xref: /sqlite-3.40.0/src/vdbe.c (revision a8e41eca)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   int iDb,              /* Database the cursor belongs to, or -1 */
245   u8 eCurType           /* Type of the new cursor */
246 ){
247   /* Find the memory cell that will be used to store the blob of memory
248   ** required for this VdbeCursor structure. It is convenient to use a
249   ** vdbe memory cell to manage the memory allocation required for a
250   ** VdbeCursor structure for the following reasons:
251   **
252   **   * Sometimes cursor numbers are used for a couple of different
253   **     purposes in a vdbe program. The different uses might require
254   **     different sized allocations. Memory cells provide growable
255   **     allocations.
256   **
257   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
258   **     be freed lazily via the sqlite3_release_memory() API. This
259   **     minimizes the number of malloc calls made by the system.
260   **
261   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
262   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
263   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264   */
265   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 
267   int nByte;
268   VdbeCursor *pCx = 0;
269   nByte =
270       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
271       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 
273   assert( iCur>=0 && iCur<p->nCursor );
274   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
275     /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag
276     ** is clear. Otherwise, if this is an ephemeral cursor created by
277     ** OP_OpenDup, the cursor will not be closed and will still be part
278     ** of a BtShared.pCursor list.  */
279     if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0;
280     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
281     p->apCsr[iCur] = 0;
282   }
283   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
284     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
285     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
286     pCx->eCurType = eCurType;
287     pCx->iDb = iDb;
288     pCx->nField = nField;
289     pCx->aOffset = &pCx->aType[nField];
290     if( eCurType==CURTYPE_BTREE ){
291       pCx->uc.pCursor = (BtCursor*)
292           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
293       sqlite3BtreeCursorZero(pCx->uc.pCursor);
294     }
295   }
296   return pCx;
297 }
298 
299 /*
300 ** The string in pRec is known to look like an integer and to have a
301 ** floating point value of rValue.  Return true and set *piValue to the
302 ** integer value if the string is in range to be an integer.  Otherwise,
303 ** return false.
304 */
305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
306   i64 iValue = (double)rValue;
307   if( sqlite3RealSameAsInt(rValue,iValue) ){
308     *piValue = iValue;
309     return 1;
310   }
311   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
312 }
313 
314 /*
315 ** Try to convert a value into a numeric representation if we can
316 ** do so without loss of information.  In other words, if the string
317 ** looks like a number, convert it into a number.  If it does not
318 ** look like a number, leave it alone.
319 **
320 ** If the bTryForInt flag is true, then extra effort is made to give
321 ** an integer representation.  Strings that look like floating point
322 ** values but which have no fractional component (example: '48.00')
323 ** will have a MEM_Int representation when bTryForInt is true.
324 **
325 ** If bTryForInt is false, then if the input string contains a decimal
326 ** point or exponential notation, the result is only MEM_Real, even
327 ** if there is an exact integer representation of the quantity.
328 */
329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
330   double rValue;
331   u8 enc = pRec->enc;
332   int rc;
333   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
334   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
335   if( rc<=0 ) return;
336   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
337     pRec->flags |= MEM_Int;
338   }else{
339     pRec->u.r = rValue;
340     pRec->flags |= MEM_Real;
341     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
342   }
343   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
344   ** string representation after computing a numeric equivalent, because the
345   ** string representation might not be the canonical representation for the
346   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
347   pRec->flags &= ~MEM_Str;
348 }
349 
350 /*
351 ** Processing is determine by the affinity parameter:
352 **
353 ** SQLITE_AFF_INTEGER:
354 ** SQLITE_AFF_REAL:
355 ** SQLITE_AFF_NUMERIC:
356 **    Try to convert pRec to an integer representation or a
357 **    floating-point representation if an integer representation
358 **    is not possible.  Note that the integer representation is
359 **    always preferred, even if the affinity is REAL, because
360 **    an integer representation is more space efficient on disk.
361 **
362 ** SQLITE_AFF_TEXT:
363 **    Convert pRec to a text representation.
364 **
365 ** SQLITE_AFF_BLOB:
366 ** SQLITE_AFF_NONE:
367 **    No-op.  pRec is unchanged.
368 */
369 static void applyAffinity(
370   Mem *pRec,          /* The value to apply affinity to */
371   char affinity,      /* The affinity to be applied */
372   u8 enc              /* Use this text encoding */
373 ){
374   if( affinity>=SQLITE_AFF_NUMERIC ){
375     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
376              || affinity==SQLITE_AFF_NUMERIC );
377     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
378       if( (pRec->flags & MEM_Real)==0 ){
379         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
380       }else{
381         sqlite3VdbeIntegerAffinity(pRec);
382       }
383     }
384   }else if( affinity==SQLITE_AFF_TEXT ){
385     /* Only attempt the conversion to TEXT if there is an integer or real
386     ** representation (blob and NULL do not get converted) but no string
387     ** representation.  It would be harmless to repeat the conversion if
388     ** there is already a string rep, but it is pointless to waste those
389     ** CPU cycles. */
390     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
391       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
392         testcase( pRec->flags & MEM_Int );
393         testcase( pRec->flags & MEM_Real );
394         testcase( pRec->flags & MEM_IntReal );
395         sqlite3VdbeMemStringify(pRec, enc, 1);
396       }
397     }
398     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
399   }
400 }
401 
402 /*
403 ** Try to convert the type of a function argument or a result column
404 ** into a numeric representation.  Use either INTEGER or REAL whichever
405 ** is appropriate.  But only do the conversion if it is possible without
406 ** loss of information and return the revised type of the argument.
407 */
408 int sqlite3_value_numeric_type(sqlite3_value *pVal){
409   int eType = sqlite3_value_type(pVal);
410   if( eType==SQLITE_TEXT ){
411     Mem *pMem = (Mem*)pVal;
412     applyNumericAffinity(pMem, 0);
413     eType = sqlite3_value_type(pVal);
414   }
415   return eType;
416 }
417 
418 /*
419 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
420 ** not the internal Mem* type.
421 */
422 void sqlite3ValueApplyAffinity(
423   sqlite3_value *pVal,
424   u8 affinity,
425   u8 enc
426 ){
427   applyAffinity((Mem *)pVal, affinity, enc);
428 }
429 
430 /*
431 ** pMem currently only holds a string type (or maybe a BLOB that we can
432 ** interpret as a string if we want to).  Compute its corresponding
433 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
434 ** accordingly.
435 */
436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
437   int rc;
438   sqlite3_int64 ix;
439   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
440   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
441   ExpandBlob(pMem);
442   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
443   if( rc<=0 ){
444     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
445       pMem->u.i = ix;
446       return MEM_Int;
447     }else{
448       return MEM_Real;
449     }
450   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
451     pMem->u.i = ix;
452     return MEM_Int;
453   }
454   return MEM_Real;
455 }
456 
457 /*
458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
459 ** none.
460 **
461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
462 ** But it does set pMem->u.r and pMem->u.i appropriately.
463 */
464 static u16 numericType(Mem *pMem){
465   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
466     testcase( pMem->flags & MEM_Int );
467     testcase( pMem->flags & MEM_Real );
468     testcase( pMem->flags & MEM_IntReal );
469     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
470   }
471   if( pMem->flags & (MEM_Str|MEM_Blob) ){
472     testcase( pMem->flags & MEM_Str );
473     testcase( pMem->flags & MEM_Blob );
474     return computeNumericType(pMem);
475   }
476   return 0;
477 }
478 
479 #ifdef SQLITE_DEBUG
480 /*
481 ** Write a nice string representation of the contents of cell pMem
482 ** into buffer zBuf, length nBuf.
483 */
484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
485   int f = pMem->flags;
486   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
487   if( f&MEM_Blob ){
488     int i;
489     char c;
490     if( f & MEM_Dyn ){
491       c = 'z';
492       assert( (f & (MEM_Static|MEM_Ephem))==0 );
493     }else if( f & MEM_Static ){
494       c = 't';
495       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
496     }else if( f & MEM_Ephem ){
497       c = 'e';
498       assert( (f & (MEM_Static|MEM_Dyn))==0 );
499     }else{
500       c = 's';
501     }
502     sqlite3_str_appendf(pStr, "%cx[", c);
503     for(i=0; i<25 && i<pMem->n; i++){
504       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
505     }
506     sqlite3_str_appendf(pStr, "|");
507     for(i=0; i<25 && i<pMem->n; i++){
508       char z = pMem->z[i];
509       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
510     }
511     sqlite3_str_appendf(pStr,"]");
512     if( f & MEM_Zero ){
513       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
514     }
515   }else if( f & MEM_Str ){
516     int j;
517     u8 c;
518     if( f & MEM_Dyn ){
519       c = 'z';
520       assert( (f & (MEM_Static|MEM_Ephem))==0 );
521     }else if( f & MEM_Static ){
522       c = 't';
523       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
524     }else if( f & MEM_Ephem ){
525       c = 'e';
526       assert( (f & (MEM_Static|MEM_Dyn))==0 );
527     }else{
528       c = 's';
529     }
530     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
531     for(j=0; j<25 && j<pMem->n; j++){
532       c = pMem->z[j];
533       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
534     }
535     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
536   }
537 }
538 #endif
539 
540 #ifdef SQLITE_DEBUG
541 /*
542 ** Print the value of a register for tracing purposes:
543 */
544 static void memTracePrint(Mem *p){
545   if( p->flags & MEM_Undefined ){
546     printf(" undefined");
547   }else if( p->flags & MEM_Null ){
548     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
549   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
550     printf(" si:%lld", p->u.i);
551   }else if( (p->flags & (MEM_IntReal))!=0 ){
552     printf(" ir:%lld", p->u.i);
553   }else if( p->flags & MEM_Int ){
554     printf(" i:%lld", p->u.i);
555 #ifndef SQLITE_OMIT_FLOATING_POINT
556   }else if( p->flags & MEM_Real ){
557     printf(" r:%.17g", p->u.r);
558 #endif
559   }else if( sqlite3VdbeMemIsRowSet(p) ){
560     printf(" (rowset)");
561   }else{
562     StrAccum acc;
563     char zBuf[1000];
564     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
565     sqlite3VdbeMemPrettyPrint(p, &acc);
566     printf(" %s", sqlite3StrAccumFinish(&acc));
567   }
568   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
569 }
570 static void registerTrace(int iReg, Mem *p){
571   printf("R[%d] = ", iReg);
572   memTracePrint(p);
573   if( p->pScopyFrom ){
574     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
575   }
576   printf("\n");
577   sqlite3VdbeCheckMemInvariants(p);
578 }
579 #endif
580 
581 #ifdef SQLITE_DEBUG
582 /*
583 ** Show the values of all registers in the virtual machine.  Used for
584 ** interactive debugging.
585 */
586 void sqlite3VdbeRegisterDump(Vdbe *v){
587   int i;
588   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
589 }
590 #endif /* SQLITE_DEBUG */
591 
592 
593 #ifdef SQLITE_DEBUG
594 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
595 #else
596 #  define REGISTER_TRACE(R,M)
597 #endif
598 
599 
600 #ifdef VDBE_PROFILE
601 
602 /*
603 ** hwtime.h contains inline assembler code for implementing
604 ** high-performance timing routines.
605 */
606 #include "hwtime.h"
607 
608 #endif
609 
610 #ifndef NDEBUG
611 /*
612 ** This function is only called from within an assert() expression. It
613 ** checks that the sqlite3.nTransaction variable is correctly set to
614 ** the number of non-transaction savepoints currently in the
615 ** linked list starting at sqlite3.pSavepoint.
616 **
617 ** Usage:
618 **
619 **     assert( checkSavepointCount(db) );
620 */
621 static int checkSavepointCount(sqlite3 *db){
622   int n = 0;
623   Savepoint *p;
624   for(p=db->pSavepoint; p; p=p->pNext) n++;
625   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
626   return 1;
627 }
628 #endif
629 
630 /*
631 ** Return the register of pOp->p2 after first preparing it to be
632 ** overwritten with an integer value.
633 */
634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
635   sqlite3VdbeMemSetNull(pOut);
636   pOut->flags = MEM_Int;
637   return pOut;
638 }
639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
640   Mem *pOut;
641   assert( pOp->p2>0 );
642   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
643   pOut = &p->aMem[pOp->p2];
644   memAboutToChange(p, pOut);
645   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
646     return out2PrereleaseWithClear(pOut);
647   }else{
648     pOut->flags = MEM_Int;
649     return pOut;
650   }
651 }
652 
653 
654 /*
655 ** Execute as much of a VDBE program as we can.
656 ** This is the core of sqlite3_step().
657 */
658 int sqlite3VdbeExec(
659   Vdbe *p                    /* The VDBE */
660 ){
661   Op *aOp = p->aOp;          /* Copy of p->aOp */
662   Op *pOp = aOp;             /* Current operation */
663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
664   Op *pOrigOp;               /* Value of pOp at the top of the loop */
665 #endif
666 #ifdef SQLITE_DEBUG
667   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
668 #endif
669   int rc = SQLITE_OK;        /* Value to return */
670   sqlite3 *db = p->db;       /* The database */
671   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
672   u8 encoding = ENC(db);     /* The database encoding */
673   int iCompare = 0;          /* Result of last comparison */
674   unsigned nVmStep = 0;      /* Number of virtual machine steps */
675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
676   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
677 #endif
678   Mem *aMem = p->aMem;       /* Copy of p->aMem */
679   Mem *pIn1 = 0;             /* 1st input operand */
680   Mem *pIn2 = 0;             /* 2nd input operand */
681   Mem *pIn3 = 0;             /* 3rd input operand */
682   Mem *pOut = 0;             /* Output operand */
683 #ifdef VDBE_PROFILE
684   u64 start;                 /* CPU clock count at start of opcode */
685 #endif
686   /*** INSERT STACK UNION HERE ***/
687 
688   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
689   sqlite3VdbeEnter(p);
690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
691   if( db->xProgress ){
692     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
693     assert( 0 < db->nProgressOps );
694     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
695   }else{
696     nProgressLimit = 0xffffffff;
697   }
698 #endif
699   if( p->rc==SQLITE_NOMEM ){
700     /* This happens if a malloc() inside a call to sqlite3_column_text() or
701     ** sqlite3_column_text16() failed.  */
702     goto no_mem;
703   }
704   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
705   assert( p->bIsReader || p->readOnly!=0 );
706   p->iCurrentTime = 0;
707   assert( p->explain==0 );
708   p->pResultSet = 0;
709   db->busyHandler.nBusy = 0;
710   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
711   sqlite3VdbeIOTraceSql(p);
712 #ifdef SQLITE_DEBUG
713   sqlite3BeginBenignMalloc();
714   if( p->pc==0
715    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
716   ){
717     int i;
718     int once = 1;
719     sqlite3VdbePrintSql(p);
720     if( p->db->flags & SQLITE_VdbeListing ){
721       printf("VDBE Program Listing:\n");
722       for(i=0; i<p->nOp; i++){
723         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
724       }
725     }
726     if( p->db->flags & SQLITE_VdbeEQP ){
727       for(i=0; i<p->nOp; i++){
728         if( aOp[i].opcode==OP_Explain ){
729           if( once ) printf("VDBE Query Plan:\n");
730           printf("%s\n", aOp[i].p4.z);
731           once = 0;
732         }
733       }
734     }
735     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
736   }
737   sqlite3EndBenignMalloc();
738 #endif
739   for(pOp=&aOp[p->pc]; 1; pOp++){
740     /* Errors are detected by individual opcodes, with an immediate
741     ** jumps to abort_due_to_error. */
742     assert( rc==SQLITE_OK );
743 
744     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
745 #ifdef VDBE_PROFILE
746     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
747 #endif
748     nVmStep++;
749 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
750     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
751 #endif
752 
753     /* Only allow tracing if SQLITE_DEBUG is defined.
754     */
755 #ifdef SQLITE_DEBUG
756     if( db->flags & SQLITE_VdbeTrace ){
757       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
758       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
759     }
760 #endif
761 
762 
763     /* Check to see if we need to simulate an interrupt.  This only happens
764     ** if we have a special test build.
765     */
766 #ifdef SQLITE_TEST
767     if( sqlite3_interrupt_count>0 ){
768       sqlite3_interrupt_count--;
769       if( sqlite3_interrupt_count==0 ){
770         sqlite3_interrupt(db);
771       }
772     }
773 #endif
774 
775     /* Sanity checking on other operands */
776 #ifdef SQLITE_DEBUG
777     {
778       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
779       if( (opProperty & OPFLG_IN1)!=0 ){
780         assert( pOp->p1>0 );
781         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
782         assert( memIsValid(&aMem[pOp->p1]) );
783         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
784         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
785       }
786       if( (opProperty & OPFLG_IN2)!=0 ){
787         assert( pOp->p2>0 );
788         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
789         assert( memIsValid(&aMem[pOp->p2]) );
790         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
791         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
792       }
793       if( (opProperty & OPFLG_IN3)!=0 ){
794         assert( pOp->p3>0 );
795         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
796         assert( memIsValid(&aMem[pOp->p3]) );
797         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
798         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
799       }
800       if( (opProperty & OPFLG_OUT2)!=0 ){
801         assert( pOp->p2>0 );
802         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
803         memAboutToChange(p, &aMem[pOp->p2]);
804       }
805       if( (opProperty & OPFLG_OUT3)!=0 ){
806         assert( pOp->p3>0 );
807         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
808         memAboutToChange(p, &aMem[pOp->p3]);
809       }
810     }
811 #endif
812 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
813     pOrigOp = pOp;
814 #endif
815 
816     switch( pOp->opcode ){
817 
818 /*****************************************************************************
819 ** What follows is a massive switch statement where each case implements a
820 ** separate instruction in the virtual machine.  If we follow the usual
821 ** indentation conventions, each case should be indented by 6 spaces.  But
822 ** that is a lot of wasted space on the left margin.  So the code within
823 ** the switch statement will break with convention and be flush-left. Another
824 ** big comment (similar to this one) will mark the point in the code where
825 ** we transition back to normal indentation.
826 **
827 ** The formatting of each case is important.  The makefile for SQLite
828 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
829 ** file looking for lines that begin with "case OP_".  The opcodes.h files
830 ** will be filled with #defines that give unique integer values to each
831 ** opcode and the opcodes.c file is filled with an array of strings where
832 ** each string is the symbolic name for the corresponding opcode.  If the
833 ** case statement is followed by a comment of the form "/# same as ... #/"
834 ** that comment is used to determine the particular value of the opcode.
835 **
836 ** Other keywords in the comment that follows each case are used to
837 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
838 ** Keywords include: in1, in2, in3, out2, out3.  See
839 ** the mkopcodeh.awk script for additional information.
840 **
841 ** Documentation about VDBE opcodes is generated by scanning this file
842 ** for lines of that contain "Opcode:".  That line and all subsequent
843 ** comment lines are used in the generation of the opcode.html documentation
844 ** file.
845 **
846 ** SUMMARY:
847 **
848 **     Formatting is important to scripts that scan this file.
849 **     Do not deviate from the formatting style currently in use.
850 **
851 *****************************************************************************/
852 
853 /* Opcode:  Goto * P2 * * *
854 **
855 ** An unconditional jump to address P2.
856 ** The next instruction executed will be
857 ** the one at index P2 from the beginning of
858 ** the program.
859 **
860 ** The P1 parameter is not actually used by this opcode.  However, it
861 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
862 ** that this Goto is the bottom of a loop and that the lines from P2 down
863 ** to the current line should be indented for EXPLAIN output.
864 */
865 case OP_Goto: {             /* jump */
866 
867 #ifdef SQLITE_DEBUG
868   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
869   ** means we should really jump back to the preceeding OP_ReleaseReg
870   ** instruction. */
871   if( pOp->p5 ){
872     assert( pOp->p2 < (int)(pOp - aOp) );
873     assert( pOp->p2 > 1 );
874     pOp = &aOp[pOp->p2 - 2];
875     assert( pOp[1].opcode==OP_ReleaseReg );
876     goto check_for_interrupt;
877   }
878 #endif
879 
880 jump_to_p2_and_check_for_interrupt:
881   pOp = &aOp[pOp->p2 - 1];
882 
883   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
884   ** OP_VNext, or OP_SorterNext) all jump here upon
885   ** completion.  Check to see if sqlite3_interrupt() has been called
886   ** or if the progress callback needs to be invoked.
887   **
888   ** This code uses unstructured "goto" statements and does not look clean.
889   ** But that is not due to sloppy coding habits. The code is written this
890   ** way for performance, to avoid having to run the interrupt and progress
891   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
892   ** faster according to "valgrind --tool=cachegrind" */
893 check_for_interrupt:
894   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
895 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
896   /* Call the progress callback if it is configured and the required number
897   ** of VDBE ops have been executed (either since this invocation of
898   ** sqlite3VdbeExec() or since last time the progress callback was called).
899   ** If the progress callback returns non-zero, exit the virtual machine with
900   ** a return code SQLITE_ABORT.
901   */
902   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
903     assert( db->nProgressOps!=0 );
904     nProgressLimit += db->nProgressOps;
905     if( db->xProgress(db->pProgressArg) ){
906       nProgressLimit = 0xffffffff;
907       rc = SQLITE_INTERRUPT;
908       goto abort_due_to_error;
909     }
910   }
911 #endif
912 
913   break;
914 }
915 
916 /* Opcode:  Gosub P1 P2 * * *
917 **
918 ** Write the current address onto register P1
919 ** and then jump to address P2.
920 */
921 case OP_Gosub: {            /* jump */
922   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
923   pIn1 = &aMem[pOp->p1];
924   assert( VdbeMemDynamic(pIn1)==0 );
925   memAboutToChange(p, pIn1);
926   pIn1->flags = MEM_Int;
927   pIn1->u.i = (int)(pOp-aOp);
928   REGISTER_TRACE(pOp->p1, pIn1);
929 
930   /* Most jump operations do a goto to this spot in order to update
931   ** the pOp pointer. */
932 jump_to_p2:
933   pOp = &aOp[pOp->p2 - 1];
934   break;
935 }
936 
937 /* Opcode:  Return P1 * * * *
938 **
939 ** Jump to the next instruction after the address in register P1.  After
940 ** the jump, register P1 becomes undefined.
941 */
942 case OP_Return: {           /* in1 */
943   pIn1 = &aMem[pOp->p1];
944   assert( pIn1->flags==MEM_Int );
945   pOp = &aOp[pIn1->u.i];
946   pIn1->flags = MEM_Undefined;
947   break;
948 }
949 
950 /* Opcode: InitCoroutine P1 P2 P3 * *
951 **
952 ** Set up register P1 so that it will Yield to the coroutine
953 ** located at address P3.
954 **
955 ** If P2!=0 then the coroutine implementation immediately follows
956 ** this opcode.  So jump over the coroutine implementation to
957 ** address P2.
958 **
959 ** See also: EndCoroutine
960 */
961 case OP_InitCoroutine: {     /* jump */
962   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
963   assert( pOp->p2>=0 && pOp->p2<p->nOp );
964   assert( pOp->p3>=0 && pOp->p3<p->nOp );
965   pOut = &aMem[pOp->p1];
966   assert( !VdbeMemDynamic(pOut) );
967   pOut->u.i = pOp->p3 - 1;
968   pOut->flags = MEM_Int;
969   if( pOp->p2 ) goto jump_to_p2;
970   break;
971 }
972 
973 /* Opcode:  EndCoroutine P1 * * * *
974 **
975 ** The instruction at the address in register P1 is a Yield.
976 ** Jump to the P2 parameter of that Yield.
977 ** After the jump, register P1 becomes undefined.
978 **
979 ** See also: InitCoroutine
980 */
981 case OP_EndCoroutine: {           /* in1 */
982   VdbeOp *pCaller;
983   pIn1 = &aMem[pOp->p1];
984   assert( pIn1->flags==MEM_Int );
985   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
986   pCaller = &aOp[pIn1->u.i];
987   assert( pCaller->opcode==OP_Yield );
988   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
989   pOp = &aOp[pCaller->p2 - 1];
990   pIn1->flags = MEM_Undefined;
991   break;
992 }
993 
994 /* Opcode:  Yield P1 P2 * * *
995 **
996 ** Swap the program counter with the value in register P1.  This
997 ** has the effect of yielding to a coroutine.
998 **
999 ** If the coroutine that is launched by this instruction ends with
1000 ** Yield or Return then continue to the next instruction.  But if
1001 ** the coroutine launched by this instruction ends with
1002 ** EndCoroutine, then jump to P2 rather than continuing with the
1003 ** next instruction.
1004 **
1005 ** See also: InitCoroutine
1006 */
1007 case OP_Yield: {            /* in1, jump */
1008   int pcDest;
1009   pIn1 = &aMem[pOp->p1];
1010   assert( VdbeMemDynamic(pIn1)==0 );
1011   pIn1->flags = MEM_Int;
1012   pcDest = (int)pIn1->u.i;
1013   pIn1->u.i = (int)(pOp - aOp);
1014   REGISTER_TRACE(pOp->p1, pIn1);
1015   pOp = &aOp[pcDest];
1016   break;
1017 }
1018 
1019 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1020 ** Synopsis: if r[P3]=null halt
1021 **
1022 ** Check the value in register P3.  If it is NULL then Halt using
1023 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1024 ** value in register P3 is not NULL, then this routine is a no-op.
1025 ** The P5 parameter should be 1.
1026 */
1027 case OP_HaltIfNull: {      /* in3 */
1028   pIn3 = &aMem[pOp->p3];
1029 #ifdef SQLITE_DEBUG
1030   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1031 #endif
1032   if( (pIn3->flags & MEM_Null)==0 ) break;
1033   /* Fall through into OP_Halt */
1034 }
1035 
1036 /* Opcode:  Halt P1 P2 * P4 P5
1037 **
1038 ** Exit immediately.  All open cursors, etc are closed
1039 ** automatically.
1040 **
1041 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1042 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1043 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1044 ** whether or not to rollback the current transaction.  Do not rollback
1045 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1046 ** then back out all changes that have occurred during this execution of the
1047 ** VDBE, but do not rollback the transaction.
1048 **
1049 ** If P4 is not null then it is an error message string.
1050 **
1051 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1052 **
1053 **    0:  (no change)
1054 **    1:  NOT NULL contraint failed: P4
1055 **    2:  UNIQUE constraint failed: P4
1056 **    3:  CHECK constraint failed: P4
1057 **    4:  FOREIGN KEY constraint failed: P4
1058 **
1059 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1060 ** omitted.
1061 **
1062 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1063 ** every program.  So a jump past the last instruction of the program
1064 ** is the same as executing Halt.
1065 */
1066 case OP_Halt: {
1067   VdbeFrame *pFrame;
1068   int pcx;
1069 
1070   pcx = (int)(pOp - aOp);
1071 #ifdef SQLITE_DEBUG
1072   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1073 #endif
1074   if( pOp->p1==SQLITE_OK && p->pFrame ){
1075     /* Halt the sub-program. Return control to the parent frame. */
1076     pFrame = p->pFrame;
1077     p->pFrame = pFrame->pParent;
1078     p->nFrame--;
1079     sqlite3VdbeSetChanges(db, p->nChange);
1080     pcx = sqlite3VdbeFrameRestore(pFrame);
1081     if( pOp->p2==OE_Ignore ){
1082       /* Instruction pcx is the OP_Program that invoked the sub-program
1083       ** currently being halted. If the p2 instruction of this OP_Halt
1084       ** instruction is set to OE_Ignore, then the sub-program is throwing
1085       ** an IGNORE exception. In this case jump to the address specified
1086       ** as the p2 of the calling OP_Program.  */
1087       pcx = p->aOp[pcx].p2-1;
1088     }
1089     aOp = p->aOp;
1090     aMem = p->aMem;
1091     pOp = &aOp[pcx];
1092     break;
1093   }
1094   p->rc = pOp->p1;
1095   p->errorAction = (u8)pOp->p2;
1096   p->pc = pcx;
1097   assert( pOp->p5<=4 );
1098   if( p->rc ){
1099     if( pOp->p5 ){
1100       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1101                                              "FOREIGN KEY" };
1102       testcase( pOp->p5==1 );
1103       testcase( pOp->p5==2 );
1104       testcase( pOp->p5==3 );
1105       testcase( pOp->p5==4 );
1106       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1107       if( pOp->p4.z ){
1108         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1109       }
1110     }else{
1111       sqlite3VdbeError(p, "%s", pOp->p4.z);
1112     }
1113     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1114   }
1115   rc = sqlite3VdbeHalt(p);
1116   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1117   if( rc==SQLITE_BUSY ){
1118     p->rc = SQLITE_BUSY;
1119   }else{
1120     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1121     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1122     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1123   }
1124   goto vdbe_return;
1125 }
1126 
1127 /* Opcode: Integer P1 P2 * * *
1128 ** Synopsis: r[P2]=P1
1129 **
1130 ** The 32-bit integer value P1 is written into register P2.
1131 */
1132 case OP_Integer: {         /* out2 */
1133   pOut = out2Prerelease(p, pOp);
1134   pOut->u.i = pOp->p1;
1135   break;
1136 }
1137 
1138 /* Opcode: Int64 * P2 * P4 *
1139 ** Synopsis: r[P2]=P4
1140 **
1141 ** P4 is a pointer to a 64-bit integer value.
1142 ** Write that value into register P2.
1143 */
1144 case OP_Int64: {           /* out2 */
1145   pOut = out2Prerelease(p, pOp);
1146   assert( pOp->p4.pI64!=0 );
1147   pOut->u.i = *pOp->p4.pI64;
1148   break;
1149 }
1150 
1151 #ifndef SQLITE_OMIT_FLOATING_POINT
1152 /* Opcode: Real * P2 * P4 *
1153 ** Synopsis: r[P2]=P4
1154 **
1155 ** P4 is a pointer to a 64-bit floating point value.
1156 ** Write that value into register P2.
1157 */
1158 case OP_Real: {            /* same as TK_FLOAT, out2 */
1159   pOut = out2Prerelease(p, pOp);
1160   pOut->flags = MEM_Real;
1161   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1162   pOut->u.r = *pOp->p4.pReal;
1163   break;
1164 }
1165 #endif
1166 
1167 /* Opcode: String8 * P2 * P4 *
1168 ** Synopsis: r[P2]='P4'
1169 **
1170 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1171 ** into a String opcode before it is executed for the first time.  During
1172 ** this transformation, the length of string P4 is computed and stored
1173 ** as the P1 parameter.
1174 */
1175 case OP_String8: {         /* same as TK_STRING, out2 */
1176   assert( pOp->p4.z!=0 );
1177   pOut = out2Prerelease(p, pOp);
1178   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1179 
1180 #ifndef SQLITE_OMIT_UTF16
1181   if( encoding!=SQLITE_UTF8 ){
1182     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1183     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1184     if( rc ) goto too_big;
1185     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1186     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1187     assert( VdbeMemDynamic(pOut)==0 );
1188     pOut->szMalloc = 0;
1189     pOut->flags |= MEM_Static;
1190     if( pOp->p4type==P4_DYNAMIC ){
1191       sqlite3DbFree(db, pOp->p4.z);
1192     }
1193     pOp->p4type = P4_DYNAMIC;
1194     pOp->p4.z = pOut->z;
1195     pOp->p1 = pOut->n;
1196   }
1197 #endif
1198   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1199     goto too_big;
1200   }
1201   pOp->opcode = OP_String;
1202   assert( rc==SQLITE_OK );
1203   /* Fall through to the next case, OP_String */
1204 }
1205 
1206 /* Opcode: String P1 P2 P3 P4 P5
1207 ** Synopsis: r[P2]='P4' (len=P1)
1208 **
1209 ** The string value P4 of length P1 (bytes) is stored in register P2.
1210 **
1211 ** If P3 is not zero and the content of register P3 is equal to P5, then
1212 ** the datatype of the register P2 is converted to BLOB.  The content is
1213 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1214 ** of a string, as if it had been CAST.  In other words:
1215 **
1216 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1217 */
1218 case OP_String: {          /* out2 */
1219   assert( pOp->p4.z!=0 );
1220   pOut = out2Prerelease(p, pOp);
1221   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1222   pOut->z = pOp->p4.z;
1223   pOut->n = pOp->p1;
1224   pOut->enc = encoding;
1225   UPDATE_MAX_BLOBSIZE(pOut);
1226 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1227   if( pOp->p3>0 ){
1228     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1229     pIn3 = &aMem[pOp->p3];
1230     assert( pIn3->flags & MEM_Int );
1231     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1232   }
1233 #endif
1234   break;
1235 }
1236 
1237 /* Opcode: Null P1 P2 P3 * *
1238 ** Synopsis: r[P2..P3]=NULL
1239 **
1240 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1241 ** NULL into register P3 and every register in between P2 and P3.  If P3
1242 ** is less than P2 (typically P3 is zero) then only register P2 is
1243 ** set to NULL.
1244 **
1245 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1246 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1247 ** OP_Ne or OP_Eq.
1248 */
1249 case OP_Null: {           /* out2 */
1250   int cnt;
1251   u16 nullFlag;
1252   pOut = out2Prerelease(p, pOp);
1253   cnt = pOp->p3-pOp->p2;
1254   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1255   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1256   pOut->n = 0;
1257 #ifdef SQLITE_DEBUG
1258   pOut->uTemp = 0;
1259 #endif
1260   while( cnt>0 ){
1261     pOut++;
1262     memAboutToChange(p, pOut);
1263     sqlite3VdbeMemSetNull(pOut);
1264     pOut->flags = nullFlag;
1265     pOut->n = 0;
1266     cnt--;
1267   }
1268   break;
1269 }
1270 
1271 /* Opcode: SoftNull P1 * * * *
1272 ** Synopsis: r[P1]=NULL
1273 **
1274 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1275 ** instruction, but do not free any string or blob memory associated with
1276 ** the register, so that if the value was a string or blob that was
1277 ** previously copied using OP_SCopy, the copies will continue to be valid.
1278 */
1279 case OP_SoftNull: {
1280   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1281   pOut = &aMem[pOp->p1];
1282   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1283   break;
1284 }
1285 
1286 /* Opcode: Blob P1 P2 * P4 *
1287 ** Synopsis: r[P2]=P4 (len=P1)
1288 **
1289 ** P4 points to a blob of data P1 bytes long.  Store this
1290 ** blob in register P2.
1291 */
1292 case OP_Blob: {                /* out2 */
1293   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1294   pOut = out2Prerelease(p, pOp);
1295   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1296   pOut->enc = encoding;
1297   UPDATE_MAX_BLOBSIZE(pOut);
1298   break;
1299 }
1300 
1301 /* Opcode: Variable P1 P2 * P4 *
1302 ** Synopsis: r[P2]=parameter(P1,P4)
1303 **
1304 ** Transfer the values of bound parameter P1 into register P2
1305 **
1306 ** If the parameter is named, then its name appears in P4.
1307 ** The P4 value is used by sqlite3_bind_parameter_name().
1308 */
1309 case OP_Variable: {            /* out2 */
1310   Mem *pVar;       /* Value being transferred */
1311 
1312   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1313   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1314   pVar = &p->aVar[pOp->p1 - 1];
1315   if( sqlite3VdbeMemTooBig(pVar) ){
1316     goto too_big;
1317   }
1318   pOut = &aMem[pOp->p2];
1319   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1320   memcpy(pOut, pVar, MEMCELLSIZE);
1321   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1322   pOut->flags |= MEM_Static|MEM_FromBind;
1323   UPDATE_MAX_BLOBSIZE(pOut);
1324   break;
1325 }
1326 
1327 /* Opcode: Move P1 P2 P3 * *
1328 ** Synopsis: r[P2@P3]=r[P1@P3]
1329 **
1330 ** Move the P3 values in register P1..P1+P3-1 over into
1331 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1332 ** left holding a NULL.  It is an error for register ranges
1333 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1334 ** for P3 to be less than 1.
1335 */
1336 case OP_Move: {
1337   int n;           /* Number of registers left to copy */
1338   int p1;          /* Register to copy from */
1339   int p2;          /* Register to copy to */
1340 
1341   n = pOp->p3;
1342   p1 = pOp->p1;
1343   p2 = pOp->p2;
1344   assert( n>0 && p1>0 && p2>0 );
1345   assert( p1+n<=p2 || p2+n<=p1 );
1346 
1347   pIn1 = &aMem[p1];
1348   pOut = &aMem[p2];
1349   do{
1350     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1351     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1352     assert( memIsValid(pIn1) );
1353     memAboutToChange(p, pOut);
1354     sqlite3VdbeMemMove(pOut, pIn1);
1355 #ifdef SQLITE_DEBUG
1356     pIn1->pScopyFrom = 0;
1357     { int i;
1358       for(i=1; i<p->nMem; i++){
1359         if( aMem[i].pScopyFrom==pIn1 ){
1360           aMem[i].pScopyFrom = pOut;
1361         }
1362       }
1363     }
1364 #endif
1365     Deephemeralize(pOut);
1366     REGISTER_TRACE(p2++, pOut);
1367     pIn1++;
1368     pOut++;
1369   }while( --n );
1370   break;
1371 }
1372 
1373 /* Opcode: Copy P1 P2 P3 * *
1374 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1375 **
1376 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1377 **
1378 ** This instruction makes a deep copy of the value.  A duplicate
1379 ** is made of any string or blob constant.  See also OP_SCopy.
1380 */
1381 case OP_Copy: {
1382   int n;
1383 
1384   n = pOp->p3;
1385   pIn1 = &aMem[pOp->p1];
1386   pOut = &aMem[pOp->p2];
1387   assert( pOut!=pIn1 );
1388   while( 1 ){
1389     memAboutToChange(p, pOut);
1390     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1391     Deephemeralize(pOut);
1392 #ifdef SQLITE_DEBUG
1393     pOut->pScopyFrom = 0;
1394 #endif
1395     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1396     if( (n--)==0 ) break;
1397     pOut++;
1398     pIn1++;
1399   }
1400   break;
1401 }
1402 
1403 /* Opcode: SCopy P1 P2 * * *
1404 ** Synopsis: r[P2]=r[P1]
1405 **
1406 ** Make a shallow copy of register P1 into register P2.
1407 **
1408 ** This instruction makes a shallow copy of the value.  If the value
1409 ** is a string or blob, then the copy is only a pointer to the
1410 ** original and hence if the original changes so will the copy.
1411 ** Worse, if the original is deallocated, the copy becomes invalid.
1412 ** Thus the program must guarantee that the original will not change
1413 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1414 ** copy.
1415 */
1416 case OP_SCopy: {            /* out2 */
1417   pIn1 = &aMem[pOp->p1];
1418   pOut = &aMem[pOp->p2];
1419   assert( pOut!=pIn1 );
1420   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1421 #ifdef SQLITE_DEBUG
1422   pOut->pScopyFrom = pIn1;
1423   pOut->mScopyFlags = pIn1->flags;
1424 #endif
1425   break;
1426 }
1427 
1428 /* Opcode: IntCopy P1 P2 * * *
1429 ** Synopsis: r[P2]=r[P1]
1430 **
1431 ** Transfer the integer value held in register P1 into register P2.
1432 **
1433 ** This is an optimized version of SCopy that works only for integer
1434 ** values.
1435 */
1436 case OP_IntCopy: {            /* out2 */
1437   pIn1 = &aMem[pOp->p1];
1438   assert( (pIn1->flags & MEM_Int)!=0 );
1439   pOut = &aMem[pOp->p2];
1440   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1441   break;
1442 }
1443 
1444 /* Opcode: ResultRow P1 P2 * * *
1445 ** Synopsis: output=r[P1@P2]
1446 **
1447 ** The registers P1 through P1+P2-1 contain a single row of
1448 ** results. This opcode causes the sqlite3_step() call to terminate
1449 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1450 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1451 ** the result row.
1452 */
1453 case OP_ResultRow: {
1454   Mem *pMem;
1455   int i;
1456   assert( p->nResColumn==pOp->p2 );
1457   assert( pOp->p1>0 );
1458   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1459 
1460   /* If this statement has violated immediate foreign key constraints, do
1461   ** not return the number of rows modified. And do not RELEASE the statement
1462   ** transaction. It needs to be rolled back.  */
1463   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1464     assert( db->flags&SQLITE_CountRows );
1465     assert( p->usesStmtJournal );
1466     goto abort_due_to_error;
1467   }
1468 
1469   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1470   ** DML statements invoke this opcode to return the number of rows
1471   ** modified to the user. This is the only way that a VM that
1472   ** opens a statement transaction may invoke this opcode.
1473   **
1474   ** In case this is such a statement, close any statement transaction
1475   ** opened by this VM before returning control to the user. This is to
1476   ** ensure that statement-transactions are always nested, not overlapping.
1477   ** If the open statement-transaction is not closed here, then the user
1478   ** may step another VM that opens its own statement transaction. This
1479   ** may lead to overlapping statement transactions.
1480   **
1481   ** The statement transaction is never a top-level transaction.  Hence
1482   ** the RELEASE call below can never fail.
1483   */
1484   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1485   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1486   assert( rc==SQLITE_OK );
1487 
1488   /* Invalidate all ephemeral cursor row caches */
1489   p->cacheCtr = (p->cacheCtr + 2)|1;
1490 
1491   /* Make sure the results of the current row are \000 terminated
1492   ** and have an assigned type.  The results are de-ephemeralized as
1493   ** a side effect.
1494   */
1495   pMem = p->pResultSet = &aMem[pOp->p1];
1496   for(i=0; i<pOp->p2; i++){
1497     assert( memIsValid(&pMem[i]) );
1498     Deephemeralize(&pMem[i]);
1499     assert( (pMem[i].flags & MEM_Ephem)==0
1500             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1501     sqlite3VdbeMemNulTerminate(&pMem[i]);
1502     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1503 #ifdef SQLITE_DEBUG
1504     /* The registers in the result will not be used again when the
1505     ** prepared statement restarts.  This is because sqlite3_column()
1506     ** APIs might have caused type conversions of made other changes to
1507     ** the register values.  Therefore, we can go ahead and break any
1508     ** OP_SCopy dependencies. */
1509     pMem[i].pScopyFrom = 0;
1510 #endif
1511   }
1512   if( db->mallocFailed ) goto no_mem;
1513 
1514   if( db->mTrace & SQLITE_TRACE_ROW ){
1515     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1516   }
1517 
1518 
1519   /* Return SQLITE_ROW
1520   */
1521   p->pc = (int)(pOp - aOp) + 1;
1522   rc = SQLITE_ROW;
1523   goto vdbe_return;
1524 }
1525 
1526 /* Opcode: Concat P1 P2 P3 * *
1527 ** Synopsis: r[P3]=r[P2]+r[P1]
1528 **
1529 ** Add the text in register P1 onto the end of the text in
1530 ** register P2 and store the result in register P3.
1531 ** If either the P1 or P2 text are NULL then store NULL in P3.
1532 **
1533 **   P3 = P2 || P1
1534 **
1535 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1536 ** if P3 is the same register as P2, the implementation is able
1537 ** to avoid a memcpy().
1538 */
1539 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1540   i64 nByte;          /* Total size of the output string or blob */
1541   u16 flags1;         /* Initial flags for P1 */
1542   u16 flags2;         /* Initial flags for P2 */
1543 
1544   pIn1 = &aMem[pOp->p1];
1545   pIn2 = &aMem[pOp->p2];
1546   pOut = &aMem[pOp->p3];
1547   testcase( pOut==pIn2 );
1548   assert( pIn1!=pOut );
1549   flags1 = pIn1->flags;
1550   testcase( flags1 & MEM_Null );
1551   testcase( pIn2->flags & MEM_Null );
1552   if( (flags1 | pIn2->flags) & MEM_Null ){
1553     sqlite3VdbeMemSetNull(pOut);
1554     break;
1555   }
1556   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1557     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1558     flags1 = pIn1->flags & ~MEM_Str;
1559   }else if( (flags1 & MEM_Zero)!=0 ){
1560     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1561     flags1 = pIn1->flags & ~MEM_Str;
1562   }
1563   flags2 = pIn2->flags;
1564   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1565     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1566     flags2 = pIn2->flags & ~MEM_Str;
1567   }else if( (flags2 & MEM_Zero)!=0 ){
1568     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1569     flags2 = pIn2->flags & ~MEM_Str;
1570   }
1571   nByte = pIn1->n + pIn2->n;
1572   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1573     goto too_big;
1574   }
1575   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1576     goto no_mem;
1577   }
1578   MemSetTypeFlag(pOut, MEM_Str);
1579   if( pOut!=pIn2 ){
1580     memcpy(pOut->z, pIn2->z, pIn2->n);
1581     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1582     pIn2->flags = flags2;
1583   }
1584   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1585   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1586   pIn1->flags = flags1;
1587   pOut->z[nByte]=0;
1588   pOut->z[nByte+1] = 0;
1589   pOut->z[nByte+2] = 0;
1590   pOut->flags |= MEM_Term;
1591   pOut->n = (int)nByte;
1592   pOut->enc = encoding;
1593   UPDATE_MAX_BLOBSIZE(pOut);
1594   break;
1595 }
1596 
1597 /* Opcode: Add P1 P2 P3 * *
1598 ** Synopsis: r[P3]=r[P1]+r[P2]
1599 **
1600 ** Add the value in register P1 to the value in register P2
1601 ** and store the result in register P3.
1602 ** If either input is NULL, the result is NULL.
1603 */
1604 /* Opcode: Multiply P1 P2 P3 * *
1605 ** Synopsis: r[P3]=r[P1]*r[P2]
1606 **
1607 **
1608 ** Multiply the value in register P1 by the value in register P2
1609 ** and store the result in register P3.
1610 ** If either input is NULL, the result is NULL.
1611 */
1612 /* Opcode: Subtract P1 P2 P3 * *
1613 ** Synopsis: r[P3]=r[P2]-r[P1]
1614 **
1615 ** Subtract the value in register P1 from the value in register P2
1616 ** and store the result in register P3.
1617 ** If either input is NULL, the result is NULL.
1618 */
1619 /* Opcode: Divide P1 P2 P3 * *
1620 ** Synopsis: r[P3]=r[P2]/r[P1]
1621 **
1622 ** Divide the value in register P1 by the value in register P2
1623 ** and store the result in register P3 (P3=P2/P1). If the value in
1624 ** register P1 is zero, then the result is NULL. If either input is
1625 ** NULL, the result is NULL.
1626 */
1627 /* Opcode: Remainder P1 P2 P3 * *
1628 ** Synopsis: r[P3]=r[P2]%r[P1]
1629 **
1630 ** Compute the remainder after integer register P2 is divided by
1631 ** register P1 and store the result in register P3.
1632 ** If the value in register P1 is zero the result is NULL.
1633 ** If either operand is NULL, the result is NULL.
1634 */
1635 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1636 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1637 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1638 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1639 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1640   u16 flags;      /* Combined MEM_* flags from both inputs */
1641   u16 type1;      /* Numeric type of left operand */
1642   u16 type2;      /* Numeric type of right operand */
1643   i64 iA;         /* Integer value of left operand */
1644   i64 iB;         /* Integer value of right operand */
1645   double rA;      /* Real value of left operand */
1646   double rB;      /* Real value of right operand */
1647 
1648   pIn1 = &aMem[pOp->p1];
1649   type1 = numericType(pIn1);
1650   pIn2 = &aMem[pOp->p2];
1651   type2 = numericType(pIn2);
1652   pOut = &aMem[pOp->p3];
1653   flags = pIn1->flags | pIn2->flags;
1654   if( (type1 & type2 & MEM_Int)!=0 ){
1655     iA = pIn1->u.i;
1656     iB = pIn2->u.i;
1657     switch( pOp->opcode ){
1658       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1659       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1660       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1661       case OP_Divide: {
1662         if( iA==0 ) goto arithmetic_result_is_null;
1663         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1664         iB /= iA;
1665         break;
1666       }
1667       default: {
1668         if( iA==0 ) goto arithmetic_result_is_null;
1669         if( iA==-1 ) iA = 1;
1670         iB %= iA;
1671         break;
1672       }
1673     }
1674     pOut->u.i = iB;
1675     MemSetTypeFlag(pOut, MEM_Int);
1676   }else if( (flags & MEM_Null)!=0 ){
1677     goto arithmetic_result_is_null;
1678   }else{
1679 fp_math:
1680     rA = sqlite3VdbeRealValue(pIn1);
1681     rB = sqlite3VdbeRealValue(pIn2);
1682     switch( pOp->opcode ){
1683       case OP_Add:         rB += rA;       break;
1684       case OP_Subtract:    rB -= rA;       break;
1685       case OP_Multiply:    rB *= rA;       break;
1686       case OP_Divide: {
1687         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1688         if( rA==(double)0 ) goto arithmetic_result_is_null;
1689         rB /= rA;
1690         break;
1691       }
1692       default: {
1693         iA = sqlite3VdbeIntValue(pIn1);
1694         iB = sqlite3VdbeIntValue(pIn2);
1695         if( iA==0 ) goto arithmetic_result_is_null;
1696         if( iA==-1 ) iA = 1;
1697         rB = (double)(iB % iA);
1698         break;
1699       }
1700     }
1701 #ifdef SQLITE_OMIT_FLOATING_POINT
1702     pOut->u.i = rB;
1703     MemSetTypeFlag(pOut, MEM_Int);
1704 #else
1705     if( sqlite3IsNaN(rB) ){
1706       goto arithmetic_result_is_null;
1707     }
1708     pOut->u.r = rB;
1709     MemSetTypeFlag(pOut, MEM_Real);
1710 #endif
1711   }
1712   break;
1713 
1714 arithmetic_result_is_null:
1715   sqlite3VdbeMemSetNull(pOut);
1716   break;
1717 }
1718 
1719 /* Opcode: CollSeq P1 * * P4
1720 **
1721 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1722 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1723 ** be returned. This is used by the built-in min(), max() and nullif()
1724 ** functions.
1725 **
1726 ** If P1 is not zero, then it is a register that a subsequent min() or
1727 ** max() aggregate will set to 1 if the current row is not the minimum or
1728 ** maximum.  The P1 register is initialized to 0 by this instruction.
1729 **
1730 ** The interface used by the implementation of the aforementioned functions
1731 ** to retrieve the collation sequence set by this opcode is not available
1732 ** publicly.  Only built-in functions have access to this feature.
1733 */
1734 case OP_CollSeq: {
1735   assert( pOp->p4type==P4_COLLSEQ );
1736   if( pOp->p1 ){
1737     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1738   }
1739   break;
1740 }
1741 
1742 /* Opcode: BitAnd P1 P2 P3 * *
1743 ** Synopsis: r[P3]=r[P1]&r[P2]
1744 **
1745 ** Take the bit-wise AND of the values in register P1 and P2 and
1746 ** store the result in register P3.
1747 ** If either input is NULL, the result is NULL.
1748 */
1749 /* Opcode: BitOr P1 P2 P3 * *
1750 ** Synopsis: r[P3]=r[P1]|r[P2]
1751 **
1752 ** Take the bit-wise OR of the values in register P1 and P2 and
1753 ** store the result in register P3.
1754 ** If either input is NULL, the result is NULL.
1755 */
1756 /* Opcode: ShiftLeft P1 P2 P3 * *
1757 ** Synopsis: r[P3]=r[P2]<<r[P1]
1758 **
1759 ** Shift the integer value in register P2 to the left by the
1760 ** number of bits specified by the integer in register P1.
1761 ** Store the result in register P3.
1762 ** If either input is NULL, the result is NULL.
1763 */
1764 /* Opcode: ShiftRight P1 P2 P3 * *
1765 ** Synopsis: r[P3]=r[P2]>>r[P1]
1766 **
1767 ** Shift the integer value in register P2 to the right by the
1768 ** number of bits specified by the integer in register P1.
1769 ** Store the result in register P3.
1770 ** If either input is NULL, the result is NULL.
1771 */
1772 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1773 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1774 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1775 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1776   i64 iA;
1777   u64 uA;
1778   i64 iB;
1779   u8 op;
1780 
1781   pIn1 = &aMem[pOp->p1];
1782   pIn2 = &aMem[pOp->p2];
1783   pOut = &aMem[pOp->p3];
1784   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1785     sqlite3VdbeMemSetNull(pOut);
1786     break;
1787   }
1788   iA = sqlite3VdbeIntValue(pIn2);
1789   iB = sqlite3VdbeIntValue(pIn1);
1790   op = pOp->opcode;
1791   if( op==OP_BitAnd ){
1792     iA &= iB;
1793   }else if( op==OP_BitOr ){
1794     iA |= iB;
1795   }else if( iB!=0 ){
1796     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1797 
1798     /* If shifting by a negative amount, shift in the other direction */
1799     if( iB<0 ){
1800       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1801       op = 2*OP_ShiftLeft + 1 - op;
1802       iB = iB>(-64) ? -iB : 64;
1803     }
1804 
1805     if( iB>=64 ){
1806       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1807     }else{
1808       memcpy(&uA, &iA, sizeof(uA));
1809       if( op==OP_ShiftLeft ){
1810         uA <<= iB;
1811       }else{
1812         uA >>= iB;
1813         /* Sign-extend on a right shift of a negative number */
1814         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1815       }
1816       memcpy(&iA, &uA, sizeof(iA));
1817     }
1818   }
1819   pOut->u.i = iA;
1820   MemSetTypeFlag(pOut, MEM_Int);
1821   break;
1822 }
1823 
1824 /* Opcode: AddImm  P1 P2 * * *
1825 ** Synopsis: r[P1]=r[P1]+P2
1826 **
1827 ** Add the constant P2 to the value in register P1.
1828 ** The result is always an integer.
1829 **
1830 ** To force any register to be an integer, just add 0.
1831 */
1832 case OP_AddImm: {            /* in1 */
1833   pIn1 = &aMem[pOp->p1];
1834   memAboutToChange(p, pIn1);
1835   sqlite3VdbeMemIntegerify(pIn1);
1836   pIn1->u.i += pOp->p2;
1837   break;
1838 }
1839 
1840 /* Opcode: MustBeInt P1 P2 * * *
1841 **
1842 ** Force the value in register P1 to be an integer.  If the value
1843 ** in P1 is not an integer and cannot be converted into an integer
1844 ** without data loss, then jump immediately to P2, or if P2==0
1845 ** raise an SQLITE_MISMATCH exception.
1846 */
1847 case OP_MustBeInt: {            /* jump, in1 */
1848   pIn1 = &aMem[pOp->p1];
1849   if( (pIn1->flags & MEM_Int)==0 ){
1850     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1851     if( (pIn1->flags & MEM_Int)==0 ){
1852       VdbeBranchTaken(1, 2);
1853       if( pOp->p2==0 ){
1854         rc = SQLITE_MISMATCH;
1855         goto abort_due_to_error;
1856       }else{
1857         goto jump_to_p2;
1858       }
1859     }
1860   }
1861   VdbeBranchTaken(0, 2);
1862   MemSetTypeFlag(pIn1, MEM_Int);
1863   break;
1864 }
1865 
1866 #ifndef SQLITE_OMIT_FLOATING_POINT
1867 /* Opcode: RealAffinity P1 * * * *
1868 **
1869 ** If register P1 holds an integer convert it to a real value.
1870 **
1871 ** This opcode is used when extracting information from a column that
1872 ** has REAL affinity.  Such column values may still be stored as
1873 ** integers, for space efficiency, but after extraction we want them
1874 ** to have only a real value.
1875 */
1876 case OP_RealAffinity: {                  /* in1 */
1877   pIn1 = &aMem[pOp->p1];
1878   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1879     testcase( pIn1->flags & MEM_Int );
1880     testcase( pIn1->flags & MEM_IntReal );
1881     sqlite3VdbeMemRealify(pIn1);
1882     REGISTER_TRACE(pOp->p1, pIn1);
1883   }
1884   break;
1885 }
1886 #endif
1887 
1888 #ifndef SQLITE_OMIT_CAST
1889 /* Opcode: Cast P1 P2 * * *
1890 ** Synopsis: affinity(r[P1])
1891 **
1892 ** Force the value in register P1 to be the type defined by P2.
1893 **
1894 ** <ul>
1895 ** <li> P2=='A' &rarr; BLOB
1896 ** <li> P2=='B' &rarr; TEXT
1897 ** <li> P2=='C' &rarr; NUMERIC
1898 ** <li> P2=='D' &rarr; INTEGER
1899 ** <li> P2=='E' &rarr; REAL
1900 ** </ul>
1901 **
1902 ** A NULL value is not changed by this routine.  It remains NULL.
1903 */
1904 case OP_Cast: {                  /* in1 */
1905   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1906   testcase( pOp->p2==SQLITE_AFF_TEXT );
1907   testcase( pOp->p2==SQLITE_AFF_BLOB );
1908   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1909   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1910   testcase( pOp->p2==SQLITE_AFF_REAL );
1911   pIn1 = &aMem[pOp->p1];
1912   memAboutToChange(p, pIn1);
1913   rc = ExpandBlob(pIn1);
1914   if( rc ) goto abort_due_to_error;
1915   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1916   if( rc ) goto abort_due_to_error;
1917   UPDATE_MAX_BLOBSIZE(pIn1);
1918   REGISTER_TRACE(pOp->p1, pIn1);
1919   break;
1920 }
1921 #endif /* SQLITE_OMIT_CAST */
1922 
1923 /* Opcode: Eq P1 P2 P3 P4 P5
1924 ** Synopsis: IF r[P3]==r[P1]
1925 **
1926 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1927 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1928 ** store the result of comparison in register P2.
1929 **
1930 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1931 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1932 ** to coerce both inputs according to this affinity before the
1933 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1934 ** affinity is used. Note that the affinity conversions are stored
1935 ** back into the input registers P1 and P3.  So this opcode can cause
1936 ** persistent changes to registers P1 and P3.
1937 **
1938 ** Once any conversions have taken place, and neither value is NULL,
1939 ** the values are compared. If both values are blobs then memcmp() is
1940 ** used to determine the results of the comparison.  If both values
1941 ** are text, then the appropriate collating function specified in
1942 ** P4 is used to do the comparison.  If P4 is not specified then
1943 ** memcmp() is used to compare text string.  If both values are
1944 ** numeric, then a numeric comparison is used. If the two values
1945 ** are of different types, then numbers are considered less than
1946 ** strings and strings are considered less than blobs.
1947 **
1948 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1949 ** true or false and is never NULL.  If both operands are NULL then the result
1950 ** of comparison is true.  If either operand is NULL then the result is false.
1951 ** If neither operand is NULL the result is the same as it would be if
1952 ** the SQLITE_NULLEQ flag were omitted from P5.
1953 **
1954 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1955 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1956 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1957 */
1958 /* Opcode: Ne P1 P2 P3 P4 P5
1959 ** Synopsis: IF r[P3]!=r[P1]
1960 **
1961 ** This works just like the Eq opcode except that the jump is taken if
1962 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1963 ** additional information.
1964 **
1965 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1966 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1967 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1968 */
1969 /* Opcode: Lt P1 P2 P3 P4 P5
1970 ** Synopsis: IF r[P3]<r[P1]
1971 **
1972 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1973 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1974 ** the result of comparison (0 or 1 or NULL) into register P2.
1975 **
1976 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1977 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1978 ** bit is clear then fall through if either operand is NULL.
1979 **
1980 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1981 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1982 ** to coerce both inputs according to this affinity before the
1983 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1984 ** affinity is used. Note that the affinity conversions are stored
1985 ** back into the input registers P1 and P3.  So this opcode can cause
1986 ** persistent changes to registers P1 and P3.
1987 **
1988 ** Once any conversions have taken place, and neither value is NULL,
1989 ** the values are compared. If both values are blobs then memcmp() is
1990 ** used to determine the results of the comparison.  If both values
1991 ** are text, then the appropriate collating function specified in
1992 ** P4 is  used to do the comparison.  If P4 is not specified then
1993 ** memcmp() is used to compare text string.  If both values are
1994 ** numeric, then a numeric comparison is used. If the two values
1995 ** are of different types, then numbers are considered less than
1996 ** strings and strings are considered less than blobs.
1997 */
1998 /* Opcode: Le P1 P2 P3 P4 P5
1999 ** Synopsis: IF r[P3]<=r[P1]
2000 **
2001 ** This works just like the Lt opcode except that the jump is taken if
2002 ** the content of register P3 is less than or equal to the content of
2003 ** register P1.  See the Lt opcode for additional information.
2004 */
2005 /* Opcode: Gt P1 P2 P3 P4 P5
2006 ** Synopsis: IF r[P3]>r[P1]
2007 **
2008 ** This works just like the Lt opcode except that the jump is taken if
2009 ** the content of register P3 is greater than the content of
2010 ** register P1.  See the Lt opcode for additional information.
2011 */
2012 /* Opcode: Ge P1 P2 P3 P4 P5
2013 ** Synopsis: IF r[P3]>=r[P1]
2014 **
2015 ** This works just like the Lt opcode except that the jump is taken if
2016 ** the content of register P3 is greater than or equal to the content of
2017 ** register P1.  See the Lt opcode for additional information.
2018 */
2019 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2020 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2021 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2022 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2023 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2024 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2025   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2026   char affinity;      /* Affinity to use for comparison */
2027   u16 flags1;         /* Copy of initial value of pIn1->flags */
2028   u16 flags3;         /* Copy of initial value of pIn3->flags */
2029 
2030   pIn1 = &aMem[pOp->p1];
2031   pIn3 = &aMem[pOp->p3];
2032   flags1 = pIn1->flags;
2033   flags3 = pIn3->flags;
2034   if( (flags1 | flags3)&MEM_Null ){
2035     /* One or both operands are NULL */
2036     if( pOp->p5 & SQLITE_NULLEQ ){
2037       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2038       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2039       ** or not both operands are null.
2040       */
2041       assert( (flags1 & MEM_Cleared)==0 );
2042       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2043       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2044       if( (flags1&flags3&MEM_Null)!=0
2045        && (flags3&MEM_Cleared)==0
2046       ){
2047         res = 0;  /* Operands are equal */
2048       }else{
2049         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2050       }
2051     }else{
2052       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2053       ** then the result is always NULL.
2054       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2055       */
2056       if( pOp->p5 & SQLITE_STOREP2 ){
2057         pOut = &aMem[pOp->p2];
2058         iCompare = 1;    /* Operands are not equal */
2059         memAboutToChange(p, pOut);
2060         MemSetTypeFlag(pOut, MEM_Null);
2061         REGISTER_TRACE(pOp->p2, pOut);
2062       }else{
2063         VdbeBranchTaken(2,3);
2064         if( pOp->p5 & SQLITE_JUMPIFNULL ){
2065           goto jump_to_p2;
2066         }
2067       }
2068       break;
2069     }
2070   }else{
2071     /* Neither operand is NULL.  Do a comparison. */
2072     affinity = pOp->p5 & SQLITE_AFF_MASK;
2073     if( affinity>=SQLITE_AFF_NUMERIC ){
2074       if( (flags1 | flags3)&MEM_Str ){
2075         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2076           applyNumericAffinity(pIn1,0);
2077           assert( flags3==pIn3->flags );
2078           flags3 = pIn3->flags;
2079         }
2080         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2081           applyNumericAffinity(pIn3,0);
2082         }
2083       }
2084       /* Handle the common case of integer comparison here, as an
2085       ** optimization, to avoid a call to sqlite3MemCompare() */
2086       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2087         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2088         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2089         res = 0;
2090         goto compare_op;
2091       }
2092     }else if( affinity==SQLITE_AFF_TEXT ){
2093       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2094         testcase( pIn1->flags & MEM_Int );
2095         testcase( pIn1->flags & MEM_Real );
2096         testcase( pIn1->flags & MEM_IntReal );
2097         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2098         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2099         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2100         if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2101       }
2102       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2103         testcase( pIn3->flags & MEM_Int );
2104         testcase( pIn3->flags & MEM_Real );
2105         testcase( pIn3->flags & MEM_IntReal );
2106         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2107         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2108         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2109       }
2110     }
2111     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2112     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2113   }
2114 compare_op:
2115   /* At this point, res is negative, zero, or positive if reg[P1] is
2116   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2117   ** the answer to this operator in res2, depending on what the comparison
2118   ** operator actually is.  The next block of code depends on the fact
2119   ** that the 6 comparison operators are consecutive integers in this
2120   ** order:  NE, EQ, GT, LE, LT, GE */
2121   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2122   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2123   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
2124     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
2125     res2 = aLTb[pOp->opcode - OP_Ne];
2126   }else if( res==0 ){
2127     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2128     res2 = aEQb[pOp->opcode - OP_Ne];
2129   }else{
2130     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2131     res2 = aGTb[pOp->opcode - OP_Ne];
2132   }
2133 
2134   /* Undo any changes made by applyAffinity() to the input registers. */
2135   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2136   pIn3->flags = flags3;
2137   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2138   pIn1->flags = flags1;
2139 
2140   if( pOp->p5 & SQLITE_STOREP2 ){
2141     pOut = &aMem[pOp->p2];
2142     iCompare = res;
2143     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2144       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2145       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2146       ** is only used in contexts where either:
2147       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2148       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2149       ** Therefore it is not necessary to check the content of r[P2] for
2150       ** NULL. */
2151       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2152       assert( res2==0 || res2==1 );
2153       testcase( res2==0 && pOp->opcode==OP_Eq );
2154       testcase( res2==1 && pOp->opcode==OP_Eq );
2155       testcase( res2==0 && pOp->opcode==OP_Ne );
2156       testcase( res2==1 && pOp->opcode==OP_Ne );
2157       if( (pOp->opcode==OP_Eq)==res2 ) break;
2158     }
2159     memAboutToChange(p, pOut);
2160     MemSetTypeFlag(pOut, MEM_Int);
2161     pOut->u.i = res2;
2162     REGISTER_TRACE(pOp->p2, pOut);
2163   }else{
2164     VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2165     if( res2 ){
2166       goto jump_to_p2;
2167     }
2168   }
2169   break;
2170 }
2171 
2172 /* Opcode: ElseNotEq * P2 * * *
2173 **
2174 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2175 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2176 ** opcodes are allowed to occur between this instruction and the previous
2177 ** OP_Lt or OP_Gt.  Furthermore, the prior OP_Lt or OP_Gt must have the
2178 ** SQLITE_STOREP2 bit set in the P5 field.
2179 **
2180 ** If result of an OP_Eq comparison on the same two operands as the
2181 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then
2182 ** jump to P2.  If the result of an OP_Eq comparison on the two previous
2183 ** operands would have been true (1), then fall through.
2184 */
2185 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2186 
2187 #ifdef SQLITE_DEBUG
2188   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2189   ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening
2190   ** OP_ReleaseReg opcodes */
2191   int iAddr;
2192   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2193     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2194     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2195     assert( aOp[iAddr].p5 & SQLITE_STOREP2 );
2196     break;
2197   }
2198 #endif /* SQLITE_DEBUG */
2199   VdbeBranchTaken(iCompare!=0, 2);
2200   if( iCompare!=0 ) goto jump_to_p2;
2201   break;
2202 }
2203 
2204 
2205 /* Opcode: Permutation * * * P4 *
2206 **
2207 ** Set the permutation used by the OP_Compare operator in the next
2208 ** instruction.  The permutation is stored in the P4 operand.
2209 **
2210 ** The permutation is only valid until the next OP_Compare that has
2211 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2212 ** occur immediately prior to the OP_Compare.
2213 **
2214 ** The first integer in the P4 integer array is the length of the array
2215 ** and does not become part of the permutation.
2216 */
2217 case OP_Permutation: {
2218   assert( pOp->p4type==P4_INTARRAY );
2219   assert( pOp->p4.ai );
2220   assert( pOp[1].opcode==OP_Compare );
2221   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2222   break;
2223 }
2224 
2225 /* Opcode: Compare P1 P2 P3 P4 P5
2226 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2227 **
2228 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2229 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2230 ** the comparison for use by the next OP_Jump instruct.
2231 **
2232 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2233 ** determined by the most recent OP_Permutation operator.  If the
2234 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2235 ** order.
2236 **
2237 ** P4 is a KeyInfo structure that defines collating sequences and sort
2238 ** orders for the comparison.  The permutation applies to registers
2239 ** only.  The KeyInfo elements are used sequentially.
2240 **
2241 ** The comparison is a sort comparison, so NULLs compare equal,
2242 ** NULLs are less than numbers, numbers are less than strings,
2243 ** and strings are less than blobs.
2244 */
2245 case OP_Compare: {
2246   int n;
2247   int i;
2248   int p1;
2249   int p2;
2250   const KeyInfo *pKeyInfo;
2251   int idx;
2252   CollSeq *pColl;    /* Collating sequence to use on this term */
2253   int bRev;          /* True for DESCENDING sort order */
2254   int *aPermute;     /* The permutation */
2255 
2256   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2257     aPermute = 0;
2258   }else{
2259     assert( pOp>aOp );
2260     assert( pOp[-1].opcode==OP_Permutation );
2261     assert( pOp[-1].p4type==P4_INTARRAY );
2262     aPermute = pOp[-1].p4.ai + 1;
2263     assert( aPermute!=0 );
2264   }
2265   n = pOp->p3;
2266   pKeyInfo = pOp->p4.pKeyInfo;
2267   assert( n>0 );
2268   assert( pKeyInfo!=0 );
2269   p1 = pOp->p1;
2270   p2 = pOp->p2;
2271 #ifdef SQLITE_DEBUG
2272   if( aPermute ){
2273     int k, mx = 0;
2274     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2275     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2276     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2277   }else{
2278     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2279     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2280   }
2281 #endif /* SQLITE_DEBUG */
2282   for(i=0; i<n; i++){
2283     idx = aPermute ? aPermute[i] : i;
2284     assert( memIsValid(&aMem[p1+idx]) );
2285     assert( memIsValid(&aMem[p2+idx]) );
2286     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2287     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2288     assert( i<pKeyInfo->nKeyField );
2289     pColl = pKeyInfo->aColl[i];
2290     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2291     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2292     if( iCompare ){
2293       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2294        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2295       ){
2296         iCompare = -iCompare;
2297       }
2298       if( bRev ) iCompare = -iCompare;
2299       break;
2300     }
2301   }
2302   break;
2303 }
2304 
2305 /* Opcode: Jump P1 P2 P3 * *
2306 **
2307 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2308 ** in the most recent OP_Compare instruction the P1 vector was less than
2309 ** equal to, or greater than the P2 vector, respectively.
2310 */
2311 case OP_Jump: {             /* jump */
2312   if( iCompare<0 ){
2313     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2314   }else if( iCompare==0 ){
2315     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2316   }else{
2317     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2318   }
2319   break;
2320 }
2321 
2322 /* Opcode: And P1 P2 P3 * *
2323 ** Synopsis: r[P3]=(r[P1] && r[P2])
2324 **
2325 ** Take the logical AND of the values in registers P1 and P2 and
2326 ** write the result into register P3.
2327 **
2328 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2329 ** the other input is NULL.  A NULL and true or two NULLs give
2330 ** a NULL output.
2331 */
2332 /* Opcode: Or P1 P2 P3 * *
2333 ** Synopsis: r[P3]=(r[P1] || r[P2])
2334 **
2335 ** Take the logical OR of the values in register P1 and P2 and
2336 ** store the answer in register P3.
2337 **
2338 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2339 ** even if the other input is NULL.  A NULL and false or two NULLs
2340 ** give a NULL output.
2341 */
2342 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2343 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2344   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2345   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2346 
2347   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2348   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2349   if( pOp->opcode==OP_And ){
2350     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2351     v1 = and_logic[v1*3+v2];
2352   }else{
2353     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2354     v1 = or_logic[v1*3+v2];
2355   }
2356   pOut = &aMem[pOp->p3];
2357   if( v1==2 ){
2358     MemSetTypeFlag(pOut, MEM_Null);
2359   }else{
2360     pOut->u.i = v1;
2361     MemSetTypeFlag(pOut, MEM_Int);
2362   }
2363   break;
2364 }
2365 
2366 /* Opcode: IsTrue P1 P2 P3 P4 *
2367 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2368 **
2369 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2370 ** IS NOT FALSE operators.
2371 **
2372 ** Interpret the value in register P1 as a boolean value.  Store that
2373 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2374 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2375 ** is 1.
2376 **
2377 ** The logic is summarized like this:
2378 **
2379 ** <ul>
2380 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2381 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2382 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2383 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2384 ** </ul>
2385 */
2386 case OP_IsTrue: {               /* in1, out2 */
2387   assert( pOp->p4type==P4_INT32 );
2388   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2389   assert( pOp->p3==0 || pOp->p3==1 );
2390   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2391       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2392   break;
2393 }
2394 
2395 /* Opcode: Not P1 P2 * * *
2396 ** Synopsis: r[P2]= !r[P1]
2397 **
2398 ** Interpret the value in register P1 as a boolean value.  Store the
2399 ** boolean complement in register P2.  If the value in register P1 is
2400 ** NULL, then a NULL is stored in P2.
2401 */
2402 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2403   pIn1 = &aMem[pOp->p1];
2404   pOut = &aMem[pOp->p2];
2405   if( (pIn1->flags & MEM_Null)==0 ){
2406     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2407   }else{
2408     sqlite3VdbeMemSetNull(pOut);
2409   }
2410   break;
2411 }
2412 
2413 /* Opcode: BitNot P1 P2 * * *
2414 ** Synopsis: r[P2]= ~r[P1]
2415 **
2416 ** Interpret the content of register P1 as an integer.  Store the
2417 ** ones-complement of the P1 value into register P2.  If P1 holds
2418 ** a NULL then store a NULL in P2.
2419 */
2420 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2421   pIn1 = &aMem[pOp->p1];
2422   pOut = &aMem[pOp->p2];
2423   sqlite3VdbeMemSetNull(pOut);
2424   if( (pIn1->flags & MEM_Null)==0 ){
2425     pOut->flags = MEM_Int;
2426     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2427   }
2428   break;
2429 }
2430 
2431 /* Opcode: Once P1 P2 * * *
2432 **
2433 ** Fall through to the next instruction the first time this opcode is
2434 ** encountered on each invocation of the byte-code program.  Jump to P2
2435 ** on the second and all subsequent encounters during the same invocation.
2436 **
2437 ** Top-level programs determine first invocation by comparing the P1
2438 ** operand against the P1 operand on the OP_Init opcode at the beginning
2439 ** of the program.  If the P1 values differ, then fall through and make
2440 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2441 ** the same then take the jump.
2442 **
2443 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2444 ** whether or not the jump should be taken.  The bitmask is necessary
2445 ** because the self-altering code trick does not work for recursive
2446 ** triggers.
2447 */
2448 case OP_Once: {             /* jump */
2449   u32 iAddr;                /* Address of this instruction */
2450   assert( p->aOp[0].opcode==OP_Init );
2451   if( p->pFrame ){
2452     iAddr = (int)(pOp - p->aOp);
2453     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2454       VdbeBranchTaken(1, 2);
2455       goto jump_to_p2;
2456     }
2457     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2458   }else{
2459     if( p->aOp[0].p1==pOp->p1 ){
2460       VdbeBranchTaken(1, 2);
2461       goto jump_to_p2;
2462     }
2463   }
2464   VdbeBranchTaken(0, 2);
2465   pOp->p1 = p->aOp[0].p1;
2466   break;
2467 }
2468 
2469 /* Opcode: If P1 P2 P3 * *
2470 **
2471 ** Jump to P2 if the value in register P1 is true.  The value
2472 ** is considered true if it is numeric and non-zero.  If the value
2473 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2474 */
2475 case OP_If:  {               /* jump, in1 */
2476   int c;
2477   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2478   VdbeBranchTaken(c!=0, 2);
2479   if( c ) goto jump_to_p2;
2480   break;
2481 }
2482 
2483 /* Opcode: IfNot P1 P2 P3 * *
2484 **
2485 ** Jump to P2 if the value in register P1 is False.  The value
2486 ** is considered false if it has a numeric value of zero.  If the value
2487 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2488 */
2489 case OP_IfNot: {            /* jump, in1 */
2490   int c;
2491   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2492   VdbeBranchTaken(c!=0, 2);
2493   if( c ) goto jump_to_p2;
2494   break;
2495 }
2496 
2497 /* Opcode: IsNull P1 P2 * * *
2498 ** Synopsis: if r[P1]==NULL goto P2
2499 **
2500 ** Jump to P2 if the value in register P1 is NULL.
2501 */
2502 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2503   pIn1 = &aMem[pOp->p1];
2504   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2505   if( (pIn1->flags & MEM_Null)!=0 ){
2506     goto jump_to_p2;
2507   }
2508   break;
2509 }
2510 
2511 /* Opcode: NotNull P1 P2 * * *
2512 ** Synopsis: if r[P1]!=NULL goto P2
2513 **
2514 ** Jump to P2 if the value in register P1 is not NULL.
2515 */
2516 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2517   pIn1 = &aMem[pOp->p1];
2518   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2519   if( (pIn1->flags & MEM_Null)==0 ){
2520     goto jump_to_p2;
2521   }
2522   break;
2523 }
2524 
2525 /* Opcode: IfNullRow P1 P2 P3 * *
2526 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2527 **
2528 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2529 ** If it is, then set register P3 to NULL and jump immediately to P2.
2530 ** If P1 is not on a NULL row, then fall through without making any
2531 ** changes.
2532 */
2533 case OP_IfNullRow: {         /* jump */
2534   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2535   assert( p->apCsr[pOp->p1]!=0 );
2536   if( p->apCsr[pOp->p1]->nullRow ){
2537     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2538     goto jump_to_p2;
2539   }
2540   break;
2541 }
2542 
2543 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2544 /* Opcode: Offset P1 P2 P3 * *
2545 ** Synopsis: r[P3] = sqlite_offset(P1)
2546 **
2547 ** Store in register r[P3] the byte offset into the database file that is the
2548 ** start of the payload for the record at which that cursor P1 is currently
2549 ** pointing.
2550 **
2551 ** P2 is the column number for the argument to the sqlite_offset() function.
2552 ** This opcode does not use P2 itself, but the P2 value is used by the
2553 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2554 ** same as for OP_Column.
2555 **
2556 ** This opcode is only available if SQLite is compiled with the
2557 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2558 */
2559 case OP_Offset: {          /* out3 */
2560   VdbeCursor *pC;    /* The VDBE cursor */
2561   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2562   pC = p->apCsr[pOp->p1];
2563   pOut = &p->aMem[pOp->p3];
2564   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2565     sqlite3VdbeMemSetNull(pOut);
2566   }else{
2567     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2568   }
2569   break;
2570 }
2571 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2572 
2573 /* Opcode: Column P1 P2 P3 P4 P5
2574 ** Synopsis: r[P3]=PX
2575 **
2576 ** Interpret the data that cursor P1 points to as a structure built using
2577 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2578 ** information about the format of the data.)  Extract the P2-th column
2579 ** from this record.  If there are less that (P2+1)
2580 ** values in the record, extract a NULL.
2581 **
2582 ** The value extracted is stored in register P3.
2583 **
2584 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2585 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2586 ** the result.
2587 **
2588 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2589 ** the result is guaranteed to only be used as the argument of a length()
2590 ** or typeof() function, respectively.  The loading of large blobs can be
2591 ** skipped for length() and all content loading can be skipped for typeof().
2592 */
2593 case OP_Column: {
2594   int p2;            /* column number to retrieve */
2595   VdbeCursor *pC;    /* The VDBE cursor */
2596   BtCursor *pCrsr;   /* The BTree cursor */
2597   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2598   int len;           /* The length of the serialized data for the column */
2599   int i;             /* Loop counter */
2600   Mem *pDest;        /* Where to write the extracted value */
2601   Mem sMem;          /* For storing the record being decoded */
2602   const u8 *zData;   /* Part of the record being decoded */
2603   const u8 *zHdr;    /* Next unparsed byte of the header */
2604   const u8 *zEndHdr; /* Pointer to first byte after the header */
2605   u64 offset64;      /* 64-bit offset */
2606   u32 t;             /* A type code from the record header */
2607   Mem *pReg;         /* PseudoTable input register */
2608 
2609   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2610   pC = p->apCsr[pOp->p1];
2611   assert( pC!=0 );
2612   p2 = pOp->p2;
2613 
2614   /* If the cursor cache is stale (meaning it is not currently point at
2615   ** the correct row) then bring it up-to-date by doing the necessary
2616   ** B-Tree seek. */
2617   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2618   if( rc ) goto abort_due_to_error;
2619 
2620   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2621   pDest = &aMem[pOp->p3];
2622   memAboutToChange(p, pDest);
2623   assert( pC!=0 );
2624   assert( p2<pC->nField );
2625   aOffset = pC->aOffset;
2626   assert( pC->eCurType!=CURTYPE_VTAB );
2627   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2628   assert( pC->eCurType!=CURTYPE_SORTER );
2629 
2630   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2631     if( pC->nullRow ){
2632       if( pC->eCurType==CURTYPE_PSEUDO ){
2633         /* For the special case of as pseudo-cursor, the seekResult field
2634         ** identifies the register that holds the record */
2635         assert( pC->seekResult>0 );
2636         pReg = &aMem[pC->seekResult];
2637         assert( pReg->flags & MEM_Blob );
2638         assert( memIsValid(pReg) );
2639         pC->payloadSize = pC->szRow = pReg->n;
2640         pC->aRow = (u8*)pReg->z;
2641       }else{
2642         sqlite3VdbeMemSetNull(pDest);
2643         goto op_column_out;
2644       }
2645     }else{
2646       pCrsr = pC->uc.pCursor;
2647       assert( pC->eCurType==CURTYPE_BTREE );
2648       assert( pCrsr );
2649       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2650       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2651       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2652       assert( pC->szRow<=pC->payloadSize );
2653       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2654       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2655         goto too_big;
2656       }
2657     }
2658     pC->cacheStatus = p->cacheCtr;
2659     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2660     pC->nHdrParsed = 0;
2661 
2662 
2663     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2664       /* pC->aRow does not have to hold the entire row, but it does at least
2665       ** need to cover the header of the record.  If pC->aRow does not contain
2666       ** the complete header, then set it to zero, forcing the header to be
2667       ** dynamically allocated. */
2668       pC->aRow = 0;
2669       pC->szRow = 0;
2670 
2671       /* Make sure a corrupt database has not given us an oversize header.
2672       ** Do this now to avoid an oversize memory allocation.
2673       **
2674       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2675       ** types use so much data space that there can only be 4096 and 32 of
2676       ** them, respectively.  So the maximum header length results from a
2677       ** 3-byte type for each of the maximum of 32768 columns plus three
2678       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2679       */
2680       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2681         goto op_column_corrupt;
2682       }
2683     }else{
2684       /* This is an optimization.  By skipping over the first few tests
2685       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2686       ** measurable performance gain.
2687       **
2688       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2689       ** generated by SQLite, and could be considered corruption, but we
2690       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2691       ** branch jumps to reads past the end of the record, but never more
2692       ** than a few bytes.  Even if the record occurs at the end of the page
2693       ** content area, the "page header" comes after the page content and so
2694       ** this overread is harmless.  Similar overreads can occur for a corrupt
2695       ** database file.
2696       */
2697       zData = pC->aRow;
2698       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2699       testcase( aOffset[0]==0 );
2700       goto op_column_read_header;
2701     }
2702   }
2703 
2704   /* Make sure at least the first p2+1 entries of the header have been
2705   ** parsed and valid information is in aOffset[] and pC->aType[].
2706   */
2707   if( pC->nHdrParsed<=p2 ){
2708     /* If there is more header available for parsing in the record, try
2709     ** to extract additional fields up through the p2+1-th field
2710     */
2711     if( pC->iHdrOffset<aOffset[0] ){
2712       /* Make sure zData points to enough of the record to cover the header. */
2713       if( pC->aRow==0 ){
2714         memset(&sMem, 0, sizeof(sMem));
2715         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2716         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2717         zData = (u8*)sMem.z;
2718       }else{
2719         zData = pC->aRow;
2720       }
2721 
2722       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2723     op_column_read_header:
2724       i = pC->nHdrParsed;
2725       offset64 = aOffset[i];
2726       zHdr = zData + pC->iHdrOffset;
2727       zEndHdr = zData + aOffset[0];
2728       testcase( zHdr>=zEndHdr );
2729       do{
2730         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2731           zHdr++;
2732           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2733         }else{
2734           zHdr += sqlite3GetVarint32(zHdr, &t);
2735           pC->aType[i] = t;
2736           offset64 += sqlite3VdbeSerialTypeLen(t);
2737         }
2738         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2739       }while( i<=p2 && zHdr<zEndHdr );
2740 
2741       /* The record is corrupt if any of the following are true:
2742       ** (1) the bytes of the header extend past the declared header size
2743       ** (2) the entire header was used but not all data was used
2744       ** (3) the end of the data extends beyond the end of the record.
2745       */
2746       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2747        || (offset64 > pC->payloadSize)
2748       ){
2749         if( aOffset[0]==0 ){
2750           i = 0;
2751           zHdr = zEndHdr;
2752         }else{
2753           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2754           goto op_column_corrupt;
2755         }
2756       }
2757 
2758       pC->nHdrParsed = i;
2759       pC->iHdrOffset = (u32)(zHdr - zData);
2760       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2761     }else{
2762       t = 0;
2763     }
2764 
2765     /* If after trying to extract new entries from the header, nHdrParsed is
2766     ** still not up to p2, that means that the record has fewer than p2
2767     ** columns.  So the result will be either the default value or a NULL.
2768     */
2769     if( pC->nHdrParsed<=p2 ){
2770       if( pOp->p4type==P4_MEM ){
2771         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2772       }else{
2773         sqlite3VdbeMemSetNull(pDest);
2774       }
2775       goto op_column_out;
2776     }
2777   }else{
2778     t = pC->aType[p2];
2779   }
2780 
2781   /* Extract the content for the p2+1-th column.  Control can only
2782   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2783   ** all valid.
2784   */
2785   assert( p2<pC->nHdrParsed );
2786   assert( rc==SQLITE_OK );
2787   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2788   if( VdbeMemDynamic(pDest) ){
2789     sqlite3VdbeMemSetNull(pDest);
2790   }
2791   assert( t==pC->aType[p2] );
2792   if( pC->szRow>=aOffset[p2+1] ){
2793     /* This is the common case where the desired content fits on the original
2794     ** page - where the content is not on an overflow page */
2795     zData = pC->aRow + aOffset[p2];
2796     if( t<12 ){
2797       sqlite3VdbeSerialGet(zData, t, pDest);
2798     }else{
2799       /* If the column value is a string, we need a persistent value, not
2800       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2801       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2802       */
2803       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2804       pDest->n = len = (t-12)/2;
2805       pDest->enc = encoding;
2806       if( pDest->szMalloc < len+2 ){
2807         pDest->flags = MEM_Null;
2808         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2809       }else{
2810         pDest->z = pDest->zMalloc;
2811       }
2812       memcpy(pDest->z, zData, len);
2813       pDest->z[len] = 0;
2814       pDest->z[len+1] = 0;
2815       pDest->flags = aFlag[t&1];
2816     }
2817   }else{
2818     pDest->enc = encoding;
2819     /* This branch happens only when content is on overflow pages */
2820     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2821           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2822      || (len = sqlite3VdbeSerialTypeLen(t))==0
2823     ){
2824       /* Content is irrelevant for
2825       **    1. the typeof() function,
2826       **    2. the length(X) function if X is a blob, and
2827       **    3. if the content length is zero.
2828       ** So we might as well use bogus content rather than reading
2829       ** content from disk.
2830       **
2831       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2832       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2833       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2834       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2835       ** and it begins with a bunch of zeros.
2836       */
2837       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2838     }else{
2839       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2840       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2841       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2842       pDest->flags &= ~MEM_Ephem;
2843     }
2844   }
2845 
2846 op_column_out:
2847   UPDATE_MAX_BLOBSIZE(pDest);
2848   REGISTER_TRACE(pOp->p3, pDest);
2849   break;
2850 
2851 op_column_corrupt:
2852   if( aOp[0].p3>0 ){
2853     pOp = &aOp[aOp[0].p3-1];
2854     break;
2855   }else{
2856     rc = SQLITE_CORRUPT_BKPT;
2857     goto abort_due_to_error;
2858   }
2859 }
2860 
2861 /* Opcode: Affinity P1 P2 * P4 *
2862 ** Synopsis: affinity(r[P1@P2])
2863 **
2864 ** Apply affinities to a range of P2 registers starting with P1.
2865 **
2866 ** P4 is a string that is P2 characters long. The N-th character of the
2867 ** string indicates the column affinity that should be used for the N-th
2868 ** memory cell in the range.
2869 */
2870 case OP_Affinity: {
2871   const char *zAffinity;   /* The affinity to be applied */
2872 
2873   zAffinity = pOp->p4.z;
2874   assert( zAffinity!=0 );
2875   assert( pOp->p2>0 );
2876   assert( zAffinity[pOp->p2]==0 );
2877   pIn1 = &aMem[pOp->p1];
2878   while( 1 /*exit-by-break*/ ){
2879     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2880     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
2881     applyAffinity(pIn1, zAffinity[0], encoding);
2882     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
2883       /* When applying REAL affinity, if the result is still an MEM_Int
2884       ** that will fit in 6 bytes, then change the type to MEM_IntReal
2885       ** so that we keep the high-resolution integer value but know that
2886       ** the type really wants to be REAL. */
2887       testcase( pIn1->u.i==140737488355328LL );
2888       testcase( pIn1->u.i==140737488355327LL );
2889       testcase( pIn1->u.i==-140737488355328LL );
2890       testcase( pIn1->u.i==-140737488355329LL );
2891       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
2892         pIn1->flags |= MEM_IntReal;
2893         pIn1->flags &= ~MEM_Int;
2894       }else{
2895         pIn1->u.r = (double)pIn1->u.i;
2896         pIn1->flags |= MEM_Real;
2897         pIn1->flags &= ~MEM_Int;
2898       }
2899     }
2900     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
2901     zAffinity++;
2902     if( zAffinity[0]==0 ) break;
2903     pIn1++;
2904   }
2905   break;
2906 }
2907 
2908 /* Opcode: MakeRecord P1 P2 P3 P4 *
2909 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2910 **
2911 ** Convert P2 registers beginning with P1 into the [record format]
2912 ** use as a data record in a database table or as a key
2913 ** in an index.  The OP_Column opcode can decode the record later.
2914 **
2915 ** P4 may be a string that is P2 characters long.  The N-th character of the
2916 ** string indicates the column affinity that should be used for the N-th
2917 ** field of the index key.
2918 **
2919 ** The mapping from character to affinity is given by the SQLITE_AFF_
2920 ** macros defined in sqliteInt.h.
2921 **
2922 ** If P4 is NULL then all index fields have the affinity BLOB.
2923 */
2924 case OP_MakeRecord: {
2925   Mem *pRec;             /* The new record */
2926   u64 nData;             /* Number of bytes of data space */
2927   int nHdr;              /* Number of bytes of header space */
2928   i64 nByte;             /* Data space required for this record */
2929   i64 nZero;             /* Number of zero bytes at the end of the record */
2930   int nVarint;           /* Number of bytes in a varint */
2931   u32 serial_type;       /* Type field */
2932   Mem *pData0;           /* First field to be combined into the record */
2933   Mem *pLast;            /* Last field of the record */
2934   int nField;            /* Number of fields in the record */
2935   char *zAffinity;       /* The affinity string for the record */
2936   int file_format;       /* File format to use for encoding */
2937   u32 len;               /* Length of a field */
2938   u8 *zHdr;              /* Where to write next byte of the header */
2939   u8 *zPayload;          /* Where to write next byte of the payload */
2940 
2941   /* Assuming the record contains N fields, the record format looks
2942   ** like this:
2943   **
2944   ** ------------------------------------------------------------------------
2945   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2946   ** ------------------------------------------------------------------------
2947   **
2948   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2949   ** and so forth.
2950   **
2951   ** Each type field is a varint representing the serial type of the
2952   ** corresponding data element (see sqlite3VdbeSerialType()). The
2953   ** hdr-size field is also a varint which is the offset from the beginning
2954   ** of the record to data0.
2955   */
2956   nData = 0;         /* Number of bytes of data space */
2957   nHdr = 0;          /* Number of bytes of header space */
2958   nZero = 0;         /* Number of zero bytes at the end of the record */
2959   nField = pOp->p1;
2960   zAffinity = pOp->p4.z;
2961   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2962   pData0 = &aMem[nField];
2963   nField = pOp->p2;
2964   pLast = &pData0[nField-1];
2965   file_format = p->minWriteFileFormat;
2966 
2967   /* Identify the output register */
2968   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2969   pOut = &aMem[pOp->p3];
2970   memAboutToChange(p, pOut);
2971 
2972   /* Apply the requested affinity to all inputs
2973   */
2974   assert( pData0<=pLast );
2975   if( zAffinity ){
2976     pRec = pData0;
2977     do{
2978       applyAffinity(pRec, zAffinity[0], encoding);
2979       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
2980         pRec->flags |= MEM_IntReal;
2981         pRec->flags &= ~(MEM_Int);
2982       }
2983       REGISTER_TRACE((int)(pRec-aMem), pRec);
2984       zAffinity++;
2985       pRec++;
2986       assert( zAffinity[0]==0 || pRec<=pLast );
2987     }while( zAffinity[0] );
2988   }
2989 
2990 #ifdef SQLITE_ENABLE_NULL_TRIM
2991   /* NULLs can be safely trimmed from the end of the record, as long as
2992   ** as the schema format is 2 or more and none of the omitted columns
2993   ** have a non-NULL default value.  Also, the record must be left with
2994   ** at least one field.  If P5>0 then it will be one more than the
2995   ** index of the right-most column with a non-NULL default value */
2996   if( pOp->p5 ){
2997     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2998       pLast--;
2999       nField--;
3000     }
3001   }
3002 #endif
3003 
3004   /* Loop through the elements that will make up the record to figure
3005   ** out how much space is required for the new record.  After this loop,
3006   ** the Mem.uTemp field of each term should hold the serial-type that will
3007   ** be used for that term in the generated record:
3008   **
3009   **   Mem.uTemp value    type
3010   **   ---------------    ---------------
3011   **      0               NULL
3012   **      1               1-byte signed integer
3013   **      2               2-byte signed integer
3014   **      3               3-byte signed integer
3015   **      4               4-byte signed integer
3016   **      5               6-byte signed integer
3017   **      6               8-byte signed integer
3018   **      7               IEEE float
3019   **      8               Integer constant 0
3020   **      9               Integer constant 1
3021   **     10,11            reserved for expansion
3022   **    N>=12 and even    BLOB
3023   **    N>=13 and odd     text
3024   **
3025   ** The following additional values are computed:
3026   **     nHdr        Number of bytes needed for the record header
3027   **     nData       Number of bytes of data space needed for the record
3028   **     nZero       Zero bytes at the end of the record
3029   */
3030   pRec = pLast;
3031   do{
3032     assert( memIsValid(pRec) );
3033     if( pRec->flags & MEM_Null ){
3034       if( pRec->flags & MEM_Zero ){
3035         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3036         ** table methods that never invoke sqlite3_result_xxxxx() while
3037         ** computing an unchanging column value in an UPDATE statement.
3038         ** Give such values a special internal-use-only serial-type of 10
3039         ** so that they can be passed through to xUpdate and have
3040         ** a true sqlite3_value_nochange(). */
3041         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3042         pRec->uTemp = 10;
3043       }else{
3044         pRec->uTemp = 0;
3045       }
3046       nHdr++;
3047     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3048       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3049       i64 i = pRec->u.i;
3050       u64 uu;
3051       testcase( pRec->flags & MEM_Int );
3052       testcase( pRec->flags & MEM_IntReal );
3053       if( i<0 ){
3054         uu = ~i;
3055       }else{
3056         uu = i;
3057       }
3058       nHdr++;
3059       testcase( uu==127 );               testcase( uu==128 );
3060       testcase( uu==32767 );             testcase( uu==32768 );
3061       testcase( uu==8388607 );           testcase( uu==8388608 );
3062       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3063       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3064       if( uu<=127 ){
3065         if( (i&1)==i && file_format>=4 ){
3066           pRec->uTemp = 8+(u32)uu;
3067         }else{
3068           nData++;
3069           pRec->uTemp = 1;
3070         }
3071       }else if( uu<=32767 ){
3072         nData += 2;
3073         pRec->uTemp = 2;
3074       }else if( uu<=8388607 ){
3075         nData += 3;
3076         pRec->uTemp = 3;
3077       }else if( uu<=2147483647 ){
3078         nData += 4;
3079         pRec->uTemp = 4;
3080       }else if( uu<=140737488355327LL ){
3081         nData += 6;
3082         pRec->uTemp = 5;
3083       }else{
3084         nData += 8;
3085         if( pRec->flags & MEM_IntReal ){
3086           /* If the value is IntReal and is going to take up 8 bytes to store
3087           ** as an integer, then we might as well make it an 8-byte floating
3088           ** point value */
3089           pRec->u.r = (double)pRec->u.i;
3090           pRec->flags &= ~MEM_IntReal;
3091           pRec->flags |= MEM_Real;
3092           pRec->uTemp = 7;
3093         }else{
3094           pRec->uTemp = 6;
3095         }
3096       }
3097     }else if( pRec->flags & MEM_Real ){
3098       nHdr++;
3099       nData += 8;
3100       pRec->uTemp = 7;
3101     }else{
3102       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3103       assert( pRec->n>=0 );
3104       len = (u32)pRec->n;
3105       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3106       if( pRec->flags & MEM_Zero ){
3107         serial_type += pRec->u.nZero*2;
3108         if( nData ){
3109           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3110           len += pRec->u.nZero;
3111         }else{
3112           nZero += pRec->u.nZero;
3113         }
3114       }
3115       nData += len;
3116       nHdr += sqlite3VarintLen(serial_type);
3117       pRec->uTemp = serial_type;
3118     }
3119     if( pRec==pData0 ) break;
3120     pRec--;
3121   }while(1);
3122 
3123   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3124   ** which determines the total number of bytes in the header. The varint
3125   ** value is the size of the header in bytes including the size varint
3126   ** itself. */
3127   testcase( nHdr==126 );
3128   testcase( nHdr==127 );
3129   if( nHdr<=126 ){
3130     /* The common case */
3131     nHdr += 1;
3132   }else{
3133     /* Rare case of a really large header */
3134     nVarint = sqlite3VarintLen(nHdr);
3135     nHdr += nVarint;
3136     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3137   }
3138   nByte = nHdr+nData;
3139 
3140   /* Make sure the output register has a buffer large enough to store
3141   ** the new record. The output register (pOp->p3) is not allowed to
3142   ** be one of the input registers (because the following call to
3143   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3144   */
3145   if( nByte+nZero<=pOut->szMalloc ){
3146     /* The output register is already large enough to hold the record.
3147     ** No error checks or buffer enlargement is required */
3148     pOut->z = pOut->zMalloc;
3149   }else{
3150     /* Need to make sure that the output is not too big and then enlarge
3151     ** the output register to hold the full result */
3152     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3153       goto too_big;
3154     }
3155     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3156       goto no_mem;
3157     }
3158   }
3159   pOut->n = (int)nByte;
3160   pOut->flags = MEM_Blob;
3161   if( nZero ){
3162     pOut->u.nZero = nZero;
3163     pOut->flags |= MEM_Zero;
3164   }
3165   UPDATE_MAX_BLOBSIZE(pOut);
3166   zHdr = (u8 *)pOut->z;
3167   zPayload = zHdr + nHdr;
3168 
3169   /* Write the record */
3170   zHdr += putVarint32(zHdr, nHdr);
3171   assert( pData0<=pLast );
3172   pRec = pData0;
3173   do{
3174     serial_type = pRec->uTemp;
3175     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3176     ** additional varints, one per column. */
3177     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3178     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3179     ** immediately follow the header. */
3180     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3181   }while( (++pRec)<=pLast );
3182   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3183   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3184 
3185   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3186   REGISTER_TRACE(pOp->p3, pOut);
3187   break;
3188 }
3189 
3190 /* Opcode: Count P1 P2 p3 * *
3191 ** Synopsis: r[P2]=count()
3192 **
3193 ** Store the number of entries (an integer value) in the table or index
3194 ** opened by cursor P1 in register P2.
3195 **
3196 ** If P3==0, then an exact count is obtained, which involves visiting
3197 ** every btree page of the table.  But if P3 is non-zero, an estimate
3198 ** is returned based on the current cursor position.
3199 */
3200 case OP_Count: {         /* out2 */
3201   i64 nEntry;
3202   BtCursor *pCrsr;
3203 
3204   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3205   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3206   assert( pCrsr );
3207   if( pOp->p3 ){
3208     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3209   }else{
3210     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3211     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3212     if( rc ) goto abort_due_to_error;
3213   }
3214   pOut = out2Prerelease(p, pOp);
3215   pOut->u.i = nEntry;
3216   goto check_for_interrupt;
3217 }
3218 
3219 /* Opcode: Savepoint P1 * * P4 *
3220 **
3221 ** Open, release or rollback the savepoint named by parameter P4, depending
3222 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3223 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3224 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3225 */
3226 case OP_Savepoint: {
3227   int p1;                         /* Value of P1 operand */
3228   char *zName;                    /* Name of savepoint */
3229   int nName;
3230   Savepoint *pNew;
3231   Savepoint *pSavepoint;
3232   Savepoint *pTmp;
3233   int iSavepoint;
3234   int ii;
3235 
3236   p1 = pOp->p1;
3237   zName = pOp->p4.z;
3238 
3239   /* Assert that the p1 parameter is valid. Also that if there is no open
3240   ** transaction, then there cannot be any savepoints.
3241   */
3242   assert( db->pSavepoint==0 || db->autoCommit==0 );
3243   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3244   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3245   assert( checkSavepointCount(db) );
3246   assert( p->bIsReader );
3247 
3248   if( p1==SAVEPOINT_BEGIN ){
3249     if( db->nVdbeWrite>0 ){
3250       /* A new savepoint cannot be created if there are active write
3251       ** statements (i.e. open read/write incremental blob handles).
3252       */
3253       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3254       rc = SQLITE_BUSY;
3255     }else{
3256       nName = sqlite3Strlen30(zName);
3257 
3258 #ifndef SQLITE_OMIT_VIRTUALTABLE
3259       /* This call is Ok even if this savepoint is actually a transaction
3260       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3261       ** If this is a transaction savepoint being opened, it is guaranteed
3262       ** that the db->aVTrans[] array is empty.  */
3263       assert( db->autoCommit==0 || db->nVTrans==0 );
3264       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3265                                 db->nStatement+db->nSavepoint);
3266       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3267 #endif
3268 
3269       /* Create a new savepoint structure. */
3270       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3271       if( pNew ){
3272         pNew->zName = (char *)&pNew[1];
3273         memcpy(pNew->zName, zName, nName+1);
3274 
3275         /* If there is no open transaction, then mark this as a special
3276         ** "transaction savepoint". */
3277         if( db->autoCommit ){
3278           db->autoCommit = 0;
3279           db->isTransactionSavepoint = 1;
3280         }else{
3281           db->nSavepoint++;
3282         }
3283 
3284         /* Link the new savepoint into the database handle's list. */
3285         pNew->pNext = db->pSavepoint;
3286         db->pSavepoint = pNew;
3287         pNew->nDeferredCons = db->nDeferredCons;
3288         pNew->nDeferredImmCons = db->nDeferredImmCons;
3289       }
3290     }
3291   }else{
3292     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3293     iSavepoint = 0;
3294 
3295     /* Find the named savepoint. If there is no such savepoint, then an
3296     ** an error is returned to the user.  */
3297     for(
3298       pSavepoint = db->pSavepoint;
3299       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3300       pSavepoint = pSavepoint->pNext
3301     ){
3302       iSavepoint++;
3303     }
3304     if( !pSavepoint ){
3305       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3306       rc = SQLITE_ERROR;
3307     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3308       /* It is not possible to release (commit) a savepoint if there are
3309       ** active write statements.
3310       */
3311       sqlite3VdbeError(p, "cannot release savepoint - "
3312                           "SQL statements in progress");
3313       rc = SQLITE_BUSY;
3314     }else{
3315 
3316       /* Determine whether or not this is a transaction savepoint. If so,
3317       ** and this is a RELEASE command, then the current transaction
3318       ** is committed.
3319       */
3320       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3321       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3322         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3323           goto vdbe_return;
3324         }
3325         db->autoCommit = 1;
3326         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3327           p->pc = (int)(pOp - aOp);
3328           db->autoCommit = 0;
3329           p->rc = rc = SQLITE_BUSY;
3330           goto vdbe_return;
3331         }
3332         rc = p->rc;
3333         if( rc ){
3334           db->autoCommit = 0;
3335         }else{
3336           db->isTransactionSavepoint = 0;
3337         }
3338       }else{
3339         int isSchemaChange;
3340         iSavepoint = db->nSavepoint - iSavepoint - 1;
3341         if( p1==SAVEPOINT_ROLLBACK ){
3342           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3343           for(ii=0; ii<db->nDb; ii++){
3344             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3345                                        SQLITE_ABORT_ROLLBACK,
3346                                        isSchemaChange==0);
3347             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3348           }
3349         }else{
3350           assert( p1==SAVEPOINT_RELEASE );
3351           isSchemaChange = 0;
3352         }
3353         for(ii=0; ii<db->nDb; ii++){
3354           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3355           if( rc!=SQLITE_OK ){
3356             goto abort_due_to_error;
3357           }
3358         }
3359         if( isSchemaChange ){
3360           sqlite3ExpirePreparedStatements(db, 0);
3361           sqlite3ResetAllSchemasOfConnection(db);
3362           db->mDbFlags |= DBFLAG_SchemaChange;
3363         }
3364       }
3365       if( rc ) goto abort_due_to_error;
3366 
3367       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3368       ** savepoints nested inside of the savepoint being operated on. */
3369       while( db->pSavepoint!=pSavepoint ){
3370         pTmp = db->pSavepoint;
3371         db->pSavepoint = pTmp->pNext;
3372         sqlite3DbFree(db, pTmp);
3373         db->nSavepoint--;
3374       }
3375 
3376       /* If it is a RELEASE, then destroy the savepoint being operated on
3377       ** too. If it is a ROLLBACK TO, then set the number of deferred
3378       ** constraint violations present in the database to the value stored
3379       ** when the savepoint was created.  */
3380       if( p1==SAVEPOINT_RELEASE ){
3381         assert( pSavepoint==db->pSavepoint );
3382         db->pSavepoint = pSavepoint->pNext;
3383         sqlite3DbFree(db, pSavepoint);
3384         if( !isTransaction ){
3385           db->nSavepoint--;
3386         }
3387       }else{
3388         assert( p1==SAVEPOINT_ROLLBACK );
3389         db->nDeferredCons = pSavepoint->nDeferredCons;
3390         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3391       }
3392 
3393       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3394         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3395         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3396       }
3397     }
3398   }
3399   if( rc ) goto abort_due_to_error;
3400 
3401   break;
3402 }
3403 
3404 /* Opcode: AutoCommit P1 P2 * * *
3405 **
3406 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3407 ** back any currently active btree transactions. If there are any active
3408 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3409 ** there are active writing VMs or active VMs that use shared cache.
3410 **
3411 ** This instruction causes the VM to halt.
3412 */
3413 case OP_AutoCommit: {
3414   int desiredAutoCommit;
3415   int iRollback;
3416 
3417   desiredAutoCommit = pOp->p1;
3418   iRollback = pOp->p2;
3419   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3420   assert( desiredAutoCommit==1 || iRollback==0 );
3421   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3422   assert( p->bIsReader );
3423 
3424   if( desiredAutoCommit!=db->autoCommit ){
3425     if( iRollback ){
3426       assert( desiredAutoCommit==1 );
3427       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3428       db->autoCommit = 1;
3429     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3430       /* If this instruction implements a COMMIT and other VMs are writing
3431       ** return an error indicating that the other VMs must complete first.
3432       */
3433       sqlite3VdbeError(p, "cannot commit transaction - "
3434                           "SQL statements in progress");
3435       rc = SQLITE_BUSY;
3436       goto abort_due_to_error;
3437     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3438       goto vdbe_return;
3439     }else{
3440       db->autoCommit = (u8)desiredAutoCommit;
3441     }
3442     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3443       p->pc = (int)(pOp - aOp);
3444       db->autoCommit = (u8)(1-desiredAutoCommit);
3445       p->rc = rc = SQLITE_BUSY;
3446       goto vdbe_return;
3447     }
3448     sqlite3CloseSavepoints(db);
3449     if( p->rc==SQLITE_OK ){
3450       rc = SQLITE_DONE;
3451     }else{
3452       rc = SQLITE_ERROR;
3453     }
3454     goto vdbe_return;
3455   }else{
3456     sqlite3VdbeError(p,
3457         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3458         (iRollback)?"cannot rollback - no transaction is active":
3459                    "cannot commit - no transaction is active"));
3460 
3461     rc = SQLITE_ERROR;
3462     goto abort_due_to_error;
3463   }
3464   /*NOTREACHED*/ assert(0);
3465 }
3466 
3467 /* Opcode: Transaction P1 P2 P3 P4 P5
3468 **
3469 ** Begin a transaction on database P1 if a transaction is not already
3470 ** active.
3471 ** If P2 is non-zero, then a write-transaction is started, or if a
3472 ** read-transaction is already active, it is upgraded to a write-transaction.
3473 ** If P2 is zero, then a read-transaction is started.
3474 **
3475 ** P1 is the index of the database file on which the transaction is
3476 ** started.  Index 0 is the main database file and index 1 is the
3477 ** file used for temporary tables.  Indices of 2 or more are used for
3478 ** attached databases.
3479 **
3480 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3481 ** true (this flag is set if the Vdbe may modify more than one row and may
3482 ** throw an ABORT exception), a statement transaction may also be opened.
3483 ** More specifically, a statement transaction is opened iff the database
3484 ** connection is currently not in autocommit mode, or if there are other
3485 ** active statements. A statement transaction allows the changes made by this
3486 ** VDBE to be rolled back after an error without having to roll back the
3487 ** entire transaction. If no error is encountered, the statement transaction
3488 ** will automatically commit when the VDBE halts.
3489 **
3490 ** If P5!=0 then this opcode also checks the schema cookie against P3
3491 ** and the schema generation counter against P4.
3492 ** The cookie changes its value whenever the database schema changes.
3493 ** This operation is used to detect when that the cookie has changed
3494 ** and that the current process needs to reread the schema.  If the schema
3495 ** cookie in P3 differs from the schema cookie in the database header or
3496 ** if the schema generation counter in P4 differs from the current
3497 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3498 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3499 ** statement and rerun it from the beginning.
3500 */
3501 case OP_Transaction: {
3502   Btree *pBt;
3503   int iMeta = 0;
3504 
3505   assert( p->bIsReader );
3506   assert( p->readOnly==0 || pOp->p2==0 );
3507   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3508   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3509   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3510     rc = SQLITE_READONLY;
3511     goto abort_due_to_error;
3512   }
3513   pBt = db->aDb[pOp->p1].pBt;
3514 
3515   if( pBt ){
3516     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3517     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3518     testcase( rc==SQLITE_BUSY_RECOVERY );
3519     if( rc!=SQLITE_OK ){
3520       if( (rc&0xff)==SQLITE_BUSY ){
3521         p->pc = (int)(pOp - aOp);
3522         p->rc = rc;
3523         goto vdbe_return;
3524       }
3525       goto abort_due_to_error;
3526     }
3527 
3528     if( p->usesStmtJournal
3529      && pOp->p2
3530      && (db->autoCommit==0 || db->nVdbeRead>1)
3531     ){
3532       assert( sqlite3BtreeIsInTrans(pBt) );
3533       if( p->iStatement==0 ){
3534         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3535         db->nStatement++;
3536         p->iStatement = db->nSavepoint + db->nStatement;
3537       }
3538 
3539       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3540       if( rc==SQLITE_OK ){
3541         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3542       }
3543 
3544       /* Store the current value of the database handles deferred constraint
3545       ** counter. If the statement transaction needs to be rolled back,
3546       ** the value of this counter needs to be restored too.  */
3547       p->nStmtDefCons = db->nDeferredCons;
3548       p->nStmtDefImmCons = db->nDeferredImmCons;
3549     }
3550   }
3551   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3552   if( pOp->p5
3553    && (iMeta!=pOp->p3
3554       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3555   ){
3556     /*
3557     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3558     ** version is checked to ensure that the schema has not changed since the
3559     ** SQL statement was prepared.
3560     */
3561     sqlite3DbFree(db, p->zErrMsg);
3562     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3563     /* If the schema-cookie from the database file matches the cookie
3564     ** stored with the in-memory representation of the schema, do
3565     ** not reload the schema from the database file.
3566     **
3567     ** If virtual-tables are in use, this is not just an optimization.
3568     ** Often, v-tables store their data in other SQLite tables, which
3569     ** are queried from within xNext() and other v-table methods using
3570     ** prepared queries. If such a query is out-of-date, we do not want to
3571     ** discard the database schema, as the user code implementing the
3572     ** v-table would have to be ready for the sqlite3_vtab structure itself
3573     ** to be invalidated whenever sqlite3_step() is called from within
3574     ** a v-table method.
3575     */
3576     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3577       sqlite3ResetOneSchema(db, pOp->p1);
3578     }
3579     p->expired = 1;
3580     rc = SQLITE_SCHEMA;
3581   }
3582   if( rc ) goto abort_due_to_error;
3583   break;
3584 }
3585 
3586 /* Opcode: ReadCookie P1 P2 P3 * *
3587 **
3588 ** Read cookie number P3 from database P1 and write it into register P2.
3589 ** P3==1 is the schema version.  P3==2 is the database format.
3590 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3591 ** the main database file and P1==1 is the database file used to store
3592 ** temporary tables.
3593 **
3594 ** There must be a read-lock on the database (either a transaction
3595 ** must be started or there must be an open cursor) before
3596 ** executing this instruction.
3597 */
3598 case OP_ReadCookie: {               /* out2 */
3599   int iMeta;
3600   int iDb;
3601   int iCookie;
3602 
3603   assert( p->bIsReader );
3604   iDb = pOp->p1;
3605   iCookie = pOp->p3;
3606   assert( pOp->p3<SQLITE_N_BTREE_META );
3607   assert( iDb>=0 && iDb<db->nDb );
3608   assert( db->aDb[iDb].pBt!=0 );
3609   assert( DbMaskTest(p->btreeMask, iDb) );
3610 
3611   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3612   pOut = out2Prerelease(p, pOp);
3613   pOut->u.i = iMeta;
3614   break;
3615 }
3616 
3617 /* Opcode: SetCookie P1 P2 P3 * *
3618 **
3619 ** Write the integer value P3 into cookie number P2 of database P1.
3620 ** P2==1 is the schema version.  P2==2 is the database format.
3621 ** P2==3 is the recommended pager cache
3622 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3623 ** database file used to store temporary tables.
3624 **
3625 ** A transaction must be started before executing this opcode.
3626 */
3627 case OP_SetCookie: {
3628   Db *pDb;
3629 
3630   sqlite3VdbeIncrWriteCounter(p, 0);
3631   assert( pOp->p2<SQLITE_N_BTREE_META );
3632   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3633   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3634   assert( p->readOnly==0 );
3635   pDb = &db->aDb[pOp->p1];
3636   assert( pDb->pBt!=0 );
3637   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3638   /* See note about index shifting on OP_ReadCookie */
3639   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3640   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3641     /* When the schema cookie changes, record the new cookie internally */
3642     pDb->pSchema->schema_cookie = pOp->p3;
3643     db->mDbFlags |= DBFLAG_SchemaChange;
3644   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3645     /* Record changes in the file format */
3646     pDb->pSchema->file_format = pOp->p3;
3647   }
3648   if( pOp->p1==1 ){
3649     /* Invalidate all prepared statements whenever the TEMP database
3650     ** schema is changed.  Ticket #1644 */
3651     sqlite3ExpirePreparedStatements(db, 0);
3652     p->expired = 0;
3653   }
3654   if( rc ) goto abort_due_to_error;
3655   break;
3656 }
3657 
3658 /* Opcode: OpenRead P1 P2 P3 P4 P5
3659 ** Synopsis: root=P2 iDb=P3
3660 **
3661 ** Open a read-only cursor for the database table whose root page is
3662 ** P2 in a database file.  The database file is determined by P3.
3663 ** P3==0 means the main database, P3==1 means the database used for
3664 ** temporary tables, and P3>1 means used the corresponding attached
3665 ** database.  Give the new cursor an identifier of P1.  The P1
3666 ** values need not be contiguous but all P1 values should be small integers.
3667 ** It is an error for P1 to be negative.
3668 **
3669 ** Allowed P5 bits:
3670 ** <ul>
3671 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3672 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3673 **       of OP_SeekLE/OP_IdxLT)
3674 ** </ul>
3675 **
3676 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3677 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3678 ** object, then table being opened must be an [index b-tree] where the
3679 ** KeyInfo object defines the content and collating
3680 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3681 ** value, then the table being opened must be a [table b-tree] with a
3682 ** number of columns no less than the value of P4.
3683 **
3684 ** See also: OpenWrite, ReopenIdx
3685 */
3686 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3687 ** Synopsis: root=P2 iDb=P3
3688 **
3689 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3690 ** checks to see if the cursor on P1 is already open on the same
3691 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3692 ** if the cursor is already open, do not reopen it.
3693 **
3694 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3695 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3696 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3697 ** number.
3698 **
3699 ** Allowed P5 bits:
3700 ** <ul>
3701 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3702 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3703 **       of OP_SeekLE/OP_IdxLT)
3704 ** </ul>
3705 **
3706 ** See also: OP_OpenRead, OP_OpenWrite
3707 */
3708 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3709 ** Synopsis: root=P2 iDb=P3
3710 **
3711 ** Open a read/write cursor named P1 on the table or index whose root
3712 ** page is P2 (or whose root page is held in register P2 if the
3713 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3714 **
3715 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3716 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3717 ** object, then table being opened must be an [index b-tree] where the
3718 ** KeyInfo object defines the content and collating
3719 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3720 ** value, then the table being opened must be a [table b-tree] with a
3721 ** number of columns no less than the value of P4.
3722 **
3723 ** Allowed P5 bits:
3724 ** <ul>
3725 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3726 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3727 **       of OP_SeekLE/OP_IdxLT)
3728 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3729 **       and subsequently delete entries in an index btree.  This is a
3730 **       hint to the storage engine that the storage engine is allowed to
3731 **       ignore.  The hint is not used by the official SQLite b*tree storage
3732 **       engine, but is used by COMDB2.
3733 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3734 **       as the root page, not the value of P2 itself.
3735 ** </ul>
3736 **
3737 ** This instruction works like OpenRead except that it opens the cursor
3738 ** in read/write mode.
3739 **
3740 ** See also: OP_OpenRead, OP_ReopenIdx
3741 */
3742 case OP_ReopenIdx: {
3743   int nField;
3744   KeyInfo *pKeyInfo;
3745   int p2;
3746   int iDb;
3747   int wrFlag;
3748   Btree *pX;
3749   VdbeCursor *pCur;
3750   Db *pDb;
3751 
3752   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3753   assert( pOp->p4type==P4_KEYINFO );
3754   pCur = p->apCsr[pOp->p1];
3755   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3756     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3757     goto open_cursor_set_hints;
3758   }
3759   /* If the cursor is not currently open or is open on a different
3760   ** index, then fall through into OP_OpenRead to force a reopen */
3761 case OP_OpenRead:
3762 case OP_OpenWrite:
3763 
3764   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3765   assert( p->bIsReader );
3766   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3767           || p->readOnly==0 );
3768 
3769   if( p->expired==1 ){
3770     rc = SQLITE_ABORT_ROLLBACK;
3771     goto abort_due_to_error;
3772   }
3773 
3774   nField = 0;
3775   pKeyInfo = 0;
3776   p2 = pOp->p2;
3777   iDb = pOp->p3;
3778   assert( iDb>=0 && iDb<db->nDb );
3779   assert( DbMaskTest(p->btreeMask, iDb) );
3780   pDb = &db->aDb[iDb];
3781   pX = pDb->pBt;
3782   assert( pX!=0 );
3783   if( pOp->opcode==OP_OpenWrite ){
3784     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3785     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3786     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3787     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3788       p->minWriteFileFormat = pDb->pSchema->file_format;
3789     }
3790   }else{
3791     wrFlag = 0;
3792   }
3793   if( pOp->p5 & OPFLAG_P2ISREG ){
3794     assert( p2>0 );
3795     assert( p2<=(p->nMem+1 - p->nCursor) );
3796     assert( pOp->opcode==OP_OpenWrite );
3797     pIn2 = &aMem[p2];
3798     assert( memIsValid(pIn2) );
3799     assert( (pIn2->flags & MEM_Int)!=0 );
3800     sqlite3VdbeMemIntegerify(pIn2);
3801     p2 = (int)pIn2->u.i;
3802     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3803     ** that opcode will always set the p2 value to 2 or more or else fail.
3804     ** If there were a failure, the prepared statement would have halted
3805     ** before reaching this instruction. */
3806     assert( p2>=2 );
3807   }
3808   if( pOp->p4type==P4_KEYINFO ){
3809     pKeyInfo = pOp->p4.pKeyInfo;
3810     assert( pKeyInfo->enc==ENC(db) );
3811     assert( pKeyInfo->db==db );
3812     nField = pKeyInfo->nAllField;
3813   }else if( pOp->p4type==P4_INT32 ){
3814     nField = pOp->p4.i;
3815   }
3816   assert( pOp->p1>=0 );
3817   assert( nField>=0 );
3818   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3819   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3820   if( pCur==0 ) goto no_mem;
3821   pCur->nullRow = 1;
3822   pCur->isOrdered = 1;
3823   pCur->pgnoRoot = p2;
3824 #ifdef SQLITE_DEBUG
3825   pCur->wrFlag = wrFlag;
3826 #endif
3827   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3828   pCur->pKeyInfo = pKeyInfo;
3829   /* Set the VdbeCursor.isTable variable. Previous versions of
3830   ** SQLite used to check if the root-page flags were sane at this point
3831   ** and report database corruption if they were not, but this check has
3832   ** since moved into the btree layer.  */
3833   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3834 
3835 open_cursor_set_hints:
3836   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3837   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3838   testcase( pOp->p5 & OPFLAG_BULKCSR );
3839   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3840   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3841                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3842   if( rc ) goto abort_due_to_error;
3843   break;
3844 }
3845 
3846 /* Opcode: OpenDup P1 P2 * * *
3847 **
3848 ** Open a new cursor P1 that points to the same ephemeral table as
3849 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3850 ** opcode.  Only ephemeral cursors may be duplicated.
3851 **
3852 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3853 */
3854 case OP_OpenDup: {
3855   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3856   VdbeCursor *pCx;      /* The new cursor */
3857 
3858   pOrig = p->apCsr[pOp->p2];
3859   assert( pOrig );
3860   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3861 
3862   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3863   if( pCx==0 ) goto no_mem;
3864   pCx->nullRow = 1;
3865   pCx->isEphemeral = 1;
3866   pCx->pKeyInfo = pOrig->pKeyInfo;
3867   pCx->isTable = pOrig->isTable;
3868   pCx->pgnoRoot = pOrig->pgnoRoot;
3869   pCx->isOrdered = pOrig->isOrdered;
3870   rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3871                           pCx->pKeyInfo, pCx->uc.pCursor);
3872   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3873   ** opened for a database.  Since there is already an open cursor when this
3874   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3875   assert( rc==SQLITE_OK );
3876   break;
3877 }
3878 
3879 
3880 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3881 ** Synopsis: nColumn=P2
3882 **
3883 ** Open a new cursor P1 to a transient table.
3884 ** The cursor is always opened read/write even if
3885 ** the main database is read-only.  The ephemeral
3886 ** table is deleted automatically when the cursor is closed.
3887 **
3888 ** If the cursor P1 is already opened on an ephemeral table, the table
3889 ** is cleared (all content is erased).
3890 **
3891 ** P2 is the number of columns in the ephemeral table.
3892 ** The cursor points to a BTree table if P4==0 and to a BTree index
3893 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3894 ** that defines the format of keys in the index.
3895 **
3896 ** The P5 parameter can be a mask of the BTREE_* flags defined
3897 ** in btree.h.  These flags control aspects of the operation of
3898 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3899 ** added automatically.
3900 */
3901 /* Opcode: OpenAutoindex P1 P2 * P4 *
3902 ** Synopsis: nColumn=P2
3903 **
3904 ** This opcode works the same as OP_OpenEphemeral.  It has a
3905 ** different name to distinguish its use.  Tables created using
3906 ** by this opcode will be used for automatically created transient
3907 ** indices in joins.
3908 */
3909 case OP_OpenAutoindex:
3910 case OP_OpenEphemeral: {
3911   VdbeCursor *pCx;
3912   KeyInfo *pKeyInfo;
3913 
3914   static const int vfsFlags =
3915       SQLITE_OPEN_READWRITE |
3916       SQLITE_OPEN_CREATE |
3917       SQLITE_OPEN_EXCLUSIVE |
3918       SQLITE_OPEN_DELETEONCLOSE |
3919       SQLITE_OPEN_TRANSIENT_DB;
3920   assert( pOp->p1>=0 );
3921   assert( pOp->p2>=0 );
3922   pCx = p->apCsr[pOp->p1];
3923   if( pCx && pCx->pBtx ){
3924     /* If the ephermeral table is already open, erase all existing content
3925     ** so that the table is empty again, rather than creating a new table. */
3926     assert( pCx->isEphemeral );
3927     pCx->seqCount = 0;
3928     pCx->cacheStatus = CACHE_STALE;
3929     rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0);
3930   }else{
3931     pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3932     if( pCx==0 ) goto no_mem;
3933     pCx->isEphemeral = 1;
3934     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3935                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
3936                           vfsFlags);
3937     if( rc==SQLITE_OK ){
3938       rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3939     }
3940     if( rc==SQLITE_OK ){
3941       /* If a transient index is required, create it by calling
3942       ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3943       ** opening it. If a transient table is required, just use the
3944       ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3945       */
3946       if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3947         assert( pOp->p4type==P4_KEYINFO );
3948         rc = sqlite3BtreeCreateTable(pCx->pBtx, (int*)&pCx->pgnoRoot,
3949                                      BTREE_BLOBKEY | pOp->p5);
3950         if( rc==SQLITE_OK ){
3951           assert( pCx->pgnoRoot==MASTER_ROOT+1 );
3952           assert( pKeyInfo->db==db );
3953           assert( pKeyInfo->enc==ENC(db) );
3954           rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR,
3955                                   pKeyInfo, pCx->uc.pCursor);
3956         }
3957         pCx->isTable = 0;
3958       }else{
3959         pCx->pgnoRoot = MASTER_ROOT;
3960         rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3961                                 0, pCx->uc.pCursor);
3962         pCx->isTable = 1;
3963       }
3964     }
3965     pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3966   }
3967   if( rc ) goto abort_due_to_error;
3968   pCx->nullRow = 1;
3969   break;
3970 }
3971 
3972 /* Opcode: SorterOpen P1 P2 P3 P4 *
3973 **
3974 ** This opcode works like OP_OpenEphemeral except that it opens
3975 ** a transient index that is specifically designed to sort large
3976 ** tables using an external merge-sort algorithm.
3977 **
3978 ** If argument P3 is non-zero, then it indicates that the sorter may
3979 ** assume that a stable sort considering the first P3 fields of each
3980 ** key is sufficient to produce the required results.
3981 */
3982 case OP_SorterOpen: {
3983   VdbeCursor *pCx;
3984 
3985   assert( pOp->p1>=0 );
3986   assert( pOp->p2>=0 );
3987   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3988   if( pCx==0 ) goto no_mem;
3989   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3990   assert( pCx->pKeyInfo->db==db );
3991   assert( pCx->pKeyInfo->enc==ENC(db) );
3992   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3993   if( rc ) goto abort_due_to_error;
3994   break;
3995 }
3996 
3997 /* Opcode: SequenceTest P1 P2 * * *
3998 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3999 **
4000 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4001 ** to P2. Regardless of whether or not the jump is taken, increment the
4002 ** the sequence value.
4003 */
4004 case OP_SequenceTest: {
4005   VdbeCursor *pC;
4006   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4007   pC = p->apCsr[pOp->p1];
4008   assert( isSorter(pC) );
4009   if( (pC->seqCount++)==0 ){
4010     goto jump_to_p2;
4011   }
4012   break;
4013 }
4014 
4015 /* Opcode: OpenPseudo P1 P2 P3 * *
4016 ** Synopsis: P3 columns in r[P2]
4017 **
4018 ** Open a new cursor that points to a fake table that contains a single
4019 ** row of data.  The content of that one row is the content of memory
4020 ** register P2.  In other words, cursor P1 becomes an alias for the
4021 ** MEM_Blob content contained in register P2.
4022 **
4023 ** A pseudo-table created by this opcode is used to hold a single
4024 ** row output from the sorter so that the row can be decomposed into
4025 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4026 ** is the only cursor opcode that works with a pseudo-table.
4027 **
4028 ** P3 is the number of fields in the records that will be stored by
4029 ** the pseudo-table.
4030 */
4031 case OP_OpenPseudo: {
4032   VdbeCursor *pCx;
4033 
4034   assert( pOp->p1>=0 );
4035   assert( pOp->p3>=0 );
4036   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
4037   if( pCx==0 ) goto no_mem;
4038   pCx->nullRow = 1;
4039   pCx->seekResult = pOp->p2;
4040   pCx->isTable = 1;
4041   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4042   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4043   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4044   ** which is a performance optimization */
4045   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4046   assert( pOp->p5==0 );
4047   break;
4048 }
4049 
4050 /* Opcode: Close P1 * * * *
4051 **
4052 ** Close a cursor previously opened as P1.  If P1 is not
4053 ** currently open, this instruction is a no-op.
4054 */
4055 case OP_Close: {
4056   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4057   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4058   p->apCsr[pOp->p1] = 0;
4059   break;
4060 }
4061 
4062 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4063 /* Opcode: ColumnsUsed P1 * * P4 *
4064 **
4065 ** This opcode (which only exists if SQLite was compiled with
4066 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4067 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4068 ** (P4_INT64) in which the first 63 bits are one for each of the
4069 ** first 63 columns of the table or index that are actually used
4070 ** by the cursor.  The high-order bit is set if any column after
4071 ** the 64th is used.
4072 */
4073 case OP_ColumnsUsed: {
4074   VdbeCursor *pC;
4075   pC = p->apCsr[pOp->p1];
4076   assert( pC->eCurType==CURTYPE_BTREE );
4077   pC->maskUsed = *(u64*)pOp->p4.pI64;
4078   break;
4079 }
4080 #endif
4081 
4082 /* Opcode: SeekGE P1 P2 P3 P4 *
4083 ** Synopsis: key=r[P3@P4]
4084 **
4085 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4086 ** use the value in register P3 as the key.  If cursor P1 refers
4087 ** to an SQL index, then P3 is the first in an array of P4 registers
4088 ** that are used as an unpacked index key.
4089 **
4090 ** Reposition cursor P1 so that  it points to the smallest entry that
4091 ** is greater than or equal to the key value. If there are no records
4092 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4093 **
4094 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4095 ** opcode will either land on a record that exactly matches the key, or
4096 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4097 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4098 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4099 ** IdxGT opcode will be used on subsequent loop iterations.  The
4100 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4101 ** is an equality search.
4102 **
4103 ** This opcode leaves the cursor configured to move in forward order,
4104 ** from the beginning toward the end.  In other words, the cursor is
4105 ** configured to use Next, not Prev.
4106 **
4107 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4108 */
4109 /* Opcode: SeekGT P1 P2 P3 P4 *
4110 ** Synopsis: key=r[P3@P4]
4111 **
4112 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4113 ** use the value in register P3 as a key. If cursor P1 refers
4114 ** to an SQL index, then P3 is the first in an array of P4 registers
4115 ** that are used as an unpacked index key.
4116 **
4117 ** Reposition cursor P1 so that it points to the smallest entry that
4118 ** is greater than the key value. If there are no records greater than
4119 ** the key and P2 is not zero, then jump to P2.
4120 **
4121 ** This opcode leaves the cursor configured to move in forward order,
4122 ** from the beginning toward the end.  In other words, the cursor is
4123 ** configured to use Next, not Prev.
4124 **
4125 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4126 */
4127 /* Opcode: SeekLT P1 P2 P3 P4 *
4128 ** Synopsis: key=r[P3@P4]
4129 **
4130 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4131 ** use the value in register P3 as a key. If cursor P1 refers
4132 ** to an SQL index, then P3 is the first in an array of P4 registers
4133 ** that are used as an unpacked index key.
4134 **
4135 ** Reposition cursor P1 so that  it points to the largest entry that
4136 ** is less than the key value. If there are no records less than
4137 ** the key and P2 is not zero, then jump to P2.
4138 **
4139 ** This opcode leaves the cursor configured to move in reverse order,
4140 ** from the end toward the beginning.  In other words, the cursor is
4141 ** configured to use Prev, not Next.
4142 **
4143 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4144 */
4145 /* Opcode: SeekLE P1 P2 P3 P4 *
4146 ** Synopsis: key=r[P3@P4]
4147 **
4148 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4149 ** use the value in register P3 as a key. If cursor P1 refers
4150 ** to an SQL index, then P3 is the first in an array of P4 registers
4151 ** that are used as an unpacked index key.
4152 **
4153 ** Reposition cursor P1 so that it points to the largest entry that
4154 ** is less than or equal to the key value. If there are no records
4155 ** less than or equal to the key and P2 is not zero, then jump to P2.
4156 **
4157 ** This opcode leaves the cursor configured to move in reverse order,
4158 ** from the end toward the beginning.  In other words, the cursor is
4159 ** configured to use Prev, not Next.
4160 **
4161 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4162 ** opcode will either land on a record that exactly matches the key, or
4163 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4164 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4165 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4166 ** IdxGE opcode will be used on subsequent loop iterations.  The
4167 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4168 ** is an equality search.
4169 **
4170 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4171 */
4172 case OP_SeekLT:         /* jump, in3, group */
4173 case OP_SeekLE:         /* jump, in3, group */
4174 case OP_SeekGE:         /* jump, in3, group */
4175 case OP_SeekGT: {       /* jump, in3, group */
4176   int res;           /* Comparison result */
4177   int oc;            /* Opcode */
4178   VdbeCursor *pC;    /* The cursor to seek */
4179   UnpackedRecord r;  /* The key to seek for */
4180   int nField;        /* Number of columns or fields in the key */
4181   i64 iKey;          /* The rowid we are to seek to */
4182   int eqOnly;        /* Only interested in == results */
4183 
4184   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4185   assert( pOp->p2!=0 );
4186   pC = p->apCsr[pOp->p1];
4187   assert( pC!=0 );
4188   assert( pC->eCurType==CURTYPE_BTREE );
4189   assert( OP_SeekLE == OP_SeekLT+1 );
4190   assert( OP_SeekGE == OP_SeekLT+2 );
4191   assert( OP_SeekGT == OP_SeekLT+3 );
4192   assert( pC->isOrdered );
4193   assert( pC->uc.pCursor!=0 );
4194   oc = pOp->opcode;
4195   eqOnly = 0;
4196   pC->nullRow = 0;
4197 #ifdef SQLITE_DEBUG
4198   pC->seekOp = pOp->opcode;
4199 #endif
4200 
4201   pC->deferredMoveto = 0;
4202   pC->cacheStatus = CACHE_STALE;
4203   if( pC->isTable ){
4204     u16 flags3, newType;
4205     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4206     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4207               || CORRUPT_DB );
4208 
4209     /* The input value in P3 might be of any type: integer, real, string,
4210     ** blob, or NULL.  But it needs to be an integer before we can do
4211     ** the seek, so convert it. */
4212     pIn3 = &aMem[pOp->p3];
4213     flags3 = pIn3->flags;
4214     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4215       applyNumericAffinity(pIn3, 0);
4216     }
4217     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4218     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4219     pIn3->flags = flags3;  /* But convert the type back to its original */
4220 
4221     /* If the P3 value could not be converted into an integer without
4222     ** loss of information, then special processing is required... */
4223     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4224       if( (newType & MEM_Real)==0 ){
4225         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4226           VdbeBranchTaken(1,2);
4227           goto jump_to_p2;
4228         }else{
4229           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4230           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4231           goto seek_not_found;
4232         }
4233       }else
4234 
4235       /* If the approximation iKey is larger than the actual real search
4236       ** term, substitute >= for > and < for <=. e.g. if the search term
4237       ** is 4.9 and the integer approximation 5:
4238       **
4239       **        (x >  4.9)    ->     (x >= 5)
4240       **        (x <= 4.9)    ->     (x <  5)
4241       */
4242       if( pIn3->u.r<(double)iKey ){
4243         assert( OP_SeekGE==(OP_SeekGT-1) );
4244         assert( OP_SeekLT==(OP_SeekLE-1) );
4245         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4246         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4247       }
4248 
4249       /* If the approximation iKey is smaller than the actual real search
4250       ** term, substitute <= for < and > for >=.  */
4251       else if( pIn3->u.r>(double)iKey ){
4252         assert( OP_SeekLE==(OP_SeekLT+1) );
4253         assert( OP_SeekGT==(OP_SeekGE+1) );
4254         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4255         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4256       }
4257     }
4258     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
4259     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4260     if( rc!=SQLITE_OK ){
4261       goto abort_due_to_error;
4262     }
4263   }else{
4264     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4265     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4266     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4267     ** with the same key.
4268     */
4269     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4270       eqOnly = 1;
4271       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4272       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4273       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4274       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4275       assert( pOp[1].p1==pOp[0].p1 );
4276       assert( pOp[1].p2==pOp[0].p2 );
4277       assert( pOp[1].p3==pOp[0].p3 );
4278       assert( pOp[1].p4.i==pOp[0].p4.i );
4279     }
4280 
4281     nField = pOp->p4.i;
4282     assert( pOp->p4type==P4_INT32 );
4283     assert( nField>0 );
4284     r.pKeyInfo = pC->pKeyInfo;
4285     r.nField = (u16)nField;
4286 
4287     /* The next line of code computes as follows, only faster:
4288     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4289     **     r.default_rc = -1;
4290     **   }else{
4291     **     r.default_rc = +1;
4292     **   }
4293     */
4294     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4295     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4296     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4297     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4298     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4299 
4300     r.aMem = &aMem[pOp->p3];
4301 #ifdef SQLITE_DEBUG
4302     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4303 #endif
4304     r.eqSeen = 0;
4305     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
4306     if( rc!=SQLITE_OK ){
4307       goto abort_due_to_error;
4308     }
4309     if( eqOnly && r.eqSeen==0 ){
4310       assert( res!=0 );
4311       goto seek_not_found;
4312     }
4313   }
4314 #ifdef SQLITE_TEST
4315   sqlite3_search_count++;
4316 #endif
4317   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4318     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4319       res = 0;
4320       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4321       if( rc!=SQLITE_OK ){
4322         if( rc==SQLITE_DONE ){
4323           rc = SQLITE_OK;
4324           res = 1;
4325         }else{
4326           goto abort_due_to_error;
4327         }
4328       }
4329     }else{
4330       res = 0;
4331     }
4332   }else{
4333     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4334     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4335       res = 0;
4336       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4337       if( rc!=SQLITE_OK ){
4338         if( rc==SQLITE_DONE ){
4339           rc = SQLITE_OK;
4340           res = 1;
4341         }else{
4342           goto abort_due_to_error;
4343         }
4344       }
4345     }else{
4346       /* res might be negative because the table is empty.  Check to
4347       ** see if this is the case.
4348       */
4349       res = sqlite3BtreeEof(pC->uc.pCursor);
4350     }
4351   }
4352 seek_not_found:
4353   assert( pOp->p2>0 );
4354   VdbeBranchTaken(res!=0,2);
4355   if( res ){
4356     goto jump_to_p2;
4357   }else if( eqOnly ){
4358     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4359     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4360   }
4361   break;
4362 }
4363 
4364 /* Opcode: SeekHit P1 P2 * * *
4365 ** Synopsis: seekHit=P2
4366 **
4367 ** Set the seekHit flag on cursor P1 to the value in P2.
4368 * The seekHit flag is used by the IfNoHope opcode.
4369 **
4370 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4371 ** either 0 or 1.
4372 */
4373 case OP_SeekHit: {
4374   VdbeCursor *pC;
4375   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4376   pC = p->apCsr[pOp->p1];
4377   assert( pC!=0 );
4378   assert( pOp->p2==0 || pOp->p2==1 );
4379   pC->seekHit = pOp->p2 & 1;
4380   break;
4381 }
4382 
4383 /* Opcode: IfNotOpen P1 P2 * * *
4384 ** Synopsis: if( !csr[P1] ) goto P2
4385 **
4386 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4387 */
4388 case OP_IfNotOpen: {        /* jump */
4389   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4390   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4391   if( !p->apCsr[pOp->p1] ){
4392     goto jump_to_p2_and_check_for_interrupt;
4393   }
4394   break;
4395 }
4396 
4397 /* Opcode: Found P1 P2 P3 P4 *
4398 ** Synopsis: key=r[P3@P4]
4399 **
4400 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4401 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4402 ** record.
4403 **
4404 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4405 ** is a prefix of any entry in P1 then a jump is made to P2 and
4406 ** P1 is left pointing at the matching entry.
4407 **
4408 ** This operation leaves the cursor in a state where it can be
4409 ** advanced in the forward direction.  The Next instruction will work,
4410 ** but not the Prev instruction.
4411 **
4412 ** See also: NotFound, NoConflict, NotExists. SeekGe
4413 */
4414 /* Opcode: NotFound P1 P2 P3 P4 *
4415 ** Synopsis: key=r[P3@P4]
4416 **
4417 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4418 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4419 ** record.
4420 **
4421 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4422 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4423 ** does contain an entry whose prefix matches the P3/P4 record then control
4424 ** falls through to the next instruction and P1 is left pointing at the
4425 ** matching entry.
4426 **
4427 ** This operation leaves the cursor in a state where it cannot be
4428 ** advanced in either direction.  In other words, the Next and Prev
4429 ** opcodes do not work after this operation.
4430 **
4431 ** See also: Found, NotExists, NoConflict, IfNoHope
4432 */
4433 /* Opcode: IfNoHope P1 P2 P3 P4 *
4434 ** Synopsis: key=r[P3@P4]
4435 **
4436 ** Register P3 is the first of P4 registers that form an unpacked
4437 ** record.
4438 **
4439 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4440 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4441 ** check to see if there is any entry in P1 that matches the
4442 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4443 ** jump to P2.  Otherwise fall through.
4444 **
4445 ** This opcode behaves like OP_NotFound if the seekHit
4446 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4447 **
4448 ** This opcode is used in IN clause processing for a multi-column key.
4449 ** If an IN clause is attached to an element of the key other than the
4450 ** left-most element, and if there are no matches on the most recent
4451 ** seek over the whole key, then it might be that one of the key element
4452 ** to the left is prohibiting a match, and hence there is "no hope" of
4453 ** any match regardless of how many IN clause elements are checked.
4454 ** In such a case, we abandon the IN clause search early, using this
4455 ** opcode.  The opcode name comes from the fact that the
4456 ** jump is taken if there is "no hope" of achieving a match.
4457 **
4458 ** See also: NotFound, SeekHit
4459 */
4460 /* Opcode: NoConflict P1 P2 P3 P4 *
4461 ** Synopsis: key=r[P3@P4]
4462 **
4463 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4464 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4465 ** record.
4466 **
4467 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4468 ** contains any NULL value, jump immediately to P2.  If all terms of the
4469 ** record are not-NULL then a check is done to determine if any row in the
4470 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4471 ** immediately to P2.  If there is a match, fall through and leave the P1
4472 ** cursor pointing to the matching row.
4473 **
4474 ** This opcode is similar to OP_NotFound with the exceptions that the
4475 ** branch is always taken if any part of the search key input is NULL.
4476 **
4477 ** This operation leaves the cursor in a state where it cannot be
4478 ** advanced in either direction.  In other words, the Next and Prev
4479 ** opcodes do not work after this operation.
4480 **
4481 ** See also: NotFound, Found, NotExists
4482 */
4483 case OP_IfNoHope: {     /* jump, in3 */
4484   VdbeCursor *pC;
4485   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4486   pC = p->apCsr[pOp->p1];
4487   assert( pC!=0 );
4488   if( pC->seekHit ) break;
4489   /* Fall through into OP_NotFound */
4490 }
4491 case OP_NoConflict:     /* jump, in3 */
4492 case OP_NotFound:       /* jump, in3 */
4493 case OP_Found: {        /* jump, in3 */
4494   int alreadyExists;
4495   int takeJump;
4496   int ii;
4497   VdbeCursor *pC;
4498   int res;
4499   UnpackedRecord *pFree;
4500   UnpackedRecord *pIdxKey;
4501   UnpackedRecord r;
4502 
4503 #ifdef SQLITE_TEST
4504   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4505 #endif
4506 
4507   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4508   assert( pOp->p4type==P4_INT32 );
4509   pC = p->apCsr[pOp->p1];
4510   assert( pC!=0 );
4511 #ifdef SQLITE_DEBUG
4512   pC->seekOp = pOp->opcode;
4513 #endif
4514   pIn3 = &aMem[pOp->p3];
4515   assert( pC->eCurType==CURTYPE_BTREE );
4516   assert( pC->uc.pCursor!=0 );
4517   assert( pC->isTable==0 );
4518   if( pOp->p4.i>0 ){
4519     r.pKeyInfo = pC->pKeyInfo;
4520     r.nField = (u16)pOp->p4.i;
4521     r.aMem = pIn3;
4522 #ifdef SQLITE_DEBUG
4523     for(ii=0; ii<r.nField; ii++){
4524       assert( memIsValid(&r.aMem[ii]) );
4525       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4526       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4527     }
4528 #endif
4529     pIdxKey = &r;
4530     pFree = 0;
4531   }else{
4532     assert( pIn3->flags & MEM_Blob );
4533     rc = ExpandBlob(pIn3);
4534     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4535     if( rc ) goto no_mem;
4536     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4537     if( pIdxKey==0 ) goto no_mem;
4538     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4539   }
4540   pIdxKey->default_rc = 0;
4541   takeJump = 0;
4542   if( pOp->opcode==OP_NoConflict ){
4543     /* For the OP_NoConflict opcode, take the jump if any of the
4544     ** input fields are NULL, since any key with a NULL will not
4545     ** conflict */
4546     for(ii=0; ii<pIdxKey->nField; ii++){
4547       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4548         takeJump = 1;
4549         break;
4550       }
4551     }
4552   }
4553   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4554   if( pFree ) sqlite3DbFreeNN(db, pFree);
4555   if( rc!=SQLITE_OK ){
4556     goto abort_due_to_error;
4557   }
4558   pC->seekResult = res;
4559   alreadyExists = (res==0);
4560   pC->nullRow = 1-alreadyExists;
4561   pC->deferredMoveto = 0;
4562   pC->cacheStatus = CACHE_STALE;
4563   if( pOp->opcode==OP_Found ){
4564     VdbeBranchTaken(alreadyExists!=0,2);
4565     if( alreadyExists ) goto jump_to_p2;
4566   }else{
4567     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4568     if( takeJump || !alreadyExists ) goto jump_to_p2;
4569   }
4570   break;
4571 }
4572 
4573 /* Opcode: SeekRowid P1 P2 P3 * *
4574 ** Synopsis: intkey=r[P3]
4575 **
4576 ** P1 is the index of a cursor open on an SQL table btree (with integer
4577 ** keys).  If register P3 does not contain an integer or if P1 does not
4578 ** contain a record with rowid P3 then jump immediately to P2.
4579 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4580 ** a record with rowid P3 then
4581 ** leave the cursor pointing at that record and fall through to the next
4582 ** instruction.
4583 **
4584 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4585 ** the P3 register must be guaranteed to contain an integer value.  With this
4586 ** opcode, register P3 might not contain an integer.
4587 **
4588 ** The OP_NotFound opcode performs the same operation on index btrees
4589 ** (with arbitrary multi-value keys).
4590 **
4591 ** This opcode leaves the cursor in a state where it cannot be advanced
4592 ** in either direction.  In other words, the Next and Prev opcodes will
4593 ** not work following this opcode.
4594 **
4595 ** See also: Found, NotFound, NoConflict, SeekRowid
4596 */
4597 /* Opcode: NotExists P1 P2 P3 * *
4598 ** Synopsis: intkey=r[P3]
4599 **
4600 ** P1 is the index of a cursor open on an SQL table btree (with integer
4601 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4602 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4603 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4604 ** leave the cursor pointing at that record and fall through to the next
4605 ** instruction.
4606 **
4607 ** The OP_SeekRowid opcode performs the same operation but also allows the
4608 ** P3 register to contain a non-integer value, in which case the jump is
4609 ** always taken.  This opcode requires that P3 always contain an integer.
4610 **
4611 ** The OP_NotFound opcode performs the same operation on index btrees
4612 ** (with arbitrary multi-value keys).
4613 **
4614 ** This opcode leaves the cursor in a state where it cannot be advanced
4615 ** in either direction.  In other words, the Next and Prev opcodes will
4616 ** not work following this opcode.
4617 **
4618 ** See also: Found, NotFound, NoConflict, SeekRowid
4619 */
4620 case OP_SeekRowid: {        /* jump, in3 */
4621   VdbeCursor *pC;
4622   BtCursor *pCrsr;
4623   int res;
4624   u64 iKey;
4625 
4626   pIn3 = &aMem[pOp->p3];
4627   testcase( pIn3->flags & MEM_Int );
4628   testcase( pIn3->flags & MEM_IntReal );
4629   testcase( pIn3->flags & MEM_Real );
4630   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
4631   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
4632     /* If pIn3->u.i does not contain an integer, compute iKey as the
4633     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
4634     ** into an integer without loss of information.  Take care to avoid
4635     ** changing the datatype of pIn3, however, as it is used by other
4636     ** parts of the prepared statement. */
4637     Mem x = pIn3[0];
4638     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
4639     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
4640     iKey = x.u.i;
4641     goto notExistsWithKey;
4642   }
4643   /* Fall through into OP_NotExists */
4644 case OP_NotExists:          /* jump, in3 */
4645   pIn3 = &aMem[pOp->p3];
4646   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
4647   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4648   iKey = pIn3->u.i;
4649 notExistsWithKey:
4650   pC = p->apCsr[pOp->p1];
4651   assert( pC!=0 );
4652 #ifdef SQLITE_DEBUG
4653   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
4654 #endif
4655   assert( pC->isTable );
4656   assert( pC->eCurType==CURTYPE_BTREE );
4657   pCrsr = pC->uc.pCursor;
4658   assert( pCrsr!=0 );
4659   res = 0;
4660   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4661   assert( rc==SQLITE_OK || res==0 );
4662   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4663   pC->nullRow = 0;
4664   pC->cacheStatus = CACHE_STALE;
4665   pC->deferredMoveto = 0;
4666   VdbeBranchTaken(res!=0,2);
4667   pC->seekResult = res;
4668   if( res!=0 ){
4669     assert( rc==SQLITE_OK );
4670     if( pOp->p2==0 ){
4671       rc = SQLITE_CORRUPT_BKPT;
4672     }else{
4673       goto jump_to_p2;
4674     }
4675   }
4676   if( rc ) goto abort_due_to_error;
4677   break;
4678 }
4679 
4680 /* Opcode: Sequence P1 P2 * * *
4681 ** Synopsis: r[P2]=cursor[P1].ctr++
4682 **
4683 ** Find the next available sequence number for cursor P1.
4684 ** Write the sequence number into register P2.
4685 ** The sequence number on the cursor is incremented after this
4686 ** instruction.
4687 */
4688 case OP_Sequence: {           /* out2 */
4689   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4690   assert( p->apCsr[pOp->p1]!=0 );
4691   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4692   pOut = out2Prerelease(p, pOp);
4693   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4694   break;
4695 }
4696 
4697 
4698 /* Opcode: NewRowid P1 P2 P3 * *
4699 ** Synopsis: r[P2]=rowid
4700 **
4701 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4702 ** The record number is not previously used as a key in the database
4703 ** table that cursor P1 points to.  The new record number is written
4704 ** written to register P2.
4705 **
4706 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4707 ** the largest previously generated record number. No new record numbers are
4708 ** allowed to be less than this value. When this value reaches its maximum,
4709 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4710 ** generated record number. This P3 mechanism is used to help implement the
4711 ** AUTOINCREMENT feature.
4712 */
4713 case OP_NewRowid: {           /* out2 */
4714   i64 v;                 /* The new rowid */
4715   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4716   int res;               /* Result of an sqlite3BtreeLast() */
4717   int cnt;               /* Counter to limit the number of searches */
4718   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4719   VdbeFrame *pFrame;     /* Root frame of VDBE */
4720 
4721   v = 0;
4722   res = 0;
4723   pOut = out2Prerelease(p, pOp);
4724   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4725   pC = p->apCsr[pOp->p1];
4726   assert( pC!=0 );
4727   assert( pC->isTable );
4728   assert( pC->eCurType==CURTYPE_BTREE );
4729   assert( pC->uc.pCursor!=0 );
4730   {
4731     /* The next rowid or record number (different terms for the same
4732     ** thing) is obtained in a two-step algorithm.
4733     **
4734     ** First we attempt to find the largest existing rowid and add one
4735     ** to that.  But if the largest existing rowid is already the maximum
4736     ** positive integer, we have to fall through to the second
4737     ** probabilistic algorithm
4738     **
4739     ** The second algorithm is to select a rowid at random and see if
4740     ** it already exists in the table.  If it does not exist, we have
4741     ** succeeded.  If the random rowid does exist, we select a new one
4742     ** and try again, up to 100 times.
4743     */
4744     assert( pC->isTable );
4745 
4746 #ifdef SQLITE_32BIT_ROWID
4747 #   define MAX_ROWID 0x7fffffff
4748 #else
4749     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4750     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4751     ** to provide the constant while making all compilers happy.
4752     */
4753 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4754 #endif
4755 
4756     if( !pC->useRandomRowid ){
4757       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4758       if( rc!=SQLITE_OK ){
4759         goto abort_due_to_error;
4760       }
4761       if( res ){
4762         v = 1;   /* IMP: R-61914-48074 */
4763       }else{
4764         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4765         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4766         if( v>=MAX_ROWID ){
4767           pC->useRandomRowid = 1;
4768         }else{
4769           v++;   /* IMP: R-29538-34987 */
4770         }
4771       }
4772     }
4773 
4774 #ifndef SQLITE_OMIT_AUTOINCREMENT
4775     if( pOp->p3 ){
4776       /* Assert that P3 is a valid memory cell. */
4777       assert( pOp->p3>0 );
4778       if( p->pFrame ){
4779         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4780         /* Assert that P3 is a valid memory cell. */
4781         assert( pOp->p3<=pFrame->nMem );
4782         pMem = &pFrame->aMem[pOp->p3];
4783       }else{
4784         /* Assert that P3 is a valid memory cell. */
4785         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4786         pMem = &aMem[pOp->p3];
4787         memAboutToChange(p, pMem);
4788       }
4789       assert( memIsValid(pMem) );
4790 
4791       REGISTER_TRACE(pOp->p3, pMem);
4792       sqlite3VdbeMemIntegerify(pMem);
4793       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4794       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4795         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4796         goto abort_due_to_error;
4797       }
4798       if( v<pMem->u.i+1 ){
4799         v = pMem->u.i + 1;
4800       }
4801       pMem->u.i = v;
4802     }
4803 #endif
4804     if( pC->useRandomRowid ){
4805       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4806       ** largest possible integer (9223372036854775807) then the database
4807       ** engine starts picking positive candidate ROWIDs at random until
4808       ** it finds one that is not previously used. */
4809       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4810                              ** an AUTOINCREMENT table. */
4811       cnt = 0;
4812       do{
4813         sqlite3_randomness(sizeof(v), &v);
4814         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4815       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4816                                                  0, &res))==SQLITE_OK)
4817             && (res==0)
4818             && (++cnt<100));
4819       if( rc ) goto abort_due_to_error;
4820       if( res==0 ){
4821         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4822         goto abort_due_to_error;
4823       }
4824       assert( v>0 );  /* EV: R-40812-03570 */
4825     }
4826     pC->deferredMoveto = 0;
4827     pC->cacheStatus = CACHE_STALE;
4828   }
4829   pOut->u.i = v;
4830   break;
4831 }
4832 
4833 /* Opcode: Insert P1 P2 P3 P4 P5
4834 ** Synopsis: intkey=r[P3] data=r[P2]
4835 **
4836 ** Write an entry into the table of cursor P1.  A new entry is
4837 ** created if it doesn't already exist or the data for an existing
4838 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4839 ** number P2. The key is stored in register P3. The key must
4840 ** be a MEM_Int.
4841 **
4842 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4843 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4844 ** then rowid is stored for subsequent return by the
4845 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4846 **
4847 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4848 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4849 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4850 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4851 **
4852 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4853 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4854 ** is part of an INSERT operation.  The difference is only important to
4855 ** the update hook.
4856 **
4857 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4858 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4859 ** following a successful insert.
4860 **
4861 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4862 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4863 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4864 ** value of register P2 will then change.  Make sure this does not
4865 ** cause any problems.)
4866 **
4867 ** This instruction only works on tables.  The equivalent instruction
4868 ** for indices is OP_IdxInsert.
4869 */
4870 case OP_Insert: {
4871   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4872   Mem *pKey;        /* MEM cell holding key  for the record */
4873   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4874   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4875   const char *zDb;  /* database name - used by the update hook */
4876   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4877   BtreePayload x;   /* Payload to be inserted */
4878 
4879   pData = &aMem[pOp->p2];
4880   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4881   assert( memIsValid(pData) );
4882   pC = p->apCsr[pOp->p1];
4883   assert( pC!=0 );
4884   assert( pC->eCurType==CURTYPE_BTREE );
4885   assert( pC->deferredMoveto==0 );
4886   assert( pC->uc.pCursor!=0 );
4887   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4888   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4889   REGISTER_TRACE(pOp->p2, pData);
4890   sqlite3VdbeIncrWriteCounter(p, pC);
4891 
4892   pKey = &aMem[pOp->p3];
4893   assert( pKey->flags & MEM_Int );
4894   assert( memIsValid(pKey) );
4895   REGISTER_TRACE(pOp->p3, pKey);
4896   x.nKey = pKey->u.i;
4897 
4898   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4899     assert( pC->iDb>=0 );
4900     zDb = db->aDb[pC->iDb].zDbSName;
4901     pTab = pOp->p4.pTab;
4902     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4903   }else{
4904     pTab = 0;
4905     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4906   }
4907 
4908 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4909   /* Invoke the pre-update hook, if any */
4910   if( pTab ){
4911     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4912       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4913     }
4914     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4915       /* Prevent post-update hook from running in cases when it should not */
4916       pTab = 0;
4917     }
4918   }
4919   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4920 #endif
4921 
4922   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4923   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4924   assert( pData->flags & (MEM_Blob|MEM_Str) );
4925   x.pData = pData->z;
4926   x.nData = pData->n;
4927   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4928   if( pData->flags & MEM_Zero ){
4929     x.nZero = pData->u.nZero;
4930   }else{
4931     x.nZero = 0;
4932   }
4933   x.pKey = 0;
4934   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4935       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4936   );
4937   pC->deferredMoveto = 0;
4938   pC->cacheStatus = CACHE_STALE;
4939 
4940   /* Invoke the update-hook if required. */
4941   if( rc ) goto abort_due_to_error;
4942   if( pTab ){
4943     assert( db->xUpdateCallback!=0 );
4944     assert( pTab->aCol!=0 );
4945     db->xUpdateCallback(db->pUpdateArg,
4946            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4947            zDb, pTab->zName, x.nKey);
4948   }
4949   break;
4950 }
4951 
4952 /* Opcode: Delete P1 P2 P3 P4 P5
4953 **
4954 ** Delete the record at which the P1 cursor is currently pointing.
4955 **
4956 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4957 ** the cursor will be left pointing at  either the next or the previous
4958 ** record in the table. If it is left pointing at the next record, then
4959 ** the next Next instruction will be a no-op. As a result, in this case
4960 ** it is ok to delete a record from within a Next loop. If
4961 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4962 ** left in an undefined state.
4963 **
4964 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4965 ** delete one of several associated with deleting a table row and all its
4966 ** associated index entries.  Exactly one of those deletes is the "primary"
4967 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4968 ** marked with the AUXDELETE flag.
4969 **
4970 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4971 ** change count is incremented (otherwise not).
4972 **
4973 ** P1 must not be pseudo-table.  It has to be a real table with
4974 ** multiple rows.
4975 **
4976 ** If P4 is not NULL then it points to a Table object. In this case either
4977 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4978 ** have been positioned using OP_NotFound prior to invoking this opcode in
4979 ** this case. Specifically, if one is configured, the pre-update hook is
4980 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4981 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4982 **
4983 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4984 ** of the memory cell that contains the value that the rowid of the row will
4985 ** be set to by the update.
4986 */
4987 case OP_Delete: {
4988   VdbeCursor *pC;
4989   const char *zDb;
4990   Table *pTab;
4991   int opflags;
4992 
4993   opflags = pOp->p2;
4994   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4995   pC = p->apCsr[pOp->p1];
4996   assert( pC!=0 );
4997   assert( pC->eCurType==CURTYPE_BTREE );
4998   assert( pC->uc.pCursor!=0 );
4999   assert( pC->deferredMoveto==0 );
5000   sqlite3VdbeIncrWriteCounter(p, pC);
5001 
5002 #ifdef SQLITE_DEBUG
5003   if( pOp->p4type==P4_TABLE
5004    && HasRowid(pOp->p4.pTab)
5005    && pOp->p5==0
5006    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5007   ){
5008     /* If p5 is zero, the seek operation that positioned the cursor prior to
5009     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5010     ** the row that is being deleted */
5011     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5012     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5013   }
5014 #endif
5015 
5016   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5017   ** the name of the db to pass as to it. Also set local pTab to a copy
5018   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5019   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5020   ** VdbeCursor.movetoTarget to the current rowid.  */
5021   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5022     assert( pC->iDb>=0 );
5023     assert( pOp->p4.pTab!=0 );
5024     zDb = db->aDb[pC->iDb].zDbSName;
5025     pTab = pOp->p4.pTab;
5026     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5027       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5028     }
5029   }else{
5030     zDb = 0;   /* Not needed.  Silence a compiler warning. */
5031     pTab = 0;  /* Not needed.  Silence a compiler warning. */
5032   }
5033 
5034 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5035   /* Invoke the pre-update-hook if required. */
5036   if( db->xPreUpdateCallback && pOp->p4.pTab ){
5037     assert( !(opflags & OPFLAG_ISUPDATE)
5038          || HasRowid(pTab)==0
5039          || (aMem[pOp->p3].flags & MEM_Int)
5040     );
5041     sqlite3VdbePreUpdateHook(p, pC,
5042         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5043         zDb, pTab, pC->movetoTarget,
5044         pOp->p3
5045     );
5046   }
5047   if( opflags & OPFLAG_ISNOOP ) break;
5048 #endif
5049 
5050   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5051   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5052   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5053   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5054 
5055 #ifdef SQLITE_DEBUG
5056   if( p->pFrame==0 ){
5057     if( pC->isEphemeral==0
5058         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5059         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5060       ){
5061       nExtraDelete++;
5062     }
5063     if( pOp->p2 & OPFLAG_NCHANGE ){
5064       nExtraDelete--;
5065     }
5066   }
5067 #endif
5068 
5069   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5070   pC->cacheStatus = CACHE_STALE;
5071   pC->seekResult = 0;
5072   if( rc ) goto abort_due_to_error;
5073 
5074   /* Invoke the update-hook if required. */
5075   if( opflags & OPFLAG_NCHANGE ){
5076     p->nChange++;
5077     if( db->xUpdateCallback && HasRowid(pTab) ){
5078       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5079           pC->movetoTarget);
5080       assert( pC->iDb>=0 );
5081     }
5082   }
5083 
5084   break;
5085 }
5086 /* Opcode: ResetCount * * * * *
5087 **
5088 ** The value of the change counter is copied to the database handle
5089 ** change counter (returned by subsequent calls to sqlite3_changes()).
5090 ** Then the VMs internal change counter resets to 0.
5091 ** This is used by trigger programs.
5092 */
5093 case OP_ResetCount: {
5094   sqlite3VdbeSetChanges(db, p->nChange);
5095   p->nChange = 0;
5096   break;
5097 }
5098 
5099 /* Opcode: SorterCompare P1 P2 P3 P4
5100 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5101 **
5102 ** P1 is a sorter cursor. This instruction compares a prefix of the
5103 ** record blob in register P3 against a prefix of the entry that
5104 ** the sorter cursor currently points to.  Only the first P4 fields
5105 ** of r[P3] and the sorter record are compared.
5106 **
5107 ** If either P3 or the sorter contains a NULL in one of their significant
5108 ** fields (not counting the P4 fields at the end which are ignored) then
5109 ** the comparison is assumed to be equal.
5110 **
5111 ** Fall through to next instruction if the two records compare equal to
5112 ** each other.  Jump to P2 if they are different.
5113 */
5114 case OP_SorterCompare: {
5115   VdbeCursor *pC;
5116   int res;
5117   int nKeyCol;
5118 
5119   pC = p->apCsr[pOp->p1];
5120   assert( isSorter(pC) );
5121   assert( pOp->p4type==P4_INT32 );
5122   pIn3 = &aMem[pOp->p3];
5123   nKeyCol = pOp->p4.i;
5124   res = 0;
5125   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5126   VdbeBranchTaken(res!=0,2);
5127   if( rc ) goto abort_due_to_error;
5128   if( res ) goto jump_to_p2;
5129   break;
5130 };
5131 
5132 /* Opcode: SorterData P1 P2 P3 * *
5133 ** Synopsis: r[P2]=data
5134 **
5135 ** Write into register P2 the current sorter data for sorter cursor P1.
5136 ** Then clear the column header cache on cursor P3.
5137 **
5138 ** This opcode is normally use to move a record out of the sorter and into
5139 ** a register that is the source for a pseudo-table cursor created using
5140 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5141 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5142 ** us from having to issue a separate NullRow instruction to clear that cache.
5143 */
5144 case OP_SorterData: {
5145   VdbeCursor *pC;
5146 
5147   pOut = &aMem[pOp->p2];
5148   pC = p->apCsr[pOp->p1];
5149   assert( isSorter(pC) );
5150   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5151   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5152   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5153   if( rc ) goto abort_due_to_error;
5154   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5155   break;
5156 }
5157 
5158 /* Opcode: RowData P1 P2 P3 * *
5159 ** Synopsis: r[P2]=data
5160 **
5161 ** Write into register P2 the complete row content for the row at
5162 ** which cursor P1 is currently pointing.
5163 ** There is no interpretation of the data.
5164 ** It is just copied onto the P2 register exactly as
5165 ** it is found in the database file.
5166 **
5167 ** If cursor P1 is an index, then the content is the key of the row.
5168 ** If cursor P2 is a table, then the content extracted is the data.
5169 **
5170 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5171 ** of a real table, not a pseudo-table.
5172 **
5173 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5174 ** into the database page.  That means that the content of the output
5175 ** register will be invalidated as soon as the cursor moves - including
5176 ** moves caused by other cursors that "save" the current cursors
5177 ** position in order that they can write to the same table.  If P3==0
5178 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5179 ** P3==0 is safer.
5180 **
5181 ** If P3!=0 then the content of the P2 register is unsuitable for use
5182 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5183 ** The P2 register content is invalidated by opcodes like OP_Function or
5184 ** by any use of another cursor pointing to the same table.
5185 */
5186 case OP_RowData: {
5187   VdbeCursor *pC;
5188   BtCursor *pCrsr;
5189   u32 n;
5190 
5191   pOut = out2Prerelease(p, pOp);
5192 
5193   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5194   pC = p->apCsr[pOp->p1];
5195   assert( pC!=0 );
5196   assert( pC->eCurType==CURTYPE_BTREE );
5197   assert( isSorter(pC)==0 );
5198   assert( pC->nullRow==0 );
5199   assert( pC->uc.pCursor!=0 );
5200   pCrsr = pC->uc.pCursor;
5201 
5202   /* The OP_RowData opcodes always follow OP_NotExists or
5203   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5204   ** that might invalidate the cursor.
5205   ** If this where not the case, on of the following assert()s
5206   ** would fail.  Should this ever change (because of changes in the code
5207   ** generator) then the fix would be to insert a call to
5208   ** sqlite3VdbeCursorMoveto().
5209   */
5210   assert( pC->deferredMoveto==0 );
5211   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5212 #if 0  /* Not required due to the previous to assert() statements */
5213   rc = sqlite3VdbeCursorMoveto(pC);
5214   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5215 #endif
5216 
5217   n = sqlite3BtreePayloadSize(pCrsr);
5218   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5219     goto too_big;
5220   }
5221   testcase( n==0 );
5222   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5223   if( rc ) goto abort_due_to_error;
5224   if( !pOp->p3 ) Deephemeralize(pOut);
5225   UPDATE_MAX_BLOBSIZE(pOut);
5226   REGISTER_TRACE(pOp->p2, pOut);
5227   break;
5228 }
5229 
5230 /* Opcode: Rowid P1 P2 * * *
5231 ** Synopsis: r[P2]=rowid
5232 **
5233 ** Store in register P2 an integer which is the key of the table entry that
5234 ** P1 is currently point to.
5235 **
5236 ** P1 can be either an ordinary table or a virtual table.  There used to
5237 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5238 ** one opcode now works for both table types.
5239 */
5240 case OP_Rowid: {                 /* out2 */
5241   VdbeCursor *pC;
5242   i64 v;
5243   sqlite3_vtab *pVtab;
5244   const sqlite3_module *pModule;
5245 
5246   pOut = out2Prerelease(p, pOp);
5247   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5248   pC = p->apCsr[pOp->p1];
5249   assert( pC!=0 );
5250   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5251   if( pC->nullRow ){
5252     pOut->flags = MEM_Null;
5253     break;
5254   }else if( pC->deferredMoveto ){
5255     v = pC->movetoTarget;
5256 #ifndef SQLITE_OMIT_VIRTUALTABLE
5257   }else if( pC->eCurType==CURTYPE_VTAB ){
5258     assert( pC->uc.pVCur!=0 );
5259     pVtab = pC->uc.pVCur->pVtab;
5260     pModule = pVtab->pModule;
5261     assert( pModule->xRowid );
5262     rc = pModule->xRowid(pC->uc.pVCur, &v);
5263     sqlite3VtabImportErrmsg(p, pVtab);
5264     if( rc ) goto abort_due_to_error;
5265 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5266   }else{
5267     assert( pC->eCurType==CURTYPE_BTREE );
5268     assert( pC->uc.pCursor!=0 );
5269     rc = sqlite3VdbeCursorRestore(pC);
5270     if( rc ) goto abort_due_to_error;
5271     if( pC->nullRow ){
5272       pOut->flags = MEM_Null;
5273       break;
5274     }
5275     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5276   }
5277   pOut->u.i = v;
5278   break;
5279 }
5280 
5281 /* Opcode: NullRow P1 * * * *
5282 **
5283 ** Move the cursor P1 to a null row.  Any OP_Column operations
5284 ** that occur while the cursor is on the null row will always
5285 ** write a NULL.
5286 */
5287 case OP_NullRow: {
5288   VdbeCursor *pC;
5289 
5290   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5291   pC = p->apCsr[pOp->p1];
5292   assert( pC!=0 );
5293   pC->nullRow = 1;
5294   pC->cacheStatus = CACHE_STALE;
5295   if( pC->eCurType==CURTYPE_BTREE ){
5296     assert( pC->uc.pCursor!=0 );
5297     sqlite3BtreeClearCursor(pC->uc.pCursor);
5298   }
5299 #ifdef SQLITE_DEBUG
5300   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5301 #endif
5302   break;
5303 }
5304 
5305 /* Opcode: SeekEnd P1 * * * *
5306 **
5307 ** Position cursor P1 at the end of the btree for the purpose of
5308 ** appending a new entry onto the btree.
5309 **
5310 ** It is assumed that the cursor is used only for appending and so
5311 ** if the cursor is valid, then the cursor must already be pointing
5312 ** at the end of the btree and so no changes are made to
5313 ** the cursor.
5314 */
5315 /* Opcode: Last P1 P2 * * *
5316 **
5317 ** The next use of the Rowid or Column or Prev instruction for P1
5318 ** will refer to the last entry in the database table or index.
5319 ** If the table or index is empty and P2>0, then jump immediately to P2.
5320 ** If P2 is 0 or if the table or index is not empty, fall through
5321 ** to the following instruction.
5322 **
5323 ** This opcode leaves the cursor configured to move in reverse order,
5324 ** from the end toward the beginning.  In other words, the cursor is
5325 ** configured to use Prev, not Next.
5326 */
5327 case OP_SeekEnd:
5328 case OP_Last: {        /* jump */
5329   VdbeCursor *pC;
5330   BtCursor *pCrsr;
5331   int res;
5332 
5333   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5334   pC = p->apCsr[pOp->p1];
5335   assert( pC!=0 );
5336   assert( pC->eCurType==CURTYPE_BTREE );
5337   pCrsr = pC->uc.pCursor;
5338   res = 0;
5339   assert( pCrsr!=0 );
5340 #ifdef SQLITE_DEBUG
5341   pC->seekOp = pOp->opcode;
5342 #endif
5343   if( pOp->opcode==OP_SeekEnd ){
5344     assert( pOp->p2==0 );
5345     pC->seekResult = -1;
5346     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5347       break;
5348     }
5349   }
5350   rc = sqlite3BtreeLast(pCrsr, &res);
5351   pC->nullRow = (u8)res;
5352   pC->deferredMoveto = 0;
5353   pC->cacheStatus = CACHE_STALE;
5354   if( rc ) goto abort_due_to_error;
5355   if( pOp->p2>0 ){
5356     VdbeBranchTaken(res!=0,2);
5357     if( res ) goto jump_to_p2;
5358   }
5359   break;
5360 }
5361 
5362 /* Opcode: IfSmaller P1 P2 P3 * *
5363 **
5364 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5365 ** estimate is less than approximately 2**(0.1*P3).
5366 */
5367 case OP_IfSmaller: {        /* jump */
5368   VdbeCursor *pC;
5369   BtCursor *pCrsr;
5370   int res;
5371   i64 sz;
5372 
5373   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5374   pC = p->apCsr[pOp->p1];
5375   assert( pC!=0 );
5376   pCrsr = pC->uc.pCursor;
5377   assert( pCrsr );
5378   rc = sqlite3BtreeFirst(pCrsr, &res);
5379   if( rc ) goto abort_due_to_error;
5380   if( res==0 ){
5381     sz = sqlite3BtreeRowCountEst(pCrsr);
5382     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5383   }
5384   VdbeBranchTaken(res!=0,2);
5385   if( res ) goto jump_to_p2;
5386   break;
5387 }
5388 
5389 
5390 /* Opcode: SorterSort P1 P2 * * *
5391 **
5392 ** After all records have been inserted into the Sorter object
5393 ** identified by P1, invoke this opcode to actually do the sorting.
5394 ** Jump to P2 if there are no records to be sorted.
5395 **
5396 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5397 ** for Sorter objects.
5398 */
5399 /* Opcode: Sort P1 P2 * * *
5400 **
5401 ** This opcode does exactly the same thing as OP_Rewind except that
5402 ** it increments an undocumented global variable used for testing.
5403 **
5404 ** Sorting is accomplished by writing records into a sorting index,
5405 ** then rewinding that index and playing it back from beginning to
5406 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5407 ** rewinding so that the global variable will be incremented and
5408 ** regression tests can determine whether or not the optimizer is
5409 ** correctly optimizing out sorts.
5410 */
5411 case OP_SorterSort:    /* jump */
5412 case OP_Sort: {        /* jump */
5413 #ifdef SQLITE_TEST
5414   sqlite3_sort_count++;
5415   sqlite3_search_count--;
5416 #endif
5417   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5418   /* Fall through into OP_Rewind */
5419 }
5420 /* Opcode: Rewind P1 P2 * * *
5421 **
5422 ** The next use of the Rowid or Column or Next instruction for P1
5423 ** will refer to the first entry in the database table or index.
5424 ** If the table or index is empty, jump immediately to P2.
5425 ** If the table or index is not empty, fall through to the following
5426 ** instruction.
5427 **
5428 ** This opcode leaves the cursor configured to move in forward order,
5429 ** from the beginning toward the end.  In other words, the cursor is
5430 ** configured to use Next, not Prev.
5431 */
5432 case OP_Rewind: {        /* jump */
5433   VdbeCursor *pC;
5434   BtCursor *pCrsr;
5435   int res;
5436 
5437   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5438   assert( pOp->p5==0 );
5439   pC = p->apCsr[pOp->p1];
5440   assert( pC!=0 );
5441   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5442   res = 1;
5443 #ifdef SQLITE_DEBUG
5444   pC->seekOp = OP_Rewind;
5445 #endif
5446   if( isSorter(pC) ){
5447     rc = sqlite3VdbeSorterRewind(pC, &res);
5448   }else{
5449     assert( pC->eCurType==CURTYPE_BTREE );
5450     pCrsr = pC->uc.pCursor;
5451     assert( pCrsr );
5452     rc = sqlite3BtreeFirst(pCrsr, &res);
5453     pC->deferredMoveto = 0;
5454     pC->cacheStatus = CACHE_STALE;
5455   }
5456   if( rc ) goto abort_due_to_error;
5457   pC->nullRow = (u8)res;
5458   assert( pOp->p2>0 && pOp->p2<p->nOp );
5459   VdbeBranchTaken(res!=0,2);
5460   if( res ) goto jump_to_p2;
5461   break;
5462 }
5463 
5464 /* Opcode: Next P1 P2 P3 P4 P5
5465 **
5466 ** Advance cursor P1 so that it points to the next key/data pair in its
5467 ** table or index.  If there are no more key/value pairs then fall through
5468 ** to the following instruction.  But if the cursor advance was successful,
5469 ** jump immediately to P2.
5470 **
5471 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5472 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5473 ** to follow SeekLT, SeekLE, or OP_Last.
5474 **
5475 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5476 ** been opened prior to this opcode or the program will segfault.
5477 **
5478 ** The P3 value is a hint to the btree implementation. If P3==1, that
5479 ** means P1 is an SQL index and that this instruction could have been
5480 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5481 ** always either 0 or 1.
5482 **
5483 ** P4 is always of type P4_ADVANCE. The function pointer points to
5484 ** sqlite3BtreeNext().
5485 **
5486 ** If P5 is positive and the jump is taken, then event counter
5487 ** number P5-1 in the prepared statement is incremented.
5488 **
5489 ** See also: Prev
5490 */
5491 /* Opcode: Prev P1 P2 P3 P4 P5
5492 **
5493 ** Back up cursor P1 so that it points to the previous key/data pair in its
5494 ** table or index.  If there is no previous key/value pairs then fall through
5495 ** to the following instruction.  But if the cursor backup was successful,
5496 ** jump immediately to P2.
5497 **
5498 **
5499 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5500 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5501 ** to follow SeekGT, SeekGE, or OP_Rewind.
5502 **
5503 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5504 ** not open then the behavior is undefined.
5505 **
5506 ** The P3 value is a hint to the btree implementation. If P3==1, that
5507 ** means P1 is an SQL index and that this instruction could have been
5508 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5509 ** always either 0 or 1.
5510 **
5511 ** P4 is always of type P4_ADVANCE. The function pointer points to
5512 ** sqlite3BtreePrevious().
5513 **
5514 ** If P5 is positive and the jump is taken, then event counter
5515 ** number P5-1 in the prepared statement is incremented.
5516 */
5517 /* Opcode: SorterNext P1 P2 * * P5
5518 **
5519 ** This opcode works just like OP_Next except that P1 must be a
5520 ** sorter object for which the OP_SorterSort opcode has been
5521 ** invoked.  This opcode advances the cursor to the next sorted
5522 ** record, or jumps to P2 if there are no more sorted records.
5523 */
5524 case OP_SorterNext: {  /* jump */
5525   VdbeCursor *pC;
5526 
5527   pC = p->apCsr[pOp->p1];
5528   assert( isSorter(pC) );
5529   rc = sqlite3VdbeSorterNext(db, pC);
5530   goto next_tail;
5531 case OP_Prev:          /* jump */
5532 case OP_Next:          /* jump */
5533   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5534   assert( pOp->p5<ArraySize(p->aCounter) );
5535   pC = p->apCsr[pOp->p1];
5536   assert( pC!=0 );
5537   assert( pC->deferredMoveto==0 );
5538   assert( pC->eCurType==CURTYPE_BTREE );
5539   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5540   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5541 
5542   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5543   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5544   assert( pOp->opcode!=OP_Next
5545        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5546        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5547        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5548        || pC->seekOp==OP_IfNoHope);
5549   assert( pOp->opcode!=OP_Prev
5550        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5551        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5552        || pC->seekOp==OP_NullRow);
5553 
5554   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5555 next_tail:
5556   pC->cacheStatus = CACHE_STALE;
5557   VdbeBranchTaken(rc==SQLITE_OK,2);
5558   if( rc==SQLITE_OK ){
5559     pC->nullRow = 0;
5560     p->aCounter[pOp->p5]++;
5561 #ifdef SQLITE_TEST
5562     sqlite3_search_count++;
5563 #endif
5564     goto jump_to_p2_and_check_for_interrupt;
5565   }
5566   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5567   rc = SQLITE_OK;
5568   pC->nullRow = 1;
5569   goto check_for_interrupt;
5570 }
5571 
5572 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5573 ** Synopsis: key=r[P2]
5574 **
5575 ** Register P2 holds an SQL index key made using the
5576 ** MakeRecord instructions.  This opcode writes that key
5577 ** into the index P1.  Data for the entry is nil.
5578 **
5579 ** If P4 is not zero, then it is the number of values in the unpacked
5580 ** key of reg(P2).  In that case, P3 is the index of the first register
5581 ** for the unpacked key.  The availability of the unpacked key can sometimes
5582 ** be an optimization.
5583 **
5584 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5585 ** that this insert is likely to be an append.
5586 **
5587 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5588 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5589 ** then the change counter is unchanged.
5590 **
5591 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5592 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5593 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5594 ** seeks on the cursor or if the most recent seek used a key equivalent
5595 ** to P2.
5596 **
5597 ** This instruction only works for indices.  The equivalent instruction
5598 ** for tables is OP_Insert.
5599 */
5600 case OP_IdxInsert: {        /* in2 */
5601   VdbeCursor *pC;
5602   BtreePayload x;
5603 
5604   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5605   pC = p->apCsr[pOp->p1];
5606   sqlite3VdbeIncrWriteCounter(p, pC);
5607   assert( pC!=0 );
5608   assert( !isSorter(pC) );
5609   pIn2 = &aMem[pOp->p2];
5610   assert( pIn2->flags & MEM_Blob );
5611   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5612   assert( pC->eCurType==CURTYPE_BTREE );
5613   assert( pC->isTable==0 );
5614   rc = ExpandBlob(pIn2);
5615   if( rc ) goto abort_due_to_error;
5616   x.nKey = pIn2->n;
5617   x.pKey = pIn2->z;
5618   x.aMem = aMem + pOp->p3;
5619   x.nMem = (u16)pOp->p4.i;
5620   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5621        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5622       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5623       );
5624   assert( pC->deferredMoveto==0 );
5625   pC->cacheStatus = CACHE_STALE;
5626   if( rc) goto abort_due_to_error;
5627   break;
5628 }
5629 
5630 /* Opcode: SorterInsert P1 P2 * * *
5631 ** Synopsis: key=r[P2]
5632 **
5633 ** Register P2 holds an SQL index key made using the
5634 ** MakeRecord instructions.  This opcode writes that key
5635 ** into the sorter P1.  Data for the entry is nil.
5636 */
5637 case OP_SorterInsert: {     /* in2 */
5638   VdbeCursor *pC;
5639 
5640   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5641   pC = p->apCsr[pOp->p1];
5642   sqlite3VdbeIncrWriteCounter(p, pC);
5643   assert( pC!=0 );
5644   assert( isSorter(pC) );
5645   pIn2 = &aMem[pOp->p2];
5646   assert( pIn2->flags & MEM_Blob );
5647   assert( pC->isTable==0 );
5648   rc = ExpandBlob(pIn2);
5649   if( rc ) goto abort_due_to_error;
5650   rc = sqlite3VdbeSorterWrite(pC, pIn2);
5651   if( rc) goto abort_due_to_error;
5652   break;
5653 }
5654 
5655 /* Opcode: IdxDelete P1 P2 P3 * P5
5656 ** Synopsis: key=r[P2@P3]
5657 **
5658 ** The content of P3 registers starting at register P2 form
5659 ** an unpacked index key. This opcode removes that entry from the
5660 ** index opened by cursor P1.
5661 **
5662 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
5663 ** if no matching index entry is found.  This happens when running
5664 ** an UPDATE or DELETE statement and the index entry to be updated
5665 ** or deleted is not found.  For some uses of IdxDelete
5666 ** (example:  the EXCEPT operator) it does not matter that no matching
5667 ** entry is found.  For those cases, P5 is zero.
5668 */
5669 case OP_IdxDelete: {
5670   VdbeCursor *pC;
5671   BtCursor *pCrsr;
5672   int res;
5673   UnpackedRecord r;
5674 
5675   assert( pOp->p3>0 );
5676   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5677   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5678   pC = p->apCsr[pOp->p1];
5679   assert( pC!=0 );
5680   assert( pC->eCurType==CURTYPE_BTREE );
5681   sqlite3VdbeIncrWriteCounter(p, pC);
5682   pCrsr = pC->uc.pCursor;
5683   assert( pCrsr!=0 );
5684   r.pKeyInfo = pC->pKeyInfo;
5685   r.nField = (u16)pOp->p3;
5686   r.default_rc = 0;
5687   r.aMem = &aMem[pOp->p2];
5688   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5689   if( rc ) goto abort_due_to_error;
5690   if( res==0 ){
5691     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5692     if( rc ) goto abort_due_to_error;
5693   }else if( pOp->p5 ){
5694     rc = SQLITE_CORRUPT_INDEX;
5695     goto abort_due_to_error;
5696   }
5697   assert( pC->deferredMoveto==0 );
5698   pC->cacheStatus = CACHE_STALE;
5699   pC->seekResult = 0;
5700   break;
5701 }
5702 
5703 /* Opcode: DeferredSeek P1 * P3 P4 *
5704 ** Synopsis: Move P3 to P1.rowid if needed
5705 **
5706 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5707 ** table.  This opcode does a deferred seek of the P3 table cursor
5708 ** to the row that corresponds to the current row of P1.
5709 **
5710 ** This is a deferred seek.  Nothing actually happens until
5711 ** the cursor is used to read a record.  That way, if no reads
5712 ** occur, no unnecessary I/O happens.
5713 **
5714 ** P4 may be an array of integers (type P4_INTARRAY) containing
5715 ** one entry for each column in the P3 table.  If array entry a(i)
5716 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5717 ** equivalent to performing the deferred seek and then reading column i
5718 ** from P1.  This information is stored in P3 and used to redirect
5719 ** reads against P3 over to P1, thus possibly avoiding the need to
5720 ** seek and read cursor P3.
5721 */
5722 /* Opcode: IdxRowid P1 P2 * * *
5723 ** Synopsis: r[P2]=rowid
5724 **
5725 ** Write into register P2 an integer which is the last entry in the record at
5726 ** the end of the index key pointed to by cursor P1.  This integer should be
5727 ** the rowid of the table entry to which this index entry points.
5728 **
5729 ** See also: Rowid, MakeRecord.
5730 */
5731 case OP_DeferredSeek:
5732 case OP_IdxRowid: {           /* out2 */
5733   VdbeCursor *pC;             /* The P1 index cursor */
5734   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5735   i64 rowid;                  /* Rowid that P1 current points to */
5736 
5737   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5738   pC = p->apCsr[pOp->p1];
5739   assert( pC!=0 );
5740   assert( pC->eCurType==CURTYPE_BTREE );
5741   assert( pC->uc.pCursor!=0 );
5742   assert( pC->isTable==0 );
5743   assert( pC->deferredMoveto==0 );
5744   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5745 
5746   /* The IdxRowid and Seek opcodes are combined because of the commonality
5747   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5748   rc = sqlite3VdbeCursorRestore(pC);
5749 
5750   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5751   ** out from under the cursor.  That will never happens for an IdxRowid
5752   ** or Seek opcode */
5753   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5754 
5755   if( !pC->nullRow ){
5756     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5757     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5758     if( rc!=SQLITE_OK ){
5759       goto abort_due_to_error;
5760     }
5761     if( pOp->opcode==OP_DeferredSeek ){
5762       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5763       pTabCur = p->apCsr[pOp->p3];
5764       assert( pTabCur!=0 );
5765       assert( pTabCur->eCurType==CURTYPE_BTREE );
5766       assert( pTabCur->uc.pCursor!=0 );
5767       assert( pTabCur->isTable );
5768       pTabCur->nullRow = 0;
5769       pTabCur->movetoTarget = rowid;
5770       pTabCur->deferredMoveto = 1;
5771       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5772       pTabCur->aAltMap = pOp->p4.ai;
5773       pTabCur->pAltCursor = pC;
5774     }else{
5775       pOut = out2Prerelease(p, pOp);
5776       pOut->u.i = rowid;
5777     }
5778   }else{
5779     assert( pOp->opcode==OP_IdxRowid );
5780     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5781   }
5782   break;
5783 }
5784 
5785 /* Opcode: FinishSeek P1 * * * *
5786 **
5787 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
5788 ** seek operation now, without further delay.  If the cursor seek has
5789 ** already occurred, this instruction is a no-op.
5790 */
5791 case OP_FinishSeek: {
5792   VdbeCursor *pC;             /* The P1 index cursor */
5793 
5794   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5795   pC = p->apCsr[pOp->p1];
5796   if( pC->deferredMoveto ){
5797     rc = sqlite3VdbeFinishMoveto(pC);
5798     if( rc ) goto abort_due_to_error;
5799   }
5800   break;
5801 }
5802 
5803 /* Opcode: IdxGE P1 P2 P3 P4 P5
5804 ** Synopsis: key=r[P3@P4]
5805 **
5806 ** The P4 register values beginning with P3 form an unpacked index
5807 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5808 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5809 ** fields at the end.
5810 **
5811 ** If the P1 index entry is greater than or equal to the key value
5812 ** then jump to P2.  Otherwise fall through to the next instruction.
5813 */
5814 /* Opcode: IdxGT P1 P2 P3 P4 P5
5815 ** Synopsis: key=r[P3@P4]
5816 **
5817 ** The P4 register values beginning with P3 form an unpacked index
5818 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5819 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5820 ** fields at the end.
5821 **
5822 ** If the P1 index entry is greater than the key value
5823 ** then jump to P2.  Otherwise fall through to the next instruction.
5824 */
5825 /* Opcode: IdxLT P1 P2 P3 P4 P5
5826 ** Synopsis: key=r[P3@P4]
5827 **
5828 ** The P4 register values beginning with P3 form an unpacked index
5829 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5830 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5831 ** ROWID on the P1 index.
5832 **
5833 ** If the P1 index entry is less than the key value then jump to P2.
5834 ** Otherwise fall through to the next instruction.
5835 */
5836 /* Opcode: IdxLE P1 P2 P3 P4 P5
5837 ** Synopsis: key=r[P3@P4]
5838 **
5839 ** The P4 register values beginning with P3 form an unpacked index
5840 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5841 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5842 ** ROWID on the P1 index.
5843 **
5844 ** If the P1 index entry is less than or equal to the key value then jump
5845 ** to P2. Otherwise fall through to the next instruction.
5846 */
5847 case OP_IdxLE:          /* jump */
5848 case OP_IdxGT:          /* jump */
5849 case OP_IdxLT:          /* jump */
5850 case OP_IdxGE:  {       /* jump */
5851   VdbeCursor *pC;
5852   int res;
5853   UnpackedRecord r;
5854 
5855   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5856   pC = p->apCsr[pOp->p1];
5857   assert( pC!=0 );
5858   assert( pC->isOrdered );
5859   assert( pC->eCurType==CURTYPE_BTREE );
5860   assert( pC->uc.pCursor!=0);
5861   assert( pC->deferredMoveto==0 );
5862   assert( pOp->p5==0 || pOp->p5==1 );
5863   assert( pOp->p4type==P4_INT32 );
5864   r.pKeyInfo = pC->pKeyInfo;
5865   r.nField = (u16)pOp->p4.i;
5866   if( pOp->opcode<OP_IdxLT ){
5867     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5868     r.default_rc = -1;
5869   }else{
5870     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5871     r.default_rc = 0;
5872   }
5873   r.aMem = &aMem[pOp->p3];
5874 #ifdef SQLITE_DEBUG
5875   {
5876     int i;
5877     for(i=0; i<r.nField; i++){
5878       assert( memIsValid(&r.aMem[i]) );
5879       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
5880     }
5881   }
5882 #endif
5883   res = 0;  /* Not needed.  Only used to silence a warning. */
5884   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5885   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5886   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5887     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5888     res = -res;
5889   }else{
5890     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5891     res++;
5892   }
5893   VdbeBranchTaken(res>0,2);
5894   if( rc ) goto abort_due_to_error;
5895   if( res>0 ) goto jump_to_p2;
5896   break;
5897 }
5898 
5899 /* Opcode: Destroy P1 P2 P3 * *
5900 **
5901 ** Delete an entire database table or index whose root page in the database
5902 ** file is given by P1.
5903 **
5904 ** The table being destroyed is in the main database file if P3==0.  If
5905 ** P3==1 then the table to be clear is in the auxiliary database file
5906 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5907 **
5908 ** If AUTOVACUUM is enabled then it is possible that another root page
5909 ** might be moved into the newly deleted root page in order to keep all
5910 ** root pages contiguous at the beginning of the database.  The former
5911 ** value of the root page that moved - its value before the move occurred -
5912 ** is stored in register P2. If no page movement was required (because the
5913 ** table being dropped was already the last one in the database) then a
5914 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5915 ** is stored in register P2.
5916 **
5917 ** This opcode throws an error if there are any active reader VMs when
5918 ** it is invoked. This is done to avoid the difficulty associated with
5919 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5920 ** database. This error is thrown even if the database is not an AUTOVACUUM
5921 ** db in order to avoid introducing an incompatibility between autovacuum
5922 ** and non-autovacuum modes.
5923 **
5924 ** See also: Clear
5925 */
5926 case OP_Destroy: {     /* out2 */
5927   int iMoved;
5928   int iDb;
5929 
5930   sqlite3VdbeIncrWriteCounter(p, 0);
5931   assert( p->readOnly==0 );
5932   assert( pOp->p1>1 );
5933   pOut = out2Prerelease(p, pOp);
5934   pOut->flags = MEM_Null;
5935   if( db->nVdbeRead > db->nVDestroy+1 ){
5936     rc = SQLITE_LOCKED;
5937     p->errorAction = OE_Abort;
5938     goto abort_due_to_error;
5939   }else{
5940     iDb = pOp->p3;
5941     assert( DbMaskTest(p->btreeMask, iDb) );
5942     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5943     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5944     pOut->flags = MEM_Int;
5945     pOut->u.i = iMoved;
5946     if( rc ) goto abort_due_to_error;
5947 #ifndef SQLITE_OMIT_AUTOVACUUM
5948     if( iMoved!=0 ){
5949       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5950       /* All OP_Destroy operations occur on the same btree */
5951       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5952       resetSchemaOnFault = iDb+1;
5953     }
5954 #endif
5955   }
5956   break;
5957 }
5958 
5959 /* Opcode: Clear P1 P2 P3
5960 **
5961 ** Delete all contents of the database table or index whose root page
5962 ** in the database file is given by P1.  But, unlike Destroy, do not
5963 ** remove the table or index from the database file.
5964 **
5965 ** The table being clear is in the main database file if P2==0.  If
5966 ** P2==1 then the table to be clear is in the auxiliary database file
5967 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5968 **
5969 ** If the P3 value is non-zero, then the table referred to must be an
5970 ** intkey table (an SQL table, not an index). In this case the row change
5971 ** count is incremented by the number of rows in the table being cleared.
5972 ** If P3 is greater than zero, then the value stored in register P3 is
5973 ** also incremented by the number of rows in the table being cleared.
5974 **
5975 ** See also: Destroy
5976 */
5977 case OP_Clear: {
5978   int nChange;
5979 
5980   sqlite3VdbeIncrWriteCounter(p, 0);
5981   nChange = 0;
5982   assert( p->readOnly==0 );
5983   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5984   rc = sqlite3BtreeClearTable(
5985       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5986   );
5987   if( pOp->p3 ){
5988     p->nChange += nChange;
5989     if( pOp->p3>0 ){
5990       assert( memIsValid(&aMem[pOp->p3]) );
5991       memAboutToChange(p, &aMem[pOp->p3]);
5992       aMem[pOp->p3].u.i += nChange;
5993     }
5994   }
5995   if( rc ) goto abort_due_to_error;
5996   break;
5997 }
5998 
5999 /* Opcode: ResetSorter P1 * * * *
6000 **
6001 ** Delete all contents from the ephemeral table or sorter
6002 ** that is open on cursor P1.
6003 **
6004 ** This opcode only works for cursors used for sorting and
6005 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6006 */
6007 case OP_ResetSorter: {
6008   VdbeCursor *pC;
6009 
6010   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6011   pC = p->apCsr[pOp->p1];
6012   assert( pC!=0 );
6013   if( isSorter(pC) ){
6014     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6015   }else{
6016     assert( pC->eCurType==CURTYPE_BTREE );
6017     assert( pC->isEphemeral );
6018     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6019     if( rc ) goto abort_due_to_error;
6020   }
6021   break;
6022 }
6023 
6024 /* Opcode: CreateBtree P1 P2 P3 * *
6025 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6026 **
6027 ** Allocate a new b-tree in the main database file if P1==0 or in the
6028 ** TEMP database file if P1==1 or in an attached database if
6029 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6030 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6031 ** The root page number of the new b-tree is stored in register P2.
6032 */
6033 case OP_CreateBtree: {          /* out2 */
6034   int pgno;
6035   Db *pDb;
6036 
6037   sqlite3VdbeIncrWriteCounter(p, 0);
6038   pOut = out2Prerelease(p, pOp);
6039   pgno = 0;
6040   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6041   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6042   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6043   assert( p->readOnly==0 );
6044   pDb = &db->aDb[pOp->p1];
6045   assert( pDb->pBt!=0 );
6046   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6047   if( rc ) goto abort_due_to_error;
6048   pOut->u.i = pgno;
6049   break;
6050 }
6051 
6052 /* Opcode: SqlExec * * * P4 *
6053 **
6054 ** Run the SQL statement or statements specified in the P4 string.
6055 */
6056 case OP_SqlExec: {
6057   sqlite3VdbeIncrWriteCounter(p, 0);
6058   db->nSqlExec++;
6059   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6060   db->nSqlExec--;
6061   if( rc ) goto abort_due_to_error;
6062   break;
6063 }
6064 
6065 /* Opcode: ParseSchema P1 * * P4 *
6066 **
6067 ** Read and parse all entries from the SQLITE_MASTER table of database P1
6068 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6069 ** entire schema for P1 is reparsed.
6070 **
6071 ** This opcode invokes the parser to create a new virtual machine,
6072 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6073 */
6074 case OP_ParseSchema: {
6075   int iDb;
6076   const char *zMaster;
6077   char *zSql;
6078   InitData initData;
6079 
6080   /* Any prepared statement that invokes this opcode will hold mutexes
6081   ** on every btree.  This is a prerequisite for invoking
6082   ** sqlite3InitCallback().
6083   */
6084 #ifdef SQLITE_DEBUG
6085   for(iDb=0; iDb<db->nDb; iDb++){
6086     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6087   }
6088 #endif
6089 
6090   iDb = pOp->p1;
6091   assert( iDb>=0 && iDb<db->nDb );
6092   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
6093 
6094 #ifndef SQLITE_OMIT_ALTERTABLE
6095   if( pOp->p4.z==0 ){
6096     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6097     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6098     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, INITFLAG_AlterTable);
6099     db->mDbFlags |= DBFLAG_SchemaChange;
6100     p->expired = 0;
6101   }else
6102 #endif
6103   {
6104     zMaster = MASTER_NAME;
6105     initData.db = db;
6106     initData.iDb = iDb;
6107     initData.pzErrMsg = &p->zErrMsg;
6108     initData.mInitFlags = 0;
6109     zSql = sqlite3MPrintf(db,
6110        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6111        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
6112     if( zSql==0 ){
6113       rc = SQLITE_NOMEM_BKPT;
6114     }else{
6115       assert( db->init.busy==0 );
6116       db->init.busy = 1;
6117       initData.rc = SQLITE_OK;
6118       initData.nInitRow = 0;
6119       assert( !db->mallocFailed );
6120       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6121       if( rc==SQLITE_OK ) rc = initData.rc;
6122       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6123         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6124         ** at least one SQL statement. Any less than that indicates that
6125         ** the sqlite_master table is corrupt. */
6126         rc = SQLITE_CORRUPT_BKPT;
6127       }
6128       sqlite3DbFreeNN(db, zSql);
6129       db->init.busy = 0;
6130     }
6131   }
6132   if( rc ){
6133     sqlite3ResetAllSchemasOfConnection(db);
6134     if( rc==SQLITE_NOMEM ){
6135       goto no_mem;
6136     }
6137     goto abort_due_to_error;
6138   }
6139   break;
6140 }
6141 
6142 #if !defined(SQLITE_OMIT_ANALYZE)
6143 /* Opcode: LoadAnalysis P1 * * * *
6144 **
6145 ** Read the sqlite_stat1 table for database P1 and load the content
6146 ** of that table into the internal index hash table.  This will cause
6147 ** the analysis to be used when preparing all subsequent queries.
6148 */
6149 case OP_LoadAnalysis: {
6150   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6151   rc = sqlite3AnalysisLoad(db, pOp->p1);
6152   if( rc ) goto abort_due_to_error;
6153   break;
6154 }
6155 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6156 
6157 /* Opcode: DropTable P1 * * P4 *
6158 **
6159 ** Remove the internal (in-memory) data structures that describe
6160 ** the table named P4 in database P1.  This is called after a table
6161 ** is dropped from disk (using the Destroy opcode) in order to keep
6162 ** the internal representation of the
6163 ** schema consistent with what is on disk.
6164 */
6165 case OP_DropTable: {
6166   sqlite3VdbeIncrWriteCounter(p, 0);
6167   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6168   break;
6169 }
6170 
6171 /* Opcode: DropIndex P1 * * P4 *
6172 **
6173 ** Remove the internal (in-memory) data structures that describe
6174 ** the index named P4 in database P1.  This is called after an index
6175 ** is dropped from disk (using the Destroy opcode)
6176 ** in order to keep the internal representation of the
6177 ** schema consistent with what is on disk.
6178 */
6179 case OP_DropIndex: {
6180   sqlite3VdbeIncrWriteCounter(p, 0);
6181   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6182   break;
6183 }
6184 
6185 /* Opcode: DropTrigger P1 * * P4 *
6186 **
6187 ** Remove the internal (in-memory) data structures that describe
6188 ** the trigger named P4 in database P1.  This is called after a trigger
6189 ** is dropped from disk (using the Destroy opcode) in order to keep
6190 ** the internal representation of the
6191 ** schema consistent with what is on disk.
6192 */
6193 case OP_DropTrigger: {
6194   sqlite3VdbeIncrWriteCounter(p, 0);
6195   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6196   break;
6197 }
6198 
6199 
6200 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6201 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6202 **
6203 ** Do an analysis of the currently open database.  Store in
6204 ** register P1 the text of an error message describing any problems.
6205 ** If no problems are found, store a NULL in register P1.
6206 **
6207 ** The register P3 contains one less than the maximum number of allowed errors.
6208 ** At most reg(P3) errors will be reported.
6209 ** In other words, the analysis stops as soon as reg(P1) errors are
6210 ** seen.  Reg(P1) is updated with the number of errors remaining.
6211 **
6212 ** The root page numbers of all tables in the database are integers
6213 ** stored in P4_INTARRAY argument.
6214 **
6215 ** If P5 is not zero, the check is done on the auxiliary database
6216 ** file, not the main database file.
6217 **
6218 ** This opcode is used to implement the integrity_check pragma.
6219 */
6220 case OP_IntegrityCk: {
6221   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6222   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
6223   int nErr;       /* Number of errors reported */
6224   char *z;        /* Text of the error report */
6225   Mem *pnErr;     /* Register keeping track of errors remaining */
6226 
6227   assert( p->bIsReader );
6228   nRoot = pOp->p2;
6229   aRoot = pOp->p4.ai;
6230   assert( nRoot>0 );
6231   assert( aRoot[0]==nRoot );
6232   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6233   pnErr = &aMem[pOp->p3];
6234   assert( (pnErr->flags & MEM_Int)!=0 );
6235   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6236   pIn1 = &aMem[pOp->p1];
6237   assert( pOp->p5<db->nDb );
6238   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6239   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6240                                  (int)pnErr->u.i+1, &nErr);
6241   sqlite3VdbeMemSetNull(pIn1);
6242   if( nErr==0 ){
6243     assert( z==0 );
6244   }else if( z==0 ){
6245     goto no_mem;
6246   }else{
6247     pnErr->u.i -= nErr-1;
6248     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6249   }
6250   UPDATE_MAX_BLOBSIZE(pIn1);
6251   sqlite3VdbeChangeEncoding(pIn1, encoding);
6252   goto check_for_interrupt;
6253 }
6254 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6255 
6256 /* Opcode: RowSetAdd P1 P2 * * *
6257 ** Synopsis: rowset(P1)=r[P2]
6258 **
6259 ** Insert the integer value held by register P2 into a RowSet object
6260 ** held in register P1.
6261 **
6262 ** An assertion fails if P2 is not an integer.
6263 */
6264 case OP_RowSetAdd: {       /* in1, in2 */
6265   pIn1 = &aMem[pOp->p1];
6266   pIn2 = &aMem[pOp->p2];
6267   assert( (pIn2->flags & MEM_Int)!=0 );
6268   if( (pIn1->flags & MEM_Blob)==0 ){
6269     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6270   }
6271   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6272   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6273   break;
6274 }
6275 
6276 /* Opcode: RowSetRead P1 P2 P3 * *
6277 ** Synopsis: r[P3]=rowset(P1)
6278 **
6279 ** Extract the smallest value from the RowSet object in P1
6280 ** and put that value into register P3.
6281 ** Or, if RowSet object P1 is initially empty, leave P3
6282 ** unchanged and jump to instruction P2.
6283 */
6284 case OP_RowSetRead: {       /* jump, in1, out3 */
6285   i64 val;
6286 
6287   pIn1 = &aMem[pOp->p1];
6288   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6289   if( (pIn1->flags & MEM_Blob)==0
6290    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6291   ){
6292     /* The boolean index is empty */
6293     sqlite3VdbeMemSetNull(pIn1);
6294     VdbeBranchTaken(1,2);
6295     goto jump_to_p2_and_check_for_interrupt;
6296   }else{
6297     /* A value was pulled from the index */
6298     VdbeBranchTaken(0,2);
6299     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6300   }
6301   goto check_for_interrupt;
6302 }
6303 
6304 /* Opcode: RowSetTest P1 P2 P3 P4
6305 ** Synopsis: if r[P3] in rowset(P1) goto P2
6306 **
6307 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6308 ** contains a RowSet object and that RowSet object contains
6309 ** the value held in P3, jump to register P2. Otherwise, insert the
6310 ** integer in P3 into the RowSet and continue on to the
6311 ** next opcode.
6312 **
6313 ** The RowSet object is optimized for the case where sets of integers
6314 ** are inserted in distinct phases, which each set contains no duplicates.
6315 ** Each set is identified by a unique P4 value. The first set
6316 ** must have P4==0, the final set must have P4==-1, and for all other sets
6317 ** must have P4>0.
6318 **
6319 ** This allows optimizations: (a) when P4==0 there is no need to test
6320 ** the RowSet object for P3, as it is guaranteed not to contain it,
6321 ** (b) when P4==-1 there is no need to insert the value, as it will
6322 ** never be tested for, and (c) when a value that is part of set X is
6323 ** inserted, there is no need to search to see if the same value was
6324 ** previously inserted as part of set X (only if it was previously
6325 ** inserted as part of some other set).
6326 */
6327 case OP_RowSetTest: {                     /* jump, in1, in3 */
6328   int iSet;
6329   int exists;
6330 
6331   pIn1 = &aMem[pOp->p1];
6332   pIn3 = &aMem[pOp->p3];
6333   iSet = pOp->p4.i;
6334   assert( pIn3->flags&MEM_Int );
6335 
6336   /* If there is anything other than a rowset object in memory cell P1,
6337   ** delete it now and initialize P1 with an empty rowset
6338   */
6339   if( (pIn1->flags & MEM_Blob)==0 ){
6340     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6341   }
6342   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6343   assert( pOp->p4type==P4_INT32 );
6344   assert( iSet==-1 || iSet>=0 );
6345   if( iSet ){
6346     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6347     VdbeBranchTaken(exists!=0,2);
6348     if( exists ) goto jump_to_p2;
6349   }
6350   if( iSet>=0 ){
6351     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6352   }
6353   break;
6354 }
6355 
6356 
6357 #ifndef SQLITE_OMIT_TRIGGER
6358 
6359 /* Opcode: Program P1 P2 P3 P4 P5
6360 **
6361 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6362 **
6363 ** P1 contains the address of the memory cell that contains the first memory
6364 ** cell in an array of values used as arguments to the sub-program. P2
6365 ** contains the address to jump to if the sub-program throws an IGNORE
6366 ** exception using the RAISE() function. Register P3 contains the address
6367 ** of a memory cell in this (the parent) VM that is used to allocate the
6368 ** memory required by the sub-vdbe at runtime.
6369 **
6370 ** P4 is a pointer to the VM containing the trigger program.
6371 **
6372 ** If P5 is non-zero, then recursive program invocation is enabled.
6373 */
6374 case OP_Program: {        /* jump */
6375   int nMem;               /* Number of memory registers for sub-program */
6376   int nByte;              /* Bytes of runtime space required for sub-program */
6377   Mem *pRt;               /* Register to allocate runtime space */
6378   Mem *pMem;              /* Used to iterate through memory cells */
6379   Mem *pEnd;              /* Last memory cell in new array */
6380   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6381   SubProgram *pProgram;   /* Sub-program to execute */
6382   void *t;                /* Token identifying trigger */
6383 
6384   pProgram = pOp->p4.pProgram;
6385   pRt = &aMem[pOp->p3];
6386   assert( pProgram->nOp>0 );
6387 
6388   /* If the p5 flag is clear, then recursive invocation of triggers is
6389   ** disabled for backwards compatibility (p5 is set if this sub-program
6390   ** is really a trigger, not a foreign key action, and the flag set
6391   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6392   **
6393   ** It is recursive invocation of triggers, at the SQL level, that is
6394   ** disabled. In some cases a single trigger may generate more than one
6395   ** SubProgram (if the trigger may be executed with more than one different
6396   ** ON CONFLICT algorithm). SubProgram structures associated with a
6397   ** single trigger all have the same value for the SubProgram.token
6398   ** variable.  */
6399   if( pOp->p5 ){
6400     t = pProgram->token;
6401     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6402     if( pFrame ) break;
6403   }
6404 
6405   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6406     rc = SQLITE_ERROR;
6407     sqlite3VdbeError(p, "too many levels of trigger recursion");
6408     goto abort_due_to_error;
6409   }
6410 
6411   /* Register pRt is used to store the memory required to save the state
6412   ** of the current program, and the memory required at runtime to execute
6413   ** the trigger program. If this trigger has been fired before, then pRt
6414   ** is already allocated. Otherwise, it must be initialized.  */
6415   if( (pRt->flags&MEM_Blob)==0 ){
6416     /* SubProgram.nMem is set to the number of memory cells used by the
6417     ** program stored in SubProgram.aOp. As well as these, one memory
6418     ** cell is required for each cursor used by the program. Set local
6419     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6420     */
6421     nMem = pProgram->nMem + pProgram->nCsr;
6422     assert( nMem>0 );
6423     if( pProgram->nCsr==0 ) nMem++;
6424     nByte = ROUND8(sizeof(VdbeFrame))
6425               + nMem * sizeof(Mem)
6426               + pProgram->nCsr * sizeof(VdbeCursor*)
6427               + (pProgram->nOp + 7)/8;
6428     pFrame = sqlite3DbMallocZero(db, nByte);
6429     if( !pFrame ){
6430       goto no_mem;
6431     }
6432     sqlite3VdbeMemRelease(pRt);
6433     pRt->flags = MEM_Blob|MEM_Dyn;
6434     pRt->z = (char*)pFrame;
6435     pRt->n = nByte;
6436     pRt->xDel = sqlite3VdbeFrameMemDel;
6437 
6438     pFrame->v = p;
6439     pFrame->nChildMem = nMem;
6440     pFrame->nChildCsr = pProgram->nCsr;
6441     pFrame->pc = (int)(pOp - aOp);
6442     pFrame->aMem = p->aMem;
6443     pFrame->nMem = p->nMem;
6444     pFrame->apCsr = p->apCsr;
6445     pFrame->nCursor = p->nCursor;
6446     pFrame->aOp = p->aOp;
6447     pFrame->nOp = p->nOp;
6448     pFrame->token = pProgram->token;
6449 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6450     pFrame->anExec = p->anExec;
6451 #endif
6452 #ifdef SQLITE_DEBUG
6453     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6454 #endif
6455 
6456     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6457     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6458       pMem->flags = MEM_Undefined;
6459       pMem->db = db;
6460     }
6461   }else{
6462     pFrame = (VdbeFrame*)pRt->z;
6463     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6464     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6465         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6466     assert( pProgram->nCsr==pFrame->nChildCsr );
6467     assert( (int)(pOp - aOp)==pFrame->pc );
6468   }
6469 
6470   p->nFrame++;
6471   pFrame->pParent = p->pFrame;
6472   pFrame->lastRowid = db->lastRowid;
6473   pFrame->nChange = p->nChange;
6474   pFrame->nDbChange = p->db->nChange;
6475   assert( pFrame->pAuxData==0 );
6476   pFrame->pAuxData = p->pAuxData;
6477   p->pAuxData = 0;
6478   p->nChange = 0;
6479   p->pFrame = pFrame;
6480   p->aMem = aMem = VdbeFrameMem(pFrame);
6481   p->nMem = pFrame->nChildMem;
6482   p->nCursor = (u16)pFrame->nChildCsr;
6483   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6484   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6485   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6486   p->aOp = aOp = pProgram->aOp;
6487   p->nOp = pProgram->nOp;
6488 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6489   p->anExec = 0;
6490 #endif
6491 #ifdef SQLITE_DEBUG
6492   /* Verify that second and subsequent executions of the same trigger do not
6493   ** try to reuse register values from the first use. */
6494   {
6495     int i;
6496     for(i=0; i<p->nMem; i++){
6497       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6498       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
6499     }
6500   }
6501 #endif
6502   pOp = &aOp[-1];
6503   goto check_for_interrupt;
6504 }
6505 
6506 /* Opcode: Param P1 P2 * * *
6507 **
6508 ** This opcode is only ever present in sub-programs called via the
6509 ** OP_Program instruction. Copy a value currently stored in a memory
6510 ** cell of the calling (parent) frame to cell P2 in the current frames
6511 ** address space. This is used by trigger programs to access the new.*
6512 ** and old.* values.
6513 **
6514 ** The address of the cell in the parent frame is determined by adding
6515 ** the value of the P1 argument to the value of the P1 argument to the
6516 ** calling OP_Program instruction.
6517 */
6518 case OP_Param: {           /* out2 */
6519   VdbeFrame *pFrame;
6520   Mem *pIn;
6521   pOut = out2Prerelease(p, pOp);
6522   pFrame = p->pFrame;
6523   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6524   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6525   break;
6526 }
6527 
6528 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6529 
6530 #ifndef SQLITE_OMIT_FOREIGN_KEY
6531 /* Opcode: FkCounter P1 P2 * * *
6532 ** Synopsis: fkctr[P1]+=P2
6533 **
6534 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6535 ** If P1 is non-zero, the database constraint counter is incremented
6536 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6537 ** statement counter is incremented (immediate foreign key constraints).
6538 */
6539 case OP_FkCounter: {
6540   if( db->flags & SQLITE_DeferFKs ){
6541     db->nDeferredImmCons += pOp->p2;
6542   }else if( pOp->p1 ){
6543     db->nDeferredCons += pOp->p2;
6544   }else{
6545     p->nFkConstraint += pOp->p2;
6546   }
6547   break;
6548 }
6549 
6550 /* Opcode: FkIfZero P1 P2 * * *
6551 ** Synopsis: if fkctr[P1]==0 goto P2
6552 **
6553 ** This opcode tests if a foreign key constraint-counter is currently zero.
6554 ** If so, jump to instruction P2. Otherwise, fall through to the next
6555 ** instruction.
6556 **
6557 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6558 ** is zero (the one that counts deferred constraint violations). If P1 is
6559 ** zero, the jump is taken if the statement constraint-counter is zero
6560 ** (immediate foreign key constraint violations).
6561 */
6562 case OP_FkIfZero: {         /* jump */
6563   if( pOp->p1 ){
6564     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6565     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6566   }else{
6567     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6568     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6569   }
6570   break;
6571 }
6572 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6573 
6574 #ifndef SQLITE_OMIT_AUTOINCREMENT
6575 /* Opcode: MemMax P1 P2 * * *
6576 ** Synopsis: r[P1]=max(r[P1],r[P2])
6577 **
6578 ** P1 is a register in the root frame of this VM (the root frame is
6579 ** different from the current frame if this instruction is being executed
6580 ** within a sub-program). Set the value of register P1 to the maximum of
6581 ** its current value and the value in register P2.
6582 **
6583 ** This instruction throws an error if the memory cell is not initially
6584 ** an integer.
6585 */
6586 case OP_MemMax: {        /* in2 */
6587   VdbeFrame *pFrame;
6588   if( p->pFrame ){
6589     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6590     pIn1 = &pFrame->aMem[pOp->p1];
6591   }else{
6592     pIn1 = &aMem[pOp->p1];
6593   }
6594   assert( memIsValid(pIn1) );
6595   sqlite3VdbeMemIntegerify(pIn1);
6596   pIn2 = &aMem[pOp->p2];
6597   sqlite3VdbeMemIntegerify(pIn2);
6598   if( pIn1->u.i<pIn2->u.i){
6599     pIn1->u.i = pIn2->u.i;
6600   }
6601   break;
6602 }
6603 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6604 
6605 /* Opcode: IfPos P1 P2 P3 * *
6606 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6607 **
6608 ** Register P1 must contain an integer.
6609 ** If the value of register P1 is 1 or greater, subtract P3 from the
6610 ** value in P1 and jump to P2.
6611 **
6612 ** If the initial value of register P1 is less than 1, then the
6613 ** value is unchanged and control passes through to the next instruction.
6614 */
6615 case OP_IfPos: {        /* jump, in1 */
6616   pIn1 = &aMem[pOp->p1];
6617   assert( pIn1->flags&MEM_Int );
6618   VdbeBranchTaken( pIn1->u.i>0, 2);
6619   if( pIn1->u.i>0 ){
6620     pIn1->u.i -= pOp->p3;
6621     goto jump_to_p2;
6622   }
6623   break;
6624 }
6625 
6626 /* Opcode: OffsetLimit P1 P2 P3 * *
6627 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6628 **
6629 ** This opcode performs a commonly used computation associated with
6630 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6631 ** holds the offset counter.  The opcode computes the combined value
6632 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6633 ** value computed is the total number of rows that will need to be
6634 ** visited in order to complete the query.
6635 **
6636 ** If r[P3] is zero or negative, that means there is no OFFSET
6637 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6638 **
6639 ** if r[P1] is zero or negative, that means there is no LIMIT
6640 ** and r[P2] is set to -1.
6641 **
6642 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6643 */
6644 case OP_OffsetLimit: {    /* in1, out2, in3 */
6645   i64 x;
6646   pIn1 = &aMem[pOp->p1];
6647   pIn3 = &aMem[pOp->p3];
6648   pOut = out2Prerelease(p, pOp);
6649   assert( pIn1->flags & MEM_Int );
6650   assert( pIn3->flags & MEM_Int );
6651   x = pIn1->u.i;
6652   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6653     /* If the LIMIT is less than or equal to zero, loop forever.  This
6654     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6655     ** also loop forever.  This is undocumented.  In fact, one could argue
6656     ** that the loop should terminate.  But assuming 1 billion iterations
6657     ** per second (far exceeding the capabilities of any current hardware)
6658     ** it would take nearly 300 years to actually reach the limit.  So
6659     ** looping forever is a reasonable approximation. */
6660     pOut->u.i = -1;
6661   }else{
6662     pOut->u.i = x;
6663   }
6664   break;
6665 }
6666 
6667 /* Opcode: IfNotZero P1 P2 * * *
6668 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6669 **
6670 ** Register P1 must contain an integer.  If the content of register P1 is
6671 ** initially greater than zero, then decrement the value in register P1.
6672 ** If it is non-zero (negative or positive) and then also jump to P2.
6673 ** If register P1 is initially zero, leave it unchanged and fall through.
6674 */
6675 case OP_IfNotZero: {        /* jump, in1 */
6676   pIn1 = &aMem[pOp->p1];
6677   assert( pIn1->flags&MEM_Int );
6678   VdbeBranchTaken(pIn1->u.i<0, 2);
6679   if( pIn1->u.i ){
6680      if( pIn1->u.i>0 ) pIn1->u.i--;
6681      goto jump_to_p2;
6682   }
6683   break;
6684 }
6685 
6686 /* Opcode: DecrJumpZero P1 P2 * * *
6687 ** Synopsis: if (--r[P1])==0 goto P2
6688 **
6689 ** Register P1 must hold an integer.  Decrement the value in P1
6690 ** and jump to P2 if the new value is exactly zero.
6691 */
6692 case OP_DecrJumpZero: {      /* jump, in1 */
6693   pIn1 = &aMem[pOp->p1];
6694   assert( pIn1->flags&MEM_Int );
6695   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6696   VdbeBranchTaken(pIn1->u.i==0, 2);
6697   if( pIn1->u.i==0 ) goto jump_to_p2;
6698   break;
6699 }
6700 
6701 
6702 /* Opcode: AggStep * P2 P3 P4 P5
6703 ** Synopsis: accum=r[P3] step(r[P2@P5])
6704 **
6705 ** Execute the xStep function for an aggregate.
6706 ** The function has P5 arguments.  P4 is a pointer to the
6707 ** FuncDef structure that specifies the function.  Register P3 is the
6708 ** accumulator.
6709 **
6710 ** The P5 arguments are taken from register P2 and its
6711 ** successors.
6712 */
6713 /* Opcode: AggInverse * P2 P3 P4 P5
6714 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6715 **
6716 ** Execute the xInverse function for an aggregate.
6717 ** The function has P5 arguments.  P4 is a pointer to the
6718 ** FuncDef structure that specifies the function.  Register P3 is the
6719 ** accumulator.
6720 **
6721 ** The P5 arguments are taken from register P2 and its
6722 ** successors.
6723 */
6724 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6725 ** Synopsis: accum=r[P3] step(r[P2@P5])
6726 **
6727 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6728 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6729 ** FuncDef structure that specifies the function.  Register P3 is the
6730 ** accumulator.
6731 **
6732 ** The P5 arguments are taken from register P2 and its
6733 ** successors.
6734 **
6735 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6736 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6737 ** the opcode is changed.  In this way, the initialization of the
6738 ** sqlite3_context only happens once, instead of on each call to the
6739 ** step function.
6740 */
6741 case OP_AggInverse:
6742 case OP_AggStep: {
6743   int n;
6744   sqlite3_context *pCtx;
6745 
6746   assert( pOp->p4type==P4_FUNCDEF );
6747   n = pOp->p5;
6748   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6749   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6750   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6751   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6752                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6753   if( pCtx==0 ) goto no_mem;
6754   pCtx->pMem = 0;
6755   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6756   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6757   pCtx->pFunc = pOp->p4.pFunc;
6758   pCtx->iOp = (int)(pOp - aOp);
6759   pCtx->pVdbe = p;
6760   pCtx->skipFlag = 0;
6761   pCtx->isError = 0;
6762   pCtx->argc = n;
6763   pOp->p4type = P4_FUNCCTX;
6764   pOp->p4.pCtx = pCtx;
6765 
6766   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6767   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6768 
6769   pOp->opcode = OP_AggStep1;
6770   /* Fall through into OP_AggStep */
6771 }
6772 case OP_AggStep1: {
6773   int i;
6774   sqlite3_context *pCtx;
6775   Mem *pMem;
6776 
6777   assert( pOp->p4type==P4_FUNCCTX );
6778   pCtx = pOp->p4.pCtx;
6779   pMem = &aMem[pOp->p3];
6780 
6781 #ifdef SQLITE_DEBUG
6782   if( pOp->p1 ){
6783     /* This is an OP_AggInverse call.  Verify that xStep has always
6784     ** been called at least once prior to any xInverse call. */
6785     assert( pMem->uTemp==0x1122e0e3 );
6786   }else{
6787     /* This is an OP_AggStep call.  Mark it as such. */
6788     pMem->uTemp = 0x1122e0e3;
6789   }
6790 #endif
6791 
6792   /* If this function is inside of a trigger, the register array in aMem[]
6793   ** might change from one evaluation to the next.  The next block of code
6794   ** checks to see if the register array has changed, and if so it
6795   ** reinitializes the relavant parts of the sqlite3_context object */
6796   if( pCtx->pMem != pMem ){
6797     pCtx->pMem = pMem;
6798     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6799   }
6800 
6801 #ifdef SQLITE_DEBUG
6802   for(i=0; i<pCtx->argc; i++){
6803     assert( memIsValid(pCtx->argv[i]) );
6804     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6805   }
6806 #endif
6807 
6808   pMem->n++;
6809   assert( pCtx->pOut->flags==MEM_Null );
6810   assert( pCtx->isError==0 );
6811   assert( pCtx->skipFlag==0 );
6812 #ifndef SQLITE_OMIT_WINDOWFUNC
6813   if( pOp->p1 ){
6814     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6815   }else
6816 #endif
6817   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6818 
6819   if( pCtx->isError ){
6820     if( pCtx->isError>0 ){
6821       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6822       rc = pCtx->isError;
6823     }
6824     if( pCtx->skipFlag ){
6825       assert( pOp[-1].opcode==OP_CollSeq );
6826       i = pOp[-1].p1;
6827       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6828       pCtx->skipFlag = 0;
6829     }
6830     sqlite3VdbeMemRelease(pCtx->pOut);
6831     pCtx->pOut->flags = MEM_Null;
6832     pCtx->isError = 0;
6833     if( rc ) goto abort_due_to_error;
6834   }
6835   assert( pCtx->pOut->flags==MEM_Null );
6836   assert( pCtx->skipFlag==0 );
6837   break;
6838 }
6839 
6840 /* Opcode: AggFinal P1 P2 * P4 *
6841 ** Synopsis: accum=r[P1] N=P2
6842 **
6843 ** P1 is the memory location that is the accumulator for an aggregate
6844 ** or window function.  Execute the finalizer function
6845 ** for an aggregate and store the result in P1.
6846 **
6847 ** P2 is the number of arguments that the step function takes and
6848 ** P4 is a pointer to the FuncDef for this function.  The P2
6849 ** argument is not used by this opcode.  It is only there to disambiguate
6850 ** functions that can take varying numbers of arguments.  The
6851 ** P4 argument is only needed for the case where
6852 ** the step function was not previously called.
6853 */
6854 /* Opcode: AggValue * P2 P3 P4 *
6855 ** Synopsis: r[P3]=value N=P2
6856 **
6857 ** Invoke the xValue() function and store the result in register P3.
6858 **
6859 ** P2 is the number of arguments that the step function takes and
6860 ** P4 is a pointer to the FuncDef for this function.  The P2
6861 ** argument is not used by this opcode.  It is only there to disambiguate
6862 ** functions that can take varying numbers of arguments.  The
6863 ** P4 argument is only needed for the case where
6864 ** the step function was not previously called.
6865 */
6866 case OP_AggValue:
6867 case OP_AggFinal: {
6868   Mem *pMem;
6869   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6870   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6871   pMem = &aMem[pOp->p1];
6872   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6873 #ifndef SQLITE_OMIT_WINDOWFUNC
6874   if( pOp->p3 ){
6875     memAboutToChange(p, &aMem[pOp->p3]);
6876     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6877     pMem = &aMem[pOp->p3];
6878   }else
6879 #endif
6880   {
6881     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6882   }
6883 
6884   if( rc ){
6885     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6886     goto abort_due_to_error;
6887   }
6888   sqlite3VdbeChangeEncoding(pMem, encoding);
6889   UPDATE_MAX_BLOBSIZE(pMem);
6890   if( sqlite3VdbeMemTooBig(pMem) ){
6891     goto too_big;
6892   }
6893   break;
6894 }
6895 
6896 #ifndef SQLITE_OMIT_WAL
6897 /* Opcode: Checkpoint P1 P2 P3 * *
6898 **
6899 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6900 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6901 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6902 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6903 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6904 ** in the WAL that have been checkpointed after the checkpoint
6905 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6906 ** mem[P3+2] are initialized to -1.
6907 */
6908 case OP_Checkpoint: {
6909   int i;                          /* Loop counter */
6910   int aRes[3];                    /* Results */
6911   Mem *pMem;                      /* Write results here */
6912 
6913   assert( p->readOnly==0 );
6914   aRes[0] = 0;
6915   aRes[1] = aRes[2] = -1;
6916   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6917        || pOp->p2==SQLITE_CHECKPOINT_FULL
6918        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6919        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6920   );
6921   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6922   if( rc ){
6923     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6924     rc = SQLITE_OK;
6925     aRes[0] = 1;
6926   }
6927   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6928     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6929   }
6930   break;
6931 };
6932 #endif
6933 
6934 #ifndef SQLITE_OMIT_PRAGMA
6935 /* Opcode: JournalMode P1 P2 P3 * *
6936 **
6937 ** Change the journal mode of database P1 to P3. P3 must be one of the
6938 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6939 ** modes (delete, truncate, persist, off and memory), this is a simple
6940 ** operation. No IO is required.
6941 **
6942 ** If changing into or out of WAL mode the procedure is more complicated.
6943 **
6944 ** Write a string containing the final journal-mode to register P2.
6945 */
6946 case OP_JournalMode: {    /* out2 */
6947   Btree *pBt;                     /* Btree to change journal mode of */
6948   Pager *pPager;                  /* Pager associated with pBt */
6949   int eNew;                       /* New journal mode */
6950   int eOld;                       /* The old journal mode */
6951 #ifndef SQLITE_OMIT_WAL
6952   const char *zFilename;          /* Name of database file for pPager */
6953 #endif
6954 
6955   pOut = out2Prerelease(p, pOp);
6956   eNew = pOp->p3;
6957   assert( eNew==PAGER_JOURNALMODE_DELETE
6958        || eNew==PAGER_JOURNALMODE_TRUNCATE
6959        || eNew==PAGER_JOURNALMODE_PERSIST
6960        || eNew==PAGER_JOURNALMODE_OFF
6961        || eNew==PAGER_JOURNALMODE_MEMORY
6962        || eNew==PAGER_JOURNALMODE_WAL
6963        || eNew==PAGER_JOURNALMODE_QUERY
6964   );
6965   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6966   assert( p->readOnly==0 );
6967 
6968   pBt = db->aDb[pOp->p1].pBt;
6969   pPager = sqlite3BtreePager(pBt);
6970   eOld = sqlite3PagerGetJournalMode(pPager);
6971   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6972   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6973 
6974 #ifndef SQLITE_OMIT_WAL
6975   zFilename = sqlite3PagerFilename(pPager, 1);
6976 
6977   /* Do not allow a transition to journal_mode=WAL for a database
6978   ** in temporary storage or if the VFS does not support shared memory
6979   */
6980   if( eNew==PAGER_JOURNALMODE_WAL
6981    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6982        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6983   ){
6984     eNew = eOld;
6985   }
6986 
6987   if( (eNew!=eOld)
6988    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6989   ){
6990     if( !db->autoCommit || db->nVdbeRead>1 ){
6991       rc = SQLITE_ERROR;
6992       sqlite3VdbeError(p,
6993           "cannot change %s wal mode from within a transaction",
6994           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6995       );
6996       goto abort_due_to_error;
6997     }else{
6998 
6999       if( eOld==PAGER_JOURNALMODE_WAL ){
7000         /* If leaving WAL mode, close the log file. If successful, the call
7001         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7002         ** file. An EXCLUSIVE lock may still be held on the database file
7003         ** after a successful return.
7004         */
7005         rc = sqlite3PagerCloseWal(pPager, db);
7006         if( rc==SQLITE_OK ){
7007           sqlite3PagerSetJournalMode(pPager, eNew);
7008         }
7009       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7010         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7011         ** as an intermediate */
7012         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7013       }
7014 
7015       /* Open a transaction on the database file. Regardless of the journal
7016       ** mode, this transaction always uses a rollback journal.
7017       */
7018       assert( sqlite3BtreeIsInTrans(pBt)==0 );
7019       if( rc==SQLITE_OK ){
7020         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7021       }
7022     }
7023   }
7024 #endif /* ifndef SQLITE_OMIT_WAL */
7025 
7026   if( rc ) eNew = eOld;
7027   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7028 
7029   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7030   pOut->z = (char *)sqlite3JournalModename(eNew);
7031   pOut->n = sqlite3Strlen30(pOut->z);
7032   pOut->enc = SQLITE_UTF8;
7033   sqlite3VdbeChangeEncoding(pOut, encoding);
7034   if( rc ) goto abort_due_to_error;
7035   break;
7036 };
7037 #endif /* SQLITE_OMIT_PRAGMA */
7038 
7039 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7040 /* Opcode: Vacuum P1 P2 * * *
7041 **
7042 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7043 ** for an attached database.  The "temp" database may not be vacuumed.
7044 **
7045 ** If P2 is not zero, then it is a register holding a string which is
7046 ** the file into which the result of vacuum should be written.  When
7047 ** P2 is zero, the vacuum overwrites the original database.
7048 */
7049 case OP_Vacuum: {
7050   assert( p->readOnly==0 );
7051   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7052                         pOp->p2 ? &aMem[pOp->p2] : 0);
7053   if( rc ) goto abort_due_to_error;
7054   break;
7055 }
7056 #endif
7057 
7058 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7059 /* Opcode: IncrVacuum P1 P2 * * *
7060 **
7061 ** Perform a single step of the incremental vacuum procedure on
7062 ** the P1 database. If the vacuum has finished, jump to instruction
7063 ** P2. Otherwise, fall through to the next instruction.
7064 */
7065 case OP_IncrVacuum: {        /* jump */
7066   Btree *pBt;
7067 
7068   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7069   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7070   assert( p->readOnly==0 );
7071   pBt = db->aDb[pOp->p1].pBt;
7072   rc = sqlite3BtreeIncrVacuum(pBt);
7073   VdbeBranchTaken(rc==SQLITE_DONE,2);
7074   if( rc ){
7075     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7076     rc = SQLITE_OK;
7077     goto jump_to_p2;
7078   }
7079   break;
7080 }
7081 #endif
7082 
7083 /* Opcode: Expire P1 P2 * * *
7084 **
7085 ** Cause precompiled statements to expire.  When an expired statement
7086 ** is executed using sqlite3_step() it will either automatically
7087 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7088 ** or it will fail with SQLITE_SCHEMA.
7089 **
7090 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7091 ** then only the currently executing statement is expired.
7092 **
7093 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7094 ** then running SQL statements are allowed to continue to run to completion.
7095 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7096 ** that might help the statement run faster but which does not affect the
7097 ** correctness of operation.
7098 */
7099 case OP_Expire: {
7100   assert( pOp->p2==0 || pOp->p2==1 );
7101   if( !pOp->p1 ){
7102     sqlite3ExpirePreparedStatements(db, pOp->p2);
7103   }else{
7104     p->expired = pOp->p2+1;
7105   }
7106   break;
7107 }
7108 
7109 /* Opcode: CursorLock P1 * * * *
7110 **
7111 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7112 ** written by an other cursor.
7113 */
7114 case OP_CursorLock: {
7115   VdbeCursor *pC;
7116   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7117   pC = p->apCsr[pOp->p1];
7118   assert( pC!=0 );
7119   assert( pC->eCurType==CURTYPE_BTREE );
7120   sqlite3BtreeCursorPin(pC->uc.pCursor);
7121   break;
7122 }
7123 
7124 /* Opcode: CursorUnlock P1 * * * *
7125 **
7126 ** Unlock the btree to which cursor P1 is pointing so that it can be
7127 ** written by other cursors.
7128 */
7129 case OP_CursorUnlock: {
7130   VdbeCursor *pC;
7131   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7132   pC = p->apCsr[pOp->p1];
7133   assert( pC!=0 );
7134   assert( pC->eCurType==CURTYPE_BTREE );
7135   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7136   break;
7137 }
7138 
7139 #ifndef SQLITE_OMIT_SHARED_CACHE
7140 /* Opcode: TableLock P1 P2 P3 P4 *
7141 ** Synopsis: iDb=P1 root=P2 write=P3
7142 **
7143 ** Obtain a lock on a particular table. This instruction is only used when
7144 ** the shared-cache feature is enabled.
7145 **
7146 ** P1 is the index of the database in sqlite3.aDb[] of the database
7147 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7148 ** a write lock if P3==1.
7149 **
7150 ** P2 contains the root-page of the table to lock.
7151 **
7152 ** P4 contains a pointer to the name of the table being locked. This is only
7153 ** used to generate an error message if the lock cannot be obtained.
7154 */
7155 case OP_TableLock: {
7156   u8 isWriteLock = (u8)pOp->p3;
7157   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7158     int p1 = pOp->p1;
7159     assert( p1>=0 && p1<db->nDb );
7160     assert( DbMaskTest(p->btreeMask, p1) );
7161     assert( isWriteLock==0 || isWriteLock==1 );
7162     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7163     if( rc ){
7164       if( (rc&0xFF)==SQLITE_LOCKED ){
7165         const char *z = pOp->p4.z;
7166         sqlite3VdbeError(p, "database table is locked: %s", z);
7167       }
7168       goto abort_due_to_error;
7169     }
7170   }
7171   break;
7172 }
7173 #endif /* SQLITE_OMIT_SHARED_CACHE */
7174 
7175 #ifndef SQLITE_OMIT_VIRTUALTABLE
7176 /* Opcode: VBegin * * * P4 *
7177 **
7178 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7179 ** xBegin method for that table.
7180 **
7181 ** Also, whether or not P4 is set, check that this is not being called from
7182 ** within a callback to a virtual table xSync() method. If it is, the error
7183 ** code will be set to SQLITE_LOCKED.
7184 */
7185 case OP_VBegin: {
7186   VTable *pVTab;
7187   pVTab = pOp->p4.pVtab;
7188   rc = sqlite3VtabBegin(db, pVTab);
7189   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7190   if( rc ) goto abort_due_to_error;
7191   break;
7192 }
7193 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7194 
7195 #ifndef SQLITE_OMIT_VIRTUALTABLE
7196 /* Opcode: VCreate P1 P2 * * *
7197 **
7198 ** P2 is a register that holds the name of a virtual table in database
7199 ** P1. Call the xCreate method for that table.
7200 */
7201 case OP_VCreate: {
7202   Mem sMem;          /* For storing the record being decoded */
7203   const char *zTab;  /* Name of the virtual table */
7204 
7205   memset(&sMem, 0, sizeof(sMem));
7206   sMem.db = db;
7207   /* Because P2 is always a static string, it is impossible for the
7208   ** sqlite3VdbeMemCopy() to fail */
7209   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7210   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7211   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7212   assert( rc==SQLITE_OK );
7213   zTab = (const char*)sqlite3_value_text(&sMem);
7214   assert( zTab || db->mallocFailed );
7215   if( zTab ){
7216     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7217   }
7218   sqlite3VdbeMemRelease(&sMem);
7219   if( rc ) goto abort_due_to_error;
7220   break;
7221 }
7222 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7223 
7224 #ifndef SQLITE_OMIT_VIRTUALTABLE
7225 /* Opcode: VDestroy P1 * * P4 *
7226 **
7227 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7228 ** of that table.
7229 */
7230 case OP_VDestroy: {
7231   db->nVDestroy++;
7232   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7233   db->nVDestroy--;
7234   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7235   if( rc ) goto abort_due_to_error;
7236   break;
7237 }
7238 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7239 
7240 #ifndef SQLITE_OMIT_VIRTUALTABLE
7241 /* Opcode: VOpen P1 * * P4 *
7242 **
7243 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7244 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7245 ** table and stores that cursor in P1.
7246 */
7247 case OP_VOpen: {
7248   VdbeCursor *pCur;
7249   sqlite3_vtab_cursor *pVCur;
7250   sqlite3_vtab *pVtab;
7251   const sqlite3_module *pModule;
7252 
7253   assert( p->bIsReader );
7254   pCur = 0;
7255   pVCur = 0;
7256   pVtab = pOp->p4.pVtab->pVtab;
7257   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7258     rc = SQLITE_LOCKED;
7259     goto abort_due_to_error;
7260   }
7261   pModule = pVtab->pModule;
7262   rc = pModule->xOpen(pVtab, &pVCur);
7263   sqlite3VtabImportErrmsg(p, pVtab);
7264   if( rc ) goto abort_due_to_error;
7265 
7266   /* Initialize sqlite3_vtab_cursor base class */
7267   pVCur->pVtab = pVtab;
7268 
7269   /* Initialize vdbe cursor object */
7270   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
7271   if( pCur ){
7272     pCur->uc.pVCur = pVCur;
7273     pVtab->nRef++;
7274   }else{
7275     assert( db->mallocFailed );
7276     pModule->xClose(pVCur);
7277     goto no_mem;
7278   }
7279   break;
7280 }
7281 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7282 
7283 #ifndef SQLITE_OMIT_VIRTUALTABLE
7284 /* Opcode: VFilter P1 P2 P3 P4 *
7285 ** Synopsis: iplan=r[P3] zplan='P4'
7286 **
7287 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7288 ** the filtered result set is empty.
7289 **
7290 ** P4 is either NULL or a string that was generated by the xBestIndex
7291 ** method of the module.  The interpretation of the P4 string is left
7292 ** to the module implementation.
7293 **
7294 ** This opcode invokes the xFilter method on the virtual table specified
7295 ** by P1.  The integer query plan parameter to xFilter is stored in register
7296 ** P3. Register P3+1 stores the argc parameter to be passed to the
7297 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7298 ** additional parameters which are passed to
7299 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7300 **
7301 ** A jump is made to P2 if the result set after filtering would be empty.
7302 */
7303 case OP_VFilter: {   /* jump */
7304   int nArg;
7305   int iQuery;
7306   const sqlite3_module *pModule;
7307   Mem *pQuery;
7308   Mem *pArgc;
7309   sqlite3_vtab_cursor *pVCur;
7310   sqlite3_vtab *pVtab;
7311   VdbeCursor *pCur;
7312   int res;
7313   int i;
7314   Mem **apArg;
7315 
7316   pQuery = &aMem[pOp->p3];
7317   pArgc = &pQuery[1];
7318   pCur = p->apCsr[pOp->p1];
7319   assert( memIsValid(pQuery) );
7320   REGISTER_TRACE(pOp->p3, pQuery);
7321   assert( pCur->eCurType==CURTYPE_VTAB );
7322   pVCur = pCur->uc.pVCur;
7323   pVtab = pVCur->pVtab;
7324   pModule = pVtab->pModule;
7325 
7326   /* Grab the index number and argc parameters */
7327   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7328   nArg = (int)pArgc->u.i;
7329   iQuery = (int)pQuery->u.i;
7330 
7331   /* Invoke the xFilter method */
7332   res = 0;
7333   apArg = p->apArg;
7334   for(i = 0; i<nArg; i++){
7335     apArg[i] = &pArgc[i+1];
7336   }
7337   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7338   sqlite3VtabImportErrmsg(p, pVtab);
7339   if( rc ) goto abort_due_to_error;
7340   res = pModule->xEof(pVCur);
7341   pCur->nullRow = 0;
7342   VdbeBranchTaken(res!=0,2);
7343   if( res ) goto jump_to_p2;
7344   break;
7345 }
7346 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7347 
7348 #ifndef SQLITE_OMIT_VIRTUALTABLE
7349 /* Opcode: VColumn P1 P2 P3 * P5
7350 ** Synopsis: r[P3]=vcolumn(P2)
7351 **
7352 ** Store in register P3 the value of the P2-th column of
7353 ** the current row of the virtual-table of cursor P1.
7354 **
7355 ** If the VColumn opcode is being used to fetch the value of
7356 ** an unchanging column during an UPDATE operation, then the P5
7357 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7358 ** function to return true inside the xColumn method of the virtual
7359 ** table implementation.  The P5 column might also contain other
7360 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7361 ** unused by OP_VColumn.
7362 */
7363 case OP_VColumn: {
7364   sqlite3_vtab *pVtab;
7365   const sqlite3_module *pModule;
7366   Mem *pDest;
7367   sqlite3_context sContext;
7368 
7369   VdbeCursor *pCur = p->apCsr[pOp->p1];
7370   assert( pCur->eCurType==CURTYPE_VTAB );
7371   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7372   pDest = &aMem[pOp->p3];
7373   memAboutToChange(p, pDest);
7374   if( pCur->nullRow ){
7375     sqlite3VdbeMemSetNull(pDest);
7376     break;
7377   }
7378   pVtab = pCur->uc.pVCur->pVtab;
7379   pModule = pVtab->pModule;
7380   assert( pModule->xColumn );
7381   memset(&sContext, 0, sizeof(sContext));
7382   sContext.pOut = pDest;
7383   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7384   if( pOp->p5 & OPFLAG_NOCHNG ){
7385     sqlite3VdbeMemSetNull(pDest);
7386     pDest->flags = MEM_Null|MEM_Zero;
7387     pDest->u.nZero = 0;
7388   }else{
7389     MemSetTypeFlag(pDest, MEM_Null);
7390   }
7391   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7392   sqlite3VtabImportErrmsg(p, pVtab);
7393   if( sContext.isError>0 ){
7394     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7395     rc = sContext.isError;
7396   }
7397   sqlite3VdbeChangeEncoding(pDest, encoding);
7398   REGISTER_TRACE(pOp->p3, pDest);
7399   UPDATE_MAX_BLOBSIZE(pDest);
7400 
7401   if( sqlite3VdbeMemTooBig(pDest) ){
7402     goto too_big;
7403   }
7404   if( rc ) goto abort_due_to_error;
7405   break;
7406 }
7407 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7408 
7409 #ifndef SQLITE_OMIT_VIRTUALTABLE
7410 /* Opcode: VNext P1 P2 * * *
7411 **
7412 ** Advance virtual table P1 to the next row in its result set and
7413 ** jump to instruction P2.  Or, if the virtual table has reached
7414 ** the end of its result set, then fall through to the next instruction.
7415 */
7416 case OP_VNext: {   /* jump */
7417   sqlite3_vtab *pVtab;
7418   const sqlite3_module *pModule;
7419   int res;
7420   VdbeCursor *pCur;
7421 
7422   res = 0;
7423   pCur = p->apCsr[pOp->p1];
7424   assert( pCur->eCurType==CURTYPE_VTAB );
7425   if( pCur->nullRow ){
7426     break;
7427   }
7428   pVtab = pCur->uc.pVCur->pVtab;
7429   pModule = pVtab->pModule;
7430   assert( pModule->xNext );
7431 
7432   /* Invoke the xNext() method of the module. There is no way for the
7433   ** underlying implementation to return an error if one occurs during
7434   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7435   ** data is available) and the error code returned when xColumn or
7436   ** some other method is next invoked on the save virtual table cursor.
7437   */
7438   rc = pModule->xNext(pCur->uc.pVCur);
7439   sqlite3VtabImportErrmsg(p, pVtab);
7440   if( rc ) goto abort_due_to_error;
7441   res = pModule->xEof(pCur->uc.pVCur);
7442   VdbeBranchTaken(!res,2);
7443   if( !res ){
7444     /* If there is data, jump to P2 */
7445     goto jump_to_p2_and_check_for_interrupt;
7446   }
7447   goto check_for_interrupt;
7448 }
7449 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7450 
7451 #ifndef SQLITE_OMIT_VIRTUALTABLE
7452 /* Opcode: VRename P1 * * P4 *
7453 **
7454 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7455 ** This opcode invokes the corresponding xRename method. The value
7456 ** in register P1 is passed as the zName argument to the xRename method.
7457 */
7458 case OP_VRename: {
7459   sqlite3_vtab *pVtab;
7460   Mem *pName;
7461   int isLegacy;
7462 
7463   isLegacy = (db->flags & SQLITE_LegacyAlter);
7464   db->flags |= SQLITE_LegacyAlter;
7465   pVtab = pOp->p4.pVtab->pVtab;
7466   pName = &aMem[pOp->p1];
7467   assert( pVtab->pModule->xRename );
7468   assert( memIsValid(pName) );
7469   assert( p->readOnly==0 );
7470   REGISTER_TRACE(pOp->p1, pName);
7471   assert( pName->flags & MEM_Str );
7472   testcase( pName->enc==SQLITE_UTF8 );
7473   testcase( pName->enc==SQLITE_UTF16BE );
7474   testcase( pName->enc==SQLITE_UTF16LE );
7475   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7476   if( rc ) goto abort_due_to_error;
7477   rc = pVtab->pModule->xRename(pVtab, pName->z);
7478   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7479   sqlite3VtabImportErrmsg(p, pVtab);
7480   p->expired = 0;
7481   if( rc ) goto abort_due_to_error;
7482   break;
7483 }
7484 #endif
7485 
7486 #ifndef SQLITE_OMIT_VIRTUALTABLE
7487 /* Opcode: VUpdate P1 P2 P3 P4 P5
7488 ** Synopsis: data=r[P3@P2]
7489 **
7490 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7491 ** This opcode invokes the corresponding xUpdate method. P2 values
7492 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7493 ** invocation. The value in register (P3+P2-1) corresponds to the
7494 ** p2th element of the argv array passed to xUpdate.
7495 **
7496 ** The xUpdate method will do a DELETE or an INSERT or both.
7497 ** The argv[0] element (which corresponds to memory cell P3)
7498 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7499 ** deletion occurs.  The argv[1] element is the rowid of the new
7500 ** row.  This can be NULL to have the virtual table select the new
7501 ** rowid for itself.  The subsequent elements in the array are
7502 ** the values of columns in the new row.
7503 **
7504 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7505 ** a row to delete.
7506 **
7507 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7508 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7509 ** is set to the value of the rowid for the row just inserted.
7510 **
7511 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7512 ** apply in the case of a constraint failure on an insert or update.
7513 */
7514 case OP_VUpdate: {
7515   sqlite3_vtab *pVtab;
7516   const sqlite3_module *pModule;
7517   int nArg;
7518   int i;
7519   sqlite_int64 rowid;
7520   Mem **apArg;
7521   Mem *pX;
7522 
7523   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7524        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7525   );
7526   assert( p->readOnly==0 );
7527   if( db->mallocFailed ) goto no_mem;
7528   sqlite3VdbeIncrWriteCounter(p, 0);
7529   pVtab = pOp->p4.pVtab->pVtab;
7530   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7531     rc = SQLITE_LOCKED;
7532     goto abort_due_to_error;
7533   }
7534   pModule = pVtab->pModule;
7535   nArg = pOp->p2;
7536   assert( pOp->p4type==P4_VTAB );
7537   if( ALWAYS(pModule->xUpdate) ){
7538     u8 vtabOnConflict = db->vtabOnConflict;
7539     apArg = p->apArg;
7540     pX = &aMem[pOp->p3];
7541     for(i=0; i<nArg; i++){
7542       assert( memIsValid(pX) );
7543       memAboutToChange(p, pX);
7544       apArg[i] = pX;
7545       pX++;
7546     }
7547     db->vtabOnConflict = pOp->p5;
7548     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7549     db->vtabOnConflict = vtabOnConflict;
7550     sqlite3VtabImportErrmsg(p, pVtab);
7551     if( rc==SQLITE_OK && pOp->p1 ){
7552       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7553       db->lastRowid = rowid;
7554     }
7555     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7556       if( pOp->p5==OE_Ignore ){
7557         rc = SQLITE_OK;
7558       }else{
7559         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7560       }
7561     }else{
7562       p->nChange++;
7563     }
7564     if( rc ) goto abort_due_to_error;
7565   }
7566   break;
7567 }
7568 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7569 
7570 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7571 /* Opcode: Pagecount P1 P2 * * *
7572 **
7573 ** Write the current number of pages in database P1 to memory cell P2.
7574 */
7575 case OP_Pagecount: {            /* out2 */
7576   pOut = out2Prerelease(p, pOp);
7577   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7578   break;
7579 }
7580 #endif
7581 
7582 
7583 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7584 /* Opcode: MaxPgcnt P1 P2 P3 * *
7585 **
7586 ** Try to set the maximum page count for database P1 to the value in P3.
7587 ** Do not let the maximum page count fall below the current page count and
7588 ** do not change the maximum page count value if P3==0.
7589 **
7590 ** Store the maximum page count after the change in register P2.
7591 */
7592 case OP_MaxPgcnt: {            /* out2 */
7593   unsigned int newMax;
7594   Btree *pBt;
7595 
7596   pOut = out2Prerelease(p, pOp);
7597   pBt = db->aDb[pOp->p1].pBt;
7598   newMax = 0;
7599   if( pOp->p3 ){
7600     newMax = sqlite3BtreeLastPage(pBt);
7601     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7602   }
7603   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7604   break;
7605 }
7606 #endif
7607 
7608 /* Opcode: Function P1 P2 P3 P4 *
7609 ** Synopsis: r[P3]=func(r[P2@NP])
7610 **
7611 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7612 ** contains a pointer to the function to be run) with arguments taken
7613 ** from register P2 and successors.  The number of arguments is in
7614 ** the sqlite3_context object that P4 points to.
7615 ** The result of the function is stored
7616 ** in register P3.  Register P3 must not be one of the function inputs.
7617 **
7618 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7619 ** function was determined to be constant at compile time. If the first
7620 ** argument was constant then bit 0 of P1 is set. This is used to determine
7621 ** whether meta data associated with a user function argument using the
7622 ** sqlite3_set_auxdata() API may be safely retained until the next
7623 ** invocation of this opcode.
7624 **
7625 ** See also: AggStep, AggFinal, PureFunc
7626 */
7627 /* Opcode: PureFunc P1 P2 P3 P4 *
7628 ** Synopsis: r[P3]=func(r[P2@NP])
7629 **
7630 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7631 ** contains a pointer to the function to be run) with arguments taken
7632 ** from register P2 and successors.  The number of arguments is in
7633 ** the sqlite3_context object that P4 points to.
7634 ** The result of the function is stored
7635 ** in register P3.  Register P3 must not be one of the function inputs.
7636 **
7637 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7638 ** function was determined to be constant at compile time. If the first
7639 ** argument was constant then bit 0 of P1 is set. This is used to determine
7640 ** whether meta data associated with a user function argument using the
7641 ** sqlite3_set_auxdata() API may be safely retained until the next
7642 ** invocation of this opcode.
7643 **
7644 ** This opcode works exactly like OP_Function.  The only difference is in
7645 ** its name.  This opcode is used in places where the function must be
7646 ** purely non-deterministic.  Some built-in date/time functions can be
7647 ** either determinitic of non-deterministic, depending on their arguments.
7648 ** When those function are used in a non-deterministic way, they will check
7649 ** to see if they were called using OP_PureFunc instead of OP_Function, and
7650 ** if they were, they throw an error.
7651 **
7652 ** See also: AggStep, AggFinal, Function
7653 */
7654 case OP_PureFunc:              /* group */
7655 case OP_Function: {            /* group */
7656   int i;
7657   sqlite3_context *pCtx;
7658 
7659   assert( pOp->p4type==P4_FUNCCTX );
7660   pCtx = pOp->p4.pCtx;
7661 
7662   /* If this function is inside of a trigger, the register array in aMem[]
7663   ** might change from one evaluation to the next.  The next block of code
7664   ** checks to see if the register array has changed, and if so it
7665   ** reinitializes the relavant parts of the sqlite3_context object */
7666   pOut = &aMem[pOp->p3];
7667   if( pCtx->pOut != pOut ){
7668     pCtx->pVdbe = p;
7669     pCtx->pOut = pOut;
7670     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7671   }
7672   assert( pCtx->pVdbe==p );
7673 
7674   memAboutToChange(p, pOut);
7675 #ifdef SQLITE_DEBUG
7676   for(i=0; i<pCtx->argc; i++){
7677     assert( memIsValid(pCtx->argv[i]) );
7678     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7679   }
7680 #endif
7681   MemSetTypeFlag(pOut, MEM_Null);
7682   assert( pCtx->isError==0 );
7683   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7684 
7685   /* If the function returned an error, throw an exception */
7686   if( pCtx->isError ){
7687     if( pCtx->isError>0 ){
7688       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7689       rc = pCtx->isError;
7690     }
7691     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7692     pCtx->isError = 0;
7693     if( rc ) goto abort_due_to_error;
7694   }
7695 
7696   /* Copy the result of the function into register P3 */
7697   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7698     sqlite3VdbeChangeEncoding(pOut, encoding);
7699     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7700   }
7701 
7702   REGISTER_TRACE(pOp->p3, pOut);
7703   UPDATE_MAX_BLOBSIZE(pOut);
7704   break;
7705 }
7706 
7707 /* Opcode: Trace P1 P2 * P4 *
7708 **
7709 ** Write P4 on the statement trace output if statement tracing is
7710 ** enabled.
7711 **
7712 ** Operand P1 must be 0x7fffffff and P2 must positive.
7713 */
7714 /* Opcode: Init P1 P2 P3 P4 *
7715 ** Synopsis: Start at P2
7716 **
7717 ** Programs contain a single instance of this opcode as the very first
7718 ** opcode.
7719 **
7720 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7721 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7722 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7723 **
7724 ** If P2 is not zero, jump to instruction P2.
7725 **
7726 ** Increment the value of P1 so that OP_Once opcodes will jump the
7727 ** first time they are evaluated for this run.
7728 **
7729 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7730 ** error is encountered.
7731 */
7732 case OP_Trace:
7733 case OP_Init: {          /* jump */
7734   int i;
7735 #ifndef SQLITE_OMIT_TRACE
7736   char *zTrace;
7737 #endif
7738 
7739   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7740   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7741   **
7742   ** This assert() provides evidence for:
7743   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7744   ** would have been returned by the legacy sqlite3_trace() interface by
7745   ** using the X argument when X begins with "--" and invoking
7746   ** sqlite3_expanded_sql(P) otherwise.
7747   */
7748   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7749 
7750   /* OP_Init is always instruction 0 */
7751   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7752 
7753 #ifndef SQLITE_OMIT_TRACE
7754   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7755    && !p->doingRerun
7756    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7757   ){
7758 #ifndef SQLITE_OMIT_DEPRECATED
7759     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7760       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7761       char *z = sqlite3VdbeExpandSql(p, zTrace);
7762       x(db->pTraceArg, z);
7763       sqlite3_free(z);
7764     }else
7765 #endif
7766     if( db->nVdbeExec>1 ){
7767       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7768       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7769       sqlite3DbFree(db, z);
7770     }else{
7771       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7772     }
7773   }
7774 #ifdef SQLITE_USE_FCNTL_TRACE
7775   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7776   if( zTrace ){
7777     int j;
7778     for(j=0; j<db->nDb; j++){
7779       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7780       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7781     }
7782   }
7783 #endif /* SQLITE_USE_FCNTL_TRACE */
7784 #ifdef SQLITE_DEBUG
7785   if( (db->flags & SQLITE_SqlTrace)!=0
7786    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7787   ){
7788     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7789   }
7790 #endif /* SQLITE_DEBUG */
7791 #endif /* SQLITE_OMIT_TRACE */
7792   assert( pOp->p2>0 );
7793   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7794     if( pOp->opcode==OP_Trace ) break;
7795     for(i=1; i<p->nOp; i++){
7796       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7797     }
7798     pOp->p1 = 0;
7799   }
7800   pOp->p1++;
7801   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7802   goto jump_to_p2;
7803 }
7804 
7805 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7806 /* Opcode: CursorHint P1 * * P4 *
7807 **
7808 ** Provide a hint to cursor P1 that it only needs to return rows that
7809 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7810 ** to values currently held in registers.  TK_COLUMN terms in the P4
7811 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7812 */
7813 case OP_CursorHint: {
7814   VdbeCursor *pC;
7815 
7816   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7817   assert( pOp->p4type==P4_EXPR );
7818   pC = p->apCsr[pOp->p1];
7819   if( pC ){
7820     assert( pC->eCurType==CURTYPE_BTREE );
7821     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7822                            pOp->p4.pExpr, aMem);
7823   }
7824   break;
7825 }
7826 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7827 
7828 #ifdef SQLITE_DEBUG
7829 /* Opcode:  Abortable   * * * * *
7830 **
7831 ** Verify that an Abort can happen.  Assert if an Abort at this point
7832 ** might cause database corruption.  This opcode only appears in debugging
7833 ** builds.
7834 **
7835 ** An Abort is safe if either there have been no writes, or if there is
7836 ** an active statement journal.
7837 */
7838 case OP_Abortable: {
7839   sqlite3VdbeAssertAbortable(p);
7840   break;
7841 }
7842 #endif
7843 
7844 #ifdef SQLITE_DEBUG
7845 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
7846 ** Synopsis: release r[P1@P2] mask P3
7847 **
7848 ** Release registers from service.  Any content that was in the
7849 ** the registers is unreliable after this opcode completes.
7850 **
7851 ** The registers released will be the P2 registers starting at P1,
7852 ** except if bit ii of P3 set, then do not release register P1+ii.
7853 ** In other words, P3 is a mask of registers to preserve.
7854 **
7855 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
7856 ** that if the content of the released register was set using OP_SCopy,
7857 ** a change to the value of the source register for the OP_SCopy will no longer
7858 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
7859 **
7860 ** If P5 is set, then all released registers have their type set
7861 ** to MEM_Undefined so that any subsequent attempt to read the released
7862 ** register (before it is reinitialized) will generate an assertion fault.
7863 **
7864 ** P5 ought to be set on every call to this opcode.
7865 ** However, there are places in the code generator will release registers
7866 ** before their are used, under the (valid) assumption that the registers
7867 ** will not be reallocated for some other purpose before they are used and
7868 ** hence are safe to release.
7869 **
7870 ** This opcode is only available in testing and debugging builds.  It is
7871 ** not generated for release builds.  The purpose of this opcode is to help
7872 ** validate the generated bytecode.  This opcode does not actually contribute
7873 ** to computing an answer.
7874 */
7875 case OP_ReleaseReg: {
7876   Mem *pMem;
7877   int i;
7878   u32 constMask;
7879   assert( pOp->p1>0 );
7880   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
7881   pMem = &aMem[pOp->p1];
7882   constMask = pOp->p3;
7883   for(i=0; i<pOp->p2; i++, pMem++){
7884     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
7885       pMem->pScopyFrom = 0;
7886       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
7887     }
7888   }
7889   break;
7890 }
7891 #endif
7892 
7893 /* Opcode: Noop * * * * *
7894 **
7895 ** Do nothing.  This instruction is often useful as a jump
7896 ** destination.
7897 */
7898 /*
7899 ** The magic Explain opcode are only inserted when explain==2 (which
7900 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7901 ** This opcode records information from the optimizer.  It is the
7902 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7903 */
7904 default: {          /* This is really OP_Noop, OP_Explain */
7905   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7906 
7907   break;
7908 }
7909 
7910 /*****************************************************************************
7911 ** The cases of the switch statement above this line should all be indented
7912 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7913 ** readability.  From this point on down, the normal indentation rules are
7914 ** restored.
7915 *****************************************************************************/
7916     }
7917 
7918 #ifdef VDBE_PROFILE
7919     {
7920       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7921       if( endTime>start ) pOrigOp->cycles += endTime - start;
7922       pOrigOp->cnt++;
7923     }
7924 #endif
7925 
7926     /* The following code adds nothing to the actual functionality
7927     ** of the program.  It is only here for testing and debugging.
7928     ** On the other hand, it does burn CPU cycles every time through
7929     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7930     */
7931 #ifndef NDEBUG
7932     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7933 
7934 #ifdef SQLITE_DEBUG
7935     if( db->flags & SQLITE_VdbeTrace ){
7936       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7937       if( rc!=0 ) printf("rc=%d\n",rc);
7938       if( opProperty & (OPFLG_OUT2) ){
7939         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7940       }
7941       if( opProperty & OPFLG_OUT3 ){
7942         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7943       }
7944       if( opProperty==0xff ){
7945         /* Never happens.  This code exists to avoid a harmless linkage
7946         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
7947         ** used. */
7948         sqlite3VdbeRegisterDump(p);
7949       }
7950     }
7951 #endif  /* SQLITE_DEBUG */
7952 #endif  /* NDEBUG */
7953   }  /* The end of the for(;;) loop the loops through opcodes */
7954 
7955   /* If we reach this point, it means that execution is finished with
7956   ** an error of some kind.
7957   */
7958 abort_due_to_error:
7959   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7960   assert( rc );
7961   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7962     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7963   }
7964   p->rc = rc;
7965   sqlite3SystemError(db, rc);
7966   testcase( sqlite3GlobalConfig.xLog!=0 );
7967   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7968                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7969   sqlite3VdbeHalt(p);
7970   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7971   rc = SQLITE_ERROR;
7972   if( resetSchemaOnFault>0 ){
7973     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7974   }
7975 
7976   /* This is the only way out of this procedure.  We have to
7977   ** release the mutexes on btrees that were acquired at the
7978   ** top. */
7979 vdbe_return:
7980 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
7981   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
7982     nProgressLimit += db->nProgressOps;
7983     if( db->xProgress(db->pProgressArg) ){
7984       nProgressLimit = 0xffffffff;
7985       rc = SQLITE_INTERRUPT;
7986       goto abort_due_to_error;
7987     }
7988   }
7989 #endif
7990   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7991   sqlite3VdbeLeave(p);
7992   assert( rc!=SQLITE_OK || nExtraDelete==0
7993        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7994   );
7995   return rc;
7996 
7997   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7998   ** is encountered.
7999   */
8000 too_big:
8001   sqlite3VdbeError(p, "string or blob too big");
8002   rc = SQLITE_TOOBIG;
8003   goto abort_due_to_error;
8004 
8005   /* Jump to here if a malloc() fails.
8006   */
8007 no_mem:
8008   sqlite3OomFault(db);
8009   sqlite3VdbeError(p, "out of memory");
8010   rc = SQLITE_NOMEM_BKPT;
8011   goto abort_due_to_error;
8012 
8013   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8014   ** flag.
8015   */
8016 abort_due_to_interrupt:
8017   assert( AtomicLoad(&db->u1.isInterrupted) );
8018   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
8019   p->rc = rc;
8020   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8021   goto abort_due_to_error;
8022 }
8023