1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue; 318 iValue = sqlite3RealToI64(rValue); 319 if( sqlite3RealSameAsInt(rValue,iValue) ){ 320 *piValue = iValue; 321 return 1; 322 } 323 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 324 } 325 326 /* 327 ** Try to convert a value into a numeric representation if we can 328 ** do so without loss of information. In other words, if the string 329 ** looks like a number, convert it into a number. If it does not 330 ** look like a number, leave it alone. 331 ** 332 ** If the bTryForInt flag is true, then extra effort is made to give 333 ** an integer representation. Strings that look like floating point 334 ** values but which have no fractional component (example: '48.00') 335 ** will have a MEM_Int representation when bTryForInt is true. 336 ** 337 ** If bTryForInt is false, then if the input string contains a decimal 338 ** point or exponential notation, the result is only MEM_Real, even 339 ** if there is an exact integer representation of the quantity. 340 */ 341 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 342 double rValue; 343 u8 enc = pRec->enc; 344 int rc; 345 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 346 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 347 if( rc<=0 ) return; 348 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 349 pRec->flags |= MEM_Int; 350 }else{ 351 pRec->u.r = rValue; 352 pRec->flags |= MEM_Real; 353 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 354 } 355 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 356 ** string representation after computing a numeric equivalent, because the 357 ** string representation might not be the canonical representation for the 358 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 359 pRec->flags &= ~MEM_Str; 360 } 361 362 /* 363 ** Processing is determine by the affinity parameter: 364 ** 365 ** SQLITE_AFF_INTEGER: 366 ** SQLITE_AFF_REAL: 367 ** SQLITE_AFF_NUMERIC: 368 ** Try to convert pRec to an integer representation or a 369 ** floating-point representation if an integer representation 370 ** is not possible. Note that the integer representation is 371 ** always preferred, even if the affinity is REAL, because 372 ** an integer representation is more space efficient on disk. 373 ** 374 ** SQLITE_AFF_TEXT: 375 ** Convert pRec to a text representation. 376 ** 377 ** SQLITE_AFF_BLOB: 378 ** SQLITE_AFF_NONE: 379 ** No-op. pRec is unchanged. 380 */ 381 static void applyAffinity( 382 Mem *pRec, /* The value to apply affinity to */ 383 char affinity, /* The affinity to be applied */ 384 u8 enc /* Use this text encoding */ 385 ){ 386 if( affinity>=SQLITE_AFF_NUMERIC ){ 387 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 388 || affinity==SQLITE_AFF_NUMERIC ); 389 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 390 if( (pRec->flags & MEM_Real)==0 ){ 391 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 392 }else{ 393 sqlite3VdbeIntegerAffinity(pRec); 394 } 395 } 396 }else if( affinity==SQLITE_AFF_TEXT ){ 397 /* Only attempt the conversion to TEXT if there is an integer or real 398 ** representation (blob and NULL do not get converted) but no string 399 ** representation. It would be harmless to repeat the conversion if 400 ** there is already a string rep, but it is pointless to waste those 401 ** CPU cycles. */ 402 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 403 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 404 testcase( pRec->flags & MEM_Int ); 405 testcase( pRec->flags & MEM_Real ); 406 testcase( pRec->flags & MEM_IntReal ); 407 sqlite3VdbeMemStringify(pRec, enc, 1); 408 } 409 } 410 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 411 } 412 } 413 414 /* 415 ** Try to convert the type of a function argument or a result column 416 ** into a numeric representation. Use either INTEGER or REAL whichever 417 ** is appropriate. But only do the conversion if it is possible without 418 ** loss of information and return the revised type of the argument. 419 */ 420 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 421 int eType = sqlite3_value_type(pVal); 422 if( eType==SQLITE_TEXT ){ 423 Mem *pMem = (Mem*)pVal; 424 applyNumericAffinity(pMem, 0); 425 eType = sqlite3_value_type(pVal); 426 } 427 return eType; 428 } 429 430 /* 431 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 432 ** not the internal Mem* type. 433 */ 434 void sqlite3ValueApplyAffinity( 435 sqlite3_value *pVal, 436 u8 affinity, 437 u8 enc 438 ){ 439 applyAffinity((Mem *)pVal, affinity, enc); 440 } 441 442 /* 443 ** pMem currently only holds a string type (or maybe a BLOB that we can 444 ** interpret as a string if we want to). Compute its corresponding 445 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 446 ** accordingly. 447 */ 448 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 449 int rc; 450 sqlite3_int64 ix; 451 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 452 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 453 if( ExpandBlob(pMem) ){ 454 pMem->u.i = 0; 455 return MEM_Int; 456 } 457 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 458 if( rc<=0 ){ 459 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 460 pMem->u.i = ix; 461 return MEM_Int; 462 }else{ 463 return MEM_Real; 464 } 465 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 466 pMem->u.i = ix; 467 return MEM_Int; 468 } 469 return MEM_Real; 470 } 471 472 /* 473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 474 ** none. 475 ** 476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 477 ** But it does set pMem->u.r and pMem->u.i appropriately. 478 */ 479 static u16 numericType(Mem *pMem){ 480 assert( (pMem->flags & MEM_Null)==0 481 || pMem->db==0 || pMem->db->mallocFailed ); 482 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ 483 testcase( pMem->flags & MEM_Int ); 484 testcase( pMem->flags & MEM_Real ); 485 testcase( pMem->flags & MEM_IntReal ); 486 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); 487 } 488 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 489 testcase( pMem->flags & MEM_Str ); 490 testcase( pMem->flags & MEM_Blob ); 491 return computeNumericType(pMem); 492 return 0; 493 } 494 495 #ifdef SQLITE_DEBUG 496 /* 497 ** Write a nice string representation of the contents of cell pMem 498 ** into buffer zBuf, length nBuf. 499 */ 500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 501 int f = pMem->flags; 502 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 503 if( f&MEM_Blob ){ 504 int i; 505 char c; 506 if( f & MEM_Dyn ){ 507 c = 'z'; 508 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 509 }else if( f & MEM_Static ){ 510 c = 't'; 511 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 512 }else if( f & MEM_Ephem ){ 513 c = 'e'; 514 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 515 }else{ 516 c = 's'; 517 } 518 sqlite3_str_appendf(pStr, "%cx[", c); 519 for(i=0; i<25 && i<pMem->n; i++){ 520 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 521 } 522 sqlite3_str_appendf(pStr, "|"); 523 for(i=0; i<25 && i<pMem->n; i++){ 524 char z = pMem->z[i]; 525 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 526 } 527 sqlite3_str_appendf(pStr,"]"); 528 if( f & MEM_Zero ){ 529 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 530 } 531 }else if( f & MEM_Str ){ 532 int j; 533 u8 c; 534 if( f & MEM_Dyn ){ 535 c = 'z'; 536 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 537 }else if( f & MEM_Static ){ 538 c = 't'; 539 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 540 }else if( f & MEM_Ephem ){ 541 c = 'e'; 542 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 543 }else{ 544 c = 's'; 545 } 546 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 547 for(j=0; j<25 && j<pMem->n; j++){ 548 c = pMem->z[j]; 549 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 550 } 551 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 552 } 553 } 554 #endif 555 556 #ifdef SQLITE_DEBUG 557 /* 558 ** Print the value of a register for tracing purposes: 559 */ 560 static void memTracePrint(Mem *p){ 561 if( p->flags & MEM_Undefined ){ 562 printf(" undefined"); 563 }else if( p->flags & MEM_Null ){ 564 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 565 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 566 printf(" si:%lld", p->u.i); 567 }else if( (p->flags & (MEM_IntReal))!=0 ){ 568 printf(" ir:%lld", p->u.i); 569 }else if( p->flags & MEM_Int ){ 570 printf(" i:%lld", p->u.i); 571 #ifndef SQLITE_OMIT_FLOATING_POINT 572 }else if( p->flags & MEM_Real ){ 573 printf(" r:%.17g", p->u.r); 574 #endif 575 }else if( sqlite3VdbeMemIsRowSet(p) ){ 576 printf(" (rowset)"); 577 }else{ 578 StrAccum acc; 579 char zBuf[1000]; 580 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 581 sqlite3VdbeMemPrettyPrint(p, &acc); 582 printf(" %s", sqlite3StrAccumFinish(&acc)); 583 } 584 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 585 } 586 static void registerTrace(int iReg, Mem *p){ 587 printf("R[%d] = ", iReg); 588 memTracePrint(p); 589 if( p->pScopyFrom ){ 590 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 591 } 592 printf("\n"); 593 sqlite3VdbeCheckMemInvariants(p); 594 } 595 /**/ void sqlite3PrintMem(Mem *pMem){ 596 memTracePrint(pMem); 597 printf("\n"); 598 fflush(stdout); 599 } 600 #endif 601 602 #ifdef SQLITE_DEBUG 603 /* 604 ** Show the values of all registers in the virtual machine. Used for 605 ** interactive debugging. 606 */ 607 void sqlite3VdbeRegisterDump(Vdbe *v){ 608 int i; 609 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 610 } 611 #endif /* SQLITE_DEBUG */ 612 613 614 #ifdef SQLITE_DEBUG 615 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 616 #else 617 # define REGISTER_TRACE(R,M) 618 #endif 619 620 621 #ifdef VDBE_PROFILE 622 623 /* 624 ** hwtime.h contains inline assembler code for implementing 625 ** high-performance timing routines. 626 */ 627 #include "hwtime.h" 628 629 #endif 630 631 #ifndef NDEBUG 632 /* 633 ** This function is only called from within an assert() expression. It 634 ** checks that the sqlite3.nTransaction variable is correctly set to 635 ** the number of non-transaction savepoints currently in the 636 ** linked list starting at sqlite3.pSavepoint. 637 ** 638 ** Usage: 639 ** 640 ** assert( checkSavepointCount(db) ); 641 */ 642 static int checkSavepointCount(sqlite3 *db){ 643 int n = 0; 644 Savepoint *p; 645 for(p=db->pSavepoint; p; p=p->pNext) n++; 646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 647 return 1; 648 } 649 #endif 650 651 /* 652 ** Return the register of pOp->p2 after first preparing it to be 653 ** overwritten with an integer value. 654 */ 655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 656 sqlite3VdbeMemSetNull(pOut); 657 pOut->flags = MEM_Int; 658 return pOut; 659 } 660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 661 Mem *pOut; 662 assert( pOp->p2>0 ); 663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 664 pOut = &p->aMem[pOp->p2]; 665 memAboutToChange(p, pOut); 666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 667 return out2PrereleaseWithClear(pOut); 668 }else{ 669 pOut->flags = MEM_Int; 670 return pOut; 671 } 672 } 673 674 /* 675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 676 ** with pOp->p3. Return the hash. 677 */ 678 static u64 filterHash(const Mem *aMem, const Op *pOp){ 679 int i, mx; 680 u64 h = 0; 681 682 assert( pOp->p4type==P4_INT32 ); 683 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 684 const Mem *p = &aMem[i]; 685 if( p->flags & (MEM_Int|MEM_IntReal) ){ 686 h += p->u.i; 687 }else if( p->flags & MEM_Real ){ 688 h += sqlite3VdbeIntValue(p); 689 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 690 h += p->n; 691 if( p->flags & MEM_Zero ) h += p->u.nZero; 692 } 693 } 694 return h; 695 } 696 697 /* 698 ** Return the symbolic name for the data type of a pMem 699 */ 700 static const char *vdbeMemTypeName(Mem *pMem){ 701 static const char *azTypes[] = { 702 /* SQLITE_INTEGER */ "INT", 703 /* SQLITE_FLOAT */ "REAL", 704 /* SQLITE_TEXT */ "TEXT", 705 /* SQLITE_BLOB */ "BLOB", 706 /* SQLITE_NULL */ "NULL" 707 }; 708 return azTypes[sqlite3_value_type(pMem)-1]; 709 } 710 711 /* 712 ** Execute as much of a VDBE program as we can. 713 ** This is the core of sqlite3_step(). 714 */ 715 int sqlite3VdbeExec( 716 Vdbe *p /* The VDBE */ 717 ){ 718 Op *aOp = p->aOp; /* Copy of p->aOp */ 719 Op *pOp = aOp; /* Current operation */ 720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 721 Op *pOrigOp; /* Value of pOp at the top of the loop */ 722 #endif 723 #ifdef SQLITE_DEBUG 724 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 725 #endif 726 int rc = SQLITE_OK; /* Value to return */ 727 sqlite3 *db = p->db; /* The database */ 728 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 729 u8 encoding = ENC(db); /* The database encoding */ 730 int iCompare = 0; /* Result of last comparison */ 731 u64 nVmStep = 0; /* Number of virtual machine steps */ 732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 733 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 734 #endif 735 Mem *aMem = p->aMem; /* Copy of p->aMem */ 736 Mem *pIn1 = 0; /* 1st input operand */ 737 Mem *pIn2 = 0; /* 2nd input operand */ 738 Mem *pIn3 = 0; /* 3rd input operand */ 739 Mem *pOut = 0; /* Output operand */ 740 #ifdef VDBE_PROFILE 741 u64 start; /* CPU clock count at start of opcode */ 742 #endif 743 /*** INSERT STACK UNION HERE ***/ 744 745 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 746 sqlite3VdbeEnter(p); 747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 748 if( db->xProgress ){ 749 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 750 assert( 0 < db->nProgressOps ); 751 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 752 }else{ 753 nProgressLimit = LARGEST_UINT64; 754 } 755 #endif 756 if( p->rc==SQLITE_NOMEM ){ 757 /* This happens if a malloc() inside a call to sqlite3_column_text() or 758 ** sqlite3_column_text16() failed. */ 759 goto no_mem; 760 } 761 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 762 testcase( p->rc!=SQLITE_OK ); 763 p->rc = SQLITE_OK; 764 assert( p->bIsReader || p->readOnly!=0 ); 765 p->iCurrentTime = 0; 766 assert( p->explain==0 ); 767 p->pResultSet = 0; 768 db->busyHandler.nBusy = 0; 769 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 770 sqlite3VdbeIOTraceSql(p); 771 #ifdef SQLITE_DEBUG 772 sqlite3BeginBenignMalloc(); 773 if( p->pc==0 774 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 775 ){ 776 int i; 777 int once = 1; 778 sqlite3VdbePrintSql(p); 779 if( p->db->flags & SQLITE_VdbeListing ){ 780 printf("VDBE Program Listing:\n"); 781 for(i=0; i<p->nOp; i++){ 782 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 783 } 784 } 785 if( p->db->flags & SQLITE_VdbeEQP ){ 786 for(i=0; i<p->nOp; i++){ 787 if( aOp[i].opcode==OP_Explain ){ 788 if( once ) printf("VDBE Query Plan:\n"); 789 printf("%s\n", aOp[i].p4.z); 790 once = 0; 791 } 792 } 793 } 794 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 795 } 796 sqlite3EndBenignMalloc(); 797 #endif 798 for(pOp=&aOp[p->pc]; 1; pOp++){ 799 /* Errors are detected by individual opcodes, with an immediate 800 ** jumps to abort_due_to_error. */ 801 assert( rc==SQLITE_OK ); 802 803 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 804 #ifdef VDBE_PROFILE 805 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 806 #endif 807 nVmStep++; 808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 809 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 810 #endif 811 812 /* Only allow tracing if SQLITE_DEBUG is defined. 813 */ 814 #ifdef SQLITE_DEBUG 815 if( db->flags & SQLITE_VdbeTrace ){ 816 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 817 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 818 } 819 #endif 820 821 822 /* Check to see if we need to simulate an interrupt. This only happens 823 ** if we have a special test build. 824 */ 825 #ifdef SQLITE_TEST 826 if( sqlite3_interrupt_count>0 ){ 827 sqlite3_interrupt_count--; 828 if( sqlite3_interrupt_count==0 ){ 829 sqlite3_interrupt(db); 830 } 831 } 832 #endif 833 834 /* Sanity checking on other operands */ 835 #ifdef SQLITE_DEBUG 836 { 837 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 838 if( (opProperty & OPFLG_IN1)!=0 ){ 839 assert( pOp->p1>0 ); 840 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 841 assert( memIsValid(&aMem[pOp->p1]) ); 842 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 843 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 844 } 845 if( (opProperty & OPFLG_IN2)!=0 ){ 846 assert( pOp->p2>0 ); 847 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 848 assert( memIsValid(&aMem[pOp->p2]) ); 849 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 850 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 851 } 852 if( (opProperty & OPFLG_IN3)!=0 ){ 853 assert( pOp->p3>0 ); 854 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 855 assert( memIsValid(&aMem[pOp->p3]) ); 856 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 857 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 858 } 859 if( (opProperty & OPFLG_OUT2)!=0 ){ 860 assert( pOp->p2>0 ); 861 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 862 memAboutToChange(p, &aMem[pOp->p2]); 863 } 864 if( (opProperty & OPFLG_OUT3)!=0 ){ 865 assert( pOp->p3>0 ); 866 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 867 memAboutToChange(p, &aMem[pOp->p3]); 868 } 869 } 870 #endif 871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 872 pOrigOp = pOp; 873 #endif 874 875 switch( pOp->opcode ){ 876 877 /***************************************************************************** 878 ** What follows is a massive switch statement where each case implements a 879 ** separate instruction in the virtual machine. If we follow the usual 880 ** indentation conventions, each case should be indented by 6 spaces. But 881 ** that is a lot of wasted space on the left margin. So the code within 882 ** the switch statement will break with convention and be flush-left. Another 883 ** big comment (similar to this one) will mark the point in the code where 884 ** we transition back to normal indentation. 885 ** 886 ** The formatting of each case is important. The makefile for SQLite 887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 888 ** file looking for lines that begin with "case OP_". The opcodes.h files 889 ** will be filled with #defines that give unique integer values to each 890 ** opcode and the opcodes.c file is filled with an array of strings where 891 ** each string is the symbolic name for the corresponding opcode. If the 892 ** case statement is followed by a comment of the form "/# same as ... #/" 893 ** that comment is used to determine the particular value of the opcode. 894 ** 895 ** Other keywords in the comment that follows each case are used to 896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 897 ** Keywords include: in1, in2, in3, out2, out3. See 898 ** the mkopcodeh.awk script for additional information. 899 ** 900 ** Documentation about VDBE opcodes is generated by scanning this file 901 ** for lines of that contain "Opcode:". That line and all subsequent 902 ** comment lines are used in the generation of the opcode.html documentation 903 ** file. 904 ** 905 ** SUMMARY: 906 ** 907 ** Formatting is important to scripts that scan this file. 908 ** Do not deviate from the formatting style currently in use. 909 ** 910 *****************************************************************************/ 911 912 /* Opcode: Goto * P2 * * * 913 ** 914 ** An unconditional jump to address P2. 915 ** The next instruction executed will be 916 ** the one at index P2 from the beginning of 917 ** the program. 918 ** 919 ** The P1 parameter is not actually used by this opcode. However, it 920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 921 ** that this Goto is the bottom of a loop and that the lines from P2 down 922 ** to the current line should be indented for EXPLAIN output. 923 */ 924 case OP_Goto: { /* jump */ 925 926 #ifdef SQLITE_DEBUG 927 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 928 ** means we should really jump back to the preceeding OP_ReleaseReg 929 ** instruction. */ 930 if( pOp->p5 ){ 931 assert( pOp->p2 < (int)(pOp - aOp) ); 932 assert( pOp->p2 > 1 ); 933 pOp = &aOp[pOp->p2 - 2]; 934 assert( pOp[1].opcode==OP_ReleaseReg ); 935 goto check_for_interrupt; 936 } 937 #endif 938 939 jump_to_p2_and_check_for_interrupt: 940 pOp = &aOp[pOp->p2 - 1]; 941 942 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 943 ** OP_VNext, or OP_SorterNext) all jump here upon 944 ** completion. Check to see if sqlite3_interrupt() has been called 945 ** or if the progress callback needs to be invoked. 946 ** 947 ** This code uses unstructured "goto" statements and does not look clean. 948 ** But that is not due to sloppy coding habits. The code is written this 949 ** way for performance, to avoid having to run the interrupt and progress 950 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 951 ** faster according to "valgrind --tool=cachegrind" */ 952 check_for_interrupt: 953 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 955 /* Call the progress callback if it is configured and the required number 956 ** of VDBE ops have been executed (either since this invocation of 957 ** sqlite3VdbeExec() or since last time the progress callback was called). 958 ** If the progress callback returns non-zero, exit the virtual machine with 959 ** a return code SQLITE_ABORT. 960 */ 961 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 962 assert( db->nProgressOps!=0 ); 963 nProgressLimit += db->nProgressOps; 964 if( db->xProgress(db->pProgressArg) ){ 965 nProgressLimit = LARGEST_UINT64; 966 rc = SQLITE_INTERRUPT; 967 goto abort_due_to_error; 968 } 969 } 970 #endif 971 972 break; 973 } 974 975 /* Opcode: Gosub P1 P2 * * * 976 ** 977 ** Write the current address onto register P1 978 ** and then jump to address P2. 979 */ 980 case OP_Gosub: { /* jump */ 981 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 982 pIn1 = &aMem[pOp->p1]; 983 assert( VdbeMemDynamic(pIn1)==0 ); 984 memAboutToChange(p, pIn1); 985 pIn1->flags = MEM_Int; 986 pIn1->u.i = (int)(pOp-aOp); 987 REGISTER_TRACE(pOp->p1, pIn1); 988 goto jump_to_p2_and_check_for_interrupt; 989 } 990 991 /* Opcode: Return P1 P2 P3 * * 992 ** 993 ** Jump to the address stored in register P1. If P1 is a return address 994 ** register, then this accomplishes a return from a subroutine. 995 ** 996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 997 ** values, otherwise execution falls through to the next opcode, and the 998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 999 ** integer or else an assert() is raised. P3 should be set to 1 when 1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 1001 ** otherwise. 1002 ** 1003 ** The value in register P1 is unchanged by this opcode. 1004 ** 1005 ** P2 is not used by the byte-code engine. However, if P2 is positive 1006 ** and also less than the current address, then the "EXPLAIN" output 1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up 1008 ** to be not including the current Return. P2 should be the first opcode 1009 ** in the subroutine from which this opcode is returning. Thus the P2 1010 ** value is a byte-code indentation hint. See tag-20220407a in 1011 ** wherecode.c and shell.c. 1012 */ 1013 case OP_Return: { /* in1 */ 1014 pIn1 = &aMem[pOp->p1]; 1015 if( pIn1->flags & MEM_Int ){ 1016 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 1017 pOp = &aOp[pIn1->u.i]; 1018 }else if( ALWAYS(pOp->p3) ){ 1019 VdbeBranchTaken(0, 2); 1020 } 1021 break; 1022 } 1023 1024 /* Opcode: InitCoroutine P1 P2 P3 * * 1025 ** 1026 ** Set up register P1 so that it will Yield to the coroutine 1027 ** located at address P3. 1028 ** 1029 ** If P2!=0 then the coroutine implementation immediately follows 1030 ** this opcode. So jump over the coroutine implementation to 1031 ** address P2. 1032 ** 1033 ** See also: EndCoroutine 1034 */ 1035 case OP_InitCoroutine: { /* jump */ 1036 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1037 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1038 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1039 pOut = &aMem[pOp->p1]; 1040 assert( !VdbeMemDynamic(pOut) ); 1041 pOut->u.i = pOp->p3 - 1; 1042 pOut->flags = MEM_Int; 1043 if( pOp->p2==0 ) break; 1044 1045 /* Most jump operations do a goto to this spot in order to update 1046 ** the pOp pointer. */ 1047 jump_to_p2: 1048 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 1049 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 1050 pOp = &aOp[pOp->p2 - 1]; 1051 break; 1052 } 1053 1054 /* Opcode: EndCoroutine P1 * * * * 1055 ** 1056 ** The instruction at the address in register P1 is a Yield. 1057 ** Jump to the P2 parameter of that Yield. 1058 ** After the jump, register P1 becomes undefined. 1059 ** 1060 ** See also: InitCoroutine 1061 */ 1062 case OP_EndCoroutine: { /* in1 */ 1063 VdbeOp *pCaller; 1064 pIn1 = &aMem[pOp->p1]; 1065 assert( pIn1->flags==MEM_Int ); 1066 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1067 pCaller = &aOp[pIn1->u.i]; 1068 assert( pCaller->opcode==OP_Yield ); 1069 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1070 pOp = &aOp[pCaller->p2 - 1]; 1071 pIn1->flags = MEM_Undefined; 1072 break; 1073 } 1074 1075 /* Opcode: Yield P1 P2 * * * 1076 ** 1077 ** Swap the program counter with the value in register P1. This 1078 ** has the effect of yielding to a coroutine. 1079 ** 1080 ** If the coroutine that is launched by this instruction ends with 1081 ** Yield or Return then continue to the next instruction. But if 1082 ** the coroutine launched by this instruction ends with 1083 ** EndCoroutine, then jump to P2 rather than continuing with the 1084 ** next instruction. 1085 ** 1086 ** See also: InitCoroutine 1087 */ 1088 case OP_Yield: { /* in1, jump */ 1089 int pcDest; 1090 pIn1 = &aMem[pOp->p1]; 1091 assert( VdbeMemDynamic(pIn1)==0 ); 1092 pIn1->flags = MEM_Int; 1093 pcDest = (int)pIn1->u.i; 1094 pIn1->u.i = (int)(pOp - aOp); 1095 REGISTER_TRACE(pOp->p1, pIn1); 1096 pOp = &aOp[pcDest]; 1097 break; 1098 } 1099 1100 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1101 ** Synopsis: if r[P3]=null halt 1102 ** 1103 ** Check the value in register P3. If it is NULL then Halt using 1104 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1105 ** value in register P3 is not NULL, then this routine is a no-op. 1106 ** The P5 parameter should be 1. 1107 */ 1108 case OP_HaltIfNull: { /* in3 */ 1109 pIn3 = &aMem[pOp->p3]; 1110 #ifdef SQLITE_DEBUG 1111 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1112 #endif 1113 if( (pIn3->flags & MEM_Null)==0 ) break; 1114 /* Fall through into OP_Halt */ 1115 /* no break */ deliberate_fall_through 1116 } 1117 1118 /* Opcode: Halt P1 P2 * P4 P5 1119 ** 1120 ** Exit immediately. All open cursors, etc are closed 1121 ** automatically. 1122 ** 1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1124 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1125 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1126 ** whether or not to rollback the current transaction. Do not rollback 1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1128 ** then back out all changes that have occurred during this execution of the 1129 ** VDBE, but do not rollback the transaction. 1130 ** 1131 ** If P4 is not null then it is an error message string. 1132 ** 1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1134 ** 1135 ** 0: (no change) 1136 ** 1: NOT NULL contraint failed: P4 1137 ** 2: UNIQUE constraint failed: P4 1138 ** 3: CHECK constraint failed: P4 1139 ** 4: FOREIGN KEY constraint failed: P4 1140 ** 1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1142 ** omitted. 1143 ** 1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1145 ** every program. So a jump past the last instruction of the program 1146 ** is the same as executing Halt. 1147 */ 1148 case OP_Halt: { 1149 VdbeFrame *pFrame; 1150 int pcx; 1151 1152 #ifdef SQLITE_DEBUG 1153 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1154 #endif 1155 if( p->pFrame && pOp->p1==SQLITE_OK ){ 1156 /* Halt the sub-program. Return control to the parent frame. */ 1157 pFrame = p->pFrame; 1158 p->pFrame = pFrame->pParent; 1159 p->nFrame--; 1160 sqlite3VdbeSetChanges(db, p->nChange); 1161 pcx = sqlite3VdbeFrameRestore(pFrame); 1162 if( pOp->p2==OE_Ignore ){ 1163 /* Instruction pcx is the OP_Program that invoked the sub-program 1164 ** currently being halted. If the p2 instruction of this OP_Halt 1165 ** instruction is set to OE_Ignore, then the sub-program is throwing 1166 ** an IGNORE exception. In this case jump to the address specified 1167 ** as the p2 of the calling OP_Program. */ 1168 pcx = p->aOp[pcx].p2-1; 1169 } 1170 aOp = p->aOp; 1171 aMem = p->aMem; 1172 pOp = &aOp[pcx]; 1173 break; 1174 } 1175 p->rc = pOp->p1; 1176 p->errorAction = (u8)pOp->p2; 1177 assert( pOp->p5<=4 ); 1178 if( p->rc ){ 1179 if( pOp->p5 ){ 1180 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1181 "FOREIGN KEY" }; 1182 testcase( pOp->p5==1 ); 1183 testcase( pOp->p5==2 ); 1184 testcase( pOp->p5==3 ); 1185 testcase( pOp->p5==4 ); 1186 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1187 if( pOp->p4.z ){ 1188 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1189 } 1190 }else{ 1191 sqlite3VdbeError(p, "%s", pOp->p4.z); 1192 } 1193 pcx = (int)(pOp - aOp); 1194 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1195 } 1196 rc = sqlite3VdbeHalt(p); 1197 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1198 if( rc==SQLITE_BUSY ){ 1199 p->rc = SQLITE_BUSY; 1200 }else{ 1201 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1202 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1203 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1204 } 1205 goto vdbe_return; 1206 } 1207 1208 /* Opcode: Integer P1 P2 * * * 1209 ** Synopsis: r[P2]=P1 1210 ** 1211 ** The 32-bit integer value P1 is written into register P2. 1212 */ 1213 case OP_Integer: { /* out2 */ 1214 pOut = out2Prerelease(p, pOp); 1215 pOut->u.i = pOp->p1; 1216 break; 1217 } 1218 1219 /* Opcode: Int64 * P2 * P4 * 1220 ** Synopsis: r[P2]=P4 1221 ** 1222 ** P4 is a pointer to a 64-bit integer value. 1223 ** Write that value into register P2. 1224 */ 1225 case OP_Int64: { /* out2 */ 1226 pOut = out2Prerelease(p, pOp); 1227 assert( pOp->p4.pI64!=0 ); 1228 pOut->u.i = *pOp->p4.pI64; 1229 break; 1230 } 1231 1232 #ifndef SQLITE_OMIT_FLOATING_POINT 1233 /* Opcode: Real * P2 * P4 * 1234 ** Synopsis: r[P2]=P4 1235 ** 1236 ** P4 is a pointer to a 64-bit floating point value. 1237 ** Write that value into register P2. 1238 */ 1239 case OP_Real: { /* same as TK_FLOAT, out2 */ 1240 pOut = out2Prerelease(p, pOp); 1241 pOut->flags = MEM_Real; 1242 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1243 pOut->u.r = *pOp->p4.pReal; 1244 break; 1245 } 1246 #endif 1247 1248 /* Opcode: String8 * P2 * P4 * 1249 ** Synopsis: r[P2]='P4' 1250 ** 1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1252 ** into a String opcode before it is executed for the first time. During 1253 ** this transformation, the length of string P4 is computed and stored 1254 ** as the P1 parameter. 1255 */ 1256 case OP_String8: { /* same as TK_STRING, out2 */ 1257 assert( pOp->p4.z!=0 ); 1258 pOut = out2Prerelease(p, pOp); 1259 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1260 1261 #ifndef SQLITE_OMIT_UTF16 1262 if( encoding!=SQLITE_UTF8 ){ 1263 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1264 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1265 if( rc ) goto too_big; 1266 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1267 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1268 assert( VdbeMemDynamic(pOut)==0 ); 1269 pOut->szMalloc = 0; 1270 pOut->flags |= MEM_Static; 1271 if( pOp->p4type==P4_DYNAMIC ){ 1272 sqlite3DbFree(db, pOp->p4.z); 1273 } 1274 pOp->p4type = P4_DYNAMIC; 1275 pOp->p4.z = pOut->z; 1276 pOp->p1 = pOut->n; 1277 } 1278 #endif 1279 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1280 goto too_big; 1281 } 1282 pOp->opcode = OP_String; 1283 assert( rc==SQLITE_OK ); 1284 /* Fall through to the next case, OP_String */ 1285 /* no break */ deliberate_fall_through 1286 } 1287 1288 /* Opcode: String P1 P2 P3 P4 P5 1289 ** Synopsis: r[P2]='P4' (len=P1) 1290 ** 1291 ** The string value P4 of length P1 (bytes) is stored in register P2. 1292 ** 1293 ** If P3 is not zero and the content of register P3 is equal to P5, then 1294 ** the datatype of the register P2 is converted to BLOB. The content is 1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1296 ** of a string, as if it had been CAST. In other words: 1297 ** 1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1299 */ 1300 case OP_String: { /* out2 */ 1301 assert( pOp->p4.z!=0 ); 1302 pOut = out2Prerelease(p, pOp); 1303 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1304 pOut->z = pOp->p4.z; 1305 pOut->n = pOp->p1; 1306 pOut->enc = encoding; 1307 UPDATE_MAX_BLOBSIZE(pOut); 1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1309 if( pOp->p3>0 ){ 1310 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1311 pIn3 = &aMem[pOp->p3]; 1312 assert( pIn3->flags & MEM_Int ); 1313 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1314 } 1315 #endif 1316 break; 1317 } 1318 1319 /* Opcode: BeginSubrtn * P2 * * * 1320 ** Synopsis: r[P2]=NULL 1321 ** 1322 ** Mark the beginning of a subroutine that can be entered in-line 1323 ** or that can be called using OP_Gosub. The subroutine should 1324 ** be terminated by an OP_Return instruction that has a P1 operand that 1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 1326 ** If the subroutine is entered in-line, then the OP_Return will simply 1327 ** fall through. But if the subroutine is entered using OP_Gosub, then 1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 1329 ** 1330 ** This routine works by loading a NULL into the P2 register. When the 1331 ** return address register contains a NULL, the OP_Return instruction is 1332 ** a no-op that simply falls through to the next instruction (assuming that 1333 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 1334 ** entered in-line, then the OP_Return will cause in-line execution to 1335 ** continue. But if the subroutine is entered via OP_Gosub, then the 1336 ** OP_Return will cause a return to the address following the OP_Gosub. 1337 ** 1338 ** This opcode is identical to OP_Null. It has a different name 1339 ** only to make the byte code easier to read and verify. 1340 */ 1341 /* Opcode: Null P1 P2 P3 * * 1342 ** Synopsis: r[P2..P3]=NULL 1343 ** 1344 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1345 ** NULL into register P3 and every register in between P2 and P3. If P3 1346 ** is less than P2 (typically P3 is zero) then only register P2 is 1347 ** set to NULL. 1348 ** 1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1351 ** OP_Ne or OP_Eq. 1352 */ 1353 case OP_BeginSubrtn: 1354 case OP_Null: { /* out2 */ 1355 int cnt; 1356 u16 nullFlag; 1357 pOut = out2Prerelease(p, pOp); 1358 cnt = pOp->p3-pOp->p2; 1359 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1360 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1361 pOut->n = 0; 1362 #ifdef SQLITE_DEBUG 1363 pOut->uTemp = 0; 1364 #endif 1365 while( cnt>0 ){ 1366 pOut++; 1367 memAboutToChange(p, pOut); 1368 sqlite3VdbeMemSetNull(pOut); 1369 pOut->flags = nullFlag; 1370 pOut->n = 0; 1371 cnt--; 1372 } 1373 break; 1374 } 1375 1376 /* Opcode: SoftNull P1 * * * * 1377 ** Synopsis: r[P1]=NULL 1378 ** 1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1380 ** instruction, but do not free any string or blob memory associated with 1381 ** the register, so that if the value was a string or blob that was 1382 ** previously copied using OP_SCopy, the copies will continue to be valid. 1383 */ 1384 case OP_SoftNull: { 1385 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1386 pOut = &aMem[pOp->p1]; 1387 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1388 break; 1389 } 1390 1391 /* Opcode: Blob P1 P2 * P4 * 1392 ** Synopsis: r[P2]=P4 (len=P1) 1393 ** 1394 ** P4 points to a blob of data P1 bytes long. Store this 1395 ** blob in register P2. If P4 is a NULL pointer, then construct 1396 ** a zero-filled blob that is P1 bytes long in P2. 1397 */ 1398 case OP_Blob: { /* out2 */ 1399 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1400 pOut = out2Prerelease(p, pOp); 1401 if( pOp->p4.z==0 ){ 1402 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1403 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1404 }else{ 1405 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1406 } 1407 pOut->enc = encoding; 1408 UPDATE_MAX_BLOBSIZE(pOut); 1409 break; 1410 } 1411 1412 /* Opcode: Variable P1 P2 * P4 * 1413 ** Synopsis: r[P2]=parameter(P1,P4) 1414 ** 1415 ** Transfer the values of bound parameter P1 into register P2 1416 ** 1417 ** If the parameter is named, then its name appears in P4. 1418 ** The P4 value is used by sqlite3_bind_parameter_name(). 1419 */ 1420 case OP_Variable: { /* out2 */ 1421 Mem *pVar; /* Value being transferred */ 1422 1423 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1424 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1425 pVar = &p->aVar[pOp->p1 - 1]; 1426 if( sqlite3VdbeMemTooBig(pVar) ){ 1427 goto too_big; 1428 } 1429 pOut = &aMem[pOp->p2]; 1430 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1431 memcpy(pOut, pVar, MEMCELLSIZE); 1432 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1433 pOut->flags |= MEM_Static|MEM_FromBind; 1434 UPDATE_MAX_BLOBSIZE(pOut); 1435 break; 1436 } 1437 1438 /* Opcode: Move P1 P2 P3 * * 1439 ** Synopsis: r[P2@P3]=r[P1@P3] 1440 ** 1441 ** Move the P3 values in register P1..P1+P3-1 over into 1442 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1443 ** left holding a NULL. It is an error for register ranges 1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1445 ** for P3 to be less than 1. 1446 */ 1447 case OP_Move: { 1448 int n; /* Number of registers left to copy */ 1449 int p1; /* Register to copy from */ 1450 int p2; /* Register to copy to */ 1451 1452 n = pOp->p3; 1453 p1 = pOp->p1; 1454 p2 = pOp->p2; 1455 assert( n>0 && p1>0 && p2>0 ); 1456 assert( p1+n<=p2 || p2+n<=p1 ); 1457 1458 pIn1 = &aMem[p1]; 1459 pOut = &aMem[p2]; 1460 do{ 1461 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1462 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1463 assert( memIsValid(pIn1) ); 1464 memAboutToChange(p, pOut); 1465 sqlite3VdbeMemMove(pOut, pIn1); 1466 #ifdef SQLITE_DEBUG 1467 pIn1->pScopyFrom = 0; 1468 { int i; 1469 for(i=1; i<p->nMem; i++){ 1470 if( aMem[i].pScopyFrom==pIn1 ){ 1471 aMem[i].pScopyFrom = pOut; 1472 } 1473 } 1474 } 1475 #endif 1476 Deephemeralize(pOut); 1477 REGISTER_TRACE(p2++, pOut); 1478 pIn1++; 1479 pOut++; 1480 }while( --n ); 1481 break; 1482 } 1483 1484 /* Opcode: Copy P1 P2 P3 * P5 1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1486 ** 1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1488 ** 1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 1490 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 1491 ** be merged. The 0x0001 bit is used by the query planner and does not 1492 ** come into play during query execution. 1493 ** 1494 ** This instruction makes a deep copy of the value. A duplicate 1495 ** is made of any string or blob constant. See also OP_SCopy. 1496 */ 1497 case OP_Copy: { 1498 int n; 1499 1500 n = pOp->p3; 1501 pIn1 = &aMem[pOp->p1]; 1502 pOut = &aMem[pOp->p2]; 1503 assert( pOut!=pIn1 ); 1504 while( 1 ){ 1505 memAboutToChange(p, pOut); 1506 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1507 Deephemeralize(pOut); 1508 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 1509 pOut->flags &= ~MEM_Subtype; 1510 } 1511 #ifdef SQLITE_DEBUG 1512 pOut->pScopyFrom = 0; 1513 #endif 1514 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1515 if( (n--)==0 ) break; 1516 pOut++; 1517 pIn1++; 1518 } 1519 break; 1520 } 1521 1522 /* Opcode: SCopy P1 P2 * * * 1523 ** Synopsis: r[P2]=r[P1] 1524 ** 1525 ** Make a shallow copy of register P1 into register P2. 1526 ** 1527 ** This instruction makes a shallow copy of the value. If the value 1528 ** is a string or blob, then the copy is only a pointer to the 1529 ** original and hence if the original changes so will the copy. 1530 ** Worse, if the original is deallocated, the copy becomes invalid. 1531 ** Thus the program must guarantee that the original will not change 1532 ** during the lifetime of the copy. Use OP_Copy to make a complete 1533 ** copy. 1534 */ 1535 case OP_SCopy: { /* out2 */ 1536 pIn1 = &aMem[pOp->p1]; 1537 pOut = &aMem[pOp->p2]; 1538 assert( pOut!=pIn1 ); 1539 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1540 #ifdef SQLITE_DEBUG 1541 pOut->pScopyFrom = pIn1; 1542 pOut->mScopyFlags = pIn1->flags; 1543 #endif 1544 break; 1545 } 1546 1547 /* Opcode: IntCopy P1 P2 * * * 1548 ** Synopsis: r[P2]=r[P1] 1549 ** 1550 ** Transfer the integer value held in register P1 into register P2. 1551 ** 1552 ** This is an optimized version of SCopy that works only for integer 1553 ** values. 1554 */ 1555 case OP_IntCopy: { /* out2 */ 1556 pIn1 = &aMem[pOp->p1]; 1557 assert( (pIn1->flags & MEM_Int)!=0 ); 1558 pOut = &aMem[pOp->p2]; 1559 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1560 break; 1561 } 1562 1563 /* Opcode: FkCheck * * * * * 1564 ** 1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1566 ** foreign key constraint violations. If there are no foreign key 1567 ** constraint violations, this is a no-op. 1568 ** 1569 ** FK constraint violations are also checked when the prepared statement 1570 ** exits. This opcode is used to raise foreign key constraint errors prior 1571 ** to returning results such as a row change count or the result of a 1572 ** RETURNING clause. 1573 */ 1574 case OP_FkCheck: { 1575 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1576 goto abort_due_to_error; 1577 } 1578 break; 1579 } 1580 1581 /* Opcode: ResultRow P1 P2 * * * 1582 ** Synopsis: output=r[P1@P2] 1583 ** 1584 ** The registers P1 through P1+P2-1 contain a single row of 1585 ** results. This opcode causes the sqlite3_step() call to terminate 1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1588 ** the result row. 1589 */ 1590 case OP_ResultRow: { 1591 assert( p->nResColumn==pOp->p2 ); 1592 assert( pOp->p1>0 || CORRUPT_DB ); 1593 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1594 1595 p->cacheCtr = (p->cacheCtr + 2)|1; 1596 p->pResultSet = &aMem[pOp->p1]; 1597 #ifdef SQLITE_DEBUG 1598 { 1599 Mem *pMem = p->pResultSet; 1600 int i; 1601 for(i=0; i<pOp->p2; i++){ 1602 assert( memIsValid(&pMem[i]) ); 1603 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1604 /* The registers in the result will not be used again when the 1605 ** prepared statement restarts. This is because sqlite3_column() 1606 ** APIs might have caused type conversions of made other changes to 1607 ** the register values. Therefore, we can go ahead and break any 1608 ** OP_SCopy dependencies. */ 1609 pMem[i].pScopyFrom = 0; 1610 } 1611 } 1612 #endif 1613 if( db->mallocFailed ) goto no_mem; 1614 if( db->mTrace & SQLITE_TRACE_ROW ){ 1615 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1616 } 1617 p->pc = (int)(pOp - aOp) + 1; 1618 rc = SQLITE_ROW; 1619 goto vdbe_return; 1620 } 1621 1622 /* Opcode: Concat P1 P2 P3 * * 1623 ** Synopsis: r[P3]=r[P2]+r[P1] 1624 ** 1625 ** Add the text in register P1 onto the end of the text in 1626 ** register P2 and store the result in register P3. 1627 ** If either the P1 or P2 text are NULL then store NULL in P3. 1628 ** 1629 ** P3 = P2 || P1 1630 ** 1631 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1632 ** if P3 is the same register as P2, the implementation is able 1633 ** to avoid a memcpy(). 1634 */ 1635 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1636 i64 nByte; /* Total size of the output string or blob */ 1637 u16 flags1; /* Initial flags for P1 */ 1638 u16 flags2; /* Initial flags for P2 */ 1639 1640 pIn1 = &aMem[pOp->p1]; 1641 pIn2 = &aMem[pOp->p2]; 1642 pOut = &aMem[pOp->p3]; 1643 testcase( pOut==pIn2 ); 1644 assert( pIn1!=pOut ); 1645 flags1 = pIn1->flags; 1646 testcase( flags1 & MEM_Null ); 1647 testcase( pIn2->flags & MEM_Null ); 1648 if( (flags1 | pIn2->flags) & MEM_Null ){ 1649 sqlite3VdbeMemSetNull(pOut); 1650 break; 1651 } 1652 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1653 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1654 flags1 = pIn1->flags & ~MEM_Str; 1655 }else if( (flags1 & MEM_Zero)!=0 ){ 1656 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1657 flags1 = pIn1->flags & ~MEM_Str; 1658 } 1659 flags2 = pIn2->flags; 1660 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1661 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1662 flags2 = pIn2->flags & ~MEM_Str; 1663 }else if( (flags2 & MEM_Zero)!=0 ){ 1664 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1665 flags2 = pIn2->flags & ~MEM_Str; 1666 } 1667 nByte = pIn1->n + pIn2->n; 1668 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1669 goto too_big; 1670 } 1671 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1672 goto no_mem; 1673 } 1674 MemSetTypeFlag(pOut, MEM_Str); 1675 if( pOut!=pIn2 ){ 1676 memcpy(pOut->z, pIn2->z, pIn2->n); 1677 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1678 pIn2->flags = flags2; 1679 } 1680 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1681 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1682 pIn1->flags = flags1; 1683 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 1684 pOut->z[nByte]=0; 1685 pOut->z[nByte+1] = 0; 1686 pOut->flags |= MEM_Term; 1687 pOut->n = (int)nByte; 1688 pOut->enc = encoding; 1689 UPDATE_MAX_BLOBSIZE(pOut); 1690 break; 1691 } 1692 1693 /* Opcode: Add P1 P2 P3 * * 1694 ** Synopsis: r[P3]=r[P1]+r[P2] 1695 ** 1696 ** Add the value in register P1 to the value in register P2 1697 ** and store the result in register P3. 1698 ** If either input is NULL, the result is NULL. 1699 */ 1700 /* Opcode: Multiply P1 P2 P3 * * 1701 ** Synopsis: r[P3]=r[P1]*r[P2] 1702 ** 1703 ** 1704 ** Multiply the value in register P1 by the value in register P2 1705 ** and store the result in register P3. 1706 ** If either input is NULL, the result is NULL. 1707 */ 1708 /* Opcode: Subtract P1 P2 P3 * * 1709 ** Synopsis: r[P3]=r[P2]-r[P1] 1710 ** 1711 ** Subtract the value in register P1 from the value in register P2 1712 ** and store the result in register P3. 1713 ** If either input is NULL, the result is NULL. 1714 */ 1715 /* Opcode: Divide P1 P2 P3 * * 1716 ** Synopsis: r[P3]=r[P2]/r[P1] 1717 ** 1718 ** Divide the value in register P1 by the value in register P2 1719 ** and store the result in register P3 (P3=P2/P1). If the value in 1720 ** register P1 is zero, then the result is NULL. If either input is 1721 ** NULL, the result is NULL. 1722 */ 1723 /* Opcode: Remainder P1 P2 P3 * * 1724 ** Synopsis: r[P3]=r[P2]%r[P1] 1725 ** 1726 ** Compute the remainder after integer register P2 is divided by 1727 ** register P1 and store the result in register P3. 1728 ** If the value in register P1 is zero the result is NULL. 1729 ** If either operand is NULL, the result is NULL. 1730 */ 1731 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1732 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1733 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1734 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1735 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1736 u16 type1; /* Numeric type of left operand */ 1737 u16 type2; /* Numeric type of right operand */ 1738 i64 iA; /* Integer value of left operand */ 1739 i64 iB; /* Integer value of right operand */ 1740 double rA; /* Real value of left operand */ 1741 double rB; /* Real value of right operand */ 1742 1743 pIn1 = &aMem[pOp->p1]; 1744 type1 = pIn1->flags; 1745 pIn2 = &aMem[pOp->p2]; 1746 type2 = pIn2->flags; 1747 pOut = &aMem[pOp->p3]; 1748 if( (type1 & type2 & MEM_Int)!=0 ){ 1749 int_math: 1750 iA = pIn1->u.i; 1751 iB = pIn2->u.i; 1752 switch( pOp->opcode ){ 1753 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1754 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1755 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1756 case OP_Divide: { 1757 if( iA==0 ) goto arithmetic_result_is_null; 1758 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1759 iB /= iA; 1760 break; 1761 } 1762 default: { 1763 if( iA==0 ) goto arithmetic_result_is_null; 1764 if( iA==-1 ) iA = 1; 1765 iB %= iA; 1766 break; 1767 } 1768 } 1769 pOut->u.i = iB; 1770 MemSetTypeFlag(pOut, MEM_Int); 1771 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 1772 goto arithmetic_result_is_null; 1773 }else{ 1774 type1 = numericType(pIn1); 1775 type2 = numericType(pIn2); 1776 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 1777 fp_math: 1778 rA = sqlite3VdbeRealValue(pIn1); 1779 rB = sqlite3VdbeRealValue(pIn2); 1780 switch( pOp->opcode ){ 1781 case OP_Add: rB += rA; break; 1782 case OP_Subtract: rB -= rA; break; 1783 case OP_Multiply: rB *= rA; break; 1784 case OP_Divide: { 1785 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1786 if( rA==(double)0 ) goto arithmetic_result_is_null; 1787 rB /= rA; 1788 break; 1789 } 1790 default: { 1791 iA = sqlite3VdbeIntValue(pIn1); 1792 iB = sqlite3VdbeIntValue(pIn2); 1793 if( iA==0 ) goto arithmetic_result_is_null; 1794 if( iA==-1 ) iA = 1; 1795 rB = (double)(iB % iA); 1796 break; 1797 } 1798 } 1799 #ifdef SQLITE_OMIT_FLOATING_POINT 1800 pOut->u.i = rB; 1801 MemSetTypeFlag(pOut, MEM_Int); 1802 #else 1803 if( sqlite3IsNaN(rB) ){ 1804 goto arithmetic_result_is_null; 1805 } 1806 pOut->u.r = rB; 1807 MemSetTypeFlag(pOut, MEM_Real); 1808 #endif 1809 } 1810 break; 1811 1812 arithmetic_result_is_null: 1813 sqlite3VdbeMemSetNull(pOut); 1814 break; 1815 } 1816 1817 /* Opcode: CollSeq P1 * * P4 1818 ** 1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1821 ** be returned. This is used by the built-in min(), max() and nullif() 1822 ** functions. 1823 ** 1824 ** If P1 is not zero, then it is a register that a subsequent min() or 1825 ** max() aggregate will set to 1 if the current row is not the minimum or 1826 ** maximum. The P1 register is initialized to 0 by this instruction. 1827 ** 1828 ** The interface used by the implementation of the aforementioned functions 1829 ** to retrieve the collation sequence set by this opcode is not available 1830 ** publicly. Only built-in functions have access to this feature. 1831 */ 1832 case OP_CollSeq: { 1833 assert( pOp->p4type==P4_COLLSEQ ); 1834 if( pOp->p1 ){ 1835 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1836 } 1837 break; 1838 } 1839 1840 /* Opcode: BitAnd P1 P2 P3 * * 1841 ** Synopsis: r[P3]=r[P1]&r[P2] 1842 ** 1843 ** Take the bit-wise AND of the values in register P1 and P2 and 1844 ** store the result in register P3. 1845 ** If either input is NULL, the result is NULL. 1846 */ 1847 /* Opcode: BitOr P1 P2 P3 * * 1848 ** Synopsis: r[P3]=r[P1]|r[P2] 1849 ** 1850 ** Take the bit-wise OR of the values in register P1 and P2 and 1851 ** store the result in register P3. 1852 ** If either input is NULL, the result is NULL. 1853 */ 1854 /* Opcode: ShiftLeft P1 P2 P3 * * 1855 ** Synopsis: r[P3]=r[P2]<<r[P1] 1856 ** 1857 ** Shift the integer value in register P2 to the left by the 1858 ** number of bits specified by the integer in register P1. 1859 ** Store the result in register P3. 1860 ** If either input is NULL, the result is NULL. 1861 */ 1862 /* Opcode: ShiftRight P1 P2 P3 * * 1863 ** Synopsis: r[P3]=r[P2]>>r[P1] 1864 ** 1865 ** Shift the integer value in register P2 to the right by the 1866 ** number of bits specified by the integer in register P1. 1867 ** Store the result in register P3. 1868 ** If either input is NULL, the result is NULL. 1869 */ 1870 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1871 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1872 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1873 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1874 i64 iA; 1875 u64 uA; 1876 i64 iB; 1877 u8 op; 1878 1879 pIn1 = &aMem[pOp->p1]; 1880 pIn2 = &aMem[pOp->p2]; 1881 pOut = &aMem[pOp->p3]; 1882 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1883 sqlite3VdbeMemSetNull(pOut); 1884 break; 1885 } 1886 iA = sqlite3VdbeIntValue(pIn2); 1887 iB = sqlite3VdbeIntValue(pIn1); 1888 op = pOp->opcode; 1889 if( op==OP_BitAnd ){ 1890 iA &= iB; 1891 }else if( op==OP_BitOr ){ 1892 iA |= iB; 1893 }else if( iB!=0 ){ 1894 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1895 1896 /* If shifting by a negative amount, shift in the other direction */ 1897 if( iB<0 ){ 1898 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1899 op = 2*OP_ShiftLeft + 1 - op; 1900 iB = iB>(-64) ? -iB : 64; 1901 } 1902 1903 if( iB>=64 ){ 1904 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1905 }else{ 1906 memcpy(&uA, &iA, sizeof(uA)); 1907 if( op==OP_ShiftLeft ){ 1908 uA <<= iB; 1909 }else{ 1910 uA >>= iB; 1911 /* Sign-extend on a right shift of a negative number */ 1912 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1913 } 1914 memcpy(&iA, &uA, sizeof(iA)); 1915 } 1916 } 1917 pOut->u.i = iA; 1918 MemSetTypeFlag(pOut, MEM_Int); 1919 break; 1920 } 1921 1922 /* Opcode: AddImm P1 P2 * * * 1923 ** Synopsis: r[P1]=r[P1]+P2 1924 ** 1925 ** Add the constant P2 to the value in register P1. 1926 ** The result is always an integer. 1927 ** 1928 ** To force any register to be an integer, just add 0. 1929 */ 1930 case OP_AddImm: { /* in1 */ 1931 pIn1 = &aMem[pOp->p1]; 1932 memAboutToChange(p, pIn1); 1933 sqlite3VdbeMemIntegerify(pIn1); 1934 pIn1->u.i += pOp->p2; 1935 break; 1936 } 1937 1938 /* Opcode: MustBeInt P1 P2 * * * 1939 ** 1940 ** Force the value in register P1 to be an integer. If the value 1941 ** in P1 is not an integer and cannot be converted into an integer 1942 ** without data loss, then jump immediately to P2, or if P2==0 1943 ** raise an SQLITE_MISMATCH exception. 1944 */ 1945 case OP_MustBeInt: { /* jump, in1 */ 1946 pIn1 = &aMem[pOp->p1]; 1947 if( (pIn1->flags & MEM_Int)==0 ){ 1948 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1949 if( (pIn1->flags & MEM_Int)==0 ){ 1950 VdbeBranchTaken(1, 2); 1951 if( pOp->p2==0 ){ 1952 rc = SQLITE_MISMATCH; 1953 goto abort_due_to_error; 1954 }else{ 1955 goto jump_to_p2; 1956 } 1957 } 1958 } 1959 VdbeBranchTaken(0, 2); 1960 MemSetTypeFlag(pIn1, MEM_Int); 1961 break; 1962 } 1963 1964 #ifndef SQLITE_OMIT_FLOATING_POINT 1965 /* Opcode: RealAffinity P1 * * * * 1966 ** 1967 ** If register P1 holds an integer convert it to a real value. 1968 ** 1969 ** This opcode is used when extracting information from a column that 1970 ** has REAL affinity. Such column values may still be stored as 1971 ** integers, for space efficiency, but after extraction we want them 1972 ** to have only a real value. 1973 */ 1974 case OP_RealAffinity: { /* in1 */ 1975 pIn1 = &aMem[pOp->p1]; 1976 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1977 testcase( pIn1->flags & MEM_Int ); 1978 testcase( pIn1->flags & MEM_IntReal ); 1979 sqlite3VdbeMemRealify(pIn1); 1980 REGISTER_TRACE(pOp->p1, pIn1); 1981 } 1982 break; 1983 } 1984 #endif 1985 1986 #ifndef SQLITE_OMIT_CAST 1987 /* Opcode: Cast P1 P2 * * * 1988 ** Synopsis: affinity(r[P1]) 1989 ** 1990 ** Force the value in register P1 to be the type defined by P2. 1991 ** 1992 ** <ul> 1993 ** <li> P2=='A' → BLOB 1994 ** <li> P2=='B' → TEXT 1995 ** <li> P2=='C' → NUMERIC 1996 ** <li> P2=='D' → INTEGER 1997 ** <li> P2=='E' → REAL 1998 ** </ul> 1999 ** 2000 ** A NULL value is not changed by this routine. It remains NULL. 2001 */ 2002 case OP_Cast: { /* in1 */ 2003 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 2004 testcase( pOp->p2==SQLITE_AFF_TEXT ); 2005 testcase( pOp->p2==SQLITE_AFF_BLOB ); 2006 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 2007 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 2008 testcase( pOp->p2==SQLITE_AFF_REAL ); 2009 pIn1 = &aMem[pOp->p1]; 2010 memAboutToChange(p, pIn1); 2011 rc = ExpandBlob(pIn1); 2012 if( rc ) goto abort_due_to_error; 2013 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 2014 if( rc ) goto abort_due_to_error; 2015 UPDATE_MAX_BLOBSIZE(pIn1); 2016 REGISTER_TRACE(pOp->p1, pIn1); 2017 break; 2018 } 2019 #endif /* SQLITE_OMIT_CAST */ 2020 2021 /* Opcode: Eq P1 P2 P3 P4 P5 2022 ** Synopsis: IF r[P3]==r[P1] 2023 ** 2024 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 2025 ** jump to address P2. 2026 ** 2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2029 ** to coerce both inputs according to this affinity before the 2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2031 ** affinity is used. Note that the affinity conversions are stored 2032 ** back into the input registers P1 and P3. So this opcode can cause 2033 ** persistent changes to registers P1 and P3. 2034 ** 2035 ** Once any conversions have taken place, and neither value is NULL, 2036 ** the values are compared. If both values are blobs then memcmp() is 2037 ** used to determine the results of the comparison. If both values 2038 ** are text, then the appropriate collating function specified in 2039 ** P4 is used to do the comparison. If P4 is not specified then 2040 ** memcmp() is used to compare text string. If both values are 2041 ** numeric, then a numeric comparison is used. If the two values 2042 ** are of different types, then numbers are considered less than 2043 ** strings and strings are considered less than blobs. 2044 ** 2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2046 ** true or false and is never NULL. If both operands are NULL then the result 2047 ** of comparison is true. If either operand is NULL then the result is false. 2048 ** If neither operand is NULL the result is the same as it would be if 2049 ** the SQLITE_NULLEQ flag were omitted from P5. 2050 ** 2051 ** This opcode saves the result of comparison for use by the new 2052 ** OP_Jump opcode. 2053 */ 2054 /* Opcode: Ne P1 P2 P3 P4 P5 2055 ** Synopsis: IF r[P3]!=r[P1] 2056 ** 2057 ** This works just like the Eq opcode except that the jump is taken if 2058 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2059 ** additional information. 2060 */ 2061 /* Opcode: Lt P1 P2 P3 P4 P5 2062 ** Synopsis: IF r[P3]<r[P1] 2063 ** 2064 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2065 ** jump to address P2. 2066 ** 2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2068 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2069 ** bit is clear then fall through if either operand is NULL. 2070 ** 2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2073 ** to coerce both inputs according to this affinity before the 2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2075 ** affinity is used. Note that the affinity conversions are stored 2076 ** back into the input registers P1 and P3. So this opcode can cause 2077 ** persistent changes to registers P1 and P3. 2078 ** 2079 ** Once any conversions have taken place, and neither value is NULL, 2080 ** the values are compared. If both values are blobs then memcmp() is 2081 ** used to determine the results of the comparison. If both values 2082 ** are text, then the appropriate collating function specified in 2083 ** P4 is used to do the comparison. If P4 is not specified then 2084 ** memcmp() is used to compare text string. If both values are 2085 ** numeric, then a numeric comparison is used. If the two values 2086 ** are of different types, then numbers are considered less than 2087 ** strings and strings are considered less than blobs. 2088 ** 2089 ** This opcode saves the result of comparison for use by the new 2090 ** OP_Jump opcode. 2091 */ 2092 /* Opcode: Le P1 P2 P3 P4 P5 2093 ** Synopsis: IF r[P3]<=r[P1] 2094 ** 2095 ** This works just like the Lt opcode except that the jump is taken if 2096 ** the content of register P3 is less than or equal to the content of 2097 ** register P1. See the Lt opcode for additional information. 2098 */ 2099 /* Opcode: Gt P1 P2 P3 P4 P5 2100 ** Synopsis: IF r[P3]>r[P1] 2101 ** 2102 ** This works just like the Lt opcode except that the jump is taken if 2103 ** the content of register P3 is greater than the content of 2104 ** register P1. See the Lt opcode for additional information. 2105 */ 2106 /* Opcode: Ge P1 P2 P3 P4 P5 2107 ** Synopsis: IF r[P3]>=r[P1] 2108 ** 2109 ** This works just like the Lt opcode except that the jump is taken if 2110 ** the content of register P3 is greater than or equal to the content of 2111 ** register P1. See the Lt opcode for additional information. 2112 */ 2113 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2114 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2115 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2116 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2117 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2118 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2119 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2120 char affinity; /* Affinity to use for comparison */ 2121 u16 flags1; /* Copy of initial value of pIn1->flags */ 2122 u16 flags3; /* Copy of initial value of pIn3->flags */ 2123 2124 pIn1 = &aMem[pOp->p1]; 2125 pIn3 = &aMem[pOp->p3]; 2126 flags1 = pIn1->flags; 2127 flags3 = pIn3->flags; 2128 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2129 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2130 /* Common case of comparison of two integers */ 2131 if( pIn3->u.i > pIn1->u.i ){ 2132 if( sqlite3aGTb[pOp->opcode] ){ 2133 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2134 goto jump_to_p2; 2135 } 2136 iCompare = +1; 2137 }else if( pIn3->u.i < pIn1->u.i ){ 2138 if( sqlite3aLTb[pOp->opcode] ){ 2139 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2140 goto jump_to_p2; 2141 } 2142 iCompare = -1; 2143 }else{ 2144 if( sqlite3aEQb[pOp->opcode] ){ 2145 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2146 goto jump_to_p2; 2147 } 2148 iCompare = 0; 2149 } 2150 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2151 break; 2152 } 2153 if( (flags1 | flags3)&MEM_Null ){ 2154 /* One or both operands are NULL */ 2155 if( pOp->p5 & SQLITE_NULLEQ ){ 2156 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2157 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2158 ** or not both operands are null. 2159 */ 2160 assert( (flags1 & MEM_Cleared)==0 ); 2161 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2162 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2163 if( (flags1&flags3&MEM_Null)!=0 2164 && (flags3&MEM_Cleared)==0 2165 ){ 2166 res = 0; /* Operands are equal */ 2167 }else{ 2168 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2169 } 2170 }else{ 2171 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2172 ** then the result is always NULL. 2173 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2174 */ 2175 VdbeBranchTaken(2,3); 2176 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2177 goto jump_to_p2; 2178 } 2179 iCompare = 1; /* Operands are not equal */ 2180 break; 2181 } 2182 }else{ 2183 /* Neither operand is NULL and we couldn't do the special high-speed 2184 ** integer comparison case. So do a general-case comparison. */ 2185 affinity = pOp->p5 & SQLITE_AFF_MASK; 2186 if( affinity>=SQLITE_AFF_NUMERIC ){ 2187 if( (flags1 | flags3)&MEM_Str ){ 2188 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2189 applyNumericAffinity(pIn1,0); 2190 testcase( flags3==pIn3->flags ); 2191 flags3 = pIn3->flags; 2192 } 2193 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2194 applyNumericAffinity(pIn3,0); 2195 } 2196 } 2197 }else if( affinity==SQLITE_AFF_TEXT ){ 2198 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2199 testcase( pIn1->flags & MEM_Int ); 2200 testcase( pIn1->flags & MEM_Real ); 2201 testcase( pIn1->flags & MEM_IntReal ); 2202 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2203 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2204 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2205 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2206 } 2207 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2208 testcase( pIn3->flags & MEM_Int ); 2209 testcase( pIn3->flags & MEM_Real ); 2210 testcase( pIn3->flags & MEM_IntReal ); 2211 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2212 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2213 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2214 } 2215 } 2216 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2217 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2218 } 2219 2220 /* At this point, res is negative, zero, or positive if reg[P1] is 2221 ** less than, equal to, or greater than reg[P3], respectively. Compute 2222 ** the answer to this operator in res2, depending on what the comparison 2223 ** operator actually is. The next block of code depends on the fact 2224 ** that the 6 comparison operators are consecutive integers in this 2225 ** order: NE, EQ, GT, LE, LT, GE */ 2226 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2227 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2228 if( res<0 ){ 2229 res2 = sqlite3aLTb[pOp->opcode]; 2230 }else if( res==0 ){ 2231 res2 = sqlite3aEQb[pOp->opcode]; 2232 }else{ 2233 res2 = sqlite3aGTb[pOp->opcode]; 2234 } 2235 iCompare = res; 2236 2237 /* Undo any changes made by applyAffinity() to the input registers. */ 2238 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2239 pIn3->flags = flags3; 2240 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2241 pIn1->flags = flags1; 2242 2243 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2244 if( res2 ){ 2245 goto jump_to_p2; 2246 } 2247 break; 2248 } 2249 2250 /* Opcode: ElseEq * P2 * * * 2251 ** 2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2254 ** opcodes are allowed to occur between this instruction and the previous 2255 ** OP_Lt or OP_Gt. 2256 ** 2257 ** If result of an OP_Eq comparison on the same two operands as the 2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2259 ** If the result of an OP_Eq comparison on the two previous 2260 ** operands would have been false or NULL, then fall through. 2261 */ 2262 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2263 2264 #ifdef SQLITE_DEBUG 2265 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2266 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2267 int iAddr; 2268 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2269 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2270 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2271 break; 2272 } 2273 #endif /* SQLITE_DEBUG */ 2274 VdbeBranchTaken(iCompare==0, 2); 2275 if( iCompare==0 ) goto jump_to_p2; 2276 break; 2277 } 2278 2279 2280 /* Opcode: Permutation * * * P4 * 2281 ** 2282 ** Set the permutation used by the OP_Compare operator in the next 2283 ** instruction. The permutation is stored in the P4 operand. 2284 ** 2285 ** The permutation is only valid for the next opcode which must be 2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 2287 ** 2288 ** The first integer in the P4 integer array is the length of the array 2289 ** and does not become part of the permutation. 2290 */ 2291 case OP_Permutation: { 2292 assert( pOp->p4type==P4_INTARRAY ); 2293 assert( pOp->p4.ai ); 2294 assert( pOp[1].opcode==OP_Compare ); 2295 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2296 break; 2297 } 2298 2299 /* Opcode: Compare P1 P2 P3 P4 P5 2300 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2301 ** 2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2304 ** the comparison for use by the next OP_Jump instruct. 2305 ** 2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2307 ** determined by the most recent OP_Permutation operator. If the 2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2309 ** order. 2310 ** 2311 ** P4 is a KeyInfo structure that defines collating sequences and sort 2312 ** orders for the comparison. The permutation applies to registers 2313 ** only. The KeyInfo elements are used sequentially. 2314 ** 2315 ** The comparison is a sort comparison, so NULLs compare equal, 2316 ** NULLs are less than numbers, numbers are less than strings, 2317 ** and strings are less than blobs. 2318 ** 2319 ** This opcode must be immediately followed by an OP_Jump opcode. 2320 */ 2321 case OP_Compare: { 2322 int n; 2323 int i; 2324 int p1; 2325 int p2; 2326 const KeyInfo *pKeyInfo; 2327 u32 idx; 2328 CollSeq *pColl; /* Collating sequence to use on this term */ 2329 int bRev; /* True for DESCENDING sort order */ 2330 u32 *aPermute; /* The permutation */ 2331 2332 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2333 aPermute = 0; 2334 }else{ 2335 assert( pOp>aOp ); 2336 assert( pOp[-1].opcode==OP_Permutation ); 2337 assert( pOp[-1].p4type==P4_INTARRAY ); 2338 aPermute = pOp[-1].p4.ai + 1; 2339 assert( aPermute!=0 ); 2340 } 2341 n = pOp->p3; 2342 pKeyInfo = pOp->p4.pKeyInfo; 2343 assert( n>0 ); 2344 assert( pKeyInfo!=0 ); 2345 p1 = pOp->p1; 2346 p2 = pOp->p2; 2347 #ifdef SQLITE_DEBUG 2348 if( aPermute ){ 2349 int k, mx = 0; 2350 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2351 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2352 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2353 }else{ 2354 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2355 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2356 } 2357 #endif /* SQLITE_DEBUG */ 2358 for(i=0; i<n; i++){ 2359 idx = aPermute ? aPermute[i] : (u32)i; 2360 assert( memIsValid(&aMem[p1+idx]) ); 2361 assert( memIsValid(&aMem[p2+idx]) ); 2362 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2363 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2364 assert( i<pKeyInfo->nKeyField ); 2365 pColl = pKeyInfo->aColl[i]; 2366 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2367 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2368 if( iCompare ){ 2369 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2370 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2371 ){ 2372 iCompare = -iCompare; 2373 } 2374 if( bRev ) iCompare = -iCompare; 2375 break; 2376 } 2377 } 2378 assert( pOp[1].opcode==OP_Jump ); 2379 break; 2380 } 2381 2382 /* Opcode: Jump P1 P2 P3 * * 2383 ** 2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2385 ** in the most recent OP_Compare instruction the P1 vector was less than 2386 ** equal to, or greater than the P2 vector, respectively. 2387 ** 2388 ** This opcode must immediately follow an OP_Compare opcode. 2389 */ 2390 case OP_Jump: { /* jump */ 2391 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 2392 if( iCompare<0 ){ 2393 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2394 }else if( iCompare==0 ){ 2395 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2396 }else{ 2397 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2398 } 2399 break; 2400 } 2401 2402 /* Opcode: And P1 P2 P3 * * 2403 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2404 ** 2405 ** Take the logical AND of the values in registers P1 and P2 and 2406 ** write the result into register P3. 2407 ** 2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2409 ** the other input is NULL. A NULL and true or two NULLs give 2410 ** a NULL output. 2411 */ 2412 /* Opcode: Or P1 P2 P3 * * 2413 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2414 ** 2415 ** Take the logical OR of the values in register P1 and P2 and 2416 ** store the answer in register P3. 2417 ** 2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2419 ** even if the other input is NULL. A NULL and false or two NULLs 2420 ** give a NULL output. 2421 */ 2422 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2423 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2424 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2425 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2426 2427 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2428 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2429 if( pOp->opcode==OP_And ){ 2430 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2431 v1 = and_logic[v1*3+v2]; 2432 }else{ 2433 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2434 v1 = or_logic[v1*3+v2]; 2435 } 2436 pOut = &aMem[pOp->p3]; 2437 if( v1==2 ){ 2438 MemSetTypeFlag(pOut, MEM_Null); 2439 }else{ 2440 pOut->u.i = v1; 2441 MemSetTypeFlag(pOut, MEM_Int); 2442 } 2443 break; 2444 } 2445 2446 /* Opcode: IsTrue P1 P2 P3 P4 * 2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2448 ** 2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2450 ** IS NOT FALSE operators. 2451 ** 2452 ** Interpret the value in register P1 as a boolean value. Store that 2453 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2454 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2455 ** is 1. 2456 ** 2457 ** The logic is summarized like this: 2458 ** 2459 ** <ul> 2460 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2461 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2462 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2463 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2464 ** </ul> 2465 */ 2466 case OP_IsTrue: { /* in1, out2 */ 2467 assert( pOp->p4type==P4_INT32 ); 2468 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2469 assert( pOp->p3==0 || pOp->p3==1 ); 2470 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2471 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2472 break; 2473 } 2474 2475 /* Opcode: Not P1 P2 * * * 2476 ** Synopsis: r[P2]= !r[P1] 2477 ** 2478 ** Interpret the value in register P1 as a boolean value. Store the 2479 ** boolean complement in register P2. If the value in register P1 is 2480 ** NULL, then a NULL is stored in P2. 2481 */ 2482 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2483 pIn1 = &aMem[pOp->p1]; 2484 pOut = &aMem[pOp->p2]; 2485 if( (pIn1->flags & MEM_Null)==0 ){ 2486 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2487 }else{ 2488 sqlite3VdbeMemSetNull(pOut); 2489 } 2490 break; 2491 } 2492 2493 /* Opcode: BitNot P1 P2 * * * 2494 ** Synopsis: r[P2]= ~r[P1] 2495 ** 2496 ** Interpret the content of register P1 as an integer. Store the 2497 ** ones-complement of the P1 value into register P2. If P1 holds 2498 ** a NULL then store a NULL in P2. 2499 */ 2500 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2501 pIn1 = &aMem[pOp->p1]; 2502 pOut = &aMem[pOp->p2]; 2503 sqlite3VdbeMemSetNull(pOut); 2504 if( (pIn1->flags & MEM_Null)==0 ){ 2505 pOut->flags = MEM_Int; 2506 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2507 } 2508 break; 2509 } 2510 2511 /* Opcode: Once P1 P2 * * * 2512 ** 2513 ** Fall through to the next instruction the first time this opcode is 2514 ** encountered on each invocation of the byte-code program. Jump to P2 2515 ** on the second and all subsequent encounters during the same invocation. 2516 ** 2517 ** Top-level programs determine first invocation by comparing the P1 2518 ** operand against the P1 operand on the OP_Init opcode at the beginning 2519 ** of the program. If the P1 values differ, then fall through and make 2520 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2521 ** the same then take the jump. 2522 ** 2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2524 ** whether or not the jump should be taken. The bitmask is necessary 2525 ** because the self-altering code trick does not work for recursive 2526 ** triggers. 2527 */ 2528 case OP_Once: { /* jump */ 2529 u32 iAddr; /* Address of this instruction */ 2530 assert( p->aOp[0].opcode==OP_Init ); 2531 if( p->pFrame ){ 2532 iAddr = (int)(pOp - p->aOp); 2533 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2534 VdbeBranchTaken(1, 2); 2535 goto jump_to_p2; 2536 } 2537 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2538 }else{ 2539 if( p->aOp[0].p1==pOp->p1 ){ 2540 VdbeBranchTaken(1, 2); 2541 goto jump_to_p2; 2542 } 2543 } 2544 VdbeBranchTaken(0, 2); 2545 pOp->p1 = p->aOp[0].p1; 2546 break; 2547 } 2548 2549 /* Opcode: If P1 P2 P3 * * 2550 ** 2551 ** Jump to P2 if the value in register P1 is true. The value 2552 ** is considered true if it is numeric and non-zero. If the value 2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2554 */ 2555 case OP_If: { /* jump, in1 */ 2556 int c; 2557 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2558 VdbeBranchTaken(c!=0, 2); 2559 if( c ) goto jump_to_p2; 2560 break; 2561 } 2562 2563 /* Opcode: IfNot P1 P2 P3 * * 2564 ** 2565 ** Jump to P2 if the value in register P1 is False. The value 2566 ** is considered false if it has a numeric value of zero. If the value 2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2568 */ 2569 case OP_IfNot: { /* jump, in1 */ 2570 int c; 2571 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2572 VdbeBranchTaken(c!=0, 2); 2573 if( c ) goto jump_to_p2; 2574 break; 2575 } 2576 2577 /* Opcode: IsNull P1 P2 * * * 2578 ** Synopsis: if r[P1]==NULL goto P2 2579 ** 2580 ** Jump to P2 if the value in register P1 is NULL. 2581 */ 2582 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2583 pIn1 = &aMem[pOp->p1]; 2584 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2585 if( (pIn1->flags & MEM_Null)!=0 ){ 2586 goto jump_to_p2; 2587 } 2588 break; 2589 } 2590 2591 /* Opcode: IsType P1 P2 P3 P4 P5 2592 ** Synopsis: if typeof(P1.P3) in P5 goto P2 2593 ** 2594 ** Jump to P2 if the type of a column in a btree is one of the types specified 2595 ** by the P5 bitmask. 2596 ** 2597 ** P1 is normally a cursor on a btree for which the row decode cache is 2598 ** valid through at least column P3. In other words, there should have been 2599 ** a prior OP_Column for column P3 or greater. If the cursor is not valid, 2600 ** then this opcode might give spurious results. 2601 ** The the btree row has fewer than P3 columns, then use P4 as the 2602 ** datatype. 2603 ** 2604 ** If P1 is -1, then P3 is a register number and the datatype is taken 2605 ** from the value in that register. 2606 ** 2607 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant 2608 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. 2609 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. 2610 ** 2611 ** Take the jump to address P2 if and only if the datatype of the 2612 ** value determined by P1 and P3 corresponds to one of the bits in the 2613 ** P5 bitmask. 2614 ** 2615 */ 2616 case OP_IsType: { /* jump */ 2617 VdbeCursor *pC; 2618 u16 typeMask; 2619 u32 serialType; 2620 2621 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor ); 2622 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); 2623 if( pOp->p1>=0 ){ 2624 pC = p->apCsr[pOp->p1]; 2625 assert( pC!=0 ); 2626 assert( pOp->p3>=0 ); 2627 if( pOp->p3<pC->nHdrParsed ){ 2628 serialType = pC->aType[pOp->p3]; 2629 if( serialType>=12 ){ 2630 if( serialType&1 ){ 2631 typeMask = 0x04; /* SQLITE_TEXT */ 2632 }else{ 2633 typeMask = 0x08; /* SQLITE_BLOB */ 2634 } 2635 }else{ 2636 static const unsigned char aMask[] = { 2637 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 2638 0x01, 0x01, 0x10, 0x10 2639 }; 2640 testcase( serialType==0 ); 2641 testcase( serialType==1 ); 2642 testcase( serialType==2 ); 2643 testcase( serialType==3 ); 2644 testcase( serialType==4 ); 2645 testcase( serialType==5 ); 2646 testcase( serialType==6 ); 2647 testcase( serialType==7 ); 2648 testcase( serialType==8 ); 2649 testcase( serialType==9 ); 2650 testcase( serialType==10 ); 2651 testcase( serialType==11 ); 2652 typeMask = aMask[serialType]; 2653 } 2654 }else{ 2655 typeMask = 1 << (pOp->p4.i - 1); 2656 testcase( typeMask==0x01 ); 2657 testcase( typeMask==0x02 ); 2658 testcase( typeMask==0x04 ); 2659 testcase( typeMask==0x08 ); 2660 testcase( typeMask==0x10 ); 2661 } 2662 }else{ 2663 assert( memIsValid(&aMem[pOp->p3]) ); 2664 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); 2665 testcase( typeMask==0x01 ); 2666 testcase( typeMask==0x02 ); 2667 testcase( typeMask==0x04 ); 2668 testcase( typeMask==0x08 ); 2669 testcase( typeMask==0x10 ); 2670 } 2671 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); 2672 if( typeMask & pOp->p5 ){ 2673 goto jump_to_p2; 2674 } 2675 break; 2676 } 2677 2678 /* Opcode: ZeroOrNull P1 P2 P3 * * 2679 ** Synopsis: r[P2] = 0 OR NULL 2680 ** 2681 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2682 ** register P2. If either registers P1 or P3 are NULL then put 2683 ** a NULL in register P2. 2684 */ 2685 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2686 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2687 || (aMem[pOp->p3].flags & MEM_Null)!=0 2688 ){ 2689 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2690 }else{ 2691 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2692 } 2693 break; 2694 } 2695 2696 /* Opcode: NotNull P1 P2 * * * 2697 ** Synopsis: if r[P1]!=NULL goto P2 2698 ** 2699 ** Jump to P2 if the value in register P1 is not NULL. 2700 */ 2701 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2702 pIn1 = &aMem[pOp->p1]; 2703 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2704 if( (pIn1->flags & MEM_Null)==0 ){ 2705 goto jump_to_p2; 2706 } 2707 break; 2708 } 2709 2710 /* Opcode: IfNullRow P1 P2 P3 * * 2711 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2712 ** 2713 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2714 ** If it is, then set register P3 to NULL and jump immediately to P2. 2715 ** If P1 is not on a NULL row, then fall through without making any 2716 ** changes. 2717 ** 2718 ** If P1 is not an open cursor, then this opcode is a no-op. 2719 */ 2720 case OP_IfNullRow: { /* jump */ 2721 VdbeCursor *pC; 2722 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2723 pC = p->apCsr[pOp->p1]; 2724 if( ALWAYS(pC) && pC->nullRow ){ 2725 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2726 goto jump_to_p2; 2727 } 2728 break; 2729 } 2730 2731 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2732 /* Opcode: Offset P1 P2 P3 * * 2733 ** Synopsis: r[P3] = sqlite_offset(P1) 2734 ** 2735 ** Store in register r[P3] the byte offset into the database file that is the 2736 ** start of the payload for the record at which that cursor P1 is currently 2737 ** pointing. 2738 ** 2739 ** P2 is the column number for the argument to the sqlite_offset() function. 2740 ** This opcode does not use P2 itself, but the P2 value is used by the 2741 ** code generator. The P1, P2, and P3 operands to this opcode are the 2742 ** same as for OP_Column. 2743 ** 2744 ** This opcode is only available if SQLite is compiled with the 2745 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2746 */ 2747 case OP_Offset: { /* out3 */ 2748 VdbeCursor *pC; /* The VDBE cursor */ 2749 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2750 pC = p->apCsr[pOp->p1]; 2751 pOut = &p->aMem[pOp->p3]; 2752 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 2753 sqlite3VdbeMemSetNull(pOut); 2754 }else{ 2755 if( pC->deferredMoveto ){ 2756 rc = sqlite3VdbeFinishMoveto(pC); 2757 if( rc ) goto abort_due_to_error; 2758 } 2759 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 2760 sqlite3VdbeMemSetNull(pOut); 2761 }else{ 2762 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2763 } 2764 } 2765 break; 2766 } 2767 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2768 2769 /* Opcode: Column P1 P2 P3 P4 P5 2770 ** Synopsis: r[P3]=PX cursor P1 column P2 2771 ** 2772 ** Interpret the data that cursor P1 points to as a structure built using 2773 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2774 ** information about the format of the data.) Extract the P2-th column 2775 ** from this record. If there are less than (P2+1) 2776 ** values in the record, extract a NULL. 2777 ** 2778 ** The value extracted is stored in register P3. 2779 ** 2780 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2781 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2782 ** the result. 2783 ** 2784 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed 2785 ** to only be used by the length() function or the equivalent. The content 2786 ** of large blobs is not loaded, thus saving CPU cycles. If the 2787 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the 2788 ** typeof() function or the IS NULL or IS NOT NULL operators or the 2789 ** equivalent. In this case, all content loading can be omitted. 2790 */ 2791 case OP_Column: { 2792 u32 p2; /* column number to retrieve */ 2793 VdbeCursor *pC; /* The VDBE cursor */ 2794 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2795 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2796 int len; /* The length of the serialized data for the column */ 2797 int i; /* Loop counter */ 2798 Mem *pDest; /* Where to write the extracted value */ 2799 Mem sMem; /* For storing the record being decoded */ 2800 const u8 *zData; /* Part of the record being decoded */ 2801 const u8 *zHdr; /* Next unparsed byte of the header */ 2802 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2803 u64 offset64; /* 64-bit offset */ 2804 u32 t; /* A type code from the record header */ 2805 Mem *pReg; /* PseudoTable input register */ 2806 2807 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2808 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2809 pC = p->apCsr[pOp->p1]; 2810 p2 = (u32)pOp->p2; 2811 2812 op_column_restart: 2813 assert( pC!=0 ); 2814 assert( p2<(u32)pC->nField 2815 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 2816 aOffset = pC->aOffset; 2817 assert( aOffset==pC->aType+pC->nField ); 2818 assert( pC->eCurType!=CURTYPE_VTAB ); 2819 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2820 assert( pC->eCurType!=CURTYPE_SORTER ); 2821 2822 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2823 if( pC->nullRow ){ 2824 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 2825 /* For the special case of as pseudo-cursor, the seekResult field 2826 ** identifies the register that holds the record */ 2827 pReg = &aMem[pC->seekResult]; 2828 assert( pReg->flags & MEM_Blob ); 2829 assert( memIsValid(pReg) ); 2830 pC->payloadSize = pC->szRow = pReg->n; 2831 pC->aRow = (u8*)pReg->z; 2832 }else{ 2833 pDest = &aMem[pOp->p3]; 2834 memAboutToChange(p, pDest); 2835 sqlite3VdbeMemSetNull(pDest); 2836 goto op_column_out; 2837 } 2838 }else{ 2839 pCrsr = pC->uc.pCursor; 2840 if( pC->deferredMoveto ){ 2841 u32 iMap; 2842 assert( !pC->isEphemeral ); 2843 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2844 pC = pC->pAltCursor; 2845 p2 = iMap - 1; 2846 goto op_column_restart; 2847 } 2848 rc = sqlite3VdbeFinishMoveto(pC); 2849 if( rc ) goto abort_due_to_error; 2850 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2851 rc = sqlite3VdbeHandleMovedCursor(pC); 2852 if( rc ) goto abort_due_to_error; 2853 goto op_column_restart; 2854 } 2855 assert( pC->eCurType==CURTYPE_BTREE ); 2856 assert( pCrsr ); 2857 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2858 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2859 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2860 assert( pC->szRow<=pC->payloadSize ); 2861 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2862 } 2863 pC->cacheStatus = p->cacheCtr; 2864 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 2865 pC->iHdrOffset = 1; 2866 }else{ 2867 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 2868 } 2869 pC->nHdrParsed = 0; 2870 2871 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2872 /* pC->aRow does not have to hold the entire row, but it does at least 2873 ** need to cover the header of the record. If pC->aRow does not contain 2874 ** the complete header, then set it to zero, forcing the header to be 2875 ** dynamically allocated. */ 2876 pC->aRow = 0; 2877 pC->szRow = 0; 2878 2879 /* Make sure a corrupt database has not given us an oversize header. 2880 ** Do this now to avoid an oversize memory allocation. 2881 ** 2882 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2883 ** types use so much data space that there can only be 4096 and 32 of 2884 ** them, respectively. So the maximum header length results from a 2885 ** 3-byte type for each of the maximum of 32768 columns plus three 2886 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2887 */ 2888 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2889 goto op_column_corrupt; 2890 } 2891 }else{ 2892 /* This is an optimization. By skipping over the first few tests 2893 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2894 ** measurable performance gain. 2895 ** 2896 ** This branch is taken even if aOffset[0]==0. Such a record is never 2897 ** generated by SQLite, and could be considered corruption, but we 2898 ** accept it for historical reasons. When aOffset[0]==0, the code this 2899 ** branch jumps to reads past the end of the record, but never more 2900 ** than a few bytes. Even if the record occurs at the end of the page 2901 ** content area, the "page header" comes after the page content and so 2902 ** this overread is harmless. Similar overreads can occur for a corrupt 2903 ** database file. 2904 */ 2905 zData = pC->aRow; 2906 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2907 testcase( aOffset[0]==0 ); 2908 goto op_column_read_header; 2909 } 2910 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2911 rc = sqlite3VdbeHandleMovedCursor(pC); 2912 if( rc ) goto abort_due_to_error; 2913 goto op_column_restart; 2914 } 2915 2916 /* Make sure at least the first p2+1 entries of the header have been 2917 ** parsed and valid information is in aOffset[] and pC->aType[]. 2918 */ 2919 if( pC->nHdrParsed<=p2 ){ 2920 /* If there is more header available for parsing in the record, try 2921 ** to extract additional fields up through the p2+1-th field 2922 */ 2923 if( pC->iHdrOffset<aOffset[0] ){ 2924 /* Make sure zData points to enough of the record to cover the header. */ 2925 if( pC->aRow==0 ){ 2926 memset(&sMem, 0, sizeof(sMem)); 2927 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2928 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2929 zData = (u8*)sMem.z; 2930 }else{ 2931 zData = pC->aRow; 2932 } 2933 2934 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2935 op_column_read_header: 2936 i = pC->nHdrParsed; 2937 offset64 = aOffset[i]; 2938 zHdr = zData + pC->iHdrOffset; 2939 zEndHdr = zData + aOffset[0]; 2940 testcase( zHdr>=zEndHdr ); 2941 do{ 2942 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2943 zHdr++; 2944 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2945 }else{ 2946 zHdr += sqlite3GetVarint32(zHdr, &t); 2947 pC->aType[i] = t; 2948 offset64 += sqlite3VdbeSerialTypeLen(t); 2949 } 2950 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2951 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2952 2953 /* The record is corrupt if any of the following are true: 2954 ** (1) the bytes of the header extend past the declared header size 2955 ** (2) the entire header was used but not all data was used 2956 ** (3) the end of the data extends beyond the end of the record. 2957 */ 2958 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2959 || (offset64 > pC->payloadSize) 2960 ){ 2961 if( aOffset[0]==0 ){ 2962 i = 0; 2963 zHdr = zEndHdr; 2964 }else{ 2965 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2966 goto op_column_corrupt; 2967 } 2968 } 2969 2970 pC->nHdrParsed = i; 2971 pC->iHdrOffset = (u32)(zHdr - zData); 2972 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2973 }else{ 2974 t = 0; 2975 } 2976 2977 /* If after trying to extract new entries from the header, nHdrParsed is 2978 ** still not up to p2, that means that the record has fewer than p2 2979 ** columns. So the result will be either the default value or a NULL. 2980 */ 2981 if( pC->nHdrParsed<=p2 ){ 2982 pDest = &aMem[pOp->p3]; 2983 memAboutToChange(p, pDest); 2984 if( pOp->p4type==P4_MEM ){ 2985 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2986 }else{ 2987 sqlite3VdbeMemSetNull(pDest); 2988 } 2989 goto op_column_out; 2990 } 2991 }else{ 2992 t = pC->aType[p2]; 2993 } 2994 2995 /* Extract the content for the p2+1-th column. Control can only 2996 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2997 ** all valid. 2998 */ 2999 assert( p2<pC->nHdrParsed ); 3000 assert( rc==SQLITE_OK ); 3001 pDest = &aMem[pOp->p3]; 3002 memAboutToChange(p, pDest); 3003 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 3004 if( VdbeMemDynamic(pDest) ){ 3005 sqlite3VdbeMemSetNull(pDest); 3006 } 3007 assert( t==pC->aType[p2] ); 3008 if( pC->szRow>=aOffset[p2+1] ){ 3009 /* This is the common case where the desired content fits on the original 3010 ** page - where the content is not on an overflow page */ 3011 zData = pC->aRow + aOffset[p2]; 3012 if( t<12 ){ 3013 sqlite3VdbeSerialGet(zData, t, pDest); 3014 }else{ 3015 /* If the column value is a string, we need a persistent value, not 3016 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 3017 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 3018 */ 3019 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 3020 pDest->n = len = (t-12)/2; 3021 pDest->enc = encoding; 3022 if( pDest->szMalloc < len+2 ){ 3023 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 3024 pDest->flags = MEM_Null; 3025 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 3026 }else{ 3027 pDest->z = pDest->zMalloc; 3028 } 3029 memcpy(pDest->z, zData, len); 3030 pDest->z[len] = 0; 3031 pDest->z[len+1] = 0; 3032 pDest->flags = aFlag[t&1]; 3033 } 3034 }else{ 3035 pDest->enc = encoding; 3036 /* This branch happens only when content is on overflow pages */ 3037 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 3038 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 3039 || (len = sqlite3VdbeSerialTypeLen(t))==0 3040 ){ 3041 /* Content is irrelevant for 3042 ** 1. the typeof() function, 3043 ** 2. the length(X) function if X is a blob, and 3044 ** 3. if the content length is zero. 3045 ** So we might as well use bogus content rather than reading 3046 ** content from disk. 3047 ** 3048 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 3049 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 3050 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 3051 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 3052 ** and it begins with a bunch of zeros. 3053 */ 3054 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 3055 }else{ 3056 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 3057 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 3058 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3059 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 3060 pDest->flags &= ~MEM_Ephem; 3061 } 3062 } 3063 3064 op_column_out: 3065 UPDATE_MAX_BLOBSIZE(pDest); 3066 REGISTER_TRACE(pOp->p3, pDest); 3067 break; 3068 3069 op_column_corrupt: 3070 if( aOp[0].p3>0 ){ 3071 pOp = &aOp[aOp[0].p3-1]; 3072 break; 3073 }else{ 3074 rc = SQLITE_CORRUPT_BKPT; 3075 goto abort_due_to_error; 3076 } 3077 } 3078 3079 /* Opcode: TypeCheck P1 P2 P3 P4 * 3080 ** Synopsis: typecheck(r[P1@P2]) 3081 ** 3082 ** Apply affinities to the range of P2 registers beginning with P1. 3083 ** Take the affinities from the Table object in P4. If any value 3084 ** cannot be coerced into the correct type, then raise an error. 3085 ** 3086 ** This opcode is similar to OP_Affinity except that this opcode 3087 ** forces the register type to the Table column type. This is used 3088 ** to implement "strict affinity". 3089 ** 3090 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 3091 ** is zero. When P3 is non-zero, no type checking occurs for 3092 ** static generated columns. Virtual columns are computed at query time 3093 ** and so they are never checked. 3094 ** 3095 ** Preconditions: 3096 ** 3097 ** <ul> 3098 ** <li> P2 should be the number of non-virtual columns in the 3099 ** table of P4. 3100 ** <li> Table P4 should be a STRICT table. 3101 ** </ul> 3102 ** 3103 ** If any precondition is false, an assertion fault occurs. 3104 */ 3105 case OP_TypeCheck: { 3106 Table *pTab; 3107 Column *aCol; 3108 int i; 3109 3110 assert( pOp->p4type==P4_TABLE ); 3111 pTab = pOp->p4.pTab; 3112 assert( pTab->tabFlags & TF_Strict ); 3113 assert( pTab->nNVCol==pOp->p2 ); 3114 aCol = pTab->aCol; 3115 pIn1 = &aMem[pOp->p1]; 3116 for(i=0; i<pTab->nCol; i++){ 3117 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 3118 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 3119 if( pOp->p3 ){ pIn1++; continue; } 3120 } 3121 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3122 applyAffinity(pIn1, aCol[i].affinity, encoding); 3123 if( (pIn1->flags & MEM_Null)==0 ){ 3124 switch( aCol[i].eCType ){ 3125 case COLTYPE_BLOB: { 3126 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3127 break; 3128 } 3129 case COLTYPE_INTEGER: 3130 case COLTYPE_INT: { 3131 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3132 break; 3133 } 3134 case COLTYPE_TEXT: { 3135 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3136 break; 3137 } 3138 case COLTYPE_REAL: { 3139 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3140 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3141 if( pIn1->flags & MEM_Int ){ 3142 /* When applying REAL affinity, if the result is still an MEM_Int 3143 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3144 ** so that we keep the high-resolution integer value but know that 3145 ** the type really wants to be REAL. */ 3146 testcase( pIn1->u.i==140737488355328LL ); 3147 testcase( pIn1->u.i==140737488355327LL ); 3148 testcase( pIn1->u.i==-140737488355328LL ); 3149 testcase( pIn1->u.i==-140737488355329LL ); 3150 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3151 pIn1->flags |= MEM_IntReal; 3152 pIn1->flags &= ~MEM_Int; 3153 }else{ 3154 pIn1->u.r = (double)pIn1->u.i; 3155 pIn1->flags |= MEM_Real; 3156 pIn1->flags &= ~MEM_Int; 3157 } 3158 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3159 goto vdbe_type_error; 3160 } 3161 break; 3162 } 3163 default: { 3164 /* COLTYPE_ANY. Accept anything. */ 3165 break; 3166 } 3167 } 3168 } 3169 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3170 pIn1++; 3171 } 3172 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3173 break; 3174 3175 vdbe_type_error: 3176 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3177 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3178 pTab->zName, aCol[i].zCnName); 3179 rc = SQLITE_CONSTRAINT_DATATYPE; 3180 goto abort_due_to_error; 3181 } 3182 3183 /* Opcode: Affinity P1 P2 * P4 * 3184 ** Synopsis: affinity(r[P1@P2]) 3185 ** 3186 ** Apply affinities to a range of P2 registers starting with P1. 3187 ** 3188 ** P4 is a string that is P2 characters long. The N-th character of the 3189 ** string indicates the column affinity that should be used for the N-th 3190 ** memory cell in the range. 3191 */ 3192 case OP_Affinity: { 3193 const char *zAffinity; /* The affinity to be applied */ 3194 3195 zAffinity = pOp->p4.z; 3196 assert( zAffinity!=0 ); 3197 assert( pOp->p2>0 ); 3198 assert( zAffinity[pOp->p2]==0 ); 3199 pIn1 = &aMem[pOp->p1]; 3200 while( 1 /*exit-by-break*/ ){ 3201 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3202 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3203 applyAffinity(pIn1, zAffinity[0], encoding); 3204 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3205 /* When applying REAL affinity, if the result is still an MEM_Int 3206 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3207 ** so that we keep the high-resolution integer value but know that 3208 ** the type really wants to be REAL. */ 3209 testcase( pIn1->u.i==140737488355328LL ); 3210 testcase( pIn1->u.i==140737488355327LL ); 3211 testcase( pIn1->u.i==-140737488355328LL ); 3212 testcase( pIn1->u.i==-140737488355329LL ); 3213 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3214 pIn1->flags |= MEM_IntReal; 3215 pIn1->flags &= ~MEM_Int; 3216 }else{ 3217 pIn1->u.r = (double)pIn1->u.i; 3218 pIn1->flags |= MEM_Real; 3219 pIn1->flags &= ~MEM_Int; 3220 } 3221 } 3222 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3223 zAffinity++; 3224 if( zAffinity[0]==0 ) break; 3225 pIn1++; 3226 } 3227 break; 3228 } 3229 3230 /* Opcode: MakeRecord P1 P2 P3 P4 * 3231 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3232 ** 3233 ** Convert P2 registers beginning with P1 into the [record format] 3234 ** use as a data record in a database table or as a key 3235 ** in an index. The OP_Column opcode can decode the record later. 3236 ** 3237 ** P4 may be a string that is P2 characters long. The N-th character of the 3238 ** string indicates the column affinity that should be used for the N-th 3239 ** field of the index key. 3240 ** 3241 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3242 ** macros defined in sqliteInt.h. 3243 ** 3244 ** If P4 is NULL then all index fields have the affinity BLOB. 3245 ** 3246 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3247 ** compile-time option is enabled: 3248 ** 3249 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3250 ** of the right-most table that can be null-trimmed. 3251 ** 3252 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3253 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3254 ** accept no-change records with serial_type 10. This value is 3255 ** only used inside an assert() and does not affect the end result. 3256 */ 3257 case OP_MakeRecord: { 3258 Mem *pRec; /* The new record */ 3259 u64 nData; /* Number of bytes of data space */ 3260 int nHdr; /* Number of bytes of header space */ 3261 i64 nByte; /* Data space required for this record */ 3262 i64 nZero; /* Number of zero bytes at the end of the record */ 3263 int nVarint; /* Number of bytes in a varint */ 3264 u32 serial_type; /* Type field */ 3265 Mem *pData0; /* First field to be combined into the record */ 3266 Mem *pLast; /* Last field of the record */ 3267 int nField; /* Number of fields in the record */ 3268 char *zAffinity; /* The affinity string for the record */ 3269 u32 len; /* Length of a field */ 3270 u8 *zHdr; /* Where to write next byte of the header */ 3271 u8 *zPayload; /* Where to write next byte of the payload */ 3272 3273 /* Assuming the record contains N fields, the record format looks 3274 ** like this: 3275 ** 3276 ** ------------------------------------------------------------------------ 3277 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3278 ** ------------------------------------------------------------------------ 3279 ** 3280 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3281 ** and so forth. 3282 ** 3283 ** Each type field is a varint representing the serial type of the 3284 ** corresponding data element (see sqlite3VdbeSerialType()). The 3285 ** hdr-size field is also a varint which is the offset from the beginning 3286 ** of the record to data0. 3287 */ 3288 nData = 0; /* Number of bytes of data space */ 3289 nHdr = 0; /* Number of bytes of header space */ 3290 nZero = 0; /* Number of zero bytes at the end of the record */ 3291 nField = pOp->p1; 3292 zAffinity = pOp->p4.z; 3293 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3294 pData0 = &aMem[nField]; 3295 nField = pOp->p2; 3296 pLast = &pData0[nField-1]; 3297 3298 /* Identify the output register */ 3299 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3300 pOut = &aMem[pOp->p3]; 3301 memAboutToChange(p, pOut); 3302 3303 /* Apply the requested affinity to all inputs 3304 */ 3305 assert( pData0<=pLast ); 3306 if( zAffinity ){ 3307 pRec = pData0; 3308 do{ 3309 applyAffinity(pRec, zAffinity[0], encoding); 3310 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3311 pRec->flags |= MEM_IntReal; 3312 pRec->flags &= ~(MEM_Int); 3313 } 3314 REGISTER_TRACE((int)(pRec-aMem), pRec); 3315 zAffinity++; 3316 pRec++; 3317 assert( zAffinity[0]==0 || pRec<=pLast ); 3318 }while( zAffinity[0] ); 3319 } 3320 3321 #ifdef SQLITE_ENABLE_NULL_TRIM 3322 /* NULLs can be safely trimmed from the end of the record, as long as 3323 ** as the schema format is 2 or more and none of the omitted columns 3324 ** have a non-NULL default value. Also, the record must be left with 3325 ** at least one field. If P5>0 then it will be one more than the 3326 ** index of the right-most column with a non-NULL default value */ 3327 if( pOp->p5 ){ 3328 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3329 pLast--; 3330 nField--; 3331 } 3332 } 3333 #endif 3334 3335 /* Loop through the elements that will make up the record to figure 3336 ** out how much space is required for the new record. After this loop, 3337 ** the Mem.uTemp field of each term should hold the serial-type that will 3338 ** be used for that term in the generated record: 3339 ** 3340 ** Mem.uTemp value type 3341 ** --------------- --------------- 3342 ** 0 NULL 3343 ** 1 1-byte signed integer 3344 ** 2 2-byte signed integer 3345 ** 3 3-byte signed integer 3346 ** 4 4-byte signed integer 3347 ** 5 6-byte signed integer 3348 ** 6 8-byte signed integer 3349 ** 7 IEEE float 3350 ** 8 Integer constant 0 3351 ** 9 Integer constant 1 3352 ** 10,11 reserved for expansion 3353 ** N>=12 and even BLOB 3354 ** N>=13 and odd text 3355 ** 3356 ** The following additional values are computed: 3357 ** nHdr Number of bytes needed for the record header 3358 ** nData Number of bytes of data space needed for the record 3359 ** nZero Zero bytes at the end of the record 3360 */ 3361 pRec = pLast; 3362 do{ 3363 assert( memIsValid(pRec) ); 3364 if( pRec->flags & MEM_Null ){ 3365 if( pRec->flags & MEM_Zero ){ 3366 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3367 ** table methods that never invoke sqlite3_result_xxxxx() while 3368 ** computing an unchanging column value in an UPDATE statement. 3369 ** Give such values a special internal-use-only serial-type of 10 3370 ** so that they can be passed through to xUpdate and have 3371 ** a true sqlite3_value_nochange(). */ 3372 #ifndef SQLITE_ENABLE_NULL_TRIM 3373 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3374 #endif 3375 pRec->uTemp = 10; 3376 }else{ 3377 pRec->uTemp = 0; 3378 } 3379 nHdr++; 3380 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3381 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3382 i64 i = pRec->u.i; 3383 u64 uu; 3384 testcase( pRec->flags & MEM_Int ); 3385 testcase( pRec->flags & MEM_IntReal ); 3386 if( i<0 ){ 3387 uu = ~i; 3388 }else{ 3389 uu = i; 3390 } 3391 nHdr++; 3392 testcase( uu==127 ); testcase( uu==128 ); 3393 testcase( uu==32767 ); testcase( uu==32768 ); 3394 testcase( uu==8388607 ); testcase( uu==8388608 ); 3395 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3396 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3397 if( uu<=127 ){ 3398 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3399 pRec->uTemp = 8+(u32)uu; 3400 }else{ 3401 nData++; 3402 pRec->uTemp = 1; 3403 } 3404 }else if( uu<=32767 ){ 3405 nData += 2; 3406 pRec->uTemp = 2; 3407 }else if( uu<=8388607 ){ 3408 nData += 3; 3409 pRec->uTemp = 3; 3410 }else if( uu<=2147483647 ){ 3411 nData += 4; 3412 pRec->uTemp = 4; 3413 }else if( uu<=140737488355327LL ){ 3414 nData += 6; 3415 pRec->uTemp = 5; 3416 }else{ 3417 nData += 8; 3418 if( pRec->flags & MEM_IntReal ){ 3419 /* If the value is IntReal and is going to take up 8 bytes to store 3420 ** as an integer, then we might as well make it an 8-byte floating 3421 ** point value */ 3422 pRec->u.r = (double)pRec->u.i; 3423 pRec->flags &= ~MEM_IntReal; 3424 pRec->flags |= MEM_Real; 3425 pRec->uTemp = 7; 3426 }else{ 3427 pRec->uTemp = 6; 3428 } 3429 } 3430 }else if( pRec->flags & MEM_Real ){ 3431 nHdr++; 3432 nData += 8; 3433 pRec->uTemp = 7; 3434 }else{ 3435 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3436 assert( pRec->n>=0 ); 3437 len = (u32)pRec->n; 3438 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3439 if( pRec->flags & MEM_Zero ){ 3440 serial_type += pRec->u.nZero*2; 3441 if( nData ){ 3442 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3443 len += pRec->u.nZero; 3444 }else{ 3445 nZero += pRec->u.nZero; 3446 } 3447 } 3448 nData += len; 3449 nHdr += sqlite3VarintLen(serial_type); 3450 pRec->uTemp = serial_type; 3451 } 3452 if( pRec==pData0 ) break; 3453 pRec--; 3454 }while(1); 3455 3456 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3457 ** which determines the total number of bytes in the header. The varint 3458 ** value is the size of the header in bytes including the size varint 3459 ** itself. */ 3460 testcase( nHdr==126 ); 3461 testcase( nHdr==127 ); 3462 if( nHdr<=126 ){ 3463 /* The common case */ 3464 nHdr += 1; 3465 }else{ 3466 /* Rare case of a really large header */ 3467 nVarint = sqlite3VarintLen(nHdr); 3468 nHdr += nVarint; 3469 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3470 } 3471 nByte = nHdr+nData; 3472 3473 /* Make sure the output register has a buffer large enough to store 3474 ** the new record. The output register (pOp->p3) is not allowed to 3475 ** be one of the input registers (because the following call to 3476 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3477 */ 3478 if( nByte+nZero<=pOut->szMalloc ){ 3479 /* The output register is already large enough to hold the record. 3480 ** No error checks or buffer enlargement is required */ 3481 pOut->z = pOut->zMalloc; 3482 }else{ 3483 /* Need to make sure that the output is not too big and then enlarge 3484 ** the output register to hold the full result */ 3485 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3486 goto too_big; 3487 } 3488 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3489 goto no_mem; 3490 } 3491 } 3492 pOut->n = (int)nByte; 3493 pOut->flags = MEM_Blob; 3494 if( nZero ){ 3495 pOut->u.nZero = nZero; 3496 pOut->flags |= MEM_Zero; 3497 } 3498 UPDATE_MAX_BLOBSIZE(pOut); 3499 zHdr = (u8 *)pOut->z; 3500 zPayload = zHdr + nHdr; 3501 3502 /* Write the record */ 3503 if( nHdr<0x80 ){ 3504 *(zHdr++) = nHdr; 3505 }else{ 3506 zHdr += sqlite3PutVarint(zHdr,nHdr); 3507 } 3508 assert( pData0<=pLast ); 3509 pRec = pData0; 3510 while( 1 /*exit-by-break*/ ){ 3511 serial_type = pRec->uTemp; 3512 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3513 ** additional varints, one per column. 3514 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 3515 ** immediately follow the header. */ 3516 if( serial_type<=7 ){ 3517 *(zHdr++) = serial_type; 3518 if( serial_type==0 ){ 3519 /* NULL value. No change in zPayload */ 3520 }else{ 3521 u64 v; 3522 u32 i; 3523 if( serial_type==7 ){ 3524 assert( sizeof(v)==sizeof(pRec->u.r) ); 3525 memcpy(&v, &pRec->u.r, sizeof(v)); 3526 swapMixedEndianFloat(v); 3527 }else{ 3528 v = pRec->u.i; 3529 } 3530 len = i = sqlite3SmallTypeSizes[serial_type]; 3531 assert( i>0 ); 3532 while( 1 /*exit-by-break*/ ){ 3533 zPayload[--i] = (u8)(v&0xFF); 3534 if( i==0 ) break; 3535 v >>= 8; 3536 } 3537 zPayload += len; 3538 } 3539 }else if( serial_type<0x80 ){ 3540 *(zHdr++) = serial_type; 3541 if( serial_type>=14 && pRec->n>0 ){ 3542 assert( pRec->z!=0 ); 3543 memcpy(zPayload, pRec->z, pRec->n); 3544 zPayload += pRec->n; 3545 } 3546 }else{ 3547 zHdr += sqlite3PutVarint(zHdr, serial_type); 3548 if( pRec->n ){ 3549 assert( pRec->z!=0 ); 3550 memcpy(zPayload, pRec->z, pRec->n); 3551 zPayload += pRec->n; 3552 } 3553 } 3554 if( pRec==pLast ) break; 3555 pRec++; 3556 } 3557 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3558 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3559 3560 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3561 REGISTER_TRACE(pOp->p3, pOut); 3562 break; 3563 } 3564 3565 /* Opcode: Count P1 P2 P3 * * 3566 ** Synopsis: r[P2]=count() 3567 ** 3568 ** Store the number of entries (an integer value) in the table or index 3569 ** opened by cursor P1 in register P2. 3570 ** 3571 ** If P3==0, then an exact count is obtained, which involves visiting 3572 ** every btree page of the table. But if P3 is non-zero, an estimate 3573 ** is returned based on the current cursor position. 3574 */ 3575 case OP_Count: { /* out2 */ 3576 i64 nEntry; 3577 BtCursor *pCrsr; 3578 3579 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3580 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3581 assert( pCrsr ); 3582 if( pOp->p3 ){ 3583 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3584 }else{ 3585 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3586 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3587 if( rc ) goto abort_due_to_error; 3588 } 3589 pOut = out2Prerelease(p, pOp); 3590 pOut->u.i = nEntry; 3591 goto check_for_interrupt; 3592 } 3593 3594 /* Opcode: Savepoint P1 * * P4 * 3595 ** 3596 ** Open, release or rollback the savepoint named by parameter P4, depending 3597 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3598 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3599 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3600 */ 3601 case OP_Savepoint: { 3602 int p1; /* Value of P1 operand */ 3603 char *zName; /* Name of savepoint */ 3604 int nName; 3605 Savepoint *pNew; 3606 Savepoint *pSavepoint; 3607 Savepoint *pTmp; 3608 int iSavepoint; 3609 int ii; 3610 3611 p1 = pOp->p1; 3612 zName = pOp->p4.z; 3613 3614 /* Assert that the p1 parameter is valid. Also that if there is no open 3615 ** transaction, then there cannot be any savepoints. 3616 */ 3617 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3618 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3619 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3620 assert( checkSavepointCount(db) ); 3621 assert( p->bIsReader ); 3622 3623 if( p1==SAVEPOINT_BEGIN ){ 3624 if( db->nVdbeWrite>0 ){ 3625 /* A new savepoint cannot be created if there are active write 3626 ** statements (i.e. open read/write incremental blob handles). 3627 */ 3628 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3629 rc = SQLITE_BUSY; 3630 }else{ 3631 nName = sqlite3Strlen30(zName); 3632 3633 #ifndef SQLITE_OMIT_VIRTUALTABLE 3634 /* This call is Ok even if this savepoint is actually a transaction 3635 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3636 ** If this is a transaction savepoint being opened, it is guaranteed 3637 ** that the db->aVTrans[] array is empty. */ 3638 assert( db->autoCommit==0 || db->nVTrans==0 ); 3639 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3640 db->nStatement+db->nSavepoint); 3641 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3642 #endif 3643 3644 /* Create a new savepoint structure. */ 3645 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3646 if( pNew ){ 3647 pNew->zName = (char *)&pNew[1]; 3648 memcpy(pNew->zName, zName, nName+1); 3649 3650 /* If there is no open transaction, then mark this as a special 3651 ** "transaction savepoint". */ 3652 if( db->autoCommit ){ 3653 db->autoCommit = 0; 3654 db->isTransactionSavepoint = 1; 3655 }else{ 3656 db->nSavepoint++; 3657 } 3658 3659 /* Link the new savepoint into the database handle's list. */ 3660 pNew->pNext = db->pSavepoint; 3661 db->pSavepoint = pNew; 3662 pNew->nDeferredCons = db->nDeferredCons; 3663 pNew->nDeferredImmCons = db->nDeferredImmCons; 3664 } 3665 } 3666 }else{ 3667 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3668 iSavepoint = 0; 3669 3670 /* Find the named savepoint. If there is no such savepoint, then an 3671 ** an error is returned to the user. */ 3672 for( 3673 pSavepoint = db->pSavepoint; 3674 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3675 pSavepoint = pSavepoint->pNext 3676 ){ 3677 iSavepoint++; 3678 } 3679 if( !pSavepoint ){ 3680 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3681 rc = SQLITE_ERROR; 3682 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3683 /* It is not possible to release (commit) a savepoint if there are 3684 ** active write statements. 3685 */ 3686 sqlite3VdbeError(p, "cannot release savepoint - " 3687 "SQL statements in progress"); 3688 rc = SQLITE_BUSY; 3689 }else{ 3690 3691 /* Determine whether or not this is a transaction savepoint. If so, 3692 ** and this is a RELEASE command, then the current transaction 3693 ** is committed. 3694 */ 3695 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3696 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3697 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3698 goto vdbe_return; 3699 } 3700 db->autoCommit = 1; 3701 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3702 p->pc = (int)(pOp - aOp); 3703 db->autoCommit = 0; 3704 p->rc = rc = SQLITE_BUSY; 3705 goto vdbe_return; 3706 } 3707 rc = p->rc; 3708 if( rc ){ 3709 db->autoCommit = 0; 3710 }else{ 3711 db->isTransactionSavepoint = 0; 3712 } 3713 }else{ 3714 int isSchemaChange; 3715 iSavepoint = db->nSavepoint - iSavepoint - 1; 3716 if( p1==SAVEPOINT_ROLLBACK ){ 3717 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3718 for(ii=0; ii<db->nDb; ii++){ 3719 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3720 SQLITE_ABORT_ROLLBACK, 3721 isSchemaChange==0); 3722 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3723 } 3724 }else{ 3725 assert( p1==SAVEPOINT_RELEASE ); 3726 isSchemaChange = 0; 3727 } 3728 for(ii=0; ii<db->nDb; ii++){ 3729 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3730 if( rc!=SQLITE_OK ){ 3731 goto abort_due_to_error; 3732 } 3733 } 3734 if( isSchemaChange ){ 3735 sqlite3ExpirePreparedStatements(db, 0); 3736 sqlite3ResetAllSchemasOfConnection(db); 3737 db->mDbFlags |= DBFLAG_SchemaChange; 3738 } 3739 } 3740 if( rc ) goto abort_due_to_error; 3741 3742 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3743 ** savepoints nested inside of the savepoint being operated on. */ 3744 while( db->pSavepoint!=pSavepoint ){ 3745 pTmp = db->pSavepoint; 3746 db->pSavepoint = pTmp->pNext; 3747 sqlite3DbFree(db, pTmp); 3748 db->nSavepoint--; 3749 } 3750 3751 /* If it is a RELEASE, then destroy the savepoint being operated on 3752 ** too. If it is a ROLLBACK TO, then set the number of deferred 3753 ** constraint violations present in the database to the value stored 3754 ** when the savepoint was created. */ 3755 if( p1==SAVEPOINT_RELEASE ){ 3756 assert( pSavepoint==db->pSavepoint ); 3757 db->pSavepoint = pSavepoint->pNext; 3758 sqlite3DbFree(db, pSavepoint); 3759 if( !isTransaction ){ 3760 db->nSavepoint--; 3761 } 3762 }else{ 3763 assert( p1==SAVEPOINT_ROLLBACK ); 3764 db->nDeferredCons = pSavepoint->nDeferredCons; 3765 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3766 } 3767 3768 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3769 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3770 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3771 } 3772 } 3773 } 3774 if( rc ) goto abort_due_to_error; 3775 if( p->eVdbeState==VDBE_HALT_STATE ){ 3776 rc = SQLITE_DONE; 3777 goto vdbe_return; 3778 } 3779 break; 3780 } 3781 3782 /* Opcode: AutoCommit P1 P2 * * * 3783 ** 3784 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3785 ** back any currently active btree transactions. If there are any active 3786 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3787 ** there are active writing VMs or active VMs that use shared cache. 3788 ** 3789 ** This instruction causes the VM to halt. 3790 */ 3791 case OP_AutoCommit: { 3792 int desiredAutoCommit; 3793 int iRollback; 3794 3795 desiredAutoCommit = pOp->p1; 3796 iRollback = pOp->p2; 3797 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3798 assert( desiredAutoCommit==1 || iRollback==0 ); 3799 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3800 assert( p->bIsReader ); 3801 3802 if( desiredAutoCommit!=db->autoCommit ){ 3803 if( iRollback ){ 3804 assert( desiredAutoCommit==1 ); 3805 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3806 db->autoCommit = 1; 3807 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3808 /* If this instruction implements a COMMIT and other VMs are writing 3809 ** return an error indicating that the other VMs must complete first. 3810 */ 3811 sqlite3VdbeError(p, "cannot commit transaction - " 3812 "SQL statements in progress"); 3813 rc = SQLITE_BUSY; 3814 goto abort_due_to_error; 3815 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3816 goto vdbe_return; 3817 }else{ 3818 db->autoCommit = (u8)desiredAutoCommit; 3819 } 3820 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3821 p->pc = (int)(pOp - aOp); 3822 db->autoCommit = (u8)(1-desiredAutoCommit); 3823 p->rc = rc = SQLITE_BUSY; 3824 goto vdbe_return; 3825 } 3826 sqlite3CloseSavepoints(db); 3827 if( p->rc==SQLITE_OK ){ 3828 rc = SQLITE_DONE; 3829 }else{ 3830 rc = SQLITE_ERROR; 3831 } 3832 goto vdbe_return; 3833 }else{ 3834 sqlite3VdbeError(p, 3835 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3836 (iRollback)?"cannot rollback - no transaction is active": 3837 "cannot commit - no transaction is active")); 3838 3839 rc = SQLITE_ERROR; 3840 goto abort_due_to_error; 3841 } 3842 /*NOTREACHED*/ assert(0); 3843 } 3844 3845 /* Opcode: Transaction P1 P2 P3 P4 P5 3846 ** 3847 ** Begin a transaction on database P1 if a transaction is not already 3848 ** active. 3849 ** If P2 is non-zero, then a write-transaction is started, or if a 3850 ** read-transaction is already active, it is upgraded to a write-transaction. 3851 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3852 ** then an exclusive transaction is started. 3853 ** 3854 ** P1 is the index of the database file on which the transaction is 3855 ** started. Index 0 is the main database file and index 1 is the 3856 ** file used for temporary tables. Indices of 2 or more are used for 3857 ** attached databases. 3858 ** 3859 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3860 ** true (this flag is set if the Vdbe may modify more than one row and may 3861 ** throw an ABORT exception), a statement transaction may also be opened. 3862 ** More specifically, a statement transaction is opened iff the database 3863 ** connection is currently not in autocommit mode, or if there are other 3864 ** active statements. A statement transaction allows the changes made by this 3865 ** VDBE to be rolled back after an error without having to roll back the 3866 ** entire transaction. If no error is encountered, the statement transaction 3867 ** will automatically commit when the VDBE halts. 3868 ** 3869 ** If P5!=0 then this opcode also checks the schema cookie against P3 3870 ** and the schema generation counter against P4. 3871 ** The cookie changes its value whenever the database schema changes. 3872 ** This operation is used to detect when that the cookie has changed 3873 ** and that the current process needs to reread the schema. If the schema 3874 ** cookie in P3 differs from the schema cookie in the database header or 3875 ** if the schema generation counter in P4 differs from the current 3876 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3877 ** halts. The sqlite3_step() wrapper function might then reprepare the 3878 ** statement and rerun it from the beginning. 3879 */ 3880 case OP_Transaction: { 3881 Btree *pBt; 3882 Db *pDb; 3883 int iMeta = 0; 3884 3885 assert( p->bIsReader ); 3886 assert( p->readOnly==0 || pOp->p2==0 ); 3887 assert( pOp->p2>=0 && pOp->p2<=2 ); 3888 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3889 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3890 assert( rc==SQLITE_OK ); 3891 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3892 if( db->flags & SQLITE_QueryOnly ){ 3893 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3894 rc = SQLITE_READONLY; 3895 }else{ 3896 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3897 ** transaction */ 3898 rc = SQLITE_CORRUPT; 3899 } 3900 goto abort_due_to_error; 3901 } 3902 pDb = &db->aDb[pOp->p1]; 3903 pBt = pDb->pBt; 3904 3905 if( pBt ){ 3906 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3907 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3908 testcase( rc==SQLITE_BUSY_RECOVERY ); 3909 if( rc!=SQLITE_OK ){ 3910 if( (rc&0xff)==SQLITE_BUSY ){ 3911 p->pc = (int)(pOp - aOp); 3912 p->rc = rc; 3913 goto vdbe_return; 3914 } 3915 goto abort_due_to_error; 3916 } 3917 3918 if( p->usesStmtJournal 3919 && pOp->p2 3920 && (db->autoCommit==0 || db->nVdbeRead>1) 3921 ){ 3922 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3923 if( p->iStatement==0 ){ 3924 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3925 db->nStatement++; 3926 p->iStatement = db->nSavepoint + db->nStatement; 3927 } 3928 3929 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3930 if( rc==SQLITE_OK ){ 3931 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3932 } 3933 3934 /* Store the current value of the database handles deferred constraint 3935 ** counter. If the statement transaction needs to be rolled back, 3936 ** the value of this counter needs to be restored too. */ 3937 p->nStmtDefCons = db->nDeferredCons; 3938 p->nStmtDefImmCons = db->nDeferredImmCons; 3939 } 3940 } 3941 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3942 if( rc==SQLITE_OK 3943 && pOp->p5 3944 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 3945 ){ 3946 /* 3947 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3948 ** version is checked to ensure that the schema has not changed since the 3949 ** SQL statement was prepared. 3950 */ 3951 sqlite3DbFree(db, p->zErrMsg); 3952 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3953 /* If the schema-cookie from the database file matches the cookie 3954 ** stored with the in-memory representation of the schema, do 3955 ** not reload the schema from the database file. 3956 ** 3957 ** If virtual-tables are in use, this is not just an optimization. 3958 ** Often, v-tables store their data in other SQLite tables, which 3959 ** are queried from within xNext() and other v-table methods using 3960 ** prepared queries. If such a query is out-of-date, we do not want to 3961 ** discard the database schema, as the user code implementing the 3962 ** v-table would have to be ready for the sqlite3_vtab structure itself 3963 ** to be invalidated whenever sqlite3_step() is called from within 3964 ** a v-table method. 3965 */ 3966 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3967 sqlite3ResetOneSchema(db, pOp->p1); 3968 } 3969 p->expired = 1; 3970 rc = SQLITE_SCHEMA; 3971 3972 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 3973 ** from being modified in sqlite3VdbeHalt(). If this statement is 3974 ** reprepared, changeCntOn will be set again. */ 3975 p->changeCntOn = 0; 3976 } 3977 if( rc ) goto abort_due_to_error; 3978 break; 3979 } 3980 3981 /* Opcode: ReadCookie P1 P2 P3 * * 3982 ** 3983 ** Read cookie number P3 from database P1 and write it into register P2. 3984 ** P3==1 is the schema version. P3==2 is the database format. 3985 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3986 ** the main database file and P1==1 is the database file used to store 3987 ** temporary tables. 3988 ** 3989 ** There must be a read-lock on the database (either a transaction 3990 ** must be started or there must be an open cursor) before 3991 ** executing this instruction. 3992 */ 3993 case OP_ReadCookie: { /* out2 */ 3994 int iMeta; 3995 int iDb; 3996 int iCookie; 3997 3998 assert( p->bIsReader ); 3999 iDb = pOp->p1; 4000 iCookie = pOp->p3; 4001 assert( pOp->p3<SQLITE_N_BTREE_META ); 4002 assert( iDb>=0 && iDb<db->nDb ); 4003 assert( db->aDb[iDb].pBt!=0 ); 4004 assert( DbMaskTest(p->btreeMask, iDb) ); 4005 4006 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 4007 pOut = out2Prerelease(p, pOp); 4008 pOut->u.i = iMeta; 4009 break; 4010 } 4011 4012 /* Opcode: SetCookie P1 P2 P3 * P5 4013 ** 4014 ** Write the integer value P3 into cookie number P2 of database P1. 4015 ** P2==1 is the schema version. P2==2 is the database format. 4016 ** P2==3 is the recommended pager cache 4017 ** size, and so forth. P1==0 is the main database file and P1==1 is the 4018 ** database file used to store temporary tables. 4019 ** 4020 ** A transaction must be started before executing this opcode. 4021 ** 4022 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 4023 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 4024 ** has P5 set to 1, so that the internal schema version will be different 4025 ** from the database schema version, resulting in a schema reset. 4026 */ 4027 case OP_SetCookie: { 4028 Db *pDb; 4029 4030 sqlite3VdbeIncrWriteCounter(p, 0); 4031 assert( pOp->p2<SQLITE_N_BTREE_META ); 4032 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4033 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 4034 assert( p->readOnly==0 ); 4035 pDb = &db->aDb[pOp->p1]; 4036 assert( pDb->pBt!=0 ); 4037 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 4038 /* See note about index shifting on OP_ReadCookie */ 4039 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 4040 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 4041 /* When the schema cookie changes, record the new cookie internally */ 4042 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 4043 db->mDbFlags |= DBFLAG_SchemaChange; 4044 sqlite3FkClearTriggerCache(db, pOp->p1); 4045 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 4046 /* Record changes in the file format */ 4047 pDb->pSchema->file_format = pOp->p3; 4048 } 4049 if( pOp->p1==1 ){ 4050 /* Invalidate all prepared statements whenever the TEMP database 4051 ** schema is changed. Ticket #1644 */ 4052 sqlite3ExpirePreparedStatements(db, 0); 4053 p->expired = 0; 4054 } 4055 if( rc ) goto abort_due_to_error; 4056 break; 4057 } 4058 4059 /* Opcode: OpenRead P1 P2 P3 P4 P5 4060 ** Synopsis: root=P2 iDb=P3 4061 ** 4062 ** Open a read-only cursor for the database table whose root page is 4063 ** P2 in a database file. The database file is determined by P3. 4064 ** P3==0 means the main database, P3==1 means the database used for 4065 ** temporary tables, and P3>1 means used the corresponding attached 4066 ** database. Give the new cursor an identifier of P1. The P1 4067 ** values need not be contiguous but all P1 values should be small integers. 4068 ** It is an error for P1 to be negative. 4069 ** 4070 ** Allowed P5 bits: 4071 ** <ul> 4072 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4073 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4074 ** of OP_SeekLE/OP_IdxLT) 4075 ** </ul> 4076 ** 4077 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4078 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4079 ** object, then table being opened must be an [index b-tree] where the 4080 ** KeyInfo object defines the content and collating 4081 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4082 ** value, then the table being opened must be a [table b-tree] with a 4083 ** number of columns no less than the value of P4. 4084 ** 4085 ** See also: OpenWrite, ReopenIdx 4086 */ 4087 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 4088 ** Synopsis: root=P2 iDb=P3 4089 ** 4090 ** The ReopenIdx opcode works like OP_OpenRead except that it first 4091 ** checks to see if the cursor on P1 is already open on the same 4092 ** b-tree and if it is this opcode becomes a no-op. In other words, 4093 ** if the cursor is already open, do not reopen it. 4094 ** 4095 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 4096 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 4097 ** be the same as every other ReopenIdx or OpenRead for the same cursor 4098 ** number. 4099 ** 4100 ** Allowed P5 bits: 4101 ** <ul> 4102 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4103 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4104 ** of OP_SeekLE/OP_IdxLT) 4105 ** </ul> 4106 ** 4107 ** See also: OP_OpenRead, OP_OpenWrite 4108 */ 4109 /* Opcode: OpenWrite P1 P2 P3 P4 P5 4110 ** Synopsis: root=P2 iDb=P3 4111 ** 4112 ** Open a read/write cursor named P1 on the table or index whose root 4113 ** page is P2 (or whose root page is held in register P2 if the 4114 ** OPFLAG_P2ISREG bit is set in P5 - see below). 4115 ** 4116 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4117 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4118 ** object, then table being opened must be an [index b-tree] where the 4119 ** KeyInfo object defines the content and collating 4120 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4121 ** value, then the table being opened must be a [table b-tree] with a 4122 ** number of columns no less than the value of P4. 4123 ** 4124 ** Allowed P5 bits: 4125 ** <ul> 4126 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4127 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4128 ** of OP_SeekLE/OP_IdxLT) 4129 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 4130 ** and subsequently delete entries in an index btree. This is a 4131 ** hint to the storage engine that the storage engine is allowed to 4132 ** ignore. The hint is not used by the official SQLite b*tree storage 4133 ** engine, but is used by COMDB2. 4134 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 4135 ** as the root page, not the value of P2 itself. 4136 ** </ul> 4137 ** 4138 ** This instruction works like OpenRead except that it opens the cursor 4139 ** in read/write mode. 4140 ** 4141 ** See also: OP_OpenRead, OP_ReopenIdx 4142 */ 4143 case OP_ReopenIdx: { 4144 int nField; 4145 KeyInfo *pKeyInfo; 4146 u32 p2; 4147 int iDb; 4148 int wrFlag; 4149 Btree *pX; 4150 VdbeCursor *pCur; 4151 Db *pDb; 4152 4153 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4154 assert( pOp->p4type==P4_KEYINFO ); 4155 pCur = p->apCsr[pOp->p1]; 4156 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 4157 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 4158 assert( pCur->eCurType==CURTYPE_BTREE ); 4159 sqlite3BtreeClearCursor(pCur->uc.pCursor); 4160 goto open_cursor_set_hints; 4161 } 4162 /* If the cursor is not currently open or is open on a different 4163 ** index, then fall through into OP_OpenRead to force a reopen */ 4164 case OP_OpenRead: 4165 case OP_OpenWrite: 4166 4167 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4168 assert( p->bIsReader ); 4169 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 4170 || p->readOnly==0 ); 4171 4172 if( p->expired==1 ){ 4173 rc = SQLITE_ABORT_ROLLBACK; 4174 goto abort_due_to_error; 4175 } 4176 4177 nField = 0; 4178 pKeyInfo = 0; 4179 p2 = (u32)pOp->p2; 4180 iDb = pOp->p3; 4181 assert( iDb>=0 && iDb<db->nDb ); 4182 assert( DbMaskTest(p->btreeMask, iDb) ); 4183 pDb = &db->aDb[iDb]; 4184 pX = pDb->pBt; 4185 assert( pX!=0 ); 4186 if( pOp->opcode==OP_OpenWrite ){ 4187 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4188 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4189 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4190 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4191 p->minWriteFileFormat = pDb->pSchema->file_format; 4192 } 4193 }else{ 4194 wrFlag = 0; 4195 } 4196 if( pOp->p5 & OPFLAG_P2ISREG ){ 4197 assert( p2>0 ); 4198 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4199 assert( pOp->opcode==OP_OpenWrite ); 4200 pIn2 = &aMem[p2]; 4201 assert( memIsValid(pIn2) ); 4202 assert( (pIn2->flags & MEM_Int)!=0 ); 4203 sqlite3VdbeMemIntegerify(pIn2); 4204 p2 = (int)pIn2->u.i; 4205 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4206 ** that opcode will always set the p2 value to 2 or more or else fail. 4207 ** If there were a failure, the prepared statement would have halted 4208 ** before reaching this instruction. */ 4209 assert( p2>=2 ); 4210 } 4211 if( pOp->p4type==P4_KEYINFO ){ 4212 pKeyInfo = pOp->p4.pKeyInfo; 4213 assert( pKeyInfo->enc==ENC(db) ); 4214 assert( pKeyInfo->db==db ); 4215 nField = pKeyInfo->nAllField; 4216 }else if( pOp->p4type==P4_INT32 ){ 4217 nField = pOp->p4.i; 4218 } 4219 assert( pOp->p1>=0 ); 4220 assert( nField>=0 ); 4221 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4222 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4223 if( pCur==0 ) goto no_mem; 4224 pCur->iDb = iDb; 4225 pCur->nullRow = 1; 4226 pCur->isOrdered = 1; 4227 pCur->pgnoRoot = p2; 4228 #ifdef SQLITE_DEBUG 4229 pCur->wrFlag = wrFlag; 4230 #endif 4231 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4232 pCur->pKeyInfo = pKeyInfo; 4233 /* Set the VdbeCursor.isTable variable. Previous versions of 4234 ** SQLite used to check if the root-page flags were sane at this point 4235 ** and report database corruption if they were not, but this check has 4236 ** since moved into the btree layer. */ 4237 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4238 4239 open_cursor_set_hints: 4240 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4241 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4242 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4243 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4244 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4245 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4246 if( rc ) goto abort_due_to_error; 4247 break; 4248 } 4249 4250 /* Opcode: OpenDup P1 P2 * * * 4251 ** 4252 ** Open a new cursor P1 that points to the same ephemeral table as 4253 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4254 ** opcode. Only ephemeral cursors may be duplicated. 4255 ** 4256 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4257 */ 4258 case OP_OpenDup: { 4259 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4260 VdbeCursor *pCx; /* The new cursor */ 4261 4262 pOrig = p->apCsr[pOp->p2]; 4263 assert( pOrig ); 4264 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4265 4266 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4267 if( pCx==0 ) goto no_mem; 4268 pCx->nullRow = 1; 4269 pCx->isEphemeral = 1; 4270 pCx->pKeyInfo = pOrig->pKeyInfo; 4271 pCx->isTable = pOrig->isTable; 4272 pCx->pgnoRoot = pOrig->pgnoRoot; 4273 pCx->isOrdered = pOrig->isOrdered; 4274 pCx->ub.pBtx = pOrig->ub.pBtx; 4275 pCx->noReuse = 1; 4276 pOrig->noReuse = 1; 4277 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4278 pCx->pKeyInfo, pCx->uc.pCursor); 4279 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4280 ** opened for a database. Since there is already an open cursor when this 4281 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4282 assert( rc==SQLITE_OK ); 4283 break; 4284 } 4285 4286 4287 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4288 ** Synopsis: nColumn=P2 4289 ** 4290 ** Open a new cursor P1 to a transient table. 4291 ** The cursor is always opened read/write even if 4292 ** the main database is read-only. The ephemeral 4293 ** table is deleted automatically when the cursor is closed. 4294 ** 4295 ** If the cursor P1 is already opened on an ephemeral table, the table 4296 ** is cleared (all content is erased). 4297 ** 4298 ** P2 is the number of columns in the ephemeral table. 4299 ** The cursor points to a BTree table if P4==0 and to a BTree index 4300 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4301 ** that defines the format of keys in the index. 4302 ** 4303 ** The P5 parameter can be a mask of the BTREE_* flags defined 4304 ** in btree.h. These flags control aspects of the operation of 4305 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4306 ** added automatically. 4307 ** 4308 ** If P3 is positive, then reg[P3] is modified slightly so that it 4309 ** can be used as zero-length data for OP_Insert. This is an optimization 4310 ** that avoids an extra OP_Blob opcode to initialize that register. 4311 */ 4312 /* Opcode: OpenAutoindex P1 P2 * P4 * 4313 ** Synopsis: nColumn=P2 4314 ** 4315 ** This opcode works the same as OP_OpenEphemeral. It has a 4316 ** different name to distinguish its use. Tables created using 4317 ** by this opcode will be used for automatically created transient 4318 ** indices in joins. 4319 */ 4320 case OP_OpenAutoindex: 4321 case OP_OpenEphemeral: { 4322 VdbeCursor *pCx; 4323 KeyInfo *pKeyInfo; 4324 4325 static const int vfsFlags = 4326 SQLITE_OPEN_READWRITE | 4327 SQLITE_OPEN_CREATE | 4328 SQLITE_OPEN_EXCLUSIVE | 4329 SQLITE_OPEN_DELETEONCLOSE | 4330 SQLITE_OPEN_TRANSIENT_DB; 4331 assert( pOp->p1>=0 ); 4332 assert( pOp->p2>=0 ); 4333 if( pOp->p3>0 ){ 4334 /* Make register reg[P3] into a value that can be used as the data 4335 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4336 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4337 assert( pOp->opcode==OP_OpenEphemeral ); 4338 assert( aMem[pOp->p3].flags & MEM_Null ); 4339 aMem[pOp->p3].n = 0; 4340 aMem[pOp->p3].z = ""; 4341 } 4342 pCx = p->apCsr[pOp->p1]; 4343 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 4344 /* If the ephermeral table is already open and has no duplicates from 4345 ** OP_OpenDup, then erase all existing content so that the table is 4346 ** empty again, rather than creating a new table. */ 4347 assert( pCx->isEphemeral ); 4348 pCx->seqCount = 0; 4349 pCx->cacheStatus = CACHE_STALE; 4350 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4351 }else{ 4352 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4353 if( pCx==0 ) goto no_mem; 4354 pCx->isEphemeral = 1; 4355 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4356 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4357 vfsFlags); 4358 if( rc==SQLITE_OK ){ 4359 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4360 if( rc==SQLITE_OK ){ 4361 /* If a transient index is required, create it by calling 4362 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4363 ** opening it. If a transient table is required, just use the 4364 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4365 */ 4366 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4367 assert( pOp->p4type==P4_KEYINFO ); 4368 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4369 BTREE_BLOBKEY | pOp->p5); 4370 if( rc==SQLITE_OK ){ 4371 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4372 assert( pKeyInfo->db==db ); 4373 assert( pKeyInfo->enc==ENC(db) ); 4374 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4375 pKeyInfo, pCx->uc.pCursor); 4376 } 4377 pCx->isTable = 0; 4378 }else{ 4379 pCx->pgnoRoot = SCHEMA_ROOT; 4380 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4381 0, pCx->uc.pCursor); 4382 pCx->isTable = 1; 4383 } 4384 } 4385 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4386 if( rc ){ 4387 sqlite3BtreeClose(pCx->ub.pBtx); 4388 } 4389 } 4390 } 4391 if( rc ) goto abort_due_to_error; 4392 pCx->nullRow = 1; 4393 break; 4394 } 4395 4396 /* Opcode: SorterOpen P1 P2 P3 P4 * 4397 ** 4398 ** This opcode works like OP_OpenEphemeral except that it opens 4399 ** a transient index that is specifically designed to sort large 4400 ** tables using an external merge-sort algorithm. 4401 ** 4402 ** If argument P3 is non-zero, then it indicates that the sorter may 4403 ** assume that a stable sort considering the first P3 fields of each 4404 ** key is sufficient to produce the required results. 4405 */ 4406 case OP_SorterOpen: { 4407 VdbeCursor *pCx; 4408 4409 assert( pOp->p1>=0 ); 4410 assert( pOp->p2>=0 ); 4411 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4412 if( pCx==0 ) goto no_mem; 4413 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4414 assert( pCx->pKeyInfo->db==db ); 4415 assert( pCx->pKeyInfo->enc==ENC(db) ); 4416 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4417 if( rc ) goto abort_due_to_error; 4418 break; 4419 } 4420 4421 /* Opcode: SequenceTest P1 P2 * * * 4422 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4423 ** 4424 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4425 ** to P2. Regardless of whether or not the jump is taken, increment the 4426 ** the sequence value. 4427 */ 4428 case OP_SequenceTest: { 4429 VdbeCursor *pC; 4430 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4431 pC = p->apCsr[pOp->p1]; 4432 assert( isSorter(pC) ); 4433 if( (pC->seqCount++)==0 ){ 4434 goto jump_to_p2; 4435 } 4436 break; 4437 } 4438 4439 /* Opcode: OpenPseudo P1 P2 P3 * * 4440 ** Synopsis: P3 columns in r[P2] 4441 ** 4442 ** Open a new cursor that points to a fake table that contains a single 4443 ** row of data. The content of that one row is the content of memory 4444 ** register P2. In other words, cursor P1 becomes an alias for the 4445 ** MEM_Blob content contained in register P2. 4446 ** 4447 ** A pseudo-table created by this opcode is used to hold a single 4448 ** row output from the sorter so that the row can be decomposed into 4449 ** individual columns using the OP_Column opcode. The OP_Column opcode 4450 ** is the only cursor opcode that works with a pseudo-table. 4451 ** 4452 ** P3 is the number of fields in the records that will be stored by 4453 ** the pseudo-table. 4454 */ 4455 case OP_OpenPseudo: { 4456 VdbeCursor *pCx; 4457 4458 assert( pOp->p1>=0 ); 4459 assert( pOp->p3>=0 ); 4460 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4461 if( pCx==0 ) goto no_mem; 4462 pCx->nullRow = 1; 4463 pCx->seekResult = pOp->p2; 4464 pCx->isTable = 1; 4465 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4466 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4467 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4468 ** which is a performance optimization */ 4469 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4470 assert( pOp->p5==0 ); 4471 break; 4472 } 4473 4474 /* Opcode: Close P1 * * * * 4475 ** 4476 ** Close a cursor previously opened as P1. If P1 is not 4477 ** currently open, this instruction is a no-op. 4478 */ 4479 case OP_Close: { 4480 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4481 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4482 p->apCsr[pOp->p1] = 0; 4483 break; 4484 } 4485 4486 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4487 /* Opcode: ColumnsUsed P1 * * P4 * 4488 ** 4489 ** This opcode (which only exists if SQLite was compiled with 4490 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4491 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4492 ** (P4_INT64) in which the first 63 bits are one for each of the 4493 ** first 63 columns of the table or index that are actually used 4494 ** by the cursor. The high-order bit is set if any column after 4495 ** the 64th is used. 4496 */ 4497 case OP_ColumnsUsed: { 4498 VdbeCursor *pC; 4499 pC = p->apCsr[pOp->p1]; 4500 assert( pC->eCurType==CURTYPE_BTREE ); 4501 pC->maskUsed = *(u64*)pOp->p4.pI64; 4502 break; 4503 } 4504 #endif 4505 4506 /* Opcode: SeekGE P1 P2 P3 P4 * 4507 ** Synopsis: key=r[P3@P4] 4508 ** 4509 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4510 ** use the value in register P3 as the key. If cursor P1 refers 4511 ** to an SQL index, then P3 is the first in an array of P4 registers 4512 ** that are used as an unpacked index key. 4513 ** 4514 ** Reposition cursor P1 so that it points to the smallest entry that 4515 ** is greater than or equal to the key value. If there are no records 4516 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4517 ** 4518 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4519 ** opcode will either land on a record that exactly matches the key, or 4520 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4521 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4522 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4523 ** IdxGT opcode will be used on subsequent loop iterations. The 4524 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4525 ** is an equality search. 4526 ** 4527 ** This opcode leaves the cursor configured to move in forward order, 4528 ** from the beginning toward the end. In other words, the cursor is 4529 ** configured to use Next, not Prev. 4530 ** 4531 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4532 */ 4533 /* Opcode: SeekGT P1 P2 P3 P4 * 4534 ** Synopsis: key=r[P3@P4] 4535 ** 4536 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4537 ** use the value in register P3 as a key. If cursor P1 refers 4538 ** to an SQL index, then P3 is the first in an array of P4 registers 4539 ** that are used as an unpacked index key. 4540 ** 4541 ** Reposition cursor P1 so that it points to the smallest entry that 4542 ** is greater than the key value. If there are no records greater than 4543 ** the key and P2 is not zero, then jump to P2. 4544 ** 4545 ** This opcode leaves the cursor configured to move in forward order, 4546 ** from the beginning toward the end. In other words, the cursor is 4547 ** configured to use Next, not Prev. 4548 ** 4549 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4550 */ 4551 /* Opcode: SeekLT P1 P2 P3 P4 * 4552 ** Synopsis: key=r[P3@P4] 4553 ** 4554 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4555 ** use the value in register P3 as a key. If cursor P1 refers 4556 ** to an SQL index, then P3 is the first in an array of P4 registers 4557 ** that are used as an unpacked index key. 4558 ** 4559 ** Reposition cursor P1 so that it points to the largest entry that 4560 ** is less than the key value. If there are no records less than 4561 ** the key and P2 is not zero, then jump to P2. 4562 ** 4563 ** This opcode leaves the cursor configured to move in reverse order, 4564 ** from the end toward the beginning. In other words, the cursor is 4565 ** configured to use Prev, not Next. 4566 ** 4567 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4568 */ 4569 /* Opcode: SeekLE P1 P2 P3 P4 * 4570 ** Synopsis: key=r[P3@P4] 4571 ** 4572 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4573 ** use the value in register P3 as a key. If cursor P1 refers 4574 ** to an SQL index, then P3 is the first in an array of P4 registers 4575 ** that are used as an unpacked index key. 4576 ** 4577 ** Reposition cursor P1 so that it points to the largest entry that 4578 ** is less than or equal to the key value. If there are no records 4579 ** less than or equal to the key and P2 is not zero, then jump to P2. 4580 ** 4581 ** This opcode leaves the cursor configured to move in reverse order, 4582 ** from the end toward the beginning. In other words, the cursor is 4583 ** configured to use Prev, not Next. 4584 ** 4585 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4586 ** opcode will either land on a record that exactly matches the key, or 4587 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4588 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4589 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4590 ** IdxGE opcode will be used on subsequent loop iterations. The 4591 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4592 ** is an equality search. 4593 ** 4594 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4595 */ 4596 case OP_SeekLT: /* jump, in3, group */ 4597 case OP_SeekLE: /* jump, in3, group */ 4598 case OP_SeekGE: /* jump, in3, group */ 4599 case OP_SeekGT: { /* jump, in3, group */ 4600 int res; /* Comparison result */ 4601 int oc; /* Opcode */ 4602 VdbeCursor *pC; /* The cursor to seek */ 4603 UnpackedRecord r; /* The key to seek for */ 4604 int nField; /* Number of columns or fields in the key */ 4605 i64 iKey; /* The rowid we are to seek to */ 4606 int eqOnly; /* Only interested in == results */ 4607 4608 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4609 assert( pOp->p2!=0 ); 4610 pC = p->apCsr[pOp->p1]; 4611 assert( pC!=0 ); 4612 assert( pC->eCurType==CURTYPE_BTREE ); 4613 assert( OP_SeekLE == OP_SeekLT+1 ); 4614 assert( OP_SeekGE == OP_SeekLT+2 ); 4615 assert( OP_SeekGT == OP_SeekLT+3 ); 4616 assert( pC->isOrdered ); 4617 assert( pC->uc.pCursor!=0 ); 4618 oc = pOp->opcode; 4619 eqOnly = 0; 4620 pC->nullRow = 0; 4621 #ifdef SQLITE_DEBUG 4622 pC->seekOp = pOp->opcode; 4623 #endif 4624 4625 pC->deferredMoveto = 0; 4626 pC->cacheStatus = CACHE_STALE; 4627 if( pC->isTable ){ 4628 u16 flags3, newType; 4629 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4630 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4631 || CORRUPT_DB ); 4632 4633 /* The input value in P3 might be of any type: integer, real, string, 4634 ** blob, or NULL. But it needs to be an integer before we can do 4635 ** the seek, so convert it. */ 4636 pIn3 = &aMem[pOp->p3]; 4637 flags3 = pIn3->flags; 4638 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4639 applyNumericAffinity(pIn3, 0); 4640 } 4641 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4642 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4643 pIn3->flags = flags3; /* But convert the type back to its original */ 4644 4645 /* If the P3 value could not be converted into an integer without 4646 ** loss of information, then special processing is required... */ 4647 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4648 int c; 4649 if( (newType & MEM_Real)==0 ){ 4650 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4651 VdbeBranchTaken(1,2); 4652 goto jump_to_p2; 4653 }else{ 4654 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4655 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4656 goto seek_not_found; 4657 } 4658 } 4659 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4660 4661 /* If the approximation iKey is larger than the actual real search 4662 ** term, substitute >= for > and < for <=. e.g. if the search term 4663 ** is 4.9 and the integer approximation 5: 4664 ** 4665 ** (x > 4.9) -> (x >= 5) 4666 ** (x <= 4.9) -> (x < 5) 4667 */ 4668 if( c>0 ){ 4669 assert( OP_SeekGE==(OP_SeekGT-1) ); 4670 assert( OP_SeekLT==(OP_SeekLE-1) ); 4671 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4672 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4673 } 4674 4675 /* If the approximation iKey is smaller than the actual real search 4676 ** term, substitute <= for < and > for >=. */ 4677 else if( c<0 ){ 4678 assert( OP_SeekLE==(OP_SeekLT+1) ); 4679 assert( OP_SeekGT==(OP_SeekGE+1) ); 4680 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4681 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4682 } 4683 } 4684 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4685 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4686 if( rc!=SQLITE_OK ){ 4687 goto abort_due_to_error; 4688 } 4689 }else{ 4690 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4691 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4692 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4693 ** with the same key. 4694 */ 4695 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4696 eqOnly = 1; 4697 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4698 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4699 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4700 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4701 assert( pOp[1].p1==pOp[0].p1 ); 4702 assert( pOp[1].p2==pOp[0].p2 ); 4703 assert( pOp[1].p3==pOp[0].p3 ); 4704 assert( pOp[1].p4.i==pOp[0].p4.i ); 4705 } 4706 4707 nField = pOp->p4.i; 4708 assert( pOp->p4type==P4_INT32 ); 4709 assert( nField>0 ); 4710 r.pKeyInfo = pC->pKeyInfo; 4711 r.nField = (u16)nField; 4712 4713 /* The next line of code computes as follows, only faster: 4714 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4715 ** r.default_rc = -1; 4716 ** }else{ 4717 ** r.default_rc = +1; 4718 ** } 4719 */ 4720 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4721 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4722 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4723 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4724 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4725 4726 r.aMem = &aMem[pOp->p3]; 4727 #ifdef SQLITE_DEBUG 4728 { 4729 int i; 4730 for(i=0; i<r.nField; i++){ 4731 assert( memIsValid(&r.aMem[i]) ); 4732 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 4733 } 4734 } 4735 #endif 4736 r.eqSeen = 0; 4737 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4738 if( rc!=SQLITE_OK ){ 4739 goto abort_due_to_error; 4740 } 4741 if( eqOnly && r.eqSeen==0 ){ 4742 assert( res!=0 ); 4743 goto seek_not_found; 4744 } 4745 } 4746 #ifdef SQLITE_TEST 4747 sqlite3_search_count++; 4748 #endif 4749 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4750 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4751 res = 0; 4752 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4753 if( rc!=SQLITE_OK ){ 4754 if( rc==SQLITE_DONE ){ 4755 rc = SQLITE_OK; 4756 res = 1; 4757 }else{ 4758 goto abort_due_to_error; 4759 } 4760 } 4761 }else{ 4762 res = 0; 4763 } 4764 }else{ 4765 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4766 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4767 res = 0; 4768 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4769 if( rc!=SQLITE_OK ){ 4770 if( rc==SQLITE_DONE ){ 4771 rc = SQLITE_OK; 4772 res = 1; 4773 }else{ 4774 goto abort_due_to_error; 4775 } 4776 } 4777 }else{ 4778 /* res might be negative because the table is empty. Check to 4779 ** see if this is the case. 4780 */ 4781 res = sqlite3BtreeEof(pC->uc.pCursor); 4782 } 4783 } 4784 seek_not_found: 4785 assert( pOp->p2>0 ); 4786 VdbeBranchTaken(res!=0,2); 4787 if( res ){ 4788 goto jump_to_p2; 4789 }else if( eqOnly ){ 4790 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4791 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4792 } 4793 break; 4794 } 4795 4796 4797 /* Opcode: SeekScan P1 P2 * * P5 4798 ** Synopsis: Scan-ahead up to P1 rows 4799 ** 4800 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4801 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4802 ** checked by assert() statements. 4803 ** 4804 ** This opcode uses the P1 through P4 operands of the subsequent 4805 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4806 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4807 ** the P1, P2 and P5 operands of this opcode are also used, and are called 4808 ** This.P1, This.P2 and This.P5. 4809 ** 4810 ** This opcode helps to optimize IN operators on a multi-column index 4811 ** where the IN operator is on the later terms of the index by avoiding 4812 ** unnecessary seeks on the btree, substituting steps to the next row 4813 ** of the b-tree instead. A correct answer is obtained if this opcode 4814 ** is omitted or is a no-op. 4815 ** 4816 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4817 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4818 ** to. Call this SeekGE.P3/P4 row the "target". 4819 ** 4820 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4821 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4822 ** 4823 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4824 ** might be the target row, or it might be near and slightly before the 4825 ** target row, or it might be after the target row. If the cursor is 4826 ** currently before the target row, then this opcode attempts to position 4827 ** the cursor on or after the target row by invoking sqlite3BtreeStep() 4828 ** on the cursor between 1 and This.P1 times. 4829 ** 4830 ** The This.P5 parameter is a flag that indicates what to do if the 4831 ** cursor ends up pointing at a valid row that is past the target 4832 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If 4833 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 4834 ** case occurs when there are no inequality constraints to the right of 4835 ** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case 4836 ** occurs when there are inequality constraints to the right of the IN 4837 ** operator. In that case, the This.P2 will point either directly to or 4838 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for 4839 ** loop terminate. 4840 ** 4841 ** Possible outcomes from this opcode:<ol> 4842 ** 4843 ** <li> If the cursor is initally not pointed to any valid row, then 4844 ** fall through into the subsequent OP_SeekGE opcode. 4845 ** 4846 ** <li> If the cursor is left pointing to a row that is before the target 4847 ** row, even after making as many as This.P1 calls to 4848 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. 4849 ** 4850 ** <li> If the cursor is left pointing at the target row, either because it 4851 ** was at the target row to begin with or because one or more 4852 ** sqlite3BtreeNext() calls moved the cursor to the target row, 4853 ** then jump to This.P2.., 4854 ** 4855 ** <li> If the cursor started out before the target row and a call to 4856 ** to sqlite3BtreeNext() moved the cursor off the end of the index 4857 ** (indicating that the target row definitely does not exist in the 4858 ** btree) then jump to SeekGE.P2, ending the loop. 4859 ** 4860 ** <li> If the cursor ends up on a valid row that is past the target row 4861 ** (indicating that the target row does not exist in the btree) then 4862 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. 4863 ** </ol> 4864 */ 4865 case OP_SeekScan: { 4866 VdbeCursor *pC; 4867 int res; 4868 int nStep; 4869 UnpackedRecord r; 4870 4871 assert( pOp[1].opcode==OP_SeekGE ); 4872 4873 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the 4874 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first 4875 ** opcode past the OP_SeekGE itself. */ 4876 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4877 #ifdef SQLITE_DEBUG 4878 if( pOp->p5==0 ){ 4879 /* There are no inequality constraints following the IN constraint. */ 4880 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4881 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4882 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4883 assert( aOp[pOp->p2-1].opcode==OP_IdxGT 4884 || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4885 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4886 }else{ 4887 /* There are inequality constraints. */ 4888 assert( pOp->p2==(int)(pOp-aOp)+2 ); 4889 assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); 4890 } 4891 #endif 4892 4893 assert( pOp->p1>0 ); 4894 pC = p->apCsr[pOp[1].p1]; 4895 assert( pC!=0 ); 4896 assert( pC->eCurType==CURTYPE_BTREE ); 4897 assert( !pC->isTable ); 4898 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4899 #ifdef SQLITE_DEBUG 4900 if( db->flags&SQLITE_VdbeTrace ){ 4901 printf("... cursor not valid - fall through\n"); 4902 } 4903 #endif 4904 break; 4905 } 4906 nStep = pOp->p1; 4907 assert( nStep>=1 ); 4908 r.pKeyInfo = pC->pKeyInfo; 4909 r.nField = (u16)pOp[1].p4.i; 4910 r.default_rc = 0; 4911 r.aMem = &aMem[pOp[1].p3]; 4912 #ifdef SQLITE_DEBUG 4913 { 4914 int i; 4915 for(i=0; i<r.nField; i++){ 4916 assert( memIsValid(&r.aMem[i]) ); 4917 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4918 } 4919 } 4920 #endif 4921 res = 0; /* Not needed. Only used to silence a warning. */ 4922 while(1){ 4923 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4924 if( rc ) goto abort_due_to_error; 4925 if( res>0 && pOp->p5==0 ){ 4926 seekscan_search_fail: 4927 /* Jump to SeekGE.P2, ending the loop */ 4928 #ifdef SQLITE_DEBUG 4929 if( db->flags&SQLITE_VdbeTrace ){ 4930 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4931 } 4932 #endif 4933 VdbeBranchTaken(1,3); 4934 pOp++; 4935 goto jump_to_p2; 4936 } 4937 if( res>=0 ){ 4938 /* Jump to This.P2, bypassing the OP_SeekGE opcode */ 4939 #ifdef SQLITE_DEBUG 4940 if( db->flags&SQLITE_VdbeTrace ){ 4941 printf("... %d steps and then success\n", pOp->p1 - nStep); 4942 } 4943 #endif 4944 VdbeBranchTaken(2,3); 4945 goto jump_to_p2; 4946 break; 4947 } 4948 if( nStep<=0 ){ 4949 #ifdef SQLITE_DEBUG 4950 if( db->flags&SQLITE_VdbeTrace ){ 4951 printf("... fall through after %d steps\n", pOp->p1); 4952 } 4953 #endif 4954 VdbeBranchTaken(0,3); 4955 break; 4956 } 4957 nStep--; 4958 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4959 if( rc ){ 4960 if( rc==SQLITE_DONE ){ 4961 rc = SQLITE_OK; 4962 goto seekscan_search_fail; 4963 }else{ 4964 goto abort_due_to_error; 4965 } 4966 } 4967 } 4968 4969 break; 4970 } 4971 4972 4973 /* Opcode: SeekHit P1 P2 P3 * * 4974 ** Synopsis: set P2<=seekHit<=P3 4975 ** 4976 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4977 ** so that it is no less than P2 and no greater than P3. 4978 ** 4979 ** The seekHit integer represents the maximum of terms in an index for which 4980 ** there is known to be at least one match. If the seekHit value is smaller 4981 ** than the total number of equality terms in an index lookup, then the 4982 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4983 ** early, thus saving work. This is part of the IN-early-out optimization. 4984 ** 4985 ** P1 must be a valid b-tree cursor. 4986 */ 4987 case OP_SeekHit: { 4988 VdbeCursor *pC; 4989 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4990 pC = p->apCsr[pOp->p1]; 4991 assert( pC!=0 ); 4992 assert( pOp->p3>=pOp->p2 ); 4993 if( pC->seekHit<pOp->p2 ){ 4994 #ifdef SQLITE_DEBUG 4995 if( db->flags&SQLITE_VdbeTrace ){ 4996 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4997 } 4998 #endif 4999 pC->seekHit = pOp->p2; 5000 }else if( pC->seekHit>pOp->p3 ){ 5001 #ifdef SQLITE_DEBUG 5002 if( db->flags&SQLITE_VdbeTrace ){ 5003 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 5004 } 5005 #endif 5006 pC->seekHit = pOp->p3; 5007 } 5008 break; 5009 } 5010 5011 /* Opcode: IfNotOpen P1 P2 * * * 5012 ** Synopsis: if( !csr[P1] ) goto P2 5013 ** 5014 ** If cursor P1 is not open or if P1 is set to a NULL row using the 5015 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. 5016 */ 5017 case OP_IfNotOpen: { /* jump */ 5018 VdbeCursor *pCur; 5019 5020 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5021 pCur = p->apCsr[pOp->p1]; 5022 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); 5023 if( pCur==0 || pCur->nullRow ){ 5024 goto jump_to_p2_and_check_for_interrupt; 5025 } 5026 break; 5027 } 5028 5029 /* Opcode: Found P1 P2 P3 P4 * 5030 ** Synopsis: key=r[P3@P4] 5031 ** 5032 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 5033 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 5034 ** record. 5035 ** 5036 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 5037 ** is a prefix of any entry in P1 then a jump is made to P2 and 5038 ** P1 is left pointing at the matching entry. 5039 ** 5040 ** This operation leaves the cursor in a state where it can be 5041 ** advanced in the forward direction. The Next instruction will work, 5042 ** but not the Prev instruction. 5043 ** 5044 ** See also: NotFound, NoConflict, NotExists. SeekGe 5045 */ 5046 /* Opcode: NotFound P1 P2 P3 P4 * 5047 ** Synopsis: key=r[P3@P4] 5048 ** 5049 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 5050 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 5051 ** record. 5052 ** 5053 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 5054 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 5055 ** does contain an entry whose prefix matches the P3/P4 record then control 5056 ** falls through to the next instruction and P1 is left pointing at the 5057 ** matching entry. 5058 ** 5059 ** This operation leaves the cursor in a state where it cannot be 5060 ** advanced in either direction. In other words, the Next and Prev 5061 ** opcodes do not work after this operation. 5062 ** 5063 ** See also: Found, NotExists, NoConflict, IfNoHope 5064 */ 5065 /* Opcode: IfNoHope P1 P2 P3 P4 * 5066 ** Synopsis: key=r[P3@P4] 5067 ** 5068 ** Register P3 is the first of P4 registers that form an unpacked 5069 ** record. Cursor P1 is an index btree. P2 is a jump destination. 5070 ** In other words, the operands to this opcode are the same as the 5071 ** operands to OP_NotFound and OP_IdxGT. 5072 ** 5073 ** This opcode is an optimization attempt only. If this opcode always 5074 ** falls through, the correct answer is still obtained, but extra works 5075 ** is performed. 5076 ** 5077 ** A value of N in the seekHit flag of cursor P1 means that there exists 5078 ** a key P3:N that will match some record in the index. We want to know 5079 ** if it is possible for a record P3:P4 to match some record in the 5080 ** index. If it is not possible, we can skips some work. So if seekHit 5081 ** is less than P4, attempt to find out if a match is possible by running 5082 ** OP_NotFound. 5083 ** 5084 ** This opcode is used in IN clause processing for a multi-column key. 5085 ** If an IN clause is attached to an element of the key other than the 5086 ** left-most element, and if there are no matches on the most recent 5087 ** seek over the whole key, then it might be that one of the key element 5088 ** to the left is prohibiting a match, and hence there is "no hope" of 5089 ** any match regardless of how many IN clause elements are checked. 5090 ** In such a case, we abandon the IN clause search early, using this 5091 ** opcode. The opcode name comes from the fact that the 5092 ** jump is taken if there is "no hope" of achieving a match. 5093 ** 5094 ** See also: NotFound, SeekHit 5095 */ 5096 /* Opcode: NoConflict P1 P2 P3 P4 * 5097 ** Synopsis: key=r[P3@P4] 5098 ** 5099 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 5100 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 5101 ** record. 5102 ** 5103 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 5104 ** contains any NULL value, jump immediately to P2. If all terms of the 5105 ** record are not-NULL then a check is done to determine if any row in the 5106 ** P1 index btree has a matching key prefix. If there are no matches, jump 5107 ** immediately to P2. If there is a match, fall through and leave the P1 5108 ** cursor pointing to the matching row. 5109 ** 5110 ** This opcode is similar to OP_NotFound with the exceptions that the 5111 ** branch is always taken if any part of the search key input is NULL. 5112 ** 5113 ** This operation leaves the cursor in a state where it cannot be 5114 ** advanced in either direction. In other words, the Next and Prev 5115 ** opcodes do not work after this operation. 5116 ** 5117 ** See also: NotFound, Found, NotExists 5118 */ 5119 case OP_IfNoHope: { /* jump, in3 */ 5120 VdbeCursor *pC; 5121 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5122 pC = p->apCsr[pOp->p1]; 5123 assert( pC!=0 ); 5124 #ifdef SQLITE_DEBUG 5125 if( db->flags&SQLITE_VdbeTrace ){ 5126 printf("seekHit is %d\n", pC->seekHit); 5127 } 5128 #endif 5129 if( pC->seekHit>=pOp->p4.i ) break; 5130 /* Fall through into OP_NotFound */ 5131 /* no break */ deliberate_fall_through 5132 } 5133 case OP_NoConflict: /* jump, in3 */ 5134 case OP_NotFound: /* jump, in3 */ 5135 case OP_Found: { /* jump, in3 */ 5136 int alreadyExists; 5137 int ii; 5138 VdbeCursor *pC; 5139 UnpackedRecord *pIdxKey; 5140 UnpackedRecord r; 5141 5142 #ifdef SQLITE_TEST 5143 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 5144 #endif 5145 5146 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5147 assert( pOp->p4type==P4_INT32 ); 5148 pC = p->apCsr[pOp->p1]; 5149 assert( pC!=0 ); 5150 #ifdef SQLITE_DEBUG 5151 pC->seekOp = pOp->opcode; 5152 #endif 5153 r.aMem = &aMem[pOp->p3]; 5154 assert( pC->eCurType==CURTYPE_BTREE ); 5155 assert( pC->uc.pCursor!=0 ); 5156 assert( pC->isTable==0 ); 5157 r.nField = (u16)pOp->p4.i; 5158 if( r.nField>0 ){ 5159 /* Key values in an array of registers */ 5160 r.pKeyInfo = pC->pKeyInfo; 5161 r.default_rc = 0; 5162 #ifdef SQLITE_DEBUG 5163 for(ii=0; ii<r.nField; ii++){ 5164 assert( memIsValid(&r.aMem[ii]) ); 5165 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 5166 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 5167 } 5168 #endif 5169 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 5170 }else{ 5171 /* Composite key generated by OP_MakeRecord */ 5172 assert( r.aMem->flags & MEM_Blob ); 5173 assert( pOp->opcode!=OP_NoConflict ); 5174 rc = ExpandBlob(r.aMem); 5175 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5176 if( rc ) goto no_mem; 5177 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 5178 if( pIdxKey==0 ) goto no_mem; 5179 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 5180 pIdxKey->default_rc = 0; 5181 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 5182 sqlite3DbFreeNN(db, pIdxKey); 5183 } 5184 if( rc!=SQLITE_OK ){ 5185 goto abort_due_to_error; 5186 } 5187 alreadyExists = (pC->seekResult==0); 5188 pC->nullRow = 1-alreadyExists; 5189 pC->deferredMoveto = 0; 5190 pC->cacheStatus = CACHE_STALE; 5191 if( pOp->opcode==OP_Found ){ 5192 VdbeBranchTaken(alreadyExists!=0,2); 5193 if( alreadyExists ) goto jump_to_p2; 5194 }else{ 5195 if( !alreadyExists ){ 5196 VdbeBranchTaken(1,2); 5197 goto jump_to_p2; 5198 } 5199 if( pOp->opcode==OP_NoConflict ){ 5200 /* For the OP_NoConflict opcode, take the jump if any of the 5201 ** input fields are NULL, since any key with a NULL will not 5202 ** conflict */ 5203 for(ii=0; ii<r.nField; ii++){ 5204 if( r.aMem[ii].flags & MEM_Null ){ 5205 VdbeBranchTaken(1,2); 5206 goto jump_to_p2; 5207 } 5208 } 5209 } 5210 VdbeBranchTaken(0,2); 5211 if( pOp->opcode==OP_IfNoHope ){ 5212 pC->seekHit = pOp->p4.i; 5213 } 5214 } 5215 break; 5216 } 5217 5218 /* Opcode: SeekRowid P1 P2 P3 * * 5219 ** Synopsis: intkey=r[P3] 5220 ** 5221 ** P1 is the index of a cursor open on an SQL table btree (with integer 5222 ** keys). If register P3 does not contain an integer or if P1 does not 5223 ** contain a record with rowid P3 then jump immediately to P2. 5224 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5225 ** a record with rowid P3 then 5226 ** leave the cursor pointing at that record and fall through to the next 5227 ** instruction. 5228 ** 5229 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5230 ** the P3 register must be guaranteed to contain an integer value. With this 5231 ** opcode, register P3 might not contain an integer. 5232 ** 5233 ** The OP_NotFound opcode performs the same operation on index btrees 5234 ** (with arbitrary multi-value keys). 5235 ** 5236 ** This opcode leaves the cursor in a state where it cannot be advanced 5237 ** in either direction. In other words, the Next and Prev opcodes will 5238 ** not work following this opcode. 5239 ** 5240 ** See also: Found, NotFound, NoConflict, SeekRowid 5241 */ 5242 /* Opcode: NotExists P1 P2 P3 * * 5243 ** Synopsis: intkey=r[P3] 5244 ** 5245 ** P1 is the index of a cursor open on an SQL table btree (with integer 5246 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5247 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5248 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5249 ** leave the cursor pointing at that record and fall through to the next 5250 ** instruction. 5251 ** 5252 ** The OP_SeekRowid opcode performs the same operation but also allows the 5253 ** P3 register to contain a non-integer value, in which case the jump is 5254 ** always taken. This opcode requires that P3 always contain an integer. 5255 ** 5256 ** The OP_NotFound opcode performs the same operation on index btrees 5257 ** (with arbitrary multi-value keys). 5258 ** 5259 ** This opcode leaves the cursor in a state where it cannot be advanced 5260 ** in either direction. In other words, the Next and Prev opcodes will 5261 ** not work following this opcode. 5262 ** 5263 ** See also: Found, NotFound, NoConflict, SeekRowid 5264 */ 5265 case OP_SeekRowid: { /* jump, in3 */ 5266 VdbeCursor *pC; 5267 BtCursor *pCrsr; 5268 int res; 5269 u64 iKey; 5270 5271 pIn3 = &aMem[pOp->p3]; 5272 testcase( pIn3->flags & MEM_Int ); 5273 testcase( pIn3->flags & MEM_IntReal ); 5274 testcase( pIn3->flags & MEM_Real ); 5275 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5276 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5277 /* If pIn3->u.i does not contain an integer, compute iKey as the 5278 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5279 ** into an integer without loss of information. Take care to avoid 5280 ** changing the datatype of pIn3, however, as it is used by other 5281 ** parts of the prepared statement. */ 5282 Mem x = pIn3[0]; 5283 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5284 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5285 iKey = x.u.i; 5286 goto notExistsWithKey; 5287 } 5288 /* Fall through into OP_NotExists */ 5289 /* no break */ deliberate_fall_through 5290 case OP_NotExists: /* jump, in3 */ 5291 pIn3 = &aMem[pOp->p3]; 5292 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5293 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5294 iKey = pIn3->u.i; 5295 notExistsWithKey: 5296 pC = p->apCsr[pOp->p1]; 5297 assert( pC!=0 ); 5298 #ifdef SQLITE_DEBUG 5299 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5300 #endif 5301 assert( pC->isTable ); 5302 assert( pC->eCurType==CURTYPE_BTREE ); 5303 pCrsr = pC->uc.pCursor; 5304 assert( pCrsr!=0 ); 5305 res = 0; 5306 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5307 assert( rc==SQLITE_OK || res==0 ); 5308 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5309 pC->nullRow = 0; 5310 pC->cacheStatus = CACHE_STALE; 5311 pC->deferredMoveto = 0; 5312 VdbeBranchTaken(res!=0,2); 5313 pC->seekResult = res; 5314 if( res!=0 ){ 5315 assert( rc==SQLITE_OK ); 5316 if( pOp->p2==0 ){ 5317 rc = SQLITE_CORRUPT_BKPT; 5318 }else{ 5319 goto jump_to_p2; 5320 } 5321 } 5322 if( rc ) goto abort_due_to_error; 5323 break; 5324 } 5325 5326 /* Opcode: Sequence P1 P2 * * * 5327 ** Synopsis: r[P2]=cursor[P1].ctr++ 5328 ** 5329 ** Find the next available sequence number for cursor P1. 5330 ** Write the sequence number into register P2. 5331 ** The sequence number on the cursor is incremented after this 5332 ** instruction. 5333 */ 5334 case OP_Sequence: { /* out2 */ 5335 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5336 assert( p->apCsr[pOp->p1]!=0 ); 5337 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5338 pOut = out2Prerelease(p, pOp); 5339 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5340 break; 5341 } 5342 5343 5344 /* Opcode: NewRowid P1 P2 P3 * * 5345 ** Synopsis: r[P2]=rowid 5346 ** 5347 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5348 ** The record number is not previously used as a key in the database 5349 ** table that cursor P1 points to. The new record number is written 5350 ** written to register P2. 5351 ** 5352 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5353 ** the largest previously generated record number. No new record numbers are 5354 ** allowed to be less than this value. When this value reaches its maximum, 5355 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5356 ** generated record number. This P3 mechanism is used to help implement the 5357 ** AUTOINCREMENT feature. 5358 */ 5359 case OP_NewRowid: { /* out2 */ 5360 i64 v; /* The new rowid */ 5361 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5362 int res; /* Result of an sqlite3BtreeLast() */ 5363 int cnt; /* Counter to limit the number of searches */ 5364 #ifndef SQLITE_OMIT_AUTOINCREMENT 5365 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5366 VdbeFrame *pFrame; /* Root frame of VDBE */ 5367 #endif 5368 5369 v = 0; 5370 res = 0; 5371 pOut = out2Prerelease(p, pOp); 5372 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5373 pC = p->apCsr[pOp->p1]; 5374 assert( pC!=0 ); 5375 assert( pC->isTable ); 5376 assert( pC->eCurType==CURTYPE_BTREE ); 5377 assert( pC->uc.pCursor!=0 ); 5378 { 5379 /* The next rowid or record number (different terms for the same 5380 ** thing) is obtained in a two-step algorithm. 5381 ** 5382 ** First we attempt to find the largest existing rowid and add one 5383 ** to that. But if the largest existing rowid is already the maximum 5384 ** positive integer, we have to fall through to the second 5385 ** probabilistic algorithm 5386 ** 5387 ** The second algorithm is to select a rowid at random and see if 5388 ** it already exists in the table. If it does not exist, we have 5389 ** succeeded. If the random rowid does exist, we select a new one 5390 ** and try again, up to 100 times. 5391 */ 5392 assert( pC->isTable ); 5393 5394 #ifdef SQLITE_32BIT_ROWID 5395 # define MAX_ROWID 0x7fffffff 5396 #else 5397 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5398 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5399 ** to provide the constant while making all compilers happy. 5400 */ 5401 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5402 #endif 5403 5404 if( !pC->useRandomRowid ){ 5405 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5406 if( rc!=SQLITE_OK ){ 5407 goto abort_due_to_error; 5408 } 5409 if( res ){ 5410 v = 1; /* IMP: R-61914-48074 */ 5411 }else{ 5412 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5413 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5414 if( v>=MAX_ROWID ){ 5415 pC->useRandomRowid = 1; 5416 }else{ 5417 v++; /* IMP: R-29538-34987 */ 5418 } 5419 } 5420 } 5421 5422 #ifndef SQLITE_OMIT_AUTOINCREMENT 5423 if( pOp->p3 ){ 5424 /* Assert that P3 is a valid memory cell. */ 5425 assert( pOp->p3>0 ); 5426 if( p->pFrame ){ 5427 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5428 /* Assert that P3 is a valid memory cell. */ 5429 assert( pOp->p3<=pFrame->nMem ); 5430 pMem = &pFrame->aMem[pOp->p3]; 5431 }else{ 5432 /* Assert that P3 is a valid memory cell. */ 5433 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5434 pMem = &aMem[pOp->p3]; 5435 memAboutToChange(p, pMem); 5436 } 5437 assert( memIsValid(pMem) ); 5438 5439 REGISTER_TRACE(pOp->p3, pMem); 5440 sqlite3VdbeMemIntegerify(pMem); 5441 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5442 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5443 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5444 goto abort_due_to_error; 5445 } 5446 if( v<pMem->u.i+1 ){ 5447 v = pMem->u.i + 1; 5448 } 5449 pMem->u.i = v; 5450 } 5451 #endif 5452 if( pC->useRandomRowid ){ 5453 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5454 ** largest possible integer (9223372036854775807) then the database 5455 ** engine starts picking positive candidate ROWIDs at random until 5456 ** it finds one that is not previously used. */ 5457 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5458 ** an AUTOINCREMENT table. */ 5459 cnt = 0; 5460 do{ 5461 sqlite3_randomness(sizeof(v), &v); 5462 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5463 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5464 0, &res))==SQLITE_OK) 5465 && (res==0) 5466 && (++cnt<100)); 5467 if( rc ) goto abort_due_to_error; 5468 if( res==0 ){ 5469 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5470 goto abort_due_to_error; 5471 } 5472 assert( v>0 ); /* EV: R-40812-03570 */ 5473 } 5474 pC->deferredMoveto = 0; 5475 pC->cacheStatus = CACHE_STALE; 5476 } 5477 pOut->u.i = v; 5478 break; 5479 } 5480 5481 /* Opcode: Insert P1 P2 P3 P4 P5 5482 ** Synopsis: intkey=r[P3] data=r[P2] 5483 ** 5484 ** Write an entry into the table of cursor P1. A new entry is 5485 ** created if it doesn't already exist or the data for an existing 5486 ** entry is overwritten. The data is the value MEM_Blob stored in register 5487 ** number P2. The key is stored in register P3. The key must 5488 ** be a MEM_Int. 5489 ** 5490 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5491 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5492 ** then rowid is stored for subsequent return by the 5493 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5494 ** 5495 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5496 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5497 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5498 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5499 ** 5500 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5501 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5502 ** is part of an INSERT operation. The difference is only important to 5503 ** the update hook. 5504 ** 5505 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5506 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5507 ** following a successful insert. 5508 ** 5509 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5510 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5511 ** and register P2 becomes ephemeral. If the cursor is changed, the 5512 ** value of register P2 will then change. Make sure this does not 5513 ** cause any problems.) 5514 ** 5515 ** This instruction only works on tables. The equivalent instruction 5516 ** for indices is OP_IdxInsert. 5517 */ 5518 case OP_Insert: { 5519 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5520 Mem *pKey; /* MEM cell holding key for the record */ 5521 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5522 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5523 const char *zDb; /* database name - used by the update hook */ 5524 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5525 BtreePayload x; /* Payload to be inserted */ 5526 5527 pData = &aMem[pOp->p2]; 5528 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5529 assert( memIsValid(pData) ); 5530 pC = p->apCsr[pOp->p1]; 5531 assert( pC!=0 ); 5532 assert( pC->eCurType==CURTYPE_BTREE ); 5533 assert( pC->deferredMoveto==0 ); 5534 assert( pC->uc.pCursor!=0 ); 5535 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5536 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5537 REGISTER_TRACE(pOp->p2, pData); 5538 sqlite3VdbeIncrWriteCounter(p, pC); 5539 5540 pKey = &aMem[pOp->p3]; 5541 assert( pKey->flags & MEM_Int ); 5542 assert( memIsValid(pKey) ); 5543 REGISTER_TRACE(pOp->p3, pKey); 5544 x.nKey = pKey->u.i; 5545 5546 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5547 assert( pC->iDb>=0 ); 5548 zDb = db->aDb[pC->iDb].zDbSName; 5549 pTab = pOp->p4.pTab; 5550 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5551 }else{ 5552 pTab = 0; 5553 zDb = 0; 5554 } 5555 5556 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5557 /* Invoke the pre-update hook, if any */ 5558 if( pTab ){ 5559 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5560 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5561 } 5562 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5563 /* Prevent post-update hook from running in cases when it should not */ 5564 pTab = 0; 5565 } 5566 } 5567 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5568 #endif 5569 5570 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5571 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5572 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5573 x.pData = pData->z; 5574 x.nData = pData->n; 5575 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5576 if( pData->flags & MEM_Zero ){ 5577 x.nZero = pData->u.nZero; 5578 }else{ 5579 x.nZero = 0; 5580 } 5581 x.pKey = 0; 5582 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5583 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5584 seekResult 5585 ); 5586 pC->deferredMoveto = 0; 5587 pC->cacheStatus = CACHE_STALE; 5588 5589 /* Invoke the update-hook if required. */ 5590 if( rc ) goto abort_due_to_error; 5591 if( pTab ){ 5592 assert( db->xUpdateCallback!=0 ); 5593 assert( pTab->aCol!=0 ); 5594 db->xUpdateCallback(db->pUpdateArg, 5595 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5596 zDb, pTab->zName, x.nKey); 5597 } 5598 break; 5599 } 5600 5601 /* Opcode: RowCell P1 P2 P3 * * 5602 ** 5603 ** P1 and P2 are both open cursors. Both must be opened on the same type 5604 ** of table - intkey or index. This opcode is used as part of copying 5605 ** the current row from P2 into P1. If the cursors are opened on intkey 5606 ** tables, register P3 contains the rowid to use with the new record in 5607 ** P1. If they are opened on index tables, P3 is not used. 5608 ** 5609 ** This opcode must be followed by either an Insert or InsertIdx opcode 5610 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5611 */ 5612 case OP_RowCell: { 5613 VdbeCursor *pDest; /* Cursor to write to */ 5614 VdbeCursor *pSrc; /* Cursor to read from */ 5615 i64 iKey; /* Rowid value to insert with */ 5616 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5617 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5618 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5619 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5620 pDest = p->apCsr[pOp->p1]; 5621 pSrc = p->apCsr[pOp->p2]; 5622 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5623 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5624 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5625 break; 5626 }; 5627 5628 /* Opcode: Delete P1 P2 P3 P4 P5 5629 ** 5630 ** Delete the record at which the P1 cursor is currently pointing. 5631 ** 5632 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5633 ** the cursor will be left pointing at either the next or the previous 5634 ** record in the table. If it is left pointing at the next record, then 5635 ** the next Next instruction will be a no-op. As a result, in this case 5636 ** it is ok to delete a record from within a Next loop. If 5637 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5638 ** left in an undefined state. 5639 ** 5640 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5641 ** delete one of several associated with deleting a table row and all its 5642 ** associated index entries. Exactly one of those deletes is the "primary" 5643 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5644 ** marked with the AUXDELETE flag. 5645 ** 5646 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5647 ** change count is incremented (otherwise not). 5648 ** 5649 ** P1 must not be pseudo-table. It has to be a real table with 5650 ** multiple rows. 5651 ** 5652 ** If P4 is not NULL then it points to a Table object. In this case either 5653 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5654 ** have been positioned using OP_NotFound prior to invoking this opcode in 5655 ** this case. Specifically, if one is configured, the pre-update hook is 5656 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5657 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5658 ** 5659 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5660 ** of the memory cell that contains the value that the rowid of the row will 5661 ** be set to by the update. 5662 */ 5663 case OP_Delete: { 5664 VdbeCursor *pC; 5665 const char *zDb; 5666 Table *pTab; 5667 int opflags; 5668 5669 opflags = pOp->p2; 5670 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5671 pC = p->apCsr[pOp->p1]; 5672 assert( pC!=0 ); 5673 assert( pC->eCurType==CURTYPE_BTREE ); 5674 assert( pC->uc.pCursor!=0 ); 5675 assert( pC->deferredMoveto==0 ); 5676 sqlite3VdbeIncrWriteCounter(p, pC); 5677 5678 #ifdef SQLITE_DEBUG 5679 if( pOp->p4type==P4_TABLE 5680 && HasRowid(pOp->p4.pTab) 5681 && pOp->p5==0 5682 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5683 ){ 5684 /* If p5 is zero, the seek operation that positioned the cursor prior to 5685 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5686 ** the row that is being deleted */ 5687 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5688 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5689 } 5690 #endif 5691 5692 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5693 ** the name of the db to pass as to it. Also set local pTab to a copy 5694 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5695 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5696 ** VdbeCursor.movetoTarget to the current rowid. */ 5697 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5698 assert( pC->iDb>=0 ); 5699 assert( pOp->p4.pTab!=0 ); 5700 zDb = db->aDb[pC->iDb].zDbSName; 5701 pTab = pOp->p4.pTab; 5702 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5703 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5704 } 5705 }else{ 5706 zDb = 0; 5707 pTab = 0; 5708 } 5709 5710 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5711 /* Invoke the pre-update-hook if required. */ 5712 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5713 if( db->xPreUpdateCallback && pTab ){ 5714 assert( !(opflags & OPFLAG_ISUPDATE) 5715 || HasRowid(pTab)==0 5716 || (aMem[pOp->p3].flags & MEM_Int) 5717 ); 5718 sqlite3VdbePreUpdateHook(p, pC, 5719 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5720 zDb, pTab, pC->movetoTarget, 5721 pOp->p3, -1 5722 ); 5723 } 5724 if( opflags & OPFLAG_ISNOOP ) break; 5725 #endif 5726 5727 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5728 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5729 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5730 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5731 5732 #ifdef SQLITE_DEBUG 5733 if( p->pFrame==0 ){ 5734 if( pC->isEphemeral==0 5735 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5736 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5737 ){ 5738 nExtraDelete++; 5739 } 5740 if( pOp->p2 & OPFLAG_NCHANGE ){ 5741 nExtraDelete--; 5742 } 5743 } 5744 #endif 5745 5746 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5747 pC->cacheStatus = CACHE_STALE; 5748 pC->seekResult = 0; 5749 if( rc ) goto abort_due_to_error; 5750 5751 /* Invoke the update-hook if required. */ 5752 if( opflags & OPFLAG_NCHANGE ){ 5753 p->nChange++; 5754 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5755 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5756 pC->movetoTarget); 5757 assert( pC->iDb>=0 ); 5758 } 5759 } 5760 5761 break; 5762 } 5763 /* Opcode: ResetCount * * * * * 5764 ** 5765 ** The value of the change counter is copied to the database handle 5766 ** change counter (returned by subsequent calls to sqlite3_changes()). 5767 ** Then the VMs internal change counter resets to 0. 5768 ** This is used by trigger programs. 5769 */ 5770 case OP_ResetCount: { 5771 sqlite3VdbeSetChanges(db, p->nChange); 5772 p->nChange = 0; 5773 break; 5774 } 5775 5776 /* Opcode: SorterCompare P1 P2 P3 P4 5777 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5778 ** 5779 ** P1 is a sorter cursor. This instruction compares a prefix of the 5780 ** record blob in register P3 against a prefix of the entry that 5781 ** the sorter cursor currently points to. Only the first P4 fields 5782 ** of r[P3] and the sorter record are compared. 5783 ** 5784 ** If either P3 or the sorter contains a NULL in one of their significant 5785 ** fields (not counting the P4 fields at the end which are ignored) then 5786 ** the comparison is assumed to be equal. 5787 ** 5788 ** Fall through to next instruction if the two records compare equal to 5789 ** each other. Jump to P2 if they are different. 5790 */ 5791 case OP_SorterCompare: { 5792 VdbeCursor *pC; 5793 int res; 5794 int nKeyCol; 5795 5796 pC = p->apCsr[pOp->p1]; 5797 assert( isSorter(pC) ); 5798 assert( pOp->p4type==P4_INT32 ); 5799 pIn3 = &aMem[pOp->p3]; 5800 nKeyCol = pOp->p4.i; 5801 res = 0; 5802 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5803 VdbeBranchTaken(res!=0,2); 5804 if( rc ) goto abort_due_to_error; 5805 if( res ) goto jump_to_p2; 5806 break; 5807 }; 5808 5809 /* Opcode: SorterData P1 P2 P3 * * 5810 ** Synopsis: r[P2]=data 5811 ** 5812 ** Write into register P2 the current sorter data for sorter cursor P1. 5813 ** Then clear the column header cache on cursor P3. 5814 ** 5815 ** This opcode is normally use to move a record out of the sorter and into 5816 ** a register that is the source for a pseudo-table cursor created using 5817 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5818 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5819 ** us from having to issue a separate NullRow instruction to clear that cache. 5820 */ 5821 case OP_SorterData: { 5822 VdbeCursor *pC; 5823 5824 pOut = &aMem[pOp->p2]; 5825 pC = p->apCsr[pOp->p1]; 5826 assert( isSorter(pC) ); 5827 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5828 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5829 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5830 if( rc ) goto abort_due_to_error; 5831 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5832 break; 5833 } 5834 5835 /* Opcode: RowData P1 P2 P3 * * 5836 ** Synopsis: r[P2]=data 5837 ** 5838 ** Write into register P2 the complete row content for the row at 5839 ** which cursor P1 is currently pointing. 5840 ** There is no interpretation of the data. 5841 ** It is just copied onto the P2 register exactly as 5842 ** it is found in the database file. 5843 ** 5844 ** If cursor P1 is an index, then the content is the key of the row. 5845 ** If cursor P2 is a table, then the content extracted is the data. 5846 ** 5847 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5848 ** of a real table, not a pseudo-table. 5849 ** 5850 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5851 ** into the database page. That means that the content of the output 5852 ** register will be invalidated as soon as the cursor moves - including 5853 ** moves caused by other cursors that "save" the current cursors 5854 ** position in order that they can write to the same table. If P3==0 5855 ** then a copy of the data is made into memory. P3!=0 is faster, but 5856 ** P3==0 is safer. 5857 ** 5858 ** If P3!=0 then the content of the P2 register is unsuitable for use 5859 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5860 ** The P2 register content is invalidated by opcodes like OP_Function or 5861 ** by any use of another cursor pointing to the same table. 5862 */ 5863 case OP_RowData: { 5864 VdbeCursor *pC; 5865 BtCursor *pCrsr; 5866 u32 n; 5867 5868 pOut = out2Prerelease(p, pOp); 5869 5870 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5871 pC = p->apCsr[pOp->p1]; 5872 assert( pC!=0 ); 5873 assert( pC->eCurType==CURTYPE_BTREE ); 5874 assert( isSorter(pC)==0 ); 5875 assert( pC->nullRow==0 ); 5876 assert( pC->uc.pCursor!=0 ); 5877 pCrsr = pC->uc.pCursor; 5878 5879 /* The OP_RowData opcodes always follow OP_NotExists or 5880 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5881 ** that might invalidate the cursor. 5882 ** If this where not the case, on of the following assert()s 5883 ** would fail. Should this ever change (because of changes in the code 5884 ** generator) then the fix would be to insert a call to 5885 ** sqlite3VdbeCursorMoveto(). 5886 */ 5887 assert( pC->deferredMoveto==0 ); 5888 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5889 5890 n = sqlite3BtreePayloadSize(pCrsr); 5891 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5892 goto too_big; 5893 } 5894 testcase( n==0 ); 5895 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5896 if( rc ) goto abort_due_to_error; 5897 if( !pOp->p3 ) Deephemeralize(pOut); 5898 UPDATE_MAX_BLOBSIZE(pOut); 5899 REGISTER_TRACE(pOp->p2, pOut); 5900 break; 5901 } 5902 5903 /* Opcode: Rowid P1 P2 * * * 5904 ** Synopsis: r[P2]=PX rowid of P1 5905 ** 5906 ** Store in register P2 an integer which is the key of the table entry that 5907 ** P1 is currently point to. 5908 ** 5909 ** P1 can be either an ordinary table or a virtual table. There used to 5910 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5911 ** one opcode now works for both table types. 5912 */ 5913 case OP_Rowid: { /* out2 */ 5914 VdbeCursor *pC; 5915 i64 v; 5916 sqlite3_vtab *pVtab; 5917 const sqlite3_module *pModule; 5918 5919 pOut = out2Prerelease(p, pOp); 5920 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5921 pC = p->apCsr[pOp->p1]; 5922 assert( pC!=0 ); 5923 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5924 if( pC->nullRow ){ 5925 pOut->flags = MEM_Null; 5926 break; 5927 }else if( pC->deferredMoveto ){ 5928 v = pC->movetoTarget; 5929 #ifndef SQLITE_OMIT_VIRTUALTABLE 5930 }else if( pC->eCurType==CURTYPE_VTAB ){ 5931 assert( pC->uc.pVCur!=0 ); 5932 pVtab = pC->uc.pVCur->pVtab; 5933 pModule = pVtab->pModule; 5934 assert( pModule->xRowid ); 5935 rc = pModule->xRowid(pC->uc.pVCur, &v); 5936 sqlite3VtabImportErrmsg(p, pVtab); 5937 if( rc ) goto abort_due_to_error; 5938 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5939 }else{ 5940 assert( pC->eCurType==CURTYPE_BTREE ); 5941 assert( pC->uc.pCursor!=0 ); 5942 rc = sqlite3VdbeCursorRestore(pC); 5943 if( rc ) goto abort_due_to_error; 5944 if( pC->nullRow ){ 5945 pOut->flags = MEM_Null; 5946 break; 5947 } 5948 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5949 } 5950 pOut->u.i = v; 5951 break; 5952 } 5953 5954 /* Opcode: NullRow P1 * * * * 5955 ** 5956 ** Move the cursor P1 to a null row. Any OP_Column operations 5957 ** that occur while the cursor is on the null row will always 5958 ** write a NULL. 5959 ** 5960 ** If cursor P1 is not previously opened, open it now to a special 5961 ** pseudo-cursor that always returns NULL for every column. 5962 */ 5963 case OP_NullRow: { 5964 VdbeCursor *pC; 5965 5966 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5967 pC = p->apCsr[pOp->p1]; 5968 if( pC==0 ){ 5969 /* If the cursor is not already open, create a special kind of 5970 ** pseudo-cursor that always gives null rows. */ 5971 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 5972 if( pC==0 ) goto no_mem; 5973 pC->seekResult = 0; 5974 pC->isTable = 1; 5975 pC->noReuse = 1; 5976 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 5977 } 5978 pC->nullRow = 1; 5979 pC->cacheStatus = CACHE_STALE; 5980 if( pC->eCurType==CURTYPE_BTREE ){ 5981 assert( pC->uc.pCursor!=0 ); 5982 sqlite3BtreeClearCursor(pC->uc.pCursor); 5983 } 5984 #ifdef SQLITE_DEBUG 5985 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5986 #endif 5987 break; 5988 } 5989 5990 /* Opcode: SeekEnd P1 * * * * 5991 ** 5992 ** Position cursor P1 at the end of the btree for the purpose of 5993 ** appending a new entry onto the btree. 5994 ** 5995 ** It is assumed that the cursor is used only for appending and so 5996 ** if the cursor is valid, then the cursor must already be pointing 5997 ** at the end of the btree and so no changes are made to 5998 ** the cursor. 5999 */ 6000 /* Opcode: Last P1 P2 * * * 6001 ** 6002 ** The next use of the Rowid or Column or Prev instruction for P1 6003 ** will refer to the last entry in the database table or index. 6004 ** If the table or index is empty and P2>0, then jump immediately to P2. 6005 ** If P2 is 0 or if the table or index is not empty, fall through 6006 ** to the following instruction. 6007 ** 6008 ** This opcode leaves the cursor configured to move in reverse order, 6009 ** from the end toward the beginning. In other words, the cursor is 6010 ** configured to use Prev, not Next. 6011 */ 6012 case OP_SeekEnd: 6013 case OP_Last: { /* jump */ 6014 VdbeCursor *pC; 6015 BtCursor *pCrsr; 6016 int res; 6017 6018 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6019 pC = p->apCsr[pOp->p1]; 6020 assert( pC!=0 ); 6021 assert( pC->eCurType==CURTYPE_BTREE ); 6022 pCrsr = pC->uc.pCursor; 6023 res = 0; 6024 assert( pCrsr!=0 ); 6025 #ifdef SQLITE_DEBUG 6026 pC->seekOp = pOp->opcode; 6027 #endif 6028 if( pOp->opcode==OP_SeekEnd ){ 6029 assert( pOp->p2==0 ); 6030 pC->seekResult = -1; 6031 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 6032 break; 6033 } 6034 } 6035 rc = sqlite3BtreeLast(pCrsr, &res); 6036 pC->nullRow = (u8)res; 6037 pC->deferredMoveto = 0; 6038 pC->cacheStatus = CACHE_STALE; 6039 if( rc ) goto abort_due_to_error; 6040 if( pOp->p2>0 ){ 6041 VdbeBranchTaken(res!=0,2); 6042 if( res ) goto jump_to_p2; 6043 } 6044 break; 6045 } 6046 6047 /* Opcode: IfSmaller P1 P2 P3 * * 6048 ** 6049 ** Estimate the number of rows in the table P1. Jump to P2 if that 6050 ** estimate is less than approximately 2**(0.1*P3). 6051 */ 6052 case OP_IfSmaller: { /* jump */ 6053 VdbeCursor *pC; 6054 BtCursor *pCrsr; 6055 int res; 6056 i64 sz; 6057 6058 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6059 pC = p->apCsr[pOp->p1]; 6060 assert( pC!=0 ); 6061 pCrsr = pC->uc.pCursor; 6062 assert( pCrsr ); 6063 rc = sqlite3BtreeFirst(pCrsr, &res); 6064 if( rc ) goto abort_due_to_error; 6065 if( res==0 ){ 6066 sz = sqlite3BtreeRowCountEst(pCrsr); 6067 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 6068 } 6069 VdbeBranchTaken(res!=0,2); 6070 if( res ) goto jump_to_p2; 6071 break; 6072 } 6073 6074 6075 /* Opcode: SorterSort P1 P2 * * * 6076 ** 6077 ** After all records have been inserted into the Sorter object 6078 ** identified by P1, invoke this opcode to actually do the sorting. 6079 ** Jump to P2 if there are no records to be sorted. 6080 ** 6081 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 6082 ** for Sorter objects. 6083 */ 6084 /* Opcode: Sort P1 P2 * * * 6085 ** 6086 ** This opcode does exactly the same thing as OP_Rewind except that 6087 ** it increments an undocumented global variable used for testing. 6088 ** 6089 ** Sorting is accomplished by writing records into a sorting index, 6090 ** then rewinding that index and playing it back from beginning to 6091 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 6092 ** rewinding so that the global variable will be incremented and 6093 ** regression tests can determine whether or not the optimizer is 6094 ** correctly optimizing out sorts. 6095 */ 6096 case OP_SorterSort: /* jump */ 6097 case OP_Sort: { /* jump */ 6098 #ifdef SQLITE_TEST 6099 sqlite3_sort_count++; 6100 sqlite3_search_count--; 6101 #endif 6102 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 6103 /* Fall through into OP_Rewind */ 6104 /* no break */ deliberate_fall_through 6105 } 6106 /* Opcode: Rewind P1 P2 * * * 6107 ** 6108 ** The next use of the Rowid or Column or Next instruction for P1 6109 ** will refer to the first entry in the database table or index. 6110 ** If the table or index is empty, jump immediately to P2. 6111 ** If the table or index is not empty, fall through to the following 6112 ** instruction. 6113 ** 6114 ** This opcode leaves the cursor configured to move in forward order, 6115 ** from the beginning toward the end. In other words, the cursor is 6116 ** configured to use Next, not Prev. 6117 */ 6118 case OP_Rewind: { /* jump */ 6119 VdbeCursor *pC; 6120 BtCursor *pCrsr; 6121 int res; 6122 6123 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6124 assert( pOp->p5==0 ); 6125 pC = p->apCsr[pOp->p1]; 6126 assert( pC!=0 ); 6127 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 6128 res = 1; 6129 #ifdef SQLITE_DEBUG 6130 pC->seekOp = OP_Rewind; 6131 #endif 6132 if( isSorter(pC) ){ 6133 rc = sqlite3VdbeSorterRewind(pC, &res); 6134 }else{ 6135 assert( pC->eCurType==CURTYPE_BTREE ); 6136 pCrsr = pC->uc.pCursor; 6137 assert( pCrsr ); 6138 rc = sqlite3BtreeFirst(pCrsr, &res); 6139 pC->deferredMoveto = 0; 6140 pC->cacheStatus = CACHE_STALE; 6141 } 6142 if( rc ) goto abort_due_to_error; 6143 pC->nullRow = (u8)res; 6144 assert( pOp->p2>0 && pOp->p2<p->nOp ); 6145 VdbeBranchTaken(res!=0,2); 6146 if( res ) goto jump_to_p2; 6147 break; 6148 } 6149 6150 /* Opcode: Next P1 P2 P3 * P5 6151 ** 6152 ** Advance cursor P1 so that it points to the next key/data pair in its 6153 ** table or index. If there are no more key/value pairs then fall through 6154 ** to the following instruction. But if the cursor advance was successful, 6155 ** jump immediately to P2. 6156 ** 6157 ** The Next opcode is only valid following an SeekGT, SeekGE, or 6158 ** OP_Rewind opcode used to position the cursor. Next is not allowed 6159 ** to follow SeekLT, SeekLE, or OP_Last. 6160 ** 6161 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 6162 ** been opened prior to this opcode or the program will segfault. 6163 ** 6164 ** The P3 value is a hint to the btree implementation. If P3==1, that 6165 ** means P1 is an SQL index and that this instruction could have been 6166 ** omitted if that index had been unique. P3 is usually 0. P3 is 6167 ** always either 0 or 1. 6168 ** 6169 ** If P5 is positive and the jump is taken, then event counter 6170 ** number P5-1 in the prepared statement is incremented. 6171 ** 6172 ** See also: Prev 6173 */ 6174 /* Opcode: Prev P1 P2 P3 * P5 6175 ** 6176 ** Back up cursor P1 so that it points to the previous key/data pair in its 6177 ** table or index. If there is no previous key/value pairs then fall through 6178 ** to the following instruction. But if the cursor backup was successful, 6179 ** jump immediately to P2. 6180 ** 6181 ** 6182 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 6183 ** OP_Last opcode used to position the cursor. Prev is not allowed 6184 ** to follow SeekGT, SeekGE, or OP_Rewind. 6185 ** 6186 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 6187 ** not open then the behavior is undefined. 6188 ** 6189 ** The P3 value is a hint to the btree implementation. If P3==1, that 6190 ** means P1 is an SQL index and that this instruction could have been 6191 ** omitted if that index had been unique. P3 is usually 0. P3 is 6192 ** always either 0 or 1. 6193 ** 6194 ** If P5 is positive and the jump is taken, then event counter 6195 ** number P5-1 in the prepared statement is incremented. 6196 */ 6197 /* Opcode: SorterNext P1 P2 * * P5 6198 ** 6199 ** This opcode works just like OP_Next except that P1 must be a 6200 ** sorter object for which the OP_SorterSort opcode has been 6201 ** invoked. This opcode advances the cursor to the next sorted 6202 ** record, or jumps to P2 if there are no more sorted records. 6203 */ 6204 case OP_SorterNext: { /* jump */ 6205 VdbeCursor *pC; 6206 6207 pC = p->apCsr[pOp->p1]; 6208 assert( isSorter(pC) ); 6209 rc = sqlite3VdbeSorterNext(db, pC); 6210 goto next_tail; 6211 6212 case OP_Prev: /* jump */ 6213 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6214 assert( pOp->p5==0 6215 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 6216 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 6217 pC = p->apCsr[pOp->p1]; 6218 assert( pC!=0 ); 6219 assert( pC->deferredMoveto==0 ); 6220 assert( pC->eCurType==CURTYPE_BTREE ); 6221 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 6222 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 6223 || pC->seekOp==OP_NullRow); 6224 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 6225 goto next_tail; 6226 6227 case OP_Next: /* jump */ 6228 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6229 assert( pOp->p5==0 6230 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 6231 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 6232 pC = p->apCsr[pOp->p1]; 6233 assert( pC!=0 ); 6234 assert( pC->deferredMoveto==0 ); 6235 assert( pC->eCurType==CURTYPE_BTREE ); 6236 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6237 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6238 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6239 || pC->seekOp==OP_IfNoHope); 6240 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6241 6242 next_tail: 6243 pC->cacheStatus = CACHE_STALE; 6244 VdbeBranchTaken(rc==SQLITE_OK,2); 6245 if( rc==SQLITE_OK ){ 6246 pC->nullRow = 0; 6247 p->aCounter[pOp->p5]++; 6248 #ifdef SQLITE_TEST 6249 sqlite3_search_count++; 6250 #endif 6251 goto jump_to_p2_and_check_for_interrupt; 6252 } 6253 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6254 rc = SQLITE_OK; 6255 pC->nullRow = 1; 6256 goto check_for_interrupt; 6257 } 6258 6259 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6260 ** Synopsis: key=r[P2] 6261 ** 6262 ** Register P2 holds an SQL index key made using the 6263 ** MakeRecord instructions. This opcode writes that key 6264 ** into the index P1. Data for the entry is nil. 6265 ** 6266 ** If P4 is not zero, then it is the number of values in the unpacked 6267 ** key of reg(P2). In that case, P3 is the index of the first register 6268 ** for the unpacked key. The availability of the unpacked key can sometimes 6269 ** be an optimization. 6270 ** 6271 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6272 ** that this insert is likely to be an append. 6273 ** 6274 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6275 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6276 ** then the change counter is unchanged. 6277 ** 6278 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6279 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6280 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6281 ** seeks on the cursor or if the most recent seek used a key equivalent 6282 ** to P2. 6283 ** 6284 ** This instruction only works for indices. The equivalent instruction 6285 ** for tables is OP_Insert. 6286 */ 6287 case OP_IdxInsert: { /* in2 */ 6288 VdbeCursor *pC; 6289 BtreePayload x; 6290 6291 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6292 pC = p->apCsr[pOp->p1]; 6293 sqlite3VdbeIncrWriteCounter(p, pC); 6294 assert( pC!=0 ); 6295 assert( !isSorter(pC) ); 6296 pIn2 = &aMem[pOp->p2]; 6297 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6298 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6299 assert( pC->eCurType==CURTYPE_BTREE ); 6300 assert( pC->isTable==0 ); 6301 rc = ExpandBlob(pIn2); 6302 if( rc ) goto abort_due_to_error; 6303 x.nKey = pIn2->n; 6304 x.pKey = pIn2->z; 6305 x.aMem = aMem + pOp->p3; 6306 x.nMem = (u16)pOp->p4.i; 6307 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6308 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6309 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6310 ); 6311 assert( pC->deferredMoveto==0 ); 6312 pC->cacheStatus = CACHE_STALE; 6313 if( rc) goto abort_due_to_error; 6314 break; 6315 } 6316 6317 /* Opcode: SorterInsert P1 P2 * * * 6318 ** Synopsis: key=r[P2] 6319 ** 6320 ** Register P2 holds an SQL index key made using the 6321 ** MakeRecord instructions. This opcode writes that key 6322 ** into the sorter P1. Data for the entry is nil. 6323 */ 6324 case OP_SorterInsert: { /* in2 */ 6325 VdbeCursor *pC; 6326 6327 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6328 pC = p->apCsr[pOp->p1]; 6329 sqlite3VdbeIncrWriteCounter(p, pC); 6330 assert( pC!=0 ); 6331 assert( isSorter(pC) ); 6332 pIn2 = &aMem[pOp->p2]; 6333 assert( pIn2->flags & MEM_Blob ); 6334 assert( pC->isTable==0 ); 6335 rc = ExpandBlob(pIn2); 6336 if( rc ) goto abort_due_to_error; 6337 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6338 if( rc) goto abort_due_to_error; 6339 break; 6340 } 6341 6342 /* Opcode: IdxDelete P1 P2 P3 * P5 6343 ** Synopsis: key=r[P2@P3] 6344 ** 6345 ** The content of P3 registers starting at register P2 form 6346 ** an unpacked index key. This opcode removes that entry from the 6347 ** index opened by cursor P1. 6348 ** 6349 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6350 ** if no matching index entry is found. This happens when running 6351 ** an UPDATE or DELETE statement and the index entry to be updated 6352 ** or deleted is not found. For some uses of IdxDelete 6353 ** (example: the EXCEPT operator) it does not matter that no matching 6354 ** entry is found. For those cases, P5 is zero. Also, do not raise 6355 ** this (self-correcting and non-critical) error if in writable_schema mode. 6356 */ 6357 case OP_IdxDelete: { 6358 VdbeCursor *pC; 6359 BtCursor *pCrsr; 6360 int res; 6361 UnpackedRecord r; 6362 6363 assert( pOp->p3>0 ); 6364 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6365 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6366 pC = p->apCsr[pOp->p1]; 6367 assert( pC!=0 ); 6368 assert( pC->eCurType==CURTYPE_BTREE ); 6369 sqlite3VdbeIncrWriteCounter(p, pC); 6370 pCrsr = pC->uc.pCursor; 6371 assert( pCrsr!=0 ); 6372 r.pKeyInfo = pC->pKeyInfo; 6373 r.nField = (u16)pOp->p3; 6374 r.default_rc = 0; 6375 r.aMem = &aMem[pOp->p2]; 6376 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6377 if( rc ) goto abort_due_to_error; 6378 if( res==0 ){ 6379 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6380 if( rc ) goto abort_due_to_error; 6381 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6382 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6383 goto abort_due_to_error; 6384 } 6385 assert( pC->deferredMoveto==0 ); 6386 pC->cacheStatus = CACHE_STALE; 6387 pC->seekResult = 0; 6388 break; 6389 } 6390 6391 /* Opcode: DeferredSeek P1 * P3 P4 * 6392 ** Synopsis: Move P3 to P1.rowid if needed 6393 ** 6394 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6395 ** table. This opcode does a deferred seek of the P3 table cursor 6396 ** to the row that corresponds to the current row of P1. 6397 ** 6398 ** This is a deferred seek. Nothing actually happens until 6399 ** the cursor is used to read a record. That way, if no reads 6400 ** occur, no unnecessary I/O happens. 6401 ** 6402 ** P4 may be an array of integers (type P4_INTARRAY) containing 6403 ** one entry for each column in the P3 table. If array entry a(i) 6404 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6405 ** equivalent to performing the deferred seek and then reading column i 6406 ** from P1. This information is stored in P3 and used to redirect 6407 ** reads against P3 over to P1, thus possibly avoiding the need to 6408 ** seek and read cursor P3. 6409 */ 6410 /* Opcode: IdxRowid P1 P2 * * * 6411 ** Synopsis: r[P2]=rowid 6412 ** 6413 ** Write into register P2 an integer which is the last entry in the record at 6414 ** the end of the index key pointed to by cursor P1. This integer should be 6415 ** the rowid of the table entry to which this index entry points. 6416 ** 6417 ** See also: Rowid, MakeRecord. 6418 */ 6419 case OP_DeferredSeek: 6420 case OP_IdxRowid: { /* out2 */ 6421 VdbeCursor *pC; /* The P1 index cursor */ 6422 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6423 i64 rowid; /* Rowid that P1 current points to */ 6424 6425 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6426 pC = p->apCsr[pOp->p1]; 6427 assert( pC!=0 ); 6428 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 6429 assert( pC->uc.pCursor!=0 ); 6430 assert( pC->isTable==0 || IsNullCursor(pC) ); 6431 assert( pC->deferredMoveto==0 ); 6432 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6433 6434 /* The IdxRowid and Seek opcodes are combined because of the commonality 6435 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6436 rc = sqlite3VdbeCursorRestore(pC); 6437 6438 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed 6439 ** since it was last positioned and an error (e.g. OOM or an IO error) 6440 ** occurs while trying to reposition it. */ 6441 if( rc!=SQLITE_OK ) goto abort_due_to_error; 6442 6443 if( !pC->nullRow ){ 6444 rowid = 0; /* Not needed. Only used to silence a warning. */ 6445 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6446 if( rc!=SQLITE_OK ){ 6447 goto abort_due_to_error; 6448 } 6449 if( pOp->opcode==OP_DeferredSeek ){ 6450 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6451 pTabCur = p->apCsr[pOp->p3]; 6452 assert( pTabCur!=0 ); 6453 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6454 assert( pTabCur->uc.pCursor!=0 ); 6455 assert( pTabCur->isTable ); 6456 pTabCur->nullRow = 0; 6457 pTabCur->movetoTarget = rowid; 6458 pTabCur->deferredMoveto = 1; 6459 pTabCur->cacheStatus = CACHE_STALE; 6460 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6461 assert( !pTabCur->isEphemeral ); 6462 pTabCur->ub.aAltMap = pOp->p4.ai; 6463 assert( !pC->isEphemeral ); 6464 pTabCur->pAltCursor = pC; 6465 }else{ 6466 pOut = out2Prerelease(p, pOp); 6467 pOut->u.i = rowid; 6468 } 6469 }else{ 6470 assert( pOp->opcode==OP_IdxRowid ); 6471 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6472 } 6473 break; 6474 } 6475 6476 /* Opcode: FinishSeek P1 * * * * 6477 ** 6478 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6479 ** seek operation now, without further delay. If the cursor seek has 6480 ** already occurred, this instruction is a no-op. 6481 */ 6482 case OP_FinishSeek: { 6483 VdbeCursor *pC; /* The P1 index cursor */ 6484 6485 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6486 pC = p->apCsr[pOp->p1]; 6487 if( pC->deferredMoveto ){ 6488 rc = sqlite3VdbeFinishMoveto(pC); 6489 if( rc ) goto abort_due_to_error; 6490 } 6491 break; 6492 } 6493 6494 /* Opcode: IdxGE P1 P2 P3 P4 * 6495 ** Synopsis: key=r[P3@P4] 6496 ** 6497 ** The P4 register values beginning with P3 form an unpacked index 6498 ** key that omits the PRIMARY KEY. Compare this key value against the index 6499 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6500 ** fields at the end. 6501 ** 6502 ** If the P1 index entry is greater than or equal to the key value 6503 ** then jump to P2. Otherwise fall through to the next instruction. 6504 */ 6505 /* Opcode: IdxGT P1 P2 P3 P4 * 6506 ** Synopsis: key=r[P3@P4] 6507 ** 6508 ** The P4 register values beginning with P3 form an unpacked index 6509 ** key that omits the PRIMARY KEY. Compare this key value against the index 6510 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6511 ** fields at the end. 6512 ** 6513 ** If the P1 index entry is greater than the key value 6514 ** then jump to P2. Otherwise fall through to the next instruction. 6515 */ 6516 /* Opcode: IdxLT P1 P2 P3 P4 * 6517 ** Synopsis: key=r[P3@P4] 6518 ** 6519 ** The P4 register values beginning with P3 form an unpacked index 6520 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6521 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6522 ** ROWID on the P1 index. 6523 ** 6524 ** If the P1 index entry is less than the key value then jump to P2. 6525 ** Otherwise fall through to the next instruction. 6526 */ 6527 /* Opcode: IdxLE P1 P2 P3 P4 * 6528 ** Synopsis: key=r[P3@P4] 6529 ** 6530 ** The P4 register values beginning with P3 form an unpacked index 6531 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6532 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6533 ** ROWID on the P1 index. 6534 ** 6535 ** If the P1 index entry is less than or equal to the key value then jump 6536 ** to P2. Otherwise fall through to the next instruction. 6537 */ 6538 case OP_IdxLE: /* jump */ 6539 case OP_IdxGT: /* jump */ 6540 case OP_IdxLT: /* jump */ 6541 case OP_IdxGE: { /* jump */ 6542 VdbeCursor *pC; 6543 int res; 6544 UnpackedRecord r; 6545 6546 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6547 pC = p->apCsr[pOp->p1]; 6548 assert( pC!=0 ); 6549 assert( pC->isOrdered ); 6550 assert( pC->eCurType==CURTYPE_BTREE ); 6551 assert( pC->uc.pCursor!=0); 6552 assert( pC->deferredMoveto==0 ); 6553 assert( pOp->p4type==P4_INT32 ); 6554 r.pKeyInfo = pC->pKeyInfo; 6555 r.nField = (u16)pOp->p4.i; 6556 if( pOp->opcode<OP_IdxLT ){ 6557 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6558 r.default_rc = -1; 6559 }else{ 6560 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6561 r.default_rc = 0; 6562 } 6563 r.aMem = &aMem[pOp->p3]; 6564 #ifdef SQLITE_DEBUG 6565 { 6566 int i; 6567 for(i=0; i<r.nField; i++){ 6568 assert( memIsValid(&r.aMem[i]) ); 6569 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6570 } 6571 } 6572 #endif 6573 6574 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6575 { 6576 i64 nCellKey = 0; 6577 BtCursor *pCur; 6578 Mem m; 6579 6580 assert( pC->eCurType==CURTYPE_BTREE ); 6581 pCur = pC->uc.pCursor; 6582 assert( sqlite3BtreeCursorIsValid(pCur) ); 6583 nCellKey = sqlite3BtreePayloadSize(pCur); 6584 /* nCellKey will always be between 0 and 0xffffffff because of the way 6585 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6586 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6587 rc = SQLITE_CORRUPT_BKPT; 6588 goto abort_due_to_error; 6589 } 6590 sqlite3VdbeMemInit(&m, db, 0); 6591 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6592 if( rc ) goto abort_due_to_error; 6593 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6594 sqlite3VdbeMemReleaseMalloc(&m); 6595 } 6596 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6597 6598 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6599 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6600 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6601 res = -res; 6602 }else{ 6603 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6604 res++; 6605 } 6606 VdbeBranchTaken(res>0,2); 6607 assert( rc==SQLITE_OK ); 6608 if( res>0 ) goto jump_to_p2; 6609 break; 6610 } 6611 6612 /* Opcode: Destroy P1 P2 P3 * * 6613 ** 6614 ** Delete an entire database table or index whose root page in the database 6615 ** file is given by P1. 6616 ** 6617 ** The table being destroyed is in the main database file if P3==0. If 6618 ** P3==1 then the table to be clear is in the auxiliary database file 6619 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6620 ** 6621 ** If AUTOVACUUM is enabled then it is possible that another root page 6622 ** might be moved into the newly deleted root page in order to keep all 6623 ** root pages contiguous at the beginning of the database. The former 6624 ** value of the root page that moved - its value before the move occurred - 6625 ** is stored in register P2. If no page movement was required (because the 6626 ** table being dropped was already the last one in the database) then a 6627 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6628 ** is stored in register P2. 6629 ** 6630 ** This opcode throws an error if there are any active reader VMs when 6631 ** it is invoked. This is done to avoid the difficulty associated with 6632 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6633 ** database. This error is thrown even if the database is not an AUTOVACUUM 6634 ** db in order to avoid introducing an incompatibility between autovacuum 6635 ** and non-autovacuum modes. 6636 ** 6637 ** See also: Clear 6638 */ 6639 case OP_Destroy: { /* out2 */ 6640 int iMoved; 6641 int iDb; 6642 6643 sqlite3VdbeIncrWriteCounter(p, 0); 6644 assert( p->readOnly==0 ); 6645 assert( pOp->p1>1 ); 6646 pOut = out2Prerelease(p, pOp); 6647 pOut->flags = MEM_Null; 6648 if( db->nVdbeRead > db->nVDestroy+1 ){ 6649 rc = SQLITE_LOCKED; 6650 p->errorAction = OE_Abort; 6651 goto abort_due_to_error; 6652 }else{ 6653 iDb = pOp->p3; 6654 assert( DbMaskTest(p->btreeMask, iDb) ); 6655 iMoved = 0; /* Not needed. Only to silence a warning. */ 6656 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6657 pOut->flags = MEM_Int; 6658 pOut->u.i = iMoved; 6659 if( rc ) goto abort_due_to_error; 6660 #ifndef SQLITE_OMIT_AUTOVACUUM 6661 if( iMoved!=0 ){ 6662 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6663 /* All OP_Destroy operations occur on the same btree */ 6664 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6665 resetSchemaOnFault = iDb+1; 6666 } 6667 #endif 6668 } 6669 break; 6670 } 6671 6672 /* Opcode: Clear P1 P2 P3 6673 ** 6674 ** Delete all contents of the database table or index whose root page 6675 ** in the database file is given by P1. But, unlike Destroy, do not 6676 ** remove the table or index from the database file. 6677 ** 6678 ** The table being clear is in the main database file if P2==0. If 6679 ** P2==1 then the table to be clear is in the auxiliary database file 6680 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6681 ** 6682 ** If the P3 value is non-zero, then the row change count is incremented 6683 ** by the number of rows in the table being cleared. If P3 is greater 6684 ** than zero, then the value stored in register P3 is also incremented 6685 ** by the number of rows in the table being cleared. 6686 ** 6687 ** See also: Destroy 6688 */ 6689 case OP_Clear: { 6690 i64 nChange; 6691 6692 sqlite3VdbeIncrWriteCounter(p, 0); 6693 nChange = 0; 6694 assert( p->readOnly==0 ); 6695 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6696 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6697 if( pOp->p3 ){ 6698 p->nChange += nChange; 6699 if( pOp->p3>0 ){ 6700 assert( memIsValid(&aMem[pOp->p3]) ); 6701 memAboutToChange(p, &aMem[pOp->p3]); 6702 aMem[pOp->p3].u.i += nChange; 6703 } 6704 } 6705 if( rc ) goto abort_due_to_error; 6706 break; 6707 } 6708 6709 /* Opcode: ResetSorter P1 * * * * 6710 ** 6711 ** Delete all contents from the ephemeral table or sorter 6712 ** that is open on cursor P1. 6713 ** 6714 ** This opcode only works for cursors used for sorting and 6715 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6716 */ 6717 case OP_ResetSorter: { 6718 VdbeCursor *pC; 6719 6720 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6721 pC = p->apCsr[pOp->p1]; 6722 assert( pC!=0 ); 6723 if( isSorter(pC) ){ 6724 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6725 }else{ 6726 assert( pC->eCurType==CURTYPE_BTREE ); 6727 assert( pC->isEphemeral ); 6728 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6729 if( rc ) goto abort_due_to_error; 6730 } 6731 break; 6732 } 6733 6734 /* Opcode: CreateBtree P1 P2 P3 * * 6735 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6736 ** 6737 ** Allocate a new b-tree in the main database file if P1==0 or in the 6738 ** TEMP database file if P1==1 or in an attached database if 6739 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6740 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6741 ** The root page number of the new b-tree is stored in register P2. 6742 */ 6743 case OP_CreateBtree: { /* out2 */ 6744 Pgno pgno; 6745 Db *pDb; 6746 6747 sqlite3VdbeIncrWriteCounter(p, 0); 6748 pOut = out2Prerelease(p, pOp); 6749 pgno = 0; 6750 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6751 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6752 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6753 assert( p->readOnly==0 ); 6754 pDb = &db->aDb[pOp->p1]; 6755 assert( pDb->pBt!=0 ); 6756 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6757 if( rc ) goto abort_due_to_error; 6758 pOut->u.i = pgno; 6759 break; 6760 } 6761 6762 /* Opcode: SqlExec * * * P4 * 6763 ** 6764 ** Run the SQL statement or statements specified in the P4 string. 6765 */ 6766 case OP_SqlExec: { 6767 sqlite3VdbeIncrWriteCounter(p, 0); 6768 db->nSqlExec++; 6769 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6770 db->nSqlExec--; 6771 if( rc ) goto abort_due_to_error; 6772 break; 6773 } 6774 6775 /* Opcode: ParseSchema P1 * * P4 * 6776 ** 6777 ** Read and parse all entries from the schema table of database P1 6778 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6779 ** entire schema for P1 is reparsed. 6780 ** 6781 ** This opcode invokes the parser to create a new virtual machine, 6782 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6783 */ 6784 case OP_ParseSchema: { 6785 int iDb; 6786 const char *zSchema; 6787 char *zSql; 6788 InitData initData; 6789 6790 /* Any prepared statement that invokes this opcode will hold mutexes 6791 ** on every btree. This is a prerequisite for invoking 6792 ** sqlite3InitCallback(). 6793 */ 6794 #ifdef SQLITE_DEBUG 6795 for(iDb=0; iDb<db->nDb; iDb++){ 6796 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6797 } 6798 #endif 6799 6800 iDb = pOp->p1; 6801 assert( iDb>=0 && iDb<db->nDb ); 6802 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6803 || db->mallocFailed 6804 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6805 6806 #ifndef SQLITE_OMIT_ALTERTABLE 6807 if( pOp->p4.z==0 ){ 6808 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6809 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6810 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6811 db->mDbFlags |= DBFLAG_SchemaChange; 6812 p->expired = 0; 6813 }else 6814 #endif 6815 { 6816 zSchema = LEGACY_SCHEMA_TABLE; 6817 initData.db = db; 6818 initData.iDb = iDb; 6819 initData.pzErrMsg = &p->zErrMsg; 6820 initData.mInitFlags = 0; 6821 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6822 zSql = sqlite3MPrintf(db, 6823 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6824 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6825 if( zSql==0 ){ 6826 rc = SQLITE_NOMEM_BKPT; 6827 }else{ 6828 assert( db->init.busy==0 ); 6829 db->init.busy = 1; 6830 initData.rc = SQLITE_OK; 6831 initData.nInitRow = 0; 6832 assert( !db->mallocFailed ); 6833 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6834 if( rc==SQLITE_OK ) rc = initData.rc; 6835 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6836 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6837 ** at least one SQL statement. Any less than that indicates that 6838 ** the sqlite_schema table is corrupt. */ 6839 rc = SQLITE_CORRUPT_BKPT; 6840 } 6841 sqlite3DbFreeNN(db, zSql); 6842 db->init.busy = 0; 6843 } 6844 } 6845 if( rc ){ 6846 sqlite3ResetAllSchemasOfConnection(db); 6847 if( rc==SQLITE_NOMEM ){ 6848 goto no_mem; 6849 } 6850 goto abort_due_to_error; 6851 } 6852 break; 6853 } 6854 6855 #if !defined(SQLITE_OMIT_ANALYZE) 6856 /* Opcode: LoadAnalysis P1 * * * * 6857 ** 6858 ** Read the sqlite_stat1 table for database P1 and load the content 6859 ** of that table into the internal index hash table. This will cause 6860 ** the analysis to be used when preparing all subsequent queries. 6861 */ 6862 case OP_LoadAnalysis: { 6863 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6864 rc = sqlite3AnalysisLoad(db, pOp->p1); 6865 if( rc ) goto abort_due_to_error; 6866 break; 6867 } 6868 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6869 6870 /* Opcode: DropTable P1 * * P4 * 6871 ** 6872 ** Remove the internal (in-memory) data structures that describe 6873 ** the table named P4 in database P1. This is called after a table 6874 ** is dropped from disk (using the Destroy opcode) in order to keep 6875 ** the internal representation of the 6876 ** schema consistent with what is on disk. 6877 */ 6878 case OP_DropTable: { 6879 sqlite3VdbeIncrWriteCounter(p, 0); 6880 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6881 break; 6882 } 6883 6884 /* Opcode: DropIndex P1 * * P4 * 6885 ** 6886 ** Remove the internal (in-memory) data structures that describe 6887 ** the index named P4 in database P1. This is called after an index 6888 ** is dropped from disk (using the Destroy opcode) 6889 ** in order to keep the internal representation of the 6890 ** schema consistent with what is on disk. 6891 */ 6892 case OP_DropIndex: { 6893 sqlite3VdbeIncrWriteCounter(p, 0); 6894 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6895 break; 6896 } 6897 6898 /* Opcode: DropTrigger P1 * * P4 * 6899 ** 6900 ** Remove the internal (in-memory) data structures that describe 6901 ** the trigger named P4 in database P1. This is called after a trigger 6902 ** is dropped from disk (using the Destroy opcode) in order to keep 6903 ** the internal representation of the 6904 ** schema consistent with what is on disk. 6905 */ 6906 case OP_DropTrigger: { 6907 sqlite3VdbeIncrWriteCounter(p, 0); 6908 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6909 break; 6910 } 6911 6912 6913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6914 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6915 ** 6916 ** Do an analysis of the currently open database. Store in 6917 ** register P1 the text of an error message describing any problems. 6918 ** If no problems are found, store a NULL in register P1. 6919 ** 6920 ** The register P3 contains one less than the maximum number of allowed errors. 6921 ** At most reg(P3) errors will be reported. 6922 ** In other words, the analysis stops as soon as reg(P1) errors are 6923 ** seen. Reg(P1) is updated with the number of errors remaining. 6924 ** 6925 ** The root page numbers of all tables in the database are integers 6926 ** stored in P4_INTARRAY argument. 6927 ** 6928 ** If P5 is not zero, the check is done on the auxiliary database 6929 ** file, not the main database file. 6930 ** 6931 ** This opcode is used to implement the integrity_check pragma. 6932 */ 6933 case OP_IntegrityCk: { 6934 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6935 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6936 int nErr; /* Number of errors reported */ 6937 char *z; /* Text of the error report */ 6938 Mem *pnErr; /* Register keeping track of errors remaining */ 6939 6940 assert( p->bIsReader ); 6941 nRoot = pOp->p2; 6942 aRoot = pOp->p4.ai; 6943 assert( nRoot>0 ); 6944 assert( aRoot[0]==(Pgno)nRoot ); 6945 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6946 pnErr = &aMem[pOp->p3]; 6947 assert( (pnErr->flags & MEM_Int)!=0 ); 6948 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6949 pIn1 = &aMem[pOp->p1]; 6950 assert( pOp->p5<db->nDb ); 6951 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6952 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6953 (int)pnErr->u.i+1, &nErr); 6954 sqlite3VdbeMemSetNull(pIn1); 6955 if( nErr==0 ){ 6956 assert( z==0 ); 6957 }else if( z==0 ){ 6958 goto no_mem; 6959 }else{ 6960 pnErr->u.i -= nErr-1; 6961 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6962 } 6963 UPDATE_MAX_BLOBSIZE(pIn1); 6964 sqlite3VdbeChangeEncoding(pIn1, encoding); 6965 goto check_for_interrupt; 6966 } 6967 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6968 6969 /* Opcode: RowSetAdd P1 P2 * * * 6970 ** Synopsis: rowset(P1)=r[P2] 6971 ** 6972 ** Insert the integer value held by register P2 into a RowSet object 6973 ** held in register P1. 6974 ** 6975 ** An assertion fails if P2 is not an integer. 6976 */ 6977 case OP_RowSetAdd: { /* in1, in2 */ 6978 pIn1 = &aMem[pOp->p1]; 6979 pIn2 = &aMem[pOp->p2]; 6980 assert( (pIn2->flags & MEM_Int)!=0 ); 6981 if( (pIn1->flags & MEM_Blob)==0 ){ 6982 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6983 } 6984 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6985 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6986 break; 6987 } 6988 6989 /* Opcode: RowSetRead P1 P2 P3 * * 6990 ** Synopsis: r[P3]=rowset(P1) 6991 ** 6992 ** Extract the smallest value from the RowSet object in P1 6993 ** and put that value into register P3. 6994 ** Or, if RowSet object P1 is initially empty, leave P3 6995 ** unchanged and jump to instruction P2. 6996 */ 6997 case OP_RowSetRead: { /* jump, in1, out3 */ 6998 i64 val; 6999 7000 pIn1 = &aMem[pOp->p1]; 7001 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 7002 if( (pIn1->flags & MEM_Blob)==0 7003 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 7004 ){ 7005 /* The boolean index is empty */ 7006 sqlite3VdbeMemSetNull(pIn1); 7007 VdbeBranchTaken(1,2); 7008 goto jump_to_p2_and_check_for_interrupt; 7009 }else{ 7010 /* A value was pulled from the index */ 7011 VdbeBranchTaken(0,2); 7012 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 7013 } 7014 goto check_for_interrupt; 7015 } 7016 7017 /* Opcode: RowSetTest P1 P2 P3 P4 7018 ** Synopsis: if r[P3] in rowset(P1) goto P2 7019 ** 7020 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 7021 ** contains a RowSet object and that RowSet object contains 7022 ** the value held in P3, jump to register P2. Otherwise, insert the 7023 ** integer in P3 into the RowSet and continue on to the 7024 ** next opcode. 7025 ** 7026 ** The RowSet object is optimized for the case where sets of integers 7027 ** are inserted in distinct phases, which each set contains no duplicates. 7028 ** Each set is identified by a unique P4 value. The first set 7029 ** must have P4==0, the final set must have P4==-1, and for all other sets 7030 ** must have P4>0. 7031 ** 7032 ** This allows optimizations: (a) when P4==0 there is no need to test 7033 ** the RowSet object for P3, as it is guaranteed not to contain it, 7034 ** (b) when P4==-1 there is no need to insert the value, as it will 7035 ** never be tested for, and (c) when a value that is part of set X is 7036 ** inserted, there is no need to search to see if the same value was 7037 ** previously inserted as part of set X (only if it was previously 7038 ** inserted as part of some other set). 7039 */ 7040 case OP_RowSetTest: { /* jump, in1, in3 */ 7041 int iSet; 7042 int exists; 7043 7044 pIn1 = &aMem[pOp->p1]; 7045 pIn3 = &aMem[pOp->p3]; 7046 iSet = pOp->p4.i; 7047 assert( pIn3->flags&MEM_Int ); 7048 7049 /* If there is anything other than a rowset object in memory cell P1, 7050 ** delete it now and initialize P1 with an empty rowset 7051 */ 7052 if( (pIn1->flags & MEM_Blob)==0 ){ 7053 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 7054 } 7055 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 7056 assert( pOp->p4type==P4_INT32 ); 7057 assert( iSet==-1 || iSet>=0 ); 7058 if( iSet ){ 7059 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 7060 VdbeBranchTaken(exists!=0,2); 7061 if( exists ) goto jump_to_p2; 7062 } 7063 if( iSet>=0 ){ 7064 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 7065 } 7066 break; 7067 } 7068 7069 7070 #ifndef SQLITE_OMIT_TRIGGER 7071 7072 /* Opcode: Program P1 P2 P3 P4 P5 7073 ** 7074 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 7075 ** 7076 ** P1 contains the address of the memory cell that contains the first memory 7077 ** cell in an array of values used as arguments to the sub-program. P2 7078 ** contains the address to jump to if the sub-program throws an IGNORE 7079 ** exception using the RAISE() function. Register P3 contains the address 7080 ** of a memory cell in this (the parent) VM that is used to allocate the 7081 ** memory required by the sub-vdbe at runtime. 7082 ** 7083 ** P4 is a pointer to the VM containing the trigger program. 7084 ** 7085 ** If P5 is non-zero, then recursive program invocation is enabled. 7086 */ 7087 case OP_Program: { /* jump */ 7088 int nMem; /* Number of memory registers for sub-program */ 7089 int nByte; /* Bytes of runtime space required for sub-program */ 7090 Mem *pRt; /* Register to allocate runtime space */ 7091 Mem *pMem; /* Used to iterate through memory cells */ 7092 Mem *pEnd; /* Last memory cell in new array */ 7093 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 7094 SubProgram *pProgram; /* Sub-program to execute */ 7095 void *t; /* Token identifying trigger */ 7096 7097 pProgram = pOp->p4.pProgram; 7098 pRt = &aMem[pOp->p3]; 7099 assert( pProgram->nOp>0 ); 7100 7101 /* If the p5 flag is clear, then recursive invocation of triggers is 7102 ** disabled for backwards compatibility (p5 is set if this sub-program 7103 ** is really a trigger, not a foreign key action, and the flag set 7104 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 7105 ** 7106 ** It is recursive invocation of triggers, at the SQL level, that is 7107 ** disabled. In some cases a single trigger may generate more than one 7108 ** SubProgram (if the trigger may be executed with more than one different 7109 ** ON CONFLICT algorithm). SubProgram structures associated with a 7110 ** single trigger all have the same value for the SubProgram.token 7111 ** variable. */ 7112 if( pOp->p5 ){ 7113 t = pProgram->token; 7114 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 7115 if( pFrame ) break; 7116 } 7117 7118 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 7119 rc = SQLITE_ERROR; 7120 sqlite3VdbeError(p, "too many levels of trigger recursion"); 7121 goto abort_due_to_error; 7122 } 7123 7124 /* Register pRt is used to store the memory required to save the state 7125 ** of the current program, and the memory required at runtime to execute 7126 ** the trigger program. If this trigger has been fired before, then pRt 7127 ** is already allocated. Otherwise, it must be initialized. */ 7128 if( (pRt->flags&MEM_Blob)==0 ){ 7129 /* SubProgram.nMem is set to the number of memory cells used by the 7130 ** program stored in SubProgram.aOp. As well as these, one memory 7131 ** cell is required for each cursor used by the program. Set local 7132 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 7133 */ 7134 nMem = pProgram->nMem + pProgram->nCsr; 7135 assert( nMem>0 ); 7136 if( pProgram->nCsr==0 ) nMem++; 7137 nByte = ROUND8(sizeof(VdbeFrame)) 7138 + nMem * sizeof(Mem) 7139 + pProgram->nCsr * sizeof(VdbeCursor*) 7140 + (pProgram->nOp + 7)/8; 7141 pFrame = sqlite3DbMallocZero(db, nByte); 7142 if( !pFrame ){ 7143 goto no_mem; 7144 } 7145 sqlite3VdbeMemRelease(pRt); 7146 pRt->flags = MEM_Blob|MEM_Dyn; 7147 pRt->z = (char*)pFrame; 7148 pRt->n = nByte; 7149 pRt->xDel = sqlite3VdbeFrameMemDel; 7150 7151 pFrame->v = p; 7152 pFrame->nChildMem = nMem; 7153 pFrame->nChildCsr = pProgram->nCsr; 7154 pFrame->pc = (int)(pOp - aOp); 7155 pFrame->aMem = p->aMem; 7156 pFrame->nMem = p->nMem; 7157 pFrame->apCsr = p->apCsr; 7158 pFrame->nCursor = p->nCursor; 7159 pFrame->aOp = p->aOp; 7160 pFrame->nOp = p->nOp; 7161 pFrame->token = pProgram->token; 7162 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7163 pFrame->anExec = p->anExec; 7164 #endif 7165 #ifdef SQLITE_DEBUG 7166 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 7167 #endif 7168 7169 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 7170 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 7171 pMem->flags = MEM_Undefined; 7172 pMem->db = db; 7173 } 7174 }else{ 7175 pFrame = (VdbeFrame*)pRt->z; 7176 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 7177 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 7178 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 7179 assert( pProgram->nCsr==pFrame->nChildCsr ); 7180 assert( (int)(pOp - aOp)==pFrame->pc ); 7181 } 7182 7183 p->nFrame++; 7184 pFrame->pParent = p->pFrame; 7185 pFrame->lastRowid = db->lastRowid; 7186 pFrame->nChange = p->nChange; 7187 pFrame->nDbChange = p->db->nChange; 7188 assert( pFrame->pAuxData==0 ); 7189 pFrame->pAuxData = p->pAuxData; 7190 p->pAuxData = 0; 7191 p->nChange = 0; 7192 p->pFrame = pFrame; 7193 p->aMem = aMem = VdbeFrameMem(pFrame); 7194 p->nMem = pFrame->nChildMem; 7195 p->nCursor = (u16)pFrame->nChildCsr; 7196 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 7197 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 7198 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 7199 p->aOp = aOp = pProgram->aOp; 7200 p->nOp = pProgram->nOp; 7201 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7202 p->anExec = 0; 7203 #endif 7204 #ifdef SQLITE_DEBUG 7205 /* Verify that second and subsequent executions of the same trigger do not 7206 ** try to reuse register values from the first use. */ 7207 { 7208 int i; 7209 for(i=0; i<p->nMem; i++){ 7210 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 7211 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 7212 } 7213 } 7214 #endif 7215 pOp = &aOp[-1]; 7216 goto check_for_interrupt; 7217 } 7218 7219 /* Opcode: Param P1 P2 * * * 7220 ** 7221 ** This opcode is only ever present in sub-programs called via the 7222 ** OP_Program instruction. Copy a value currently stored in a memory 7223 ** cell of the calling (parent) frame to cell P2 in the current frames 7224 ** address space. This is used by trigger programs to access the new.* 7225 ** and old.* values. 7226 ** 7227 ** The address of the cell in the parent frame is determined by adding 7228 ** the value of the P1 argument to the value of the P1 argument to the 7229 ** calling OP_Program instruction. 7230 */ 7231 case OP_Param: { /* out2 */ 7232 VdbeFrame *pFrame; 7233 Mem *pIn; 7234 pOut = out2Prerelease(p, pOp); 7235 pFrame = p->pFrame; 7236 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7237 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7238 break; 7239 } 7240 7241 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7242 7243 #ifndef SQLITE_OMIT_FOREIGN_KEY 7244 /* Opcode: FkCounter P1 P2 * * * 7245 ** Synopsis: fkctr[P1]+=P2 7246 ** 7247 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7248 ** If P1 is non-zero, the database constraint counter is incremented 7249 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7250 ** statement counter is incremented (immediate foreign key constraints). 7251 */ 7252 case OP_FkCounter: { 7253 if( db->flags & SQLITE_DeferFKs ){ 7254 db->nDeferredImmCons += pOp->p2; 7255 }else if( pOp->p1 ){ 7256 db->nDeferredCons += pOp->p2; 7257 }else{ 7258 p->nFkConstraint += pOp->p2; 7259 } 7260 break; 7261 } 7262 7263 /* Opcode: FkIfZero P1 P2 * * * 7264 ** Synopsis: if fkctr[P1]==0 goto P2 7265 ** 7266 ** This opcode tests if a foreign key constraint-counter is currently zero. 7267 ** If so, jump to instruction P2. Otherwise, fall through to the next 7268 ** instruction. 7269 ** 7270 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7271 ** is zero (the one that counts deferred constraint violations). If P1 is 7272 ** zero, the jump is taken if the statement constraint-counter is zero 7273 ** (immediate foreign key constraint violations). 7274 */ 7275 case OP_FkIfZero: { /* jump */ 7276 if( pOp->p1 ){ 7277 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7278 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7279 }else{ 7280 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7281 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7282 } 7283 break; 7284 } 7285 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7286 7287 #ifndef SQLITE_OMIT_AUTOINCREMENT 7288 /* Opcode: MemMax P1 P2 * * * 7289 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7290 ** 7291 ** P1 is a register in the root frame of this VM (the root frame is 7292 ** different from the current frame if this instruction is being executed 7293 ** within a sub-program). Set the value of register P1 to the maximum of 7294 ** its current value and the value in register P2. 7295 ** 7296 ** This instruction throws an error if the memory cell is not initially 7297 ** an integer. 7298 */ 7299 case OP_MemMax: { /* in2 */ 7300 VdbeFrame *pFrame; 7301 if( p->pFrame ){ 7302 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7303 pIn1 = &pFrame->aMem[pOp->p1]; 7304 }else{ 7305 pIn1 = &aMem[pOp->p1]; 7306 } 7307 assert( memIsValid(pIn1) ); 7308 sqlite3VdbeMemIntegerify(pIn1); 7309 pIn2 = &aMem[pOp->p2]; 7310 sqlite3VdbeMemIntegerify(pIn2); 7311 if( pIn1->u.i<pIn2->u.i){ 7312 pIn1->u.i = pIn2->u.i; 7313 } 7314 break; 7315 } 7316 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7317 7318 /* Opcode: IfPos P1 P2 P3 * * 7319 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7320 ** 7321 ** Register P1 must contain an integer. 7322 ** If the value of register P1 is 1 or greater, subtract P3 from the 7323 ** value in P1 and jump to P2. 7324 ** 7325 ** If the initial value of register P1 is less than 1, then the 7326 ** value is unchanged and control passes through to the next instruction. 7327 */ 7328 case OP_IfPos: { /* jump, in1 */ 7329 pIn1 = &aMem[pOp->p1]; 7330 assert( pIn1->flags&MEM_Int ); 7331 VdbeBranchTaken( pIn1->u.i>0, 2); 7332 if( pIn1->u.i>0 ){ 7333 pIn1->u.i -= pOp->p3; 7334 goto jump_to_p2; 7335 } 7336 break; 7337 } 7338 7339 /* Opcode: OffsetLimit P1 P2 P3 * * 7340 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7341 ** 7342 ** This opcode performs a commonly used computation associated with 7343 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] 7344 ** holds the offset counter. The opcode computes the combined value 7345 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7346 ** value computed is the total number of rows that will need to be 7347 ** visited in order to complete the query. 7348 ** 7349 ** If r[P3] is zero or negative, that means there is no OFFSET 7350 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7351 ** 7352 ** if r[P1] is zero or negative, that means there is no LIMIT 7353 ** and r[P2] is set to -1. 7354 ** 7355 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7356 */ 7357 case OP_OffsetLimit: { /* in1, out2, in3 */ 7358 i64 x; 7359 pIn1 = &aMem[pOp->p1]; 7360 pIn3 = &aMem[pOp->p3]; 7361 pOut = out2Prerelease(p, pOp); 7362 assert( pIn1->flags & MEM_Int ); 7363 assert( pIn3->flags & MEM_Int ); 7364 x = pIn1->u.i; 7365 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7366 /* If the LIMIT is less than or equal to zero, loop forever. This 7367 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7368 ** also loop forever. This is undocumented. In fact, one could argue 7369 ** that the loop should terminate. But assuming 1 billion iterations 7370 ** per second (far exceeding the capabilities of any current hardware) 7371 ** it would take nearly 300 years to actually reach the limit. So 7372 ** looping forever is a reasonable approximation. */ 7373 pOut->u.i = -1; 7374 }else{ 7375 pOut->u.i = x; 7376 } 7377 break; 7378 } 7379 7380 /* Opcode: IfNotZero P1 P2 * * * 7381 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7382 ** 7383 ** Register P1 must contain an integer. If the content of register P1 is 7384 ** initially greater than zero, then decrement the value in register P1. 7385 ** If it is non-zero (negative or positive) and then also jump to P2. 7386 ** If register P1 is initially zero, leave it unchanged and fall through. 7387 */ 7388 case OP_IfNotZero: { /* jump, in1 */ 7389 pIn1 = &aMem[pOp->p1]; 7390 assert( pIn1->flags&MEM_Int ); 7391 VdbeBranchTaken(pIn1->u.i<0, 2); 7392 if( pIn1->u.i ){ 7393 if( pIn1->u.i>0 ) pIn1->u.i--; 7394 goto jump_to_p2; 7395 } 7396 break; 7397 } 7398 7399 /* Opcode: DecrJumpZero P1 P2 * * * 7400 ** Synopsis: if (--r[P1])==0 goto P2 7401 ** 7402 ** Register P1 must hold an integer. Decrement the value in P1 7403 ** and jump to P2 if the new value is exactly zero. 7404 */ 7405 case OP_DecrJumpZero: { /* jump, in1 */ 7406 pIn1 = &aMem[pOp->p1]; 7407 assert( pIn1->flags&MEM_Int ); 7408 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7409 VdbeBranchTaken(pIn1->u.i==0, 2); 7410 if( pIn1->u.i==0 ) goto jump_to_p2; 7411 break; 7412 } 7413 7414 7415 /* Opcode: AggStep * P2 P3 P4 P5 7416 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7417 ** 7418 ** Execute the xStep function for an aggregate. 7419 ** The function has P5 arguments. P4 is a pointer to the 7420 ** FuncDef structure that specifies the function. Register P3 is the 7421 ** accumulator. 7422 ** 7423 ** The P5 arguments are taken from register P2 and its 7424 ** successors. 7425 */ 7426 /* Opcode: AggInverse * P2 P3 P4 P5 7427 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7428 ** 7429 ** Execute the xInverse function for an aggregate. 7430 ** The function has P5 arguments. P4 is a pointer to the 7431 ** FuncDef structure that specifies the function. Register P3 is the 7432 ** accumulator. 7433 ** 7434 ** The P5 arguments are taken from register P2 and its 7435 ** successors. 7436 */ 7437 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7438 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7439 ** 7440 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7441 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7442 ** FuncDef structure that specifies the function. Register P3 is the 7443 ** accumulator. 7444 ** 7445 ** The P5 arguments are taken from register P2 and its 7446 ** successors. 7447 ** 7448 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7449 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7450 ** the opcode is changed. In this way, the initialization of the 7451 ** sqlite3_context only happens once, instead of on each call to the 7452 ** step function. 7453 */ 7454 case OP_AggInverse: 7455 case OP_AggStep: { 7456 int n; 7457 sqlite3_context *pCtx; 7458 7459 assert( pOp->p4type==P4_FUNCDEF ); 7460 n = pOp->p5; 7461 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7462 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7463 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7464 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7465 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7466 if( pCtx==0 ) goto no_mem; 7467 pCtx->pMem = 0; 7468 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7469 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7470 pCtx->pFunc = pOp->p4.pFunc; 7471 pCtx->iOp = (int)(pOp - aOp); 7472 pCtx->pVdbe = p; 7473 pCtx->skipFlag = 0; 7474 pCtx->isError = 0; 7475 pCtx->enc = encoding; 7476 pCtx->argc = n; 7477 pOp->p4type = P4_FUNCCTX; 7478 pOp->p4.pCtx = pCtx; 7479 7480 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7481 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7482 7483 pOp->opcode = OP_AggStep1; 7484 /* Fall through into OP_AggStep */ 7485 /* no break */ deliberate_fall_through 7486 } 7487 case OP_AggStep1: { 7488 int i; 7489 sqlite3_context *pCtx; 7490 Mem *pMem; 7491 7492 assert( pOp->p4type==P4_FUNCCTX ); 7493 pCtx = pOp->p4.pCtx; 7494 pMem = &aMem[pOp->p3]; 7495 7496 #ifdef SQLITE_DEBUG 7497 if( pOp->p1 ){ 7498 /* This is an OP_AggInverse call. Verify that xStep has always 7499 ** been called at least once prior to any xInverse call. */ 7500 assert( pMem->uTemp==0x1122e0e3 ); 7501 }else{ 7502 /* This is an OP_AggStep call. Mark it as such. */ 7503 pMem->uTemp = 0x1122e0e3; 7504 } 7505 #endif 7506 7507 /* If this function is inside of a trigger, the register array in aMem[] 7508 ** might change from one evaluation to the next. The next block of code 7509 ** checks to see if the register array has changed, and if so it 7510 ** reinitializes the relavant parts of the sqlite3_context object */ 7511 if( pCtx->pMem != pMem ){ 7512 pCtx->pMem = pMem; 7513 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7514 } 7515 7516 #ifdef SQLITE_DEBUG 7517 for(i=0; i<pCtx->argc; i++){ 7518 assert( memIsValid(pCtx->argv[i]) ); 7519 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7520 } 7521 #endif 7522 7523 pMem->n++; 7524 assert( pCtx->pOut->flags==MEM_Null ); 7525 assert( pCtx->isError==0 ); 7526 assert( pCtx->skipFlag==0 ); 7527 #ifndef SQLITE_OMIT_WINDOWFUNC 7528 if( pOp->p1 ){ 7529 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7530 }else 7531 #endif 7532 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7533 7534 if( pCtx->isError ){ 7535 if( pCtx->isError>0 ){ 7536 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7537 rc = pCtx->isError; 7538 } 7539 if( pCtx->skipFlag ){ 7540 assert( pOp[-1].opcode==OP_CollSeq ); 7541 i = pOp[-1].p1; 7542 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7543 pCtx->skipFlag = 0; 7544 } 7545 sqlite3VdbeMemRelease(pCtx->pOut); 7546 pCtx->pOut->flags = MEM_Null; 7547 pCtx->isError = 0; 7548 if( rc ) goto abort_due_to_error; 7549 } 7550 assert( pCtx->pOut->flags==MEM_Null ); 7551 assert( pCtx->skipFlag==0 ); 7552 break; 7553 } 7554 7555 /* Opcode: AggFinal P1 P2 * P4 * 7556 ** Synopsis: accum=r[P1] N=P2 7557 ** 7558 ** P1 is the memory location that is the accumulator for an aggregate 7559 ** or window function. Execute the finalizer function 7560 ** for an aggregate and store the result in P1. 7561 ** 7562 ** P2 is the number of arguments that the step function takes and 7563 ** P4 is a pointer to the FuncDef for this function. The P2 7564 ** argument is not used by this opcode. It is only there to disambiguate 7565 ** functions that can take varying numbers of arguments. The 7566 ** P4 argument is only needed for the case where 7567 ** the step function was not previously called. 7568 */ 7569 /* Opcode: AggValue * P2 P3 P4 * 7570 ** Synopsis: r[P3]=value N=P2 7571 ** 7572 ** Invoke the xValue() function and store the result in register P3. 7573 ** 7574 ** P2 is the number of arguments that the step function takes and 7575 ** P4 is a pointer to the FuncDef for this function. The P2 7576 ** argument is not used by this opcode. It is only there to disambiguate 7577 ** functions that can take varying numbers of arguments. The 7578 ** P4 argument is only needed for the case where 7579 ** the step function was not previously called. 7580 */ 7581 case OP_AggValue: 7582 case OP_AggFinal: { 7583 Mem *pMem; 7584 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7585 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7586 pMem = &aMem[pOp->p1]; 7587 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7588 #ifndef SQLITE_OMIT_WINDOWFUNC 7589 if( pOp->p3 ){ 7590 memAboutToChange(p, &aMem[pOp->p3]); 7591 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7592 pMem = &aMem[pOp->p3]; 7593 }else 7594 #endif 7595 { 7596 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7597 } 7598 7599 if( rc ){ 7600 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7601 goto abort_due_to_error; 7602 } 7603 sqlite3VdbeChangeEncoding(pMem, encoding); 7604 UPDATE_MAX_BLOBSIZE(pMem); 7605 break; 7606 } 7607 7608 #ifndef SQLITE_OMIT_WAL 7609 /* Opcode: Checkpoint P1 P2 P3 * * 7610 ** 7611 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7612 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7613 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7614 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7615 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7616 ** in the WAL that have been checkpointed after the checkpoint 7617 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7618 ** mem[P3+2] are initialized to -1. 7619 */ 7620 case OP_Checkpoint: { 7621 int i; /* Loop counter */ 7622 int aRes[3]; /* Results */ 7623 Mem *pMem; /* Write results here */ 7624 7625 assert( p->readOnly==0 ); 7626 aRes[0] = 0; 7627 aRes[1] = aRes[2] = -1; 7628 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7629 || pOp->p2==SQLITE_CHECKPOINT_FULL 7630 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7631 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7632 ); 7633 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7634 if( rc ){ 7635 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7636 rc = SQLITE_OK; 7637 aRes[0] = 1; 7638 } 7639 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7640 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7641 } 7642 break; 7643 }; 7644 #endif 7645 7646 #ifndef SQLITE_OMIT_PRAGMA 7647 /* Opcode: JournalMode P1 P2 P3 * * 7648 ** 7649 ** Change the journal mode of database P1 to P3. P3 must be one of the 7650 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7651 ** modes (delete, truncate, persist, off and memory), this is a simple 7652 ** operation. No IO is required. 7653 ** 7654 ** If changing into or out of WAL mode the procedure is more complicated. 7655 ** 7656 ** Write a string containing the final journal-mode to register P2. 7657 */ 7658 case OP_JournalMode: { /* out2 */ 7659 Btree *pBt; /* Btree to change journal mode of */ 7660 Pager *pPager; /* Pager associated with pBt */ 7661 int eNew; /* New journal mode */ 7662 int eOld; /* The old journal mode */ 7663 #ifndef SQLITE_OMIT_WAL 7664 const char *zFilename; /* Name of database file for pPager */ 7665 #endif 7666 7667 pOut = out2Prerelease(p, pOp); 7668 eNew = pOp->p3; 7669 assert( eNew==PAGER_JOURNALMODE_DELETE 7670 || eNew==PAGER_JOURNALMODE_TRUNCATE 7671 || eNew==PAGER_JOURNALMODE_PERSIST 7672 || eNew==PAGER_JOURNALMODE_OFF 7673 || eNew==PAGER_JOURNALMODE_MEMORY 7674 || eNew==PAGER_JOURNALMODE_WAL 7675 || eNew==PAGER_JOURNALMODE_QUERY 7676 ); 7677 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7678 assert( p->readOnly==0 ); 7679 7680 pBt = db->aDb[pOp->p1].pBt; 7681 pPager = sqlite3BtreePager(pBt); 7682 eOld = sqlite3PagerGetJournalMode(pPager); 7683 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7684 assert( sqlite3BtreeHoldsMutex(pBt) ); 7685 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7686 7687 #ifndef SQLITE_OMIT_WAL 7688 zFilename = sqlite3PagerFilename(pPager, 1); 7689 7690 /* Do not allow a transition to journal_mode=WAL for a database 7691 ** in temporary storage or if the VFS does not support shared memory 7692 */ 7693 if( eNew==PAGER_JOURNALMODE_WAL 7694 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7695 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7696 ){ 7697 eNew = eOld; 7698 } 7699 7700 if( (eNew!=eOld) 7701 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7702 ){ 7703 if( !db->autoCommit || db->nVdbeRead>1 ){ 7704 rc = SQLITE_ERROR; 7705 sqlite3VdbeError(p, 7706 "cannot change %s wal mode from within a transaction", 7707 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7708 ); 7709 goto abort_due_to_error; 7710 }else{ 7711 7712 if( eOld==PAGER_JOURNALMODE_WAL ){ 7713 /* If leaving WAL mode, close the log file. If successful, the call 7714 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7715 ** file. An EXCLUSIVE lock may still be held on the database file 7716 ** after a successful return. 7717 */ 7718 rc = sqlite3PagerCloseWal(pPager, db); 7719 if( rc==SQLITE_OK ){ 7720 sqlite3PagerSetJournalMode(pPager, eNew); 7721 } 7722 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7723 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7724 ** as an intermediate */ 7725 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7726 } 7727 7728 /* Open a transaction on the database file. Regardless of the journal 7729 ** mode, this transaction always uses a rollback journal. 7730 */ 7731 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7732 if( rc==SQLITE_OK ){ 7733 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7734 } 7735 } 7736 } 7737 #endif /* ifndef SQLITE_OMIT_WAL */ 7738 7739 if( rc ) eNew = eOld; 7740 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7741 7742 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7743 pOut->z = (char *)sqlite3JournalModename(eNew); 7744 pOut->n = sqlite3Strlen30(pOut->z); 7745 pOut->enc = SQLITE_UTF8; 7746 sqlite3VdbeChangeEncoding(pOut, encoding); 7747 if( rc ) goto abort_due_to_error; 7748 break; 7749 }; 7750 #endif /* SQLITE_OMIT_PRAGMA */ 7751 7752 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7753 /* Opcode: Vacuum P1 P2 * * * 7754 ** 7755 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7756 ** for an attached database. The "temp" database may not be vacuumed. 7757 ** 7758 ** If P2 is not zero, then it is a register holding a string which is 7759 ** the file into which the result of vacuum should be written. When 7760 ** P2 is zero, the vacuum overwrites the original database. 7761 */ 7762 case OP_Vacuum: { 7763 assert( p->readOnly==0 ); 7764 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7765 pOp->p2 ? &aMem[pOp->p2] : 0); 7766 if( rc ) goto abort_due_to_error; 7767 break; 7768 } 7769 #endif 7770 7771 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7772 /* Opcode: IncrVacuum P1 P2 * * * 7773 ** 7774 ** Perform a single step of the incremental vacuum procedure on 7775 ** the P1 database. If the vacuum has finished, jump to instruction 7776 ** P2. Otherwise, fall through to the next instruction. 7777 */ 7778 case OP_IncrVacuum: { /* jump */ 7779 Btree *pBt; 7780 7781 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7782 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7783 assert( p->readOnly==0 ); 7784 pBt = db->aDb[pOp->p1].pBt; 7785 rc = sqlite3BtreeIncrVacuum(pBt); 7786 VdbeBranchTaken(rc==SQLITE_DONE,2); 7787 if( rc ){ 7788 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7789 rc = SQLITE_OK; 7790 goto jump_to_p2; 7791 } 7792 break; 7793 } 7794 #endif 7795 7796 /* Opcode: Expire P1 P2 * * * 7797 ** 7798 ** Cause precompiled statements to expire. When an expired statement 7799 ** is executed using sqlite3_step() it will either automatically 7800 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7801 ** or it will fail with SQLITE_SCHEMA. 7802 ** 7803 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7804 ** then only the currently executing statement is expired. 7805 ** 7806 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7807 ** then running SQL statements are allowed to continue to run to completion. 7808 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7809 ** that might help the statement run faster but which does not affect the 7810 ** correctness of operation. 7811 */ 7812 case OP_Expire: { 7813 assert( pOp->p2==0 || pOp->p2==1 ); 7814 if( !pOp->p1 ){ 7815 sqlite3ExpirePreparedStatements(db, pOp->p2); 7816 }else{ 7817 p->expired = pOp->p2+1; 7818 } 7819 break; 7820 } 7821 7822 /* Opcode: CursorLock P1 * * * * 7823 ** 7824 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7825 ** written by an other cursor. 7826 */ 7827 case OP_CursorLock: { 7828 VdbeCursor *pC; 7829 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7830 pC = p->apCsr[pOp->p1]; 7831 assert( pC!=0 ); 7832 assert( pC->eCurType==CURTYPE_BTREE ); 7833 sqlite3BtreeCursorPin(pC->uc.pCursor); 7834 break; 7835 } 7836 7837 /* Opcode: CursorUnlock P1 * * * * 7838 ** 7839 ** Unlock the btree to which cursor P1 is pointing so that it can be 7840 ** written by other cursors. 7841 */ 7842 case OP_CursorUnlock: { 7843 VdbeCursor *pC; 7844 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7845 pC = p->apCsr[pOp->p1]; 7846 assert( pC!=0 ); 7847 assert( pC->eCurType==CURTYPE_BTREE ); 7848 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7849 break; 7850 } 7851 7852 #ifndef SQLITE_OMIT_SHARED_CACHE 7853 /* Opcode: TableLock P1 P2 P3 P4 * 7854 ** Synopsis: iDb=P1 root=P2 write=P3 7855 ** 7856 ** Obtain a lock on a particular table. This instruction is only used when 7857 ** the shared-cache feature is enabled. 7858 ** 7859 ** P1 is the index of the database in sqlite3.aDb[] of the database 7860 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7861 ** a write lock if P3==1. 7862 ** 7863 ** P2 contains the root-page of the table to lock. 7864 ** 7865 ** P4 contains a pointer to the name of the table being locked. This is only 7866 ** used to generate an error message if the lock cannot be obtained. 7867 */ 7868 case OP_TableLock: { 7869 u8 isWriteLock = (u8)pOp->p3; 7870 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7871 int p1 = pOp->p1; 7872 assert( p1>=0 && p1<db->nDb ); 7873 assert( DbMaskTest(p->btreeMask, p1) ); 7874 assert( isWriteLock==0 || isWriteLock==1 ); 7875 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7876 if( rc ){ 7877 if( (rc&0xFF)==SQLITE_LOCKED ){ 7878 const char *z = pOp->p4.z; 7879 sqlite3VdbeError(p, "database table is locked: %s", z); 7880 } 7881 goto abort_due_to_error; 7882 } 7883 } 7884 break; 7885 } 7886 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7887 7888 #ifndef SQLITE_OMIT_VIRTUALTABLE 7889 /* Opcode: VBegin * * * P4 * 7890 ** 7891 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7892 ** xBegin method for that table. 7893 ** 7894 ** Also, whether or not P4 is set, check that this is not being called from 7895 ** within a callback to a virtual table xSync() method. If it is, the error 7896 ** code will be set to SQLITE_LOCKED. 7897 */ 7898 case OP_VBegin: { 7899 VTable *pVTab; 7900 pVTab = pOp->p4.pVtab; 7901 rc = sqlite3VtabBegin(db, pVTab); 7902 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7903 if( rc ) goto abort_due_to_error; 7904 break; 7905 } 7906 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7907 7908 #ifndef SQLITE_OMIT_VIRTUALTABLE 7909 /* Opcode: VCreate P1 P2 * * * 7910 ** 7911 ** P2 is a register that holds the name of a virtual table in database 7912 ** P1. Call the xCreate method for that table. 7913 */ 7914 case OP_VCreate: { 7915 Mem sMem; /* For storing the record being decoded */ 7916 const char *zTab; /* Name of the virtual table */ 7917 7918 memset(&sMem, 0, sizeof(sMem)); 7919 sMem.db = db; 7920 /* Because P2 is always a static string, it is impossible for the 7921 ** sqlite3VdbeMemCopy() to fail */ 7922 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7923 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7924 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7925 assert( rc==SQLITE_OK ); 7926 zTab = (const char*)sqlite3_value_text(&sMem); 7927 assert( zTab || db->mallocFailed ); 7928 if( zTab ){ 7929 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7930 } 7931 sqlite3VdbeMemRelease(&sMem); 7932 if( rc ) goto abort_due_to_error; 7933 break; 7934 } 7935 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7936 7937 #ifndef SQLITE_OMIT_VIRTUALTABLE 7938 /* Opcode: VDestroy P1 * * P4 * 7939 ** 7940 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7941 ** of that table. 7942 */ 7943 case OP_VDestroy: { 7944 db->nVDestroy++; 7945 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7946 db->nVDestroy--; 7947 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7948 if( rc ) goto abort_due_to_error; 7949 break; 7950 } 7951 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7952 7953 #ifndef SQLITE_OMIT_VIRTUALTABLE 7954 /* Opcode: VOpen P1 * * P4 * 7955 ** 7956 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7957 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7958 ** table and stores that cursor in P1. 7959 */ 7960 case OP_VOpen: { 7961 VdbeCursor *pCur; 7962 sqlite3_vtab_cursor *pVCur; 7963 sqlite3_vtab *pVtab; 7964 const sqlite3_module *pModule; 7965 7966 assert( p->bIsReader ); 7967 pCur = 0; 7968 pVCur = 0; 7969 pVtab = pOp->p4.pVtab->pVtab; 7970 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7971 rc = SQLITE_LOCKED; 7972 goto abort_due_to_error; 7973 } 7974 pModule = pVtab->pModule; 7975 rc = pModule->xOpen(pVtab, &pVCur); 7976 sqlite3VtabImportErrmsg(p, pVtab); 7977 if( rc ) goto abort_due_to_error; 7978 7979 /* Initialize sqlite3_vtab_cursor base class */ 7980 pVCur->pVtab = pVtab; 7981 7982 /* Initialize vdbe cursor object */ 7983 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7984 if( pCur ){ 7985 pCur->uc.pVCur = pVCur; 7986 pVtab->nRef++; 7987 }else{ 7988 assert( db->mallocFailed ); 7989 pModule->xClose(pVCur); 7990 goto no_mem; 7991 } 7992 break; 7993 } 7994 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7995 7996 #ifndef SQLITE_OMIT_VIRTUALTABLE 7997 /* Opcode: VInitIn P1 P2 P3 * * 7998 ** Synopsis: r[P2]=ValueList(P1,P3) 7999 ** 8000 ** Set register P2 to be a pointer to a ValueList object for cursor P1 8001 ** with cache register P3 and output register P3+1. This ValueList object 8002 ** can be used as the first argument to sqlite3_vtab_in_first() and 8003 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 8004 ** cursor. Register P3 is used to hold the values returned by 8005 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 8006 */ 8007 case OP_VInitIn: { /* out2 */ 8008 VdbeCursor *pC; /* The cursor containing the RHS values */ 8009 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 8010 8011 pC = p->apCsr[pOp->p1]; 8012 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 8013 if( pRhs==0 ) goto no_mem; 8014 pRhs->pCsr = pC->uc.pCursor; 8015 pRhs->pOut = &aMem[pOp->p3]; 8016 pOut = out2Prerelease(p, pOp); 8017 pOut->flags = MEM_Null; 8018 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 8019 break; 8020 } 8021 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8022 8023 8024 #ifndef SQLITE_OMIT_VIRTUALTABLE 8025 /* Opcode: VFilter P1 P2 P3 P4 * 8026 ** Synopsis: iplan=r[P3] zplan='P4' 8027 ** 8028 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 8029 ** the filtered result set is empty. 8030 ** 8031 ** P4 is either NULL or a string that was generated by the xBestIndex 8032 ** method of the module. The interpretation of the P4 string is left 8033 ** to the module implementation. 8034 ** 8035 ** This opcode invokes the xFilter method on the virtual table specified 8036 ** by P1. The integer query plan parameter to xFilter is stored in register 8037 ** P3. Register P3+1 stores the argc parameter to be passed to the 8038 ** xFilter method. Registers P3+2..P3+1+argc are the argc 8039 ** additional parameters which are passed to 8040 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 8041 ** 8042 ** A jump is made to P2 if the result set after filtering would be empty. 8043 */ 8044 case OP_VFilter: { /* jump */ 8045 int nArg; 8046 int iQuery; 8047 const sqlite3_module *pModule; 8048 Mem *pQuery; 8049 Mem *pArgc; 8050 sqlite3_vtab_cursor *pVCur; 8051 sqlite3_vtab *pVtab; 8052 VdbeCursor *pCur; 8053 int res; 8054 int i; 8055 Mem **apArg; 8056 8057 pQuery = &aMem[pOp->p3]; 8058 pArgc = &pQuery[1]; 8059 pCur = p->apCsr[pOp->p1]; 8060 assert( memIsValid(pQuery) ); 8061 REGISTER_TRACE(pOp->p3, pQuery); 8062 assert( pCur!=0 ); 8063 assert( pCur->eCurType==CURTYPE_VTAB ); 8064 pVCur = pCur->uc.pVCur; 8065 pVtab = pVCur->pVtab; 8066 pModule = pVtab->pModule; 8067 8068 /* Grab the index number and argc parameters */ 8069 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 8070 nArg = (int)pArgc->u.i; 8071 iQuery = (int)pQuery->u.i; 8072 8073 /* Invoke the xFilter method */ 8074 apArg = p->apArg; 8075 for(i = 0; i<nArg; i++){ 8076 apArg[i] = &pArgc[i+1]; 8077 } 8078 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 8079 sqlite3VtabImportErrmsg(p, pVtab); 8080 if( rc ) goto abort_due_to_error; 8081 res = pModule->xEof(pVCur); 8082 pCur->nullRow = 0; 8083 VdbeBranchTaken(res!=0,2); 8084 if( res ) goto jump_to_p2; 8085 break; 8086 } 8087 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8088 8089 #ifndef SQLITE_OMIT_VIRTUALTABLE 8090 /* Opcode: VColumn P1 P2 P3 * P5 8091 ** Synopsis: r[P3]=vcolumn(P2) 8092 ** 8093 ** Store in register P3 the value of the P2-th column of 8094 ** the current row of the virtual-table of cursor P1. 8095 ** 8096 ** If the VColumn opcode is being used to fetch the value of 8097 ** an unchanging column during an UPDATE operation, then the P5 8098 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 8099 ** function to return true inside the xColumn method of the virtual 8100 ** table implementation. The P5 column might also contain other 8101 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 8102 ** unused by OP_VColumn. 8103 */ 8104 case OP_VColumn: { 8105 sqlite3_vtab *pVtab; 8106 const sqlite3_module *pModule; 8107 Mem *pDest; 8108 sqlite3_context sContext; 8109 8110 VdbeCursor *pCur = p->apCsr[pOp->p1]; 8111 assert( pCur!=0 ); 8112 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 8113 pDest = &aMem[pOp->p3]; 8114 memAboutToChange(p, pDest); 8115 if( pCur->nullRow ){ 8116 sqlite3VdbeMemSetNull(pDest); 8117 break; 8118 } 8119 assert( pCur->eCurType==CURTYPE_VTAB ); 8120 pVtab = pCur->uc.pVCur->pVtab; 8121 pModule = pVtab->pModule; 8122 assert( pModule->xColumn ); 8123 memset(&sContext, 0, sizeof(sContext)); 8124 sContext.pOut = pDest; 8125 sContext.enc = encoding; 8126 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 8127 if( pOp->p5 & OPFLAG_NOCHNG ){ 8128 sqlite3VdbeMemSetNull(pDest); 8129 pDest->flags = MEM_Null|MEM_Zero; 8130 pDest->u.nZero = 0; 8131 }else{ 8132 MemSetTypeFlag(pDest, MEM_Null); 8133 } 8134 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 8135 sqlite3VtabImportErrmsg(p, pVtab); 8136 if( sContext.isError>0 ){ 8137 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 8138 rc = sContext.isError; 8139 } 8140 sqlite3VdbeChangeEncoding(pDest, encoding); 8141 REGISTER_TRACE(pOp->p3, pDest); 8142 UPDATE_MAX_BLOBSIZE(pDest); 8143 8144 if( rc ) goto abort_due_to_error; 8145 break; 8146 } 8147 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8148 8149 #ifndef SQLITE_OMIT_VIRTUALTABLE 8150 /* Opcode: VNext P1 P2 * * * 8151 ** 8152 ** Advance virtual table P1 to the next row in its result set and 8153 ** jump to instruction P2. Or, if the virtual table has reached 8154 ** the end of its result set, then fall through to the next instruction. 8155 */ 8156 case OP_VNext: { /* jump */ 8157 sqlite3_vtab *pVtab; 8158 const sqlite3_module *pModule; 8159 int res; 8160 VdbeCursor *pCur; 8161 8162 pCur = p->apCsr[pOp->p1]; 8163 assert( pCur!=0 ); 8164 assert( pCur->eCurType==CURTYPE_VTAB ); 8165 if( pCur->nullRow ){ 8166 break; 8167 } 8168 pVtab = pCur->uc.pVCur->pVtab; 8169 pModule = pVtab->pModule; 8170 assert( pModule->xNext ); 8171 8172 /* Invoke the xNext() method of the module. There is no way for the 8173 ** underlying implementation to return an error if one occurs during 8174 ** xNext(). Instead, if an error occurs, true is returned (indicating that 8175 ** data is available) and the error code returned when xColumn or 8176 ** some other method is next invoked on the save virtual table cursor. 8177 */ 8178 rc = pModule->xNext(pCur->uc.pVCur); 8179 sqlite3VtabImportErrmsg(p, pVtab); 8180 if( rc ) goto abort_due_to_error; 8181 res = pModule->xEof(pCur->uc.pVCur); 8182 VdbeBranchTaken(!res,2); 8183 if( !res ){ 8184 /* If there is data, jump to P2 */ 8185 goto jump_to_p2_and_check_for_interrupt; 8186 } 8187 goto check_for_interrupt; 8188 } 8189 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8190 8191 #ifndef SQLITE_OMIT_VIRTUALTABLE 8192 /* Opcode: VRename P1 * * P4 * 8193 ** 8194 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8195 ** This opcode invokes the corresponding xRename method. The value 8196 ** in register P1 is passed as the zName argument to the xRename method. 8197 */ 8198 case OP_VRename: { 8199 sqlite3_vtab *pVtab; 8200 Mem *pName; 8201 int isLegacy; 8202 8203 isLegacy = (db->flags & SQLITE_LegacyAlter); 8204 db->flags |= SQLITE_LegacyAlter; 8205 pVtab = pOp->p4.pVtab->pVtab; 8206 pName = &aMem[pOp->p1]; 8207 assert( pVtab->pModule->xRename ); 8208 assert( memIsValid(pName) ); 8209 assert( p->readOnly==0 ); 8210 REGISTER_TRACE(pOp->p1, pName); 8211 assert( pName->flags & MEM_Str ); 8212 testcase( pName->enc==SQLITE_UTF8 ); 8213 testcase( pName->enc==SQLITE_UTF16BE ); 8214 testcase( pName->enc==SQLITE_UTF16LE ); 8215 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 8216 if( rc ) goto abort_due_to_error; 8217 rc = pVtab->pModule->xRename(pVtab, pName->z); 8218 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 8219 sqlite3VtabImportErrmsg(p, pVtab); 8220 p->expired = 0; 8221 if( rc ) goto abort_due_to_error; 8222 break; 8223 } 8224 #endif 8225 8226 #ifndef SQLITE_OMIT_VIRTUALTABLE 8227 /* Opcode: VUpdate P1 P2 P3 P4 P5 8228 ** Synopsis: data=r[P3@P2] 8229 ** 8230 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8231 ** This opcode invokes the corresponding xUpdate method. P2 values 8232 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8233 ** invocation. The value in register (P3+P2-1) corresponds to the 8234 ** p2th element of the argv array passed to xUpdate. 8235 ** 8236 ** The xUpdate method will do a DELETE or an INSERT or both. 8237 ** The argv[0] element (which corresponds to memory cell P3) 8238 ** is the rowid of a row to delete. If argv[0] is NULL then no 8239 ** deletion occurs. The argv[1] element is the rowid of the new 8240 ** row. This can be NULL to have the virtual table select the new 8241 ** rowid for itself. The subsequent elements in the array are 8242 ** the values of columns in the new row. 8243 ** 8244 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8245 ** a row to delete. 8246 ** 8247 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8248 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8249 ** is set to the value of the rowid for the row just inserted. 8250 ** 8251 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8252 ** apply in the case of a constraint failure on an insert or update. 8253 */ 8254 case OP_VUpdate: { 8255 sqlite3_vtab *pVtab; 8256 const sqlite3_module *pModule; 8257 int nArg; 8258 int i; 8259 sqlite_int64 rowid = 0; 8260 Mem **apArg; 8261 Mem *pX; 8262 8263 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8264 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8265 ); 8266 assert( p->readOnly==0 ); 8267 if( db->mallocFailed ) goto no_mem; 8268 sqlite3VdbeIncrWriteCounter(p, 0); 8269 pVtab = pOp->p4.pVtab->pVtab; 8270 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8271 rc = SQLITE_LOCKED; 8272 goto abort_due_to_error; 8273 } 8274 pModule = pVtab->pModule; 8275 nArg = pOp->p2; 8276 assert( pOp->p4type==P4_VTAB ); 8277 if( ALWAYS(pModule->xUpdate) ){ 8278 u8 vtabOnConflict = db->vtabOnConflict; 8279 apArg = p->apArg; 8280 pX = &aMem[pOp->p3]; 8281 for(i=0; i<nArg; i++){ 8282 assert( memIsValid(pX) ); 8283 memAboutToChange(p, pX); 8284 apArg[i] = pX; 8285 pX++; 8286 } 8287 db->vtabOnConflict = pOp->p5; 8288 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8289 db->vtabOnConflict = vtabOnConflict; 8290 sqlite3VtabImportErrmsg(p, pVtab); 8291 if( rc==SQLITE_OK && pOp->p1 ){ 8292 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8293 db->lastRowid = rowid; 8294 } 8295 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8296 if( pOp->p5==OE_Ignore ){ 8297 rc = SQLITE_OK; 8298 }else{ 8299 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8300 } 8301 }else{ 8302 p->nChange++; 8303 } 8304 if( rc ) goto abort_due_to_error; 8305 } 8306 break; 8307 } 8308 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8309 8310 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8311 /* Opcode: Pagecount P1 P2 * * * 8312 ** 8313 ** Write the current number of pages in database P1 to memory cell P2. 8314 */ 8315 case OP_Pagecount: { /* out2 */ 8316 pOut = out2Prerelease(p, pOp); 8317 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8318 break; 8319 } 8320 #endif 8321 8322 8323 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8324 /* Opcode: MaxPgcnt P1 P2 P3 * * 8325 ** 8326 ** Try to set the maximum page count for database P1 to the value in P3. 8327 ** Do not let the maximum page count fall below the current page count and 8328 ** do not change the maximum page count value if P3==0. 8329 ** 8330 ** Store the maximum page count after the change in register P2. 8331 */ 8332 case OP_MaxPgcnt: { /* out2 */ 8333 unsigned int newMax; 8334 Btree *pBt; 8335 8336 pOut = out2Prerelease(p, pOp); 8337 pBt = db->aDb[pOp->p1].pBt; 8338 newMax = 0; 8339 if( pOp->p3 ){ 8340 newMax = sqlite3BtreeLastPage(pBt); 8341 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8342 } 8343 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8344 break; 8345 } 8346 #endif 8347 8348 /* Opcode: Function P1 P2 P3 P4 * 8349 ** Synopsis: r[P3]=func(r[P2@NP]) 8350 ** 8351 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8352 ** contains a pointer to the function to be run) with arguments taken 8353 ** from register P2 and successors. The number of arguments is in 8354 ** the sqlite3_context object that P4 points to. 8355 ** The result of the function is stored 8356 ** in register P3. Register P3 must not be one of the function inputs. 8357 ** 8358 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8359 ** function was determined to be constant at compile time. If the first 8360 ** argument was constant then bit 0 of P1 is set. This is used to determine 8361 ** whether meta data associated with a user function argument using the 8362 ** sqlite3_set_auxdata() API may be safely retained until the next 8363 ** invocation of this opcode. 8364 ** 8365 ** See also: AggStep, AggFinal, PureFunc 8366 */ 8367 /* Opcode: PureFunc P1 P2 P3 P4 * 8368 ** Synopsis: r[P3]=func(r[P2@NP]) 8369 ** 8370 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8371 ** contains a pointer to the function to be run) with arguments taken 8372 ** from register P2 and successors. The number of arguments is in 8373 ** the sqlite3_context object that P4 points to. 8374 ** The result of the function is stored 8375 ** in register P3. Register P3 must not be one of the function inputs. 8376 ** 8377 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8378 ** function was determined to be constant at compile time. If the first 8379 ** argument was constant then bit 0 of P1 is set. This is used to determine 8380 ** whether meta data associated with a user function argument using the 8381 ** sqlite3_set_auxdata() API may be safely retained until the next 8382 ** invocation of this opcode. 8383 ** 8384 ** This opcode works exactly like OP_Function. The only difference is in 8385 ** its name. This opcode is used in places where the function must be 8386 ** purely non-deterministic. Some built-in date/time functions can be 8387 ** either determinitic of non-deterministic, depending on their arguments. 8388 ** When those function are used in a non-deterministic way, they will check 8389 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8390 ** if they were, they throw an error. 8391 ** 8392 ** See also: AggStep, AggFinal, Function 8393 */ 8394 case OP_PureFunc: /* group */ 8395 case OP_Function: { /* group */ 8396 int i; 8397 sqlite3_context *pCtx; 8398 8399 assert( pOp->p4type==P4_FUNCCTX ); 8400 pCtx = pOp->p4.pCtx; 8401 8402 /* If this function is inside of a trigger, the register array in aMem[] 8403 ** might change from one evaluation to the next. The next block of code 8404 ** checks to see if the register array has changed, and if so it 8405 ** reinitializes the relavant parts of the sqlite3_context object */ 8406 pOut = &aMem[pOp->p3]; 8407 if( pCtx->pOut != pOut ){ 8408 pCtx->pVdbe = p; 8409 pCtx->pOut = pOut; 8410 pCtx->enc = encoding; 8411 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8412 } 8413 assert( pCtx->pVdbe==p ); 8414 8415 memAboutToChange(p, pOut); 8416 #ifdef SQLITE_DEBUG 8417 for(i=0; i<pCtx->argc; i++){ 8418 assert( memIsValid(pCtx->argv[i]) ); 8419 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8420 } 8421 #endif 8422 MemSetTypeFlag(pOut, MEM_Null); 8423 assert( pCtx->isError==0 ); 8424 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8425 8426 /* If the function returned an error, throw an exception */ 8427 if( pCtx->isError ){ 8428 if( pCtx->isError>0 ){ 8429 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8430 rc = pCtx->isError; 8431 } 8432 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8433 pCtx->isError = 0; 8434 if( rc ) goto abort_due_to_error; 8435 } 8436 8437 assert( (pOut->flags&MEM_Str)==0 8438 || pOut->enc==encoding 8439 || db->mallocFailed ); 8440 assert( !sqlite3VdbeMemTooBig(pOut) ); 8441 8442 REGISTER_TRACE(pOp->p3, pOut); 8443 UPDATE_MAX_BLOBSIZE(pOut); 8444 break; 8445 } 8446 8447 /* Opcode: ClrSubtype P1 * * * * 8448 ** Synopsis: r[P1].subtype = 0 8449 ** 8450 ** Clear the subtype from register P1. 8451 */ 8452 case OP_ClrSubtype: { /* in1 */ 8453 pIn1 = &aMem[pOp->p1]; 8454 pIn1->flags &= ~MEM_Subtype; 8455 break; 8456 } 8457 8458 /* Opcode: FilterAdd P1 * P3 P4 * 8459 ** Synopsis: filter(P1) += key(P3@P4) 8460 ** 8461 ** Compute a hash on the P4 registers starting with r[P3] and 8462 ** add that hash to the bloom filter contained in r[P1]. 8463 */ 8464 case OP_FilterAdd: { 8465 u64 h; 8466 8467 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8468 pIn1 = &aMem[pOp->p1]; 8469 assert( pIn1->flags & MEM_Blob ); 8470 assert( pIn1->n>0 ); 8471 h = filterHash(aMem, pOp); 8472 #ifdef SQLITE_DEBUG 8473 if( db->flags&SQLITE_VdbeTrace ){ 8474 int ii; 8475 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8476 registerTrace(ii, &aMem[ii]); 8477 } 8478 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8479 } 8480 #endif 8481 h %= pIn1->n; 8482 pIn1->z[h/8] |= 1<<(h&7); 8483 break; 8484 } 8485 8486 /* Opcode: Filter P1 P2 P3 P4 * 8487 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8488 ** 8489 ** Compute a hash on the key contained in the P4 registers starting 8490 ** with r[P3]. Check to see if that hash is found in the 8491 ** bloom filter hosted by register P1. If it is not present then 8492 ** maybe jump to P2. Otherwise fall through. 8493 ** 8494 ** False negatives are harmless. It is always safe to fall through, 8495 ** even if the value is in the bloom filter. A false negative causes 8496 ** more CPU cycles to be used, but it should still yield the correct 8497 ** answer. However, an incorrect answer may well arise from a 8498 ** false positive - if the jump is taken when it should fall through. 8499 */ 8500 case OP_Filter: { /* jump */ 8501 u64 h; 8502 8503 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8504 pIn1 = &aMem[pOp->p1]; 8505 assert( (pIn1->flags & MEM_Blob)!=0 ); 8506 assert( pIn1->n >= 1 ); 8507 h = filterHash(aMem, pOp); 8508 #ifdef SQLITE_DEBUG 8509 if( db->flags&SQLITE_VdbeTrace ){ 8510 int ii; 8511 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8512 registerTrace(ii, &aMem[ii]); 8513 } 8514 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8515 } 8516 #endif 8517 h %= pIn1->n; 8518 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8519 VdbeBranchTaken(1, 2); 8520 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8521 goto jump_to_p2; 8522 }else{ 8523 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8524 VdbeBranchTaken(0, 2); 8525 } 8526 break; 8527 } 8528 8529 /* Opcode: Trace P1 P2 * P4 * 8530 ** 8531 ** Write P4 on the statement trace output if statement tracing is 8532 ** enabled. 8533 ** 8534 ** Operand P1 must be 0x7fffffff and P2 must positive. 8535 */ 8536 /* Opcode: Init P1 P2 P3 P4 * 8537 ** Synopsis: Start at P2 8538 ** 8539 ** Programs contain a single instance of this opcode as the very first 8540 ** opcode. 8541 ** 8542 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8543 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8544 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8545 ** 8546 ** If P2 is not zero, jump to instruction P2. 8547 ** 8548 ** Increment the value of P1 so that OP_Once opcodes will jump the 8549 ** first time they are evaluated for this run. 8550 ** 8551 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8552 ** error is encountered. 8553 */ 8554 case OP_Trace: 8555 case OP_Init: { /* jump */ 8556 int i; 8557 #ifndef SQLITE_OMIT_TRACE 8558 char *zTrace; 8559 #endif 8560 8561 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8562 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8563 ** 8564 ** This assert() provides evidence for: 8565 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8566 ** would have been returned by the legacy sqlite3_trace() interface by 8567 ** using the X argument when X begins with "--" and invoking 8568 ** sqlite3_expanded_sql(P) otherwise. 8569 */ 8570 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8571 8572 /* OP_Init is always instruction 0 */ 8573 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8574 8575 #ifndef SQLITE_OMIT_TRACE 8576 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8577 && p->minWriteFileFormat!=254 /* tag-20220401a */ 8578 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8579 ){ 8580 #ifndef SQLITE_OMIT_DEPRECATED 8581 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8582 char *z = sqlite3VdbeExpandSql(p, zTrace); 8583 db->trace.xLegacy(db->pTraceArg, z); 8584 sqlite3_free(z); 8585 }else 8586 #endif 8587 if( db->nVdbeExec>1 ){ 8588 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8589 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8590 sqlite3DbFree(db, z); 8591 }else{ 8592 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8593 } 8594 } 8595 #ifdef SQLITE_USE_FCNTL_TRACE 8596 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8597 if( zTrace ){ 8598 int j; 8599 for(j=0; j<db->nDb; j++){ 8600 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8601 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8602 } 8603 } 8604 #endif /* SQLITE_USE_FCNTL_TRACE */ 8605 #ifdef SQLITE_DEBUG 8606 if( (db->flags & SQLITE_SqlTrace)!=0 8607 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8608 ){ 8609 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8610 } 8611 #endif /* SQLITE_DEBUG */ 8612 #endif /* SQLITE_OMIT_TRACE */ 8613 assert( pOp->p2>0 ); 8614 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8615 if( pOp->opcode==OP_Trace ) break; 8616 for(i=1; i<p->nOp; i++){ 8617 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8618 } 8619 pOp->p1 = 0; 8620 } 8621 pOp->p1++; 8622 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8623 goto jump_to_p2; 8624 } 8625 8626 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8627 /* Opcode: CursorHint P1 * * P4 * 8628 ** 8629 ** Provide a hint to cursor P1 that it only needs to return rows that 8630 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8631 ** to values currently held in registers. TK_COLUMN terms in the P4 8632 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8633 */ 8634 case OP_CursorHint: { 8635 VdbeCursor *pC; 8636 8637 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8638 assert( pOp->p4type==P4_EXPR ); 8639 pC = p->apCsr[pOp->p1]; 8640 if( pC ){ 8641 assert( pC->eCurType==CURTYPE_BTREE ); 8642 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8643 pOp->p4.pExpr, aMem); 8644 } 8645 break; 8646 } 8647 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8648 8649 #ifdef SQLITE_DEBUG 8650 /* Opcode: Abortable * * * * * 8651 ** 8652 ** Verify that an Abort can happen. Assert if an Abort at this point 8653 ** might cause database corruption. This opcode only appears in debugging 8654 ** builds. 8655 ** 8656 ** An Abort is safe if either there have been no writes, or if there is 8657 ** an active statement journal. 8658 */ 8659 case OP_Abortable: { 8660 sqlite3VdbeAssertAbortable(p); 8661 break; 8662 } 8663 #endif 8664 8665 #ifdef SQLITE_DEBUG 8666 /* Opcode: ReleaseReg P1 P2 P3 * P5 8667 ** Synopsis: release r[P1@P2] mask P3 8668 ** 8669 ** Release registers from service. Any content that was in the 8670 ** the registers is unreliable after this opcode completes. 8671 ** 8672 ** The registers released will be the P2 registers starting at P1, 8673 ** except if bit ii of P3 set, then do not release register P1+ii. 8674 ** In other words, P3 is a mask of registers to preserve. 8675 ** 8676 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8677 ** that if the content of the released register was set using OP_SCopy, 8678 ** a change to the value of the source register for the OP_SCopy will no longer 8679 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8680 ** 8681 ** If P5 is set, then all released registers have their type set 8682 ** to MEM_Undefined so that any subsequent attempt to read the released 8683 ** register (before it is reinitialized) will generate an assertion fault. 8684 ** 8685 ** P5 ought to be set on every call to this opcode. 8686 ** However, there are places in the code generator will release registers 8687 ** before their are used, under the (valid) assumption that the registers 8688 ** will not be reallocated for some other purpose before they are used and 8689 ** hence are safe to release. 8690 ** 8691 ** This opcode is only available in testing and debugging builds. It is 8692 ** not generated for release builds. The purpose of this opcode is to help 8693 ** validate the generated bytecode. This opcode does not actually contribute 8694 ** to computing an answer. 8695 */ 8696 case OP_ReleaseReg: { 8697 Mem *pMem; 8698 int i; 8699 u32 constMask; 8700 assert( pOp->p1>0 ); 8701 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8702 pMem = &aMem[pOp->p1]; 8703 constMask = pOp->p3; 8704 for(i=0; i<pOp->p2; i++, pMem++){ 8705 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8706 pMem->pScopyFrom = 0; 8707 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8708 } 8709 } 8710 break; 8711 } 8712 #endif 8713 8714 /* Opcode: Noop * * * * * 8715 ** 8716 ** Do nothing. This instruction is often useful as a jump 8717 ** destination. 8718 */ 8719 /* 8720 ** The magic Explain opcode are only inserted when explain==2 (which 8721 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8722 ** This opcode records information from the optimizer. It is the 8723 ** the same as a no-op. This opcodesnever appears in a real VM program. 8724 */ 8725 default: { /* This is really OP_Noop, OP_Explain */ 8726 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8727 8728 break; 8729 } 8730 8731 /***************************************************************************** 8732 ** The cases of the switch statement above this line should all be indented 8733 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8734 ** readability. From this point on down, the normal indentation rules are 8735 ** restored. 8736 *****************************************************************************/ 8737 } 8738 8739 #ifdef VDBE_PROFILE 8740 { 8741 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8742 if( endTime>start ) pOrigOp->cycles += endTime - start; 8743 pOrigOp->cnt++; 8744 } 8745 #endif 8746 8747 /* The following code adds nothing to the actual functionality 8748 ** of the program. It is only here for testing and debugging. 8749 ** On the other hand, it does burn CPU cycles every time through 8750 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8751 */ 8752 #ifndef NDEBUG 8753 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8754 8755 #ifdef SQLITE_DEBUG 8756 if( db->flags & SQLITE_VdbeTrace ){ 8757 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8758 if( rc!=0 ) printf("rc=%d\n",rc); 8759 if( opProperty & (OPFLG_OUT2) ){ 8760 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8761 } 8762 if( opProperty & OPFLG_OUT3 ){ 8763 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8764 } 8765 if( opProperty==0xff ){ 8766 /* Never happens. This code exists to avoid a harmless linkage 8767 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8768 ** used. */ 8769 sqlite3VdbeRegisterDump(p); 8770 } 8771 } 8772 #endif /* SQLITE_DEBUG */ 8773 #endif /* NDEBUG */ 8774 } /* The end of the for(;;) loop the loops through opcodes */ 8775 8776 /* If we reach this point, it means that execution is finished with 8777 ** an error of some kind. 8778 */ 8779 abort_due_to_error: 8780 if( db->mallocFailed ){ 8781 rc = SQLITE_NOMEM_BKPT; 8782 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8783 rc = SQLITE_CORRUPT_BKPT; 8784 } 8785 assert( rc ); 8786 #ifdef SQLITE_DEBUG 8787 if( db->flags & SQLITE_VdbeTrace ){ 8788 const char *zTrace = p->zSql; 8789 if( zTrace==0 ){ 8790 if( aOp[0].opcode==OP_Trace ){ 8791 zTrace = aOp[0].p4.z; 8792 } 8793 if( zTrace==0 ) zTrace = "???"; 8794 } 8795 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8796 } 8797 #endif 8798 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8799 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8800 } 8801 p->rc = rc; 8802 sqlite3SystemError(db, rc); 8803 testcase( sqlite3GlobalConfig.xLog!=0 ); 8804 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8805 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8806 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 8807 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8808 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8809 db->flags |= SQLITE_CorruptRdOnly; 8810 } 8811 rc = SQLITE_ERROR; 8812 if( resetSchemaOnFault>0 ){ 8813 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8814 } 8815 8816 /* This is the only way out of this procedure. We have to 8817 ** release the mutexes on btrees that were acquired at the 8818 ** top. */ 8819 vdbe_return: 8820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8821 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8822 nProgressLimit += db->nProgressOps; 8823 if( db->xProgress(db->pProgressArg) ){ 8824 nProgressLimit = LARGEST_UINT64; 8825 rc = SQLITE_INTERRUPT; 8826 goto abort_due_to_error; 8827 } 8828 } 8829 #endif 8830 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8831 sqlite3VdbeLeave(p); 8832 assert( rc!=SQLITE_OK || nExtraDelete==0 8833 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8834 ); 8835 return rc; 8836 8837 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8838 ** is encountered. 8839 */ 8840 too_big: 8841 sqlite3VdbeError(p, "string or blob too big"); 8842 rc = SQLITE_TOOBIG; 8843 goto abort_due_to_error; 8844 8845 /* Jump to here if a malloc() fails. 8846 */ 8847 no_mem: 8848 sqlite3OomFault(db); 8849 sqlite3VdbeError(p, "out of memory"); 8850 rc = SQLITE_NOMEM_BKPT; 8851 goto abort_due_to_error; 8852 8853 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8854 ** flag. 8855 */ 8856 abort_due_to_interrupt: 8857 assert( AtomicLoad(&db->u1.isInterrupted) ); 8858 rc = SQLITE_INTERRUPT; 8859 goto abort_due_to_error; 8860 } 8861