xref: /sqlite-3.40.0/src/vdbe.c (revision b0c4ef71)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   int iDb,              /* Database the cursor belongs to, or -1 */
245   u8 eCurType           /* Type of the new cursor */
246 ){
247   /* Find the memory cell that will be used to store the blob of memory
248   ** required for this VdbeCursor structure. It is convenient to use a
249   ** vdbe memory cell to manage the memory allocation required for a
250   ** VdbeCursor structure for the following reasons:
251   **
252   **   * Sometimes cursor numbers are used for a couple of different
253   **     purposes in a vdbe program. The different uses might require
254   **     different sized allocations. Memory cells provide growable
255   **     allocations.
256   **
257   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258   **     be freed lazily via the sqlite3_release_memory() API. This
259   **     minimizes the number of malloc calls made by the system.
260   **
261   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
262   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
263   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264   */
265   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 
267   int nByte;
268   VdbeCursor *pCx = 0;
269   nByte =
270       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
271       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 
273   assert( iCur>=0 && iCur<p->nCursor );
274   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
275     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276     ** is clear. Otherwise, if this is an ephemeral cursor created by
277     ** OP_OpenDup, the cursor will not be closed and will still be part
278     ** of a BtShared.pCursor list.  */
279     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
280     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
281     p->apCsr[iCur] = 0;
282   }
283   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
284     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
285     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
286     pCx->eCurType = eCurType;
287     pCx->iDb = iDb;
288     pCx->nField = nField;
289     pCx->aOffset = &pCx->aType[nField];
290     if( eCurType==CURTYPE_BTREE ){
291       pCx->uc.pCursor = (BtCursor*)
292           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
293       sqlite3BtreeCursorZero(pCx->uc.pCursor);
294     }
295   }
296   return pCx;
297 }
298 
299 /*
300 ** The string in pRec is known to look like an integer and to have a
301 ** floating point value of rValue.  Return true and set *piValue to the
302 ** integer value if the string is in range to be an integer.  Otherwise,
303 ** return false.
304 */
305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306   i64 iValue = (double)rValue;
307   if( sqlite3RealSameAsInt(rValue,iValue) ){
308     *piValue = iValue;
309     return 1;
310   }
311   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312 }
313 
314 /*
315 ** Try to convert a value into a numeric representation if we can
316 ** do so without loss of information.  In other words, if the string
317 ** looks like a number, convert it into a number.  If it does not
318 ** look like a number, leave it alone.
319 **
320 ** If the bTryForInt flag is true, then extra effort is made to give
321 ** an integer representation.  Strings that look like floating point
322 ** values but which have no fractional component (example: '48.00')
323 ** will have a MEM_Int representation when bTryForInt is true.
324 **
325 ** If bTryForInt is false, then if the input string contains a decimal
326 ** point or exponential notation, the result is only MEM_Real, even
327 ** if there is an exact integer representation of the quantity.
328 */
329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
330   double rValue;
331   u8 enc = pRec->enc;
332   int rc;
333   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
334   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
335   if( rc<=0 ) return;
336   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
337     pRec->flags |= MEM_Int;
338   }else{
339     pRec->u.r = rValue;
340     pRec->flags |= MEM_Real;
341     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
342   }
343   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
344   ** string representation after computing a numeric equivalent, because the
345   ** string representation might not be the canonical representation for the
346   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
347   pRec->flags &= ~MEM_Str;
348 }
349 
350 /*
351 ** Processing is determine by the affinity parameter:
352 **
353 ** SQLITE_AFF_INTEGER:
354 ** SQLITE_AFF_REAL:
355 ** SQLITE_AFF_NUMERIC:
356 **    Try to convert pRec to an integer representation or a
357 **    floating-point representation if an integer representation
358 **    is not possible.  Note that the integer representation is
359 **    always preferred, even if the affinity is REAL, because
360 **    an integer representation is more space efficient on disk.
361 **
362 ** SQLITE_AFF_TEXT:
363 **    Convert pRec to a text representation.
364 **
365 ** SQLITE_AFF_BLOB:
366 ** SQLITE_AFF_NONE:
367 **    No-op.  pRec is unchanged.
368 */
369 static void applyAffinity(
370   Mem *pRec,          /* The value to apply affinity to */
371   char affinity,      /* The affinity to be applied */
372   u8 enc              /* Use this text encoding */
373 ){
374   if( affinity>=SQLITE_AFF_NUMERIC ){
375     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376              || affinity==SQLITE_AFF_NUMERIC );
377     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
378       if( (pRec->flags & MEM_Real)==0 ){
379         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
380       }else{
381         sqlite3VdbeIntegerAffinity(pRec);
382       }
383     }
384   }else if( affinity==SQLITE_AFF_TEXT ){
385     /* Only attempt the conversion to TEXT if there is an integer or real
386     ** representation (blob and NULL do not get converted) but no string
387     ** representation.  It would be harmless to repeat the conversion if
388     ** there is already a string rep, but it is pointless to waste those
389     ** CPU cycles. */
390     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
391       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
392         testcase( pRec->flags & MEM_Int );
393         testcase( pRec->flags & MEM_Real );
394         testcase( pRec->flags & MEM_IntReal );
395         sqlite3VdbeMemStringify(pRec, enc, 1);
396       }
397     }
398     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
399   }
400 }
401 
402 /*
403 ** Try to convert the type of a function argument or a result column
404 ** into a numeric representation.  Use either INTEGER or REAL whichever
405 ** is appropriate.  But only do the conversion if it is possible without
406 ** loss of information and return the revised type of the argument.
407 */
408 int sqlite3_value_numeric_type(sqlite3_value *pVal){
409   int eType = sqlite3_value_type(pVal);
410   if( eType==SQLITE_TEXT ){
411     Mem *pMem = (Mem*)pVal;
412     applyNumericAffinity(pMem, 0);
413     eType = sqlite3_value_type(pVal);
414   }
415   return eType;
416 }
417 
418 /*
419 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
420 ** not the internal Mem* type.
421 */
422 void sqlite3ValueApplyAffinity(
423   sqlite3_value *pVal,
424   u8 affinity,
425   u8 enc
426 ){
427   applyAffinity((Mem *)pVal, affinity, enc);
428 }
429 
430 /*
431 ** pMem currently only holds a string type (or maybe a BLOB that we can
432 ** interpret as a string if we want to).  Compute its corresponding
433 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
434 ** accordingly.
435 */
436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
437   int rc;
438   sqlite3_int64 ix;
439   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
440   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
441   ExpandBlob(pMem);
442   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443   if( rc<=0 ){
444     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445       pMem->u.i = ix;
446       return MEM_Int;
447     }else{
448       return MEM_Real;
449     }
450   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451     pMem->u.i = ix;
452     return MEM_Int;
453   }
454   return MEM_Real;
455 }
456 
457 /*
458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459 ** none.
460 **
461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
462 ** But it does set pMem->u.r and pMem->u.i appropriately.
463 */
464 static u16 numericType(Mem *pMem){
465   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
466     testcase( pMem->flags & MEM_Int );
467     testcase( pMem->flags & MEM_Real );
468     testcase( pMem->flags & MEM_IntReal );
469     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
470   }
471   if( pMem->flags & (MEM_Str|MEM_Blob) ){
472     testcase( pMem->flags & MEM_Str );
473     testcase( pMem->flags & MEM_Blob );
474     return computeNumericType(pMem);
475   }
476   return 0;
477 }
478 
479 #ifdef SQLITE_DEBUG
480 /*
481 ** Write a nice string representation of the contents of cell pMem
482 ** into buffer zBuf, length nBuf.
483 */
484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
485   int f = pMem->flags;
486   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
487   if( f&MEM_Blob ){
488     int i;
489     char c;
490     if( f & MEM_Dyn ){
491       c = 'z';
492       assert( (f & (MEM_Static|MEM_Ephem))==0 );
493     }else if( f & MEM_Static ){
494       c = 't';
495       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
496     }else if( f & MEM_Ephem ){
497       c = 'e';
498       assert( (f & (MEM_Static|MEM_Dyn))==0 );
499     }else{
500       c = 's';
501     }
502     sqlite3_str_appendf(pStr, "%cx[", c);
503     for(i=0; i<25 && i<pMem->n; i++){
504       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
505     }
506     sqlite3_str_appendf(pStr, "|");
507     for(i=0; i<25 && i<pMem->n; i++){
508       char z = pMem->z[i];
509       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
510     }
511     sqlite3_str_appendf(pStr,"]");
512     if( f & MEM_Zero ){
513       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
514     }
515   }else if( f & MEM_Str ){
516     int j;
517     int c;
518     if( f & MEM_Dyn ){
519       c = 'z';
520       assert( (f & (MEM_Static|MEM_Ephem))==0 );
521     }else if( f & MEM_Static ){
522       c = 't';
523       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
524     }else if( f & MEM_Ephem ){
525       c = 'e';
526       assert( (f & (MEM_Static|MEM_Dyn))==0 );
527     }else{
528       c = 's';
529     }
530     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
531     for(j=0; j<25 && j<pMem->n; j++){
532       u8 c = pMem->z[j];
533       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
534     }
535     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
536   }
537 }
538 #endif
539 
540 #ifdef SQLITE_DEBUG
541 /*
542 ** Print the value of a register for tracing purposes:
543 */
544 static void memTracePrint(Mem *p){
545   if( p->flags & MEM_Undefined ){
546     printf(" undefined");
547   }else if( p->flags & MEM_Null ){
548     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
549   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
550     printf(" si:%lld", p->u.i);
551   }else if( (p->flags & (MEM_IntReal))!=0 ){
552     printf(" ir:%lld", p->u.i);
553   }else if( p->flags & MEM_Int ){
554     printf(" i:%lld", p->u.i);
555 #ifndef SQLITE_OMIT_FLOATING_POINT
556   }else if( p->flags & MEM_Real ){
557     printf(" r:%.17g", p->u.r);
558 #endif
559   }else if( sqlite3VdbeMemIsRowSet(p) ){
560     printf(" (rowset)");
561   }else{
562     StrAccum acc;
563     char zBuf[1000];
564     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
565     sqlite3VdbeMemPrettyPrint(p, &acc);
566     printf(" %s", sqlite3StrAccumFinish(&acc));
567   }
568   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
569 }
570 static void registerTrace(int iReg, Mem *p){
571   printf("R[%d] = ", iReg);
572   memTracePrint(p);
573   if( p->pScopyFrom ){
574     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
575   }
576   printf("\n");
577   sqlite3VdbeCheckMemInvariants(p);
578 }
579 #endif
580 
581 #ifdef SQLITE_DEBUG
582 /*
583 ** Show the values of all registers in the virtual machine.  Used for
584 ** interactive debugging.
585 */
586 void sqlite3VdbeRegisterDump(Vdbe *v){
587   int i;
588   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
589 }
590 #endif /* SQLITE_DEBUG */
591 
592 
593 #ifdef SQLITE_DEBUG
594 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
595 #else
596 #  define REGISTER_TRACE(R,M)
597 #endif
598 
599 
600 #ifdef VDBE_PROFILE
601 
602 /*
603 ** hwtime.h contains inline assembler code for implementing
604 ** high-performance timing routines.
605 */
606 #include "hwtime.h"
607 
608 #endif
609 
610 #ifndef NDEBUG
611 /*
612 ** This function is only called from within an assert() expression. It
613 ** checks that the sqlite3.nTransaction variable is correctly set to
614 ** the number of non-transaction savepoints currently in the
615 ** linked list starting at sqlite3.pSavepoint.
616 **
617 ** Usage:
618 **
619 **     assert( checkSavepointCount(db) );
620 */
621 static int checkSavepointCount(sqlite3 *db){
622   int n = 0;
623   Savepoint *p;
624   for(p=db->pSavepoint; p; p=p->pNext) n++;
625   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
626   return 1;
627 }
628 #endif
629 
630 /*
631 ** Return the register of pOp->p2 after first preparing it to be
632 ** overwritten with an integer value.
633 */
634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
635   sqlite3VdbeMemSetNull(pOut);
636   pOut->flags = MEM_Int;
637   return pOut;
638 }
639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
640   Mem *pOut;
641   assert( pOp->p2>0 );
642   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
643   pOut = &p->aMem[pOp->p2];
644   memAboutToChange(p, pOut);
645   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
646     return out2PrereleaseWithClear(pOut);
647   }else{
648     pOut->flags = MEM_Int;
649     return pOut;
650   }
651 }
652 
653 
654 /*
655 ** Execute as much of a VDBE program as we can.
656 ** This is the core of sqlite3_step().
657 */
658 int sqlite3VdbeExec(
659   Vdbe *p                    /* The VDBE */
660 ){
661   Op *aOp = p->aOp;          /* Copy of p->aOp */
662   Op *pOp = aOp;             /* Current operation */
663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
664   Op *pOrigOp;               /* Value of pOp at the top of the loop */
665 #endif
666 #ifdef SQLITE_DEBUG
667   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
668 #endif
669   int rc = SQLITE_OK;        /* Value to return */
670   sqlite3 *db = p->db;       /* The database */
671   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
672   u8 encoding = ENC(db);     /* The database encoding */
673   int iCompare = 0;          /* Result of last comparison */
674   unsigned nVmStep = 0;      /* Number of virtual machine steps */
675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
676   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
677 #endif
678   Mem *aMem = p->aMem;       /* Copy of p->aMem */
679   Mem *pIn1 = 0;             /* 1st input operand */
680   Mem *pIn2 = 0;             /* 2nd input operand */
681   Mem *pIn3 = 0;             /* 3rd input operand */
682   Mem *pOut = 0;             /* Output operand */
683 #ifdef VDBE_PROFILE
684   u64 start;                 /* CPU clock count at start of opcode */
685 #endif
686   /*** INSERT STACK UNION HERE ***/
687 
688   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
689   sqlite3VdbeEnter(p);
690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
691   if( db->xProgress ){
692     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
693     assert( 0 < db->nProgressOps );
694     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
695   }else{
696     nProgressLimit = 0xffffffff;
697   }
698 #endif
699   if( p->rc==SQLITE_NOMEM ){
700     /* This happens if a malloc() inside a call to sqlite3_column_text() or
701     ** sqlite3_column_text16() failed.  */
702     goto no_mem;
703   }
704   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
705   assert( p->bIsReader || p->readOnly!=0 );
706   p->iCurrentTime = 0;
707   assert( p->explain==0 );
708   p->pResultSet = 0;
709   db->busyHandler.nBusy = 0;
710   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
711   sqlite3VdbeIOTraceSql(p);
712 #ifdef SQLITE_DEBUG
713   sqlite3BeginBenignMalloc();
714   if( p->pc==0
715    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
716   ){
717     int i;
718     int once = 1;
719     sqlite3VdbePrintSql(p);
720     if( p->db->flags & SQLITE_VdbeListing ){
721       printf("VDBE Program Listing:\n");
722       for(i=0; i<p->nOp; i++){
723         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
724       }
725     }
726     if( p->db->flags & SQLITE_VdbeEQP ){
727       for(i=0; i<p->nOp; i++){
728         if( aOp[i].opcode==OP_Explain ){
729           if( once ) printf("VDBE Query Plan:\n");
730           printf("%s\n", aOp[i].p4.z);
731           once = 0;
732         }
733       }
734     }
735     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
736   }
737   sqlite3EndBenignMalloc();
738 #endif
739   for(pOp=&aOp[p->pc]; 1; pOp++){
740     /* Errors are detected by individual opcodes, with an immediate
741     ** jumps to abort_due_to_error. */
742     assert( rc==SQLITE_OK );
743 
744     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
745 #ifdef VDBE_PROFILE
746     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
747 #endif
748     nVmStep++;
749 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
750     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
751 #endif
752 
753     /* Only allow tracing if SQLITE_DEBUG is defined.
754     */
755 #ifdef SQLITE_DEBUG
756     if( db->flags & SQLITE_VdbeTrace ){
757       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
758       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
759     }
760 #endif
761 
762 
763     /* Check to see if we need to simulate an interrupt.  This only happens
764     ** if we have a special test build.
765     */
766 #ifdef SQLITE_TEST
767     if( sqlite3_interrupt_count>0 ){
768       sqlite3_interrupt_count--;
769       if( sqlite3_interrupt_count==0 ){
770         sqlite3_interrupt(db);
771       }
772     }
773 #endif
774 
775     /* Sanity checking on other operands */
776 #ifdef SQLITE_DEBUG
777     {
778       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
779       if( (opProperty & OPFLG_IN1)!=0 ){
780         assert( pOp->p1>0 );
781         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
782         assert( memIsValid(&aMem[pOp->p1]) );
783         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
784         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
785       }
786       if( (opProperty & OPFLG_IN2)!=0 ){
787         assert( pOp->p2>0 );
788         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
789         assert( memIsValid(&aMem[pOp->p2]) );
790         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
791         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
792       }
793       if( (opProperty & OPFLG_IN3)!=0 ){
794         assert( pOp->p3>0 );
795         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
796         assert( memIsValid(&aMem[pOp->p3]) );
797         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
798         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
799       }
800       if( (opProperty & OPFLG_OUT2)!=0 ){
801         assert( pOp->p2>0 );
802         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
803         memAboutToChange(p, &aMem[pOp->p2]);
804       }
805       if( (opProperty & OPFLG_OUT3)!=0 ){
806         assert( pOp->p3>0 );
807         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
808         memAboutToChange(p, &aMem[pOp->p3]);
809       }
810     }
811 #endif
812 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
813     pOrigOp = pOp;
814 #endif
815 
816     switch( pOp->opcode ){
817 
818 /*****************************************************************************
819 ** What follows is a massive switch statement where each case implements a
820 ** separate instruction in the virtual machine.  If we follow the usual
821 ** indentation conventions, each case should be indented by 6 spaces.  But
822 ** that is a lot of wasted space on the left margin.  So the code within
823 ** the switch statement will break with convention and be flush-left. Another
824 ** big comment (similar to this one) will mark the point in the code where
825 ** we transition back to normal indentation.
826 **
827 ** The formatting of each case is important.  The makefile for SQLite
828 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
829 ** file looking for lines that begin with "case OP_".  The opcodes.h files
830 ** will be filled with #defines that give unique integer values to each
831 ** opcode and the opcodes.c file is filled with an array of strings where
832 ** each string is the symbolic name for the corresponding opcode.  If the
833 ** case statement is followed by a comment of the form "/# same as ... #/"
834 ** that comment is used to determine the particular value of the opcode.
835 **
836 ** Other keywords in the comment that follows each case are used to
837 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
838 ** Keywords include: in1, in2, in3, out2, out3.  See
839 ** the mkopcodeh.awk script for additional information.
840 **
841 ** Documentation about VDBE opcodes is generated by scanning this file
842 ** for lines of that contain "Opcode:".  That line and all subsequent
843 ** comment lines are used in the generation of the opcode.html documentation
844 ** file.
845 **
846 ** SUMMARY:
847 **
848 **     Formatting is important to scripts that scan this file.
849 **     Do not deviate from the formatting style currently in use.
850 **
851 *****************************************************************************/
852 
853 /* Opcode:  Goto * P2 * * *
854 **
855 ** An unconditional jump to address P2.
856 ** The next instruction executed will be
857 ** the one at index P2 from the beginning of
858 ** the program.
859 **
860 ** The P1 parameter is not actually used by this opcode.  However, it
861 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
862 ** that this Goto is the bottom of a loop and that the lines from P2 down
863 ** to the current line should be indented for EXPLAIN output.
864 */
865 case OP_Goto: {             /* jump */
866 
867 #ifdef SQLITE_DEBUG
868   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
869   ** means we should really jump back to the preceeding OP_ReleaseReg
870   ** instruction. */
871   if( pOp->p5 ){
872     assert( pOp->p2 < (int)(pOp - aOp) );
873     assert( pOp->p2 > 1 );
874     pOp = &aOp[pOp->p2 - 2];
875     assert( pOp[1].opcode==OP_ReleaseReg );
876     goto check_for_interrupt;
877   }
878 #endif
879 
880 jump_to_p2_and_check_for_interrupt:
881   pOp = &aOp[pOp->p2 - 1];
882 
883   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
884   ** OP_VNext, or OP_SorterNext) all jump here upon
885   ** completion.  Check to see if sqlite3_interrupt() has been called
886   ** or if the progress callback needs to be invoked.
887   **
888   ** This code uses unstructured "goto" statements and does not look clean.
889   ** But that is not due to sloppy coding habits. The code is written this
890   ** way for performance, to avoid having to run the interrupt and progress
891   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
892   ** faster according to "valgrind --tool=cachegrind" */
893 check_for_interrupt:
894   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
896   /* Call the progress callback if it is configured and the required number
897   ** of VDBE ops have been executed (either since this invocation of
898   ** sqlite3VdbeExec() or since last time the progress callback was called).
899   ** If the progress callback returns non-zero, exit the virtual machine with
900   ** a return code SQLITE_ABORT.
901   */
902   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
903     assert( db->nProgressOps!=0 );
904     nProgressLimit += db->nProgressOps;
905     if( db->xProgress(db->pProgressArg) ){
906       nProgressLimit = 0xffffffff;
907       rc = SQLITE_INTERRUPT;
908       goto abort_due_to_error;
909     }
910   }
911 #endif
912 
913   break;
914 }
915 
916 /* Opcode:  Gosub P1 P2 * * *
917 **
918 ** Write the current address onto register P1
919 ** and then jump to address P2.
920 */
921 case OP_Gosub: {            /* jump */
922   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
923   pIn1 = &aMem[pOp->p1];
924   assert( VdbeMemDynamic(pIn1)==0 );
925   memAboutToChange(p, pIn1);
926   pIn1->flags = MEM_Int;
927   pIn1->u.i = (int)(pOp-aOp);
928   REGISTER_TRACE(pOp->p1, pIn1);
929 
930   /* Most jump operations do a goto to this spot in order to update
931   ** the pOp pointer. */
932 jump_to_p2:
933   pOp = &aOp[pOp->p2 - 1];
934   break;
935 }
936 
937 /* Opcode:  Return P1 * * * *
938 **
939 ** Jump to the next instruction after the address in register P1.  After
940 ** the jump, register P1 becomes undefined.
941 */
942 case OP_Return: {           /* in1 */
943   pIn1 = &aMem[pOp->p1];
944   assert( pIn1->flags==MEM_Int );
945   pOp = &aOp[pIn1->u.i];
946   pIn1->flags = MEM_Undefined;
947   break;
948 }
949 
950 /* Opcode: InitCoroutine P1 P2 P3 * *
951 **
952 ** Set up register P1 so that it will Yield to the coroutine
953 ** located at address P3.
954 **
955 ** If P2!=0 then the coroutine implementation immediately follows
956 ** this opcode.  So jump over the coroutine implementation to
957 ** address P2.
958 **
959 ** See also: EndCoroutine
960 */
961 case OP_InitCoroutine: {     /* jump */
962   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
963   assert( pOp->p2>=0 && pOp->p2<p->nOp );
964   assert( pOp->p3>=0 && pOp->p3<p->nOp );
965   pOut = &aMem[pOp->p1];
966   assert( !VdbeMemDynamic(pOut) );
967   pOut->u.i = pOp->p3 - 1;
968   pOut->flags = MEM_Int;
969   if( pOp->p2 ) goto jump_to_p2;
970   break;
971 }
972 
973 /* Opcode:  EndCoroutine P1 * * * *
974 **
975 ** The instruction at the address in register P1 is a Yield.
976 ** Jump to the P2 parameter of that Yield.
977 ** After the jump, register P1 becomes undefined.
978 **
979 ** See also: InitCoroutine
980 */
981 case OP_EndCoroutine: {           /* in1 */
982   VdbeOp *pCaller;
983   pIn1 = &aMem[pOp->p1];
984   assert( pIn1->flags==MEM_Int );
985   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
986   pCaller = &aOp[pIn1->u.i];
987   assert( pCaller->opcode==OP_Yield );
988   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
989   pOp = &aOp[pCaller->p2 - 1];
990   pIn1->flags = MEM_Undefined;
991   break;
992 }
993 
994 /* Opcode:  Yield P1 P2 * * *
995 **
996 ** Swap the program counter with the value in register P1.  This
997 ** has the effect of yielding to a coroutine.
998 **
999 ** If the coroutine that is launched by this instruction ends with
1000 ** Yield or Return then continue to the next instruction.  But if
1001 ** the coroutine launched by this instruction ends with
1002 ** EndCoroutine, then jump to P2 rather than continuing with the
1003 ** next instruction.
1004 **
1005 ** See also: InitCoroutine
1006 */
1007 case OP_Yield: {            /* in1, jump */
1008   int pcDest;
1009   pIn1 = &aMem[pOp->p1];
1010   assert( VdbeMemDynamic(pIn1)==0 );
1011   pIn1->flags = MEM_Int;
1012   pcDest = (int)pIn1->u.i;
1013   pIn1->u.i = (int)(pOp - aOp);
1014   REGISTER_TRACE(pOp->p1, pIn1);
1015   pOp = &aOp[pcDest];
1016   break;
1017 }
1018 
1019 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1020 ** Synopsis: if r[P3]=null halt
1021 **
1022 ** Check the value in register P3.  If it is NULL then Halt using
1023 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1024 ** value in register P3 is not NULL, then this routine is a no-op.
1025 ** The P5 parameter should be 1.
1026 */
1027 case OP_HaltIfNull: {      /* in3 */
1028   pIn3 = &aMem[pOp->p3];
1029 #ifdef SQLITE_DEBUG
1030   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1031 #endif
1032   if( (pIn3->flags & MEM_Null)==0 ) break;
1033   /* Fall through into OP_Halt */
1034 }
1035 
1036 /* Opcode:  Halt P1 P2 * P4 P5
1037 **
1038 ** Exit immediately.  All open cursors, etc are closed
1039 ** automatically.
1040 **
1041 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1042 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1043 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1044 ** whether or not to rollback the current transaction.  Do not rollback
1045 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1046 ** then back out all changes that have occurred during this execution of the
1047 ** VDBE, but do not rollback the transaction.
1048 **
1049 ** If P4 is not null then it is an error message string.
1050 **
1051 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1052 **
1053 **    0:  (no change)
1054 **    1:  NOT NULL contraint failed: P4
1055 **    2:  UNIQUE constraint failed: P4
1056 **    3:  CHECK constraint failed: P4
1057 **    4:  FOREIGN KEY constraint failed: P4
1058 **
1059 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1060 ** omitted.
1061 **
1062 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1063 ** every program.  So a jump past the last instruction of the program
1064 ** is the same as executing Halt.
1065 */
1066 case OP_Halt: {
1067   VdbeFrame *pFrame;
1068   int pcx;
1069 
1070   pcx = (int)(pOp - aOp);
1071 #ifdef SQLITE_DEBUG
1072   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1073 #endif
1074   if( pOp->p1==SQLITE_OK && p->pFrame ){
1075     /* Halt the sub-program. Return control to the parent frame. */
1076     pFrame = p->pFrame;
1077     p->pFrame = pFrame->pParent;
1078     p->nFrame--;
1079     sqlite3VdbeSetChanges(db, p->nChange);
1080     pcx = sqlite3VdbeFrameRestore(pFrame);
1081     if( pOp->p2==OE_Ignore ){
1082       /* Instruction pcx is the OP_Program that invoked the sub-program
1083       ** currently being halted. If the p2 instruction of this OP_Halt
1084       ** instruction is set to OE_Ignore, then the sub-program is throwing
1085       ** an IGNORE exception. In this case jump to the address specified
1086       ** as the p2 of the calling OP_Program.  */
1087       pcx = p->aOp[pcx].p2-1;
1088     }
1089     aOp = p->aOp;
1090     aMem = p->aMem;
1091     pOp = &aOp[pcx];
1092     break;
1093   }
1094   p->rc = pOp->p1;
1095   p->errorAction = (u8)pOp->p2;
1096   p->pc = pcx;
1097   assert( pOp->p5<=4 );
1098   if( p->rc ){
1099     if( pOp->p5 ){
1100       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1101                                              "FOREIGN KEY" };
1102       testcase( pOp->p5==1 );
1103       testcase( pOp->p5==2 );
1104       testcase( pOp->p5==3 );
1105       testcase( pOp->p5==4 );
1106       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1107       if( pOp->p4.z ){
1108         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1109       }
1110     }else{
1111       sqlite3VdbeError(p, "%s", pOp->p4.z);
1112     }
1113     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1114   }
1115   rc = sqlite3VdbeHalt(p);
1116   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1117   if( rc==SQLITE_BUSY ){
1118     p->rc = SQLITE_BUSY;
1119   }else{
1120     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1121     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1122     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1123   }
1124   goto vdbe_return;
1125 }
1126 
1127 /* Opcode: Integer P1 P2 * * *
1128 ** Synopsis: r[P2]=P1
1129 **
1130 ** The 32-bit integer value P1 is written into register P2.
1131 */
1132 case OP_Integer: {         /* out2 */
1133   pOut = out2Prerelease(p, pOp);
1134   pOut->u.i = pOp->p1;
1135   break;
1136 }
1137 
1138 /* Opcode: Int64 * P2 * P4 *
1139 ** Synopsis: r[P2]=P4
1140 **
1141 ** P4 is a pointer to a 64-bit integer value.
1142 ** Write that value into register P2.
1143 */
1144 case OP_Int64: {           /* out2 */
1145   pOut = out2Prerelease(p, pOp);
1146   assert( pOp->p4.pI64!=0 );
1147   pOut->u.i = *pOp->p4.pI64;
1148   break;
1149 }
1150 
1151 #ifndef SQLITE_OMIT_FLOATING_POINT
1152 /* Opcode: Real * P2 * P4 *
1153 ** Synopsis: r[P2]=P4
1154 **
1155 ** P4 is a pointer to a 64-bit floating point value.
1156 ** Write that value into register P2.
1157 */
1158 case OP_Real: {            /* same as TK_FLOAT, out2 */
1159   pOut = out2Prerelease(p, pOp);
1160   pOut->flags = MEM_Real;
1161   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1162   pOut->u.r = *pOp->p4.pReal;
1163   break;
1164 }
1165 #endif
1166 
1167 /* Opcode: String8 * P2 * P4 *
1168 ** Synopsis: r[P2]='P4'
1169 **
1170 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1171 ** into a String opcode before it is executed for the first time.  During
1172 ** this transformation, the length of string P4 is computed and stored
1173 ** as the P1 parameter.
1174 */
1175 case OP_String8: {         /* same as TK_STRING, out2 */
1176   assert( pOp->p4.z!=0 );
1177   pOut = out2Prerelease(p, pOp);
1178   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1179 
1180 #ifndef SQLITE_OMIT_UTF16
1181   if( encoding!=SQLITE_UTF8 ){
1182     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1183     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1184     if( rc ) goto too_big;
1185     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1186     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1187     assert( VdbeMemDynamic(pOut)==0 );
1188     pOut->szMalloc = 0;
1189     pOut->flags |= MEM_Static;
1190     if( pOp->p4type==P4_DYNAMIC ){
1191       sqlite3DbFree(db, pOp->p4.z);
1192     }
1193     pOp->p4type = P4_DYNAMIC;
1194     pOp->p4.z = pOut->z;
1195     pOp->p1 = pOut->n;
1196   }
1197 #endif
1198   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1199     goto too_big;
1200   }
1201   pOp->opcode = OP_String;
1202   assert( rc==SQLITE_OK );
1203   /* Fall through to the next case, OP_String */
1204 }
1205 
1206 /* Opcode: String P1 P2 P3 P4 P5
1207 ** Synopsis: r[P2]='P4' (len=P1)
1208 **
1209 ** The string value P4 of length P1 (bytes) is stored in register P2.
1210 **
1211 ** If P3 is not zero and the content of register P3 is equal to P5, then
1212 ** the datatype of the register P2 is converted to BLOB.  The content is
1213 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1214 ** of a string, as if it had been CAST.  In other words:
1215 **
1216 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1217 */
1218 case OP_String: {          /* out2 */
1219   assert( pOp->p4.z!=0 );
1220   pOut = out2Prerelease(p, pOp);
1221   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1222   pOut->z = pOp->p4.z;
1223   pOut->n = pOp->p1;
1224   pOut->enc = encoding;
1225   UPDATE_MAX_BLOBSIZE(pOut);
1226 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1227   if( pOp->p3>0 ){
1228     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1229     pIn3 = &aMem[pOp->p3];
1230     assert( pIn3->flags & MEM_Int );
1231     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1232   }
1233 #endif
1234   break;
1235 }
1236 
1237 /* Opcode: Null P1 P2 P3 * *
1238 ** Synopsis: r[P2..P3]=NULL
1239 **
1240 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1241 ** NULL into register P3 and every register in between P2 and P3.  If P3
1242 ** is less than P2 (typically P3 is zero) then only register P2 is
1243 ** set to NULL.
1244 **
1245 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1246 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1247 ** OP_Ne or OP_Eq.
1248 */
1249 case OP_Null: {           /* out2 */
1250   int cnt;
1251   u16 nullFlag;
1252   pOut = out2Prerelease(p, pOp);
1253   cnt = pOp->p3-pOp->p2;
1254   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1255   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1256   pOut->n = 0;
1257 #ifdef SQLITE_DEBUG
1258   pOut->uTemp = 0;
1259 #endif
1260   while( cnt>0 ){
1261     pOut++;
1262     memAboutToChange(p, pOut);
1263     sqlite3VdbeMemSetNull(pOut);
1264     pOut->flags = nullFlag;
1265     pOut->n = 0;
1266     cnt--;
1267   }
1268   break;
1269 }
1270 
1271 /* Opcode: SoftNull P1 * * * *
1272 ** Synopsis: r[P1]=NULL
1273 **
1274 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1275 ** instruction, but do not free any string or blob memory associated with
1276 ** the register, so that if the value was a string or blob that was
1277 ** previously copied using OP_SCopy, the copies will continue to be valid.
1278 */
1279 case OP_SoftNull: {
1280   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1281   pOut = &aMem[pOp->p1];
1282   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1283   break;
1284 }
1285 
1286 /* Opcode: Blob P1 P2 * P4 *
1287 ** Synopsis: r[P2]=P4 (len=P1)
1288 **
1289 ** P4 points to a blob of data P1 bytes long.  Store this
1290 ** blob in register P2.
1291 */
1292 case OP_Blob: {                /* out2 */
1293   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1294   pOut = out2Prerelease(p, pOp);
1295   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1296   pOut->enc = encoding;
1297   UPDATE_MAX_BLOBSIZE(pOut);
1298   break;
1299 }
1300 
1301 /* Opcode: Variable P1 P2 * P4 *
1302 ** Synopsis: r[P2]=parameter(P1,P4)
1303 **
1304 ** Transfer the values of bound parameter P1 into register P2
1305 **
1306 ** If the parameter is named, then its name appears in P4.
1307 ** The P4 value is used by sqlite3_bind_parameter_name().
1308 */
1309 case OP_Variable: {            /* out2 */
1310   Mem *pVar;       /* Value being transferred */
1311 
1312   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1313   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1314   pVar = &p->aVar[pOp->p1 - 1];
1315   if( sqlite3VdbeMemTooBig(pVar) ){
1316     goto too_big;
1317   }
1318   pOut = &aMem[pOp->p2];
1319   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1320   memcpy(pOut, pVar, MEMCELLSIZE);
1321   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1322   pOut->flags |= MEM_Static|MEM_FromBind;
1323   UPDATE_MAX_BLOBSIZE(pOut);
1324   break;
1325 }
1326 
1327 /* Opcode: Move P1 P2 P3 * *
1328 ** Synopsis: r[P2@P3]=r[P1@P3]
1329 **
1330 ** Move the P3 values in register P1..P1+P3-1 over into
1331 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1332 ** left holding a NULL.  It is an error for register ranges
1333 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1334 ** for P3 to be less than 1.
1335 */
1336 case OP_Move: {
1337   int n;           /* Number of registers left to copy */
1338   int p1;          /* Register to copy from */
1339   int p2;          /* Register to copy to */
1340 
1341   n = pOp->p3;
1342   p1 = pOp->p1;
1343   p2 = pOp->p2;
1344   assert( n>0 && p1>0 && p2>0 );
1345   assert( p1+n<=p2 || p2+n<=p1 );
1346 
1347   pIn1 = &aMem[p1];
1348   pOut = &aMem[p2];
1349   do{
1350     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1351     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1352     assert( memIsValid(pIn1) );
1353     memAboutToChange(p, pOut);
1354     sqlite3VdbeMemMove(pOut, pIn1);
1355 #ifdef SQLITE_DEBUG
1356     pIn1->pScopyFrom = 0;
1357     { int i;
1358       for(i=1; i<p->nMem; i++){
1359         if( aMem[i].pScopyFrom==pIn1 ){
1360           aMem[i].pScopyFrom = pOut;
1361         }
1362       }
1363     }
1364 #endif
1365     Deephemeralize(pOut);
1366     REGISTER_TRACE(p2++, pOut);
1367     pIn1++;
1368     pOut++;
1369   }while( --n );
1370   break;
1371 }
1372 
1373 /* Opcode: Copy P1 P2 P3 * *
1374 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1375 **
1376 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1377 **
1378 ** This instruction makes a deep copy of the value.  A duplicate
1379 ** is made of any string or blob constant.  See also OP_SCopy.
1380 */
1381 case OP_Copy: {
1382   int n;
1383 
1384   n = pOp->p3;
1385   pIn1 = &aMem[pOp->p1];
1386   pOut = &aMem[pOp->p2];
1387   assert( pOut!=pIn1 );
1388   while( 1 ){
1389     memAboutToChange(p, pOut);
1390     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1391     Deephemeralize(pOut);
1392 #ifdef SQLITE_DEBUG
1393     pOut->pScopyFrom = 0;
1394 #endif
1395     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1396     if( (n--)==0 ) break;
1397     pOut++;
1398     pIn1++;
1399   }
1400   break;
1401 }
1402 
1403 /* Opcode: SCopy P1 P2 * * *
1404 ** Synopsis: r[P2]=r[P1]
1405 **
1406 ** Make a shallow copy of register P1 into register P2.
1407 **
1408 ** This instruction makes a shallow copy of the value.  If the value
1409 ** is a string or blob, then the copy is only a pointer to the
1410 ** original and hence if the original changes so will the copy.
1411 ** Worse, if the original is deallocated, the copy becomes invalid.
1412 ** Thus the program must guarantee that the original will not change
1413 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1414 ** copy.
1415 */
1416 case OP_SCopy: {            /* out2 */
1417   pIn1 = &aMem[pOp->p1];
1418   pOut = &aMem[pOp->p2];
1419   assert( pOut!=pIn1 );
1420   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1421 #ifdef SQLITE_DEBUG
1422   pOut->pScopyFrom = pIn1;
1423   pOut->mScopyFlags = pIn1->flags;
1424 #endif
1425   break;
1426 }
1427 
1428 /* Opcode: IntCopy P1 P2 * * *
1429 ** Synopsis: r[P2]=r[P1]
1430 **
1431 ** Transfer the integer value held in register P1 into register P2.
1432 **
1433 ** This is an optimized version of SCopy that works only for integer
1434 ** values.
1435 */
1436 case OP_IntCopy: {            /* out2 */
1437   pIn1 = &aMem[pOp->p1];
1438   assert( (pIn1->flags & MEM_Int)!=0 );
1439   pOut = &aMem[pOp->p2];
1440   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1441   break;
1442 }
1443 
1444 /* Opcode: ResultRow P1 P2 * * *
1445 ** Synopsis: output=r[P1@P2]
1446 **
1447 ** The registers P1 through P1+P2-1 contain a single row of
1448 ** results. This opcode causes the sqlite3_step() call to terminate
1449 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1450 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1451 ** the result row.
1452 */
1453 case OP_ResultRow: {
1454   Mem *pMem;
1455   int i;
1456   assert( p->nResColumn==pOp->p2 );
1457   assert( pOp->p1>0 );
1458   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1459 
1460   /* If this statement has violated immediate foreign key constraints, do
1461   ** not return the number of rows modified. And do not RELEASE the statement
1462   ** transaction. It needs to be rolled back.  */
1463   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1464     assert( db->flags&SQLITE_CountRows );
1465     assert( p->usesStmtJournal );
1466     goto abort_due_to_error;
1467   }
1468 
1469   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1470   ** DML statements invoke this opcode to return the number of rows
1471   ** modified to the user. This is the only way that a VM that
1472   ** opens a statement transaction may invoke this opcode.
1473   **
1474   ** In case this is such a statement, close any statement transaction
1475   ** opened by this VM before returning control to the user. This is to
1476   ** ensure that statement-transactions are always nested, not overlapping.
1477   ** If the open statement-transaction is not closed here, then the user
1478   ** may step another VM that opens its own statement transaction. This
1479   ** may lead to overlapping statement transactions.
1480   **
1481   ** The statement transaction is never a top-level transaction.  Hence
1482   ** the RELEASE call below can never fail.
1483   */
1484   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1485   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1486   assert( rc==SQLITE_OK );
1487 
1488   /* Invalidate all ephemeral cursor row caches */
1489   p->cacheCtr = (p->cacheCtr + 2)|1;
1490 
1491   /* Make sure the results of the current row are \000 terminated
1492   ** and have an assigned type.  The results are de-ephemeralized as
1493   ** a side effect.
1494   */
1495   pMem = p->pResultSet = &aMem[pOp->p1];
1496   for(i=0; i<pOp->p2; i++){
1497     assert( memIsValid(&pMem[i]) );
1498     Deephemeralize(&pMem[i]);
1499     assert( (pMem[i].flags & MEM_Ephem)==0
1500             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1501     sqlite3VdbeMemNulTerminate(&pMem[i]);
1502     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1503 #ifdef SQLITE_DEBUG
1504     /* The registers in the result will not be used again when the
1505     ** prepared statement restarts.  This is because sqlite3_column()
1506     ** APIs might have caused type conversions of made other changes to
1507     ** the register values.  Therefore, we can go ahead and break any
1508     ** OP_SCopy dependencies. */
1509     pMem[i].pScopyFrom = 0;
1510 #endif
1511   }
1512   if( db->mallocFailed ) goto no_mem;
1513 
1514   if( db->mTrace & SQLITE_TRACE_ROW ){
1515     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1516   }
1517 
1518 
1519   /* Return SQLITE_ROW
1520   */
1521   p->pc = (int)(pOp - aOp) + 1;
1522   rc = SQLITE_ROW;
1523   goto vdbe_return;
1524 }
1525 
1526 /* Opcode: Concat P1 P2 P3 * *
1527 ** Synopsis: r[P3]=r[P2]+r[P1]
1528 **
1529 ** Add the text in register P1 onto the end of the text in
1530 ** register P2 and store the result in register P3.
1531 ** If either the P1 or P2 text are NULL then store NULL in P3.
1532 **
1533 **   P3 = P2 || P1
1534 **
1535 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1536 ** if P3 is the same register as P2, the implementation is able
1537 ** to avoid a memcpy().
1538 */
1539 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1540   i64 nByte;          /* Total size of the output string or blob */
1541   u16 flags1;         /* Initial flags for P1 */
1542   u16 flags2;         /* Initial flags for P2 */
1543 
1544   pIn1 = &aMem[pOp->p1];
1545   pIn2 = &aMem[pOp->p2];
1546   pOut = &aMem[pOp->p3];
1547   testcase( pIn1==pIn2 );
1548   testcase( pOut==pIn2 );
1549   assert( pIn1!=pOut );
1550   flags1 = pIn1->flags;
1551   testcase( flags1 & MEM_Null );
1552   testcase( pIn2->flags & MEM_Null );
1553   if( (flags1 | pIn2->flags) & MEM_Null ){
1554     sqlite3VdbeMemSetNull(pOut);
1555     break;
1556   }
1557   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1558     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1559     flags1 = pIn1->flags & ~MEM_Str;
1560   }else if( (flags1 & MEM_Zero)!=0 ){
1561     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1562     flags1 = pIn1->flags & ~MEM_Str;
1563   }
1564   flags2 = pIn2->flags;
1565   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1566     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1567     flags2 = pIn2->flags & ~MEM_Str;
1568   }else if( (flags2 & MEM_Zero)!=0 ){
1569     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1570     flags2 = pIn2->flags & ~MEM_Str;
1571   }
1572   nByte = pIn1->n + pIn2->n;
1573   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1574     goto too_big;
1575   }
1576   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1577     goto no_mem;
1578   }
1579   MemSetTypeFlag(pOut, MEM_Str);
1580   if( pOut!=pIn2 ){
1581     memcpy(pOut->z, pIn2->z, pIn2->n);
1582     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1583     pIn2->flags = flags2;
1584   }
1585   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1586   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1587   pIn1->flags = flags1;
1588   pOut->z[nByte]=0;
1589   pOut->z[nByte+1] = 0;
1590   pOut->z[nByte+2] = 0;
1591   pOut->flags |= MEM_Term;
1592   pOut->n = (int)nByte;
1593   pOut->enc = encoding;
1594   UPDATE_MAX_BLOBSIZE(pOut);
1595   break;
1596 }
1597 
1598 /* Opcode: Add P1 P2 P3 * *
1599 ** Synopsis: r[P3]=r[P1]+r[P2]
1600 **
1601 ** Add the value in register P1 to the value in register P2
1602 ** and store the result in register P3.
1603 ** If either input is NULL, the result is NULL.
1604 */
1605 /* Opcode: Multiply P1 P2 P3 * *
1606 ** Synopsis: r[P3]=r[P1]*r[P2]
1607 **
1608 **
1609 ** Multiply the value in register P1 by the value in register P2
1610 ** and store the result in register P3.
1611 ** If either input is NULL, the result is NULL.
1612 */
1613 /* Opcode: Subtract P1 P2 P3 * *
1614 ** Synopsis: r[P3]=r[P2]-r[P1]
1615 **
1616 ** Subtract the value in register P1 from the value in register P2
1617 ** and store the result in register P3.
1618 ** If either input is NULL, the result is NULL.
1619 */
1620 /* Opcode: Divide P1 P2 P3 * *
1621 ** Synopsis: r[P3]=r[P2]/r[P1]
1622 **
1623 ** Divide the value in register P1 by the value in register P2
1624 ** and store the result in register P3 (P3=P2/P1). If the value in
1625 ** register P1 is zero, then the result is NULL. If either input is
1626 ** NULL, the result is NULL.
1627 */
1628 /* Opcode: Remainder P1 P2 P3 * *
1629 ** Synopsis: r[P3]=r[P2]%r[P1]
1630 **
1631 ** Compute the remainder after integer register P2 is divided by
1632 ** register P1 and store the result in register P3.
1633 ** If the value in register P1 is zero the result is NULL.
1634 ** If either operand is NULL, the result is NULL.
1635 */
1636 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1637 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1638 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1639 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1640 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1641   u16 flags;      /* Combined MEM_* flags from both inputs */
1642   u16 type1;      /* Numeric type of left operand */
1643   u16 type2;      /* Numeric type of right operand */
1644   i64 iA;         /* Integer value of left operand */
1645   i64 iB;         /* Integer value of right operand */
1646   double rA;      /* Real value of left operand */
1647   double rB;      /* Real value of right operand */
1648 
1649   pIn1 = &aMem[pOp->p1];
1650   type1 = numericType(pIn1);
1651   pIn2 = &aMem[pOp->p2];
1652   type2 = numericType(pIn2);
1653   pOut = &aMem[pOp->p3];
1654   flags = pIn1->flags | pIn2->flags;
1655   if( (type1 & type2 & MEM_Int)!=0 ){
1656     iA = pIn1->u.i;
1657     iB = pIn2->u.i;
1658     switch( pOp->opcode ){
1659       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1660       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1661       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1662       case OP_Divide: {
1663         if( iA==0 ) goto arithmetic_result_is_null;
1664         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1665         iB /= iA;
1666         break;
1667       }
1668       default: {
1669         if( iA==0 ) goto arithmetic_result_is_null;
1670         if( iA==-1 ) iA = 1;
1671         iB %= iA;
1672         break;
1673       }
1674     }
1675     pOut->u.i = iB;
1676     MemSetTypeFlag(pOut, MEM_Int);
1677   }else if( (flags & MEM_Null)!=0 ){
1678     goto arithmetic_result_is_null;
1679   }else{
1680 fp_math:
1681     rA = sqlite3VdbeRealValue(pIn1);
1682     rB = sqlite3VdbeRealValue(pIn2);
1683     switch( pOp->opcode ){
1684       case OP_Add:         rB += rA;       break;
1685       case OP_Subtract:    rB -= rA;       break;
1686       case OP_Multiply:    rB *= rA;       break;
1687       case OP_Divide: {
1688         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1689         if( rA==(double)0 ) goto arithmetic_result_is_null;
1690         rB /= rA;
1691         break;
1692       }
1693       default: {
1694         iA = sqlite3VdbeIntValue(pIn1);
1695         iB = sqlite3VdbeIntValue(pIn2);
1696         if( iA==0 ) goto arithmetic_result_is_null;
1697         if( iA==-1 ) iA = 1;
1698         rB = (double)(iB % iA);
1699         break;
1700       }
1701     }
1702 #ifdef SQLITE_OMIT_FLOATING_POINT
1703     pOut->u.i = rB;
1704     MemSetTypeFlag(pOut, MEM_Int);
1705 #else
1706     if( sqlite3IsNaN(rB) ){
1707       goto arithmetic_result_is_null;
1708     }
1709     pOut->u.r = rB;
1710     MemSetTypeFlag(pOut, MEM_Real);
1711 #endif
1712   }
1713   break;
1714 
1715 arithmetic_result_is_null:
1716   sqlite3VdbeMemSetNull(pOut);
1717   break;
1718 }
1719 
1720 /* Opcode: CollSeq P1 * * P4
1721 **
1722 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1723 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1724 ** be returned. This is used by the built-in min(), max() and nullif()
1725 ** functions.
1726 **
1727 ** If P1 is not zero, then it is a register that a subsequent min() or
1728 ** max() aggregate will set to 1 if the current row is not the minimum or
1729 ** maximum.  The P1 register is initialized to 0 by this instruction.
1730 **
1731 ** The interface used by the implementation of the aforementioned functions
1732 ** to retrieve the collation sequence set by this opcode is not available
1733 ** publicly.  Only built-in functions have access to this feature.
1734 */
1735 case OP_CollSeq: {
1736   assert( pOp->p4type==P4_COLLSEQ );
1737   if( pOp->p1 ){
1738     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1739   }
1740   break;
1741 }
1742 
1743 /* Opcode: BitAnd P1 P2 P3 * *
1744 ** Synopsis: r[P3]=r[P1]&r[P2]
1745 **
1746 ** Take the bit-wise AND of the values in register P1 and P2 and
1747 ** store the result in register P3.
1748 ** If either input is NULL, the result is NULL.
1749 */
1750 /* Opcode: BitOr P1 P2 P3 * *
1751 ** Synopsis: r[P3]=r[P1]|r[P2]
1752 **
1753 ** Take the bit-wise OR of the values in register P1 and P2 and
1754 ** store the result in register P3.
1755 ** If either input is NULL, the result is NULL.
1756 */
1757 /* Opcode: ShiftLeft P1 P2 P3 * *
1758 ** Synopsis: r[P3]=r[P2]<<r[P1]
1759 **
1760 ** Shift the integer value in register P2 to the left by the
1761 ** number of bits specified by the integer in register P1.
1762 ** Store the result in register P3.
1763 ** If either input is NULL, the result is NULL.
1764 */
1765 /* Opcode: ShiftRight P1 P2 P3 * *
1766 ** Synopsis: r[P3]=r[P2]>>r[P1]
1767 **
1768 ** Shift the integer value in register P2 to the right by the
1769 ** number of bits specified by the integer in register P1.
1770 ** Store the result in register P3.
1771 ** If either input is NULL, the result is NULL.
1772 */
1773 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1774 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1775 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1776 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1777   i64 iA;
1778   u64 uA;
1779   i64 iB;
1780   u8 op;
1781 
1782   pIn1 = &aMem[pOp->p1];
1783   pIn2 = &aMem[pOp->p2];
1784   pOut = &aMem[pOp->p3];
1785   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1786     sqlite3VdbeMemSetNull(pOut);
1787     break;
1788   }
1789   iA = sqlite3VdbeIntValue(pIn2);
1790   iB = sqlite3VdbeIntValue(pIn1);
1791   op = pOp->opcode;
1792   if( op==OP_BitAnd ){
1793     iA &= iB;
1794   }else if( op==OP_BitOr ){
1795     iA |= iB;
1796   }else if( iB!=0 ){
1797     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1798 
1799     /* If shifting by a negative amount, shift in the other direction */
1800     if( iB<0 ){
1801       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1802       op = 2*OP_ShiftLeft + 1 - op;
1803       iB = iB>(-64) ? -iB : 64;
1804     }
1805 
1806     if( iB>=64 ){
1807       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1808     }else{
1809       memcpy(&uA, &iA, sizeof(uA));
1810       if( op==OP_ShiftLeft ){
1811         uA <<= iB;
1812       }else{
1813         uA >>= iB;
1814         /* Sign-extend on a right shift of a negative number */
1815         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1816       }
1817       memcpy(&iA, &uA, sizeof(iA));
1818     }
1819   }
1820   pOut->u.i = iA;
1821   MemSetTypeFlag(pOut, MEM_Int);
1822   break;
1823 }
1824 
1825 /* Opcode: AddImm  P1 P2 * * *
1826 ** Synopsis: r[P1]=r[P1]+P2
1827 **
1828 ** Add the constant P2 to the value in register P1.
1829 ** The result is always an integer.
1830 **
1831 ** To force any register to be an integer, just add 0.
1832 */
1833 case OP_AddImm: {            /* in1 */
1834   pIn1 = &aMem[pOp->p1];
1835   memAboutToChange(p, pIn1);
1836   sqlite3VdbeMemIntegerify(pIn1);
1837   pIn1->u.i += pOp->p2;
1838   break;
1839 }
1840 
1841 /* Opcode: MustBeInt P1 P2 * * *
1842 **
1843 ** Force the value in register P1 to be an integer.  If the value
1844 ** in P1 is not an integer and cannot be converted into an integer
1845 ** without data loss, then jump immediately to P2, or if P2==0
1846 ** raise an SQLITE_MISMATCH exception.
1847 */
1848 case OP_MustBeInt: {            /* jump, in1 */
1849   pIn1 = &aMem[pOp->p1];
1850   if( (pIn1->flags & MEM_Int)==0 ){
1851     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1852     if( (pIn1->flags & MEM_Int)==0 ){
1853       VdbeBranchTaken(1, 2);
1854       if( pOp->p2==0 ){
1855         rc = SQLITE_MISMATCH;
1856         goto abort_due_to_error;
1857       }else{
1858         goto jump_to_p2;
1859       }
1860     }
1861   }
1862   VdbeBranchTaken(0, 2);
1863   MemSetTypeFlag(pIn1, MEM_Int);
1864   break;
1865 }
1866 
1867 #ifndef SQLITE_OMIT_FLOATING_POINT
1868 /* Opcode: RealAffinity P1 * * * *
1869 **
1870 ** If register P1 holds an integer convert it to a real value.
1871 **
1872 ** This opcode is used when extracting information from a column that
1873 ** has REAL affinity.  Such column values may still be stored as
1874 ** integers, for space efficiency, but after extraction we want them
1875 ** to have only a real value.
1876 */
1877 case OP_RealAffinity: {                  /* in1 */
1878   pIn1 = &aMem[pOp->p1];
1879   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1880     testcase( pIn1->flags & MEM_Int );
1881     testcase( pIn1->flags & MEM_IntReal );
1882     sqlite3VdbeMemRealify(pIn1);
1883     REGISTER_TRACE(pOp->p1, pIn1);
1884   }
1885   break;
1886 }
1887 #endif
1888 
1889 #ifndef SQLITE_OMIT_CAST
1890 /* Opcode: Cast P1 P2 * * *
1891 ** Synopsis: affinity(r[P1])
1892 **
1893 ** Force the value in register P1 to be the type defined by P2.
1894 **
1895 ** <ul>
1896 ** <li> P2=='A' &rarr; BLOB
1897 ** <li> P2=='B' &rarr; TEXT
1898 ** <li> P2=='C' &rarr; NUMERIC
1899 ** <li> P2=='D' &rarr; INTEGER
1900 ** <li> P2=='E' &rarr; REAL
1901 ** </ul>
1902 **
1903 ** A NULL value is not changed by this routine.  It remains NULL.
1904 */
1905 case OP_Cast: {                  /* in1 */
1906   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1907   testcase( pOp->p2==SQLITE_AFF_TEXT );
1908   testcase( pOp->p2==SQLITE_AFF_BLOB );
1909   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1910   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1911   testcase( pOp->p2==SQLITE_AFF_REAL );
1912   pIn1 = &aMem[pOp->p1];
1913   memAboutToChange(p, pIn1);
1914   rc = ExpandBlob(pIn1);
1915   if( rc ) goto abort_due_to_error;
1916   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1917   if( rc ) goto abort_due_to_error;
1918   UPDATE_MAX_BLOBSIZE(pIn1);
1919   REGISTER_TRACE(pOp->p1, pIn1);
1920   break;
1921 }
1922 #endif /* SQLITE_OMIT_CAST */
1923 
1924 /* Opcode: Eq P1 P2 P3 P4 P5
1925 ** Synopsis: IF r[P3]==r[P1]
1926 **
1927 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1928 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1929 ** store the result of comparison in register P2.
1930 **
1931 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1932 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1933 ** to coerce both inputs according to this affinity before the
1934 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1935 ** affinity is used. Note that the affinity conversions are stored
1936 ** back into the input registers P1 and P3.  So this opcode can cause
1937 ** persistent changes to registers P1 and P3.
1938 **
1939 ** Once any conversions have taken place, and neither value is NULL,
1940 ** the values are compared. If both values are blobs then memcmp() is
1941 ** used to determine the results of the comparison.  If both values
1942 ** are text, then the appropriate collating function specified in
1943 ** P4 is used to do the comparison.  If P4 is not specified then
1944 ** memcmp() is used to compare text string.  If both values are
1945 ** numeric, then a numeric comparison is used. If the two values
1946 ** are of different types, then numbers are considered less than
1947 ** strings and strings are considered less than blobs.
1948 **
1949 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1950 ** true or false and is never NULL.  If both operands are NULL then the result
1951 ** of comparison is true.  If either operand is NULL then the result is false.
1952 ** If neither operand is NULL the result is the same as it would be if
1953 ** the SQLITE_NULLEQ flag were omitted from P5.
1954 **
1955 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1956 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1957 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1958 */
1959 /* Opcode: Ne P1 P2 P3 P4 P5
1960 ** Synopsis: IF r[P3]!=r[P1]
1961 **
1962 ** This works just like the Eq opcode except that the jump is taken if
1963 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1964 ** additional information.
1965 **
1966 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1967 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1968 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1969 */
1970 /* Opcode: Lt P1 P2 P3 P4 P5
1971 ** Synopsis: IF r[P3]<r[P1]
1972 **
1973 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1974 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1975 ** the result of comparison (0 or 1 or NULL) into register P2.
1976 **
1977 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1978 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1979 ** bit is clear then fall through if either operand is NULL.
1980 **
1981 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1982 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1983 ** to coerce both inputs according to this affinity before the
1984 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1985 ** affinity is used. Note that the affinity conversions are stored
1986 ** back into the input registers P1 and P3.  So this opcode can cause
1987 ** persistent changes to registers P1 and P3.
1988 **
1989 ** Once any conversions have taken place, and neither value is NULL,
1990 ** the values are compared. If both values are blobs then memcmp() is
1991 ** used to determine the results of the comparison.  If both values
1992 ** are text, then the appropriate collating function specified in
1993 ** P4 is  used to do the comparison.  If P4 is not specified then
1994 ** memcmp() is used to compare text string.  If both values are
1995 ** numeric, then a numeric comparison is used. If the two values
1996 ** are of different types, then numbers are considered less than
1997 ** strings and strings are considered less than blobs.
1998 */
1999 /* Opcode: Le P1 P2 P3 P4 P5
2000 ** Synopsis: IF r[P3]<=r[P1]
2001 **
2002 ** This works just like the Lt opcode except that the jump is taken if
2003 ** the content of register P3 is less than or equal to the content of
2004 ** register P1.  See the Lt opcode for additional information.
2005 */
2006 /* Opcode: Gt P1 P2 P3 P4 P5
2007 ** Synopsis: IF r[P3]>r[P1]
2008 **
2009 ** This works just like the Lt opcode except that the jump is taken if
2010 ** the content of register P3 is greater than the content of
2011 ** register P1.  See the Lt opcode for additional information.
2012 */
2013 /* Opcode: Ge P1 P2 P3 P4 P5
2014 ** Synopsis: IF r[P3]>=r[P1]
2015 **
2016 ** This works just like the Lt opcode except that the jump is taken if
2017 ** the content of register P3 is greater than or equal to the content of
2018 ** register P1.  See the Lt opcode for additional information.
2019 */
2020 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2021 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2022 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2023 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2024 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2025 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2026   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2027   char affinity;      /* Affinity to use for comparison */
2028   u16 flags1;         /* Copy of initial value of pIn1->flags */
2029   u16 flags3;         /* Copy of initial value of pIn3->flags */
2030 
2031   pIn1 = &aMem[pOp->p1];
2032   pIn3 = &aMem[pOp->p3];
2033   flags1 = pIn1->flags;
2034   flags3 = pIn3->flags;
2035   if( (flags1 | flags3)&MEM_Null ){
2036     /* One or both operands are NULL */
2037     if( pOp->p5 & SQLITE_NULLEQ ){
2038       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2039       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2040       ** or not both operands are null.
2041       */
2042       assert( (flags1 & MEM_Cleared)==0 );
2043       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2044       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2045       if( (flags1&flags3&MEM_Null)!=0
2046        && (flags3&MEM_Cleared)==0
2047       ){
2048         res = 0;  /* Operands are equal */
2049       }else{
2050         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2051       }
2052     }else{
2053       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2054       ** then the result is always NULL.
2055       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2056       */
2057       if( pOp->p5 & SQLITE_STOREP2 ){
2058         pOut = &aMem[pOp->p2];
2059         iCompare = 1;    /* Operands are not equal */
2060         memAboutToChange(p, pOut);
2061         MemSetTypeFlag(pOut, MEM_Null);
2062         REGISTER_TRACE(pOp->p2, pOut);
2063       }else{
2064         VdbeBranchTaken(2,3);
2065         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2066           goto jump_to_p2;
2067         }
2068       }
2069       break;
2070     }
2071   }else{
2072     /* Neither operand is NULL.  Do a comparison. */
2073     affinity = pOp->p5 & SQLITE_AFF_MASK;
2074     if( affinity>=SQLITE_AFF_NUMERIC ){
2075       if( (flags1 | flags3)&MEM_Str ){
2076         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2077           applyNumericAffinity(pIn1,0);
2078           testcase( flags3!=pIn3->flags );
2079           flags3 = pIn3->flags;
2080         }
2081         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2082           applyNumericAffinity(pIn3,0);
2083         }
2084       }
2085       /* Handle the common case of integer comparison here, as an
2086       ** optimization, to avoid a call to sqlite3MemCompare() */
2087       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2088         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2089         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2090         res = 0;
2091         goto compare_op;
2092       }
2093     }else if( affinity==SQLITE_AFF_TEXT ){
2094       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2095         testcase( pIn1->flags & MEM_Int );
2096         testcase( pIn1->flags & MEM_Real );
2097         testcase( pIn1->flags & MEM_IntReal );
2098         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2099         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2100         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2101         if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2102       }
2103       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2104         testcase( pIn3->flags & MEM_Int );
2105         testcase( pIn3->flags & MEM_Real );
2106         testcase( pIn3->flags & MEM_IntReal );
2107         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2108         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2109         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2110       }
2111     }
2112     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2113     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2114   }
2115 compare_op:
2116   /* At this point, res is negative, zero, or positive if reg[P1] is
2117   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2118   ** the answer to this operator in res2, depending on what the comparison
2119   ** operator actually is.  The next block of code depends on the fact
2120   ** that the 6 comparison operators are consecutive integers in this
2121   ** order:  NE, EQ, GT, LE, LT, GE */
2122   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2123   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2124   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2125     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2126     res2 = aLTb[pOp->opcode - OP_Ne];
2127   }else if( res==0 ){
2128     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2129     res2 = aEQb[pOp->opcode - OP_Ne];
2130   }else{
2131     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2132     res2 = aGTb[pOp->opcode - OP_Ne];
2133   }
2134 
2135   /* Undo any changes made by applyAffinity() to the input registers. */
2136   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2137   pIn3->flags = flags3;
2138   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2139   pIn1->flags = flags1;
2140 
2141   if( pOp->p5 & SQLITE_STOREP2 ){
2142     pOut = &aMem[pOp->p2];
2143     iCompare = res;
2144     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2145       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2146       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2147       ** is only used in contexts where either:
2148       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2149       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2150       ** Therefore it is not necessary to check the content of r[P2] for
2151       ** NULL. */
2152       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2153       assert( res2==0 || res2==1 );
2154       testcase( res2==0 && pOp->opcode==OP_Eq );
2155       testcase( res2==1 && pOp->opcode==OP_Eq );
2156       testcase( res2==0 && pOp->opcode==OP_Ne );
2157       testcase( res2==1 && pOp->opcode==OP_Ne );
2158       if( (pOp->opcode==OP_Eq)==res2 ) break;
2159     }
2160     memAboutToChange(p, pOut);
2161     MemSetTypeFlag(pOut, MEM_Int);
2162     pOut->u.i = res2;
2163     REGISTER_TRACE(pOp->p2, pOut);
2164   }else{
2165     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2166     if( res2 ){
2167       goto jump_to_p2;
2168     }
2169   }
2170   break;
2171 }
2172 
2173 /* Opcode: ElseNotEq * P2 * * *
2174 **
2175 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2176 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2177 ** opcodes are allowed to occur between this instruction and the previous
2178 ** OP_Lt or OP_Gt.  Furthermore, the prior OP_Lt or OP_Gt must have the
2179 ** SQLITE_STOREP2 bit set in the P5 field.
2180 **
2181 ** If result of an OP_Eq comparison on the same two operands as the
2182 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2183 ** jump to P2.  If the result of an OP_Eq comparison on the two previous
2184 ** operands would have been true (1), then fall through.
2185 */
2186 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2187 
2188 #ifdef SQLITE_DEBUG
2189   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2190   ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2191   ** OP_ReleaseReg opcodes */
2192   int iAddr;
2193   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2194     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2195     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2196     assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2197     break;
2198   }
2199 #endif /* SQLITE_DEBUG */
2200   VdbeBranchTaken(iCompare!=0, 2);
2201   if( iCompare!=0 ) goto jump_to_p2;
2202   break;
2203 }
2204 
2205 
2206 /* Opcode: Permutation * * * P4 *
2207 **
2208 ** Set the permutation used by the OP_Compare operator in the next
2209 ** instruction.  The permutation is stored in the P4 operand.
2210 **
2211 ** The permutation is only valid until the next OP_Compare that has
2212 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2213 ** occur immediately prior to the OP_Compare.
2214 **
2215 ** The first integer in the P4 integer array is the length of the array
2216 ** and does not become part of the permutation.
2217 */
2218 case OP_Permutation: {
2219   assert( pOp->p4type==P4_INTARRAY );
2220   assert( pOp->p4.ai );
2221   assert( pOp[1].opcode==OP_Compare );
2222   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2223   break;
2224 }
2225 
2226 /* Opcode: Compare P1 P2 P3 P4 P5
2227 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2228 **
2229 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2230 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2231 ** the comparison for use by the next OP_Jump instruct.
2232 **
2233 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2234 ** determined by the most recent OP_Permutation operator.  If the
2235 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2236 ** order.
2237 **
2238 ** P4 is a KeyInfo structure that defines collating sequences and sort
2239 ** orders for the comparison.  The permutation applies to registers
2240 ** only.  The KeyInfo elements are used sequentially.
2241 **
2242 ** The comparison is a sort comparison, so NULLs compare equal,
2243 ** NULLs are less than numbers, numbers are less than strings,
2244 ** and strings are less than blobs.
2245 */
2246 case OP_Compare: {
2247   int n;
2248   int i;
2249   int p1;
2250   int p2;
2251   const KeyInfo *pKeyInfo;
2252   int idx;
2253   CollSeq *pColl;    /* Collating sequence to use on this term */
2254   int bRev;          /* True for DESCENDING sort order */
2255   int *aPermute;     /* The permutation */
2256 
2257   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2258     aPermute = 0;
2259   }else{
2260     assert( pOp>aOp );
2261     assert( pOp[-1].opcode==OP_Permutation );
2262     assert( pOp[-1].p4type==P4_INTARRAY );
2263     aPermute = pOp[-1].p4.ai + 1;
2264     assert( aPermute!=0 );
2265   }
2266   n = pOp->p3;
2267   pKeyInfo = pOp->p4.pKeyInfo;
2268   assert( n>0 );
2269   assert( pKeyInfo!=0 );
2270   p1 = pOp->p1;
2271   p2 = pOp->p2;
2272 #ifdef SQLITE_DEBUG
2273   if( aPermute ){
2274     int k, mx = 0;
2275     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2276     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2277     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2278   }else{
2279     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2280     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2281   }
2282 #endif /* SQLITE_DEBUG */
2283   for(i=0; i<n; i++){
2284     idx = aPermute ? aPermute[i] : i;
2285     assert( memIsValid(&aMem[p1+idx]) );
2286     assert( memIsValid(&aMem[p2+idx]) );
2287     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2288     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2289     assert( i<pKeyInfo->nKeyField );
2290     pColl = pKeyInfo->aColl[i];
2291     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2292     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2293     if( iCompare ){
2294       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2295        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2296       ){
2297         iCompare = -iCompare;
2298       }
2299       if( bRev ) iCompare = -iCompare;
2300       break;
2301     }
2302   }
2303   break;
2304 }
2305 
2306 /* Opcode: Jump P1 P2 P3 * *
2307 **
2308 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2309 ** in the most recent OP_Compare instruction the P1 vector was less than
2310 ** equal to, or greater than the P2 vector, respectively.
2311 */
2312 case OP_Jump: {             /* jump */
2313   if( iCompare<0 ){
2314     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2315   }else if( iCompare==0 ){
2316     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2317   }else{
2318     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2319   }
2320   break;
2321 }
2322 
2323 /* Opcode: And P1 P2 P3 * *
2324 ** Synopsis: r[P3]=(r[P1] && r[P2])
2325 **
2326 ** Take the logical AND of the values in registers P1 and P2 and
2327 ** write the result into register P3.
2328 **
2329 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2330 ** the other input is NULL.  A NULL and true or two NULLs give
2331 ** a NULL output.
2332 */
2333 /* Opcode: Or P1 P2 P3 * *
2334 ** Synopsis: r[P3]=(r[P1] || r[P2])
2335 **
2336 ** Take the logical OR of the values in register P1 and P2 and
2337 ** store the answer in register P3.
2338 **
2339 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2340 ** even if the other input is NULL.  A NULL and false or two NULLs
2341 ** give a NULL output.
2342 */
2343 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2344 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2345   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2346   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2347 
2348   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2349   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2350   if( pOp->opcode==OP_And ){
2351     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2352     v1 = and_logic[v1*3+v2];
2353   }else{
2354     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2355     v1 = or_logic[v1*3+v2];
2356   }
2357   pOut = &aMem[pOp->p3];
2358   if( v1==2 ){
2359     MemSetTypeFlag(pOut, MEM_Null);
2360   }else{
2361     pOut->u.i = v1;
2362     MemSetTypeFlag(pOut, MEM_Int);
2363   }
2364   break;
2365 }
2366 
2367 /* Opcode: IsTrue P1 P2 P3 P4 *
2368 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2369 **
2370 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2371 ** IS NOT FALSE operators.
2372 **
2373 ** Interpret the value in register P1 as a boolean value.  Store that
2374 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2375 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2376 ** is 1.
2377 **
2378 ** The logic is summarized like this:
2379 **
2380 ** <ul>
2381 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2382 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2383 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2384 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2385 ** </ul>
2386 */
2387 case OP_IsTrue: {               /* in1, out2 */
2388   assert( pOp->p4type==P4_INT32 );
2389   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2390   assert( pOp->p3==0 || pOp->p3==1 );
2391   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2392       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2393   break;
2394 }
2395 
2396 /* Opcode: Not P1 P2 * * *
2397 ** Synopsis: r[P2]= !r[P1]
2398 **
2399 ** Interpret the value in register P1 as a boolean value.  Store the
2400 ** boolean complement in register P2.  If the value in register P1 is
2401 ** NULL, then a NULL is stored in P2.
2402 */
2403 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2404   pIn1 = &aMem[pOp->p1];
2405   pOut = &aMem[pOp->p2];
2406   if( (pIn1->flags & MEM_Null)==0 ){
2407     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2408   }else{
2409     sqlite3VdbeMemSetNull(pOut);
2410   }
2411   break;
2412 }
2413 
2414 /* Opcode: BitNot P1 P2 * * *
2415 ** Synopsis: r[P2]= ~r[P1]
2416 **
2417 ** Interpret the content of register P1 as an integer.  Store the
2418 ** ones-complement of the P1 value into register P2.  If P1 holds
2419 ** a NULL then store a NULL in P2.
2420 */
2421 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2422   pIn1 = &aMem[pOp->p1];
2423   pOut = &aMem[pOp->p2];
2424   sqlite3VdbeMemSetNull(pOut);
2425   if( (pIn1->flags & MEM_Null)==0 ){
2426     pOut->flags = MEM_Int;
2427     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2428   }
2429   break;
2430 }
2431 
2432 /* Opcode: Once P1 P2 * * *
2433 **
2434 ** Fall through to the next instruction the first time this opcode is
2435 ** encountered on each invocation of the byte-code program.  Jump to P2
2436 ** on the second and all subsequent encounters during the same invocation.
2437 **
2438 ** Top-level programs determine first invocation by comparing the P1
2439 ** operand against the P1 operand on the OP_Init opcode at the beginning
2440 ** of the program.  If the P1 values differ, then fall through and make
2441 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2442 ** the same then take the jump.
2443 **
2444 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2445 ** whether or not the jump should be taken.  The bitmask is necessary
2446 ** because the self-altering code trick does not work for recursive
2447 ** triggers.
2448 */
2449 case OP_Once: {             /* jump */
2450   u32 iAddr;                /* Address of this instruction */
2451   assert( p->aOp[0].opcode==OP_Init );
2452   if( p->pFrame ){
2453     iAddr = (int)(pOp - p->aOp);
2454     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2455       VdbeBranchTaken(1, 2);
2456       goto jump_to_p2;
2457     }
2458     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2459   }else{
2460     if( p->aOp[0].p1==pOp->p1 ){
2461       VdbeBranchTaken(1, 2);
2462       goto jump_to_p2;
2463     }
2464   }
2465   VdbeBranchTaken(0, 2);
2466   pOp->p1 = p->aOp[0].p1;
2467   break;
2468 }
2469 
2470 /* Opcode: If P1 P2 P3 * *
2471 **
2472 ** Jump to P2 if the value in register P1 is true.  The value
2473 ** is considered true if it is numeric and non-zero.  If the value
2474 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2475 */
2476 case OP_If:  {               /* jump, in1 */
2477   int c;
2478   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2479   VdbeBranchTaken(c!=0, 2);
2480   if( c ) goto jump_to_p2;
2481   break;
2482 }
2483 
2484 /* Opcode: IfNot P1 P2 P3 * *
2485 **
2486 ** Jump to P2 if the value in register P1 is False.  The value
2487 ** is considered false if it has a numeric value of zero.  If the value
2488 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2489 */
2490 case OP_IfNot: {            /* jump, in1 */
2491   int c;
2492   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2493   VdbeBranchTaken(c!=0, 2);
2494   if( c ) goto jump_to_p2;
2495   break;
2496 }
2497 
2498 /* Opcode: IsNull P1 P2 * * *
2499 ** Synopsis: if r[P1]==NULL goto P2
2500 **
2501 ** Jump to P2 if the value in register P1 is NULL.
2502 */
2503 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2504   pIn1 = &aMem[pOp->p1];
2505   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2506   if( (pIn1->flags & MEM_Null)!=0 ){
2507     goto jump_to_p2;
2508   }
2509   break;
2510 }
2511 
2512 /* Opcode: NotNull P1 P2 * * *
2513 ** Synopsis: if r[P1]!=NULL goto P2
2514 **
2515 ** Jump to P2 if the value in register P1 is not NULL.
2516 */
2517 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2518   pIn1 = &aMem[pOp->p1];
2519   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2520   if( (pIn1->flags & MEM_Null)==0 ){
2521     goto jump_to_p2;
2522   }
2523   break;
2524 }
2525 
2526 /* Opcode: IfNullRow P1 P2 P3 * *
2527 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2528 **
2529 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2530 ** If it is, then set register P3 to NULL and jump immediately to P2.
2531 ** If P1 is not on a NULL row, then fall through without making any
2532 ** changes.
2533 */
2534 case OP_IfNullRow: {         /* jump */
2535   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2536   assert( p->apCsr[pOp->p1]!=0 );
2537   if( p->apCsr[pOp->p1]->nullRow ){
2538     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2539     goto jump_to_p2;
2540   }
2541   break;
2542 }
2543 
2544 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2545 /* Opcode: Offset P1 P2 P3 * *
2546 ** Synopsis: r[P3] = sqlite_offset(P1)
2547 **
2548 ** Store in register r[P3] the byte offset into the database file that is the
2549 ** start of the payload for the record at which that cursor P1 is currently
2550 ** pointing.
2551 **
2552 ** P2 is the column number for the argument to the sqlite_offset() function.
2553 ** This opcode does not use P2 itself, but the P2 value is used by the
2554 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2555 ** same as for OP_Column.
2556 **
2557 ** This opcode is only available if SQLite is compiled with the
2558 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2559 */
2560 case OP_Offset: {          /* out3 */
2561   VdbeCursor *pC;    /* The VDBE cursor */
2562   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2563   pC = p->apCsr[pOp->p1];
2564   pOut = &p->aMem[pOp->p3];
2565   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2566     sqlite3VdbeMemSetNull(pOut);
2567   }else{
2568     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2569   }
2570   break;
2571 }
2572 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2573 
2574 /* Opcode: Column P1 P2 P3 P4 P5
2575 ** Synopsis: r[P3]=PX
2576 **
2577 ** Interpret the data that cursor P1 points to as a structure built using
2578 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2579 ** information about the format of the data.)  Extract the P2-th column
2580 ** from this record.  If there are less that (P2+1)
2581 ** values in the record, extract a NULL.
2582 **
2583 ** The value extracted is stored in register P3.
2584 **
2585 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2586 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2587 ** the result.
2588 **
2589 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2590 ** the result is guaranteed to only be used as the argument of a length()
2591 ** or typeof() function, respectively.  The loading of large blobs can be
2592 ** skipped for length() and all content loading can be skipped for typeof().
2593 */
2594 case OP_Column: {
2595   int p2;            /* column number to retrieve */
2596   VdbeCursor *pC;    /* The VDBE cursor */
2597   BtCursor *pCrsr;   /* The BTree cursor */
2598   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2599   int len;           /* The length of the serialized data for the column */
2600   int i;             /* Loop counter */
2601   Mem *pDest;        /* Where to write the extracted value */
2602   Mem sMem;          /* For storing the record being decoded */
2603   const u8 *zData;   /* Part of the record being decoded */
2604   const u8 *zHdr;    /* Next unparsed byte of the header */
2605   const u8 *zEndHdr; /* Pointer to first byte after the header */
2606   u64 offset64;      /* 64-bit offset */
2607   u32 t;             /* A type code from the record header */
2608   Mem *pReg;         /* PseudoTable input register */
2609 
2610   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2611   pC = p->apCsr[pOp->p1];
2612   assert( pC!=0 );
2613   p2 = pOp->p2;
2614 
2615   /* If the cursor cache is stale (meaning it is not currently point at
2616   ** the correct row) then bring it up-to-date by doing the necessary
2617   ** B-Tree seek. */
2618   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2619   if( rc ) goto abort_due_to_error;
2620 
2621   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2622   pDest = &aMem[pOp->p3];
2623   memAboutToChange(p, pDest);
2624   assert( pC!=0 );
2625   assert( p2<pC->nField );
2626   aOffset = pC->aOffset;
2627   assert( pC->eCurType!=CURTYPE_VTAB );
2628   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2629   assert( pC->eCurType!=CURTYPE_SORTER );
2630 
2631   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2632     if( pC->nullRow ){
2633       if( pC->eCurType==CURTYPE_PSEUDO ){
2634         /* For the special case of as pseudo-cursor, the seekResult field
2635         ** identifies the register that holds the record */
2636         assert( pC->seekResult>0 );
2637         pReg = &aMem[pC->seekResult];
2638         assert( pReg->flags & MEM_Blob );
2639         assert( memIsValid(pReg) );
2640         pC->payloadSize = pC->szRow = pReg->n;
2641         pC->aRow = (u8*)pReg->z;
2642       }else{
2643         sqlite3VdbeMemSetNull(pDest);
2644         goto op_column_out;
2645       }
2646     }else{
2647       pCrsr = pC->uc.pCursor;
2648       assert( pC->eCurType==CURTYPE_BTREE );
2649       assert( pCrsr );
2650       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2651       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2652       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2653       assert( pC->szRow<=pC->payloadSize );
2654       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2655       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2656         goto too_big;
2657       }
2658     }
2659     pC->cacheStatus = p->cacheCtr;
2660     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2661     pC->nHdrParsed = 0;
2662 
2663 
2664     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2665       /* pC->aRow does not have to hold the entire row, but it does at least
2666       ** need to cover the header of the record.  If pC->aRow does not contain
2667       ** the complete header, then set it to zero, forcing the header to be
2668       ** dynamically allocated. */
2669       pC->aRow = 0;
2670       pC->szRow = 0;
2671 
2672       /* Make sure a corrupt database has not given us an oversize header.
2673       ** Do this now to avoid an oversize memory allocation.
2674       **
2675       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2676       ** types use so much data space that there can only be 4096 and 32 of
2677       ** them, respectively.  So the maximum header length results from a
2678       ** 3-byte type for each of the maximum of 32768 columns plus three
2679       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2680       */
2681       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2682         goto op_column_corrupt;
2683       }
2684     }else{
2685       /* This is an optimization.  By skipping over the first few tests
2686       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2687       ** measurable performance gain.
2688       **
2689       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2690       ** generated by SQLite, and could be considered corruption, but we
2691       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2692       ** branch jumps to reads past the end of the record, but never more
2693       ** than a few bytes.  Even if the record occurs at the end of the page
2694       ** content area, the "page header" comes after the page content and so
2695       ** this overread is harmless.  Similar overreads can occur for a corrupt
2696       ** database file.
2697       */
2698       zData = pC->aRow;
2699       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2700       testcase( aOffset[0]==0 );
2701       goto op_column_read_header;
2702     }
2703   }
2704 
2705   /* Make sure at least the first p2+1 entries of the header have been
2706   ** parsed and valid information is in aOffset[] and pC->aType[].
2707   */
2708   if( pC->nHdrParsed<=p2 ){
2709     /* If there is more header available for parsing in the record, try
2710     ** to extract additional fields up through the p2+1-th field
2711     */
2712     if( pC->iHdrOffset<aOffset[0] ){
2713       /* Make sure zData points to enough of the record to cover the header. */
2714       if( pC->aRow==0 ){
2715         memset(&sMem, 0, sizeof(sMem));
2716         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2717         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2718         zData = (u8*)sMem.z;
2719       }else{
2720         zData = pC->aRow;
2721       }
2722 
2723       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2724     op_column_read_header:
2725       i = pC->nHdrParsed;
2726       offset64 = aOffset[i];
2727       zHdr = zData + pC->iHdrOffset;
2728       zEndHdr = zData + aOffset[0];
2729       testcase( zHdr>=zEndHdr );
2730       do{
2731         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2732           zHdr++;
2733           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2734         }else{
2735           zHdr += sqlite3GetVarint32(zHdr, &t);
2736           pC->aType[i] = t;
2737           offset64 += sqlite3VdbeSerialTypeLen(t);
2738         }
2739         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2740       }while( i<=p2 && zHdr<zEndHdr );
2741 
2742       /* The record is corrupt if any of the following are true:
2743       ** (1) the bytes of the header extend past the declared header size
2744       ** (2) the entire header was used but not all data was used
2745       ** (3) the end of the data extends beyond the end of the record.
2746       */
2747       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2748        || (offset64 > pC->payloadSize)
2749       ){
2750         if( aOffset[0]==0 ){
2751           i = 0;
2752           zHdr = zEndHdr;
2753         }else{
2754           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2755           goto op_column_corrupt;
2756         }
2757       }
2758 
2759       pC->nHdrParsed = i;
2760       pC->iHdrOffset = (u32)(zHdr - zData);
2761       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2762     }else{
2763       t = 0;
2764     }
2765 
2766     /* If after trying to extract new entries from the header, nHdrParsed is
2767     ** still not up to p2, that means that the record has fewer than p2
2768     ** columns.  So the result will be either the default value or a NULL.
2769     */
2770     if( pC->nHdrParsed<=p2 ){
2771       if( pOp->p4type==P4_MEM ){
2772         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2773       }else{
2774         sqlite3VdbeMemSetNull(pDest);
2775       }
2776       goto op_column_out;
2777     }
2778   }else{
2779     t = pC->aType[p2];
2780   }
2781 
2782   /* Extract the content for the p2+1-th column.  Control can only
2783   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2784   ** all valid.
2785   */
2786   assert( p2<pC->nHdrParsed );
2787   assert( rc==SQLITE_OK );
2788   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2789   if( VdbeMemDynamic(pDest) ){
2790     sqlite3VdbeMemSetNull(pDest);
2791   }
2792   assert( t==pC->aType[p2] );
2793   if( pC->szRow>=aOffset[p2+1] ){
2794     /* This is the common case where the desired content fits on the original
2795     ** page - where the content is not on an overflow page */
2796     zData = pC->aRow + aOffset[p2];
2797     if( t<12 ){
2798       sqlite3VdbeSerialGet(zData, t, pDest);
2799     }else{
2800       /* If the column value is a string, we need a persistent value, not
2801       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2802       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2803       */
2804       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2805       pDest->n = len = (t-12)/2;
2806       pDest->enc = encoding;
2807       if( pDest->szMalloc < len+2 ){
2808         pDest->flags = MEM_Null;
2809         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2810       }else{
2811         pDest->z = pDest->zMalloc;
2812       }
2813       memcpy(pDest->z, zData, len);
2814       pDest->z[len] = 0;
2815       pDest->z[len+1] = 0;
2816       pDest->flags = aFlag[t&1];
2817     }
2818   }else{
2819     pDest->enc = encoding;
2820     /* This branch happens only when content is on overflow pages */
2821     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2822           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2823      || (len = sqlite3VdbeSerialTypeLen(t))==0
2824     ){
2825       /* Content is irrelevant for
2826       **    1. the typeof() function,
2827       **    2. the length(X) function if X is a blob, and
2828       **    3. if the content length is zero.
2829       ** So we might as well use bogus content rather than reading
2830       ** content from disk.
2831       **
2832       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2833       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2834       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2835       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2836       ** and it begins with a bunch of zeros.
2837       */
2838       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2839     }else{
2840       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2841       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2842       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2843       pDest->flags &= ~MEM_Ephem;
2844     }
2845   }
2846 
2847 op_column_out:
2848   UPDATE_MAX_BLOBSIZE(pDest);
2849   REGISTER_TRACE(pOp->p3, pDest);
2850   break;
2851 
2852 op_column_corrupt:
2853   if( aOp[0].p3>0 ){
2854     pOp = &aOp[aOp[0].p3-1];
2855     break;
2856   }else{
2857     rc = SQLITE_CORRUPT_BKPT;
2858     goto abort_due_to_error;
2859   }
2860 }
2861 
2862 /* Opcode: Affinity P1 P2 * P4 *
2863 ** Synopsis: affinity(r[P1@P2])
2864 **
2865 ** Apply affinities to a range of P2 registers starting with P1.
2866 **
2867 ** P4 is a string that is P2 characters long. The N-th character of the
2868 ** string indicates the column affinity that should be used for the N-th
2869 ** memory cell in the range.
2870 */
2871 case OP_Affinity: {
2872   const char *zAffinity;   /* The affinity to be applied */
2873 
2874   zAffinity = pOp->p4.z;
2875   assert( zAffinity!=0 );
2876   assert( pOp->p2>0 );
2877   assert( zAffinity[pOp->p2]==0 );
2878   pIn1 = &aMem[pOp->p1];
2879   while( 1 /*exit-by-break*/ ){
2880     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2881     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
2882     applyAffinity(pIn1, zAffinity[0], encoding);
2883     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2884       /* When applying REAL affinity, if the result is still an MEM_Int
2885       ** that will fit in 6 bytes, then change the type to MEM_IntReal
2886       ** so that we keep the high-resolution integer value but know that
2887       ** the type really wants to be REAL. */
2888       testcase( pIn1->u.i==140737488355328LL );
2889       testcase( pIn1->u.i==140737488355327LL );
2890       testcase( pIn1->u.i==-140737488355328LL );
2891       testcase( pIn1->u.i==-140737488355329LL );
2892       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2893         pIn1->flags |= MEM_IntReal;
2894         pIn1->flags &= ~MEM_Int;
2895       }else{
2896         pIn1->u.r = (double)pIn1->u.i;
2897         pIn1->flags |= MEM_Real;
2898         pIn1->flags &= ~MEM_Int;
2899       }
2900     }
2901     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2902     zAffinity++;
2903     if( zAffinity[0]==0 ) break;
2904     pIn1++;
2905   }
2906   break;
2907 }
2908 
2909 /* Opcode: MakeRecord P1 P2 P3 P4 *
2910 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2911 **
2912 ** Convert P2 registers beginning with P1 into the [record format]
2913 ** use as a data record in a database table or as a key
2914 ** in an index.  The OP_Column opcode can decode the record later.
2915 **
2916 ** P4 may be a string that is P2 characters long.  The N-th character of the
2917 ** string indicates the column affinity that should be used for the N-th
2918 ** field of the index key.
2919 **
2920 ** The mapping from character to affinity is given by the SQLITE_AFF_
2921 ** macros defined in sqliteInt.h.
2922 **
2923 ** If P4 is NULL then all index fields have the affinity BLOB.
2924 */
2925 case OP_MakeRecord: {
2926   Mem *pRec;             /* The new record */
2927   u64 nData;             /* Number of bytes of data space */
2928   int nHdr;              /* Number of bytes of header space */
2929   i64 nByte;             /* Data space required for this record */
2930   i64 nZero;             /* Number of zero bytes at the end of the record */
2931   int nVarint;           /* Number of bytes in a varint */
2932   u32 serial_type;       /* Type field */
2933   Mem *pData0;           /* First field to be combined into the record */
2934   Mem *pLast;            /* Last field of the record */
2935   int nField;            /* Number of fields in the record */
2936   char *zAffinity;       /* The affinity string for the record */
2937   int file_format;       /* File format to use for encoding */
2938   u32 len;               /* Length of a field */
2939   u8 *zHdr;              /* Where to write next byte of the header */
2940   u8 *zPayload;          /* Where to write next byte of the payload */
2941 
2942   /* Assuming the record contains N fields, the record format looks
2943   ** like this:
2944   **
2945   ** ------------------------------------------------------------------------
2946   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2947   ** ------------------------------------------------------------------------
2948   **
2949   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2950   ** and so forth.
2951   **
2952   ** Each type field is a varint representing the serial type of the
2953   ** corresponding data element (see sqlite3VdbeSerialType()). The
2954   ** hdr-size field is also a varint which is the offset from the beginning
2955   ** of the record to data0.
2956   */
2957   nData = 0;         /* Number of bytes of data space */
2958   nHdr = 0;          /* Number of bytes of header space */
2959   nZero = 0;         /* Number of zero bytes at the end of the record */
2960   nField = pOp->p1;
2961   zAffinity = pOp->p4.z;
2962   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2963   pData0 = &aMem[nField];
2964   nField = pOp->p2;
2965   pLast = &pData0[nField-1];
2966   file_format = p->minWriteFileFormat;
2967 
2968   /* Identify the output register */
2969   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2970   pOut = &aMem[pOp->p3];
2971   memAboutToChange(p, pOut);
2972 
2973   /* Apply the requested affinity to all inputs
2974   */
2975   assert( pData0<=pLast );
2976   if( zAffinity ){
2977     pRec = pData0;
2978     do{
2979       applyAffinity(pRec, zAffinity[0], encoding);
2980       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2981         pRec->flags |= MEM_IntReal;
2982         pRec->flags &= ~(MEM_Int);
2983       }
2984       REGISTER_TRACE((int)(pRec-aMem), pRec);
2985       zAffinity++;
2986       pRec++;
2987       assert( zAffinity[0]==0 || pRec<=pLast );
2988     }while( zAffinity[0] );
2989   }
2990 
2991 #ifdef SQLITE_ENABLE_NULL_TRIM
2992   /* NULLs can be safely trimmed from the end of the record, as long as
2993   ** as the schema format is 2 or more and none of the omitted columns
2994   ** have a non-NULL default value.  Also, the record must be left with
2995   ** at least one field.  If P5>0 then it will be one more than the
2996   ** index of the right-most column with a non-NULL default value */
2997   if( pOp->p5 ){
2998     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2999       pLast--;
3000       nField--;
3001     }
3002   }
3003 #endif
3004 
3005   /* Loop through the elements that will make up the record to figure
3006   ** out how much space is required for the new record.  After this loop,
3007   ** the Mem.uTemp field of each term should hold the serial-type that will
3008   ** be used for that term in the generated record:
3009   **
3010   **   Mem.uTemp value    type
3011   **   ---------------    ---------------
3012   **      0               NULL
3013   **      1               1-byte signed integer
3014   **      2               2-byte signed integer
3015   **      3               3-byte signed integer
3016   **      4               4-byte signed integer
3017   **      5               6-byte signed integer
3018   **      6               8-byte signed integer
3019   **      7               IEEE float
3020   **      8               Integer constant 0
3021   **      9               Integer constant 1
3022   **     10,11            reserved for expansion
3023   **    N>=12 and even    BLOB
3024   **    N>=13 and odd     text
3025   **
3026   ** The following additional values are computed:
3027   **     nHdr        Number of bytes needed for the record header
3028   **     nData       Number of bytes of data space needed for the record
3029   **     nZero       Zero bytes at the end of the record
3030   */
3031   pRec = pLast;
3032   do{
3033     assert( memIsValid(pRec) );
3034     if( pRec->flags & MEM_Null ){
3035       if( pRec->flags & MEM_Zero ){
3036         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3037         ** table methods that never invoke sqlite3_result_xxxxx() while
3038         ** computing an unchanging column value in an UPDATE statement.
3039         ** Give such values a special internal-use-only serial-type of 10
3040         ** so that they can be passed through to xUpdate and have
3041         ** a true sqlite3_value_nochange(). */
3042         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3043         pRec->uTemp = 10;
3044       }else{
3045         pRec->uTemp = 0;
3046       }
3047       nHdr++;
3048     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3049       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3050       i64 i = pRec->u.i;
3051       u64 uu;
3052       testcase( pRec->flags & MEM_Int );
3053       testcase( pRec->flags & MEM_IntReal );
3054       if( i<0 ){
3055         uu = ~i;
3056       }else{
3057         uu = i;
3058       }
3059       nHdr++;
3060       testcase( uu==127 );               testcase( uu==128 );
3061       testcase( uu==32767 );             testcase( uu==32768 );
3062       testcase( uu==8388607 );           testcase( uu==8388608 );
3063       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3064       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3065       if( uu<=127 ){
3066         if( (i&1)==i && file_format>=4 ){
3067           pRec->uTemp = 8+(u32)uu;
3068         }else{
3069           nData++;
3070           pRec->uTemp = 1;
3071         }
3072       }else if( uu<=32767 ){
3073         nData += 2;
3074         pRec->uTemp = 2;
3075       }else if( uu<=8388607 ){
3076         nData += 3;
3077         pRec->uTemp = 3;
3078       }else if( uu<=2147483647 ){
3079         nData += 4;
3080         pRec->uTemp = 4;
3081       }else if( uu<=140737488355327LL ){
3082         nData += 6;
3083         pRec->uTemp = 5;
3084       }else{
3085         nData += 8;
3086         if( pRec->flags & MEM_IntReal ){
3087           /* If the value is IntReal and is going to take up 8 bytes to store
3088           ** as an integer, then we might as well make it an 8-byte floating
3089           ** point value */
3090           pRec->u.r = (double)pRec->u.i;
3091           pRec->flags &= ~MEM_IntReal;
3092           pRec->flags |= MEM_Real;
3093           pRec->uTemp = 7;
3094         }else{
3095           pRec->uTemp = 6;
3096         }
3097       }
3098     }else if( pRec->flags & MEM_Real ){
3099       nHdr++;
3100       nData += 8;
3101       pRec->uTemp = 7;
3102     }else{
3103       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3104       assert( pRec->n>=0 );
3105       len = (u32)pRec->n;
3106       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3107       if( pRec->flags & MEM_Zero ){
3108         serial_type += pRec->u.nZero*2;
3109         if( nData ){
3110           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3111           len += pRec->u.nZero;
3112         }else{
3113           nZero += pRec->u.nZero;
3114         }
3115       }
3116       nData += len;
3117       nHdr += sqlite3VarintLen(serial_type);
3118       pRec->uTemp = serial_type;
3119     }
3120     if( pRec==pData0 ) break;
3121     pRec--;
3122   }while(1);
3123 
3124   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3125   ** which determines the total number of bytes in the header. The varint
3126   ** value is the size of the header in bytes including the size varint
3127   ** itself. */
3128   testcase( nHdr==126 );
3129   testcase( nHdr==127 );
3130   if( nHdr<=126 ){
3131     /* The common case */
3132     nHdr += 1;
3133   }else{
3134     /* Rare case of a really large header */
3135     nVarint = sqlite3VarintLen(nHdr);
3136     nHdr += nVarint;
3137     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3138   }
3139   nByte = nHdr+nData;
3140 
3141   /* Make sure the output register has a buffer large enough to store
3142   ** the new record. The output register (pOp->p3) is not allowed to
3143   ** be one of the input registers (because the following call to
3144   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3145   */
3146   if( nByte+nZero<=pOut->szMalloc ){
3147     /* The output register is already large enough to hold the record.
3148     ** No error checks or buffer enlargement is required */
3149     pOut->z = pOut->zMalloc;
3150   }else{
3151     /* Need to make sure that the output is not too big and then enlarge
3152     ** the output register to hold the full result */
3153     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3154       goto too_big;
3155     }
3156     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3157       goto no_mem;
3158     }
3159   }
3160   pOut->n = (int)nByte;
3161   pOut->flags = MEM_Blob;
3162   if( nZero ){
3163     pOut->u.nZero = nZero;
3164     pOut->flags |= MEM_Zero;
3165   }
3166   UPDATE_MAX_BLOBSIZE(pOut);
3167   zHdr = (u8 *)pOut->z;
3168   zPayload = zHdr + nHdr;
3169 
3170   /* Write the record */
3171   zHdr += putVarint32(zHdr, nHdr);
3172   assert( pData0<=pLast );
3173   pRec = pData0;
3174   do{
3175     serial_type = pRec->uTemp;
3176     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3177     ** additional varints, one per column. */
3178     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3179     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3180     ** immediately follow the header. */
3181     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3182   }while( (++pRec)<=pLast );
3183   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3184   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3185 
3186   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3187   REGISTER_TRACE(pOp->p3, pOut);
3188   break;
3189 }
3190 
3191 /* Opcode: Count P1 P2 * * *
3192 ** Synopsis: r[P2]=count()
3193 **
3194 ** Store the number of entries (an integer value) in the table or index
3195 ** opened by cursor P1 in register P2
3196 */
3197 #ifndef SQLITE_OMIT_BTREECOUNT
3198 case OP_Count: {         /* out2 */
3199   i64 nEntry;
3200   BtCursor *pCrsr;
3201 
3202   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3203   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3204   assert( pCrsr );
3205   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3206   rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3207   if( rc ) goto abort_due_to_error;
3208   pOut = out2Prerelease(p, pOp);
3209   pOut->u.i = nEntry;
3210   goto check_for_interrupt;
3211 }
3212 #endif
3213 
3214 /* Opcode: Savepoint P1 * * P4 *
3215 **
3216 ** Open, release or rollback the savepoint named by parameter P4, depending
3217 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3218 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3219 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3220 */
3221 case OP_Savepoint: {
3222   int p1;                         /* Value of P1 operand */
3223   char *zName;                    /* Name of savepoint */
3224   int nName;
3225   Savepoint *pNew;
3226   Savepoint *pSavepoint;
3227   Savepoint *pTmp;
3228   int iSavepoint;
3229   int ii;
3230 
3231   p1 = pOp->p1;
3232   zName = pOp->p4.z;
3233 
3234   /* Assert that the p1 parameter is valid. Also that if there is no open
3235   ** transaction, then there cannot be any savepoints.
3236   */
3237   assert( db->pSavepoint==0 || db->autoCommit==0 );
3238   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3239   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3240   assert( checkSavepointCount(db) );
3241   assert( p->bIsReader );
3242 
3243   if( p1==SAVEPOINT_BEGIN ){
3244     if( db->nVdbeWrite>0 ){
3245       /* A new savepoint cannot be created if there are active write
3246       ** statements (i.e. open read/write incremental blob handles).
3247       */
3248       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3249       rc = SQLITE_BUSY;
3250     }else{
3251       nName = sqlite3Strlen30(zName);
3252 
3253 #ifndef SQLITE_OMIT_VIRTUALTABLE
3254       /* This call is Ok even if this savepoint is actually a transaction
3255       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3256       ** If this is a transaction savepoint being opened, it is guaranteed
3257       ** that the db->aVTrans[] array is empty.  */
3258       assert( db->autoCommit==0 || db->nVTrans==0 );
3259       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3260                                 db->nStatement+db->nSavepoint);
3261       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3262 #endif
3263 
3264       /* Create a new savepoint structure. */
3265       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3266       if( pNew ){
3267         pNew->zName = (char *)&pNew[1];
3268         memcpy(pNew->zName, zName, nName+1);
3269 
3270         /* If there is no open transaction, then mark this as a special
3271         ** "transaction savepoint". */
3272         if( db->autoCommit ){
3273           db->autoCommit = 0;
3274           db->isTransactionSavepoint = 1;
3275         }else{
3276           db->nSavepoint++;
3277         }
3278 
3279         /* Link the new savepoint into the database handle's list. */
3280         pNew->pNext = db->pSavepoint;
3281         db->pSavepoint = pNew;
3282         pNew->nDeferredCons = db->nDeferredCons;
3283         pNew->nDeferredImmCons = db->nDeferredImmCons;
3284       }
3285     }
3286   }else{
3287     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3288     iSavepoint = 0;
3289 
3290     /* Find the named savepoint. If there is no such savepoint, then an
3291     ** an error is returned to the user.  */
3292     for(
3293       pSavepoint = db->pSavepoint;
3294       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3295       pSavepoint = pSavepoint->pNext
3296     ){
3297       iSavepoint++;
3298     }
3299     if( !pSavepoint ){
3300       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3301       rc = SQLITE_ERROR;
3302     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3303       /* It is not possible to release (commit) a savepoint if there are
3304       ** active write statements.
3305       */
3306       sqlite3VdbeError(p, "cannot release savepoint - "
3307                           "SQL statements in progress");
3308       rc = SQLITE_BUSY;
3309     }else{
3310 
3311       /* Determine whether or not this is a transaction savepoint. If so,
3312       ** and this is a RELEASE command, then the current transaction
3313       ** is committed.
3314       */
3315       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3316       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3317         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3318           goto vdbe_return;
3319         }
3320         db->autoCommit = 1;
3321         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3322           p->pc = (int)(pOp - aOp);
3323           db->autoCommit = 0;
3324           p->rc = rc = SQLITE_BUSY;
3325           goto vdbe_return;
3326         }
3327         rc = p->rc;
3328         if( rc ){
3329           db->autoCommit = 0;
3330         }else{
3331           db->isTransactionSavepoint = 0;
3332         }
3333       }else{
3334         int isSchemaChange;
3335         iSavepoint = db->nSavepoint - iSavepoint - 1;
3336         if( p1==SAVEPOINT_ROLLBACK ){
3337           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3338           for(ii=0; ii<db->nDb; ii++){
3339             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3340                                        SQLITE_ABORT_ROLLBACK,
3341                                        isSchemaChange==0);
3342             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3343           }
3344         }else{
3345           assert( p1==SAVEPOINT_RELEASE );
3346           isSchemaChange = 0;
3347         }
3348         for(ii=0; ii<db->nDb; ii++){
3349           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3350           if( rc!=SQLITE_OK ){
3351             goto abort_due_to_error;
3352           }
3353         }
3354         if( isSchemaChange ){
3355           sqlite3ExpirePreparedStatements(db, 0);
3356           sqlite3ResetAllSchemasOfConnection(db);
3357           db->mDbFlags |= DBFLAG_SchemaChange;
3358         }
3359       }
3360       if( rc ) goto abort_due_to_error;
3361 
3362       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3363       ** savepoints nested inside of the savepoint being operated on. */
3364       while( db->pSavepoint!=pSavepoint ){
3365         pTmp = db->pSavepoint;
3366         db->pSavepoint = pTmp->pNext;
3367         sqlite3DbFree(db, pTmp);
3368         db->nSavepoint--;
3369       }
3370 
3371       /* If it is a RELEASE, then destroy the savepoint being operated on
3372       ** too. If it is a ROLLBACK TO, then set the number of deferred
3373       ** constraint violations present in the database to the value stored
3374       ** when the savepoint was created.  */
3375       if( p1==SAVEPOINT_RELEASE ){
3376         assert( pSavepoint==db->pSavepoint );
3377         db->pSavepoint = pSavepoint->pNext;
3378         sqlite3DbFree(db, pSavepoint);
3379         if( !isTransaction ){
3380           db->nSavepoint--;
3381         }
3382       }else{
3383         assert( p1==SAVEPOINT_ROLLBACK );
3384         db->nDeferredCons = pSavepoint->nDeferredCons;
3385         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3386       }
3387 
3388       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3389         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3390         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3391       }
3392     }
3393   }
3394   if( rc ) goto abort_due_to_error;
3395 
3396   break;
3397 }
3398 
3399 /* Opcode: AutoCommit P1 P2 * * *
3400 **
3401 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3402 ** back any currently active btree transactions. If there are any active
3403 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3404 ** there are active writing VMs or active VMs that use shared cache.
3405 **
3406 ** This instruction causes the VM to halt.
3407 */
3408 case OP_AutoCommit: {
3409   int desiredAutoCommit;
3410   int iRollback;
3411 
3412   desiredAutoCommit = pOp->p1;
3413   iRollback = pOp->p2;
3414   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3415   assert( desiredAutoCommit==1 || iRollback==0 );
3416   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3417   assert( p->bIsReader );
3418 
3419   if( desiredAutoCommit!=db->autoCommit ){
3420     if( iRollback ){
3421       assert( desiredAutoCommit==1 );
3422       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3423       db->autoCommit = 1;
3424     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3425       /* If this instruction implements a COMMIT and other VMs are writing
3426       ** return an error indicating that the other VMs must complete first.
3427       */
3428       sqlite3VdbeError(p, "cannot commit transaction - "
3429                           "SQL statements in progress");
3430       rc = SQLITE_BUSY;
3431       goto abort_due_to_error;
3432     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3433       goto vdbe_return;
3434     }else{
3435       db->autoCommit = (u8)desiredAutoCommit;
3436     }
3437     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3438       p->pc = (int)(pOp - aOp);
3439       db->autoCommit = (u8)(1-desiredAutoCommit);
3440       p->rc = rc = SQLITE_BUSY;
3441       goto vdbe_return;
3442     }
3443     sqlite3CloseSavepoints(db);
3444     if( p->rc==SQLITE_OK ){
3445       rc = SQLITE_DONE;
3446     }else{
3447       rc = SQLITE_ERROR;
3448     }
3449     goto vdbe_return;
3450   }else{
3451     sqlite3VdbeError(p,
3452         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3453         (iRollback)?"cannot rollback - no transaction is active":
3454                    "cannot commit - no transaction is active"));
3455 
3456     rc = SQLITE_ERROR;
3457     goto abort_due_to_error;
3458   }
3459   /*NOTREACHED*/ assert(0);
3460 }
3461 
3462 /* Opcode: Transaction P1 P2 P3 P4 P5
3463 **
3464 ** Begin a transaction on database P1 if a transaction is not already
3465 ** active.
3466 ** If P2 is non-zero, then a write-transaction is started, or if a
3467 ** read-transaction is already active, it is upgraded to a write-transaction.
3468 ** If P2 is zero, then a read-transaction is started.
3469 **
3470 ** P1 is the index of the database file on which the transaction is
3471 ** started.  Index 0 is the main database file and index 1 is the
3472 ** file used for temporary tables.  Indices of 2 or more are used for
3473 ** attached databases.
3474 **
3475 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3476 ** true (this flag is set if the Vdbe may modify more than one row and may
3477 ** throw an ABORT exception), a statement transaction may also be opened.
3478 ** More specifically, a statement transaction is opened iff the database
3479 ** connection is currently not in autocommit mode, or if there are other
3480 ** active statements. A statement transaction allows the changes made by this
3481 ** VDBE to be rolled back after an error without having to roll back the
3482 ** entire transaction. If no error is encountered, the statement transaction
3483 ** will automatically commit when the VDBE halts.
3484 **
3485 ** If P5!=0 then this opcode also checks the schema cookie against P3
3486 ** and the schema generation counter against P4.
3487 ** The cookie changes its value whenever the database schema changes.
3488 ** This operation is used to detect when that the cookie has changed
3489 ** and that the current process needs to reread the schema.  If the schema
3490 ** cookie in P3 differs from the schema cookie in the database header or
3491 ** if the schema generation counter in P4 differs from the current
3492 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3493 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3494 ** statement and rerun it from the beginning.
3495 */
3496 case OP_Transaction: {
3497   Btree *pBt;
3498   int iMeta = 0;
3499 
3500   assert( p->bIsReader );
3501   assert( p->readOnly==0 || pOp->p2==0 );
3502   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3503   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3504   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3505     rc = SQLITE_READONLY;
3506     goto abort_due_to_error;
3507   }
3508   pBt = db->aDb[pOp->p1].pBt;
3509 
3510   if( pBt ){
3511     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3512     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3513     testcase( rc==SQLITE_BUSY_RECOVERY );
3514     if( rc!=SQLITE_OK ){
3515       if( (rc&0xff)==SQLITE_BUSY ){
3516         p->pc = (int)(pOp - aOp);
3517         p->rc = rc;
3518         goto vdbe_return;
3519       }
3520       goto abort_due_to_error;
3521     }
3522 
3523     if( p->usesStmtJournal
3524      && pOp->p2
3525      && (db->autoCommit==0 || db->nVdbeRead>1)
3526     ){
3527       assert( sqlite3BtreeIsInTrans(pBt) );
3528       if( p->iStatement==0 ){
3529         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3530         db->nStatement++;
3531         p->iStatement = db->nSavepoint + db->nStatement;
3532       }
3533 
3534       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3535       if( rc==SQLITE_OK ){
3536         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3537       }
3538 
3539       /* Store the current value of the database handles deferred constraint
3540       ** counter. If the statement transaction needs to be rolled back,
3541       ** the value of this counter needs to be restored too.  */
3542       p->nStmtDefCons = db->nDeferredCons;
3543       p->nStmtDefImmCons = db->nDeferredImmCons;
3544     }
3545   }
3546   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3547   if( pOp->p5
3548    && (iMeta!=pOp->p3
3549       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3550   ){
3551     /*
3552     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3553     ** version is checked to ensure that the schema has not changed since the
3554     ** SQL statement was prepared.
3555     */
3556     sqlite3DbFree(db, p->zErrMsg);
3557     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3558     /* If the schema-cookie from the database file matches the cookie
3559     ** stored with the in-memory representation of the schema, do
3560     ** not reload the schema from the database file.
3561     **
3562     ** If virtual-tables are in use, this is not just an optimization.
3563     ** Often, v-tables store their data in other SQLite tables, which
3564     ** are queried from within xNext() and other v-table methods using
3565     ** prepared queries. If such a query is out-of-date, we do not want to
3566     ** discard the database schema, as the user code implementing the
3567     ** v-table would have to be ready for the sqlite3_vtab structure itself
3568     ** to be invalidated whenever sqlite3_step() is called from within
3569     ** a v-table method.
3570     */
3571     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3572       sqlite3ResetOneSchema(db, pOp->p1);
3573     }
3574     p->expired = 1;
3575     rc = SQLITE_SCHEMA;
3576   }
3577   if( rc ) goto abort_due_to_error;
3578   break;
3579 }
3580 
3581 /* Opcode: ReadCookie P1 P2 P3 * *
3582 **
3583 ** Read cookie number P3 from database P1 and write it into register P2.
3584 ** P3==1 is the schema version.  P3==2 is the database format.
3585 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3586 ** the main database file and P1==1 is the database file used to store
3587 ** temporary tables.
3588 **
3589 ** There must be a read-lock on the database (either a transaction
3590 ** must be started or there must be an open cursor) before
3591 ** executing this instruction.
3592 */
3593 case OP_ReadCookie: {               /* out2 */
3594   int iMeta;
3595   int iDb;
3596   int iCookie;
3597 
3598   assert( p->bIsReader );
3599   iDb = pOp->p1;
3600   iCookie = pOp->p3;
3601   assert( pOp->p3<SQLITE_N_BTREE_META );
3602   assert( iDb>=0 && iDb<db->nDb );
3603   assert( db->aDb[iDb].pBt!=0 );
3604   assert( DbMaskTest(p->btreeMask, iDb) );
3605 
3606   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3607   pOut = out2Prerelease(p, pOp);
3608   pOut->u.i = iMeta;
3609   break;
3610 }
3611 
3612 /* Opcode: SetCookie P1 P2 P3 * *
3613 **
3614 ** Write the integer value P3 into cookie number P2 of database P1.
3615 ** P2==1 is the schema version.  P2==2 is the database format.
3616 ** P2==3 is the recommended pager cache
3617 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3618 ** database file used to store temporary tables.
3619 **
3620 ** A transaction must be started before executing this opcode.
3621 */
3622 case OP_SetCookie: {
3623   Db *pDb;
3624 
3625   sqlite3VdbeIncrWriteCounter(p, 0);
3626   assert( pOp->p2<SQLITE_N_BTREE_META );
3627   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3628   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3629   assert( p->readOnly==0 );
3630   pDb = &db->aDb[pOp->p1];
3631   assert( pDb->pBt!=0 );
3632   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3633   /* See note about index shifting on OP_ReadCookie */
3634   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3635   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3636     /* When the schema cookie changes, record the new cookie internally */
3637     pDb->pSchema->schema_cookie = pOp->p3;
3638     db->mDbFlags |= DBFLAG_SchemaChange;
3639   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3640     /* Record changes in the file format */
3641     pDb->pSchema->file_format = pOp->p3;
3642   }
3643   if( pOp->p1==1 ){
3644     /* Invalidate all prepared statements whenever the TEMP database
3645     ** schema is changed.  Ticket #1644 */
3646     sqlite3ExpirePreparedStatements(db, 0);
3647     p->expired = 0;
3648   }
3649   if( rc ) goto abort_due_to_error;
3650   break;
3651 }
3652 
3653 /* Opcode: OpenRead P1 P2 P3 P4 P5
3654 ** Synopsis: root=P2 iDb=P3
3655 **
3656 ** Open a read-only cursor for the database table whose root page is
3657 ** P2 in a database file.  The database file is determined by P3.
3658 ** P3==0 means the main database, P3==1 means the database used for
3659 ** temporary tables, and P3>1 means used the corresponding attached
3660 ** database.  Give the new cursor an identifier of P1.  The P1
3661 ** values need not be contiguous but all P1 values should be small integers.
3662 ** It is an error for P1 to be negative.
3663 **
3664 ** Allowed P5 bits:
3665 ** <ul>
3666 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3667 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3668 **       of OP_SeekLE/OP_IdxGT)
3669 ** </ul>
3670 **
3671 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3672 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3673 ** object, then table being opened must be an [index b-tree] where the
3674 ** KeyInfo object defines the content and collating
3675 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3676 ** value, then the table being opened must be a [table b-tree] with a
3677 ** number of columns no less than the value of P4.
3678 **
3679 ** See also: OpenWrite, ReopenIdx
3680 */
3681 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3682 ** Synopsis: root=P2 iDb=P3
3683 **
3684 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3685 ** checks to see if the cursor on P1 is already open on the same
3686 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3687 ** if the cursor is already open, do not reopen it.
3688 **
3689 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3690 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3691 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3692 ** number.
3693 **
3694 ** Allowed P5 bits:
3695 ** <ul>
3696 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3697 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3698 **       of OP_SeekLE/OP_IdxGT)
3699 ** </ul>
3700 **
3701 ** See also: OP_OpenRead, OP_OpenWrite
3702 */
3703 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3704 ** Synopsis: root=P2 iDb=P3
3705 **
3706 ** Open a read/write cursor named P1 on the table or index whose root
3707 ** page is P2 (or whose root page is held in register P2 if the
3708 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3709 **
3710 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3711 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3712 ** object, then table being opened must be an [index b-tree] where the
3713 ** KeyInfo object defines the content and collating
3714 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3715 ** value, then the table being opened must be a [table b-tree] with a
3716 ** number of columns no less than the value of P4.
3717 **
3718 ** Allowed P5 bits:
3719 ** <ul>
3720 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3721 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3722 **       of OP_SeekLE/OP_IdxGT)
3723 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3724 **       and subsequently delete entries in an index btree.  This is a
3725 **       hint to the storage engine that the storage engine is allowed to
3726 **       ignore.  The hint is not used by the official SQLite b*tree storage
3727 **       engine, but is used by COMDB2.
3728 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3729 **       as the root page, not the value of P2 itself.
3730 ** </ul>
3731 **
3732 ** This instruction works like OpenRead except that it opens the cursor
3733 ** in read/write mode.
3734 **
3735 ** See also: OP_OpenRead, OP_ReopenIdx
3736 */
3737 case OP_ReopenIdx: {
3738   int nField;
3739   KeyInfo *pKeyInfo;
3740   int p2;
3741   int iDb;
3742   int wrFlag;
3743   Btree *pX;
3744   VdbeCursor *pCur;
3745   Db *pDb;
3746 
3747   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3748   assert( pOp->p4type==P4_KEYINFO );
3749   pCur = p->apCsr[pOp->p1];
3750   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3751     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3752     goto open_cursor_set_hints;
3753   }
3754   /* If the cursor is not currently open or is open on a different
3755   ** index, then fall through into OP_OpenRead to force a reopen */
3756 case OP_OpenRead:
3757 case OP_OpenWrite:
3758 
3759   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3760   assert( p->bIsReader );
3761   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3762           || p->readOnly==0 );
3763 
3764   if( p->expired==1 ){
3765     rc = SQLITE_ABORT_ROLLBACK;
3766     goto abort_due_to_error;
3767   }
3768 
3769   nField = 0;
3770   pKeyInfo = 0;
3771   p2 = pOp->p2;
3772   iDb = pOp->p3;
3773   assert( iDb>=0 && iDb<db->nDb );
3774   assert( DbMaskTest(p->btreeMask, iDb) );
3775   pDb = &db->aDb[iDb];
3776   pX = pDb->pBt;
3777   assert( pX!=0 );
3778   if( pOp->opcode==OP_OpenWrite ){
3779     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3780     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3781     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3782     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3783       p->minWriteFileFormat = pDb->pSchema->file_format;
3784     }
3785   }else{
3786     wrFlag = 0;
3787   }
3788   if( pOp->p5 & OPFLAG_P2ISREG ){
3789     assert( p2>0 );
3790     assert( p2<=(p->nMem+1 - p->nCursor) );
3791     assert( pOp->opcode==OP_OpenWrite );
3792     pIn2 = &aMem[p2];
3793     assert( memIsValid(pIn2) );
3794     assert( (pIn2->flags & MEM_Int)!=0 );
3795     sqlite3VdbeMemIntegerify(pIn2);
3796     p2 = (int)pIn2->u.i;
3797     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3798     ** that opcode will always set the p2 value to 2 or more or else fail.
3799     ** If there were a failure, the prepared statement would have halted
3800     ** before reaching this instruction. */
3801     assert( p2>=2 );
3802   }
3803   if( pOp->p4type==P4_KEYINFO ){
3804     pKeyInfo = pOp->p4.pKeyInfo;
3805     assert( pKeyInfo->enc==ENC(db) );
3806     assert( pKeyInfo->db==db );
3807     nField = pKeyInfo->nAllField;
3808   }else if( pOp->p4type==P4_INT32 ){
3809     nField = pOp->p4.i;
3810   }
3811   assert( pOp->p1>=0 );
3812   assert( nField>=0 );
3813   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3814   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3815   if( pCur==0 ) goto no_mem;
3816   pCur->nullRow = 1;
3817   pCur->isOrdered = 1;
3818   pCur->pgnoRoot = p2;
3819 #ifdef SQLITE_DEBUG
3820   pCur->wrFlag = wrFlag;
3821 #endif
3822   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3823   pCur->pKeyInfo = pKeyInfo;
3824   /* Set the VdbeCursor.isTable variable. Previous versions of
3825   ** SQLite used to check if the root-page flags were sane at this point
3826   ** and report database corruption if they were not, but this check has
3827   ** since moved into the btree layer.  */
3828   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3829 
3830 open_cursor_set_hints:
3831   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3832   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3833   testcase( pOp->p5 & OPFLAG_BULKCSR );
3834 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3835   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3836 #endif
3837   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3838                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3839   if( rc ) goto abort_due_to_error;
3840   break;
3841 }
3842 
3843 /* Opcode: OpenDup P1 P2 * * *
3844 **
3845 ** Open a new cursor P1 that points to the same ephemeral table as
3846 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3847 ** opcode.  Only ephemeral cursors may be duplicated.
3848 **
3849 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3850 */
3851 case OP_OpenDup: {
3852   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3853   VdbeCursor *pCx;      /* The new cursor */
3854 
3855   pOrig = p->apCsr[pOp->p2];
3856   assert( pOrig );
3857   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3858 
3859   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3860   if( pCx==0 ) goto no_mem;
3861   pCx->nullRow = 1;
3862   pCx->isEphemeral = 1;
3863   pCx->pKeyInfo = pOrig->pKeyInfo;
3864   pCx->isTable = pOrig->isTable;
3865   pCx->pgnoRoot = pOrig->pgnoRoot;
3866   pCx->isOrdered = pOrig->isOrdered;
3867   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3868                           pCx->pKeyInfo, pCx->uc.pCursor);
3869   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3870   ** opened for a database.  Since there is already an open cursor when this
3871   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3872   assert( rc==SQLITE_OK );
3873   break;
3874 }
3875 
3876 
3877 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3878 ** Synopsis: nColumn=P2
3879 **
3880 ** Open a new cursor P1 to a transient table.
3881 ** The cursor is always opened read/write even if
3882 ** the main database is read-only.  The ephemeral
3883 ** table is deleted automatically when the cursor is closed.
3884 **
3885 ** If the cursor P1 is already opened on an ephemeral table, the table
3886 ** is cleared (all content is erased).
3887 **
3888 ** P2 is the number of columns in the ephemeral table.
3889 ** The cursor points to a BTree table if P4==0 and to a BTree index
3890 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3891 ** that defines the format of keys in the index.
3892 **
3893 ** The P5 parameter can be a mask of the BTREE_* flags defined
3894 ** in btree.h.  These flags control aspects of the operation of
3895 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3896 ** added automatically.
3897 */
3898 /* Opcode: OpenAutoindex P1 P2 * P4 *
3899 ** Synopsis: nColumn=P2
3900 **
3901 ** This opcode works the same as OP_OpenEphemeral.  It has a
3902 ** different name to distinguish its use.  Tables created using
3903 ** by this opcode will be used for automatically created transient
3904 ** indices in joins.
3905 */
3906 case OP_OpenAutoindex:
3907 case OP_OpenEphemeral: {
3908   VdbeCursor *pCx;
3909   KeyInfo *pKeyInfo;
3910 
3911   static const int vfsFlags =
3912       SQLITE_OPEN_READWRITE |
3913       SQLITE_OPEN_CREATE |
3914       SQLITE_OPEN_EXCLUSIVE |
3915       SQLITE_OPEN_DELETEONCLOSE |
3916       SQLITE_OPEN_TRANSIENT_DB;
3917   assert( pOp->p1>=0 );
3918   assert( pOp->p2>=0 );
3919   pCx = p->apCsr[pOp->p1];
3920   if( pCx ){
3921     /* If the ephermeral table is already open, erase all existing content
3922     ** so that the table is empty again, rather than creating a new table. */
3923     assert( pCx->isEphemeral );
3924     pCx->seqCount = 0;
3925     pCx->cacheStatus = CACHE_STALE;
3926     if( pCx->pBtx ){
3927       rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3928     }
3929   }else{
3930     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3931     if( pCx==0 ) goto no_mem;
3932     pCx->isEphemeral = 1;
3933     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3934                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3935                           vfsFlags);
3936     if( rc==SQLITE_OK ){
3937       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3938     }
3939     if( rc==SQLITE_OK ){
3940       /* If a transient index is required, create it by calling
3941       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3942       ** opening it. If a transient table is required, just use the
3943       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3944       */
3945       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3946         assert( pOp->p4type==P4_KEYINFO );
3947         rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3948                                      BTREE_BLOBKEY | pOp->p5);
3949         if( rc==SQLITE_OK ){
3950           assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3951           assert( pKeyInfo->db==db );
3952           assert( pKeyInfo->enc==ENC(db) );
3953           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3954                                   pKeyInfo, pCx->uc.pCursor);
3955         }
3956         pCx->isTable = 0;
3957       }else{
3958         pCx->pgnoRoot = MASTER_ROOT;
3959         rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3960                                 0, pCx->uc.pCursor);
3961         pCx->isTable = 1;
3962       }
3963     }
3964     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3965   }
3966   if( rc ) goto abort_due_to_error;
3967   pCx->nullRow = 1;
3968   break;
3969 }
3970 
3971 /* Opcode: SorterOpen P1 P2 P3 P4 *
3972 **
3973 ** This opcode works like OP_OpenEphemeral except that it opens
3974 ** a transient index that is specifically designed to sort large
3975 ** tables using an external merge-sort algorithm.
3976 **
3977 ** If argument P3 is non-zero, then it indicates that the sorter may
3978 ** assume that a stable sort considering the first P3 fields of each
3979 ** key is sufficient to produce the required results.
3980 */
3981 case OP_SorterOpen: {
3982   VdbeCursor *pCx;
3983 
3984   assert( pOp->p1>=0 );
3985   assert( pOp->p2>=0 );
3986   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3987   if( pCx==0 ) goto no_mem;
3988   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3989   assert( pCx->pKeyInfo->db==db );
3990   assert( pCx->pKeyInfo->enc==ENC(db) );
3991   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3992   if( rc ) goto abort_due_to_error;
3993   break;
3994 }
3995 
3996 /* Opcode: SequenceTest P1 P2 * * *
3997 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3998 **
3999 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4000 ** to P2. Regardless of whether or not the jump is taken, increment the
4001 ** the sequence value.
4002 */
4003 case OP_SequenceTest: {
4004   VdbeCursor *pC;
4005   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4006   pC = p->apCsr[pOp->p1];
4007   assert( isSorter(pC) );
4008   if( (pC->seqCount++)==0 ){
4009     goto jump_to_p2;
4010   }
4011   break;
4012 }
4013 
4014 /* Opcode: OpenPseudo P1 P2 P3 * *
4015 ** Synopsis: P3 columns in r[P2]
4016 **
4017 ** Open a new cursor that points to a fake table that contains a single
4018 ** row of data.  The content of that one row is the content of memory
4019 ** register P2.  In other words, cursor P1 becomes an alias for the
4020 ** MEM_Blob content contained in register P2.
4021 **
4022 ** A pseudo-table created by this opcode is used to hold a single
4023 ** row output from the sorter so that the row can be decomposed into
4024 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4025 ** is the only cursor opcode that works with a pseudo-table.
4026 **
4027 ** P3 is the number of fields in the records that will be stored by
4028 ** the pseudo-table.
4029 */
4030 case OP_OpenPseudo: {
4031   VdbeCursor *pCx;
4032 
4033   assert( pOp->p1>=0 );
4034   assert( pOp->p3>=0 );
4035   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
4036   if( pCx==0 ) goto no_mem;
4037   pCx->nullRow = 1;
4038   pCx->seekResult = pOp->p2;
4039   pCx->isTable = 1;
4040   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4041   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4042   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4043   ** which is a performance optimization */
4044   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4045   assert( pOp->p5==0 );
4046   break;
4047 }
4048 
4049 /* Opcode: Close P1 * * * *
4050 **
4051 ** Close a cursor previously opened as P1.  If P1 is not
4052 ** currently open, this instruction is a no-op.
4053 */
4054 case OP_Close: {
4055   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4056   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4057   p->apCsr[pOp->p1] = 0;
4058   break;
4059 }
4060 
4061 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4062 /* Opcode: ColumnsUsed P1 * * P4 *
4063 **
4064 ** This opcode (which only exists if SQLite was compiled with
4065 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4066 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4067 ** (P4_INT64) in which the first 63 bits are one for each of the
4068 ** first 63 columns of the table or index that are actually used
4069 ** by the cursor.  The high-order bit is set if any column after
4070 ** the 64th is used.
4071 */
4072 case OP_ColumnsUsed: {
4073   VdbeCursor *pC;
4074   pC = p->apCsr[pOp->p1];
4075   assert( pC->eCurType==CURTYPE_BTREE );
4076   pC->maskUsed = *(u64*)pOp->p4.pI64;
4077   break;
4078 }
4079 #endif
4080 
4081 /* Opcode: SeekGE P1 P2 P3 P4 *
4082 ** Synopsis: key=r[P3@P4]
4083 **
4084 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4085 ** use the value in register P3 as the key.  If cursor P1 refers
4086 ** to an SQL index, then P3 is the first in an array of P4 registers
4087 ** that are used as an unpacked index key.
4088 **
4089 ** Reposition cursor P1 so that  it points to the smallest entry that
4090 ** is greater than or equal to the key value. If there are no records
4091 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4092 **
4093 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4094 ** opcode will always land on a record that equally equals the key, or
4095 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4096 ** opcode must be followed by an IdxLE opcode with the same arguments.
4097 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
4098 ** IdxLE opcode will be used on subsequent loop iterations.
4099 **
4100 ** This opcode leaves the cursor configured to move in forward order,
4101 ** from the beginning toward the end.  In other words, the cursor is
4102 ** configured to use Next, not Prev.
4103 **
4104 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4105 */
4106 /* Opcode: SeekGT P1 P2 P3 P4 *
4107 ** Synopsis: key=r[P3@P4]
4108 **
4109 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4110 ** use the value in register P3 as a key. If cursor P1 refers
4111 ** to an SQL index, then P3 is the first in an array of P4 registers
4112 ** that are used as an unpacked index key.
4113 **
4114 ** Reposition cursor P1 so that  it points to the smallest entry that
4115 ** is greater than the key value. If there are no records greater than
4116 ** the key and P2 is not zero, then jump to P2.
4117 **
4118 ** This opcode leaves the cursor configured to move in forward order,
4119 ** from the beginning toward the end.  In other words, the cursor is
4120 ** configured to use Next, not Prev.
4121 **
4122 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4123 */
4124 /* Opcode: SeekLT P1 P2 P3 P4 *
4125 ** Synopsis: key=r[P3@P4]
4126 **
4127 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4128 ** use the value in register P3 as a key. If cursor P1 refers
4129 ** to an SQL index, then P3 is the first in an array of P4 registers
4130 ** that are used as an unpacked index key.
4131 **
4132 ** Reposition cursor P1 so that  it points to the largest entry that
4133 ** is less than the key value. If there are no records less than
4134 ** the key and P2 is not zero, then jump to P2.
4135 **
4136 ** This opcode leaves the cursor configured to move in reverse order,
4137 ** from the end toward the beginning.  In other words, the cursor is
4138 ** configured to use Prev, not Next.
4139 **
4140 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4141 */
4142 /* Opcode: SeekLE P1 P2 P3 P4 *
4143 ** Synopsis: key=r[P3@P4]
4144 **
4145 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4146 ** use the value in register P3 as a key. If cursor P1 refers
4147 ** to an SQL index, then P3 is the first in an array of P4 registers
4148 ** that are used as an unpacked index key.
4149 **
4150 ** Reposition cursor P1 so that it points to the largest entry that
4151 ** is less than or equal to the key value. If there are no records
4152 ** less than or equal to the key and P2 is not zero, then jump to P2.
4153 **
4154 ** This opcode leaves the cursor configured to move in reverse order,
4155 ** from the end toward the beginning.  In other words, the cursor is
4156 ** configured to use Prev, not Next.
4157 **
4158 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4159 ** opcode will always land on a record that equally equals the key, or
4160 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
4161 ** opcode must be followed by an IdxGE opcode with the same arguments.
4162 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4163 ** IdxGE opcode will be used on subsequent loop iterations.
4164 **
4165 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4166 */
4167 case OP_SeekLT:         /* jump, in3, group */
4168 case OP_SeekLE:         /* jump, in3, group */
4169 case OP_SeekGE:         /* jump, in3, group */
4170 case OP_SeekGT: {       /* jump, in3, group */
4171   int res;           /* Comparison result */
4172   int oc;            /* Opcode */
4173   VdbeCursor *pC;    /* The cursor to seek */
4174   UnpackedRecord r;  /* The key to seek for */
4175   int nField;        /* Number of columns or fields in the key */
4176   i64 iKey;          /* The rowid we are to seek to */
4177   int eqOnly;        /* Only interested in == results */
4178 
4179   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4180   assert( pOp->p2!=0 );
4181   pC = p->apCsr[pOp->p1];
4182   assert( pC!=0 );
4183   assert( pC->eCurType==CURTYPE_BTREE );
4184   assert( OP_SeekLE == OP_SeekLT+1 );
4185   assert( OP_SeekGE == OP_SeekLT+2 );
4186   assert( OP_SeekGT == OP_SeekLT+3 );
4187   assert( pC->isOrdered );
4188   assert( pC->uc.pCursor!=0 );
4189   oc = pOp->opcode;
4190   eqOnly = 0;
4191   pC->nullRow = 0;
4192 #ifdef SQLITE_DEBUG
4193   pC->seekOp = pOp->opcode;
4194 #endif
4195 
4196   pC->deferredMoveto = 0;
4197   pC->cacheStatus = CACHE_STALE;
4198   if( pC->isTable ){
4199     u16 flags3, newType;
4200     /* The BTREE_SEEK_EQ flag is only set on index cursors */
4201     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4202               || CORRUPT_DB );
4203 
4204     /* The input value in P3 might be of any type: integer, real, string,
4205     ** blob, or NULL.  But it needs to be an integer before we can do
4206     ** the seek, so convert it. */
4207     pIn3 = &aMem[pOp->p3];
4208     flags3 = pIn3->flags;
4209     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4210       applyNumericAffinity(pIn3, 0);
4211     }
4212     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4213     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4214     pIn3->flags = flags3;  /* But convert the type back to its original */
4215 
4216     /* If the P3 value could not be converted into an integer without
4217     ** loss of information, then special processing is required... */
4218     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4219       if( (newType & MEM_Real)==0 ){
4220         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4221           VdbeBranchTaken(1,2);
4222           goto jump_to_p2;
4223         }else{
4224           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4225           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4226           goto seek_not_found;
4227         }
4228       }else
4229 
4230       /* If the approximation iKey is larger than the actual real search
4231       ** term, substitute >= for > and < for <=. e.g. if the search term
4232       ** is 4.9 and the integer approximation 5:
4233       **
4234       **        (x >  4.9)    ->     (x >= 5)
4235       **        (x <= 4.9)    ->     (x <  5)
4236       */
4237       if( pIn3->u.r<(double)iKey ){
4238         assert( OP_SeekGE==(OP_SeekGT-1) );
4239         assert( OP_SeekLT==(OP_SeekLE-1) );
4240         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4241         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4242       }
4243 
4244       /* If the approximation iKey is smaller than the actual real search
4245       ** term, substitute <= for < and > for >=.  */
4246       else if( pIn3->u.r>(double)iKey ){
4247         assert( OP_SeekLE==(OP_SeekLT+1) );
4248         assert( OP_SeekGT==(OP_SeekGE+1) );
4249         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4250         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4251       }
4252     }
4253     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4254     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4255     if( rc!=SQLITE_OK ){
4256       goto abort_due_to_error;
4257     }
4258   }else{
4259     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
4260     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
4261     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
4262     */
4263     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4264       eqOnly = 1;
4265       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4266       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4267       assert( pOp[1].p1==pOp[0].p1 );
4268       assert( pOp[1].p2==pOp[0].p2 );
4269       assert( pOp[1].p3==pOp[0].p3 );
4270       assert( pOp[1].p4.i==pOp[0].p4.i );
4271     }
4272 
4273     nField = pOp->p4.i;
4274     assert( pOp->p4type==P4_INT32 );
4275     assert( nField>0 );
4276     r.pKeyInfo = pC->pKeyInfo;
4277     r.nField = (u16)nField;
4278 
4279     /* The next line of code computes as follows, only faster:
4280     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4281     **     r.default_rc = -1;
4282     **   }else{
4283     **     r.default_rc = +1;
4284     **   }
4285     */
4286     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4287     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4288     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4289     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4290     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4291 
4292     r.aMem = &aMem[pOp->p3];
4293 #ifdef SQLITE_DEBUG
4294     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4295 #endif
4296     r.eqSeen = 0;
4297     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4298     if( rc!=SQLITE_OK ){
4299       goto abort_due_to_error;
4300     }
4301     if( eqOnly && r.eqSeen==0 ){
4302       assert( res!=0 );
4303       goto seek_not_found;
4304     }
4305   }
4306 #ifdef SQLITE_TEST
4307   sqlite3_search_count++;
4308 #endif
4309   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4310     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4311       res = 0;
4312       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4313       if( rc!=SQLITE_OK ){
4314         if( rc==SQLITE_DONE ){
4315           rc = SQLITE_OK;
4316           res = 1;
4317         }else{
4318           goto abort_due_to_error;
4319         }
4320       }
4321     }else{
4322       res = 0;
4323     }
4324   }else{
4325     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4326     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4327       res = 0;
4328       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4329       if( rc!=SQLITE_OK ){
4330         if( rc==SQLITE_DONE ){
4331           rc = SQLITE_OK;
4332           res = 1;
4333         }else{
4334           goto abort_due_to_error;
4335         }
4336       }
4337     }else{
4338       /* res might be negative because the table is empty.  Check to
4339       ** see if this is the case.
4340       */
4341       res = sqlite3BtreeEof(pC->uc.pCursor);
4342     }
4343   }
4344 seek_not_found:
4345   assert( pOp->p2>0 );
4346   VdbeBranchTaken(res!=0,2);
4347   if( res ){
4348     goto jump_to_p2;
4349   }else if( eqOnly ){
4350     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4351     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4352   }
4353   break;
4354 }
4355 
4356 /* Opcode: SeekHit P1 P2 * * *
4357 ** Synopsis: seekHit=P2
4358 **
4359 ** Set the seekHit flag on cursor P1 to the value in P2.
4360 * The seekHit flag is used by the IfNoHope opcode.
4361 **
4362 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4363 ** either 0 or 1.
4364 */
4365 case OP_SeekHit: {
4366   VdbeCursor *pC;
4367   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4368   pC = p->apCsr[pOp->p1];
4369   assert( pC!=0 );
4370   assert( pOp->p2==0 || pOp->p2==1 );
4371   pC->seekHit = pOp->p2 & 1;
4372   break;
4373 }
4374 
4375 /* Opcode: IfNotOpen P1 P2 * * *
4376 ** Synopsis: if( !csr[P1] ) goto P2
4377 **
4378 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4379 */
4380 case OP_IfNotOpen: {        /* jump */
4381   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4382   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4383   if( !p->apCsr[pOp->p1] ){
4384     goto jump_to_p2_and_check_for_interrupt;
4385   }
4386   break;
4387 }
4388 
4389 /* Opcode: Found P1 P2 P3 P4 *
4390 ** Synopsis: key=r[P3@P4]
4391 **
4392 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4393 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4394 ** record.
4395 **
4396 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4397 ** is a prefix of any entry in P1 then a jump is made to P2 and
4398 ** P1 is left pointing at the matching entry.
4399 **
4400 ** This operation leaves the cursor in a state where it can be
4401 ** advanced in the forward direction.  The Next instruction will work,
4402 ** but not the Prev instruction.
4403 **
4404 ** See also: NotFound, NoConflict, NotExists. SeekGe
4405 */
4406 /* Opcode: NotFound P1 P2 P3 P4 *
4407 ** Synopsis: key=r[P3@P4]
4408 **
4409 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4410 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4411 ** record.
4412 **
4413 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4414 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4415 ** does contain an entry whose prefix matches the P3/P4 record then control
4416 ** falls through to the next instruction and P1 is left pointing at the
4417 ** matching entry.
4418 **
4419 ** This operation leaves the cursor in a state where it cannot be
4420 ** advanced in either direction.  In other words, the Next and Prev
4421 ** opcodes do not work after this operation.
4422 **
4423 ** See also: Found, NotExists, NoConflict, IfNoHope
4424 */
4425 /* Opcode: IfNoHope P1 P2 P3 P4 *
4426 ** Synopsis: key=r[P3@P4]
4427 **
4428 ** Register P3 is the first of P4 registers that form an unpacked
4429 ** record.
4430 **
4431 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4432 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4433 ** check to see if there is any entry in P1 that matches the
4434 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4435 ** jump to P2.  Otherwise fall through.
4436 **
4437 ** This opcode behaves like OP_NotFound if the seekHit
4438 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4439 **
4440 ** This opcode is used in IN clause processing for a multi-column key.
4441 ** If an IN clause is attached to an element of the key other than the
4442 ** left-most element, and if there are no matches on the most recent
4443 ** seek over the whole key, then it might be that one of the key element
4444 ** to the left is prohibiting a match, and hence there is "no hope" of
4445 ** any match regardless of how many IN clause elements are checked.
4446 ** In such a case, we abandon the IN clause search early, using this
4447 ** opcode.  The opcode name comes from the fact that the
4448 ** jump is taken if there is "no hope" of achieving a match.
4449 **
4450 ** See also: NotFound, SeekHit
4451 */
4452 /* Opcode: NoConflict P1 P2 P3 P4 *
4453 ** Synopsis: key=r[P3@P4]
4454 **
4455 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4456 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4457 ** record.
4458 **
4459 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4460 ** contains any NULL value, jump immediately to P2.  If all terms of the
4461 ** record are not-NULL then a check is done to determine if any row in the
4462 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4463 ** immediately to P2.  If there is a match, fall through and leave the P1
4464 ** cursor pointing to the matching row.
4465 **
4466 ** This opcode is similar to OP_NotFound with the exceptions that the
4467 ** branch is always taken if any part of the search key input is NULL.
4468 **
4469 ** This operation leaves the cursor in a state where it cannot be
4470 ** advanced in either direction.  In other words, the Next and Prev
4471 ** opcodes do not work after this operation.
4472 **
4473 ** See also: NotFound, Found, NotExists
4474 */
4475 case OP_IfNoHope: {     /* jump, in3 */
4476   VdbeCursor *pC;
4477   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4478   pC = p->apCsr[pOp->p1];
4479   assert( pC!=0 );
4480   if( pC->seekHit ) break;
4481   /* Fall through into OP_NotFound */
4482 }
4483 case OP_NoConflict:     /* jump, in3 */
4484 case OP_NotFound:       /* jump, in3 */
4485 case OP_Found: {        /* jump, in3 */
4486   int alreadyExists;
4487   int takeJump;
4488   int ii;
4489   VdbeCursor *pC;
4490   int res;
4491   UnpackedRecord *pFree;
4492   UnpackedRecord *pIdxKey;
4493   UnpackedRecord r;
4494 
4495 #ifdef SQLITE_TEST
4496   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4497 #endif
4498 
4499   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4500   assert( pOp->p4type==P4_INT32 );
4501   pC = p->apCsr[pOp->p1];
4502   assert( pC!=0 );
4503 #ifdef SQLITE_DEBUG
4504   pC->seekOp = pOp->opcode;
4505 #endif
4506   pIn3 = &aMem[pOp->p3];
4507   assert( pC->eCurType==CURTYPE_BTREE );
4508   assert( pC->uc.pCursor!=0 );
4509   assert( pC->isTable==0 );
4510   if( pOp->p4.i>0 ){
4511     r.pKeyInfo = pC->pKeyInfo;
4512     r.nField = (u16)pOp->p4.i;
4513     r.aMem = pIn3;
4514 #ifdef SQLITE_DEBUG
4515     for(ii=0; ii<r.nField; ii++){
4516       assert( memIsValid(&r.aMem[ii]) );
4517       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4518       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4519     }
4520 #endif
4521     pIdxKey = &r;
4522     pFree = 0;
4523   }else{
4524     assert( pIn3->flags & MEM_Blob );
4525     rc = ExpandBlob(pIn3);
4526     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4527     if( rc ) goto no_mem;
4528     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4529     if( pIdxKey==0 ) goto no_mem;
4530     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4531   }
4532   pIdxKey->default_rc = 0;
4533   takeJump = 0;
4534   if( pOp->opcode==OP_NoConflict ){
4535     /* For the OP_NoConflict opcode, take the jump if any of the
4536     ** input fields are NULL, since any key with a NULL will not
4537     ** conflict */
4538     for(ii=0; ii<pIdxKey->nField; ii++){
4539       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4540         takeJump = 1;
4541         break;
4542       }
4543     }
4544   }
4545   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4546   if( pFree ) sqlite3DbFreeNN(db, pFree);
4547   if( rc!=SQLITE_OK ){
4548     goto abort_due_to_error;
4549   }
4550   pC->seekResult = res;
4551   alreadyExists = (res==0);
4552   pC->nullRow = 1-alreadyExists;
4553   pC->deferredMoveto = 0;
4554   pC->cacheStatus = CACHE_STALE;
4555   if( pOp->opcode==OP_Found ){
4556     VdbeBranchTaken(alreadyExists!=0,2);
4557     if( alreadyExists ) goto jump_to_p2;
4558   }else{
4559     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4560     if( takeJump || !alreadyExists ) goto jump_to_p2;
4561   }
4562   break;
4563 }
4564 
4565 /* Opcode: SeekRowid P1 P2 P3 * *
4566 ** Synopsis: intkey=r[P3]
4567 **
4568 ** P1 is the index of a cursor open on an SQL table btree (with integer
4569 ** keys).  If register P3 does not contain an integer or if P1 does not
4570 ** contain a record with rowid P3 then jump immediately to P2.
4571 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4572 ** a record with rowid P3 then
4573 ** leave the cursor pointing at that record and fall through to the next
4574 ** instruction.
4575 **
4576 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4577 ** the P3 register must be guaranteed to contain an integer value.  With this
4578 ** opcode, register P3 might not contain an integer.
4579 **
4580 ** The OP_NotFound opcode performs the same operation on index btrees
4581 ** (with arbitrary multi-value keys).
4582 **
4583 ** This opcode leaves the cursor in a state where it cannot be advanced
4584 ** in either direction.  In other words, the Next and Prev opcodes will
4585 ** not work following this opcode.
4586 **
4587 ** See also: Found, NotFound, NoConflict, SeekRowid
4588 */
4589 /* Opcode: NotExists P1 P2 P3 * *
4590 ** Synopsis: intkey=r[P3]
4591 **
4592 ** P1 is the index of a cursor open on an SQL table btree (with integer
4593 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4594 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4595 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4596 ** leave the cursor pointing at that record and fall through to the next
4597 ** instruction.
4598 **
4599 ** The OP_SeekRowid opcode performs the same operation but also allows the
4600 ** P3 register to contain a non-integer value, in which case the jump is
4601 ** always taken.  This opcode requires that P3 always contain an integer.
4602 **
4603 ** The OP_NotFound opcode performs the same operation on index btrees
4604 ** (with arbitrary multi-value keys).
4605 **
4606 ** This opcode leaves the cursor in a state where it cannot be advanced
4607 ** in either direction.  In other words, the Next and Prev opcodes will
4608 ** not work following this opcode.
4609 **
4610 ** See also: Found, NotFound, NoConflict, SeekRowid
4611 */
4612 case OP_SeekRowid: {        /* jump, in3 */
4613   VdbeCursor *pC;
4614   BtCursor *pCrsr;
4615   int res;
4616   u64 iKey;
4617 
4618   pIn3 = &aMem[pOp->p3];
4619   testcase( pIn3->flags & MEM_Int );
4620   testcase( pIn3->flags & MEM_IntReal );
4621   testcase( pIn3->flags & MEM_Real );
4622   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
4623   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4624     /* If pIn3->u.i does not contain an integer, compute iKey as the
4625     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
4626     ** into an integer without loss of information.  Take care to avoid
4627     ** changing the datatype of pIn3, however, as it is used by other
4628     ** parts of the prepared statement. */
4629     Mem x = pIn3[0];
4630     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4631     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4632     iKey = x.u.i;
4633     goto notExistsWithKey;
4634   }
4635   /* Fall through into OP_NotExists */
4636 case OP_NotExists:          /* jump, in3 */
4637   pIn3 = &aMem[pOp->p3];
4638   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4639   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4640   iKey = pIn3->u.i;
4641 notExistsWithKey:
4642   pC = p->apCsr[pOp->p1];
4643   assert( pC!=0 );
4644 #ifdef SQLITE_DEBUG
4645   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4646 #endif
4647   assert( pC->isTable );
4648   assert( pC->eCurType==CURTYPE_BTREE );
4649   pCrsr = pC->uc.pCursor;
4650   assert( pCrsr!=0 );
4651   res = 0;
4652   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4653   assert( rc==SQLITE_OK || res==0 );
4654   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4655   pC->nullRow = 0;
4656   pC->cacheStatus = CACHE_STALE;
4657   pC->deferredMoveto = 0;
4658   VdbeBranchTaken(res!=0,2);
4659   pC->seekResult = res;
4660   if( res!=0 ){
4661     assert( rc==SQLITE_OK );
4662     if( pOp->p2==0 ){
4663       rc = SQLITE_CORRUPT_BKPT;
4664     }else{
4665       goto jump_to_p2;
4666     }
4667   }
4668   if( rc ) goto abort_due_to_error;
4669   break;
4670 }
4671 
4672 /* Opcode: Sequence P1 P2 * * *
4673 ** Synopsis: r[P2]=cursor[P1].ctr++
4674 **
4675 ** Find the next available sequence number for cursor P1.
4676 ** Write the sequence number into register P2.
4677 ** The sequence number on the cursor is incremented after this
4678 ** instruction.
4679 */
4680 case OP_Sequence: {           /* out2 */
4681   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4682   assert( p->apCsr[pOp->p1]!=0 );
4683   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4684   pOut = out2Prerelease(p, pOp);
4685   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4686   break;
4687 }
4688 
4689 
4690 /* Opcode: NewRowid P1 P2 P3 * *
4691 ** Synopsis: r[P2]=rowid
4692 **
4693 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4694 ** The record number is not previously used as a key in the database
4695 ** table that cursor P1 points to.  The new record number is written
4696 ** written to register P2.
4697 **
4698 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4699 ** the largest previously generated record number. No new record numbers are
4700 ** allowed to be less than this value. When this value reaches its maximum,
4701 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4702 ** generated record number. This P3 mechanism is used to help implement the
4703 ** AUTOINCREMENT feature.
4704 */
4705 case OP_NewRowid: {           /* out2 */
4706   i64 v;                 /* The new rowid */
4707   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4708   int res;               /* Result of an sqlite3BtreeLast() */
4709   int cnt;               /* Counter to limit the number of searches */
4710   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4711   VdbeFrame *pFrame;     /* Root frame of VDBE */
4712 
4713   v = 0;
4714   res = 0;
4715   pOut = out2Prerelease(p, pOp);
4716   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4717   pC = p->apCsr[pOp->p1];
4718   assert( pC!=0 );
4719   assert( pC->isTable );
4720   assert( pC->eCurType==CURTYPE_BTREE );
4721   assert( pC->uc.pCursor!=0 );
4722   {
4723     /* The next rowid or record number (different terms for the same
4724     ** thing) is obtained in a two-step algorithm.
4725     **
4726     ** First we attempt to find the largest existing rowid and add one
4727     ** to that.  But if the largest existing rowid is already the maximum
4728     ** positive integer, we have to fall through to the second
4729     ** probabilistic algorithm
4730     **
4731     ** The second algorithm is to select a rowid at random and see if
4732     ** it already exists in the table.  If it does not exist, we have
4733     ** succeeded.  If the random rowid does exist, we select a new one
4734     ** and try again, up to 100 times.
4735     */
4736     assert( pC->isTable );
4737 
4738 #ifdef SQLITE_32BIT_ROWID
4739 #   define MAX_ROWID 0x7fffffff
4740 #else
4741     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4742     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4743     ** to provide the constant while making all compilers happy.
4744     */
4745 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4746 #endif
4747 
4748     if( !pC->useRandomRowid ){
4749       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4750       if( rc!=SQLITE_OK ){
4751         goto abort_due_to_error;
4752       }
4753       if( res ){
4754         v = 1;   /* IMP: R-61914-48074 */
4755       }else{
4756         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4757         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4758         if( v>=MAX_ROWID ){
4759           pC->useRandomRowid = 1;
4760         }else{
4761           v++;   /* IMP: R-29538-34987 */
4762         }
4763       }
4764     }
4765 
4766 #ifndef SQLITE_OMIT_AUTOINCREMENT
4767     if( pOp->p3 ){
4768       /* Assert that P3 is a valid memory cell. */
4769       assert( pOp->p3>0 );
4770       if( p->pFrame ){
4771         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4772         /* Assert that P3 is a valid memory cell. */
4773         assert( pOp->p3<=pFrame->nMem );
4774         pMem = &pFrame->aMem[pOp->p3];
4775       }else{
4776         /* Assert that P3 is a valid memory cell. */
4777         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4778         pMem = &aMem[pOp->p3];
4779         memAboutToChange(p, pMem);
4780       }
4781       assert( memIsValid(pMem) );
4782 
4783       REGISTER_TRACE(pOp->p3, pMem);
4784       sqlite3VdbeMemIntegerify(pMem);
4785       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4786       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4787         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4788         goto abort_due_to_error;
4789       }
4790       if( v<pMem->u.i+1 ){
4791         v = pMem->u.i + 1;
4792       }
4793       pMem->u.i = v;
4794     }
4795 #endif
4796     if( pC->useRandomRowid ){
4797       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4798       ** largest possible integer (9223372036854775807) then the database
4799       ** engine starts picking positive candidate ROWIDs at random until
4800       ** it finds one that is not previously used. */
4801       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4802                              ** an AUTOINCREMENT table. */
4803       cnt = 0;
4804       do{
4805         sqlite3_randomness(sizeof(v), &v);
4806         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4807       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4808                                                  0, &res))==SQLITE_OK)
4809             && (res==0)
4810             && (++cnt<100));
4811       if( rc ) goto abort_due_to_error;
4812       if( res==0 ){
4813         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4814         goto abort_due_to_error;
4815       }
4816       assert( v>0 );  /* EV: R-40812-03570 */
4817     }
4818     pC->deferredMoveto = 0;
4819     pC->cacheStatus = CACHE_STALE;
4820   }
4821   pOut->u.i = v;
4822   break;
4823 }
4824 
4825 /* Opcode: Insert P1 P2 P3 P4 P5
4826 ** Synopsis: intkey=r[P3] data=r[P2]
4827 **
4828 ** Write an entry into the table of cursor P1.  A new entry is
4829 ** created if it doesn't already exist or the data for an existing
4830 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4831 ** number P2. The key is stored in register P3. The key must
4832 ** be a MEM_Int.
4833 **
4834 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4835 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4836 ** then rowid is stored for subsequent return by the
4837 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4838 **
4839 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4840 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4841 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4842 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4843 **
4844 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4845 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4846 ** is part of an INSERT operation.  The difference is only important to
4847 ** the update hook.
4848 **
4849 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4850 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4851 ** following a successful insert.
4852 **
4853 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4854 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4855 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4856 ** value of register P2 will then change.  Make sure this does not
4857 ** cause any problems.)
4858 **
4859 ** This instruction only works on tables.  The equivalent instruction
4860 ** for indices is OP_IdxInsert.
4861 */
4862 case OP_Insert: {
4863   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4864   Mem *pKey;        /* MEM cell holding key  for the record */
4865   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4866   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4867   const char *zDb;  /* database name - used by the update hook */
4868   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4869   BtreePayload x;   /* Payload to be inserted */
4870 
4871   pData = &aMem[pOp->p2];
4872   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4873   assert( memIsValid(pData) );
4874   pC = p->apCsr[pOp->p1];
4875   assert( pC!=0 );
4876   assert( pC->eCurType==CURTYPE_BTREE );
4877   assert( pC->deferredMoveto==0 );
4878   assert( pC->uc.pCursor!=0 );
4879   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4880   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4881   REGISTER_TRACE(pOp->p2, pData);
4882   sqlite3VdbeIncrWriteCounter(p, pC);
4883 
4884   pKey = &aMem[pOp->p3];
4885   assert( pKey->flags & MEM_Int );
4886   assert( memIsValid(pKey) );
4887   REGISTER_TRACE(pOp->p3, pKey);
4888   x.nKey = pKey->u.i;
4889 
4890   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4891     assert( pC->iDb>=0 );
4892     zDb = db->aDb[pC->iDb].zDbSName;
4893     pTab = pOp->p4.pTab;
4894     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4895   }else{
4896     pTab = 0;
4897     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4898   }
4899 
4900 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4901   /* Invoke the pre-update hook, if any */
4902   if( pTab ){
4903     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4904       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4905     }
4906     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4907       /* Prevent post-update hook from running in cases when it should not */
4908       pTab = 0;
4909     }
4910   }
4911   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4912 #endif
4913 
4914   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4915   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4916   assert( pData->flags & (MEM_Blob|MEM_Str) );
4917   x.pData = pData->z;
4918   x.nData = pData->n;
4919   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4920   if( pData->flags & MEM_Zero ){
4921     x.nZero = pData->u.nZero;
4922   }else{
4923     x.nZero = 0;
4924   }
4925   x.pKey = 0;
4926   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4927       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4928   );
4929   pC->deferredMoveto = 0;
4930   pC->cacheStatus = CACHE_STALE;
4931 
4932   /* Invoke the update-hook if required. */
4933   if( rc ) goto abort_due_to_error;
4934   if( pTab ){
4935     assert( db->xUpdateCallback!=0 );
4936     assert( pTab->aCol!=0 );
4937     db->xUpdateCallback(db->pUpdateArg,
4938            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4939            zDb, pTab->zName, x.nKey);
4940   }
4941   break;
4942 }
4943 
4944 /* Opcode: Delete P1 P2 P3 P4 P5
4945 **
4946 ** Delete the record at which the P1 cursor is currently pointing.
4947 **
4948 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4949 ** the cursor will be left pointing at  either the next or the previous
4950 ** record in the table. If it is left pointing at the next record, then
4951 ** the next Next instruction will be a no-op. As a result, in this case
4952 ** it is ok to delete a record from within a Next loop. If
4953 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4954 ** left in an undefined state.
4955 **
4956 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4957 ** delete one of several associated with deleting a table row and all its
4958 ** associated index entries.  Exactly one of those deletes is the "primary"
4959 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4960 ** marked with the AUXDELETE flag.
4961 **
4962 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4963 ** change count is incremented (otherwise not).
4964 **
4965 ** P1 must not be pseudo-table.  It has to be a real table with
4966 ** multiple rows.
4967 **
4968 ** If P4 is not NULL then it points to a Table object. In this case either
4969 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4970 ** have been positioned using OP_NotFound prior to invoking this opcode in
4971 ** this case. Specifically, if one is configured, the pre-update hook is
4972 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4973 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4974 **
4975 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4976 ** of the memory cell that contains the value that the rowid of the row will
4977 ** be set to by the update.
4978 */
4979 case OP_Delete: {
4980   VdbeCursor *pC;
4981   const char *zDb;
4982   Table *pTab;
4983   int opflags;
4984 
4985   opflags = pOp->p2;
4986   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4987   pC = p->apCsr[pOp->p1];
4988   assert( pC!=0 );
4989   assert( pC->eCurType==CURTYPE_BTREE );
4990   assert( pC->uc.pCursor!=0 );
4991   assert( pC->deferredMoveto==0 );
4992   sqlite3VdbeIncrWriteCounter(p, pC);
4993 
4994 #ifdef SQLITE_DEBUG
4995   if( pOp->p4type==P4_TABLE
4996    && HasRowid(pOp->p4.pTab)
4997    && pOp->p5==0
4998    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
4999   ){
5000     /* If p5 is zero, the seek operation that positioned the cursor prior to
5001     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5002     ** the row that is being deleted */
5003     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5004     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5005   }
5006 #endif
5007 
5008   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5009   ** the name of the db to pass as to it. Also set local pTab to a copy
5010   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5011   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5012   ** VdbeCursor.movetoTarget to the current rowid.  */
5013   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5014     assert( pC->iDb>=0 );
5015     assert( pOp->p4.pTab!=0 );
5016     zDb = db->aDb[pC->iDb].zDbSName;
5017     pTab = pOp->p4.pTab;
5018     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5019       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5020     }
5021   }else{
5022     zDb = 0;   /* Not needed.  Silence a compiler warning. */
5023     pTab = 0;  /* Not needed.  Silence a compiler warning. */
5024   }
5025 
5026 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5027   /* Invoke the pre-update-hook if required. */
5028   if( db->xPreUpdateCallback && pOp->p4.pTab ){
5029     assert( !(opflags & OPFLAG_ISUPDATE)
5030          || HasRowid(pTab)==0
5031          || (aMem[pOp->p3].flags & MEM_Int)
5032     );
5033     sqlite3VdbePreUpdateHook(p, pC,
5034         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5035         zDb, pTab, pC->movetoTarget,
5036         pOp->p3
5037     );
5038   }
5039   if( opflags & OPFLAG_ISNOOP ) break;
5040 #endif
5041 
5042   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5043   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5044   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5045   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5046 
5047 #ifdef SQLITE_DEBUG
5048   if( p->pFrame==0 ){
5049     if( pC->isEphemeral==0
5050         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5051         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5052       ){
5053       nExtraDelete++;
5054     }
5055     if( pOp->p2 & OPFLAG_NCHANGE ){
5056       nExtraDelete--;
5057     }
5058   }
5059 #endif
5060 
5061   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5062   pC->cacheStatus = CACHE_STALE;
5063   pC->seekResult = 0;
5064   if( rc ) goto abort_due_to_error;
5065 
5066   /* Invoke the update-hook if required. */
5067   if( opflags & OPFLAG_NCHANGE ){
5068     p->nChange++;
5069     if( db->xUpdateCallback && HasRowid(pTab) ){
5070       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5071           pC->movetoTarget);
5072       assert( pC->iDb>=0 );
5073     }
5074   }
5075 
5076   break;
5077 }
5078 /* Opcode: ResetCount * * * * *
5079 **
5080 ** The value of the change counter is copied to the database handle
5081 ** change counter (returned by subsequent calls to sqlite3_changes()).
5082 ** Then the VMs internal change counter resets to 0.
5083 ** This is used by trigger programs.
5084 */
5085 case OP_ResetCount: {
5086   sqlite3VdbeSetChanges(db, p->nChange);
5087   p->nChange = 0;
5088   break;
5089 }
5090 
5091 /* Opcode: SorterCompare P1 P2 P3 P4
5092 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5093 **
5094 ** P1 is a sorter cursor. This instruction compares a prefix of the
5095 ** record blob in register P3 against a prefix of the entry that
5096 ** the sorter cursor currently points to.  Only the first P4 fields
5097 ** of r[P3] and the sorter record are compared.
5098 **
5099 ** If either P3 or the sorter contains a NULL in one of their significant
5100 ** fields (not counting the P4 fields at the end which are ignored) then
5101 ** the comparison is assumed to be equal.
5102 **
5103 ** Fall through to next instruction if the two records compare equal to
5104 ** each other.  Jump to P2 if they are different.
5105 */
5106 case OP_SorterCompare: {
5107   VdbeCursor *pC;
5108   int res;
5109   int nKeyCol;
5110 
5111   pC = p->apCsr[pOp->p1];
5112   assert( isSorter(pC) );
5113   assert( pOp->p4type==P4_INT32 );
5114   pIn3 = &aMem[pOp->p3];
5115   nKeyCol = pOp->p4.i;
5116   res = 0;
5117   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5118   VdbeBranchTaken(res!=0,2);
5119   if( rc ) goto abort_due_to_error;
5120   if( res ) goto jump_to_p2;
5121   break;
5122 };
5123 
5124 /* Opcode: SorterData P1 P2 P3 * *
5125 ** Synopsis: r[P2]=data
5126 **
5127 ** Write into register P2 the current sorter data for sorter cursor P1.
5128 ** Then clear the column header cache on cursor P3.
5129 **
5130 ** This opcode is normally use to move a record out of the sorter and into
5131 ** a register that is the source for a pseudo-table cursor created using
5132 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5133 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5134 ** us from having to issue a separate NullRow instruction to clear that cache.
5135 */
5136 case OP_SorterData: {
5137   VdbeCursor *pC;
5138 
5139   pOut = &aMem[pOp->p2];
5140   pC = p->apCsr[pOp->p1];
5141   assert( isSorter(pC) );
5142   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5143   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5144   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5145   if( rc ) goto abort_due_to_error;
5146   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5147   break;
5148 }
5149 
5150 /* Opcode: RowData P1 P2 P3 * *
5151 ** Synopsis: r[P2]=data
5152 **
5153 ** Write into register P2 the complete row content for the row at
5154 ** which cursor P1 is currently pointing.
5155 ** There is no interpretation of the data.
5156 ** It is just copied onto the P2 register exactly as
5157 ** it is found in the database file.
5158 **
5159 ** If cursor P1 is an index, then the content is the key of the row.
5160 ** If cursor P2 is a table, then the content extracted is the data.
5161 **
5162 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5163 ** of a real table, not a pseudo-table.
5164 **
5165 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5166 ** into the database page.  That means that the content of the output
5167 ** register will be invalidated as soon as the cursor moves - including
5168 ** moves caused by other cursors that "save" the current cursors
5169 ** position in order that they can write to the same table.  If P3==0
5170 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5171 ** P3==0 is safer.
5172 **
5173 ** If P3!=0 then the content of the P2 register is unsuitable for use
5174 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5175 ** The P2 register content is invalidated by opcodes like OP_Function or
5176 ** by any use of another cursor pointing to the same table.
5177 */
5178 case OP_RowData: {
5179   VdbeCursor *pC;
5180   BtCursor *pCrsr;
5181   u32 n;
5182 
5183   pOut = out2Prerelease(p, pOp);
5184 
5185   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5186   pC = p->apCsr[pOp->p1];
5187   assert( pC!=0 );
5188   assert( pC->eCurType==CURTYPE_BTREE );
5189   assert( isSorter(pC)==0 );
5190   assert( pC->nullRow==0 );
5191   assert( pC->uc.pCursor!=0 );
5192   pCrsr = pC->uc.pCursor;
5193 
5194   /* The OP_RowData opcodes always follow OP_NotExists or
5195   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5196   ** that might invalidate the cursor.
5197   ** If this where not the case, on of the following assert()s
5198   ** would fail.  Should this ever change (because of changes in the code
5199   ** generator) then the fix would be to insert a call to
5200   ** sqlite3VdbeCursorMoveto().
5201   */
5202   assert( pC->deferredMoveto==0 );
5203   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5204 #if 0  /* Not required due to the previous to assert() statements */
5205   rc = sqlite3VdbeCursorMoveto(pC);
5206   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5207 #endif
5208 
5209   n = sqlite3BtreePayloadSize(pCrsr);
5210   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5211     goto too_big;
5212   }
5213   testcase( n==0 );
5214   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
5215   if( rc ) goto abort_due_to_error;
5216   if( !pOp->p3 ) Deephemeralize(pOut);
5217   UPDATE_MAX_BLOBSIZE(pOut);
5218   REGISTER_TRACE(pOp->p2, pOut);
5219   break;
5220 }
5221 
5222 /* Opcode: Rowid P1 P2 * * *
5223 ** Synopsis: r[P2]=rowid
5224 **
5225 ** Store in register P2 an integer which is the key of the table entry that
5226 ** P1 is currently point to.
5227 **
5228 ** P1 can be either an ordinary table or a virtual table.  There used to
5229 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5230 ** one opcode now works for both table types.
5231 */
5232 case OP_Rowid: {                 /* out2 */
5233   VdbeCursor *pC;
5234   i64 v;
5235   sqlite3_vtab *pVtab;
5236   const sqlite3_module *pModule;
5237 
5238   pOut = out2Prerelease(p, pOp);
5239   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5240   pC = p->apCsr[pOp->p1];
5241   assert( pC!=0 );
5242   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5243   if( pC->nullRow ){
5244     pOut->flags = MEM_Null;
5245     break;
5246   }else if( pC->deferredMoveto ){
5247     v = pC->movetoTarget;
5248 #ifndef SQLITE_OMIT_VIRTUALTABLE
5249   }else if( pC->eCurType==CURTYPE_VTAB ){
5250     assert( pC->uc.pVCur!=0 );
5251     pVtab = pC->uc.pVCur->pVtab;
5252     pModule = pVtab->pModule;
5253     assert( pModule->xRowid );
5254     rc = pModule->xRowid(pC->uc.pVCur, &v);
5255     sqlite3VtabImportErrmsg(p, pVtab);
5256     if( rc ) goto abort_due_to_error;
5257 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5258   }else{
5259     assert( pC->eCurType==CURTYPE_BTREE );
5260     assert( pC->uc.pCursor!=0 );
5261     rc = sqlite3VdbeCursorRestore(pC);
5262     if( rc ) goto abort_due_to_error;
5263     if( pC->nullRow ){
5264       pOut->flags = MEM_Null;
5265       break;
5266     }
5267     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5268   }
5269   pOut->u.i = v;
5270   break;
5271 }
5272 
5273 /* Opcode: NullRow P1 * * * *
5274 **
5275 ** Move the cursor P1 to a null row.  Any OP_Column operations
5276 ** that occur while the cursor is on the null row will always
5277 ** write a NULL.
5278 */
5279 case OP_NullRow: {
5280   VdbeCursor *pC;
5281 
5282   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5283   pC = p->apCsr[pOp->p1];
5284   assert( pC!=0 );
5285   pC->nullRow = 1;
5286   pC->cacheStatus = CACHE_STALE;
5287   if( pC->eCurType==CURTYPE_BTREE ){
5288     assert( pC->uc.pCursor!=0 );
5289     sqlite3BtreeClearCursor(pC->uc.pCursor);
5290   }
5291 #ifdef SQLITE_DEBUG
5292   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5293 #endif
5294   break;
5295 }
5296 
5297 /* Opcode: SeekEnd P1 * * * *
5298 **
5299 ** Position cursor P1 at the end of the btree for the purpose of
5300 ** appending a new entry onto the btree.
5301 **
5302 ** It is assumed that the cursor is used only for appending and so
5303 ** if the cursor is valid, then the cursor must already be pointing
5304 ** at the end of the btree and so no changes are made to
5305 ** the cursor.
5306 */
5307 /* Opcode: Last P1 P2 * * *
5308 **
5309 ** The next use of the Rowid or Column or Prev instruction for P1
5310 ** will refer to the last entry in the database table or index.
5311 ** If the table or index is empty and P2>0, then jump immediately to P2.
5312 ** If P2 is 0 or if the table or index is not empty, fall through
5313 ** to the following instruction.
5314 **
5315 ** This opcode leaves the cursor configured to move in reverse order,
5316 ** from the end toward the beginning.  In other words, the cursor is
5317 ** configured to use Prev, not Next.
5318 */
5319 case OP_SeekEnd:
5320 case OP_Last: {        /* jump */
5321   VdbeCursor *pC;
5322   BtCursor *pCrsr;
5323   int res;
5324 
5325   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5326   pC = p->apCsr[pOp->p1];
5327   assert( pC!=0 );
5328   assert( pC->eCurType==CURTYPE_BTREE );
5329   pCrsr = pC->uc.pCursor;
5330   res = 0;
5331   assert( pCrsr!=0 );
5332 #ifdef SQLITE_DEBUG
5333   pC->seekOp = pOp->opcode;
5334 #endif
5335   if( pOp->opcode==OP_SeekEnd ){
5336     assert( pOp->p2==0 );
5337     pC->seekResult = -1;
5338     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5339       break;
5340     }
5341   }
5342   rc = sqlite3BtreeLast(pCrsr, &res);
5343   pC->nullRow = (u8)res;
5344   pC->deferredMoveto = 0;
5345   pC->cacheStatus = CACHE_STALE;
5346   if( rc ) goto abort_due_to_error;
5347   if( pOp->p2>0 ){
5348     VdbeBranchTaken(res!=0,2);
5349     if( res ) goto jump_to_p2;
5350   }
5351   break;
5352 }
5353 
5354 /* Opcode: IfSmaller P1 P2 P3 * *
5355 **
5356 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5357 ** estimate is less than approximately 2**(0.1*P3).
5358 */
5359 case OP_IfSmaller: {        /* jump */
5360   VdbeCursor *pC;
5361   BtCursor *pCrsr;
5362   int res;
5363   i64 sz;
5364 
5365   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5366   pC = p->apCsr[pOp->p1];
5367   assert( pC!=0 );
5368   pCrsr = pC->uc.pCursor;
5369   assert( pCrsr );
5370   rc = sqlite3BtreeFirst(pCrsr, &res);
5371   if( rc ) goto abort_due_to_error;
5372   if( res==0 ){
5373     sz = sqlite3BtreeRowCountEst(pCrsr);
5374     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5375   }
5376   VdbeBranchTaken(res!=0,2);
5377   if( res ) goto jump_to_p2;
5378   break;
5379 }
5380 
5381 
5382 /* Opcode: SorterSort P1 P2 * * *
5383 **
5384 ** After all records have been inserted into the Sorter object
5385 ** identified by P1, invoke this opcode to actually do the sorting.
5386 ** Jump to P2 if there are no records to be sorted.
5387 **
5388 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5389 ** for Sorter objects.
5390 */
5391 /* Opcode: Sort P1 P2 * * *
5392 **
5393 ** This opcode does exactly the same thing as OP_Rewind except that
5394 ** it increments an undocumented global variable used for testing.
5395 **
5396 ** Sorting is accomplished by writing records into a sorting index,
5397 ** then rewinding that index and playing it back from beginning to
5398 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5399 ** rewinding so that the global variable will be incremented and
5400 ** regression tests can determine whether or not the optimizer is
5401 ** correctly optimizing out sorts.
5402 */
5403 case OP_SorterSort:    /* jump */
5404 case OP_Sort: {        /* jump */
5405 #ifdef SQLITE_TEST
5406   sqlite3_sort_count++;
5407   sqlite3_search_count--;
5408 #endif
5409   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5410   /* Fall through into OP_Rewind */
5411 }
5412 /* Opcode: Rewind P1 P2 * * *
5413 **
5414 ** The next use of the Rowid or Column or Next instruction for P1
5415 ** will refer to the first entry in the database table or index.
5416 ** If the table or index is empty, jump immediately to P2.
5417 ** If the table or index is not empty, fall through to the following
5418 ** instruction.
5419 **
5420 ** This opcode leaves the cursor configured to move in forward order,
5421 ** from the beginning toward the end.  In other words, the cursor is
5422 ** configured to use Next, not Prev.
5423 */
5424 case OP_Rewind: {        /* jump */
5425   VdbeCursor *pC;
5426   BtCursor *pCrsr;
5427   int res;
5428 
5429   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5430   assert( pOp->p5==0 );
5431   pC = p->apCsr[pOp->p1];
5432   assert( pC!=0 );
5433   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5434   res = 1;
5435 #ifdef SQLITE_DEBUG
5436   pC->seekOp = OP_Rewind;
5437 #endif
5438   if( isSorter(pC) ){
5439     rc = sqlite3VdbeSorterRewind(pC, &res);
5440   }else{
5441     assert( pC->eCurType==CURTYPE_BTREE );
5442     pCrsr = pC->uc.pCursor;
5443     assert( pCrsr );
5444     rc = sqlite3BtreeFirst(pCrsr, &res);
5445     pC->deferredMoveto = 0;
5446     pC->cacheStatus = CACHE_STALE;
5447   }
5448   if( rc ) goto abort_due_to_error;
5449   pC->nullRow = (u8)res;
5450   assert( pOp->p2>0 && pOp->p2<p->nOp );
5451   VdbeBranchTaken(res!=0,2);
5452   if( res ) goto jump_to_p2;
5453   break;
5454 }
5455 
5456 /* Opcode: Next P1 P2 P3 P4 P5
5457 **
5458 ** Advance cursor P1 so that it points to the next key/data pair in its
5459 ** table or index.  If there are no more key/value pairs then fall through
5460 ** to the following instruction.  But if the cursor advance was successful,
5461 ** jump immediately to P2.
5462 **
5463 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5464 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5465 ** to follow SeekLT, SeekLE, or OP_Last.
5466 **
5467 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5468 ** been opened prior to this opcode or the program will segfault.
5469 **
5470 ** The P3 value is a hint to the btree implementation. If P3==1, that
5471 ** means P1 is an SQL index and that this instruction could have been
5472 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5473 ** always either 0 or 1.
5474 **
5475 ** P4 is always of type P4_ADVANCE. The function pointer points to
5476 ** sqlite3BtreeNext().
5477 **
5478 ** If P5 is positive and the jump is taken, then event counter
5479 ** number P5-1 in the prepared statement is incremented.
5480 **
5481 ** See also: Prev
5482 */
5483 /* Opcode: Prev P1 P2 P3 P4 P5
5484 **
5485 ** Back up cursor P1 so that it points to the previous key/data pair in its
5486 ** table or index.  If there is no previous key/value pairs then fall through
5487 ** to the following instruction.  But if the cursor backup was successful,
5488 ** jump immediately to P2.
5489 **
5490 **
5491 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5492 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5493 ** to follow SeekGT, SeekGE, or OP_Rewind.
5494 **
5495 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5496 ** not open then the behavior is undefined.
5497 **
5498 ** The P3 value is a hint to the btree implementation. If P3==1, that
5499 ** means P1 is an SQL index and that this instruction could have been
5500 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5501 ** always either 0 or 1.
5502 **
5503 ** P4 is always of type P4_ADVANCE. The function pointer points to
5504 ** sqlite3BtreePrevious().
5505 **
5506 ** If P5 is positive and the jump is taken, then event counter
5507 ** number P5-1 in the prepared statement is incremented.
5508 */
5509 /* Opcode: SorterNext P1 P2 * * P5
5510 **
5511 ** This opcode works just like OP_Next except that P1 must be a
5512 ** sorter object for which the OP_SorterSort opcode has been
5513 ** invoked.  This opcode advances the cursor to the next sorted
5514 ** record, or jumps to P2 if there are no more sorted records.
5515 */
5516 case OP_SorterNext: {  /* jump */
5517   VdbeCursor *pC;
5518 
5519   pC = p->apCsr[pOp->p1];
5520   assert( isSorter(pC) );
5521   rc = sqlite3VdbeSorterNext(db, pC);
5522   goto next_tail;
5523 case OP_Prev:          /* jump */
5524 case OP_Next:          /* jump */
5525   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5526   assert( pOp->p5<ArraySize(p->aCounter) );
5527   pC = p->apCsr[pOp->p1];
5528   assert( pC!=0 );
5529   assert( pC->deferredMoveto==0 );
5530   assert( pC->eCurType==CURTYPE_BTREE );
5531   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5532   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5533 
5534   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5535   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5536   assert( pOp->opcode!=OP_Next
5537        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5538        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5539        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5540        || pC->seekOp==OP_IfNoHope);
5541   assert( pOp->opcode!=OP_Prev
5542        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5543        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5544        || pC->seekOp==OP_NullRow);
5545 
5546   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5547 next_tail:
5548   pC->cacheStatus = CACHE_STALE;
5549   VdbeBranchTaken(rc==SQLITE_OK,2);
5550   if( rc==SQLITE_OK ){
5551     pC->nullRow = 0;
5552     p->aCounter[pOp->p5]++;
5553 #ifdef SQLITE_TEST
5554     sqlite3_search_count++;
5555 #endif
5556     goto jump_to_p2_and_check_for_interrupt;
5557   }
5558   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5559   rc = SQLITE_OK;
5560   pC->nullRow = 1;
5561   goto check_for_interrupt;
5562 }
5563 
5564 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5565 ** Synopsis: key=r[P2]
5566 **
5567 ** Register P2 holds an SQL index key made using the
5568 ** MakeRecord instructions.  This opcode writes that key
5569 ** into the index P1.  Data for the entry is nil.
5570 **
5571 ** If P4 is not zero, then it is the number of values in the unpacked
5572 ** key of reg(P2).  In that case, P3 is the index of the first register
5573 ** for the unpacked key.  The availability of the unpacked key can sometimes
5574 ** be an optimization.
5575 **
5576 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5577 ** that this insert is likely to be an append.
5578 **
5579 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5580 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5581 ** then the change counter is unchanged.
5582 **
5583 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5584 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5585 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5586 ** seeks on the cursor or if the most recent seek used a key equivalent
5587 ** to P2.
5588 **
5589 ** This instruction only works for indices.  The equivalent instruction
5590 ** for tables is OP_Insert.
5591 */
5592 /* Opcode: SorterInsert P1 P2 * * *
5593 ** Synopsis: key=r[P2]
5594 **
5595 ** Register P2 holds an SQL index key made using the
5596 ** MakeRecord instructions.  This opcode writes that key
5597 ** into the sorter P1.  Data for the entry is nil.
5598 */
5599 case OP_SorterInsert:       /* in2 */
5600 case OP_IdxInsert: {        /* in2 */
5601   VdbeCursor *pC;
5602   BtreePayload x;
5603 
5604   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5605   pC = p->apCsr[pOp->p1];
5606   sqlite3VdbeIncrWriteCounter(p, pC);
5607   assert( pC!=0 );
5608   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5609   pIn2 = &aMem[pOp->p2];
5610   assert( pIn2->flags & MEM_Blob );
5611   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5612   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5613   assert( pC->isTable==0 );
5614   rc = ExpandBlob(pIn2);
5615   if( rc ) goto abort_due_to_error;
5616   if( pOp->opcode==OP_SorterInsert ){
5617     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5618   }else{
5619     x.nKey = pIn2->n;
5620     x.pKey = pIn2->z;
5621     x.aMem = aMem + pOp->p3;
5622     x.nMem = (u16)pOp->p4.i;
5623     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5624          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5625         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5626         );
5627     assert( pC->deferredMoveto==0 );
5628     pC->cacheStatus = CACHE_STALE;
5629   }
5630   if( rc) goto abort_due_to_error;
5631   break;
5632 }
5633 
5634 /* Opcode: IdxDelete P1 P2 P3 * *
5635 ** Synopsis: key=r[P2@P3]
5636 **
5637 ** The content of P3 registers starting at register P2 form
5638 ** an unpacked index key. This opcode removes that entry from the
5639 ** index opened by cursor P1.
5640 */
5641 case OP_IdxDelete: {
5642   VdbeCursor *pC;
5643   BtCursor *pCrsr;
5644   int res;
5645   UnpackedRecord r;
5646 
5647   assert( pOp->p3>0 );
5648   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5649   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5650   pC = p->apCsr[pOp->p1];
5651   assert( pC!=0 );
5652   assert( pC->eCurType==CURTYPE_BTREE );
5653   sqlite3VdbeIncrWriteCounter(p, pC);
5654   pCrsr = pC->uc.pCursor;
5655   assert( pCrsr!=0 );
5656   assert( pOp->p5==0 );
5657   r.pKeyInfo = pC->pKeyInfo;
5658   r.nField = (u16)pOp->p3;
5659   r.default_rc = 0;
5660   r.aMem = &aMem[pOp->p2];
5661   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5662   if( rc ) goto abort_due_to_error;
5663   if( res==0 ){
5664     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5665     if( rc ) goto abort_due_to_error;
5666   }
5667   assert( pC->deferredMoveto==0 );
5668   pC->cacheStatus = CACHE_STALE;
5669   pC->seekResult = 0;
5670   break;
5671 }
5672 
5673 /* Opcode: DeferredSeek P1 * P3 P4 *
5674 ** Synopsis: Move P3 to P1.rowid if needed
5675 **
5676 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5677 ** table.  This opcode does a deferred seek of the P3 table cursor
5678 ** to the row that corresponds to the current row of P1.
5679 **
5680 ** This is a deferred seek.  Nothing actually happens until
5681 ** the cursor is used to read a record.  That way, if no reads
5682 ** occur, no unnecessary I/O happens.
5683 **
5684 ** P4 may be an array of integers (type P4_INTARRAY) containing
5685 ** one entry for each column in the P3 table.  If array entry a(i)
5686 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5687 ** equivalent to performing the deferred seek and then reading column i
5688 ** from P1.  This information is stored in P3 and used to redirect
5689 ** reads against P3 over to P1, thus possibly avoiding the need to
5690 ** seek and read cursor P3.
5691 */
5692 /* Opcode: IdxRowid P1 P2 * * *
5693 ** Synopsis: r[P2]=rowid
5694 **
5695 ** Write into register P2 an integer which is the last entry in the record at
5696 ** the end of the index key pointed to by cursor P1.  This integer should be
5697 ** the rowid of the table entry to which this index entry points.
5698 **
5699 ** See also: Rowid, MakeRecord.
5700 */
5701 case OP_DeferredSeek:
5702 case OP_IdxRowid: {           /* out2 */
5703   VdbeCursor *pC;             /* The P1 index cursor */
5704   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5705   i64 rowid;                  /* Rowid that P1 current points to */
5706 
5707   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5708   pC = p->apCsr[pOp->p1];
5709   assert( pC!=0 );
5710   assert( pC->eCurType==CURTYPE_BTREE );
5711   assert( pC->uc.pCursor!=0 );
5712   assert( pC->isTable==0 );
5713   assert( pC->deferredMoveto==0 );
5714   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5715 
5716   /* The IdxRowid and Seek opcodes are combined because of the commonality
5717   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5718   rc = sqlite3VdbeCursorRestore(pC);
5719 
5720   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5721   ** out from under the cursor.  That will never happens for an IdxRowid
5722   ** or Seek opcode */
5723   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5724 
5725   if( !pC->nullRow ){
5726     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5727     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5728     if( rc!=SQLITE_OK ){
5729       goto abort_due_to_error;
5730     }
5731     if( pOp->opcode==OP_DeferredSeek ){
5732       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5733       pTabCur = p->apCsr[pOp->p3];
5734       assert( pTabCur!=0 );
5735       assert( pTabCur->eCurType==CURTYPE_BTREE );
5736       assert( pTabCur->uc.pCursor!=0 );
5737       assert( pTabCur->isTable );
5738       pTabCur->nullRow = 0;
5739       pTabCur->movetoTarget = rowid;
5740       pTabCur->deferredMoveto = 1;
5741       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5742       pTabCur->aAltMap = pOp->p4.ai;
5743       pTabCur->pAltCursor = pC;
5744     }else{
5745       pOut = out2Prerelease(p, pOp);
5746       pOut->u.i = rowid;
5747     }
5748   }else{
5749     assert( pOp->opcode==OP_IdxRowid );
5750     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5751   }
5752   break;
5753 }
5754 
5755 /* Opcode: FinishSeek P1 * * * *
5756 **
5757 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5758 ** seek operation now, without further delay.  If the cursor seek has
5759 ** already occurred, this instruction is a no-op.
5760 */
5761 case OP_FinishSeek: {
5762   VdbeCursor *pC;             /* The P1 index cursor */
5763 
5764   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5765   pC = p->apCsr[pOp->p1];
5766   if( pC->deferredMoveto ){
5767     rc = sqlite3VdbeFinishMoveto(pC);
5768     if( rc ) goto abort_due_to_error;
5769   }
5770   break;
5771 }
5772 
5773 /* Opcode: IdxGE P1 P2 P3 P4 P5
5774 ** Synopsis: key=r[P3@P4]
5775 **
5776 ** The P4 register values beginning with P3 form an unpacked index
5777 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5778 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5779 ** fields at the end.
5780 **
5781 ** If the P1 index entry is greater than or equal to the key value
5782 ** then jump to P2.  Otherwise fall through to the next instruction.
5783 */
5784 /* Opcode: IdxGT P1 P2 P3 P4 P5
5785 ** Synopsis: key=r[P3@P4]
5786 **
5787 ** The P4 register values beginning with P3 form an unpacked index
5788 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5789 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5790 ** fields at the end.
5791 **
5792 ** If the P1 index entry is greater than the key value
5793 ** then jump to P2.  Otherwise fall through to the next instruction.
5794 */
5795 /* Opcode: IdxLT P1 P2 P3 P4 P5
5796 ** Synopsis: key=r[P3@P4]
5797 **
5798 ** The P4 register values beginning with P3 form an unpacked index
5799 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5800 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5801 ** ROWID on the P1 index.
5802 **
5803 ** If the P1 index entry is less than the key value then jump to P2.
5804 ** Otherwise fall through to the next instruction.
5805 */
5806 /* Opcode: IdxLE P1 P2 P3 P4 P5
5807 ** Synopsis: key=r[P3@P4]
5808 **
5809 ** The P4 register values beginning with P3 form an unpacked index
5810 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5811 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5812 ** ROWID on the P1 index.
5813 **
5814 ** If the P1 index entry is less than or equal to the key value then jump
5815 ** to P2. Otherwise fall through to the next instruction.
5816 */
5817 case OP_IdxLE:          /* jump */
5818 case OP_IdxGT:          /* jump */
5819 case OP_IdxLT:          /* jump */
5820 case OP_IdxGE:  {       /* jump */
5821   VdbeCursor *pC;
5822   int res;
5823   UnpackedRecord r;
5824 
5825   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5826   pC = p->apCsr[pOp->p1];
5827   assert( pC!=0 );
5828   assert( pC->isOrdered );
5829   assert( pC->eCurType==CURTYPE_BTREE );
5830   assert( pC->uc.pCursor!=0);
5831   assert( pC->deferredMoveto==0 );
5832   assert( pOp->p5==0 || pOp->p5==1 );
5833   assert( pOp->p4type==P4_INT32 );
5834   r.pKeyInfo = pC->pKeyInfo;
5835   r.nField = (u16)pOp->p4.i;
5836   if( pOp->opcode<OP_IdxLT ){
5837     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5838     r.default_rc = -1;
5839   }else{
5840     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5841     r.default_rc = 0;
5842   }
5843   r.aMem = &aMem[pOp->p3];
5844 #ifdef SQLITE_DEBUG
5845   {
5846     int i;
5847     for(i=0; i<r.nField; i++){
5848       assert( memIsValid(&r.aMem[i]) );
5849       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5850     }
5851   }
5852 #endif
5853   res = 0;  /* Not needed.  Only used to silence a warning. */
5854   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5855   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5856   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5857     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5858     res = -res;
5859   }else{
5860     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5861     res++;
5862   }
5863   VdbeBranchTaken(res>0,2);
5864   if( rc ) goto abort_due_to_error;
5865   if( res>0 ) goto jump_to_p2;
5866   break;
5867 }
5868 
5869 /* Opcode: Destroy P1 P2 P3 * *
5870 **
5871 ** Delete an entire database table or index whose root page in the database
5872 ** file is given by P1.
5873 **
5874 ** The table being destroyed is in the main database file if P3==0.  If
5875 ** P3==1 then the table to be clear is in the auxiliary database file
5876 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5877 **
5878 ** If AUTOVACUUM is enabled then it is possible that another root page
5879 ** might be moved into the newly deleted root page in order to keep all
5880 ** root pages contiguous at the beginning of the database.  The former
5881 ** value of the root page that moved - its value before the move occurred -
5882 ** is stored in register P2. If no page movement was required (because the
5883 ** table being dropped was already the last one in the database) then a
5884 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5885 ** is stored in register P2.
5886 **
5887 ** This opcode throws an error if there are any active reader VMs when
5888 ** it is invoked. This is done to avoid the difficulty associated with
5889 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5890 ** database. This error is thrown even if the database is not an AUTOVACUUM
5891 ** db in order to avoid introducing an incompatibility between autovacuum
5892 ** and non-autovacuum modes.
5893 **
5894 ** See also: Clear
5895 */
5896 case OP_Destroy: {     /* out2 */
5897   int iMoved;
5898   int iDb;
5899 
5900   sqlite3VdbeIncrWriteCounter(p, 0);
5901   assert( p->readOnly==0 );
5902   assert( pOp->p1>1 );
5903   pOut = out2Prerelease(p, pOp);
5904   pOut->flags = MEM_Null;
5905   if( db->nVdbeRead > db->nVDestroy+1 ){
5906     rc = SQLITE_LOCKED;
5907     p->errorAction = OE_Abort;
5908     goto abort_due_to_error;
5909   }else{
5910     iDb = pOp->p3;
5911     assert( DbMaskTest(p->btreeMask, iDb) );
5912     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5913     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5914     pOut->flags = MEM_Int;
5915     pOut->u.i = iMoved;
5916     if( rc ) goto abort_due_to_error;
5917 #ifndef SQLITE_OMIT_AUTOVACUUM
5918     if( iMoved!=0 ){
5919       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5920       /* All OP_Destroy operations occur on the same btree */
5921       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5922       resetSchemaOnFault = iDb+1;
5923     }
5924 #endif
5925   }
5926   break;
5927 }
5928 
5929 /* Opcode: Clear P1 P2 P3
5930 **
5931 ** Delete all contents of the database table or index whose root page
5932 ** in the database file is given by P1.  But, unlike Destroy, do not
5933 ** remove the table or index from the database file.
5934 **
5935 ** The table being clear is in the main database file if P2==0.  If
5936 ** P2==1 then the table to be clear is in the auxiliary database file
5937 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5938 **
5939 ** If the P3 value is non-zero, then the table referred to must be an
5940 ** intkey table (an SQL table, not an index). In this case the row change
5941 ** count is incremented by the number of rows in the table being cleared.
5942 ** If P3 is greater than zero, then the value stored in register P3 is
5943 ** also incremented by the number of rows in the table being cleared.
5944 **
5945 ** See also: Destroy
5946 */
5947 case OP_Clear: {
5948   int nChange;
5949 
5950   sqlite3VdbeIncrWriteCounter(p, 0);
5951   nChange = 0;
5952   assert( p->readOnly==0 );
5953   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5954   rc = sqlite3BtreeClearTable(
5955       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5956   );
5957   if( pOp->p3 ){
5958     p->nChange += nChange;
5959     if( pOp->p3>0 ){
5960       assert( memIsValid(&aMem[pOp->p3]) );
5961       memAboutToChange(p, &aMem[pOp->p3]);
5962       aMem[pOp->p3].u.i += nChange;
5963     }
5964   }
5965   if( rc ) goto abort_due_to_error;
5966   break;
5967 }
5968 
5969 /* Opcode: ResetSorter P1 * * * *
5970 **
5971 ** Delete all contents from the ephemeral table or sorter
5972 ** that is open on cursor P1.
5973 **
5974 ** This opcode only works for cursors used for sorting and
5975 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5976 */
5977 case OP_ResetSorter: {
5978   VdbeCursor *pC;
5979 
5980   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5981   pC = p->apCsr[pOp->p1];
5982   assert( pC!=0 );
5983   if( isSorter(pC) ){
5984     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5985   }else{
5986     assert( pC->eCurType==CURTYPE_BTREE );
5987     assert( pC->isEphemeral );
5988     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5989     if( rc ) goto abort_due_to_error;
5990   }
5991   break;
5992 }
5993 
5994 /* Opcode: CreateBtree P1 P2 P3 * *
5995 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5996 **
5997 ** Allocate a new b-tree in the main database file if P1==0 or in the
5998 ** TEMP database file if P1==1 or in an attached database if
5999 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6000 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6001 ** The root page number of the new b-tree is stored in register P2.
6002 */
6003 case OP_CreateBtree: {          /* out2 */
6004   int pgno;
6005   Db *pDb;
6006 
6007   sqlite3VdbeIncrWriteCounter(p, 0);
6008   pOut = out2Prerelease(p, pOp);
6009   pgno = 0;
6010   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6011   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6012   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6013   assert( p->readOnly==0 );
6014   pDb = &db->aDb[pOp->p1];
6015   assert( pDb->pBt!=0 );
6016   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6017   if( rc ) goto abort_due_to_error;
6018   pOut->u.i = pgno;
6019   break;
6020 }
6021 
6022 /* Opcode: SqlExec * * * P4 *
6023 **
6024 ** Run the SQL statement or statements specified in the P4 string.
6025 */
6026 case OP_SqlExec: {
6027   sqlite3VdbeIncrWriteCounter(p, 0);
6028   db->nSqlExec++;
6029   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6030   db->nSqlExec--;
6031   if( rc ) goto abort_due_to_error;
6032   break;
6033 }
6034 
6035 /* Opcode: ParseSchema P1 * * P4 *
6036 **
6037 ** Read and parse all entries from the SQLITE_MASTER table of database P1
6038 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6039 ** entire schema for P1 is reparsed.
6040 **
6041 ** This opcode invokes the parser to create a new virtual machine,
6042 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6043 */
6044 case OP_ParseSchema: {
6045   int iDb;
6046   const char *zMaster;
6047   char *zSql;
6048   InitData initData;
6049 
6050   /* Any prepared statement that invokes this opcode will hold mutexes
6051   ** on every btree.  This is a prerequisite for invoking
6052   ** sqlite3InitCallback().
6053   */
6054 #ifdef SQLITE_DEBUG
6055   for(iDb=0; iDb<db->nDb; iDb++){
6056     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6057   }
6058 #endif
6059 
6060   iDb = pOp->p1;
6061   assert( iDb>=0 && iDb<db->nDb );
6062   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
6063 
6064 #ifndef SQLITE_OMIT_ALTERTABLE
6065   if( pOp->p4.z==0 ){
6066     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6067     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6068     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
6069     db->mDbFlags |= DBFLAG_SchemaChange;
6070     p->expired = 0;
6071   }else
6072 #endif
6073   {
6074     zMaster = MASTER_NAME;
6075     initData.db = db;
6076     initData.iDb = iDb;
6077     initData.pzErrMsg = &p->zErrMsg;
6078     initData.mInitFlags = 0;
6079     zSql = sqlite3MPrintf(db,
6080        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6081        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
6082     if( zSql==0 ){
6083       rc = SQLITE_NOMEM_BKPT;
6084     }else{
6085       assert( db->init.busy==0 );
6086       db->init.busy = 1;
6087       initData.rc = SQLITE_OK;
6088       initData.nInitRow = 0;
6089       assert( !db->mallocFailed );
6090       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6091       if( rc==SQLITE_OK ) rc = initData.rc;
6092       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6093         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6094         ** at least one SQL statement. Any less than that indicates that
6095         ** the sqlite_master table is corrupt. */
6096         rc = SQLITE_CORRUPT_BKPT;
6097       }
6098       sqlite3DbFreeNN(db, zSql);
6099       db->init.busy = 0;
6100     }
6101   }
6102   if( rc ){
6103     sqlite3ResetAllSchemasOfConnection(db);
6104     if( rc==SQLITE_NOMEM ){
6105       goto no_mem;
6106     }
6107     goto abort_due_to_error;
6108   }
6109   break;
6110 }
6111 
6112 #if !defined(SQLITE_OMIT_ANALYZE)
6113 /* Opcode: LoadAnalysis P1 * * * *
6114 **
6115 ** Read the sqlite_stat1 table for database P1 and load the content
6116 ** of that table into the internal index hash table.  This will cause
6117 ** the analysis to be used when preparing all subsequent queries.
6118 */
6119 case OP_LoadAnalysis: {
6120   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6121   rc = sqlite3AnalysisLoad(db, pOp->p1);
6122   if( rc ) goto abort_due_to_error;
6123   break;
6124 }
6125 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6126 
6127 /* Opcode: DropTable P1 * * P4 *
6128 **
6129 ** Remove the internal (in-memory) data structures that describe
6130 ** the table named P4 in database P1.  This is called after a table
6131 ** is dropped from disk (using the Destroy opcode) in order to keep
6132 ** the internal representation of the
6133 ** schema consistent with what is on disk.
6134 */
6135 case OP_DropTable: {
6136   sqlite3VdbeIncrWriteCounter(p, 0);
6137   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6138   break;
6139 }
6140 
6141 /* Opcode: DropIndex P1 * * P4 *
6142 **
6143 ** Remove the internal (in-memory) data structures that describe
6144 ** the index named P4 in database P1.  This is called after an index
6145 ** is dropped from disk (using the Destroy opcode)
6146 ** in order to keep the internal representation of the
6147 ** schema consistent with what is on disk.
6148 */
6149 case OP_DropIndex: {
6150   sqlite3VdbeIncrWriteCounter(p, 0);
6151   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6152   break;
6153 }
6154 
6155 /* Opcode: DropTrigger P1 * * P4 *
6156 **
6157 ** Remove the internal (in-memory) data structures that describe
6158 ** the trigger named P4 in database P1.  This is called after a trigger
6159 ** is dropped from disk (using the Destroy opcode) in order to keep
6160 ** the internal representation of the
6161 ** schema consistent with what is on disk.
6162 */
6163 case OP_DropTrigger: {
6164   sqlite3VdbeIncrWriteCounter(p, 0);
6165   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6166   break;
6167 }
6168 
6169 
6170 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6171 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6172 **
6173 ** Do an analysis of the currently open database.  Store in
6174 ** register P1 the text of an error message describing any problems.
6175 ** If no problems are found, store a NULL in register P1.
6176 **
6177 ** The register P3 contains one less than the maximum number of allowed errors.
6178 ** At most reg(P3) errors will be reported.
6179 ** In other words, the analysis stops as soon as reg(P1) errors are
6180 ** seen.  Reg(P1) is updated with the number of errors remaining.
6181 **
6182 ** The root page numbers of all tables in the database are integers
6183 ** stored in P4_INTARRAY argument.
6184 **
6185 ** If P5 is not zero, the check is done on the auxiliary database
6186 ** file, not the main database file.
6187 **
6188 ** This opcode is used to implement the integrity_check pragma.
6189 */
6190 case OP_IntegrityCk: {
6191   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6192   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
6193   int nErr;       /* Number of errors reported */
6194   char *z;        /* Text of the error report */
6195   Mem *pnErr;     /* Register keeping track of errors remaining */
6196 
6197   assert( p->bIsReader );
6198   nRoot = pOp->p2;
6199   aRoot = pOp->p4.ai;
6200   assert( nRoot>0 );
6201   assert( aRoot[0]==nRoot );
6202   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6203   pnErr = &aMem[pOp->p3];
6204   assert( (pnErr->flags & MEM_Int)!=0 );
6205   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6206   pIn1 = &aMem[pOp->p1];
6207   assert( pOp->p5<db->nDb );
6208   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6209   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6210                                  (int)pnErr->u.i+1, &nErr);
6211   sqlite3VdbeMemSetNull(pIn1);
6212   if( nErr==0 ){
6213     assert( z==0 );
6214   }else if( z==0 ){
6215     goto no_mem;
6216   }else{
6217     pnErr->u.i -= nErr-1;
6218     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6219   }
6220   UPDATE_MAX_BLOBSIZE(pIn1);
6221   sqlite3VdbeChangeEncoding(pIn1, encoding);
6222   goto check_for_interrupt;
6223 }
6224 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6225 
6226 /* Opcode: RowSetAdd P1 P2 * * *
6227 ** Synopsis: rowset(P1)=r[P2]
6228 **
6229 ** Insert the integer value held by register P2 into a RowSet object
6230 ** held in register P1.
6231 **
6232 ** An assertion fails if P2 is not an integer.
6233 */
6234 case OP_RowSetAdd: {       /* in1, in2 */
6235   pIn1 = &aMem[pOp->p1];
6236   pIn2 = &aMem[pOp->p2];
6237   assert( (pIn2->flags & MEM_Int)!=0 );
6238   if( (pIn1->flags & MEM_Blob)==0 ){
6239     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6240   }
6241   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6242   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6243   break;
6244 }
6245 
6246 /* Opcode: RowSetRead P1 P2 P3 * *
6247 ** Synopsis: r[P3]=rowset(P1)
6248 **
6249 ** Extract the smallest value from the RowSet object in P1
6250 ** and put that value into register P3.
6251 ** Or, if RowSet object P1 is initially empty, leave P3
6252 ** unchanged and jump to instruction P2.
6253 */
6254 case OP_RowSetRead: {       /* jump, in1, out3 */
6255   i64 val;
6256 
6257   pIn1 = &aMem[pOp->p1];
6258   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6259   if( (pIn1->flags & MEM_Blob)==0
6260    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6261   ){
6262     /* The boolean index is empty */
6263     sqlite3VdbeMemSetNull(pIn1);
6264     VdbeBranchTaken(1,2);
6265     goto jump_to_p2_and_check_for_interrupt;
6266   }else{
6267     /* A value was pulled from the index */
6268     VdbeBranchTaken(0,2);
6269     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6270   }
6271   goto check_for_interrupt;
6272 }
6273 
6274 /* Opcode: RowSetTest P1 P2 P3 P4
6275 ** Synopsis: if r[P3] in rowset(P1) goto P2
6276 **
6277 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6278 ** contains a RowSet object and that RowSet object contains
6279 ** the value held in P3, jump to register P2. Otherwise, insert the
6280 ** integer in P3 into the RowSet and continue on to the
6281 ** next opcode.
6282 **
6283 ** The RowSet object is optimized for the case where sets of integers
6284 ** are inserted in distinct phases, which each set contains no duplicates.
6285 ** Each set is identified by a unique P4 value. The first set
6286 ** must have P4==0, the final set must have P4==-1, and for all other sets
6287 ** must have P4>0.
6288 **
6289 ** This allows optimizations: (a) when P4==0 there is no need to test
6290 ** the RowSet object for P3, as it is guaranteed not to contain it,
6291 ** (b) when P4==-1 there is no need to insert the value, as it will
6292 ** never be tested for, and (c) when a value that is part of set X is
6293 ** inserted, there is no need to search to see if the same value was
6294 ** previously inserted as part of set X (only if it was previously
6295 ** inserted as part of some other set).
6296 */
6297 case OP_RowSetTest: {                     /* jump, in1, in3 */
6298   int iSet;
6299   int exists;
6300 
6301   pIn1 = &aMem[pOp->p1];
6302   pIn3 = &aMem[pOp->p3];
6303   iSet = pOp->p4.i;
6304   assert( pIn3->flags&MEM_Int );
6305 
6306   /* If there is anything other than a rowset object in memory cell P1,
6307   ** delete it now and initialize P1 with an empty rowset
6308   */
6309   if( (pIn1->flags & MEM_Blob)==0 ){
6310     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6311   }
6312   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6313   assert( pOp->p4type==P4_INT32 );
6314   assert( iSet==-1 || iSet>=0 );
6315   if( iSet ){
6316     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6317     VdbeBranchTaken(exists!=0,2);
6318     if( exists ) goto jump_to_p2;
6319   }
6320   if( iSet>=0 ){
6321     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6322   }
6323   break;
6324 }
6325 
6326 
6327 #ifndef SQLITE_OMIT_TRIGGER
6328 
6329 /* Opcode: Program P1 P2 P3 P4 P5
6330 **
6331 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6332 **
6333 ** P1 contains the address of the memory cell that contains the first memory
6334 ** cell in an array of values used as arguments to the sub-program. P2
6335 ** contains the address to jump to if the sub-program throws an IGNORE
6336 ** exception using the RAISE() function. Register P3 contains the address
6337 ** of a memory cell in this (the parent) VM that is used to allocate the
6338 ** memory required by the sub-vdbe at runtime.
6339 **
6340 ** P4 is a pointer to the VM containing the trigger program.
6341 **
6342 ** If P5 is non-zero, then recursive program invocation is enabled.
6343 */
6344 case OP_Program: {        /* jump */
6345   int nMem;               /* Number of memory registers for sub-program */
6346   int nByte;              /* Bytes of runtime space required for sub-program */
6347   Mem *pRt;               /* Register to allocate runtime space */
6348   Mem *pMem;              /* Used to iterate through memory cells */
6349   Mem *pEnd;              /* Last memory cell in new array */
6350   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6351   SubProgram *pProgram;   /* Sub-program to execute */
6352   void *t;                /* Token identifying trigger */
6353 
6354   pProgram = pOp->p4.pProgram;
6355   pRt = &aMem[pOp->p3];
6356   assert( pProgram->nOp>0 );
6357 
6358   /* If the p5 flag is clear, then recursive invocation of triggers is
6359   ** disabled for backwards compatibility (p5 is set if this sub-program
6360   ** is really a trigger, not a foreign key action, and the flag set
6361   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6362   **
6363   ** It is recursive invocation of triggers, at the SQL level, that is
6364   ** disabled. In some cases a single trigger may generate more than one
6365   ** SubProgram (if the trigger may be executed with more than one different
6366   ** ON CONFLICT algorithm). SubProgram structures associated with a
6367   ** single trigger all have the same value for the SubProgram.token
6368   ** variable.  */
6369   if( pOp->p5 ){
6370     t = pProgram->token;
6371     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6372     if( pFrame ) break;
6373   }
6374 
6375   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6376     rc = SQLITE_ERROR;
6377     sqlite3VdbeError(p, "too many levels of trigger recursion");
6378     goto abort_due_to_error;
6379   }
6380 
6381   /* Register pRt is used to store the memory required to save the state
6382   ** of the current program, and the memory required at runtime to execute
6383   ** the trigger program. If this trigger has been fired before, then pRt
6384   ** is already allocated. Otherwise, it must be initialized.  */
6385   if( (pRt->flags&MEM_Blob)==0 ){
6386     /* SubProgram.nMem is set to the number of memory cells used by the
6387     ** program stored in SubProgram.aOp. As well as these, one memory
6388     ** cell is required for each cursor used by the program. Set local
6389     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6390     */
6391     nMem = pProgram->nMem + pProgram->nCsr;
6392     assert( nMem>0 );
6393     if( pProgram->nCsr==0 ) nMem++;
6394     nByte = ROUND8(sizeof(VdbeFrame))
6395               + nMem * sizeof(Mem)
6396               + pProgram->nCsr * sizeof(VdbeCursor*)
6397               + (pProgram->nOp + 7)/8;
6398     pFrame = sqlite3DbMallocZero(db, nByte);
6399     if( !pFrame ){
6400       goto no_mem;
6401     }
6402     sqlite3VdbeMemRelease(pRt);
6403     pRt->flags = MEM_Blob|MEM_Dyn;
6404     pRt->z = (char*)pFrame;
6405     pRt->n = nByte;
6406     pRt->xDel = sqlite3VdbeFrameMemDel;
6407 
6408     pFrame->v = p;
6409     pFrame->nChildMem = nMem;
6410     pFrame->nChildCsr = pProgram->nCsr;
6411     pFrame->pc = (int)(pOp - aOp);
6412     pFrame->aMem = p->aMem;
6413     pFrame->nMem = p->nMem;
6414     pFrame->apCsr = p->apCsr;
6415     pFrame->nCursor = p->nCursor;
6416     pFrame->aOp = p->aOp;
6417     pFrame->nOp = p->nOp;
6418     pFrame->token = pProgram->token;
6419 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6420     pFrame->anExec = p->anExec;
6421 #endif
6422 #ifdef SQLITE_DEBUG
6423     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6424 #endif
6425 
6426     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6427     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6428       pMem->flags = MEM_Undefined;
6429       pMem->db = db;
6430     }
6431   }else{
6432     pFrame = (VdbeFrame*)pRt->z;
6433     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6434     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6435         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6436     assert( pProgram->nCsr==pFrame->nChildCsr );
6437     assert( (int)(pOp - aOp)==pFrame->pc );
6438   }
6439 
6440   p->nFrame++;
6441   pFrame->pParent = p->pFrame;
6442   pFrame->lastRowid = db->lastRowid;
6443   pFrame->nChange = p->nChange;
6444   pFrame->nDbChange = p->db->nChange;
6445   assert( pFrame->pAuxData==0 );
6446   pFrame->pAuxData = p->pAuxData;
6447   p->pAuxData = 0;
6448   p->nChange = 0;
6449   p->pFrame = pFrame;
6450   p->aMem = aMem = VdbeFrameMem(pFrame);
6451   p->nMem = pFrame->nChildMem;
6452   p->nCursor = (u16)pFrame->nChildCsr;
6453   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6454   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6455   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6456   p->aOp = aOp = pProgram->aOp;
6457   p->nOp = pProgram->nOp;
6458 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6459   p->anExec = 0;
6460 #endif
6461 #ifdef SQLITE_DEBUG
6462   /* Verify that second and subsequent executions of the same trigger do not
6463   ** try to reuse register values from the first use. */
6464   {
6465     int i;
6466     for(i=0; i<p->nMem; i++){
6467       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6468       aMem[i].flags |= MEM_Undefined; /* Cause a fault if this reg is reused */
6469     }
6470   }
6471 #endif
6472   pOp = &aOp[-1];
6473   goto check_for_interrupt;
6474 }
6475 
6476 /* Opcode: Param P1 P2 * * *
6477 **
6478 ** This opcode is only ever present in sub-programs called via the
6479 ** OP_Program instruction. Copy a value currently stored in a memory
6480 ** cell of the calling (parent) frame to cell P2 in the current frames
6481 ** address space. This is used by trigger programs to access the new.*
6482 ** and old.* values.
6483 **
6484 ** The address of the cell in the parent frame is determined by adding
6485 ** the value of the P1 argument to the value of the P1 argument to the
6486 ** calling OP_Program instruction.
6487 */
6488 case OP_Param: {           /* out2 */
6489   VdbeFrame *pFrame;
6490   Mem *pIn;
6491   pOut = out2Prerelease(p, pOp);
6492   pFrame = p->pFrame;
6493   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6494   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6495   break;
6496 }
6497 
6498 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6499 
6500 #ifndef SQLITE_OMIT_FOREIGN_KEY
6501 /* Opcode: FkCounter P1 P2 * * *
6502 ** Synopsis: fkctr[P1]+=P2
6503 **
6504 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6505 ** If P1 is non-zero, the database constraint counter is incremented
6506 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6507 ** statement counter is incremented (immediate foreign key constraints).
6508 */
6509 case OP_FkCounter: {
6510   if( db->flags & SQLITE_DeferFKs ){
6511     db->nDeferredImmCons += pOp->p2;
6512   }else if( pOp->p1 ){
6513     db->nDeferredCons += pOp->p2;
6514   }else{
6515     p->nFkConstraint += pOp->p2;
6516   }
6517   break;
6518 }
6519 
6520 /* Opcode: FkIfZero P1 P2 * * *
6521 ** Synopsis: if fkctr[P1]==0 goto P2
6522 **
6523 ** This opcode tests if a foreign key constraint-counter is currently zero.
6524 ** If so, jump to instruction P2. Otherwise, fall through to the next
6525 ** instruction.
6526 **
6527 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6528 ** is zero (the one that counts deferred constraint violations). If P1 is
6529 ** zero, the jump is taken if the statement constraint-counter is zero
6530 ** (immediate foreign key constraint violations).
6531 */
6532 case OP_FkIfZero: {         /* jump */
6533   if( pOp->p1 ){
6534     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6535     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6536   }else{
6537     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6538     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6539   }
6540   break;
6541 }
6542 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6543 
6544 #ifndef SQLITE_OMIT_AUTOINCREMENT
6545 /* Opcode: MemMax P1 P2 * * *
6546 ** Synopsis: r[P1]=max(r[P1],r[P2])
6547 **
6548 ** P1 is a register in the root frame of this VM (the root frame is
6549 ** different from the current frame if this instruction is being executed
6550 ** within a sub-program). Set the value of register P1 to the maximum of
6551 ** its current value and the value in register P2.
6552 **
6553 ** This instruction throws an error if the memory cell is not initially
6554 ** an integer.
6555 */
6556 case OP_MemMax: {        /* in2 */
6557   VdbeFrame *pFrame;
6558   if( p->pFrame ){
6559     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6560     pIn1 = &pFrame->aMem[pOp->p1];
6561   }else{
6562     pIn1 = &aMem[pOp->p1];
6563   }
6564   assert( memIsValid(pIn1) );
6565   sqlite3VdbeMemIntegerify(pIn1);
6566   pIn2 = &aMem[pOp->p2];
6567   sqlite3VdbeMemIntegerify(pIn2);
6568   if( pIn1->u.i<pIn2->u.i){
6569     pIn1->u.i = pIn2->u.i;
6570   }
6571   break;
6572 }
6573 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6574 
6575 /* Opcode: IfPos P1 P2 P3 * *
6576 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6577 **
6578 ** Register P1 must contain an integer.
6579 ** If the value of register P1 is 1 or greater, subtract P3 from the
6580 ** value in P1 and jump to P2.
6581 **
6582 ** If the initial value of register P1 is less than 1, then the
6583 ** value is unchanged and control passes through to the next instruction.
6584 */
6585 case OP_IfPos: {        /* jump, in1 */
6586   pIn1 = &aMem[pOp->p1];
6587   assert( pIn1->flags&MEM_Int );
6588   VdbeBranchTaken( pIn1->u.i>0, 2);
6589   if( pIn1->u.i>0 ){
6590     pIn1->u.i -= pOp->p3;
6591     goto jump_to_p2;
6592   }
6593   break;
6594 }
6595 
6596 /* Opcode: OffsetLimit P1 P2 P3 * *
6597 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6598 **
6599 ** This opcode performs a commonly used computation associated with
6600 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6601 ** holds the offset counter.  The opcode computes the combined value
6602 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6603 ** value computed is the total number of rows that will need to be
6604 ** visited in order to complete the query.
6605 **
6606 ** If r[P3] is zero or negative, that means there is no OFFSET
6607 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6608 **
6609 ** if r[P1] is zero or negative, that means there is no LIMIT
6610 ** and r[P2] is set to -1.
6611 **
6612 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6613 */
6614 case OP_OffsetLimit: {    /* in1, out2, in3 */
6615   i64 x;
6616   pIn1 = &aMem[pOp->p1];
6617   pIn3 = &aMem[pOp->p3];
6618   pOut = out2Prerelease(p, pOp);
6619   assert( pIn1->flags & MEM_Int );
6620   assert( pIn3->flags & MEM_Int );
6621   x = pIn1->u.i;
6622   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6623     /* If the LIMIT is less than or equal to zero, loop forever.  This
6624     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6625     ** also loop forever.  This is undocumented.  In fact, one could argue
6626     ** that the loop should terminate.  But assuming 1 billion iterations
6627     ** per second (far exceeding the capabilities of any current hardware)
6628     ** it would take nearly 300 years to actually reach the limit.  So
6629     ** looping forever is a reasonable approximation. */
6630     pOut->u.i = -1;
6631   }else{
6632     pOut->u.i = x;
6633   }
6634   break;
6635 }
6636 
6637 /* Opcode: IfNotZero P1 P2 * * *
6638 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6639 **
6640 ** Register P1 must contain an integer.  If the content of register P1 is
6641 ** initially greater than zero, then decrement the value in register P1.
6642 ** If it is non-zero (negative or positive) and then also jump to P2.
6643 ** If register P1 is initially zero, leave it unchanged and fall through.
6644 */
6645 case OP_IfNotZero: {        /* jump, in1 */
6646   pIn1 = &aMem[pOp->p1];
6647   assert( pIn1->flags&MEM_Int );
6648   VdbeBranchTaken(pIn1->u.i<0, 2);
6649   if( pIn1->u.i ){
6650      if( pIn1->u.i>0 ) pIn1->u.i--;
6651      goto jump_to_p2;
6652   }
6653   break;
6654 }
6655 
6656 /* Opcode: DecrJumpZero P1 P2 * * *
6657 ** Synopsis: if (--r[P1])==0 goto P2
6658 **
6659 ** Register P1 must hold an integer.  Decrement the value in P1
6660 ** and jump to P2 if the new value is exactly zero.
6661 */
6662 case OP_DecrJumpZero: {      /* jump, in1 */
6663   pIn1 = &aMem[pOp->p1];
6664   assert( pIn1->flags&MEM_Int );
6665   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6666   VdbeBranchTaken(pIn1->u.i==0, 2);
6667   if( pIn1->u.i==0 ) goto jump_to_p2;
6668   break;
6669 }
6670 
6671 
6672 /* Opcode: AggStep * P2 P3 P4 P5
6673 ** Synopsis: accum=r[P3] step(r[P2@P5])
6674 **
6675 ** Execute the xStep function for an aggregate.
6676 ** The function has P5 arguments.  P4 is a pointer to the
6677 ** FuncDef structure that specifies the function.  Register P3 is the
6678 ** accumulator.
6679 **
6680 ** The P5 arguments are taken from register P2 and its
6681 ** successors.
6682 */
6683 /* Opcode: AggInverse * P2 P3 P4 P5
6684 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6685 **
6686 ** Execute the xInverse function for an aggregate.
6687 ** The function has P5 arguments.  P4 is a pointer to the
6688 ** FuncDef structure that specifies the function.  Register P3 is the
6689 ** accumulator.
6690 **
6691 ** The P5 arguments are taken from register P2 and its
6692 ** successors.
6693 */
6694 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6695 ** Synopsis: accum=r[P3] step(r[P2@P5])
6696 **
6697 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6698 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6699 ** FuncDef structure that specifies the function.  Register P3 is the
6700 ** accumulator.
6701 **
6702 ** The P5 arguments are taken from register P2 and its
6703 ** successors.
6704 **
6705 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6706 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6707 ** the opcode is changed.  In this way, the initialization of the
6708 ** sqlite3_context only happens once, instead of on each call to the
6709 ** step function.
6710 */
6711 case OP_AggInverse:
6712 case OP_AggStep: {
6713   int n;
6714   sqlite3_context *pCtx;
6715 
6716   assert( pOp->p4type==P4_FUNCDEF );
6717   n = pOp->p5;
6718   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6719   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6720   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6721   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6722                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6723   if( pCtx==0 ) goto no_mem;
6724   pCtx->pMem = 0;
6725   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6726   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6727   pCtx->pFunc = pOp->p4.pFunc;
6728   pCtx->iOp = (int)(pOp - aOp);
6729   pCtx->pVdbe = p;
6730   pCtx->skipFlag = 0;
6731   pCtx->isError = 0;
6732   pCtx->argc = n;
6733   pOp->p4type = P4_FUNCCTX;
6734   pOp->p4.pCtx = pCtx;
6735 
6736   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6737   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6738 
6739   pOp->opcode = OP_AggStep1;
6740   /* Fall through into OP_AggStep */
6741 }
6742 case OP_AggStep1: {
6743   int i;
6744   sqlite3_context *pCtx;
6745   Mem *pMem;
6746 
6747   assert( pOp->p4type==P4_FUNCCTX );
6748   pCtx = pOp->p4.pCtx;
6749   pMem = &aMem[pOp->p3];
6750 
6751 #ifdef SQLITE_DEBUG
6752   if( pOp->p1 ){
6753     /* This is an OP_AggInverse call.  Verify that xStep has always
6754     ** been called at least once prior to any xInverse call. */
6755     assert( pMem->uTemp==0x1122e0e3 );
6756   }else{
6757     /* This is an OP_AggStep call.  Mark it as such. */
6758     pMem->uTemp = 0x1122e0e3;
6759   }
6760 #endif
6761 
6762   /* If this function is inside of a trigger, the register array in aMem[]
6763   ** might change from one evaluation to the next.  The next block of code
6764   ** checks to see if the register array has changed, and if so it
6765   ** reinitializes the relavant parts of the sqlite3_context object */
6766   if( pCtx->pMem != pMem ){
6767     pCtx->pMem = pMem;
6768     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6769   }
6770 
6771 #ifdef SQLITE_DEBUG
6772   for(i=0; i<pCtx->argc; i++){
6773     assert( memIsValid(pCtx->argv[i]) );
6774     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6775   }
6776 #endif
6777 
6778   pMem->n++;
6779   assert( pCtx->pOut->flags==MEM_Null );
6780   assert( pCtx->isError==0 );
6781   assert( pCtx->skipFlag==0 );
6782 #ifndef SQLITE_OMIT_WINDOWFUNC
6783   if( pOp->p1 ){
6784     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6785   }else
6786 #endif
6787   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6788 
6789   if( pCtx->isError ){
6790     if( pCtx->isError>0 ){
6791       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6792       rc = pCtx->isError;
6793     }
6794     if( pCtx->skipFlag ){
6795       assert( pOp[-1].opcode==OP_CollSeq );
6796       i = pOp[-1].p1;
6797       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6798       pCtx->skipFlag = 0;
6799     }
6800     sqlite3VdbeMemRelease(pCtx->pOut);
6801     pCtx->pOut->flags = MEM_Null;
6802     pCtx->isError = 0;
6803     if( rc ) goto abort_due_to_error;
6804   }
6805   assert( pCtx->pOut->flags==MEM_Null );
6806   assert( pCtx->skipFlag==0 );
6807   break;
6808 }
6809 
6810 /* Opcode: AggFinal P1 P2 * P4 *
6811 ** Synopsis: accum=r[P1] N=P2
6812 **
6813 ** P1 is the memory location that is the accumulator for an aggregate
6814 ** or window function.  Execute the finalizer function
6815 ** for an aggregate and store the result in P1.
6816 **
6817 ** P2 is the number of arguments that the step function takes and
6818 ** P4 is a pointer to the FuncDef for this function.  The P2
6819 ** argument is not used by this opcode.  It is only there to disambiguate
6820 ** functions that can take varying numbers of arguments.  The
6821 ** P4 argument is only needed for the case where
6822 ** the step function was not previously called.
6823 */
6824 /* Opcode: AggValue * P2 P3 P4 *
6825 ** Synopsis: r[P3]=value N=P2
6826 **
6827 ** Invoke the xValue() function and store the result in register P3.
6828 **
6829 ** P2 is the number of arguments that the step function takes and
6830 ** P4 is a pointer to the FuncDef for this function.  The P2
6831 ** argument is not used by this opcode.  It is only there to disambiguate
6832 ** functions that can take varying numbers of arguments.  The
6833 ** P4 argument is only needed for the case where
6834 ** the step function was not previously called.
6835 */
6836 case OP_AggValue:
6837 case OP_AggFinal: {
6838   Mem *pMem;
6839   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6840   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6841   pMem = &aMem[pOp->p1];
6842   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6843 #ifndef SQLITE_OMIT_WINDOWFUNC
6844   if( pOp->p3 ){
6845     memAboutToChange(p, &aMem[pOp->p3]);
6846     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6847     pMem = &aMem[pOp->p3];
6848   }else
6849 #endif
6850   {
6851     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6852   }
6853 
6854   if( rc ){
6855     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6856     goto abort_due_to_error;
6857   }
6858   sqlite3VdbeChangeEncoding(pMem, encoding);
6859   UPDATE_MAX_BLOBSIZE(pMem);
6860   if( sqlite3VdbeMemTooBig(pMem) ){
6861     goto too_big;
6862   }
6863   break;
6864 }
6865 
6866 #ifndef SQLITE_OMIT_WAL
6867 /* Opcode: Checkpoint P1 P2 P3 * *
6868 **
6869 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6870 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6871 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6872 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6873 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6874 ** in the WAL that have been checkpointed after the checkpoint
6875 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6876 ** mem[P3+2] are initialized to -1.
6877 */
6878 case OP_Checkpoint: {
6879   int i;                          /* Loop counter */
6880   int aRes[3];                    /* Results */
6881   Mem *pMem;                      /* Write results here */
6882 
6883   assert( p->readOnly==0 );
6884   aRes[0] = 0;
6885   aRes[1] = aRes[2] = -1;
6886   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6887        || pOp->p2==SQLITE_CHECKPOINT_FULL
6888        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6889        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6890   );
6891   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6892   if( rc ){
6893     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6894     rc = SQLITE_OK;
6895     aRes[0] = 1;
6896   }
6897   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6898     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6899   }
6900   break;
6901 };
6902 #endif
6903 
6904 #ifndef SQLITE_OMIT_PRAGMA
6905 /* Opcode: JournalMode P1 P2 P3 * *
6906 **
6907 ** Change the journal mode of database P1 to P3. P3 must be one of the
6908 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6909 ** modes (delete, truncate, persist, off and memory), this is a simple
6910 ** operation. No IO is required.
6911 **
6912 ** If changing into or out of WAL mode the procedure is more complicated.
6913 **
6914 ** Write a string containing the final journal-mode to register P2.
6915 */
6916 case OP_JournalMode: {    /* out2 */
6917   Btree *pBt;                     /* Btree to change journal mode of */
6918   Pager *pPager;                  /* Pager associated with pBt */
6919   int eNew;                       /* New journal mode */
6920   int eOld;                       /* The old journal mode */
6921 #ifndef SQLITE_OMIT_WAL
6922   const char *zFilename;          /* Name of database file for pPager */
6923 #endif
6924 
6925   pOut = out2Prerelease(p, pOp);
6926   eNew = pOp->p3;
6927   assert( eNew==PAGER_JOURNALMODE_DELETE
6928        || eNew==PAGER_JOURNALMODE_TRUNCATE
6929        || eNew==PAGER_JOURNALMODE_PERSIST
6930        || eNew==PAGER_JOURNALMODE_OFF
6931        || eNew==PAGER_JOURNALMODE_MEMORY
6932        || eNew==PAGER_JOURNALMODE_WAL
6933        || eNew==PAGER_JOURNALMODE_QUERY
6934   );
6935   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6936   assert( p->readOnly==0 );
6937 
6938   pBt = db->aDb[pOp->p1].pBt;
6939   pPager = sqlite3BtreePager(pBt);
6940   eOld = sqlite3PagerGetJournalMode(pPager);
6941   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6942   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6943 
6944 #ifndef SQLITE_OMIT_WAL
6945   zFilename = sqlite3PagerFilename(pPager, 1);
6946 
6947   /* Do not allow a transition to journal_mode=WAL for a database
6948   ** in temporary storage or if the VFS does not support shared memory
6949   */
6950   if( eNew==PAGER_JOURNALMODE_WAL
6951    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6952        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6953   ){
6954     eNew = eOld;
6955   }
6956 
6957   if( (eNew!=eOld)
6958    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6959   ){
6960     if( !db->autoCommit || db->nVdbeRead>1 ){
6961       rc = SQLITE_ERROR;
6962       sqlite3VdbeError(p,
6963           "cannot change %s wal mode from within a transaction",
6964           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6965       );
6966       goto abort_due_to_error;
6967     }else{
6968 
6969       if( eOld==PAGER_JOURNALMODE_WAL ){
6970         /* If leaving WAL mode, close the log file. If successful, the call
6971         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6972         ** file. An EXCLUSIVE lock may still be held on the database file
6973         ** after a successful return.
6974         */
6975         rc = sqlite3PagerCloseWal(pPager, db);
6976         if( rc==SQLITE_OK ){
6977           sqlite3PagerSetJournalMode(pPager, eNew);
6978         }
6979       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6980         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6981         ** as an intermediate */
6982         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6983       }
6984 
6985       /* Open a transaction on the database file. Regardless of the journal
6986       ** mode, this transaction always uses a rollback journal.
6987       */
6988       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6989       if( rc==SQLITE_OK ){
6990         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6991       }
6992     }
6993   }
6994 #endif /* ifndef SQLITE_OMIT_WAL */
6995 
6996   if( rc ) eNew = eOld;
6997   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6998 
6999   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7000   pOut->z = (char *)sqlite3JournalModename(eNew);
7001   pOut->n = sqlite3Strlen30(pOut->z);
7002   pOut->enc = SQLITE_UTF8;
7003   sqlite3VdbeChangeEncoding(pOut, encoding);
7004   if( rc ) goto abort_due_to_error;
7005   break;
7006 };
7007 #endif /* SQLITE_OMIT_PRAGMA */
7008 
7009 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7010 /* Opcode: Vacuum P1 P2 * * *
7011 **
7012 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7013 ** for an attached database.  The "temp" database may not be vacuumed.
7014 **
7015 ** If P2 is not zero, then it is a register holding a string which is
7016 ** the file into which the result of vacuum should be written.  When
7017 ** P2 is zero, the vacuum overwrites the original database.
7018 */
7019 case OP_Vacuum: {
7020   assert( p->readOnly==0 );
7021   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7022                         pOp->p2 ? &aMem[pOp->p2] : 0);
7023   if( rc ) goto abort_due_to_error;
7024   break;
7025 }
7026 #endif
7027 
7028 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7029 /* Opcode: IncrVacuum P1 P2 * * *
7030 **
7031 ** Perform a single step of the incremental vacuum procedure on
7032 ** the P1 database. If the vacuum has finished, jump to instruction
7033 ** P2. Otherwise, fall through to the next instruction.
7034 */
7035 case OP_IncrVacuum: {        /* jump */
7036   Btree *pBt;
7037 
7038   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7039   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7040   assert( p->readOnly==0 );
7041   pBt = db->aDb[pOp->p1].pBt;
7042   rc = sqlite3BtreeIncrVacuum(pBt);
7043   VdbeBranchTaken(rc==SQLITE_DONE,2);
7044   if( rc ){
7045     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7046     rc = SQLITE_OK;
7047     goto jump_to_p2;
7048   }
7049   break;
7050 }
7051 #endif
7052 
7053 /* Opcode: Expire P1 P2 * * *
7054 **
7055 ** Cause precompiled statements to expire.  When an expired statement
7056 ** is executed using sqlite3_step() it will either automatically
7057 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7058 ** or it will fail with SQLITE_SCHEMA.
7059 **
7060 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7061 ** then only the currently executing statement is expired.
7062 **
7063 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7064 ** then running SQL statements are allowed to continue to run to completion.
7065 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7066 ** that might help the statement run faster but which does not affect the
7067 ** correctness of operation.
7068 */
7069 case OP_Expire: {
7070   assert( pOp->p2==0 || pOp->p2==1 );
7071   if( !pOp->p1 ){
7072     sqlite3ExpirePreparedStatements(db, pOp->p2);
7073   }else{
7074     p->expired = pOp->p2+1;
7075   }
7076   break;
7077 }
7078 
7079 /* Opcode: CursorLock P1 * * * *
7080 **
7081 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7082 ** written by an other cursor.
7083 */
7084 case OP_CursorLock: {
7085   VdbeCursor *pC;
7086   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7087   pC = p->apCsr[pOp->p1];
7088   assert( pC!=0 );
7089   assert( pC->eCurType==CURTYPE_BTREE );
7090   sqlite3BtreeCursorPin(pC->uc.pCursor);
7091   break;
7092 }
7093 
7094 /* Opcode: CursorUnlock P1 * * * *
7095 **
7096 ** Unlock the btree to which cursor P1 is pointing so that it can be
7097 ** written by other cursors.
7098 */
7099 case OP_CursorUnlock: {
7100   VdbeCursor *pC;
7101   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7102   pC = p->apCsr[pOp->p1];
7103   assert( pC!=0 );
7104   assert( pC->eCurType==CURTYPE_BTREE );
7105   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7106   break;
7107 }
7108 
7109 #ifndef SQLITE_OMIT_SHARED_CACHE
7110 /* Opcode: TableLock P1 P2 P3 P4 *
7111 ** Synopsis: iDb=P1 root=P2 write=P3
7112 **
7113 ** Obtain a lock on a particular table. This instruction is only used when
7114 ** the shared-cache feature is enabled.
7115 **
7116 ** P1 is the index of the database in sqlite3.aDb[] of the database
7117 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7118 ** a write lock if P3==1.
7119 **
7120 ** P2 contains the root-page of the table to lock.
7121 **
7122 ** P4 contains a pointer to the name of the table being locked. This is only
7123 ** used to generate an error message if the lock cannot be obtained.
7124 */
7125 case OP_TableLock: {
7126   u8 isWriteLock = (u8)pOp->p3;
7127   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7128     int p1 = pOp->p1;
7129     assert( p1>=0 && p1<db->nDb );
7130     assert( DbMaskTest(p->btreeMask, p1) );
7131     assert( isWriteLock==0 || isWriteLock==1 );
7132     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7133     if( rc ){
7134       if( (rc&0xFF)==SQLITE_LOCKED ){
7135         const char *z = pOp->p4.z;
7136         sqlite3VdbeError(p, "database table is locked: %s", z);
7137       }
7138       goto abort_due_to_error;
7139     }
7140   }
7141   break;
7142 }
7143 #endif /* SQLITE_OMIT_SHARED_CACHE */
7144 
7145 #ifndef SQLITE_OMIT_VIRTUALTABLE
7146 /* Opcode: VBegin * * * P4 *
7147 **
7148 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7149 ** xBegin method for that table.
7150 **
7151 ** Also, whether or not P4 is set, check that this is not being called from
7152 ** within a callback to a virtual table xSync() method. If it is, the error
7153 ** code will be set to SQLITE_LOCKED.
7154 */
7155 case OP_VBegin: {
7156   VTable *pVTab;
7157   pVTab = pOp->p4.pVtab;
7158   rc = sqlite3VtabBegin(db, pVTab);
7159   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7160   if( rc ) goto abort_due_to_error;
7161   break;
7162 }
7163 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7164 
7165 #ifndef SQLITE_OMIT_VIRTUALTABLE
7166 /* Opcode: VCreate P1 P2 * * *
7167 **
7168 ** P2 is a register that holds the name of a virtual table in database
7169 ** P1. Call the xCreate method for that table.
7170 */
7171 case OP_VCreate: {
7172   Mem sMem;          /* For storing the record being decoded */
7173   const char *zTab;  /* Name of the virtual table */
7174 
7175   memset(&sMem, 0, sizeof(sMem));
7176   sMem.db = db;
7177   /* Because P2 is always a static string, it is impossible for the
7178   ** sqlite3VdbeMemCopy() to fail */
7179   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7180   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7181   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7182   assert( rc==SQLITE_OK );
7183   zTab = (const char*)sqlite3_value_text(&sMem);
7184   assert( zTab || db->mallocFailed );
7185   if( zTab ){
7186     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7187   }
7188   sqlite3VdbeMemRelease(&sMem);
7189   if( rc ) goto abort_due_to_error;
7190   break;
7191 }
7192 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7193 
7194 #ifndef SQLITE_OMIT_VIRTUALTABLE
7195 /* Opcode: VDestroy P1 * * P4 *
7196 **
7197 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7198 ** of that table.
7199 */
7200 case OP_VDestroy: {
7201   db->nVDestroy++;
7202   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7203   db->nVDestroy--;
7204   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7205   if( rc ) goto abort_due_to_error;
7206   break;
7207 }
7208 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7209 
7210 #ifndef SQLITE_OMIT_VIRTUALTABLE
7211 /* Opcode: VOpen P1 * * P4 *
7212 **
7213 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7214 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7215 ** table and stores that cursor in P1.
7216 */
7217 case OP_VOpen: {
7218   VdbeCursor *pCur;
7219   sqlite3_vtab_cursor *pVCur;
7220   sqlite3_vtab *pVtab;
7221   const sqlite3_module *pModule;
7222 
7223   assert( p->bIsReader );
7224   pCur = 0;
7225   pVCur = 0;
7226   pVtab = pOp->p4.pVtab->pVtab;
7227   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7228     rc = SQLITE_LOCKED;
7229     goto abort_due_to_error;
7230   }
7231   pModule = pVtab->pModule;
7232   rc = pModule->xOpen(pVtab, &pVCur);
7233   sqlite3VtabImportErrmsg(p, pVtab);
7234   if( rc ) goto abort_due_to_error;
7235 
7236   /* Initialize sqlite3_vtab_cursor base class */
7237   pVCur->pVtab = pVtab;
7238 
7239   /* Initialize vdbe cursor object */
7240   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7241   if( pCur ){
7242     pCur->uc.pVCur = pVCur;
7243     pVtab->nRef++;
7244   }else{
7245     assert( db->mallocFailed );
7246     pModule->xClose(pVCur);
7247     goto no_mem;
7248   }
7249   break;
7250 }
7251 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7252 
7253 #ifndef SQLITE_OMIT_VIRTUALTABLE
7254 /* Opcode: VFilter P1 P2 P3 P4 *
7255 ** Synopsis: iplan=r[P3] zplan='P4'
7256 **
7257 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7258 ** the filtered result set is empty.
7259 **
7260 ** P4 is either NULL or a string that was generated by the xBestIndex
7261 ** method of the module.  The interpretation of the P4 string is left
7262 ** to the module implementation.
7263 **
7264 ** This opcode invokes the xFilter method on the virtual table specified
7265 ** by P1.  The integer query plan parameter to xFilter is stored in register
7266 ** P3. Register P3+1 stores the argc parameter to be passed to the
7267 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7268 ** additional parameters which are passed to
7269 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7270 **
7271 ** A jump is made to P2 if the result set after filtering would be empty.
7272 */
7273 case OP_VFilter: {   /* jump */
7274   int nArg;
7275   int iQuery;
7276   const sqlite3_module *pModule;
7277   Mem *pQuery;
7278   Mem *pArgc;
7279   sqlite3_vtab_cursor *pVCur;
7280   sqlite3_vtab *pVtab;
7281   VdbeCursor *pCur;
7282   int res;
7283   int i;
7284   Mem **apArg;
7285 
7286   pQuery = &aMem[pOp->p3];
7287   pArgc = &pQuery[1];
7288   pCur = p->apCsr[pOp->p1];
7289   assert( memIsValid(pQuery) );
7290   REGISTER_TRACE(pOp->p3, pQuery);
7291   assert( pCur->eCurType==CURTYPE_VTAB );
7292   pVCur = pCur->uc.pVCur;
7293   pVtab = pVCur->pVtab;
7294   pModule = pVtab->pModule;
7295 
7296   /* Grab the index number and argc parameters */
7297   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7298   nArg = (int)pArgc->u.i;
7299   iQuery = (int)pQuery->u.i;
7300 
7301   /* Invoke the xFilter method */
7302   res = 0;
7303   apArg = p->apArg;
7304   for(i = 0; i<nArg; i++){
7305     apArg[i] = &pArgc[i+1];
7306   }
7307   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7308   sqlite3VtabImportErrmsg(p, pVtab);
7309   if( rc ) goto abort_due_to_error;
7310   res = pModule->xEof(pVCur);
7311   pCur->nullRow = 0;
7312   VdbeBranchTaken(res!=0,2);
7313   if( res ) goto jump_to_p2;
7314   break;
7315 }
7316 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7317 
7318 #ifndef SQLITE_OMIT_VIRTUALTABLE
7319 /* Opcode: VColumn P1 P2 P3 * P5
7320 ** Synopsis: r[P3]=vcolumn(P2)
7321 **
7322 ** Store in register P3 the value of the P2-th column of
7323 ** the current row of the virtual-table of cursor P1.
7324 **
7325 ** If the VColumn opcode is being used to fetch the value of
7326 ** an unchanging column during an UPDATE operation, then the P5
7327 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7328 ** function to return true inside the xColumn method of the virtual
7329 ** table implementation.  The P5 column might also contain other
7330 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7331 ** unused by OP_VColumn.
7332 */
7333 case OP_VColumn: {
7334   sqlite3_vtab *pVtab;
7335   const sqlite3_module *pModule;
7336   Mem *pDest;
7337   sqlite3_context sContext;
7338 
7339   VdbeCursor *pCur = p->apCsr[pOp->p1];
7340   assert( pCur->eCurType==CURTYPE_VTAB );
7341   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7342   pDest = &aMem[pOp->p3];
7343   memAboutToChange(p, pDest);
7344   if( pCur->nullRow ){
7345     sqlite3VdbeMemSetNull(pDest);
7346     break;
7347   }
7348   pVtab = pCur->uc.pVCur->pVtab;
7349   pModule = pVtab->pModule;
7350   assert( pModule->xColumn );
7351   memset(&sContext, 0, sizeof(sContext));
7352   sContext.pOut = pDest;
7353   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7354   if( pOp->p5 & OPFLAG_NOCHNG ){
7355     sqlite3VdbeMemSetNull(pDest);
7356     pDest->flags = MEM_Null|MEM_Zero;
7357     pDest->u.nZero = 0;
7358   }else{
7359     MemSetTypeFlag(pDest, MEM_Null);
7360   }
7361   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7362   sqlite3VtabImportErrmsg(p, pVtab);
7363   if( sContext.isError>0 ){
7364     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7365     rc = sContext.isError;
7366   }
7367   sqlite3VdbeChangeEncoding(pDest, encoding);
7368   REGISTER_TRACE(pOp->p3, pDest);
7369   UPDATE_MAX_BLOBSIZE(pDest);
7370 
7371   if( sqlite3VdbeMemTooBig(pDest) ){
7372     goto too_big;
7373   }
7374   if( rc ) goto abort_due_to_error;
7375   break;
7376 }
7377 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7378 
7379 #ifndef SQLITE_OMIT_VIRTUALTABLE
7380 /* Opcode: VNext P1 P2 * * *
7381 **
7382 ** Advance virtual table P1 to the next row in its result set and
7383 ** jump to instruction P2.  Or, if the virtual table has reached
7384 ** the end of its result set, then fall through to the next instruction.
7385 */
7386 case OP_VNext: {   /* jump */
7387   sqlite3_vtab *pVtab;
7388   const sqlite3_module *pModule;
7389   int res;
7390   VdbeCursor *pCur;
7391 
7392   res = 0;
7393   pCur = p->apCsr[pOp->p1];
7394   assert( pCur->eCurType==CURTYPE_VTAB );
7395   if( pCur->nullRow ){
7396     break;
7397   }
7398   pVtab = pCur->uc.pVCur->pVtab;
7399   pModule = pVtab->pModule;
7400   assert( pModule->xNext );
7401 
7402   /* Invoke the xNext() method of the module. There is no way for the
7403   ** underlying implementation to return an error if one occurs during
7404   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7405   ** data is available) and the error code returned when xColumn or
7406   ** some other method is next invoked on the save virtual table cursor.
7407   */
7408   rc = pModule->xNext(pCur->uc.pVCur);
7409   sqlite3VtabImportErrmsg(p, pVtab);
7410   if( rc ) goto abort_due_to_error;
7411   res = pModule->xEof(pCur->uc.pVCur);
7412   VdbeBranchTaken(!res,2);
7413   if( !res ){
7414     /* If there is data, jump to P2 */
7415     goto jump_to_p2_and_check_for_interrupt;
7416   }
7417   goto check_for_interrupt;
7418 }
7419 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7420 
7421 #ifndef SQLITE_OMIT_VIRTUALTABLE
7422 /* Opcode: VRename P1 * * P4 *
7423 **
7424 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7425 ** This opcode invokes the corresponding xRename method. The value
7426 ** in register P1 is passed as the zName argument to the xRename method.
7427 */
7428 case OP_VRename: {
7429   sqlite3_vtab *pVtab;
7430   Mem *pName;
7431   int isLegacy;
7432 
7433   isLegacy = (db->flags & SQLITE_LegacyAlter);
7434   db->flags |= SQLITE_LegacyAlter;
7435   pVtab = pOp->p4.pVtab->pVtab;
7436   pName = &aMem[pOp->p1];
7437   assert( pVtab->pModule->xRename );
7438   assert( memIsValid(pName) );
7439   assert( p->readOnly==0 );
7440   REGISTER_TRACE(pOp->p1, pName);
7441   assert( pName->flags & MEM_Str );
7442   testcase( pName->enc==SQLITE_UTF8 );
7443   testcase( pName->enc==SQLITE_UTF16BE );
7444   testcase( pName->enc==SQLITE_UTF16LE );
7445   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7446   if( rc ) goto abort_due_to_error;
7447   rc = pVtab->pModule->xRename(pVtab, pName->z);
7448   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7449   sqlite3VtabImportErrmsg(p, pVtab);
7450   p->expired = 0;
7451   if( rc ) goto abort_due_to_error;
7452   break;
7453 }
7454 #endif
7455 
7456 #ifndef SQLITE_OMIT_VIRTUALTABLE
7457 /* Opcode: VUpdate P1 P2 P3 P4 P5
7458 ** Synopsis: data=r[P3@P2]
7459 **
7460 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7461 ** This opcode invokes the corresponding xUpdate method. P2 values
7462 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7463 ** invocation. The value in register (P3+P2-1) corresponds to the
7464 ** p2th element of the argv array passed to xUpdate.
7465 **
7466 ** The xUpdate method will do a DELETE or an INSERT or both.
7467 ** The argv[0] element (which corresponds to memory cell P3)
7468 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7469 ** deletion occurs.  The argv[1] element is the rowid of the new
7470 ** row.  This can be NULL to have the virtual table select the new
7471 ** rowid for itself.  The subsequent elements in the array are
7472 ** the values of columns in the new row.
7473 **
7474 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7475 ** a row to delete.
7476 **
7477 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7478 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7479 ** is set to the value of the rowid for the row just inserted.
7480 **
7481 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7482 ** apply in the case of a constraint failure on an insert or update.
7483 */
7484 case OP_VUpdate: {
7485   sqlite3_vtab *pVtab;
7486   const sqlite3_module *pModule;
7487   int nArg;
7488   int i;
7489   sqlite_int64 rowid;
7490   Mem **apArg;
7491   Mem *pX;
7492 
7493   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7494        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7495   );
7496   assert( p->readOnly==0 );
7497   if( db->mallocFailed ) goto no_mem;
7498   sqlite3VdbeIncrWriteCounter(p, 0);
7499   pVtab = pOp->p4.pVtab->pVtab;
7500   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7501     rc = SQLITE_LOCKED;
7502     goto abort_due_to_error;
7503   }
7504   pModule = pVtab->pModule;
7505   nArg = pOp->p2;
7506   assert( pOp->p4type==P4_VTAB );
7507   if( ALWAYS(pModule->xUpdate) ){
7508     u8 vtabOnConflict = db->vtabOnConflict;
7509     apArg = p->apArg;
7510     pX = &aMem[pOp->p3];
7511     for(i=0; i<nArg; i++){
7512       assert( memIsValid(pX) );
7513       memAboutToChange(p, pX);
7514       apArg[i] = pX;
7515       pX++;
7516     }
7517     db->vtabOnConflict = pOp->p5;
7518     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7519     db->vtabOnConflict = vtabOnConflict;
7520     sqlite3VtabImportErrmsg(p, pVtab);
7521     if( rc==SQLITE_OK && pOp->p1 ){
7522       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7523       db->lastRowid = rowid;
7524     }
7525     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7526       if( pOp->p5==OE_Ignore ){
7527         rc = SQLITE_OK;
7528       }else{
7529         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7530       }
7531     }else{
7532       p->nChange++;
7533     }
7534     if( rc ) goto abort_due_to_error;
7535   }
7536   break;
7537 }
7538 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7539 
7540 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7541 /* Opcode: Pagecount P1 P2 * * *
7542 **
7543 ** Write the current number of pages in database P1 to memory cell P2.
7544 */
7545 case OP_Pagecount: {            /* out2 */
7546   pOut = out2Prerelease(p, pOp);
7547   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7548   break;
7549 }
7550 #endif
7551 
7552 
7553 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7554 /* Opcode: MaxPgcnt P1 P2 P3 * *
7555 **
7556 ** Try to set the maximum page count for database P1 to the value in P3.
7557 ** Do not let the maximum page count fall below the current page count and
7558 ** do not change the maximum page count value if P3==0.
7559 **
7560 ** Store the maximum page count after the change in register P2.
7561 */
7562 case OP_MaxPgcnt: {            /* out2 */
7563   unsigned int newMax;
7564   Btree *pBt;
7565 
7566   pOut = out2Prerelease(p, pOp);
7567   pBt = db->aDb[pOp->p1].pBt;
7568   newMax = 0;
7569   if( pOp->p3 ){
7570     newMax = sqlite3BtreeLastPage(pBt);
7571     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7572   }
7573   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7574   break;
7575 }
7576 #endif
7577 
7578 /* Opcode: Function P1 P2 P3 P4 *
7579 ** Synopsis: r[P3]=func(r[P2@P5])
7580 **
7581 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7582 ** contains a pointer to the function to be run) with arguments taken
7583 ** from register P2 and successors.  The number of arguments is in
7584 ** the sqlite3_context object that P4 points to.
7585 ** The result of the function is stored
7586 ** in register P3.  Register P3 must not be one of the function inputs.
7587 **
7588 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7589 ** function was determined to be constant at compile time. If the first
7590 ** argument was constant then bit 0 of P1 is set. This is used to determine
7591 ** whether meta data associated with a user function argument using the
7592 ** sqlite3_set_auxdata() API may be safely retained until the next
7593 ** invocation of this opcode.
7594 **
7595 ** See also: AggStep, AggFinal, PureFunc
7596 */
7597 /* Opcode: PureFunc P1 P2 P3 P4 *
7598 ** Synopsis: r[P3]=func(r[P2@P5])
7599 **
7600 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7601 ** contains a pointer to the function to be run) with arguments taken
7602 ** from register P2 and successors.  The number of arguments is in
7603 ** the sqlite3_context object that P4 points to.
7604 ** The result of the function is stored
7605 ** in register P3.  Register P3 must not be one of the function inputs.
7606 **
7607 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7608 ** function was determined to be constant at compile time. If the first
7609 ** argument was constant then bit 0 of P1 is set. This is used to determine
7610 ** whether meta data associated with a user function argument using the
7611 ** sqlite3_set_auxdata() API may be safely retained until the next
7612 ** invocation of this opcode.
7613 **
7614 ** This opcode works exactly like OP_Function.  The only difference is in
7615 ** its name.  This opcode is used in places where the function must be
7616 ** purely non-deterministic.  Some built-in date/time functions can be
7617 ** either determinitic of non-deterministic, depending on their arguments.
7618 ** When those function are used in a non-deterministic way, they will check
7619 ** to see if they were called using OP_PureFunc instead of OP_Function, and
7620 ** if they were, they throw an error.
7621 **
7622 ** See also: AggStep, AggFinal, Function
7623 */
7624 case OP_PureFunc:              /* group */
7625 case OP_Function: {            /* group */
7626   int i;
7627   sqlite3_context *pCtx;
7628 
7629   assert( pOp->p4type==P4_FUNCCTX );
7630   pCtx = pOp->p4.pCtx;
7631 
7632   /* If this function is inside of a trigger, the register array in aMem[]
7633   ** might change from one evaluation to the next.  The next block of code
7634   ** checks to see if the register array has changed, and if so it
7635   ** reinitializes the relavant parts of the sqlite3_context object */
7636   pOut = &aMem[pOp->p3];
7637   if( pCtx->pOut != pOut ){
7638     pCtx->pVdbe = p;
7639     pCtx->pOut = pOut;
7640     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7641   }
7642   assert( pCtx->pVdbe==p );
7643 
7644   memAboutToChange(p, pOut);
7645 #ifdef SQLITE_DEBUG
7646   for(i=0; i<pCtx->argc; i++){
7647     assert( memIsValid(pCtx->argv[i]) );
7648     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7649   }
7650 #endif
7651   MemSetTypeFlag(pOut, MEM_Null);
7652   assert( pCtx->isError==0 );
7653   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7654 
7655   /* If the function returned an error, throw an exception */
7656   if( pCtx->isError ){
7657     if( pCtx->isError>0 ){
7658       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7659       rc = pCtx->isError;
7660     }
7661     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7662     pCtx->isError = 0;
7663     if( rc ) goto abort_due_to_error;
7664   }
7665 
7666   /* Copy the result of the function into register P3 */
7667   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7668     sqlite3VdbeChangeEncoding(pOut, encoding);
7669     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7670   }
7671 
7672   REGISTER_TRACE(pOp->p3, pOut);
7673   UPDATE_MAX_BLOBSIZE(pOut);
7674   break;
7675 }
7676 
7677 /* Opcode: Trace P1 P2 * P4 *
7678 **
7679 ** Write P4 on the statement trace output if statement tracing is
7680 ** enabled.
7681 **
7682 ** Operand P1 must be 0x7fffffff and P2 must positive.
7683 */
7684 /* Opcode: Init P1 P2 P3 P4 *
7685 ** Synopsis: Start at P2
7686 **
7687 ** Programs contain a single instance of this opcode as the very first
7688 ** opcode.
7689 **
7690 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7691 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7692 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7693 **
7694 ** If P2 is not zero, jump to instruction P2.
7695 **
7696 ** Increment the value of P1 so that OP_Once opcodes will jump the
7697 ** first time they are evaluated for this run.
7698 **
7699 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7700 ** error is encountered.
7701 */
7702 case OP_Trace:
7703 case OP_Init: {          /* jump */
7704   int i;
7705 #ifndef SQLITE_OMIT_TRACE
7706   char *zTrace;
7707 #endif
7708 
7709   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7710   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7711   **
7712   ** This assert() provides evidence for:
7713   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7714   ** would have been returned by the legacy sqlite3_trace() interface by
7715   ** using the X argument when X begins with "--" and invoking
7716   ** sqlite3_expanded_sql(P) otherwise.
7717   */
7718   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7719 
7720   /* OP_Init is always instruction 0 */
7721   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7722 
7723 #ifndef SQLITE_OMIT_TRACE
7724   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7725    && !p->doingRerun
7726    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7727   ){
7728 #ifndef SQLITE_OMIT_DEPRECATED
7729     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7730       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7731       char *z = sqlite3VdbeExpandSql(p, zTrace);
7732       x(db->pTraceArg, z);
7733       sqlite3_free(z);
7734     }else
7735 #endif
7736     if( db->nVdbeExec>1 ){
7737       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7738       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7739       sqlite3DbFree(db, z);
7740     }else{
7741       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7742     }
7743   }
7744 #ifdef SQLITE_USE_FCNTL_TRACE
7745   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7746   if( zTrace ){
7747     int j;
7748     for(j=0; j<db->nDb; j++){
7749       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7750       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7751     }
7752   }
7753 #endif /* SQLITE_USE_FCNTL_TRACE */
7754 #ifdef SQLITE_DEBUG
7755   if( (db->flags & SQLITE_SqlTrace)!=0
7756    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7757   ){
7758     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7759   }
7760 #endif /* SQLITE_DEBUG */
7761 #endif /* SQLITE_OMIT_TRACE */
7762   assert( pOp->p2>0 );
7763   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7764     if( pOp->opcode==OP_Trace ) break;
7765     for(i=1; i<p->nOp; i++){
7766       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7767     }
7768     pOp->p1 = 0;
7769   }
7770   pOp->p1++;
7771   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7772   goto jump_to_p2;
7773 }
7774 
7775 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7776 /* Opcode: CursorHint P1 * * P4 *
7777 **
7778 ** Provide a hint to cursor P1 that it only needs to return rows that
7779 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7780 ** to values currently held in registers.  TK_COLUMN terms in the P4
7781 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7782 */
7783 case OP_CursorHint: {
7784   VdbeCursor *pC;
7785 
7786   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7787   assert( pOp->p4type==P4_EXPR );
7788   pC = p->apCsr[pOp->p1];
7789   if( pC ){
7790     assert( pC->eCurType==CURTYPE_BTREE );
7791     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7792                            pOp->p4.pExpr, aMem);
7793   }
7794   break;
7795 }
7796 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7797 
7798 #ifdef SQLITE_DEBUG
7799 /* Opcode:  Abortable   * * * * *
7800 **
7801 ** Verify that an Abort can happen.  Assert if an Abort at this point
7802 ** might cause database corruption.  This opcode only appears in debugging
7803 ** builds.
7804 **
7805 ** An Abort is safe if either there have been no writes, or if there is
7806 ** an active statement journal.
7807 */
7808 case OP_Abortable: {
7809   sqlite3VdbeAssertAbortable(p);
7810   break;
7811 }
7812 #endif
7813 
7814 #ifdef SQLITE_DEBUG
7815 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
7816 ** Synopsis: release r[P1@P2] mask P3
7817 **
7818 ** Release registers from service.  Any content that was in the
7819 ** the registers is unreliable after this opcode completes.
7820 **
7821 ** The registers released will be the P2 registers starting at P1,
7822 ** except if bit ii of P3 set, then do not release register P1+ii.
7823 ** In other words, P3 is a mask of registers to preserve.
7824 **
7825 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
7826 ** that if the content of the released register was set using OP_SCopy,
7827 ** a change to the value of the source register for the OP_SCopy will no longer
7828 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7829 **
7830 ** If P5 is set, then all released registers have their type set
7831 ** to MEM_Undefined so that any subsequent attempt to read the released
7832 ** register (before it is reinitialized) will generate an assertion fault.
7833 **
7834 ** P5 ought to be set on every call to this opcode.
7835 ** However, there are places in the code generator will release registers
7836 ** before their are used, under the (valid) assumption that the registers
7837 ** will not be reallocated for some other purpose before they are used and
7838 ** hence are safe to release.
7839 **
7840 ** This opcode is only available in testing and debugging builds.  It is
7841 ** not generated for release builds.  The purpose of this opcode is to help
7842 ** validate the generated bytecode.  This opcode does not actually contribute
7843 ** to computing an answer.
7844 */
7845 case OP_ReleaseReg: {
7846   Mem *pMem;
7847   int i;
7848   u32 constMask;
7849   assert( pOp->p1>0 );
7850   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7851   pMem = &aMem[pOp->p1];
7852   constMask = pOp->p3;
7853   for(i=0; i<pOp->p2; i++, pMem++){
7854     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
7855       pMem->pScopyFrom = 0;
7856       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
7857     }
7858   }
7859   break;
7860 }
7861 #endif
7862 
7863 /* Opcode: Noop * * * * *
7864 **
7865 ** Do nothing.  This instruction is often useful as a jump
7866 ** destination.
7867 */
7868 /*
7869 ** The magic Explain opcode are only inserted when explain==2 (which
7870 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7871 ** This opcode records information from the optimizer.  It is the
7872 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7873 */
7874 default: {          /* This is really OP_Noop, OP_Explain */
7875   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7876 
7877   break;
7878 }
7879 
7880 /*****************************************************************************
7881 ** The cases of the switch statement above this line should all be indented
7882 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7883 ** readability.  From this point on down, the normal indentation rules are
7884 ** restored.
7885 *****************************************************************************/
7886     }
7887 
7888 #ifdef VDBE_PROFILE
7889     {
7890       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7891       if( endTime>start ) pOrigOp->cycles += endTime - start;
7892       pOrigOp->cnt++;
7893     }
7894 #endif
7895 
7896     /* The following code adds nothing to the actual functionality
7897     ** of the program.  It is only here for testing and debugging.
7898     ** On the other hand, it does burn CPU cycles every time through
7899     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7900     */
7901 #ifndef NDEBUG
7902     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7903 
7904 #ifdef SQLITE_DEBUG
7905     if( db->flags & SQLITE_VdbeTrace ){
7906       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7907       if( rc!=0 ) printf("rc=%d\n",rc);
7908       if( opProperty & (OPFLG_OUT2) ){
7909         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7910       }
7911       if( opProperty & OPFLG_OUT3 ){
7912         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7913       }
7914       if( opProperty==0xff ){
7915         /* Never happens.  This code exists to avoid a harmless linkage
7916         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
7917         ** used. */
7918         sqlite3VdbeRegisterDump(p);
7919       }
7920     }
7921 #endif  /* SQLITE_DEBUG */
7922 #endif  /* NDEBUG */
7923   }  /* The end of the for(;;) loop the loops through opcodes */
7924 
7925   /* If we reach this point, it means that execution is finished with
7926   ** an error of some kind.
7927   */
7928 abort_due_to_error:
7929   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7930   assert( rc );
7931   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7932     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7933   }
7934   p->rc = rc;
7935   sqlite3SystemError(db, rc);
7936   testcase( sqlite3GlobalConfig.xLog!=0 );
7937   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7938                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7939   sqlite3VdbeHalt(p);
7940   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7941   rc = SQLITE_ERROR;
7942   if( resetSchemaOnFault>0 ){
7943     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7944   }
7945 
7946   /* This is the only way out of this procedure.  We have to
7947   ** release the mutexes on btrees that were acquired at the
7948   ** top. */
7949 vdbe_return:
7950 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
7951   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7952     nProgressLimit += db->nProgressOps;
7953     if( db->xProgress(db->pProgressArg) ){
7954       nProgressLimit = 0xffffffff;
7955       rc = SQLITE_INTERRUPT;
7956       goto abort_due_to_error;
7957     }
7958   }
7959 #endif
7960   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7961   sqlite3VdbeLeave(p);
7962   assert( rc!=SQLITE_OK || nExtraDelete==0
7963        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7964   );
7965   return rc;
7966 
7967   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7968   ** is encountered.
7969   */
7970 too_big:
7971   sqlite3VdbeError(p, "string or blob too big");
7972   rc = SQLITE_TOOBIG;
7973   goto abort_due_to_error;
7974 
7975   /* Jump to here if a malloc() fails.
7976   */
7977 no_mem:
7978   sqlite3OomFault(db);
7979   sqlite3VdbeError(p, "out of memory");
7980   rc = SQLITE_NOMEM_BKPT;
7981   goto abort_due_to_error;
7982 
7983   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7984   ** flag.
7985   */
7986 abort_due_to_interrupt:
7987   assert( db->u1.isInterrupted );
7988   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7989   p->rc = rc;
7990   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7991   goto abort_due_to_error;
7992 }
7993