1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements execution method of the 13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 14 ** handles housekeeping details such as creating and deleting 15 ** VDBE instances. This file is solely interested in executing 16 ** the VDBE program. 17 ** 18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 19 ** to a VDBE. 20 ** 21 ** The SQL parser generates a program which is then executed by 22 ** the VDBE to do the work of the SQL statement. VDBE programs are 23 ** similar in form to assembly language. The program consists of 24 ** a linear sequence of operations. Each operation has an opcode 25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 26 ** is a null-terminated string. Operand P5 is an unsigned character. 27 ** Few opcodes use all 5 operands. 28 ** 29 ** Computation results are stored on a set of registers numbered beginning 30 ** with 1 and going up to Vdbe.nMem. Each register can store 31 ** either an integer, a null-terminated string, a floating point 32 ** number, or the SQL "NULL" value. An implicit conversion from one 33 ** type to the other occurs as necessary. 34 ** 35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 36 ** function which does the work of interpreting a VDBE program. 37 ** But other routines are also provided to help in building up 38 ** a program instruction by instruction. 39 ** 40 ** Various scripts scan this source file in order to generate HTML 41 ** documentation, headers files, or other derived files. The formatting 42 ** of the code in this file is, therefore, important. See other comments 43 ** in this file for details. If in doubt, do not deviate from existing 44 ** commenting and indentation practices when changing or adding code. 45 */ 46 #include "sqliteInt.h" 47 #include "vdbeInt.h" 48 49 /* 50 ** Invoke this macro on memory cells just prior to changing the 51 ** value of the cell. This macro verifies that shallow copies are 52 ** not misused. 53 */ 54 #ifdef SQLITE_DEBUG 55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 56 #else 57 # define memAboutToChange(P,M) 58 #endif 59 60 /* 61 ** The following global variable is incremented every time a cursor 62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 63 ** procedures use this information to make sure that indices are 64 ** working correctly. This variable has no function other than to 65 ** help verify the correct operation of the library. 66 */ 67 #ifdef SQLITE_TEST 68 int sqlite3_search_count = 0; 69 #endif 70 71 /* 72 ** When this global variable is positive, it gets decremented once before 73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 74 ** field of the sqlite3 structure is set in order to simulate an interrupt. 75 ** 76 ** This facility is used for testing purposes only. It does not function 77 ** in an ordinary build. 78 */ 79 #ifdef SQLITE_TEST 80 int sqlite3_interrupt_count = 0; 81 #endif 82 83 /* 84 ** The next global variable is incremented each type the OP_Sort opcode 85 ** is executed. The test procedures use this information to make sure that 86 ** sorting is occurring or not occurring at appropriate times. This variable 87 ** has no function other than to help verify the correct operation of the 88 ** library. 89 */ 90 #ifdef SQLITE_TEST 91 int sqlite3_sort_count = 0; 92 #endif 93 94 /* 95 ** The next global variable records the size of the largest MEM_Blob 96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 97 ** use this information to make sure that the zero-blob functionality 98 ** is working correctly. This variable has no function other than to 99 ** help verify the correct operation of the library. 100 */ 101 #ifdef SQLITE_TEST 102 int sqlite3_max_blobsize = 0; 103 static void updateMaxBlobsize(Mem *p){ 104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 105 sqlite3_max_blobsize = p->n; 106 } 107 } 108 #endif 109 110 /* 111 ** The next global variable is incremented each type the OP_Found opcode 112 ** is executed. This is used to test whether or not the foreign key 113 ** operation implemented using OP_FkIsZero is working. This variable 114 ** has no function other than to help verify the correct operation of the 115 ** library. 116 */ 117 #ifdef SQLITE_TEST 118 int sqlite3_found_count = 0; 119 #endif 120 121 /* 122 ** Test a register to see if it exceeds the current maximum blob size. 123 ** If it does, record the new maximum blob size. 124 */ 125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 127 #else 128 # define UPDATE_MAX_BLOBSIZE(P) 129 #endif 130 131 /* 132 ** Convert the given register into a string if it isn't one 133 ** already. Return non-zero if a malloc() fails. 134 */ 135 #define Stringify(P, enc) \ 136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 137 { goto no_mem; } 138 139 /* 140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 141 ** a pointer to a dynamically allocated string where some other entity 142 ** is responsible for deallocating that string. Because the register 143 ** does not control the string, it might be deleted without the register 144 ** knowing it. 145 ** 146 ** This routine converts an ephemeral string into a dynamically allocated 147 ** string that the register itself controls. In other words, it 148 ** converts an MEM_Ephem string into an MEM_Dyn string. 149 */ 150 #define Deephemeralize(P) \ 151 if( ((P)->flags&MEM_Ephem)!=0 \ 152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 153 154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 155 # define isSorter(x) ((x)->pSorter!=0) 156 157 /* 158 ** Argument pMem points at a register that will be passed to a 159 ** user-defined function or returned to the user as the result of a query. 160 ** This routine sets the pMem->type variable used by the sqlite3_value_*() 161 ** routines. 162 */ 163 void sqlite3VdbeMemStoreType(Mem *pMem){ 164 int flags = pMem->flags; 165 if( flags & MEM_Null ){ 166 pMem->type = SQLITE_NULL; 167 } 168 else if( flags & MEM_Int ){ 169 pMem->type = SQLITE_INTEGER; 170 } 171 else if( flags & MEM_Real ){ 172 pMem->type = SQLITE_FLOAT; 173 } 174 else if( flags & MEM_Str ){ 175 pMem->type = SQLITE_TEXT; 176 }else{ 177 pMem->type = SQLITE_BLOB; 178 } 179 } 180 181 /* 182 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 183 ** if we run out of memory. 184 */ 185 static VdbeCursor *allocateCursor( 186 Vdbe *p, /* The virtual machine */ 187 int iCur, /* Index of the new VdbeCursor */ 188 int nField, /* Number of fields in the table or index */ 189 int iDb, /* Database the cursor belongs to, or -1 */ 190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 191 ){ 192 /* Find the memory cell that will be used to store the blob of memory 193 ** required for this VdbeCursor structure. It is convenient to use a 194 ** vdbe memory cell to manage the memory allocation required for a 195 ** VdbeCursor structure for the following reasons: 196 ** 197 ** * Sometimes cursor numbers are used for a couple of different 198 ** purposes in a vdbe program. The different uses might require 199 ** different sized allocations. Memory cells provide growable 200 ** allocations. 201 ** 202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 203 ** be freed lazily via the sqlite3_release_memory() API. This 204 ** minimizes the number of malloc calls made by the system. 205 ** 206 ** Memory cells for cursors are allocated at the top of the address 207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 208 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 209 */ 210 Mem *pMem = &p->aMem[p->nMem-iCur]; 211 212 int nByte; 213 VdbeCursor *pCx = 0; 214 nByte = 215 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 216 (isBtreeCursor?sqlite3BtreeCursorSize():0); 217 218 assert( iCur<p->nCursor ); 219 if( p->apCsr[iCur] ){ 220 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 221 p->apCsr[iCur] = 0; 222 } 223 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 224 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 225 memset(pCx, 0, sizeof(VdbeCursor)); 226 pCx->iDb = iDb; 227 pCx->nField = nField; 228 if( isBtreeCursor ){ 229 pCx->pCursor = (BtCursor*) 230 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 231 sqlite3BtreeCursorZero(pCx->pCursor); 232 } 233 } 234 return pCx; 235 } 236 237 /* 238 ** Try to convert a value into a numeric representation if we can 239 ** do so without loss of information. In other words, if the string 240 ** looks like a number, convert it into a number. If it does not 241 ** look like a number, leave it alone. 242 */ 243 static void applyNumericAffinity(Mem *pRec){ 244 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 245 double rValue; 246 i64 iValue; 247 u8 enc = pRec->enc; 248 if( (pRec->flags&MEM_Str)==0 ) return; 249 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 250 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 251 pRec->u.i = iValue; 252 pRec->flags |= MEM_Int; 253 }else{ 254 pRec->r = rValue; 255 pRec->flags |= MEM_Real; 256 } 257 } 258 } 259 260 /* 261 ** Processing is determine by the affinity parameter: 262 ** 263 ** SQLITE_AFF_INTEGER: 264 ** SQLITE_AFF_REAL: 265 ** SQLITE_AFF_NUMERIC: 266 ** Try to convert pRec to an integer representation or a 267 ** floating-point representation if an integer representation 268 ** is not possible. Note that the integer representation is 269 ** always preferred, even if the affinity is REAL, because 270 ** an integer representation is more space efficient on disk. 271 ** 272 ** SQLITE_AFF_TEXT: 273 ** Convert pRec to a text representation. 274 ** 275 ** SQLITE_AFF_NONE: 276 ** No-op. pRec is unchanged. 277 */ 278 static void applyAffinity( 279 Mem *pRec, /* The value to apply affinity to */ 280 char affinity, /* The affinity to be applied */ 281 u8 enc /* Use this text encoding */ 282 ){ 283 if( affinity==SQLITE_AFF_TEXT ){ 284 /* Only attempt the conversion to TEXT if there is an integer or real 285 ** representation (blob and NULL do not get converted) but no string 286 ** representation. 287 */ 288 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 289 sqlite3VdbeMemStringify(pRec, enc); 290 } 291 pRec->flags &= ~(MEM_Real|MEM_Int); 292 }else if( affinity!=SQLITE_AFF_NONE ){ 293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 294 || affinity==SQLITE_AFF_NUMERIC ); 295 applyNumericAffinity(pRec); 296 if( pRec->flags & MEM_Real ){ 297 sqlite3VdbeIntegerAffinity(pRec); 298 } 299 } 300 } 301 302 /* 303 ** Try to convert the type of a function argument or a result column 304 ** into a numeric representation. Use either INTEGER or REAL whichever 305 ** is appropriate. But only do the conversion if it is possible without 306 ** loss of information and return the revised type of the argument. 307 */ 308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 309 Mem *pMem = (Mem*)pVal; 310 if( pMem->type==SQLITE_TEXT ){ 311 applyNumericAffinity(pMem); 312 sqlite3VdbeMemStoreType(pMem); 313 } 314 return pMem->type; 315 } 316 317 /* 318 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 319 ** not the internal Mem* type. 320 */ 321 void sqlite3ValueApplyAffinity( 322 sqlite3_value *pVal, 323 u8 affinity, 324 u8 enc 325 ){ 326 applyAffinity((Mem *)pVal, affinity, enc); 327 } 328 329 #ifdef SQLITE_DEBUG 330 /* 331 ** Write a nice string representation of the contents of cell pMem 332 ** into buffer zBuf, length nBuf. 333 */ 334 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 335 char *zCsr = zBuf; 336 int f = pMem->flags; 337 338 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 339 340 if( f&MEM_Blob ){ 341 int i; 342 char c; 343 if( f & MEM_Dyn ){ 344 c = 'z'; 345 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 346 }else if( f & MEM_Static ){ 347 c = 't'; 348 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 349 }else if( f & MEM_Ephem ){ 350 c = 'e'; 351 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 352 }else{ 353 c = 's'; 354 } 355 356 sqlite3_snprintf(100, zCsr, "%c", c); 357 zCsr += sqlite3Strlen30(zCsr); 358 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 359 zCsr += sqlite3Strlen30(zCsr); 360 for(i=0; i<16 && i<pMem->n; i++){ 361 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 362 zCsr += sqlite3Strlen30(zCsr); 363 } 364 for(i=0; i<16 && i<pMem->n; i++){ 365 char z = pMem->z[i]; 366 if( z<32 || z>126 ) *zCsr++ = '.'; 367 else *zCsr++ = z; 368 } 369 370 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 371 zCsr += sqlite3Strlen30(zCsr); 372 if( f & MEM_Zero ){ 373 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 374 zCsr += sqlite3Strlen30(zCsr); 375 } 376 *zCsr = '\0'; 377 }else if( f & MEM_Str ){ 378 int j, k; 379 zBuf[0] = ' '; 380 if( f & MEM_Dyn ){ 381 zBuf[1] = 'z'; 382 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 383 }else if( f & MEM_Static ){ 384 zBuf[1] = 't'; 385 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 386 }else if( f & MEM_Ephem ){ 387 zBuf[1] = 'e'; 388 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 389 }else{ 390 zBuf[1] = 's'; 391 } 392 k = 2; 393 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 394 k += sqlite3Strlen30(&zBuf[k]); 395 zBuf[k++] = '['; 396 for(j=0; j<15 && j<pMem->n; j++){ 397 u8 c = pMem->z[j]; 398 if( c>=0x20 && c<0x7f ){ 399 zBuf[k++] = c; 400 }else{ 401 zBuf[k++] = '.'; 402 } 403 } 404 zBuf[k++] = ']'; 405 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 406 k += sqlite3Strlen30(&zBuf[k]); 407 zBuf[k++] = 0; 408 } 409 } 410 #endif 411 412 #ifdef SQLITE_DEBUG 413 /* 414 ** Print the value of a register for tracing purposes: 415 */ 416 static void memTracePrint(Mem *p){ 417 if( p->flags & MEM_Invalid ){ 418 printf(" undefined"); 419 }else if( p->flags & MEM_Null ){ 420 printf(" NULL"); 421 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 422 printf(" si:%lld", p->u.i); 423 }else if( p->flags & MEM_Int ){ 424 printf(" i:%lld", p->u.i); 425 #ifndef SQLITE_OMIT_FLOATING_POINT 426 }else if( p->flags & MEM_Real ){ 427 printf(" r:%g", p->r); 428 #endif 429 }else if( p->flags & MEM_RowSet ){ 430 printf(" (rowset)"); 431 }else{ 432 char zBuf[200]; 433 sqlite3VdbeMemPrettyPrint(p, zBuf); 434 printf(" %s", zBuf); 435 } 436 } 437 static void registerTrace(int iReg, Mem *p){ 438 printf("REG[%d] = ", iReg); 439 memTracePrint(p); 440 printf("\n"); 441 } 442 #endif 443 444 #ifdef SQLITE_DEBUG 445 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 446 #else 447 # define REGISTER_TRACE(R,M) 448 #endif 449 450 451 #ifdef VDBE_PROFILE 452 453 /* 454 ** hwtime.h contains inline assembler code for implementing 455 ** high-performance timing routines. 456 */ 457 #include "hwtime.h" 458 459 #endif 460 461 /* 462 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 463 ** sqlite3_interrupt() routine has been called. If it has been, then 464 ** processing of the VDBE program is interrupted. 465 ** 466 ** This macro added to every instruction that does a jump in order to 467 ** implement a loop. This test used to be on every single instruction, 468 ** but that meant we more testing than we needed. By only testing the 469 ** flag on jump instructions, we get a (small) speed improvement. 470 */ 471 #define CHECK_FOR_INTERRUPT \ 472 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 473 474 475 #ifndef NDEBUG 476 /* 477 ** This function is only called from within an assert() expression. It 478 ** checks that the sqlite3.nTransaction variable is correctly set to 479 ** the number of non-transaction savepoints currently in the 480 ** linked list starting at sqlite3.pSavepoint. 481 ** 482 ** Usage: 483 ** 484 ** assert( checkSavepointCount(db) ); 485 */ 486 static int checkSavepointCount(sqlite3 *db){ 487 int n = 0; 488 Savepoint *p; 489 for(p=db->pSavepoint; p; p=p->pNext) n++; 490 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 491 return 1; 492 } 493 #endif 494 495 496 /* 497 ** Execute as much of a VDBE program as we can then return. 498 ** 499 ** sqlite3VdbeMakeReady() must be called before this routine in order to 500 ** close the program with a final OP_Halt and to set up the callbacks 501 ** and the error message pointer. 502 ** 503 ** Whenever a row or result data is available, this routine will either 504 ** invoke the result callback (if there is one) or return with 505 ** SQLITE_ROW. 506 ** 507 ** If an attempt is made to open a locked database, then this routine 508 ** will either invoke the busy callback (if there is one) or it will 509 ** return SQLITE_BUSY. 510 ** 511 ** If an error occurs, an error message is written to memory obtained 512 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 513 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 514 ** 515 ** If the callback ever returns non-zero, then the program exits 516 ** immediately. There will be no error message but the p->rc field is 517 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 518 ** 519 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 520 ** routine to return SQLITE_ERROR. 521 ** 522 ** Other fatal errors return SQLITE_ERROR. 523 ** 524 ** After this routine has finished, sqlite3VdbeFinalize() should be 525 ** used to clean up the mess that was left behind. 526 */ 527 int sqlite3VdbeExec( 528 Vdbe *p /* The VDBE */ 529 ){ 530 int pc=0; /* The program counter */ 531 Op *aOp = p->aOp; /* Copy of p->aOp */ 532 Op *pOp; /* Current operation */ 533 int rc = SQLITE_OK; /* Value to return */ 534 sqlite3 *db = p->db; /* The database */ 535 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 536 u8 encoding = ENC(db); /* The database encoding */ 537 int iCompare = 0; /* Result of last OP_Compare operation */ 538 unsigned nVmStep = 0; /* Number of virtual machine steps */ 539 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 540 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 541 #endif 542 Mem *aMem = p->aMem; /* Copy of p->aMem */ 543 Mem *pIn1 = 0; /* 1st input operand */ 544 Mem *pIn2 = 0; /* 2nd input operand */ 545 Mem *pIn3 = 0; /* 3rd input operand */ 546 Mem *pOut = 0; /* Output operand */ 547 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 548 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 549 #ifdef VDBE_PROFILE 550 u64 start; /* CPU clock count at start of opcode */ 551 int origPc; /* Program counter at start of opcode */ 552 #endif 553 /*** INSERT STACK UNION HERE ***/ 554 555 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 556 sqlite3VdbeEnter(p); 557 if( p->rc==SQLITE_NOMEM ){ 558 /* This happens if a malloc() inside a call to sqlite3_column_text() or 559 ** sqlite3_column_text16() failed. */ 560 goto no_mem; 561 } 562 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 563 assert( p->bIsReader || p->readOnly!=0 ); 564 p->rc = SQLITE_OK; 565 p->iCurrentTime = 0; 566 assert( p->explain==0 ); 567 p->pResultSet = 0; 568 db->busyHandler.nBusy = 0; 569 CHECK_FOR_INTERRUPT; 570 sqlite3VdbeIOTraceSql(p); 571 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 572 if( db->xProgress ){ 573 assert( 0 < db->nProgressOps ); 574 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 575 if( nProgressLimit==0 ){ 576 nProgressLimit = db->nProgressOps; 577 }else{ 578 nProgressLimit %= (unsigned)db->nProgressOps; 579 } 580 } 581 #endif 582 #ifdef SQLITE_DEBUG 583 sqlite3BeginBenignMalloc(); 584 if( p->pc==0 585 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 586 ){ 587 int i; 588 int once = 1; 589 sqlite3VdbePrintSql(p); 590 if( p->db->flags & SQLITE_VdbeListing ){ 591 printf("VDBE Program Listing:\n"); 592 for(i=0; i<p->nOp; i++){ 593 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 594 } 595 } 596 if( p->db->flags & SQLITE_VdbeEQP ){ 597 for(i=0; i<p->nOp; i++){ 598 if( aOp[i].opcode==OP_Explain ){ 599 if( once ) printf("VDBE Query Plan:\n"); 600 printf("%s\n", aOp[i].p4.z); 601 once = 0; 602 } 603 } 604 } 605 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 606 } 607 sqlite3EndBenignMalloc(); 608 #endif 609 for(pc=p->pc; rc==SQLITE_OK; pc++){ 610 assert( pc>=0 && pc<p->nOp ); 611 if( db->mallocFailed ) goto no_mem; 612 #ifdef VDBE_PROFILE 613 origPc = pc; 614 start = sqlite3Hwtime(); 615 #endif 616 nVmStep++; 617 pOp = &aOp[pc]; 618 619 /* Only allow tracing if SQLITE_DEBUG is defined. 620 */ 621 #ifdef SQLITE_DEBUG 622 if( db->flags & SQLITE_VdbeTrace ){ 623 sqlite3VdbePrintOp(stdout, pc, pOp); 624 } 625 #endif 626 627 628 /* Check to see if we need to simulate an interrupt. This only happens 629 ** if we have a special test build. 630 */ 631 #ifdef SQLITE_TEST 632 if( sqlite3_interrupt_count>0 ){ 633 sqlite3_interrupt_count--; 634 if( sqlite3_interrupt_count==0 ){ 635 sqlite3_interrupt(db); 636 } 637 } 638 #endif 639 640 /* On any opcode with the "out2-prerelease" tag, free any 641 ** external allocations out of mem[p2] and set mem[p2] to be 642 ** an undefined integer. Opcodes will either fill in the integer 643 ** value or convert mem[p2] to a different type. 644 */ 645 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 646 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 647 assert( pOp->p2>0 ); 648 assert( pOp->p2<=(p->nMem-p->nCursor) ); 649 pOut = &aMem[pOp->p2]; 650 memAboutToChange(p, pOut); 651 VdbeMemRelease(pOut); 652 pOut->flags = MEM_Int; 653 } 654 655 /* Sanity checking on other operands */ 656 #ifdef SQLITE_DEBUG 657 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 658 assert( pOp->p1>0 ); 659 assert( pOp->p1<=(p->nMem-p->nCursor) ); 660 assert( memIsValid(&aMem[pOp->p1]) ); 661 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 662 } 663 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 664 assert( pOp->p2>0 ); 665 assert( pOp->p2<=(p->nMem-p->nCursor) ); 666 assert( memIsValid(&aMem[pOp->p2]) ); 667 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 668 } 669 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 670 assert( pOp->p3>0 ); 671 assert( pOp->p3<=(p->nMem-p->nCursor) ); 672 assert( memIsValid(&aMem[pOp->p3]) ); 673 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 674 } 675 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 676 assert( pOp->p2>0 ); 677 assert( pOp->p2<=(p->nMem-p->nCursor) ); 678 memAboutToChange(p, &aMem[pOp->p2]); 679 } 680 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 681 assert( pOp->p3>0 ); 682 assert( pOp->p3<=(p->nMem-p->nCursor) ); 683 memAboutToChange(p, &aMem[pOp->p3]); 684 } 685 #endif 686 687 switch( pOp->opcode ){ 688 689 /***************************************************************************** 690 ** What follows is a massive switch statement where each case implements a 691 ** separate instruction in the virtual machine. If we follow the usual 692 ** indentation conventions, each case should be indented by 6 spaces. But 693 ** that is a lot of wasted space on the left margin. So the code within 694 ** the switch statement will break with convention and be flush-left. Another 695 ** big comment (similar to this one) will mark the point in the code where 696 ** we transition back to normal indentation. 697 ** 698 ** The formatting of each case is important. The makefile for SQLite 699 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 700 ** file looking for lines that begin with "case OP_". The opcodes.h files 701 ** will be filled with #defines that give unique integer values to each 702 ** opcode and the opcodes.c file is filled with an array of strings where 703 ** each string is the symbolic name for the corresponding opcode. If the 704 ** case statement is followed by a comment of the form "/# same as ... #/" 705 ** that comment is used to determine the particular value of the opcode. 706 ** 707 ** Other keywords in the comment that follows each case are used to 708 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 709 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 710 ** the mkopcodeh.awk script for additional information. 711 ** 712 ** Documentation about VDBE opcodes is generated by scanning this file 713 ** for lines of that contain "Opcode:". That line and all subsequent 714 ** comment lines are used in the generation of the opcode.html documentation 715 ** file. 716 ** 717 ** SUMMARY: 718 ** 719 ** Formatting is important to scripts that scan this file. 720 ** Do not deviate from the formatting style currently in use. 721 ** 722 *****************************************************************************/ 723 724 /* Opcode: Goto * P2 * * * 725 ** 726 ** An unconditional jump to address P2. 727 ** The next instruction executed will be 728 ** the one at index P2 from the beginning of 729 ** the program. 730 */ 731 case OP_Goto: { /* jump */ 732 pc = pOp->p2 - 1; 733 734 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 735 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 736 ** completion. Check to see if sqlite3_interrupt() has been called 737 ** or if the progress callback needs to be invoked. 738 ** 739 ** This code uses unstructured "goto" statements and does not look clean. 740 ** But that is not due to sloppy coding habits. The code is written this 741 ** way for performance, to avoid having to run the interrupt and progress 742 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 743 ** faster according to "valgrind --tool=cachegrind" */ 744 check_for_interrupt: 745 CHECK_FOR_INTERRUPT; 746 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 747 /* Call the progress callback if it is configured and the required number 748 ** of VDBE ops have been executed (either since this invocation of 749 ** sqlite3VdbeExec() or since last time the progress callback was called). 750 ** If the progress callback returns non-zero, exit the virtual machine with 751 ** a return code SQLITE_ABORT. 752 */ 753 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 754 assert( db->nProgressOps!=0 ); 755 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 756 if( db->xProgress(db->pProgressArg) ){ 757 rc = SQLITE_INTERRUPT; 758 goto vdbe_error_halt; 759 } 760 } 761 #endif 762 763 break; 764 } 765 766 /* Opcode: Gosub P1 P2 * * * 767 ** 768 ** Write the current address onto register P1 769 ** and then jump to address P2. 770 */ 771 case OP_Gosub: { /* jump */ 772 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 773 pIn1 = &aMem[pOp->p1]; 774 assert( (pIn1->flags & MEM_Dyn)==0 ); 775 memAboutToChange(p, pIn1); 776 pIn1->flags = MEM_Int; 777 pIn1->u.i = pc; 778 REGISTER_TRACE(pOp->p1, pIn1); 779 pc = pOp->p2 - 1; 780 break; 781 } 782 783 /* Opcode: Return P1 * * * * 784 ** 785 ** Jump to the next instruction after the address in register P1. 786 */ 787 case OP_Return: { /* in1 */ 788 pIn1 = &aMem[pOp->p1]; 789 assert( pIn1->flags & MEM_Int ); 790 pc = (int)pIn1->u.i; 791 break; 792 } 793 794 /* Opcode: Yield P1 * * * * 795 ** 796 ** Swap the program counter with the value in register P1. 797 */ 798 case OP_Yield: { /* in1 */ 799 int pcDest; 800 pIn1 = &aMem[pOp->p1]; 801 assert( (pIn1->flags & MEM_Dyn)==0 ); 802 pIn1->flags = MEM_Int; 803 pcDest = (int)pIn1->u.i; 804 pIn1->u.i = pc; 805 REGISTER_TRACE(pOp->p1, pIn1); 806 pc = pcDest; 807 break; 808 } 809 810 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 811 ** Synopsis: if r[P3] null then halt 812 ** 813 ** Check the value in register P3. If it is NULL then Halt using 814 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 815 ** value in register P3 is not NULL, then this routine is a no-op. 816 ** The P5 parameter should be 1. 817 */ 818 case OP_HaltIfNull: { /* in3 */ 819 pIn3 = &aMem[pOp->p3]; 820 if( (pIn3->flags & MEM_Null)==0 ) break; 821 /* Fall through into OP_Halt */ 822 } 823 824 /* Opcode: Halt P1 P2 * P4 P5 825 ** 826 ** Exit immediately. All open cursors, etc are closed 827 ** automatically. 828 ** 829 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 830 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 831 ** For errors, it can be some other value. If P1!=0 then P2 will determine 832 ** whether or not to rollback the current transaction. Do not rollback 833 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 834 ** then back out all changes that have occurred during this execution of the 835 ** VDBE, but do not rollback the transaction. 836 ** 837 ** If P4 is not null then it is an error message string. 838 ** 839 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 840 ** 841 ** 0: (no change) 842 ** 1: NOT NULL contraint failed: P4 843 ** 2: UNIQUE constraint failed: P4 844 ** 3: CHECK constraint failed: P4 845 ** 4: FOREIGN KEY constraint failed: P4 846 ** 847 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 848 ** omitted. 849 ** 850 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 851 ** every program. So a jump past the last instruction of the program 852 ** is the same as executing Halt. 853 */ 854 case OP_Halt: { 855 const char *zType; 856 const char *zLogFmt; 857 858 if( pOp->p1==SQLITE_OK && p->pFrame ){ 859 /* Halt the sub-program. Return control to the parent frame. */ 860 VdbeFrame *pFrame = p->pFrame; 861 p->pFrame = pFrame->pParent; 862 p->nFrame--; 863 sqlite3VdbeSetChanges(db, p->nChange); 864 pc = sqlite3VdbeFrameRestore(pFrame); 865 lastRowid = db->lastRowid; 866 if( pOp->p2==OE_Ignore ){ 867 /* Instruction pc is the OP_Program that invoked the sub-program 868 ** currently being halted. If the p2 instruction of this OP_Halt 869 ** instruction is set to OE_Ignore, then the sub-program is throwing 870 ** an IGNORE exception. In this case jump to the address specified 871 ** as the p2 of the calling OP_Program. */ 872 pc = p->aOp[pc].p2-1; 873 } 874 aOp = p->aOp; 875 aMem = p->aMem; 876 break; 877 } 878 p->rc = pOp->p1; 879 p->errorAction = (u8)pOp->p2; 880 p->pc = pc; 881 if( p->rc ){ 882 if( pOp->p5 ){ 883 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 884 "FOREIGN KEY" }; 885 assert( pOp->p5>=1 && pOp->p5<=4 ); 886 testcase( pOp->p5==1 ); 887 testcase( pOp->p5==2 ); 888 testcase( pOp->p5==3 ); 889 testcase( pOp->p5==4 ); 890 zType = azType[pOp->p5-1]; 891 }else{ 892 zType = 0; 893 } 894 assert( zType!=0 || pOp->p4.z!=0 ); 895 zLogFmt = "abort at %d in [%s]: %s"; 896 if( zType && pOp->p4.z ){ 897 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 898 zType, pOp->p4.z); 899 }else if( pOp->p4.z ){ 900 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 901 }else{ 902 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); 903 } 904 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); 905 } 906 rc = sqlite3VdbeHalt(p); 907 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 908 if( rc==SQLITE_BUSY ){ 909 p->rc = rc = SQLITE_BUSY; 910 }else{ 911 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 912 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 913 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 914 } 915 goto vdbe_return; 916 } 917 918 /* Opcode: Integer P1 P2 * * * 919 ** Synopsis: r[P2]=P1 920 ** 921 ** The 32-bit integer value P1 is written into register P2. 922 */ 923 case OP_Integer: { /* out2-prerelease */ 924 pOut->u.i = pOp->p1; 925 break; 926 } 927 928 /* Opcode: Int64 * P2 * P4 * 929 ** Synopsis: r[P2]=P4 930 ** 931 ** P4 is a pointer to a 64-bit integer value. 932 ** Write that value into register P2. 933 */ 934 case OP_Int64: { /* out2-prerelease */ 935 assert( pOp->p4.pI64!=0 ); 936 pOut->u.i = *pOp->p4.pI64; 937 break; 938 } 939 940 #ifndef SQLITE_OMIT_FLOATING_POINT 941 /* Opcode: Real * P2 * P4 * 942 ** Synopsis: r[P2]=P4 943 ** 944 ** P4 is a pointer to a 64-bit floating point value. 945 ** Write that value into register P2. 946 */ 947 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 948 pOut->flags = MEM_Real; 949 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 950 pOut->r = *pOp->p4.pReal; 951 break; 952 } 953 #endif 954 955 /* Opcode: String8 * P2 * P4 * 956 ** Synopsis: r[P2]='P4' 957 ** 958 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 959 ** into an OP_String before it is executed for the first time. 960 */ 961 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 962 assert( pOp->p4.z!=0 ); 963 pOp->opcode = OP_String; 964 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 965 966 #ifndef SQLITE_OMIT_UTF16 967 if( encoding!=SQLITE_UTF8 ){ 968 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 969 if( rc==SQLITE_TOOBIG ) goto too_big; 970 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 971 assert( pOut->zMalloc==pOut->z ); 972 assert( pOut->flags & MEM_Dyn ); 973 pOut->zMalloc = 0; 974 pOut->flags |= MEM_Static; 975 pOut->flags &= ~MEM_Dyn; 976 if( pOp->p4type==P4_DYNAMIC ){ 977 sqlite3DbFree(db, pOp->p4.z); 978 } 979 pOp->p4type = P4_DYNAMIC; 980 pOp->p4.z = pOut->z; 981 pOp->p1 = pOut->n; 982 } 983 #endif 984 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 985 goto too_big; 986 } 987 /* Fall through to the next case, OP_String */ 988 } 989 990 /* Opcode: String P1 P2 * P4 * 991 ** Synopsis: r[P2]='P4' (len=P1) 992 ** 993 ** The string value P4 of length P1 (bytes) is stored in register P2. 994 */ 995 case OP_String: { /* out2-prerelease */ 996 assert( pOp->p4.z!=0 ); 997 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 998 pOut->z = pOp->p4.z; 999 pOut->n = pOp->p1; 1000 pOut->enc = encoding; 1001 UPDATE_MAX_BLOBSIZE(pOut); 1002 break; 1003 } 1004 1005 /* Opcode: Null P1 P2 P3 * * 1006 ** Synopsis: r[P2..P3]=NULL 1007 ** 1008 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1009 ** NULL into register P3 and every register in between P2 and P3. If P3 1010 ** is less than P2 (typically P3 is zero) then only register P2 is 1011 ** set to NULL. 1012 ** 1013 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1014 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1015 ** OP_Ne or OP_Eq. 1016 */ 1017 case OP_Null: { /* out2-prerelease */ 1018 int cnt; 1019 u16 nullFlag; 1020 cnt = pOp->p3-pOp->p2; 1021 assert( pOp->p3<=(p->nMem-p->nCursor) ); 1022 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1023 while( cnt>0 ){ 1024 pOut++; 1025 memAboutToChange(p, pOut); 1026 VdbeMemRelease(pOut); 1027 pOut->flags = nullFlag; 1028 cnt--; 1029 } 1030 break; 1031 } 1032 1033 1034 /* Opcode: Blob P1 P2 * P4 1035 ** Synopsis: r[P2]=P4 (len=P1) 1036 ** 1037 ** P4 points to a blob of data P1 bytes long. Store this 1038 ** blob in register P2. 1039 */ 1040 case OP_Blob: { /* out2-prerelease */ 1041 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1042 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1043 pOut->enc = encoding; 1044 UPDATE_MAX_BLOBSIZE(pOut); 1045 break; 1046 } 1047 1048 /* Opcode: Variable P1 P2 * P4 * 1049 ** Synopsis: r[P2]=parameter(P1,P4) 1050 ** 1051 ** Transfer the values of bound parameter P1 into register P2 1052 ** 1053 ** If the parameter is named, then its name appears in P4 and P3==1. 1054 ** The P4 value is used by sqlite3_bind_parameter_name(). 1055 */ 1056 case OP_Variable: { /* out2-prerelease */ 1057 Mem *pVar; /* Value being transferred */ 1058 1059 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1060 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); 1061 pVar = &p->aVar[pOp->p1 - 1]; 1062 if( sqlite3VdbeMemTooBig(pVar) ){ 1063 goto too_big; 1064 } 1065 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1066 UPDATE_MAX_BLOBSIZE(pOut); 1067 break; 1068 } 1069 1070 /* Opcode: Move P1 P2 P3 * * 1071 ** Synopsis: r[P2@P3]=r[P1@P3] 1072 ** 1073 ** Move the values in register P1..P1+P3 over into 1074 ** registers P2..P2+P3. Registers P1..P1+P3 are 1075 ** left holding a NULL. It is an error for register ranges 1076 ** P1..P1+P3 and P2..P2+P3 to overlap. 1077 */ 1078 case OP_Move: { 1079 char *zMalloc; /* Holding variable for allocated memory */ 1080 int n; /* Number of registers left to copy */ 1081 int p1; /* Register to copy from */ 1082 int p2; /* Register to copy to */ 1083 1084 n = pOp->p3; 1085 p1 = pOp->p1; 1086 p2 = pOp->p2; 1087 assert( n>=0 && p1>0 && p2>0 ); 1088 assert( p1+n<=p2 || p2+n<=p1 ); 1089 1090 pIn1 = &aMem[p1]; 1091 pOut = &aMem[p2]; 1092 do{ 1093 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); 1094 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); 1095 assert( memIsValid(pIn1) ); 1096 memAboutToChange(p, pOut); 1097 zMalloc = pOut->zMalloc; 1098 pOut->zMalloc = 0; 1099 sqlite3VdbeMemMove(pOut, pIn1); 1100 #ifdef SQLITE_DEBUG 1101 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ 1102 pOut->pScopyFrom += p1 - pOp->p2; 1103 } 1104 #endif 1105 pIn1->zMalloc = zMalloc; 1106 REGISTER_TRACE(p2++, pOut); 1107 pIn1++; 1108 pOut++; 1109 }while( n-- ); 1110 break; 1111 } 1112 1113 /* Opcode: Copy P1 P2 P3 * * 1114 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1115 ** 1116 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1117 ** 1118 ** This instruction makes a deep copy of the value. A duplicate 1119 ** is made of any string or blob constant. See also OP_SCopy. 1120 */ 1121 case OP_Copy: { 1122 int n; 1123 1124 n = pOp->p3; 1125 pIn1 = &aMem[pOp->p1]; 1126 pOut = &aMem[pOp->p2]; 1127 assert( pOut!=pIn1 ); 1128 while( 1 ){ 1129 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1130 Deephemeralize(pOut); 1131 #ifdef SQLITE_DEBUG 1132 pOut->pScopyFrom = 0; 1133 #endif 1134 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1135 if( (n--)==0 ) break; 1136 pOut++; 1137 pIn1++; 1138 } 1139 break; 1140 } 1141 1142 /* Opcode: SCopy P1 P2 * * * 1143 ** Synopsis: r[P2]=r[P1] 1144 ** 1145 ** Make a shallow copy of register P1 into register P2. 1146 ** 1147 ** This instruction makes a shallow copy of the value. If the value 1148 ** is a string or blob, then the copy is only a pointer to the 1149 ** original and hence if the original changes so will the copy. 1150 ** Worse, if the original is deallocated, the copy becomes invalid. 1151 ** Thus the program must guarantee that the original will not change 1152 ** during the lifetime of the copy. Use OP_Copy to make a complete 1153 ** copy. 1154 */ 1155 case OP_SCopy: { /* out2 */ 1156 pIn1 = &aMem[pOp->p1]; 1157 pOut = &aMem[pOp->p2]; 1158 assert( pOut!=pIn1 ); 1159 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1160 #ifdef SQLITE_DEBUG 1161 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1162 #endif 1163 break; 1164 } 1165 1166 /* Opcode: ResultRow P1 P2 * * * 1167 ** Synopsis: output=r[P1@P2] 1168 ** 1169 ** The registers P1 through P1+P2-1 contain a single row of 1170 ** results. This opcode causes the sqlite3_step() call to terminate 1171 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1172 ** structure to provide access to the top P1 values as the result 1173 ** row. 1174 */ 1175 case OP_ResultRow: { 1176 Mem *pMem; 1177 int i; 1178 assert( p->nResColumn==pOp->p2 ); 1179 assert( pOp->p1>0 ); 1180 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); 1181 1182 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1183 /* Run the progress counter just before returning. 1184 */ 1185 if( db->xProgress!=0 1186 && nVmStep>=nProgressLimit 1187 && db->xProgress(db->pProgressArg)!=0 1188 ){ 1189 rc = SQLITE_INTERRUPT; 1190 goto vdbe_error_halt; 1191 } 1192 #endif 1193 1194 /* If this statement has violated immediate foreign key constraints, do 1195 ** not return the number of rows modified. And do not RELEASE the statement 1196 ** transaction. It needs to be rolled back. */ 1197 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1198 assert( db->flags&SQLITE_CountRows ); 1199 assert( p->usesStmtJournal ); 1200 break; 1201 } 1202 1203 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1204 ** DML statements invoke this opcode to return the number of rows 1205 ** modified to the user. This is the only way that a VM that 1206 ** opens a statement transaction may invoke this opcode. 1207 ** 1208 ** In case this is such a statement, close any statement transaction 1209 ** opened by this VM before returning control to the user. This is to 1210 ** ensure that statement-transactions are always nested, not overlapping. 1211 ** If the open statement-transaction is not closed here, then the user 1212 ** may step another VM that opens its own statement transaction. This 1213 ** may lead to overlapping statement transactions. 1214 ** 1215 ** The statement transaction is never a top-level transaction. Hence 1216 ** the RELEASE call below can never fail. 1217 */ 1218 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1219 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1220 if( NEVER(rc!=SQLITE_OK) ){ 1221 break; 1222 } 1223 1224 /* Invalidate all ephemeral cursor row caches */ 1225 p->cacheCtr = (p->cacheCtr + 2)|1; 1226 1227 /* Make sure the results of the current row are \000 terminated 1228 ** and have an assigned type. The results are de-ephemeralized as 1229 ** a side effect. 1230 */ 1231 pMem = p->pResultSet = &aMem[pOp->p1]; 1232 for(i=0; i<pOp->p2; i++){ 1233 assert( memIsValid(&pMem[i]) ); 1234 Deephemeralize(&pMem[i]); 1235 assert( (pMem[i].flags & MEM_Ephem)==0 1236 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1237 sqlite3VdbeMemNulTerminate(&pMem[i]); 1238 sqlite3VdbeMemStoreType(&pMem[i]); 1239 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1240 } 1241 if( db->mallocFailed ) goto no_mem; 1242 1243 /* Return SQLITE_ROW 1244 */ 1245 p->pc = pc + 1; 1246 rc = SQLITE_ROW; 1247 goto vdbe_return; 1248 } 1249 1250 /* Opcode: Concat P1 P2 P3 * * 1251 ** Synopsis: r[P3]=r[P2]+r[P1] 1252 ** 1253 ** Add the text in register P1 onto the end of the text in 1254 ** register P2 and store the result in register P3. 1255 ** If either the P1 or P2 text are NULL then store NULL in P3. 1256 ** 1257 ** P3 = P2 || P1 1258 ** 1259 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1260 ** if P3 is the same register as P2, the implementation is able 1261 ** to avoid a memcpy(). 1262 */ 1263 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1264 i64 nByte; 1265 1266 pIn1 = &aMem[pOp->p1]; 1267 pIn2 = &aMem[pOp->p2]; 1268 pOut = &aMem[pOp->p3]; 1269 assert( pIn1!=pOut ); 1270 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1271 sqlite3VdbeMemSetNull(pOut); 1272 break; 1273 } 1274 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1275 Stringify(pIn1, encoding); 1276 Stringify(pIn2, encoding); 1277 nByte = pIn1->n + pIn2->n; 1278 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1279 goto too_big; 1280 } 1281 MemSetTypeFlag(pOut, MEM_Str); 1282 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1283 goto no_mem; 1284 } 1285 if( pOut!=pIn2 ){ 1286 memcpy(pOut->z, pIn2->z, pIn2->n); 1287 } 1288 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1289 pOut->z[nByte]=0; 1290 pOut->z[nByte+1] = 0; 1291 pOut->flags |= MEM_Term; 1292 pOut->n = (int)nByte; 1293 pOut->enc = encoding; 1294 UPDATE_MAX_BLOBSIZE(pOut); 1295 break; 1296 } 1297 1298 /* Opcode: Add P1 P2 P3 * * 1299 ** Synopsis: r[P3]=r[P1]+r[P2] 1300 ** 1301 ** Add the value in register P1 to the value in register P2 1302 ** and store the result in register P3. 1303 ** If either input is NULL, the result is NULL. 1304 */ 1305 /* Opcode: Multiply P1 P2 P3 * * 1306 ** Synopsis: r[P3]=r[P1]*r[P2] 1307 ** 1308 ** 1309 ** Multiply the value in register P1 by the value in register P2 1310 ** and store the result in register P3. 1311 ** If either input is NULL, the result is NULL. 1312 */ 1313 /* Opcode: Subtract P1 P2 P3 * * 1314 ** Synopsis: r[P3]=r[P2]-r[P1] 1315 ** 1316 ** Subtract the value in register P1 from the value in register P2 1317 ** and store the result in register P3. 1318 ** If either input is NULL, the result is NULL. 1319 */ 1320 /* Opcode: Divide P1 P2 P3 * * 1321 ** Synopsis: r[P3]=r[P2]/r[P1] 1322 ** 1323 ** Divide the value in register P1 by the value in register P2 1324 ** and store the result in register P3 (P3=P2/P1). If the value in 1325 ** register P1 is zero, then the result is NULL. If either input is 1326 ** NULL, the result is NULL. 1327 */ 1328 /* Opcode: Remainder P1 P2 P3 * * 1329 ** Synopsis: r[P3]=r[P2]%r[P1] 1330 ** 1331 ** Compute the remainder after integer register P2 is divided by 1332 ** register P1 and store the result in register P3. 1333 ** If the value in register P1 is zero the result is NULL. 1334 ** If either operand is NULL, the result is NULL. 1335 */ 1336 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1337 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1338 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1339 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1340 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1341 char bIntint; /* Started out as two integer operands */ 1342 int flags; /* Combined MEM_* flags from both inputs */ 1343 i64 iA; /* Integer value of left operand */ 1344 i64 iB; /* Integer value of right operand */ 1345 double rA; /* Real value of left operand */ 1346 double rB; /* Real value of right operand */ 1347 1348 pIn1 = &aMem[pOp->p1]; 1349 applyNumericAffinity(pIn1); 1350 pIn2 = &aMem[pOp->p2]; 1351 applyNumericAffinity(pIn2); 1352 pOut = &aMem[pOp->p3]; 1353 flags = pIn1->flags | pIn2->flags; 1354 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1355 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 1356 iA = pIn1->u.i; 1357 iB = pIn2->u.i; 1358 bIntint = 1; 1359 switch( pOp->opcode ){ 1360 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1361 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1362 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1363 case OP_Divide: { 1364 if( iA==0 ) goto arithmetic_result_is_null; 1365 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1366 iB /= iA; 1367 break; 1368 } 1369 default: { 1370 if( iA==0 ) goto arithmetic_result_is_null; 1371 if( iA==-1 ) iA = 1; 1372 iB %= iA; 1373 break; 1374 } 1375 } 1376 pOut->u.i = iB; 1377 MemSetTypeFlag(pOut, MEM_Int); 1378 }else{ 1379 bIntint = 0; 1380 fp_math: 1381 rA = sqlite3VdbeRealValue(pIn1); 1382 rB = sqlite3VdbeRealValue(pIn2); 1383 switch( pOp->opcode ){ 1384 case OP_Add: rB += rA; break; 1385 case OP_Subtract: rB -= rA; break; 1386 case OP_Multiply: rB *= rA; break; 1387 case OP_Divide: { 1388 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1389 if( rA==(double)0 ) goto arithmetic_result_is_null; 1390 rB /= rA; 1391 break; 1392 } 1393 default: { 1394 iA = (i64)rA; 1395 iB = (i64)rB; 1396 if( iA==0 ) goto arithmetic_result_is_null; 1397 if( iA==-1 ) iA = 1; 1398 rB = (double)(iB % iA); 1399 break; 1400 } 1401 } 1402 #ifdef SQLITE_OMIT_FLOATING_POINT 1403 pOut->u.i = rB; 1404 MemSetTypeFlag(pOut, MEM_Int); 1405 #else 1406 if( sqlite3IsNaN(rB) ){ 1407 goto arithmetic_result_is_null; 1408 } 1409 pOut->r = rB; 1410 MemSetTypeFlag(pOut, MEM_Real); 1411 if( (flags & MEM_Real)==0 && !bIntint ){ 1412 sqlite3VdbeIntegerAffinity(pOut); 1413 } 1414 #endif 1415 } 1416 break; 1417 1418 arithmetic_result_is_null: 1419 sqlite3VdbeMemSetNull(pOut); 1420 break; 1421 } 1422 1423 /* Opcode: CollSeq P1 * * P4 1424 ** 1425 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1426 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1427 ** be returned. This is used by the built-in min(), max() and nullif() 1428 ** functions. 1429 ** 1430 ** If P1 is not zero, then it is a register that a subsequent min() or 1431 ** max() aggregate will set to 1 if the current row is not the minimum or 1432 ** maximum. The P1 register is initialized to 0 by this instruction. 1433 ** 1434 ** The interface used by the implementation of the aforementioned functions 1435 ** to retrieve the collation sequence set by this opcode is not available 1436 ** publicly, only to user functions defined in func.c. 1437 */ 1438 case OP_CollSeq: { 1439 assert( pOp->p4type==P4_COLLSEQ ); 1440 if( pOp->p1 ){ 1441 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1442 } 1443 break; 1444 } 1445 1446 /* Opcode: Function P1 P2 P3 P4 P5 1447 ** Synopsis: r[P3]=func(r[P2@P5]) 1448 ** 1449 ** Invoke a user function (P4 is a pointer to a Function structure that 1450 ** defines the function) with P5 arguments taken from register P2 and 1451 ** successors. The result of the function is stored in register P3. 1452 ** Register P3 must not be one of the function inputs. 1453 ** 1454 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1455 ** function was determined to be constant at compile time. If the first 1456 ** argument was constant then bit 0 of P1 is set. This is used to determine 1457 ** whether meta data associated with a user function argument using the 1458 ** sqlite3_set_auxdata() API may be safely retained until the next 1459 ** invocation of this opcode. 1460 ** 1461 ** See also: AggStep and AggFinal 1462 */ 1463 case OP_Function: { 1464 int i; 1465 Mem *pArg; 1466 sqlite3_context ctx; 1467 sqlite3_value **apVal; 1468 int n; 1469 1470 n = pOp->p5; 1471 apVal = p->apArg; 1472 assert( apVal || n==0 ); 1473 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 1474 pOut = &aMem[pOp->p3]; 1475 memAboutToChange(p, pOut); 1476 1477 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); 1478 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1479 pArg = &aMem[pOp->p2]; 1480 for(i=0; i<n; i++, pArg++){ 1481 assert( memIsValid(pArg) ); 1482 apVal[i] = pArg; 1483 Deephemeralize(pArg); 1484 sqlite3VdbeMemStoreType(pArg); 1485 REGISTER_TRACE(pOp->p2+i, pArg); 1486 } 1487 1488 assert( pOp->p4type==P4_FUNCDEF ); 1489 ctx.pFunc = pOp->p4.pFunc; 1490 ctx.iOp = pc; 1491 ctx.pVdbe = p; 1492 1493 /* The output cell may already have a buffer allocated. Move 1494 ** the pointer to ctx.s so in case the user-function can use 1495 ** the already allocated buffer instead of allocating a new one. 1496 */ 1497 memcpy(&ctx.s, pOut, sizeof(Mem)); 1498 pOut->flags = MEM_Null; 1499 pOut->xDel = 0; 1500 pOut->zMalloc = 0; 1501 MemSetTypeFlag(&ctx.s, MEM_Null); 1502 1503 ctx.fErrorOrAux = 0; 1504 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 1505 assert( pOp>aOp ); 1506 assert( pOp[-1].p4type==P4_COLLSEQ ); 1507 assert( pOp[-1].opcode==OP_CollSeq ); 1508 ctx.pColl = pOp[-1].p4.pColl; 1509 } 1510 db->lastRowid = lastRowid; 1511 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1512 lastRowid = db->lastRowid; 1513 1514 if( db->mallocFailed ){ 1515 /* Even though a malloc() has failed, the implementation of the 1516 ** user function may have called an sqlite3_result_XXX() function 1517 ** to return a value. The following call releases any resources 1518 ** associated with such a value. 1519 */ 1520 sqlite3VdbeMemRelease(&ctx.s); 1521 goto no_mem; 1522 } 1523 1524 /* If the function returned an error, throw an exception */ 1525 if( ctx.fErrorOrAux ){ 1526 if( ctx.isError ){ 1527 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1528 rc = ctx.isError; 1529 } 1530 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); 1531 } 1532 1533 /* Copy the result of the function into register P3 */ 1534 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1535 assert( pOut->flags==MEM_Null ); 1536 memcpy(pOut, &ctx.s, sizeof(Mem)); 1537 if( sqlite3VdbeMemTooBig(pOut) ){ 1538 goto too_big; 1539 } 1540 1541 #if 0 1542 /* The app-defined function has done something that as caused this 1543 ** statement to expire. (Perhaps the function called sqlite3_exec() 1544 ** with a CREATE TABLE statement.) 1545 */ 1546 if( p->expired ) rc = SQLITE_ABORT; 1547 #endif 1548 1549 REGISTER_TRACE(pOp->p3, pOut); 1550 UPDATE_MAX_BLOBSIZE(pOut); 1551 break; 1552 } 1553 1554 /* Opcode: BitAnd P1 P2 P3 * * 1555 ** Synopsis: r[P3]=r[P1]&r[P2] 1556 ** 1557 ** Take the bit-wise AND of the values in register P1 and P2 and 1558 ** store the result in register P3. 1559 ** If either input is NULL, the result is NULL. 1560 */ 1561 /* Opcode: BitOr P1 P2 P3 * * 1562 ** Synopsis: r[P3]=r[P1]|r[P2] 1563 ** 1564 ** Take the bit-wise OR of the values in register P1 and P2 and 1565 ** store the result in register P3. 1566 ** If either input is NULL, the result is NULL. 1567 */ 1568 /* Opcode: ShiftLeft P1 P2 P3 * * 1569 ** Synopsis: r[P3]=r[P2]<<r[P1] 1570 ** 1571 ** Shift the integer value in register P2 to the left by the 1572 ** number of bits specified by the integer in register P1. 1573 ** Store the result in register P3. 1574 ** If either input is NULL, the result is NULL. 1575 */ 1576 /* Opcode: ShiftRight P1 P2 P3 * * 1577 ** Synopsis: r[P3]=r[P2]>>r[P1] 1578 ** 1579 ** Shift the integer value in register P2 to the right by the 1580 ** number of bits specified by the integer in register P1. 1581 ** Store the result in register P3. 1582 ** If either input is NULL, the result is NULL. 1583 */ 1584 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1585 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1586 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1587 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1588 i64 iA; 1589 u64 uA; 1590 i64 iB; 1591 u8 op; 1592 1593 pIn1 = &aMem[pOp->p1]; 1594 pIn2 = &aMem[pOp->p2]; 1595 pOut = &aMem[pOp->p3]; 1596 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1597 sqlite3VdbeMemSetNull(pOut); 1598 break; 1599 } 1600 iA = sqlite3VdbeIntValue(pIn2); 1601 iB = sqlite3VdbeIntValue(pIn1); 1602 op = pOp->opcode; 1603 if( op==OP_BitAnd ){ 1604 iA &= iB; 1605 }else if( op==OP_BitOr ){ 1606 iA |= iB; 1607 }else if( iB!=0 ){ 1608 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1609 1610 /* If shifting by a negative amount, shift in the other direction */ 1611 if( iB<0 ){ 1612 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1613 op = 2*OP_ShiftLeft + 1 - op; 1614 iB = iB>(-64) ? -iB : 64; 1615 } 1616 1617 if( iB>=64 ){ 1618 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1619 }else{ 1620 memcpy(&uA, &iA, sizeof(uA)); 1621 if( op==OP_ShiftLeft ){ 1622 uA <<= iB; 1623 }else{ 1624 uA >>= iB; 1625 /* Sign-extend on a right shift of a negative number */ 1626 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1627 } 1628 memcpy(&iA, &uA, sizeof(iA)); 1629 } 1630 } 1631 pOut->u.i = iA; 1632 MemSetTypeFlag(pOut, MEM_Int); 1633 break; 1634 } 1635 1636 /* Opcode: AddImm P1 P2 * * * 1637 ** Synopsis: r[P1]=r[P1]+P2 1638 ** 1639 ** Add the constant P2 to the value in register P1. 1640 ** The result is always an integer. 1641 ** 1642 ** To force any register to be an integer, just add 0. 1643 */ 1644 case OP_AddImm: { /* in1 */ 1645 pIn1 = &aMem[pOp->p1]; 1646 memAboutToChange(p, pIn1); 1647 sqlite3VdbeMemIntegerify(pIn1); 1648 pIn1->u.i += pOp->p2; 1649 break; 1650 } 1651 1652 /* Opcode: MustBeInt P1 P2 * * * 1653 ** 1654 ** Force the value in register P1 to be an integer. If the value 1655 ** in P1 is not an integer and cannot be converted into an integer 1656 ** without data loss, then jump immediately to P2, or if P2==0 1657 ** raise an SQLITE_MISMATCH exception. 1658 */ 1659 case OP_MustBeInt: { /* jump, in1 */ 1660 pIn1 = &aMem[pOp->p1]; 1661 if( (pIn1->flags & MEM_Int)==0 ){ 1662 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1663 if( (pIn1->flags & MEM_Int)==0 ){ 1664 if( pOp->p2==0 ){ 1665 rc = SQLITE_MISMATCH; 1666 goto abort_due_to_error; 1667 }else{ 1668 pc = pOp->p2 - 1; 1669 break; 1670 } 1671 } 1672 } 1673 MemSetTypeFlag(pIn1, MEM_Int); 1674 break; 1675 } 1676 1677 #ifndef SQLITE_OMIT_FLOATING_POINT 1678 /* Opcode: RealAffinity P1 * * * * 1679 ** 1680 ** If register P1 holds an integer convert it to a real value. 1681 ** 1682 ** This opcode is used when extracting information from a column that 1683 ** has REAL affinity. Such column values may still be stored as 1684 ** integers, for space efficiency, but after extraction we want them 1685 ** to have only a real value. 1686 */ 1687 case OP_RealAffinity: { /* in1 */ 1688 pIn1 = &aMem[pOp->p1]; 1689 if( pIn1->flags & MEM_Int ){ 1690 sqlite3VdbeMemRealify(pIn1); 1691 } 1692 break; 1693 } 1694 #endif 1695 1696 #ifndef SQLITE_OMIT_CAST 1697 /* Opcode: ToText P1 * * * * 1698 ** 1699 ** Force the value in register P1 to be text. 1700 ** If the value is numeric, convert it to a string using the 1701 ** equivalent of printf(). Blob values are unchanged and 1702 ** are afterwards simply interpreted as text. 1703 ** 1704 ** A NULL value is not changed by this routine. It remains NULL. 1705 */ 1706 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1707 pIn1 = &aMem[pOp->p1]; 1708 memAboutToChange(p, pIn1); 1709 if( pIn1->flags & MEM_Null ) break; 1710 assert( MEM_Str==(MEM_Blob>>3) ); 1711 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1712 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1713 rc = ExpandBlob(pIn1); 1714 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1715 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1716 UPDATE_MAX_BLOBSIZE(pIn1); 1717 break; 1718 } 1719 1720 /* Opcode: ToBlob P1 * * * * 1721 ** 1722 ** Force the value in register P1 to be a BLOB. 1723 ** If the value is numeric, convert it to a string first. 1724 ** Strings are simply reinterpreted as blobs with no change 1725 ** to the underlying data. 1726 ** 1727 ** A NULL value is not changed by this routine. It remains NULL. 1728 */ 1729 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1730 pIn1 = &aMem[pOp->p1]; 1731 if( pIn1->flags & MEM_Null ) break; 1732 if( (pIn1->flags & MEM_Blob)==0 ){ 1733 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1734 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1735 MemSetTypeFlag(pIn1, MEM_Blob); 1736 }else{ 1737 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1738 } 1739 UPDATE_MAX_BLOBSIZE(pIn1); 1740 break; 1741 } 1742 1743 /* Opcode: ToNumeric P1 * * * * 1744 ** 1745 ** Force the value in register P1 to be numeric (either an 1746 ** integer or a floating-point number.) 1747 ** If the value is text or blob, try to convert it to an using the 1748 ** equivalent of atoi() or atof() and store 0 if no such conversion 1749 ** is possible. 1750 ** 1751 ** A NULL value is not changed by this routine. It remains NULL. 1752 */ 1753 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1754 pIn1 = &aMem[pOp->p1]; 1755 sqlite3VdbeMemNumerify(pIn1); 1756 break; 1757 } 1758 #endif /* SQLITE_OMIT_CAST */ 1759 1760 /* Opcode: ToInt P1 * * * * 1761 ** 1762 ** Force the value in register P1 to be an integer. If 1763 ** The value is currently a real number, drop its fractional part. 1764 ** If the value is text or blob, try to convert it to an integer using the 1765 ** equivalent of atoi() and store 0 if no such conversion is possible. 1766 ** 1767 ** A NULL value is not changed by this routine. It remains NULL. 1768 */ 1769 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1770 pIn1 = &aMem[pOp->p1]; 1771 if( (pIn1->flags & MEM_Null)==0 ){ 1772 sqlite3VdbeMemIntegerify(pIn1); 1773 } 1774 break; 1775 } 1776 1777 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1778 /* Opcode: ToReal P1 * * * * 1779 ** 1780 ** Force the value in register P1 to be a floating point number. 1781 ** If The value is currently an integer, convert it. 1782 ** If the value is text or blob, try to convert it to an integer using the 1783 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1784 ** 1785 ** A NULL value is not changed by this routine. It remains NULL. 1786 */ 1787 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1788 pIn1 = &aMem[pOp->p1]; 1789 memAboutToChange(p, pIn1); 1790 if( (pIn1->flags & MEM_Null)==0 ){ 1791 sqlite3VdbeMemRealify(pIn1); 1792 } 1793 break; 1794 } 1795 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1796 1797 /* Opcode: Lt P1 P2 P3 P4 P5 1798 ** Synopsis: if r[P1]<r[P3] goto P2 1799 ** 1800 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1801 ** jump to address P2. 1802 ** 1803 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1804 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1805 ** bit is clear then fall through if either operand is NULL. 1806 ** 1807 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1808 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1809 ** to coerce both inputs according to this affinity before the 1810 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1811 ** affinity is used. Note that the affinity conversions are stored 1812 ** back into the input registers P1 and P3. So this opcode can cause 1813 ** persistent changes to registers P1 and P3. 1814 ** 1815 ** Once any conversions have taken place, and neither value is NULL, 1816 ** the values are compared. If both values are blobs then memcmp() is 1817 ** used to determine the results of the comparison. If both values 1818 ** are text, then the appropriate collating function specified in 1819 ** P4 is used to do the comparison. If P4 is not specified then 1820 ** memcmp() is used to compare text string. If both values are 1821 ** numeric, then a numeric comparison is used. If the two values 1822 ** are of different types, then numbers are considered less than 1823 ** strings and strings are considered less than blobs. 1824 ** 1825 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1826 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1827 ** 1828 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered 1829 ** equal to one another, provided that they do not have their MEM_Cleared 1830 ** bit set. 1831 */ 1832 /* Opcode: Ne P1 P2 P3 P4 P5 1833 ** Synopsis: if r[P1]!=r[P3] goto P2 1834 ** 1835 ** This works just like the Lt opcode except that the jump is taken if 1836 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1837 ** additional information. 1838 ** 1839 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1840 ** true or false and is never NULL. If both operands are NULL then the result 1841 ** of comparison is false. If either operand is NULL then the result is true. 1842 ** If neither operand is NULL the result is the same as it would be if 1843 ** the SQLITE_NULLEQ flag were omitted from P5. 1844 */ 1845 /* Opcode: Eq P1 P2 P3 P4 P5 1846 ** Synopsis: if r[P1]==r[P3] goto P2 1847 ** 1848 ** This works just like the Lt opcode except that the jump is taken if 1849 ** the operands in registers P1 and P3 are equal. 1850 ** See the Lt opcode for additional information. 1851 ** 1852 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1853 ** true or false and is never NULL. If both operands are NULL then the result 1854 ** of comparison is true. If either operand is NULL then the result is false. 1855 ** If neither operand is NULL the result is the same as it would be if 1856 ** the SQLITE_NULLEQ flag were omitted from P5. 1857 */ 1858 /* Opcode: Le P1 P2 P3 P4 P5 1859 ** Synopsis: if r[P1]<=r[P3] goto P2 1860 ** 1861 ** This works just like the Lt opcode except that the jump is taken if 1862 ** the content of register P3 is less than or equal to the content of 1863 ** register P1. See the Lt opcode for additional information. 1864 */ 1865 /* Opcode: Gt P1 P2 P3 P4 P5 1866 ** Synopsis: if r[P1]>r[P3] goto P2 1867 ** 1868 ** This works just like the Lt opcode except that the jump is taken if 1869 ** the content of register P3 is greater than the content of 1870 ** register P1. See the Lt opcode for additional information. 1871 */ 1872 /* Opcode: Ge P1 P2 P3 P4 P5 1873 ** Synopsis: if r[P1]>=r[P3] goto P2 1874 ** 1875 ** This works just like the Lt opcode except that the jump is taken if 1876 ** the content of register P3 is greater than or equal to the content of 1877 ** register P1. See the Lt opcode for additional information. 1878 */ 1879 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1880 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1881 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1882 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1883 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1884 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1885 int res; /* Result of the comparison of pIn1 against pIn3 */ 1886 char affinity; /* Affinity to use for comparison */ 1887 u16 flags1; /* Copy of initial value of pIn1->flags */ 1888 u16 flags3; /* Copy of initial value of pIn3->flags */ 1889 1890 pIn1 = &aMem[pOp->p1]; 1891 pIn3 = &aMem[pOp->p3]; 1892 flags1 = pIn1->flags; 1893 flags3 = pIn3->flags; 1894 if( (flags1 | flags3)&MEM_Null ){ 1895 /* One or both operands are NULL */ 1896 if( pOp->p5 & SQLITE_NULLEQ ){ 1897 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1898 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1899 ** or not both operands are null. 1900 */ 1901 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1902 assert( (flags1 & MEM_Cleared)==0 ); 1903 if( (flags1&MEM_Null)!=0 1904 && (flags3&MEM_Null)!=0 1905 && (flags3&MEM_Cleared)==0 1906 ){ 1907 res = 0; /* Results are equal */ 1908 }else{ 1909 res = 1; /* Results are not equal */ 1910 } 1911 }else{ 1912 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1913 ** then the result is always NULL. 1914 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1915 */ 1916 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1917 pc = pOp->p2-1; 1918 }else if( pOp->p5 & SQLITE_STOREP2 ){ 1919 pOut = &aMem[pOp->p2]; 1920 MemSetTypeFlag(pOut, MEM_Null); 1921 REGISTER_TRACE(pOp->p2, pOut); 1922 } 1923 break; 1924 } 1925 }else{ 1926 /* Neither operand is NULL. Do a comparison. */ 1927 affinity = pOp->p5 & SQLITE_AFF_MASK; 1928 if( affinity ){ 1929 applyAffinity(pIn1, affinity, encoding); 1930 applyAffinity(pIn3, affinity, encoding); 1931 if( db->mallocFailed ) goto no_mem; 1932 } 1933 1934 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1935 ExpandBlob(pIn1); 1936 ExpandBlob(pIn3); 1937 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1938 } 1939 switch( pOp->opcode ){ 1940 case OP_Eq: res = res==0; break; 1941 case OP_Ne: res = res!=0; break; 1942 case OP_Lt: res = res<0; break; 1943 case OP_Le: res = res<=0; break; 1944 case OP_Gt: res = res>0; break; 1945 default: res = res>=0; break; 1946 } 1947 1948 if( pOp->p5 & SQLITE_STOREP2 ){ 1949 pOut = &aMem[pOp->p2]; 1950 memAboutToChange(p, pOut); 1951 MemSetTypeFlag(pOut, MEM_Int); 1952 pOut->u.i = res; 1953 REGISTER_TRACE(pOp->p2, pOut); 1954 }else if( res ){ 1955 pc = pOp->p2-1; 1956 } 1957 1958 /* Undo any changes made by applyAffinity() to the input registers. */ 1959 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 1960 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 1961 break; 1962 } 1963 1964 /* Opcode: Permutation * * * P4 * 1965 ** 1966 ** Set the permutation used by the OP_Compare operator to be the array 1967 ** of integers in P4. 1968 ** 1969 ** The permutation is only valid until the next OP_Compare that has 1970 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 1971 ** occur immediately prior to the OP_Compare. 1972 */ 1973 case OP_Permutation: { 1974 assert( pOp->p4type==P4_INTARRAY ); 1975 assert( pOp->p4.ai ); 1976 aPermute = pOp->p4.ai; 1977 break; 1978 } 1979 1980 /* Opcode: Compare P1 P2 P3 P4 P5 1981 ** 1982 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1983 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1984 ** the comparison for use by the next OP_Jump instruct. 1985 ** 1986 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 1987 ** determined by the most recent OP_Permutation operator. If the 1988 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 1989 ** order. 1990 ** 1991 ** P4 is a KeyInfo structure that defines collating sequences and sort 1992 ** orders for the comparison. The permutation applies to registers 1993 ** only. The KeyInfo elements are used sequentially. 1994 ** 1995 ** The comparison is a sort comparison, so NULLs compare equal, 1996 ** NULLs are less than numbers, numbers are less than strings, 1997 ** and strings are less than blobs. 1998 */ 1999 case OP_Compare: { 2000 int n; 2001 int i; 2002 int p1; 2003 int p2; 2004 const KeyInfo *pKeyInfo; 2005 int idx; 2006 CollSeq *pColl; /* Collating sequence to use on this term */ 2007 int bRev; /* True for DESCENDING sort order */ 2008 2009 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2010 n = pOp->p3; 2011 pKeyInfo = pOp->p4.pKeyInfo; 2012 assert( n>0 ); 2013 assert( pKeyInfo!=0 ); 2014 p1 = pOp->p1; 2015 p2 = pOp->p2; 2016 #if SQLITE_DEBUG 2017 if( aPermute ){ 2018 int k, mx = 0; 2019 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2020 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); 2021 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); 2022 }else{ 2023 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); 2024 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); 2025 } 2026 #endif /* SQLITE_DEBUG */ 2027 for(i=0; i<n; i++){ 2028 idx = aPermute ? aPermute[i] : i; 2029 assert( memIsValid(&aMem[p1+idx]) ); 2030 assert( memIsValid(&aMem[p2+idx]) ); 2031 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2032 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2033 assert( i<pKeyInfo->nField ); 2034 pColl = pKeyInfo->aColl[i]; 2035 bRev = pKeyInfo->aSortOrder[i]; 2036 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2037 if( iCompare ){ 2038 if( bRev ) iCompare = -iCompare; 2039 break; 2040 } 2041 } 2042 aPermute = 0; 2043 break; 2044 } 2045 2046 /* Opcode: Jump P1 P2 P3 * * 2047 ** 2048 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2049 ** in the most recent OP_Compare instruction the P1 vector was less than 2050 ** equal to, or greater than the P2 vector, respectively. 2051 */ 2052 case OP_Jump: { /* jump */ 2053 if( iCompare<0 ){ 2054 pc = pOp->p1 - 1; 2055 }else if( iCompare==0 ){ 2056 pc = pOp->p2 - 1; 2057 }else{ 2058 pc = pOp->p3 - 1; 2059 } 2060 break; 2061 } 2062 2063 /* Opcode: And P1 P2 P3 * * 2064 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2065 ** 2066 ** Take the logical AND of the values in registers P1 and P2 and 2067 ** write the result into register P3. 2068 ** 2069 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2070 ** the other input is NULL. A NULL and true or two NULLs give 2071 ** a NULL output. 2072 */ 2073 /* Opcode: Or P1 P2 P3 * * 2074 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2075 ** 2076 ** Take the logical OR of the values in register P1 and P2 and 2077 ** store the answer in register P3. 2078 ** 2079 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2080 ** even if the other input is NULL. A NULL and false or two NULLs 2081 ** give a NULL output. 2082 */ 2083 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2084 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2085 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2086 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2087 2088 pIn1 = &aMem[pOp->p1]; 2089 if( pIn1->flags & MEM_Null ){ 2090 v1 = 2; 2091 }else{ 2092 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2093 } 2094 pIn2 = &aMem[pOp->p2]; 2095 if( pIn2->flags & MEM_Null ){ 2096 v2 = 2; 2097 }else{ 2098 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2099 } 2100 if( pOp->opcode==OP_And ){ 2101 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2102 v1 = and_logic[v1*3+v2]; 2103 }else{ 2104 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2105 v1 = or_logic[v1*3+v2]; 2106 } 2107 pOut = &aMem[pOp->p3]; 2108 if( v1==2 ){ 2109 MemSetTypeFlag(pOut, MEM_Null); 2110 }else{ 2111 pOut->u.i = v1; 2112 MemSetTypeFlag(pOut, MEM_Int); 2113 } 2114 break; 2115 } 2116 2117 /* Opcode: Not P1 P2 * * * 2118 ** Synopsis: r[P2]= !r[P1] 2119 ** 2120 ** Interpret the value in register P1 as a boolean value. Store the 2121 ** boolean complement in register P2. If the value in register P1 is 2122 ** NULL, then a NULL is stored in P2. 2123 */ 2124 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2125 pIn1 = &aMem[pOp->p1]; 2126 pOut = &aMem[pOp->p2]; 2127 if( pIn1->flags & MEM_Null ){ 2128 sqlite3VdbeMemSetNull(pOut); 2129 }else{ 2130 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 2131 } 2132 break; 2133 } 2134 2135 /* Opcode: BitNot P1 P2 * * * 2136 ** Synopsis: r[P1]= ~r[P1] 2137 ** 2138 ** Interpret the content of register P1 as an integer. Store the 2139 ** ones-complement of the P1 value into register P2. If P1 holds 2140 ** a NULL then store a NULL in P2. 2141 */ 2142 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2143 pIn1 = &aMem[pOp->p1]; 2144 pOut = &aMem[pOp->p2]; 2145 if( pIn1->flags & MEM_Null ){ 2146 sqlite3VdbeMemSetNull(pOut); 2147 }else{ 2148 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 2149 } 2150 break; 2151 } 2152 2153 /* Opcode: Once P1 P2 * * * 2154 ** 2155 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, 2156 ** set the flag and fall through to the next instruction. 2157 */ 2158 case OP_Once: { /* jump */ 2159 assert( pOp->p1<p->nOnceFlag ); 2160 if( p->aOnceFlag[pOp->p1] ){ 2161 pc = pOp->p2-1; 2162 }else{ 2163 p->aOnceFlag[pOp->p1] = 1; 2164 } 2165 break; 2166 } 2167 2168 /* Opcode: If P1 P2 P3 * * 2169 ** 2170 ** Jump to P2 if the value in register P1 is true. The value 2171 ** is considered true if it is numeric and non-zero. If the value 2172 ** in P1 is NULL then take the jump if P3 is non-zero. 2173 */ 2174 /* Opcode: IfNot P1 P2 P3 * * 2175 ** 2176 ** Jump to P2 if the value in register P1 is False. The value 2177 ** is considered false if it has a numeric value of zero. If the value 2178 ** in P1 is NULL then take the jump if P3 is zero. 2179 */ 2180 case OP_If: /* jump, in1 */ 2181 case OP_IfNot: { /* jump, in1 */ 2182 int c; 2183 pIn1 = &aMem[pOp->p1]; 2184 if( pIn1->flags & MEM_Null ){ 2185 c = pOp->p3; 2186 }else{ 2187 #ifdef SQLITE_OMIT_FLOATING_POINT 2188 c = sqlite3VdbeIntValue(pIn1)!=0; 2189 #else 2190 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2191 #endif 2192 if( pOp->opcode==OP_IfNot ) c = !c; 2193 } 2194 if( c ){ 2195 pc = pOp->p2-1; 2196 } 2197 break; 2198 } 2199 2200 /* Opcode: IsNull P1 P2 * * * 2201 ** Synopsis: if r[P1]==NULL goto P2 2202 ** 2203 ** Jump to P2 if the value in register P1 is NULL. 2204 */ 2205 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2206 pIn1 = &aMem[pOp->p1]; 2207 if( (pIn1->flags & MEM_Null)!=0 ){ 2208 pc = pOp->p2 - 1; 2209 } 2210 break; 2211 } 2212 2213 /* Opcode: NotNull P1 P2 * * * 2214 ** Synopsis: if r[P1]!=NULL goto P2 2215 ** 2216 ** Jump to P2 if the value in register P1 is not NULL. 2217 */ 2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2219 pIn1 = &aMem[pOp->p1]; 2220 if( (pIn1->flags & MEM_Null)==0 ){ 2221 pc = pOp->p2 - 1; 2222 } 2223 break; 2224 } 2225 2226 /* Opcode: Column P1 P2 P3 P4 P5 2227 ** Synopsis: r[P3]=PX 2228 ** 2229 ** Interpret the data that cursor P1 points to as a structure built using 2230 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2231 ** information about the format of the data.) Extract the P2-th column 2232 ** from this record. If there are less that (P2+1) 2233 ** values in the record, extract a NULL. 2234 ** 2235 ** The value extracted is stored in register P3. 2236 ** 2237 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2238 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2239 ** the result. 2240 ** 2241 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2242 ** then the cache of the cursor is reset prior to extracting the column. 2243 ** The first OP_Column against a pseudo-table after the value of the content 2244 ** register has changed should have this bit set. 2245 ** 2246 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2247 ** the result is guaranteed to only be used as the argument of a length() 2248 ** or typeof() function, respectively. The loading of large blobs can be 2249 ** skipped for length() and all content loading can be skipped for typeof(). 2250 */ 2251 case OP_Column: { 2252 i64 payloadSize64; /* Number of bytes in the record */ 2253 int p2; /* column number to retrieve */ 2254 VdbeCursor *pC; /* The VDBE cursor */ 2255 BtCursor *pCrsr; /* The BTree cursor */ 2256 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2258 int len; /* The length of the serialized data for the column */ 2259 int i; /* Loop counter */ 2260 Mem *pDest; /* Where to write the extracted value */ 2261 Mem sMem; /* For storing the record being decoded */ 2262 const u8 *zData; /* Part of the record being decoded */ 2263 const u8 *zHdr; /* Next unparsed byte of the header */ 2264 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2265 u32 offset; /* Offset into the data */ 2266 u32 szField; /* Number of bytes in the content of a field */ 2267 u32 avail; /* Number of bytes of available data */ 2268 u32 t; /* A type code from the record header */ 2269 Mem *pReg; /* PseudoTable input register */ 2270 2271 p2 = pOp->p2; 2272 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2273 pDest = &aMem[pOp->p3]; 2274 memAboutToChange(p, pDest); 2275 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2276 pC = p->apCsr[pOp->p1]; 2277 assert( pC!=0 ); 2278 assert( p2<pC->nField ); 2279 aType = pC->aType; 2280 aOffset = aType + pC->nField; 2281 #ifndef SQLITE_OMIT_VIRTUALTABLE 2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ 2283 #endif 2284 pCrsr = pC->pCursor; 2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ 2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ 2287 2288 /* If the cursor cache is stale, bring it up-to-date */ 2289 rc = sqlite3VdbeCursorMoveto(pC); 2290 if( rc ) goto abort_due_to_error; 2291 if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){ 2292 if( pC->nullRow ){ 2293 if( pCrsr==0 ){ 2294 assert( pC->pseudoTableReg>0 ); 2295 pReg = &aMem[pC->pseudoTableReg]; 2296 if( pC->multiPseudo ){ 2297 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem); 2298 Deephemeralize(pDest); 2299 goto op_column_out; 2300 } 2301 assert( pReg->flags & MEM_Blob ); 2302 assert( memIsValid(pReg) ); 2303 pC->payloadSize = pC->szRow = avail = pReg->n; 2304 pC->aRow = (u8*)pReg->z; 2305 }else{ 2306 MemSetTypeFlag(pDest, MEM_Null); 2307 goto op_column_out; 2308 } 2309 }else{ 2310 assert( pCrsr ); 2311 if( pC->isTable==0 ){ 2312 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2313 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2314 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2315 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2316 ** payload size, so it is impossible for payloadSize64 to be 2317 ** larger than 32 bits. */ 2318 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2319 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); 2320 pC->payloadSize = (u32)payloadSize64; 2321 }else{ 2322 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2323 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); 2324 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2325 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); 2326 } 2327 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2328 if( pC->payloadSize <= (u32)avail ){ 2329 pC->szRow = pC->payloadSize; 2330 }else{ 2331 pC->szRow = avail; 2332 } 2333 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2334 goto too_big; 2335 } 2336 } 2337 pC->cacheStatus = p->cacheCtr; 2338 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2339 pC->nHdrParsed = 0; 2340 aOffset[0] = offset; 2341 if( avail<offset ){ 2342 /* pC->aRow does not have to hold the entire row, but it does at least 2343 ** need to cover the header of the record. If pC->aRow does not contain 2344 ** the complete header, then set it to zero, forcing the header to be 2345 ** dynamically allocated. */ 2346 pC->aRow = 0; 2347 pC->szRow = 0; 2348 } 2349 2350 /* Make sure a corrupt database has not given us an oversize header. 2351 ** Do this now to avoid an oversize memory allocation. 2352 ** 2353 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2354 ** types use so much data space that there can only be 4096 and 32 of 2355 ** them, respectively. So the maximum header length results from a 2356 ** 3-byte type for each of the maximum of 32768 columns plus three 2357 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2358 */ 2359 if( offset > 98307 || offset > pC->payloadSize ){ 2360 rc = SQLITE_CORRUPT_BKPT; 2361 goto op_column_error; 2362 } 2363 } 2364 2365 /* Make sure at least the first p2+1 entries of the header have been 2366 ** parsed and valid information is in aOffset[] and aType[]. 2367 */ 2368 if( pC->nHdrParsed<=p2 ){ 2369 /* If there is more header available for parsing in the record, try 2370 ** to extract additional fields up through the p2+1-th field 2371 */ 2372 if( pC->iHdrOffset<aOffset[0] ){ 2373 /* Make sure zData points to enough of the record to cover the header. */ 2374 if( pC->aRow==0 ){ 2375 memset(&sMem, 0, sizeof(sMem)); 2376 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 2377 !pC->isTable, &sMem); 2378 if( rc!=SQLITE_OK ){ 2379 goto op_column_error; 2380 } 2381 zData = (u8*)sMem.z; 2382 }else{ 2383 zData = pC->aRow; 2384 } 2385 2386 /* Fill in aType[i] and aOffset[i] values through the p2-th field. */ 2387 i = pC->nHdrParsed; 2388 offset = aOffset[i]; 2389 zHdr = zData + pC->iHdrOffset; 2390 zEndHdr = zData + aOffset[0]; 2391 assert( i<=p2 && zHdr<zEndHdr ); 2392 do{ 2393 if( zHdr[0]<0x80 ){ 2394 t = zHdr[0]; 2395 zHdr++; 2396 }else{ 2397 zHdr += sqlite3GetVarint32(zHdr, &t); 2398 } 2399 aType[i] = t; 2400 szField = sqlite3VdbeSerialTypeLen(t); 2401 offset += szField; 2402 if( offset<szField ){ /* True if offset overflows */ 2403 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2404 break; 2405 } 2406 i++; 2407 aOffset[i] = offset; 2408 }while( i<=p2 && zHdr<zEndHdr ); 2409 pC->nHdrParsed = i; 2410 pC->iHdrOffset = (u32)(zHdr - zData); 2411 if( pC->aRow==0 ){ 2412 sqlite3VdbeMemRelease(&sMem); 2413 sMem.flags = MEM_Null; 2414 } 2415 2416 /* If we have read more header data than was contained in the header, 2417 ** or if the end of the last field appears to be past the end of the 2418 ** record, or if the end of the last field appears to be before the end 2419 ** of the record (when all fields present), then we must be dealing 2420 ** with a corrupt database. 2421 */ 2422 if( (zHdr > zEndHdr) 2423 || (offset > pC->payloadSize) 2424 || (zHdr==zEndHdr && offset!=pC->payloadSize) 2425 ){ 2426 rc = SQLITE_CORRUPT_BKPT; 2427 goto op_column_error; 2428 } 2429 } 2430 2431 /* If after trying to extra new entries from the header, nHdrParsed is 2432 ** still not up to p2, that means that the record has fewer than p2 2433 ** columns. So the result will be either the default value or a NULL. 2434 */ 2435 if( pC->nHdrParsed<=p2 ){ 2436 if( pOp->p4type==P4_MEM ){ 2437 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2438 }else{ 2439 MemSetTypeFlag(pDest, MEM_Null); 2440 } 2441 goto op_column_out; 2442 } 2443 } 2444 2445 /* Extract the content for the p2+1-th column. Control can only 2446 ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are 2447 ** all valid. 2448 */ 2449 assert( p2<pC->nHdrParsed ); 2450 assert( rc==SQLITE_OK ); 2451 if( pC->szRow>=aOffset[p2+1] ){ 2452 /* This is the common case where the desired content fits on the original 2453 ** page - where the content is not on an overflow page */ 2454 VdbeMemRelease(pDest); 2455 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest); 2456 }else{ 2457 /* This branch happens only when content is on overflow pages */ 2458 t = aType[p2]; 2459 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2460 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2461 || (len = sqlite3VdbeSerialTypeLen(t))==0 2462 ){ 2463 /* Content is irrelevant for the typeof() function and for 2464 ** the length(X) function if X is a blob. So we might as well use 2465 ** bogus content rather than reading content from disk. NULL works 2466 ** for text and blob and whatever is in the payloadSize64 variable 2467 ** will work for everything else. Content is also irrelevant if 2468 ** the content length is 0. */ 2469 zData = t<=13 ? (u8*)&payloadSize64 : 0; 2470 sMem.zMalloc = 0; 2471 }else{ 2472 memset(&sMem, 0, sizeof(sMem)); 2473 sqlite3VdbeMemMove(&sMem, pDest); 2474 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, 2475 &sMem); 2476 if( rc!=SQLITE_OK ){ 2477 goto op_column_error; 2478 } 2479 zData = (u8*)sMem.z; 2480 } 2481 sqlite3VdbeSerialGet(zData, t, pDest); 2482 /* If we dynamically allocated space to hold the data (in the 2483 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2484 ** dynamically allocated space over to the pDest structure. 2485 ** This prevents a memory copy. */ 2486 if( sMem.zMalloc ){ 2487 assert( sMem.z==sMem.zMalloc ); 2488 assert( !(pDest->flags & MEM_Dyn) ); 2489 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 2490 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2491 pDest->flags |= MEM_Term; 2492 pDest->z = sMem.z; 2493 pDest->zMalloc = sMem.zMalloc; 2494 } 2495 } 2496 pDest->enc = encoding; 2497 2498 op_column_out: 2499 Deephemeralize(pDest); 2500 op_column_error: 2501 UPDATE_MAX_BLOBSIZE(pDest); 2502 REGISTER_TRACE(pOp->p3, pDest); 2503 break; 2504 } 2505 2506 /* Opcode: Affinity P1 P2 * P4 * 2507 ** Synopsis: affinity(r[P1@P2]) 2508 ** 2509 ** Apply affinities to a range of P2 registers starting with P1. 2510 ** 2511 ** P4 is a string that is P2 characters long. The nth character of the 2512 ** string indicates the column affinity that should be used for the nth 2513 ** memory cell in the range. 2514 */ 2515 case OP_Affinity: { 2516 const char *zAffinity; /* The affinity to be applied */ 2517 char cAff; /* A single character of affinity */ 2518 2519 zAffinity = pOp->p4.z; 2520 assert( zAffinity!=0 ); 2521 assert( zAffinity[pOp->p2]==0 ); 2522 pIn1 = &aMem[pOp->p1]; 2523 while( (cAff = *(zAffinity++))!=0 ){ 2524 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); 2525 assert( memIsValid(pIn1) ); 2526 ExpandBlob(pIn1); 2527 applyAffinity(pIn1, cAff, encoding); 2528 pIn1++; 2529 } 2530 break; 2531 } 2532 2533 /* Opcode: MakeRecord P1 P2 P3 P4 * 2534 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2535 ** 2536 ** Convert P2 registers beginning with P1 into the [record format] 2537 ** use as a data record in a database table or as a key 2538 ** in an index. The OP_Column opcode can decode the record later. 2539 ** 2540 ** P4 may be a string that is P2 characters long. The nth character of the 2541 ** string indicates the column affinity that should be used for the nth 2542 ** field of the index key. 2543 ** 2544 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2545 ** macros defined in sqliteInt.h. 2546 ** 2547 ** If P4 is NULL then all index fields have the affinity NONE. 2548 */ 2549 case OP_MakeRecord: { 2550 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2551 Mem *pRec; /* The new record */ 2552 u64 nData; /* Number of bytes of data space */ 2553 int nHdr; /* Number of bytes of header space */ 2554 i64 nByte; /* Data space required for this record */ 2555 int nZero; /* Number of zero bytes at the end of the record */ 2556 int nVarint; /* Number of bytes in a varint */ 2557 u32 serial_type; /* Type field */ 2558 Mem *pData0; /* First field to be combined into the record */ 2559 Mem *pLast; /* Last field of the record */ 2560 int nField; /* Number of fields in the record */ 2561 char *zAffinity; /* The affinity string for the record */ 2562 int file_format; /* File format to use for encoding */ 2563 int i; /* Space used in zNewRecord[] header */ 2564 int j; /* Space used in zNewRecord[] content */ 2565 int len; /* Length of a field */ 2566 2567 /* Assuming the record contains N fields, the record format looks 2568 ** like this: 2569 ** 2570 ** ------------------------------------------------------------------------ 2571 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2572 ** ------------------------------------------------------------------------ 2573 ** 2574 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2575 ** and so froth. 2576 ** 2577 ** Each type field is a varint representing the serial type of the 2578 ** corresponding data element (see sqlite3VdbeSerialType()). The 2579 ** hdr-size field is also a varint which is the offset from the beginning 2580 ** of the record to data0. 2581 */ 2582 nData = 0; /* Number of bytes of data space */ 2583 nHdr = 0; /* Number of bytes of header space */ 2584 nZero = 0; /* Number of zero bytes at the end of the record */ 2585 nField = pOp->p1; 2586 zAffinity = pOp->p4.z; 2587 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); 2588 pData0 = &aMem[nField]; 2589 nField = pOp->p2; 2590 pLast = &pData0[nField-1]; 2591 file_format = p->minWriteFileFormat; 2592 2593 /* Identify the output register */ 2594 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2595 pOut = &aMem[pOp->p3]; 2596 memAboutToChange(p, pOut); 2597 2598 /* Apply the requested affinity to all inputs 2599 */ 2600 assert( pData0<=pLast ); 2601 if( zAffinity ){ 2602 pRec = pData0; 2603 do{ 2604 applyAffinity(pRec, *(zAffinity++), encoding); 2605 }while( (++pRec)<=pLast ); 2606 } 2607 2608 /* Loop through the elements that will make up the record to figure 2609 ** out how much space is required for the new record. 2610 */ 2611 pRec = pLast; 2612 do{ 2613 assert( memIsValid(pRec) ); 2614 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2615 len = sqlite3VdbeSerialTypeLen(serial_type); 2616 if( pRec->flags & MEM_Zero ){ 2617 if( nData ){ 2618 sqlite3VdbeMemExpandBlob(pRec); 2619 }else{ 2620 nZero += pRec->u.nZero; 2621 len -= pRec->u.nZero; 2622 } 2623 } 2624 nData += len; 2625 testcase( serial_type==127 ); 2626 testcase( serial_type==128 ); 2627 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2628 }while( (--pRec)>=pData0 ); 2629 2630 /* Add the initial header varint and total the size */ 2631 testcase( nHdr==126 ); 2632 testcase( nHdr==127 ); 2633 if( nHdr<=126 ){ 2634 /* The common case */ 2635 nHdr += 1; 2636 }else{ 2637 /* Rare case of a really large header */ 2638 nVarint = sqlite3VarintLen(nHdr); 2639 nHdr += nVarint; 2640 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2641 } 2642 nByte = nHdr+nData; 2643 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2644 goto too_big; 2645 } 2646 2647 /* Make sure the output register has a buffer large enough to store 2648 ** the new record. The output register (pOp->p3) is not allowed to 2649 ** be one of the input registers (because the following call to 2650 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2651 */ 2652 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2653 goto no_mem; 2654 } 2655 zNewRecord = (u8 *)pOut->z; 2656 2657 /* Write the record */ 2658 i = putVarint32(zNewRecord, nHdr); 2659 j = nHdr; 2660 assert( pData0<=pLast ); 2661 pRec = pData0; 2662 do{ 2663 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2664 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2665 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2666 }while( (++pRec)<=pLast ); 2667 assert( i==nHdr ); 2668 assert( j==nByte ); 2669 2670 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 2671 pOut->n = (int)nByte; 2672 pOut->flags = MEM_Blob | MEM_Dyn; 2673 pOut->xDel = 0; 2674 if( nZero ){ 2675 pOut->u.nZero = nZero; 2676 pOut->flags |= MEM_Zero; 2677 } 2678 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2679 REGISTER_TRACE(pOp->p3, pOut); 2680 UPDATE_MAX_BLOBSIZE(pOut); 2681 break; 2682 } 2683 2684 /* Opcode: Count P1 P2 * * * 2685 ** Synopsis: r[P2]=count() 2686 ** 2687 ** Store the number of entries (an integer value) in the table or index 2688 ** opened by cursor P1 in register P2 2689 */ 2690 #ifndef SQLITE_OMIT_BTREECOUNT 2691 case OP_Count: { /* out2-prerelease */ 2692 i64 nEntry; 2693 BtCursor *pCrsr; 2694 2695 pCrsr = p->apCsr[pOp->p1]->pCursor; 2696 assert( pCrsr ); 2697 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2698 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2699 pOut->u.i = nEntry; 2700 break; 2701 } 2702 #endif 2703 2704 /* Opcode: Savepoint P1 * * P4 * 2705 ** 2706 ** Open, release or rollback the savepoint named by parameter P4, depending 2707 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2708 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2709 */ 2710 case OP_Savepoint: { 2711 int p1; /* Value of P1 operand */ 2712 char *zName; /* Name of savepoint */ 2713 int nName; 2714 Savepoint *pNew; 2715 Savepoint *pSavepoint; 2716 Savepoint *pTmp; 2717 int iSavepoint; 2718 int ii; 2719 2720 p1 = pOp->p1; 2721 zName = pOp->p4.z; 2722 2723 /* Assert that the p1 parameter is valid. Also that if there is no open 2724 ** transaction, then there cannot be any savepoints. 2725 */ 2726 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2727 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2728 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2729 assert( checkSavepointCount(db) ); 2730 assert( p->bIsReader ); 2731 2732 if( p1==SAVEPOINT_BEGIN ){ 2733 if( db->nVdbeWrite>0 ){ 2734 /* A new savepoint cannot be created if there are active write 2735 ** statements (i.e. open read/write incremental blob handles). 2736 */ 2737 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2738 "SQL statements in progress"); 2739 rc = SQLITE_BUSY; 2740 }else{ 2741 nName = sqlite3Strlen30(zName); 2742 2743 #ifndef SQLITE_OMIT_VIRTUALTABLE 2744 /* This call is Ok even if this savepoint is actually a transaction 2745 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2746 ** If this is a transaction savepoint being opened, it is guaranteed 2747 ** that the db->aVTrans[] array is empty. */ 2748 assert( db->autoCommit==0 || db->nVTrans==0 ); 2749 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2750 db->nStatement+db->nSavepoint); 2751 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2752 #endif 2753 2754 /* Create a new savepoint structure. */ 2755 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2756 if( pNew ){ 2757 pNew->zName = (char *)&pNew[1]; 2758 memcpy(pNew->zName, zName, nName+1); 2759 2760 /* If there is no open transaction, then mark this as a special 2761 ** "transaction savepoint". */ 2762 if( db->autoCommit ){ 2763 db->autoCommit = 0; 2764 db->isTransactionSavepoint = 1; 2765 }else{ 2766 db->nSavepoint++; 2767 } 2768 2769 /* Link the new savepoint into the database handle's list. */ 2770 pNew->pNext = db->pSavepoint; 2771 db->pSavepoint = pNew; 2772 pNew->nDeferredCons = db->nDeferredCons; 2773 pNew->nDeferredImmCons = db->nDeferredImmCons; 2774 } 2775 } 2776 }else{ 2777 iSavepoint = 0; 2778 2779 /* Find the named savepoint. If there is no such savepoint, then an 2780 ** an error is returned to the user. */ 2781 for( 2782 pSavepoint = db->pSavepoint; 2783 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2784 pSavepoint = pSavepoint->pNext 2785 ){ 2786 iSavepoint++; 2787 } 2788 if( !pSavepoint ){ 2789 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2790 rc = SQLITE_ERROR; 2791 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2792 /* It is not possible to release (commit) a savepoint if there are 2793 ** active write statements. 2794 */ 2795 sqlite3SetString(&p->zErrMsg, db, 2796 "cannot release savepoint - SQL statements in progress" 2797 ); 2798 rc = SQLITE_BUSY; 2799 }else{ 2800 2801 /* Determine whether or not this is a transaction savepoint. If so, 2802 ** and this is a RELEASE command, then the current transaction 2803 ** is committed. 2804 */ 2805 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2806 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2807 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2808 goto vdbe_return; 2809 } 2810 db->autoCommit = 1; 2811 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2812 p->pc = pc; 2813 db->autoCommit = 0; 2814 p->rc = rc = SQLITE_BUSY; 2815 goto vdbe_return; 2816 } 2817 db->isTransactionSavepoint = 0; 2818 rc = p->rc; 2819 }else{ 2820 iSavepoint = db->nSavepoint - iSavepoint - 1; 2821 if( p1==SAVEPOINT_ROLLBACK ){ 2822 for(ii=0; ii<db->nDb; ii++){ 2823 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT); 2824 } 2825 } 2826 for(ii=0; ii<db->nDb; ii++){ 2827 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2828 if( rc!=SQLITE_OK ){ 2829 goto abort_due_to_error; 2830 } 2831 } 2832 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2833 sqlite3ExpirePreparedStatements(db); 2834 sqlite3ResetAllSchemasOfConnection(db); 2835 db->flags = (db->flags | SQLITE_InternChanges); 2836 } 2837 } 2838 2839 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2840 ** savepoints nested inside of the savepoint being operated on. */ 2841 while( db->pSavepoint!=pSavepoint ){ 2842 pTmp = db->pSavepoint; 2843 db->pSavepoint = pTmp->pNext; 2844 sqlite3DbFree(db, pTmp); 2845 db->nSavepoint--; 2846 } 2847 2848 /* If it is a RELEASE, then destroy the savepoint being operated on 2849 ** too. If it is a ROLLBACK TO, then set the number of deferred 2850 ** constraint violations present in the database to the value stored 2851 ** when the savepoint was created. */ 2852 if( p1==SAVEPOINT_RELEASE ){ 2853 assert( pSavepoint==db->pSavepoint ); 2854 db->pSavepoint = pSavepoint->pNext; 2855 sqlite3DbFree(db, pSavepoint); 2856 if( !isTransaction ){ 2857 db->nSavepoint--; 2858 } 2859 }else{ 2860 db->nDeferredCons = pSavepoint->nDeferredCons; 2861 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 2862 } 2863 2864 if( !isTransaction ){ 2865 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 2866 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2867 } 2868 } 2869 } 2870 2871 break; 2872 } 2873 2874 /* Opcode: AutoCommit P1 P2 * * * 2875 ** 2876 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2877 ** back any currently active btree transactions. If there are any active 2878 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2879 ** there are active writing VMs or active VMs that use shared cache. 2880 ** 2881 ** This instruction causes the VM to halt. 2882 */ 2883 case OP_AutoCommit: { 2884 int desiredAutoCommit; 2885 int iRollback; 2886 int turnOnAC; 2887 2888 desiredAutoCommit = pOp->p1; 2889 iRollback = pOp->p2; 2890 turnOnAC = desiredAutoCommit && !db->autoCommit; 2891 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2892 assert( desiredAutoCommit==1 || iRollback==0 ); 2893 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 2894 assert( p->bIsReader ); 2895 2896 #if 0 2897 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ 2898 /* If this instruction implements a ROLLBACK and other VMs are 2899 ** still running, and a transaction is active, return an error indicating 2900 ** that the other VMs must complete first. 2901 */ 2902 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2903 "SQL statements in progress"); 2904 rc = SQLITE_BUSY; 2905 }else 2906 #endif 2907 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ 2908 /* If this instruction implements a COMMIT and other VMs are writing 2909 ** return an error indicating that the other VMs must complete first. 2910 */ 2911 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2912 "SQL statements in progress"); 2913 rc = SQLITE_BUSY; 2914 }else if( desiredAutoCommit!=db->autoCommit ){ 2915 if( iRollback ){ 2916 assert( desiredAutoCommit==1 ); 2917 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 2918 db->autoCommit = 1; 2919 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2920 goto vdbe_return; 2921 }else{ 2922 db->autoCommit = (u8)desiredAutoCommit; 2923 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2924 p->pc = pc; 2925 db->autoCommit = (u8)(1-desiredAutoCommit); 2926 p->rc = rc = SQLITE_BUSY; 2927 goto vdbe_return; 2928 } 2929 } 2930 assert( db->nStatement==0 ); 2931 sqlite3CloseSavepoints(db); 2932 if( p->rc==SQLITE_OK ){ 2933 rc = SQLITE_DONE; 2934 }else{ 2935 rc = SQLITE_ERROR; 2936 } 2937 goto vdbe_return; 2938 }else{ 2939 sqlite3SetString(&p->zErrMsg, db, 2940 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2941 (iRollback)?"cannot rollback - no transaction is active": 2942 "cannot commit - no transaction is active")); 2943 2944 rc = SQLITE_ERROR; 2945 } 2946 break; 2947 } 2948 2949 /* Opcode: Transaction P1 P2 * * * 2950 ** 2951 ** Begin a transaction. The transaction ends when a Commit or Rollback 2952 ** opcode is encountered. Depending on the ON CONFLICT setting, the 2953 ** transaction might also be rolled back if an error is encountered. 2954 ** 2955 ** P1 is the index of the database file on which the transaction is 2956 ** started. Index 0 is the main database file and index 1 is the 2957 ** file used for temporary tables. Indices of 2 or more are used for 2958 ** attached databases. 2959 ** 2960 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 2961 ** obtained on the database file when a write-transaction is started. No 2962 ** other process can start another write transaction while this transaction is 2963 ** underway. Starting a write transaction also creates a rollback journal. A 2964 ** write transaction must be started before any changes can be made to the 2965 ** database. If P2 is greater than or equal to 2 then an EXCLUSIVE lock is 2966 ** also obtained on the file. 2967 ** 2968 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2969 ** true (this flag is set if the Vdbe may modify more than one row and may 2970 ** throw an ABORT exception), a statement transaction may also be opened. 2971 ** More specifically, a statement transaction is opened iff the database 2972 ** connection is currently not in autocommit mode, or if there are other 2973 ** active statements. A statement transaction allows the changes made by this 2974 ** VDBE to be rolled back after an error without having to roll back the 2975 ** entire transaction. If no error is encountered, the statement transaction 2976 ** will automatically commit when the VDBE halts. 2977 ** 2978 ** If P2 is zero, then a read-lock is obtained on the database file. 2979 */ 2980 case OP_Transaction: { 2981 Btree *pBt; 2982 2983 assert( p->bIsReader ); 2984 assert( p->readOnly==0 || pOp->p2==0 ); 2985 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2986 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 2987 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 2988 rc = SQLITE_READONLY; 2989 goto abort_due_to_error; 2990 } 2991 pBt = db->aDb[pOp->p1].pBt; 2992 2993 if( pBt ){ 2994 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 2995 if( rc==SQLITE_BUSY ){ 2996 p->pc = pc; 2997 p->rc = rc = SQLITE_BUSY; 2998 goto vdbe_return; 2999 } 3000 if( rc!=SQLITE_OK ){ 3001 goto abort_due_to_error; 3002 } 3003 3004 if( pOp->p2 && p->usesStmtJournal 3005 && (db->autoCommit==0 || db->nVdbeRead>1) 3006 ){ 3007 assert( sqlite3BtreeIsInTrans(pBt) ); 3008 if( p->iStatement==0 ){ 3009 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3010 db->nStatement++; 3011 p->iStatement = db->nSavepoint + db->nStatement; 3012 } 3013 3014 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3015 if( rc==SQLITE_OK ){ 3016 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3017 } 3018 3019 /* Store the current value of the database handles deferred constraint 3020 ** counter. If the statement transaction needs to be rolled back, 3021 ** the value of this counter needs to be restored too. */ 3022 p->nStmtDefCons = db->nDeferredCons; 3023 p->nStmtDefImmCons = db->nDeferredImmCons; 3024 } 3025 } 3026 break; 3027 } 3028 3029 /* Opcode: ReadCookie P1 P2 P3 * * 3030 ** 3031 ** Read cookie number P3 from database P1 and write it into register P2. 3032 ** P3==1 is the schema version. P3==2 is the database format. 3033 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3034 ** the main database file and P1==1 is the database file used to store 3035 ** temporary tables. 3036 ** 3037 ** There must be a read-lock on the database (either a transaction 3038 ** must be started or there must be an open cursor) before 3039 ** executing this instruction. 3040 */ 3041 case OP_ReadCookie: { /* out2-prerelease */ 3042 int iMeta; 3043 int iDb; 3044 int iCookie; 3045 3046 assert( p->bIsReader ); 3047 iDb = pOp->p1; 3048 iCookie = pOp->p3; 3049 assert( pOp->p3<SQLITE_N_BTREE_META ); 3050 assert( iDb>=0 && iDb<db->nDb ); 3051 assert( db->aDb[iDb].pBt!=0 ); 3052 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3053 3054 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3055 pOut->u.i = iMeta; 3056 break; 3057 } 3058 3059 /* Opcode: SetCookie P1 P2 P3 * * 3060 ** 3061 ** Write the content of register P3 (interpreted as an integer) 3062 ** into cookie number P2 of database P1. P2==1 is the schema version. 3063 ** P2==2 is the database format. P2==3 is the recommended pager cache 3064 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3065 ** database file used to store temporary tables. 3066 ** 3067 ** A transaction must be started before executing this opcode. 3068 */ 3069 case OP_SetCookie: { /* in3 */ 3070 Db *pDb; 3071 assert( pOp->p2<SQLITE_N_BTREE_META ); 3072 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3073 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3074 assert( p->readOnly==0 ); 3075 pDb = &db->aDb[pOp->p1]; 3076 assert( pDb->pBt!=0 ); 3077 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3078 pIn3 = &aMem[pOp->p3]; 3079 sqlite3VdbeMemIntegerify(pIn3); 3080 /* See note about index shifting on OP_ReadCookie */ 3081 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 3082 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3083 /* When the schema cookie changes, record the new cookie internally */ 3084 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 3085 db->flags |= SQLITE_InternChanges; 3086 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3087 /* Record changes in the file format */ 3088 pDb->pSchema->file_format = (u8)pIn3->u.i; 3089 } 3090 if( pOp->p1==1 ){ 3091 /* Invalidate all prepared statements whenever the TEMP database 3092 ** schema is changed. Ticket #1644 */ 3093 sqlite3ExpirePreparedStatements(db); 3094 p->expired = 0; 3095 } 3096 break; 3097 } 3098 3099 /* Opcode: VerifyCookie P1 P2 P3 * * 3100 ** 3101 ** Check the value of global database parameter number 0 (the 3102 ** schema version) and make sure it is equal to P2 and that the 3103 ** generation counter on the local schema parse equals P3. 3104 ** 3105 ** P1 is the database number which is 0 for the main database file 3106 ** and 1 for the file holding temporary tables and some higher number 3107 ** for auxiliary databases. 3108 ** 3109 ** The cookie changes its value whenever the database schema changes. 3110 ** This operation is used to detect when that the cookie has changed 3111 ** and that the current process needs to reread the schema. 3112 ** 3113 ** Either a transaction needs to have been started or an OP_Open needs 3114 ** to be executed (to establish a read lock) before this opcode is 3115 ** invoked. 3116 */ 3117 case OP_VerifyCookie: { 3118 int iMeta; 3119 int iGen; 3120 Btree *pBt; 3121 3122 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3123 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 3124 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3125 assert( p->bIsReader ); 3126 pBt = db->aDb[pOp->p1].pBt; 3127 if( pBt ){ 3128 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3129 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3130 }else{ 3131 iGen = iMeta = 0; 3132 } 3133 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){ 3134 sqlite3DbFree(db, p->zErrMsg); 3135 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3136 /* If the schema-cookie from the database file matches the cookie 3137 ** stored with the in-memory representation of the schema, do 3138 ** not reload the schema from the database file. 3139 ** 3140 ** If virtual-tables are in use, this is not just an optimization. 3141 ** Often, v-tables store their data in other SQLite tables, which 3142 ** are queried from within xNext() and other v-table methods using 3143 ** prepared queries. If such a query is out-of-date, we do not want to 3144 ** discard the database schema, as the user code implementing the 3145 ** v-table would have to be ready for the sqlite3_vtab structure itself 3146 ** to be invalidated whenever sqlite3_step() is called from within 3147 ** a v-table method. 3148 */ 3149 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3150 sqlite3ResetOneSchema(db, pOp->p1); 3151 } 3152 3153 p->expired = 1; 3154 rc = SQLITE_SCHEMA; 3155 } 3156 break; 3157 } 3158 3159 /* Opcode: OpenRead P1 P2 P3 P4 P5 3160 ** Synopsis: root=P2 iDb=P3 3161 ** 3162 ** Open a read-only cursor for the database table whose root page is 3163 ** P2 in a database file. The database file is determined by P3. 3164 ** P3==0 means the main database, P3==1 means the database used for 3165 ** temporary tables, and P3>1 means used the corresponding attached 3166 ** database. Give the new cursor an identifier of P1. The P1 3167 ** values need not be contiguous but all P1 values should be small integers. 3168 ** It is an error for P1 to be negative. 3169 ** 3170 ** If P5!=0 then use the content of register P2 as the root page, not 3171 ** the value of P2 itself. 3172 ** 3173 ** There will be a read lock on the database whenever there is an 3174 ** open cursor. If the database was unlocked prior to this instruction 3175 ** then a read lock is acquired as part of this instruction. A read 3176 ** lock allows other processes to read the database but prohibits 3177 ** any other process from modifying the database. The read lock is 3178 ** released when all cursors are closed. If this instruction attempts 3179 ** to get a read lock but fails, the script terminates with an 3180 ** SQLITE_BUSY error code. 3181 ** 3182 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3183 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3184 ** structure, then said structure defines the content and collating 3185 ** sequence of the index being opened. Otherwise, if P4 is an integer 3186 ** value, it is set to the number of columns in the table. 3187 ** 3188 ** See also OpenWrite. 3189 */ 3190 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3191 ** Synopsis: root=P2 iDb=P3 3192 ** 3193 ** Open a read/write cursor named P1 on the table or index whose root 3194 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3195 ** root page. 3196 ** 3197 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3198 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3199 ** structure, then said structure defines the content and collating 3200 ** sequence of the index being opened. Otherwise, if P4 is an integer 3201 ** value, it is set to the number of columns in the table, or to the 3202 ** largest index of any column of the table that is actually used. 3203 ** 3204 ** This instruction works just like OpenRead except that it opens the cursor 3205 ** in read/write mode. For a given table, there can be one or more read-only 3206 ** cursors or a single read/write cursor but not both. 3207 ** 3208 ** See also OpenRead. 3209 */ 3210 case OP_OpenRead: 3211 case OP_OpenWrite: { 3212 int nField; 3213 KeyInfo *pKeyInfo; 3214 int p2; 3215 int iDb; 3216 int wrFlag; 3217 Btree *pX; 3218 VdbeCursor *pCur; 3219 Db *pDb; 3220 3221 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); 3222 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); 3223 assert( p->bIsReader ); 3224 assert( pOp->opcode==OP_OpenRead || p->readOnly==0 ); 3225 3226 if( p->expired ){ 3227 rc = SQLITE_ABORT; 3228 break; 3229 } 3230 3231 nField = 0; 3232 pKeyInfo = 0; 3233 p2 = pOp->p2; 3234 iDb = pOp->p3; 3235 assert( iDb>=0 && iDb<db->nDb ); 3236 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3237 pDb = &db->aDb[iDb]; 3238 pX = pDb->pBt; 3239 assert( pX!=0 ); 3240 if( pOp->opcode==OP_OpenWrite ){ 3241 wrFlag = 1; 3242 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3243 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3244 p->minWriteFileFormat = pDb->pSchema->file_format; 3245 } 3246 }else{ 3247 wrFlag = 0; 3248 } 3249 if( pOp->p5 & OPFLAG_P2ISREG ){ 3250 assert( p2>0 ); 3251 assert( p2<=(p->nMem-p->nCursor) ); 3252 pIn2 = &aMem[p2]; 3253 assert( memIsValid(pIn2) ); 3254 assert( (pIn2->flags & MEM_Int)!=0 ); 3255 sqlite3VdbeMemIntegerify(pIn2); 3256 p2 = (int)pIn2->u.i; 3257 /* The p2 value always comes from a prior OP_CreateTable opcode and 3258 ** that opcode will always set the p2 value to 2 or more or else fail. 3259 ** If there were a failure, the prepared statement would have halted 3260 ** before reaching this instruction. */ 3261 if( NEVER(p2<2) ) { 3262 rc = SQLITE_CORRUPT_BKPT; 3263 goto abort_due_to_error; 3264 } 3265 } 3266 if( pOp->p4type==P4_KEYINFO ){ 3267 pKeyInfo = pOp->p4.pKeyInfo; 3268 assert( pKeyInfo->enc==ENC(db) ); 3269 assert( pKeyInfo->db==db ); 3270 nField = pKeyInfo->nField+pKeyInfo->nXField; 3271 }else if( pOp->p4type==P4_INT32 ){ 3272 nField = pOp->p4.i; 3273 } 3274 assert( pOp->p1>=0 ); 3275 assert( nField>=0 ); 3276 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3277 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3278 if( pCur==0 ) goto no_mem; 3279 pCur->nullRow = 1; 3280 pCur->isOrdered = 1; 3281 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3282 pCur->pKeyInfo = pKeyInfo; 3283 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3284 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); 3285 3286 /* Since it performs no memory allocation or IO, the only value that 3287 ** sqlite3BtreeCursor() may return is SQLITE_OK. */ 3288 assert( rc==SQLITE_OK ); 3289 3290 /* Set the VdbeCursor.isTable variable. Previous versions of 3291 ** SQLite used to check if the root-page flags were sane at this point 3292 ** and report database corruption if they were not, but this check has 3293 ** since moved into the btree layer. */ 3294 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3295 break; 3296 } 3297 3298 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3299 ** Synopsis: nColumn=P2 3300 ** 3301 ** Open a new cursor P1 to a transient table. 3302 ** The cursor is always opened read/write even if 3303 ** the main database is read-only. The ephemeral 3304 ** table is deleted automatically when the cursor is closed. 3305 ** 3306 ** P2 is the number of columns in the ephemeral table. 3307 ** The cursor points to a BTree table if P4==0 and to a BTree index 3308 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3309 ** that defines the format of keys in the index. 3310 ** 3311 ** The P5 parameter can be a mask of the BTREE_* flags defined 3312 ** in btree.h. These flags control aspects of the operation of 3313 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3314 ** added automatically. 3315 */ 3316 /* Opcode: OpenAutoindex P1 P2 * P4 * 3317 ** Synopsis: nColumn=P2 3318 ** 3319 ** This opcode works the same as OP_OpenEphemeral. It has a 3320 ** different name to distinguish its use. Tables created using 3321 ** by this opcode will be used for automatically created transient 3322 ** indices in joins. 3323 */ 3324 case OP_OpenAutoindex: 3325 case OP_OpenEphemeral: { 3326 VdbeCursor *pCx; 3327 KeyInfo *pKeyInfo; 3328 3329 static const int vfsFlags = 3330 SQLITE_OPEN_READWRITE | 3331 SQLITE_OPEN_CREATE | 3332 SQLITE_OPEN_EXCLUSIVE | 3333 SQLITE_OPEN_DELETEONCLOSE | 3334 SQLITE_OPEN_TRANSIENT_DB; 3335 assert( pOp->p1>=0 ); 3336 assert( pOp->p2>=0 ); 3337 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3338 if( pCx==0 ) goto no_mem; 3339 pCx->nullRow = 1; 3340 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 3341 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3342 if( rc==SQLITE_OK ){ 3343 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3344 } 3345 if( rc==SQLITE_OK ){ 3346 /* If a transient index is required, create it by calling 3347 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3348 ** opening it. If a transient table is required, just use the 3349 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3350 */ 3351 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3352 int pgno; 3353 assert( pOp->p4type==P4_KEYINFO ); 3354 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 3355 if( rc==SQLITE_OK ){ 3356 assert( pgno==MASTER_ROOT+1 ); 3357 assert( pKeyInfo->db==db ); 3358 assert( pKeyInfo->enc==ENC(db) ); 3359 pCx->pKeyInfo = pKeyInfo; 3360 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); 3361 } 3362 pCx->isTable = 0; 3363 }else{ 3364 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3365 pCx->isTable = 1; 3366 } 3367 } 3368 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3369 break; 3370 } 3371 3372 /* Opcode: SorterOpen P1 * * P4 * 3373 ** 3374 ** This opcode works like OP_OpenEphemeral except that it opens 3375 ** a transient index that is specifically designed to sort large 3376 ** tables using an external merge-sort algorithm. 3377 */ 3378 case OP_SorterOpen: { 3379 VdbeCursor *pCx; 3380 3381 assert( pOp->p1>=0 ); 3382 assert( pOp->p2>=0 ); 3383 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3384 if( pCx==0 ) goto no_mem; 3385 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3386 assert( pCx->pKeyInfo->db==db ); 3387 assert( pCx->pKeyInfo->enc==ENC(db) ); 3388 rc = sqlite3VdbeSorterInit(db, pCx); 3389 break; 3390 } 3391 3392 /* Opcode: OpenPseudo P1 P2 P3 * P5 3393 ** Synopsis: content in r[P2@P3] 3394 ** 3395 ** Open a new cursor that points to a fake table that contains a single 3396 ** row of data. The content of that one row in the content of memory 3397 ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the 3398 ** MEM_Blob content contained in register P2. When P5==1, then the 3399 ** row is represented by P3 consecutive registers beginning with P2. 3400 ** 3401 ** A pseudo-table created by this opcode is used to hold a single 3402 ** row output from the sorter so that the row can be decomposed into 3403 ** individual columns using the OP_Column opcode. The OP_Column opcode 3404 ** is the only cursor opcode that works with a pseudo-table. 3405 ** 3406 ** P3 is the number of fields in the records that will be stored by 3407 ** the pseudo-table. 3408 */ 3409 case OP_OpenPseudo: { 3410 VdbeCursor *pCx; 3411 3412 assert( pOp->p1>=0 ); 3413 assert( pOp->p3>=0 ); 3414 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3415 if( pCx==0 ) goto no_mem; 3416 pCx->nullRow = 1; 3417 pCx->pseudoTableReg = pOp->p2; 3418 pCx->isTable = 1; 3419 pCx->multiPseudo = pOp->p5; 3420 break; 3421 } 3422 3423 /* Opcode: Close P1 * * * * 3424 ** 3425 ** Close a cursor previously opened as P1. If P1 is not 3426 ** currently open, this instruction is a no-op. 3427 */ 3428 case OP_Close: { 3429 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3430 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3431 p->apCsr[pOp->p1] = 0; 3432 break; 3433 } 3434 3435 /* Opcode: SeekGe P1 P2 P3 P4 * 3436 ** Synopsis: key=r[P3@P4] 3437 ** 3438 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3439 ** use the value in register P3 as the key. If cursor P1 refers 3440 ** to an SQL index, then P3 is the first in an array of P4 registers 3441 ** that are used as an unpacked index key. 3442 ** 3443 ** Reposition cursor P1 so that it points to the smallest entry that 3444 ** is greater than or equal to the key value. If there are no records 3445 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3446 ** 3447 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe 3448 */ 3449 /* Opcode: SeekGt P1 P2 P3 P4 * 3450 ** Synopsis: key=r[P3@P4] 3451 ** 3452 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3453 ** use the value in register P3 as a key. If cursor P1 refers 3454 ** to an SQL index, then P3 is the first in an array of P4 registers 3455 ** that are used as an unpacked index key. 3456 ** 3457 ** Reposition cursor P1 so that it points to the smallest entry that 3458 ** is greater than the key value. If there are no records greater than 3459 ** the key and P2 is not zero, then jump to P2. 3460 ** 3461 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe 3462 */ 3463 /* Opcode: SeekLt P1 P2 P3 P4 * 3464 ** Synopsis: key=r[P3@P4] 3465 ** 3466 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3467 ** use the value in register P3 as a key. If cursor P1 refers 3468 ** to an SQL index, then P3 is the first in an array of P4 registers 3469 ** that are used as an unpacked index key. 3470 ** 3471 ** Reposition cursor P1 so that it points to the largest entry that 3472 ** is less than the key value. If there are no records less than 3473 ** the key and P2 is not zero, then jump to P2. 3474 ** 3475 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe 3476 */ 3477 /* Opcode: SeekLe P1 P2 P3 P4 * 3478 ** Synopsis: key=r[P3@P4] 3479 ** 3480 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3481 ** use the value in register P3 as a key. If cursor P1 refers 3482 ** to an SQL index, then P3 is the first in an array of P4 registers 3483 ** that are used as an unpacked index key. 3484 ** 3485 ** Reposition cursor P1 so that it points to the largest entry that 3486 ** is less than or equal to the key value. If there are no records 3487 ** less than or equal to the key and P2 is not zero, then jump to P2. 3488 ** 3489 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt 3490 */ 3491 case OP_SeekLt: /* jump, in3 */ 3492 case OP_SeekLe: /* jump, in3 */ 3493 case OP_SeekGe: /* jump, in3 */ 3494 case OP_SeekGt: { /* jump, in3 */ 3495 int res; 3496 int oc; 3497 VdbeCursor *pC; 3498 UnpackedRecord r; 3499 int nField; 3500 i64 iKey; /* The rowid we are to seek to */ 3501 3502 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3503 assert( pOp->p2!=0 ); 3504 pC = p->apCsr[pOp->p1]; 3505 assert( pC!=0 ); 3506 assert( pC->pseudoTableReg==0 ); 3507 assert( OP_SeekLe == OP_SeekLt+1 ); 3508 assert( OP_SeekGe == OP_SeekLt+2 ); 3509 assert( OP_SeekGt == OP_SeekLt+3 ); 3510 assert( pC->isOrdered ); 3511 assert( pC->pCursor!=0 ); 3512 oc = pOp->opcode; 3513 pC->nullRow = 0; 3514 if( pC->isTable ){ 3515 /* The input value in P3 might be of any type: integer, real, string, 3516 ** blob, or NULL. But it needs to be an integer before we can do 3517 ** the seek, so covert it. */ 3518 pIn3 = &aMem[pOp->p3]; 3519 applyNumericAffinity(pIn3); 3520 iKey = sqlite3VdbeIntValue(pIn3); 3521 pC->rowidIsValid = 0; 3522 3523 /* If the P3 value could not be converted into an integer without 3524 ** loss of information, then special processing is required... */ 3525 if( (pIn3->flags & MEM_Int)==0 ){ 3526 if( (pIn3->flags & MEM_Real)==0 ){ 3527 /* If the P3 value cannot be converted into any kind of a number, 3528 ** then the seek is not possible, so jump to P2 */ 3529 pc = pOp->p2 - 1; 3530 break; 3531 } 3532 3533 /* If the approximation iKey is larger than the actual real search 3534 ** term, substitute >= for > and < for <=. e.g. if the search term 3535 ** is 4.9 and the integer approximation 5: 3536 ** 3537 ** (x > 4.9) -> (x >= 5) 3538 ** (x <= 4.9) -> (x < 5) 3539 */ 3540 if( pIn3->r<(double)iKey ){ 3541 assert( OP_SeekGe==(OP_SeekGt-1) ); 3542 assert( OP_SeekLt==(OP_SeekLe-1) ); 3543 assert( (OP_SeekLe & 0x0001)==(OP_SeekGt & 0x0001) ); 3544 if( (oc & 0x0001)==(OP_SeekGt & 0x0001) ) oc--; 3545 } 3546 3547 /* If the approximation iKey is smaller than the actual real search 3548 ** term, substitute <= for < and > for >=. */ 3549 else if( pIn3->r>(double)iKey ){ 3550 assert( OP_SeekLe==(OP_SeekLt+1) ); 3551 assert( OP_SeekGt==(OP_SeekGe+1) ); 3552 assert( (OP_SeekLt & 0x0001)==(OP_SeekGe & 0x0001) ); 3553 if( (oc & 0x0001)==(OP_SeekLt & 0x0001) ) oc++; 3554 } 3555 } 3556 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3557 if( rc!=SQLITE_OK ){ 3558 goto abort_due_to_error; 3559 } 3560 if( res==0 ){ 3561 pC->rowidIsValid = 1; 3562 pC->lastRowid = iKey; 3563 } 3564 }else{ 3565 nField = pOp->p4.i; 3566 assert( pOp->p4type==P4_INT32 ); 3567 assert( nField>0 ); 3568 r.pKeyInfo = pC->pKeyInfo; 3569 r.nField = (u16)nField; 3570 3571 /* The next line of code computes as follows, only faster: 3572 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ 3573 ** r.flags = UNPACKED_INCRKEY; 3574 ** }else{ 3575 ** r.flags = 0; 3576 ** } 3577 */ 3578 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); 3579 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); 3580 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); 3581 assert( oc!=OP_SeekGe || r.flags==0 ); 3582 assert( oc!=OP_SeekLt || r.flags==0 ); 3583 3584 r.aMem = &aMem[pOp->p3]; 3585 #ifdef SQLITE_DEBUG 3586 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3587 #endif 3588 ExpandBlob(r.aMem); 3589 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3590 if( rc!=SQLITE_OK ){ 3591 goto abort_due_to_error; 3592 } 3593 pC->rowidIsValid = 0; 3594 } 3595 pC->deferredMoveto = 0; 3596 pC->cacheStatus = CACHE_STALE; 3597 #ifdef SQLITE_TEST 3598 sqlite3_search_count++; 3599 #endif 3600 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3601 if( res<0 || (res==0 && oc==OP_SeekGt) ){ 3602 rc = sqlite3BtreeNext(pC->pCursor, &res); 3603 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3604 pC->rowidIsValid = 0; 3605 }else{ 3606 res = 0; 3607 } 3608 }else{ 3609 assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3610 if( res>0 || (res==0 && oc==OP_SeekLt) ){ 3611 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3612 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3613 pC->rowidIsValid = 0; 3614 }else{ 3615 /* res might be negative because the table is empty. Check to 3616 ** see if this is the case. 3617 */ 3618 res = sqlite3BtreeEof(pC->pCursor); 3619 } 3620 } 3621 assert( pOp->p2>0 ); 3622 if( res ){ 3623 pc = pOp->p2 - 1; 3624 } 3625 break; 3626 } 3627 3628 /* Opcode: Seek P1 P2 * * * 3629 ** Synopsis: intkey=r[P2] 3630 ** 3631 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3632 ** for P1 to move so that it points to the rowid given by P2. 3633 ** 3634 ** This is actually a deferred seek. Nothing actually happens until 3635 ** the cursor is used to read a record. That way, if no reads 3636 ** occur, no unnecessary I/O happens. 3637 */ 3638 case OP_Seek: { /* in2 */ 3639 VdbeCursor *pC; 3640 3641 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3642 pC = p->apCsr[pOp->p1]; 3643 assert( pC!=0 ); 3644 assert( pC->pCursor!=0 ); 3645 assert( pC->isTable ); 3646 pC->nullRow = 0; 3647 pIn2 = &aMem[pOp->p2]; 3648 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3649 pC->rowidIsValid = 0; 3650 pC->deferredMoveto = 1; 3651 break; 3652 } 3653 3654 3655 /* Opcode: Found P1 P2 P3 P4 * 3656 ** Synopsis: key=r[P3@P4] 3657 ** 3658 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3659 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3660 ** record. 3661 ** 3662 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3663 ** is a prefix of any entry in P1 then a jump is made to P2 and 3664 ** P1 is left pointing at the matching entry. 3665 ** 3666 ** See also: NotFound, NoConflict, NotExists. SeekGe 3667 */ 3668 /* Opcode: NotFound P1 P2 P3 P4 * 3669 ** Synopsis: key=r[P3@P4] 3670 ** 3671 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3672 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3673 ** record. 3674 ** 3675 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3676 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3677 ** does contain an entry whose prefix matches the P3/P4 record then control 3678 ** falls through to the next instruction and P1 is left pointing at the 3679 ** matching entry. 3680 ** 3681 ** See also: Found, NotExists, NoConflict 3682 */ 3683 /* Opcode: NoConflict P1 P2 P3 P4 * 3684 ** Synopsis: key=r[P3@P4] 3685 ** 3686 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3687 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3688 ** record. 3689 ** 3690 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3691 ** contains any NULL value, jump immediately to P2. If all terms of the 3692 ** record are not-NULL then a check is done to determine if any row in the 3693 ** P1 index btree has a matching key prefix. If there are no matches, jump 3694 ** immediately to P2. If there is a match, fall through and leave the P1 3695 ** cursor pointing to the matching row. 3696 ** 3697 ** This opcode is similar to OP_NotFound with the exceptions that the 3698 ** branch is always taken if any part of the search key input is NULL. 3699 ** 3700 ** See also: NotFound, Found, NotExists 3701 */ 3702 case OP_NoConflict: /* jump, in3 */ 3703 case OP_NotFound: /* jump, in3 */ 3704 case OP_Found: { /* jump, in3 */ 3705 int alreadyExists; 3706 int ii; 3707 VdbeCursor *pC; 3708 int res; 3709 char *pFree; 3710 UnpackedRecord *pIdxKey; 3711 UnpackedRecord r; 3712 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; 3713 3714 #ifdef SQLITE_TEST 3715 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 3716 #endif 3717 3718 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3719 assert( pOp->p4type==P4_INT32 ); 3720 pC = p->apCsr[pOp->p1]; 3721 assert( pC!=0 ); 3722 pIn3 = &aMem[pOp->p3]; 3723 assert( pC->pCursor!=0 ); 3724 assert( pC->isTable==0 ); 3725 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ 3726 if( pOp->p4.i>0 ){ 3727 r.pKeyInfo = pC->pKeyInfo; 3728 r.nField = (u16)pOp->p4.i; 3729 r.aMem = pIn3; 3730 #ifdef SQLITE_DEBUG 3731 { 3732 int i; 3733 for(i=0; i<r.nField; i++){ 3734 assert( memIsValid(&r.aMem[i]) ); 3735 if( i ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 3736 } 3737 } 3738 #endif 3739 r.flags = UNPACKED_PREFIX_MATCH; 3740 pIdxKey = &r; 3741 }else{ 3742 pIdxKey = sqlite3VdbeAllocUnpackedRecord( 3743 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree 3744 ); 3745 if( pIdxKey==0 ) goto no_mem; 3746 assert( pIn3->flags & MEM_Blob ); 3747 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3748 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 3749 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 3750 } 3751 if( pOp->opcode==OP_NoConflict ){ 3752 /* For the OP_NoConflict opcode, take the jump if any of the 3753 ** input fields are NULL, since any key with a NULL will not 3754 ** conflict */ 3755 for(ii=0; ii<r.nField; ii++){ 3756 if( r.aMem[ii].flags & MEM_Null ){ 3757 pc = pOp->p2 - 1; 3758 break; 3759 } 3760 } 3761 } 3762 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3763 if( pOp->p4.i==0 ){ 3764 sqlite3DbFree(db, pFree); 3765 } 3766 if( rc!=SQLITE_OK ){ 3767 break; 3768 } 3769 pC->seekResult = res; 3770 alreadyExists = (res==0); 3771 pC->nullRow = 1-alreadyExists; 3772 pC->deferredMoveto = 0; 3773 pC->cacheStatus = CACHE_STALE; 3774 if( pOp->opcode==OP_Found ){ 3775 if( alreadyExists ) pc = pOp->p2 - 1; 3776 }else{ 3777 if( !alreadyExists ) pc = pOp->p2 - 1; 3778 } 3779 break; 3780 } 3781 3782 /* Opcode: NotExists P1 P2 P3 * * 3783 ** Synopsis: intkey=r[P3] 3784 ** 3785 ** P1 is the index of a cursor open on an SQL table btree (with integer 3786 ** keys). P3 is an integer rowid. If P1 does not contain a record with 3787 ** rowid P3 then jump immediately to P2. If P1 does contain a record 3788 ** with rowid P3 then leave the cursor pointing at that record and fall 3789 ** through to the next instruction. 3790 ** 3791 ** The OP_NotFound opcode performs the same operation on index btrees 3792 ** (with arbitrary multi-value keys). 3793 ** 3794 ** See also: Found, NotFound, NoConflict 3795 */ 3796 case OP_NotExists: { /* jump, in3 */ 3797 VdbeCursor *pC; 3798 BtCursor *pCrsr; 3799 int res; 3800 u64 iKey; 3801 3802 pIn3 = &aMem[pOp->p3]; 3803 assert( pIn3->flags & MEM_Int ); 3804 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3805 pC = p->apCsr[pOp->p1]; 3806 assert( pC!=0 ); 3807 assert( pC->isTable ); 3808 assert( pC->pseudoTableReg==0 ); 3809 pCrsr = pC->pCursor; 3810 assert( pCrsr!=0 ); 3811 res = 0; 3812 iKey = pIn3->u.i; 3813 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3814 pC->lastRowid = pIn3->u.i; 3815 pC->rowidIsValid = res==0 ?1:0; 3816 pC->nullRow = 0; 3817 pC->cacheStatus = CACHE_STALE; 3818 pC->deferredMoveto = 0; 3819 if( res!=0 ){ 3820 pc = pOp->p2 - 1; 3821 assert( pC->rowidIsValid==0 ); 3822 } 3823 pC->seekResult = res; 3824 break; 3825 } 3826 3827 /* Opcode: Sequence P1 P2 * * * 3828 ** Synopsis: r[P2]=rowid 3829 ** 3830 ** Find the next available sequence number for cursor P1. 3831 ** Write the sequence number into register P2. 3832 ** The sequence number on the cursor is incremented after this 3833 ** instruction. 3834 */ 3835 case OP_Sequence: { /* out2-prerelease */ 3836 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3837 assert( p->apCsr[pOp->p1]!=0 ); 3838 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3839 break; 3840 } 3841 3842 3843 /* Opcode: NewRowid P1 P2 P3 * * 3844 ** Synopsis: r[P2]=rowid 3845 ** 3846 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3847 ** The record number is not previously used as a key in the database 3848 ** table that cursor P1 points to. The new record number is written 3849 ** written to register P2. 3850 ** 3851 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3852 ** the largest previously generated record number. No new record numbers are 3853 ** allowed to be less than this value. When this value reaches its maximum, 3854 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 3855 ** generated record number. This P3 mechanism is used to help implement the 3856 ** AUTOINCREMENT feature. 3857 */ 3858 case OP_NewRowid: { /* out2-prerelease */ 3859 i64 v; /* The new rowid */ 3860 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3861 int res; /* Result of an sqlite3BtreeLast() */ 3862 int cnt; /* Counter to limit the number of searches */ 3863 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3864 VdbeFrame *pFrame; /* Root frame of VDBE */ 3865 3866 v = 0; 3867 res = 0; 3868 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3869 pC = p->apCsr[pOp->p1]; 3870 assert( pC!=0 ); 3871 if( NEVER(pC->pCursor==0) ){ 3872 /* The zero initialization above is all that is needed */ 3873 }else{ 3874 /* The next rowid or record number (different terms for the same 3875 ** thing) is obtained in a two-step algorithm. 3876 ** 3877 ** First we attempt to find the largest existing rowid and add one 3878 ** to that. But if the largest existing rowid is already the maximum 3879 ** positive integer, we have to fall through to the second 3880 ** probabilistic algorithm 3881 ** 3882 ** The second algorithm is to select a rowid at random and see if 3883 ** it already exists in the table. If it does not exist, we have 3884 ** succeeded. If the random rowid does exist, we select a new one 3885 ** and try again, up to 100 times. 3886 */ 3887 assert( pC->isTable ); 3888 3889 #ifdef SQLITE_32BIT_ROWID 3890 # define MAX_ROWID 0x7fffffff 3891 #else 3892 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3893 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3894 ** to provide the constant while making all compilers happy. 3895 */ 3896 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3897 #endif 3898 3899 if( !pC->useRandomRowid ){ 3900 v = sqlite3BtreeGetCachedRowid(pC->pCursor); 3901 if( v==0 ){ 3902 rc = sqlite3BtreeLast(pC->pCursor, &res); 3903 if( rc!=SQLITE_OK ){ 3904 goto abort_due_to_error; 3905 } 3906 if( res ){ 3907 v = 1; /* IMP: R-61914-48074 */ 3908 }else{ 3909 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3910 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3911 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3912 if( v>=MAX_ROWID ){ 3913 pC->useRandomRowid = 1; 3914 }else{ 3915 v++; /* IMP: R-29538-34987 */ 3916 } 3917 } 3918 } 3919 3920 #ifndef SQLITE_OMIT_AUTOINCREMENT 3921 if( pOp->p3 ){ 3922 /* Assert that P3 is a valid memory cell. */ 3923 assert( pOp->p3>0 ); 3924 if( p->pFrame ){ 3925 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 3926 /* Assert that P3 is a valid memory cell. */ 3927 assert( pOp->p3<=pFrame->nMem ); 3928 pMem = &pFrame->aMem[pOp->p3]; 3929 }else{ 3930 /* Assert that P3 is a valid memory cell. */ 3931 assert( pOp->p3<=(p->nMem-p->nCursor) ); 3932 pMem = &aMem[pOp->p3]; 3933 memAboutToChange(p, pMem); 3934 } 3935 assert( memIsValid(pMem) ); 3936 3937 REGISTER_TRACE(pOp->p3, pMem); 3938 sqlite3VdbeMemIntegerify(pMem); 3939 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3940 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3941 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 3942 goto abort_due_to_error; 3943 } 3944 if( v<pMem->u.i+1 ){ 3945 v = pMem->u.i + 1; 3946 } 3947 pMem->u.i = v; 3948 } 3949 #endif 3950 3951 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); 3952 } 3953 if( pC->useRandomRowid ){ 3954 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 3955 ** largest possible integer (9223372036854775807) then the database 3956 ** engine starts picking positive candidate ROWIDs at random until 3957 ** it finds one that is not previously used. */ 3958 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3959 ** an AUTOINCREMENT table. */ 3960 /* on the first attempt, simply do one more than previous */ 3961 v = lastRowid; 3962 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3963 v++; /* ensure non-zero */ 3964 cnt = 0; 3965 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 3966 0, &res))==SQLITE_OK) 3967 && (res==0) 3968 && (++cnt<100)){ 3969 /* collision - try another random rowid */ 3970 sqlite3_randomness(sizeof(v), &v); 3971 if( cnt<5 ){ 3972 /* try "small" random rowids for the initial attempts */ 3973 v &= 0xffffff; 3974 }else{ 3975 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3976 } 3977 v++; /* ensure non-zero */ 3978 } 3979 if( rc==SQLITE_OK && res==0 ){ 3980 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 3981 goto abort_due_to_error; 3982 } 3983 assert( v>0 ); /* EV: R-40812-03570 */ 3984 } 3985 pC->rowidIsValid = 0; 3986 pC->deferredMoveto = 0; 3987 pC->cacheStatus = CACHE_STALE; 3988 } 3989 pOut->u.i = v; 3990 break; 3991 } 3992 3993 /* Opcode: Insert P1 P2 P3 P4 P5 3994 ** Synopsis: intkey=r[P3] data=r[P2] 3995 ** 3996 ** Write an entry into the table of cursor P1. A new entry is 3997 ** created if it doesn't already exist or the data for an existing 3998 ** entry is overwritten. The data is the value MEM_Blob stored in register 3999 ** number P2. The key is stored in register P3. The key must 4000 ** be a MEM_Int. 4001 ** 4002 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4003 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4004 ** then rowid is stored for subsequent return by the 4005 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4006 ** 4007 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 4008 ** the last seek operation (OP_NotExists) was a success, then this 4009 ** operation will not attempt to find the appropriate row before doing 4010 ** the insert but will instead overwrite the row that the cursor is 4011 ** currently pointing to. Presumably, the prior OP_NotExists opcode 4012 ** has already positioned the cursor correctly. This is an optimization 4013 ** that boosts performance by avoiding redundant seeks. 4014 ** 4015 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4016 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4017 ** is part of an INSERT operation. The difference is only important to 4018 ** the update hook. 4019 ** 4020 ** Parameter P4 may point to a string containing the table-name, or 4021 ** may be NULL. If it is not NULL, then the update-hook 4022 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 4023 ** 4024 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4025 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4026 ** and register P2 becomes ephemeral. If the cursor is changed, the 4027 ** value of register P2 will then change. Make sure this does not 4028 ** cause any problems.) 4029 ** 4030 ** This instruction only works on tables. The equivalent instruction 4031 ** for indices is OP_IdxInsert. 4032 */ 4033 /* Opcode: InsertInt P1 P2 P3 P4 P5 4034 ** Synopsis: intkey=P3 data=r[P2] 4035 ** 4036 ** This works exactly like OP_Insert except that the key is the 4037 ** integer value P3, not the value of the integer stored in register P3. 4038 */ 4039 case OP_Insert: 4040 case OP_InsertInt: { 4041 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4042 Mem *pKey; /* MEM cell holding key for the record */ 4043 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 4044 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4045 int nZero; /* Number of zero-bytes to append */ 4046 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4047 const char *zDb; /* database name - used by the update hook */ 4048 const char *zTbl; /* Table name - used by the opdate hook */ 4049 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4050 4051 pData = &aMem[pOp->p2]; 4052 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4053 assert( memIsValid(pData) ); 4054 pC = p->apCsr[pOp->p1]; 4055 assert( pC!=0 ); 4056 assert( pC->pCursor!=0 ); 4057 assert( pC->pseudoTableReg==0 ); 4058 assert( pC->isTable ); 4059 REGISTER_TRACE(pOp->p2, pData); 4060 4061 if( pOp->opcode==OP_Insert ){ 4062 pKey = &aMem[pOp->p3]; 4063 assert( pKey->flags & MEM_Int ); 4064 assert( memIsValid(pKey) ); 4065 REGISTER_TRACE(pOp->p3, pKey); 4066 iKey = pKey->u.i; 4067 }else{ 4068 assert( pOp->opcode==OP_InsertInt ); 4069 iKey = pOp->p3; 4070 } 4071 4072 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4073 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; 4074 if( pData->flags & MEM_Null ){ 4075 pData->z = 0; 4076 pData->n = 0; 4077 }else{ 4078 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4079 } 4080 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4081 if( pData->flags & MEM_Zero ){ 4082 nZero = pData->u.nZero; 4083 }else{ 4084 nZero = 0; 4085 } 4086 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 4087 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 4088 pData->z, pData->n, nZero, 4089 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult 4090 ); 4091 pC->rowidIsValid = 0; 4092 pC->deferredMoveto = 0; 4093 pC->cacheStatus = CACHE_STALE; 4094 4095 /* Invoke the update-hook if required. */ 4096 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 4097 zDb = db->aDb[pC->iDb].zName; 4098 zTbl = pOp->p4.z; 4099 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4100 assert( pC->isTable ); 4101 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 4102 assert( pC->iDb>=0 ); 4103 } 4104 break; 4105 } 4106 4107 /* Opcode: Delete P1 P2 * P4 * 4108 ** 4109 ** Delete the record at which the P1 cursor is currently pointing. 4110 ** 4111 ** The cursor will be left pointing at either the next or the previous 4112 ** record in the table. If it is left pointing at the next record, then 4113 ** the next Next instruction will be a no-op. Hence it is OK to delete 4114 ** a record from within an Next loop. 4115 ** 4116 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 4117 ** incremented (otherwise not). 4118 ** 4119 ** P1 must not be pseudo-table. It has to be a real table with 4120 ** multiple rows. 4121 ** 4122 ** If P4 is not NULL, then it is the name of the table that P1 is 4123 ** pointing to. The update hook will be invoked, if it exists. 4124 ** If P4 is not NULL then the P1 cursor must have been positioned 4125 ** using OP_NotFound prior to invoking this opcode. 4126 */ 4127 case OP_Delete: { 4128 i64 iKey; 4129 VdbeCursor *pC; 4130 4131 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4132 pC = p->apCsr[pOp->p1]; 4133 assert( pC!=0 ); 4134 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 4135 iKey = pC->lastRowid; /* Only used for the update hook */ 4136 4137 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 4138 ** OP_Column on the same table without any intervening operations that 4139 ** might move or invalidate the cursor. Hence cursor pC is always pointing 4140 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 4141 ** below is always a no-op and cannot fail. We will run it anyhow, though, 4142 ** to guard against future changes to the code generator. 4143 **/ 4144 assert( pC->deferredMoveto==0 ); 4145 rc = sqlite3VdbeCursorMoveto(pC); 4146 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4147 4148 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 4149 rc = sqlite3BtreeDelete(pC->pCursor); 4150 pC->cacheStatus = CACHE_STALE; 4151 4152 /* Invoke the update-hook if required. */ 4153 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ 4154 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, 4155 db->aDb[pC->iDb].zName, pOp->p4.z, iKey); 4156 assert( pC->iDb>=0 ); 4157 } 4158 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4159 break; 4160 } 4161 /* Opcode: ResetCount * * * * * 4162 ** 4163 ** The value of the change counter is copied to the database handle 4164 ** change counter (returned by subsequent calls to sqlite3_changes()). 4165 ** Then the VMs internal change counter resets to 0. 4166 ** This is used by trigger programs. 4167 */ 4168 case OP_ResetCount: { 4169 sqlite3VdbeSetChanges(db, p->nChange); 4170 p->nChange = 0; 4171 break; 4172 } 4173 4174 /* Opcode: SorterCompare P1 P2 P3 P4 4175 ** Synopsis: if key(P1)!=rtrim(r[P3],P4) goto P2 4176 ** 4177 ** P1 is a sorter cursor. This instruction compares a prefix of the 4178 ** the record blob in register P3 against a prefix of the entry that 4179 ** the sorter cursor currently points to. The final P4 fields of both 4180 ** the P3 and sorter record are ignored. 4181 ** 4182 ** If either P3 or the sorter contains a NULL in one of their significant 4183 ** fields (not counting the P4 fields at the end which are ignored) then 4184 ** the comparison is assumed to be equal. 4185 ** 4186 ** Fall through to next instruction if the two records compare equal to 4187 ** each other. Jump to P2 if they are different. 4188 */ 4189 case OP_SorterCompare: { 4190 VdbeCursor *pC; 4191 int res; 4192 int nIgnore; 4193 4194 pC = p->apCsr[pOp->p1]; 4195 assert( isSorter(pC) ); 4196 assert( pOp->p4type==P4_INT32 ); 4197 pIn3 = &aMem[pOp->p3]; 4198 nIgnore = pOp->p4.i; 4199 rc = sqlite3VdbeSorterCompare(pC, pIn3, nIgnore, &res); 4200 if( res ){ 4201 pc = pOp->p2-1; 4202 } 4203 break; 4204 }; 4205 4206 /* Opcode: SorterData P1 P2 * * * 4207 ** Synopsis: r[P2]=data 4208 ** 4209 ** Write into register P2 the current sorter data for sorter cursor P1. 4210 */ 4211 case OP_SorterData: { 4212 VdbeCursor *pC; 4213 4214 pOut = &aMem[pOp->p2]; 4215 pC = p->apCsr[pOp->p1]; 4216 assert( isSorter(pC) ); 4217 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4218 break; 4219 } 4220 4221 /* Opcode: RowData P1 P2 * * * 4222 ** Synopsis: r[P2]=data 4223 ** 4224 ** Write into register P2 the complete row data for cursor P1. 4225 ** There is no interpretation of the data. 4226 ** It is just copied onto the P2 register exactly as 4227 ** it is found in the database file. 4228 ** 4229 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4230 ** of a real table, not a pseudo-table. 4231 */ 4232 /* Opcode: RowKey P1 P2 * * * 4233 ** Synopsis: r[P2]=key 4234 ** 4235 ** Write into register P2 the complete row key for cursor P1. 4236 ** There is no interpretation of the data. 4237 ** The key is copied onto the P3 register exactly as 4238 ** it is found in the database file. 4239 ** 4240 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4241 ** of a real table, not a pseudo-table. 4242 */ 4243 case OP_RowKey: 4244 case OP_RowData: { 4245 VdbeCursor *pC; 4246 BtCursor *pCrsr; 4247 u32 n; 4248 i64 n64; 4249 4250 pOut = &aMem[pOp->p2]; 4251 memAboutToChange(p, pOut); 4252 4253 /* Note that RowKey and RowData are really exactly the same instruction */ 4254 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4255 pC = p->apCsr[pOp->p1]; 4256 assert( isSorter(pC)==0 ); 4257 assert( pC->isTable || pOp->opcode!=OP_RowData ); 4258 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); 4259 assert( pC!=0 ); 4260 assert( pC->nullRow==0 ); 4261 assert( pC->pseudoTableReg==0 ); 4262 assert( pC->pCursor!=0 ); 4263 pCrsr = pC->pCursor; 4264 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4265 4266 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4267 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4268 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 4269 ** a no-op and can never fail. But we leave it in place as a safety. 4270 */ 4271 assert( pC->deferredMoveto==0 ); 4272 rc = sqlite3VdbeCursorMoveto(pC); 4273 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4274 4275 if( pC->isTable==0 ){ 4276 assert( !pC->isTable ); 4277 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); 4278 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4279 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4280 goto too_big; 4281 } 4282 n = (u32)n64; 4283 }else{ 4284 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); 4285 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4286 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4287 goto too_big; 4288 } 4289 } 4290 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4291 goto no_mem; 4292 } 4293 pOut->n = n; 4294 MemSetTypeFlag(pOut, MEM_Blob); 4295 if( pC->isTable==0 ){ 4296 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4297 }else{ 4298 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4299 } 4300 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4301 UPDATE_MAX_BLOBSIZE(pOut); 4302 REGISTER_TRACE(pOp->p2, pOut); 4303 break; 4304 } 4305 4306 /* Opcode: Rowid P1 P2 * * * 4307 ** Synopsis: r[P2]=rowid 4308 ** 4309 ** Store in register P2 an integer which is the key of the table entry that 4310 ** P1 is currently point to. 4311 ** 4312 ** P1 can be either an ordinary table or a virtual table. There used to 4313 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4314 ** one opcode now works for both table types. 4315 */ 4316 case OP_Rowid: { /* out2-prerelease */ 4317 VdbeCursor *pC; 4318 i64 v; 4319 sqlite3_vtab *pVtab; 4320 const sqlite3_module *pModule; 4321 4322 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4323 pC = p->apCsr[pOp->p1]; 4324 assert( pC!=0 ); 4325 assert( pC->pseudoTableReg==0 || pC->nullRow ); 4326 if( pC->nullRow ){ 4327 pOut->flags = MEM_Null; 4328 break; 4329 }else if( pC->deferredMoveto ){ 4330 v = pC->movetoTarget; 4331 #ifndef SQLITE_OMIT_VIRTUALTABLE 4332 }else if( pC->pVtabCursor ){ 4333 pVtab = pC->pVtabCursor->pVtab; 4334 pModule = pVtab->pModule; 4335 assert( pModule->xRowid ); 4336 rc = pModule->xRowid(pC->pVtabCursor, &v); 4337 sqlite3VtabImportErrmsg(p, pVtab); 4338 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4339 }else{ 4340 assert( pC->pCursor!=0 ); 4341 rc = sqlite3VdbeCursorMoveto(pC); 4342 if( rc ) goto abort_due_to_error; 4343 if( pC->rowidIsValid ){ 4344 v = pC->lastRowid; 4345 }else{ 4346 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4347 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4348 } 4349 } 4350 pOut->u.i = v; 4351 break; 4352 } 4353 4354 /* Opcode: NullRow P1 * * * * 4355 ** 4356 ** Move the cursor P1 to a null row. Any OP_Column operations 4357 ** that occur while the cursor is on the null row will always 4358 ** write a NULL. 4359 */ 4360 case OP_NullRow: { 4361 VdbeCursor *pC; 4362 4363 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4364 pC = p->apCsr[pOp->p1]; 4365 assert( pC!=0 ); 4366 pC->nullRow = 1; 4367 pC->rowidIsValid = 0; 4368 pC->cacheStatus = CACHE_STALE; 4369 if( pC->pCursor ){ 4370 sqlite3BtreeClearCursor(pC->pCursor); 4371 } 4372 break; 4373 } 4374 4375 /* Opcode: Last P1 P2 * * * 4376 ** 4377 ** The next use of the Rowid or Column or Next instruction for P1 4378 ** will refer to the last entry in the database table or index. 4379 ** If the table or index is empty and P2>0, then jump immediately to P2. 4380 ** If P2 is 0 or if the table or index is not empty, fall through 4381 ** to the following instruction. 4382 */ 4383 case OP_Last: { /* jump */ 4384 VdbeCursor *pC; 4385 BtCursor *pCrsr; 4386 int res; 4387 4388 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4389 pC = p->apCsr[pOp->p1]; 4390 assert( pC!=0 ); 4391 pCrsr = pC->pCursor; 4392 res = 0; 4393 assert( pCrsr!=0 ); 4394 rc = sqlite3BtreeLast(pCrsr, &res); 4395 pC->nullRow = (u8)res; 4396 pC->deferredMoveto = 0; 4397 pC->rowidIsValid = 0; 4398 pC->cacheStatus = CACHE_STALE; 4399 if( pOp->p2>0 && res ){ 4400 pc = pOp->p2 - 1; 4401 } 4402 break; 4403 } 4404 4405 4406 /* Opcode: Sort P1 P2 * * * 4407 ** 4408 ** This opcode does exactly the same thing as OP_Rewind except that 4409 ** it increments an undocumented global variable used for testing. 4410 ** 4411 ** Sorting is accomplished by writing records into a sorting index, 4412 ** then rewinding that index and playing it back from beginning to 4413 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4414 ** rewinding so that the global variable will be incremented and 4415 ** regression tests can determine whether or not the optimizer is 4416 ** correctly optimizing out sorts. 4417 */ 4418 case OP_SorterSort: /* jump */ 4419 case OP_Sort: { /* jump */ 4420 #ifdef SQLITE_TEST 4421 sqlite3_sort_count++; 4422 sqlite3_search_count--; 4423 #endif 4424 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4425 /* Fall through into OP_Rewind */ 4426 } 4427 /* Opcode: Rewind P1 P2 * * * 4428 ** 4429 ** The next use of the Rowid or Column or Next instruction for P1 4430 ** will refer to the first entry in the database table or index. 4431 ** If the table or index is empty and P2>0, then jump immediately to P2. 4432 ** If P2 is 0 or if the table or index is not empty, fall through 4433 ** to the following instruction. 4434 */ 4435 case OP_Rewind: { /* jump */ 4436 VdbeCursor *pC; 4437 BtCursor *pCrsr; 4438 int res; 4439 4440 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4441 pC = p->apCsr[pOp->p1]; 4442 assert( pC!=0 ); 4443 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4444 res = 1; 4445 if( isSorter(pC) ){ 4446 rc = sqlite3VdbeSorterRewind(db, pC, &res); 4447 }else{ 4448 pCrsr = pC->pCursor; 4449 assert( pCrsr ); 4450 rc = sqlite3BtreeFirst(pCrsr, &res); 4451 pC->deferredMoveto = 0; 4452 pC->cacheStatus = CACHE_STALE; 4453 pC->rowidIsValid = 0; 4454 } 4455 pC->nullRow = (u8)res; 4456 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4457 if( res ){ 4458 pc = pOp->p2 - 1; 4459 } 4460 break; 4461 } 4462 4463 /* Opcode: Next P1 P2 * * P5 4464 ** 4465 ** Advance cursor P1 so that it points to the next key/data pair in its 4466 ** table or index. If there are no more key/value pairs then fall through 4467 ** to the following instruction. But if the cursor advance was successful, 4468 ** jump immediately to P2. 4469 ** 4470 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4471 ** been opened prior to this opcode or the program will segfault. 4472 ** 4473 ** P4 is always of type P4_ADVANCE. The function pointer points to 4474 ** sqlite3BtreeNext(). 4475 ** 4476 ** If P5 is positive and the jump is taken, then event counter 4477 ** number P5-1 in the prepared statement is incremented. 4478 ** 4479 ** See also: Prev, NextIfOpen 4480 */ 4481 /* Opcode: NextIfOpen P1 P2 * * P5 4482 ** 4483 ** This opcode works just like OP_Next except that if cursor P1 is not 4484 ** open it behaves a no-op. 4485 */ 4486 /* Opcode: Prev P1 P2 * * P5 4487 ** 4488 ** Back up cursor P1 so that it points to the previous key/data pair in its 4489 ** table or index. If there is no previous key/value pairs then fall through 4490 ** to the following instruction. But if the cursor backup was successful, 4491 ** jump immediately to P2. 4492 ** 4493 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4494 ** not open then the behavior is undefined. 4495 ** 4496 ** P4 is always of type P4_ADVANCE. The function pointer points to 4497 ** sqlite3BtreePrevious(). 4498 ** 4499 ** If P5 is positive and the jump is taken, then event counter 4500 ** number P5-1 in the prepared statement is incremented. 4501 */ 4502 /* Opcode: PrevIfOpen P1 P2 * * P5 4503 ** 4504 ** This opcode works just like OP_Prev except that if cursor P1 is not 4505 ** open it behaves a no-op. 4506 */ 4507 case OP_SorterNext: { /* jump */ 4508 VdbeCursor *pC; 4509 int res; 4510 4511 pC = p->apCsr[pOp->p1]; 4512 assert( isSorter(pC) ); 4513 rc = sqlite3VdbeSorterNext(db, pC, &res); 4514 goto next_tail; 4515 case OP_PrevIfOpen: /* jump */ 4516 case OP_NextIfOpen: /* jump */ 4517 if( p->apCsr[pOp->p1]==0 ) break; 4518 /* Fall through */ 4519 case OP_Prev: /* jump */ 4520 case OP_Next: /* jump */ 4521 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4522 assert( pOp->p5<ArraySize(p->aCounter) ); 4523 pC = p->apCsr[pOp->p1]; 4524 assert( pC!=0 ); 4525 assert( pC->deferredMoveto==0 ); 4526 assert( pC->pCursor ); 4527 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 4528 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 4529 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 4530 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 4531 rc = pOp->p4.xAdvance(pC->pCursor, &res); 4532 next_tail: 4533 pC->cacheStatus = CACHE_STALE; 4534 if( res==0 ){ 4535 pC->nullRow = 0; 4536 pc = pOp->p2 - 1; 4537 p->aCounter[pOp->p5]++; 4538 #ifdef SQLITE_TEST 4539 sqlite3_search_count++; 4540 #endif 4541 }else{ 4542 pC->nullRow = 1; 4543 } 4544 pC->rowidIsValid = 0; 4545 goto check_for_interrupt; 4546 } 4547 4548 /* Opcode: IdxInsert P1 P2 P3 * P5 4549 ** Synopsis: key=r[P2] 4550 ** 4551 ** Register P2 holds an SQL index key made using the 4552 ** MakeRecord instructions. This opcode writes that key 4553 ** into the index P1. Data for the entry is nil. 4554 ** 4555 ** P3 is a flag that provides a hint to the b-tree layer that this 4556 ** insert is likely to be an append. 4557 ** 4558 ** This instruction only works for indices. The equivalent instruction 4559 ** for tables is OP_Insert. 4560 */ 4561 case OP_SorterInsert: /* in2 */ 4562 case OP_IdxInsert: { /* in2 */ 4563 VdbeCursor *pC; 4564 BtCursor *pCrsr; 4565 int nKey; 4566 const char *zKey; 4567 4568 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4569 pC = p->apCsr[pOp->p1]; 4570 assert( pC!=0 ); 4571 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 4572 pIn2 = &aMem[pOp->p2]; 4573 assert( pIn2->flags & MEM_Blob ); 4574 pCrsr = pC->pCursor; 4575 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4576 assert( pCrsr!=0 ); 4577 assert( pC->isTable==0 ); 4578 rc = ExpandBlob(pIn2); 4579 if( rc==SQLITE_OK ){ 4580 if( isSorter(pC) ){ 4581 rc = sqlite3VdbeSorterWrite(db, pC, pIn2); 4582 }else{ 4583 nKey = pIn2->n; 4584 zKey = pIn2->z; 4585 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4586 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4587 ); 4588 assert( pC->deferredMoveto==0 ); 4589 pC->cacheStatus = CACHE_STALE; 4590 } 4591 } 4592 break; 4593 } 4594 4595 /* Opcode: IdxDelete P1 P2 P3 * * 4596 ** Synopsis: key=r[P2@P3] 4597 ** 4598 ** The content of P3 registers starting at register P2 form 4599 ** an unpacked index key. This opcode removes that entry from the 4600 ** index opened by cursor P1. 4601 */ 4602 case OP_IdxDelete: { 4603 VdbeCursor *pC; 4604 BtCursor *pCrsr; 4605 int res; 4606 UnpackedRecord r; 4607 4608 assert( pOp->p3>0 ); 4609 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); 4610 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4611 pC = p->apCsr[pOp->p1]; 4612 assert( pC!=0 ); 4613 pCrsr = pC->pCursor; 4614 assert( pCrsr!=0 ); 4615 assert( pOp->p5==0 ); 4616 r.pKeyInfo = pC->pKeyInfo; 4617 r.nField = (u16)pOp->p3; 4618 r.flags = UNPACKED_PREFIX_MATCH; 4619 r.aMem = &aMem[pOp->p2]; 4620 #ifdef SQLITE_DEBUG 4621 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4622 #endif 4623 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4624 if( rc==SQLITE_OK && res==0 ){ 4625 rc = sqlite3BtreeDelete(pCrsr); 4626 } 4627 assert( pC->deferredMoveto==0 ); 4628 pC->cacheStatus = CACHE_STALE; 4629 break; 4630 } 4631 4632 /* Opcode: IdxRowid P1 P2 * * * 4633 ** Synopsis: r[P2]=rowid 4634 ** 4635 ** Write into register P2 an integer which is the last entry in the record at 4636 ** the end of the index key pointed to by cursor P1. This integer should be 4637 ** the rowid of the table entry to which this index entry points. 4638 ** 4639 ** See also: Rowid, MakeRecord. 4640 */ 4641 case OP_IdxRowid: { /* out2-prerelease */ 4642 BtCursor *pCrsr; 4643 VdbeCursor *pC; 4644 i64 rowid; 4645 4646 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4647 pC = p->apCsr[pOp->p1]; 4648 assert( pC!=0 ); 4649 pCrsr = pC->pCursor; 4650 assert( pCrsr!=0 ); 4651 pOut->flags = MEM_Null; 4652 rc = sqlite3VdbeCursorMoveto(pC); 4653 if( NEVER(rc) ) goto abort_due_to_error; 4654 assert( pC->deferredMoveto==0 ); 4655 assert( pC->isTable==0 ); 4656 if( !pC->nullRow ){ 4657 rowid = 0; /* Not needed. Only used to silence a warning. */ 4658 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4659 if( rc!=SQLITE_OK ){ 4660 goto abort_due_to_error; 4661 } 4662 pOut->u.i = rowid; 4663 pOut->flags = MEM_Int; 4664 } 4665 break; 4666 } 4667 4668 /* Opcode: IdxGE P1 P2 P3 P4 P5 4669 ** Synopsis: key=r[P3@P4] 4670 ** 4671 ** The P4 register values beginning with P3 form an unpacked index 4672 ** key that omits the ROWID. Compare this key value against the index 4673 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4674 ** 4675 ** If the P1 index entry is greater than or equal to the key value 4676 ** then jump to P2. Otherwise fall through to the next instruction. 4677 ** 4678 ** If P5 is non-zero then the key value is increased by an epsilon 4679 ** prior to the comparison. This make the opcode work like IdxGT except 4680 ** that if the key from register P3 is a prefix of the key in the cursor, 4681 ** the result is false whereas it would be true with IdxGT. 4682 */ 4683 /* Opcode: IdxLT P1 P2 P3 P4 P5 4684 ** Synopsis: key=r[P3@P4] 4685 ** 4686 ** The P4 register values beginning with P3 form an unpacked index 4687 ** key that omits the ROWID. Compare this key value against the index 4688 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4689 ** 4690 ** If the P1 index entry is less than the key value then jump to P2. 4691 ** Otherwise fall through to the next instruction. 4692 ** 4693 ** If P5 is non-zero then the key value is increased by an epsilon prior 4694 ** to the comparison. This makes the opcode work like IdxLE. 4695 */ 4696 case OP_IdxLT: /* jump */ 4697 case OP_IdxGE: { /* jump */ 4698 VdbeCursor *pC; 4699 int res; 4700 UnpackedRecord r; 4701 4702 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4703 pC = p->apCsr[pOp->p1]; 4704 assert( pC!=0 ); 4705 assert( pC->isOrdered ); 4706 assert( pC->pCursor!=0); 4707 assert( pC->deferredMoveto==0 ); 4708 assert( pOp->p5==0 || pOp->p5==1 ); 4709 assert( pOp->p4type==P4_INT32 ); 4710 r.pKeyInfo = pC->pKeyInfo; 4711 r.nField = (u16)pOp->p4.i; 4712 if( pOp->p5 ){ 4713 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH; 4714 }else{ 4715 r.flags = UNPACKED_PREFIX_MATCH; 4716 } 4717 r.aMem = &aMem[pOp->p3]; 4718 #ifdef SQLITE_DEBUG 4719 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4720 #endif 4721 res = 0; /* Not needed. Only used to silence a warning. */ 4722 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4723 if( pOp->opcode==OP_IdxLT ){ 4724 res = -res; 4725 }else{ 4726 assert( pOp->opcode==OP_IdxGE ); 4727 res++; 4728 } 4729 if( res>0 ){ 4730 pc = pOp->p2 - 1 ; 4731 } 4732 break; 4733 } 4734 4735 /* Opcode: Destroy P1 P2 P3 * * 4736 ** 4737 ** Delete an entire database table or index whose root page in the database 4738 ** file is given by P1. 4739 ** 4740 ** The table being destroyed is in the main database file if P3==0. If 4741 ** P3==1 then the table to be clear is in the auxiliary database file 4742 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4743 ** 4744 ** If AUTOVACUUM is enabled then it is possible that another root page 4745 ** might be moved into the newly deleted root page in order to keep all 4746 ** root pages contiguous at the beginning of the database. The former 4747 ** value of the root page that moved - its value before the move occurred - 4748 ** is stored in register P2. If no page 4749 ** movement was required (because the table being dropped was already 4750 ** the last one in the database) then a zero is stored in register P2. 4751 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4752 ** 4753 ** See also: Clear 4754 */ 4755 case OP_Destroy: { /* out2-prerelease */ 4756 int iMoved; 4757 int iCnt; 4758 Vdbe *pVdbe; 4759 int iDb; 4760 4761 assert( p->readOnly==0 ); 4762 #ifndef SQLITE_OMIT_VIRTUALTABLE 4763 iCnt = 0; 4764 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4765 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 4766 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 4767 ){ 4768 iCnt++; 4769 } 4770 } 4771 #else 4772 iCnt = db->nVdbeRead; 4773 #endif 4774 pOut->flags = MEM_Null; 4775 if( iCnt>1 ){ 4776 rc = SQLITE_LOCKED; 4777 p->errorAction = OE_Abort; 4778 }else{ 4779 iDb = pOp->p3; 4780 assert( iCnt==1 ); 4781 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 4782 iMoved = 0; /* Not needed. Only to silence a warning. */ 4783 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4784 pOut->flags = MEM_Int; 4785 pOut->u.i = iMoved; 4786 #ifndef SQLITE_OMIT_AUTOVACUUM 4787 if( rc==SQLITE_OK && iMoved!=0 ){ 4788 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4789 /* All OP_Destroy operations occur on the same btree */ 4790 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4791 resetSchemaOnFault = iDb+1; 4792 } 4793 #endif 4794 } 4795 break; 4796 } 4797 4798 /* Opcode: Clear P1 P2 P3 4799 ** 4800 ** Delete all contents of the database table or index whose root page 4801 ** in the database file is given by P1. But, unlike Destroy, do not 4802 ** remove the table or index from the database file. 4803 ** 4804 ** The table being clear is in the main database file if P2==0. If 4805 ** P2==1 then the table to be clear is in the auxiliary database file 4806 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4807 ** 4808 ** If the P3 value is non-zero, then the table referred to must be an 4809 ** intkey table (an SQL table, not an index). In this case the row change 4810 ** count is incremented by the number of rows in the table being cleared. 4811 ** If P3 is greater than zero, then the value stored in register P3 is 4812 ** also incremented by the number of rows in the table being cleared. 4813 ** 4814 ** See also: Destroy 4815 */ 4816 case OP_Clear: { 4817 int nChange; 4818 4819 nChange = 0; 4820 assert( p->readOnly==0 ); 4821 assert( pOp->p1!=1 ); 4822 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); 4823 rc = sqlite3BtreeClearTable( 4824 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4825 ); 4826 if( pOp->p3 ){ 4827 p->nChange += nChange; 4828 if( pOp->p3>0 ){ 4829 assert( memIsValid(&aMem[pOp->p3]) ); 4830 memAboutToChange(p, &aMem[pOp->p3]); 4831 aMem[pOp->p3].u.i += nChange; 4832 } 4833 } 4834 break; 4835 } 4836 4837 /* Opcode: CreateTable P1 P2 * * * 4838 ** Synopsis: r[P2]=root iDb=P1 4839 ** 4840 ** Allocate a new table in the main database file if P1==0 or in the 4841 ** auxiliary database file if P1==1 or in an attached database if 4842 ** P1>1. Write the root page number of the new table into 4843 ** register P2 4844 ** 4845 ** The difference between a table and an index is this: A table must 4846 ** have a 4-byte integer key and can have arbitrary data. An index 4847 ** has an arbitrary key but no data. 4848 ** 4849 ** See also: CreateIndex 4850 */ 4851 /* Opcode: CreateIndex P1 P2 * * * 4852 ** Synopsis: r[P2]=root iDb=P1 4853 ** 4854 ** Allocate a new index in the main database file if P1==0 or in the 4855 ** auxiliary database file if P1==1 or in an attached database if 4856 ** P1>1. Write the root page number of the new table into 4857 ** register P2. 4858 ** 4859 ** See documentation on OP_CreateTable for additional information. 4860 */ 4861 case OP_CreateIndex: /* out2-prerelease */ 4862 case OP_CreateTable: { /* out2-prerelease */ 4863 int pgno; 4864 int flags; 4865 Db *pDb; 4866 4867 pgno = 0; 4868 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4869 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 4870 assert( p->readOnly==0 ); 4871 pDb = &db->aDb[pOp->p1]; 4872 assert( pDb->pBt!=0 ); 4873 if( pOp->opcode==OP_CreateTable ){ 4874 /* flags = BTREE_INTKEY; */ 4875 flags = BTREE_INTKEY; 4876 }else{ 4877 flags = BTREE_BLOBKEY; 4878 } 4879 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4880 pOut->u.i = pgno; 4881 break; 4882 } 4883 4884 /* Opcode: ParseSchema P1 * * P4 * 4885 ** 4886 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4887 ** that match the WHERE clause P4. 4888 ** 4889 ** This opcode invokes the parser to create a new virtual machine, 4890 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4891 */ 4892 case OP_ParseSchema: { 4893 int iDb; 4894 const char *zMaster; 4895 char *zSql; 4896 InitData initData; 4897 4898 /* Any prepared statement that invokes this opcode will hold mutexes 4899 ** on every btree. This is a prerequisite for invoking 4900 ** sqlite3InitCallback(). 4901 */ 4902 #ifdef SQLITE_DEBUG 4903 for(iDb=0; iDb<db->nDb; iDb++){ 4904 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4905 } 4906 #endif 4907 4908 iDb = pOp->p1; 4909 assert( iDb>=0 && iDb<db->nDb ); 4910 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 4911 /* Used to be a conditional */ { 4912 zMaster = SCHEMA_TABLE(iDb); 4913 initData.db = db; 4914 initData.iDb = pOp->p1; 4915 initData.pzErrMsg = &p->zErrMsg; 4916 zSql = sqlite3MPrintf(db, 4917 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 4918 db->aDb[iDb].zName, zMaster, pOp->p4.z); 4919 if( zSql==0 ){ 4920 rc = SQLITE_NOMEM; 4921 }else{ 4922 assert( db->init.busy==0 ); 4923 db->init.busy = 1; 4924 initData.rc = SQLITE_OK; 4925 assert( !db->mallocFailed ); 4926 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 4927 if( rc==SQLITE_OK ) rc = initData.rc; 4928 sqlite3DbFree(db, zSql); 4929 db->init.busy = 0; 4930 } 4931 } 4932 if( rc ) sqlite3ResetAllSchemasOfConnection(db); 4933 if( rc==SQLITE_NOMEM ){ 4934 goto no_mem; 4935 } 4936 break; 4937 } 4938 4939 #if !defined(SQLITE_OMIT_ANALYZE) 4940 /* Opcode: LoadAnalysis P1 * * * * 4941 ** 4942 ** Read the sqlite_stat1 table for database P1 and load the content 4943 ** of that table into the internal index hash table. This will cause 4944 ** the analysis to be used when preparing all subsequent queries. 4945 */ 4946 case OP_LoadAnalysis: { 4947 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4948 rc = sqlite3AnalysisLoad(db, pOp->p1); 4949 break; 4950 } 4951 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 4952 4953 /* Opcode: DropTable P1 * * P4 * 4954 ** 4955 ** Remove the internal (in-memory) data structures that describe 4956 ** the table named P4 in database P1. This is called after a table 4957 ** is dropped in order to keep the internal representation of the 4958 ** schema consistent with what is on disk. 4959 */ 4960 case OP_DropTable: { 4961 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 4962 break; 4963 } 4964 4965 /* Opcode: DropIndex P1 * * P4 * 4966 ** 4967 ** Remove the internal (in-memory) data structures that describe 4968 ** the index named P4 in database P1. This is called after an index 4969 ** is dropped in order to keep the internal representation of the 4970 ** schema consistent with what is on disk. 4971 */ 4972 case OP_DropIndex: { 4973 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 4974 break; 4975 } 4976 4977 /* Opcode: DropTrigger P1 * * P4 * 4978 ** 4979 ** Remove the internal (in-memory) data structures that describe 4980 ** the trigger named P4 in database P1. This is called after a trigger 4981 ** is dropped in order to keep the internal representation of the 4982 ** schema consistent with what is on disk. 4983 */ 4984 case OP_DropTrigger: { 4985 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 4986 break; 4987 } 4988 4989 4990 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 4991 /* Opcode: IntegrityCk P1 P2 P3 * P5 4992 ** 4993 ** Do an analysis of the currently open database. Store in 4994 ** register P1 the text of an error message describing any problems. 4995 ** If no problems are found, store a NULL in register P1. 4996 ** 4997 ** The register P3 contains the maximum number of allowed errors. 4998 ** At most reg(P3) errors will be reported. 4999 ** In other words, the analysis stops as soon as reg(P1) errors are 5000 ** seen. Reg(P1) is updated with the number of errors remaining. 5001 ** 5002 ** The root page numbers of all tables in the database are integer 5003 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 5004 ** total. 5005 ** 5006 ** If P5 is not zero, the check is done on the auxiliary database 5007 ** file, not the main database file. 5008 ** 5009 ** This opcode is used to implement the integrity_check pragma. 5010 */ 5011 case OP_IntegrityCk: { 5012 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5013 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5014 int j; /* Loop counter */ 5015 int nErr; /* Number of errors reported */ 5016 char *z; /* Text of the error report */ 5017 Mem *pnErr; /* Register keeping track of errors remaining */ 5018 5019 assert( p->bIsReader ); 5020 nRoot = pOp->p2; 5021 assert( nRoot>0 ); 5022 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 5023 if( aRoot==0 ) goto no_mem; 5024 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5025 pnErr = &aMem[pOp->p3]; 5026 assert( (pnErr->flags & MEM_Int)!=0 ); 5027 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5028 pIn1 = &aMem[pOp->p1]; 5029 for(j=0; j<nRoot; j++){ 5030 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 5031 } 5032 aRoot[j] = 0; 5033 assert( pOp->p5<db->nDb ); 5034 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); 5035 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5036 (int)pnErr->u.i, &nErr); 5037 sqlite3DbFree(db, aRoot); 5038 pnErr->u.i -= nErr; 5039 sqlite3VdbeMemSetNull(pIn1); 5040 if( nErr==0 ){ 5041 assert( z==0 ); 5042 }else if( z==0 ){ 5043 goto no_mem; 5044 }else{ 5045 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5046 } 5047 UPDATE_MAX_BLOBSIZE(pIn1); 5048 sqlite3VdbeChangeEncoding(pIn1, encoding); 5049 break; 5050 } 5051 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5052 5053 /* Opcode: RowSetAdd P1 P2 * * * 5054 ** Synopsis: rowset(P1)=r[P2] 5055 ** 5056 ** Insert the integer value held by register P2 into a boolean index 5057 ** held in register P1. 5058 ** 5059 ** An assertion fails if P2 is not an integer. 5060 */ 5061 case OP_RowSetAdd: { /* in1, in2 */ 5062 pIn1 = &aMem[pOp->p1]; 5063 pIn2 = &aMem[pOp->p2]; 5064 assert( (pIn2->flags & MEM_Int)!=0 ); 5065 if( (pIn1->flags & MEM_RowSet)==0 ){ 5066 sqlite3VdbeMemSetRowSet(pIn1); 5067 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5068 } 5069 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5070 break; 5071 } 5072 5073 /* Opcode: RowSetRead P1 P2 P3 * * 5074 ** Synopsis: r[P3]=rowset(P1) 5075 ** 5076 ** Extract the smallest value from boolean index P1 and put that value into 5077 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5078 ** unchanged and jump to instruction P2. 5079 */ 5080 case OP_RowSetRead: { /* jump, in1, out3 */ 5081 i64 val; 5082 5083 pIn1 = &aMem[pOp->p1]; 5084 if( (pIn1->flags & MEM_RowSet)==0 5085 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5086 ){ 5087 /* The boolean index is empty */ 5088 sqlite3VdbeMemSetNull(pIn1); 5089 pc = pOp->p2 - 1; 5090 }else{ 5091 /* A value was pulled from the index */ 5092 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5093 } 5094 goto check_for_interrupt; 5095 } 5096 5097 /* Opcode: RowSetTest P1 P2 P3 P4 5098 ** Synopsis: if r[P3] in rowset(P1) goto P2 5099 ** 5100 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5101 ** contains a RowSet object and that RowSet object contains 5102 ** the value held in P3, jump to register P2. Otherwise, insert the 5103 ** integer in P3 into the RowSet and continue on to the 5104 ** next opcode. 5105 ** 5106 ** The RowSet object is optimized for the case where successive sets 5107 ** of integers, where each set contains no duplicates. Each set 5108 ** of values is identified by a unique P4 value. The first set 5109 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5110 ** non-negative. For non-negative values of P4 only the lower 4 5111 ** bits are significant. 5112 ** 5113 ** This allows optimizations: (a) when P4==0 there is no need to test 5114 ** the rowset object for P3, as it is guaranteed not to contain it, 5115 ** (b) when P4==-1 there is no need to insert the value, as it will 5116 ** never be tested for, and (c) when a value that is part of set X is 5117 ** inserted, there is no need to search to see if the same value was 5118 ** previously inserted as part of set X (only if it was previously 5119 ** inserted as part of some other set). 5120 */ 5121 case OP_RowSetTest: { /* jump, in1, in3 */ 5122 int iSet; 5123 int exists; 5124 5125 pIn1 = &aMem[pOp->p1]; 5126 pIn3 = &aMem[pOp->p3]; 5127 iSet = pOp->p4.i; 5128 assert( pIn3->flags&MEM_Int ); 5129 5130 /* If there is anything other than a rowset object in memory cell P1, 5131 ** delete it now and initialize P1 with an empty rowset 5132 */ 5133 if( (pIn1->flags & MEM_RowSet)==0 ){ 5134 sqlite3VdbeMemSetRowSet(pIn1); 5135 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5136 } 5137 5138 assert( pOp->p4type==P4_INT32 ); 5139 assert( iSet==-1 || iSet>=0 ); 5140 if( iSet ){ 5141 exists = sqlite3RowSetTest(pIn1->u.pRowSet, 5142 (u8)(iSet>=0 ? iSet & 0xf : 0xff), 5143 pIn3->u.i); 5144 if( exists ){ 5145 pc = pOp->p2 - 1; 5146 break; 5147 } 5148 } 5149 if( iSet>=0 ){ 5150 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5151 } 5152 break; 5153 } 5154 5155 5156 #ifndef SQLITE_OMIT_TRIGGER 5157 5158 /* Opcode: Program P1 P2 P3 P4 * 5159 ** 5160 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5161 ** 5162 ** P1 contains the address of the memory cell that contains the first memory 5163 ** cell in an array of values used as arguments to the sub-program. P2 5164 ** contains the address to jump to if the sub-program throws an IGNORE 5165 ** exception using the RAISE() function. Register P3 contains the address 5166 ** of a memory cell in this (the parent) VM that is used to allocate the 5167 ** memory required by the sub-vdbe at runtime. 5168 ** 5169 ** P4 is a pointer to the VM containing the trigger program. 5170 */ 5171 case OP_Program: { /* jump */ 5172 int nMem; /* Number of memory registers for sub-program */ 5173 int nByte; /* Bytes of runtime space required for sub-program */ 5174 Mem *pRt; /* Register to allocate runtime space */ 5175 Mem *pMem; /* Used to iterate through memory cells */ 5176 Mem *pEnd; /* Last memory cell in new array */ 5177 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5178 SubProgram *pProgram; /* Sub-program to execute */ 5179 void *t; /* Token identifying trigger */ 5180 5181 pProgram = pOp->p4.pProgram; 5182 pRt = &aMem[pOp->p3]; 5183 assert( pProgram->nOp>0 ); 5184 5185 /* If the p5 flag is clear, then recursive invocation of triggers is 5186 ** disabled for backwards compatibility (p5 is set if this sub-program 5187 ** is really a trigger, not a foreign key action, and the flag set 5188 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5189 ** 5190 ** It is recursive invocation of triggers, at the SQL level, that is 5191 ** disabled. In some cases a single trigger may generate more than one 5192 ** SubProgram (if the trigger may be executed with more than one different 5193 ** ON CONFLICT algorithm). SubProgram structures associated with a 5194 ** single trigger all have the same value for the SubProgram.token 5195 ** variable. */ 5196 if( pOp->p5 ){ 5197 t = pProgram->token; 5198 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5199 if( pFrame ) break; 5200 } 5201 5202 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5203 rc = SQLITE_ERROR; 5204 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 5205 break; 5206 } 5207 5208 /* Register pRt is used to store the memory required to save the state 5209 ** of the current program, and the memory required at runtime to execute 5210 ** the trigger program. If this trigger has been fired before, then pRt 5211 ** is already allocated. Otherwise, it must be initialized. */ 5212 if( (pRt->flags&MEM_Frame)==0 ){ 5213 /* SubProgram.nMem is set to the number of memory cells used by the 5214 ** program stored in SubProgram.aOp. As well as these, one memory 5215 ** cell is required for each cursor used by the program. Set local 5216 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5217 */ 5218 nMem = pProgram->nMem + pProgram->nCsr; 5219 nByte = ROUND8(sizeof(VdbeFrame)) 5220 + nMem * sizeof(Mem) 5221 + pProgram->nCsr * sizeof(VdbeCursor *) 5222 + pProgram->nOnce * sizeof(u8); 5223 pFrame = sqlite3DbMallocZero(db, nByte); 5224 if( !pFrame ){ 5225 goto no_mem; 5226 } 5227 sqlite3VdbeMemRelease(pRt); 5228 pRt->flags = MEM_Frame; 5229 pRt->u.pFrame = pFrame; 5230 5231 pFrame->v = p; 5232 pFrame->nChildMem = nMem; 5233 pFrame->nChildCsr = pProgram->nCsr; 5234 pFrame->pc = pc; 5235 pFrame->aMem = p->aMem; 5236 pFrame->nMem = p->nMem; 5237 pFrame->apCsr = p->apCsr; 5238 pFrame->nCursor = p->nCursor; 5239 pFrame->aOp = p->aOp; 5240 pFrame->nOp = p->nOp; 5241 pFrame->token = pProgram->token; 5242 pFrame->aOnceFlag = p->aOnceFlag; 5243 pFrame->nOnceFlag = p->nOnceFlag; 5244 5245 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5246 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5247 pMem->flags = MEM_Invalid; 5248 pMem->db = db; 5249 } 5250 }else{ 5251 pFrame = pRt->u.pFrame; 5252 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 5253 assert( pProgram->nCsr==pFrame->nChildCsr ); 5254 assert( pc==pFrame->pc ); 5255 } 5256 5257 p->nFrame++; 5258 pFrame->pParent = p->pFrame; 5259 pFrame->lastRowid = lastRowid; 5260 pFrame->nChange = p->nChange; 5261 p->nChange = 0; 5262 p->pFrame = pFrame; 5263 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 5264 p->nMem = pFrame->nChildMem; 5265 p->nCursor = (u16)pFrame->nChildCsr; 5266 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5267 p->aOp = aOp = pProgram->aOp; 5268 p->nOp = pProgram->nOp; 5269 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; 5270 p->nOnceFlag = pProgram->nOnce; 5271 pc = -1; 5272 memset(p->aOnceFlag, 0, p->nOnceFlag); 5273 5274 break; 5275 } 5276 5277 /* Opcode: Param P1 P2 * * * 5278 ** 5279 ** This opcode is only ever present in sub-programs called via the 5280 ** OP_Program instruction. Copy a value currently stored in a memory 5281 ** cell of the calling (parent) frame to cell P2 in the current frames 5282 ** address space. This is used by trigger programs to access the new.* 5283 ** and old.* values. 5284 ** 5285 ** The address of the cell in the parent frame is determined by adding 5286 ** the value of the P1 argument to the value of the P1 argument to the 5287 ** calling OP_Program instruction. 5288 */ 5289 case OP_Param: { /* out2-prerelease */ 5290 VdbeFrame *pFrame; 5291 Mem *pIn; 5292 pFrame = p->pFrame; 5293 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5294 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5295 break; 5296 } 5297 5298 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5299 5300 #ifndef SQLITE_OMIT_FOREIGN_KEY 5301 /* Opcode: FkCounter P1 P2 * * * 5302 ** Synopsis: fkctr[P1]+=P2 5303 ** 5304 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5305 ** If P1 is non-zero, the database constraint counter is incremented 5306 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5307 ** statement counter is incremented (immediate foreign key constraints). 5308 */ 5309 case OP_FkCounter: { 5310 if( db->flags & SQLITE_DeferFKs ){ 5311 db->nDeferredImmCons += pOp->p2; 5312 }else if( pOp->p1 ){ 5313 db->nDeferredCons += pOp->p2; 5314 }else{ 5315 p->nFkConstraint += pOp->p2; 5316 } 5317 break; 5318 } 5319 5320 /* Opcode: FkIfZero P1 P2 * * * 5321 ** Synopsis: if fkctr[P1]==0 goto P2 5322 ** 5323 ** This opcode tests if a foreign key constraint-counter is currently zero. 5324 ** If so, jump to instruction P2. Otherwise, fall through to the next 5325 ** instruction. 5326 ** 5327 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5328 ** is zero (the one that counts deferred constraint violations). If P1 is 5329 ** zero, the jump is taken if the statement constraint-counter is zero 5330 ** (immediate foreign key constraint violations). 5331 */ 5332 case OP_FkIfZero: { /* jump */ 5333 if( pOp->p1 ){ 5334 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5335 }else{ 5336 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; 5337 } 5338 break; 5339 } 5340 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5341 5342 #ifndef SQLITE_OMIT_AUTOINCREMENT 5343 /* Opcode: MemMax P1 P2 * * * 5344 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5345 ** 5346 ** P1 is a register in the root frame of this VM (the root frame is 5347 ** different from the current frame if this instruction is being executed 5348 ** within a sub-program). Set the value of register P1 to the maximum of 5349 ** its current value and the value in register P2. 5350 ** 5351 ** This instruction throws an error if the memory cell is not initially 5352 ** an integer. 5353 */ 5354 case OP_MemMax: { /* in2 */ 5355 VdbeFrame *pFrame; 5356 if( p->pFrame ){ 5357 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5358 pIn1 = &pFrame->aMem[pOp->p1]; 5359 }else{ 5360 pIn1 = &aMem[pOp->p1]; 5361 } 5362 assert( memIsValid(pIn1) ); 5363 sqlite3VdbeMemIntegerify(pIn1); 5364 pIn2 = &aMem[pOp->p2]; 5365 sqlite3VdbeMemIntegerify(pIn2); 5366 if( pIn1->u.i<pIn2->u.i){ 5367 pIn1->u.i = pIn2->u.i; 5368 } 5369 break; 5370 } 5371 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5372 5373 /* Opcode: IfPos P1 P2 * * * 5374 ** Synopsis: if r[P1]>0 goto P2 5375 ** 5376 ** If the value of register P1 is 1 or greater, jump to P2. 5377 ** 5378 ** It is illegal to use this instruction on a register that does 5379 ** not contain an integer. An assertion fault will result if you try. 5380 */ 5381 case OP_IfPos: { /* jump, in1 */ 5382 pIn1 = &aMem[pOp->p1]; 5383 assert( pIn1->flags&MEM_Int ); 5384 if( pIn1->u.i>0 ){ 5385 pc = pOp->p2 - 1; 5386 } 5387 break; 5388 } 5389 5390 /* Opcode: IfNeg P1 P2 * * * 5391 ** Synopsis: if r[P1]<0 goto P2 5392 ** 5393 ** If the value of register P1 is less than zero, jump to P2. 5394 ** 5395 ** It is illegal to use this instruction on a register that does 5396 ** not contain an integer. An assertion fault will result if you try. 5397 */ 5398 case OP_IfNeg: { /* jump, in1 */ 5399 pIn1 = &aMem[pOp->p1]; 5400 assert( pIn1->flags&MEM_Int ); 5401 if( pIn1->u.i<0 ){ 5402 pc = pOp->p2 - 1; 5403 } 5404 break; 5405 } 5406 5407 /* Opcode: IfZero P1 P2 P3 * * 5408 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 5409 ** 5410 ** The register P1 must contain an integer. Add literal P3 to the 5411 ** value in register P1. If the result is exactly 0, jump to P2. 5412 ** 5413 ** It is illegal to use this instruction on a register that does 5414 ** not contain an integer. An assertion fault will result if you try. 5415 */ 5416 case OP_IfZero: { /* jump, in1 */ 5417 pIn1 = &aMem[pOp->p1]; 5418 assert( pIn1->flags&MEM_Int ); 5419 pIn1->u.i += pOp->p3; 5420 if( pIn1->u.i==0 ){ 5421 pc = pOp->p2 - 1; 5422 } 5423 break; 5424 } 5425 5426 /* Opcode: AggStep * P2 P3 P4 P5 5427 ** Synopsis: accum=r[P3] step(r[P2@P5]) 5428 ** 5429 ** Execute the step function for an aggregate. The 5430 ** function has P5 arguments. P4 is a pointer to the FuncDef 5431 ** structure that specifies the function. Use register 5432 ** P3 as the accumulator. 5433 ** 5434 ** The P5 arguments are taken from register P2 and its 5435 ** successors. 5436 */ 5437 case OP_AggStep: { 5438 int n; 5439 int i; 5440 Mem *pMem; 5441 Mem *pRec; 5442 sqlite3_context ctx; 5443 sqlite3_value **apVal; 5444 5445 n = pOp->p5; 5446 assert( n>=0 ); 5447 pRec = &aMem[pOp->p2]; 5448 apVal = p->apArg; 5449 assert( apVal || n==0 ); 5450 for(i=0; i<n; i++, pRec++){ 5451 assert( memIsValid(pRec) ); 5452 apVal[i] = pRec; 5453 memAboutToChange(p, pRec); 5454 sqlite3VdbeMemStoreType(pRec); 5455 } 5456 ctx.pFunc = pOp->p4.pFunc; 5457 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5458 ctx.pMem = pMem = &aMem[pOp->p3]; 5459 pMem->n++; 5460 ctx.s.flags = MEM_Null; 5461 ctx.s.z = 0; 5462 ctx.s.zMalloc = 0; 5463 ctx.s.xDel = 0; 5464 ctx.s.db = db; 5465 ctx.isError = 0; 5466 ctx.pColl = 0; 5467 ctx.skipFlag = 0; 5468 if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5469 assert( pOp>p->aOp ); 5470 assert( pOp[-1].p4type==P4_COLLSEQ ); 5471 assert( pOp[-1].opcode==OP_CollSeq ); 5472 ctx.pColl = pOp[-1].p4.pColl; 5473 } 5474 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5475 if( ctx.isError ){ 5476 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5477 rc = ctx.isError; 5478 } 5479 if( ctx.skipFlag ){ 5480 assert( pOp[-1].opcode==OP_CollSeq ); 5481 i = pOp[-1].p1; 5482 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 5483 } 5484 5485 sqlite3VdbeMemRelease(&ctx.s); 5486 5487 break; 5488 } 5489 5490 /* Opcode: AggFinal P1 P2 * P4 * 5491 ** Synopsis: accum=r[P1] N=P2 5492 ** 5493 ** Execute the finalizer function for an aggregate. P1 is 5494 ** the memory location that is the accumulator for the aggregate. 5495 ** 5496 ** P2 is the number of arguments that the step function takes and 5497 ** P4 is a pointer to the FuncDef for this function. The P2 5498 ** argument is not used by this opcode. It is only there to disambiguate 5499 ** functions that can take varying numbers of arguments. The 5500 ** P4 argument is only needed for the degenerate case where 5501 ** the step function was not previously called. 5502 */ 5503 case OP_AggFinal: { 5504 Mem *pMem; 5505 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); 5506 pMem = &aMem[pOp->p1]; 5507 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5508 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5509 if( rc ){ 5510 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5511 } 5512 sqlite3VdbeChangeEncoding(pMem, encoding); 5513 UPDATE_MAX_BLOBSIZE(pMem); 5514 if( sqlite3VdbeMemTooBig(pMem) ){ 5515 goto too_big; 5516 } 5517 break; 5518 } 5519 5520 #ifndef SQLITE_OMIT_WAL 5521 /* Opcode: Checkpoint P1 P2 P3 * * 5522 ** 5523 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5524 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5525 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5526 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5527 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5528 ** in the WAL that have been checkpointed after the checkpoint 5529 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5530 ** mem[P3+2] are initialized to -1. 5531 */ 5532 case OP_Checkpoint: { 5533 int i; /* Loop counter */ 5534 int aRes[3]; /* Results */ 5535 Mem *pMem; /* Write results here */ 5536 5537 assert( p->readOnly==0 ); 5538 aRes[0] = 0; 5539 aRes[1] = aRes[2] = -1; 5540 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5541 || pOp->p2==SQLITE_CHECKPOINT_FULL 5542 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5543 ); 5544 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5545 if( rc==SQLITE_BUSY ){ 5546 rc = SQLITE_OK; 5547 aRes[0] = 1; 5548 } 5549 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5550 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5551 } 5552 break; 5553 }; 5554 #endif 5555 5556 #ifndef SQLITE_OMIT_PRAGMA 5557 /* Opcode: JournalMode P1 P2 P3 * P5 5558 ** 5559 ** Change the journal mode of database P1 to P3. P3 must be one of the 5560 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5561 ** modes (delete, truncate, persist, off and memory), this is a simple 5562 ** operation. No IO is required. 5563 ** 5564 ** If changing into or out of WAL mode the procedure is more complicated. 5565 ** 5566 ** Write a string containing the final journal-mode to register P2. 5567 */ 5568 case OP_JournalMode: { /* out2-prerelease */ 5569 Btree *pBt; /* Btree to change journal mode of */ 5570 Pager *pPager; /* Pager associated with pBt */ 5571 int eNew; /* New journal mode */ 5572 int eOld; /* The old journal mode */ 5573 #ifndef SQLITE_OMIT_WAL 5574 const char *zFilename; /* Name of database file for pPager */ 5575 #endif 5576 5577 eNew = pOp->p3; 5578 assert( eNew==PAGER_JOURNALMODE_DELETE 5579 || eNew==PAGER_JOURNALMODE_TRUNCATE 5580 || eNew==PAGER_JOURNALMODE_PERSIST 5581 || eNew==PAGER_JOURNALMODE_OFF 5582 || eNew==PAGER_JOURNALMODE_MEMORY 5583 || eNew==PAGER_JOURNALMODE_WAL 5584 || eNew==PAGER_JOURNALMODE_QUERY 5585 ); 5586 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5587 assert( p->readOnly==0 ); 5588 5589 pBt = db->aDb[pOp->p1].pBt; 5590 pPager = sqlite3BtreePager(pBt); 5591 eOld = sqlite3PagerGetJournalMode(pPager); 5592 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5593 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5594 5595 #ifndef SQLITE_OMIT_WAL 5596 zFilename = sqlite3PagerFilename(pPager, 1); 5597 5598 /* Do not allow a transition to journal_mode=WAL for a database 5599 ** in temporary storage or if the VFS does not support shared memory 5600 */ 5601 if( eNew==PAGER_JOURNALMODE_WAL 5602 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 5603 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5604 ){ 5605 eNew = eOld; 5606 } 5607 5608 if( (eNew!=eOld) 5609 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5610 ){ 5611 if( !db->autoCommit || db->nVdbeRead>1 ){ 5612 rc = SQLITE_ERROR; 5613 sqlite3SetString(&p->zErrMsg, db, 5614 "cannot change %s wal mode from within a transaction", 5615 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5616 ); 5617 break; 5618 }else{ 5619 5620 if( eOld==PAGER_JOURNALMODE_WAL ){ 5621 /* If leaving WAL mode, close the log file. If successful, the call 5622 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5623 ** file. An EXCLUSIVE lock may still be held on the database file 5624 ** after a successful return. 5625 */ 5626 rc = sqlite3PagerCloseWal(pPager); 5627 if( rc==SQLITE_OK ){ 5628 sqlite3PagerSetJournalMode(pPager, eNew); 5629 } 5630 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5631 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5632 ** as an intermediate */ 5633 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5634 } 5635 5636 /* Open a transaction on the database file. Regardless of the journal 5637 ** mode, this transaction always uses a rollback journal. 5638 */ 5639 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5640 if( rc==SQLITE_OK ){ 5641 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5642 } 5643 } 5644 } 5645 #endif /* ifndef SQLITE_OMIT_WAL */ 5646 5647 if( rc ){ 5648 eNew = eOld; 5649 } 5650 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5651 5652 pOut = &aMem[pOp->p2]; 5653 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5654 pOut->z = (char *)sqlite3JournalModename(eNew); 5655 pOut->n = sqlite3Strlen30(pOut->z); 5656 pOut->enc = SQLITE_UTF8; 5657 sqlite3VdbeChangeEncoding(pOut, encoding); 5658 break; 5659 }; 5660 #endif /* SQLITE_OMIT_PRAGMA */ 5661 5662 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5663 /* Opcode: Vacuum * * * * * 5664 ** 5665 ** Vacuum the entire database. This opcode will cause other virtual 5666 ** machines to be created and run. It may not be called from within 5667 ** a transaction. 5668 */ 5669 case OP_Vacuum: { 5670 assert( p->readOnly==0 ); 5671 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5672 break; 5673 } 5674 #endif 5675 5676 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5677 /* Opcode: IncrVacuum P1 P2 * * * 5678 ** 5679 ** Perform a single step of the incremental vacuum procedure on 5680 ** the P1 database. If the vacuum has finished, jump to instruction 5681 ** P2. Otherwise, fall through to the next instruction. 5682 */ 5683 case OP_IncrVacuum: { /* jump */ 5684 Btree *pBt; 5685 5686 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5687 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 5688 assert( p->readOnly==0 ); 5689 pBt = db->aDb[pOp->p1].pBt; 5690 rc = sqlite3BtreeIncrVacuum(pBt); 5691 if( rc==SQLITE_DONE ){ 5692 pc = pOp->p2 - 1; 5693 rc = SQLITE_OK; 5694 } 5695 break; 5696 } 5697 #endif 5698 5699 /* Opcode: Expire P1 * * * * 5700 ** 5701 ** Cause precompiled statements to become expired. An expired statement 5702 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 5703 ** (via sqlite3_step()). 5704 ** 5705 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5706 ** then only the currently executing statement is affected. 5707 */ 5708 case OP_Expire: { 5709 if( !pOp->p1 ){ 5710 sqlite3ExpirePreparedStatements(db); 5711 }else{ 5712 p->expired = 1; 5713 } 5714 break; 5715 } 5716 5717 #ifndef SQLITE_OMIT_SHARED_CACHE 5718 /* Opcode: TableLock P1 P2 P3 P4 * 5719 ** Synopsis: iDb=P1 root=P2 write=P3 5720 ** 5721 ** Obtain a lock on a particular table. This instruction is only used when 5722 ** the shared-cache feature is enabled. 5723 ** 5724 ** P1 is the index of the database in sqlite3.aDb[] of the database 5725 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5726 ** a write lock if P3==1. 5727 ** 5728 ** P2 contains the root-page of the table to lock. 5729 ** 5730 ** P4 contains a pointer to the name of the table being locked. This is only 5731 ** used to generate an error message if the lock cannot be obtained. 5732 */ 5733 case OP_TableLock: { 5734 u8 isWriteLock = (u8)pOp->p3; 5735 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5736 int p1 = pOp->p1; 5737 assert( p1>=0 && p1<db->nDb ); 5738 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); 5739 assert( isWriteLock==0 || isWriteLock==1 ); 5740 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5741 if( (rc&0xFF)==SQLITE_LOCKED ){ 5742 const char *z = pOp->p4.z; 5743 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5744 } 5745 } 5746 break; 5747 } 5748 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5749 5750 #ifndef SQLITE_OMIT_VIRTUALTABLE 5751 /* Opcode: VBegin * * * P4 * 5752 ** 5753 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5754 ** xBegin method for that table. 5755 ** 5756 ** Also, whether or not P4 is set, check that this is not being called from 5757 ** within a callback to a virtual table xSync() method. If it is, the error 5758 ** code will be set to SQLITE_LOCKED. 5759 */ 5760 case OP_VBegin: { 5761 VTable *pVTab; 5762 pVTab = pOp->p4.pVtab; 5763 rc = sqlite3VtabBegin(db, pVTab); 5764 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 5765 break; 5766 } 5767 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5768 5769 #ifndef SQLITE_OMIT_VIRTUALTABLE 5770 /* Opcode: VCreate P1 * * P4 * 5771 ** 5772 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5773 ** for that table. 5774 */ 5775 case OP_VCreate: { 5776 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5777 break; 5778 } 5779 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5780 5781 #ifndef SQLITE_OMIT_VIRTUALTABLE 5782 /* Opcode: VDestroy P1 * * P4 * 5783 ** 5784 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5785 ** of that table. 5786 */ 5787 case OP_VDestroy: { 5788 p->inVtabMethod = 2; 5789 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5790 p->inVtabMethod = 0; 5791 break; 5792 } 5793 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5794 5795 #ifndef SQLITE_OMIT_VIRTUALTABLE 5796 /* Opcode: VOpen P1 * * P4 * 5797 ** 5798 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5799 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5800 ** table and stores that cursor in P1. 5801 */ 5802 case OP_VOpen: { 5803 VdbeCursor *pCur; 5804 sqlite3_vtab_cursor *pVtabCursor; 5805 sqlite3_vtab *pVtab; 5806 sqlite3_module *pModule; 5807 5808 assert( p->bIsReader ); 5809 pCur = 0; 5810 pVtabCursor = 0; 5811 pVtab = pOp->p4.pVtab->pVtab; 5812 pModule = (sqlite3_module *)pVtab->pModule; 5813 assert(pVtab && pModule); 5814 rc = pModule->xOpen(pVtab, &pVtabCursor); 5815 sqlite3VtabImportErrmsg(p, pVtab); 5816 if( SQLITE_OK==rc ){ 5817 /* Initialize sqlite3_vtab_cursor base class */ 5818 pVtabCursor->pVtab = pVtab; 5819 5820 /* Initialize vdbe cursor object */ 5821 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5822 if( pCur ){ 5823 pCur->pVtabCursor = pVtabCursor; 5824 }else{ 5825 db->mallocFailed = 1; 5826 pModule->xClose(pVtabCursor); 5827 } 5828 } 5829 break; 5830 } 5831 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5832 5833 #ifndef SQLITE_OMIT_VIRTUALTABLE 5834 /* Opcode: VFilter P1 P2 P3 P4 * 5835 ** Synopsis: iPlan=r[P3] zPlan='P4' 5836 ** 5837 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5838 ** the filtered result set is empty. 5839 ** 5840 ** P4 is either NULL or a string that was generated by the xBestIndex 5841 ** method of the module. The interpretation of the P4 string is left 5842 ** to the module implementation. 5843 ** 5844 ** This opcode invokes the xFilter method on the virtual table specified 5845 ** by P1. The integer query plan parameter to xFilter is stored in register 5846 ** P3. Register P3+1 stores the argc parameter to be passed to the 5847 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5848 ** additional parameters which are passed to 5849 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5850 ** 5851 ** A jump is made to P2 if the result set after filtering would be empty. 5852 */ 5853 case OP_VFilter: { /* jump */ 5854 int nArg; 5855 int iQuery; 5856 const sqlite3_module *pModule; 5857 Mem *pQuery; 5858 Mem *pArgc; 5859 sqlite3_vtab_cursor *pVtabCursor; 5860 sqlite3_vtab *pVtab; 5861 VdbeCursor *pCur; 5862 int res; 5863 int i; 5864 Mem **apArg; 5865 5866 pQuery = &aMem[pOp->p3]; 5867 pArgc = &pQuery[1]; 5868 pCur = p->apCsr[pOp->p1]; 5869 assert( memIsValid(pQuery) ); 5870 REGISTER_TRACE(pOp->p3, pQuery); 5871 assert( pCur->pVtabCursor ); 5872 pVtabCursor = pCur->pVtabCursor; 5873 pVtab = pVtabCursor->pVtab; 5874 pModule = pVtab->pModule; 5875 5876 /* Grab the index number and argc parameters */ 5877 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5878 nArg = (int)pArgc->u.i; 5879 iQuery = (int)pQuery->u.i; 5880 5881 /* Invoke the xFilter method */ 5882 { 5883 res = 0; 5884 apArg = p->apArg; 5885 for(i = 0; i<nArg; i++){ 5886 apArg[i] = &pArgc[i+1]; 5887 sqlite3VdbeMemStoreType(apArg[i]); 5888 } 5889 5890 p->inVtabMethod = 1; 5891 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5892 p->inVtabMethod = 0; 5893 sqlite3VtabImportErrmsg(p, pVtab); 5894 if( rc==SQLITE_OK ){ 5895 res = pModule->xEof(pVtabCursor); 5896 } 5897 5898 if( res ){ 5899 pc = pOp->p2 - 1; 5900 } 5901 } 5902 pCur->nullRow = 0; 5903 5904 break; 5905 } 5906 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5907 5908 #ifndef SQLITE_OMIT_VIRTUALTABLE 5909 /* Opcode: VColumn P1 P2 P3 * * 5910 ** Synopsis: r[P3]=vcolumn(P2) 5911 ** 5912 ** Store the value of the P2-th column of 5913 ** the row of the virtual-table that the 5914 ** P1 cursor is pointing to into register P3. 5915 */ 5916 case OP_VColumn: { 5917 sqlite3_vtab *pVtab; 5918 const sqlite3_module *pModule; 5919 Mem *pDest; 5920 sqlite3_context sContext; 5921 5922 VdbeCursor *pCur = p->apCsr[pOp->p1]; 5923 assert( pCur->pVtabCursor ); 5924 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); 5925 pDest = &aMem[pOp->p3]; 5926 memAboutToChange(p, pDest); 5927 if( pCur->nullRow ){ 5928 sqlite3VdbeMemSetNull(pDest); 5929 break; 5930 } 5931 pVtab = pCur->pVtabCursor->pVtab; 5932 pModule = pVtab->pModule; 5933 assert( pModule->xColumn ); 5934 memset(&sContext, 0, sizeof(sContext)); 5935 5936 /* The output cell may already have a buffer allocated. Move 5937 ** the current contents to sContext.s so in case the user-function 5938 ** can use the already allocated buffer instead of allocating a 5939 ** new one. 5940 */ 5941 sqlite3VdbeMemMove(&sContext.s, pDest); 5942 MemSetTypeFlag(&sContext.s, MEM_Null); 5943 5944 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 5945 sqlite3VtabImportErrmsg(p, pVtab); 5946 if( sContext.isError ){ 5947 rc = sContext.isError; 5948 } 5949 5950 /* Copy the result of the function to the P3 register. We 5951 ** do this regardless of whether or not an error occurred to ensure any 5952 ** dynamic allocation in sContext.s (a Mem struct) is released. 5953 */ 5954 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 5955 sqlite3VdbeMemMove(pDest, &sContext.s); 5956 REGISTER_TRACE(pOp->p3, pDest); 5957 UPDATE_MAX_BLOBSIZE(pDest); 5958 5959 if( sqlite3VdbeMemTooBig(pDest) ){ 5960 goto too_big; 5961 } 5962 break; 5963 } 5964 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5965 5966 #ifndef SQLITE_OMIT_VIRTUALTABLE 5967 /* Opcode: VNext P1 P2 * * * 5968 ** 5969 ** Advance virtual table P1 to the next row in its result set and 5970 ** jump to instruction P2. Or, if the virtual table has reached 5971 ** the end of its result set, then fall through to the next instruction. 5972 */ 5973 case OP_VNext: { /* jump */ 5974 sqlite3_vtab *pVtab; 5975 const sqlite3_module *pModule; 5976 int res; 5977 VdbeCursor *pCur; 5978 5979 res = 0; 5980 pCur = p->apCsr[pOp->p1]; 5981 assert( pCur->pVtabCursor ); 5982 if( pCur->nullRow ){ 5983 break; 5984 } 5985 pVtab = pCur->pVtabCursor->pVtab; 5986 pModule = pVtab->pModule; 5987 assert( pModule->xNext ); 5988 5989 /* Invoke the xNext() method of the module. There is no way for the 5990 ** underlying implementation to return an error if one occurs during 5991 ** xNext(). Instead, if an error occurs, true is returned (indicating that 5992 ** data is available) and the error code returned when xColumn or 5993 ** some other method is next invoked on the save virtual table cursor. 5994 */ 5995 p->inVtabMethod = 1; 5996 rc = pModule->xNext(pCur->pVtabCursor); 5997 p->inVtabMethod = 0; 5998 sqlite3VtabImportErrmsg(p, pVtab); 5999 if( rc==SQLITE_OK ){ 6000 res = pModule->xEof(pCur->pVtabCursor); 6001 } 6002 6003 if( !res ){ 6004 /* If there is data, jump to P2 */ 6005 pc = pOp->p2 - 1; 6006 } 6007 goto check_for_interrupt; 6008 } 6009 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6010 6011 #ifndef SQLITE_OMIT_VIRTUALTABLE 6012 /* Opcode: VRename P1 * * P4 * 6013 ** 6014 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6015 ** This opcode invokes the corresponding xRename method. The value 6016 ** in register P1 is passed as the zName argument to the xRename method. 6017 */ 6018 case OP_VRename: { 6019 sqlite3_vtab *pVtab; 6020 Mem *pName; 6021 6022 pVtab = pOp->p4.pVtab->pVtab; 6023 pName = &aMem[pOp->p1]; 6024 assert( pVtab->pModule->xRename ); 6025 assert( memIsValid(pName) ); 6026 assert( p->readOnly==0 ); 6027 REGISTER_TRACE(pOp->p1, pName); 6028 assert( pName->flags & MEM_Str ); 6029 testcase( pName->enc==SQLITE_UTF8 ); 6030 testcase( pName->enc==SQLITE_UTF16BE ); 6031 testcase( pName->enc==SQLITE_UTF16LE ); 6032 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6033 if( rc==SQLITE_OK ){ 6034 rc = pVtab->pModule->xRename(pVtab, pName->z); 6035 sqlite3VtabImportErrmsg(p, pVtab); 6036 p->expired = 0; 6037 } 6038 break; 6039 } 6040 #endif 6041 6042 #ifndef SQLITE_OMIT_VIRTUALTABLE 6043 /* Opcode: VUpdate P1 P2 P3 P4 * 6044 ** Synopsis: data=r[P3@P2] 6045 ** 6046 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6047 ** This opcode invokes the corresponding xUpdate method. P2 values 6048 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6049 ** invocation. The value in register (P3+P2-1) corresponds to the 6050 ** p2th element of the argv array passed to xUpdate. 6051 ** 6052 ** The xUpdate method will do a DELETE or an INSERT or both. 6053 ** The argv[0] element (which corresponds to memory cell P3) 6054 ** is the rowid of a row to delete. If argv[0] is NULL then no 6055 ** deletion occurs. The argv[1] element is the rowid of the new 6056 ** row. This can be NULL to have the virtual table select the new 6057 ** rowid for itself. The subsequent elements in the array are 6058 ** the values of columns in the new row. 6059 ** 6060 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6061 ** a row to delete. 6062 ** 6063 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6064 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6065 ** is set to the value of the rowid for the row just inserted. 6066 */ 6067 case OP_VUpdate: { 6068 sqlite3_vtab *pVtab; 6069 sqlite3_module *pModule; 6070 int nArg; 6071 int i; 6072 sqlite_int64 rowid; 6073 Mem **apArg; 6074 Mem *pX; 6075 6076 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6077 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6078 ); 6079 assert( p->readOnly==0 ); 6080 pVtab = pOp->p4.pVtab->pVtab; 6081 pModule = (sqlite3_module *)pVtab->pModule; 6082 nArg = pOp->p2; 6083 assert( pOp->p4type==P4_VTAB ); 6084 if( ALWAYS(pModule->xUpdate) ){ 6085 u8 vtabOnConflict = db->vtabOnConflict; 6086 apArg = p->apArg; 6087 pX = &aMem[pOp->p3]; 6088 for(i=0; i<nArg; i++){ 6089 assert( memIsValid(pX) ); 6090 memAboutToChange(p, pX); 6091 sqlite3VdbeMemStoreType(pX); 6092 apArg[i] = pX; 6093 pX++; 6094 } 6095 db->vtabOnConflict = pOp->p5; 6096 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6097 db->vtabOnConflict = vtabOnConflict; 6098 sqlite3VtabImportErrmsg(p, pVtab); 6099 if( rc==SQLITE_OK && pOp->p1 ){ 6100 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6101 db->lastRowid = lastRowid = rowid; 6102 } 6103 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6104 if( pOp->p5==OE_Ignore ){ 6105 rc = SQLITE_OK; 6106 }else{ 6107 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6108 } 6109 }else{ 6110 p->nChange++; 6111 } 6112 } 6113 break; 6114 } 6115 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6116 6117 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6118 /* Opcode: Pagecount P1 P2 * * * 6119 ** 6120 ** Write the current number of pages in database P1 to memory cell P2. 6121 */ 6122 case OP_Pagecount: { /* out2-prerelease */ 6123 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6124 break; 6125 } 6126 #endif 6127 6128 6129 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6130 /* Opcode: MaxPgcnt P1 P2 P3 * * 6131 ** 6132 ** Try to set the maximum page count for database P1 to the value in P3. 6133 ** Do not let the maximum page count fall below the current page count and 6134 ** do not change the maximum page count value if P3==0. 6135 ** 6136 ** Store the maximum page count after the change in register P2. 6137 */ 6138 case OP_MaxPgcnt: { /* out2-prerelease */ 6139 unsigned int newMax; 6140 Btree *pBt; 6141 6142 pBt = db->aDb[pOp->p1].pBt; 6143 newMax = 0; 6144 if( pOp->p3 ){ 6145 newMax = sqlite3BtreeLastPage(pBt); 6146 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6147 } 6148 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6149 break; 6150 } 6151 #endif 6152 6153 6154 #ifndef SQLITE_OMIT_TRACE 6155 /* Opcode: Trace * * * P4 * 6156 ** 6157 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6158 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6159 */ 6160 case OP_Trace: { 6161 char *zTrace; 6162 char *z; 6163 6164 if( db->xTrace 6165 && !p->doingRerun 6166 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6167 ){ 6168 z = sqlite3VdbeExpandSql(p, zTrace); 6169 db->xTrace(db->pTraceArg, z); 6170 sqlite3DbFree(db, z); 6171 } 6172 #ifdef SQLITE_USE_FCNTL_TRACE 6173 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6174 if( zTrace ){ 6175 int i; 6176 for(i=0; i<db->nDb; i++){ 6177 if( MASKBIT(i) & p->btreeMask)==0 ) continue; 6178 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); 6179 } 6180 } 6181 #endif /* SQLITE_USE_FCNTL_TRACE */ 6182 #ifdef SQLITE_DEBUG 6183 if( (db->flags & SQLITE_SqlTrace)!=0 6184 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6185 ){ 6186 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6187 } 6188 #endif /* SQLITE_DEBUG */ 6189 break; 6190 } 6191 #endif 6192 6193 6194 /* Opcode: Noop * * * * * 6195 ** 6196 ** Do nothing. This instruction is often useful as a jump 6197 ** destination. 6198 */ 6199 /* 6200 ** The magic Explain opcode are only inserted when explain==2 (which 6201 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6202 ** This opcode records information from the optimizer. It is the 6203 ** the same as a no-op. This opcodesnever appears in a real VM program. 6204 */ 6205 default: { /* This is really OP_Noop and OP_Explain */ 6206 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6207 break; 6208 } 6209 6210 /***************************************************************************** 6211 ** The cases of the switch statement above this line should all be indented 6212 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6213 ** readability. From this point on down, the normal indentation rules are 6214 ** restored. 6215 *****************************************************************************/ 6216 } 6217 6218 #ifdef VDBE_PROFILE 6219 { 6220 u64 elapsed = sqlite3Hwtime() - start; 6221 pOp->cycles += elapsed; 6222 pOp->cnt++; 6223 #if 0 6224 fprintf(stdout, "%10llu ", elapsed); 6225 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); 6226 #endif 6227 } 6228 #endif 6229 6230 /* The following code adds nothing to the actual functionality 6231 ** of the program. It is only here for testing and debugging. 6232 ** On the other hand, it does burn CPU cycles every time through 6233 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6234 */ 6235 #ifndef NDEBUG 6236 assert( pc>=-1 && pc<p->nOp ); 6237 6238 #ifdef SQLITE_DEBUG 6239 if( db->flags & SQLITE_VdbeTrace ){ 6240 if( rc!=0 ) printf("rc=%d\n",rc); 6241 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 6242 registerTrace(pOp->p2, &aMem[pOp->p2]); 6243 } 6244 if( pOp->opflags & OPFLG_OUT3 ){ 6245 registerTrace(pOp->p3, &aMem[pOp->p3]); 6246 } 6247 } 6248 #endif /* SQLITE_DEBUG */ 6249 #endif /* NDEBUG */ 6250 } /* The end of the for(;;) loop the loops through opcodes */ 6251 6252 /* If we reach this point, it means that execution is finished with 6253 ** an error of some kind. 6254 */ 6255 vdbe_error_halt: 6256 assert( rc ); 6257 p->rc = rc; 6258 testcase( sqlite3GlobalConfig.xLog!=0 ); 6259 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 6260 pc, p->zSql, p->zErrMsg); 6261 sqlite3VdbeHalt(p); 6262 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 6263 rc = SQLITE_ERROR; 6264 if( resetSchemaOnFault>0 ){ 6265 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 6266 } 6267 6268 /* This is the only way out of this procedure. We have to 6269 ** release the mutexes on btrees that were acquired at the 6270 ** top. */ 6271 vdbe_return: 6272 db->lastRowid = lastRowid; 6273 testcase( nVmStep>0 ); 6274 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 6275 sqlite3VdbeLeave(p); 6276 return rc; 6277 6278 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 6279 ** is encountered. 6280 */ 6281 too_big: 6282 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 6283 rc = SQLITE_TOOBIG; 6284 goto vdbe_error_halt; 6285 6286 /* Jump to here if a malloc() fails. 6287 */ 6288 no_mem: 6289 db->mallocFailed = 1; 6290 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 6291 rc = SQLITE_NOMEM; 6292 goto vdbe_error_halt; 6293 6294 /* Jump to here for any other kind of fatal error. The "rc" variable 6295 ** should hold the error number. 6296 */ 6297 abort_due_to_error: 6298 assert( p->zErrMsg==0 ); 6299 if( db->mallocFailed ) rc = SQLITE_NOMEM; 6300 if( rc!=SQLITE_IOERR_NOMEM ){ 6301 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6302 } 6303 goto vdbe_error_halt; 6304 6305 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 6306 ** flag. 6307 */ 6308 abort_due_to_interrupt: 6309 assert( db->u1.isInterrupted ); 6310 rc = SQLITE_INTERRUPT; 6311 p->rc = rc; 6312 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 6313 goto vdbe_error_halt; 6314 } 6315