ** engine starts picking positive candidate ROWIDs at random until 5179 ** it finds one that is not previously used. */ 5180 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5181 ** an AUTOINCREMENT table. */ 5182 cnt = 0; 5183 do{ 5184 sqlite3_randomness(sizeof(v), &v); 5185 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5186 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5187 0, &res))==SQLITE_OK) 5188 && (res==0) 5189 && (++cnt<100)); 5190 if( rc ) goto abort_due_to_error; 5191 if( res==0 ){ 5192 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5193 goto abort_due_to_error; 5194 } 5195 assert( v>0 ); /* EV: R-40812-03570 */ 5196 } 5197 pC->deferredMoveto = 0; 5198 pC->cacheStatus = CACHE_STALE; 5199 } 5200 pOut->u.i = v; 5201 break; 5202 } 5203 5204 /* Opcode: Insert P1 P2 P3 P4 P5 5205 ** Synopsis: intkey=r[P3] data=r[P2] 5206 ** 5207 ** Write an entry into the table of cursor P1. A new entry is 5208 ** created if it doesn't already exist or the data for an existing 5209 ** entry is overwritten. The data is the value MEM_Blob stored in register 5210 ** number P2. The key is stored in register P3. The key must 5211 ** be a MEM_Int. 5212 ** 5213 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5214 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5215 ** then rowid is stored for subsequent return by the 5216 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5217 ** 5218 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5219 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5220 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5221 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5222 ** 5223 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5224 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5225 ** is part of an INSERT operation. The difference is only important to 5226 ** the update hook. 5227 ** 5228 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5229 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5230 ** following a successful insert. 5231 ** 5232 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5233 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5234 ** and register P2 becomes ephemeral. If the cursor is changed, the 5235 ** value of register P2 will then change. Make sure this does not 5236 ** cause any problems.) 5237 ** 5238 ** This instruction only works on tables. The equivalent instruction 5239 ** for indices is OP_IdxInsert. 5240 */ 5241 case OP_Insert: { 5242 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5243 Mem *pKey; /* MEM cell holding key for the record */ 5244 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5245 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5246 const char *zDb; /* database name - used by the update hook */ 5247 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5248 BtreePayload x; /* Payload to be inserted */ 5249 5250 pData = &aMem[pOp->p2]; 5251 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5252 assert( memIsValid(pData) ); 5253 pC = p->apCsr[pOp->p1]; 5254 assert( pC!=0 ); 5255 assert( pC->eCurType==CURTYPE_BTREE ); 5256 assert( pC->deferredMoveto==0 ); 5257 assert( pC->uc.pCursor!=0 ); 5258 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5259 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5260 REGISTER_TRACE(pOp->p2, pData); 5261 sqlite3VdbeIncrWriteCounter(p, pC); 5262 5263 pKey = &aMem[pOp->p3]; 5264 assert( pKey->flags & MEM_Int ); 5265 assert( memIsValid(pKey) ); 5266 REGISTER_TRACE(pOp->p3, pKey); 5267 x.nKey = pKey->u.i; 5268 5269 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5270 assert( pC->iDb>=0 ); 5271 zDb = db->aDb[pC->iDb].zDbSName; 5272 pTab = pOp->p4.pTab; 5273 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5274 }else{ 5275 pTab = 0; 5276 zDb = 0; 5277 } 5278 5279 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5280 /* Invoke the pre-update hook, if any */ 5281 if( pTab ){ 5282 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5283 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5284 } 5285 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5286 /* Prevent post-update hook from running in cases when it should not */ 5287 pTab = 0; 5288 } 5289 } 5290 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5291 #endif 5292 5293 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5294 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5295 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5296 x.pData = pData->z; 5297 x.nData = pData->n; 5298 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5299 if( pData->flags & MEM_Zero ){ 5300 x.nZero = pData->u.nZero; 5301 }else{ 5302 x.nZero = 0; 5303 } 5304 x.pKey = 0; 5305 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5306 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5307 seekResult 5308 ); 5309 pC->deferredMoveto = 0; 5310 pC->cacheStatus = CACHE_STALE; 5311 5312 /* Invoke the update-hook if required. */ 5313 if( rc ) goto abort_due_to_error; 5314 if( pTab ){ 5315 assert( db->xUpdateCallback!=0 ); 5316 assert( pTab->aCol!=0 ); 5317 db->xUpdateCallback(db->pUpdateArg, 5318 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5319 zDb, pTab->zName, x.nKey); 5320 } 5321 break; 5322 } 5323 5324 /* Opcode: RowCell P1 P2 P3 * * 5325 ** 5326 ** P1 and P2 are both open cursors. Both must be opened on the same type 5327 ** of table - intkey or index. This opcode is used as part of copying 5328 ** the current row from P2 into P1. If the cursors are opened on intkey 5329 ** tables, register P3 contains the rowid to use with the new record in 5330 ** P1. If they are opened on index tables, P3 is not used. 5331 ** 5332 ** This opcode must be followed by either an Insert or InsertIdx opcode 5333 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5334 */ 5335 case OP_RowCell: { 5336 VdbeCursor *pDest; /* Cursor to write to */ 5337 VdbeCursor *pSrc; /* Cursor to read from */ 5338 i64 iKey; /* Rowid value to insert with */ 5339 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5340 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5341 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5342 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5343 pDest = p->apCsr[pOp->p1]; 5344 pSrc = p->apCsr[pOp->p2]; 5345 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5346 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5347 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5348 break; 5349 }; 5350 5351 /* Opcode: Delete P1 P2 P3 P4 P5 5352 ** 5353 ** Delete the record at which the P1 cursor is currently pointing. 5354 ** 5355 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5356 ** the cursor will be left pointing at either the next or the previous 5357 ** record in the table. If it is left pointing at the next record, then 5358 ** the next Next instruction will be a no-op. As a result, in this case 5359 ** it is ok to delete a record from within a Next loop. If 5360 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5361 ** left in an undefined state. 5362 ** 5363 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5364 ** delete one of several associated with deleting a table row and all its 5365 ** associated index entries. Exactly one of those deletes is the "primary" 5366 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5367 ** marked with the AUXDELETE flag. 5368 ** 5369 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5370 ** change count is incremented (otherwise not). 5371 ** 5372 ** P1 must not be pseudo-table. It has to be a real table with 5373 ** multiple rows. 5374 ** 5375 ** If P4 is not NULL then it points to a Table object. In this case either 5376 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5377 ** have been positioned using OP_NotFound prior to invoking this opcode in 5378 ** this case. Specifically, if one is configured, the pre-update hook is 5379 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5380 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5381 ** 5382 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5383 ** of the memory cell that contains the value that the rowid of the row will 5384 ** be set to by the update. 5385 */ 5386 case OP_Delete: { 5387 VdbeCursor *pC; 5388 const char *zDb; 5389 Table *pTab; 5390 int opflags; 5391 5392 opflags = pOp->p2; 5393 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5394 pC = p->apCsr[pOp->p1]; 5395 assert( pC!=0 ); 5396 assert( pC->eCurType==CURTYPE_BTREE ); 5397 assert( pC->uc.pCursor!=0 ); 5398 assert( pC->deferredMoveto==0 ); 5399 sqlite3VdbeIncrWriteCounter(p, pC); 5400 5401 #ifdef SQLITE_DEBUG 5402 if( pOp->p4type==P4_TABLE 5403 && HasRowid(pOp->p4.pTab) 5404 && pOp->p5==0 5405 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5406 ){ 5407 /* If p5 is zero, the seek operation that positioned the cursor prior to 5408 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5409 ** the row that is being deleted */ 5410 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5411 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5412 } 5413 #endif 5414 5415 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5416 ** the name of the db to pass as to it. Also set local pTab to a copy 5417 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5418 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5419 ** VdbeCursor.movetoTarget to the current rowid. */ 5420 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5421 assert( pC->iDb>=0 ); 5422 assert( pOp->p4.pTab!=0 ); 5423 zDb = db->aDb[pC->iDb].zDbSName; 5424 pTab = pOp->p4.pTab; 5425 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5426 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5427 } 5428 }else{ 5429 zDb = 0; 5430 pTab = 0; 5431 } 5432 5433 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5434 /* Invoke the pre-update-hook if required. */ 5435 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5436 if( db->xPreUpdateCallback && pTab ){ 5437 assert( !(opflags & OPFLAG_ISUPDATE) 5438 || HasRowid(pTab)==0 5439 || (aMem[pOp->p3].flags & MEM_Int) 5440 ); 5441 sqlite3VdbePreUpdateHook(p, pC, 5442 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5443 zDb, pTab, pC->movetoTarget, 5444 pOp->p3, -1 5445 ); 5446 } 5447 if( opflags & OPFLAG_ISNOOP ) break; 5448 #endif 5449 5450 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5451 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5452 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5453 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5454 5455 #ifdef SQLITE_DEBUG 5456 if( p->pFrame==0 ){ 5457 if( pC->isEphemeral==0 5458 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5459 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5460 ){ 5461 nExtraDelete++; 5462 } 5463 if( pOp->p2 & OPFLAG_NCHANGE ){ 5464 nExtraDelete--; 5465 } 5466 } 5467 #endif 5468 5469 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5470 pC->cacheStatus = CACHE_STALE; 5471 pC->seekResult = 0; 5472 if( rc ) goto abort_due_to_error; 5473 5474 /* Invoke the update-hook if required. */ 5475 if( opflags & OPFLAG_NCHANGE ){ 5476 p->nChange++; 5477 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5478 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5479 pC->movetoTarget); 5480 assert( pC->iDb>=0 ); 5481 } 5482 } 5483 5484 break; 5485 } 5486 /* Opcode: ResetCount * * * * * 5487 ** 5488 ** The value of the change counter is copied to the database handle 5489 ** change counter (returned by subsequent calls to sqlite3_changes()). 5490 ** Then the VMs internal change counter resets to 0. 5491 ** This is used by trigger programs. 5492 */ 5493 case OP_ResetCount: { 5494 sqlite3VdbeSetChanges(db, p->nChange); 5495 p->nChange = 0; 5496 break; 5497 } 5498 5499 /* Opcode: SorterCompare P1 P2 P3 P4 5500 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5501 ** 5502 ** P1 is a sorter cursor. This instruction compares a prefix of the 5503 ** record blob in register P3 against a prefix of the entry that 5504 ** the sorter cursor currently points to. Only the first P4 fields 5505 ** of r[P3] and the sorter record are compared. 5506 ** 5507 ** If either P3 or the sorter contains a NULL in one of their significant 5508 ** fields (not counting the P4 fields at the end which are ignored) then 5509 ** the comparison is assumed to be equal. 5510 ** 5511 ** Fall through to next instruction if the two records compare equal to 5512 ** each other. Jump to P2 if they are different. 5513 */ 5514 case OP_SorterCompare: { 5515 VdbeCursor *pC; 5516 int res; 5517 int nKeyCol; 5518 5519 pC = p->apCsr[pOp->p1]; 5520 assert( isSorter(pC) ); 5521 assert( pOp->p4type==P4_INT32 ); 5522 pIn3 = &aMem[pOp->p3]; 5523 nKeyCol = pOp->p4.i; 5524 res = 0; 5525 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5526 VdbeBranchTaken(res!=0,2); 5527 if( rc ) goto abort_due_to_error; 5528 if( res ) goto jump_to_p2; 5529 break; 5530 }; 5531 5532 /* Opcode: SorterData P1 P2 P3 * * 5533 ** Synopsis: r[P2]=data 5534 ** 5535 ** Write into register P2 the current sorter data for sorter cursor P1. 5536 ** Then clear the column header cache on cursor P3. 5537 ** 5538 ** This opcode is normally use to move a record out of the sorter and into 5539 ** a register that is the source for a pseudo-table cursor created using 5540 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5541 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5542 ** us from having to issue a separate NullRow instruction to clear that cache. 5543 */ 5544 case OP_SorterData: { 5545 VdbeCursor *pC; 5546 5547 pOut = &aMem[pOp->p2]; 5548 pC = p->apCsr[pOp->p1]; 5549 assert( isSorter(pC) ); 5550 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5551 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5552 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5553 if( rc ) goto abort_due_to_error; 5554 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5555 break; 5556 } 5557 5558 /* Opcode: RowData P1 P2 P3 * * 5559 ** Synopsis: r[P2]=data 5560 ** 5561 ** Write into register P2 the complete row content for the row at 5562 ** which cursor P1 is currently pointing. 5563 ** There is no interpretation of the data. 5564 ** It is just copied onto the P2 register exactly as 5565 ** it is found in the database file. 5566 ** 5567 ** If cursor P1 is an index, then the content is the key of the row. 5568 ** If cursor P2 is a table, then the content extracted is the data. 5569 ** 5570 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5571 ** of a real table, not a pseudo-table. 5572 ** 5573 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5574 ** into the database page. That means that the content of the output 5575 ** register will be invalidated as soon as the cursor moves - including 5576 ** moves caused by other cursors that "save" the current cursors 5577 ** position in order that they can write to the same table. If P3==0 5578 ** then a copy of the data is made into memory. P3!=0 is faster, but 5579 ** P3==0 is safer. 5580 ** 5581 ** If P3!=0 then the content of the P2 register is unsuitable for use 5582 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5583 ** The P2 register content is invalidated by opcodes like OP_Function or 5584 ** by any use of another cursor pointing to the same table. 5585 */ 5586 case OP_RowData: { 5587 VdbeCursor *pC; 5588 BtCursor *pCrsr; 5589 u32 n; 5590 5591 pOut = out2Prerelease(p, pOp); 5592 5593 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5594 pC = p->apCsr[pOp->p1]; 5595 assert( pC!=0 ); 5596 assert( pC->eCurType==CURTYPE_BTREE ); 5597 assert( isSorter(pC)==0 ); 5598 assert( pC->nullRow==0 ); 5599 assert( pC->uc.pCursor!=0 ); 5600 pCrsr = pC->uc.pCursor; 5601 5602 /* The OP_RowData opcodes always follow OP_NotExists or 5603 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5604 ** that might invalidate the cursor. 5605 ** If this where not the case, on of the following assert()s 5606 ** would fail. Should this ever change (because of changes in the code 5607 ** generator) then the fix would be to insert a call to 5608 ** sqlite3VdbeCursorMoveto(). 5609 */ 5610 assert( pC->deferredMoveto==0 ); 5611 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5612 5613 n = sqlite3BtreePayloadSize(pCrsr); 5614 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5615 goto too_big; 5616 } 5617 testcase( n==0 ); 5618 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5619 if( rc ) goto abort_due_to_error; 5620 if( !pOp->p3 ) Deephemeralize(pOut); 5621 UPDATE_MAX_BLOBSIZE(pOut); 5622 REGISTER_TRACE(pOp->p2, pOut); 5623 break; 5624 } 5625 5626 /* Opcode: Rowid P1 P2 * * * 5627 ** Synopsis: r[P2]=rowid 5628 ** 5629 ** Store in register P2 an integer which is the key of the table entry that 5630 ** P1 is currently point to. 5631 ** 5632 ** P1 can be either an ordinary table or a virtual table. There used to 5633 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5634 ** one opcode now works for both table types. 5635 */ 5636 case OP_Rowid: { /* out2 */ 5637 VdbeCursor *pC; 5638 i64 v; 5639 sqlite3_vtab *pVtab; 5640 const sqlite3_module *pModule; 5641 5642 pOut = out2Prerelease(p, pOp); 5643 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5644 pC = p->apCsr[pOp->p1]; 5645 assert( pC!=0 ); 5646 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5647 if( pC->nullRow ){ 5648 pOut->flags = MEM_Null; 5649 break; 5650 }else if( pC->deferredMoveto ){ 5651 v = pC->movetoTarget; 5652 #ifndef SQLITE_OMIT_VIRTUALTABLE 5653 }else if( pC->eCurType==CURTYPE_VTAB ){ 5654 assert( pC->uc.pVCur!=0 ); 5655 pVtab = pC->uc.pVCur->pVtab; 5656 pModule = pVtab->pModule; 5657 assert( pModule->xRowid ); 5658 rc = pModule->xRowid(pC->uc.pVCur, &v); 5659 sqlite3VtabImportErrmsg(p, pVtab); 5660 if( rc ) goto abort_due_to_error; 5661 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5662 }else{ 5663 assert( pC->eCurType==CURTYPE_BTREE ); 5664 assert( pC->uc.pCursor!=0 ); 5665 rc = sqlite3VdbeCursorRestore(pC); 5666 if( rc ) goto abort_due_to_error; 5667 if( pC->nullRow ){ 5668 pOut->flags = MEM_Null; 5669 break; 5670 } 5671 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5672 } 5673 pOut->u.i = v; 5674 break; 5675 } 5676 5677 /* Opcode: NullRow P1 * * * * 5678 ** 5679 ** Move the cursor P1 to a null row. Any OP_Column operations 5680 ** that occur while the cursor is on the null row will always 5681 ** write a NULL. 5682 */ 5683 case OP_NullRow: { 5684 VdbeCursor *pC; 5685 5686 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5687 pC = p->apCsr[pOp->p1]; 5688 assert( pC!=0 ); 5689 pC->nullRow = 1; 5690 pC->cacheStatus = CACHE_STALE; 5691 if( pC->eCurType==CURTYPE_BTREE ){ 5692 assert( pC->uc.pCursor!=0 ); 5693 sqlite3BtreeClearCursor(pC->uc.pCursor); 5694 } 5695 #ifdef SQLITE_DEBUG 5696 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5697 #endif 5698 break; 5699 } 5700 5701 /* Opcode: SeekEnd P1 * * * * 5702 ** 5703 ** Position cursor P1 at the end of the btree for the purpose of 5704 ** appending a new entry onto the btree. 5705 ** 5706 ** It is assumed that the cursor is used only for appending and so 5707 ** if the cursor is valid, then the cursor must already be pointing 5708 ** at the end of the btree and so no changes are made to 5709 ** the cursor. 5710 */ 5711 /* Opcode: Last P1 P2 * * * 5712 ** 5713 ** The next use of the Rowid or Column or Prev instruction for P1 5714 ** will refer to the last entry in the database table or index. 5715 ** If the table or index is empty and P2>0, then jump immediately to P2. 5716 ** If P2 is 0 or if the table or index is not empty, fall through 5717 ** to the following instruction. 5718 ** 5719 ** This opcode leaves the cursor configured to move in reverse order, 5720 ** from the end toward the beginning. In other words, the cursor is 5721 ** configured to use Prev, not Next. 5722 */ 5723 case OP_SeekEnd: 5724 case OP_Last: { /* jump */ 5725 VdbeCursor *pC; 5726 BtCursor *pCrsr; 5727 int res; 5728 5729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5730 pC = p->apCsr[pOp->p1]; 5731 assert( pC!=0 ); 5732 assert( pC->eCurType==CURTYPE_BTREE ); 5733 pCrsr = pC->uc.pCursor; 5734 res = 0; 5735 assert( pCrsr!=0 ); 5736 #ifdef SQLITE_DEBUG 5737 pC->seekOp = pOp->opcode; 5738 #endif 5739 if( pOp->opcode==OP_SeekEnd ){ 5740 assert( pOp->p2==0 ); 5741 pC->seekResult = -1; 5742 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5743 break; 5744 } 5745 } 5746 rc = sqlite3BtreeLast(pCrsr, &res); 5747 pC->nullRow = (u8)res; 5748 pC->deferredMoveto = 0; 5749 pC->cacheStatus = CACHE_STALE; 5750 if( rc ) goto abort_due_to_error; 5751 if( pOp->p2>0 ){ 5752 VdbeBranchTaken(res!=0,2); 5753 if( res ) goto jump_to_p2; 5754 } 5755 break; 5756 } 5757 5758 /* Opcode: IfSmaller P1 P2 P3 * * 5759 ** 5760 ** Estimate the number of rows in the table P1. Jump to P2 if that 5761 ** estimate is less than approximately 2**(0.1*P3). 5762 */ 5763 case OP_IfSmaller: { /* jump */ 5764 VdbeCursor *pC; 5765 BtCursor *pCrsr; 5766 int res; 5767 i64 sz; 5768 5769 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5770 pC = p->apCsr[pOp->p1]; 5771 assert( pC!=0 ); 5772 pCrsr = pC->uc.pCursor; 5773 assert( pCrsr ); 5774 rc = sqlite3BtreeFirst(pCrsr, &res); 5775 if( rc ) goto abort_due_to_error; 5776 if( res==0 ){ 5777 sz = sqlite3BtreeRowCountEst(pCrsr); 5778 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5779 } 5780 VdbeBranchTaken(res!=0,2); 5781 if( res ) goto jump_to_p2; 5782 break; 5783 } 5784 5785 5786 /* Opcode: SorterSort P1 P2 * * * 5787 ** 5788 ** After all records have been inserted into the Sorter object 5789 ** identified by P1, invoke this opcode to actually do the sorting. 5790 ** Jump to P2 if there are no records to be sorted. 5791 ** 5792 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5793 ** for Sorter objects. 5794 */ 5795 /* Opcode: Sort P1 P2 * * * 5796 ** 5797 ** This opcode does exactly the same thing as OP_Rewind except that 5798 ** it increments an undocumented global variable used for testing. 5799 ** 5800 ** Sorting is accomplished by writing records into a sorting index, 5801 ** then rewinding that index and playing it back from beginning to 5802 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5803 ** rewinding so that the global variable will be incremented and 5804 ** regression tests can determine whether or not the optimizer is 5805 ** correctly optimizing out sorts. 5806 */ 5807 case OP_SorterSort: /* jump */ 5808 case OP_Sort: { /* jump */ 5809 #ifdef SQLITE_TEST 5810 sqlite3_sort_count++; 5811 sqlite3_search_count--; 5812 #endif 5813 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5814 /* Fall through into OP_Rewind */ 5815 /* no break */ deliberate_fall_through 5816 } 5817 /* Opcode: Rewind P1 P2 * * * 5818 ** 5819 ** The next use of the Rowid or Column or Next instruction for P1 5820 ** will refer to the first entry in the database table or index. 5821 ** If the table or index is empty, jump immediately to P2. 5822 ** If the table or index is not empty, fall through to the following 5823 ** instruction. 5824 ** 5825 ** This opcode leaves the cursor configured to move in forward order, 5826 ** from the beginning toward the end. In other words, the cursor is 5827 ** configured to use Next, not Prev. 5828 */ 5829 case OP_Rewind: { /* jump */ 5830 VdbeCursor *pC; 5831 BtCursor *pCrsr; 5832 int res; 5833 5834 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5835 assert( pOp->p5==0 ); 5836 pC = p->apCsr[pOp->p1]; 5837 assert( pC!=0 ); 5838 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5839 res = 1; 5840 #ifdef SQLITE_DEBUG 5841 pC->seekOp = OP_Rewind; 5842 #endif 5843 if( isSorter(pC) ){ 5844 rc = sqlite3VdbeSorterRewind(pC, &res); 5845 }else{ 5846 assert( pC->eCurType==CURTYPE_BTREE ); 5847 pCrsr = pC->uc.pCursor; 5848 assert( pCrsr ); 5849 rc = sqlite3BtreeFirst(pCrsr, &res); 5850 pC->deferredMoveto = 0; 5851 pC->cacheStatus = CACHE_STALE; 5852 } 5853 if( rc ) goto abort_due_to_error; 5854 pC->nullRow = (u8)res; 5855 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5856 VdbeBranchTaken(res!=0,2); 5857 if( res ) goto jump_to_p2; 5858 break; 5859 } 5860 5861 /* Opcode: Next P1 P2 P3 P4 P5 5862 ** 5863 ** Advance cursor P1 so that it points to the next key/data pair in its 5864 ** table or index. If there are no more key/value pairs then fall through 5865 ** to the following instruction. But if the cursor advance was successful, 5866 ** jump immediately to P2. 5867 ** 5868 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5869 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5870 ** to follow SeekLT, SeekLE, or OP_Last. 5871 ** 5872 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5873 ** been opened prior to this opcode or the program will segfault. 5874 ** 5875 ** The P3 value is a hint to the btree implementation. If P3==1, that 5876 ** means P1 is an SQL index and that this instruction could have been 5877 ** omitted if that index had been unique. P3 is usually 0. P3 is 5878 ** always either 0 or 1. 5879 ** 5880 ** P4 is always of type P4_ADVANCE. The function pointer points to 5881 ** sqlite3BtreeNext(). 5882 ** 5883 ** If P5 is positive and the jump is taken, then event counter 5884 ** number P5-1 in the prepared statement is incremented. 5885 ** 5886 ** See also: Prev 5887 */ 5888 /* Opcode: Prev P1 P2 P3 P4 P5 5889 ** 5890 ** Back up cursor P1 so that it points to the previous key/data pair in its 5891 ** table or index. If there is no previous key/value pairs then fall through 5892 ** to the following instruction. But if the cursor backup was successful, 5893 ** jump immediately to P2. 5894 ** 5895 ** 5896 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5897 ** OP_Last opcode used to position the cursor. Prev is not allowed 5898 ** to follow SeekGT, SeekGE, or OP_Rewind. 5899 ** 5900 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5901 ** not open then the behavior is undefined. 5902 ** 5903 ** The P3 value is a hint to the btree implementation. If P3==1, that 5904 ** means P1 is an SQL index and that this instruction could have been 5905 ** omitted if that index had been unique. P3 is usually 0. P3 is 5906 ** always either 0 or 1. 5907 ** 5908 ** P4 is always of type P4_ADVANCE. The function pointer points to 5909 ** sqlite3BtreePrevious(). 5910 ** 5911 ** If P5 is positive and the jump is taken, then event counter 5912 ** number P5-1 in the prepared statement is incremented. 5913 */ 5914 /* Opcode: SorterNext P1 P2 * * P5 5915 ** 5916 ** This opcode works just like OP_Next except that P1 must be a 5917 ** sorter object for which the OP_SorterSort opcode has been 5918 ** invoked. This opcode advances the cursor to the next sorted 5919 ** record, or jumps to P2 if there are no more sorted records. 5920 */ 5921 case OP_SorterNext: { /* jump */ 5922 VdbeCursor *pC; 5923 5924 pC = p->apCsr[pOp->p1]; 5925 assert( isSorter(pC) ); 5926 rc = sqlite3VdbeSorterNext(db, pC); 5927 goto next_tail; 5928 case OP_Prev: /* jump */ 5929 case OP_Next: /* jump */ 5930 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5931 assert( pOp->p5<ArraySize(p->aCounter) ); 5932 pC = p->apCsr[pOp->p1]; 5933 assert( pC!=0 ); 5934 assert( pC->deferredMoveto==0 ); 5935 assert( pC->eCurType==CURTYPE_BTREE ); 5936 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5937 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5938 5939 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5940 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5941 assert( pOp->opcode!=OP_Next 5942 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5943 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5944 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5945 || pC->seekOp==OP_IfNoHope); 5946 assert( pOp->opcode!=OP_Prev 5947 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5948 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5949 || pC->seekOp==OP_NullRow); 5950 5951 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5952 next_tail: 5953 pC->cacheStatus = CACHE_STALE; 5954 VdbeBranchTaken(rc==SQLITE_OK,2); 5955 if( rc==SQLITE_OK ){ 5956 pC->nullRow = 0; 5957 p->aCounter[pOp->p5]++; 5958 #ifdef SQLITE_TEST 5959 sqlite3_search_count++; 5960 #endif 5961 goto jump_to_p2_and_check_for_interrupt; 5962 } 5963 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5964 rc = SQLITE_OK; 5965 pC->nullRow = 1; 5966 goto check_for_interrupt; 5967 } 5968 5969 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5970 ** Synopsis: key=r[P2] 5971 ** 5972 ** Register P2 holds an SQL index key made using the 5973 ** MakeRecord instructions. This opcode writes that key 5974 ** into the index P1. Data for the entry is nil. 5975 ** 5976 ** If P4 is not zero, then it is the number of values in the unpacked 5977 ** key of reg(P2). In that case, P3 is the index of the first register 5978 ** for the unpacked key. The availability of the unpacked key can sometimes 5979 ** be an optimization. 5980 ** 5981 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5982 ** that this insert is likely to be an append. 5983 ** 5984 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5985 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5986 ** then the change counter is unchanged. 5987 ** 5988 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5989 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5990 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5991 ** seeks on the cursor or if the most recent seek used a key equivalent 5992 ** to P2. 5993 ** 5994 ** This instruction only works for indices. The equivalent instruction 5995 ** for tables is OP_Insert. 5996 */ 5997 case OP_IdxInsert: { /* in2 */ 5998 VdbeCursor *pC; 5999 BtreePayload x; 6000 6001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6002 pC = p->apCsr[pOp->p1]; 6003 sqlite3VdbeIncrWriteCounter(p, pC); 6004 assert( pC!=0 ); 6005 assert( !isSorter(pC) ); 6006 pIn2 = &aMem[pOp->p2]; 6007 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6008 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6009 assert( pC->eCurType==CURTYPE_BTREE ); 6010 assert( pC->isTable==0 ); 6011 rc = ExpandBlob(pIn2); 6012 if( rc ) goto abort_due_to_error; 6013 x.nKey = pIn2->n; 6014 x.pKey = pIn2->z; 6015 x.aMem = aMem + pOp->p3; 6016 x.nMem = (u16)pOp->p4.i; 6017 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6018 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6019 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6020 ); 6021 assert( pC->deferredMoveto==0 ); 6022 pC->cacheStatus = CACHE_STALE; 6023 if( rc) goto abort_due_to_error; 6024 break; 6025 } 6026 6027 /* Opcode: SorterInsert P1 P2 * * * 6028 ** Synopsis: key=r[P2] 6029 ** 6030 ** Register P2 holds an SQL index key made using the 6031 ** MakeRecord instructions. This opcode writes that key 6032 ** into the sorter P1. Data for the entry is nil. 6033 */ 6034 case OP_SorterInsert: { /* in2 */ 6035 VdbeCursor *pC; 6036 6037 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6038 pC = p->apCsr[pOp->p1]; 6039 sqlite3VdbeIncrWriteCounter(p, pC); 6040 assert( pC!=0 ); 6041 assert( isSorter(pC) ); 6042 pIn2 = &aMem[pOp->p2]; 6043 assert( pIn2->flags & MEM_Blob ); 6044 assert( pC->isTable==0 ); 6045 rc = ExpandBlob(pIn2); 6046 if( rc ) goto abort_due_to_error; 6047 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6048 if( rc) goto abort_due_to_error; 6049 break; 6050 } 6051 6052 /* Opcode: IdxDelete P1 P2 P3 * P5 6053 ** Synopsis: key=r[P2@P3] 6054 ** 6055 ** The content of P3 registers starting at register P2 form 6056 ** an unpacked index key. This opcode removes that entry from the 6057 ** index opened by cursor P1. 6058 ** 6059 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6060 ** if no matching index entry is found. This happens when running 6061 ** an UPDATE or DELETE statement and the index entry to be updated 6062 ** or deleted is not found. For some uses of IdxDelete 6063 ** (example: the EXCEPT operator) it does not matter that no matching 6064 ** entry is found. For those cases, P5 is zero. Also, do not raise 6065 ** this (self-correcting and non-critical) error if in writable_schema mode. 6066 */ 6067 case OP_IdxDelete: { 6068 VdbeCursor *pC; 6069 BtCursor *pCrsr; 6070 int res; 6071 UnpackedRecord r; 6072 6073 assert( pOp->p3>0 ); 6074 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6075 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6076 pC = p->apCsr[pOp->p1]; 6077 assert( pC!=0 ); 6078 assert( pC->eCurType==CURTYPE_BTREE ); 6079 sqlite3VdbeIncrWriteCounter(p, pC); 6080 pCrsr = pC->uc.pCursor; 6081 assert( pCrsr!=0 ); 6082 r.pKeyInfo = pC->pKeyInfo; 6083 r.nField = (u16)pOp->p3; 6084 r.default_rc = 0; 6085 r.aMem = &aMem[pOp->p2]; 6086 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6087 if( rc ) goto abort_due_to_error; 6088 if( res==0 ){ 6089 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6090 if( rc ) goto abort_due_to_error; 6091 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6092 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6093 goto abort_due_to_error; 6094 } 6095 assert( pC->deferredMoveto==0 ); 6096 pC->cacheStatus = CACHE_STALE; 6097 pC->seekResult = 0; 6098 break; 6099 } 6100 6101 /* Opcode: DeferredSeek P1 * P3 P4 * 6102 ** Synopsis: Move P3 to P1.rowid if needed 6103 ** 6104 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6105 ** table. This opcode does a deferred seek of the P3 table cursor 6106 ** to the row that corresponds to the current row of P1. 6107 ** 6108 ** This is a deferred seek. Nothing actually happens until 6109 ** the cursor is used to read a record. That way, if no reads 6110 ** occur, no unnecessary I/O happens. 6111 ** 6112 ** P4 may be an array of integers (type P4_INTARRAY) containing 6113 ** one entry for each column in the P3 table. If array entry a(i) 6114 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6115 ** equivalent to performing the deferred seek and then reading column i 6116 ** from P1. This information is stored in P3 and used to redirect 6117 ** reads against P3 over to P1, thus possibly avoiding the need to 6118 ** seek and read cursor P3. 6119 */ 6120 /* Opcode: IdxRowid P1 P2 * * * 6121 ** Synopsis: r[P2]=rowid 6122 ** 6123 ** Write into register P2 an integer which is the last entry in the record at 6124 ** the end of the index key pointed to by cursor P1. This integer should be 6125 ** the rowid of the table entry to which this index entry points. 6126 ** 6127 ** See also: Rowid, MakeRecord. 6128 */ 6129 case OP_DeferredSeek: 6130 case OP_IdxRowid: { /* out2 */ 6131 VdbeCursor *pC; /* The P1 index cursor */ 6132 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6133 i64 rowid; /* Rowid that P1 current points to */ 6134 6135 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6136 pC = p->apCsr[pOp->p1]; 6137 assert( pC!=0 ); 6138 assert( pC->eCurType==CURTYPE_BTREE ); 6139 assert( pC->uc.pCursor!=0 ); 6140 assert( pC->isTable==0 ); 6141 assert( pC->deferredMoveto==0 ); 6142 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6143 6144 /* The IdxRowid and Seek opcodes are combined because of the commonality 6145 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6146 rc = sqlite3VdbeCursorRestore(pC); 6147 6148 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6149 ** out from under the cursor. That will never happens for an IdxRowid 6150 ** or Seek opcode */ 6151 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6152 6153 if( !pC->nullRow ){ 6154 rowid = 0; /* Not needed. Only used to silence a warning. */ 6155 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6156 if( rc!=SQLITE_OK ){ 6157 goto abort_due_to_error; 6158 } 6159 if( pOp->opcode==OP_DeferredSeek ){ 6160 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6161 pTabCur = p->apCsr[pOp->p3]; 6162 assert( pTabCur!=0 ); 6163 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6164 assert( pTabCur->uc.pCursor!=0 ); 6165 assert( pTabCur->isTable ); 6166 pTabCur->nullRow = 0; 6167 pTabCur->movetoTarget = rowid; 6168 pTabCur->deferredMoveto = 1; 6169 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6170 pTabCur->aAltMap = pOp->p4.ai; 6171 assert( !pC->isEphemeral ); 6172 assert( !pTabCur->isEphemeral ); 6173 pTabCur->pAltCursor = pC; 6174 }else{ 6175 pOut = out2Prerelease(p, pOp); 6176 pOut->u.i = rowid; 6177 } 6178 }else{ 6179 assert( pOp->opcode==OP_IdxRowid ); 6180 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6181 } 6182 break; 6183 } 6184 6185 /* Opcode: FinishSeek P1 * * * * 6186 ** 6187 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6188 ** seek operation now, without further delay. If the cursor seek has 6189 ** already occurred, this instruction is a no-op. 6190 */ 6191 case OP_FinishSeek: { 6192 VdbeCursor *pC; /* The P1 index cursor */ 6193 6194 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6195 pC = p->apCsr[pOp->p1]; 6196 if( pC->deferredMoveto ){ 6197 rc = sqlite3VdbeFinishMoveto(pC); 6198 if( rc ) goto abort_due_to_error; 6199 } 6200 break; 6201 } 6202 6203 /* Opcode: IdxGE P1 P2 P3 P4 * 6204 ** Synopsis: key=r[P3@P4] 6205 ** 6206 ** The P4 register values beginning with P3 form an unpacked index 6207 ** key that omits the PRIMARY KEY. Compare this key value against the index 6208 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6209 ** fields at the end. 6210 ** 6211 ** If the P1 index entry is greater than or equal to the key value 6212 ** then jump to P2. Otherwise fall through to the next instruction. 6213 */ 6214 /* Opcode: IdxGT P1 P2 P3 P4 * 6215 ** Synopsis: key=r[P3@P4] 6216 ** 6217 ** The P4 register values beginning with P3 form an unpacked index 6218 ** key that omits the PRIMARY KEY. Compare this key value against the index 6219 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6220 ** fields at the end. 6221 ** 6222 ** If the P1 index entry is greater than the key value 6223 ** then jump to P2. Otherwise fall through to the next instruction. 6224 */ 6225 /* Opcode: IdxLT P1 P2 P3 P4 * 6226 ** Synopsis: key=r[P3@P4] 6227 ** 6228 ** The P4 register values beginning with P3 form an unpacked index 6229 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6230 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6231 ** ROWID on the P1 index. 6232 ** 6233 ** If the P1 index entry is less than the key value then jump to P2. 6234 ** Otherwise fall through to the next instruction. 6235 */ 6236 /* Opcode: IdxLE P1 P2 P3 P4 * 6237 ** Synopsis: key=r[P3@P4] 6238 ** 6239 ** The P4 register values beginning with P3 form an unpacked index 6240 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6241 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6242 ** ROWID on the P1 index. 6243 ** 6244 ** If the P1 index entry is less than or equal to the key value then jump 6245 ** to P2. Otherwise fall through to the next instruction. 6246 */ 6247 case OP_IdxLE: /* jump */ 6248 case OP_IdxGT: /* jump */ 6249 case OP_IdxLT: /* jump */ 6250 case OP_IdxGE: { /* jump */ 6251 VdbeCursor *pC; 6252 int res; 6253 UnpackedRecord r; 6254 6255 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6256 pC = p->apCsr[pOp->p1]; 6257 assert( pC!=0 ); 6258 assert( pC->isOrdered ); 6259 assert( pC->eCurType==CURTYPE_BTREE ); 6260 assert( pC->uc.pCursor!=0); 6261 assert( pC->deferredMoveto==0 ); 6262 assert( pOp->p4type==P4_INT32 ); 6263 r.pKeyInfo = pC->pKeyInfo; 6264 r.nField = (u16)pOp->p4.i; 6265 if( pOp->opcode<OP_IdxLT ){ 6266 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6267 r.default_rc = -1; 6268 }else{ 6269 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6270 r.default_rc = 0; 6271 } 6272 r.aMem = &aMem[pOp->p3]; 6273 #ifdef SQLITE_DEBUG 6274 { 6275 int i; 6276 for(i=0; i<r.nField; i++){ 6277 assert( memIsValid(&r.aMem[i]) ); 6278 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6279 } 6280 } 6281 #endif 6282 6283 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6284 { 6285 i64 nCellKey = 0; 6286 BtCursor *pCur; 6287 Mem m; 6288 6289 assert( pC->eCurType==CURTYPE_BTREE ); 6290 pCur = pC->uc.pCursor; 6291 assert( sqlite3BtreeCursorIsValid(pCur) ); 6292 nCellKey = sqlite3BtreePayloadSize(pCur); 6293 /* nCellKey will always be between 0 and 0xffffffff because of the way 6294 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6295 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6296 rc = SQLITE_CORRUPT_BKPT; 6297 goto abort_due_to_error; 6298 } 6299 sqlite3VdbeMemInit(&m, db, 0); 6300 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6301 if( rc ) goto abort_due_to_error; 6302 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6303 sqlite3VdbeMemRelease(&m); 6304 } 6305 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6306 6307 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6308 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6309 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6310 res = -res; 6311 }else{ 6312 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6313 res++; 6314 } 6315 VdbeBranchTaken(res>0,2); 6316 assert( rc==SQLITE_OK ); 6317 if( res>0 ) goto jump_to_p2; 6318 break; 6319 } 6320 6321 /* Opcode: Destroy P1 P2 P3 * * 6322 ** 6323 ** Delete an entire database table or index whose root page in the database 6324 ** file is given by P1. 6325 ** 6326 ** The table being destroyed is in the main database file if P3==0. If 6327 ** P3==1 then the table to be clear is in the auxiliary database file 6328 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6329 ** 6330 ** If AUTOVACUUM is enabled then it is possible that another root page 6331 ** might be moved into the newly deleted root page in order to keep all 6332 ** root pages contiguous at the beginning of the database. The former 6333 ** value of the root page that moved - its value before the move occurred - 6334 ** is stored in register P2. If no page movement was required (because the 6335 ** table being dropped was already the last one in the database) then a 6336 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6337 ** is stored in register P2. 6338 ** 6339 ** This opcode throws an error if there are any active reader VMs when 6340 ** it is invoked. This is done to avoid the difficulty associated with 6341 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6342 ** database. This error is thrown even if the database is not an AUTOVACUUM 6343 ** db in order to avoid introducing an incompatibility between autovacuum 6344 ** and non-autovacuum modes. 6345 ** 6346 ** See also: Clear 6347 */ 6348 case OP_Destroy: { /* out2 */ 6349 int iMoved; 6350 int iDb; 6351 6352 sqlite3VdbeIncrWriteCounter(p, 0); 6353 assert( p->readOnly==0 ); 6354 assert( pOp->p1>1 ); 6355 pOut = out2Prerelease(p, pOp); 6356 pOut->flags = MEM_Null; 6357 if( db->nVdbeRead > db->nVDestroy+1 ){ 6358 rc = SQLITE_LOCKED; 6359 p->errorAction = OE_Abort; 6360 goto abort_due_to_error; 6361 }else{ 6362 iDb = pOp->p3; 6363 assert( DbMaskTest(p->btreeMask, iDb) ); 6364 iMoved = 0; /* Not needed. Only to silence a warning. */ 6365 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6366 pOut->flags = MEM_Int; 6367 pOut->u.i = iMoved; 6368 if( rc ) goto abort_due_to_error; 6369 #ifndef SQLITE_OMIT_AUTOVACUUM 6370 if( iMoved!=0 ){ 6371 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6372 /* All OP_Destroy operations occur on the same btree */ 6373 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6374 resetSchemaOnFault = iDb+1; 6375 } 6376 #endif 6377 } 6378 break; 6379 } 6380 6381 /* Opcode: Clear P1 P2 P3 6382 ** 6383 ** Delete all contents of the database table or index whose root page 6384 ** in the database file is given by P1. But, unlike Destroy, do not 6385 ** remove the table or index from the database file. 6386 ** 6387 ** The table being clear is in the main database file if P2==0. If 6388 ** P2==1 then the table to be clear is in the auxiliary database file 6389 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6390 ** 6391 ** If the P3 value is non-zero, then the row change count is incremented 6392 ** by the number of rows in the table being cleared. If P3 is greater 6393 ** than zero, then the value stored in register P3 is also incremented 6394 ** by the number of rows in the table being cleared. 6395 ** 6396 ** See also: Destroy 6397 */ 6398 case OP_Clear: { 6399 i64 nChange; 6400 6401 sqlite3VdbeIncrWriteCounter(p, 0); 6402 nChange = 0; 6403 assert( p->readOnly==0 ); 6404 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6405 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6406 if( pOp->p3 ){ 6407 p->nChange += nChange; 6408 if( pOp->p3>0 ){ 6409 assert( memIsValid(&aMem[pOp->p3]) ); 6410 memAboutToChange(p, &aMem[pOp->p3]); 6411 aMem[pOp->p3].u.i += nChange; 6412 } 6413 } 6414 if( rc ) goto abort_due_to_error; 6415 break; 6416 } 6417 6418 /* Opcode: ResetSorter P1 * * * * 6419 ** 6420 ** Delete all contents from the ephemeral table or sorter 6421 ** that is open on cursor P1. 6422 ** 6423 ** This opcode only works for cursors used for sorting and 6424 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6425 */ 6426 case OP_ResetSorter: { 6427 VdbeCursor *pC; 6428 6429 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6430 pC = p->apCsr[pOp->p1]; 6431 assert( pC!=0 ); 6432 if( isSorter(pC) ){ 6433 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6434 }else{ 6435 assert( pC->eCurType==CURTYPE_BTREE ); 6436 assert( pC->isEphemeral ); 6437 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6438 if( rc ) goto abort_due_to_error; 6439 } 6440 break; 6441 } 6442 6443 /* Opcode: CreateBtree P1 P2 P3 * * 6444 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6445 ** 6446 ** Allocate a new b-tree in the main database file if P1==0 or in the 6447 ** TEMP database file if P1==1 or in an attached database if 6448 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6449 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6450 ** The root page number of the new b-tree is stored in register P2. 6451 */ 6452 case OP_CreateBtree: { /* out2 */ 6453 Pgno pgno; 6454 Db *pDb; 6455 6456 sqlite3VdbeIncrWriteCounter(p, 0); 6457 pOut = out2Prerelease(p, pOp); 6458 pgno = 0; 6459 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6460 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6461 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6462 assert( p->readOnly==0 ); 6463 pDb = &db->aDb[pOp->p1]; 6464 assert( pDb->pBt!=0 ); 6465 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6466 if( rc ) goto abort_due_to_error; 6467 pOut->u.i = pgno; 6468 break; 6469 } 6470 6471 /* Opcode: SqlExec * * * P4 * 6472 ** 6473 ** Run the SQL statement or statements specified in the P4 string. 6474 */ 6475 case OP_SqlExec: { 6476 sqlite3VdbeIncrWriteCounter(p, 0); 6477 db->nSqlExec++; 6478 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6479 db->nSqlExec--; 6480 if( rc ) goto abort_due_to_error; 6481 break; 6482 } 6483 6484 /* Opcode: ParseSchema P1 * * P4 * 6485 ** 6486 ** Read and parse all entries from the schema table of database P1 6487 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6488 ** entire schema for P1 is reparsed. 6489 ** 6490 ** This opcode invokes the parser to create a new virtual machine, 6491 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6492 */ 6493 case OP_ParseSchema: { 6494 int iDb; 6495 const char *zSchema; 6496 char *zSql; 6497 InitData initData; 6498 6499 /* Any prepared statement that invokes this opcode will hold mutexes 6500 ** on every btree. This is a prerequisite for invoking 6501 ** sqlite3InitCallback(). 6502 */ 6503 #ifdef SQLITE_DEBUG 6504 for(iDb=0; iDb<db->nDb; iDb++){ 6505 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6506 } 6507 #endif 6508 6509 iDb = pOp->p1; 6510 assert( iDb>=0 && iDb<db->nDb ); 6511 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6512 || db->mallocFailed 6513 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6514 6515 #ifndef SQLITE_OMIT_ALTERTABLE 6516 if( pOp->p4.z==0 ){ 6517 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6518 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6519 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6520 db->mDbFlags |= DBFLAG_SchemaChange; 6521 p->expired = 0; 6522 }else 6523 #endif 6524 { 6525 zSchema = LEGACY_SCHEMA_TABLE; 6526 initData.db = db; 6527 initData.iDb = iDb; 6528 initData.pzErrMsg = &p->zErrMsg; 6529 initData.mInitFlags = 0; 6530 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6531 zSql = sqlite3MPrintf(db, 6532 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6533 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6534 if( zSql==0 ){ 6535 rc = SQLITE_NOMEM_BKPT; 6536 }else{ 6537 assert( db->init.busy==0 ); 6538 db->init.busy = 1; 6539 initData.rc = SQLITE_OK; 6540 initData.nInitRow = 0; 6541 assert( !db->mallocFailed ); 6542 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6543 if( rc==SQLITE_OK ) rc = initData.rc; 6544 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6545 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6546 ** at least one SQL statement. Any less than that indicates that 6547 ** the sqlite_schema table is corrupt. */ 6548 rc = SQLITE_CORRUPT_BKPT; 6549 } 6550 sqlite3DbFreeNN(db, zSql); 6551 db->init.busy = 0; 6552 } 6553 } 6554 if( rc ){ 6555 sqlite3ResetAllSchemasOfConnection(db); 6556 if( rc==SQLITE_NOMEM ){ 6557 goto no_mem; 6558 } 6559 goto abort_due_to_error; 6560 } 6561 break; 6562 } 6563 6564 #if !defined(SQLITE_OMIT_ANALYZE) 6565 /* Opcode: LoadAnalysis P1 * * * * 6566 ** 6567 ** Read the sqlite_stat1 table for database P1 and load the content 6568 ** of that table into the internal index hash table. This will cause 6569 ** the analysis to be used when preparing all subsequent queries. 6570 */ 6571 case OP_LoadAnalysis: { 6572 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6573 rc = sqlite3AnalysisLoad(db, pOp->p1); 6574 if( rc ) goto abort_due_to_error; 6575 break; 6576 } 6577 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6578 6579 /* Opcode: DropTable P1 * * P4 * 6580 ** 6581 ** Remove the internal (in-memory) data structures that describe 6582 ** the table named P4 in database P1. This is called after a table 6583 ** is dropped from disk (using the Destroy opcode) in order to keep 6584 ** the internal representation of the 6585 ** schema consistent with what is on disk. 6586 */ 6587 case OP_DropTable: { 6588 sqlite3VdbeIncrWriteCounter(p, 0); 6589 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6590 break; 6591 } 6592 6593 /* Opcode: DropIndex P1 * * P4 * 6594 ** 6595 ** Remove the internal (in-memory) data structures that describe 6596 ** the index named P4 in database P1. This is called after an index 6597 ** is dropped from disk (using the Destroy opcode) 6598 ** in order to keep the internal representation of the 6599 ** schema consistent with what is on disk. 6600 */ 6601 case OP_DropIndex: { 6602 sqlite3VdbeIncrWriteCounter(p, 0); 6603 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6604 break; 6605 } 6606 6607 /* Opcode: DropTrigger P1 * * P4 * 6608 ** 6609 ** Remove the internal (in-memory) data structures that describe 6610 ** the trigger named P4 in database P1. This is called after a trigger 6611 ** is dropped from disk (using the Destroy opcode) in order to keep 6612 ** the internal representation of the 6613 ** schema consistent with what is on disk. 6614 */ 6615 case OP_DropTrigger: { 6616 sqlite3VdbeIncrWriteCounter(p, 0); 6617 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6618 break; 6619 } 6620 6621 6622 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6623 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6624 ** 6625 ** Do an analysis of the currently open database. Store in 6626 ** register P1 the text of an error message describing any problems. 6627 ** If no problems are found, store a NULL in register P1. 6628 ** 6629 ** The register P3 contains one less than the maximum number of allowed errors. 6630 ** At most reg(P3) errors will be reported. 6631 ** In other words, the analysis stops as soon as reg(P1) errors are 6632 ** seen. Reg(P1) is updated with the number of errors remaining. 6633 ** 6634 ** The root page numbers of all tables in the database are integers 6635 ** stored in P4_INTARRAY argument. 6636 ** 6637 ** If P5 is not zero, the check is done on the auxiliary database 6638 ** file, not the main database file. 6639 ** 6640 ** This opcode is used to implement the integrity_check pragma. 6641 */ 6642 case OP_IntegrityCk: { 6643 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6644 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6645 int nErr; /* Number of errors reported */ 6646 char *z; /* Text of the error report */ 6647 Mem *pnErr; /* Register keeping track of errors remaining */ 6648 6649 assert( p->bIsReader ); 6650 nRoot = pOp->p2; 6651 aRoot = pOp->p4.ai; 6652 assert( nRoot>0 ); 6653 assert( aRoot[0]==(Pgno)nRoot ); 6654 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6655 pnErr = &aMem[pOp->p3]; 6656 assert( (pnErr->flags & MEM_Int)!=0 ); 6657 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6658 pIn1 = &aMem[pOp->p1]; 6659 assert( pOp->p5<db->nDb ); 6660 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6661 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6662 (int)pnErr->u.i+1, &nErr); 6663 sqlite3VdbeMemSetNull(pIn1); 6664 if( nErr==0 ){ 6665 assert( z==0 ); 6666 }else if( z==0 ){ 6667 goto no_mem; 6668 }else{ 6669 pnErr->u.i -= nErr-1; 6670 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6671 } 6672 UPDATE_MAX_BLOBSIZE(pIn1); 6673 sqlite3VdbeChangeEncoding(pIn1, encoding); 6674 goto check_for_interrupt; 6675 } 6676 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6677 6678 /* Opcode: RowSetAdd P1 P2 * * * 6679 ** Synopsis: rowset(P1)=r[P2] 6680 ** 6681 ** Insert the integer value held by register P2 into a RowSet object 6682 ** held in register P1. 6683 ** 6684 ** An assertion fails if P2 is not an integer. 6685 */ 6686 case OP_RowSetAdd: { /* in1, in2 */ 6687 pIn1 = &aMem[pOp->p1]; 6688 pIn2 = &aMem[pOp->p2]; 6689 assert( (pIn2->flags & MEM_Int)!=0 ); 6690 if( (pIn1->flags & MEM_Blob)==0 ){ 6691 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6692 } 6693 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6694 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6695 break; 6696 } 6697 6698 /* Opcode: RowSetRead P1 P2 P3 * * 6699 ** Synopsis: r[P3]=rowset(P1) 6700 ** 6701 ** Extract the smallest value from the RowSet object in P1 6702 ** and put that value into register P3. 6703 ** Or, if RowSet object P1 is initially empty, leave P3 6704 ** unchanged and jump to instruction P2. 6705 */ 6706 case OP_RowSetRead: { /* jump, in1, out3 */ 6707 i64 val; 6708 6709 pIn1 = &aMem[pOp->p1]; 6710 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6711 if( (pIn1->flags & MEM_Blob)==0 6712 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6713 ){ 6714 /* The boolean index is empty */ 6715 sqlite3VdbeMemSetNull(pIn1); 6716 VdbeBranchTaken(1,2); 6717 goto jump_to_p2_and_check_for_interrupt; 6718 }else{ 6719 /* A value was pulled from the index */ 6720 VdbeBranchTaken(0,2); 6721 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6722 } 6723 goto check_for_interrupt; 6724 } 6725 6726 /* Opcode: RowSetTest P1 P2 P3 P4 6727 ** Synopsis: if r[P3] in rowset(P1) goto P2 6728 ** 6729 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6730 ** contains a RowSet object and that RowSet object contains 6731 ** the value held in P3, jump to register P2. Otherwise, insert the 6732 ** integer in P3 into the RowSet and continue on to the 6733 ** next opcode. 6734 ** 6735 ** The RowSet object is optimized for the case where sets of integers 6736 ** are inserted in distinct phases, which each set contains no duplicates. 6737 ** Each set is identified by a unique P4 value. The first set 6738 ** must have P4==0, the final set must have P4==-1, and for all other sets 6739 ** must have P4>0. 6740 ** 6741 ** This allows optimizations: (a) when P4==0 there is no need to test 6742 ** the RowSet object for P3, as it is guaranteed not to contain it, 6743 ** (b) when P4==-1 there is no need to insert the value, as it will 6744 ** never be tested for, and (c) when a value that is part of set X is 6745 ** inserted, there is no need to search to see if the same value was 6746 ** previously inserted as part of set X (only if it was previously 6747 ** inserted as part of some other set). 6748 */ 6749 case OP_RowSetTest: { /* jump, in1, in3 */ 6750 int iSet; 6751 int exists; 6752 6753 pIn1 = &aMem[pOp->p1]; 6754 pIn3 = &aMem[pOp->p3]; 6755 iSet = pOp->p4.i; 6756 assert( pIn3->flags&MEM_Int ); 6757 6758 /* If there is anything other than a rowset object in memory cell P1, 6759 ** delete it now and initialize P1 with an empty rowset 6760 */ 6761 if( (pIn1->flags & MEM_Blob)==0 ){ 6762 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6763 } 6764 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6765 assert( pOp->p4type==P4_INT32 ); 6766 assert( iSet==-1 || iSet>=0 ); 6767 if( iSet ){ 6768 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6769 VdbeBranchTaken(exists!=0,2); 6770 if( exists ) goto jump_to_p2; 6771 } 6772 if( iSet>=0 ){ 6773 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6774 } 6775 break; 6776 } 6777 6778 6779 #ifndef SQLITE_OMIT_TRIGGER 6780 6781 /* Opcode: Program P1 P2 P3 P4 P5 6782 ** 6783 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6784 ** 6785 ** P1 contains the address of the memory cell that contains the first memory 6786 ** cell in an array of values used as arguments to the sub-program. P2 6787 ** contains the address to jump to if the sub-program throws an IGNORE 6788 ** exception using the RAISE() function. Register P3 contains the address 6789 ** of a memory cell in this (the parent) VM that is used to allocate the 6790 ** memory required by the sub-vdbe at runtime. 6791 ** 6792 ** P4 is a pointer to the VM containing the trigger program. 6793 ** 6794 ** If P5 is non-zero, then recursive program invocation is enabled. 6795 */ 6796 case OP_Program: { /* jump */ 6797 int nMem; /* Number of memory registers for sub-program */ 6798 int nByte; /* Bytes of runtime space required for sub-program */ 6799 Mem *pRt; /* Register to allocate runtime space */ 6800 Mem *pMem; /* Used to iterate through memory cells */ 6801 Mem *pEnd; /* Last memory cell in new array */ 6802 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6803 SubProgram *pProgram; /* Sub-program to execute */ 6804 void *t; /* Token identifying trigger */ 6805 6806 pProgram = pOp->p4.pProgram; 6807 pRt = &aMem[pOp->p3]; 6808 assert( pProgram->nOp>0 ); 6809 6810 /* If the p5 flag is clear, then recursive invocation of triggers is 6811 ** disabled for backwards compatibility (p5 is set if this sub-program 6812 ** is really a trigger, not a foreign key action, and the flag set 6813 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6814 ** 6815 ** It is recursive invocation of triggers, at the SQL level, that is 6816 ** disabled. In some cases a single trigger may generate more than one 6817 ** SubProgram (if the trigger may be executed with more than one different 6818 ** ON CONFLICT algorithm). SubProgram structures associated with a 6819 ** single trigger all have the same value for the SubProgram.token 6820 ** variable. */ 6821 if( pOp->p5 ){ 6822 t = pProgram->token; 6823 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6824 if( pFrame ) break; 6825 } 6826 6827 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6828 rc = SQLITE_ERROR; 6829 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6830 goto abort_due_to_error; 6831 } 6832 6833 /* Register pRt is used to store the memory required to save the state 6834 ** of the current program, and the memory required at runtime to execute 6835 ** the trigger program. If this trigger has been fired before, then pRt 6836 ** is already allocated. Otherwise, it must be initialized. */ 6837 if( (pRt->flags&MEM_Blob)==0 ){ 6838 /* SubProgram.nMem is set to the number of memory cells used by the 6839 ** program stored in SubProgram.aOp. As well as these, one memory 6840 ** cell is required for each cursor used by the program. Set local 6841 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6842 */ 6843 nMem = pProgram->nMem + pProgram->nCsr; 6844 assert( nMem>0 ); 6845 if( pProgram->nCsr==0 ) nMem++; 6846 nByte = ROUND8(sizeof(VdbeFrame)) 6847 + nMem * sizeof(Mem) 6848 + pProgram->nCsr * sizeof(VdbeCursor*) 6849 + (pProgram->nOp + 7)/8; 6850 pFrame = sqlite3DbMallocZero(db, nByte); 6851 if( !pFrame ){ 6852 goto no_mem; 6853 } 6854 sqlite3VdbeMemRelease(pRt); 6855 pRt->flags = MEM_Blob|MEM_Dyn; 6856 pRt->z = (char*)pFrame; 6857 pRt->n = nByte; 6858 pRt->xDel = sqlite3VdbeFrameMemDel; 6859 6860 pFrame->v = p; 6861 pFrame->nChildMem = nMem; 6862 pFrame->nChildCsr = pProgram->nCsr; 6863 pFrame->pc = (int)(pOp - aOp); 6864 pFrame->aMem = p->aMem; 6865 pFrame->nMem = p->nMem; 6866 pFrame->apCsr = p->apCsr; 6867 pFrame->nCursor = p->nCursor; 6868 pFrame->aOp = p->aOp; 6869 pFrame->nOp = p->nOp; 6870 pFrame->token = pProgram->token; 6871 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6872 pFrame->anExec = p->anExec; 6873 #endif 6874 #ifdef SQLITE_DEBUG 6875 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6876 #endif 6877 6878 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6879 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6880 pMem->flags = MEM_Undefined; 6881 pMem->db = db; 6882 } 6883 }else{ 6884 pFrame = (VdbeFrame*)pRt->z; 6885 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6886 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6887 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6888 assert( pProgram->nCsr==pFrame->nChildCsr ); 6889 assert( (int)(pOp - aOp)==pFrame->pc ); 6890 } 6891 6892 p->nFrame++; 6893 pFrame->pParent = p->pFrame; 6894 pFrame->lastRowid = db->lastRowid; 6895 pFrame->nChange = p->nChange; 6896 pFrame->nDbChange = p->db->nChange; 6897 assert( pFrame->pAuxData==0 ); 6898 pFrame->pAuxData = p->pAuxData; 6899 p->pAuxData = 0; 6900 p->nChange = 0; 6901 p->pFrame = pFrame; 6902 p->aMem = aMem = VdbeFrameMem(pFrame); 6903 p->nMem = pFrame->nChildMem; 6904 p->nCursor = (u16)pFrame->nChildCsr; 6905 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6906 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6907 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6908 p->aOp = aOp = pProgram->aOp; 6909 p->nOp = pProgram->nOp; 6910 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6911 p->anExec = 0; 6912 #endif 6913 #ifdef SQLITE_DEBUG 6914 /* Verify that second and subsequent executions of the same trigger do not 6915 ** try to reuse register values from the first use. */ 6916 { 6917 int i; 6918 for(i=0; i<p->nMem; i++){ 6919 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6920 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6921 } 6922 } 6923 #endif 6924 pOp = &aOp[-1]; 6925 goto check_for_interrupt; 6926 } 6927 6928 /* Opcode: Param P1 P2 * * * 6929 ** 6930 ** This opcode is only ever present in sub-programs called via the 6931 ** OP_Program instruction. Copy a value currently stored in a memory 6932 ** cell of the calling (parent) frame to cell P2 in the current frames 6933 ** address space. This is used by trigger programs to access the new.* 6934 ** and old.* values. 6935 ** 6936 ** The address of the cell in the parent frame is determined by adding 6937 ** the value of the P1 argument to the value of the P1 argument to the 6938 ** calling OP_Program instruction. 6939 */ 6940 case OP_Param: { /* out2 */ 6941 VdbeFrame *pFrame; 6942 Mem *pIn; 6943 pOut = out2Prerelease(p, pOp); 6944 pFrame = p->pFrame; 6945 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6946 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6947 break; 6948 } 6949 6950 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6951 6952 #ifndef SQLITE_OMIT_FOREIGN_KEY 6953 /* Opcode: FkCounter P1 P2 * * * 6954 ** Synopsis: fkctr[P1]+=P2 6955 ** 6956 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6957 ** If P1 is non-zero, the database constraint counter is incremented 6958 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6959 ** statement counter is incremented (immediate foreign key constraints). 6960 */ 6961 case OP_FkCounter: { 6962 if( db->flags & SQLITE_DeferFKs ){ 6963 db->nDeferredImmCons += pOp->p2; 6964 }else if( pOp->p1 ){ 6965 db->nDeferredCons += pOp->p2; 6966 }else{ 6967 p->nFkConstraint += pOp->p2; 6968 } 6969 break; 6970 } 6971 6972 /* Opcode: FkIfZero P1 P2 * * * 6973 ** Synopsis: if fkctr[P1]==0 goto P2 6974 ** 6975 ** This opcode tests if a foreign key constraint-counter is currently zero. 6976 ** If so, jump to instruction P2. Otherwise, fall through to the next 6977 ** instruction. 6978 ** 6979 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6980 ** is zero (the one that counts deferred constraint violations). If P1 is 6981 ** zero, the jump is taken if the statement constraint-counter is zero 6982 ** (immediate foreign key constraint violations). 6983 */ 6984 case OP_FkIfZero: { /* jump */ 6985 if( pOp->p1 ){ 6986 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6987 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6988 }else{ 6989 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6990 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6991 } 6992 break; 6993 } 6994 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6995 6996 #ifndef SQLITE_OMIT_AUTOINCREMENT 6997 /* Opcode: MemMax P1 P2 * * * 6998 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6999 ** 7000 ** P1 is a register in the root frame of this VM (the root frame is 7001 ** different from the current frame if this instruction is being executed 7002 ** within a sub-program). Set the value of register P1 to the maximum of 7003 ** its current value and the value in register P2. 7004 ** 7005 ** This instruction throws an error if the memory cell is not initially 7006 ** an integer. 7007 */ 7008 case OP_MemMax: { /* in2 */ 7009 VdbeFrame *pFrame; 7010 if( p->pFrame ){ 7011 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7012 pIn1 = &pFrame->aMem[pOp->p1]; 7013 }else{ 7014 pIn1 = &aMem[pOp->p1]; 7015 } 7016 assert( memIsValid(pIn1) ); 7017 sqlite3VdbeMemIntegerify(pIn1); 7018 pIn2 = &aMem[pOp->p2]; 7019 sqlite3VdbeMemIntegerify(pIn2); 7020 if( pIn1->u.i<pIn2->u.i){ 7021 pIn1->u.i = pIn2->u.i; 7022 } 7023 break; 7024 } 7025 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7026 7027 /* Opcode: IfPos P1 P2 P3 * * 7028 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7029 ** 7030 ** Register P1 must contain an integer. 7031 ** If the value of register P1 is 1 or greater, subtract P3 from the 7032 ** value in P1 and jump to P2. 7033 ** 7034 ** If the initial value of register P1 is less than 1, then the 7035 ** value is unchanged and control passes through to the next instruction. 7036 */ 7037 case OP_IfPos: { /* jump, in1 */ 7038 pIn1 = &aMem[pOp->p1]; 7039 assert( pIn1->flags&MEM_Int ); 7040 VdbeBranchTaken( pIn1->u.i>0, 2); 7041 if( pIn1->u.i>0 ){ 7042 pIn1->u.i -= pOp->p3; 7043 goto jump_to_p2; 7044 } 7045 break; 7046 } 7047 7048 /* Opcode: OffsetLimit P1 P2 P3 * * 7049 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7050 ** 7051 ** This opcode performs a commonly used computation associated with 7052 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7053 ** holds the offset counter. The opcode computes the combined value 7054 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7055 ** value computed is the total number of rows that will need to be 7056 ** visited in order to complete the query. 7057 ** 7058 ** If r[P3] is zero or negative, that means there is no OFFSET 7059 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7060 ** 7061 ** if r[P1] is zero or negative, that means there is no LIMIT 7062 ** and r[P2] is set to -1. 7063 ** 7064 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7065 */ 7066 case OP_OffsetLimit: { /* in1, out2, in3 */ 7067 i64 x; 7068 pIn1 = &aMem[pOp->p1]; 7069 pIn3 = &aMem[pOp->p3]; 7070 pOut = out2Prerelease(p, pOp); 7071 assert( pIn1->flags & MEM_Int ); 7072 assert( pIn3->flags & MEM_Int ); 7073 x = pIn1->u.i; 7074 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7075 /* If the LIMIT is less than or equal to zero, loop forever. This 7076 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7077 ** also loop forever. This is undocumented. In fact, one could argue 7078 ** that the loop should terminate. But assuming 1 billion iterations 7079 ** per second (far exceeding the capabilities of any current hardware) 7080 ** it would take nearly 300 years to actually reach the limit. So 7081 ** looping forever is a reasonable approximation. */ 7082 pOut->u.i = -1; 7083 }else{ 7084 pOut->u.i = x; 7085 } 7086 break; 7087 } 7088 7089 /* Opcode: IfNotZero P1 P2 * * * 7090 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7091 ** 7092 ** Register P1 must contain an integer. If the content of register P1 is 7093 ** initially greater than zero, then decrement the value in register P1. 7094 ** If it is non-zero (negative or positive) and then also jump to P2. 7095 ** If register P1 is initially zero, leave it unchanged and fall through. 7096 */ 7097 case OP_IfNotZero: { /* jump, in1 */ 7098 pIn1 = &aMem[pOp->p1]; 7099 assert( pIn1->flags&MEM_Int ); 7100 VdbeBranchTaken(pIn1->u.i<0, 2); 7101 if( pIn1->u.i ){ 7102 if( pIn1->u.i>0 ) pIn1->u.i--; 7103 goto jump_to_p2; 7104 } 7105 break; 7106 } 7107 7108 /* Opcode: DecrJumpZero P1 P2 * * * 7109 ** Synopsis: if (--r[P1])==0 goto P2 7110 ** 7111 ** Register P1 must hold an integer. Decrement the value in P1 7112 ** and jump to P2 if the new value is exactly zero. 7113 */ 7114 case OP_DecrJumpZero: { /* jump, in1 */ 7115 pIn1 = &aMem[pOp->p1]; 7116 assert( pIn1->flags&MEM_Int ); 7117 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7118 VdbeBranchTaken(pIn1->u.i==0, 2); 7119 if( pIn1->u.i==0 ) goto jump_to_p2; 7120 break; 7121 } 7122 7123 7124 /* Opcode: AggStep * P2 P3 P4 P5 7125 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7126 ** 7127 ** Execute the xStep function for an aggregate. 7128 ** The function has P5 arguments. P4 is a pointer to the 7129 ** FuncDef structure that specifies the function. Register P3 is the 7130 ** accumulator. 7131 ** 7132 ** The P5 arguments are taken from register P2 and its 7133 ** successors. 7134 */ 7135 /* Opcode: AggInverse * P2 P3 P4 P5 7136 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7137 ** 7138 ** Execute the xInverse function for an aggregate. 7139 ** The function has P5 arguments. P4 is a pointer to the 7140 ** FuncDef structure that specifies the function. Register P3 is the 7141 ** accumulator. 7142 ** 7143 ** The P5 arguments are taken from register P2 and its 7144 ** successors. 7145 */ 7146 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7147 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7148 ** 7149 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7150 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7151 ** FuncDef structure that specifies the function. Register P3 is the 7152 ** accumulator. 7153 ** 7154 ** The P5 arguments are taken from register P2 and its 7155 ** successors. 7156 ** 7157 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7158 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7159 ** the opcode is changed. In this way, the initialization of the 7160 ** sqlite3_context only happens once, instead of on each call to the 7161 ** step function. 7162 */ 7163 case OP_AggInverse: 7164 case OP_AggStep: { 7165 int n; 7166 sqlite3_context *pCtx; 7167 7168 assert( pOp->p4type==P4_FUNCDEF ); 7169 n = pOp->p5; 7170 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7171 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7172 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7173 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7174 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7175 if( pCtx==0 ) goto no_mem; 7176 pCtx->pMem = 0; 7177 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7178 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7179 pCtx->pFunc = pOp->p4.pFunc; 7180 pCtx->iOp = (int)(pOp - aOp); 7181 pCtx->pVdbe = p; 7182 pCtx->skipFlag = 0; 7183 pCtx->isError = 0; 7184 pCtx->argc = n; 7185 pOp->p4type = P4_FUNCCTX; 7186 pOp->p4.pCtx = pCtx; 7187 7188 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7189 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7190 7191 pOp->opcode = OP_AggStep1; 7192 /* Fall through into OP_AggStep */ 7193 /* no break */ deliberate_fall_through 7194 } 7195 case OP_AggStep1: { 7196 int i; 7197 sqlite3_context *pCtx; 7198 Mem *pMem; 7199 7200 assert( pOp->p4type==P4_FUNCCTX ); 7201 pCtx = pOp->p4.pCtx; 7202 pMem = &aMem[pOp->p3]; 7203 7204 #ifdef SQLITE_DEBUG 7205 if( pOp->p1 ){ 7206 /* This is an OP_AggInverse call. Verify that xStep has always 7207 ** been called at least once prior to any xInverse call. */ 7208 assert( pMem->uTemp==0x1122e0e3 ); 7209 }else{ 7210 /* This is an OP_AggStep call. Mark it as such. */ 7211 pMem->uTemp = 0x1122e0e3; 7212 } 7213 #endif 7214 7215 /* If this function is inside of a trigger, the register array in aMem[] 7216 ** might change from one evaluation to the next. The next block of code 7217 ** checks to see if the register array has changed, and if so it 7218 ** reinitializes the relavant parts of the sqlite3_context object */ 7219 if( pCtx->pMem != pMem ){ 7220 pCtx->pMem = pMem; 7221 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7222 } 7223 7224 #ifdef SQLITE_DEBUG 7225 for(i=0; i<pCtx->argc; i++){ 7226 assert( memIsValid(pCtx->argv[i]) ); 7227 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7228 } 7229 #endif 7230 7231 pMem->n++; 7232 assert( pCtx->pOut->flags==MEM_Null ); 7233 assert( pCtx->isError==0 ); 7234 assert( pCtx->skipFlag==0 ); 7235 #ifndef SQLITE_OMIT_WINDOWFUNC 7236 if( pOp->p1 ){ 7237 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7238 }else 7239 #endif 7240 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7241 7242 if( pCtx->isError ){ 7243 if( pCtx->isError>0 ){ 7244 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7245 rc = pCtx->isError; 7246 } 7247 if( pCtx->skipFlag ){ 7248 assert( pOp[-1].opcode==OP_CollSeq ); 7249 i = pOp[-1].p1; 7250 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7251 pCtx->skipFlag = 0; 7252 } 7253 sqlite3VdbeMemRelease(pCtx->pOut); 7254 pCtx->pOut->flags = MEM_Null; 7255 pCtx->isError = 0; 7256 if( rc ) goto abort_due_to_error; 7257 } 7258 assert( pCtx->pOut->flags==MEM_Null ); 7259 assert( pCtx->skipFlag==0 ); 7260 break; 7261 } 7262 7263 /* Opcode: AggFinal P1 P2 * P4 * 7264 ** Synopsis: accum=r[P1] N=P2 7265 ** 7266 ** P1 is the memory location that is the accumulator for an aggregate 7267 ** or window function. Execute the finalizer function 7268 ** for an aggregate and store the result in P1. 7269 ** 7270 ** P2 is the number of arguments that the step function takes and 7271 ** P4 is a pointer to the FuncDef for this function. The P2 7272 ** argument is not used by this opcode. It is only there to disambiguate 7273 ** functions that can take varying numbers of arguments. The 7274 ** P4 argument is only needed for the case where 7275 ** the step function was not previously called. 7276 */ 7277 /* Opcode: AggValue * P2 P3 P4 * 7278 ** Synopsis: r[P3]=value N=P2 7279 ** 7280 ** Invoke the xValue() function and store the result in register P3. 7281 ** 7282 ** P2 is the number of arguments that the step function takes and 7283 ** P4 is a pointer to the FuncDef for this function. The P2 7284 ** argument is not used by this opcode. It is only there to disambiguate 7285 ** functions that can take varying numbers of arguments. The 7286 ** P4 argument is only needed for the case where 7287 ** the step function was not previously called. 7288 */ 7289 case OP_AggValue: 7290 case OP_AggFinal: { 7291 Mem *pMem; 7292 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7293 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7294 pMem = &aMem[pOp->p1]; 7295 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7296 #ifndef SQLITE_OMIT_WINDOWFUNC 7297 if( pOp->p3 ){ 7298 memAboutToChange(p, &aMem[pOp->p3]); 7299 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7300 pMem = &aMem[pOp->p3]; 7301 }else 7302 #endif 7303 { 7304 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7305 } 7306 7307 if( rc ){ 7308 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7309 goto abort_due_to_error; 7310 } 7311 sqlite3VdbeChangeEncoding(pMem, encoding); 7312 UPDATE_MAX_BLOBSIZE(pMem); 7313 if( sqlite3VdbeMemTooBig(pMem) ){ 7314 goto too_big; 7315 } 7316 break; 7317 } 7318 7319 #ifndef SQLITE_OMIT_WAL 7320 /* Opcode: Checkpoint P1 P2 P3 * * 7321 ** 7322 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7323 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7324 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7325 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7326 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7327 ** in the WAL that have been checkpointed after the checkpoint 7328 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7329 ** mem[P3+2] are initialized to -1. 7330 */ 7331 case OP_Checkpoint: { 7332 int i; /* Loop counter */ 7333 int aRes[3]; /* Results */ 7334 Mem *pMem; /* Write results here */ 7335 7336 assert( p->readOnly==0 ); 7337 aRes[0] = 0; 7338 aRes[1] = aRes[2] = -1; 7339 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7340 || pOp->p2==SQLITE_CHECKPOINT_FULL 7341 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7342 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7343 ); 7344 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7345 if( rc ){ 7346 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7347 rc = SQLITE_OK; 7348 aRes[0] = 1; 7349 } 7350 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7351 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7352 } 7353 break; 7354 }; 7355 #endif 7356 7357 #ifndef SQLITE_OMIT_PRAGMA 7358 /* Opcode: JournalMode P1 P2 P3 * * 7359 ** 7360 ** Change the journal mode of database P1 to P3. P3 must be one of the 7361 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7362 ** modes (delete, truncate, persist, off and memory), this is a simple 7363 ** operation. No IO is required. 7364 ** 7365 ** If changing into or out of WAL mode the procedure is more complicated. 7366 ** 7367 ** Write a string containing the final journal-mode to register P2. 7368 */ 7369 case OP_JournalMode: { /* out2 */ 7370 Btree *pBt; /* Btree to change journal mode of */ 7371 Pager *pPager; /* Pager associated with pBt */ 7372 int eNew; /* New journal mode */ 7373 int eOld; /* The old journal mode */ 7374 #ifndef SQLITE_OMIT_WAL 7375 const char *zFilename; /* Name of database file for pPager */ 7376 #endif 7377 7378 pOut = out2Prerelease(p, pOp); 7379 eNew = pOp->p3; 7380 assert( eNew==PAGER_JOURNALMODE_DELETE 7381 || eNew==PAGER_JOURNALMODE_TRUNCATE 7382 || eNew==PAGER_JOURNALMODE_PERSIST 7383 || eNew==PAGER_JOURNALMODE_OFF 7384 || eNew==PAGER_JOURNALMODE_MEMORY 7385 || eNew==PAGER_JOURNALMODE_WAL 7386 || eNew==PAGER_JOURNALMODE_QUERY 7387 ); 7388 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7389 assert( p->readOnly==0 ); 7390 7391 pBt = db->aDb[pOp->p1].pBt; 7392 pPager = sqlite3BtreePager(pBt); 7393 eOld = sqlite3PagerGetJournalMode(pPager); 7394 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7395 assert( sqlite3BtreeHoldsMutex(pBt) ); 7396 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7397 7398 #ifndef SQLITE_OMIT_WAL 7399 zFilename = sqlite3PagerFilename(pPager, 1); 7400 7401 /* Do not allow a transition to journal_mode=WAL for a database 7402 ** in temporary storage or if the VFS does not support shared memory 7403 */ 7404 if( eNew==PAGER_JOURNALMODE_WAL 7405 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7406 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7407 ){ 7408 eNew = eOld; 7409 } 7410 7411 if( (eNew!=eOld) 7412 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7413 ){ 7414 if( !db->autoCommit || db->nVdbeRead>1 ){ 7415 rc = SQLITE_ERROR; 7416 sqlite3VdbeError(p, 7417 "cannot change %s wal mode from within a transaction", 7418 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7419 ); 7420 goto abort_due_to_error; 7421 }else{ 7422 7423 if( eOld==PAGER_JOURNALMODE_WAL ){ 7424 /* If leaving WAL mode, close the log file. If successful, the call 7425 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7426 ** file. An EXCLUSIVE lock may still be held on the database file 7427 ** after a successful return. 7428 */ 7429 rc = sqlite3PagerCloseWal(pPager, db); 7430 if( rc==SQLITE_OK ){ 7431 sqlite3PagerSetJournalMode(pPager, eNew); 7432 } 7433 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7434 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7435 ** as an intermediate */ 7436 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7437 } 7438 7439 /* Open a transaction on the database file. Regardless of the journal 7440 ** mode, this transaction always uses a rollback journal. 7441 */ 7442 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7443 if( rc==SQLITE_OK ){ 7444 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7445 } 7446 } 7447 } 7448 #endif /* ifndef SQLITE_OMIT_WAL */ 7449 7450 if( rc ) eNew = eOld; 7451 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7452 7453 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7454 pOut->z = (char *)sqlite3JournalModename(eNew); 7455 pOut->n = sqlite3Strlen30(pOut->z); 7456 pOut->enc = SQLITE_UTF8; 7457 sqlite3VdbeChangeEncoding(pOut, encoding); 7458 if( rc ) goto abort_due_to_error; 7459 break; 7460 }; 7461 #endif /* SQLITE_OMIT_PRAGMA */ 7462 7463 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7464 /* Opcode: Vacuum P1 P2 * * * 7465 ** 7466 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7467 ** for an attached database. The "temp" database may not be vacuumed. 7468 ** 7469 ** If P2 is not zero, then it is a register holding a string which is 7470 ** the file into which the result of vacuum should be written. When 7471 ** P2 is zero, the vacuum overwrites the original database. 7472 */ 7473 case OP_Vacuum: { 7474 assert( p->readOnly==0 ); 7475 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7476 pOp->p2 ? &aMem[pOp->p2] : 0); 7477 if( rc ) goto abort_due_to_error; 7478 break; 7479 } 7480 #endif 7481 7482 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7483 /* Opcode: IncrVacuum P1 P2 * * * 7484 ** 7485 ** Perform a single step of the incremental vacuum procedure on 7486 ** the P1 database. If the vacuum has finished, jump to instruction 7487 ** P2. Otherwise, fall through to the next instruction. 7488 */ 7489 case OP_IncrVacuum: { /* jump */ 7490 Btree *pBt; 7491 7492 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7493 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7494 assert( p->readOnly==0 ); 7495 pBt = db->aDb[pOp->p1].pBt; 7496 rc = sqlite3BtreeIncrVacuum(pBt); 7497 VdbeBranchTaken(rc==SQLITE_DONE,2); 7498 if( rc ){ 7499 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7500 rc = SQLITE_OK; 7501 goto jump_to_p2; 7502 } 7503 break; 7504 } 7505 #endif 7506 7507 /* Opcode: Expire P1 P2 * * * 7508 ** 7509 ** Cause precompiled statements to expire. When an expired statement 7510 ** is executed using sqlite3_step() it will either automatically 7511 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7512 ** or it will fail with SQLITE_SCHEMA. 7513 ** 7514 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7515 ** then only the currently executing statement is expired. 7516 ** 7517 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7518 ** then running SQL statements are allowed to continue to run to completion. 7519 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7520 ** that might help the statement run faster but which does not affect the 7521 ** correctness of operation. 7522 */ 7523 case OP_Expire: { 7524 assert( pOp->p2==0 || pOp->p2==1 ); 7525 if( !pOp->p1 ){ 7526 sqlite3ExpirePreparedStatements(db, pOp->p2); 7527 }else{ 7528 p->expired = pOp->p2+1; 7529 } 7530 break; 7531 } 7532 7533 /* Opcode: CursorLock P1 * * * * 7534 ** 7535 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7536 ** written by an other cursor. 7537 */ 7538 case OP_CursorLock: { 7539 VdbeCursor *pC; 7540 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7541 pC = p->apCsr[pOp->p1]; 7542 assert( pC!=0 ); 7543 assert( pC->eCurType==CURTYPE_BTREE ); 7544 sqlite3BtreeCursorPin(pC->uc.pCursor); 7545 break; 7546 } 7547 7548 /* Opcode: CursorUnlock P1 * * * * 7549 ** 7550 ** Unlock the btree to which cursor P1 is pointing so that it can be 7551 ** written by other cursors. 7552 */ 7553 case OP_CursorUnlock: { 7554 VdbeCursor *pC; 7555 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7556 pC = p->apCsr[pOp->p1]; 7557 assert( pC!=0 ); 7558 assert( pC->eCurType==CURTYPE_BTREE ); 7559 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7560 break; 7561 } 7562 7563 #ifndef SQLITE_OMIT_SHARED_CACHE 7564 /* Opcode: TableLock P1 P2 P3 P4 * 7565 ** Synopsis: iDb=P1 root=P2 write=P3 7566 ** 7567 ** Obtain a lock on a particular table. This instruction is only used when 7568 ** the shared-cache feature is enabled. 7569 ** 7570 ** P1 is the index of the database in sqlite3.aDb[] of the database 7571 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7572 ** a write lock if P3==1. 7573 ** 7574 ** P2 contains the root-page of the table to lock. 7575 ** 7576 ** P4 contains a pointer to the name of the table being locked. This is only 7577 ** used to generate an error message if the lock cannot be obtained. 7578 */ 7579 case OP_TableLock: { 7580 u8 isWriteLock = (u8)pOp->p3; 7581 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7582 int p1 = pOp->p1; 7583 assert( p1>=0 && p1<db->nDb ); 7584 assert( DbMaskTest(p->btreeMask, p1) ); 7585 assert( isWriteLock==0 || isWriteLock==1 ); 7586 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7587 if( rc ){ 7588 if( (rc&0xFF)==SQLITE_LOCKED ){ 7589 const char *z = pOp->p4.z; 7590 sqlite3VdbeError(p, "database table is locked: %s", z); 7591 } 7592 goto abort_due_to_error; 7593 } 7594 } 7595 break; 7596 } 7597 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7598 7599 #ifndef SQLITE_OMIT_VIRTUALTABLE 7600 /* Opcode: VBegin * * * P4 * 7601 ** 7602 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7603 ** xBegin method for that table. 7604 ** 7605 ** Also, whether or not P4 is set, check that this is not being called from 7606 ** within a callback to a virtual table xSync() method. If it is, the error 7607 ** code will be set to SQLITE_LOCKED. 7608 */ 7609 case OP_VBegin: { 7610 VTable *pVTab; 7611 pVTab = pOp->p4.pVtab; 7612 rc = sqlite3VtabBegin(db, pVTab); 7613 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7614 if( rc ) goto abort_due_to_error; 7615 break; 7616 } 7617 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7618 7619 #ifndef SQLITE_OMIT_VIRTUALTABLE 7620 /* Opcode: VCreate P1 P2 * * * 7621 ** 7622 ** P2 is a register that holds the name of a virtual table in database 7623 ** P1. Call the xCreate method for that table. 7624 */ 7625 case OP_VCreate: { 7626 Mem sMem; /* For storing the record being decoded */ 7627 const char *zTab; /* Name of the virtual table */ 7628 7629 memset(&sMem, 0, sizeof(sMem)); 7630 sMem.db = db; 7631 /* Because P2 is always a static string, it is impossible for the 7632 ** sqlite3VdbeMemCopy() to fail */ 7633 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7634 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7635 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7636 assert( rc==SQLITE_OK ); 7637 zTab = (const char*)sqlite3_value_text(&sMem); 7638 assert( zTab || db->mallocFailed ); 7639 if( zTab ){ 7640 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7641 } 7642 sqlite3VdbeMemRelease(&sMem); 7643 if( rc ) goto abort_due_to_error; 7644 break; 7645 } 7646 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7647 7648 #ifndef SQLITE_OMIT_VIRTUALTABLE 7649 /* Opcode: VDestroy P1 * * P4 * 7650 ** 7651 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7652 ** of that table. 7653 */ 7654 case OP_VDestroy: { 7655 db->nVDestroy++; 7656 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7657 db->nVDestroy--; 7658 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7659 if( rc ) goto abort_due_to_error; 7660 break; 7661 } 7662 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7663 7664 #ifndef SQLITE_OMIT_VIRTUALTABLE 7665 /* Opcode: VOpen P1 * * P4 * 7666 ** 7667 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7668 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7669 ** table and stores that cursor in P1. 7670 */ 7671 case OP_VOpen: { 7672 VdbeCursor *pCur; 7673 sqlite3_vtab_cursor *pVCur; 7674 sqlite3_vtab *pVtab; 7675 const sqlite3_module *pModule; 7676 7677 assert( p->bIsReader ); 7678 pCur = 0; 7679 pVCur = 0; 7680 pVtab = pOp->p4.pVtab->pVtab; 7681 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7682 rc = SQLITE_LOCKED; 7683 goto abort_due_to_error; 7684 } 7685 pModule = pVtab->pModule; 7686 rc = pModule->xOpen(pVtab, &pVCur); 7687 sqlite3VtabImportErrmsg(p, pVtab); 7688 if( rc ) goto abort_due_to_error; 7689 7690 /* Initialize sqlite3_vtab_cursor base class */ 7691 pVCur->pVtab = pVtab; 7692 7693 /* Initialize vdbe cursor object */ 7694 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7695 if( pCur ){ 7696 pCur->uc.pVCur = pVCur; 7697 pVtab->nRef++; 7698 }else{ 7699 assert( db->mallocFailed ); 7700 pModule->xClose(pVCur); 7701 goto no_mem; 7702 } 7703 break; 7704 } 7705 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7706 7707 #ifndef SQLITE_OMIT_VIRTUALTABLE 7708 /* Opcode: VFilter P1 P2 P3 P4 * 7709 ** Synopsis: iplan=r[P3] zplan='P4' 7710 ** 7711 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7712 ** the filtered result set is empty. 7713 ** 7714 ** P4 is either NULL or a string that was generated by the xBestIndex 7715 ** method of the module. The interpretation of the P4 string is left 7716 ** to the module implementation. 7717 ** 7718 ** This opcode invokes the xFilter method on the virtual table specified 7719 ** by P1. The integer query plan parameter to xFilter is stored in register 7720 ** P3. Register P3+1 stores the argc parameter to be passed to the 7721 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7722 ** additional parameters which are passed to 7723 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7724 ** 7725 ** A jump is made to P2 if the result set after filtering would be empty. 7726 */ 7727 case OP_VFilter: { /* jump */ 7728 int nArg; 7729 int iQuery; 7730 const sqlite3_module *pModule; 7731 Mem *pQuery; 7732 Mem *pArgc; 7733 sqlite3_vtab_cursor *pVCur; 7734 sqlite3_vtab *pVtab; 7735 VdbeCursor *pCur; 7736 int res; 7737 int i; 7738 Mem **apArg; 7739 7740 pQuery = &aMem[pOp->p3]; 7741 pArgc = &pQuery[1]; 7742 pCur = p->apCsr[pOp->p1]; 7743 assert( memIsValid(pQuery) ); 7744 REGISTER_TRACE(pOp->p3, pQuery); 7745 assert( pCur!=0 ); 7746 assert( pCur->eCurType==CURTYPE_VTAB ); 7747 pVCur = pCur->uc.pVCur; 7748 pVtab = pVCur->pVtab; 7749 pModule = pVtab->pModule; 7750 7751 /* Grab the index number and argc parameters */ 7752 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7753 nArg = (int)pArgc->u.i; 7754 iQuery = (int)pQuery->u.i; 7755 7756 /* Invoke the xFilter method */ 7757 apArg = p->apArg; 7758 for(i = 0; i<nArg; i++){ 7759 apArg[i] = &pArgc[i+1]; 7760 } 7761 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7762 sqlite3VtabImportErrmsg(p, pVtab); 7763 if( rc ) goto abort_due_to_error; 7764 res = pModule->xEof(pVCur); 7765 pCur->nullRow = 0; 7766 VdbeBranchTaken(res!=0,2); 7767 if( res ) goto jump_to_p2; 7768 break; 7769 } 7770 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7771 7772 #ifndef SQLITE_OMIT_VIRTUALTABLE 7773 /* Opcode: VColumn P1 P2 P3 * P5 7774 ** Synopsis: r[P3]=vcolumn(P2) 7775 ** 7776 ** Store in register P3 the value of the P2-th column of 7777 ** the current row of the virtual-table of cursor P1. 7778 ** 7779 ** If the VColumn opcode is being used to fetch the value of 7780 ** an unchanging column during an UPDATE operation, then the P5 7781 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7782 ** function to return true inside the xColumn method of the virtual 7783 ** table implementation. The P5 column might also contain other 7784 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7785 ** unused by OP_VColumn. 7786 */ 7787 case OP_VColumn: { 7788 sqlite3_vtab *pVtab; 7789 const sqlite3_module *pModule; 7790 Mem *pDest; 7791 sqlite3_context sContext; 7792 7793 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7794 assert( pCur!=0 ); 7795 assert( pCur->eCurType==CURTYPE_VTAB ); 7796 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7797 pDest = &aMem[pOp->p3]; 7798 memAboutToChange(p, pDest); 7799 if( pCur->nullRow ){ 7800 sqlite3VdbeMemSetNull(pDest); 7801 break; 7802 } 7803 pVtab = pCur->uc.pVCur->pVtab; 7804 pModule = pVtab->pModule; 7805 assert( pModule->xColumn ); 7806 memset(&sContext, 0, sizeof(sContext)); 7807 sContext.pOut = pDest; 7808 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7809 if( pOp->p5 & OPFLAG_NOCHNG ){ 7810 sqlite3VdbeMemSetNull(pDest); 7811 pDest->flags = MEM_Null|MEM_Zero; 7812 pDest->u.nZero = 0; 7813 }else{ 7814 MemSetTypeFlag(pDest, MEM_Null); 7815 } 7816 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7817 sqlite3VtabImportErrmsg(p, pVtab); 7818 if( sContext.isError>0 ){ 7819 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7820 rc = sContext.isError; 7821 } 7822 sqlite3VdbeChangeEncoding(pDest, encoding); 7823 REGISTER_TRACE(pOp->p3, pDest); 7824 UPDATE_MAX_BLOBSIZE(pDest); 7825 7826 if( sqlite3VdbeMemTooBig(pDest) ){ 7827 goto too_big; 7828 } 7829 if( rc ) goto abort_due_to_error; 7830 break; 7831 } 7832 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7833 7834 #ifndef SQLITE_OMIT_VIRTUALTABLE 7835 /* Opcode: VNext P1 P2 * * * 7836 ** 7837 ** Advance virtual table P1 to the next row in its result set and 7838 ** jump to instruction P2. Or, if the virtual table has reached 7839 ** the end of its result set, then fall through to the next instruction. 7840 */ 7841 case OP_VNext: { /* jump */ 7842 sqlite3_vtab *pVtab; 7843 const sqlite3_module *pModule; 7844 int res; 7845 VdbeCursor *pCur; 7846 7847 pCur = p->apCsr[pOp->p1]; 7848 assert( pCur!=0 ); 7849 assert( pCur->eCurType==CURTYPE_VTAB ); 7850 if( pCur->nullRow ){ 7851 break; 7852 } 7853 pVtab = pCur->uc.pVCur->pVtab; 7854 pModule = pVtab->pModule; 7855 assert( pModule->xNext ); 7856 7857 /* Invoke the xNext() method of the module. There is no way for the 7858 ** underlying implementation to return an error if one occurs during 7859 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7860 ** data is available) and the error code returned when xColumn or 7861 ** some other method is next invoked on the save virtual table cursor. 7862 */ 7863 rc = pModule->xNext(pCur->uc.pVCur); 7864 sqlite3VtabImportErrmsg(p, pVtab); 7865 if( rc ) goto abort_due_to_error; 7866 res = pModule->xEof(pCur->uc.pVCur); 7867 VdbeBranchTaken(!res,2); 7868 if( !res ){ 7869 /* If there is data, jump to P2 */ 7870 goto jump_to_p2_and_check_for_interrupt; 7871 } 7872 goto check_for_interrupt; 7873 } 7874 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7875 7876 #ifndef SQLITE_OMIT_VIRTUALTABLE 7877 /* Opcode: VRename P1 * * P4 * 7878 ** 7879 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7880 ** This opcode invokes the corresponding xRename method. The value 7881 ** in register P1 is passed as the zName argument to the xRename method. 7882 */ 7883 case OP_VRename: { 7884 sqlite3_vtab *pVtab; 7885 Mem *pName; 7886 int isLegacy; 7887 7888 isLegacy = (db->flags & SQLITE_LegacyAlter); 7889 db->flags |= SQLITE_LegacyAlter; 7890 pVtab = pOp->p4.pVtab->pVtab; 7891 pName = &aMem[pOp->p1]; 7892 assert( pVtab->pModule->xRename ); 7893 assert( memIsValid(pName) ); 7894 assert( p->readOnly==0 ); 7895 REGISTER_TRACE(pOp->p1, pName); 7896 assert( pName->flags & MEM_Str ); 7897 testcase( pName->enc==SQLITE_UTF8 ); 7898 testcase( pName->enc==SQLITE_UTF16BE ); 7899 testcase( pName->enc==SQLITE_UTF16LE ); 7900 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7901 if( rc ) goto abort_due_to_error; 7902 rc = pVtab->pModule->xRename(pVtab, pName->z); 7903 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7904 sqlite3VtabImportErrmsg(p, pVtab); 7905 p->expired = 0; 7906 if( rc ) goto abort_due_to_error; 7907 break; 7908 } 7909 #endif 7910 7911 #ifndef SQLITE_OMIT_VIRTUALTABLE 7912 /* Opcode: VUpdate P1 P2 P3 P4 P5 7913 ** Synopsis: data=r[P3@P2] 7914 ** 7915 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7916 ** This opcode invokes the corresponding xUpdate method. P2 values 7917 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7918 ** invocation. The value in register (P3+P2-1) corresponds to the 7919 ** p2th element of the argv array passed to xUpdate. 7920 ** 7921 ** The xUpdate method will do a DELETE or an INSERT or both. 7922 ** The argv[0] element (which corresponds to memory cell P3) 7923 ** is the rowid of a row to delete. If argv[0] is NULL then no 7924 ** deletion occurs. The argv[1] element is the rowid of the new 7925 ** row. This can be NULL to have the virtual table select the new 7926 ** rowid for itself. The subsequent elements in the array are 7927 ** the values of columns in the new row. 7928 ** 7929 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7930 ** a row to delete. 7931 ** 7932 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7933 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7934 ** is set to the value of the rowid for the row just inserted. 7935 ** 7936 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7937 ** apply in the case of a constraint failure on an insert or update. 7938 */ 7939 case OP_VUpdate: { 7940 sqlite3_vtab *pVtab; 7941 const sqlite3_module *pModule; 7942 int nArg; 7943 int i; 7944 sqlite_int64 rowid = 0; 7945 Mem **apArg; 7946 Mem *pX; 7947 7948 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7949 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7950 ); 7951 assert( p->readOnly==0 ); 7952 if( db->mallocFailed ) goto no_mem; 7953 sqlite3VdbeIncrWriteCounter(p, 0); 7954 pVtab = pOp->p4.pVtab->pVtab; 7955 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7956 rc = SQLITE_LOCKED; 7957 goto abort_due_to_error; 7958 } 7959 pModule = pVtab->pModule; 7960 nArg = pOp->p2; 7961 assert( pOp->p4type==P4_VTAB ); 7962 if( ALWAYS(pModule->xUpdate) ){ 7963 u8 vtabOnConflict = db->vtabOnConflict; 7964 apArg = p->apArg; 7965 pX = &aMem[pOp->p3]; 7966 for(i=0; i<nArg; i++){ 7967 assert( memIsValid(pX) ); 7968 memAboutToChange(p, pX); 7969 apArg[i] = pX; 7970 pX++; 7971 } 7972 db->vtabOnConflict = pOp->p5; 7973 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7974 db->vtabOnConflict = vtabOnConflict; 7975 sqlite3VtabImportErrmsg(p, pVtab); 7976 if( rc==SQLITE_OK && pOp->p1 ){ 7977 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7978 db->lastRowid = rowid; 7979 } 7980 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7981 if( pOp->p5==OE_Ignore ){ 7982 rc = SQLITE_OK; 7983 }else{ 7984 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7985 } 7986 }else{ 7987 p->nChange++; 7988 } 7989 if( rc ) goto abort_due_to_error; 7990 } 7991 break; 7992 } 7993 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7994 7995 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7996 /* Opcode: Pagecount P1 P2 * * * 7997 ** 7998 ** Write the current number of pages in database P1 to memory cell P2. 7999 */ 8000 case OP_Pagecount: { /* out2 */ 8001 pOut = out2Prerelease(p, pOp); 8002 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8003 break; 8004 } 8005 #endif 8006 8007 8008 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8009 /* Opcode: MaxPgcnt P1 P2 P3 * * 8010 ** 8011 ** Try to set the maximum page count for database P1 to the value in P3. 8012 ** Do not let the maximum page count fall below the current page count and 8013 ** do not change the maximum page count value if P3==0. 8014 ** 8015 ** Store the maximum page count after the change in register P2. 8016 */ 8017 case OP_MaxPgcnt: { /* out2 */ 8018 unsigned int newMax; 8019 Btree *pBt; 8020 8021 pOut = out2Prerelease(p, pOp); 8022 pBt = db->aDb[pOp->p1].pBt; 8023 newMax = 0; 8024 if( pOp->p3 ){ 8025 newMax = sqlite3BtreeLastPage(pBt); 8026 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8027 } 8028 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8029 break; 8030 } 8031 #endif 8032 8033 /* Opcode: Function P1 P2 P3 P4 * 8034 ** Synopsis: r[P3]=func(r[P2@NP]) 8035 ** 8036 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8037 ** contains a pointer to the function to be run) with arguments taken 8038 ** from register P2 and successors. The number of arguments is in 8039 ** the sqlite3_context object that P4 points to. 8040 ** The result of the function is stored 8041 ** in register P3. Register P3 must not be one of the function inputs. 8042 ** 8043 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8044 ** function was determined to be constant at compile time. If the first 8045 ** argument was constant then bit 0 of P1 is set. This is used to determine 8046 ** whether meta data associated with a user function argument using the 8047 ** sqlite3_set_auxdata() API may be safely retained until the next 8048 ** invocation of this opcode. 8049 ** 8050 ** See also: AggStep, AggFinal, PureFunc 8051 */ 8052 /* Opcode: PureFunc P1 P2 P3 P4 * 8053 ** Synopsis: r[P3]=func(r[P2@NP]) 8054 ** 8055 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8056 ** contains a pointer to the function to be run) with arguments taken 8057 ** from register P2 and successors. The number of arguments is in 8058 ** the sqlite3_context object that P4 points to. 8059 ** The result of the function is stored 8060 ** in register P3. Register P3 must not be one of the function inputs. 8061 ** 8062 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8063 ** function was determined to be constant at compile time. If the first 8064 ** argument was constant then bit 0 of P1 is set. This is used to determine 8065 ** whether meta data associated with a user function argument using the 8066 ** sqlite3_set_auxdata() API may be safely retained until the next 8067 ** invocation of this opcode. 8068 ** 8069 ** This opcode works exactly like OP_Function. The only difference is in 8070 ** its name. This opcode is used in places where the function must be 8071 ** purely non-deterministic. Some built-in date/time functions can be 8072 ** either determinitic of non-deterministic, depending on their arguments. 8073 ** When those function are used in a non-deterministic way, they will check 8074 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8075 ** if they were, they throw an error. 8076 ** 8077 ** See also: AggStep, AggFinal, Function 8078 */ 8079 case OP_PureFunc: /* group */ 8080 case OP_Function: { /* group */ 8081 int i; 8082 sqlite3_context *pCtx; 8083 8084 assert( pOp->p4type==P4_FUNCCTX ); 8085 pCtx = pOp->p4.pCtx; 8086 8087 /* If this function is inside of a trigger, the register array in aMem[] 8088 ** might change from one evaluation to the next. The next block of code 8089 ** checks to see if the register array has changed, and if so it 8090 ** reinitializes the relavant parts of the sqlite3_context object */ 8091 pOut = &aMem[pOp->p3]; 8092 if( pCtx->pOut != pOut ){ 8093 pCtx->pVdbe = p; 8094 pCtx->pOut = pOut; 8095 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8096 } 8097 assert( pCtx->pVdbe==p ); 8098 8099 memAboutToChange(p, pOut); 8100 #ifdef SQLITE_DEBUG 8101 for(i=0; i<pCtx->argc; i++){ 8102 assert( memIsValid(pCtx->argv[i]) ); 8103 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8104 } 8105 #endif 8106 MemSetTypeFlag(pOut, MEM_Null); 8107 assert( pCtx->isError==0 ); 8108 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8109 8110 /* If the function returned an error, throw an exception */ 8111 if( pCtx->isError ){ 8112 if( pCtx->isError>0 ){ 8113 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8114 rc = pCtx->isError; 8115 } 8116 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8117 pCtx->isError = 0; 8118 if( rc ) goto abort_due_to_error; 8119 } 8120 8121 /* Copy the result of the function into register P3 */ 8122 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 8123 sqlite3VdbeChangeEncoding(pOut, encoding); 8124 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 8125 } 8126 8127 REGISTER_TRACE(pOp->p3, pOut); 8128 UPDATE_MAX_BLOBSIZE(pOut); 8129 break; 8130 } 8131 8132 /* Opcode: Trace P1 P2 * P4 * 8133 ** 8134 ** Write P4 on the statement trace output if statement tracing is 8135 ** enabled. 8136 ** 8137 ** Operand P1 must be 0x7fffffff and P2 must positive. 8138 */ 8139 /* Opcode: Init P1 P2 P3 P4 * 8140 ** Synopsis: Start at P2 8141 ** 8142 ** Programs contain a single instance of this opcode as the very first 8143 ** opcode. 8144 ** 8145 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8146 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8147 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8148 ** 8149 ** If P2 is not zero, jump to instruction P2. 8150 ** 8151 ** Increment the value of P1 so that OP_Once opcodes will jump the 8152 ** first time they are evaluated for this run. 8153 ** 8154 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8155 ** error is encountered. 8156 */ 8157 case OP_Trace: 8158 case OP_Init: { /* jump */ 8159 int i; 8160 #ifndef SQLITE_OMIT_TRACE 8161 char *zTrace; 8162 #endif 8163 8164 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8165 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8166 ** 8167 ** This assert() provides evidence for: 8168 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8169 ** would have been returned by the legacy sqlite3_trace() interface by 8170 ** using the X argument when X begins with "--" and invoking 8171 ** sqlite3_expanded_sql(P) otherwise. 8172 */ 8173 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8174 8175 /* OP_Init is always instruction 0 */ 8176 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8177 8178 #ifndef SQLITE_OMIT_TRACE 8179 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8180 && !p->doingRerun 8181 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8182 ){ 8183 #ifndef SQLITE_OMIT_DEPRECATED 8184 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8185 char *z = sqlite3VdbeExpandSql(p, zTrace); 8186 db->trace.xLegacy(db->pTraceArg, z); 8187 sqlite3_free(z); 8188 }else 8189 #endif 8190 if( db->nVdbeExec>1 ){ 8191 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8192 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8193 sqlite3DbFree(db, z); 8194 }else{ 8195 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8196 } 8197 } 8198 #ifdef SQLITE_USE_FCNTL_TRACE 8199 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8200 if( zTrace ){ 8201 int j; 8202 for(j=0; j<db->nDb; j++){ 8203 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8204 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8205 } 8206 } 8207 #endif /* SQLITE_USE_FCNTL_TRACE */ 8208 #ifdef SQLITE_DEBUG 8209 if( (db->flags & SQLITE_SqlTrace)!=0 8210 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8211 ){ 8212 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8213 } 8214 #endif /* SQLITE_DEBUG */ 8215 #endif /* SQLITE_OMIT_TRACE */ 8216 assert( pOp->p2>0 ); 8217 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8218 if( pOp->opcode==OP_Trace ) break; 8219 for(i=1; i<p->nOp; i++){ 8220 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8221 } 8222 pOp->p1 = 0; 8223 } 8224 pOp->p1++; 8225 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8226 goto jump_to_p2; 8227 } 8228 8229 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8230 /* Opcode: CursorHint P1 * * P4 * 8231 ** 8232 ** Provide a hint to cursor P1 that it only needs to return rows that 8233 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8234 ** to values currently held in registers. TK_COLUMN terms in the P4 8235 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8236 */ 8237 case OP_CursorHint: { 8238 VdbeCursor *pC; 8239 8240 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8241 assert( pOp->p4type==P4_EXPR ); 8242 pC = p->apCsr[pOp->p1]; 8243 if( pC ){ 8244 assert( pC->eCurType==CURTYPE_BTREE ); 8245 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8246 pOp->p4.pExpr, aMem); 8247 } 8248 break; 8249 } 8250 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8251 8252 #ifdef SQLITE_DEBUG 8253 /* Opcode: Abortable * * * * * 8254 ** 8255 ** Verify that an Abort can happen. Assert if an Abort at this point 8256 ** might cause database corruption. This opcode only appears in debugging 8257 ** builds. 8258 ** 8259 ** An Abort is safe if either there have been no writes, or if there is 8260 ** an active statement journal. 8261 */ 8262 case OP_Abortable: { 8263 sqlite3VdbeAssertAbortable(p); 8264 break; 8265 } 8266 #endif 8267 8268 #ifdef SQLITE_DEBUG 8269 /* Opcode: ReleaseReg P1 P2 P3 * P5 8270 ** Synopsis: release r[P1@P2] mask P3 8271 ** 8272 ** Release registers from service. Any content that was in the 8273 ** the registers is unreliable after this opcode completes. 8274 ** 8275 ** The registers released will be the P2 registers starting at P1, 8276 ** except if bit ii of P3 set, then do not release register P1+ii. 8277 ** In other words, P3 is a mask of registers to preserve. 8278 ** 8279 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8280 ** that if the content of the released register was set using OP_SCopy, 8281 ** a change to the value of the source register for the OP_SCopy will no longer 8282 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8283 ** 8284 ** If P5 is set, then all released registers have their type set 8285 ** to MEM_Undefined so that any subsequent attempt to read the released 8286 ** register (before it is reinitialized) will generate an assertion fault. 8287 ** 8288 ** P5 ought to be set on every call to this opcode. 8289 ** However, there are places in the code generator will release registers 8290 ** before their are used, under the (valid) assumption that the registers 8291 ** will not be reallocated for some other purpose before they are used and 8292 ** hence are safe to release. 8293 ** 8294 ** This opcode is only available in testing and debugging builds. It is 8295 ** not generated for release builds. The purpose of this opcode is to help 8296 ** validate the generated bytecode. This opcode does not actually contribute 8297 ** to computing an answer. 8298 */ 8299 case OP_ReleaseReg: { 8300 Mem *pMem; 8301 int i; 8302 u32 constMask; 8303 assert( pOp->p1>0 ); 8304 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8305 pMem = &aMem[pOp->p1]; 8306 constMask = pOp->p3; 8307 for(i=0; i<pOp->p2; i++, pMem++){ 8308 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8309 pMem->pScopyFrom = 0; 8310 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8311 } 8312 } 8313 break; 8314 } 8315 #endif 8316 8317 /* Opcode: Noop * * * * * 8318 ** 8319 ** Do nothing. This instruction is often useful as a jump 8320 ** destination. 8321 */ 8322 /* 8323 ** The magic Explain opcode are only inserted when explain==2 (which 8324 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8325 ** This opcode records information from the optimizer. It is the 8326 ** the same as a no-op. This opcodesnever appears in a real VM program. 8327 */ 8328 default: { /* This is really OP_Noop, OP_Explain */ 8329 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8330 8331 break; 8332 } 8333 8334 /***************************************************************************** 8335 ** The cases of the switch statement above this line should all be indented 8336 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8337 ** readability. From this point on down, the normal indentation rules are 8338 ** restored. 8339 *****************************************************************************/ 8340 } 8341 8342 #ifdef VDBE_PROFILE 8343 { 8344 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8345 if( endTime>start ) pOrigOp->cycles += endTime - start; 8346 pOrigOp->cnt++; 8347 } 8348 #endif 8349 8350 /* The following code adds nothing to the actual functionality 8351 ** of the program. It is only here for testing and debugging. 8352 ** On the other hand, it does burn CPU cycles every time through 8353 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8354 */ 8355 #ifndef NDEBUG 8356 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8357 8358 #ifdef SQLITE_DEBUG 8359 if( db->flags & SQLITE_VdbeTrace ){ 8360 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8361 if( rc!=0 ) printf("rc=%d\n",rc); 8362 if( opProperty & (OPFLG_OUT2) ){ 8363 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8364 } 8365 if( opProperty & OPFLG_OUT3 ){ 8366 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8367 } 8368 if( opProperty==0xff ){ 8369 /* Never happens. This code exists to avoid a harmless linkage 8370 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8371 ** used. */ 8372 sqlite3VdbeRegisterDump(p); 8373 } 8374 } 8375 #endif /* SQLITE_DEBUG */ 8376 #endif /* NDEBUG */ 8377 } /* The end of the for(;;) loop the loops through opcodes */ 8378 8379 /* If we reach this point, it means that execution is finished with 8380 ** an error of some kind. 8381 */ 8382 abort_due_to_error: 8383 if( db->mallocFailed ){ 8384 rc = SQLITE_NOMEM_BKPT; 8385 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8386 rc = SQLITE_CORRUPT_BKPT; 8387 } 8388 assert( rc ); 8389 #ifdef SQLITE_DEBUG 8390 if( db->flags & SQLITE_VdbeTrace ){ 8391 const char *zTrace = p->zSql; 8392 if( zTrace==0 ){ 8393 if( aOp[0].opcode==OP_Trace ){ 8394 zTrace = aOp[0].p4.z; 8395 } 8396 if( zTrace==0 ) zTrace = "???"; 8397 } 8398 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8399 } 8400 #endif 8401 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8402 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8403 } 8404 p->rc = rc; 8405 sqlite3SystemError(db, rc); 8406 testcase( sqlite3GlobalConfig.xLog!=0 ); 8407 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8408 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8409 sqlite3VdbeHalt(p); 8410 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8411 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8412 db->flags |= SQLITE_CorruptRdOnly; 8413 } 8414 rc = SQLITE_ERROR; 8415 if( resetSchemaOnFault>0 ){ 8416 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8417 } 8418 8419 /* This is the only way out of this procedure. We have to 8420 ** release the mutexes on btrees that were acquired at the 8421 ** top. */ 8422 vdbe_return: 8423 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8424 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8425 nProgressLimit += db->nProgressOps; 8426 if( db->xProgress(db->pProgressArg) ){ 8427 nProgressLimit = LARGEST_UINT64; 8428 rc = SQLITE_INTERRUPT; 8429 goto abort_due_to_error; 8430 } 8431 } 8432 #endif 8433 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8434 sqlite3VdbeLeave(p); 8435 assert( rc!=SQLITE_OK || nExtraDelete==0 8436 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8437 ); 8438 return rc; 8439 8440 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8441 ** is encountered. 8442 */ 8443 too_big: 8444 sqlite3VdbeError(p, "string or blob too big"); 8445 rc = SQLITE_TOOBIG; 8446 goto abort_due_to_error; 8447 8448 /* Jump to here if a malloc() fails. 8449 */ 8450 no_mem: 8451 sqlite3OomFault(db); 8452 sqlite3VdbeError(p, "out of memory"); 8453 rc = SQLITE_NOMEM_BKPT; 8454 goto abort_due_to_error; 8455 8456 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8457 ** flag. 8458 */ 8459 abort_due_to_interrupt: 8460 assert( AtomicLoad(&db->u1.isInterrupted) ); 8461 rc = SQLITE_INTERRUPT; 8462 goto abort_due_to_error; 8463 } 8464