1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag 276 ** is clear. Otherwise, if this is an ephemeral cursor created by 277 ** OP_OpenDup, the cursor will not be closed and will still be part 278 ** of a BtShared.pCursor list. */ 279 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0; 280 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 281 p->apCsr[iCur] = 0; 282 } 283 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 284 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 285 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 286 pCx->eCurType = eCurType; 287 pCx->iDb = iDb; 288 pCx->nField = nField; 289 pCx->aOffset = &pCx->aType[nField]; 290 if( eCurType==CURTYPE_BTREE ){ 291 pCx->uc.pCursor = (BtCursor*) 292 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 293 sqlite3BtreeCursorZero(pCx->uc.pCursor); 294 } 295 } 296 return pCx; 297 } 298 299 /* 300 ** The string in pRec is known to look like an integer and to have a 301 ** floating point value of rValue. Return true and set *piValue to the 302 ** integer value if the string is in range to be an integer. Otherwise, 303 ** return false. 304 */ 305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 306 i64 iValue = (double)rValue; 307 if( sqlite3RealSameAsInt(rValue,iValue) ){ 308 *piValue = iValue; 309 return 1; 310 } 311 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 312 } 313 314 /* 315 ** Try to convert a value into a numeric representation if we can 316 ** do so without loss of information. In other words, if the string 317 ** looks like a number, convert it into a number. If it does not 318 ** look like a number, leave it alone. 319 ** 320 ** If the bTryForInt flag is true, then extra effort is made to give 321 ** an integer representation. Strings that look like floating point 322 ** values but which have no fractional component (example: '48.00') 323 ** will have a MEM_Int representation when bTryForInt is true. 324 ** 325 ** If bTryForInt is false, then if the input string contains a decimal 326 ** point or exponential notation, the result is only MEM_Real, even 327 ** if there is an exact integer representation of the quantity. 328 */ 329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 330 double rValue; 331 u8 enc = pRec->enc; 332 int rc; 333 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 334 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 335 if( rc<=0 ) return; 336 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 337 pRec->flags |= MEM_Int; 338 }else{ 339 pRec->u.r = rValue; 340 pRec->flags |= MEM_Real; 341 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 342 } 343 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 344 ** string representation after computing a numeric equivalent, because the 345 ** string representation might not be the canonical representation for the 346 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 347 pRec->flags &= ~MEM_Str; 348 } 349 350 /* 351 ** Processing is determine by the affinity parameter: 352 ** 353 ** SQLITE_AFF_INTEGER: 354 ** SQLITE_AFF_REAL: 355 ** SQLITE_AFF_NUMERIC: 356 ** Try to convert pRec to an integer representation or a 357 ** floating-point representation if an integer representation 358 ** is not possible. Note that the integer representation is 359 ** always preferred, even if the affinity is REAL, because 360 ** an integer representation is more space efficient on disk. 361 ** 362 ** SQLITE_AFF_TEXT: 363 ** Convert pRec to a text representation. 364 ** 365 ** SQLITE_AFF_BLOB: 366 ** SQLITE_AFF_NONE: 367 ** No-op. pRec is unchanged. 368 */ 369 static void applyAffinity( 370 Mem *pRec, /* The value to apply affinity to */ 371 char affinity, /* The affinity to be applied */ 372 u8 enc /* Use this text encoding */ 373 ){ 374 if( affinity>=SQLITE_AFF_NUMERIC ){ 375 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 376 || affinity==SQLITE_AFF_NUMERIC ); 377 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 378 if( (pRec->flags & MEM_Real)==0 ){ 379 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 380 }else{ 381 sqlite3VdbeIntegerAffinity(pRec); 382 } 383 } 384 }else if( affinity==SQLITE_AFF_TEXT ){ 385 /* Only attempt the conversion to TEXT if there is an integer or real 386 ** representation (blob and NULL do not get converted) but no string 387 ** representation. It would be harmless to repeat the conversion if 388 ** there is already a string rep, but it is pointless to waste those 389 ** CPU cycles. */ 390 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 391 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 392 testcase( pRec->flags & MEM_Int ); 393 testcase( pRec->flags & MEM_Real ); 394 testcase( pRec->flags & MEM_IntReal ); 395 sqlite3VdbeMemStringify(pRec, enc, 1); 396 } 397 } 398 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 399 } 400 } 401 402 /* 403 ** Try to convert the type of a function argument or a result column 404 ** into a numeric representation. Use either INTEGER or REAL whichever 405 ** is appropriate. But only do the conversion if it is possible without 406 ** loss of information and return the revised type of the argument. 407 */ 408 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 409 int eType = sqlite3_value_type(pVal); 410 if( eType==SQLITE_TEXT ){ 411 Mem *pMem = (Mem*)pVal; 412 applyNumericAffinity(pMem, 0); 413 eType = sqlite3_value_type(pVal); 414 } 415 return eType; 416 } 417 418 /* 419 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 420 ** not the internal Mem* type. 421 */ 422 void sqlite3ValueApplyAffinity( 423 sqlite3_value *pVal, 424 u8 affinity, 425 u8 enc 426 ){ 427 applyAffinity((Mem *)pVal, affinity, enc); 428 } 429 430 /* 431 ** pMem currently only holds a string type (or maybe a BLOB that we can 432 ** interpret as a string if we want to). Compute its corresponding 433 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 434 ** accordingly. 435 */ 436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 437 int rc; 438 sqlite3_int64 ix; 439 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 440 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 441 ExpandBlob(pMem); 442 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 443 if( rc<=0 ){ 444 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 445 pMem->u.i = ix; 446 return MEM_Int; 447 }else{ 448 return MEM_Real; 449 } 450 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 451 pMem->u.i = ix; 452 return MEM_Int; 453 } 454 return MEM_Real; 455 } 456 457 /* 458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 459 ** none. 460 ** 461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 462 ** But it does set pMem->u.r and pMem->u.i appropriately. 463 */ 464 static u16 numericType(Mem *pMem){ 465 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 466 testcase( pMem->flags & MEM_Int ); 467 testcase( pMem->flags & MEM_Real ); 468 testcase( pMem->flags & MEM_IntReal ); 469 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 470 } 471 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 472 testcase( pMem->flags & MEM_Str ); 473 testcase( pMem->flags & MEM_Blob ); 474 return computeNumericType(pMem); 475 } 476 return 0; 477 } 478 479 #ifdef SQLITE_DEBUG 480 /* 481 ** Write a nice string representation of the contents of cell pMem 482 ** into buffer zBuf, length nBuf. 483 */ 484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 485 int f = pMem->flags; 486 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 487 if( f&MEM_Blob ){ 488 int i; 489 char c; 490 if( f & MEM_Dyn ){ 491 c = 'z'; 492 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 493 }else if( f & MEM_Static ){ 494 c = 't'; 495 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 496 }else if( f & MEM_Ephem ){ 497 c = 'e'; 498 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 499 }else{ 500 c = 's'; 501 } 502 sqlite3_str_appendf(pStr, "%cx[", c); 503 for(i=0; i<25 && i<pMem->n; i++){ 504 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 505 } 506 sqlite3_str_appendf(pStr, "|"); 507 for(i=0; i<25 && i<pMem->n; i++){ 508 char z = pMem->z[i]; 509 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 510 } 511 sqlite3_str_appendf(pStr,"]"); 512 if( f & MEM_Zero ){ 513 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 514 } 515 }else if( f & MEM_Str ){ 516 int j; 517 u8 c; 518 if( f & MEM_Dyn ){ 519 c = 'z'; 520 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 521 }else if( f & MEM_Static ){ 522 c = 't'; 523 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 524 }else if( f & MEM_Ephem ){ 525 c = 'e'; 526 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 527 }else{ 528 c = 's'; 529 } 530 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 531 for(j=0; j<25 && j<pMem->n; j++){ 532 c = pMem->z[j]; 533 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 534 } 535 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 536 } 537 } 538 #endif 539 540 #ifdef SQLITE_DEBUG 541 /* 542 ** Print the value of a register for tracing purposes: 543 */ 544 static void memTracePrint(Mem *p){ 545 if( p->flags & MEM_Undefined ){ 546 printf(" undefined"); 547 }else if( p->flags & MEM_Null ){ 548 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 549 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 550 printf(" si:%lld", p->u.i); 551 }else if( (p->flags & (MEM_IntReal))!=0 ){ 552 printf(" ir:%lld", p->u.i); 553 }else if( p->flags & MEM_Int ){ 554 printf(" i:%lld", p->u.i); 555 #ifndef SQLITE_OMIT_FLOATING_POINT 556 }else if( p->flags & MEM_Real ){ 557 printf(" r:%.17g", p->u.r); 558 #endif 559 }else if( sqlite3VdbeMemIsRowSet(p) ){ 560 printf(" (rowset)"); 561 }else{ 562 StrAccum acc; 563 char zBuf[1000]; 564 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 565 sqlite3VdbeMemPrettyPrint(p, &acc); 566 printf(" %s", sqlite3StrAccumFinish(&acc)); 567 } 568 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 569 } 570 static void registerTrace(int iReg, Mem *p){ 571 printf("R[%d] = ", iReg); 572 memTracePrint(p); 573 if( p->pScopyFrom ){ 574 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 575 } 576 printf("\n"); 577 sqlite3VdbeCheckMemInvariants(p); 578 } 579 #endif 580 581 #ifdef SQLITE_DEBUG 582 /* 583 ** Show the values of all registers in the virtual machine. Used for 584 ** interactive debugging. 585 */ 586 void sqlite3VdbeRegisterDump(Vdbe *v){ 587 int i; 588 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 589 } 590 #endif /* SQLITE_DEBUG */ 591 592 593 #ifdef SQLITE_DEBUG 594 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 595 #else 596 # define REGISTER_TRACE(R,M) 597 #endif 598 599 600 #ifdef VDBE_PROFILE 601 602 /* 603 ** hwtime.h contains inline assembler code for implementing 604 ** high-performance timing routines. 605 */ 606 #include "hwtime.h" 607 608 #endif 609 610 #ifndef NDEBUG 611 /* 612 ** This function is only called from within an assert() expression. It 613 ** checks that the sqlite3.nTransaction variable is correctly set to 614 ** the number of non-transaction savepoints currently in the 615 ** linked list starting at sqlite3.pSavepoint. 616 ** 617 ** Usage: 618 ** 619 ** assert( checkSavepointCount(db) ); 620 */ 621 static int checkSavepointCount(sqlite3 *db){ 622 int n = 0; 623 Savepoint *p; 624 for(p=db->pSavepoint; p; p=p->pNext) n++; 625 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 626 return 1; 627 } 628 #endif 629 630 /* 631 ** Return the register of pOp->p2 after first preparing it to be 632 ** overwritten with an integer value. 633 */ 634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 635 sqlite3VdbeMemSetNull(pOut); 636 pOut->flags = MEM_Int; 637 return pOut; 638 } 639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 640 Mem *pOut; 641 assert( pOp->p2>0 ); 642 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 643 pOut = &p->aMem[pOp->p2]; 644 memAboutToChange(p, pOut); 645 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 646 return out2PrereleaseWithClear(pOut); 647 }else{ 648 pOut->flags = MEM_Int; 649 return pOut; 650 } 651 } 652 653 654 /* 655 ** Execute as much of a VDBE program as we can. 656 ** This is the core of sqlite3_step(). 657 */ 658 int sqlite3VdbeExec( 659 Vdbe *p /* The VDBE */ 660 ){ 661 Op *aOp = p->aOp; /* Copy of p->aOp */ 662 Op *pOp = aOp; /* Current operation */ 663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 664 Op *pOrigOp; /* Value of pOp at the top of the loop */ 665 #endif 666 #ifdef SQLITE_DEBUG 667 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 668 #endif 669 int rc = SQLITE_OK; /* Value to return */ 670 sqlite3 *db = p->db; /* The database */ 671 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 672 u8 encoding = ENC(db); /* The database encoding */ 673 int iCompare = 0; /* Result of last comparison */ 674 unsigned nVmStep = 0; /* Number of virtual machine steps */ 675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 676 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 677 #endif 678 Mem *aMem = p->aMem; /* Copy of p->aMem */ 679 Mem *pIn1 = 0; /* 1st input operand */ 680 Mem *pIn2 = 0; /* 2nd input operand */ 681 Mem *pIn3 = 0; /* 3rd input operand */ 682 Mem *pOut = 0; /* Output operand */ 683 #ifdef VDBE_PROFILE 684 u64 start; /* CPU clock count at start of opcode */ 685 #endif 686 /*** INSERT STACK UNION HERE ***/ 687 688 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 689 sqlite3VdbeEnter(p); 690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 691 if( db->xProgress ){ 692 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 693 assert( 0 < db->nProgressOps ); 694 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 695 }else{ 696 nProgressLimit = 0xffffffff; 697 } 698 #endif 699 if( p->rc==SQLITE_NOMEM ){ 700 /* This happens if a malloc() inside a call to sqlite3_column_text() or 701 ** sqlite3_column_text16() failed. */ 702 goto no_mem; 703 } 704 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 705 assert( p->bIsReader || p->readOnly!=0 ); 706 p->iCurrentTime = 0; 707 assert( p->explain==0 ); 708 p->pResultSet = 0; 709 db->busyHandler.nBusy = 0; 710 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 711 sqlite3VdbeIOTraceSql(p); 712 #ifdef SQLITE_DEBUG 713 sqlite3BeginBenignMalloc(); 714 if( p->pc==0 715 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 716 ){ 717 int i; 718 int once = 1; 719 sqlite3VdbePrintSql(p); 720 if( p->db->flags & SQLITE_VdbeListing ){ 721 printf("VDBE Program Listing:\n"); 722 for(i=0; i<p->nOp; i++){ 723 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 724 } 725 } 726 if( p->db->flags & SQLITE_VdbeEQP ){ 727 for(i=0; i<p->nOp; i++){ 728 if( aOp[i].opcode==OP_Explain ){ 729 if( once ) printf("VDBE Query Plan:\n"); 730 printf("%s\n", aOp[i].p4.z); 731 once = 0; 732 } 733 } 734 } 735 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 736 } 737 sqlite3EndBenignMalloc(); 738 #endif 739 for(pOp=&aOp[p->pc]; 1; pOp++){ 740 /* Errors are detected by individual opcodes, with an immediate 741 ** jumps to abort_due_to_error. */ 742 assert( rc==SQLITE_OK ); 743 744 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 745 #ifdef VDBE_PROFILE 746 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 747 #endif 748 nVmStep++; 749 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 750 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 751 #endif 752 753 /* Only allow tracing if SQLITE_DEBUG is defined. 754 */ 755 #ifdef SQLITE_DEBUG 756 if( db->flags & SQLITE_VdbeTrace ){ 757 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 758 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 759 } 760 #endif 761 762 763 /* Check to see if we need to simulate an interrupt. This only happens 764 ** if we have a special test build. 765 */ 766 #ifdef SQLITE_TEST 767 if( sqlite3_interrupt_count>0 ){ 768 sqlite3_interrupt_count--; 769 if( sqlite3_interrupt_count==0 ){ 770 sqlite3_interrupt(db); 771 } 772 } 773 #endif 774 775 /* Sanity checking on other operands */ 776 #ifdef SQLITE_DEBUG 777 { 778 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 779 if( (opProperty & OPFLG_IN1)!=0 ){ 780 assert( pOp->p1>0 ); 781 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 782 assert( memIsValid(&aMem[pOp->p1]) ); 783 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 784 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 785 } 786 if( (opProperty & OPFLG_IN2)!=0 ){ 787 assert( pOp->p2>0 ); 788 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 789 assert( memIsValid(&aMem[pOp->p2]) ); 790 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 791 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 792 } 793 if( (opProperty & OPFLG_IN3)!=0 ){ 794 assert( pOp->p3>0 ); 795 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 796 assert( memIsValid(&aMem[pOp->p3]) ); 797 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 798 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 799 } 800 if( (opProperty & OPFLG_OUT2)!=0 ){ 801 assert( pOp->p2>0 ); 802 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 803 memAboutToChange(p, &aMem[pOp->p2]); 804 } 805 if( (opProperty & OPFLG_OUT3)!=0 ){ 806 assert( pOp->p3>0 ); 807 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 808 memAboutToChange(p, &aMem[pOp->p3]); 809 } 810 } 811 #endif 812 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 813 pOrigOp = pOp; 814 #endif 815 816 switch( pOp->opcode ){ 817 818 /***************************************************************************** 819 ** What follows is a massive switch statement where each case implements a 820 ** separate instruction in the virtual machine. If we follow the usual 821 ** indentation conventions, each case should be indented by 6 spaces. But 822 ** that is a lot of wasted space on the left margin. So the code within 823 ** the switch statement will break with convention and be flush-left. Another 824 ** big comment (similar to this one) will mark the point in the code where 825 ** we transition back to normal indentation. 826 ** 827 ** The formatting of each case is important. The makefile for SQLite 828 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 829 ** file looking for lines that begin with "case OP_". The opcodes.h files 830 ** will be filled with #defines that give unique integer values to each 831 ** opcode and the opcodes.c file is filled with an array of strings where 832 ** each string is the symbolic name for the corresponding opcode. If the 833 ** case statement is followed by a comment of the form "/# same as ... #/" 834 ** that comment is used to determine the particular value of the opcode. 835 ** 836 ** Other keywords in the comment that follows each case are used to 837 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 838 ** Keywords include: in1, in2, in3, out2, out3. See 839 ** the mkopcodeh.awk script for additional information. 840 ** 841 ** Documentation about VDBE opcodes is generated by scanning this file 842 ** for lines of that contain "Opcode:". That line and all subsequent 843 ** comment lines are used in the generation of the opcode.html documentation 844 ** file. 845 ** 846 ** SUMMARY: 847 ** 848 ** Formatting is important to scripts that scan this file. 849 ** Do not deviate from the formatting style currently in use. 850 ** 851 *****************************************************************************/ 852 853 /* Opcode: Goto * P2 * * * 854 ** 855 ** An unconditional jump to address P2. 856 ** The next instruction executed will be 857 ** the one at index P2 from the beginning of 858 ** the program. 859 ** 860 ** The P1 parameter is not actually used by this opcode. However, it 861 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 862 ** that this Goto is the bottom of a loop and that the lines from P2 down 863 ** to the current line should be indented for EXPLAIN output. 864 */ 865 case OP_Goto: { /* jump */ 866 867 #ifdef SQLITE_DEBUG 868 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 869 ** means we should really jump back to the preceeding OP_ReleaseReg 870 ** instruction. */ 871 if( pOp->p5 ){ 872 assert( pOp->p2 < (int)(pOp - aOp) ); 873 assert( pOp->p2 > 1 ); 874 pOp = &aOp[pOp->p2 - 2]; 875 assert( pOp[1].opcode==OP_ReleaseReg ); 876 goto check_for_interrupt; 877 } 878 #endif 879 880 jump_to_p2_and_check_for_interrupt: 881 pOp = &aOp[pOp->p2 - 1]; 882 883 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 884 ** OP_VNext, or OP_SorterNext) all jump here upon 885 ** completion. Check to see if sqlite3_interrupt() has been called 886 ** or if the progress callback needs to be invoked. 887 ** 888 ** This code uses unstructured "goto" statements and does not look clean. 889 ** But that is not due to sloppy coding habits. The code is written this 890 ** way for performance, to avoid having to run the interrupt and progress 891 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 892 ** faster according to "valgrind --tool=cachegrind" */ 893 check_for_interrupt: 894 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 896 /* Call the progress callback if it is configured and the required number 897 ** of VDBE ops have been executed (either since this invocation of 898 ** sqlite3VdbeExec() or since last time the progress callback was called). 899 ** If the progress callback returns non-zero, exit the virtual machine with 900 ** a return code SQLITE_ABORT. 901 */ 902 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 903 assert( db->nProgressOps!=0 ); 904 nProgressLimit += db->nProgressOps; 905 if( db->xProgress(db->pProgressArg) ){ 906 nProgressLimit = 0xffffffff; 907 rc = SQLITE_INTERRUPT; 908 goto abort_due_to_error; 909 } 910 } 911 #endif 912 913 break; 914 } 915 916 /* Opcode: Gosub P1 P2 * * * 917 ** 918 ** Write the current address onto register P1 919 ** and then jump to address P2. 920 */ 921 case OP_Gosub: { /* jump */ 922 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 923 pIn1 = &aMem[pOp->p1]; 924 assert( VdbeMemDynamic(pIn1)==0 ); 925 memAboutToChange(p, pIn1); 926 pIn1->flags = MEM_Int; 927 pIn1->u.i = (int)(pOp-aOp); 928 REGISTER_TRACE(pOp->p1, pIn1); 929 930 /* Most jump operations do a goto to this spot in order to update 931 ** the pOp pointer. */ 932 jump_to_p2: 933 pOp = &aOp[pOp->p2 - 1]; 934 break; 935 } 936 937 /* Opcode: Return P1 * * * * 938 ** 939 ** Jump to the next instruction after the address in register P1. After 940 ** the jump, register P1 becomes undefined. 941 */ 942 case OP_Return: { /* in1 */ 943 pIn1 = &aMem[pOp->p1]; 944 assert( pIn1->flags==MEM_Int ); 945 pOp = &aOp[pIn1->u.i]; 946 pIn1->flags = MEM_Undefined; 947 break; 948 } 949 950 /* Opcode: InitCoroutine P1 P2 P3 * * 951 ** 952 ** Set up register P1 so that it will Yield to the coroutine 953 ** located at address P3. 954 ** 955 ** If P2!=0 then the coroutine implementation immediately follows 956 ** this opcode. So jump over the coroutine implementation to 957 ** address P2. 958 ** 959 ** See also: EndCoroutine 960 */ 961 case OP_InitCoroutine: { /* jump */ 962 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 963 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 964 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 965 pOut = &aMem[pOp->p1]; 966 assert( !VdbeMemDynamic(pOut) ); 967 pOut->u.i = pOp->p3 - 1; 968 pOut->flags = MEM_Int; 969 if( pOp->p2 ) goto jump_to_p2; 970 break; 971 } 972 973 /* Opcode: EndCoroutine P1 * * * * 974 ** 975 ** The instruction at the address in register P1 is a Yield. 976 ** Jump to the P2 parameter of that Yield. 977 ** After the jump, register P1 becomes undefined. 978 ** 979 ** See also: InitCoroutine 980 */ 981 case OP_EndCoroutine: { /* in1 */ 982 VdbeOp *pCaller; 983 pIn1 = &aMem[pOp->p1]; 984 assert( pIn1->flags==MEM_Int ); 985 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 986 pCaller = &aOp[pIn1->u.i]; 987 assert( pCaller->opcode==OP_Yield ); 988 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 989 pOp = &aOp[pCaller->p2 - 1]; 990 pIn1->flags = MEM_Undefined; 991 break; 992 } 993 994 /* Opcode: Yield P1 P2 * * * 995 ** 996 ** Swap the program counter with the value in register P1. This 997 ** has the effect of yielding to a coroutine. 998 ** 999 ** If the coroutine that is launched by this instruction ends with 1000 ** Yield or Return then continue to the next instruction. But if 1001 ** the coroutine launched by this instruction ends with 1002 ** EndCoroutine, then jump to P2 rather than continuing with the 1003 ** next instruction. 1004 ** 1005 ** See also: InitCoroutine 1006 */ 1007 case OP_Yield: { /* in1, jump */ 1008 int pcDest; 1009 pIn1 = &aMem[pOp->p1]; 1010 assert( VdbeMemDynamic(pIn1)==0 ); 1011 pIn1->flags = MEM_Int; 1012 pcDest = (int)pIn1->u.i; 1013 pIn1->u.i = (int)(pOp - aOp); 1014 REGISTER_TRACE(pOp->p1, pIn1); 1015 pOp = &aOp[pcDest]; 1016 break; 1017 } 1018 1019 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1020 ** Synopsis: if r[P3]=null halt 1021 ** 1022 ** Check the value in register P3. If it is NULL then Halt using 1023 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1024 ** value in register P3 is not NULL, then this routine is a no-op. 1025 ** The P5 parameter should be 1. 1026 */ 1027 case OP_HaltIfNull: { /* in3 */ 1028 pIn3 = &aMem[pOp->p3]; 1029 #ifdef SQLITE_DEBUG 1030 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1031 #endif 1032 if( (pIn3->flags & MEM_Null)==0 ) break; 1033 /* Fall through into OP_Halt */ 1034 } 1035 1036 /* Opcode: Halt P1 P2 * P4 P5 1037 ** 1038 ** Exit immediately. All open cursors, etc are closed 1039 ** automatically. 1040 ** 1041 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1042 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1043 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1044 ** whether or not to rollback the current transaction. Do not rollback 1045 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1046 ** then back out all changes that have occurred during this execution of the 1047 ** VDBE, but do not rollback the transaction. 1048 ** 1049 ** If P4 is not null then it is an error message string. 1050 ** 1051 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1052 ** 1053 ** 0: (no change) 1054 ** 1: NOT NULL contraint failed: P4 1055 ** 2: UNIQUE constraint failed: P4 1056 ** 3: CHECK constraint failed: P4 1057 ** 4: FOREIGN KEY constraint failed: P4 1058 ** 1059 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1060 ** omitted. 1061 ** 1062 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1063 ** every program. So a jump past the last instruction of the program 1064 ** is the same as executing Halt. 1065 */ 1066 case OP_Halt: { 1067 VdbeFrame *pFrame; 1068 int pcx; 1069 1070 pcx = (int)(pOp - aOp); 1071 #ifdef SQLITE_DEBUG 1072 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1073 #endif 1074 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1075 /* Halt the sub-program. Return control to the parent frame. */ 1076 pFrame = p->pFrame; 1077 p->pFrame = pFrame->pParent; 1078 p->nFrame--; 1079 sqlite3VdbeSetChanges(db, p->nChange); 1080 pcx = sqlite3VdbeFrameRestore(pFrame); 1081 if( pOp->p2==OE_Ignore ){ 1082 /* Instruction pcx is the OP_Program that invoked the sub-program 1083 ** currently being halted. If the p2 instruction of this OP_Halt 1084 ** instruction is set to OE_Ignore, then the sub-program is throwing 1085 ** an IGNORE exception. In this case jump to the address specified 1086 ** as the p2 of the calling OP_Program. */ 1087 pcx = p->aOp[pcx].p2-1; 1088 } 1089 aOp = p->aOp; 1090 aMem = p->aMem; 1091 pOp = &aOp[pcx]; 1092 break; 1093 } 1094 p->rc = pOp->p1; 1095 p->errorAction = (u8)pOp->p2; 1096 p->pc = pcx; 1097 assert( pOp->p5<=4 ); 1098 if( p->rc ){ 1099 if( pOp->p5 ){ 1100 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1101 "FOREIGN KEY" }; 1102 testcase( pOp->p5==1 ); 1103 testcase( pOp->p5==2 ); 1104 testcase( pOp->p5==3 ); 1105 testcase( pOp->p5==4 ); 1106 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1107 if( pOp->p4.z ){ 1108 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1109 } 1110 }else{ 1111 sqlite3VdbeError(p, "%s", pOp->p4.z); 1112 } 1113 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1114 } 1115 rc = sqlite3VdbeHalt(p); 1116 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1117 if( rc==SQLITE_BUSY ){ 1118 p->rc = SQLITE_BUSY; 1119 }else{ 1120 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1121 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1122 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1123 } 1124 goto vdbe_return; 1125 } 1126 1127 /* Opcode: Integer P1 P2 * * * 1128 ** Synopsis: r[P2]=P1 1129 ** 1130 ** The 32-bit integer value P1 is written into register P2. 1131 */ 1132 case OP_Integer: { /* out2 */ 1133 pOut = out2Prerelease(p, pOp); 1134 pOut->u.i = pOp->p1; 1135 break; 1136 } 1137 1138 /* Opcode: Int64 * P2 * P4 * 1139 ** Synopsis: r[P2]=P4 1140 ** 1141 ** P4 is a pointer to a 64-bit integer value. 1142 ** Write that value into register P2. 1143 */ 1144 case OP_Int64: { /* out2 */ 1145 pOut = out2Prerelease(p, pOp); 1146 assert( pOp->p4.pI64!=0 ); 1147 pOut->u.i = *pOp->p4.pI64; 1148 break; 1149 } 1150 1151 #ifndef SQLITE_OMIT_FLOATING_POINT 1152 /* Opcode: Real * P2 * P4 * 1153 ** Synopsis: r[P2]=P4 1154 ** 1155 ** P4 is a pointer to a 64-bit floating point value. 1156 ** Write that value into register P2. 1157 */ 1158 case OP_Real: { /* same as TK_FLOAT, out2 */ 1159 pOut = out2Prerelease(p, pOp); 1160 pOut->flags = MEM_Real; 1161 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1162 pOut->u.r = *pOp->p4.pReal; 1163 break; 1164 } 1165 #endif 1166 1167 /* Opcode: String8 * P2 * P4 * 1168 ** Synopsis: r[P2]='P4' 1169 ** 1170 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1171 ** into a String opcode before it is executed for the first time. During 1172 ** this transformation, the length of string P4 is computed and stored 1173 ** as the P1 parameter. 1174 */ 1175 case OP_String8: { /* same as TK_STRING, out2 */ 1176 assert( pOp->p4.z!=0 ); 1177 pOut = out2Prerelease(p, pOp); 1178 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1179 1180 #ifndef SQLITE_OMIT_UTF16 1181 if( encoding!=SQLITE_UTF8 ){ 1182 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1183 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1184 if( rc ) goto too_big; 1185 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1186 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1187 assert( VdbeMemDynamic(pOut)==0 ); 1188 pOut->szMalloc = 0; 1189 pOut->flags |= MEM_Static; 1190 if( pOp->p4type==P4_DYNAMIC ){ 1191 sqlite3DbFree(db, pOp->p4.z); 1192 } 1193 pOp->p4type = P4_DYNAMIC; 1194 pOp->p4.z = pOut->z; 1195 pOp->p1 = pOut->n; 1196 } 1197 #endif 1198 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1199 goto too_big; 1200 } 1201 pOp->opcode = OP_String; 1202 assert( rc==SQLITE_OK ); 1203 /* Fall through to the next case, OP_String */ 1204 } 1205 1206 /* Opcode: String P1 P2 P3 P4 P5 1207 ** Synopsis: r[P2]='P4' (len=P1) 1208 ** 1209 ** The string value P4 of length P1 (bytes) is stored in register P2. 1210 ** 1211 ** If P3 is not zero and the content of register P3 is equal to P5, then 1212 ** the datatype of the register P2 is converted to BLOB. The content is 1213 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1214 ** of a string, as if it had been CAST. In other words: 1215 ** 1216 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1217 */ 1218 case OP_String: { /* out2 */ 1219 assert( pOp->p4.z!=0 ); 1220 pOut = out2Prerelease(p, pOp); 1221 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1222 pOut->z = pOp->p4.z; 1223 pOut->n = pOp->p1; 1224 pOut->enc = encoding; 1225 UPDATE_MAX_BLOBSIZE(pOut); 1226 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1227 if( pOp->p3>0 ){ 1228 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1229 pIn3 = &aMem[pOp->p3]; 1230 assert( pIn3->flags & MEM_Int ); 1231 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1232 } 1233 #endif 1234 break; 1235 } 1236 1237 /* Opcode: Null P1 P2 P3 * * 1238 ** Synopsis: r[P2..P3]=NULL 1239 ** 1240 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1241 ** NULL into register P3 and every register in between P2 and P3. If P3 1242 ** is less than P2 (typically P3 is zero) then only register P2 is 1243 ** set to NULL. 1244 ** 1245 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1246 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1247 ** OP_Ne or OP_Eq. 1248 */ 1249 case OP_Null: { /* out2 */ 1250 int cnt; 1251 u16 nullFlag; 1252 pOut = out2Prerelease(p, pOp); 1253 cnt = pOp->p3-pOp->p2; 1254 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1255 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1256 pOut->n = 0; 1257 #ifdef SQLITE_DEBUG 1258 pOut->uTemp = 0; 1259 #endif 1260 while( cnt>0 ){ 1261 pOut++; 1262 memAboutToChange(p, pOut); 1263 sqlite3VdbeMemSetNull(pOut); 1264 pOut->flags = nullFlag; 1265 pOut->n = 0; 1266 cnt--; 1267 } 1268 break; 1269 } 1270 1271 /* Opcode: SoftNull P1 * * * * 1272 ** Synopsis: r[P1]=NULL 1273 ** 1274 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1275 ** instruction, but do not free any string or blob memory associated with 1276 ** the register, so that if the value was a string or blob that was 1277 ** previously copied using OP_SCopy, the copies will continue to be valid. 1278 */ 1279 case OP_SoftNull: { 1280 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1281 pOut = &aMem[pOp->p1]; 1282 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1283 break; 1284 } 1285 1286 /* Opcode: Blob P1 P2 * P4 * 1287 ** Synopsis: r[P2]=P4 (len=P1) 1288 ** 1289 ** P4 points to a blob of data P1 bytes long. Store this 1290 ** blob in register P2. 1291 */ 1292 case OP_Blob: { /* out2 */ 1293 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1294 pOut = out2Prerelease(p, pOp); 1295 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1296 pOut->enc = encoding; 1297 UPDATE_MAX_BLOBSIZE(pOut); 1298 break; 1299 } 1300 1301 /* Opcode: Variable P1 P2 * P4 * 1302 ** Synopsis: r[P2]=parameter(P1,P4) 1303 ** 1304 ** Transfer the values of bound parameter P1 into register P2 1305 ** 1306 ** If the parameter is named, then its name appears in P4. 1307 ** The P4 value is used by sqlite3_bind_parameter_name(). 1308 */ 1309 case OP_Variable: { /* out2 */ 1310 Mem *pVar; /* Value being transferred */ 1311 1312 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1313 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1314 pVar = &p->aVar[pOp->p1 - 1]; 1315 if( sqlite3VdbeMemTooBig(pVar) ){ 1316 goto too_big; 1317 } 1318 pOut = &aMem[pOp->p2]; 1319 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1320 memcpy(pOut, pVar, MEMCELLSIZE); 1321 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1322 pOut->flags |= MEM_Static|MEM_FromBind; 1323 UPDATE_MAX_BLOBSIZE(pOut); 1324 break; 1325 } 1326 1327 /* Opcode: Move P1 P2 P3 * * 1328 ** Synopsis: r[P2@P3]=r[P1@P3] 1329 ** 1330 ** Move the P3 values in register P1..P1+P3-1 over into 1331 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1332 ** left holding a NULL. It is an error for register ranges 1333 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1334 ** for P3 to be less than 1. 1335 */ 1336 case OP_Move: { 1337 int n; /* Number of registers left to copy */ 1338 int p1; /* Register to copy from */ 1339 int p2; /* Register to copy to */ 1340 1341 n = pOp->p3; 1342 p1 = pOp->p1; 1343 p2 = pOp->p2; 1344 assert( n>0 && p1>0 && p2>0 ); 1345 assert( p1+n<=p2 || p2+n<=p1 ); 1346 1347 pIn1 = &aMem[p1]; 1348 pOut = &aMem[p2]; 1349 do{ 1350 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1351 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1352 assert( memIsValid(pIn1) ); 1353 memAboutToChange(p, pOut); 1354 sqlite3VdbeMemMove(pOut, pIn1); 1355 #ifdef SQLITE_DEBUG 1356 pIn1->pScopyFrom = 0; 1357 { int i; 1358 for(i=1; i<p->nMem; i++){ 1359 if( aMem[i].pScopyFrom==pIn1 ){ 1360 aMem[i].pScopyFrom = pOut; 1361 } 1362 } 1363 } 1364 #endif 1365 Deephemeralize(pOut); 1366 REGISTER_TRACE(p2++, pOut); 1367 pIn1++; 1368 pOut++; 1369 }while( --n ); 1370 break; 1371 } 1372 1373 /* Opcode: Copy P1 P2 P3 * * 1374 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1375 ** 1376 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1377 ** 1378 ** This instruction makes a deep copy of the value. A duplicate 1379 ** is made of any string or blob constant. See also OP_SCopy. 1380 */ 1381 case OP_Copy: { 1382 int n; 1383 1384 n = pOp->p3; 1385 pIn1 = &aMem[pOp->p1]; 1386 pOut = &aMem[pOp->p2]; 1387 assert( pOut!=pIn1 ); 1388 while( 1 ){ 1389 memAboutToChange(p, pOut); 1390 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1391 Deephemeralize(pOut); 1392 #ifdef SQLITE_DEBUG 1393 pOut->pScopyFrom = 0; 1394 #endif 1395 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1396 if( (n--)==0 ) break; 1397 pOut++; 1398 pIn1++; 1399 } 1400 break; 1401 } 1402 1403 /* Opcode: SCopy P1 P2 * * * 1404 ** Synopsis: r[P2]=r[P1] 1405 ** 1406 ** Make a shallow copy of register P1 into register P2. 1407 ** 1408 ** This instruction makes a shallow copy of the value. If the value 1409 ** is a string or blob, then the copy is only a pointer to the 1410 ** original and hence if the original changes so will the copy. 1411 ** Worse, if the original is deallocated, the copy becomes invalid. 1412 ** Thus the program must guarantee that the original will not change 1413 ** during the lifetime of the copy. Use OP_Copy to make a complete 1414 ** copy. 1415 */ 1416 case OP_SCopy: { /* out2 */ 1417 pIn1 = &aMem[pOp->p1]; 1418 pOut = &aMem[pOp->p2]; 1419 assert( pOut!=pIn1 ); 1420 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1421 #ifdef SQLITE_DEBUG 1422 pOut->pScopyFrom = pIn1; 1423 pOut->mScopyFlags = pIn1->flags; 1424 #endif 1425 break; 1426 } 1427 1428 /* Opcode: IntCopy P1 P2 * * * 1429 ** Synopsis: r[P2]=r[P1] 1430 ** 1431 ** Transfer the integer value held in register P1 into register P2. 1432 ** 1433 ** This is an optimized version of SCopy that works only for integer 1434 ** values. 1435 */ 1436 case OP_IntCopy: { /* out2 */ 1437 pIn1 = &aMem[pOp->p1]; 1438 assert( (pIn1->flags & MEM_Int)!=0 ); 1439 pOut = &aMem[pOp->p2]; 1440 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1441 break; 1442 } 1443 1444 /* Opcode: ResultRow P1 P2 * * * 1445 ** Synopsis: output=r[P1@P2] 1446 ** 1447 ** The registers P1 through P1+P2-1 contain a single row of 1448 ** results. This opcode causes the sqlite3_step() call to terminate 1449 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1450 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1451 ** the result row. 1452 */ 1453 case OP_ResultRow: { 1454 Mem *pMem; 1455 int i; 1456 assert( p->nResColumn==pOp->p2 ); 1457 assert( pOp->p1>0 ); 1458 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1459 1460 /* If this statement has violated immediate foreign key constraints, do 1461 ** not return the number of rows modified. And do not RELEASE the statement 1462 ** transaction. It needs to be rolled back. */ 1463 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1464 assert( db->flags&SQLITE_CountRows ); 1465 assert( p->usesStmtJournal ); 1466 goto abort_due_to_error; 1467 } 1468 1469 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1470 ** DML statements invoke this opcode to return the number of rows 1471 ** modified to the user. This is the only way that a VM that 1472 ** opens a statement transaction may invoke this opcode. 1473 ** 1474 ** In case this is such a statement, close any statement transaction 1475 ** opened by this VM before returning control to the user. This is to 1476 ** ensure that statement-transactions are always nested, not overlapping. 1477 ** If the open statement-transaction is not closed here, then the user 1478 ** may step another VM that opens its own statement transaction. This 1479 ** may lead to overlapping statement transactions. 1480 ** 1481 ** The statement transaction is never a top-level transaction. Hence 1482 ** the RELEASE call below can never fail. 1483 */ 1484 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1485 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1486 assert( rc==SQLITE_OK ); 1487 1488 /* Invalidate all ephemeral cursor row caches */ 1489 p->cacheCtr = (p->cacheCtr + 2)|1; 1490 1491 /* Make sure the results of the current row are \000 terminated 1492 ** and have an assigned type. The results are de-ephemeralized as 1493 ** a side effect. 1494 */ 1495 pMem = p->pResultSet = &aMem[pOp->p1]; 1496 for(i=0; i<pOp->p2; i++){ 1497 assert( memIsValid(&pMem[i]) ); 1498 Deephemeralize(&pMem[i]); 1499 assert( (pMem[i].flags & MEM_Ephem)==0 1500 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1501 sqlite3VdbeMemNulTerminate(&pMem[i]); 1502 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1503 #ifdef SQLITE_DEBUG 1504 /* The registers in the result will not be used again when the 1505 ** prepared statement restarts. This is because sqlite3_column() 1506 ** APIs might have caused type conversions of made other changes to 1507 ** the register values. Therefore, we can go ahead and break any 1508 ** OP_SCopy dependencies. */ 1509 pMem[i].pScopyFrom = 0; 1510 #endif 1511 } 1512 if( db->mallocFailed ) goto no_mem; 1513 1514 if( db->mTrace & SQLITE_TRACE_ROW ){ 1515 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1516 } 1517 1518 1519 /* Return SQLITE_ROW 1520 */ 1521 p->pc = (int)(pOp - aOp) + 1; 1522 rc = SQLITE_ROW; 1523 goto vdbe_return; 1524 } 1525 1526 /* Opcode: Concat P1 P2 P3 * * 1527 ** Synopsis: r[P3]=r[P2]+r[P1] 1528 ** 1529 ** Add the text in register P1 onto the end of the text in 1530 ** register P2 and store the result in register P3. 1531 ** If either the P1 or P2 text are NULL then store NULL in P3. 1532 ** 1533 ** P3 = P2 || P1 1534 ** 1535 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1536 ** if P3 is the same register as P2, the implementation is able 1537 ** to avoid a memcpy(). 1538 */ 1539 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1540 i64 nByte; /* Total size of the output string or blob */ 1541 u16 flags1; /* Initial flags for P1 */ 1542 u16 flags2; /* Initial flags for P2 */ 1543 1544 pIn1 = &aMem[pOp->p1]; 1545 pIn2 = &aMem[pOp->p2]; 1546 pOut = &aMem[pOp->p3]; 1547 testcase( pOut==pIn2 ); 1548 assert( pIn1!=pOut ); 1549 flags1 = pIn1->flags; 1550 testcase( flags1 & MEM_Null ); 1551 testcase( pIn2->flags & MEM_Null ); 1552 if( (flags1 | pIn2->flags) & MEM_Null ){ 1553 sqlite3VdbeMemSetNull(pOut); 1554 break; 1555 } 1556 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1557 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1558 flags1 = pIn1->flags & ~MEM_Str; 1559 }else if( (flags1 & MEM_Zero)!=0 ){ 1560 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1561 flags1 = pIn1->flags & ~MEM_Str; 1562 } 1563 flags2 = pIn2->flags; 1564 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1565 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1566 flags2 = pIn2->flags & ~MEM_Str; 1567 }else if( (flags2 & MEM_Zero)!=0 ){ 1568 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1569 flags2 = pIn2->flags & ~MEM_Str; 1570 } 1571 nByte = pIn1->n + pIn2->n; 1572 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1573 goto too_big; 1574 } 1575 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1576 goto no_mem; 1577 } 1578 MemSetTypeFlag(pOut, MEM_Str); 1579 if( pOut!=pIn2 ){ 1580 memcpy(pOut->z, pIn2->z, pIn2->n); 1581 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1582 pIn2->flags = flags2; 1583 } 1584 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1585 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1586 pIn1->flags = flags1; 1587 pOut->z[nByte]=0; 1588 pOut->z[nByte+1] = 0; 1589 pOut->z[nByte+2] = 0; 1590 pOut->flags |= MEM_Term; 1591 pOut->n = (int)nByte; 1592 pOut->enc = encoding; 1593 UPDATE_MAX_BLOBSIZE(pOut); 1594 break; 1595 } 1596 1597 /* Opcode: Add P1 P2 P3 * * 1598 ** Synopsis: r[P3]=r[P1]+r[P2] 1599 ** 1600 ** Add the value in register P1 to the value in register P2 1601 ** and store the result in register P3. 1602 ** If either input is NULL, the result is NULL. 1603 */ 1604 /* Opcode: Multiply P1 P2 P3 * * 1605 ** Synopsis: r[P3]=r[P1]*r[P2] 1606 ** 1607 ** 1608 ** Multiply the value in register P1 by the value in register P2 1609 ** and store the result in register P3. 1610 ** If either input is NULL, the result is NULL. 1611 */ 1612 /* Opcode: Subtract P1 P2 P3 * * 1613 ** Synopsis: r[P3]=r[P2]-r[P1] 1614 ** 1615 ** Subtract the value in register P1 from the value in register P2 1616 ** and store the result in register P3. 1617 ** If either input is NULL, the result is NULL. 1618 */ 1619 /* Opcode: Divide P1 P2 P3 * * 1620 ** Synopsis: r[P3]=r[P2]/r[P1] 1621 ** 1622 ** Divide the value in register P1 by the value in register P2 1623 ** and store the result in register P3 (P3=P2/P1). If the value in 1624 ** register P1 is zero, then the result is NULL. If either input is 1625 ** NULL, the result is NULL. 1626 */ 1627 /* Opcode: Remainder P1 P2 P3 * * 1628 ** Synopsis: r[P3]=r[P2]%r[P1] 1629 ** 1630 ** Compute the remainder after integer register P2 is divided by 1631 ** register P1 and store the result in register P3. 1632 ** If the value in register P1 is zero the result is NULL. 1633 ** If either operand is NULL, the result is NULL. 1634 */ 1635 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1636 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1637 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1638 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1639 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1640 u16 flags; /* Combined MEM_* flags from both inputs */ 1641 u16 type1; /* Numeric type of left operand */ 1642 u16 type2; /* Numeric type of right operand */ 1643 i64 iA; /* Integer value of left operand */ 1644 i64 iB; /* Integer value of right operand */ 1645 double rA; /* Real value of left operand */ 1646 double rB; /* Real value of right operand */ 1647 1648 pIn1 = &aMem[pOp->p1]; 1649 type1 = numericType(pIn1); 1650 pIn2 = &aMem[pOp->p2]; 1651 type2 = numericType(pIn2); 1652 pOut = &aMem[pOp->p3]; 1653 flags = pIn1->flags | pIn2->flags; 1654 if( (type1 & type2 & MEM_Int)!=0 ){ 1655 iA = pIn1->u.i; 1656 iB = pIn2->u.i; 1657 switch( pOp->opcode ){ 1658 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1659 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1660 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1661 case OP_Divide: { 1662 if( iA==0 ) goto arithmetic_result_is_null; 1663 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1664 iB /= iA; 1665 break; 1666 } 1667 default: { 1668 if( iA==0 ) goto arithmetic_result_is_null; 1669 if( iA==-1 ) iA = 1; 1670 iB %= iA; 1671 break; 1672 } 1673 } 1674 pOut->u.i = iB; 1675 MemSetTypeFlag(pOut, MEM_Int); 1676 }else if( (flags & MEM_Null)!=0 ){ 1677 goto arithmetic_result_is_null; 1678 }else{ 1679 fp_math: 1680 rA = sqlite3VdbeRealValue(pIn1); 1681 rB = sqlite3VdbeRealValue(pIn2); 1682 switch( pOp->opcode ){ 1683 case OP_Add: rB += rA; break; 1684 case OP_Subtract: rB -= rA; break; 1685 case OP_Multiply: rB *= rA; break; 1686 case OP_Divide: { 1687 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1688 if( rA==(double)0 ) goto arithmetic_result_is_null; 1689 rB /= rA; 1690 break; 1691 } 1692 default: { 1693 iA = sqlite3VdbeIntValue(pIn1); 1694 iB = sqlite3VdbeIntValue(pIn2); 1695 if( iA==0 ) goto arithmetic_result_is_null; 1696 if( iA==-1 ) iA = 1; 1697 rB = (double)(iB % iA); 1698 break; 1699 } 1700 } 1701 #ifdef SQLITE_OMIT_FLOATING_POINT 1702 pOut->u.i = rB; 1703 MemSetTypeFlag(pOut, MEM_Int); 1704 #else 1705 if( sqlite3IsNaN(rB) ){ 1706 goto arithmetic_result_is_null; 1707 } 1708 pOut->u.r = rB; 1709 MemSetTypeFlag(pOut, MEM_Real); 1710 #endif 1711 } 1712 break; 1713 1714 arithmetic_result_is_null: 1715 sqlite3VdbeMemSetNull(pOut); 1716 break; 1717 } 1718 1719 /* Opcode: CollSeq P1 * * P4 1720 ** 1721 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1722 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1723 ** be returned. This is used by the built-in min(), max() and nullif() 1724 ** functions. 1725 ** 1726 ** If P1 is not zero, then it is a register that a subsequent min() or 1727 ** max() aggregate will set to 1 if the current row is not the minimum or 1728 ** maximum. The P1 register is initialized to 0 by this instruction. 1729 ** 1730 ** The interface used by the implementation of the aforementioned functions 1731 ** to retrieve the collation sequence set by this opcode is not available 1732 ** publicly. Only built-in functions have access to this feature. 1733 */ 1734 case OP_CollSeq: { 1735 assert( pOp->p4type==P4_COLLSEQ ); 1736 if( pOp->p1 ){ 1737 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1738 } 1739 break; 1740 } 1741 1742 /* Opcode: BitAnd P1 P2 P3 * * 1743 ** Synopsis: r[P3]=r[P1]&r[P2] 1744 ** 1745 ** Take the bit-wise AND of the values in register P1 and P2 and 1746 ** store the result in register P3. 1747 ** If either input is NULL, the result is NULL. 1748 */ 1749 /* Opcode: BitOr P1 P2 P3 * * 1750 ** Synopsis: r[P3]=r[P1]|r[P2] 1751 ** 1752 ** Take the bit-wise OR of the values in register P1 and P2 and 1753 ** store the result in register P3. 1754 ** If either input is NULL, the result is NULL. 1755 */ 1756 /* Opcode: ShiftLeft P1 P2 P3 * * 1757 ** Synopsis: r[P3]=r[P2]<<r[P1] 1758 ** 1759 ** Shift the integer value in register P2 to the left by the 1760 ** number of bits specified by the integer in register P1. 1761 ** Store the result in register P3. 1762 ** If either input is NULL, the result is NULL. 1763 */ 1764 /* Opcode: ShiftRight P1 P2 P3 * * 1765 ** Synopsis: r[P3]=r[P2]>>r[P1] 1766 ** 1767 ** Shift the integer value in register P2 to the right by the 1768 ** number of bits specified by the integer in register P1. 1769 ** Store the result in register P3. 1770 ** If either input is NULL, the result is NULL. 1771 */ 1772 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1773 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1774 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1775 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1776 i64 iA; 1777 u64 uA; 1778 i64 iB; 1779 u8 op; 1780 1781 pIn1 = &aMem[pOp->p1]; 1782 pIn2 = &aMem[pOp->p2]; 1783 pOut = &aMem[pOp->p3]; 1784 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1785 sqlite3VdbeMemSetNull(pOut); 1786 break; 1787 } 1788 iA = sqlite3VdbeIntValue(pIn2); 1789 iB = sqlite3VdbeIntValue(pIn1); 1790 op = pOp->opcode; 1791 if( op==OP_BitAnd ){ 1792 iA &= iB; 1793 }else if( op==OP_BitOr ){ 1794 iA |= iB; 1795 }else if( iB!=0 ){ 1796 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1797 1798 /* If shifting by a negative amount, shift in the other direction */ 1799 if( iB<0 ){ 1800 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1801 op = 2*OP_ShiftLeft + 1 - op; 1802 iB = iB>(-64) ? -iB : 64; 1803 } 1804 1805 if( iB>=64 ){ 1806 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1807 }else{ 1808 memcpy(&uA, &iA, sizeof(uA)); 1809 if( op==OP_ShiftLeft ){ 1810 uA <<= iB; 1811 }else{ 1812 uA >>= iB; 1813 /* Sign-extend on a right shift of a negative number */ 1814 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1815 } 1816 memcpy(&iA, &uA, sizeof(iA)); 1817 } 1818 } 1819 pOut->u.i = iA; 1820 MemSetTypeFlag(pOut, MEM_Int); 1821 break; 1822 } 1823 1824 /* Opcode: AddImm P1 P2 * * * 1825 ** Synopsis: r[P1]=r[P1]+P2 1826 ** 1827 ** Add the constant P2 to the value in register P1. 1828 ** The result is always an integer. 1829 ** 1830 ** To force any register to be an integer, just add 0. 1831 */ 1832 case OP_AddImm: { /* in1 */ 1833 pIn1 = &aMem[pOp->p1]; 1834 memAboutToChange(p, pIn1); 1835 sqlite3VdbeMemIntegerify(pIn1); 1836 pIn1->u.i += pOp->p2; 1837 break; 1838 } 1839 1840 /* Opcode: MustBeInt P1 P2 * * * 1841 ** 1842 ** Force the value in register P1 to be an integer. If the value 1843 ** in P1 is not an integer and cannot be converted into an integer 1844 ** without data loss, then jump immediately to P2, or if P2==0 1845 ** raise an SQLITE_MISMATCH exception. 1846 */ 1847 case OP_MustBeInt: { /* jump, in1 */ 1848 pIn1 = &aMem[pOp->p1]; 1849 if( (pIn1->flags & MEM_Int)==0 ){ 1850 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1851 if( (pIn1->flags & MEM_Int)==0 ){ 1852 VdbeBranchTaken(1, 2); 1853 if( pOp->p2==0 ){ 1854 rc = SQLITE_MISMATCH; 1855 goto abort_due_to_error; 1856 }else{ 1857 goto jump_to_p2; 1858 } 1859 } 1860 } 1861 VdbeBranchTaken(0, 2); 1862 MemSetTypeFlag(pIn1, MEM_Int); 1863 break; 1864 } 1865 1866 #ifndef SQLITE_OMIT_FLOATING_POINT 1867 /* Opcode: RealAffinity P1 * * * * 1868 ** 1869 ** If register P1 holds an integer convert it to a real value. 1870 ** 1871 ** This opcode is used when extracting information from a column that 1872 ** has REAL affinity. Such column values may still be stored as 1873 ** integers, for space efficiency, but after extraction we want them 1874 ** to have only a real value. 1875 */ 1876 case OP_RealAffinity: { /* in1 */ 1877 pIn1 = &aMem[pOp->p1]; 1878 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1879 testcase( pIn1->flags & MEM_Int ); 1880 testcase( pIn1->flags & MEM_IntReal ); 1881 sqlite3VdbeMemRealify(pIn1); 1882 REGISTER_TRACE(pOp->p1, pIn1); 1883 } 1884 break; 1885 } 1886 #endif 1887 1888 #ifndef SQLITE_OMIT_CAST 1889 /* Opcode: Cast P1 P2 * * * 1890 ** Synopsis: affinity(r[P1]) 1891 ** 1892 ** Force the value in register P1 to be the type defined by P2. 1893 ** 1894 ** <ul> 1895 ** <li> P2=='A' → BLOB 1896 ** <li> P2=='B' → TEXT 1897 ** <li> P2=='C' → NUMERIC 1898 ** <li> P2=='D' → INTEGER 1899 ** <li> P2=='E' → REAL 1900 ** </ul> 1901 ** 1902 ** A NULL value is not changed by this routine. It remains NULL. 1903 */ 1904 case OP_Cast: { /* in1 */ 1905 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1906 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1907 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1908 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1909 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1910 testcase( pOp->p2==SQLITE_AFF_REAL ); 1911 pIn1 = &aMem[pOp->p1]; 1912 memAboutToChange(p, pIn1); 1913 rc = ExpandBlob(pIn1); 1914 if( rc ) goto abort_due_to_error; 1915 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1916 if( rc ) goto abort_due_to_error; 1917 UPDATE_MAX_BLOBSIZE(pIn1); 1918 REGISTER_TRACE(pOp->p1, pIn1); 1919 break; 1920 } 1921 #endif /* SQLITE_OMIT_CAST */ 1922 1923 /* Opcode: Eq P1 P2 P3 P4 P5 1924 ** Synopsis: IF r[P3]==r[P1] 1925 ** 1926 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1927 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1928 ** store the result of comparison in register P2. 1929 ** 1930 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1931 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1932 ** to coerce both inputs according to this affinity before the 1933 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1934 ** affinity is used. Note that the affinity conversions are stored 1935 ** back into the input registers P1 and P3. So this opcode can cause 1936 ** persistent changes to registers P1 and P3. 1937 ** 1938 ** Once any conversions have taken place, and neither value is NULL, 1939 ** the values are compared. If both values are blobs then memcmp() is 1940 ** used to determine the results of the comparison. If both values 1941 ** are text, then the appropriate collating function specified in 1942 ** P4 is used to do the comparison. If P4 is not specified then 1943 ** memcmp() is used to compare text string. If both values are 1944 ** numeric, then a numeric comparison is used. If the two values 1945 ** are of different types, then numbers are considered less than 1946 ** strings and strings are considered less than blobs. 1947 ** 1948 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1949 ** true or false and is never NULL. If both operands are NULL then the result 1950 ** of comparison is true. If either operand is NULL then the result is false. 1951 ** If neither operand is NULL the result is the same as it would be if 1952 ** the SQLITE_NULLEQ flag were omitted from P5. 1953 ** 1954 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1955 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1956 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1957 */ 1958 /* Opcode: Ne P1 P2 P3 P4 P5 1959 ** Synopsis: IF r[P3]!=r[P1] 1960 ** 1961 ** This works just like the Eq opcode except that the jump is taken if 1962 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1963 ** additional information. 1964 ** 1965 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1966 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1967 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1968 */ 1969 /* Opcode: Lt P1 P2 P3 P4 P5 1970 ** Synopsis: IF r[P3]<r[P1] 1971 ** 1972 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1973 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1974 ** the result of comparison (0 or 1 or NULL) into register P2. 1975 ** 1976 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1977 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1978 ** bit is clear then fall through if either operand is NULL. 1979 ** 1980 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1981 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1982 ** to coerce both inputs according to this affinity before the 1983 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1984 ** affinity is used. Note that the affinity conversions are stored 1985 ** back into the input registers P1 and P3. So this opcode can cause 1986 ** persistent changes to registers P1 and P3. 1987 ** 1988 ** Once any conversions have taken place, and neither value is NULL, 1989 ** the values are compared. If both values are blobs then memcmp() is 1990 ** used to determine the results of the comparison. If both values 1991 ** are text, then the appropriate collating function specified in 1992 ** P4 is used to do the comparison. If P4 is not specified then 1993 ** memcmp() is used to compare text string. If both values are 1994 ** numeric, then a numeric comparison is used. If the two values 1995 ** are of different types, then numbers are considered less than 1996 ** strings and strings are considered less than blobs. 1997 */ 1998 /* Opcode: Le P1 P2 P3 P4 P5 1999 ** Synopsis: IF r[P3]<=r[P1] 2000 ** 2001 ** This works just like the Lt opcode except that the jump is taken if 2002 ** the content of register P3 is less than or equal to the content of 2003 ** register P1. See the Lt opcode for additional information. 2004 */ 2005 /* Opcode: Gt P1 P2 P3 P4 P5 2006 ** Synopsis: IF r[P3]>r[P1] 2007 ** 2008 ** This works just like the Lt opcode except that the jump is taken if 2009 ** the content of register P3 is greater than the content of 2010 ** register P1. See the Lt opcode for additional information. 2011 */ 2012 /* Opcode: Ge P1 P2 P3 P4 P5 2013 ** Synopsis: IF r[P3]>=r[P1] 2014 ** 2015 ** This works just like the Lt opcode except that the jump is taken if 2016 ** the content of register P3 is greater than or equal to the content of 2017 ** register P1. See the Lt opcode for additional information. 2018 */ 2019 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2020 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2021 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2022 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2023 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2024 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2025 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2026 char affinity; /* Affinity to use for comparison */ 2027 u16 flags1; /* Copy of initial value of pIn1->flags */ 2028 u16 flags3; /* Copy of initial value of pIn3->flags */ 2029 2030 pIn1 = &aMem[pOp->p1]; 2031 pIn3 = &aMem[pOp->p3]; 2032 flags1 = pIn1->flags; 2033 flags3 = pIn3->flags; 2034 if( (flags1 | flags3)&MEM_Null ){ 2035 /* One or both operands are NULL */ 2036 if( pOp->p5 & SQLITE_NULLEQ ){ 2037 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2038 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2039 ** or not both operands are null. 2040 */ 2041 assert( (flags1 & MEM_Cleared)==0 ); 2042 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2043 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2044 if( (flags1&flags3&MEM_Null)!=0 2045 && (flags3&MEM_Cleared)==0 2046 ){ 2047 res = 0; /* Operands are equal */ 2048 }else{ 2049 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2050 } 2051 }else{ 2052 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2053 ** then the result is always NULL. 2054 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2055 */ 2056 if( pOp->p5 & SQLITE_STOREP2 ){ 2057 pOut = &aMem[pOp->p2]; 2058 iCompare = 1; /* Operands are not equal */ 2059 memAboutToChange(p, pOut); 2060 MemSetTypeFlag(pOut, MEM_Null); 2061 REGISTER_TRACE(pOp->p2, pOut); 2062 }else{ 2063 VdbeBranchTaken(2,3); 2064 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2065 goto jump_to_p2; 2066 } 2067 } 2068 break; 2069 } 2070 }else{ 2071 /* Neither operand is NULL. Do a comparison. */ 2072 affinity = pOp->p5 & SQLITE_AFF_MASK; 2073 if( affinity>=SQLITE_AFF_NUMERIC ){ 2074 if( (flags1 | flags3)&MEM_Str ){ 2075 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2076 applyNumericAffinity(pIn1,0); 2077 assert( flags3==pIn3->flags ); 2078 flags3 = pIn3->flags; 2079 } 2080 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2081 applyNumericAffinity(pIn3,0); 2082 } 2083 } 2084 /* Handle the common case of integer comparison here, as an 2085 ** optimization, to avoid a call to sqlite3MemCompare() */ 2086 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2087 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2088 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2089 res = 0; 2090 goto compare_op; 2091 } 2092 }else if( affinity==SQLITE_AFF_TEXT ){ 2093 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2094 testcase( pIn1->flags & MEM_Int ); 2095 testcase( pIn1->flags & MEM_Real ); 2096 testcase( pIn1->flags & MEM_IntReal ); 2097 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2098 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2099 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2100 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2101 } 2102 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2103 testcase( pIn3->flags & MEM_Int ); 2104 testcase( pIn3->flags & MEM_Real ); 2105 testcase( pIn3->flags & MEM_IntReal ); 2106 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2107 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2108 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2109 } 2110 } 2111 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2112 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2113 } 2114 compare_op: 2115 /* At this point, res is negative, zero, or positive if reg[P1] is 2116 ** less than, equal to, or greater than reg[P3], respectively. Compute 2117 ** the answer to this operator in res2, depending on what the comparison 2118 ** operator actually is. The next block of code depends on the fact 2119 ** that the 6 comparison operators are consecutive integers in this 2120 ** order: NE, EQ, GT, LE, LT, GE */ 2121 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2122 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2123 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2124 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2125 res2 = aLTb[pOp->opcode - OP_Ne]; 2126 }else if( res==0 ){ 2127 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2128 res2 = aEQb[pOp->opcode - OP_Ne]; 2129 }else{ 2130 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2131 res2 = aGTb[pOp->opcode - OP_Ne]; 2132 } 2133 2134 /* Undo any changes made by applyAffinity() to the input registers. */ 2135 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2136 pIn3->flags = flags3; 2137 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2138 pIn1->flags = flags1; 2139 2140 if( pOp->p5 & SQLITE_STOREP2 ){ 2141 pOut = &aMem[pOp->p2]; 2142 iCompare = res; 2143 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2144 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2145 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2146 ** is only used in contexts where either: 2147 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2148 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2149 ** Therefore it is not necessary to check the content of r[P2] for 2150 ** NULL. */ 2151 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2152 assert( res2==0 || res2==1 ); 2153 testcase( res2==0 && pOp->opcode==OP_Eq ); 2154 testcase( res2==1 && pOp->opcode==OP_Eq ); 2155 testcase( res2==0 && pOp->opcode==OP_Ne ); 2156 testcase( res2==1 && pOp->opcode==OP_Ne ); 2157 if( (pOp->opcode==OP_Eq)==res2 ) break; 2158 } 2159 memAboutToChange(p, pOut); 2160 MemSetTypeFlag(pOut, MEM_Int); 2161 pOut->u.i = res2; 2162 REGISTER_TRACE(pOp->p2, pOut); 2163 }else{ 2164 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2165 if( res2 ){ 2166 goto jump_to_p2; 2167 } 2168 } 2169 break; 2170 } 2171 2172 /* Opcode: ElseNotEq * P2 * * * 2173 ** 2174 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2175 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2176 ** opcodes are allowed to occur between this instruction and the previous 2177 ** OP_Lt or OP_Gt. Furthermore, the prior OP_Lt or OP_Gt must have the 2178 ** SQLITE_STOREP2 bit set in the P5 field. 2179 ** 2180 ** If result of an OP_Eq comparison on the same two operands as the 2181 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then 2182 ** jump to P2. If the result of an OP_Eq comparison on the two previous 2183 ** operands would have been true (1), then fall through. 2184 */ 2185 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2186 2187 #ifdef SQLITE_DEBUG 2188 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2189 ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening 2190 ** OP_ReleaseReg opcodes */ 2191 int iAddr; 2192 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2193 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2194 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2195 assert( aOp[iAddr].p5 & SQLITE_STOREP2 ); 2196 break; 2197 } 2198 #endif /* SQLITE_DEBUG */ 2199 VdbeBranchTaken(iCompare!=0, 2); 2200 if( iCompare!=0 ) goto jump_to_p2; 2201 break; 2202 } 2203 2204 2205 /* Opcode: Permutation * * * P4 * 2206 ** 2207 ** Set the permutation used by the OP_Compare operator in the next 2208 ** instruction. The permutation is stored in the P4 operand. 2209 ** 2210 ** The permutation is only valid until the next OP_Compare that has 2211 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2212 ** occur immediately prior to the OP_Compare. 2213 ** 2214 ** The first integer in the P4 integer array is the length of the array 2215 ** and does not become part of the permutation. 2216 */ 2217 case OP_Permutation: { 2218 assert( pOp->p4type==P4_INTARRAY ); 2219 assert( pOp->p4.ai ); 2220 assert( pOp[1].opcode==OP_Compare ); 2221 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2222 break; 2223 } 2224 2225 /* Opcode: Compare P1 P2 P3 P4 P5 2226 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2227 ** 2228 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2229 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2230 ** the comparison for use by the next OP_Jump instruct. 2231 ** 2232 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2233 ** determined by the most recent OP_Permutation operator. If the 2234 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2235 ** order. 2236 ** 2237 ** P4 is a KeyInfo structure that defines collating sequences and sort 2238 ** orders for the comparison. The permutation applies to registers 2239 ** only. The KeyInfo elements are used sequentially. 2240 ** 2241 ** The comparison is a sort comparison, so NULLs compare equal, 2242 ** NULLs are less than numbers, numbers are less than strings, 2243 ** and strings are less than blobs. 2244 */ 2245 case OP_Compare: { 2246 int n; 2247 int i; 2248 int p1; 2249 int p2; 2250 const KeyInfo *pKeyInfo; 2251 int idx; 2252 CollSeq *pColl; /* Collating sequence to use on this term */ 2253 int bRev; /* True for DESCENDING sort order */ 2254 int *aPermute; /* The permutation */ 2255 2256 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2257 aPermute = 0; 2258 }else{ 2259 assert( pOp>aOp ); 2260 assert( pOp[-1].opcode==OP_Permutation ); 2261 assert( pOp[-1].p4type==P4_INTARRAY ); 2262 aPermute = pOp[-1].p4.ai + 1; 2263 assert( aPermute!=0 ); 2264 } 2265 n = pOp->p3; 2266 pKeyInfo = pOp->p4.pKeyInfo; 2267 assert( n>0 ); 2268 assert( pKeyInfo!=0 ); 2269 p1 = pOp->p1; 2270 p2 = pOp->p2; 2271 #ifdef SQLITE_DEBUG 2272 if( aPermute ){ 2273 int k, mx = 0; 2274 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2275 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2276 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2277 }else{ 2278 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2279 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2280 } 2281 #endif /* SQLITE_DEBUG */ 2282 for(i=0; i<n; i++){ 2283 idx = aPermute ? aPermute[i] : i; 2284 assert( memIsValid(&aMem[p1+idx]) ); 2285 assert( memIsValid(&aMem[p2+idx]) ); 2286 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2287 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2288 assert( i<pKeyInfo->nKeyField ); 2289 pColl = pKeyInfo->aColl[i]; 2290 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2291 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2292 if( iCompare ){ 2293 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2294 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2295 ){ 2296 iCompare = -iCompare; 2297 } 2298 if( bRev ) iCompare = -iCompare; 2299 break; 2300 } 2301 } 2302 break; 2303 } 2304 2305 /* Opcode: Jump P1 P2 P3 * * 2306 ** 2307 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2308 ** in the most recent OP_Compare instruction the P1 vector was less than 2309 ** equal to, or greater than the P2 vector, respectively. 2310 */ 2311 case OP_Jump: { /* jump */ 2312 if( iCompare<0 ){ 2313 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2314 }else if( iCompare==0 ){ 2315 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2316 }else{ 2317 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2318 } 2319 break; 2320 } 2321 2322 /* Opcode: And P1 P2 P3 * * 2323 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2324 ** 2325 ** Take the logical AND of the values in registers P1 and P2 and 2326 ** write the result into register P3. 2327 ** 2328 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2329 ** the other input is NULL. A NULL and true or two NULLs give 2330 ** a NULL output. 2331 */ 2332 /* Opcode: Or P1 P2 P3 * * 2333 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2334 ** 2335 ** Take the logical OR of the values in register P1 and P2 and 2336 ** store the answer in register P3. 2337 ** 2338 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2339 ** even if the other input is NULL. A NULL and false or two NULLs 2340 ** give a NULL output. 2341 */ 2342 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2343 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2344 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2345 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2346 2347 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2348 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2349 if( pOp->opcode==OP_And ){ 2350 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2351 v1 = and_logic[v1*3+v2]; 2352 }else{ 2353 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2354 v1 = or_logic[v1*3+v2]; 2355 } 2356 pOut = &aMem[pOp->p3]; 2357 if( v1==2 ){ 2358 MemSetTypeFlag(pOut, MEM_Null); 2359 }else{ 2360 pOut->u.i = v1; 2361 MemSetTypeFlag(pOut, MEM_Int); 2362 } 2363 break; 2364 } 2365 2366 /* Opcode: IsTrue P1 P2 P3 P4 * 2367 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2368 ** 2369 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2370 ** IS NOT FALSE operators. 2371 ** 2372 ** Interpret the value in register P1 as a boolean value. Store that 2373 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2374 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2375 ** is 1. 2376 ** 2377 ** The logic is summarized like this: 2378 ** 2379 ** <ul> 2380 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2381 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2382 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2383 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2384 ** </ul> 2385 */ 2386 case OP_IsTrue: { /* in1, out2 */ 2387 assert( pOp->p4type==P4_INT32 ); 2388 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2389 assert( pOp->p3==0 || pOp->p3==1 ); 2390 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2391 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2392 break; 2393 } 2394 2395 /* Opcode: Not P1 P2 * * * 2396 ** Synopsis: r[P2]= !r[P1] 2397 ** 2398 ** Interpret the value in register P1 as a boolean value. Store the 2399 ** boolean complement in register P2. If the value in register P1 is 2400 ** NULL, then a NULL is stored in P2. 2401 */ 2402 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2403 pIn1 = &aMem[pOp->p1]; 2404 pOut = &aMem[pOp->p2]; 2405 if( (pIn1->flags & MEM_Null)==0 ){ 2406 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2407 }else{ 2408 sqlite3VdbeMemSetNull(pOut); 2409 } 2410 break; 2411 } 2412 2413 /* Opcode: BitNot P1 P2 * * * 2414 ** Synopsis: r[P2]= ~r[P1] 2415 ** 2416 ** Interpret the content of register P1 as an integer. Store the 2417 ** ones-complement of the P1 value into register P2. If P1 holds 2418 ** a NULL then store a NULL in P2. 2419 */ 2420 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2421 pIn1 = &aMem[pOp->p1]; 2422 pOut = &aMem[pOp->p2]; 2423 sqlite3VdbeMemSetNull(pOut); 2424 if( (pIn1->flags & MEM_Null)==0 ){ 2425 pOut->flags = MEM_Int; 2426 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2427 } 2428 break; 2429 } 2430 2431 /* Opcode: Once P1 P2 * * * 2432 ** 2433 ** Fall through to the next instruction the first time this opcode is 2434 ** encountered on each invocation of the byte-code program. Jump to P2 2435 ** on the second and all subsequent encounters during the same invocation. 2436 ** 2437 ** Top-level programs determine first invocation by comparing the P1 2438 ** operand against the P1 operand on the OP_Init opcode at the beginning 2439 ** of the program. If the P1 values differ, then fall through and make 2440 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2441 ** the same then take the jump. 2442 ** 2443 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2444 ** whether or not the jump should be taken. The bitmask is necessary 2445 ** because the self-altering code trick does not work for recursive 2446 ** triggers. 2447 */ 2448 case OP_Once: { /* jump */ 2449 u32 iAddr; /* Address of this instruction */ 2450 assert( p->aOp[0].opcode==OP_Init ); 2451 if( p->pFrame ){ 2452 iAddr = (int)(pOp - p->aOp); 2453 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2454 VdbeBranchTaken(1, 2); 2455 goto jump_to_p2; 2456 } 2457 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2458 }else{ 2459 if( p->aOp[0].p1==pOp->p1 ){ 2460 VdbeBranchTaken(1, 2); 2461 goto jump_to_p2; 2462 } 2463 } 2464 VdbeBranchTaken(0, 2); 2465 pOp->p1 = p->aOp[0].p1; 2466 break; 2467 } 2468 2469 /* Opcode: If P1 P2 P3 * * 2470 ** 2471 ** Jump to P2 if the value in register P1 is true. The value 2472 ** is considered true if it is numeric and non-zero. If the value 2473 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2474 */ 2475 case OP_If: { /* jump, in1 */ 2476 int c; 2477 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2478 VdbeBranchTaken(c!=0, 2); 2479 if( c ) goto jump_to_p2; 2480 break; 2481 } 2482 2483 /* Opcode: IfNot P1 P2 P3 * * 2484 ** 2485 ** Jump to P2 if the value in register P1 is False. The value 2486 ** is considered false if it has a numeric value of zero. If the value 2487 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2488 */ 2489 case OP_IfNot: { /* jump, in1 */ 2490 int c; 2491 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2492 VdbeBranchTaken(c!=0, 2); 2493 if( c ) goto jump_to_p2; 2494 break; 2495 } 2496 2497 /* Opcode: IsNull P1 P2 * * * 2498 ** Synopsis: if r[P1]==NULL goto P2 2499 ** 2500 ** Jump to P2 if the value in register P1 is NULL. 2501 */ 2502 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2503 pIn1 = &aMem[pOp->p1]; 2504 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2505 if( (pIn1->flags & MEM_Null)!=0 ){ 2506 goto jump_to_p2; 2507 } 2508 break; 2509 } 2510 2511 /* Opcode: NotNull P1 P2 * * * 2512 ** Synopsis: if r[P1]!=NULL goto P2 2513 ** 2514 ** Jump to P2 if the value in register P1 is not NULL. 2515 */ 2516 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2517 pIn1 = &aMem[pOp->p1]; 2518 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2519 if( (pIn1->flags & MEM_Null)==0 ){ 2520 goto jump_to_p2; 2521 } 2522 break; 2523 } 2524 2525 /* Opcode: IfNullRow P1 P2 P3 * * 2526 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2527 ** 2528 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2529 ** If it is, then set register P3 to NULL and jump immediately to P2. 2530 ** If P1 is not on a NULL row, then fall through without making any 2531 ** changes. 2532 */ 2533 case OP_IfNullRow: { /* jump */ 2534 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2535 assert( p->apCsr[pOp->p1]!=0 ); 2536 if( p->apCsr[pOp->p1]->nullRow ){ 2537 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2538 goto jump_to_p2; 2539 } 2540 break; 2541 } 2542 2543 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2544 /* Opcode: Offset P1 P2 P3 * * 2545 ** Synopsis: r[P3] = sqlite_offset(P1) 2546 ** 2547 ** Store in register r[P3] the byte offset into the database file that is the 2548 ** start of the payload for the record at which that cursor P1 is currently 2549 ** pointing. 2550 ** 2551 ** P2 is the column number for the argument to the sqlite_offset() function. 2552 ** This opcode does not use P2 itself, but the P2 value is used by the 2553 ** code generator. The P1, P2, and P3 operands to this opcode are the 2554 ** same as for OP_Column. 2555 ** 2556 ** This opcode is only available if SQLite is compiled with the 2557 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2558 */ 2559 case OP_Offset: { /* out3 */ 2560 VdbeCursor *pC; /* The VDBE cursor */ 2561 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2562 pC = p->apCsr[pOp->p1]; 2563 pOut = &p->aMem[pOp->p3]; 2564 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2565 sqlite3VdbeMemSetNull(pOut); 2566 }else{ 2567 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2568 } 2569 break; 2570 } 2571 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2572 2573 /* Opcode: Column P1 P2 P3 P4 P5 2574 ** Synopsis: r[P3]=PX 2575 ** 2576 ** Interpret the data that cursor P1 points to as a structure built using 2577 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2578 ** information about the format of the data.) Extract the P2-th column 2579 ** from this record. If there are less that (P2+1) 2580 ** values in the record, extract a NULL. 2581 ** 2582 ** The value extracted is stored in register P3. 2583 ** 2584 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2585 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2586 ** the result. 2587 ** 2588 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2589 ** the result is guaranteed to only be used as the argument of a length() 2590 ** or typeof() function, respectively. The loading of large blobs can be 2591 ** skipped for length() and all content loading can be skipped for typeof(). 2592 */ 2593 case OP_Column: { 2594 int p2; /* column number to retrieve */ 2595 VdbeCursor *pC; /* The VDBE cursor */ 2596 BtCursor *pCrsr; /* The BTree cursor */ 2597 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2598 int len; /* The length of the serialized data for the column */ 2599 int i; /* Loop counter */ 2600 Mem *pDest; /* Where to write the extracted value */ 2601 Mem sMem; /* For storing the record being decoded */ 2602 const u8 *zData; /* Part of the record being decoded */ 2603 const u8 *zHdr; /* Next unparsed byte of the header */ 2604 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2605 u64 offset64; /* 64-bit offset */ 2606 u32 t; /* A type code from the record header */ 2607 Mem *pReg; /* PseudoTable input register */ 2608 2609 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2610 pC = p->apCsr[pOp->p1]; 2611 assert( pC!=0 ); 2612 p2 = pOp->p2; 2613 2614 /* If the cursor cache is stale (meaning it is not currently point at 2615 ** the correct row) then bring it up-to-date by doing the necessary 2616 ** B-Tree seek. */ 2617 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2618 if( rc ) goto abort_due_to_error; 2619 2620 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2621 pDest = &aMem[pOp->p3]; 2622 memAboutToChange(p, pDest); 2623 assert( pC!=0 ); 2624 assert( p2<pC->nField ); 2625 aOffset = pC->aOffset; 2626 assert( pC->eCurType!=CURTYPE_VTAB ); 2627 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2628 assert( pC->eCurType!=CURTYPE_SORTER ); 2629 2630 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2631 if( pC->nullRow ){ 2632 if( pC->eCurType==CURTYPE_PSEUDO ){ 2633 /* For the special case of as pseudo-cursor, the seekResult field 2634 ** identifies the register that holds the record */ 2635 assert( pC->seekResult>0 ); 2636 pReg = &aMem[pC->seekResult]; 2637 assert( pReg->flags & MEM_Blob ); 2638 assert( memIsValid(pReg) ); 2639 pC->payloadSize = pC->szRow = pReg->n; 2640 pC->aRow = (u8*)pReg->z; 2641 }else{ 2642 sqlite3VdbeMemSetNull(pDest); 2643 goto op_column_out; 2644 } 2645 }else{ 2646 pCrsr = pC->uc.pCursor; 2647 assert( pC->eCurType==CURTYPE_BTREE ); 2648 assert( pCrsr ); 2649 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2650 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2651 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2652 assert( pC->szRow<=pC->payloadSize ); 2653 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2654 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2655 goto too_big; 2656 } 2657 } 2658 pC->cacheStatus = p->cacheCtr; 2659 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2660 pC->nHdrParsed = 0; 2661 2662 2663 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2664 /* pC->aRow does not have to hold the entire row, but it does at least 2665 ** need to cover the header of the record. If pC->aRow does not contain 2666 ** the complete header, then set it to zero, forcing the header to be 2667 ** dynamically allocated. */ 2668 pC->aRow = 0; 2669 pC->szRow = 0; 2670 2671 /* Make sure a corrupt database has not given us an oversize header. 2672 ** Do this now to avoid an oversize memory allocation. 2673 ** 2674 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2675 ** types use so much data space that there can only be 4096 and 32 of 2676 ** them, respectively. So the maximum header length results from a 2677 ** 3-byte type for each of the maximum of 32768 columns plus three 2678 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2679 */ 2680 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2681 goto op_column_corrupt; 2682 } 2683 }else{ 2684 /* This is an optimization. By skipping over the first few tests 2685 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2686 ** measurable performance gain. 2687 ** 2688 ** This branch is taken even if aOffset[0]==0. Such a record is never 2689 ** generated by SQLite, and could be considered corruption, but we 2690 ** accept it for historical reasons. When aOffset[0]==0, the code this 2691 ** branch jumps to reads past the end of the record, but never more 2692 ** than a few bytes. Even if the record occurs at the end of the page 2693 ** content area, the "page header" comes after the page content and so 2694 ** this overread is harmless. Similar overreads can occur for a corrupt 2695 ** database file. 2696 */ 2697 zData = pC->aRow; 2698 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2699 testcase( aOffset[0]==0 ); 2700 goto op_column_read_header; 2701 } 2702 } 2703 2704 /* Make sure at least the first p2+1 entries of the header have been 2705 ** parsed and valid information is in aOffset[] and pC->aType[]. 2706 */ 2707 if( pC->nHdrParsed<=p2 ){ 2708 /* If there is more header available for parsing in the record, try 2709 ** to extract additional fields up through the p2+1-th field 2710 */ 2711 if( pC->iHdrOffset<aOffset[0] ){ 2712 /* Make sure zData points to enough of the record to cover the header. */ 2713 if( pC->aRow==0 ){ 2714 memset(&sMem, 0, sizeof(sMem)); 2715 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2716 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2717 zData = (u8*)sMem.z; 2718 }else{ 2719 zData = pC->aRow; 2720 } 2721 2722 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2723 op_column_read_header: 2724 i = pC->nHdrParsed; 2725 offset64 = aOffset[i]; 2726 zHdr = zData + pC->iHdrOffset; 2727 zEndHdr = zData + aOffset[0]; 2728 testcase( zHdr>=zEndHdr ); 2729 do{ 2730 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2731 zHdr++; 2732 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2733 }else{ 2734 zHdr += sqlite3GetVarint32(zHdr, &t); 2735 pC->aType[i] = t; 2736 offset64 += sqlite3VdbeSerialTypeLen(t); 2737 } 2738 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2739 }while( i<=p2 && zHdr<zEndHdr ); 2740 2741 /* The record is corrupt if any of the following are true: 2742 ** (1) the bytes of the header extend past the declared header size 2743 ** (2) the entire header was used but not all data was used 2744 ** (3) the end of the data extends beyond the end of the record. 2745 */ 2746 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2747 || (offset64 > pC->payloadSize) 2748 ){ 2749 if( aOffset[0]==0 ){ 2750 i = 0; 2751 zHdr = zEndHdr; 2752 }else{ 2753 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2754 goto op_column_corrupt; 2755 } 2756 } 2757 2758 pC->nHdrParsed = i; 2759 pC->iHdrOffset = (u32)(zHdr - zData); 2760 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2761 }else{ 2762 t = 0; 2763 } 2764 2765 /* If after trying to extract new entries from the header, nHdrParsed is 2766 ** still not up to p2, that means that the record has fewer than p2 2767 ** columns. So the result will be either the default value or a NULL. 2768 */ 2769 if( pC->nHdrParsed<=p2 ){ 2770 if( pOp->p4type==P4_MEM ){ 2771 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2772 }else{ 2773 sqlite3VdbeMemSetNull(pDest); 2774 } 2775 goto op_column_out; 2776 } 2777 }else{ 2778 t = pC->aType[p2]; 2779 } 2780 2781 /* Extract the content for the p2+1-th column. Control can only 2782 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2783 ** all valid. 2784 */ 2785 assert( p2<pC->nHdrParsed ); 2786 assert( rc==SQLITE_OK ); 2787 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2788 if( VdbeMemDynamic(pDest) ){ 2789 sqlite3VdbeMemSetNull(pDest); 2790 } 2791 assert( t==pC->aType[p2] ); 2792 if( pC->szRow>=aOffset[p2+1] ){ 2793 /* This is the common case where the desired content fits on the original 2794 ** page - where the content is not on an overflow page */ 2795 zData = pC->aRow + aOffset[p2]; 2796 if( t<12 ){ 2797 sqlite3VdbeSerialGet(zData, t, pDest); 2798 }else{ 2799 /* If the column value is a string, we need a persistent value, not 2800 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2801 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2802 */ 2803 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2804 pDest->n = len = (t-12)/2; 2805 pDest->enc = encoding; 2806 if( pDest->szMalloc < len+2 ){ 2807 pDest->flags = MEM_Null; 2808 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2809 }else{ 2810 pDest->z = pDest->zMalloc; 2811 } 2812 memcpy(pDest->z, zData, len); 2813 pDest->z[len] = 0; 2814 pDest->z[len+1] = 0; 2815 pDest->flags = aFlag[t&1]; 2816 } 2817 }else{ 2818 pDest->enc = encoding; 2819 /* This branch happens only when content is on overflow pages */ 2820 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2821 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2822 || (len = sqlite3VdbeSerialTypeLen(t))==0 2823 ){ 2824 /* Content is irrelevant for 2825 ** 1. the typeof() function, 2826 ** 2. the length(X) function if X is a blob, and 2827 ** 3. if the content length is zero. 2828 ** So we might as well use bogus content rather than reading 2829 ** content from disk. 2830 ** 2831 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2832 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2833 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2834 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2835 ** and it begins with a bunch of zeros. 2836 */ 2837 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2838 }else{ 2839 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2840 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2841 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2842 pDest->flags &= ~MEM_Ephem; 2843 } 2844 } 2845 2846 op_column_out: 2847 UPDATE_MAX_BLOBSIZE(pDest); 2848 REGISTER_TRACE(pOp->p3, pDest); 2849 break; 2850 2851 op_column_corrupt: 2852 if( aOp[0].p3>0 ){ 2853 pOp = &aOp[aOp[0].p3-1]; 2854 break; 2855 }else{ 2856 rc = SQLITE_CORRUPT_BKPT; 2857 goto abort_due_to_error; 2858 } 2859 } 2860 2861 /* Opcode: Affinity P1 P2 * P4 * 2862 ** Synopsis: affinity(r[P1@P2]) 2863 ** 2864 ** Apply affinities to a range of P2 registers starting with P1. 2865 ** 2866 ** P4 is a string that is P2 characters long. The N-th character of the 2867 ** string indicates the column affinity that should be used for the N-th 2868 ** memory cell in the range. 2869 */ 2870 case OP_Affinity: { 2871 const char *zAffinity; /* The affinity to be applied */ 2872 2873 zAffinity = pOp->p4.z; 2874 assert( zAffinity!=0 ); 2875 assert( pOp->p2>0 ); 2876 assert( zAffinity[pOp->p2]==0 ); 2877 pIn1 = &aMem[pOp->p1]; 2878 while( 1 /*exit-by-break*/ ){ 2879 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2880 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2881 applyAffinity(pIn1, zAffinity[0], encoding); 2882 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2883 /* When applying REAL affinity, if the result is still an MEM_Int 2884 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2885 ** so that we keep the high-resolution integer value but know that 2886 ** the type really wants to be REAL. */ 2887 testcase( pIn1->u.i==140737488355328LL ); 2888 testcase( pIn1->u.i==140737488355327LL ); 2889 testcase( pIn1->u.i==-140737488355328LL ); 2890 testcase( pIn1->u.i==-140737488355329LL ); 2891 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2892 pIn1->flags |= MEM_IntReal; 2893 pIn1->flags &= ~MEM_Int; 2894 }else{ 2895 pIn1->u.r = (double)pIn1->u.i; 2896 pIn1->flags |= MEM_Real; 2897 pIn1->flags &= ~MEM_Int; 2898 } 2899 } 2900 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2901 zAffinity++; 2902 if( zAffinity[0]==0 ) break; 2903 pIn1++; 2904 } 2905 break; 2906 } 2907 2908 /* Opcode: MakeRecord P1 P2 P3 P4 * 2909 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2910 ** 2911 ** Convert P2 registers beginning with P1 into the [record format] 2912 ** use as a data record in a database table or as a key 2913 ** in an index. The OP_Column opcode can decode the record later. 2914 ** 2915 ** P4 may be a string that is P2 characters long. The N-th character of the 2916 ** string indicates the column affinity that should be used for the N-th 2917 ** field of the index key. 2918 ** 2919 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2920 ** macros defined in sqliteInt.h. 2921 ** 2922 ** If P4 is NULL then all index fields have the affinity BLOB. 2923 */ 2924 case OP_MakeRecord: { 2925 Mem *pRec; /* The new record */ 2926 u64 nData; /* Number of bytes of data space */ 2927 int nHdr; /* Number of bytes of header space */ 2928 i64 nByte; /* Data space required for this record */ 2929 i64 nZero; /* Number of zero bytes at the end of the record */ 2930 int nVarint; /* Number of bytes in a varint */ 2931 u32 serial_type; /* Type field */ 2932 Mem *pData0; /* First field to be combined into the record */ 2933 Mem *pLast; /* Last field of the record */ 2934 int nField; /* Number of fields in the record */ 2935 char *zAffinity; /* The affinity string for the record */ 2936 int file_format; /* File format to use for encoding */ 2937 u32 len; /* Length of a field */ 2938 u8 *zHdr; /* Where to write next byte of the header */ 2939 u8 *zPayload; /* Where to write next byte of the payload */ 2940 2941 /* Assuming the record contains N fields, the record format looks 2942 ** like this: 2943 ** 2944 ** ------------------------------------------------------------------------ 2945 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2946 ** ------------------------------------------------------------------------ 2947 ** 2948 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2949 ** and so forth. 2950 ** 2951 ** Each type field is a varint representing the serial type of the 2952 ** corresponding data element (see sqlite3VdbeSerialType()). The 2953 ** hdr-size field is also a varint which is the offset from the beginning 2954 ** of the record to data0. 2955 */ 2956 nData = 0; /* Number of bytes of data space */ 2957 nHdr = 0; /* Number of bytes of header space */ 2958 nZero = 0; /* Number of zero bytes at the end of the record */ 2959 nField = pOp->p1; 2960 zAffinity = pOp->p4.z; 2961 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2962 pData0 = &aMem[nField]; 2963 nField = pOp->p2; 2964 pLast = &pData0[nField-1]; 2965 file_format = p->minWriteFileFormat; 2966 2967 /* Identify the output register */ 2968 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2969 pOut = &aMem[pOp->p3]; 2970 memAboutToChange(p, pOut); 2971 2972 /* Apply the requested affinity to all inputs 2973 */ 2974 assert( pData0<=pLast ); 2975 if( zAffinity ){ 2976 pRec = pData0; 2977 do{ 2978 applyAffinity(pRec, zAffinity[0], encoding); 2979 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2980 pRec->flags |= MEM_IntReal; 2981 pRec->flags &= ~(MEM_Int); 2982 } 2983 REGISTER_TRACE((int)(pRec-aMem), pRec); 2984 zAffinity++; 2985 pRec++; 2986 assert( zAffinity[0]==0 || pRec<=pLast ); 2987 }while( zAffinity[0] ); 2988 } 2989 2990 #ifdef SQLITE_ENABLE_NULL_TRIM 2991 /* NULLs can be safely trimmed from the end of the record, as long as 2992 ** as the schema format is 2 or more and none of the omitted columns 2993 ** have a non-NULL default value. Also, the record must be left with 2994 ** at least one field. If P5>0 then it will be one more than the 2995 ** index of the right-most column with a non-NULL default value */ 2996 if( pOp->p5 ){ 2997 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2998 pLast--; 2999 nField--; 3000 } 3001 } 3002 #endif 3003 3004 /* Loop through the elements that will make up the record to figure 3005 ** out how much space is required for the new record. After this loop, 3006 ** the Mem.uTemp field of each term should hold the serial-type that will 3007 ** be used for that term in the generated record: 3008 ** 3009 ** Mem.uTemp value type 3010 ** --------------- --------------- 3011 ** 0 NULL 3012 ** 1 1-byte signed integer 3013 ** 2 2-byte signed integer 3014 ** 3 3-byte signed integer 3015 ** 4 4-byte signed integer 3016 ** 5 6-byte signed integer 3017 ** 6 8-byte signed integer 3018 ** 7 IEEE float 3019 ** 8 Integer constant 0 3020 ** 9 Integer constant 1 3021 ** 10,11 reserved for expansion 3022 ** N>=12 and even BLOB 3023 ** N>=13 and odd text 3024 ** 3025 ** The following additional values are computed: 3026 ** nHdr Number of bytes needed for the record header 3027 ** nData Number of bytes of data space needed for the record 3028 ** nZero Zero bytes at the end of the record 3029 */ 3030 pRec = pLast; 3031 do{ 3032 assert( memIsValid(pRec) ); 3033 if( pRec->flags & MEM_Null ){ 3034 if( pRec->flags & MEM_Zero ){ 3035 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3036 ** table methods that never invoke sqlite3_result_xxxxx() while 3037 ** computing an unchanging column value in an UPDATE statement. 3038 ** Give such values a special internal-use-only serial-type of 10 3039 ** so that they can be passed through to xUpdate and have 3040 ** a true sqlite3_value_nochange(). */ 3041 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3042 pRec->uTemp = 10; 3043 }else{ 3044 pRec->uTemp = 0; 3045 } 3046 nHdr++; 3047 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3048 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3049 i64 i = pRec->u.i; 3050 u64 uu; 3051 testcase( pRec->flags & MEM_Int ); 3052 testcase( pRec->flags & MEM_IntReal ); 3053 if( i<0 ){ 3054 uu = ~i; 3055 }else{ 3056 uu = i; 3057 } 3058 nHdr++; 3059 testcase( uu==127 ); testcase( uu==128 ); 3060 testcase( uu==32767 ); testcase( uu==32768 ); 3061 testcase( uu==8388607 ); testcase( uu==8388608 ); 3062 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3063 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3064 if( uu<=127 ){ 3065 if( (i&1)==i && file_format>=4 ){ 3066 pRec->uTemp = 8+(u32)uu; 3067 }else{ 3068 nData++; 3069 pRec->uTemp = 1; 3070 } 3071 }else if( uu<=32767 ){ 3072 nData += 2; 3073 pRec->uTemp = 2; 3074 }else if( uu<=8388607 ){ 3075 nData += 3; 3076 pRec->uTemp = 3; 3077 }else if( uu<=2147483647 ){ 3078 nData += 4; 3079 pRec->uTemp = 4; 3080 }else if( uu<=140737488355327LL ){ 3081 nData += 6; 3082 pRec->uTemp = 5; 3083 }else{ 3084 nData += 8; 3085 if( pRec->flags & MEM_IntReal ){ 3086 /* If the value is IntReal and is going to take up 8 bytes to store 3087 ** as an integer, then we might as well make it an 8-byte floating 3088 ** point value */ 3089 pRec->u.r = (double)pRec->u.i; 3090 pRec->flags &= ~MEM_IntReal; 3091 pRec->flags |= MEM_Real; 3092 pRec->uTemp = 7; 3093 }else{ 3094 pRec->uTemp = 6; 3095 } 3096 } 3097 }else if( pRec->flags & MEM_Real ){ 3098 nHdr++; 3099 nData += 8; 3100 pRec->uTemp = 7; 3101 }else{ 3102 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3103 assert( pRec->n>=0 ); 3104 len = (u32)pRec->n; 3105 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3106 if( pRec->flags & MEM_Zero ){ 3107 serial_type += pRec->u.nZero*2; 3108 if( nData ){ 3109 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3110 len += pRec->u.nZero; 3111 }else{ 3112 nZero += pRec->u.nZero; 3113 } 3114 } 3115 nData += len; 3116 nHdr += sqlite3VarintLen(serial_type); 3117 pRec->uTemp = serial_type; 3118 } 3119 if( pRec==pData0 ) break; 3120 pRec--; 3121 }while(1); 3122 3123 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3124 ** which determines the total number of bytes in the header. The varint 3125 ** value is the size of the header in bytes including the size varint 3126 ** itself. */ 3127 testcase( nHdr==126 ); 3128 testcase( nHdr==127 ); 3129 if( nHdr<=126 ){ 3130 /* The common case */ 3131 nHdr += 1; 3132 }else{ 3133 /* Rare case of a really large header */ 3134 nVarint = sqlite3VarintLen(nHdr); 3135 nHdr += nVarint; 3136 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3137 } 3138 nByte = nHdr+nData; 3139 3140 /* Make sure the output register has a buffer large enough to store 3141 ** the new record. The output register (pOp->p3) is not allowed to 3142 ** be one of the input registers (because the following call to 3143 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3144 */ 3145 if( nByte+nZero<=pOut->szMalloc ){ 3146 /* The output register is already large enough to hold the record. 3147 ** No error checks or buffer enlargement is required */ 3148 pOut->z = pOut->zMalloc; 3149 }else{ 3150 /* Need to make sure that the output is not too big and then enlarge 3151 ** the output register to hold the full result */ 3152 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3153 goto too_big; 3154 } 3155 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3156 goto no_mem; 3157 } 3158 } 3159 pOut->n = (int)nByte; 3160 pOut->flags = MEM_Blob; 3161 if( nZero ){ 3162 pOut->u.nZero = nZero; 3163 pOut->flags |= MEM_Zero; 3164 } 3165 UPDATE_MAX_BLOBSIZE(pOut); 3166 zHdr = (u8 *)pOut->z; 3167 zPayload = zHdr + nHdr; 3168 3169 /* Write the record */ 3170 zHdr += putVarint32(zHdr, nHdr); 3171 assert( pData0<=pLast ); 3172 pRec = pData0; 3173 do{ 3174 serial_type = pRec->uTemp; 3175 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3176 ** additional varints, one per column. */ 3177 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3178 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3179 ** immediately follow the header. */ 3180 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3181 }while( (++pRec)<=pLast ); 3182 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3183 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3184 3185 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3186 REGISTER_TRACE(pOp->p3, pOut); 3187 break; 3188 } 3189 3190 /* Opcode: Count P1 P2 p3 * * 3191 ** Synopsis: r[P2]=count() 3192 ** 3193 ** Store the number of entries (an integer value) in the table or index 3194 ** opened by cursor P1 in register P2. 3195 ** 3196 ** If P3==0, then an exact count is obtained, which involves visiting 3197 ** every btree page of the table. But if P3 is non-zero, an estimate 3198 ** is returned based on the current cursor position. 3199 */ 3200 case OP_Count: { /* out2 */ 3201 i64 nEntry; 3202 BtCursor *pCrsr; 3203 3204 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3205 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3206 assert( pCrsr ); 3207 if( pOp->p3 ){ 3208 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3209 }else{ 3210 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3211 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3212 if( rc ) goto abort_due_to_error; 3213 } 3214 pOut = out2Prerelease(p, pOp); 3215 pOut->u.i = nEntry; 3216 goto check_for_interrupt; 3217 } 3218 3219 /* Opcode: Savepoint P1 * * P4 * 3220 ** 3221 ** Open, release or rollback the savepoint named by parameter P4, depending 3222 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3223 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3224 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3225 */ 3226 case OP_Savepoint: { 3227 int p1; /* Value of P1 operand */ 3228 char *zName; /* Name of savepoint */ 3229 int nName; 3230 Savepoint *pNew; 3231 Savepoint *pSavepoint; 3232 Savepoint *pTmp; 3233 int iSavepoint; 3234 int ii; 3235 3236 p1 = pOp->p1; 3237 zName = pOp->p4.z; 3238 3239 /* Assert that the p1 parameter is valid. Also that if there is no open 3240 ** transaction, then there cannot be any savepoints. 3241 */ 3242 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3243 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3244 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3245 assert( checkSavepointCount(db) ); 3246 assert( p->bIsReader ); 3247 3248 if( p1==SAVEPOINT_BEGIN ){ 3249 if( db->nVdbeWrite>0 ){ 3250 /* A new savepoint cannot be created if there are active write 3251 ** statements (i.e. open read/write incremental blob handles). 3252 */ 3253 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3254 rc = SQLITE_BUSY; 3255 }else{ 3256 nName = sqlite3Strlen30(zName); 3257 3258 #ifndef SQLITE_OMIT_VIRTUALTABLE 3259 /* This call is Ok even if this savepoint is actually a transaction 3260 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3261 ** If this is a transaction savepoint being opened, it is guaranteed 3262 ** that the db->aVTrans[] array is empty. */ 3263 assert( db->autoCommit==0 || db->nVTrans==0 ); 3264 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3265 db->nStatement+db->nSavepoint); 3266 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3267 #endif 3268 3269 /* Create a new savepoint structure. */ 3270 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3271 if( pNew ){ 3272 pNew->zName = (char *)&pNew[1]; 3273 memcpy(pNew->zName, zName, nName+1); 3274 3275 /* If there is no open transaction, then mark this as a special 3276 ** "transaction savepoint". */ 3277 if( db->autoCommit ){ 3278 db->autoCommit = 0; 3279 db->isTransactionSavepoint = 1; 3280 }else{ 3281 db->nSavepoint++; 3282 } 3283 3284 /* Link the new savepoint into the database handle's list. */ 3285 pNew->pNext = db->pSavepoint; 3286 db->pSavepoint = pNew; 3287 pNew->nDeferredCons = db->nDeferredCons; 3288 pNew->nDeferredImmCons = db->nDeferredImmCons; 3289 } 3290 } 3291 }else{ 3292 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3293 iSavepoint = 0; 3294 3295 /* Find the named savepoint. If there is no such savepoint, then an 3296 ** an error is returned to the user. */ 3297 for( 3298 pSavepoint = db->pSavepoint; 3299 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3300 pSavepoint = pSavepoint->pNext 3301 ){ 3302 iSavepoint++; 3303 } 3304 if( !pSavepoint ){ 3305 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3306 rc = SQLITE_ERROR; 3307 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3308 /* It is not possible to release (commit) a savepoint if there are 3309 ** active write statements. 3310 */ 3311 sqlite3VdbeError(p, "cannot release savepoint - " 3312 "SQL statements in progress"); 3313 rc = SQLITE_BUSY; 3314 }else{ 3315 3316 /* Determine whether or not this is a transaction savepoint. If so, 3317 ** and this is a RELEASE command, then the current transaction 3318 ** is committed. 3319 */ 3320 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3321 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3322 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3323 goto vdbe_return; 3324 } 3325 db->autoCommit = 1; 3326 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3327 p->pc = (int)(pOp - aOp); 3328 db->autoCommit = 0; 3329 p->rc = rc = SQLITE_BUSY; 3330 goto vdbe_return; 3331 } 3332 rc = p->rc; 3333 if( rc ){ 3334 db->autoCommit = 0; 3335 }else{ 3336 db->isTransactionSavepoint = 0; 3337 } 3338 }else{ 3339 int isSchemaChange; 3340 iSavepoint = db->nSavepoint - iSavepoint - 1; 3341 if( p1==SAVEPOINT_ROLLBACK ){ 3342 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3343 for(ii=0; ii<db->nDb; ii++){ 3344 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3345 SQLITE_ABORT_ROLLBACK, 3346 isSchemaChange==0); 3347 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3348 } 3349 }else{ 3350 assert( p1==SAVEPOINT_RELEASE ); 3351 isSchemaChange = 0; 3352 } 3353 for(ii=0; ii<db->nDb; ii++){ 3354 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3355 if( rc!=SQLITE_OK ){ 3356 goto abort_due_to_error; 3357 } 3358 } 3359 if( isSchemaChange ){ 3360 sqlite3ExpirePreparedStatements(db, 0); 3361 sqlite3ResetAllSchemasOfConnection(db); 3362 db->mDbFlags |= DBFLAG_SchemaChange; 3363 } 3364 } 3365 if( rc ) goto abort_due_to_error; 3366 3367 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3368 ** savepoints nested inside of the savepoint being operated on. */ 3369 while( db->pSavepoint!=pSavepoint ){ 3370 pTmp = db->pSavepoint; 3371 db->pSavepoint = pTmp->pNext; 3372 sqlite3DbFree(db, pTmp); 3373 db->nSavepoint--; 3374 } 3375 3376 /* If it is a RELEASE, then destroy the savepoint being operated on 3377 ** too. If it is a ROLLBACK TO, then set the number of deferred 3378 ** constraint violations present in the database to the value stored 3379 ** when the savepoint was created. */ 3380 if( p1==SAVEPOINT_RELEASE ){ 3381 assert( pSavepoint==db->pSavepoint ); 3382 db->pSavepoint = pSavepoint->pNext; 3383 sqlite3DbFree(db, pSavepoint); 3384 if( !isTransaction ){ 3385 db->nSavepoint--; 3386 } 3387 }else{ 3388 assert( p1==SAVEPOINT_ROLLBACK ); 3389 db->nDeferredCons = pSavepoint->nDeferredCons; 3390 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3391 } 3392 3393 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3394 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3395 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3396 } 3397 } 3398 } 3399 if( rc ) goto abort_due_to_error; 3400 3401 break; 3402 } 3403 3404 /* Opcode: AutoCommit P1 P2 * * * 3405 ** 3406 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3407 ** back any currently active btree transactions. If there are any active 3408 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3409 ** there are active writing VMs or active VMs that use shared cache. 3410 ** 3411 ** This instruction causes the VM to halt. 3412 */ 3413 case OP_AutoCommit: { 3414 int desiredAutoCommit; 3415 int iRollback; 3416 3417 desiredAutoCommit = pOp->p1; 3418 iRollback = pOp->p2; 3419 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3420 assert( desiredAutoCommit==1 || iRollback==0 ); 3421 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3422 assert( p->bIsReader ); 3423 3424 if( desiredAutoCommit!=db->autoCommit ){ 3425 if( iRollback ){ 3426 assert( desiredAutoCommit==1 ); 3427 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3428 db->autoCommit = 1; 3429 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3430 /* If this instruction implements a COMMIT and other VMs are writing 3431 ** return an error indicating that the other VMs must complete first. 3432 */ 3433 sqlite3VdbeError(p, "cannot commit transaction - " 3434 "SQL statements in progress"); 3435 rc = SQLITE_BUSY; 3436 goto abort_due_to_error; 3437 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3438 goto vdbe_return; 3439 }else{ 3440 db->autoCommit = (u8)desiredAutoCommit; 3441 } 3442 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3443 p->pc = (int)(pOp - aOp); 3444 db->autoCommit = (u8)(1-desiredAutoCommit); 3445 p->rc = rc = SQLITE_BUSY; 3446 goto vdbe_return; 3447 } 3448 sqlite3CloseSavepoints(db); 3449 if( p->rc==SQLITE_OK ){ 3450 rc = SQLITE_DONE; 3451 }else{ 3452 rc = SQLITE_ERROR; 3453 } 3454 goto vdbe_return; 3455 }else{ 3456 sqlite3VdbeError(p, 3457 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3458 (iRollback)?"cannot rollback - no transaction is active": 3459 "cannot commit - no transaction is active")); 3460 3461 rc = SQLITE_ERROR; 3462 goto abort_due_to_error; 3463 } 3464 /*NOTREACHED*/ assert(0); 3465 } 3466 3467 /* Opcode: Transaction P1 P2 P3 P4 P5 3468 ** 3469 ** Begin a transaction on database P1 if a transaction is not already 3470 ** active. 3471 ** If P2 is non-zero, then a write-transaction is started, or if a 3472 ** read-transaction is already active, it is upgraded to a write-transaction. 3473 ** If P2 is zero, then a read-transaction is started. 3474 ** 3475 ** P1 is the index of the database file on which the transaction is 3476 ** started. Index 0 is the main database file and index 1 is the 3477 ** file used for temporary tables. Indices of 2 or more are used for 3478 ** attached databases. 3479 ** 3480 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3481 ** true (this flag is set if the Vdbe may modify more than one row and may 3482 ** throw an ABORT exception), a statement transaction may also be opened. 3483 ** More specifically, a statement transaction is opened iff the database 3484 ** connection is currently not in autocommit mode, or if there are other 3485 ** active statements. A statement transaction allows the changes made by this 3486 ** VDBE to be rolled back after an error without having to roll back the 3487 ** entire transaction. If no error is encountered, the statement transaction 3488 ** will automatically commit when the VDBE halts. 3489 ** 3490 ** If P5!=0 then this opcode also checks the schema cookie against P3 3491 ** and the schema generation counter against P4. 3492 ** The cookie changes its value whenever the database schema changes. 3493 ** This operation is used to detect when that the cookie has changed 3494 ** and that the current process needs to reread the schema. If the schema 3495 ** cookie in P3 differs from the schema cookie in the database header or 3496 ** if the schema generation counter in P4 differs from the current 3497 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3498 ** halts. The sqlite3_step() wrapper function might then reprepare the 3499 ** statement and rerun it from the beginning. 3500 */ 3501 case OP_Transaction: { 3502 Btree *pBt; 3503 int iMeta = 0; 3504 3505 assert( p->bIsReader ); 3506 assert( p->readOnly==0 || pOp->p2==0 ); 3507 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3508 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3509 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3510 rc = SQLITE_READONLY; 3511 goto abort_due_to_error; 3512 } 3513 pBt = db->aDb[pOp->p1].pBt; 3514 3515 if( pBt ){ 3516 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3517 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3518 testcase( rc==SQLITE_BUSY_RECOVERY ); 3519 if( rc!=SQLITE_OK ){ 3520 if( (rc&0xff)==SQLITE_BUSY ){ 3521 p->pc = (int)(pOp - aOp); 3522 p->rc = rc; 3523 goto vdbe_return; 3524 } 3525 goto abort_due_to_error; 3526 } 3527 3528 if( p->usesStmtJournal 3529 && pOp->p2 3530 && (db->autoCommit==0 || db->nVdbeRead>1) 3531 ){ 3532 assert( sqlite3BtreeIsInTrans(pBt) ); 3533 if( p->iStatement==0 ){ 3534 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3535 db->nStatement++; 3536 p->iStatement = db->nSavepoint + db->nStatement; 3537 } 3538 3539 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3540 if( rc==SQLITE_OK ){ 3541 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3542 } 3543 3544 /* Store the current value of the database handles deferred constraint 3545 ** counter. If the statement transaction needs to be rolled back, 3546 ** the value of this counter needs to be restored too. */ 3547 p->nStmtDefCons = db->nDeferredCons; 3548 p->nStmtDefImmCons = db->nDeferredImmCons; 3549 } 3550 } 3551 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3552 if( pOp->p5 3553 && (iMeta!=pOp->p3 3554 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3555 ){ 3556 /* 3557 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3558 ** version is checked to ensure that the schema has not changed since the 3559 ** SQL statement was prepared. 3560 */ 3561 sqlite3DbFree(db, p->zErrMsg); 3562 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3563 /* If the schema-cookie from the database file matches the cookie 3564 ** stored with the in-memory representation of the schema, do 3565 ** not reload the schema from the database file. 3566 ** 3567 ** If virtual-tables are in use, this is not just an optimization. 3568 ** Often, v-tables store their data in other SQLite tables, which 3569 ** are queried from within xNext() and other v-table methods using 3570 ** prepared queries. If such a query is out-of-date, we do not want to 3571 ** discard the database schema, as the user code implementing the 3572 ** v-table would have to be ready for the sqlite3_vtab structure itself 3573 ** to be invalidated whenever sqlite3_step() is called from within 3574 ** a v-table method. 3575 */ 3576 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3577 sqlite3ResetOneSchema(db, pOp->p1); 3578 } 3579 p->expired = 1; 3580 rc = SQLITE_SCHEMA; 3581 } 3582 if( rc ) goto abort_due_to_error; 3583 break; 3584 } 3585 3586 /* Opcode: ReadCookie P1 P2 P3 * * 3587 ** 3588 ** Read cookie number P3 from database P1 and write it into register P2. 3589 ** P3==1 is the schema version. P3==2 is the database format. 3590 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3591 ** the main database file and P1==1 is the database file used to store 3592 ** temporary tables. 3593 ** 3594 ** There must be a read-lock on the database (either a transaction 3595 ** must be started or there must be an open cursor) before 3596 ** executing this instruction. 3597 */ 3598 case OP_ReadCookie: { /* out2 */ 3599 int iMeta; 3600 int iDb; 3601 int iCookie; 3602 3603 assert( p->bIsReader ); 3604 iDb = pOp->p1; 3605 iCookie = pOp->p3; 3606 assert( pOp->p3<SQLITE_N_BTREE_META ); 3607 assert( iDb>=0 && iDb<db->nDb ); 3608 assert( db->aDb[iDb].pBt!=0 ); 3609 assert( DbMaskTest(p->btreeMask, iDb) ); 3610 3611 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3612 pOut = out2Prerelease(p, pOp); 3613 pOut->u.i = iMeta; 3614 break; 3615 } 3616 3617 /* Opcode: SetCookie P1 P2 P3 * * 3618 ** 3619 ** Write the integer value P3 into cookie number P2 of database P1. 3620 ** P2==1 is the schema version. P2==2 is the database format. 3621 ** P2==3 is the recommended pager cache 3622 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3623 ** database file used to store temporary tables. 3624 ** 3625 ** A transaction must be started before executing this opcode. 3626 */ 3627 case OP_SetCookie: { 3628 Db *pDb; 3629 3630 sqlite3VdbeIncrWriteCounter(p, 0); 3631 assert( pOp->p2<SQLITE_N_BTREE_META ); 3632 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3633 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3634 assert( p->readOnly==0 ); 3635 pDb = &db->aDb[pOp->p1]; 3636 assert( pDb->pBt!=0 ); 3637 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3638 /* See note about index shifting on OP_ReadCookie */ 3639 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3640 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3641 /* When the schema cookie changes, record the new cookie internally */ 3642 pDb->pSchema->schema_cookie = pOp->p3; 3643 db->mDbFlags |= DBFLAG_SchemaChange; 3644 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3645 /* Record changes in the file format */ 3646 pDb->pSchema->file_format = pOp->p3; 3647 } 3648 if( pOp->p1==1 ){ 3649 /* Invalidate all prepared statements whenever the TEMP database 3650 ** schema is changed. Ticket #1644 */ 3651 sqlite3ExpirePreparedStatements(db, 0); 3652 p->expired = 0; 3653 } 3654 if( rc ) goto abort_due_to_error; 3655 break; 3656 } 3657 3658 /* Opcode: OpenRead P1 P2 P3 P4 P5 3659 ** Synopsis: root=P2 iDb=P3 3660 ** 3661 ** Open a read-only cursor for the database table whose root page is 3662 ** P2 in a database file. The database file is determined by P3. 3663 ** P3==0 means the main database, P3==1 means the database used for 3664 ** temporary tables, and P3>1 means used the corresponding attached 3665 ** database. Give the new cursor an identifier of P1. The P1 3666 ** values need not be contiguous but all P1 values should be small integers. 3667 ** It is an error for P1 to be negative. 3668 ** 3669 ** Allowed P5 bits: 3670 ** <ul> 3671 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3672 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3673 ** of OP_SeekLE/OP_IdxLT) 3674 ** </ul> 3675 ** 3676 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3677 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3678 ** object, then table being opened must be an [index b-tree] where the 3679 ** KeyInfo object defines the content and collating 3680 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3681 ** value, then the table being opened must be a [table b-tree] with a 3682 ** number of columns no less than the value of P4. 3683 ** 3684 ** See also: OpenWrite, ReopenIdx 3685 */ 3686 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3687 ** Synopsis: root=P2 iDb=P3 3688 ** 3689 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3690 ** checks to see if the cursor on P1 is already open on the same 3691 ** b-tree and if it is this opcode becomes a no-op. In other words, 3692 ** if the cursor is already open, do not reopen it. 3693 ** 3694 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3695 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3696 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3697 ** number. 3698 ** 3699 ** Allowed P5 bits: 3700 ** <ul> 3701 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3702 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3703 ** of OP_SeekLE/OP_IdxLT) 3704 ** </ul> 3705 ** 3706 ** See also: OP_OpenRead, OP_OpenWrite 3707 */ 3708 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3709 ** Synopsis: root=P2 iDb=P3 3710 ** 3711 ** Open a read/write cursor named P1 on the table or index whose root 3712 ** page is P2 (or whose root page is held in register P2 if the 3713 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3714 ** 3715 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3716 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3717 ** object, then table being opened must be an [index b-tree] where the 3718 ** KeyInfo object defines the content and collating 3719 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3720 ** value, then the table being opened must be a [table b-tree] with a 3721 ** number of columns no less than the value of P4. 3722 ** 3723 ** Allowed P5 bits: 3724 ** <ul> 3725 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3726 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3727 ** of OP_SeekLE/OP_IdxLT) 3728 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3729 ** and subsequently delete entries in an index btree. This is a 3730 ** hint to the storage engine that the storage engine is allowed to 3731 ** ignore. The hint is not used by the official SQLite b*tree storage 3732 ** engine, but is used by COMDB2. 3733 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3734 ** as the root page, not the value of P2 itself. 3735 ** </ul> 3736 ** 3737 ** This instruction works like OpenRead except that it opens the cursor 3738 ** in read/write mode. 3739 ** 3740 ** See also: OP_OpenRead, OP_ReopenIdx 3741 */ 3742 case OP_ReopenIdx: { 3743 int nField; 3744 KeyInfo *pKeyInfo; 3745 int p2; 3746 int iDb; 3747 int wrFlag; 3748 Btree *pX; 3749 VdbeCursor *pCur; 3750 Db *pDb; 3751 3752 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3753 assert( pOp->p4type==P4_KEYINFO ); 3754 pCur = p->apCsr[pOp->p1]; 3755 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3756 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3757 goto open_cursor_set_hints; 3758 } 3759 /* If the cursor is not currently open or is open on a different 3760 ** index, then fall through into OP_OpenRead to force a reopen */ 3761 case OP_OpenRead: 3762 case OP_OpenWrite: 3763 3764 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3765 assert( p->bIsReader ); 3766 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3767 || p->readOnly==0 ); 3768 3769 if( p->expired==1 ){ 3770 rc = SQLITE_ABORT_ROLLBACK; 3771 goto abort_due_to_error; 3772 } 3773 3774 nField = 0; 3775 pKeyInfo = 0; 3776 p2 = pOp->p2; 3777 iDb = pOp->p3; 3778 assert( iDb>=0 && iDb<db->nDb ); 3779 assert( DbMaskTest(p->btreeMask, iDb) ); 3780 pDb = &db->aDb[iDb]; 3781 pX = pDb->pBt; 3782 assert( pX!=0 ); 3783 if( pOp->opcode==OP_OpenWrite ){ 3784 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3785 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3786 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3787 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3788 p->minWriteFileFormat = pDb->pSchema->file_format; 3789 } 3790 }else{ 3791 wrFlag = 0; 3792 } 3793 if( pOp->p5 & OPFLAG_P2ISREG ){ 3794 assert( p2>0 ); 3795 assert( p2<=(p->nMem+1 - p->nCursor) ); 3796 assert( pOp->opcode==OP_OpenWrite ); 3797 pIn2 = &aMem[p2]; 3798 assert( memIsValid(pIn2) ); 3799 assert( (pIn2->flags & MEM_Int)!=0 ); 3800 sqlite3VdbeMemIntegerify(pIn2); 3801 p2 = (int)pIn2->u.i; 3802 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3803 ** that opcode will always set the p2 value to 2 or more or else fail. 3804 ** If there were a failure, the prepared statement would have halted 3805 ** before reaching this instruction. */ 3806 assert( p2>=2 ); 3807 } 3808 if( pOp->p4type==P4_KEYINFO ){ 3809 pKeyInfo = pOp->p4.pKeyInfo; 3810 assert( pKeyInfo->enc==ENC(db) ); 3811 assert( pKeyInfo->db==db ); 3812 nField = pKeyInfo->nAllField; 3813 }else if( pOp->p4type==P4_INT32 ){ 3814 nField = pOp->p4.i; 3815 } 3816 assert( pOp->p1>=0 ); 3817 assert( nField>=0 ); 3818 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3819 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3820 if( pCur==0 ) goto no_mem; 3821 pCur->nullRow = 1; 3822 pCur->isOrdered = 1; 3823 pCur->pgnoRoot = p2; 3824 #ifdef SQLITE_DEBUG 3825 pCur->wrFlag = wrFlag; 3826 #endif 3827 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3828 pCur->pKeyInfo = pKeyInfo; 3829 /* Set the VdbeCursor.isTable variable. Previous versions of 3830 ** SQLite used to check if the root-page flags were sane at this point 3831 ** and report database corruption if they were not, but this check has 3832 ** since moved into the btree layer. */ 3833 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3834 3835 open_cursor_set_hints: 3836 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3837 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3838 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3839 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3840 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3841 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3842 if( rc ) goto abort_due_to_error; 3843 break; 3844 } 3845 3846 /* Opcode: OpenDup P1 P2 * * * 3847 ** 3848 ** Open a new cursor P1 that points to the same ephemeral table as 3849 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3850 ** opcode. Only ephemeral cursors may be duplicated. 3851 ** 3852 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3853 */ 3854 case OP_OpenDup: { 3855 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3856 VdbeCursor *pCx; /* The new cursor */ 3857 3858 pOrig = p->apCsr[pOp->p2]; 3859 assert( pOrig ); 3860 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3861 3862 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3863 if( pCx==0 ) goto no_mem; 3864 pCx->nullRow = 1; 3865 pCx->isEphemeral = 1; 3866 pCx->pKeyInfo = pOrig->pKeyInfo; 3867 pCx->isTable = pOrig->isTable; 3868 pCx->pgnoRoot = pOrig->pgnoRoot; 3869 pCx->isOrdered = pOrig->isOrdered; 3870 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3871 pCx->pKeyInfo, pCx->uc.pCursor); 3872 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3873 ** opened for a database. Since there is already an open cursor when this 3874 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3875 assert( rc==SQLITE_OK ); 3876 break; 3877 } 3878 3879 3880 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3881 ** Synopsis: nColumn=P2 3882 ** 3883 ** Open a new cursor P1 to a transient table. 3884 ** The cursor is always opened read/write even if 3885 ** the main database is read-only. The ephemeral 3886 ** table is deleted automatically when the cursor is closed. 3887 ** 3888 ** If the cursor P1 is already opened on an ephemeral table, the table 3889 ** is cleared (all content is erased). 3890 ** 3891 ** P2 is the number of columns in the ephemeral table. 3892 ** The cursor points to a BTree table if P4==0 and to a BTree index 3893 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3894 ** that defines the format of keys in the index. 3895 ** 3896 ** The P5 parameter can be a mask of the BTREE_* flags defined 3897 ** in btree.h. These flags control aspects of the operation of 3898 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3899 ** added automatically. 3900 */ 3901 /* Opcode: OpenAutoindex P1 P2 * P4 * 3902 ** Synopsis: nColumn=P2 3903 ** 3904 ** This opcode works the same as OP_OpenEphemeral. It has a 3905 ** different name to distinguish its use. Tables created using 3906 ** by this opcode will be used for automatically created transient 3907 ** indices in joins. 3908 */ 3909 case OP_OpenAutoindex: 3910 case OP_OpenEphemeral: { 3911 VdbeCursor *pCx; 3912 KeyInfo *pKeyInfo; 3913 3914 static const int vfsFlags = 3915 SQLITE_OPEN_READWRITE | 3916 SQLITE_OPEN_CREATE | 3917 SQLITE_OPEN_EXCLUSIVE | 3918 SQLITE_OPEN_DELETEONCLOSE | 3919 SQLITE_OPEN_TRANSIENT_DB; 3920 assert( pOp->p1>=0 ); 3921 assert( pOp->p2>=0 ); 3922 pCx = p->apCsr[pOp->p1]; 3923 if( pCx && pCx->pBtx ){ 3924 /* If the ephermeral table is already open, erase all existing content 3925 ** so that the table is empty again, rather than creating a new table. */ 3926 assert( pCx->isEphemeral ); 3927 pCx->seqCount = 0; 3928 pCx->cacheStatus = CACHE_STALE; 3929 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3930 }else{ 3931 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3932 if( pCx==0 ) goto no_mem; 3933 pCx->isEphemeral = 1; 3934 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3935 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3936 vfsFlags); 3937 if( rc==SQLITE_OK ){ 3938 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3939 } 3940 if( rc==SQLITE_OK ){ 3941 /* If a transient index is required, create it by calling 3942 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3943 ** opening it. If a transient table is required, just use the 3944 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3945 */ 3946 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3947 assert( pOp->p4type==P4_KEYINFO ); 3948 rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot, 3949 BTREE_BLOBKEY | pOp->p5); 3950 if( rc==SQLITE_OK ){ 3951 assert( pCx->pgnoRoot==MASTER_ROOT+1 ); 3952 assert( pKeyInfo->db==db ); 3953 assert( pKeyInfo->enc==ENC(db) ); 3954 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3955 pKeyInfo, pCx->uc.pCursor); 3956 } 3957 pCx->isTable = 0; 3958 }else{ 3959 pCx->pgnoRoot = MASTER_ROOT; 3960 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3961 0, pCx->uc.pCursor); 3962 pCx->isTable = 1; 3963 } 3964 } 3965 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3966 } 3967 if( rc ) goto abort_due_to_error; 3968 pCx->nullRow = 1; 3969 break; 3970 } 3971 3972 /* Opcode: SorterOpen P1 P2 P3 P4 * 3973 ** 3974 ** This opcode works like OP_OpenEphemeral except that it opens 3975 ** a transient index that is specifically designed to sort large 3976 ** tables using an external merge-sort algorithm. 3977 ** 3978 ** If argument P3 is non-zero, then it indicates that the sorter may 3979 ** assume that a stable sort considering the first P3 fields of each 3980 ** key is sufficient to produce the required results. 3981 */ 3982 case OP_SorterOpen: { 3983 VdbeCursor *pCx; 3984 3985 assert( pOp->p1>=0 ); 3986 assert( pOp->p2>=0 ); 3987 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3988 if( pCx==0 ) goto no_mem; 3989 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3990 assert( pCx->pKeyInfo->db==db ); 3991 assert( pCx->pKeyInfo->enc==ENC(db) ); 3992 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3993 if( rc ) goto abort_due_to_error; 3994 break; 3995 } 3996 3997 /* Opcode: SequenceTest P1 P2 * * * 3998 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3999 ** 4000 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4001 ** to P2. Regardless of whether or not the jump is taken, increment the 4002 ** the sequence value. 4003 */ 4004 case OP_SequenceTest: { 4005 VdbeCursor *pC; 4006 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4007 pC = p->apCsr[pOp->p1]; 4008 assert( isSorter(pC) ); 4009 if( (pC->seqCount++)==0 ){ 4010 goto jump_to_p2; 4011 } 4012 break; 4013 } 4014 4015 /* Opcode: OpenPseudo P1 P2 P3 * * 4016 ** Synopsis: P3 columns in r[P2] 4017 ** 4018 ** Open a new cursor that points to a fake table that contains a single 4019 ** row of data. The content of that one row is the content of memory 4020 ** register P2. In other words, cursor P1 becomes an alias for the 4021 ** MEM_Blob content contained in register P2. 4022 ** 4023 ** A pseudo-table created by this opcode is used to hold a single 4024 ** row output from the sorter so that the row can be decomposed into 4025 ** individual columns using the OP_Column opcode. The OP_Column opcode 4026 ** is the only cursor opcode that works with a pseudo-table. 4027 ** 4028 ** P3 is the number of fields in the records that will be stored by 4029 ** the pseudo-table. 4030 */ 4031 case OP_OpenPseudo: { 4032 VdbeCursor *pCx; 4033 4034 assert( pOp->p1>=0 ); 4035 assert( pOp->p3>=0 ); 4036 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4037 if( pCx==0 ) goto no_mem; 4038 pCx->nullRow = 1; 4039 pCx->seekResult = pOp->p2; 4040 pCx->isTable = 1; 4041 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4042 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4043 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4044 ** which is a performance optimization */ 4045 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4046 assert( pOp->p5==0 ); 4047 break; 4048 } 4049 4050 /* Opcode: Close P1 * * * * 4051 ** 4052 ** Close a cursor previously opened as P1. If P1 is not 4053 ** currently open, this instruction is a no-op. 4054 */ 4055 case OP_Close: { 4056 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4057 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4058 p->apCsr[pOp->p1] = 0; 4059 break; 4060 } 4061 4062 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4063 /* Opcode: ColumnsUsed P1 * * P4 * 4064 ** 4065 ** This opcode (which only exists if SQLite was compiled with 4066 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4067 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4068 ** (P4_INT64) in which the first 63 bits are one for each of the 4069 ** first 63 columns of the table or index that are actually used 4070 ** by the cursor. The high-order bit is set if any column after 4071 ** the 64th is used. 4072 */ 4073 case OP_ColumnsUsed: { 4074 VdbeCursor *pC; 4075 pC = p->apCsr[pOp->p1]; 4076 assert( pC->eCurType==CURTYPE_BTREE ); 4077 pC->maskUsed = *(u64*)pOp->p4.pI64; 4078 break; 4079 } 4080 #endif 4081 4082 /* Opcode: SeekGE P1 P2 P3 P4 * 4083 ** Synopsis: key=r[P3@P4] 4084 ** 4085 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4086 ** use the value in register P3 as the key. If cursor P1 refers 4087 ** to an SQL index, then P3 is the first in an array of P4 registers 4088 ** that are used as an unpacked index key. 4089 ** 4090 ** Reposition cursor P1 so that it points to the smallest entry that 4091 ** is greater than or equal to the key value. If there are no records 4092 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4093 ** 4094 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4095 ** opcode will either land on a record that exactly matches the key, or 4096 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4097 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4098 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4099 ** IdxGT opcode will be used on subsequent loop iterations. The 4100 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4101 ** is an equality search. 4102 ** 4103 ** This opcode leaves the cursor configured to move in forward order, 4104 ** from the beginning toward the end. In other words, the cursor is 4105 ** configured to use Next, not Prev. 4106 ** 4107 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4108 */ 4109 /* Opcode: SeekGT P1 P2 P3 P4 * 4110 ** Synopsis: key=r[P3@P4] 4111 ** 4112 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4113 ** use the value in register P3 as a key. If cursor P1 refers 4114 ** to an SQL index, then P3 is the first in an array of P4 registers 4115 ** that are used as an unpacked index key. 4116 ** 4117 ** Reposition cursor P1 so that it points to the smallest entry that 4118 ** is greater than the key value. If there are no records greater than 4119 ** the key and P2 is not zero, then jump to P2. 4120 ** 4121 ** This opcode leaves the cursor configured to move in forward order, 4122 ** from the beginning toward the end. In other words, the cursor is 4123 ** configured to use Next, not Prev. 4124 ** 4125 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4126 */ 4127 /* Opcode: SeekLT P1 P2 P3 P4 * 4128 ** Synopsis: key=r[P3@P4] 4129 ** 4130 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4131 ** use the value in register P3 as a key. If cursor P1 refers 4132 ** to an SQL index, then P3 is the first in an array of P4 registers 4133 ** that are used as an unpacked index key. 4134 ** 4135 ** Reposition cursor P1 so that it points to the largest entry that 4136 ** is less than the key value. If there are no records less than 4137 ** the key and P2 is not zero, then jump to P2. 4138 ** 4139 ** This opcode leaves the cursor configured to move in reverse order, 4140 ** from the end toward the beginning. In other words, the cursor is 4141 ** configured to use Prev, not Next. 4142 ** 4143 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4144 */ 4145 /* Opcode: SeekLE P1 P2 P3 P4 * 4146 ** Synopsis: key=r[P3@P4] 4147 ** 4148 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4149 ** use the value in register P3 as a key. If cursor P1 refers 4150 ** to an SQL index, then P3 is the first in an array of P4 registers 4151 ** that are used as an unpacked index key. 4152 ** 4153 ** Reposition cursor P1 so that it points to the largest entry that 4154 ** is less than or equal to the key value. If there are no records 4155 ** less than or equal to the key and P2 is not zero, then jump to P2. 4156 ** 4157 ** This opcode leaves the cursor configured to move in reverse order, 4158 ** from the end toward the beginning. In other words, the cursor is 4159 ** configured to use Prev, not Next. 4160 ** 4161 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4162 ** opcode will either land on a record that exactly matches the key, or 4163 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4164 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4165 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4166 ** IdxGE opcode will be used on subsequent loop iterations. The 4167 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4168 ** is an equality search. 4169 ** 4170 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4171 */ 4172 case OP_SeekLT: /* jump, in3, group */ 4173 case OP_SeekLE: /* jump, in3, group */ 4174 case OP_SeekGE: /* jump, in3, group */ 4175 case OP_SeekGT: { /* jump, in3, group */ 4176 int res; /* Comparison result */ 4177 int oc; /* Opcode */ 4178 VdbeCursor *pC; /* The cursor to seek */ 4179 UnpackedRecord r; /* The key to seek for */ 4180 int nField; /* Number of columns or fields in the key */ 4181 i64 iKey; /* The rowid we are to seek to */ 4182 int eqOnly; /* Only interested in == results */ 4183 4184 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4185 assert( pOp->p2!=0 ); 4186 pC = p->apCsr[pOp->p1]; 4187 assert( pC!=0 ); 4188 assert( pC->eCurType==CURTYPE_BTREE ); 4189 assert( OP_SeekLE == OP_SeekLT+1 ); 4190 assert( OP_SeekGE == OP_SeekLT+2 ); 4191 assert( OP_SeekGT == OP_SeekLT+3 ); 4192 assert( pC->isOrdered ); 4193 assert( pC->uc.pCursor!=0 ); 4194 oc = pOp->opcode; 4195 eqOnly = 0; 4196 pC->nullRow = 0; 4197 #ifdef SQLITE_DEBUG 4198 pC->seekOp = pOp->opcode; 4199 #endif 4200 4201 pC->deferredMoveto = 0; 4202 pC->cacheStatus = CACHE_STALE; 4203 if( pC->isTable ){ 4204 u16 flags3, newType; 4205 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4206 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4207 || CORRUPT_DB ); 4208 4209 /* The input value in P3 might be of any type: integer, real, string, 4210 ** blob, or NULL. But it needs to be an integer before we can do 4211 ** the seek, so convert it. */ 4212 pIn3 = &aMem[pOp->p3]; 4213 flags3 = pIn3->flags; 4214 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4215 applyNumericAffinity(pIn3, 0); 4216 } 4217 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4218 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4219 pIn3->flags = flags3; /* But convert the type back to its original */ 4220 4221 /* If the P3 value could not be converted into an integer without 4222 ** loss of information, then special processing is required... */ 4223 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4224 if( (newType & MEM_Real)==0 ){ 4225 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4226 VdbeBranchTaken(1,2); 4227 goto jump_to_p2; 4228 }else{ 4229 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4230 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4231 goto seek_not_found; 4232 } 4233 }else 4234 4235 /* If the approximation iKey is larger than the actual real search 4236 ** term, substitute >= for > and < for <=. e.g. if the search term 4237 ** is 4.9 and the integer approximation 5: 4238 ** 4239 ** (x > 4.9) -> (x >= 5) 4240 ** (x <= 4.9) -> (x < 5) 4241 */ 4242 if( pIn3->u.r<(double)iKey ){ 4243 assert( OP_SeekGE==(OP_SeekGT-1) ); 4244 assert( OP_SeekLT==(OP_SeekLE-1) ); 4245 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4246 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4247 } 4248 4249 /* If the approximation iKey is smaller than the actual real search 4250 ** term, substitute <= for < and > for >=. */ 4251 else if( pIn3->u.r>(double)iKey ){ 4252 assert( OP_SeekLE==(OP_SeekLT+1) ); 4253 assert( OP_SeekGT==(OP_SeekGE+1) ); 4254 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4255 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4256 } 4257 } 4258 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4259 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4260 if( rc!=SQLITE_OK ){ 4261 goto abort_due_to_error; 4262 } 4263 }else{ 4264 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4265 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4266 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4267 ** with the same key. 4268 */ 4269 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4270 eqOnly = 1; 4271 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4272 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4273 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4274 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4275 assert( pOp[1].p1==pOp[0].p1 ); 4276 assert( pOp[1].p2==pOp[0].p2 ); 4277 assert( pOp[1].p3==pOp[0].p3 ); 4278 assert( pOp[1].p4.i==pOp[0].p4.i ); 4279 } 4280 4281 nField = pOp->p4.i; 4282 assert( pOp->p4type==P4_INT32 ); 4283 assert( nField>0 ); 4284 r.pKeyInfo = pC->pKeyInfo; 4285 r.nField = (u16)nField; 4286 4287 /* The next line of code computes as follows, only faster: 4288 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4289 ** r.default_rc = -1; 4290 ** }else{ 4291 ** r.default_rc = +1; 4292 ** } 4293 */ 4294 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4295 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4296 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4297 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4298 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4299 4300 r.aMem = &aMem[pOp->p3]; 4301 #ifdef SQLITE_DEBUG 4302 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4303 #endif 4304 r.eqSeen = 0; 4305 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4306 if( rc!=SQLITE_OK ){ 4307 goto abort_due_to_error; 4308 } 4309 if( eqOnly && r.eqSeen==0 ){ 4310 assert( res!=0 ); 4311 goto seek_not_found; 4312 } 4313 } 4314 #ifdef SQLITE_TEST 4315 sqlite3_search_count++; 4316 #endif 4317 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4318 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4319 res = 0; 4320 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4321 if( rc!=SQLITE_OK ){ 4322 if( rc==SQLITE_DONE ){ 4323 rc = SQLITE_OK; 4324 res = 1; 4325 }else{ 4326 goto abort_due_to_error; 4327 } 4328 } 4329 }else{ 4330 res = 0; 4331 } 4332 }else{ 4333 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4334 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4335 res = 0; 4336 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4337 if( rc!=SQLITE_OK ){ 4338 if( rc==SQLITE_DONE ){ 4339 rc = SQLITE_OK; 4340 res = 1; 4341 }else{ 4342 goto abort_due_to_error; 4343 } 4344 } 4345 }else{ 4346 /* res might be negative because the table is empty. Check to 4347 ** see if this is the case. 4348 */ 4349 res = sqlite3BtreeEof(pC->uc.pCursor); 4350 } 4351 } 4352 seek_not_found: 4353 assert( pOp->p2>0 ); 4354 VdbeBranchTaken(res!=0,2); 4355 if( res ){ 4356 goto jump_to_p2; 4357 }else if( eqOnly ){ 4358 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4359 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4360 } 4361 break; 4362 } 4363 4364 /* Opcode: SeekHit P1 P2 * * * 4365 ** Synopsis: seekHit=P2 4366 ** 4367 ** Set the seekHit flag on cursor P1 to the value in P2. 4368 * The seekHit flag is used by the IfNoHope opcode. 4369 ** 4370 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4371 ** either 0 or 1. 4372 */ 4373 case OP_SeekHit: { 4374 VdbeCursor *pC; 4375 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4376 pC = p->apCsr[pOp->p1]; 4377 assert( pC!=0 ); 4378 assert( pOp->p2==0 || pOp->p2==1 ); 4379 pC->seekHit = pOp->p2 & 1; 4380 break; 4381 } 4382 4383 /* Opcode: IfNotOpen P1 P2 * * * 4384 ** Synopsis: if( !csr[P1] ) goto P2 4385 ** 4386 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4387 */ 4388 case OP_IfNotOpen: { /* jump */ 4389 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4390 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4391 if( !p->apCsr[pOp->p1] ){ 4392 goto jump_to_p2_and_check_for_interrupt; 4393 } 4394 break; 4395 } 4396 4397 /* Opcode: Found P1 P2 P3 P4 * 4398 ** Synopsis: key=r[P3@P4] 4399 ** 4400 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4401 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4402 ** record. 4403 ** 4404 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4405 ** is a prefix of any entry in P1 then a jump is made to P2 and 4406 ** P1 is left pointing at the matching entry. 4407 ** 4408 ** This operation leaves the cursor in a state where it can be 4409 ** advanced in the forward direction. The Next instruction will work, 4410 ** but not the Prev instruction. 4411 ** 4412 ** See also: NotFound, NoConflict, NotExists. SeekGe 4413 */ 4414 /* Opcode: NotFound P1 P2 P3 P4 * 4415 ** Synopsis: key=r[P3@P4] 4416 ** 4417 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4418 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4419 ** record. 4420 ** 4421 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4422 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4423 ** does contain an entry whose prefix matches the P3/P4 record then control 4424 ** falls through to the next instruction and P1 is left pointing at the 4425 ** matching entry. 4426 ** 4427 ** This operation leaves the cursor in a state where it cannot be 4428 ** advanced in either direction. In other words, the Next and Prev 4429 ** opcodes do not work after this operation. 4430 ** 4431 ** See also: Found, NotExists, NoConflict, IfNoHope 4432 */ 4433 /* Opcode: IfNoHope P1 P2 P3 P4 * 4434 ** Synopsis: key=r[P3@P4] 4435 ** 4436 ** Register P3 is the first of P4 registers that form an unpacked 4437 ** record. 4438 ** 4439 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4440 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4441 ** check to see if there is any entry in P1 that matches the 4442 ** prefix identified by P3 and P4. If no entry matches the prefix, 4443 ** jump to P2. Otherwise fall through. 4444 ** 4445 ** This opcode behaves like OP_NotFound if the seekHit 4446 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4447 ** 4448 ** This opcode is used in IN clause processing for a multi-column key. 4449 ** If an IN clause is attached to an element of the key other than the 4450 ** left-most element, and if there are no matches on the most recent 4451 ** seek over the whole key, then it might be that one of the key element 4452 ** to the left is prohibiting a match, and hence there is "no hope" of 4453 ** any match regardless of how many IN clause elements are checked. 4454 ** In such a case, we abandon the IN clause search early, using this 4455 ** opcode. The opcode name comes from the fact that the 4456 ** jump is taken if there is "no hope" of achieving a match. 4457 ** 4458 ** See also: NotFound, SeekHit 4459 */ 4460 /* Opcode: NoConflict P1 P2 P3 P4 * 4461 ** Synopsis: key=r[P3@P4] 4462 ** 4463 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4464 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4465 ** record. 4466 ** 4467 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4468 ** contains any NULL value, jump immediately to P2. If all terms of the 4469 ** record are not-NULL then a check is done to determine if any row in the 4470 ** P1 index btree has a matching key prefix. If there are no matches, jump 4471 ** immediately to P2. If there is a match, fall through and leave the P1 4472 ** cursor pointing to the matching row. 4473 ** 4474 ** This opcode is similar to OP_NotFound with the exceptions that the 4475 ** branch is always taken if any part of the search key input is NULL. 4476 ** 4477 ** This operation leaves the cursor in a state where it cannot be 4478 ** advanced in either direction. In other words, the Next and Prev 4479 ** opcodes do not work after this operation. 4480 ** 4481 ** See also: NotFound, Found, NotExists 4482 */ 4483 case OP_IfNoHope: { /* jump, in3 */ 4484 VdbeCursor *pC; 4485 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4486 pC = p->apCsr[pOp->p1]; 4487 assert( pC!=0 ); 4488 if( pC->seekHit ) break; 4489 /* Fall through into OP_NotFound */ 4490 } 4491 case OP_NoConflict: /* jump, in3 */ 4492 case OP_NotFound: /* jump, in3 */ 4493 case OP_Found: { /* jump, in3 */ 4494 int alreadyExists; 4495 int takeJump; 4496 int ii; 4497 VdbeCursor *pC; 4498 int res; 4499 UnpackedRecord *pFree; 4500 UnpackedRecord *pIdxKey; 4501 UnpackedRecord r; 4502 4503 #ifdef SQLITE_TEST 4504 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4505 #endif 4506 4507 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4508 assert( pOp->p4type==P4_INT32 ); 4509 pC = p->apCsr[pOp->p1]; 4510 assert( pC!=0 ); 4511 #ifdef SQLITE_DEBUG 4512 pC->seekOp = pOp->opcode; 4513 #endif 4514 pIn3 = &aMem[pOp->p3]; 4515 assert( pC->eCurType==CURTYPE_BTREE ); 4516 assert( pC->uc.pCursor!=0 ); 4517 assert( pC->isTable==0 ); 4518 if( pOp->p4.i>0 ){ 4519 r.pKeyInfo = pC->pKeyInfo; 4520 r.nField = (u16)pOp->p4.i; 4521 r.aMem = pIn3; 4522 #ifdef SQLITE_DEBUG 4523 for(ii=0; ii<r.nField; ii++){ 4524 assert( memIsValid(&r.aMem[ii]) ); 4525 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4526 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4527 } 4528 #endif 4529 pIdxKey = &r; 4530 pFree = 0; 4531 }else{ 4532 assert( pIn3->flags & MEM_Blob ); 4533 rc = ExpandBlob(pIn3); 4534 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4535 if( rc ) goto no_mem; 4536 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4537 if( pIdxKey==0 ) goto no_mem; 4538 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4539 } 4540 pIdxKey->default_rc = 0; 4541 takeJump = 0; 4542 if( pOp->opcode==OP_NoConflict ){ 4543 /* For the OP_NoConflict opcode, take the jump if any of the 4544 ** input fields are NULL, since any key with a NULL will not 4545 ** conflict */ 4546 for(ii=0; ii<pIdxKey->nField; ii++){ 4547 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4548 takeJump = 1; 4549 break; 4550 } 4551 } 4552 } 4553 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4554 if( pFree ) sqlite3DbFreeNN(db, pFree); 4555 if( rc!=SQLITE_OK ){ 4556 goto abort_due_to_error; 4557 } 4558 pC->seekResult = res; 4559 alreadyExists = (res==0); 4560 pC->nullRow = 1-alreadyExists; 4561 pC->deferredMoveto = 0; 4562 pC->cacheStatus = CACHE_STALE; 4563 if( pOp->opcode==OP_Found ){ 4564 VdbeBranchTaken(alreadyExists!=0,2); 4565 if( alreadyExists ) goto jump_to_p2; 4566 }else{ 4567 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4568 if( takeJump || !alreadyExists ) goto jump_to_p2; 4569 } 4570 break; 4571 } 4572 4573 /* Opcode: SeekRowid P1 P2 P3 * * 4574 ** Synopsis: intkey=r[P3] 4575 ** 4576 ** P1 is the index of a cursor open on an SQL table btree (with integer 4577 ** keys). If register P3 does not contain an integer or if P1 does not 4578 ** contain a record with rowid P3 then jump immediately to P2. 4579 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4580 ** a record with rowid P3 then 4581 ** leave the cursor pointing at that record and fall through to the next 4582 ** instruction. 4583 ** 4584 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4585 ** the P3 register must be guaranteed to contain an integer value. With this 4586 ** opcode, register P3 might not contain an integer. 4587 ** 4588 ** The OP_NotFound opcode performs the same operation on index btrees 4589 ** (with arbitrary multi-value keys). 4590 ** 4591 ** This opcode leaves the cursor in a state where it cannot be advanced 4592 ** in either direction. In other words, the Next and Prev opcodes will 4593 ** not work following this opcode. 4594 ** 4595 ** See also: Found, NotFound, NoConflict, SeekRowid 4596 */ 4597 /* Opcode: NotExists P1 P2 P3 * * 4598 ** Synopsis: intkey=r[P3] 4599 ** 4600 ** P1 is the index of a cursor open on an SQL table btree (with integer 4601 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4602 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4603 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4604 ** leave the cursor pointing at that record and fall through to the next 4605 ** instruction. 4606 ** 4607 ** The OP_SeekRowid opcode performs the same operation but also allows the 4608 ** P3 register to contain a non-integer value, in which case the jump is 4609 ** always taken. This opcode requires that P3 always contain an integer. 4610 ** 4611 ** The OP_NotFound opcode performs the same operation on index btrees 4612 ** (with arbitrary multi-value keys). 4613 ** 4614 ** This opcode leaves the cursor in a state where it cannot be advanced 4615 ** in either direction. In other words, the Next and Prev opcodes will 4616 ** not work following this opcode. 4617 ** 4618 ** See also: Found, NotFound, NoConflict, SeekRowid 4619 */ 4620 case OP_SeekRowid: { /* jump, in3 */ 4621 VdbeCursor *pC; 4622 BtCursor *pCrsr; 4623 int res; 4624 u64 iKey; 4625 4626 pIn3 = &aMem[pOp->p3]; 4627 testcase( pIn3->flags & MEM_Int ); 4628 testcase( pIn3->flags & MEM_IntReal ); 4629 testcase( pIn3->flags & MEM_Real ); 4630 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4631 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4632 /* If pIn3->u.i does not contain an integer, compute iKey as the 4633 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4634 ** into an integer without loss of information. Take care to avoid 4635 ** changing the datatype of pIn3, however, as it is used by other 4636 ** parts of the prepared statement. */ 4637 Mem x = pIn3[0]; 4638 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4639 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4640 iKey = x.u.i; 4641 goto notExistsWithKey; 4642 } 4643 /* Fall through into OP_NotExists */ 4644 case OP_NotExists: /* jump, in3 */ 4645 pIn3 = &aMem[pOp->p3]; 4646 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4648 iKey = pIn3->u.i; 4649 notExistsWithKey: 4650 pC = p->apCsr[pOp->p1]; 4651 assert( pC!=0 ); 4652 #ifdef SQLITE_DEBUG 4653 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4654 #endif 4655 assert( pC->isTable ); 4656 assert( pC->eCurType==CURTYPE_BTREE ); 4657 pCrsr = pC->uc.pCursor; 4658 assert( pCrsr!=0 ); 4659 res = 0; 4660 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4661 assert( rc==SQLITE_OK || res==0 ); 4662 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4663 pC->nullRow = 0; 4664 pC->cacheStatus = CACHE_STALE; 4665 pC->deferredMoveto = 0; 4666 VdbeBranchTaken(res!=0,2); 4667 pC->seekResult = res; 4668 if( res!=0 ){ 4669 assert( rc==SQLITE_OK ); 4670 if( pOp->p2==0 ){ 4671 rc = SQLITE_CORRUPT_BKPT; 4672 }else{ 4673 goto jump_to_p2; 4674 } 4675 } 4676 if( rc ) goto abort_due_to_error; 4677 break; 4678 } 4679 4680 /* Opcode: Sequence P1 P2 * * * 4681 ** Synopsis: r[P2]=cursor[P1].ctr++ 4682 ** 4683 ** Find the next available sequence number for cursor P1. 4684 ** Write the sequence number into register P2. 4685 ** The sequence number on the cursor is incremented after this 4686 ** instruction. 4687 */ 4688 case OP_Sequence: { /* out2 */ 4689 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4690 assert( p->apCsr[pOp->p1]!=0 ); 4691 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4692 pOut = out2Prerelease(p, pOp); 4693 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4694 break; 4695 } 4696 4697 4698 /* Opcode: NewRowid P1 P2 P3 * * 4699 ** Synopsis: r[P2]=rowid 4700 ** 4701 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4702 ** The record number is not previously used as a key in the database 4703 ** table that cursor P1 points to. The new record number is written 4704 ** written to register P2. 4705 ** 4706 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4707 ** the largest previously generated record number. No new record numbers are 4708 ** allowed to be less than this value. When this value reaches its maximum, 4709 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4710 ** generated record number. This P3 mechanism is used to help implement the 4711 ** AUTOINCREMENT feature. 4712 */ 4713 case OP_NewRowid: { /* out2 */ 4714 i64 v; /* The new rowid */ 4715 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4716 int res; /* Result of an sqlite3BtreeLast() */ 4717 int cnt; /* Counter to limit the number of searches */ 4718 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4719 VdbeFrame *pFrame; /* Root frame of VDBE */ 4720 4721 v = 0; 4722 res = 0; 4723 pOut = out2Prerelease(p, pOp); 4724 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4725 pC = p->apCsr[pOp->p1]; 4726 assert( pC!=0 ); 4727 assert( pC->isTable ); 4728 assert( pC->eCurType==CURTYPE_BTREE ); 4729 assert( pC->uc.pCursor!=0 ); 4730 { 4731 /* The next rowid or record number (different terms for the same 4732 ** thing) is obtained in a two-step algorithm. 4733 ** 4734 ** First we attempt to find the largest existing rowid and add one 4735 ** to that. But if the largest existing rowid is already the maximum 4736 ** positive integer, we have to fall through to the second 4737 ** probabilistic algorithm 4738 ** 4739 ** The second algorithm is to select a rowid at random and see if 4740 ** it already exists in the table. If it does not exist, we have 4741 ** succeeded. If the random rowid does exist, we select a new one 4742 ** and try again, up to 100 times. 4743 */ 4744 assert( pC->isTable ); 4745 4746 #ifdef SQLITE_32BIT_ROWID 4747 # define MAX_ROWID 0x7fffffff 4748 #else 4749 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4750 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4751 ** to provide the constant while making all compilers happy. 4752 */ 4753 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4754 #endif 4755 4756 if( !pC->useRandomRowid ){ 4757 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4758 if( rc!=SQLITE_OK ){ 4759 goto abort_due_to_error; 4760 } 4761 if( res ){ 4762 v = 1; /* IMP: R-61914-48074 */ 4763 }else{ 4764 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4765 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4766 if( v>=MAX_ROWID ){ 4767 pC->useRandomRowid = 1; 4768 }else{ 4769 v++; /* IMP: R-29538-34987 */ 4770 } 4771 } 4772 } 4773 4774 #ifndef SQLITE_OMIT_AUTOINCREMENT 4775 if( pOp->p3 ){ 4776 /* Assert that P3 is a valid memory cell. */ 4777 assert( pOp->p3>0 ); 4778 if( p->pFrame ){ 4779 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4780 /* Assert that P3 is a valid memory cell. */ 4781 assert( pOp->p3<=pFrame->nMem ); 4782 pMem = &pFrame->aMem[pOp->p3]; 4783 }else{ 4784 /* Assert that P3 is a valid memory cell. */ 4785 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4786 pMem = &aMem[pOp->p3]; 4787 memAboutToChange(p, pMem); 4788 } 4789 assert( memIsValid(pMem) ); 4790 4791 REGISTER_TRACE(pOp->p3, pMem); 4792 sqlite3VdbeMemIntegerify(pMem); 4793 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4794 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4795 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4796 goto abort_due_to_error; 4797 } 4798 if( v<pMem->u.i+1 ){ 4799 v = pMem->u.i + 1; 4800 } 4801 pMem->u.i = v; 4802 } 4803 #endif 4804 if( pC->useRandomRowid ){ 4805 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4806 ** largest possible integer (9223372036854775807) then the database 4807 ** engine starts picking positive candidate ROWIDs at random until 4808 ** it finds one that is not previously used. */ 4809 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4810 ** an AUTOINCREMENT table. */ 4811 cnt = 0; 4812 do{ 4813 sqlite3_randomness(sizeof(v), &v); 4814 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4815 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4816 0, &res))==SQLITE_OK) 4817 && (res==0) 4818 && (++cnt<100)); 4819 if( rc ) goto abort_due_to_error; 4820 if( res==0 ){ 4821 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4822 goto abort_due_to_error; 4823 } 4824 assert( v>0 ); /* EV: R-40812-03570 */ 4825 } 4826 pC->deferredMoveto = 0; 4827 pC->cacheStatus = CACHE_STALE; 4828 } 4829 pOut->u.i = v; 4830 break; 4831 } 4832 4833 /* Opcode: Insert P1 P2 P3 P4 P5 4834 ** Synopsis: intkey=r[P3] data=r[P2] 4835 ** 4836 ** Write an entry into the table of cursor P1. A new entry is 4837 ** created if it doesn't already exist or the data for an existing 4838 ** entry is overwritten. The data is the value MEM_Blob stored in register 4839 ** number P2. The key is stored in register P3. The key must 4840 ** be a MEM_Int. 4841 ** 4842 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4843 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4844 ** then rowid is stored for subsequent return by the 4845 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4846 ** 4847 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4848 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4849 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4850 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4851 ** 4852 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4853 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4854 ** is part of an INSERT operation. The difference is only important to 4855 ** the update hook. 4856 ** 4857 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4858 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4859 ** following a successful insert. 4860 ** 4861 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4862 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4863 ** and register P2 becomes ephemeral. If the cursor is changed, the 4864 ** value of register P2 will then change. Make sure this does not 4865 ** cause any problems.) 4866 ** 4867 ** This instruction only works on tables. The equivalent instruction 4868 ** for indices is OP_IdxInsert. 4869 */ 4870 case OP_Insert: { 4871 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4872 Mem *pKey; /* MEM cell holding key for the record */ 4873 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4874 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4875 const char *zDb; /* database name - used by the update hook */ 4876 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4877 BtreePayload x; /* Payload to be inserted */ 4878 4879 pData = &aMem[pOp->p2]; 4880 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4881 assert( memIsValid(pData) ); 4882 pC = p->apCsr[pOp->p1]; 4883 assert( pC!=0 ); 4884 assert( pC->eCurType==CURTYPE_BTREE ); 4885 assert( pC->deferredMoveto==0 ); 4886 assert( pC->uc.pCursor!=0 ); 4887 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4888 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4889 REGISTER_TRACE(pOp->p2, pData); 4890 sqlite3VdbeIncrWriteCounter(p, pC); 4891 4892 pKey = &aMem[pOp->p3]; 4893 assert( pKey->flags & MEM_Int ); 4894 assert( memIsValid(pKey) ); 4895 REGISTER_TRACE(pOp->p3, pKey); 4896 x.nKey = pKey->u.i; 4897 4898 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4899 assert( pC->iDb>=0 ); 4900 zDb = db->aDb[pC->iDb].zDbSName; 4901 pTab = pOp->p4.pTab; 4902 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4903 }else{ 4904 pTab = 0; 4905 zDb = 0; /* Not needed. Silence a compiler warning. */ 4906 } 4907 4908 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4909 /* Invoke the pre-update hook, if any */ 4910 if( pTab ){ 4911 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4912 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4913 } 4914 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4915 /* Prevent post-update hook from running in cases when it should not */ 4916 pTab = 0; 4917 } 4918 } 4919 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4920 #endif 4921 4922 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4923 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4924 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4925 x.pData = pData->z; 4926 x.nData = pData->n; 4927 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4928 if( pData->flags & MEM_Zero ){ 4929 x.nZero = pData->u.nZero; 4930 }else{ 4931 x.nZero = 0; 4932 } 4933 x.pKey = 0; 4934 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4935 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4936 ); 4937 pC->deferredMoveto = 0; 4938 pC->cacheStatus = CACHE_STALE; 4939 4940 /* Invoke the update-hook if required. */ 4941 if( rc ) goto abort_due_to_error; 4942 if( pTab ){ 4943 assert( db->xUpdateCallback!=0 ); 4944 assert( pTab->aCol!=0 ); 4945 db->xUpdateCallback(db->pUpdateArg, 4946 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4947 zDb, pTab->zName, x.nKey); 4948 } 4949 break; 4950 } 4951 4952 /* Opcode: Delete P1 P2 P3 P4 P5 4953 ** 4954 ** Delete the record at which the P1 cursor is currently pointing. 4955 ** 4956 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4957 ** the cursor will be left pointing at either the next or the previous 4958 ** record in the table. If it is left pointing at the next record, then 4959 ** the next Next instruction will be a no-op. As a result, in this case 4960 ** it is ok to delete a record from within a Next loop. If 4961 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4962 ** left in an undefined state. 4963 ** 4964 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4965 ** delete one of several associated with deleting a table row and all its 4966 ** associated index entries. Exactly one of those deletes is the "primary" 4967 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4968 ** marked with the AUXDELETE flag. 4969 ** 4970 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4971 ** change count is incremented (otherwise not). 4972 ** 4973 ** P1 must not be pseudo-table. It has to be a real table with 4974 ** multiple rows. 4975 ** 4976 ** If P4 is not NULL then it points to a Table object. In this case either 4977 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4978 ** have been positioned using OP_NotFound prior to invoking this opcode in 4979 ** this case. Specifically, if one is configured, the pre-update hook is 4980 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4981 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4982 ** 4983 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4984 ** of the memory cell that contains the value that the rowid of the row will 4985 ** be set to by the update. 4986 */ 4987 case OP_Delete: { 4988 VdbeCursor *pC; 4989 const char *zDb; 4990 Table *pTab; 4991 int opflags; 4992 4993 opflags = pOp->p2; 4994 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4995 pC = p->apCsr[pOp->p1]; 4996 assert( pC!=0 ); 4997 assert( pC->eCurType==CURTYPE_BTREE ); 4998 assert( pC->uc.pCursor!=0 ); 4999 assert( pC->deferredMoveto==0 ); 5000 sqlite3VdbeIncrWriteCounter(p, pC); 5001 5002 #ifdef SQLITE_DEBUG 5003 if( pOp->p4type==P4_TABLE 5004 && HasRowid(pOp->p4.pTab) 5005 && pOp->p5==0 5006 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5007 ){ 5008 /* If p5 is zero, the seek operation that positioned the cursor prior to 5009 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5010 ** the row that is being deleted */ 5011 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5012 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5013 } 5014 #endif 5015 5016 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5017 ** the name of the db to pass as to it. Also set local pTab to a copy 5018 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5019 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5020 ** VdbeCursor.movetoTarget to the current rowid. */ 5021 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5022 assert( pC->iDb>=0 ); 5023 assert( pOp->p4.pTab!=0 ); 5024 zDb = db->aDb[pC->iDb].zDbSName; 5025 pTab = pOp->p4.pTab; 5026 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5027 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5028 } 5029 }else{ 5030 zDb = 0; /* Not needed. Silence a compiler warning. */ 5031 pTab = 0; /* Not needed. Silence a compiler warning. */ 5032 } 5033 5034 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5035 /* Invoke the pre-update-hook if required. */ 5036 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 5037 assert( !(opflags & OPFLAG_ISUPDATE) 5038 || HasRowid(pTab)==0 5039 || (aMem[pOp->p3].flags & MEM_Int) 5040 ); 5041 sqlite3VdbePreUpdateHook(p, pC, 5042 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5043 zDb, pTab, pC->movetoTarget, 5044 pOp->p3 5045 ); 5046 } 5047 if( opflags & OPFLAG_ISNOOP ) break; 5048 #endif 5049 5050 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5051 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5052 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5053 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5054 5055 #ifdef SQLITE_DEBUG 5056 if( p->pFrame==0 ){ 5057 if( pC->isEphemeral==0 5058 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5059 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5060 ){ 5061 nExtraDelete++; 5062 } 5063 if( pOp->p2 & OPFLAG_NCHANGE ){ 5064 nExtraDelete--; 5065 } 5066 } 5067 #endif 5068 5069 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5070 pC->cacheStatus = CACHE_STALE; 5071 pC->seekResult = 0; 5072 if( rc ) goto abort_due_to_error; 5073 5074 /* Invoke the update-hook if required. */ 5075 if( opflags & OPFLAG_NCHANGE ){ 5076 p->nChange++; 5077 if( db->xUpdateCallback && HasRowid(pTab) ){ 5078 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5079 pC->movetoTarget); 5080 assert( pC->iDb>=0 ); 5081 } 5082 } 5083 5084 break; 5085 } 5086 /* Opcode: ResetCount * * * * * 5087 ** 5088 ** The value of the change counter is copied to the database handle 5089 ** change counter (returned by subsequent calls to sqlite3_changes()). 5090 ** Then the VMs internal change counter resets to 0. 5091 ** This is used by trigger programs. 5092 */ 5093 case OP_ResetCount: { 5094 sqlite3VdbeSetChanges(db, p->nChange); 5095 p->nChange = 0; 5096 break; 5097 } 5098 5099 /* Opcode: SorterCompare P1 P2 P3 P4 5100 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5101 ** 5102 ** P1 is a sorter cursor. This instruction compares a prefix of the 5103 ** record blob in register P3 against a prefix of the entry that 5104 ** the sorter cursor currently points to. Only the first P4 fields 5105 ** of r[P3] and the sorter record are compared. 5106 ** 5107 ** If either P3 or the sorter contains a NULL in one of their significant 5108 ** fields (not counting the P4 fields at the end which are ignored) then 5109 ** the comparison is assumed to be equal. 5110 ** 5111 ** Fall through to next instruction if the two records compare equal to 5112 ** each other. Jump to P2 if they are different. 5113 */ 5114 case OP_SorterCompare: { 5115 VdbeCursor *pC; 5116 int res; 5117 int nKeyCol; 5118 5119 pC = p->apCsr[pOp->p1]; 5120 assert( isSorter(pC) ); 5121 assert( pOp->p4type==P4_INT32 ); 5122 pIn3 = &aMem[pOp->p3]; 5123 nKeyCol = pOp->p4.i; 5124 res = 0; 5125 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5126 VdbeBranchTaken(res!=0,2); 5127 if( rc ) goto abort_due_to_error; 5128 if( res ) goto jump_to_p2; 5129 break; 5130 }; 5131 5132 /* Opcode: SorterData P1 P2 P3 * * 5133 ** Synopsis: r[P2]=data 5134 ** 5135 ** Write into register P2 the current sorter data for sorter cursor P1. 5136 ** Then clear the column header cache on cursor P3. 5137 ** 5138 ** This opcode is normally use to move a record out of the sorter and into 5139 ** a register that is the source for a pseudo-table cursor created using 5140 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5141 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5142 ** us from having to issue a separate NullRow instruction to clear that cache. 5143 */ 5144 case OP_SorterData: { 5145 VdbeCursor *pC; 5146 5147 pOut = &aMem[pOp->p2]; 5148 pC = p->apCsr[pOp->p1]; 5149 assert( isSorter(pC) ); 5150 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5151 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5152 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5153 if( rc ) goto abort_due_to_error; 5154 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5155 break; 5156 } 5157 5158 /* Opcode: RowData P1 P2 P3 * * 5159 ** Synopsis: r[P2]=data 5160 ** 5161 ** Write into register P2 the complete row content for the row at 5162 ** which cursor P1 is currently pointing. 5163 ** There is no interpretation of the data. 5164 ** It is just copied onto the P2 register exactly as 5165 ** it is found in the database file. 5166 ** 5167 ** If cursor P1 is an index, then the content is the key of the row. 5168 ** If cursor P2 is a table, then the content extracted is the data. 5169 ** 5170 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5171 ** of a real table, not a pseudo-table. 5172 ** 5173 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5174 ** into the database page. That means that the content of the output 5175 ** register will be invalidated as soon as the cursor moves - including 5176 ** moves caused by other cursors that "save" the current cursors 5177 ** position in order that they can write to the same table. If P3==0 5178 ** then a copy of the data is made into memory. P3!=0 is faster, but 5179 ** P3==0 is safer. 5180 ** 5181 ** If P3!=0 then the content of the P2 register is unsuitable for use 5182 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5183 ** The P2 register content is invalidated by opcodes like OP_Function or 5184 ** by any use of another cursor pointing to the same table. 5185 */ 5186 case OP_RowData: { 5187 VdbeCursor *pC; 5188 BtCursor *pCrsr; 5189 u32 n; 5190 5191 pOut = out2Prerelease(p, pOp); 5192 5193 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5194 pC = p->apCsr[pOp->p1]; 5195 assert( pC!=0 ); 5196 assert( pC->eCurType==CURTYPE_BTREE ); 5197 assert( isSorter(pC)==0 ); 5198 assert( pC->nullRow==0 ); 5199 assert( pC->uc.pCursor!=0 ); 5200 pCrsr = pC->uc.pCursor; 5201 5202 /* The OP_RowData opcodes always follow OP_NotExists or 5203 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5204 ** that might invalidate the cursor. 5205 ** If this where not the case, on of the following assert()s 5206 ** would fail. Should this ever change (because of changes in the code 5207 ** generator) then the fix would be to insert a call to 5208 ** sqlite3VdbeCursorMoveto(). 5209 */ 5210 assert( pC->deferredMoveto==0 ); 5211 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5212 #if 0 /* Not required due to the previous to assert() statements */ 5213 rc = sqlite3VdbeCursorMoveto(pC); 5214 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5215 #endif 5216 5217 n = sqlite3BtreePayloadSize(pCrsr); 5218 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5219 goto too_big; 5220 } 5221 testcase( n==0 ); 5222 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5223 if( rc ) goto abort_due_to_error; 5224 if( !pOp->p3 ) Deephemeralize(pOut); 5225 UPDATE_MAX_BLOBSIZE(pOut); 5226 REGISTER_TRACE(pOp->p2, pOut); 5227 break; 5228 } 5229 5230 /* Opcode: Rowid P1 P2 * * * 5231 ** Synopsis: r[P2]=rowid 5232 ** 5233 ** Store in register P2 an integer which is the key of the table entry that 5234 ** P1 is currently point to. 5235 ** 5236 ** P1 can be either an ordinary table or a virtual table. There used to 5237 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5238 ** one opcode now works for both table types. 5239 */ 5240 case OP_Rowid: { /* out2 */ 5241 VdbeCursor *pC; 5242 i64 v; 5243 sqlite3_vtab *pVtab; 5244 const sqlite3_module *pModule; 5245 5246 pOut = out2Prerelease(p, pOp); 5247 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5248 pC = p->apCsr[pOp->p1]; 5249 assert( pC!=0 ); 5250 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5251 if( pC->nullRow ){ 5252 pOut->flags = MEM_Null; 5253 break; 5254 }else if( pC->deferredMoveto ){ 5255 v = pC->movetoTarget; 5256 #ifndef SQLITE_OMIT_VIRTUALTABLE 5257 }else if( pC->eCurType==CURTYPE_VTAB ){ 5258 assert( pC->uc.pVCur!=0 ); 5259 pVtab = pC->uc.pVCur->pVtab; 5260 pModule = pVtab->pModule; 5261 assert( pModule->xRowid ); 5262 rc = pModule->xRowid(pC->uc.pVCur, &v); 5263 sqlite3VtabImportErrmsg(p, pVtab); 5264 if( rc ) goto abort_due_to_error; 5265 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5266 }else{ 5267 assert( pC->eCurType==CURTYPE_BTREE ); 5268 assert( pC->uc.pCursor!=0 ); 5269 rc = sqlite3VdbeCursorRestore(pC); 5270 if( rc ) goto abort_due_to_error; 5271 if( pC->nullRow ){ 5272 pOut->flags = MEM_Null; 5273 break; 5274 } 5275 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5276 } 5277 pOut->u.i = v; 5278 break; 5279 } 5280 5281 /* Opcode: NullRow P1 * * * * 5282 ** 5283 ** Move the cursor P1 to a null row. Any OP_Column operations 5284 ** that occur while the cursor is on the null row will always 5285 ** write a NULL. 5286 */ 5287 case OP_NullRow: { 5288 VdbeCursor *pC; 5289 5290 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5291 pC = p->apCsr[pOp->p1]; 5292 assert( pC!=0 ); 5293 pC->nullRow = 1; 5294 pC->cacheStatus = CACHE_STALE; 5295 if( pC->eCurType==CURTYPE_BTREE ){ 5296 assert( pC->uc.pCursor!=0 ); 5297 sqlite3BtreeClearCursor(pC->uc.pCursor); 5298 } 5299 #ifdef SQLITE_DEBUG 5300 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5301 #endif 5302 break; 5303 } 5304 5305 /* Opcode: SeekEnd P1 * * * * 5306 ** 5307 ** Position cursor P1 at the end of the btree for the purpose of 5308 ** appending a new entry onto the btree. 5309 ** 5310 ** It is assumed that the cursor is used only for appending and so 5311 ** if the cursor is valid, then the cursor must already be pointing 5312 ** at the end of the btree and so no changes are made to 5313 ** the cursor. 5314 */ 5315 /* Opcode: Last P1 P2 * * * 5316 ** 5317 ** The next use of the Rowid or Column or Prev instruction for P1 5318 ** will refer to the last entry in the database table or index. 5319 ** If the table or index is empty and P2>0, then jump immediately to P2. 5320 ** If P2 is 0 or if the table or index is not empty, fall through 5321 ** to the following instruction. 5322 ** 5323 ** This opcode leaves the cursor configured to move in reverse order, 5324 ** from the end toward the beginning. In other words, the cursor is 5325 ** configured to use Prev, not Next. 5326 */ 5327 case OP_SeekEnd: 5328 case OP_Last: { /* jump */ 5329 VdbeCursor *pC; 5330 BtCursor *pCrsr; 5331 int res; 5332 5333 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5334 pC = p->apCsr[pOp->p1]; 5335 assert( pC!=0 ); 5336 assert( pC->eCurType==CURTYPE_BTREE ); 5337 pCrsr = pC->uc.pCursor; 5338 res = 0; 5339 assert( pCrsr!=0 ); 5340 #ifdef SQLITE_DEBUG 5341 pC->seekOp = pOp->opcode; 5342 #endif 5343 if( pOp->opcode==OP_SeekEnd ){ 5344 assert( pOp->p2==0 ); 5345 pC->seekResult = -1; 5346 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5347 break; 5348 } 5349 } 5350 rc = sqlite3BtreeLast(pCrsr, &res); 5351 pC->nullRow = (u8)res; 5352 pC->deferredMoveto = 0; 5353 pC->cacheStatus = CACHE_STALE; 5354 if( rc ) goto abort_due_to_error; 5355 if( pOp->p2>0 ){ 5356 VdbeBranchTaken(res!=0,2); 5357 if( res ) goto jump_to_p2; 5358 } 5359 break; 5360 } 5361 5362 /* Opcode: IfSmaller P1 P2 P3 * * 5363 ** 5364 ** Estimate the number of rows in the table P1. Jump to P2 if that 5365 ** estimate is less than approximately 2**(0.1*P3). 5366 */ 5367 case OP_IfSmaller: { /* jump */ 5368 VdbeCursor *pC; 5369 BtCursor *pCrsr; 5370 int res; 5371 i64 sz; 5372 5373 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5374 pC = p->apCsr[pOp->p1]; 5375 assert( pC!=0 ); 5376 pCrsr = pC->uc.pCursor; 5377 assert( pCrsr ); 5378 rc = sqlite3BtreeFirst(pCrsr, &res); 5379 if( rc ) goto abort_due_to_error; 5380 if( res==0 ){ 5381 sz = sqlite3BtreeRowCountEst(pCrsr); 5382 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5383 } 5384 VdbeBranchTaken(res!=0,2); 5385 if( res ) goto jump_to_p2; 5386 break; 5387 } 5388 5389 5390 /* Opcode: SorterSort P1 P2 * * * 5391 ** 5392 ** After all records have been inserted into the Sorter object 5393 ** identified by P1, invoke this opcode to actually do the sorting. 5394 ** Jump to P2 if there are no records to be sorted. 5395 ** 5396 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5397 ** for Sorter objects. 5398 */ 5399 /* Opcode: Sort P1 P2 * * * 5400 ** 5401 ** This opcode does exactly the same thing as OP_Rewind except that 5402 ** it increments an undocumented global variable used for testing. 5403 ** 5404 ** Sorting is accomplished by writing records into a sorting index, 5405 ** then rewinding that index and playing it back from beginning to 5406 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5407 ** rewinding so that the global variable will be incremented and 5408 ** regression tests can determine whether or not the optimizer is 5409 ** correctly optimizing out sorts. 5410 */ 5411 case OP_SorterSort: /* jump */ 5412 case OP_Sort: { /* jump */ 5413 #ifdef SQLITE_TEST 5414 sqlite3_sort_count++; 5415 sqlite3_search_count--; 5416 #endif 5417 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5418 /* Fall through into OP_Rewind */ 5419 } 5420 /* Opcode: Rewind P1 P2 * * * 5421 ** 5422 ** The next use of the Rowid or Column or Next instruction for P1 5423 ** will refer to the first entry in the database table or index. 5424 ** If the table or index is empty, jump immediately to P2. 5425 ** If the table or index is not empty, fall through to the following 5426 ** instruction. 5427 ** 5428 ** This opcode leaves the cursor configured to move in forward order, 5429 ** from the beginning toward the end. In other words, the cursor is 5430 ** configured to use Next, not Prev. 5431 */ 5432 case OP_Rewind: { /* jump */ 5433 VdbeCursor *pC; 5434 BtCursor *pCrsr; 5435 int res; 5436 5437 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5438 assert( pOp->p5==0 ); 5439 pC = p->apCsr[pOp->p1]; 5440 assert( pC!=0 ); 5441 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5442 res = 1; 5443 #ifdef SQLITE_DEBUG 5444 pC->seekOp = OP_Rewind; 5445 #endif 5446 if( isSorter(pC) ){ 5447 rc = sqlite3VdbeSorterRewind(pC, &res); 5448 }else{ 5449 assert( pC->eCurType==CURTYPE_BTREE ); 5450 pCrsr = pC->uc.pCursor; 5451 assert( pCrsr ); 5452 rc = sqlite3BtreeFirst(pCrsr, &res); 5453 pC->deferredMoveto = 0; 5454 pC->cacheStatus = CACHE_STALE; 5455 } 5456 if( rc ) goto abort_due_to_error; 5457 pC->nullRow = (u8)res; 5458 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5459 VdbeBranchTaken(res!=0,2); 5460 if( res ) goto jump_to_p2; 5461 break; 5462 } 5463 5464 /* Opcode: Next P1 P2 P3 P4 P5 5465 ** 5466 ** Advance cursor P1 so that it points to the next key/data pair in its 5467 ** table or index. If there are no more key/value pairs then fall through 5468 ** to the following instruction. But if the cursor advance was successful, 5469 ** jump immediately to P2. 5470 ** 5471 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5472 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5473 ** to follow SeekLT, SeekLE, or OP_Last. 5474 ** 5475 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5476 ** been opened prior to this opcode or the program will segfault. 5477 ** 5478 ** The P3 value is a hint to the btree implementation. If P3==1, that 5479 ** means P1 is an SQL index and that this instruction could have been 5480 ** omitted if that index had been unique. P3 is usually 0. P3 is 5481 ** always either 0 or 1. 5482 ** 5483 ** P4 is always of type P4_ADVANCE. The function pointer points to 5484 ** sqlite3BtreeNext(). 5485 ** 5486 ** If P5 is positive and the jump is taken, then event counter 5487 ** number P5-1 in the prepared statement is incremented. 5488 ** 5489 ** See also: Prev 5490 */ 5491 /* Opcode: Prev P1 P2 P3 P4 P5 5492 ** 5493 ** Back up cursor P1 so that it points to the previous key/data pair in its 5494 ** table or index. If there is no previous key/value pairs then fall through 5495 ** to the following instruction. But if the cursor backup was successful, 5496 ** jump immediately to P2. 5497 ** 5498 ** 5499 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5500 ** OP_Last opcode used to position the cursor. Prev is not allowed 5501 ** to follow SeekGT, SeekGE, or OP_Rewind. 5502 ** 5503 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5504 ** not open then the behavior is undefined. 5505 ** 5506 ** The P3 value is a hint to the btree implementation. If P3==1, that 5507 ** means P1 is an SQL index and that this instruction could have been 5508 ** omitted if that index had been unique. P3 is usually 0. P3 is 5509 ** always either 0 or 1. 5510 ** 5511 ** P4 is always of type P4_ADVANCE. The function pointer points to 5512 ** sqlite3BtreePrevious(). 5513 ** 5514 ** If P5 is positive and the jump is taken, then event counter 5515 ** number P5-1 in the prepared statement is incremented. 5516 */ 5517 /* Opcode: SorterNext P1 P2 * * P5 5518 ** 5519 ** This opcode works just like OP_Next except that P1 must be a 5520 ** sorter object for which the OP_SorterSort opcode has been 5521 ** invoked. This opcode advances the cursor to the next sorted 5522 ** record, or jumps to P2 if there are no more sorted records. 5523 */ 5524 case OP_SorterNext: { /* jump */ 5525 VdbeCursor *pC; 5526 5527 pC = p->apCsr[pOp->p1]; 5528 assert( isSorter(pC) ); 5529 rc = sqlite3VdbeSorterNext(db, pC); 5530 goto next_tail; 5531 case OP_Prev: /* jump */ 5532 case OP_Next: /* jump */ 5533 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5534 assert( pOp->p5<ArraySize(p->aCounter) ); 5535 pC = p->apCsr[pOp->p1]; 5536 assert( pC!=0 ); 5537 assert( pC->deferredMoveto==0 ); 5538 assert( pC->eCurType==CURTYPE_BTREE ); 5539 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5540 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5541 5542 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5543 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5544 assert( pOp->opcode!=OP_Next 5545 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5546 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5547 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5548 || pC->seekOp==OP_IfNoHope); 5549 assert( pOp->opcode!=OP_Prev 5550 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5551 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5552 || pC->seekOp==OP_NullRow); 5553 5554 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5555 next_tail: 5556 pC->cacheStatus = CACHE_STALE; 5557 VdbeBranchTaken(rc==SQLITE_OK,2); 5558 if( rc==SQLITE_OK ){ 5559 pC->nullRow = 0; 5560 p->aCounter[pOp->p5]++; 5561 #ifdef SQLITE_TEST 5562 sqlite3_search_count++; 5563 #endif 5564 goto jump_to_p2_and_check_for_interrupt; 5565 } 5566 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5567 rc = SQLITE_OK; 5568 pC->nullRow = 1; 5569 goto check_for_interrupt; 5570 } 5571 5572 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5573 ** Synopsis: key=r[P2] 5574 ** 5575 ** Register P2 holds an SQL index key made using the 5576 ** MakeRecord instructions. This opcode writes that key 5577 ** into the index P1. Data for the entry is nil. 5578 ** 5579 ** If P4 is not zero, then it is the number of values in the unpacked 5580 ** key of reg(P2). In that case, P3 is the index of the first register 5581 ** for the unpacked key. The availability of the unpacked key can sometimes 5582 ** be an optimization. 5583 ** 5584 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5585 ** that this insert is likely to be an append. 5586 ** 5587 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5588 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5589 ** then the change counter is unchanged. 5590 ** 5591 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5592 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5593 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5594 ** seeks on the cursor or if the most recent seek used a key equivalent 5595 ** to P2. 5596 ** 5597 ** This instruction only works for indices. The equivalent instruction 5598 ** for tables is OP_Insert. 5599 */ 5600 case OP_IdxInsert: { /* in2 */ 5601 VdbeCursor *pC; 5602 BtreePayload x; 5603 5604 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5605 pC = p->apCsr[pOp->p1]; 5606 sqlite3VdbeIncrWriteCounter(p, pC); 5607 assert( pC!=0 ); 5608 assert( !isSorter(pC) ); 5609 pIn2 = &aMem[pOp->p2]; 5610 assert( pIn2->flags & MEM_Blob ); 5611 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5612 assert( pC->eCurType==CURTYPE_BTREE ); 5613 assert( pC->isTable==0 ); 5614 rc = ExpandBlob(pIn2); 5615 if( rc ) goto abort_due_to_error; 5616 x.nKey = pIn2->n; 5617 x.pKey = pIn2->z; 5618 x.aMem = aMem + pOp->p3; 5619 x.nMem = (u16)pOp->p4.i; 5620 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5621 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5622 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5623 ); 5624 assert( pC->deferredMoveto==0 ); 5625 pC->cacheStatus = CACHE_STALE; 5626 if( rc) goto abort_due_to_error; 5627 break; 5628 } 5629 5630 /* Opcode: SorterInsert P1 P2 * * * 5631 ** Synopsis: key=r[P2] 5632 ** 5633 ** Register P2 holds an SQL index key made using the 5634 ** MakeRecord instructions. This opcode writes that key 5635 ** into the sorter P1. Data for the entry is nil. 5636 */ 5637 case OP_SorterInsert: { /* in2 */ 5638 VdbeCursor *pC; 5639 5640 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5641 pC = p->apCsr[pOp->p1]; 5642 sqlite3VdbeIncrWriteCounter(p, pC); 5643 assert( pC!=0 ); 5644 assert( isSorter(pC) ); 5645 pIn2 = &aMem[pOp->p2]; 5646 assert( pIn2->flags & MEM_Blob ); 5647 assert( pC->isTable==0 ); 5648 rc = ExpandBlob(pIn2); 5649 if( rc ) goto abort_due_to_error; 5650 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5651 if( rc) goto abort_due_to_error; 5652 break; 5653 } 5654 5655 /* Opcode: IdxDelete P1 P2 P3 * P5 5656 ** Synopsis: key=r[P2@P3] 5657 ** 5658 ** The content of P3 registers starting at register P2 form 5659 ** an unpacked index key. This opcode removes that entry from the 5660 ** index opened by cursor P1. 5661 ** 5662 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 5663 ** if no matching index entry is found. This happens when running 5664 ** an UPDATE or DELETE statement and the index entry to be updated 5665 ** or deleted is not found. For some uses of IdxDelete 5666 ** (example: the EXCEPT operator) it does not matter that no matching 5667 ** entry is found. For those cases, P5 is zero. 5668 */ 5669 case OP_IdxDelete: { 5670 VdbeCursor *pC; 5671 BtCursor *pCrsr; 5672 int res; 5673 UnpackedRecord r; 5674 5675 assert( pOp->p3>0 ); 5676 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5677 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5678 pC = p->apCsr[pOp->p1]; 5679 assert( pC!=0 ); 5680 assert( pC->eCurType==CURTYPE_BTREE ); 5681 sqlite3VdbeIncrWriteCounter(p, pC); 5682 pCrsr = pC->uc.pCursor; 5683 assert( pCrsr!=0 ); 5684 r.pKeyInfo = pC->pKeyInfo; 5685 r.nField = (u16)pOp->p3; 5686 r.default_rc = 0; 5687 r.aMem = &aMem[pOp->p2]; 5688 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5689 if( rc ) goto abort_due_to_error; 5690 if( res==0 ){ 5691 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5692 if( rc ) goto abort_due_to_error; 5693 }else if( pOp->p5 ){ 5694 rc = SQLITE_CORRUPT_INDEX; 5695 goto abort_due_to_error; 5696 } 5697 assert( pC->deferredMoveto==0 ); 5698 pC->cacheStatus = CACHE_STALE; 5699 pC->seekResult = 0; 5700 break; 5701 } 5702 5703 /* Opcode: DeferredSeek P1 * P3 P4 * 5704 ** Synopsis: Move P3 to P1.rowid if needed 5705 ** 5706 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5707 ** table. This opcode does a deferred seek of the P3 table cursor 5708 ** to the row that corresponds to the current row of P1. 5709 ** 5710 ** This is a deferred seek. Nothing actually happens until 5711 ** the cursor is used to read a record. That way, if no reads 5712 ** occur, no unnecessary I/O happens. 5713 ** 5714 ** P4 may be an array of integers (type P4_INTARRAY) containing 5715 ** one entry for each column in the P3 table. If array entry a(i) 5716 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5717 ** equivalent to performing the deferred seek and then reading column i 5718 ** from P1. This information is stored in P3 and used to redirect 5719 ** reads against P3 over to P1, thus possibly avoiding the need to 5720 ** seek and read cursor P3. 5721 */ 5722 /* Opcode: IdxRowid P1 P2 * * * 5723 ** Synopsis: r[P2]=rowid 5724 ** 5725 ** Write into register P2 an integer which is the last entry in the record at 5726 ** the end of the index key pointed to by cursor P1. This integer should be 5727 ** the rowid of the table entry to which this index entry points. 5728 ** 5729 ** See also: Rowid, MakeRecord. 5730 */ 5731 case OP_DeferredSeek: 5732 case OP_IdxRowid: { /* out2 */ 5733 VdbeCursor *pC; /* The P1 index cursor */ 5734 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5735 i64 rowid; /* Rowid that P1 current points to */ 5736 5737 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5738 pC = p->apCsr[pOp->p1]; 5739 assert( pC!=0 ); 5740 assert( pC->eCurType==CURTYPE_BTREE ); 5741 assert( pC->uc.pCursor!=0 ); 5742 assert( pC->isTable==0 ); 5743 assert( pC->deferredMoveto==0 ); 5744 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5745 5746 /* The IdxRowid and Seek opcodes are combined because of the commonality 5747 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5748 rc = sqlite3VdbeCursorRestore(pC); 5749 5750 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5751 ** out from under the cursor. That will never happens for an IdxRowid 5752 ** or Seek opcode */ 5753 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5754 5755 if( !pC->nullRow ){ 5756 rowid = 0; /* Not needed. Only used to silence a warning. */ 5757 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5758 if( rc!=SQLITE_OK ){ 5759 goto abort_due_to_error; 5760 } 5761 if( pOp->opcode==OP_DeferredSeek ){ 5762 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5763 pTabCur = p->apCsr[pOp->p3]; 5764 assert( pTabCur!=0 ); 5765 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5766 assert( pTabCur->uc.pCursor!=0 ); 5767 assert( pTabCur->isTable ); 5768 pTabCur->nullRow = 0; 5769 pTabCur->movetoTarget = rowid; 5770 pTabCur->deferredMoveto = 1; 5771 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5772 pTabCur->aAltMap = pOp->p4.ai; 5773 pTabCur->pAltCursor = pC; 5774 }else{ 5775 pOut = out2Prerelease(p, pOp); 5776 pOut->u.i = rowid; 5777 } 5778 }else{ 5779 assert( pOp->opcode==OP_IdxRowid ); 5780 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5781 } 5782 break; 5783 } 5784 5785 /* Opcode: FinishSeek P1 * * * * 5786 ** 5787 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 5788 ** seek operation now, without further delay. If the cursor seek has 5789 ** already occurred, this instruction is a no-op. 5790 */ 5791 case OP_FinishSeek: { 5792 VdbeCursor *pC; /* The P1 index cursor */ 5793 5794 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5795 pC = p->apCsr[pOp->p1]; 5796 if( pC->deferredMoveto ){ 5797 rc = sqlite3VdbeFinishMoveto(pC); 5798 if( rc ) goto abort_due_to_error; 5799 } 5800 break; 5801 } 5802 5803 /* Opcode: IdxGE P1 P2 P3 P4 P5 5804 ** Synopsis: key=r[P3@P4] 5805 ** 5806 ** The P4 register values beginning with P3 form an unpacked index 5807 ** key that omits the PRIMARY KEY. Compare this key value against the index 5808 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5809 ** fields at the end. 5810 ** 5811 ** If the P1 index entry is greater than or equal to the key value 5812 ** then jump to P2. Otherwise fall through to the next instruction. 5813 */ 5814 /* Opcode: IdxGT P1 P2 P3 P4 P5 5815 ** Synopsis: key=r[P3@P4] 5816 ** 5817 ** The P4 register values beginning with P3 form an unpacked index 5818 ** key that omits the PRIMARY KEY. Compare this key value against the index 5819 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5820 ** fields at the end. 5821 ** 5822 ** If the P1 index entry is greater than the key value 5823 ** then jump to P2. Otherwise fall through to the next instruction. 5824 */ 5825 /* Opcode: IdxLT P1 P2 P3 P4 P5 5826 ** Synopsis: key=r[P3@P4] 5827 ** 5828 ** The P4 register values beginning with P3 form an unpacked index 5829 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5830 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5831 ** ROWID on the P1 index. 5832 ** 5833 ** If the P1 index entry is less than the key value then jump to P2. 5834 ** Otherwise fall through to the next instruction. 5835 */ 5836 /* Opcode: IdxLE P1 P2 P3 P4 P5 5837 ** Synopsis: key=r[P3@P4] 5838 ** 5839 ** The P4 register values beginning with P3 form an unpacked index 5840 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5841 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5842 ** ROWID on the P1 index. 5843 ** 5844 ** If the P1 index entry is less than or equal to the key value then jump 5845 ** to P2. Otherwise fall through to the next instruction. 5846 */ 5847 case OP_IdxLE: /* jump */ 5848 case OP_IdxGT: /* jump */ 5849 case OP_IdxLT: /* jump */ 5850 case OP_IdxGE: { /* jump */ 5851 VdbeCursor *pC; 5852 int res; 5853 UnpackedRecord r; 5854 5855 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5856 pC = p->apCsr[pOp->p1]; 5857 assert( pC!=0 ); 5858 assert( pC->isOrdered ); 5859 assert( pC->eCurType==CURTYPE_BTREE ); 5860 assert( pC->uc.pCursor!=0); 5861 assert( pC->deferredMoveto==0 ); 5862 assert( pOp->p5==0 || pOp->p5==1 ); 5863 assert( pOp->p4type==P4_INT32 ); 5864 r.pKeyInfo = pC->pKeyInfo; 5865 r.nField = (u16)pOp->p4.i; 5866 if( pOp->opcode<OP_IdxLT ){ 5867 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5868 r.default_rc = -1; 5869 }else{ 5870 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5871 r.default_rc = 0; 5872 } 5873 r.aMem = &aMem[pOp->p3]; 5874 #ifdef SQLITE_DEBUG 5875 { 5876 int i; 5877 for(i=0; i<r.nField; i++){ 5878 assert( memIsValid(&r.aMem[i]) ); 5879 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 5880 } 5881 } 5882 #endif 5883 res = 0; /* Not needed. Only used to silence a warning. */ 5884 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5885 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5886 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5887 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5888 res = -res; 5889 }else{ 5890 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5891 res++; 5892 } 5893 VdbeBranchTaken(res>0,2); 5894 if( rc ) goto abort_due_to_error; 5895 if( res>0 ) goto jump_to_p2; 5896 break; 5897 } 5898 5899 /* Opcode: Destroy P1 P2 P3 * * 5900 ** 5901 ** Delete an entire database table or index whose root page in the database 5902 ** file is given by P1. 5903 ** 5904 ** The table being destroyed is in the main database file if P3==0. If 5905 ** P3==1 then the table to be clear is in the auxiliary database file 5906 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5907 ** 5908 ** If AUTOVACUUM is enabled then it is possible that another root page 5909 ** might be moved into the newly deleted root page in order to keep all 5910 ** root pages contiguous at the beginning of the database. The former 5911 ** value of the root page that moved - its value before the move occurred - 5912 ** is stored in register P2. If no page movement was required (because the 5913 ** table being dropped was already the last one in the database) then a 5914 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5915 ** is stored in register P2. 5916 ** 5917 ** This opcode throws an error if there are any active reader VMs when 5918 ** it is invoked. This is done to avoid the difficulty associated with 5919 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5920 ** database. This error is thrown even if the database is not an AUTOVACUUM 5921 ** db in order to avoid introducing an incompatibility between autovacuum 5922 ** and non-autovacuum modes. 5923 ** 5924 ** See also: Clear 5925 */ 5926 case OP_Destroy: { /* out2 */ 5927 int iMoved; 5928 int iDb; 5929 5930 sqlite3VdbeIncrWriteCounter(p, 0); 5931 assert( p->readOnly==0 ); 5932 assert( pOp->p1>1 ); 5933 pOut = out2Prerelease(p, pOp); 5934 pOut->flags = MEM_Null; 5935 if( db->nVdbeRead > db->nVDestroy+1 ){ 5936 rc = SQLITE_LOCKED; 5937 p->errorAction = OE_Abort; 5938 goto abort_due_to_error; 5939 }else{ 5940 iDb = pOp->p3; 5941 assert( DbMaskTest(p->btreeMask, iDb) ); 5942 iMoved = 0; /* Not needed. Only to silence a warning. */ 5943 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5944 pOut->flags = MEM_Int; 5945 pOut->u.i = iMoved; 5946 if( rc ) goto abort_due_to_error; 5947 #ifndef SQLITE_OMIT_AUTOVACUUM 5948 if( iMoved!=0 ){ 5949 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5950 /* All OP_Destroy operations occur on the same btree */ 5951 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5952 resetSchemaOnFault = iDb+1; 5953 } 5954 #endif 5955 } 5956 break; 5957 } 5958 5959 /* Opcode: Clear P1 P2 P3 5960 ** 5961 ** Delete all contents of the database table or index whose root page 5962 ** in the database file is given by P1. But, unlike Destroy, do not 5963 ** remove the table or index from the database file. 5964 ** 5965 ** The table being clear is in the main database file if P2==0. If 5966 ** P2==1 then the table to be clear is in the auxiliary database file 5967 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5968 ** 5969 ** If the P3 value is non-zero, then the table referred to must be an 5970 ** intkey table (an SQL table, not an index). In this case the row change 5971 ** count is incremented by the number of rows in the table being cleared. 5972 ** If P3 is greater than zero, then the value stored in register P3 is 5973 ** also incremented by the number of rows in the table being cleared. 5974 ** 5975 ** See also: Destroy 5976 */ 5977 case OP_Clear: { 5978 int nChange; 5979 5980 sqlite3VdbeIncrWriteCounter(p, 0); 5981 nChange = 0; 5982 assert( p->readOnly==0 ); 5983 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5984 rc = sqlite3BtreeClearTable( 5985 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5986 ); 5987 if( pOp->p3 ){ 5988 p->nChange += nChange; 5989 if( pOp->p3>0 ){ 5990 assert( memIsValid(&aMem[pOp->p3]) ); 5991 memAboutToChange(p, &aMem[pOp->p3]); 5992 aMem[pOp->p3].u.i += nChange; 5993 } 5994 } 5995 if( rc ) goto abort_due_to_error; 5996 break; 5997 } 5998 5999 /* Opcode: ResetSorter P1 * * * * 6000 ** 6001 ** Delete all contents from the ephemeral table or sorter 6002 ** that is open on cursor P1. 6003 ** 6004 ** This opcode only works for cursors used for sorting and 6005 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6006 */ 6007 case OP_ResetSorter: { 6008 VdbeCursor *pC; 6009 6010 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6011 pC = p->apCsr[pOp->p1]; 6012 assert( pC!=0 ); 6013 if( isSorter(pC) ){ 6014 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6015 }else{ 6016 assert( pC->eCurType==CURTYPE_BTREE ); 6017 assert( pC->isEphemeral ); 6018 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6019 if( rc ) goto abort_due_to_error; 6020 } 6021 break; 6022 } 6023 6024 /* Opcode: CreateBtree P1 P2 P3 * * 6025 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6026 ** 6027 ** Allocate a new b-tree in the main database file if P1==0 or in the 6028 ** TEMP database file if P1==1 or in an attached database if 6029 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6030 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6031 ** The root page number of the new b-tree is stored in register P2. 6032 */ 6033 case OP_CreateBtree: { /* out2 */ 6034 int pgno; 6035 Db *pDb; 6036 6037 sqlite3VdbeIncrWriteCounter(p, 0); 6038 pOut = out2Prerelease(p, pOp); 6039 pgno = 0; 6040 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6041 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6042 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6043 assert( p->readOnly==0 ); 6044 pDb = &db->aDb[pOp->p1]; 6045 assert( pDb->pBt!=0 ); 6046 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6047 if( rc ) goto abort_due_to_error; 6048 pOut->u.i = pgno; 6049 break; 6050 } 6051 6052 /* Opcode: SqlExec * * * P4 * 6053 ** 6054 ** Run the SQL statement or statements specified in the P4 string. 6055 */ 6056 case OP_SqlExec: { 6057 sqlite3VdbeIncrWriteCounter(p, 0); 6058 db->nSqlExec++; 6059 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6060 db->nSqlExec--; 6061 if( rc ) goto abort_due_to_error; 6062 break; 6063 } 6064 6065 /* Opcode: ParseSchema P1 * * P4 * 6066 ** 6067 ** Read and parse all entries from the SQLITE_MASTER table of database P1 6068 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6069 ** entire schema for P1 is reparsed. 6070 ** 6071 ** This opcode invokes the parser to create a new virtual machine, 6072 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6073 */ 6074 case OP_ParseSchema: { 6075 int iDb; 6076 const char *zMaster; 6077 char *zSql; 6078 InitData initData; 6079 6080 /* Any prepared statement that invokes this opcode will hold mutexes 6081 ** on every btree. This is a prerequisite for invoking 6082 ** sqlite3InitCallback(). 6083 */ 6084 #ifdef SQLITE_DEBUG 6085 for(iDb=0; iDb<db->nDb; iDb++){ 6086 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6087 } 6088 #endif 6089 6090 iDb = pOp->p1; 6091 assert( iDb>=0 && iDb<db->nDb ); 6092 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 6093 6094 #ifndef SQLITE_OMIT_ALTERTABLE 6095 if( pOp->p4.z==0 ){ 6096 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6097 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6098 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable); 6099 db->mDbFlags |= DBFLAG_SchemaChange; 6100 p->expired = 0; 6101 }else 6102 #endif 6103 { 6104 zMaster = MASTER_NAME; 6105 initData.db = db; 6106 initData.iDb = iDb; 6107 initData.pzErrMsg = &p->zErrMsg; 6108 initData.mInitFlags = 0; 6109 zSql = sqlite3MPrintf(db, 6110 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6111 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 6112 if( zSql==0 ){ 6113 rc = SQLITE_NOMEM_BKPT; 6114 }else{ 6115 assert( db->init.busy==0 ); 6116 db->init.busy = 1; 6117 initData.rc = SQLITE_OK; 6118 initData.nInitRow = 0; 6119 assert( !db->mallocFailed ); 6120 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6121 if( rc==SQLITE_OK ) rc = initData.rc; 6122 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6123 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6124 ** at least one SQL statement. Any less than that indicates that 6125 ** the sqlite_master table is corrupt. */ 6126 rc = SQLITE_CORRUPT_BKPT; 6127 } 6128 sqlite3DbFreeNN(db, zSql); 6129 db->init.busy = 0; 6130 } 6131 } 6132 if( rc ){ 6133 sqlite3ResetAllSchemasOfConnection(db); 6134 if( rc==SQLITE_NOMEM ){ 6135 goto no_mem; 6136 } 6137 goto abort_due_to_error; 6138 } 6139 break; 6140 } 6141 6142 #if !defined(SQLITE_OMIT_ANALYZE) 6143 /* Opcode: LoadAnalysis P1 * * * * 6144 ** 6145 ** Read the sqlite_stat1 table for database P1 and load the content 6146 ** of that table into the internal index hash table. This will cause 6147 ** the analysis to be used when preparing all subsequent queries. 6148 */ 6149 case OP_LoadAnalysis: { 6150 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6151 rc = sqlite3AnalysisLoad(db, pOp->p1); 6152 if( rc ) goto abort_due_to_error; 6153 break; 6154 } 6155 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6156 6157 /* Opcode: DropTable P1 * * P4 * 6158 ** 6159 ** Remove the internal (in-memory) data structures that describe 6160 ** the table named P4 in database P1. This is called after a table 6161 ** is dropped from disk (using the Destroy opcode) in order to keep 6162 ** the internal representation of the 6163 ** schema consistent with what is on disk. 6164 */ 6165 case OP_DropTable: { 6166 sqlite3VdbeIncrWriteCounter(p, 0); 6167 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6168 break; 6169 } 6170 6171 /* Opcode: DropIndex P1 * * P4 * 6172 ** 6173 ** Remove the internal (in-memory) data structures that describe 6174 ** the index named P4 in database P1. This is called after an index 6175 ** is dropped from disk (using the Destroy opcode) 6176 ** in order to keep the internal representation of the 6177 ** schema consistent with what is on disk. 6178 */ 6179 case OP_DropIndex: { 6180 sqlite3VdbeIncrWriteCounter(p, 0); 6181 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6182 break; 6183 } 6184 6185 /* Opcode: DropTrigger P1 * * P4 * 6186 ** 6187 ** Remove the internal (in-memory) data structures that describe 6188 ** the trigger named P4 in database P1. This is called after a trigger 6189 ** is dropped from disk (using the Destroy opcode) in order to keep 6190 ** the internal representation of the 6191 ** schema consistent with what is on disk. 6192 */ 6193 case OP_DropTrigger: { 6194 sqlite3VdbeIncrWriteCounter(p, 0); 6195 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6196 break; 6197 } 6198 6199 6200 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6201 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6202 ** 6203 ** Do an analysis of the currently open database. Store in 6204 ** register P1 the text of an error message describing any problems. 6205 ** If no problems are found, store a NULL in register P1. 6206 ** 6207 ** The register P3 contains one less than the maximum number of allowed errors. 6208 ** At most reg(P3) errors will be reported. 6209 ** In other words, the analysis stops as soon as reg(P1) errors are 6210 ** seen. Reg(P1) is updated with the number of errors remaining. 6211 ** 6212 ** The root page numbers of all tables in the database are integers 6213 ** stored in P4_INTARRAY argument. 6214 ** 6215 ** If P5 is not zero, the check is done on the auxiliary database 6216 ** file, not the main database file. 6217 ** 6218 ** This opcode is used to implement the integrity_check pragma. 6219 */ 6220 case OP_IntegrityCk: { 6221 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6222 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 6223 int nErr; /* Number of errors reported */ 6224 char *z; /* Text of the error report */ 6225 Mem *pnErr; /* Register keeping track of errors remaining */ 6226 6227 assert( p->bIsReader ); 6228 nRoot = pOp->p2; 6229 aRoot = pOp->p4.ai; 6230 assert( nRoot>0 ); 6231 assert( aRoot[0]==nRoot ); 6232 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6233 pnErr = &aMem[pOp->p3]; 6234 assert( (pnErr->flags & MEM_Int)!=0 ); 6235 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6236 pIn1 = &aMem[pOp->p1]; 6237 assert( pOp->p5<db->nDb ); 6238 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6239 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6240 (int)pnErr->u.i+1, &nErr); 6241 sqlite3VdbeMemSetNull(pIn1); 6242 if( nErr==0 ){ 6243 assert( z==0 ); 6244 }else if( z==0 ){ 6245 goto no_mem; 6246 }else{ 6247 pnErr->u.i -= nErr-1; 6248 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6249 } 6250 UPDATE_MAX_BLOBSIZE(pIn1); 6251 sqlite3VdbeChangeEncoding(pIn1, encoding); 6252 goto check_for_interrupt; 6253 } 6254 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6255 6256 /* Opcode: RowSetAdd P1 P2 * * * 6257 ** Synopsis: rowset(P1)=r[P2] 6258 ** 6259 ** Insert the integer value held by register P2 into a RowSet object 6260 ** held in register P1. 6261 ** 6262 ** An assertion fails if P2 is not an integer. 6263 */ 6264 case OP_RowSetAdd: { /* in1, in2 */ 6265 pIn1 = &aMem[pOp->p1]; 6266 pIn2 = &aMem[pOp->p2]; 6267 assert( (pIn2->flags & MEM_Int)!=0 ); 6268 if( (pIn1->flags & MEM_Blob)==0 ){ 6269 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6270 } 6271 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6272 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6273 break; 6274 } 6275 6276 /* Opcode: RowSetRead P1 P2 P3 * * 6277 ** Synopsis: r[P3]=rowset(P1) 6278 ** 6279 ** Extract the smallest value from the RowSet object in P1 6280 ** and put that value into register P3. 6281 ** Or, if RowSet object P1 is initially empty, leave P3 6282 ** unchanged and jump to instruction P2. 6283 */ 6284 case OP_RowSetRead: { /* jump, in1, out3 */ 6285 i64 val; 6286 6287 pIn1 = &aMem[pOp->p1]; 6288 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6289 if( (pIn1->flags & MEM_Blob)==0 6290 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6291 ){ 6292 /* The boolean index is empty */ 6293 sqlite3VdbeMemSetNull(pIn1); 6294 VdbeBranchTaken(1,2); 6295 goto jump_to_p2_and_check_for_interrupt; 6296 }else{ 6297 /* A value was pulled from the index */ 6298 VdbeBranchTaken(0,2); 6299 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6300 } 6301 goto check_for_interrupt; 6302 } 6303 6304 /* Opcode: RowSetTest P1 P2 P3 P4 6305 ** Synopsis: if r[P3] in rowset(P1) goto P2 6306 ** 6307 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6308 ** contains a RowSet object and that RowSet object contains 6309 ** the value held in P3, jump to register P2. Otherwise, insert the 6310 ** integer in P3 into the RowSet and continue on to the 6311 ** next opcode. 6312 ** 6313 ** The RowSet object is optimized for the case where sets of integers 6314 ** are inserted in distinct phases, which each set contains no duplicates. 6315 ** Each set is identified by a unique P4 value. The first set 6316 ** must have P4==0, the final set must have P4==-1, and for all other sets 6317 ** must have P4>0. 6318 ** 6319 ** This allows optimizations: (a) when P4==0 there is no need to test 6320 ** the RowSet object for P3, as it is guaranteed not to contain it, 6321 ** (b) when P4==-1 there is no need to insert the value, as it will 6322 ** never be tested for, and (c) when a value that is part of set X is 6323 ** inserted, there is no need to search to see if the same value was 6324 ** previously inserted as part of set X (only if it was previously 6325 ** inserted as part of some other set). 6326 */ 6327 case OP_RowSetTest: { /* jump, in1, in3 */ 6328 int iSet; 6329 int exists; 6330 6331 pIn1 = &aMem[pOp->p1]; 6332 pIn3 = &aMem[pOp->p3]; 6333 iSet = pOp->p4.i; 6334 assert( pIn3->flags&MEM_Int ); 6335 6336 /* If there is anything other than a rowset object in memory cell P1, 6337 ** delete it now and initialize P1 with an empty rowset 6338 */ 6339 if( (pIn1->flags & MEM_Blob)==0 ){ 6340 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6341 } 6342 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6343 assert( pOp->p4type==P4_INT32 ); 6344 assert( iSet==-1 || iSet>=0 ); 6345 if( iSet ){ 6346 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6347 VdbeBranchTaken(exists!=0,2); 6348 if( exists ) goto jump_to_p2; 6349 } 6350 if( iSet>=0 ){ 6351 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6352 } 6353 break; 6354 } 6355 6356 6357 #ifndef SQLITE_OMIT_TRIGGER 6358 6359 /* Opcode: Program P1 P2 P3 P4 P5 6360 ** 6361 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6362 ** 6363 ** P1 contains the address of the memory cell that contains the first memory 6364 ** cell in an array of values used as arguments to the sub-program. P2 6365 ** contains the address to jump to if the sub-program throws an IGNORE 6366 ** exception using the RAISE() function. Register P3 contains the address 6367 ** of a memory cell in this (the parent) VM that is used to allocate the 6368 ** memory required by the sub-vdbe at runtime. 6369 ** 6370 ** P4 is a pointer to the VM containing the trigger program. 6371 ** 6372 ** If P5 is non-zero, then recursive program invocation is enabled. 6373 */ 6374 case OP_Program: { /* jump */ 6375 int nMem; /* Number of memory registers for sub-program */ 6376 int nByte; /* Bytes of runtime space required for sub-program */ 6377 Mem *pRt; /* Register to allocate runtime space */ 6378 Mem *pMem; /* Used to iterate through memory cells */ 6379 Mem *pEnd; /* Last memory cell in new array */ 6380 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6381 SubProgram *pProgram; /* Sub-program to execute */ 6382 void *t; /* Token identifying trigger */ 6383 6384 pProgram = pOp->p4.pProgram; 6385 pRt = &aMem[pOp->p3]; 6386 assert( pProgram->nOp>0 ); 6387 6388 /* If the p5 flag is clear, then recursive invocation of triggers is 6389 ** disabled for backwards compatibility (p5 is set if this sub-program 6390 ** is really a trigger, not a foreign key action, and the flag set 6391 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6392 ** 6393 ** It is recursive invocation of triggers, at the SQL level, that is 6394 ** disabled. In some cases a single trigger may generate more than one 6395 ** SubProgram (if the trigger may be executed with more than one different 6396 ** ON CONFLICT algorithm). SubProgram structures associated with a 6397 ** single trigger all have the same value for the SubProgram.token 6398 ** variable. */ 6399 if( pOp->p5 ){ 6400 t = pProgram->token; 6401 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6402 if( pFrame ) break; 6403 } 6404 6405 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6406 rc = SQLITE_ERROR; 6407 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6408 goto abort_due_to_error; 6409 } 6410 6411 /* Register pRt is used to store the memory required to save the state 6412 ** of the current program, and the memory required at runtime to execute 6413 ** the trigger program. If this trigger has been fired before, then pRt 6414 ** is already allocated. Otherwise, it must be initialized. */ 6415 if( (pRt->flags&MEM_Blob)==0 ){ 6416 /* SubProgram.nMem is set to the number of memory cells used by the 6417 ** program stored in SubProgram.aOp. As well as these, one memory 6418 ** cell is required for each cursor used by the program. Set local 6419 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6420 */ 6421 nMem = pProgram->nMem + pProgram->nCsr; 6422 assert( nMem>0 ); 6423 if( pProgram->nCsr==0 ) nMem++; 6424 nByte = ROUND8(sizeof(VdbeFrame)) 6425 + nMem * sizeof(Mem) 6426 + pProgram->nCsr * sizeof(VdbeCursor*) 6427 + (pProgram->nOp + 7)/8; 6428 pFrame = sqlite3DbMallocZero(db, nByte); 6429 if( !pFrame ){ 6430 goto no_mem; 6431 } 6432 sqlite3VdbeMemRelease(pRt); 6433 pRt->flags = MEM_Blob|MEM_Dyn; 6434 pRt->z = (char*)pFrame; 6435 pRt->n = nByte; 6436 pRt->xDel = sqlite3VdbeFrameMemDel; 6437 6438 pFrame->v = p; 6439 pFrame->nChildMem = nMem; 6440 pFrame->nChildCsr = pProgram->nCsr; 6441 pFrame->pc = (int)(pOp - aOp); 6442 pFrame->aMem = p->aMem; 6443 pFrame->nMem = p->nMem; 6444 pFrame->apCsr = p->apCsr; 6445 pFrame->nCursor = p->nCursor; 6446 pFrame->aOp = p->aOp; 6447 pFrame->nOp = p->nOp; 6448 pFrame->token = pProgram->token; 6449 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6450 pFrame->anExec = p->anExec; 6451 #endif 6452 #ifdef SQLITE_DEBUG 6453 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6454 #endif 6455 6456 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6457 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6458 pMem->flags = MEM_Undefined; 6459 pMem->db = db; 6460 } 6461 }else{ 6462 pFrame = (VdbeFrame*)pRt->z; 6463 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6464 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6465 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6466 assert( pProgram->nCsr==pFrame->nChildCsr ); 6467 assert( (int)(pOp - aOp)==pFrame->pc ); 6468 } 6469 6470 p->nFrame++; 6471 pFrame->pParent = p->pFrame; 6472 pFrame->lastRowid = db->lastRowid; 6473 pFrame->nChange = p->nChange; 6474 pFrame->nDbChange = p->db->nChange; 6475 assert( pFrame->pAuxData==0 ); 6476 pFrame->pAuxData = p->pAuxData; 6477 p->pAuxData = 0; 6478 p->nChange = 0; 6479 p->pFrame = pFrame; 6480 p->aMem = aMem = VdbeFrameMem(pFrame); 6481 p->nMem = pFrame->nChildMem; 6482 p->nCursor = (u16)pFrame->nChildCsr; 6483 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6484 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6485 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6486 p->aOp = aOp = pProgram->aOp; 6487 p->nOp = pProgram->nOp; 6488 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6489 p->anExec = 0; 6490 #endif 6491 #ifdef SQLITE_DEBUG 6492 /* Verify that second and subsequent executions of the same trigger do not 6493 ** try to reuse register values from the first use. */ 6494 { 6495 int i; 6496 for(i=0; i<p->nMem; i++){ 6497 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6498 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6499 } 6500 } 6501 #endif 6502 pOp = &aOp[-1]; 6503 goto check_for_interrupt; 6504 } 6505 6506 /* Opcode: Param P1 P2 * * * 6507 ** 6508 ** This opcode is only ever present in sub-programs called via the 6509 ** OP_Program instruction. Copy a value currently stored in a memory 6510 ** cell of the calling (parent) frame to cell P2 in the current frames 6511 ** address space. This is used by trigger programs to access the new.* 6512 ** and old.* values. 6513 ** 6514 ** The address of the cell in the parent frame is determined by adding 6515 ** the value of the P1 argument to the value of the P1 argument to the 6516 ** calling OP_Program instruction. 6517 */ 6518 case OP_Param: { /* out2 */ 6519 VdbeFrame *pFrame; 6520 Mem *pIn; 6521 pOut = out2Prerelease(p, pOp); 6522 pFrame = p->pFrame; 6523 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6524 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6525 break; 6526 } 6527 6528 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6529 6530 #ifndef SQLITE_OMIT_FOREIGN_KEY 6531 /* Opcode: FkCounter P1 P2 * * * 6532 ** Synopsis: fkctr[P1]+=P2 6533 ** 6534 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6535 ** If P1 is non-zero, the database constraint counter is incremented 6536 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6537 ** statement counter is incremented (immediate foreign key constraints). 6538 */ 6539 case OP_FkCounter: { 6540 if( db->flags & SQLITE_DeferFKs ){ 6541 db->nDeferredImmCons += pOp->p2; 6542 }else if( pOp->p1 ){ 6543 db->nDeferredCons += pOp->p2; 6544 }else{ 6545 p->nFkConstraint += pOp->p2; 6546 } 6547 break; 6548 } 6549 6550 /* Opcode: FkIfZero P1 P2 * * * 6551 ** Synopsis: if fkctr[P1]==0 goto P2 6552 ** 6553 ** This opcode tests if a foreign key constraint-counter is currently zero. 6554 ** If so, jump to instruction P2. Otherwise, fall through to the next 6555 ** instruction. 6556 ** 6557 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6558 ** is zero (the one that counts deferred constraint violations). If P1 is 6559 ** zero, the jump is taken if the statement constraint-counter is zero 6560 ** (immediate foreign key constraint violations). 6561 */ 6562 case OP_FkIfZero: { /* jump */ 6563 if( pOp->p1 ){ 6564 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6565 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6566 }else{ 6567 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6568 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6569 } 6570 break; 6571 } 6572 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6573 6574 #ifndef SQLITE_OMIT_AUTOINCREMENT 6575 /* Opcode: MemMax P1 P2 * * * 6576 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6577 ** 6578 ** P1 is a register in the root frame of this VM (the root frame is 6579 ** different from the current frame if this instruction is being executed 6580 ** within a sub-program). Set the value of register P1 to the maximum of 6581 ** its current value and the value in register P2. 6582 ** 6583 ** This instruction throws an error if the memory cell is not initially 6584 ** an integer. 6585 */ 6586 case OP_MemMax: { /* in2 */ 6587 VdbeFrame *pFrame; 6588 if( p->pFrame ){ 6589 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6590 pIn1 = &pFrame->aMem[pOp->p1]; 6591 }else{ 6592 pIn1 = &aMem[pOp->p1]; 6593 } 6594 assert( memIsValid(pIn1) ); 6595 sqlite3VdbeMemIntegerify(pIn1); 6596 pIn2 = &aMem[pOp->p2]; 6597 sqlite3VdbeMemIntegerify(pIn2); 6598 if( pIn1->u.i<pIn2->u.i){ 6599 pIn1->u.i = pIn2->u.i; 6600 } 6601 break; 6602 } 6603 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6604 6605 /* Opcode: IfPos P1 P2 P3 * * 6606 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6607 ** 6608 ** Register P1 must contain an integer. 6609 ** If the value of register P1 is 1 or greater, subtract P3 from the 6610 ** value in P1 and jump to P2. 6611 ** 6612 ** If the initial value of register P1 is less than 1, then the 6613 ** value is unchanged and control passes through to the next instruction. 6614 */ 6615 case OP_IfPos: { /* jump, in1 */ 6616 pIn1 = &aMem[pOp->p1]; 6617 assert( pIn1->flags&MEM_Int ); 6618 VdbeBranchTaken( pIn1->u.i>0, 2); 6619 if( pIn1->u.i>0 ){ 6620 pIn1->u.i -= pOp->p3; 6621 goto jump_to_p2; 6622 } 6623 break; 6624 } 6625 6626 /* Opcode: OffsetLimit P1 P2 P3 * * 6627 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6628 ** 6629 ** This opcode performs a commonly used computation associated with 6630 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6631 ** holds the offset counter. The opcode computes the combined value 6632 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6633 ** value computed is the total number of rows that will need to be 6634 ** visited in order to complete the query. 6635 ** 6636 ** If r[P3] is zero or negative, that means there is no OFFSET 6637 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6638 ** 6639 ** if r[P1] is zero or negative, that means there is no LIMIT 6640 ** and r[P2] is set to -1. 6641 ** 6642 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6643 */ 6644 case OP_OffsetLimit: { /* in1, out2, in3 */ 6645 i64 x; 6646 pIn1 = &aMem[pOp->p1]; 6647 pIn3 = &aMem[pOp->p3]; 6648 pOut = out2Prerelease(p, pOp); 6649 assert( pIn1->flags & MEM_Int ); 6650 assert( pIn3->flags & MEM_Int ); 6651 x = pIn1->u.i; 6652 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6653 /* If the LIMIT is less than or equal to zero, loop forever. This 6654 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6655 ** also loop forever. This is undocumented. In fact, one could argue 6656 ** that the loop should terminate. But assuming 1 billion iterations 6657 ** per second (far exceeding the capabilities of any current hardware) 6658 ** it would take nearly 300 years to actually reach the limit. So 6659 ** looping forever is a reasonable approximation. */ 6660 pOut->u.i = -1; 6661 }else{ 6662 pOut->u.i = x; 6663 } 6664 break; 6665 } 6666 6667 /* Opcode: IfNotZero P1 P2 * * * 6668 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6669 ** 6670 ** Register P1 must contain an integer. If the content of register P1 is 6671 ** initially greater than zero, then decrement the value in register P1. 6672 ** If it is non-zero (negative or positive) and then also jump to P2. 6673 ** If register P1 is initially zero, leave it unchanged and fall through. 6674 */ 6675 case OP_IfNotZero: { /* jump, in1 */ 6676 pIn1 = &aMem[pOp->p1]; 6677 assert( pIn1->flags&MEM_Int ); 6678 VdbeBranchTaken(pIn1->u.i<0, 2); 6679 if( pIn1->u.i ){ 6680 if( pIn1->u.i>0 ) pIn1->u.i--; 6681 goto jump_to_p2; 6682 } 6683 break; 6684 } 6685 6686 /* Opcode: DecrJumpZero P1 P2 * * * 6687 ** Synopsis: if (--r[P1])==0 goto P2 6688 ** 6689 ** Register P1 must hold an integer. Decrement the value in P1 6690 ** and jump to P2 if the new value is exactly zero. 6691 */ 6692 case OP_DecrJumpZero: { /* jump, in1 */ 6693 pIn1 = &aMem[pOp->p1]; 6694 assert( pIn1->flags&MEM_Int ); 6695 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6696 VdbeBranchTaken(pIn1->u.i==0, 2); 6697 if( pIn1->u.i==0 ) goto jump_to_p2; 6698 break; 6699 } 6700 6701 6702 /* Opcode: AggStep * P2 P3 P4 P5 6703 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6704 ** 6705 ** Execute the xStep function for an aggregate. 6706 ** The function has P5 arguments. P4 is a pointer to the 6707 ** FuncDef structure that specifies the function. Register P3 is the 6708 ** accumulator. 6709 ** 6710 ** The P5 arguments are taken from register P2 and its 6711 ** successors. 6712 */ 6713 /* Opcode: AggInverse * P2 P3 P4 P5 6714 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6715 ** 6716 ** Execute the xInverse function for an aggregate. 6717 ** The function has P5 arguments. P4 is a pointer to the 6718 ** FuncDef structure that specifies the function. Register P3 is the 6719 ** accumulator. 6720 ** 6721 ** The P5 arguments are taken from register P2 and its 6722 ** successors. 6723 */ 6724 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6725 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6726 ** 6727 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6728 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6729 ** FuncDef structure that specifies the function. Register P3 is the 6730 ** accumulator. 6731 ** 6732 ** The P5 arguments are taken from register P2 and its 6733 ** successors. 6734 ** 6735 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6736 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6737 ** the opcode is changed. In this way, the initialization of the 6738 ** sqlite3_context only happens once, instead of on each call to the 6739 ** step function. 6740 */ 6741 case OP_AggInverse: 6742 case OP_AggStep: { 6743 int n; 6744 sqlite3_context *pCtx; 6745 6746 assert( pOp->p4type==P4_FUNCDEF ); 6747 n = pOp->p5; 6748 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6749 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6750 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6751 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6752 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6753 if( pCtx==0 ) goto no_mem; 6754 pCtx->pMem = 0; 6755 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6756 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6757 pCtx->pFunc = pOp->p4.pFunc; 6758 pCtx->iOp = (int)(pOp - aOp); 6759 pCtx->pVdbe = p; 6760 pCtx->skipFlag = 0; 6761 pCtx->isError = 0; 6762 pCtx->argc = n; 6763 pOp->p4type = P4_FUNCCTX; 6764 pOp->p4.pCtx = pCtx; 6765 6766 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6767 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6768 6769 pOp->opcode = OP_AggStep1; 6770 /* Fall through into OP_AggStep */ 6771 } 6772 case OP_AggStep1: { 6773 int i; 6774 sqlite3_context *pCtx; 6775 Mem *pMem; 6776 6777 assert( pOp->p4type==P4_FUNCCTX ); 6778 pCtx = pOp->p4.pCtx; 6779 pMem = &aMem[pOp->p3]; 6780 6781 #ifdef SQLITE_DEBUG 6782 if( pOp->p1 ){ 6783 /* This is an OP_AggInverse call. Verify that xStep has always 6784 ** been called at least once prior to any xInverse call. */ 6785 assert( pMem->uTemp==0x1122e0e3 ); 6786 }else{ 6787 /* This is an OP_AggStep call. Mark it as such. */ 6788 pMem->uTemp = 0x1122e0e3; 6789 } 6790 #endif 6791 6792 /* If this function is inside of a trigger, the register array in aMem[] 6793 ** might change from one evaluation to the next. The next block of code 6794 ** checks to see if the register array has changed, and if so it 6795 ** reinitializes the relavant parts of the sqlite3_context object */ 6796 if( pCtx->pMem != pMem ){ 6797 pCtx->pMem = pMem; 6798 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6799 } 6800 6801 #ifdef SQLITE_DEBUG 6802 for(i=0; i<pCtx->argc; i++){ 6803 assert( memIsValid(pCtx->argv[i]) ); 6804 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6805 } 6806 #endif 6807 6808 pMem->n++; 6809 assert( pCtx->pOut->flags==MEM_Null ); 6810 assert( pCtx->isError==0 ); 6811 assert( pCtx->skipFlag==0 ); 6812 #ifndef SQLITE_OMIT_WINDOWFUNC 6813 if( pOp->p1 ){ 6814 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6815 }else 6816 #endif 6817 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6818 6819 if( pCtx->isError ){ 6820 if( pCtx->isError>0 ){ 6821 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6822 rc = pCtx->isError; 6823 } 6824 if( pCtx->skipFlag ){ 6825 assert( pOp[-1].opcode==OP_CollSeq ); 6826 i = pOp[-1].p1; 6827 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6828 pCtx->skipFlag = 0; 6829 } 6830 sqlite3VdbeMemRelease(pCtx->pOut); 6831 pCtx->pOut->flags = MEM_Null; 6832 pCtx->isError = 0; 6833 if( rc ) goto abort_due_to_error; 6834 } 6835 assert( pCtx->pOut->flags==MEM_Null ); 6836 assert( pCtx->skipFlag==0 ); 6837 break; 6838 } 6839 6840 /* Opcode: AggFinal P1 P2 * P4 * 6841 ** Synopsis: accum=r[P1] N=P2 6842 ** 6843 ** P1 is the memory location that is the accumulator for an aggregate 6844 ** or window function. Execute the finalizer function 6845 ** for an aggregate and store the result in P1. 6846 ** 6847 ** P2 is the number of arguments that the step function takes and 6848 ** P4 is a pointer to the FuncDef for this function. The P2 6849 ** argument is not used by this opcode. It is only there to disambiguate 6850 ** functions that can take varying numbers of arguments. The 6851 ** P4 argument is only needed for the case where 6852 ** the step function was not previously called. 6853 */ 6854 /* Opcode: AggValue * P2 P3 P4 * 6855 ** Synopsis: r[P3]=value N=P2 6856 ** 6857 ** Invoke the xValue() function and store the result in register P3. 6858 ** 6859 ** P2 is the number of arguments that the step function takes and 6860 ** P4 is a pointer to the FuncDef for this function. The P2 6861 ** argument is not used by this opcode. It is only there to disambiguate 6862 ** functions that can take varying numbers of arguments. The 6863 ** P4 argument is only needed for the case where 6864 ** the step function was not previously called. 6865 */ 6866 case OP_AggValue: 6867 case OP_AggFinal: { 6868 Mem *pMem; 6869 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6870 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6871 pMem = &aMem[pOp->p1]; 6872 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6873 #ifndef SQLITE_OMIT_WINDOWFUNC 6874 if( pOp->p3 ){ 6875 memAboutToChange(p, &aMem[pOp->p3]); 6876 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6877 pMem = &aMem[pOp->p3]; 6878 }else 6879 #endif 6880 { 6881 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6882 } 6883 6884 if( rc ){ 6885 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6886 goto abort_due_to_error; 6887 } 6888 sqlite3VdbeChangeEncoding(pMem, encoding); 6889 UPDATE_MAX_BLOBSIZE(pMem); 6890 if( sqlite3VdbeMemTooBig(pMem) ){ 6891 goto too_big; 6892 } 6893 break; 6894 } 6895 6896 #ifndef SQLITE_OMIT_WAL 6897 /* Opcode: Checkpoint P1 P2 P3 * * 6898 ** 6899 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6900 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6901 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6902 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6903 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6904 ** in the WAL that have been checkpointed after the checkpoint 6905 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6906 ** mem[P3+2] are initialized to -1. 6907 */ 6908 case OP_Checkpoint: { 6909 int i; /* Loop counter */ 6910 int aRes[3]; /* Results */ 6911 Mem *pMem; /* Write results here */ 6912 6913 assert( p->readOnly==0 ); 6914 aRes[0] = 0; 6915 aRes[1] = aRes[2] = -1; 6916 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6917 || pOp->p2==SQLITE_CHECKPOINT_FULL 6918 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6919 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6920 ); 6921 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6922 if( rc ){ 6923 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6924 rc = SQLITE_OK; 6925 aRes[0] = 1; 6926 } 6927 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6928 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6929 } 6930 break; 6931 }; 6932 #endif 6933 6934 #ifndef SQLITE_OMIT_PRAGMA 6935 /* Opcode: JournalMode P1 P2 P3 * * 6936 ** 6937 ** Change the journal mode of database P1 to P3. P3 must be one of the 6938 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6939 ** modes (delete, truncate, persist, off and memory), this is a simple 6940 ** operation. No IO is required. 6941 ** 6942 ** If changing into or out of WAL mode the procedure is more complicated. 6943 ** 6944 ** Write a string containing the final journal-mode to register P2. 6945 */ 6946 case OP_JournalMode: { /* out2 */ 6947 Btree *pBt; /* Btree to change journal mode of */ 6948 Pager *pPager; /* Pager associated with pBt */ 6949 int eNew; /* New journal mode */ 6950 int eOld; /* The old journal mode */ 6951 #ifndef SQLITE_OMIT_WAL 6952 const char *zFilename; /* Name of database file for pPager */ 6953 #endif 6954 6955 pOut = out2Prerelease(p, pOp); 6956 eNew = pOp->p3; 6957 assert( eNew==PAGER_JOURNALMODE_DELETE 6958 || eNew==PAGER_JOURNALMODE_TRUNCATE 6959 || eNew==PAGER_JOURNALMODE_PERSIST 6960 || eNew==PAGER_JOURNALMODE_OFF 6961 || eNew==PAGER_JOURNALMODE_MEMORY 6962 || eNew==PAGER_JOURNALMODE_WAL 6963 || eNew==PAGER_JOURNALMODE_QUERY 6964 ); 6965 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6966 assert( p->readOnly==0 ); 6967 6968 pBt = db->aDb[pOp->p1].pBt; 6969 pPager = sqlite3BtreePager(pBt); 6970 eOld = sqlite3PagerGetJournalMode(pPager); 6971 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6972 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6973 6974 #ifndef SQLITE_OMIT_WAL 6975 zFilename = sqlite3PagerFilename(pPager, 1); 6976 6977 /* Do not allow a transition to journal_mode=WAL for a database 6978 ** in temporary storage or if the VFS does not support shared memory 6979 */ 6980 if( eNew==PAGER_JOURNALMODE_WAL 6981 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6982 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6983 ){ 6984 eNew = eOld; 6985 } 6986 6987 if( (eNew!=eOld) 6988 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6989 ){ 6990 if( !db->autoCommit || db->nVdbeRead>1 ){ 6991 rc = SQLITE_ERROR; 6992 sqlite3VdbeError(p, 6993 "cannot change %s wal mode from within a transaction", 6994 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6995 ); 6996 goto abort_due_to_error; 6997 }else{ 6998 6999 if( eOld==PAGER_JOURNALMODE_WAL ){ 7000 /* If leaving WAL mode, close the log file. If successful, the call 7001 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7002 ** file. An EXCLUSIVE lock may still be held on the database file 7003 ** after a successful return. 7004 */ 7005 rc = sqlite3PagerCloseWal(pPager, db); 7006 if( rc==SQLITE_OK ){ 7007 sqlite3PagerSetJournalMode(pPager, eNew); 7008 } 7009 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7010 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7011 ** as an intermediate */ 7012 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7013 } 7014 7015 /* Open a transaction on the database file. Regardless of the journal 7016 ** mode, this transaction always uses a rollback journal. 7017 */ 7018 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 7019 if( rc==SQLITE_OK ){ 7020 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7021 } 7022 } 7023 } 7024 #endif /* ifndef SQLITE_OMIT_WAL */ 7025 7026 if( rc ) eNew = eOld; 7027 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7028 7029 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7030 pOut->z = (char *)sqlite3JournalModename(eNew); 7031 pOut->n = sqlite3Strlen30(pOut->z); 7032 pOut->enc = SQLITE_UTF8; 7033 sqlite3VdbeChangeEncoding(pOut, encoding); 7034 if( rc ) goto abort_due_to_error; 7035 break; 7036 }; 7037 #endif /* SQLITE_OMIT_PRAGMA */ 7038 7039 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7040 /* Opcode: Vacuum P1 P2 * * * 7041 ** 7042 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7043 ** for an attached database. The "temp" database may not be vacuumed. 7044 ** 7045 ** If P2 is not zero, then it is a register holding a string which is 7046 ** the file into which the result of vacuum should be written. When 7047 ** P2 is zero, the vacuum overwrites the original database. 7048 */ 7049 case OP_Vacuum: { 7050 assert( p->readOnly==0 ); 7051 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7052 pOp->p2 ? &aMem[pOp->p2] : 0); 7053 if( rc ) goto abort_due_to_error; 7054 break; 7055 } 7056 #endif 7057 7058 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7059 /* Opcode: IncrVacuum P1 P2 * * * 7060 ** 7061 ** Perform a single step of the incremental vacuum procedure on 7062 ** the P1 database. If the vacuum has finished, jump to instruction 7063 ** P2. Otherwise, fall through to the next instruction. 7064 */ 7065 case OP_IncrVacuum: { /* jump */ 7066 Btree *pBt; 7067 7068 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7069 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7070 assert( p->readOnly==0 ); 7071 pBt = db->aDb[pOp->p1].pBt; 7072 rc = sqlite3BtreeIncrVacuum(pBt); 7073 VdbeBranchTaken(rc==SQLITE_DONE,2); 7074 if( rc ){ 7075 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7076 rc = SQLITE_OK; 7077 goto jump_to_p2; 7078 } 7079 break; 7080 } 7081 #endif 7082 7083 /* Opcode: Expire P1 P2 * * * 7084 ** 7085 ** Cause precompiled statements to expire. When an expired statement 7086 ** is executed using sqlite3_step() it will either automatically 7087 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7088 ** or it will fail with SQLITE_SCHEMA. 7089 ** 7090 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7091 ** then only the currently executing statement is expired. 7092 ** 7093 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7094 ** then running SQL statements are allowed to continue to run to completion. 7095 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7096 ** that might help the statement run faster but which does not affect the 7097 ** correctness of operation. 7098 */ 7099 case OP_Expire: { 7100 assert( pOp->p2==0 || pOp->p2==1 ); 7101 if( !pOp->p1 ){ 7102 sqlite3ExpirePreparedStatements(db, pOp->p2); 7103 }else{ 7104 p->expired = pOp->p2+1; 7105 } 7106 break; 7107 } 7108 7109 /* Opcode: CursorLock P1 * * * * 7110 ** 7111 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7112 ** written by an other cursor. 7113 */ 7114 case OP_CursorLock: { 7115 VdbeCursor *pC; 7116 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7117 pC = p->apCsr[pOp->p1]; 7118 assert( pC!=0 ); 7119 assert( pC->eCurType==CURTYPE_BTREE ); 7120 sqlite3BtreeCursorPin(pC->uc.pCursor); 7121 break; 7122 } 7123 7124 /* Opcode: CursorUnlock P1 * * * * 7125 ** 7126 ** Unlock the btree to which cursor P1 is pointing so that it can be 7127 ** written by other cursors. 7128 */ 7129 case OP_CursorUnlock: { 7130 VdbeCursor *pC; 7131 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7132 pC = p->apCsr[pOp->p1]; 7133 assert( pC!=0 ); 7134 assert( pC->eCurType==CURTYPE_BTREE ); 7135 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7136 break; 7137 } 7138 7139 #ifndef SQLITE_OMIT_SHARED_CACHE 7140 /* Opcode: TableLock P1 P2 P3 P4 * 7141 ** Synopsis: iDb=P1 root=P2 write=P3 7142 ** 7143 ** Obtain a lock on a particular table. This instruction is only used when 7144 ** the shared-cache feature is enabled. 7145 ** 7146 ** P1 is the index of the database in sqlite3.aDb[] of the database 7147 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7148 ** a write lock if P3==1. 7149 ** 7150 ** P2 contains the root-page of the table to lock. 7151 ** 7152 ** P4 contains a pointer to the name of the table being locked. This is only 7153 ** used to generate an error message if the lock cannot be obtained. 7154 */ 7155 case OP_TableLock: { 7156 u8 isWriteLock = (u8)pOp->p3; 7157 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7158 int p1 = pOp->p1; 7159 assert( p1>=0 && p1<db->nDb ); 7160 assert( DbMaskTest(p->btreeMask, p1) ); 7161 assert( isWriteLock==0 || isWriteLock==1 ); 7162 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7163 if( rc ){ 7164 if( (rc&0xFF)==SQLITE_LOCKED ){ 7165 const char *z = pOp->p4.z; 7166 sqlite3VdbeError(p, "database table is locked: %s", z); 7167 } 7168 goto abort_due_to_error; 7169 } 7170 } 7171 break; 7172 } 7173 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7174 7175 #ifndef SQLITE_OMIT_VIRTUALTABLE 7176 /* Opcode: VBegin * * * P4 * 7177 ** 7178 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7179 ** xBegin method for that table. 7180 ** 7181 ** Also, whether or not P4 is set, check that this is not being called from 7182 ** within a callback to a virtual table xSync() method. If it is, the error 7183 ** code will be set to SQLITE_LOCKED. 7184 */ 7185 case OP_VBegin: { 7186 VTable *pVTab; 7187 pVTab = pOp->p4.pVtab; 7188 rc = sqlite3VtabBegin(db, pVTab); 7189 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7190 if( rc ) goto abort_due_to_error; 7191 break; 7192 } 7193 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7194 7195 #ifndef SQLITE_OMIT_VIRTUALTABLE 7196 /* Opcode: VCreate P1 P2 * * * 7197 ** 7198 ** P2 is a register that holds the name of a virtual table in database 7199 ** P1. Call the xCreate method for that table. 7200 */ 7201 case OP_VCreate: { 7202 Mem sMem; /* For storing the record being decoded */ 7203 const char *zTab; /* Name of the virtual table */ 7204 7205 memset(&sMem, 0, sizeof(sMem)); 7206 sMem.db = db; 7207 /* Because P2 is always a static string, it is impossible for the 7208 ** sqlite3VdbeMemCopy() to fail */ 7209 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7210 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7211 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7212 assert( rc==SQLITE_OK ); 7213 zTab = (const char*)sqlite3_value_text(&sMem); 7214 assert( zTab || db->mallocFailed ); 7215 if( zTab ){ 7216 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7217 } 7218 sqlite3VdbeMemRelease(&sMem); 7219 if( rc ) goto abort_due_to_error; 7220 break; 7221 } 7222 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7223 7224 #ifndef SQLITE_OMIT_VIRTUALTABLE 7225 /* Opcode: VDestroy P1 * * P4 * 7226 ** 7227 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7228 ** of that table. 7229 */ 7230 case OP_VDestroy: { 7231 db->nVDestroy++; 7232 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7233 db->nVDestroy--; 7234 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7235 if( rc ) goto abort_due_to_error; 7236 break; 7237 } 7238 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7239 7240 #ifndef SQLITE_OMIT_VIRTUALTABLE 7241 /* Opcode: VOpen P1 * * P4 * 7242 ** 7243 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7244 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7245 ** table and stores that cursor in P1. 7246 */ 7247 case OP_VOpen: { 7248 VdbeCursor *pCur; 7249 sqlite3_vtab_cursor *pVCur; 7250 sqlite3_vtab *pVtab; 7251 const sqlite3_module *pModule; 7252 7253 assert( p->bIsReader ); 7254 pCur = 0; 7255 pVCur = 0; 7256 pVtab = pOp->p4.pVtab->pVtab; 7257 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7258 rc = SQLITE_LOCKED; 7259 goto abort_due_to_error; 7260 } 7261 pModule = pVtab->pModule; 7262 rc = pModule->xOpen(pVtab, &pVCur); 7263 sqlite3VtabImportErrmsg(p, pVtab); 7264 if( rc ) goto abort_due_to_error; 7265 7266 /* Initialize sqlite3_vtab_cursor base class */ 7267 pVCur->pVtab = pVtab; 7268 7269 /* Initialize vdbe cursor object */ 7270 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7271 if( pCur ){ 7272 pCur->uc.pVCur = pVCur; 7273 pVtab->nRef++; 7274 }else{ 7275 assert( db->mallocFailed ); 7276 pModule->xClose(pVCur); 7277 goto no_mem; 7278 } 7279 break; 7280 } 7281 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7282 7283 #ifndef SQLITE_OMIT_VIRTUALTABLE 7284 /* Opcode: VFilter P1 P2 P3 P4 * 7285 ** Synopsis: iplan=r[P3] zplan='P4' 7286 ** 7287 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7288 ** the filtered result set is empty. 7289 ** 7290 ** P4 is either NULL or a string that was generated by the xBestIndex 7291 ** method of the module. The interpretation of the P4 string is left 7292 ** to the module implementation. 7293 ** 7294 ** This opcode invokes the xFilter method on the virtual table specified 7295 ** by P1. The integer query plan parameter to xFilter is stored in register 7296 ** P3. Register P3+1 stores the argc parameter to be passed to the 7297 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7298 ** additional parameters which are passed to 7299 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7300 ** 7301 ** A jump is made to P2 if the result set after filtering would be empty. 7302 */ 7303 case OP_VFilter: { /* jump */ 7304 int nArg; 7305 int iQuery; 7306 const sqlite3_module *pModule; 7307 Mem *pQuery; 7308 Mem *pArgc; 7309 sqlite3_vtab_cursor *pVCur; 7310 sqlite3_vtab *pVtab; 7311 VdbeCursor *pCur; 7312 int res; 7313 int i; 7314 Mem **apArg; 7315 7316 pQuery = &aMem[pOp->p3]; 7317 pArgc = &pQuery[1]; 7318 pCur = p->apCsr[pOp->p1]; 7319 assert( memIsValid(pQuery) ); 7320 REGISTER_TRACE(pOp->p3, pQuery); 7321 assert( pCur->eCurType==CURTYPE_VTAB ); 7322 pVCur = pCur->uc.pVCur; 7323 pVtab = pVCur->pVtab; 7324 pModule = pVtab->pModule; 7325 7326 /* Grab the index number and argc parameters */ 7327 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7328 nArg = (int)pArgc->u.i; 7329 iQuery = (int)pQuery->u.i; 7330 7331 /* Invoke the xFilter method */ 7332 res = 0; 7333 apArg = p->apArg; 7334 for(i = 0; i<nArg; i++){ 7335 apArg[i] = &pArgc[i+1]; 7336 } 7337 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7338 sqlite3VtabImportErrmsg(p, pVtab); 7339 if( rc ) goto abort_due_to_error; 7340 res = pModule->xEof(pVCur); 7341 pCur->nullRow = 0; 7342 VdbeBranchTaken(res!=0,2); 7343 if( res ) goto jump_to_p2; 7344 break; 7345 } 7346 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7347 7348 #ifndef SQLITE_OMIT_VIRTUALTABLE 7349 /* Opcode: VColumn P1 P2 P3 * P5 7350 ** Synopsis: r[P3]=vcolumn(P2) 7351 ** 7352 ** Store in register P3 the value of the P2-th column of 7353 ** the current row of the virtual-table of cursor P1. 7354 ** 7355 ** If the VColumn opcode is being used to fetch the value of 7356 ** an unchanging column during an UPDATE operation, then the P5 7357 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7358 ** function to return true inside the xColumn method of the virtual 7359 ** table implementation. The P5 column might also contain other 7360 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7361 ** unused by OP_VColumn. 7362 */ 7363 case OP_VColumn: { 7364 sqlite3_vtab *pVtab; 7365 const sqlite3_module *pModule; 7366 Mem *pDest; 7367 sqlite3_context sContext; 7368 7369 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7370 assert( pCur->eCurType==CURTYPE_VTAB ); 7371 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7372 pDest = &aMem[pOp->p3]; 7373 memAboutToChange(p, pDest); 7374 if( pCur->nullRow ){ 7375 sqlite3VdbeMemSetNull(pDest); 7376 break; 7377 } 7378 pVtab = pCur->uc.pVCur->pVtab; 7379 pModule = pVtab->pModule; 7380 assert( pModule->xColumn ); 7381 memset(&sContext, 0, sizeof(sContext)); 7382 sContext.pOut = pDest; 7383 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7384 if( pOp->p5 & OPFLAG_NOCHNG ){ 7385 sqlite3VdbeMemSetNull(pDest); 7386 pDest->flags = MEM_Null|MEM_Zero; 7387 pDest->u.nZero = 0; 7388 }else{ 7389 MemSetTypeFlag(pDest, MEM_Null); 7390 } 7391 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7392 sqlite3VtabImportErrmsg(p, pVtab); 7393 if( sContext.isError>0 ){ 7394 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7395 rc = sContext.isError; 7396 } 7397 sqlite3VdbeChangeEncoding(pDest, encoding); 7398 REGISTER_TRACE(pOp->p3, pDest); 7399 UPDATE_MAX_BLOBSIZE(pDest); 7400 7401 if( sqlite3VdbeMemTooBig(pDest) ){ 7402 goto too_big; 7403 } 7404 if( rc ) goto abort_due_to_error; 7405 break; 7406 } 7407 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7408 7409 #ifndef SQLITE_OMIT_VIRTUALTABLE 7410 /* Opcode: VNext P1 P2 * * * 7411 ** 7412 ** Advance virtual table P1 to the next row in its result set and 7413 ** jump to instruction P2. Or, if the virtual table has reached 7414 ** the end of its result set, then fall through to the next instruction. 7415 */ 7416 case OP_VNext: { /* jump */ 7417 sqlite3_vtab *pVtab; 7418 const sqlite3_module *pModule; 7419 int res; 7420 VdbeCursor *pCur; 7421 7422 res = 0; 7423 pCur = p->apCsr[pOp->p1]; 7424 assert( pCur->eCurType==CURTYPE_VTAB ); 7425 if( pCur->nullRow ){ 7426 break; 7427 } 7428 pVtab = pCur->uc.pVCur->pVtab; 7429 pModule = pVtab->pModule; 7430 assert( pModule->xNext ); 7431 7432 /* Invoke the xNext() method of the module. There is no way for the 7433 ** underlying implementation to return an error if one occurs during 7434 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7435 ** data is available) and the error code returned when xColumn or 7436 ** some other method is next invoked on the save virtual table cursor. 7437 */ 7438 rc = pModule->xNext(pCur->uc.pVCur); 7439 sqlite3VtabImportErrmsg(p, pVtab); 7440 if( rc ) goto abort_due_to_error; 7441 res = pModule->xEof(pCur->uc.pVCur); 7442 VdbeBranchTaken(!res,2); 7443 if( !res ){ 7444 /* If there is data, jump to P2 */ 7445 goto jump_to_p2_and_check_for_interrupt; 7446 } 7447 goto check_for_interrupt; 7448 } 7449 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7450 7451 #ifndef SQLITE_OMIT_VIRTUALTABLE 7452 /* Opcode: VRename P1 * * P4 * 7453 ** 7454 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7455 ** This opcode invokes the corresponding xRename method. The value 7456 ** in register P1 is passed as the zName argument to the xRename method. 7457 */ 7458 case OP_VRename: { 7459 sqlite3_vtab *pVtab; 7460 Mem *pName; 7461 int isLegacy; 7462 7463 isLegacy = (db->flags & SQLITE_LegacyAlter); 7464 db->flags |= SQLITE_LegacyAlter; 7465 pVtab = pOp->p4.pVtab->pVtab; 7466 pName = &aMem[pOp->p1]; 7467 assert( pVtab->pModule->xRename ); 7468 assert( memIsValid(pName) ); 7469 assert( p->readOnly==0 ); 7470 REGISTER_TRACE(pOp->p1, pName); 7471 assert( pName->flags & MEM_Str ); 7472 testcase( pName->enc==SQLITE_UTF8 ); 7473 testcase( pName->enc==SQLITE_UTF16BE ); 7474 testcase( pName->enc==SQLITE_UTF16LE ); 7475 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7476 if( rc ) goto abort_due_to_error; 7477 rc = pVtab->pModule->xRename(pVtab, pName->z); 7478 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7479 sqlite3VtabImportErrmsg(p, pVtab); 7480 p->expired = 0; 7481 if( rc ) goto abort_due_to_error; 7482 break; 7483 } 7484 #endif 7485 7486 #ifndef SQLITE_OMIT_VIRTUALTABLE 7487 /* Opcode: VUpdate P1 P2 P3 P4 P5 7488 ** Synopsis: data=r[P3@P2] 7489 ** 7490 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7491 ** This opcode invokes the corresponding xUpdate method. P2 values 7492 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7493 ** invocation. The value in register (P3+P2-1) corresponds to the 7494 ** p2th element of the argv array passed to xUpdate. 7495 ** 7496 ** The xUpdate method will do a DELETE or an INSERT or both. 7497 ** The argv[0] element (which corresponds to memory cell P3) 7498 ** is the rowid of a row to delete. If argv[0] is NULL then no 7499 ** deletion occurs. The argv[1] element is the rowid of the new 7500 ** row. This can be NULL to have the virtual table select the new 7501 ** rowid for itself. The subsequent elements in the array are 7502 ** the values of columns in the new row. 7503 ** 7504 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7505 ** a row to delete. 7506 ** 7507 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7508 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7509 ** is set to the value of the rowid for the row just inserted. 7510 ** 7511 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7512 ** apply in the case of a constraint failure on an insert or update. 7513 */ 7514 case OP_VUpdate: { 7515 sqlite3_vtab *pVtab; 7516 const sqlite3_module *pModule; 7517 int nArg; 7518 int i; 7519 sqlite_int64 rowid; 7520 Mem **apArg; 7521 Mem *pX; 7522 7523 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7524 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7525 ); 7526 assert( p->readOnly==0 ); 7527 if( db->mallocFailed ) goto no_mem; 7528 sqlite3VdbeIncrWriteCounter(p, 0); 7529 pVtab = pOp->p4.pVtab->pVtab; 7530 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7531 rc = SQLITE_LOCKED; 7532 goto abort_due_to_error; 7533 } 7534 pModule = pVtab->pModule; 7535 nArg = pOp->p2; 7536 assert( pOp->p4type==P4_VTAB ); 7537 if( ALWAYS(pModule->xUpdate) ){ 7538 u8 vtabOnConflict = db->vtabOnConflict; 7539 apArg = p->apArg; 7540 pX = &aMem[pOp->p3]; 7541 for(i=0; i<nArg; i++){ 7542 assert( memIsValid(pX) ); 7543 memAboutToChange(p, pX); 7544 apArg[i] = pX; 7545 pX++; 7546 } 7547 db->vtabOnConflict = pOp->p5; 7548 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7549 db->vtabOnConflict = vtabOnConflict; 7550 sqlite3VtabImportErrmsg(p, pVtab); 7551 if( rc==SQLITE_OK && pOp->p1 ){ 7552 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7553 db->lastRowid = rowid; 7554 } 7555 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7556 if( pOp->p5==OE_Ignore ){ 7557 rc = SQLITE_OK; 7558 }else{ 7559 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7560 } 7561 }else{ 7562 p->nChange++; 7563 } 7564 if( rc ) goto abort_due_to_error; 7565 } 7566 break; 7567 } 7568 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7569 7570 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7571 /* Opcode: Pagecount P1 P2 * * * 7572 ** 7573 ** Write the current number of pages in database P1 to memory cell P2. 7574 */ 7575 case OP_Pagecount: { /* out2 */ 7576 pOut = out2Prerelease(p, pOp); 7577 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7578 break; 7579 } 7580 #endif 7581 7582 7583 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7584 /* Opcode: MaxPgcnt P1 P2 P3 * * 7585 ** 7586 ** Try to set the maximum page count for database P1 to the value in P3. 7587 ** Do not let the maximum page count fall below the current page count and 7588 ** do not change the maximum page count value if P3==0. 7589 ** 7590 ** Store the maximum page count after the change in register P2. 7591 */ 7592 case OP_MaxPgcnt: { /* out2 */ 7593 unsigned int newMax; 7594 Btree *pBt; 7595 7596 pOut = out2Prerelease(p, pOp); 7597 pBt = db->aDb[pOp->p1].pBt; 7598 newMax = 0; 7599 if( pOp->p3 ){ 7600 newMax = sqlite3BtreeLastPage(pBt); 7601 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7602 } 7603 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7604 break; 7605 } 7606 #endif 7607 7608 /* Opcode: Function P1 P2 P3 P4 * 7609 ** Synopsis: r[P3]=func(r[P2@NP]) 7610 ** 7611 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7612 ** contains a pointer to the function to be run) with arguments taken 7613 ** from register P2 and successors. The number of arguments is in 7614 ** the sqlite3_context object that P4 points to. 7615 ** The result of the function is stored 7616 ** in register P3. Register P3 must not be one of the function inputs. 7617 ** 7618 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7619 ** function was determined to be constant at compile time. If the first 7620 ** argument was constant then bit 0 of P1 is set. This is used to determine 7621 ** whether meta data associated with a user function argument using the 7622 ** sqlite3_set_auxdata() API may be safely retained until the next 7623 ** invocation of this opcode. 7624 ** 7625 ** See also: AggStep, AggFinal, PureFunc 7626 */ 7627 /* Opcode: PureFunc P1 P2 P3 P4 * 7628 ** Synopsis: r[P3]=func(r[P2@NP]) 7629 ** 7630 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7631 ** contains a pointer to the function to be run) with arguments taken 7632 ** from register P2 and successors. The number of arguments is in 7633 ** the sqlite3_context object that P4 points to. 7634 ** The result of the function is stored 7635 ** in register P3. Register P3 must not be one of the function inputs. 7636 ** 7637 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7638 ** function was determined to be constant at compile time. If the first 7639 ** argument was constant then bit 0 of P1 is set. This is used to determine 7640 ** whether meta data associated with a user function argument using the 7641 ** sqlite3_set_auxdata() API may be safely retained until the next 7642 ** invocation of this opcode. 7643 ** 7644 ** This opcode works exactly like OP_Function. The only difference is in 7645 ** its name. This opcode is used in places where the function must be 7646 ** purely non-deterministic. Some built-in date/time functions can be 7647 ** either determinitic of non-deterministic, depending on their arguments. 7648 ** When those function are used in a non-deterministic way, they will check 7649 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7650 ** if they were, they throw an error. 7651 ** 7652 ** See also: AggStep, AggFinal, Function 7653 */ 7654 case OP_PureFunc: /* group */ 7655 case OP_Function: { /* group */ 7656 int i; 7657 sqlite3_context *pCtx; 7658 7659 assert( pOp->p4type==P4_FUNCCTX ); 7660 pCtx = pOp->p4.pCtx; 7661 7662 /* If this function is inside of a trigger, the register array in aMem[] 7663 ** might change from one evaluation to the next. The next block of code 7664 ** checks to see if the register array has changed, and if so it 7665 ** reinitializes the relavant parts of the sqlite3_context object */ 7666 pOut = &aMem[pOp->p3]; 7667 if( pCtx->pOut != pOut ){ 7668 pCtx->pVdbe = p; 7669 pCtx->pOut = pOut; 7670 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7671 } 7672 assert( pCtx->pVdbe==p ); 7673 7674 memAboutToChange(p, pOut); 7675 #ifdef SQLITE_DEBUG 7676 for(i=0; i<pCtx->argc; i++){ 7677 assert( memIsValid(pCtx->argv[i]) ); 7678 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7679 } 7680 #endif 7681 MemSetTypeFlag(pOut, MEM_Null); 7682 assert( pCtx->isError==0 ); 7683 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7684 7685 /* If the function returned an error, throw an exception */ 7686 if( pCtx->isError ){ 7687 if( pCtx->isError>0 ){ 7688 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7689 rc = pCtx->isError; 7690 } 7691 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7692 pCtx->isError = 0; 7693 if( rc ) goto abort_due_to_error; 7694 } 7695 7696 /* Copy the result of the function into register P3 */ 7697 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7698 sqlite3VdbeChangeEncoding(pOut, encoding); 7699 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7700 } 7701 7702 REGISTER_TRACE(pOp->p3, pOut); 7703 UPDATE_MAX_BLOBSIZE(pOut); 7704 break; 7705 } 7706 7707 /* Opcode: Trace P1 P2 * P4 * 7708 ** 7709 ** Write P4 on the statement trace output if statement tracing is 7710 ** enabled. 7711 ** 7712 ** Operand P1 must be 0x7fffffff and P2 must positive. 7713 */ 7714 /* Opcode: Init P1 P2 P3 P4 * 7715 ** Synopsis: Start at P2 7716 ** 7717 ** Programs contain a single instance of this opcode as the very first 7718 ** opcode. 7719 ** 7720 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7721 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7722 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7723 ** 7724 ** If P2 is not zero, jump to instruction P2. 7725 ** 7726 ** Increment the value of P1 so that OP_Once opcodes will jump the 7727 ** first time they are evaluated for this run. 7728 ** 7729 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7730 ** error is encountered. 7731 */ 7732 case OP_Trace: 7733 case OP_Init: { /* jump */ 7734 int i; 7735 #ifndef SQLITE_OMIT_TRACE 7736 char *zTrace; 7737 #endif 7738 7739 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7740 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7741 ** 7742 ** This assert() provides evidence for: 7743 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7744 ** would have been returned by the legacy sqlite3_trace() interface by 7745 ** using the X argument when X begins with "--" and invoking 7746 ** sqlite3_expanded_sql(P) otherwise. 7747 */ 7748 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7749 7750 /* OP_Init is always instruction 0 */ 7751 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7752 7753 #ifndef SQLITE_OMIT_TRACE 7754 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7755 && !p->doingRerun 7756 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7757 ){ 7758 #ifndef SQLITE_OMIT_DEPRECATED 7759 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7760 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7761 char *z = sqlite3VdbeExpandSql(p, zTrace); 7762 x(db->pTraceArg, z); 7763 sqlite3_free(z); 7764 }else 7765 #endif 7766 if( db->nVdbeExec>1 ){ 7767 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7768 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7769 sqlite3DbFree(db, z); 7770 }else{ 7771 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7772 } 7773 } 7774 #ifdef SQLITE_USE_FCNTL_TRACE 7775 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7776 if( zTrace ){ 7777 int j; 7778 for(j=0; j<db->nDb; j++){ 7779 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7780 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7781 } 7782 } 7783 #endif /* SQLITE_USE_FCNTL_TRACE */ 7784 #ifdef SQLITE_DEBUG 7785 if( (db->flags & SQLITE_SqlTrace)!=0 7786 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7787 ){ 7788 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7789 } 7790 #endif /* SQLITE_DEBUG */ 7791 #endif /* SQLITE_OMIT_TRACE */ 7792 assert( pOp->p2>0 ); 7793 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7794 if( pOp->opcode==OP_Trace ) break; 7795 for(i=1; i<p->nOp; i++){ 7796 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7797 } 7798 pOp->p1 = 0; 7799 } 7800 pOp->p1++; 7801 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7802 goto jump_to_p2; 7803 } 7804 7805 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7806 /* Opcode: CursorHint P1 * * P4 * 7807 ** 7808 ** Provide a hint to cursor P1 that it only needs to return rows that 7809 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7810 ** to values currently held in registers. TK_COLUMN terms in the P4 7811 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7812 */ 7813 case OP_CursorHint: { 7814 VdbeCursor *pC; 7815 7816 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7817 assert( pOp->p4type==P4_EXPR ); 7818 pC = p->apCsr[pOp->p1]; 7819 if( pC ){ 7820 assert( pC->eCurType==CURTYPE_BTREE ); 7821 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7822 pOp->p4.pExpr, aMem); 7823 } 7824 break; 7825 } 7826 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7827 7828 #ifdef SQLITE_DEBUG 7829 /* Opcode: Abortable * * * * * 7830 ** 7831 ** Verify that an Abort can happen. Assert if an Abort at this point 7832 ** might cause database corruption. This opcode only appears in debugging 7833 ** builds. 7834 ** 7835 ** An Abort is safe if either there have been no writes, or if there is 7836 ** an active statement journal. 7837 */ 7838 case OP_Abortable: { 7839 sqlite3VdbeAssertAbortable(p); 7840 break; 7841 } 7842 #endif 7843 7844 #ifdef SQLITE_DEBUG 7845 /* Opcode: ReleaseReg P1 P2 P3 * P5 7846 ** Synopsis: release r[P1@P2] mask P3 7847 ** 7848 ** Release registers from service. Any content that was in the 7849 ** the registers is unreliable after this opcode completes. 7850 ** 7851 ** The registers released will be the P2 registers starting at P1, 7852 ** except if bit ii of P3 set, then do not release register P1+ii. 7853 ** In other words, P3 is a mask of registers to preserve. 7854 ** 7855 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 7856 ** that if the content of the released register was set using OP_SCopy, 7857 ** a change to the value of the source register for the OP_SCopy will no longer 7858 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 7859 ** 7860 ** If P5 is set, then all released registers have their type set 7861 ** to MEM_Undefined so that any subsequent attempt to read the released 7862 ** register (before it is reinitialized) will generate an assertion fault. 7863 ** 7864 ** P5 ought to be set on every call to this opcode. 7865 ** However, there are places in the code generator will release registers 7866 ** before their are used, under the (valid) assumption that the registers 7867 ** will not be reallocated for some other purpose before they are used and 7868 ** hence are safe to release. 7869 ** 7870 ** This opcode is only available in testing and debugging builds. It is 7871 ** not generated for release builds. The purpose of this opcode is to help 7872 ** validate the generated bytecode. This opcode does not actually contribute 7873 ** to computing an answer. 7874 */ 7875 case OP_ReleaseReg: { 7876 Mem *pMem; 7877 int i; 7878 u32 constMask; 7879 assert( pOp->p1>0 ); 7880 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 7881 pMem = &aMem[pOp->p1]; 7882 constMask = pOp->p3; 7883 for(i=0; i<pOp->p2; i++, pMem++){ 7884 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 7885 pMem->pScopyFrom = 0; 7886 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 7887 } 7888 } 7889 break; 7890 } 7891 #endif 7892 7893 /* Opcode: Noop * * * * * 7894 ** 7895 ** Do nothing. This instruction is often useful as a jump 7896 ** destination. 7897 */ 7898 /* 7899 ** The magic Explain opcode are only inserted when explain==2 (which 7900 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7901 ** This opcode records information from the optimizer. It is the 7902 ** the same as a no-op. This opcodesnever appears in a real VM program. 7903 */ 7904 default: { /* This is really OP_Noop, OP_Explain */ 7905 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7906 7907 break; 7908 } 7909 7910 /***************************************************************************** 7911 ** The cases of the switch statement above this line should all be indented 7912 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7913 ** readability. From this point on down, the normal indentation rules are 7914 ** restored. 7915 *****************************************************************************/ 7916 } 7917 7918 #ifdef VDBE_PROFILE 7919 { 7920 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7921 if( endTime>start ) pOrigOp->cycles += endTime - start; 7922 pOrigOp->cnt++; 7923 } 7924 #endif 7925 7926 /* The following code adds nothing to the actual functionality 7927 ** of the program. It is only here for testing and debugging. 7928 ** On the other hand, it does burn CPU cycles every time through 7929 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7930 */ 7931 #ifndef NDEBUG 7932 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7933 7934 #ifdef SQLITE_DEBUG 7935 if( db->flags & SQLITE_VdbeTrace ){ 7936 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7937 if( rc!=0 ) printf("rc=%d\n",rc); 7938 if( opProperty & (OPFLG_OUT2) ){ 7939 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7940 } 7941 if( opProperty & OPFLG_OUT3 ){ 7942 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7943 } 7944 if( opProperty==0xff ){ 7945 /* Never happens. This code exists to avoid a harmless linkage 7946 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 7947 ** used. */ 7948 sqlite3VdbeRegisterDump(p); 7949 } 7950 } 7951 #endif /* SQLITE_DEBUG */ 7952 #endif /* NDEBUG */ 7953 } /* The end of the for(;;) loop the loops through opcodes */ 7954 7955 /* If we reach this point, it means that execution is finished with 7956 ** an error of some kind. 7957 */ 7958 abort_due_to_error: 7959 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7960 assert( rc ); 7961 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7962 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7963 } 7964 p->rc = rc; 7965 sqlite3SystemError(db, rc); 7966 testcase( sqlite3GlobalConfig.xLog!=0 ); 7967 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7968 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7969 sqlite3VdbeHalt(p); 7970 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7971 rc = SQLITE_ERROR; 7972 if( resetSchemaOnFault>0 ){ 7973 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7974 } 7975 7976 /* This is the only way out of this procedure. We have to 7977 ** release the mutexes on btrees that were acquired at the 7978 ** top. */ 7979 vdbe_return: 7980 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 7981 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 7982 nProgressLimit += db->nProgressOps; 7983 if( db->xProgress(db->pProgressArg) ){ 7984 nProgressLimit = 0xffffffff; 7985 rc = SQLITE_INTERRUPT; 7986 goto abort_due_to_error; 7987 } 7988 } 7989 #endif 7990 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7991 sqlite3VdbeLeave(p); 7992 assert( rc!=SQLITE_OK || nExtraDelete==0 7993 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7994 ); 7995 return rc; 7996 7997 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7998 ** is encountered. 7999 */ 8000 too_big: 8001 sqlite3VdbeError(p, "string or blob too big"); 8002 rc = SQLITE_TOOBIG; 8003 goto abort_due_to_error; 8004 8005 /* Jump to here if a malloc() fails. 8006 */ 8007 no_mem: 8008 sqlite3OomFault(db); 8009 sqlite3VdbeError(p, "out of memory"); 8010 rc = SQLITE_NOMEM_BKPT; 8011 goto abort_due_to_error; 8012 8013 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8014 ** flag. 8015 */ 8016 abort_due_to_interrupt: 8017 assert( AtomicLoad(&db->u1.isInterrupted) ); 8018 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 8019 p->rc = rc; 8020 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8021 goto abort_due_to_error; 8022 } 8023