xref: /sqlite-3.40.0/src/vdbe.c (revision a3bc8425)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 /*
121 ** Invoke the VDBE coverage callback, if that callback is defined.  This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
124 **
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go.  It is usually 2.  "I" is the direction the branch
127 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
128 ** second alternative branch is taken.
129 **
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction.  This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation).  Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
135 */
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
138 #else
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142       M = iSrcLine;
143       /* Assert the truth of VdbeCoverageAlwaysTaken() and
144       ** VdbeCoverageNeverTaken() */
145       assert( (M & I)==I );
146     }else{
147       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
148       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149                                       iSrcLine,I,M);
150     }
151   }
152 #endif
153 
154 /*
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
157 */
158 #define Stringify(P, enc) \
159    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
160      { goto no_mem; }
161 
162 /*
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string.  Because the register
166 ** does not control the string, it might be deleted without the register
167 ** knowing it.
168 **
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls.  In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
172 */
173 #define Deephemeralize(P) \
174    if( ((P)->flags&MEM_Ephem)!=0 \
175        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
176 
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
179 
180 /*
181 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
182 ** if we run out of memory.
183 */
184 static VdbeCursor *allocateCursor(
185   Vdbe *p,              /* The virtual machine */
186   int iCur,             /* Index of the new VdbeCursor */
187   int nField,           /* Number of fields in the table or index */
188   int iDb,              /* Database the cursor belongs to, or -1 */
189   u8 eCurType           /* Type of the new cursor */
190 ){
191   /* Find the memory cell that will be used to store the blob of memory
192   ** required for this VdbeCursor structure. It is convenient to use a
193   ** vdbe memory cell to manage the memory allocation required for a
194   ** VdbeCursor structure for the following reasons:
195   **
196   **   * Sometimes cursor numbers are used for a couple of different
197   **     purposes in a vdbe program. The different uses might require
198   **     different sized allocations. Memory cells provide growable
199   **     allocations.
200   **
201   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202   **     be freed lazily via the sqlite3_release_memory() API. This
203   **     minimizes the number of malloc calls made by the system.
204   **
205   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
207   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
208   */
209   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
210 
211   int nByte;
212   VdbeCursor *pCx = 0;
213   nByte =
214       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
215       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
216 
217   assert( iCur>=0 && iCur<p->nCursor );
218   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
219     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
220     p->apCsr[iCur] = 0;
221   }
222   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
223     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
224     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
225     pCx->eCurType = eCurType;
226     pCx->iDb = iDb;
227     pCx->nField = nField;
228     pCx->aOffset = &pCx->aType[nField];
229     if( eCurType==CURTYPE_BTREE ){
230       pCx->uc.pCursor = (BtCursor*)
231           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
232       sqlite3BtreeCursorZero(pCx->uc.pCursor);
233     }
234   }
235   return pCx;
236 }
237 
238 /*
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information.  In other words, if the string
241 ** looks like a number, convert it into a number.  If it does not
242 ** look like a number, leave it alone.
243 **
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation.  Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
248 **
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
252 */
253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
254   double rValue;
255   i64 iValue;
256   u8 enc = pRec->enc;
257   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
258   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260     pRec->u.i = iValue;
261     pRec->flags |= MEM_Int;
262   }else{
263     pRec->u.r = rValue;
264     pRec->flags |= MEM_Real;
265     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
266   }
267 }
268 
269 /*
270 ** Processing is determine by the affinity parameter:
271 **
272 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_REAL:
274 ** SQLITE_AFF_NUMERIC:
275 **    Try to convert pRec to an integer representation or a
276 **    floating-point representation if an integer representation
277 **    is not possible.  Note that the integer representation is
278 **    always preferred, even if the affinity is REAL, because
279 **    an integer representation is more space efficient on disk.
280 **
281 ** SQLITE_AFF_TEXT:
282 **    Convert pRec to a text representation.
283 **
284 ** SQLITE_AFF_BLOB:
285 **    No-op.  pRec is unchanged.
286 */
287 static void applyAffinity(
288   Mem *pRec,          /* The value to apply affinity to */
289   char affinity,      /* The affinity to be applied */
290   u8 enc              /* Use this text encoding */
291 ){
292   if( affinity>=SQLITE_AFF_NUMERIC ){
293     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294              || affinity==SQLITE_AFF_NUMERIC );
295     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
296       if( (pRec->flags & MEM_Real)==0 ){
297         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
298       }else{
299         sqlite3VdbeIntegerAffinity(pRec);
300       }
301     }
302   }else if( affinity==SQLITE_AFF_TEXT ){
303     /* Only attempt the conversion to TEXT if there is an integer or real
304     ** representation (blob and NULL do not get converted) but no string
305     ** representation.  It would be harmless to repeat the conversion if
306     ** there is already a string rep, but it is pointless to waste those
307     ** CPU cycles. */
308     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309       if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310         sqlite3VdbeMemStringify(pRec, enc, 1);
311       }
312     }
313     pRec->flags &= ~(MEM_Real|MEM_Int);
314   }
315 }
316 
317 /*
318 ** Try to convert the type of a function argument or a result column
319 ** into a numeric representation.  Use either INTEGER or REAL whichever
320 ** is appropriate.  But only do the conversion if it is possible without
321 ** loss of information and return the revised type of the argument.
322 */
323 int sqlite3_value_numeric_type(sqlite3_value *pVal){
324   int eType = sqlite3_value_type(pVal);
325   if( eType==SQLITE_TEXT ){
326     Mem *pMem = (Mem*)pVal;
327     applyNumericAffinity(pMem, 0);
328     eType = sqlite3_value_type(pVal);
329   }
330   return eType;
331 }
332 
333 /*
334 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
335 ** not the internal Mem* type.
336 */
337 void sqlite3ValueApplyAffinity(
338   sqlite3_value *pVal,
339   u8 affinity,
340   u8 enc
341 ){
342   applyAffinity((Mem *)pVal, affinity, enc);
343 }
344 
345 /*
346 ** pMem currently only holds a string type (or maybe a BLOB that we can
347 ** interpret as a string if we want to).  Compute its corresponding
348 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
349 ** accordingly.
350 */
351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
354   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
355     return 0;
356   }
357   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
358     return MEM_Int;
359   }
360   return MEM_Real;
361 }
362 
363 /*
364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365 ** none.
366 **
367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
368 ** But it does set pMem->u.r and pMem->u.i appropriately.
369 */
370 static u16 numericType(Mem *pMem){
371   if( pMem->flags & (MEM_Int|MEM_Real) ){
372     return pMem->flags & (MEM_Int|MEM_Real);
373   }
374   if( pMem->flags & (MEM_Str|MEM_Blob) ){
375     return computeNumericType(pMem);
376   }
377   return 0;
378 }
379 
380 #ifdef SQLITE_DEBUG
381 /*
382 ** Write a nice string representation of the contents of cell pMem
383 ** into buffer zBuf, length nBuf.
384 */
385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
386   char *zCsr = zBuf;
387   int f = pMem->flags;
388 
389   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
390 
391   if( f&MEM_Blob ){
392     int i;
393     char c;
394     if( f & MEM_Dyn ){
395       c = 'z';
396       assert( (f & (MEM_Static|MEM_Ephem))==0 );
397     }else if( f & MEM_Static ){
398       c = 't';
399       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400     }else if( f & MEM_Ephem ){
401       c = 'e';
402       assert( (f & (MEM_Static|MEM_Dyn))==0 );
403     }else{
404       c = 's';
405     }
406     *(zCsr++) = c;
407     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
408     zCsr += sqlite3Strlen30(zCsr);
409     for(i=0; i<16 && i<pMem->n; i++){
410       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
411       zCsr += sqlite3Strlen30(zCsr);
412     }
413     for(i=0; i<16 && i<pMem->n; i++){
414       char z = pMem->z[i];
415       if( z<32 || z>126 ) *zCsr++ = '.';
416       else *zCsr++ = z;
417     }
418     *(zCsr++) = ']';
419     if( f & MEM_Zero ){
420       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
421       zCsr += sqlite3Strlen30(zCsr);
422     }
423     *zCsr = '\0';
424   }else if( f & MEM_Str ){
425     int j, k;
426     zBuf[0] = ' ';
427     if( f & MEM_Dyn ){
428       zBuf[1] = 'z';
429       assert( (f & (MEM_Static|MEM_Ephem))==0 );
430     }else if( f & MEM_Static ){
431       zBuf[1] = 't';
432       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
433     }else if( f & MEM_Ephem ){
434       zBuf[1] = 'e';
435       assert( (f & (MEM_Static|MEM_Dyn))==0 );
436     }else{
437       zBuf[1] = 's';
438     }
439     k = 2;
440     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
441     k += sqlite3Strlen30(&zBuf[k]);
442     zBuf[k++] = '[';
443     for(j=0; j<15 && j<pMem->n; j++){
444       u8 c = pMem->z[j];
445       if( c>=0x20 && c<0x7f ){
446         zBuf[k++] = c;
447       }else{
448         zBuf[k++] = '.';
449       }
450     }
451     zBuf[k++] = ']';
452     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
453     k += sqlite3Strlen30(&zBuf[k]);
454     zBuf[k++] = 0;
455   }
456 }
457 #endif
458 
459 #ifdef SQLITE_DEBUG
460 /*
461 ** Print the value of a register for tracing purposes:
462 */
463 static void memTracePrint(Mem *p){
464   if( p->flags & MEM_Undefined ){
465     printf(" undefined");
466   }else if( p->flags & MEM_Null ){
467     printf(" NULL");
468   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
469     printf(" si:%lld", p->u.i);
470   }else if( p->flags & MEM_Int ){
471     printf(" i:%lld", p->u.i);
472 #ifndef SQLITE_OMIT_FLOATING_POINT
473   }else if( p->flags & MEM_Real ){
474     printf(" r:%g", p->u.r);
475 #endif
476   }else if( p->flags & MEM_RowSet ){
477     printf(" (rowset)");
478   }else{
479     char zBuf[200];
480     sqlite3VdbeMemPrettyPrint(p, zBuf);
481     printf(" %s", zBuf);
482   }
483   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
484 }
485 static void registerTrace(int iReg, Mem *p){
486   printf("REG[%d] = ", iReg);
487   memTracePrint(p);
488   printf("\n");
489   sqlite3VdbeCheckMemInvariants(p);
490 }
491 #endif
492 
493 #ifdef SQLITE_DEBUG
494 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
495 #else
496 #  define REGISTER_TRACE(R,M)
497 #endif
498 
499 
500 #ifdef VDBE_PROFILE
501 
502 /*
503 ** hwtime.h contains inline assembler code for implementing
504 ** high-performance timing routines.
505 */
506 #include "hwtime.h"
507 
508 #endif
509 
510 #ifndef NDEBUG
511 /*
512 ** This function is only called from within an assert() expression. It
513 ** checks that the sqlite3.nTransaction variable is correctly set to
514 ** the number of non-transaction savepoints currently in the
515 ** linked list starting at sqlite3.pSavepoint.
516 **
517 ** Usage:
518 **
519 **     assert( checkSavepointCount(db) );
520 */
521 static int checkSavepointCount(sqlite3 *db){
522   int n = 0;
523   Savepoint *p;
524   for(p=db->pSavepoint; p; p=p->pNext) n++;
525   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
526   return 1;
527 }
528 #endif
529 
530 /*
531 ** Return the register of pOp->p2 after first preparing it to be
532 ** overwritten with an integer value.
533 */
534 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
535   sqlite3VdbeMemSetNull(pOut);
536   pOut->flags = MEM_Int;
537   return pOut;
538 }
539 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
540   Mem *pOut;
541   assert( pOp->p2>0 );
542   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
543   pOut = &p->aMem[pOp->p2];
544   memAboutToChange(p, pOut);
545   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
546     return out2PrereleaseWithClear(pOut);
547   }else{
548     pOut->flags = MEM_Int;
549     return pOut;
550   }
551 }
552 
553 
554 /*
555 ** Execute as much of a VDBE program as we can.
556 ** This is the core of sqlite3_step().
557 */
558 int sqlite3VdbeExec(
559   Vdbe *p                    /* The VDBE */
560 ){
561   Op *aOp = p->aOp;          /* Copy of p->aOp */
562   Op *pOp = aOp;             /* Current operation */
563 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
564   Op *pOrigOp;               /* Value of pOp at the top of the loop */
565 #endif
566 #ifdef SQLITE_DEBUG
567   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
568 #endif
569   int rc = SQLITE_OK;        /* Value to return */
570   sqlite3 *db = p->db;       /* The database */
571   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
572   u8 encoding = ENC(db);     /* The database encoding */
573   int iCompare = 0;          /* Result of last comparison */
574   unsigned nVmStep = 0;      /* Number of virtual machine steps */
575 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
576   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
577 #endif
578   Mem *aMem = p->aMem;       /* Copy of p->aMem */
579   Mem *pIn1 = 0;             /* 1st input operand */
580   Mem *pIn2 = 0;             /* 2nd input operand */
581   Mem *pIn3 = 0;             /* 3rd input operand */
582   Mem *pOut = 0;             /* Output operand */
583 #ifdef VDBE_PROFILE
584   u64 start;                 /* CPU clock count at start of opcode */
585 #endif
586   /*** INSERT STACK UNION HERE ***/
587 
588   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
589   sqlite3VdbeEnter(p);
590   if( p->rc==SQLITE_NOMEM ){
591     /* This happens if a malloc() inside a call to sqlite3_column_text() or
592     ** sqlite3_column_text16() failed.  */
593     goto no_mem;
594   }
595   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
596   assert( p->bIsReader || p->readOnly!=0 );
597   p->iCurrentTime = 0;
598   assert( p->explain==0 );
599   p->pResultSet = 0;
600   db->busyHandler.nBusy = 0;
601   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
602   sqlite3VdbeIOTraceSql(p);
603 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
604   if( db->xProgress ){
605     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
606     assert( 0 < db->nProgressOps );
607     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
608   }else{
609     nProgressLimit = 0xffffffff;
610   }
611 #endif
612 #ifdef SQLITE_DEBUG
613   sqlite3BeginBenignMalloc();
614   if( p->pc==0
615    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
616   ){
617     int i;
618     int once = 1;
619     sqlite3VdbePrintSql(p);
620     if( p->db->flags & SQLITE_VdbeListing ){
621       printf("VDBE Program Listing:\n");
622       for(i=0; i<p->nOp; i++){
623         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
624       }
625     }
626     if( p->db->flags & SQLITE_VdbeEQP ){
627       for(i=0; i<p->nOp; i++){
628         if( aOp[i].opcode==OP_Explain ){
629           if( once ) printf("VDBE Query Plan:\n");
630           printf("%s\n", aOp[i].p4.z);
631           once = 0;
632         }
633       }
634     }
635     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
636   }
637   sqlite3EndBenignMalloc();
638 #endif
639   for(pOp=&aOp[p->pc]; 1; pOp++){
640     /* Errors are detected by individual opcodes, with an immediate
641     ** jumps to abort_due_to_error. */
642     assert( rc==SQLITE_OK );
643 
644     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
645 #ifdef VDBE_PROFILE
646     start = sqlite3Hwtime();
647 #endif
648     nVmStep++;
649 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
650     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
651 #endif
652 
653     /* Only allow tracing if SQLITE_DEBUG is defined.
654     */
655 #ifdef SQLITE_DEBUG
656     if( db->flags & SQLITE_VdbeTrace ){
657       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
658     }
659 #endif
660 
661 
662     /* Check to see if we need to simulate an interrupt.  This only happens
663     ** if we have a special test build.
664     */
665 #ifdef SQLITE_TEST
666     if( sqlite3_interrupt_count>0 ){
667       sqlite3_interrupt_count--;
668       if( sqlite3_interrupt_count==0 ){
669         sqlite3_interrupt(db);
670       }
671     }
672 #endif
673 
674     /* Sanity checking on other operands */
675 #ifdef SQLITE_DEBUG
676     {
677       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
678       if( (opProperty & OPFLG_IN1)!=0 ){
679         assert( pOp->p1>0 );
680         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
681         assert( memIsValid(&aMem[pOp->p1]) );
682         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
683         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
684       }
685       if( (opProperty & OPFLG_IN2)!=0 ){
686         assert( pOp->p2>0 );
687         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
688         assert( memIsValid(&aMem[pOp->p2]) );
689         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
690         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
691       }
692       if( (opProperty & OPFLG_IN3)!=0 ){
693         assert( pOp->p3>0 );
694         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
695         assert( memIsValid(&aMem[pOp->p3]) );
696         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
697         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
698       }
699       if( (opProperty & OPFLG_OUT2)!=0 ){
700         assert( pOp->p2>0 );
701         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
702         memAboutToChange(p, &aMem[pOp->p2]);
703       }
704       if( (opProperty & OPFLG_OUT3)!=0 ){
705         assert( pOp->p3>0 );
706         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
707         memAboutToChange(p, &aMem[pOp->p3]);
708       }
709     }
710 #endif
711 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
712     pOrigOp = pOp;
713 #endif
714 
715     switch( pOp->opcode ){
716 
717 /*****************************************************************************
718 ** What follows is a massive switch statement where each case implements a
719 ** separate instruction in the virtual machine.  If we follow the usual
720 ** indentation conventions, each case should be indented by 6 spaces.  But
721 ** that is a lot of wasted space on the left margin.  So the code within
722 ** the switch statement will break with convention and be flush-left. Another
723 ** big comment (similar to this one) will mark the point in the code where
724 ** we transition back to normal indentation.
725 **
726 ** The formatting of each case is important.  The makefile for SQLite
727 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
728 ** file looking for lines that begin with "case OP_".  The opcodes.h files
729 ** will be filled with #defines that give unique integer values to each
730 ** opcode and the opcodes.c file is filled with an array of strings where
731 ** each string is the symbolic name for the corresponding opcode.  If the
732 ** case statement is followed by a comment of the form "/# same as ... #/"
733 ** that comment is used to determine the particular value of the opcode.
734 **
735 ** Other keywords in the comment that follows each case are used to
736 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
737 ** Keywords include: in1, in2, in3, out2, out3.  See
738 ** the mkopcodeh.awk script for additional information.
739 **
740 ** Documentation about VDBE opcodes is generated by scanning this file
741 ** for lines of that contain "Opcode:".  That line and all subsequent
742 ** comment lines are used in the generation of the opcode.html documentation
743 ** file.
744 **
745 ** SUMMARY:
746 **
747 **     Formatting is important to scripts that scan this file.
748 **     Do not deviate from the formatting style currently in use.
749 **
750 *****************************************************************************/
751 
752 /* Opcode:  Goto * P2 * * *
753 **
754 ** An unconditional jump to address P2.
755 ** The next instruction executed will be
756 ** the one at index P2 from the beginning of
757 ** the program.
758 **
759 ** The P1 parameter is not actually used by this opcode.  However, it
760 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
761 ** that this Goto is the bottom of a loop and that the lines from P2 down
762 ** to the current line should be indented for EXPLAIN output.
763 */
764 case OP_Goto: {             /* jump */
765 jump_to_p2_and_check_for_interrupt:
766   pOp = &aOp[pOp->p2 - 1];
767 
768   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
769   ** OP_VNext, or OP_SorterNext) all jump here upon
770   ** completion.  Check to see if sqlite3_interrupt() has been called
771   ** or if the progress callback needs to be invoked.
772   **
773   ** This code uses unstructured "goto" statements and does not look clean.
774   ** But that is not due to sloppy coding habits. The code is written this
775   ** way for performance, to avoid having to run the interrupt and progress
776   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
777   ** faster according to "valgrind --tool=cachegrind" */
778 check_for_interrupt:
779   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
780 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
781   /* Call the progress callback if it is configured and the required number
782   ** of VDBE ops have been executed (either since this invocation of
783   ** sqlite3VdbeExec() or since last time the progress callback was called).
784   ** If the progress callback returns non-zero, exit the virtual machine with
785   ** a return code SQLITE_ABORT.
786   */
787   if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
788     assert( db->nProgressOps!=0 );
789     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
790     if( db->xProgress(db->pProgressArg) ){
791       rc = SQLITE_INTERRUPT;
792       goto abort_due_to_error;
793     }
794   }
795 #endif
796 
797   break;
798 }
799 
800 /* Opcode:  Gosub P1 P2 * * *
801 **
802 ** Write the current address onto register P1
803 ** and then jump to address P2.
804 */
805 case OP_Gosub: {            /* jump */
806   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
807   pIn1 = &aMem[pOp->p1];
808   assert( VdbeMemDynamic(pIn1)==0 );
809   memAboutToChange(p, pIn1);
810   pIn1->flags = MEM_Int;
811   pIn1->u.i = (int)(pOp-aOp);
812   REGISTER_TRACE(pOp->p1, pIn1);
813 
814   /* Most jump operations do a goto to this spot in order to update
815   ** the pOp pointer. */
816 jump_to_p2:
817   pOp = &aOp[pOp->p2 - 1];
818   break;
819 }
820 
821 /* Opcode:  Return P1 * * * *
822 **
823 ** Jump to the next instruction after the address in register P1.  After
824 ** the jump, register P1 becomes undefined.
825 */
826 case OP_Return: {           /* in1 */
827   pIn1 = &aMem[pOp->p1];
828   assert( pIn1->flags==MEM_Int );
829   pOp = &aOp[pIn1->u.i];
830   pIn1->flags = MEM_Undefined;
831   break;
832 }
833 
834 /* Opcode: InitCoroutine P1 P2 P3 * *
835 **
836 ** Set up register P1 so that it will Yield to the coroutine
837 ** located at address P3.
838 **
839 ** If P2!=0 then the coroutine implementation immediately follows
840 ** this opcode.  So jump over the coroutine implementation to
841 ** address P2.
842 **
843 ** See also: EndCoroutine
844 */
845 case OP_InitCoroutine: {     /* jump */
846   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
847   assert( pOp->p2>=0 && pOp->p2<p->nOp );
848   assert( pOp->p3>=0 && pOp->p3<p->nOp );
849   pOut = &aMem[pOp->p1];
850   assert( !VdbeMemDynamic(pOut) );
851   pOut->u.i = pOp->p3 - 1;
852   pOut->flags = MEM_Int;
853   if( pOp->p2 ) goto jump_to_p2;
854   break;
855 }
856 
857 /* Opcode:  EndCoroutine P1 * * * *
858 **
859 ** The instruction at the address in register P1 is a Yield.
860 ** Jump to the P2 parameter of that Yield.
861 ** After the jump, register P1 becomes undefined.
862 **
863 ** See also: InitCoroutine
864 */
865 case OP_EndCoroutine: {           /* in1 */
866   VdbeOp *pCaller;
867   pIn1 = &aMem[pOp->p1];
868   assert( pIn1->flags==MEM_Int );
869   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
870   pCaller = &aOp[pIn1->u.i];
871   assert( pCaller->opcode==OP_Yield );
872   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
873   pOp = &aOp[pCaller->p2 - 1];
874   pIn1->flags = MEM_Undefined;
875   break;
876 }
877 
878 /* Opcode:  Yield P1 P2 * * *
879 **
880 ** Swap the program counter with the value in register P1.  This
881 ** has the effect of yielding to a coroutine.
882 **
883 ** If the coroutine that is launched by this instruction ends with
884 ** Yield or Return then continue to the next instruction.  But if
885 ** the coroutine launched by this instruction ends with
886 ** EndCoroutine, then jump to P2 rather than continuing with the
887 ** next instruction.
888 **
889 ** See also: InitCoroutine
890 */
891 case OP_Yield: {            /* in1, jump */
892   int pcDest;
893   pIn1 = &aMem[pOp->p1];
894   assert( VdbeMemDynamic(pIn1)==0 );
895   pIn1->flags = MEM_Int;
896   pcDest = (int)pIn1->u.i;
897   pIn1->u.i = (int)(pOp - aOp);
898   REGISTER_TRACE(pOp->p1, pIn1);
899   pOp = &aOp[pcDest];
900   break;
901 }
902 
903 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
904 ** Synopsis: if r[P3]=null halt
905 **
906 ** Check the value in register P3.  If it is NULL then Halt using
907 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
908 ** value in register P3 is not NULL, then this routine is a no-op.
909 ** The P5 parameter should be 1.
910 */
911 case OP_HaltIfNull: {      /* in3 */
912   pIn3 = &aMem[pOp->p3];
913   if( (pIn3->flags & MEM_Null)==0 ) break;
914   /* Fall through into OP_Halt */
915 }
916 
917 /* Opcode:  Halt P1 P2 * P4 P5
918 **
919 ** Exit immediately.  All open cursors, etc are closed
920 ** automatically.
921 **
922 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
923 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
924 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
925 ** whether or not to rollback the current transaction.  Do not rollback
926 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
927 ** then back out all changes that have occurred during this execution of the
928 ** VDBE, but do not rollback the transaction.
929 **
930 ** If P4 is not null then it is an error message string.
931 **
932 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
933 **
934 **    0:  (no change)
935 **    1:  NOT NULL contraint failed: P4
936 **    2:  UNIQUE constraint failed: P4
937 **    3:  CHECK constraint failed: P4
938 **    4:  FOREIGN KEY constraint failed: P4
939 **
940 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
941 ** omitted.
942 **
943 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
944 ** every program.  So a jump past the last instruction of the program
945 ** is the same as executing Halt.
946 */
947 case OP_Halt: {
948   VdbeFrame *pFrame;
949   int pcx;
950 
951   pcx = (int)(pOp - aOp);
952   if( pOp->p1==SQLITE_OK && p->pFrame ){
953     /* Halt the sub-program. Return control to the parent frame. */
954     pFrame = p->pFrame;
955     p->pFrame = pFrame->pParent;
956     p->nFrame--;
957     sqlite3VdbeSetChanges(db, p->nChange);
958     pcx = sqlite3VdbeFrameRestore(pFrame);
959     if( pOp->p2==OE_Ignore ){
960       /* Instruction pcx is the OP_Program that invoked the sub-program
961       ** currently being halted. If the p2 instruction of this OP_Halt
962       ** instruction is set to OE_Ignore, then the sub-program is throwing
963       ** an IGNORE exception. In this case jump to the address specified
964       ** as the p2 of the calling OP_Program.  */
965       pcx = p->aOp[pcx].p2-1;
966     }
967     aOp = p->aOp;
968     aMem = p->aMem;
969     pOp = &aOp[pcx];
970     break;
971   }
972   p->rc = pOp->p1;
973   p->errorAction = (u8)pOp->p2;
974   p->pc = pcx;
975   assert( pOp->p5<=4 );
976   if( p->rc ){
977     if( pOp->p5 ){
978       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
979                                              "FOREIGN KEY" };
980       testcase( pOp->p5==1 );
981       testcase( pOp->p5==2 );
982       testcase( pOp->p5==3 );
983       testcase( pOp->p5==4 );
984       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
985       if( pOp->p4.z ){
986         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
987       }
988     }else{
989       sqlite3VdbeError(p, "%s", pOp->p4.z);
990     }
991     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
992   }
993   rc = sqlite3VdbeHalt(p);
994   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
995   if( rc==SQLITE_BUSY ){
996     p->rc = SQLITE_BUSY;
997   }else{
998     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
999     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1000     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1001   }
1002   goto vdbe_return;
1003 }
1004 
1005 /* Opcode: Integer P1 P2 * * *
1006 ** Synopsis: r[P2]=P1
1007 **
1008 ** The 32-bit integer value P1 is written into register P2.
1009 */
1010 case OP_Integer: {         /* out2 */
1011   pOut = out2Prerelease(p, pOp);
1012   pOut->u.i = pOp->p1;
1013   break;
1014 }
1015 
1016 /* Opcode: Int64 * P2 * P4 *
1017 ** Synopsis: r[P2]=P4
1018 **
1019 ** P4 is a pointer to a 64-bit integer value.
1020 ** Write that value into register P2.
1021 */
1022 case OP_Int64: {           /* out2 */
1023   pOut = out2Prerelease(p, pOp);
1024   assert( pOp->p4.pI64!=0 );
1025   pOut->u.i = *pOp->p4.pI64;
1026   break;
1027 }
1028 
1029 #ifndef SQLITE_OMIT_FLOATING_POINT
1030 /* Opcode: Real * P2 * P4 *
1031 ** Synopsis: r[P2]=P4
1032 **
1033 ** P4 is a pointer to a 64-bit floating point value.
1034 ** Write that value into register P2.
1035 */
1036 case OP_Real: {            /* same as TK_FLOAT, out2 */
1037   pOut = out2Prerelease(p, pOp);
1038   pOut->flags = MEM_Real;
1039   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1040   pOut->u.r = *pOp->p4.pReal;
1041   break;
1042 }
1043 #endif
1044 
1045 /* Opcode: String8 * P2 * P4 *
1046 ** Synopsis: r[P2]='P4'
1047 **
1048 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1049 ** into a String opcode before it is executed for the first time.  During
1050 ** this transformation, the length of string P4 is computed and stored
1051 ** as the P1 parameter.
1052 */
1053 case OP_String8: {         /* same as TK_STRING, out2 */
1054   assert( pOp->p4.z!=0 );
1055   pOut = out2Prerelease(p, pOp);
1056   pOp->opcode = OP_String;
1057   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1058 
1059 #ifndef SQLITE_OMIT_UTF16
1060   if( encoding!=SQLITE_UTF8 ){
1061     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1062     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1063     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1064     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1065     assert( VdbeMemDynamic(pOut)==0 );
1066     pOut->szMalloc = 0;
1067     pOut->flags |= MEM_Static;
1068     if( pOp->p4type==P4_DYNAMIC ){
1069       sqlite3DbFree(db, pOp->p4.z);
1070     }
1071     pOp->p4type = P4_DYNAMIC;
1072     pOp->p4.z = pOut->z;
1073     pOp->p1 = pOut->n;
1074   }
1075   testcase( rc==SQLITE_TOOBIG );
1076 #endif
1077   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1078     goto too_big;
1079   }
1080   assert( rc==SQLITE_OK );
1081   /* Fall through to the next case, OP_String */
1082 }
1083 
1084 /* Opcode: String P1 P2 P3 P4 P5
1085 ** Synopsis: r[P2]='P4' (len=P1)
1086 **
1087 ** The string value P4 of length P1 (bytes) is stored in register P2.
1088 **
1089 ** If P3 is not zero and the content of register P3 is equal to P5, then
1090 ** the datatype of the register P2 is converted to BLOB.  The content is
1091 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1092 ** of a string, as if it had been CAST.  In other words:
1093 **
1094 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1095 */
1096 case OP_String: {          /* out2 */
1097   assert( pOp->p4.z!=0 );
1098   pOut = out2Prerelease(p, pOp);
1099   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1100   pOut->z = pOp->p4.z;
1101   pOut->n = pOp->p1;
1102   pOut->enc = encoding;
1103   UPDATE_MAX_BLOBSIZE(pOut);
1104 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1105   if( pOp->p3>0 ){
1106     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1107     pIn3 = &aMem[pOp->p3];
1108     assert( pIn3->flags & MEM_Int );
1109     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1110   }
1111 #endif
1112   break;
1113 }
1114 
1115 /* Opcode: Null P1 P2 P3 * *
1116 ** Synopsis: r[P2..P3]=NULL
1117 **
1118 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1119 ** NULL into register P3 and every register in between P2 and P3.  If P3
1120 ** is less than P2 (typically P3 is zero) then only register P2 is
1121 ** set to NULL.
1122 **
1123 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1124 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1125 ** OP_Ne or OP_Eq.
1126 */
1127 case OP_Null: {           /* out2 */
1128   int cnt;
1129   u16 nullFlag;
1130   pOut = out2Prerelease(p, pOp);
1131   cnt = pOp->p3-pOp->p2;
1132   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1133   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1134   pOut->n = 0;
1135   while( cnt>0 ){
1136     pOut++;
1137     memAboutToChange(p, pOut);
1138     sqlite3VdbeMemSetNull(pOut);
1139     pOut->flags = nullFlag;
1140     pOut->n = 0;
1141     cnt--;
1142   }
1143   break;
1144 }
1145 
1146 /* Opcode: SoftNull P1 * * * *
1147 ** Synopsis: r[P1]=NULL
1148 **
1149 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1150 ** instruction, but do not free any string or blob memory associated with
1151 ** the register, so that if the value was a string or blob that was
1152 ** previously copied using OP_SCopy, the copies will continue to be valid.
1153 */
1154 case OP_SoftNull: {
1155   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1156   pOut = &aMem[pOp->p1];
1157   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1158   break;
1159 }
1160 
1161 /* Opcode: Blob P1 P2 * P4 *
1162 ** Synopsis: r[P2]=P4 (len=P1)
1163 **
1164 ** P4 points to a blob of data P1 bytes long.  Store this
1165 ** blob in register P2.
1166 */
1167 case OP_Blob: {                /* out2 */
1168   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1169   pOut = out2Prerelease(p, pOp);
1170   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1171   pOut->enc = encoding;
1172   UPDATE_MAX_BLOBSIZE(pOut);
1173   break;
1174 }
1175 
1176 /* Opcode: Variable P1 P2 * P4 *
1177 ** Synopsis: r[P2]=parameter(P1,P4)
1178 **
1179 ** Transfer the values of bound parameter P1 into register P2
1180 **
1181 ** If the parameter is named, then its name appears in P4.
1182 ** The P4 value is used by sqlite3_bind_parameter_name().
1183 */
1184 case OP_Variable: {            /* out2 */
1185   Mem *pVar;       /* Value being transferred */
1186 
1187   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1188   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1189   pVar = &p->aVar[pOp->p1 - 1];
1190   if( sqlite3VdbeMemTooBig(pVar) ){
1191     goto too_big;
1192   }
1193   pOut = &aMem[pOp->p2];
1194   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1195   UPDATE_MAX_BLOBSIZE(pOut);
1196   break;
1197 }
1198 
1199 /* Opcode: Move P1 P2 P3 * *
1200 ** Synopsis: r[P2@P3]=r[P1@P3]
1201 **
1202 ** Move the P3 values in register P1..P1+P3-1 over into
1203 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1204 ** left holding a NULL.  It is an error for register ranges
1205 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1206 ** for P3 to be less than 1.
1207 */
1208 case OP_Move: {
1209   int n;           /* Number of registers left to copy */
1210   int p1;          /* Register to copy from */
1211   int p2;          /* Register to copy to */
1212 
1213   n = pOp->p3;
1214   p1 = pOp->p1;
1215   p2 = pOp->p2;
1216   assert( n>0 && p1>0 && p2>0 );
1217   assert( p1+n<=p2 || p2+n<=p1 );
1218 
1219   pIn1 = &aMem[p1];
1220   pOut = &aMem[p2];
1221   do{
1222     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1223     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1224     assert( memIsValid(pIn1) );
1225     memAboutToChange(p, pOut);
1226     sqlite3VdbeMemMove(pOut, pIn1);
1227 #ifdef SQLITE_DEBUG
1228     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1229       pOut->pScopyFrom += pOp->p2 - p1;
1230     }
1231 #endif
1232     Deephemeralize(pOut);
1233     REGISTER_TRACE(p2++, pOut);
1234     pIn1++;
1235     pOut++;
1236   }while( --n );
1237   break;
1238 }
1239 
1240 /* Opcode: Copy P1 P2 P3 * *
1241 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1242 **
1243 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1244 **
1245 ** This instruction makes a deep copy of the value.  A duplicate
1246 ** is made of any string or blob constant.  See also OP_SCopy.
1247 */
1248 case OP_Copy: {
1249   int n;
1250 
1251   n = pOp->p3;
1252   pIn1 = &aMem[pOp->p1];
1253   pOut = &aMem[pOp->p2];
1254   assert( pOut!=pIn1 );
1255   while( 1 ){
1256     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1257     Deephemeralize(pOut);
1258 #ifdef SQLITE_DEBUG
1259     pOut->pScopyFrom = 0;
1260 #endif
1261     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1262     if( (n--)==0 ) break;
1263     pOut++;
1264     pIn1++;
1265   }
1266   break;
1267 }
1268 
1269 /* Opcode: SCopy P1 P2 * * *
1270 ** Synopsis: r[P2]=r[P1]
1271 **
1272 ** Make a shallow copy of register P1 into register P2.
1273 **
1274 ** This instruction makes a shallow copy of the value.  If the value
1275 ** is a string or blob, then the copy is only a pointer to the
1276 ** original and hence if the original changes so will the copy.
1277 ** Worse, if the original is deallocated, the copy becomes invalid.
1278 ** Thus the program must guarantee that the original will not change
1279 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1280 ** copy.
1281 */
1282 case OP_SCopy: {            /* out2 */
1283   pIn1 = &aMem[pOp->p1];
1284   pOut = &aMem[pOp->p2];
1285   assert( pOut!=pIn1 );
1286   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1287 #ifdef SQLITE_DEBUG
1288   if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1289 #endif
1290   break;
1291 }
1292 
1293 /* Opcode: IntCopy P1 P2 * * *
1294 ** Synopsis: r[P2]=r[P1]
1295 **
1296 ** Transfer the integer value held in register P1 into register P2.
1297 **
1298 ** This is an optimized version of SCopy that works only for integer
1299 ** values.
1300 */
1301 case OP_IntCopy: {            /* out2 */
1302   pIn1 = &aMem[pOp->p1];
1303   assert( (pIn1->flags & MEM_Int)!=0 );
1304   pOut = &aMem[pOp->p2];
1305   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1306   break;
1307 }
1308 
1309 /* Opcode: ResultRow P1 P2 * * *
1310 ** Synopsis: output=r[P1@P2]
1311 **
1312 ** The registers P1 through P1+P2-1 contain a single row of
1313 ** results. This opcode causes the sqlite3_step() call to terminate
1314 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1315 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1316 ** the result row.
1317 */
1318 case OP_ResultRow: {
1319   Mem *pMem;
1320   int i;
1321   assert( p->nResColumn==pOp->p2 );
1322   assert( pOp->p1>0 );
1323   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1324 
1325 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1326   /* Run the progress counter just before returning.
1327   */
1328   if( db->xProgress!=0
1329    && nVmStep>=nProgressLimit
1330    && db->xProgress(db->pProgressArg)!=0
1331   ){
1332     rc = SQLITE_INTERRUPT;
1333     goto abort_due_to_error;
1334   }
1335 #endif
1336 
1337   /* If this statement has violated immediate foreign key constraints, do
1338   ** not return the number of rows modified. And do not RELEASE the statement
1339   ** transaction. It needs to be rolled back.  */
1340   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1341     assert( db->flags&SQLITE_CountRows );
1342     assert( p->usesStmtJournal );
1343     goto abort_due_to_error;
1344   }
1345 
1346   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1347   ** DML statements invoke this opcode to return the number of rows
1348   ** modified to the user. This is the only way that a VM that
1349   ** opens a statement transaction may invoke this opcode.
1350   **
1351   ** In case this is such a statement, close any statement transaction
1352   ** opened by this VM before returning control to the user. This is to
1353   ** ensure that statement-transactions are always nested, not overlapping.
1354   ** If the open statement-transaction is not closed here, then the user
1355   ** may step another VM that opens its own statement transaction. This
1356   ** may lead to overlapping statement transactions.
1357   **
1358   ** The statement transaction is never a top-level transaction.  Hence
1359   ** the RELEASE call below can never fail.
1360   */
1361   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1362   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1363   assert( rc==SQLITE_OK );
1364 
1365   /* Invalidate all ephemeral cursor row caches */
1366   p->cacheCtr = (p->cacheCtr + 2)|1;
1367 
1368   /* Make sure the results of the current row are \000 terminated
1369   ** and have an assigned type.  The results are de-ephemeralized as
1370   ** a side effect.
1371   */
1372   pMem = p->pResultSet = &aMem[pOp->p1];
1373   for(i=0; i<pOp->p2; i++){
1374     assert( memIsValid(&pMem[i]) );
1375     Deephemeralize(&pMem[i]);
1376     assert( (pMem[i].flags & MEM_Ephem)==0
1377             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1378     sqlite3VdbeMemNulTerminate(&pMem[i]);
1379     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1380   }
1381   if( db->mallocFailed ) goto no_mem;
1382 
1383   if( db->mTrace & SQLITE_TRACE_ROW ){
1384     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1385   }
1386 
1387   /* Return SQLITE_ROW
1388   */
1389   p->pc = (int)(pOp - aOp) + 1;
1390   rc = SQLITE_ROW;
1391   goto vdbe_return;
1392 }
1393 
1394 /* Opcode: Concat P1 P2 P3 * *
1395 ** Synopsis: r[P3]=r[P2]+r[P1]
1396 **
1397 ** Add the text in register P1 onto the end of the text in
1398 ** register P2 and store the result in register P3.
1399 ** If either the P1 or P2 text are NULL then store NULL in P3.
1400 **
1401 **   P3 = P2 || P1
1402 **
1403 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1404 ** if P3 is the same register as P2, the implementation is able
1405 ** to avoid a memcpy().
1406 */
1407 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1408   i64 nByte;
1409 
1410   pIn1 = &aMem[pOp->p1];
1411   pIn2 = &aMem[pOp->p2];
1412   pOut = &aMem[pOp->p3];
1413   assert( pIn1!=pOut );
1414   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1415     sqlite3VdbeMemSetNull(pOut);
1416     break;
1417   }
1418   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1419   Stringify(pIn1, encoding);
1420   Stringify(pIn2, encoding);
1421   nByte = pIn1->n + pIn2->n;
1422   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1423     goto too_big;
1424   }
1425   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1426     goto no_mem;
1427   }
1428   MemSetTypeFlag(pOut, MEM_Str);
1429   if( pOut!=pIn2 ){
1430     memcpy(pOut->z, pIn2->z, pIn2->n);
1431   }
1432   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1433   pOut->z[nByte]=0;
1434   pOut->z[nByte+1] = 0;
1435   pOut->flags |= MEM_Term;
1436   pOut->n = (int)nByte;
1437   pOut->enc = encoding;
1438   UPDATE_MAX_BLOBSIZE(pOut);
1439   break;
1440 }
1441 
1442 /* Opcode: Add P1 P2 P3 * *
1443 ** Synopsis: r[P3]=r[P1]+r[P2]
1444 **
1445 ** Add the value in register P1 to the value in register P2
1446 ** and store the result in register P3.
1447 ** If either input is NULL, the result is NULL.
1448 */
1449 /* Opcode: Multiply P1 P2 P3 * *
1450 ** Synopsis: r[P3]=r[P1]*r[P2]
1451 **
1452 **
1453 ** Multiply the value in register P1 by the value in register P2
1454 ** and store the result in register P3.
1455 ** If either input is NULL, the result is NULL.
1456 */
1457 /* Opcode: Subtract P1 P2 P3 * *
1458 ** Synopsis: r[P3]=r[P2]-r[P1]
1459 **
1460 ** Subtract the value in register P1 from the value in register P2
1461 ** and store the result in register P3.
1462 ** If either input is NULL, the result is NULL.
1463 */
1464 /* Opcode: Divide P1 P2 P3 * *
1465 ** Synopsis: r[P3]=r[P2]/r[P1]
1466 **
1467 ** Divide the value in register P1 by the value in register P2
1468 ** and store the result in register P3 (P3=P2/P1). If the value in
1469 ** register P1 is zero, then the result is NULL. If either input is
1470 ** NULL, the result is NULL.
1471 */
1472 /* Opcode: Remainder P1 P2 P3 * *
1473 ** Synopsis: r[P3]=r[P2]%r[P1]
1474 **
1475 ** Compute the remainder after integer register P2 is divided by
1476 ** register P1 and store the result in register P3.
1477 ** If the value in register P1 is zero the result is NULL.
1478 ** If either operand is NULL, the result is NULL.
1479 */
1480 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1481 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1482 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1483 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1484 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1485   char bIntint;   /* Started out as two integer operands */
1486   u16 flags;      /* Combined MEM_* flags from both inputs */
1487   u16 type1;      /* Numeric type of left operand */
1488   u16 type2;      /* Numeric type of right operand */
1489   i64 iA;         /* Integer value of left operand */
1490   i64 iB;         /* Integer value of right operand */
1491   double rA;      /* Real value of left operand */
1492   double rB;      /* Real value of right operand */
1493 
1494   pIn1 = &aMem[pOp->p1];
1495   type1 = numericType(pIn1);
1496   pIn2 = &aMem[pOp->p2];
1497   type2 = numericType(pIn2);
1498   pOut = &aMem[pOp->p3];
1499   flags = pIn1->flags | pIn2->flags;
1500   if( (type1 & type2 & MEM_Int)!=0 ){
1501     iA = pIn1->u.i;
1502     iB = pIn2->u.i;
1503     bIntint = 1;
1504     switch( pOp->opcode ){
1505       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1506       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1507       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1508       case OP_Divide: {
1509         if( iA==0 ) goto arithmetic_result_is_null;
1510         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1511         iB /= iA;
1512         break;
1513       }
1514       default: {
1515         if( iA==0 ) goto arithmetic_result_is_null;
1516         if( iA==-1 ) iA = 1;
1517         iB %= iA;
1518         break;
1519       }
1520     }
1521     pOut->u.i = iB;
1522     MemSetTypeFlag(pOut, MEM_Int);
1523   }else if( (flags & MEM_Null)!=0 ){
1524     goto arithmetic_result_is_null;
1525   }else{
1526     bIntint = 0;
1527 fp_math:
1528     rA = sqlite3VdbeRealValue(pIn1);
1529     rB = sqlite3VdbeRealValue(pIn2);
1530     switch( pOp->opcode ){
1531       case OP_Add:         rB += rA;       break;
1532       case OP_Subtract:    rB -= rA;       break;
1533       case OP_Multiply:    rB *= rA;       break;
1534       case OP_Divide: {
1535         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1536         if( rA==(double)0 ) goto arithmetic_result_is_null;
1537         rB /= rA;
1538         break;
1539       }
1540       default: {
1541         iA = (i64)rA;
1542         iB = (i64)rB;
1543         if( iA==0 ) goto arithmetic_result_is_null;
1544         if( iA==-1 ) iA = 1;
1545         rB = (double)(iB % iA);
1546         break;
1547       }
1548     }
1549 #ifdef SQLITE_OMIT_FLOATING_POINT
1550     pOut->u.i = rB;
1551     MemSetTypeFlag(pOut, MEM_Int);
1552 #else
1553     if( sqlite3IsNaN(rB) ){
1554       goto arithmetic_result_is_null;
1555     }
1556     pOut->u.r = rB;
1557     MemSetTypeFlag(pOut, MEM_Real);
1558     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1559       sqlite3VdbeIntegerAffinity(pOut);
1560     }
1561 #endif
1562   }
1563   break;
1564 
1565 arithmetic_result_is_null:
1566   sqlite3VdbeMemSetNull(pOut);
1567   break;
1568 }
1569 
1570 /* Opcode: CollSeq P1 * * P4
1571 **
1572 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1573 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1574 ** be returned. This is used by the built-in min(), max() and nullif()
1575 ** functions.
1576 **
1577 ** If P1 is not zero, then it is a register that a subsequent min() or
1578 ** max() aggregate will set to 1 if the current row is not the minimum or
1579 ** maximum.  The P1 register is initialized to 0 by this instruction.
1580 **
1581 ** The interface used by the implementation of the aforementioned functions
1582 ** to retrieve the collation sequence set by this opcode is not available
1583 ** publicly.  Only built-in functions have access to this feature.
1584 */
1585 case OP_CollSeq: {
1586   assert( pOp->p4type==P4_COLLSEQ );
1587   if( pOp->p1 ){
1588     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1589   }
1590   break;
1591 }
1592 
1593 /* Opcode: BitAnd P1 P2 P3 * *
1594 ** Synopsis: r[P3]=r[P1]&r[P2]
1595 **
1596 ** Take the bit-wise AND of the values in register P1 and P2 and
1597 ** store the result in register P3.
1598 ** If either input is NULL, the result is NULL.
1599 */
1600 /* Opcode: BitOr P1 P2 P3 * *
1601 ** Synopsis: r[P3]=r[P1]|r[P2]
1602 **
1603 ** Take the bit-wise OR of the values in register P1 and P2 and
1604 ** store the result in register P3.
1605 ** If either input is NULL, the result is NULL.
1606 */
1607 /* Opcode: ShiftLeft P1 P2 P3 * *
1608 ** Synopsis: r[P3]=r[P2]<<r[P1]
1609 **
1610 ** Shift the integer value in register P2 to the left by the
1611 ** number of bits specified by the integer in register P1.
1612 ** Store the result in register P3.
1613 ** If either input is NULL, the result is NULL.
1614 */
1615 /* Opcode: ShiftRight P1 P2 P3 * *
1616 ** Synopsis: r[P3]=r[P2]>>r[P1]
1617 **
1618 ** Shift the integer value in register P2 to the right by the
1619 ** number of bits specified by the integer in register P1.
1620 ** Store the result in register P3.
1621 ** If either input is NULL, the result is NULL.
1622 */
1623 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1624 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1625 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1626 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1627   i64 iA;
1628   u64 uA;
1629   i64 iB;
1630   u8 op;
1631 
1632   pIn1 = &aMem[pOp->p1];
1633   pIn2 = &aMem[pOp->p2];
1634   pOut = &aMem[pOp->p3];
1635   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1636     sqlite3VdbeMemSetNull(pOut);
1637     break;
1638   }
1639   iA = sqlite3VdbeIntValue(pIn2);
1640   iB = sqlite3VdbeIntValue(pIn1);
1641   op = pOp->opcode;
1642   if( op==OP_BitAnd ){
1643     iA &= iB;
1644   }else if( op==OP_BitOr ){
1645     iA |= iB;
1646   }else if( iB!=0 ){
1647     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1648 
1649     /* If shifting by a negative amount, shift in the other direction */
1650     if( iB<0 ){
1651       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1652       op = 2*OP_ShiftLeft + 1 - op;
1653       iB = iB>(-64) ? -iB : 64;
1654     }
1655 
1656     if( iB>=64 ){
1657       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1658     }else{
1659       memcpy(&uA, &iA, sizeof(uA));
1660       if( op==OP_ShiftLeft ){
1661         uA <<= iB;
1662       }else{
1663         uA >>= iB;
1664         /* Sign-extend on a right shift of a negative number */
1665         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1666       }
1667       memcpy(&iA, &uA, sizeof(iA));
1668     }
1669   }
1670   pOut->u.i = iA;
1671   MemSetTypeFlag(pOut, MEM_Int);
1672   break;
1673 }
1674 
1675 /* Opcode: AddImm  P1 P2 * * *
1676 ** Synopsis: r[P1]=r[P1]+P2
1677 **
1678 ** Add the constant P2 to the value in register P1.
1679 ** The result is always an integer.
1680 **
1681 ** To force any register to be an integer, just add 0.
1682 */
1683 case OP_AddImm: {            /* in1 */
1684   pIn1 = &aMem[pOp->p1];
1685   memAboutToChange(p, pIn1);
1686   sqlite3VdbeMemIntegerify(pIn1);
1687   pIn1->u.i += pOp->p2;
1688   break;
1689 }
1690 
1691 /* Opcode: MustBeInt P1 P2 * * *
1692 **
1693 ** Force the value in register P1 to be an integer.  If the value
1694 ** in P1 is not an integer and cannot be converted into an integer
1695 ** without data loss, then jump immediately to P2, or if P2==0
1696 ** raise an SQLITE_MISMATCH exception.
1697 */
1698 case OP_MustBeInt: {            /* jump, in1 */
1699   pIn1 = &aMem[pOp->p1];
1700   if( (pIn1->flags & MEM_Int)==0 ){
1701     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1702     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1703     if( (pIn1->flags & MEM_Int)==0 ){
1704       if( pOp->p2==0 ){
1705         rc = SQLITE_MISMATCH;
1706         goto abort_due_to_error;
1707       }else{
1708         goto jump_to_p2;
1709       }
1710     }
1711   }
1712   MemSetTypeFlag(pIn1, MEM_Int);
1713   break;
1714 }
1715 
1716 #ifndef SQLITE_OMIT_FLOATING_POINT
1717 /* Opcode: RealAffinity P1 * * * *
1718 **
1719 ** If register P1 holds an integer convert it to a real value.
1720 **
1721 ** This opcode is used when extracting information from a column that
1722 ** has REAL affinity.  Such column values may still be stored as
1723 ** integers, for space efficiency, but after extraction we want them
1724 ** to have only a real value.
1725 */
1726 case OP_RealAffinity: {                  /* in1 */
1727   pIn1 = &aMem[pOp->p1];
1728   if( pIn1->flags & MEM_Int ){
1729     sqlite3VdbeMemRealify(pIn1);
1730   }
1731   break;
1732 }
1733 #endif
1734 
1735 #ifndef SQLITE_OMIT_CAST
1736 /* Opcode: Cast P1 P2 * * *
1737 ** Synopsis: affinity(r[P1])
1738 **
1739 ** Force the value in register P1 to be the type defined by P2.
1740 **
1741 ** <ul>
1742 ** <li> P2=='A' &rarr; BLOB
1743 ** <li> P2=='B' &rarr; TEXT
1744 ** <li> P2=='C' &rarr; NUMERIC
1745 ** <li> P2=='D' &rarr; INTEGER
1746 ** <li> P2=='E' &rarr; REAL
1747 ** </ul>
1748 **
1749 ** A NULL value is not changed by this routine.  It remains NULL.
1750 */
1751 case OP_Cast: {                  /* in1 */
1752   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1753   testcase( pOp->p2==SQLITE_AFF_TEXT );
1754   testcase( pOp->p2==SQLITE_AFF_BLOB );
1755   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1756   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1757   testcase( pOp->p2==SQLITE_AFF_REAL );
1758   pIn1 = &aMem[pOp->p1];
1759   memAboutToChange(p, pIn1);
1760   rc = ExpandBlob(pIn1);
1761   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1762   UPDATE_MAX_BLOBSIZE(pIn1);
1763   if( rc ) goto abort_due_to_error;
1764   break;
1765 }
1766 #endif /* SQLITE_OMIT_CAST */
1767 
1768 /* Opcode: Eq P1 P2 P3 P4 P5
1769 ** Synopsis: IF r[P3]==r[P1]
1770 **
1771 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1772 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1773 ** store the result of comparison in register P2.
1774 **
1775 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1776 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1777 ** to coerce both inputs according to this affinity before the
1778 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1779 ** affinity is used. Note that the affinity conversions are stored
1780 ** back into the input registers P1 and P3.  So this opcode can cause
1781 ** persistent changes to registers P1 and P3.
1782 **
1783 ** Once any conversions have taken place, and neither value is NULL,
1784 ** the values are compared. If both values are blobs then memcmp() is
1785 ** used to determine the results of the comparison.  If both values
1786 ** are text, then the appropriate collating function specified in
1787 ** P4 is used to do the comparison.  If P4 is not specified then
1788 ** memcmp() is used to compare text string.  If both values are
1789 ** numeric, then a numeric comparison is used. If the two values
1790 ** are of different types, then numbers are considered less than
1791 ** strings and strings are considered less than blobs.
1792 **
1793 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1794 ** true or false and is never NULL.  If both operands are NULL then the result
1795 ** of comparison is true.  If either operand is NULL then the result is false.
1796 ** If neither operand is NULL the result is the same as it would be if
1797 ** the SQLITE_NULLEQ flag were omitted from P5.
1798 **
1799 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1800 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1801 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1802 */
1803 /* Opcode: Ne P1 P2 P3 P4 P5
1804 ** Synopsis: IF r[P3]!=r[P1]
1805 **
1806 ** This works just like the Eq opcode except that the jump is taken if
1807 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1808 ** additional information.
1809 **
1810 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1811 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1812 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1813 */
1814 /* Opcode: Lt P1 P2 P3 P4 P5
1815 ** Synopsis: IF r[P3]<r[P1]
1816 **
1817 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1818 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1819 ** the result of comparison (0 or 1 or NULL) into register P2.
1820 **
1821 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1822 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1823 ** bit is clear then fall through if either operand is NULL.
1824 **
1825 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1826 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1827 ** to coerce both inputs according to this affinity before the
1828 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1829 ** affinity is used. Note that the affinity conversions are stored
1830 ** back into the input registers P1 and P3.  So this opcode can cause
1831 ** persistent changes to registers P1 and P3.
1832 **
1833 ** Once any conversions have taken place, and neither value is NULL,
1834 ** the values are compared. If both values are blobs then memcmp() is
1835 ** used to determine the results of the comparison.  If both values
1836 ** are text, then the appropriate collating function specified in
1837 ** P4 is  used to do the comparison.  If P4 is not specified then
1838 ** memcmp() is used to compare text string.  If both values are
1839 ** numeric, then a numeric comparison is used. If the two values
1840 ** are of different types, then numbers are considered less than
1841 ** strings and strings are considered less than blobs.
1842 */
1843 /* Opcode: Le P1 P2 P3 P4 P5
1844 ** Synopsis: IF r[P3]<=r[P1]
1845 **
1846 ** This works just like the Lt opcode except that the jump is taken if
1847 ** the content of register P3 is less than or equal to the content of
1848 ** register P1.  See the Lt opcode for additional information.
1849 */
1850 /* Opcode: Gt P1 P2 P3 P4 P5
1851 ** Synopsis: IF r[P3]>r[P1]
1852 **
1853 ** This works just like the Lt opcode except that the jump is taken if
1854 ** the content of register P3 is greater than the content of
1855 ** register P1.  See the Lt opcode for additional information.
1856 */
1857 /* Opcode: Ge P1 P2 P3 P4 P5
1858 ** Synopsis: IF r[P3]>=r[P1]
1859 **
1860 ** This works just like the Lt opcode except that the jump is taken if
1861 ** the content of register P3 is greater than or equal to the content of
1862 ** register P1.  See the Lt opcode for additional information.
1863 */
1864 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1865 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1866 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1867 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1868 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1869 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1870   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1871   char affinity;      /* Affinity to use for comparison */
1872   u16 flags1;         /* Copy of initial value of pIn1->flags */
1873   u16 flags3;         /* Copy of initial value of pIn3->flags */
1874 
1875   pIn1 = &aMem[pOp->p1];
1876   pIn3 = &aMem[pOp->p3];
1877   flags1 = pIn1->flags;
1878   flags3 = pIn3->flags;
1879   if( (flags1 | flags3)&MEM_Null ){
1880     /* One or both operands are NULL */
1881     if( pOp->p5 & SQLITE_NULLEQ ){
1882       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1883       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1884       ** or not both operands are null.
1885       */
1886       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1887       assert( (flags1 & MEM_Cleared)==0 );
1888       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1889       if( (flags1&flags3&MEM_Null)!=0
1890        && (flags3&MEM_Cleared)==0
1891       ){
1892         res = 0;  /* Operands are equal */
1893       }else{
1894         res = 1;  /* Operands are not equal */
1895       }
1896     }else{
1897       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1898       ** then the result is always NULL.
1899       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1900       */
1901       if( pOp->p5 & SQLITE_STOREP2 ){
1902         pOut = &aMem[pOp->p2];
1903         iCompare = 1;    /* Operands are not equal */
1904         memAboutToChange(p, pOut);
1905         MemSetTypeFlag(pOut, MEM_Null);
1906         REGISTER_TRACE(pOp->p2, pOut);
1907       }else{
1908         VdbeBranchTaken(2,3);
1909         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1910           goto jump_to_p2;
1911         }
1912       }
1913       break;
1914     }
1915   }else{
1916     /* Neither operand is NULL.  Do a comparison. */
1917     affinity = pOp->p5 & SQLITE_AFF_MASK;
1918     if( affinity>=SQLITE_AFF_NUMERIC ){
1919       if( (flags1 | flags3)&MEM_Str ){
1920         if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1921           applyNumericAffinity(pIn1,0);
1922           testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
1923           flags3 = pIn3->flags;
1924         }
1925         if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1926           applyNumericAffinity(pIn3,0);
1927         }
1928       }
1929       /* Handle the common case of integer comparison here, as an
1930       ** optimization, to avoid a call to sqlite3MemCompare() */
1931       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1932         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1933         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1934         res = 0;
1935         goto compare_op;
1936       }
1937     }else if( affinity==SQLITE_AFF_TEXT ){
1938       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
1939         testcase( pIn1->flags & MEM_Int );
1940         testcase( pIn1->flags & MEM_Real );
1941         sqlite3VdbeMemStringify(pIn1, encoding, 1);
1942         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1943         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1944         assert( pIn1!=pIn3 );
1945       }
1946       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
1947         testcase( pIn3->flags & MEM_Int );
1948         testcase( pIn3->flags & MEM_Real );
1949         sqlite3VdbeMemStringify(pIn3, encoding, 1);
1950         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1951         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
1952       }
1953     }
1954     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1955     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1956   }
1957 compare_op:
1958   /* At this point, res is negative, zero, or positive if reg[P1] is
1959   ** less than, equal to, or greater than reg[P3], respectively.  Compute
1960   ** the answer to this operator in res2, depending on what the comparison
1961   ** operator actually is.  The next block of code depends on the fact
1962   ** that the 6 comparison operators are consecutive integers in this
1963   ** order:  NE, EQ, GT, LE, LT, GE */
1964   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
1965   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
1966   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
1967     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
1968     res2 = aLTb[pOp->opcode - OP_Ne];
1969   }else if( res==0 ){
1970     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
1971     res2 = aEQb[pOp->opcode - OP_Ne];
1972   }else{
1973     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
1974     res2 = aGTb[pOp->opcode - OP_Ne];
1975   }
1976 
1977   /* Undo any changes made by applyAffinity() to the input registers. */
1978   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1979   pIn1->flags = flags1;
1980   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1981   pIn3->flags = flags3;
1982 
1983   if( pOp->p5 & SQLITE_STOREP2 ){
1984     pOut = &aMem[pOp->p2];
1985     iCompare = res;
1986     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
1987       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
1988       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
1989       ** is only used in contexts where either:
1990       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
1991       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
1992       ** Therefore it is not necessary to check the content of r[P2] for
1993       ** NULL. */
1994       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
1995       assert( res2==0 || res2==1 );
1996       testcase( res2==0 && pOp->opcode==OP_Eq );
1997       testcase( res2==1 && pOp->opcode==OP_Eq );
1998       testcase( res2==0 && pOp->opcode==OP_Ne );
1999       testcase( res2==1 && pOp->opcode==OP_Ne );
2000       if( (pOp->opcode==OP_Eq)==res2 ) break;
2001     }
2002     memAboutToChange(p, pOut);
2003     MemSetTypeFlag(pOut, MEM_Int);
2004     pOut->u.i = res2;
2005     REGISTER_TRACE(pOp->p2, pOut);
2006   }else{
2007     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2008     if( res2 ){
2009       goto jump_to_p2;
2010     }
2011   }
2012   break;
2013 }
2014 
2015 /* Opcode: ElseNotEq * P2 * * *
2016 **
2017 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2018 ** If result of an OP_Eq comparison on the same two operands
2019 ** would have be NULL or false (0), then then jump to P2.
2020 ** If the result of an OP_Eq comparison on the two previous operands
2021 ** would have been true (1), then fall through.
2022 */
2023 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2024   assert( pOp>aOp );
2025   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2026   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2027   VdbeBranchTaken(iCompare!=0, 2);
2028   if( iCompare!=0 ) goto jump_to_p2;
2029   break;
2030 }
2031 
2032 
2033 /* Opcode: Permutation * * * P4 *
2034 **
2035 ** Set the permutation used by the OP_Compare operator in the next
2036 ** instruction.  The permutation is stored in the P4 operand.
2037 **
2038 ** The permutation is only valid until the next OP_Compare that has
2039 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2040 ** occur immediately prior to the OP_Compare.
2041 **
2042 ** The first integer in the P4 integer array is the length of the array
2043 ** and does not become part of the permutation.
2044 */
2045 case OP_Permutation: {
2046   assert( pOp->p4type==P4_INTARRAY );
2047   assert( pOp->p4.ai );
2048   assert( pOp[1].opcode==OP_Compare );
2049   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2050   break;
2051 }
2052 
2053 /* Opcode: Compare P1 P2 P3 P4 P5
2054 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2055 **
2056 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2057 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2058 ** the comparison for use by the next OP_Jump instruct.
2059 **
2060 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2061 ** determined by the most recent OP_Permutation operator.  If the
2062 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2063 ** order.
2064 **
2065 ** P4 is a KeyInfo structure that defines collating sequences and sort
2066 ** orders for the comparison.  The permutation applies to registers
2067 ** only.  The KeyInfo elements are used sequentially.
2068 **
2069 ** The comparison is a sort comparison, so NULLs compare equal,
2070 ** NULLs are less than numbers, numbers are less than strings,
2071 ** and strings are less than blobs.
2072 */
2073 case OP_Compare: {
2074   int n;
2075   int i;
2076   int p1;
2077   int p2;
2078   const KeyInfo *pKeyInfo;
2079   int idx;
2080   CollSeq *pColl;    /* Collating sequence to use on this term */
2081   int bRev;          /* True for DESCENDING sort order */
2082   int *aPermute;     /* The permutation */
2083 
2084   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2085     aPermute = 0;
2086   }else{
2087     assert( pOp>aOp );
2088     assert( pOp[-1].opcode==OP_Permutation );
2089     assert( pOp[-1].p4type==P4_INTARRAY );
2090     aPermute = pOp[-1].p4.ai + 1;
2091     assert( aPermute!=0 );
2092   }
2093   n = pOp->p3;
2094   pKeyInfo = pOp->p4.pKeyInfo;
2095   assert( n>0 );
2096   assert( pKeyInfo!=0 );
2097   p1 = pOp->p1;
2098   p2 = pOp->p2;
2099 #ifdef SQLITE_DEBUG
2100   if( aPermute ){
2101     int k, mx = 0;
2102     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2103     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2104     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2105   }else{
2106     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2107     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2108   }
2109 #endif /* SQLITE_DEBUG */
2110   for(i=0; i<n; i++){
2111     idx = aPermute ? aPermute[i] : i;
2112     assert( memIsValid(&aMem[p1+idx]) );
2113     assert( memIsValid(&aMem[p2+idx]) );
2114     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2115     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2116     assert( i<pKeyInfo->nKeyField );
2117     pColl = pKeyInfo->aColl[i];
2118     bRev = pKeyInfo->aSortOrder[i];
2119     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2120     if( iCompare ){
2121       if( bRev ) iCompare = -iCompare;
2122       break;
2123     }
2124   }
2125   break;
2126 }
2127 
2128 /* Opcode: Jump P1 P2 P3 * *
2129 **
2130 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2131 ** in the most recent OP_Compare instruction the P1 vector was less than
2132 ** equal to, or greater than the P2 vector, respectively.
2133 */
2134 case OP_Jump: {             /* jump */
2135   if( iCompare<0 ){
2136     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2137   }else if( iCompare==0 ){
2138     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2139   }else{
2140     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2141   }
2142   break;
2143 }
2144 
2145 /* Opcode: And P1 P2 P3 * *
2146 ** Synopsis: r[P3]=(r[P1] && r[P2])
2147 **
2148 ** Take the logical AND of the values in registers P1 and P2 and
2149 ** write the result into register P3.
2150 **
2151 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2152 ** the other input is NULL.  A NULL and true or two NULLs give
2153 ** a NULL output.
2154 */
2155 /* Opcode: Or P1 P2 P3 * *
2156 ** Synopsis: r[P3]=(r[P1] || r[P2])
2157 **
2158 ** Take the logical OR of the values in register P1 and P2 and
2159 ** store the answer in register P3.
2160 **
2161 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2162 ** even if the other input is NULL.  A NULL and false or two NULLs
2163 ** give a NULL output.
2164 */
2165 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2166 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2167   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2168   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2169 
2170   pIn1 = &aMem[pOp->p1];
2171   if( pIn1->flags & MEM_Null ){
2172     v1 = 2;
2173   }else{
2174     v1 = sqlite3VdbeIntValue(pIn1)!=0;
2175   }
2176   pIn2 = &aMem[pOp->p2];
2177   if( pIn2->flags & MEM_Null ){
2178     v2 = 2;
2179   }else{
2180     v2 = sqlite3VdbeIntValue(pIn2)!=0;
2181   }
2182   if( pOp->opcode==OP_And ){
2183     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2184     v1 = and_logic[v1*3+v2];
2185   }else{
2186     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2187     v1 = or_logic[v1*3+v2];
2188   }
2189   pOut = &aMem[pOp->p3];
2190   if( v1==2 ){
2191     MemSetTypeFlag(pOut, MEM_Null);
2192   }else{
2193     pOut->u.i = v1;
2194     MemSetTypeFlag(pOut, MEM_Int);
2195   }
2196   break;
2197 }
2198 
2199 /* Opcode: Not P1 P2 * * *
2200 ** Synopsis: r[P2]= !r[P1]
2201 **
2202 ** Interpret the value in register P1 as a boolean value.  Store the
2203 ** boolean complement in register P2.  If the value in register P1 is
2204 ** NULL, then a NULL is stored in P2.
2205 */
2206 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2207   pIn1 = &aMem[pOp->p1];
2208   pOut = &aMem[pOp->p2];
2209   sqlite3VdbeMemSetNull(pOut);
2210   if( (pIn1->flags & MEM_Null)==0 ){
2211     pOut->flags = MEM_Int;
2212     pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2213   }
2214   break;
2215 }
2216 
2217 /* Opcode: BitNot P1 P2 * * *
2218 ** Synopsis: r[P1]= ~r[P1]
2219 **
2220 ** Interpret the content of register P1 as an integer.  Store the
2221 ** ones-complement of the P1 value into register P2.  If P1 holds
2222 ** a NULL then store a NULL in P2.
2223 */
2224 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2225   pIn1 = &aMem[pOp->p1];
2226   pOut = &aMem[pOp->p2];
2227   sqlite3VdbeMemSetNull(pOut);
2228   if( (pIn1->flags & MEM_Null)==0 ){
2229     pOut->flags = MEM_Int;
2230     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2231   }
2232   break;
2233 }
2234 
2235 /* Opcode: Once P1 P2 * * *
2236 **
2237 ** Fall through to the next instruction the first time this opcode is
2238 ** encountered on each invocation of the byte-code program.  Jump to P2
2239 ** on the second and all subsequent encounters during the same invocation.
2240 **
2241 ** Top-level programs determine first invocation by comparing the P1
2242 ** operand against the P1 operand on the OP_Init opcode at the beginning
2243 ** of the program.  If the P1 values differ, then fall through and make
2244 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2245 ** the same then take the jump.
2246 **
2247 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2248 ** whether or not the jump should be taken.  The bitmask is necessary
2249 ** because the self-altering code trick does not work for recursive
2250 ** triggers.
2251 */
2252 case OP_Once: {             /* jump */
2253   u32 iAddr;                /* Address of this instruction */
2254   assert( p->aOp[0].opcode==OP_Init );
2255   if( p->pFrame ){
2256     iAddr = (int)(pOp - p->aOp);
2257     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2258       VdbeBranchTaken(1, 2);
2259       goto jump_to_p2;
2260     }
2261     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2262   }else{
2263     if( p->aOp[0].p1==pOp->p1 ){
2264       VdbeBranchTaken(1, 2);
2265       goto jump_to_p2;
2266     }
2267   }
2268   VdbeBranchTaken(0, 2);
2269   pOp->p1 = p->aOp[0].p1;
2270   break;
2271 }
2272 
2273 /* Opcode: If P1 P2 P3 * *
2274 **
2275 ** Jump to P2 if the value in register P1 is true.  The value
2276 ** is considered true if it is numeric and non-zero.  If the value
2277 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2278 */
2279 /* Opcode: IfNot P1 P2 P3 * *
2280 **
2281 ** Jump to P2 if the value in register P1 is False.  The value
2282 ** is considered false if it has a numeric value of zero.  If the value
2283 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2284 */
2285 case OP_If:                 /* jump, in1 */
2286 case OP_IfNot: {            /* jump, in1 */
2287   int c;
2288   pIn1 = &aMem[pOp->p1];
2289   if( pIn1->flags & MEM_Null ){
2290     c = pOp->p3;
2291   }else{
2292 #ifdef SQLITE_OMIT_FLOATING_POINT
2293     c = sqlite3VdbeIntValue(pIn1)!=0;
2294 #else
2295     c = sqlite3VdbeRealValue(pIn1)!=0.0;
2296 #endif
2297     if( pOp->opcode==OP_IfNot ) c = !c;
2298   }
2299   VdbeBranchTaken(c!=0, 2);
2300   if( c ){
2301     goto jump_to_p2;
2302   }
2303   break;
2304 }
2305 
2306 /* Opcode: IsNull P1 P2 * * *
2307 ** Synopsis: if r[P1]==NULL goto P2
2308 **
2309 ** Jump to P2 if the value in register P1 is NULL.
2310 */
2311 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2312   pIn1 = &aMem[pOp->p1];
2313   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2314   if( (pIn1->flags & MEM_Null)!=0 ){
2315     goto jump_to_p2;
2316   }
2317   break;
2318 }
2319 
2320 /* Opcode: NotNull P1 P2 * * *
2321 ** Synopsis: if r[P1]!=NULL goto P2
2322 **
2323 ** Jump to P2 if the value in register P1 is not NULL.
2324 */
2325 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2326   pIn1 = &aMem[pOp->p1];
2327   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2328   if( (pIn1->flags & MEM_Null)==0 ){
2329     goto jump_to_p2;
2330   }
2331   break;
2332 }
2333 
2334 /* Opcode: IfNullRow P1 P2 P3 * *
2335 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2336 **
2337 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2338 ** If it is, then set register P3 to NULL and jump immediately to P2.
2339 ** If P1 is not on a NULL row, then fall through without making any
2340 ** changes.
2341 */
2342 case OP_IfNullRow: {         /* jump */
2343   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2344   assert( p->apCsr[pOp->p1]!=0 );
2345   if( p->apCsr[pOp->p1]->nullRow ){
2346     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2347     goto jump_to_p2;
2348   }
2349   break;
2350 }
2351 
2352 /* Opcode: Column P1 P2 P3 P4 P5
2353 ** Synopsis: r[P3]=PX
2354 **
2355 ** Interpret the data that cursor P1 points to as a structure built using
2356 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2357 ** information about the format of the data.)  Extract the P2-th column
2358 ** from this record.  If there are less that (P2+1)
2359 ** values in the record, extract a NULL.
2360 **
2361 ** The value extracted is stored in register P3.
2362 **
2363 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2364 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2365 ** the result.
2366 **
2367 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2368 ** then the cache of the cursor is reset prior to extracting the column.
2369 ** The first OP_Column against a pseudo-table after the value of the content
2370 ** register has changed should have this bit set.
2371 **
2372 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2373 ** the result is guaranteed to only be used as the argument of a length()
2374 ** or typeof() function, respectively.  The loading of large blobs can be
2375 ** skipped for length() and all content loading can be skipped for typeof().
2376 */
2377 case OP_Column: {
2378   int p2;            /* column number to retrieve */
2379   VdbeCursor *pC;    /* The VDBE cursor */
2380   BtCursor *pCrsr;   /* The BTree cursor */
2381   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2382   int len;           /* The length of the serialized data for the column */
2383   int i;             /* Loop counter */
2384   Mem *pDest;        /* Where to write the extracted value */
2385   Mem sMem;          /* For storing the record being decoded */
2386   const u8 *zData;   /* Part of the record being decoded */
2387   const u8 *zHdr;    /* Next unparsed byte of the header */
2388   const u8 *zEndHdr; /* Pointer to first byte after the header */
2389   u64 offset64;      /* 64-bit offset */
2390   u32 t;             /* A type code from the record header */
2391   Mem *pReg;         /* PseudoTable input register */
2392 
2393   pC = p->apCsr[pOp->p1];
2394   p2 = pOp->p2;
2395 
2396   /* If the cursor cache is stale (meaning it is not currently point at
2397   ** the correct row) then bring it up-to-date by doing the necessary
2398   ** B-Tree seek. */
2399   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2400   if( rc ) goto abort_due_to_error;
2401 
2402   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2403   pDest = &aMem[pOp->p3];
2404   memAboutToChange(p, pDest);
2405   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2406   assert( pC!=0 );
2407   assert( p2<pC->nField );
2408   aOffset = pC->aOffset;
2409   assert( pC->eCurType!=CURTYPE_VTAB );
2410   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2411   assert( pC->eCurType!=CURTYPE_SORTER );
2412 
2413   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2414     if( pC->nullRow ){
2415       if( pC->eCurType==CURTYPE_PSEUDO ){
2416         /* For the special case of as pseudo-cursor, the seekResult field
2417         ** identifies the register that holds the record */
2418         assert( pC->seekResult>0 );
2419         pReg = &aMem[pC->seekResult];
2420         assert( pReg->flags & MEM_Blob );
2421         assert( memIsValid(pReg) );
2422         pC->payloadSize = pC->szRow = pReg->n;
2423         pC->aRow = (u8*)pReg->z;
2424       }else{
2425         sqlite3VdbeMemSetNull(pDest);
2426         goto op_column_out;
2427       }
2428     }else{
2429       pCrsr = pC->uc.pCursor;
2430       assert( pC->eCurType==CURTYPE_BTREE );
2431       assert( pCrsr );
2432       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2433       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2434       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2435       assert( pC->szRow<=pC->payloadSize );
2436       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2437       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2438         goto too_big;
2439       }
2440     }
2441     pC->cacheStatus = p->cacheCtr;
2442     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2443     pC->nHdrParsed = 0;
2444 
2445 
2446     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2447       /* pC->aRow does not have to hold the entire row, but it does at least
2448       ** need to cover the header of the record.  If pC->aRow does not contain
2449       ** the complete header, then set it to zero, forcing the header to be
2450       ** dynamically allocated. */
2451       pC->aRow = 0;
2452       pC->szRow = 0;
2453 
2454       /* Make sure a corrupt database has not given us an oversize header.
2455       ** Do this now to avoid an oversize memory allocation.
2456       **
2457       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2458       ** types use so much data space that there can only be 4096 and 32 of
2459       ** them, respectively.  So the maximum header length results from a
2460       ** 3-byte type for each of the maximum of 32768 columns plus three
2461       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2462       */
2463       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2464         goto op_column_corrupt;
2465       }
2466     }else{
2467       /* This is an optimization.  By skipping over the first few tests
2468       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2469       ** measurable performance gain.
2470       **
2471       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2472       ** generated by SQLite, and could be considered corruption, but we
2473       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2474       ** branch jumps to reads past the end of the record, but never more
2475       ** than a few bytes.  Even if the record occurs at the end of the page
2476       ** content area, the "page header" comes after the page content and so
2477       ** this overread is harmless.  Similar overreads can occur for a corrupt
2478       ** database file.
2479       */
2480       zData = pC->aRow;
2481       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2482       testcase( aOffset[0]==0 );
2483       goto op_column_read_header;
2484     }
2485   }
2486 
2487   /* Make sure at least the first p2+1 entries of the header have been
2488   ** parsed and valid information is in aOffset[] and pC->aType[].
2489   */
2490   if( pC->nHdrParsed<=p2 ){
2491     /* If there is more header available for parsing in the record, try
2492     ** to extract additional fields up through the p2+1-th field
2493     */
2494     if( pC->iHdrOffset<aOffset[0] ){
2495       /* Make sure zData points to enough of the record to cover the header. */
2496       if( pC->aRow==0 ){
2497         memset(&sMem, 0, sizeof(sMem));
2498         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2499         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2500         zData = (u8*)sMem.z;
2501       }else{
2502         zData = pC->aRow;
2503       }
2504 
2505       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2506     op_column_read_header:
2507       i = pC->nHdrParsed;
2508       offset64 = aOffset[i];
2509       zHdr = zData + pC->iHdrOffset;
2510       zEndHdr = zData + aOffset[0];
2511       testcase( zHdr>=zEndHdr );
2512       do{
2513         if( (t = zHdr[0])<0x80 ){
2514           zHdr++;
2515           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2516         }else{
2517           zHdr += sqlite3GetVarint32(zHdr, &t);
2518           offset64 += sqlite3VdbeSerialTypeLen(t);
2519         }
2520         pC->aType[i++] = t;
2521         aOffset[i] = (u32)(offset64 & 0xffffffff);
2522       }while( i<=p2 && zHdr<zEndHdr );
2523 
2524       /* The record is corrupt if any of the following are true:
2525       ** (1) the bytes of the header extend past the declared header size
2526       ** (2) the entire header was used but not all data was used
2527       ** (3) the end of the data extends beyond the end of the record.
2528       */
2529       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2530        || (offset64 > pC->payloadSize)
2531       ){
2532         if( aOffset[0]==0 ){
2533           i = 0;
2534           zHdr = zEndHdr;
2535         }else{
2536           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2537           goto op_column_corrupt;
2538         }
2539       }
2540 
2541       pC->nHdrParsed = i;
2542       pC->iHdrOffset = (u32)(zHdr - zData);
2543       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2544     }else{
2545       t = 0;
2546     }
2547 
2548     /* If after trying to extract new entries from the header, nHdrParsed is
2549     ** still not up to p2, that means that the record has fewer than p2
2550     ** columns.  So the result will be either the default value or a NULL.
2551     */
2552     if( pC->nHdrParsed<=p2 ){
2553       if( pOp->p4type==P4_MEM ){
2554         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2555       }else{
2556         sqlite3VdbeMemSetNull(pDest);
2557       }
2558       goto op_column_out;
2559     }
2560   }else{
2561     t = pC->aType[p2];
2562   }
2563 
2564   /* Extract the content for the p2+1-th column.  Control can only
2565   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2566   ** all valid.
2567   */
2568   assert( p2<pC->nHdrParsed );
2569   assert( rc==SQLITE_OK );
2570   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2571   if( VdbeMemDynamic(pDest) ){
2572     sqlite3VdbeMemSetNull(pDest);
2573   }
2574   assert( t==pC->aType[p2] );
2575   if( pC->szRow>=aOffset[p2+1] ){
2576     /* This is the common case where the desired content fits on the original
2577     ** page - where the content is not on an overflow page */
2578     zData = pC->aRow + aOffset[p2];
2579     if( t<12 ){
2580       sqlite3VdbeSerialGet(zData, t, pDest);
2581     }else{
2582       /* If the column value is a string, we need a persistent value, not
2583       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2584       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2585       */
2586       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2587       pDest->n = len = (t-12)/2;
2588       pDest->enc = encoding;
2589       if( pDest->szMalloc < len+2 ){
2590         pDest->flags = MEM_Null;
2591         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2592       }else{
2593         pDest->z = pDest->zMalloc;
2594       }
2595       memcpy(pDest->z, zData, len);
2596       pDest->z[len] = 0;
2597       pDest->z[len+1] = 0;
2598       pDest->flags = aFlag[t&1];
2599     }
2600   }else{
2601     pDest->enc = encoding;
2602     /* This branch happens only when content is on overflow pages */
2603     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2604           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2605      || (len = sqlite3VdbeSerialTypeLen(t))==0
2606     ){
2607       /* Content is irrelevant for
2608       **    1. the typeof() function,
2609       **    2. the length(X) function if X is a blob, and
2610       **    3. if the content length is zero.
2611       ** So we might as well use bogus content rather than reading
2612       ** content from disk.
2613       **
2614       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2615       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2616       ** read up to 16. So 16 bytes of bogus content is supplied.
2617       */
2618       static u8 aZero[16];  /* This is the bogus content */
2619       sqlite3VdbeSerialGet(aZero, t, pDest);
2620     }else{
2621       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2622       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2623       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2624       pDest->flags &= ~MEM_Ephem;
2625     }
2626   }
2627 
2628 op_column_out:
2629   UPDATE_MAX_BLOBSIZE(pDest);
2630   REGISTER_TRACE(pOp->p3, pDest);
2631   break;
2632 
2633 op_column_corrupt:
2634   if( aOp[0].p3>0 ){
2635     pOp = &aOp[aOp[0].p3-1];
2636     break;
2637   }else{
2638     rc = SQLITE_CORRUPT_BKPT;
2639     goto abort_due_to_error;
2640   }
2641 }
2642 
2643 /* Opcode: Affinity P1 P2 * P4 *
2644 ** Synopsis: affinity(r[P1@P2])
2645 **
2646 ** Apply affinities to a range of P2 registers starting with P1.
2647 **
2648 ** P4 is a string that is P2 characters long. The N-th character of the
2649 ** string indicates the column affinity that should be used for the N-th
2650 ** memory cell in the range.
2651 */
2652 case OP_Affinity: {
2653   const char *zAffinity;   /* The affinity to be applied */
2654 
2655   zAffinity = pOp->p4.z;
2656   assert( zAffinity!=0 );
2657   assert( pOp->p2>0 );
2658   assert( zAffinity[pOp->p2]==0 );
2659   pIn1 = &aMem[pOp->p1];
2660   do{
2661     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2662     assert( memIsValid(pIn1) );
2663     applyAffinity(pIn1, *(zAffinity++), encoding);
2664     pIn1++;
2665   }while( zAffinity[0] );
2666   break;
2667 }
2668 
2669 /* Opcode: MakeRecord P1 P2 P3 P4 *
2670 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2671 **
2672 ** Convert P2 registers beginning with P1 into the [record format]
2673 ** use as a data record in a database table or as a key
2674 ** in an index.  The OP_Column opcode can decode the record later.
2675 **
2676 ** P4 may be a string that is P2 characters long.  The N-th character of the
2677 ** string indicates the column affinity that should be used for the N-th
2678 ** field of the index key.
2679 **
2680 ** The mapping from character to affinity is given by the SQLITE_AFF_
2681 ** macros defined in sqliteInt.h.
2682 **
2683 ** If P4 is NULL then all index fields have the affinity BLOB.
2684 */
2685 case OP_MakeRecord: {
2686   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2687   Mem *pRec;             /* The new record */
2688   u64 nData;             /* Number of bytes of data space */
2689   int nHdr;              /* Number of bytes of header space */
2690   i64 nByte;             /* Data space required for this record */
2691   i64 nZero;             /* Number of zero bytes at the end of the record */
2692   int nVarint;           /* Number of bytes in a varint */
2693   u32 serial_type;       /* Type field */
2694   Mem *pData0;           /* First field to be combined into the record */
2695   Mem *pLast;            /* Last field of the record */
2696   int nField;            /* Number of fields in the record */
2697   char *zAffinity;       /* The affinity string for the record */
2698   int file_format;       /* File format to use for encoding */
2699   int i;                 /* Space used in zNewRecord[] header */
2700   int j;                 /* Space used in zNewRecord[] content */
2701   u32 len;               /* Length of a field */
2702 
2703   /* Assuming the record contains N fields, the record format looks
2704   ** like this:
2705   **
2706   ** ------------------------------------------------------------------------
2707   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2708   ** ------------------------------------------------------------------------
2709   **
2710   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2711   ** and so forth.
2712   **
2713   ** Each type field is a varint representing the serial type of the
2714   ** corresponding data element (see sqlite3VdbeSerialType()). The
2715   ** hdr-size field is also a varint which is the offset from the beginning
2716   ** of the record to data0.
2717   */
2718   nData = 0;         /* Number of bytes of data space */
2719   nHdr = 0;          /* Number of bytes of header space */
2720   nZero = 0;         /* Number of zero bytes at the end of the record */
2721   nField = pOp->p1;
2722   zAffinity = pOp->p4.z;
2723   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2724   pData0 = &aMem[nField];
2725   nField = pOp->p2;
2726   pLast = &pData0[nField-1];
2727   file_format = p->minWriteFileFormat;
2728 
2729   /* Identify the output register */
2730   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2731   pOut = &aMem[pOp->p3];
2732   memAboutToChange(p, pOut);
2733 
2734   /* Apply the requested affinity to all inputs
2735   */
2736   assert( pData0<=pLast );
2737   if( zAffinity ){
2738     pRec = pData0;
2739     do{
2740       applyAffinity(pRec++, *(zAffinity++), encoding);
2741       assert( zAffinity[0]==0 || pRec<=pLast );
2742     }while( zAffinity[0] );
2743   }
2744 
2745 #ifdef SQLITE_ENABLE_NULL_TRIM
2746   /* NULLs can be safely trimmed from the end of the record, as long as
2747   ** as the schema format is 2 or more and none of the omitted columns
2748   ** have a non-NULL default value.  Also, the record must be left with
2749   ** at least one field.  If P5>0 then it will be one more than the
2750   ** index of the right-most column with a non-NULL default value */
2751   if( pOp->p5 ){
2752     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2753       pLast--;
2754       nField--;
2755     }
2756   }
2757 #endif
2758 
2759   /* Loop through the elements that will make up the record to figure
2760   ** out how much space is required for the new record.
2761   */
2762   pRec = pLast;
2763   do{
2764     assert( memIsValid(pRec) );
2765     pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2766     if( pRec->flags & MEM_Zero ){
2767       if( nData ){
2768         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2769       }else{
2770         nZero += pRec->u.nZero;
2771         len -= pRec->u.nZero;
2772       }
2773     }
2774     nData += len;
2775     testcase( serial_type==127 );
2776     testcase( serial_type==128 );
2777     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2778     if( pRec==pData0 ) break;
2779     pRec--;
2780   }while(1);
2781 
2782   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2783   ** which determines the total number of bytes in the header. The varint
2784   ** value is the size of the header in bytes including the size varint
2785   ** itself. */
2786   testcase( nHdr==126 );
2787   testcase( nHdr==127 );
2788   if( nHdr<=126 ){
2789     /* The common case */
2790     nHdr += 1;
2791   }else{
2792     /* Rare case of a really large header */
2793     nVarint = sqlite3VarintLen(nHdr);
2794     nHdr += nVarint;
2795     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2796   }
2797   nByte = nHdr+nData;
2798   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2799     goto too_big;
2800   }
2801 
2802   /* Make sure the output register has a buffer large enough to store
2803   ** the new record. The output register (pOp->p3) is not allowed to
2804   ** be one of the input registers (because the following call to
2805   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2806   */
2807   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2808     goto no_mem;
2809   }
2810   zNewRecord = (u8 *)pOut->z;
2811 
2812   /* Write the record */
2813   i = putVarint32(zNewRecord, nHdr);
2814   j = nHdr;
2815   assert( pData0<=pLast );
2816   pRec = pData0;
2817   do{
2818     serial_type = pRec->uTemp;
2819     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2820     ** additional varints, one per column. */
2821     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2822     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2823     ** immediately follow the header. */
2824     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2825   }while( (++pRec)<=pLast );
2826   assert( i==nHdr );
2827   assert( j==nByte );
2828 
2829   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2830   pOut->n = (int)nByte;
2831   pOut->flags = MEM_Blob;
2832   if( nZero ){
2833     pOut->u.nZero = nZero;
2834     pOut->flags |= MEM_Zero;
2835   }
2836   REGISTER_TRACE(pOp->p3, pOut);
2837   UPDATE_MAX_BLOBSIZE(pOut);
2838   break;
2839 }
2840 
2841 /* Opcode: Count P1 P2 * * *
2842 ** Synopsis: r[P2]=count()
2843 **
2844 ** Store the number of entries (an integer value) in the table or index
2845 ** opened by cursor P1 in register P2
2846 */
2847 #ifndef SQLITE_OMIT_BTREECOUNT
2848 case OP_Count: {         /* out2 */
2849   i64 nEntry;
2850   BtCursor *pCrsr;
2851 
2852   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2853   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2854   assert( pCrsr );
2855   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2856   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2857   if( rc ) goto abort_due_to_error;
2858   pOut = out2Prerelease(p, pOp);
2859   pOut->u.i = nEntry;
2860   break;
2861 }
2862 #endif
2863 
2864 /* Opcode: Savepoint P1 * * P4 *
2865 **
2866 ** Open, release or rollback the savepoint named by parameter P4, depending
2867 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2868 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2869 */
2870 case OP_Savepoint: {
2871   int p1;                         /* Value of P1 operand */
2872   char *zName;                    /* Name of savepoint */
2873   int nName;
2874   Savepoint *pNew;
2875   Savepoint *pSavepoint;
2876   Savepoint *pTmp;
2877   int iSavepoint;
2878   int ii;
2879 
2880   p1 = pOp->p1;
2881   zName = pOp->p4.z;
2882 
2883   /* Assert that the p1 parameter is valid. Also that if there is no open
2884   ** transaction, then there cannot be any savepoints.
2885   */
2886   assert( db->pSavepoint==0 || db->autoCommit==0 );
2887   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2888   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2889   assert( checkSavepointCount(db) );
2890   assert( p->bIsReader );
2891 
2892   if( p1==SAVEPOINT_BEGIN ){
2893     if( db->nVdbeWrite>0 ){
2894       /* A new savepoint cannot be created if there are active write
2895       ** statements (i.e. open read/write incremental blob handles).
2896       */
2897       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2898       rc = SQLITE_BUSY;
2899     }else{
2900       nName = sqlite3Strlen30(zName);
2901 
2902 #ifndef SQLITE_OMIT_VIRTUALTABLE
2903       /* This call is Ok even if this savepoint is actually a transaction
2904       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2905       ** If this is a transaction savepoint being opened, it is guaranteed
2906       ** that the db->aVTrans[] array is empty.  */
2907       assert( db->autoCommit==0 || db->nVTrans==0 );
2908       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2909                                 db->nStatement+db->nSavepoint);
2910       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2911 #endif
2912 
2913       /* Create a new savepoint structure. */
2914       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2915       if( pNew ){
2916         pNew->zName = (char *)&pNew[1];
2917         memcpy(pNew->zName, zName, nName+1);
2918 
2919         /* If there is no open transaction, then mark this as a special
2920         ** "transaction savepoint". */
2921         if( db->autoCommit ){
2922           db->autoCommit = 0;
2923           db->isTransactionSavepoint = 1;
2924         }else{
2925           db->nSavepoint++;
2926         }
2927 
2928         /* Link the new savepoint into the database handle's list. */
2929         pNew->pNext = db->pSavepoint;
2930         db->pSavepoint = pNew;
2931         pNew->nDeferredCons = db->nDeferredCons;
2932         pNew->nDeferredImmCons = db->nDeferredImmCons;
2933       }
2934     }
2935   }else{
2936     iSavepoint = 0;
2937 
2938     /* Find the named savepoint. If there is no such savepoint, then an
2939     ** an error is returned to the user.  */
2940     for(
2941       pSavepoint = db->pSavepoint;
2942       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2943       pSavepoint = pSavepoint->pNext
2944     ){
2945       iSavepoint++;
2946     }
2947     if( !pSavepoint ){
2948       sqlite3VdbeError(p, "no such savepoint: %s", zName);
2949       rc = SQLITE_ERROR;
2950     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2951       /* It is not possible to release (commit) a savepoint if there are
2952       ** active write statements.
2953       */
2954       sqlite3VdbeError(p, "cannot release savepoint - "
2955                           "SQL statements in progress");
2956       rc = SQLITE_BUSY;
2957     }else{
2958 
2959       /* Determine whether or not this is a transaction savepoint. If so,
2960       ** and this is a RELEASE command, then the current transaction
2961       ** is committed.
2962       */
2963       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2964       if( isTransaction && p1==SAVEPOINT_RELEASE ){
2965         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2966           goto vdbe_return;
2967         }
2968         db->autoCommit = 1;
2969         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2970           p->pc = (int)(pOp - aOp);
2971           db->autoCommit = 0;
2972           p->rc = rc = SQLITE_BUSY;
2973           goto vdbe_return;
2974         }
2975         db->isTransactionSavepoint = 0;
2976         rc = p->rc;
2977       }else{
2978         int isSchemaChange;
2979         iSavepoint = db->nSavepoint - iSavepoint - 1;
2980         if( p1==SAVEPOINT_ROLLBACK ){
2981           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
2982           for(ii=0; ii<db->nDb; ii++){
2983             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2984                                        SQLITE_ABORT_ROLLBACK,
2985                                        isSchemaChange==0);
2986             if( rc!=SQLITE_OK ) goto abort_due_to_error;
2987           }
2988         }else{
2989           isSchemaChange = 0;
2990         }
2991         for(ii=0; ii<db->nDb; ii++){
2992           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2993           if( rc!=SQLITE_OK ){
2994             goto abort_due_to_error;
2995           }
2996         }
2997         if( isSchemaChange ){
2998           sqlite3ExpirePreparedStatements(db);
2999           sqlite3ResetAllSchemasOfConnection(db);
3000           db->mDbFlags |= DBFLAG_SchemaChange;
3001         }
3002       }
3003 
3004       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3005       ** savepoints nested inside of the savepoint being operated on. */
3006       while( db->pSavepoint!=pSavepoint ){
3007         pTmp = db->pSavepoint;
3008         db->pSavepoint = pTmp->pNext;
3009         sqlite3DbFree(db, pTmp);
3010         db->nSavepoint--;
3011       }
3012 
3013       /* If it is a RELEASE, then destroy the savepoint being operated on
3014       ** too. If it is a ROLLBACK TO, then set the number of deferred
3015       ** constraint violations present in the database to the value stored
3016       ** when the savepoint was created.  */
3017       if( p1==SAVEPOINT_RELEASE ){
3018         assert( pSavepoint==db->pSavepoint );
3019         db->pSavepoint = pSavepoint->pNext;
3020         sqlite3DbFree(db, pSavepoint);
3021         if( !isTransaction ){
3022           db->nSavepoint--;
3023         }
3024       }else{
3025         db->nDeferredCons = pSavepoint->nDeferredCons;
3026         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3027       }
3028 
3029       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3030         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3031         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3032       }
3033     }
3034   }
3035   if( rc ) goto abort_due_to_error;
3036 
3037   break;
3038 }
3039 
3040 /* Opcode: AutoCommit P1 P2 * * *
3041 **
3042 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3043 ** back any currently active btree transactions. If there are any active
3044 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3045 ** there are active writing VMs or active VMs that use shared cache.
3046 **
3047 ** This instruction causes the VM to halt.
3048 */
3049 case OP_AutoCommit: {
3050   int desiredAutoCommit;
3051   int iRollback;
3052 
3053   desiredAutoCommit = pOp->p1;
3054   iRollback = pOp->p2;
3055   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3056   assert( desiredAutoCommit==1 || iRollback==0 );
3057   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3058   assert( p->bIsReader );
3059 
3060   if( desiredAutoCommit!=db->autoCommit ){
3061     if( iRollback ){
3062       assert( desiredAutoCommit==1 );
3063       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3064       db->autoCommit = 1;
3065     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3066       /* If this instruction implements a COMMIT and other VMs are writing
3067       ** return an error indicating that the other VMs must complete first.
3068       */
3069       sqlite3VdbeError(p, "cannot commit transaction - "
3070                           "SQL statements in progress");
3071       rc = SQLITE_BUSY;
3072       goto abort_due_to_error;
3073     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3074       goto vdbe_return;
3075     }else{
3076       db->autoCommit = (u8)desiredAutoCommit;
3077     }
3078     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3079       p->pc = (int)(pOp - aOp);
3080       db->autoCommit = (u8)(1-desiredAutoCommit);
3081       p->rc = rc = SQLITE_BUSY;
3082       goto vdbe_return;
3083     }
3084     assert( db->nStatement==0 );
3085     sqlite3CloseSavepoints(db);
3086     if( p->rc==SQLITE_OK ){
3087       rc = SQLITE_DONE;
3088     }else{
3089       rc = SQLITE_ERROR;
3090     }
3091     goto vdbe_return;
3092   }else{
3093     sqlite3VdbeError(p,
3094         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3095         (iRollback)?"cannot rollback - no transaction is active":
3096                    "cannot commit - no transaction is active"));
3097 
3098     rc = SQLITE_ERROR;
3099     goto abort_due_to_error;
3100   }
3101   break;
3102 }
3103 
3104 /* Opcode: Transaction P1 P2 P3 P4 P5
3105 **
3106 ** Begin a transaction on database P1 if a transaction is not already
3107 ** active.
3108 ** If P2 is non-zero, then a write-transaction is started, or if a
3109 ** read-transaction is already active, it is upgraded to a write-transaction.
3110 ** If P2 is zero, then a read-transaction is started.
3111 **
3112 ** P1 is the index of the database file on which the transaction is
3113 ** started.  Index 0 is the main database file and index 1 is the
3114 ** file used for temporary tables.  Indices of 2 or more are used for
3115 ** attached databases.
3116 **
3117 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3118 ** true (this flag is set if the Vdbe may modify more than one row and may
3119 ** throw an ABORT exception), a statement transaction may also be opened.
3120 ** More specifically, a statement transaction is opened iff the database
3121 ** connection is currently not in autocommit mode, or if there are other
3122 ** active statements. A statement transaction allows the changes made by this
3123 ** VDBE to be rolled back after an error without having to roll back the
3124 ** entire transaction. If no error is encountered, the statement transaction
3125 ** will automatically commit when the VDBE halts.
3126 **
3127 ** If P5!=0 then this opcode also checks the schema cookie against P3
3128 ** and the schema generation counter against P4.
3129 ** The cookie changes its value whenever the database schema changes.
3130 ** This operation is used to detect when that the cookie has changed
3131 ** and that the current process needs to reread the schema.  If the schema
3132 ** cookie in P3 differs from the schema cookie in the database header or
3133 ** if the schema generation counter in P4 differs from the current
3134 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3135 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3136 ** statement and rerun it from the beginning.
3137 */
3138 case OP_Transaction: {
3139   Btree *pBt;
3140   int iMeta;
3141   int iGen;
3142 
3143   assert( p->bIsReader );
3144   assert( p->readOnly==0 || pOp->p2==0 );
3145   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3146   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3147   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3148     rc = SQLITE_READONLY;
3149     goto abort_due_to_error;
3150   }
3151   pBt = db->aDb[pOp->p1].pBt;
3152 
3153   if( pBt ){
3154     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3155     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3156     testcase( rc==SQLITE_BUSY_RECOVERY );
3157     if( rc!=SQLITE_OK ){
3158       if( (rc&0xff)==SQLITE_BUSY ){
3159         p->pc = (int)(pOp - aOp);
3160         p->rc = rc;
3161         goto vdbe_return;
3162       }
3163       goto abort_due_to_error;
3164     }
3165 
3166     if( pOp->p2 && p->usesStmtJournal
3167      && (db->autoCommit==0 || db->nVdbeRead>1)
3168     ){
3169       assert( sqlite3BtreeIsInTrans(pBt) );
3170       if( p->iStatement==0 ){
3171         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3172         db->nStatement++;
3173         p->iStatement = db->nSavepoint + db->nStatement;
3174       }
3175 
3176       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3177       if( rc==SQLITE_OK ){
3178         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3179       }
3180 
3181       /* Store the current value of the database handles deferred constraint
3182       ** counter. If the statement transaction needs to be rolled back,
3183       ** the value of this counter needs to be restored too.  */
3184       p->nStmtDefCons = db->nDeferredCons;
3185       p->nStmtDefImmCons = db->nDeferredImmCons;
3186     }
3187 
3188     /* Gather the schema version number for checking:
3189     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3190     ** version is checked to ensure that the schema has not changed since the
3191     ** SQL statement was prepared.
3192     */
3193     sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3194     iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3195   }else{
3196     iGen = iMeta = 0;
3197   }
3198   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3199   if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3200     sqlite3DbFree(db, p->zErrMsg);
3201     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3202     /* If the schema-cookie from the database file matches the cookie
3203     ** stored with the in-memory representation of the schema, do
3204     ** not reload the schema from the database file.
3205     **
3206     ** If virtual-tables are in use, this is not just an optimization.
3207     ** Often, v-tables store their data in other SQLite tables, which
3208     ** are queried from within xNext() and other v-table methods using
3209     ** prepared queries. If such a query is out-of-date, we do not want to
3210     ** discard the database schema, as the user code implementing the
3211     ** v-table would have to be ready for the sqlite3_vtab structure itself
3212     ** to be invalidated whenever sqlite3_step() is called from within
3213     ** a v-table method.
3214     */
3215     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3216       sqlite3ResetOneSchema(db, pOp->p1);
3217     }
3218     p->expired = 1;
3219     rc = SQLITE_SCHEMA;
3220   }
3221   if( rc ) goto abort_due_to_error;
3222   break;
3223 }
3224 
3225 /* Opcode: ReadCookie P1 P2 P3 * *
3226 **
3227 ** Read cookie number P3 from database P1 and write it into register P2.
3228 ** P3==1 is the schema version.  P3==2 is the database format.
3229 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3230 ** the main database file and P1==1 is the database file used to store
3231 ** temporary tables.
3232 **
3233 ** There must be a read-lock on the database (either a transaction
3234 ** must be started or there must be an open cursor) before
3235 ** executing this instruction.
3236 */
3237 case OP_ReadCookie: {               /* out2 */
3238   int iMeta;
3239   int iDb;
3240   int iCookie;
3241 
3242   assert( p->bIsReader );
3243   iDb = pOp->p1;
3244   iCookie = pOp->p3;
3245   assert( pOp->p3<SQLITE_N_BTREE_META );
3246   assert( iDb>=0 && iDb<db->nDb );
3247   assert( db->aDb[iDb].pBt!=0 );
3248   assert( DbMaskTest(p->btreeMask, iDb) );
3249 
3250   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3251   pOut = out2Prerelease(p, pOp);
3252   pOut->u.i = iMeta;
3253   break;
3254 }
3255 
3256 /* Opcode: SetCookie P1 P2 P3 * *
3257 **
3258 ** Write the integer value P3 into cookie number P2 of database P1.
3259 ** P2==1 is the schema version.  P2==2 is the database format.
3260 ** P2==3 is the recommended pager cache
3261 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3262 ** database file used to store temporary tables.
3263 **
3264 ** A transaction must be started before executing this opcode.
3265 */
3266 case OP_SetCookie: {
3267   Db *pDb;
3268   assert( pOp->p2<SQLITE_N_BTREE_META );
3269   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3270   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3271   assert( p->readOnly==0 );
3272   pDb = &db->aDb[pOp->p1];
3273   assert( pDb->pBt!=0 );
3274   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3275   /* See note about index shifting on OP_ReadCookie */
3276   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3277   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3278     /* When the schema cookie changes, record the new cookie internally */
3279     pDb->pSchema->schema_cookie = pOp->p3;
3280     db->mDbFlags |= DBFLAG_SchemaChange;
3281   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3282     /* Record changes in the file format */
3283     pDb->pSchema->file_format = pOp->p3;
3284   }
3285   if( pOp->p1==1 ){
3286     /* Invalidate all prepared statements whenever the TEMP database
3287     ** schema is changed.  Ticket #1644 */
3288     sqlite3ExpirePreparedStatements(db);
3289     p->expired = 0;
3290   }
3291   if( rc ) goto abort_due_to_error;
3292   break;
3293 }
3294 
3295 /* Opcode: OpenRead P1 P2 P3 P4 P5
3296 ** Synopsis: root=P2 iDb=P3
3297 **
3298 ** Open a read-only cursor for the database table whose root page is
3299 ** P2 in a database file.  The database file is determined by P3.
3300 ** P3==0 means the main database, P3==1 means the database used for
3301 ** temporary tables, and P3>1 means used the corresponding attached
3302 ** database.  Give the new cursor an identifier of P1.  The P1
3303 ** values need not be contiguous but all P1 values should be small integers.
3304 ** It is an error for P1 to be negative.
3305 **
3306 ** If P5!=0 then use the content of register P2 as the root page, not
3307 ** the value of P2 itself.
3308 **
3309 ** There will be a read lock on the database whenever there is an
3310 ** open cursor.  If the database was unlocked prior to this instruction
3311 ** then a read lock is acquired as part of this instruction.  A read
3312 ** lock allows other processes to read the database but prohibits
3313 ** any other process from modifying the database.  The read lock is
3314 ** released when all cursors are closed.  If this instruction attempts
3315 ** to get a read lock but fails, the script terminates with an
3316 ** SQLITE_BUSY error code.
3317 **
3318 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3319 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3320 ** structure, then said structure defines the content and collating
3321 ** sequence of the index being opened. Otherwise, if P4 is an integer
3322 ** value, it is set to the number of columns in the table.
3323 **
3324 ** See also: OpenWrite, ReopenIdx
3325 */
3326 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3327 ** Synopsis: root=P2 iDb=P3
3328 **
3329 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3330 ** checks to see if the cursor on P1 is already open with a root page
3331 ** number of P2 and if it is this opcode becomes a no-op.  In other words,
3332 ** if the cursor is already open, do not reopen it.
3333 **
3334 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3335 ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
3336 ** every other ReopenIdx or OpenRead for the same cursor number.
3337 **
3338 ** See the OpenRead opcode documentation for additional information.
3339 */
3340 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3341 ** Synopsis: root=P2 iDb=P3
3342 **
3343 ** Open a read/write cursor named P1 on the table or index whose root
3344 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
3345 ** root page.
3346 **
3347 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3348 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3349 ** structure, then said structure defines the content and collating
3350 ** sequence of the index being opened. Otherwise, if P4 is an integer
3351 ** value, it is set to the number of columns in the table, or to the
3352 ** largest index of any column of the table that is actually used.
3353 **
3354 ** This instruction works just like OpenRead except that it opens the cursor
3355 ** in read/write mode.  For a given table, there can be one or more read-only
3356 ** cursors or a single read/write cursor but not both.
3357 **
3358 ** See also OpenRead.
3359 */
3360 case OP_ReopenIdx: {
3361   int nField;
3362   KeyInfo *pKeyInfo;
3363   int p2;
3364   int iDb;
3365   int wrFlag;
3366   Btree *pX;
3367   VdbeCursor *pCur;
3368   Db *pDb;
3369 
3370   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3371   assert( pOp->p4type==P4_KEYINFO );
3372   pCur = p->apCsr[pOp->p1];
3373   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3374     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3375     goto open_cursor_set_hints;
3376   }
3377   /* If the cursor is not currently open or is open on a different
3378   ** index, then fall through into OP_OpenRead to force a reopen */
3379 case OP_OpenRead:
3380 case OP_OpenWrite:
3381 
3382   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3383   assert( p->bIsReader );
3384   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3385           || p->readOnly==0 );
3386 
3387   if( p->expired ){
3388     rc = SQLITE_ABORT_ROLLBACK;
3389     goto abort_due_to_error;
3390   }
3391 
3392   nField = 0;
3393   pKeyInfo = 0;
3394   p2 = pOp->p2;
3395   iDb = pOp->p3;
3396   assert( iDb>=0 && iDb<db->nDb );
3397   assert( DbMaskTest(p->btreeMask, iDb) );
3398   pDb = &db->aDb[iDb];
3399   pX = pDb->pBt;
3400   assert( pX!=0 );
3401   if( pOp->opcode==OP_OpenWrite ){
3402     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3403     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3404     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3405     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3406       p->minWriteFileFormat = pDb->pSchema->file_format;
3407     }
3408   }else{
3409     wrFlag = 0;
3410   }
3411   if( pOp->p5 & OPFLAG_P2ISREG ){
3412     assert( p2>0 );
3413     assert( p2<=(p->nMem+1 - p->nCursor) );
3414     pIn2 = &aMem[p2];
3415     assert( memIsValid(pIn2) );
3416     assert( (pIn2->flags & MEM_Int)!=0 );
3417     sqlite3VdbeMemIntegerify(pIn2);
3418     p2 = (int)pIn2->u.i;
3419     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3420     ** that opcode will always set the p2 value to 2 or more or else fail.
3421     ** If there were a failure, the prepared statement would have halted
3422     ** before reaching this instruction. */
3423     assert( p2>=2 );
3424   }
3425   if( pOp->p4type==P4_KEYINFO ){
3426     pKeyInfo = pOp->p4.pKeyInfo;
3427     assert( pKeyInfo->enc==ENC(db) );
3428     assert( pKeyInfo->db==db );
3429     nField = pKeyInfo->nAllField;
3430   }else if( pOp->p4type==P4_INT32 ){
3431     nField = pOp->p4.i;
3432   }
3433   assert( pOp->p1>=0 );
3434   assert( nField>=0 );
3435   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3436   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3437   if( pCur==0 ) goto no_mem;
3438   pCur->nullRow = 1;
3439   pCur->isOrdered = 1;
3440   pCur->pgnoRoot = p2;
3441 #ifdef SQLITE_DEBUG
3442   pCur->wrFlag = wrFlag;
3443 #endif
3444   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3445   pCur->pKeyInfo = pKeyInfo;
3446   /* Set the VdbeCursor.isTable variable. Previous versions of
3447   ** SQLite used to check if the root-page flags were sane at this point
3448   ** and report database corruption if they were not, but this check has
3449   ** since moved into the btree layer.  */
3450   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3451 
3452 open_cursor_set_hints:
3453   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3454   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3455   testcase( pOp->p5 & OPFLAG_BULKCSR );
3456 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3457   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3458 #endif
3459   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3460                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3461   if( rc ) goto abort_due_to_error;
3462   break;
3463 }
3464 
3465 /* Opcode: OpenDup P1 P2 * * *
3466 **
3467 ** Open a new cursor P1 that points to the same ephemeral table as
3468 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3469 ** opcode.  Only ephemeral cursors may be duplicated.
3470 **
3471 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3472 */
3473 case OP_OpenDup: {
3474   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3475   VdbeCursor *pCx;      /* The new cursor */
3476 
3477   pOrig = p->apCsr[pOp->p2];
3478   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3479 
3480   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3481   if( pCx==0 ) goto no_mem;
3482   pCx->nullRow = 1;
3483   pCx->isEphemeral = 1;
3484   pCx->pKeyInfo = pOrig->pKeyInfo;
3485   pCx->isTable = pOrig->isTable;
3486   rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3487                           pCx->pKeyInfo, pCx->uc.pCursor);
3488   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3489   ** opened for a database.  Since there is already an open cursor when this
3490   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3491   assert( rc==SQLITE_OK );
3492   break;
3493 }
3494 
3495 
3496 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3497 ** Synopsis: nColumn=P2
3498 **
3499 ** Open a new cursor P1 to a transient table.
3500 ** The cursor is always opened read/write even if
3501 ** the main database is read-only.  The ephemeral
3502 ** table is deleted automatically when the cursor is closed.
3503 **
3504 ** P2 is the number of columns in the ephemeral table.
3505 ** The cursor points to a BTree table if P4==0 and to a BTree index
3506 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3507 ** that defines the format of keys in the index.
3508 **
3509 ** The P5 parameter can be a mask of the BTREE_* flags defined
3510 ** in btree.h.  These flags control aspects of the operation of
3511 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3512 ** added automatically.
3513 */
3514 /* Opcode: OpenAutoindex P1 P2 * P4 *
3515 ** Synopsis: nColumn=P2
3516 **
3517 ** This opcode works the same as OP_OpenEphemeral.  It has a
3518 ** different name to distinguish its use.  Tables created using
3519 ** by this opcode will be used for automatically created transient
3520 ** indices in joins.
3521 */
3522 case OP_OpenAutoindex:
3523 case OP_OpenEphemeral: {
3524   VdbeCursor *pCx;
3525   KeyInfo *pKeyInfo;
3526 
3527   static const int vfsFlags =
3528       SQLITE_OPEN_READWRITE |
3529       SQLITE_OPEN_CREATE |
3530       SQLITE_OPEN_EXCLUSIVE |
3531       SQLITE_OPEN_DELETEONCLOSE |
3532       SQLITE_OPEN_TRANSIENT_DB;
3533   assert( pOp->p1>=0 );
3534   assert( pOp->p2>=0 );
3535   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3536   if( pCx==0 ) goto no_mem;
3537   pCx->nullRow = 1;
3538   pCx->isEphemeral = 1;
3539   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3540                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3541   if( rc==SQLITE_OK ){
3542     rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
3543   }
3544   if( rc==SQLITE_OK ){
3545     /* If a transient index is required, create it by calling
3546     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3547     ** opening it. If a transient table is required, just use the
3548     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3549     */
3550     if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3551       int pgno;
3552       assert( pOp->p4type==P4_KEYINFO );
3553       rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
3554       if( rc==SQLITE_OK ){
3555         assert( pgno==MASTER_ROOT+1 );
3556         assert( pKeyInfo->db==db );
3557         assert( pKeyInfo->enc==ENC(db) );
3558         rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
3559                                 pKeyInfo, pCx->uc.pCursor);
3560       }
3561       pCx->isTable = 0;
3562     }else{
3563       rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3564                               0, pCx->uc.pCursor);
3565       pCx->isTable = 1;
3566     }
3567   }
3568   if( rc ) goto abort_due_to_error;
3569   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3570   break;
3571 }
3572 
3573 /* Opcode: SorterOpen P1 P2 P3 P4 *
3574 **
3575 ** This opcode works like OP_OpenEphemeral except that it opens
3576 ** a transient index that is specifically designed to sort large
3577 ** tables using an external merge-sort algorithm.
3578 **
3579 ** If argument P3 is non-zero, then it indicates that the sorter may
3580 ** assume that a stable sort considering the first P3 fields of each
3581 ** key is sufficient to produce the required results.
3582 */
3583 case OP_SorterOpen: {
3584   VdbeCursor *pCx;
3585 
3586   assert( pOp->p1>=0 );
3587   assert( pOp->p2>=0 );
3588   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3589   if( pCx==0 ) goto no_mem;
3590   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3591   assert( pCx->pKeyInfo->db==db );
3592   assert( pCx->pKeyInfo->enc==ENC(db) );
3593   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3594   if( rc ) goto abort_due_to_error;
3595   break;
3596 }
3597 
3598 /* Opcode: SequenceTest P1 P2 * * *
3599 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3600 **
3601 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3602 ** to P2. Regardless of whether or not the jump is taken, increment the
3603 ** the sequence value.
3604 */
3605 case OP_SequenceTest: {
3606   VdbeCursor *pC;
3607   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3608   pC = p->apCsr[pOp->p1];
3609   assert( isSorter(pC) );
3610   if( (pC->seqCount++)==0 ){
3611     goto jump_to_p2;
3612   }
3613   break;
3614 }
3615 
3616 /* Opcode: OpenPseudo P1 P2 P3 * *
3617 ** Synopsis: P3 columns in r[P2]
3618 **
3619 ** Open a new cursor that points to a fake table that contains a single
3620 ** row of data.  The content of that one row is the content of memory
3621 ** register P2.  In other words, cursor P1 becomes an alias for the
3622 ** MEM_Blob content contained in register P2.
3623 **
3624 ** A pseudo-table created by this opcode is used to hold a single
3625 ** row output from the sorter so that the row can be decomposed into
3626 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3627 ** is the only cursor opcode that works with a pseudo-table.
3628 **
3629 ** P3 is the number of fields in the records that will be stored by
3630 ** the pseudo-table.
3631 */
3632 case OP_OpenPseudo: {
3633   VdbeCursor *pCx;
3634 
3635   assert( pOp->p1>=0 );
3636   assert( pOp->p3>=0 );
3637   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3638   if( pCx==0 ) goto no_mem;
3639   pCx->nullRow = 1;
3640   pCx->seekResult = pOp->p2;
3641   pCx->isTable = 1;
3642   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3643   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
3644   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3645   ** which is a performance optimization */
3646   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
3647   assert( pOp->p5==0 );
3648   break;
3649 }
3650 
3651 /* Opcode: Close P1 * * * *
3652 **
3653 ** Close a cursor previously opened as P1.  If P1 is not
3654 ** currently open, this instruction is a no-op.
3655 */
3656 case OP_Close: {
3657   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3658   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3659   p->apCsr[pOp->p1] = 0;
3660   break;
3661 }
3662 
3663 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3664 /* Opcode: ColumnsUsed P1 * * P4 *
3665 **
3666 ** This opcode (which only exists if SQLite was compiled with
3667 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3668 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3669 ** (P4_INT64) in which the first 63 bits are one for each of the
3670 ** first 63 columns of the table or index that are actually used
3671 ** by the cursor.  The high-order bit is set if any column after
3672 ** the 64th is used.
3673 */
3674 case OP_ColumnsUsed: {
3675   VdbeCursor *pC;
3676   pC = p->apCsr[pOp->p1];
3677   assert( pC->eCurType==CURTYPE_BTREE );
3678   pC->maskUsed = *(u64*)pOp->p4.pI64;
3679   break;
3680 }
3681 #endif
3682 
3683 /* Opcode: SeekGE P1 P2 P3 P4 *
3684 ** Synopsis: key=r[P3@P4]
3685 **
3686 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3687 ** use the value in register P3 as the key.  If cursor P1 refers
3688 ** to an SQL index, then P3 is the first in an array of P4 registers
3689 ** that are used as an unpacked index key.
3690 **
3691 ** Reposition cursor P1 so that  it points to the smallest entry that
3692 ** is greater than or equal to the key value. If there are no records
3693 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3694 **
3695 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3696 ** opcode will always land on a record that equally equals the key, or
3697 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3698 ** opcode must be followed by an IdxLE opcode with the same arguments.
3699 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3700 ** IdxLE opcode will be used on subsequent loop iterations.
3701 **
3702 ** This opcode leaves the cursor configured to move in forward order,
3703 ** from the beginning toward the end.  In other words, the cursor is
3704 ** configured to use Next, not Prev.
3705 **
3706 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3707 */
3708 /* Opcode: SeekGT P1 P2 P3 P4 *
3709 ** Synopsis: key=r[P3@P4]
3710 **
3711 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3712 ** use the value in register P3 as a key. If cursor P1 refers
3713 ** to an SQL index, then P3 is the first in an array of P4 registers
3714 ** that are used as an unpacked index key.
3715 **
3716 ** Reposition cursor P1 so that  it points to the smallest entry that
3717 ** is greater than the key value. If there are no records greater than
3718 ** the key and P2 is not zero, then jump to P2.
3719 **
3720 ** This opcode leaves the cursor configured to move in forward order,
3721 ** from the beginning toward the end.  In other words, the cursor is
3722 ** configured to use Next, not Prev.
3723 **
3724 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3725 */
3726 /* Opcode: SeekLT P1 P2 P3 P4 *
3727 ** Synopsis: key=r[P3@P4]
3728 **
3729 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3730 ** use the value in register P3 as a key. If cursor P1 refers
3731 ** to an SQL index, then P3 is the first in an array of P4 registers
3732 ** that are used as an unpacked index key.
3733 **
3734 ** Reposition cursor P1 so that  it points to the largest entry that
3735 ** is less than the key value. If there are no records less than
3736 ** the key and P2 is not zero, then jump to P2.
3737 **
3738 ** This opcode leaves the cursor configured to move in reverse order,
3739 ** from the end toward the beginning.  In other words, the cursor is
3740 ** configured to use Prev, not Next.
3741 **
3742 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3743 */
3744 /* Opcode: SeekLE P1 P2 P3 P4 *
3745 ** Synopsis: key=r[P3@P4]
3746 **
3747 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3748 ** use the value in register P3 as a key. If cursor P1 refers
3749 ** to an SQL index, then P3 is the first in an array of P4 registers
3750 ** that are used as an unpacked index key.
3751 **
3752 ** Reposition cursor P1 so that it points to the largest entry that
3753 ** is less than or equal to the key value. If there are no records
3754 ** less than or equal to the key and P2 is not zero, then jump to P2.
3755 **
3756 ** This opcode leaves the cursor configured to move in reverse order,
3757 ** from the end toward the beginning.  In other words, the cursor is
3758 ** configured to use Prev, not Next.
3759 **
3760 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3761 ** opcode will always land on a record that equally equals the key, or
3762 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3763 ** opcode must be followed by an IdxGE opcode with the same arguments.
3764 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3765 ** IdxGE opcode will be used on subsequent loop iterations.
3766 **
3767 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3768 */
3769 case OP_SeekLT:         /* jump, in3 */
3770 case OP_SeekLE:         /* jump, in3 */
3771 case OP_SeekGE:         /* jump, in3 */
3772 case OP_SeekGT: {       /* jump, in3 */
3773   int res;           /* Comparison result */
3774   int oc;            /* Opcode */
3775   VdbeCursor *pC;    /* The cursor to seek */
3776   UnpackedRecord r;  /* The key to seek for */
3777   int nField;        /* Number of columns or fields in the key */
3778   i64 iKey;          /* The rowid we are to seek to */
3779   int eqOnly;        /* Only interested in == results */
3780 
3781   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3782   assert( pOp->p2!=0 );
3783   pC = p->apCsr[pOp->p1];
3784   assert( pC!=0 );
3785   assert( pC->eCurType==CURTYPE_BTREE );
3786   assert( OP_SeekLE == OP_SeekLT+1 );
3787   assert( OP_SeekGE == OP_SeekLT+2 );
3788   assert( OP_SeekGT == OP_SeekLT+3 );
3789   assert( pC->isOrdered );
3790   assert( pC->uc.pCursor!=0 );
3791   oc = pOp->opcode;
3792   eqOnly = 0;
3793   pC->nullRow = 0;
3794 #ifdef SQLITE_DEBUG
3795   pC->seekOp = pOp->opcode;
3796 #endif
3797 
3798   if( pC->isTable ){
3799     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3800     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3801               || CORRUPT_DB );
3802 
3803     /* The input value in P3 might be of any type: integer, real, string,
3804     ** blob, or NULL.  But it needs to be an integer before we can do
3805     ** the seek, so convert it. */
3806     pIn3 = &aMem[pOp->p3];
3807     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3808       applyNumericAffinity(pIn3, 0);
3809     }
3810     iKey = sqlite3VdbeIntValue(pIn3);
3811 
3812     /* If the P3 value could not be converted into an integer without
3813     ** loss of information, then special processing is required... */
3814     if( (pIn3->flags & MEM_Int)==0 ){
3815       if( (pIn3->flags & MEM_Real)==0 ){
3816         /* If the P3 value cannot be converted into any kind of a number,
3817         ** then the seek is not possible, so jump to P2 */
3818         VdbeBranchTaken(1,2); goto jump_to_p2;
3819         break;
3820       }
3821 
3822       /* If the approximation iKey is larger than the actual real search
3823       ** term, substitute >= for > and < for <=. e.g. if the search term
3824       ** is 4.9 and the integer approximation 5:
3825       **
3826       **        (x >  4.9)    ->     (x >= 5)
3827       **        (x <= 4.9)    ->     (x <  5)
3828       */
3829       if( pIn3->u.r<(double)iKey ){
3830         assert( OP_SeekGE==(OP_SeekGT-1) );
3831         assert( OP_SeekLT==(OP_SeekLE-1) );
3832         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3833         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3834       }
3835 
3836       /* If the approximation iKey is smaller than the actual real search
3837       ** term, substitute <= for < and > for >=.  */
3838       else if( pIn3->u.r>(double)iKey ){
3839         assert( OP_SeekLE==(OP_SeekLT+1) );
3840         assert( OP_SeekGT==(OP_SeekGE+1) );
3841         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3842         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3843       }
3844     }
3845     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3846     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3847     if( rc!=SQLITE_OK ){
3848       goto abort_due_to_error;
3849     }
3850   }else{
3851     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3852     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3853     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3854     */
3855     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3856       eqOnly = 1;
3857       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3858       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3859       assert( pOp[1].p1==pOp[0].p1 );
3860       assert( pOp[1].p2==pOp[0].p2 );
3861       assert( pOp[1].p3==pOp[0].p3 );
3862       assert( pOp[1].p4.i==pOp[0].p4.i );
3863     }
3864 
3865     nField = pOp->p4.i;
3866     assert( pOp->p4type==P4_INT32 );
3867     assert( nField>0 );
3868     r.pKeyInfo = pC->pKeyInfo;
3869     r.nField = (u16)nField;
3870 
3871     /* The next line of code computes as follows, only faster:
3872     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3873     **     r.default_rc = -1;
3874     **   }else{
3875     **     r.default_rc = +1;
3876     **   }
3877     */
3878     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3879     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3880     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3881     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3882     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3883 
3884     r.aMem = &aMem[pOp->p3];
3885 #ifdef SQLITE_DEBUG
3886     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3887 #endif
3888     r.eqSeen = 0;
3889     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3890     if( rc!=SQLITE_OK ){
3891       goto abort_due_to_error;
3892     }
3893     if( eqOnly && r.eqSeen==0 ){
3894       assert( res!=0 );
3895       goto seek_not_found;
3896     }
3897   }
3898   pC->deferredMoveto = 0;
3899   pC->cacheStatus = CACHE_STALE;
3900 #ifdef SQLITE_TEST
3901   sqlite3_search_count++;
3902 #endif
3903   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
3904     if( res<0 || (res==0 && oc==OP_SeekGT) ){
3905       res = 0;
3906       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
3907       if( rc!=SQLITE_OK ){
3908         if( rc==SQLITE_DONE ){
3909           rc = SQLITE_OK;
3910           res = 1;
3911         }else{
3912           goto abort_due_to_error;
3913         }
3914       }
3915     }else{
3916       res = 0;
3917     }
3918   }else{
3919     assert( oc==OP_SeekLT || oc==OP_SeekLE );
3920     if( res>0 || (res==0 && oc==OP_SeekLT) ){
3921       res = 0;
3922       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
3923       if( rc!=SQLITE_OK ){
3924         if( rc==SQLITE_DONE ){
3925           rc = SQLITE_OK;
3926           res = 1;
3927         }else{
3928           goto abort_due_to_error;
3929         }
3930       }
3931     }else{
3932       /* res might be negative because the table is empty.  Check to
3933       ** see if this is the case.
3934       */
3935       res = sqlite3BtreeEof(pC->uc.pCursor);
3936     }
3937   }
3938 seek_not_found:
3939   assert( pOp->p2>0 );
3940   VdbeBranchTaken(res!=0,2);
3941   if( res ){
3942     goto jump_to_p2;
3943   }else if( eqOnly ){
3944     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3945     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3946   }
3947   break;
3948 }
3949 
3950 /* Opcode: Found P1 P2 P3 P4 *
3951 ** Synopsis: key=r[P3@P4]
3952 **
3953 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3954 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3955 ** record.
3956 **
3957 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3958 ** is a prefix of any entry in P1 then a jump is made to P2 and
3959 ** P1 is left pointing at the matching entry.
3960 **
3961 ** This operation leaves the cursor in a state where it can be
3962 ** advanced in the forward direction.  The Next instruction will work,
3963 ** but not the Prev instruction.
3964 **
3965 ** See also: NotFound, NoConflict, NotExists. SeekGe
3966 */
3967 /* Opcode: NotFound P1 P2 P3 P4 *
3968 ** Synopsis: key=r[P3@P4]
3969 **
3970 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3971 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3972 ** record.
3973 **
3974 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3975 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
3976 ** does contain an entry whose prefix matches the P3/P4 record then control
3977 ** falls through to the next instruction and P1 is left pointing at the
3978 ** matching entry.
3979 **
3980 ** This operation leaves the cursor in a state where it cannot be
3981 ** advanced in either direction.  In other words, the Next and Prev
3982 ** opcodes do not work after this operation.
3983 **
3984 ** See also: Found, NotExists, NoConflict
3985 */
3986 /* Opcode: NoConflict P1 P2 P3 P4 *
3987 ** Synopsis: key=r[P3@P4]
3988 **
3989 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
3990 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3991 ** record.
3992 **
3993 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
3994 ** contains any NULL value, jump immediately to P2.  If all terms of the
3995 ** record are not-NULL then a check is done to determine if any row in the
3996 ** P1 index btree has a matching key prefix.  If there are no matches, jump
3997 ** immediately to P2.  If there is a match, fall through and leave the P1
3998 ** cursor pointing to the matching row.
3999 **
4000 ** This opcode is similar to OP_NotFound with the exceptions that the
4001 ** branch is always taken if any part of the search key input is NULL.
4002 **
4003 ** This operation leaves the cursor in a state where it cannot be
4004 ** advanced in either direction.  In other words, the Next and Prev
4005 ** opcodes do not work after this operation.
4006 **
4007 ** See also: NotFound, Found, NotExists
4008 */
4009 case OP_NoConflict:     /* jump, in3 */
4010 case OP_NotFound:       /* jump, in3 */
4011 case OP_Found: {        /* jump, in3 */
4012   int alreadyExists;
4013   int takeJump;
4014   int ii;
4015   VdbeCursor *pC;
4016   int res;
4017   UnpackedRecord *pFree;
4018   UnpackedRecord *pIdxKey;
4019   UnpackedRecord r;
4020 
4021 #ifdef SQLITE_TEST
4022   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4023 #endif
4024 
4025   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4026   assert( pOp->p4type==P4_INT32 );
4027   pC = p->apCsr[pOp->p1];
4028   assert( pC!=0 );
4029 #ifdef SQLITE_DEBUG
4030   pC->seekOp = pOp->opcode;
4031 #endif
4032   pIn3 = &aMem[pOp->p3];
4033   assert( pC->eCurType==CURTYPE_BTREE );
4034   assert( pC->uc.pCursor!=0 );
4035   assert( pC->isTable==0 );
4036   if( pOp->p4.i>0 ){
4037     r.pKeyInfo = pC->pKeyInfo;
4038     r.nField = (u16)pOp->p4.i;
4039     r.aMem = pIn3;
4040 #ifdef SQLITE_DEBUG
4041     for(ii=0; ii<r.nField; ii++){
4042       assert( memIsValid(&r.aMem[ii]) );
4043       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4044       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4045     }
4046 #endif
4047     pIdxKey = &r;
4048     pFree = 0;
4049   }else{
4050     assert( pIn3->flags & MEM_Blob );
4051     rc = ExpandBlob(pIn3);
4052     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4053     if( rc ) goto no_mem;
4054     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4055     if( pIdxKey==0 ) goto no_mem;
4056     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4057   }
4058   pIdxKey->default_rc = 0;
4059   takeJump = 0;
4060   if( pOp->opcode==OP_NoConflict ){
4061     /* For the OP_NoConflict opcode, take the jump if any of the
4062     ** input fields are NULL, since any key with a NULL will not
4063     ** conflict */
4064     for(ii=0; ii<pIdxKey->nField; ii++){
4065       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4066         takeJump = 1;
4067         break;
4068       }
4069     }
4070   }
4071   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4072   if( pFree ) sqlite3DbFreeNN(db, pFree);
4073   if( rc!=SQLITE_OK ){
4074     goto abort_due_to_error;
4075   }
4076   pC->seekResult = res;
4077   alreadyExists = (res==0);
4078   pC->nullRow = 1-alreadyExists;
4079   pC->deferredMoveto = 0;
4080   pC->cacheStatus = CACHE_STALE;
4081   if( pOp->opcode==OP_Found ){
4082     VdbeBranchTaken(alreadyExists!=0,2);
4083     if( alreadyExists ) goto jump_to_p2;
4084   }else{
4085     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4086     if( takeJump || !alreadyExists ) goto jump_to_p2;
4087   }
4088   break;
4089 }
4090 
4091 /* Opcode: SeekRowid P1 P2 P3 * *
4092 ** Synopsis: intkey=r[P3]
4093 **
4094 ** P1 is the index of a cursor open on an SQL table btree (with integer
4095 ** keys).  If register P3 does not contain an integer or if P1 does not
4096 ** contain a record with rowid P3 then jump immediately to P2.
4097 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4098 ** a record with rowid P3 then
4099 ** leave the cursor pointing at that record and fall through to the next
4100 ** instruction.
4101 **
4102 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4103 ** the P3 register must be guaranteed to contain an integer value.  With this
4104 ** opcode, register P3 might not contain an integer.
4105 **
4106 ** The OP_NotFound opcode performs the same operation on index btrees
4107 ** (with arbitrary multi-value keys).
4108 **
4109 ** This opcode leaves the cursor in a state where it cannot be advanced
4110 ** in either direction.  In other words, the Next and Prev opcodes will
4111 ** not work following this opcode.
4112 **
4113 ** See also: Found, NotFound, NoConflict, SeekRowid
4114 */
4115 /* Opcode: NotExists P1 P2 P3 * *
4116 ** Synopsis: intkey=r[P3]
4117 **
4118 ** P1 is the index of a cursor open on an SQL table btree (with integer
4119 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4120 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4121 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4122 ** leave the cursor pointing at that record and fall through to the next
4123 ** instruction.
4124 **
4125 ** The OP_SeekRowid opcode performs the same operation but also allows the
4126 ** P3 register to contain a non-integer value, in which case the jump is
4127 ** always taken.  This opcode requires that P3 always contain an integer.
4128 **
4129 ** The OP_NotFound opcode performs the same operation on index btrees
4130 ** (with arbitrary multi-value keys).
4131 **
4132 ** This opcode leaves the cursor in a state where it cannot be advanced
4133 ** in either direction.  In other words, the Next and Prev opcodes will
4134 ** not work following this opcode.
4135 **
4136 ** See also: Found, NotFound, NoConflict, SeekRowid
4137 */
4138 case OP_SeekRowid: {        /* jump, in3 */
4139   VdbeCursor *pC;
4140   BtCursor *pCrsr;
4141   int res;
4142   u64 iKey;
4143 
4144   pIn3 = &aMem[pOp->p3];
4145   if( (pIn3->flags & MEM_Int)==0 ){
4146     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4147     if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4148   }
4149   /* Fall through into OP_NotExists */
4150 case OP_NotExists:          /* jump, in3 */
4151   pIn3 = &aMem[pOp->p3];
4152   assert( pIn3->flags & MEM_Int );
4153   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4154   pC = p->apCsr[pOp->p1];
4155   assert( pC!=0 );
4156 #ifdef SQLITE_DEBUG
4157   pC->seekOp = 0;
4158 #endif
4159   assert( pC->isTable );
4160   assert( pC->eCurType==CURTYPE_BTREE );
4161   pCrsr = pC->uc.pCursor;
4162   assert( pCrsr!=0 );
4163   res = 0;
4164   iKey = pIn3->u.i;
4165   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4166   assert( rc==SQLITE_OK || res==0 );
4167   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4168   pC->nullRow = 0;
4169   pC->cacheStatus = CACHE_STALE;
4170   pC->deferredMoveto = 0;
4171   VdbeBranchTaken(res!=0,2);
4172   pC->seekResult = res;
4173   if( res!=0 ){
4174     assert( rc==SQLITE_OK );
4175     if( pOp->p2==0 ){
4176       rc = SQLITE_CORRUPT_BKPT;
4177     }else{
4178       goto jump_to_p2;
4179     }
4180   }
4181   if( rc ) goto abort_due_to_error;
4182   break;
4183 }
4184 
4185 /* Opcode: Sequence P1 P2 * * *
4186 ** Synopsis: r[P2]=cursor[P1].ctr++
4187 **
4188 ** Find the next available sequence number for cursor P1.
4189 ** Write the sequence number into register P2.
4190 ** The sequence number on the cursor is incremented after this
4191 ** instruction.
4192 */
4193 case OP_Sequence: {           /* out2 */
4194   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4195   assert( p->apCsr[pOp->p1]!=0 );
4196   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4197   pOut = out2Prerelease(p, pOp);
4198   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4199   break;
4200 }
4201 
4202 
4203 /* Opcode: NewRowid P1 P2 P3 * *
4204 ** Synopsis: r[P2]=rowid
4205 **
4206 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4207 ** The record number is not previously used as a key in the database
4208 ** table that cursor P1 points to.  The new record number is written
4209 ** written to register P2.
4210 **
4211 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4212 ** the largest previously generated record number. No new record numbers are
4213 ** allowed to be less than this value. When this value reaches its maximum,
4214 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4215 ** generated record number. This P3 mechanism is used to help implement the
4216 ** AUTOINCREMENT feature.
4217 */
4218 case OP_NewRowid: {           /* out2 */
4219   i64 v;                 /* The new rowid */
4220   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4221   int res;               /* Result of an sqlite3BtreeLast() */
4222   int cnt;               /* Counter to limit the number of searches */
4223   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4224   VdbeFrame *pFrame;     /* Root frame of VDBE */
4225 
4226   v = 0;
4227   res = 0;
4228   pOut = out2Prerelease(p, pOp);
4229   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4230   pC = p->apCsr[pOp->p1];
4231   assert( pC!=0 );
4232   assert( pC->eCurType==CURTYPE_BTREE );
4233   assert( pC->uc.pCursor!=0 );
4234   {
4235     /* The next rowid or record number (different terms for the same
4236     ** thing) is obtained in a two-step algorithm.
4237     **
4238     ** First we attempt to find the largest existing rowid and add one
4239     ** to that.  But if the largest existing rowid is already the maximum
4240     ** positive integer, we have to fall through to the second
4241     ** probabilistic algorithm
4242     **
4243     ** The second algorithm is to select a rowid at random and see if
4244     ** it already exists in the table.  If it does not exist, we have
4245     ** succeeded.  If the random rowid does exist, we select a new one
4246     ** and try again, up to 100 times.
4247     */
4248     assert( pC->isTable );
4249 
4250 #ifdef SQLITE_32BIT_ROWID
4251 #   define MAX_ROWID 0x7fffffff
4252 #else
4253     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4254     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4255     ** to provide the constant while making all compilers happy.
4256     */
4257 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4258 #endif
4259 
4260     if( !pC->useRandomRowid ){
4261       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4262       if( rc!=SQLITE_OK ){
4263         goto abort_due_to_error;
4264       }
4265       if( res ){
4266         v = 1;   /* IMP: R-61914-48074 */
4267       }else{
4268         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4269         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4270         if( v>=MAX_ROWID ){
4271           pC->useRandomRowid = 1;
4272         }else{
4273           v++;   /* IMP: R-29538-34987 */
4274         }
4275       }
4276     }
4277 
4278 #ifndef SQLITE_OMIT_AUTOINCREMENT
4279     if( pOp->p3 ){
4280       /* Assert that P3 is a valid memory cell. */
4281       assert( pOp->p3>0 );
4282       if( p->pFrame ){
4283         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4284         /* Assert that P3 is a valid memory cell. */
4285         assert( pOp->p3<=pFrame->nMem );
4286         pMem = &pFrame->aMem[pOp->p3];
4287       }else{
4288         /* Assert that P3 is a valid memory cell. */
4289         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4290         pMem = &aMem[pOp->p3];
4291         memAboutToChange(p, pMem);
4292       }
4293       assert( memIsValid(pMem) );
4294 
4295       REGISTER_TRACE(pOp->p3, pMem);
4296       sqlite3VdbeMemIntegerify(pMem);
4297       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4298       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4299         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4300         goto abort_due_to_error;
4301       }
4302       if( v<pMem->u.i+1 ){
4303         v = pMem->u.i + 1;
4304       }
4305       pMem->u.i = v;
4306     }
4307 #endif
4308     if( pC->useRandomRowid ){
4309       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4310       ** largest possible integer (9223372036854775807) then the database
4311       ** engine starts picking positive candidate ROWIDs at random until
4312       ** it finds one that is not previously used. */
4313       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4314                              ** an AUTOINCREMENT table. */
4315       cnt = 0;
4316       do{
4317         sqlite3_randomness(sizeof(v), &v);
4318         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4319       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4320                                                  0, &res))==SQLITE_OK)
4321             && (res==0)
4322             && (++cnt<100));
4323       if( rc ) goto abort_due_to_error;
4324       if( res==0 ){
4325         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4326         goto abort_due_to_error;
4327       }
4328       assert( v>0 );  /* EV: R-40812-03570 */
4329     }
4330     pC->deferredMoveto = 0;
4331     pC->cacheStatus = CACHE_STALE;
4332   }
4333   pOut->u.i = v;
4334   break;
4335 }
4336 
4337 /* Opcode: Insert P1 P2 P3 P4 P5
4338 ** Synopsis: intkey=r[P3] data=r[P2]
4339 **
4340 ** Write an entry into the table of cursor P1.  A new entry is
4341 ** created if it doesn't already exist or the data for an existing
4342 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4343 ** number P2. The key is stored in register P3. The key must
4344 ** be a MEM_Int.
4345 **
4346 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4347 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4348 ** then rowid is stored for subsequent return by the
4349 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4350 **
4351 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4352 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4353 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4354 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4355 **
4356 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4357 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4358 ** is part of an INSERT operation.  The difference is only important to
4359 ** the update hook.
4360 **
4361 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4362 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4363 ** following a successful insert.
4364 **
4365 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4366 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4367 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4368 ** value of register P2 will then change.  Make sure this does not
4369 ** cause any problems.)
4370 **
4371 ** This instruction only works on tables.  The equivalent instruction
4372 ** for indices is OP_IdxInsert.
4373 */
4374 /* Opcode: InsertInt P1 P2 P3 P4 P5
4375 ** Synopsis: intkey=P3 data=r[P2]
4376 **
4377 ** This works exactly like OP_Insert except that the key is the
4378 ** integer value P3, not the value of the integer stored in register P3.
4379 */
4380 case OP_Insert:
4381 case OP_InsertInt: {
4382   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4383   Mem *pKey;        /* MEM cell holding key  for the record */
4384   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4385   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4386   const char *zDb;  /* database name - used by the update hook */
4387   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4388   int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4389   BtreePayload x;   /* Payload to be inserted */
4390 
4391   op = 0;
4392   pData = &aMem[pOp->p2];
4393   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4394   assert( memIsValid(pData) );
4395   pC = p->apCsr[pOp->p1];
4396   assert( pC!=0 );
4397   assert( pC->eCurType==CURTYPE_BTREE );
4398   assert( pC->uc.pCursor!=0 );
4399   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4400   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4401   REGISTER_TRACE(pOp->p2, pData);
4402 
4403   if( pOp->opcode==OP_Insert ){
4404     pKey = &aMem[pOp->p3];
4405     assert( pKey->flags & MEM_Int );
4406     assert( memIsValid(pKey) );
4407     REGISTER_TRACE(pOp->p3, pKey);
4408     x.nKey = pKey->u.i;
4409   }else{
4410     assert( pOp->opcode==OP_InsertInt );
4411     x.nKey = pOp->p3;
4412   }
4413 
4414   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4415     assert( pC->iDb>=0 );
4416     zDb = db->aDb[pC->iDb].zDbSName;
4417     pTab = pOp->p4.pTab;
4418     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4419     op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4420   }else{
4421     pTab = 0; /* Not needed.  Silence a compiler warning. */
4422     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4423   }
4424 
4425 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4426   /* Invoke the pre-update hook, if any */
4427   if( db->xPreUpdateCallback
4428    && pOp->p4type==P4_TABLE
4429    && !(pOp->p5 & OPFLAG_ISUPDATE)
4430   ){
4431     sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
4432   }
4433   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4434 #endif
4435 
4436   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4437   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4438   assert( pData->flags & (MEM_Blob|MEM_Str) );
4439   x.pData = pData->z;
4440   x.nData = pData->n;
4441   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4442   if( pData->flags & MEM_Zero ){
4443     x.nZero = pData->u.nZero;
4444   }else{
4445     x.nZero = 0;
4446   }
4447   x.pKey = 0;
4448   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4449       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4450   );
4451   pC->deferredMoveto = 0;
4452   pC->cacheStatus = CACHE_STALE;
4453 
4454   /* Invoke the update-hook if required. */
4455   if( rc ) goto abort_due_to_error;
4456   if( db->xUpdateCallback && op ){
4457     db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
4458   }
4459   break;
4460 }
4461 
4462 /* Opcode: Delete P1 P2 P3 P4 P5
4463 **
4464 ** Delete the record at which the P1 cursor is currently pointing.
4465 **
4466 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4467 ** the cursor will be left pointing at  either the next or the previous
4468 ** record in the table. If it is left pointing at the next record, then
4469 ** the next Next instruction will be a no-op. As a result, in this case
4470 ** it is ok to delete a record from within a Next loop. If
4471 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4472 ** left in an undefined state.
4473 **
4474 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4475 ** delete one of several associated with deleting a table row and all its
4476 ** associated index entries.  Exactly one of those deletes is the "primary"
4477 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4478 ** marked with the AUXDELETE flag.
4479 **
4480 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4481 ** change count is incremented (otherwise not).
4482 **
4483 ** P1 must not be pseudo-table.  It has to be a real table with
4484 ** multiple rows.
4485 **
4486 ** If P4 is not NULL then it points to a Table object. In this case either
4487 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4488 ** have been positioned using OP_NotFound prior to invoking this opcode in
4489 ** this case. Specifically, if one is configured, the pre-update hook is
4490 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4491 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4492 **
4493 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4494 ** of the memory cell that contains the value that the rowid of the row will
4495 ** be set to by the update.
4496 */
4497 case OP_Delete: {
4498   VdbeCursor *pC;
4499   const char *zDb;
4500   Table *pTab;
4501   int opflags;
4502 
4503   opflags = pOp->p2;
4504   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4505   pC = p->apCsr[pOp->p1];
4506   assert( pC!=0 );
4507   assert( pC->eCurType==CURTYPE_BTREE );
4508   assert( pC->uc.pCursor!=0 );
4509   assert( pC->deferredMoveto==0 );
4510 
4511 #ifdef SQLITE_DEBUG
4512   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4513     /* If p5 is zero, the seek operation that positioned the cursor prior to
4514     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4515     ** the row that is being deleted */
4516     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4517     assert( pC->movetoTarget==iKey );
4518   }
4519 #endif
4520 
4521   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4522   ** the name of the db to pass as to it. Also set local pTab to a copy
4523   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4524   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4525   ** VdbeCursor.movetoTarget to the current rowid.  */
4526   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4527     assert( pC->iDb>=0 );
4528     assert( pOp->p4.pTab!=0 );
4529     zDb = db->aDb[pC->iDb].zDbSName;
4530     pTab = pOp->p4.pTab;
4531     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4532       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4533     }
4534   }else{
4535     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4536     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4537   }
4538 
4539 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4540   /* Invoke the pre-update-hook if required. */
4541   if( db->xPreUpdateCallback && pOp->p4.pTab ){
4542     assert( !(opflags & OPFLAG_ISUPDATE)
4543          || HasRowid(pTab)==0
4544          || (aMem[pOp->p3].flags & MEM_Int)
4545     );
4546     sqlite3VdbePreUpdateHook(p, pC,
4547         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4548         zDb, pTab, pC->movetoTarget,
4549         pOp->p3
4550     );
4551   }
4552   if( opflags & OPFLAG_ISNOOP ) break;
4553 #endif
4554 
4555   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4556   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4557   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4558   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4559 
4560 #ifdef SQLITE_DEBUG
4561   if( p->pFrame==0 ){
4562     if( pC->isEphemeral==0
4563         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4564         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4565       ){
4566       nExtraDelete++;
4567     }
4568     if( pOp->p2 & OPFLAG_NCHANGE ){
4569       nExtraDelete--;
4570     }
4571   }
4572 #endif
4573 
4574   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4575   pC->cacheStatus = CACHE_STALE;
4576   pC->seekResult = 0;
4577   if( rc ) goto abort_due_to_error;
4578 
4579   /* Invoke the update-hook if required. */
4580   if( opflags & OPFLAG_NCHANGE ){
4581     p->nChange++;
4582     if( db->xUpdateCallback && HasRowid(pTab) ){
4583       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4584           pC->movetoTarget);
4585       assert( pC->iDb>=0 );
4586     }
4587   }
4588 
4589   break;
4590 }
4591 /* Opcode: ResetCount * * * * *
4592 **
4593 ** The value of the change counter is copied to the database handle
4594 ** change counter (returned by subsequent calls to sqlite3_changes()).
4595 ** Then the VMs internal change counter resets to 0.
4596 ** This is used by trigger programs.
4597 */
4598 case OP_ResetCount: {
4599   sqlite3VdbeSetChanges(db, p->nChange);
4600   p->nChange = 0;
4601   break;
4602 }
4603 
4604 /* Opcode: SorterCompare P1 P2 P3 P4
4605 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4606 **
4607 ** P1 is a sorter cursor. This instruction compares a prefix of the
4608 ** record blob in register P3 against a prefix of the entry that
4609 ** the sorter cursor currently points to.  Only the first P4 fields
4610 ** of r[P3] and the sorter record are compared.
4611 **
4612 ** If either P3 or the sorter contains a NULL in one of their significant
4613 ** fields (not counting the P4 fields at the end which are ignored) then
4614 ** the comparison is assumed to be equal.
4615 **
4616 ** Fall through to next instruction if the two records compare equal to
4617 ** each other.  Jump to P2 if they are different.
4618 */
4619 case OP_SorterCompare: {
4620   VdbeCursor *pC;
4621   int res;
4622   int nKeyCol;
4623 
4624   pC = p->apCsr[pOp->p1];
4625   assert( isSorter(pC) );
4626   assert( pOp->p4type==P4_INT32 );
4627   pIn3 = &aMem[pOp->p3];
4628   nKeyCol = pOp->p4.i;
4629   res = 0;
4630   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4631   VdbeBranchTaken(res!=0,2);
4632   if( rc ) goto abort_due_to_error;
4633   if( res ) goto jump_to_p2;
4634   break;
4635 };
4636 
4637 /* Opcode: SorterData P1 P2 P3 * *
4638 ** Synopsis: r[P2]=data
4639 **
4640 ** Write into register P2 the current sorter data for sorter cursor P1.
4641 ** Then clear the column header cache on cursor P3.
4642 **
4643 ** This opcode is normally use to move a record out of the sorter and into
4644 ** a register that is the source for a pseudo-table cursor created using
4645 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4646 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4647 ** us from having to issue a separate NullRow instruction to clear that cache.
4648 */
4649 case OP_SorterData: {
4650   VdbeCursor *pC;
4651 
4652   pOut = &aMem[pOp->p2];
4653   pC = p->apCsr[pOp->p1];
4654   assert( isSorter(pC) );
4655   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4656   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4657   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4658   if( rc ) goto abort_due_to_error;
4659   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4660   break;
4661 }
4662 
4663 /* Opcode: RowData P1 P2 P3 * *
4664 ** Synopsis: r[P2]=data
4665 **
4666 ** Write into register P2 the complete row content for the row at
4667 ** which cursor P1 is currently pointing.
4668 ** There is no interpretation of the data.
4669 ** It is just copied onto the P2 register exactly as
4670 ** it is found in the database file.
4671 **
4672 ** If cursor P1 is an index, then the content is the key of the row.
4673 ** If cursor P2 is a table, then the content extracted is the data.
4674 **
4675 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4676 ** of a real table, not a pseudo-table.
4677 **
4678 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer
4679 ** into the database page.  That means that the content of the output
4680 ** register will be invalidated as soon as the cursor moves - including
4681 ** moves caused by other cursors that "save" the the current cursors
4682 ** position in order that they can write to the same table.  If P3==0
4683 ** then a copy of the data is made into memory.  P3!=0 is faster, but
4684 ** P3==0 is safer.
4685 **
4686 ** If P3!=0 then the content of the P2 register is unsuitable for use
4687 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4688 ** The P2 register content is invalidated by opcodes like OP_Function or
4689 ** by any use of another cursor pointing to the same table.
4690 */
4691 case OP_RowData: {
4692   VdbeCursor *pC;
4693   BtCursor *pCrsr;
4694   u32 n;
4695 
4696   pOut = out2Prerelease(p, pOp);
4697 
4698   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4699   pC = p->apCsr[pOp->p1];
4700   assert( pC!=0 );
4701   assert( pC->eCurType==CURTYPE_BTREE );
4702   assert( isSorter(pC)==0 );
4703   assert( pC->nullRow==0 );
4704   assert( pC->uc.pCursor!=0 );
4705   pCrsr = pC->uc.pCursor;
4706 
4707   /* The OP_RowData opcodes always follow OP_NotExists or
4708   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4709   ** that might invalidate the cursor.
4710   ** If this where not the case, on of the following assert()s
4711   ** would fail.  Should this ever change (because of changes in the code
4712   ** generator) then the fix would be to insert a call to
4713   ** sqlite3VdbeCursorMoveto().
4714   */
4715   assert( pC->deferredMoveto==0 );
4716   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4717 #if 0  /* Not required due to the previous to assert() statements */
4718   rc = sqlite3VdbeCursorMoveto(pC);
4719   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4720 #endif
4721 
4722   n = sqlite3BtreePayloadSize(pCrsr);
4723   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4724     goto too_big;
4725   }
4726   testcase( n==0 );
4727   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
4728   if( rc ) goto abort_due_to_error;
4729   if( !pOp->p3 ) Deephemeralize(pOut);
4730   UPDATE_MAX_BLOBSIZE(pOut);
4731   REGISTER_TRACE(pOp->p2, pOut);
4732   break;
4733 }
4734 
4735 /* Opcode: Rowid P1 P2 * * *
4736 ** Synopsis: r[P2]=rowid
4737 **
4738 ** Store in register P2 an integer which is the key of the table entry that
4739 ** P1 is currently point to.
4740 **
4741 ** P1 can be either an ordinary table or a virtual table.  There used to
4742 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4743 ** one opcode now works for both table types.
4744 */
4745 case OP_Rowid: {                 /* out2 */
4746   VdbeCursor *pC;
4747   i64 v;
4748   sqlite3_vtab *pVtab;
4749   const sqlite3_module *pModule;
4750 
4751   pOut = out2Prerelease(p, pOp);
4752   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4753   pC = p->apCsr[pOp->p1];
4754   assert( pC!=0 );
4755   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4756   if( pC->nullRow ){
4757     pOut->flags = MEM_Null;
4758     break;
4759   }else if( pC->deferredMoveto ){
4760     v = pC->movetoTarget;
4761 #ifndef SQLITE_OMIT_VIRTUALTABLE
4762   }else if( pC->eCurType==CURTYPE_VTAB ){
4763     assert( pC->uc.pVCur!=0 );
4764     pVtab = pC->uc.pVCur->pVtab;
4765     pModule = pVtab->pModule;
4766     assert( pModule->xRowid );
4767     rc = pModule->xRowid(pC->uc.pVCur, &v);
4768     sqlite3VtabImportErrmsg(p, pVtab);
4769     if( rc ) goto abort_due_to_error;
4770 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4771   }else{
4772     assert( pC->eCurType==CURTYPE_BTREE );
4773     assert( pC->uc.pCursor!=0 );
4774     rc = sqlite3VdbeCursorRestore(pC);
4775     if( rc ) goto abort_due_to_error;
4776     if( pC->nullRow ){
4777       pOut->flags = MEM_Null;
4778       break;
4779     }
4780     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4781   }
4782   pOut->u.i = v;
4783   break;
4784 }
4785 
4786 /* Opcode: NullRow P1 * * * *
4787 **
4788 ** Move the cursor P1 to a null row.  Any OP_Column operations
4789 ** that occur while the cursor is on the null row will always
4790 ** write a NULL.
4791 */
4792 case OP_NullRow: {
4793   VdbeCursor *pC;
4794 
4795   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4796   pC = p->apCsr[pOp->p1];
4797   assert( pC!=0 );
4798   pC->nullRow = 1;
4799   pC->cacheStatus = CACHE_STALE;
4800   if( pC->eCurType==CURTYPE_BTREE ){
4801     assert( pC->uc.pCursor!=0 );
4802     sqlite3BtreeClearCursor(pC->uc.pCursor);
4803   }
4804   break;
4805 }
4806 
4807 /* Opcode: SeekEnd P1 * * * *
4808 **
4809 ** Position cursor P1 at the end of the btree for the purpose of
4810 ** appending a new entry onto the btree.
4811 **
4812 ** It is assumed that the cursor is used only for appending and so
4813 ** if the cursor is valid, then the cursor must already be pointing
4814 ** at the end of the btree and so no changes are made to
4815 ** the cursor.
4816 */
4817 /* Opcode: Last P1 P2 * * *
4818 **
4819 ** The next use of the Rowid or Column or Prev instruction for P1
4820 ** will refer to the last entry in the database table or index.
4821 ** If the table or index is empty and P2>0, then jump immediately to P2.
4822 ** If P2 is 0 or if the table or index is not empty, fall through
4823 ** to the following instruction.
4824 **
4825 ** This opcode leaves the cursor configured to move in reverse order,
4826 ** from the end toward the beginning.  In other words, the cursor is
4827 ** configured to use Prev, not Next.
4828 */
4829 case OP_SeekEnd:
4830 case OP_Last: {        /* jump */
4831   VdbeCursor *pC;
4832   BtCursor *pCrsr;
4833   int res;
4834 
4835   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4836   pC = p->apCsr[pOp->p1];
4837   assert( pC!=0 );
4838   assert( pC->eCurType==CURTYPE_BTREE );
4839   pCrsr = pC->uc.pCursor;
4840   res = 0;
4841   assert( pCrsr!=0 );
4842 #ifdef SQLITE_DEBUG
4843   pC->seekOp = pOp->opcode;
4844 #endif
4845   if( pOp->opcode==OP_SeekEnd ){
4846     assert( pOp->p2==0 );
4847     pC->seekResult = -1;
4848     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
4849       break;
4850     }
4851   }
4852   rc = sqlite3BtreeLast(pCrsr, &res);
4853   pC->nullRow = (u8)res;
4854   pC->deferredMoveto = 0;
4855   pC->cacheStatus = CACHE_STALE;
4856   if( rc ) goto abort_due_to_error;
4857   if( pOp->p2>0 ){
4858     VdbeBranchTaken(res!=0,2);
4859     if( res ) goto jump_to_p2;
4860   }
4861   break;
4862 }
4863 
4864 /* Opcode: IfSmaller P1 P2 P3 * *
4865 **
4866 ** Estimate the number of rows in the table P1.  Jump to P2 if that
4867 ** estimate is less than approximately 2**(0.1*P3).
4868 */
4869 case OP_IfSmaller: {        /* jump */
4870   VdbeCursor *pC;
4871   BtCursor *pCrsr;
4872   int res;
4873   i64 sz;
4874 
4875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4876   pC = p->apCsr[pOp->p1];
4877   assert( pC!=0 );
4878   pCrsr = pC->uc.pCursor;
4879   assert( pCrsr );
4880   rc = sqlite3BtreeFirst(pCrsr, &res);
4881   if( rc ) goto abort_due_to_error;
4882   if( res==0 ){
4883     sz = sqlite3BtreeRowCountEst(pCrsr);
4884     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
4885   }
4886   VdbeBranchTaken(res!=0,2);
4887   if( res ) goto jump_to_p2;
4888   break;
4889 }
4890 
4891 
4892 /* Opcode: SorterSort P1 P2 * * *
4893 **
4894 ** After all records have been inserted into the Sorter object
4895 ** identified by P1, invoke this opcode to actually do the sorting.
4896 ** Jump to P2 if there are no records to be sorted.
4897 **
4898 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
4899 ** for Sorter objects.
4900 */
4901 /* Opcode: Sort P1 P2 * * *
4902 **
4903 ** This opcode does exactly the same thing as OP_Rewind except that
4904 ** it increments an undocumented global variable used for testing.
4905 **
4906 ** Sorting is accomplished by writing records into a sorting index,
4907 ** then rewinding that index and playing it back from beginning to
4908 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
4909 ** rewinding so that the global variable will be incremented and
4910 ** regression tests can determine whether or not the optimizer is
4911 ** correctly optimizing out sorts.
4912 */
4913 case OP_SorterSort:    /* jump */
4914 case OP_Sort: {        /* jump */
4915 #ifdef SQLITE_TEST
4916   sqlite3_sort_count++;
4917   sqlite3_search_count--;
4918 #endif
4919   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4920   /* Fall through into OP_Rewind */
4921 }
4922 /* Opcode: Rewind P1 P2 * * *
4923 **
4924 ** The next use of the Rowid or Column or Next instruction for P1
4925 ** will refer to the first entry in the database table or index.
4926 ** If the table or index is empty, jump immediately to P2.
4927 ** If the table or index is not empty, fall through to the following
4928 ** instruction.
4929 **
4930 ** This opcode leaves the cursor configured to move in forward order,
4931 ** from the beginning toward the end.  In other words, the cursor is
4932 ** configured to use Next, not Prev.
4933 */
4934 case OP_Rewind: {        /* jump */
4935   VdbeCursor *pC;
4936   BtCursor *pCrsr;
4937   int res;
4938 
4939   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4940   pC = p->apCsr[pOp->p1];
4941   assert( pC!=0 );
4942   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4943   res = 1;
4944 #ifdef SQLITE_DEBUG
4945   pC->seekOp = OP_Rewind;
4946 #endif
4947   if( isSorter(pC) ){
4948     rc = sqlite3VdbeSorterRewind(pC, &res);
4949   }else{
4950     assert( pC->eCurType==CURTYPE_BTREE );
4951     pCrsr = pC->uc.pCursor;
4952     assert( pCrsr );
4953     rc = sqlite3BtreeFirst(pCrsr, &res);
4954     pC->deferredMoveto = 0;
4955     pC->cacheStatus = CACHE_STALE;
4956   }
4957   if( rc ) goto abort_due_to_error;
4958   pC->nullRow = (u8)res;
4959   assert( pOp->p2>0 && pOp->p2<p->nOp );
4960   VdbeBranchTaken(res!=0,2);
4961   if( res ) goto jump_to_p2;
4962   break;
4963 }
4964 
4965 /* Opcode: Next P1 P2 P3 P4 P5
4966 **
4967 ** Advance cursor P1 so that it points to the next key/data pair in its
4968 ** table or index.  If there are no more key/value pairs then fall through
4969 ** to the following instruction.  But if the cursor advance was successful,
4970 ** jump immediately to P2.
4971 **
4972 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4973 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
4974 ** to follow SeekLT, SeekLE, or OP_Last.
4975 **
4976 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
4977 ** been opened prior to this opcode or the program will segfault.
4978 **
4979 ** The P3 value is a hint to the btree implementation. If P3==1, that
4980 ** means P1 is an SQL index and that this instruction could have been
4981 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
4982 ** always either 0 or 1.
4983 **
4984 ** P4 is always of type P4_ADVANCE. The function pointer points to
4985 ** sqlite3BtreeNext().
4986 **
4987 ** If P5 is positive and the jump is taken, then event counter
4988 ** number P5-1 in the prepared statement is incremented.
4989 **
4990 ** See also: Prev, NextIfOpen
4991 */
4992 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4993 **
4994 ** This opcode works just like Next except that if cursor P1 is not
4995 ** open it behaves a no-op.
4996 */
4997 /* Opcode: Prev P1 P2 P3 P4 P5
4998 **
4999 ** Back up cursor P1 so that it points to the previous key/data pair in its
5000 ** table or index.  If there is no previous key/value pairs then fall through
5001 ** to the following instruction.  But if the cursor backup was successful,
5002 ** jump immediately to P2.
5003 **
5004 **
5005 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5006 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5007 ** to follow SeekGT, SeekGE, or OP_Rewind.
5008 **
5009 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5010 ** not open then the behavior is undefined.
5011 **
5012 ** The P3 value is a hint to the btree implementation. If P3==1, that
5013 ** means P1 is an SQL index and that this instruction could have been
5014 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5015 ** always either 0 or 1.
5016 **
5017 ** P4 is always of type P4_ADVANCE. The function pointer points to
5018 ** sqlite3BtreePrevious().
5019 **
5020 ** If P5 is positive and the jump is taken, then event counter
5021 ** number P5-1 in the prepared statement is incremented.
5022 */
5023 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
5024 **
5025 ** This opcode works just like Prev except that if cursor P1 is not
5026 ** open it behaves a no-op.
5027 */
5028 /* Opcode: SorterNext P1 P2 * * P5
5029 **
5030 ** This opcode works just like OP_Next except that P1 must be a
5031 ** sorter object for which the OP_SorterSort opcode has been
5032 ** invoked.  This opcode advances the cursor to the next sorted
5033 ** record, or jumps to P2 if there are no more sorted records.
5034 */
5035 case OP_SorterNext: {  /* jump */
5036   VdbeCursor *pC;
5037 
5038   pC = p->apCsr[pOp->p1];
5039   assert( isSorter(pC) );
5040   rc = sqlite3VdbeSorterNext(db, pC);
5041   goto next_tail;
5042 case OP_PrevIfOpen:    /* jump */
5043 case OP_NextIfOpen:    /* jump */
5044   if( p->apCsr[pOp->p1]==0 ) break;
5045   /* Fall through */
5046 case OP_Prev:          /* jump */
5047 case OP_Next:          /* jump */
5048   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5049   assert( pOp->p5<ArraySize(p->aCounter) );
5050   pC = p->apCsr[pOp->p1];
5051   assert( pC!=0 );
5052   assert( pC->deferredMoveto==0 );
5053   assert( pC->eCurType==CURTYPE_BTREE );
5054   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5055   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5056   assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
5057   assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
5058 
5059   /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5060   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5061   assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
5062        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5063        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
5064   assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5065        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5066        || pC->seekOp==OP_Last );
5067 
5068   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5069 next_tail:
5070   pC->cacheStatus = CACHE_STALE;
5071   VdbeBranchTaken(rc==SQLITE_OK,2);
5072   if( rc==SQLITE_OK ){
5073     pC->nullRow = 0;
5074     p->aCounter[pOp->p5]++;
5075 #ifdef SQLITE_TEST
5076     sqlite3_search_count++;
5077 #endif
5078     goto jump_to_p2_and_check_for_interrupt;
5079   }
5080   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5081   rc = SQLITE_OK;
5082   pC->nullRow = 1;
5083   goto check_for_interrupt;
5084 }
5085 
5086 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5087 ** Synopsis: key=r[P2]
5088 **
5089 ** Register P2 holds an SQL index key made using the
5090 ** MakeRecord instructions.  This opcode writes that key
5091 ** into the index P1.  Data for the entry is nil.
5092 **
5093 ** If P4 is not zero, then it is the number of values in the unpacked
5094 ** key of reg(P2).  In that case, P3 is the index of the first register
5095 ** for the unpacked key.  The availability of the unpacked key can sometimes
5096 ** be an optimization.
5097 **
5098 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5099 ** that this insert is likely to be an append.
5100 **
5101 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5102 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5103 ** then the change counter is unchanged.
5104 **
5105 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5106 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5107 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5108 ** seeks on the cursor or if the most recent seek used a key equivalent
5109 ** to P2.
5110 **
5111 ** This instruction only works for indices.  The equivalent instruction
5112 ** for tables is OP_Insert.
5113 */
5114 /* Opcode: SorterInsert P1 P2 * * *
5115 ** Synopsis: key=r[P2]
5116 **
5117 ** Register P2 holds an SQL index key made using the
5118 ** MakeRecord instructions.  This opcode writes that key
5119 ** into the sorter P1.  Data for the entry is nil.
5120 */
5121 case OP_SorterInsert:       /* in2 */
5122 case OP_IdxInsert: {        /* in2 */
5123   VdbeCursor *pC;
5124   BtreePayload x;
5125 
5126   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5127   pC = p->apCsr[pOp->p1];
5128   assert( pC!=0 );
5129   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5130   pIn2 = &aMem[pOp->p2];
5131   assert( pIn2->flags & MEM_Blob );
5132   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5133   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5134   assert( pC->isTable==0 );
5135   rc = ExpandBlob(pIn2);
5136   if( rc ) goto abort_due_to_error;
5137   if( pOp->opcode==OP_SorterInsert ){
5138     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5139   }else{
5140     x.nKey = pIn2->n;
5141     x.pKey = pIn2->z;
5142     x.aMem = aMem + pOp->p3;
5143     x.nMem = (u16)pOp->p4.i;
5144     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5145          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5146         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5147         );
5148     assert( pC->deferredMoveto==0 );
5149     pC->cacheStatus = CACHE_STALE;
5150   }
5151   if( rc) goto abort_due_to_error;
5152   break;
5153 }
5154 
5155 /* Opcode: IdxDelete P1 P2 P3 * *
5156 ** Synopsis: key=r[P2@P3]
5157 **
5158 ** The content of P3 registers starting at register P2 form
5159 ** an unpacked index key. This opcode removes that entry from the
5160 ** index opened by cursor P1.
5161 */
5162 case OP_IdxDelete: {
5163   VdbeCursor *pC;
5164   BtCursor *pCrsr;
5165   int res;
5166   UnpackedRecord r;
5167 
5168   assert( pOp->p3>0 );
5169   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5170   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5171   pC = p->apCsr[pOp->p1];
5172   assert( pC!=0 );
5173   assert( pC->eCurType==CURTYPE_BTREE );
5174   pCrsr = pC->uc.pCursor;
5175   assert( pCrsr!=0 );
5176   assert( pOp->p5==0 );
5177   r.pKeyInfo = pC->pKeyInfo;
5178   r.nField = (u16)pOp->p3;
5179   r.default_rc = 0;
5180   r.aMem = &aMem[pOp->p2];
5181   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5182   if( rc ) goto abort_due_to_error;
5183   if( res==0 ){
5184     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5185     if( rc ) goto abort_due_to_error;
5186   }
5187   assert( pC->deferredMoveto==0 );
5188   pC->cacheStatus = CACHE_STALE;
5189   pC->seekResult = 0;
5190   break;
5191 }
5192 
5193 /* Opcode: DeferredSeek P1 * P3 P4 *
5194 ** Synopsis: Move P3 to P1.rowid if needed
5195 **
5196 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5197 ** table.  This opcode does a deferred seek of the P3 table cursor
5198 ** to the row that corresponds to the current row of P1.
5199 **
5200 ** This is a deferred seek.  Nothing actually happens until
5201 ** the cursor is used to read a record.  That way, if no reads
5202 ** occur, no unnecessary I/O happens.
5203 **
5204 ** P4 may be an array of integers (type P4_INTARRAY) containing
5205 ** one entry for each column in the P3 table.  If array entry a(i)
5206 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5207 ** equivalent to performing the deferred seek and then reading column i
5208 ** from P1.  This information is stored in P3 and used to redirect
5209 ** reads against P3 over to P1, thus possibly avoiding the need to
5210 ** seek and read cursor P3.
5211 */
5212 /* Opcode: IdxRowid P1 P2 * * *
5213 ** Synopsis: r[P2]=rowid
5214 **
5215 ** Write into register P2 an integer which is the last entry in the record at
5216 ** the end of the index key pointed to by cursor P1.  This integer should be
5217 ** the rowid of the table entry to which this index entry points.
5218 **
5219 ** See also: Rowid, MakeRecord.
5220 */
5221 case OP_DeferredSeek:
5222 case OP_IdxRowid: {           /* out2 */
5223   VdbeCursor *pC;             /* The P1 index cursor */
5224   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5225   i64 rowid;                  /* Rowid that P1 current points to */
5226 
5227   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5228   pC = p->apCsr[pOp->p1];
5229   assert( pC!=0 );
5230   assert( pC->eCurType==CURTYPE_BTREE );
5231   assert( pC->uc.pCursor!=0 );
5232   assert( pC->isTable==0 );
5233   assert( pC->deferredMoveto==0 );
5234   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5235 
5236   /* The IdxRowid and Seek opcodes are combined because of the commonality
5237   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5238   rc = sqlite3VdbeCursorRestore(pC);
5239 
5240   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5241   ** out from under the cursor.  That will never happens for an IdxRowid
5242   ** or Seek opcode */
5243   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5244 
5245   if( !pC->nullRow ){
5246     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5247     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5248     if( rc!=SQLITE_OK ){
5249       goto abort_due_to_error;
5250     }
5251     if( pOp->opcode==OP_DeferredSeek ){
5252       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5253       pTabCur = p->apCsr[pOp->p3];
5254       assert( pTabCur!=0 );
5255       assert( pTabCur->eCurType==CURTYPE_BTREE );
5256       assert( pTabCur->uc.pCursor!=0 );
5257       assert( pTabCur->isTable );
5258       pTabCur->nullRow = 0;
5259       pTabCur->movetoTarget = rowid;
5260       pTabCur->deferredMoveto = 1;
5261       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5262       pTabCur->aAltMap = pOp->p4.ai;
5263       pTabCur->pAltCursor = pC;
5264     }else{
5265       pOut = out2Prerelease(p, pOp);
5266       pOut->u.i = rowid;
5267     }
5268   }else{
5269     assert( pOp->opcode==OP_IdxRowid );
5270     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5271   }
5272   break;
5273 }
5274 
5275 /* Opcode: IdxGE P1 P2 P3 P4 P5
5276 ** Synopsis: key=r[P3@P4]
5277 **
5278 ** The P4 register values beginning with P3 form an unpacked index
5279 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5280 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5281 ** fields at the end.
5282 **
5283 ** If the P1 index entry is greater than or equal to the key value
5284 ** then jump to P2.  Otherwise fall through to the next instruction.
5285 */
5286 /* Opcode: IdxGT P1 P2 P3 P4 P5
5287 ** Synopsis: key=r[P3@P4]
5288 **
5289 ** The P4 register values beginning with P3 form an unpacked index
5290 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5291 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5292 ** fields at the end.
5293 **
5294 ** If the P1 index entry is greater than the key value
5295 ** then jump to P2.  Otherwise fall through to the next instruction.
5296 */
5297 /* Opcode: IdxLT P1 P2 P3 P4 P5
5298 ** Synopsis: key=r[P3@P4]
5299 **
5300 ** The P4 register values beginning with P3 form an unpacked index
5301 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5302 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5303 ** ROWID on the P1 index.
5304 **
5305 ** If the P1 index entry is less than the key value then jump to P2.
5306 ** Otherwise fall through to the next instruction.
5307 */
5308 /* Opcode: IdxLE P1 P2 P3 P4 P5
5309 ** Synopsis: key=r[P3@P4]
5310 **
5311 ** The P4 register values beginning with P3 form an unpacked index
5312 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5313 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5314 ** ROWID on the P1 index.
5315 **
5316 ** If the P1 index entry is less than or equal to the key value then jump
5317 ** to P2. Otherwise fall through to the next instruction.
5318 */
5319 case OP_IdxLE:          /* jump */
5320 case OP_IdxGT:          /* jump */
5321 case OP_IdxLT:          /* jump */
5322 case OP_IdxGE:  {       /* jump */
5323   VdbeCursor *pC;
5324   int res;
5325   UnpackedRecord r;
5326 
5327   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5328   pC = p->apCsr[pOp->p1];
5329   assert( pC!=0 );
5330   assert( pC->isOrdered );
5331   assert( pC->eCurType==CURTYPE_BTREE );
5332   assert( pC->uc.pCursor!=0);
5333   assert( pC->deferredMoveto==0 );
5334   assert( pOp->p5==0 || pOp->p5==1 );
5335   assert( pOp->p4type==P4_INT32 );
5336   r.pKeyInfo = pC->pKeyInfo;
5337   r.nField = (u16)pOp->p4.i;
5338   if( pOp->opcode<OP_IdxLT ){
5339     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5340     r.default_rc = -1;
5341   }else{
5342     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5343     r.default_rc = 0;
5344   }
5345   r.aMem = &aMem[pOp->p3];
5346 #ifdef SQLITE_DEBUG
5347   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5348 #endif
5349   res = 0;  /* Not needed.  Only used to silence a warning. */
5350   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5351   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5352   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5353     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5354     res = -res;
5355   }else{
5356     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5357     res++;
5358   }
5359   VdbeBranchTaken(res>0,2);
5360   if( rc ) goto abort_due_to_error;
5361   if( res>0 ) goto jump_to_p2;
5362   break;
5363 }
5364 
5365 /* Opcode: Destroy P1 P2 P3 * *
5366 **
5367 ** Delete an entire database table or index whose root page in the database
5368 ** file is given by P1.
5369 **
5370 ** The table being destroyed is in the main database file if P3==0.  If
5371 ** P3==1 then the table to be clear is in the auxiliary database file
5372 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5373 **
5374 ** If AUTOVACUUM is enabled then it is possible that another root page
5375 ** might be moved into the newly deleted root page in order to keep all
5376 ** root pages contiguous at the beginning of the database.  The former
5377 ** value of the root page that moved - its value before the move occurred -
5378 ** is stored in register P2. If no page movement was required (because the
5379 ** table being dropped was already the last one in the database) then a
5380 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5381 ** is stored in register P2.
5382 **
5383 ** This opcode throws an error if there are any active reader VMs when
5384 ** it is invoked. This is done to avoid the difficulty associated with
5385 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5386 ** database. This error is thrown even if the database is not an AUTOVACUUM
5387 ** db in order to avoid introducing an incompatibility between autovacuum
5388 ** and non-autovacuum modes.
5389 **
5390 ** See also: Clear
5391 */
5392 case OP_Destroy: {     /* out2 */
5393   int iMoved;
5394   int iDb;
5395 
5396   assert( p->readOnly==0 );
5397   assert( pOp->p1>1 );
5398   pOut = out2Prerelease(p, pOp);
5399   pOut->flags = MEM_Null;
5400   if( db->nVdbeRead > db->nVDestroy+1 ){
5401     rc = SQLITE_LOCKED;
5402     p->errorAction = OE_Abort;
5403     goto abort_due_to_error;
5404   }else{
5405     iDb = pOp->p3;
5406     assert( DbMaskTest(p->btreeMask, iDb) );
5407     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5408     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5409     pOut->flags = MEM_Int;
5410     pOut->u.i = iMoved;
5411     if( rc ) goto abort_due_to_error;
5412 #ifndef SQLITE_OMIT_AUTOVACUUM
5413     if( iMoved!=0 ){
5414       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5415       /* All OP_Destroy operations occur on the same btree */
5416       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5417       resetSchemaOnFault = iDb+1;
5418     }
5419 #endif
5420   }
5421   break;
5422 }
5423 
5424 /* Opcode: Clear P1 P2 P3
5425 **
5426 ** Delete all contents of the database table or index whose root page
5427 ** in the database file is given by P1.  But, unlike Destroy, do not
5428 ** remove the table or index from the database file.
5429 **
5430 ** The table being clear is in the main database file if P2==0.  If
5431 ** P2==1 then the table to be clear is in the auxiliary database file
5432 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5433 **
5434 ** If the P3 value is non-zero, then the table referred to must be an
5435 ** intkey table (an SQL table, not an index). In this case the row change
5436 ** count is incremented by the number of rows in the table being cleared.
5437 ** If P3 is greater than zero, then the value stored in register P3 is
5438 ** also incremented by the number of rows in the table being cleared.
5439 **
5440 ** See also: Destroy
5441 */
5442 case OP_Clear: {
5443   int nChange;
5444 
5445   nChange = 0;
5446   assert( p->readOnly==0 );
5447   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5448   rc = sqlite3BtreeClearTable(
5449       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5450   );
5451   if( pOp->p3 ){
5452     p->nChange += nChange;
5453     if( pOp->p3>0 ){
5454       assert( memIsValid(&aMem[pOp->p3]) );
5455       memAboutToChange(p, &aMem[pOp->p3]);
5456       aMem[pOp->p3].u.i += nChange;
5457     }
5458   }
5459   if( rc ) goto abort_due_to_error;
5460   break;
5461 }
5462 
5463 /* Opcode: ResetSorter P1 * * * *
5464 **
5465 ** Delete all contents from the ephemeral table or sorter
5466 ** that is open on cursor P1.
5467 **
5468 ** This opcode only works for cursors used for sorting and
5469 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5470 */
5471 case OP_ResetSorter: {
5472   VdbeCursor *pC;
5473 
5474   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5475   pC = p->apCsr[pOp->p1];
5476   assert( pC!=0 );
5477   if( isSorter(pC) ){
5478     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5479   }else{
5480     assert( pC->eCurType==CURTYPE_BTREE );
5481     assert( pC->isEphemeral );
5482     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5483     if( rc ) goto abort_due_to_error;
5484   }
5485   break;
5486 }
5487 
5488 /* Opcode: CreateBtree P1 P2 P3 * *
5489 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5490 **
5491 ** Allocate a new b-tree in the main database file if P1==0 or in the
5492 ** TEMP database file if P1==1 or in an attached database if
5493 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5494 ** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table.
5495 ** The root page number of the new b-tree is stored in register P2.
5496 */
5497 case OP_CreateBtree: {          /* out2 */
5498   int pgno;
5499   Db *pDb;
5500 
5501   pOut = out2Prerelease(p, pOp);
5502   pgno = 0;
5503   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
5504   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5505   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5506   assert( p->readOnly==0 );
5507   pDb = &db->aDb[pOp->p1];
5508   assert( pDb->pBt!=0 );
5509   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
5510   if( rc ) goto abort_due_to_error;
5511   pOut->u.i = pgno;
5512   break;
5513 }
5514 
5515 /* Opcode: SqlExec * * * P4 *
5516 **
5517 ** Run the SQL statement or statements specified in the P4 string.
5518 */
5519 case OP_SqlExec: {
5520   db->nSqlExec++;
5521   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
5522   db->nSqlExec--;
5523   if( rc ) goto abort_due_to_error;
5524   break;
5525 }
5526 
5527 /* Opcode: ParseSchema P1 * * P4 *
5528 **
5529 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5530 ** that match the WHERE clause P4.
5531 **
5532 ** This opcode invokes the parser to create a new virtual machine,
5533 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5534 */
5535 case OP_ParseSchema: {
5536   int iDb;
5537   const char *zMaster;
5538   char *zSql;
5539   InitData initData;
5540 
5541   /* Any prepared statement that invokes this opcode will hold mutexes
5542   ** on every btree.  This is a prerequisite for invoking
5543   ** sqlite3InitCallback().
5544   */
5545 #ifdef SQLITE_DEBUG
5546   for(iDb=0; iDb<db->nDb; iDb++){
5547     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5548   }
5549 #endif
5550 
5551   iDb = pOp->p1;
5552   assert( iDb>=0 && iDb<db->nDb );
5553   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5554   /* Used to be a conditional */ {
5555     zMaster = MASTER_NAME;
5556     initData.db = db;
5557     initData.iDb = pOp->p1;
5558     initData.pzErrMsg = &p->zErrMsg;
5559     zSql = sqlite3MPrintf(db,
5560        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5561        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5562     if( zSql==0 ){
5563       rc = SQLITE_NOMEM_BKPT;
5564     }else{
5565       assert( db->init.busy==0 );
5566       db->init.busy = 1;
5567       initData.rc = SQLITE_OK;
5568       assert( !db->mallocFailed );
5569       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5570       if( rc==SQLITE_OK ) rc = initData.rc;
5571       sqlite3DbFreeNN(db, zSql);
5572       db->init.busy = 0;
5573     }
5574   }
5575   if( rc ){
5576     sqlite3ResetAllSchemasOfConnection(db);
5577     if( rc==SQLITE_NOMEM ){
5578       goto no_mem;
5579     }
5580     goto abort_due_to_error;
5581   }
5582   break;
5583 }
5584 
5585 #if !defined(SQLITE_OMIT_ANALYZE)
5586 /* Opcode: LoadAnalysis P1 * * * *
5587 **
5588 ** Read the sqlite_stat1 table for database P1 and load the content
5589 ** of that table into the internal index hash table.  This will cause
5590 ** the analysis to be used when preparing all subsequent queries.
5591 */
5592 case OP_LoadAnalysis: {
5593   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5594   rc = sqlite3AnalysisLoad(db, pOp->p1);
5595   if( rc ) goto abort_due_to_error;
5596   break;
5597 }
5598 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5599 
5600 /* Opcode: DropTable P1 * * P4 *
5601 **
5602 ** Remove the internal (in-memory) data structures that describe
5603 ** the table named P4 in database P1.  This is called after a table
5604 ** is dropped from disk (using the Destroy opcode) in order to keep
5605 ** the internal representation of the
5606 ** schema consistent with what is on disk.
5607 */
5608 case OP_DropTable: {
5609   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5610   break;
5611 }
5612 
5613 /* Opcode: DropIndex P1 * * P4 *
5614 **
5615 ** Remove the internal (in-memory) data structures that describe
5616 ** the index named P4 in database P1.  This is called after an index
5617 ** is dropped from disk (using the Destroy opcode)
5618 ** in order to keep the internal representation of the
5619 ** schema consistent with what is on disk.
5620 */
5621 case OP_DropIndex: {
5622   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5623   break;
5624 }
5625 
5626 /* Opcode: DropTrigger P1 * * P4 *
5627 **
5628 ** Remove the internal (in-memory) data structures that describe
5629 ** the trigger named P4 in database P1.  This is called after a trigger
5630 ** is dropped from disk (using the Destroy opcode) in order to keep
5631 ** the internal representation of the
5632 ** schema consistent with what is on disk.
5633 */
5634 case OP_DropTrigger: {
5635   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5636   break;
5637 }
5638 
5639 
5640 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5641 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5642 **
5643 ** Do an analysis of the currently open database.  Store in
5644 ** register P1 the text of an error message describing any problems.
5645 ** If no problems are found, store a NULL in register P1.
5646 **
5647 ** The register P3 contains one less than the maximum number of allowed errors.
5648 ** At most reg(P3) errors will be reported.
5649 ** In other words, the analysis stops as soon as reg(P1) errors are
5650 ** seen.  Reg(P1) is updated with the number of errors remaining.
5651 **
5652 ** The root page numbers of all tables in the database are integers
5653 ** stored in P4_INTARRAY argument.
5654 **
5655 ** If P5 is not zero, the check is done on the auxiliary database
5656 ** file, not the main database file.
5657 **
5658 ** This opcode is used to implement the integrity_check pragma.
5659 */
5660 case OP_IntegrityCk: {
5661   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5662   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5663   int nErr;       /* Number of errors reported */
5664   char *z;        /* Text of the error report */
5665   Mem *pnErr;     /* Register keeping track of errors remaining */
5666 
5667   assert( p->bIsReader );
5668   nRoot = pOp->p2;
5669   aRoot = pOp->p4.ai;
5670   assert( nRoot>0 );
5671   assert( aRoot[0]==nRoot );
5672   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5673   pnErr = &aMem[pOp->p3];
5674   assert( (pnErr->flags & MEM_Int)!=0 );
5675   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5676   pIn1 = &aMem[pOp->p1];
5677   assert( pOp->p5<db->nDb );
5678   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5679   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
5680                                  (int)pnErr->u.i+1, &nErr);
5681   sqlite3VdbeMemSetNull(pIn1);
5682   if( nErr==0 ){
5683     assert( z==0 );
5684   }else if( z==0 ){
5685     goto no_mem;
5686   }else{
5687     pnErr->u.i -= nErr-1;
5688     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5689   }
5690   UPDATE_MAX_BLOBSIZE(pIn1);
5691   sqlite3VdbeChangeEncoding(pIn1, encoding);
5692   break;
5693 }
5694 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5695 
5696 /* Opcode: RowSetAdd P1 P2 * * *
5697 ** Synopsis: rowset(P1)=r[P2]
5698 **
5699 ** Insert the integer value held by register P2 into a RowSet object
5700 ** held in register P1.
5701 **
5702 ** An assertion fails if P2 is not an integer.
5703 */
5704 case OP_RowSetAdd: {       /* in1, in2 */
5705   pIn1 = &aMem[pOp->p1];
5706   pIn2 = &aMem[pOp->p2];
5707   assert( (pIn2->flags & MEM_Int)!=0 );
5708   if( (pIn1->flags & MEM_RowSet)==0 ){
5709     sqlite3VdbeMemSetRowSet(pIn1);
5710     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5711   }
5712   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5713   break;
5714 }
5715 
5716 /* Opcode: RowSetRead P1 P2 P3 * *
5717 ** Synopsis: r[P3]=rowset(P1)
5718 **
5719 ** Extract the smallest value from the RowSet object in P1
5720 ** and put that value into register P3.
5721 ** Or, if RowSet object P1 is initially empty, leave P3
5722 ** unchanged and jump to instruction P2.
5723 */
5724 case OP_RowSetRead: {       /* jump, in1, out3 */
5725   i64 val;
5726 
5727   pIn1 = &aMem[pOp->p1];
5728   if( (pIn1->flags & MEM_RowSet)==0
5729    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5730   ){
5731     /* The boolean index is empty */
5732     sqlite3VdbeMemSetNull(pIn1);
5733     VdbeBranchTaken(1,2);
5734     goto jump_to_p2_and_check_for_interrupt;
5735   }else{
5736     /* A value was pulled from the index */
5737     VdbeBranchTaken(0,2);
5738     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5739   }
5740   goto check_for_interrupt;
5741 }
5742 
5743 /* Opcode: RowSetTest P1 P2 P3 P4
5744 ** Synopsis: if r[P3] in rowset(P1) goto P2
5745 **
5746 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5747 ** contains a RowSet object and that RowSet object contains
5748 ** the value held in P3, jump to register P2. Otherwise, insert the
5749 ** integer in P3 into the RowSet and continue on to the
5750 ** next opcode.
5751 **
5752 ** The RowSet object is optimized for the case where sets of integers
5753 ** are inserted in distinct phases, which each set contains no duplicates.
5754 ** Each set is identified by a unique P4 value. The first set
5755 ** must have P4==0, the final set must have P4==-1, and for all other sets
5756 ** must have P4>0.
5757 **
5758 ** This allows optimizations: (a) when P4==0 there is no need to test
5759 ** the RowSet object for P3, as it is guaranteed not to contain it,
5760 ** (b) when P4==-1 there is no need to insert the value, as it will
5761 ** never be tested for, and (c) when a value that is part of set X is
5762 ** inserted, there is no need to search to see if the same value was
5763 ** previously inserted as part of set X (only if it was previously
5764 ** inserted as part of some other set).
5765 */
5766 case OP_RowSetTest: {                     /* jump, in1, in3 */
5767   int iSet;
5768   int exists;
5769 
5770   pIn1 = &aMem[pOp->p1];
5771   pIn3 = &aMem[pOp->p3];
5772   iSet = pOp->p4.i;
5773   assert( pIn3->flags&MEM_Int );
5774 
5775   /* If there is anything other than a rowset object in memory cell P1,
5776   ** delete it now and initialize P1 with an empty rowset
5777   */
5778   if( (pIn1->flags & MEM_RowSet)==0 ){
5779     sqlite3VdbeMemSetRowSet(pIn1);
5780     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5781   }
5782 
5783   assert( pOp->p4type==P4_INT32 );
5784   assert( iSet==-1 || iSet>=0 );
5785   if( iSet ){
5786     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5787     VdbeBranchTaken(exists!=0,2);
5788     if( exists ) goto jump_to_p2;
5789   }
5790   if( iSet>=0 ){
5791     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5792   }
5793   break;
5794 }
5795 
5796 
5797 #ifndef SQLITE_OMIT_TRIGGER
5798 
5799 /* Opcode: Program P1 P2 P3 P4 P5
5800 **
5801 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5802 **
5803 ** P1 contains the address of the memory cell that contains the first memory
5804 ** cell in an array of values used as arguments to the sub-program. P2
5805 ** contains the address to jump to if the sub-program throws an IGNORE
5806 ** exception using the RAISE() function. Register P3 contains the address
5807 ** of a memory cell in this (the parent) VM that is used to allocate the
5808 ** memory required by the sub-vdbe at runtime.
5809 **
5810 ** P4 is a pointer to the VM containing the trigger program.
5811 **
5812 ** If P5 is non-zero, then recursive program invocation is enabled.
5813 */
5814 case OP_Program: {        /* jump */
5815   int nMem;               /* Number of memory registers for sub-program */
5816   int nByte;              /* Bytes of runtime space required for sub-program */
5817   Mem *pRt;               /* Register to allocate runtime space */
5818   Mem *pMem;              /* Used to iterate through memory cells */
5819   Mem *pEnd;              /* Last memory cell in new array */
5820   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5821   SubProgram *pProgram;   /* Sub-program to execute */
5822   void *t;                /* Token identifying trigger */
5823 
5824   pProgram = pOp->p4.pProgram;
5825   pRt = &aMem[pOp->p3];
5826   assert( pProgram->nOp>0 );
5827 
5828   /* If the p5 flag is clear, then recursive invocation of triggers is
5829   ** disabled for backwards compatibility (p5 is set if this sub-program
5830   ** is really a trigger, not a foreign key action, and the flag set
5831   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5832   **
5833   ** It is recursive invocation of triggers, at the SQL level, that is
5834   ** disabled. In some cases a single trigger may generate more than one
5835   ** SubProgram (if the trigger may be executed with more than one different
5836   ** ON CONFLICT algorithm). SubProgram structures associated with a
5837   ** single trigger all have the same value for the SubProgram.token
5838   ** variable.  */
5839   if( pOp->p5 ){
5840     t = pProgram->token;
5841     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5842     if( pFrame ) break;
5843   }
5844 
5845   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5846     rc = SQLITE_ERROR;
5847     sqlite3VdbeError(p, "too many levels of trigger recursion");
5848     goto abort_due_to_error;
5849   }
5850 
5851   /* Register pRt is used to store the memory required to save the state
5852   ** of the current program, and the memory required at runtime to execute
5853   ** the trigger program. If this trigger has been fired before, then pRt
5854   ** is already allocated. Otherwise, it must be initialized.  */
5855   if( (pRt->flags&MEM_Frame)==0 ){
5856     /* SubProgram.nMem is set to the number of memory cells used by the
5857     ** program stored in SubProgram.aOp. As well as these, one memory
5858     ** cell is required for each cursor used by the program. Set local
5859     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5860     */
5861     nMem = pProgram->nMem + pProgram->nCsr;
5862     assert( nMem>0 );
5863     if( pProgram->nCsr==0 ) nMem++;
5864     nByte = ROUND8(sizeof(VdbeFrame))
5865               + nMem * sizeof(Mem)
5866               + pProgram->nCsr * sizeof(VdbeCursor*)
5867               + (pProgram->nOp + 7)/8;
5868     pFrame = sqlite3DbMallocZero(db, nByte);
5869     if( !pFrame ){
5870       goto no_mem;
5871     }
5872     sqlite3VdbeMemRelease(pRt);
5873     pRt->flags = MEM_Frame;
5874     pRt->u.pFrame = pFrame;
5875 
5876     pFrame->v = p;
5877     pFrame->nChildMem = nMem;
5878     pFrame->nChildCsr = pProgram->nCsr;
5879     pFrame->pc = (int)(pOp - aOp);
5880     pFrame->aMem = p->aMem;
5881     pFrame->nMem = p->nMem;
5882     pFrame->apCsr = p->apCsr;
5883     pFrame->nCursor = p->nCursor;
5884     pFrame->aOp = p->aOp;
5885     pFrame->nOp = p->nOp;
5886     pFrame->token = pProgram->token;
5887 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5888     pFrame->anExec = p->anExec;
5889 #endif
5890 
5891     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5892     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5893       pMem->flags = MEM_Undefined;
5894       pMem->db = db;
5895     }
5896   }else{
5897     pFrame = pRt->u.pFrame;
5898     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5899         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
5900     assert( pProgram->nCsr==pFrame->nChildCsr );
5901     assert( (int)(pOp - aOp)==pFrame->pc );
5902   }
5903 
5904   p->nFrame++;
5905   pFrame->pParent = p->pFrame;
5906   pFrame->lastRowid = db->lastRowid;
5907   pFrame->nChange = p->nChange;
5908   pFrame->nDbChange = p->db->nChange;
5909   assert( pFrame->pAuxData==0 );
5910   pFrame->pAuxData = p->pAuxData;
5911   p->pAuxData = 0;
5912   p->nChange = 0;
5913   p->pFrame = pFrame;
5914   p->aMem = aMem = VdbeFrameMem(pFrame);
5915   p->nMem = pFrame->nChildMem;
5916   p->nCursor = (u16)pFrame->nChildCsr;
5917   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
5918   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
5919   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
5920   p->aOp = aOp = pProgram->aOp;
5921   p->nOp = pProgram->nOp;
5922 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5923   p->anExec = 0;
5924 #endif
5925   pOp = &aOp[-1];
5926 
5927   break;
5928 }
5929 
5930 /* Opcode: Param P1 P2 * * *
5931 **
5932 ** This opcode is only ever present in sub-programs called via the
5933 ** OP_Program instruction. Copy a value currently stored in a memory
5934 ** cell of the calling (parent) frame to cell P2 in the current frames
5935 ** address space. This is used by trigger programs to access the new.*
5936 ** and old.* values.
5937 **
5938 ** The address of the cell in the parent frame is determined by adding
5939 ** the value of the P1 argument to the value of the P1 argument to the
5940 ** calling OP_Program instruction.
5941 */
5942 case OP_Param: {           /* out2 */
5943   VdbeFrame *pFrame;
5944   Mem *pIn;
5945   pOut = out2Prerelease(p, pOp);
5946   pFrame = p->pFrame;
5947   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5948   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5949   break;
5950 }
5951 
5952 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5953 
5954 #ifndef SQLITE_OMIT_FOREIGN_KEY
5955 /* Opcode: FkCounter P1 P2 * * *
5956 ** Synopsis: fkctr[P1]+=P2
5957 **
5958 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5959 ** If P1 is non-zero, the database constraint counter is incremented
5960 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5961 ** statement counter is incremented (immediate foreign key constraints).
5962 */
5963 case OP_FkCounter: {
5964   if( db->flags & SQLITE_DeferFKs ){
5965     db->nDeferredImmCons += pOp->p2;
5966   }else if( pOp->p1 ){
5967     db->nDeferredCons += pOp->p2;
5968   }else{
5969     p->nFkConstraint += pOp->p2;
5970   }
5971   break;
5972 }
5973 
5974 /* Opcode: FkIfZero P1 P2 * * *
5975 ** Synopsis: if fkctr[P1]==0 goto P2
5976 **
5977 ** This opcode tests if a foreign key constraint-counter is currently zero.
5978 ** If so, jump to instruction P2. Otherwise, fall through to the next
5979 ** instruction.
5980 **
5981 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5982 ** is zero (the one that counts deferred constraint violations). If P1 is
5983 ** zero, the jump is taken if the statement constraint-counter is zero
5984 ** (immediate foreign key constraint violations).
5985 */
5986 case OP_FkIfZero: {         /* jump */
5987   if( pOp->p1 ){
5988     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5989     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5990   }else{
5991     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5992     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5993   }
5994   break;
5995 }
5996 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5997 
5998 #ifndef SQLITE_OMIT_AUTOINCREMENT
5999 /* Opcode: MemMax P1 P2 * * *
6000 ** Synopsis: r[P1]=max(r[P1],r[P2])
6001 **
6002 ** P1 is a register in the root frame of this VM (the root frame is
6003 ** different from the current frame if this instruction is being executed
6004 ** within a sub-program). Set the value of register P1 to the maximum of
6005 ** its current value and the value in register P2.
6006 **
6007 ** This instruction throws an error if the memory cell is not initially
6008 ** an integer.
6009 */
6010 case OP_MemMax: {        /* in2 */
6011   VdbeFrame *pFrame;
6012   if( p->pFrame ){
6013     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6014     pIn1 = &pFrame->aMem[pOp->p1];
6015   }else{
6016     pIn1 = &aMem[pOp->p1];
6017   }
6018   assert( memIsValid(pIn1) );
6019   sqlite3VdbeMemIntegerify(pIn1);
6020   pIn2 = &aMem[pOp->p2];
6021   sqlite3VdbeMemIntegerify(pIn2);
6022   if( pIn1->u.i<pIn2->u.i){
6023     pIn1->u.i = pIn2->u.i;
6024   }
6025   break;
6026 }
6027 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6028 
6029 /* Opcode: IfPos P1 P2 P3 * *
6030 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6031 **
6032 ** Register P1 must contain an integer.
6033 ** If the value of register P1 is 1 or greater, subtract P3 from the
6034 ** value in P1 and jump to P2.
6035 **
6036 ** If the initial value of register P1 is less than 1, then the
6037 ** value is unchanged and control passes through to the next instruction.
6038 */
6039 case OP_IfPos: {        /* jump, in1 */
6040   pIn1 = &aMem[pOp->p1];
6041   assert( pIn1->flags&MEM_Int );
6042   VdbeBranchTaken( pIn1->u.i>0, 2);
6043   if( pIn1->u.i>0 ){
6044     pIn1->u.i -= pOp->p3;
6045     goto jump_to_p2;
6046   }
6047   break;
6048 }
6049 
6050 /* Opcode: OffsetLimit P1 P2 P3 * *
6051 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6052 **
6053 ** This opcode performs a commonly used computation associated with
6054 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6055 ** holds the offset counter.  The opcode computes the combined value
6056 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6057 ** value computed is the total number of rows that will need to be
6058 ** visited in order to complete the query.
6059 **
6060 ** If r[P3] is zero or negative, that means there is no OFFSET
6061 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6062 **
6063 ** if r[P1] is zero or negative, that means there is no LIMIT
6064 ** and r[P2] is set to -1.
6065 **
6066 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6067 */
6068 case OP_OffsetLimit: {    /* in1, out2, in3 */
6069   i64 x;
6070   pIn1 = &aMem[pOp->p1];
6071   pIn3 = &aMem[pOp->p3];
6072   pOut = out2Prerelease(p, pOp);
6073   assert( pIn1->flags & MEM_Int );
6074   assert( pIn3->flags & MEM_Int );
6075   x = pIn1->u.i;
6076   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6077     /* If the LIMIT is less than or equal to zero, loop forever.  This
6078     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6079     ** also loop forever.  This is undocumented.  In fact, one could argue
6080     ** that the loop should terminate.  But assuming 1 billion iterations
6081     ** per second (far exceeding the capabilities of any current hardware)
6082     ** it would take nearly 300 years to actually reach the limit.  So
6083     ** looping forever is a reasonable approximation. */
6084     pOut->u.i = -1;
6085   }else{
6086     pOut->u.i = x;
6087   }
6088   break;
6089 }
6090 
6091 /* Opcode: IfNotZero P1 P2 * * *
6092 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6093 **
6094 ** Register P1 must contain an integer.  If the content of register P1 is
6095 ** initially greater than zero, then decrement the value in register P1.
6096 ** If it is non-zero (negative or positive) and then also jump to P2.
6097 ** If register P1 is initially zero, leave it unchanged and fall through.
6098 */
6099 case OP_IfNotZero: {        /* jump, in1 */
6100   pIn1 = &aMem[pOp->p1];
6101   assert( pIn1->flags&MEM_Int );
6102   VdbeBranchTaken(pIn1->u.i<0, 2);
6103   if( pIn1->u.i ){
6104      if( pIn1->u.i>0 ) pIn1->u.i--;
6105      goto jump_to_p2;
6106   }
6107   break;
6108 }
6109 
6110 /* Opcode: DecrJumpZero P1 P2 * * *
6111 ** Synopsis: if (--r[P1])==0 goto P2
6112 **
6113 ** Register P1 must hold an integer.  Decrement the value in P1
6114 ** and jump to P2 if the new value is exactly zero.
6115 */
6116 case OP_DecrJumpZero: {      /* jump, in1 */
6117   pIn1 = &aMem[pOp->p1];
6118   assert( pIn1->flags&MEM_Int );
6119   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6120   VdbeBranchTaken(pIn1->u.i==0, 2);
6121   if( pIn1->u.i==0 ) goto jump_to_p2;
6122   break;
6123 }
6124 
6125 
6126 /* Opcode: AggStep0 * P2 P3 P4 P5
6127 ** Synopsis: accum=r[P3] step(r[P2@P5])
6128 **
6129 ** Execute the step function for an aggregate.  The
6130 ** function has P5 arguments.   P4 is a pointer to the FuncDef
6131 ** structure that specifies the function.  Register P3 is the
6132 ** accumulator.
6133 **
6134 ** The P5 arguments are taken from register P2 and its
6135 ** successors.
6136 */
6137 /* Opcode: AggStep * P2 P3 P4 P5
6138 ** Synopsis: accum=r[P3] step(r[P2@P5])
6139 **
6140 ** Execute the step function for an aggregate.  The
6141 ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
6142 ** object that is used to run the function.  Register P3 is
6143 ** as the accumulator.
6144 **
6145 ** The P5 arguments are taken from register P2 and its
6146 ** successors.
6147 **
6148 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6149 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6150 ** the opcode is changed.  In this way, the initialization of the
6151 ** sqlite3_context only happens once, instead of on each call to the
6152 ** step function.
6153 */
6154 case OP_AggStep0: {
6155   int n;
6156   sqlite3_context *pCtx;
6157 
6158   assert( pOp->p4type==P4_FUNCDEF );
6159   n = pOp->p5;
6160   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6161   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6162   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6163   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6164   if( pCtx==0 ) goto no_mem;
6165   pCtx->pMem = 0;
6166   pCtx->pFunc = pOp->p4.pFunc;
6167   pCtx->iOp = (int)(pOp - aOp);
6168   pCtx->pVdbe = p;
6169   pCtx->argc = n;
6170   pOp->p4type = P4_FUNCCTX;
6171   pOp->p4.pCtx = pCtx;
6172   pOp->opcode = OP_AggStep;
6173   /* Fall through into OP_AggStep */
6174 }
6175 case OP_AggStep: {
6176   int i;
6177   sqlite3_context *pCtx;
6178   Mem *pMem;
6179   Mem t;
6180 
6181   assert( pOp->p4type==P4_FUNCCTX );
6182   pCtx = pOp->p4.pCtx;
6183   pMem = &aMem[pOp->p3];
6184 
6185   /* If this function is inside of a trigger, the register array in aMem[]
6186   ** might change from one evaluation to the next.  The next block of code
6187   ** checks to see if the register array has changed, and if so it
6188   ** reinitializes the relavant parts of the sqlite3_context object */
6189   if( pCtx->pMem != pMem ){
6190     pCtx->pMem = pMem;
6191     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6192   }
6193 
6194 #ifdef SQLITE_DEBUG
6195   for(i=0; i<pCtx->argc; i++){
6196     assert( memIsValid(pCtx->argv[i]) );
6197     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6198   }
6199 #endif
6200 
6201   pMem->n++;
6202   sqlite3VdbeMemInit(&t, db, MEM_Null);
6203   pCtx->pOut = &t;
6204   pCtx->fErrorOrAux = 0;
6205   pCtx->skipFlag = 0;
6206   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6207   if( pCtx->fErrorOrAux ){
6208     if( pCtx->isError ){
6209       sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6210       rc = pCtx->isError;
6211     }
6212     sqlite3VdbeMemRelease(&t);
6213     if( rc ) goto abort_due_to_error;
6214   }else{
6215     assert( t.flags==MEM_Null );
6216   }
6217   if( pCtx->skipFlag ){
6218     assert( pOp[-1].opcode==OP_CollSeq );
6219     i = pOp[-1].p1;
6220     if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6221   }
6222   break;
6223 }
6224 
6225 /* Opcode: AggFinal P1 P2 * P4 *
6226 ** Synopsis: accum=r[P1] N=P2
6227 **
6228 ** Execute the finalizer function for an aggregate.  P1 is
6229 ** the memory location that is the accumulator for the aggregate.
6230 **
6231 ** P2 is the number of arguments that the step function takes and
6232 ** P4 is a pointer to the FuncDef for this function.  The P2
6233 ** argument is not used by this opcode.  It is only there to disambiguate
6234 ** functions that can take varying numbers of arguments.  The
6235 ** P4 argument is only needed for the degenerate case where
6236 ** the step function was not previously called.
6237 */
6238 case OP_AggFinal: {
6239   Mem *pMem;
6240   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6241   pMem = &aMem[pOp->p1];
6242   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6243   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6244   if( rc ){
6245     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6246     goto abort_due_to_error;
6247   }
6248   sqlite3VdbeChangeEncoding(pMem, encoding);
6249   UPDATE_MAX_BLOBSIZE(pMem);
6250   if( sqlite3VdbeMemTooBig(pMem) ){
6251     goto too_big;
6252   }
6253   break;
6254 }
6255 
6256 #ifndef SQLITE_OMIT_WAL
6257 /* Opcode: Checkpoint P1 P2 P3 * *
6258 **
6259 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6260 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6261 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6262 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6263 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6264 ** in the WAL that have been checkpointed after the checkpoint
6265 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6266 ** mem[P3+2] are initialized to -1.
6267 */
6268 case OP_Checkpoint: {
6269   int i;                          /* Loop counter */
6270   int aRes[3];                    /* Results */
6271   Mem *pMem;                      /* Write results here */
6272 
6273   assert( p->readOnly==0 );
6274   aRes[0] = 0;
6275   aRes[1] = aRes[2] = -1;
6276   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6277        || pOp->p2==SQLITE_CHECKPOINT_FULL
6278        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6279        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6280   );
6281   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6282   if( rc ){
6283     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6284     rc = SQLITE_OK;
6285     aRes[0] = 1;
6286   }
6287   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6288     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6289   }
6290   break;
6291 };
6292 #endif
6293 
6294 #ifndef SQLITE_OMIT_PRAGMA
6295 /* Opcode: JournalMode P1 P2 P3 * *
6296 **
6297 ** Change the journal mode of database P1 to P3. P3 must be one of the
6298 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6299 ** modes (delete, truncate, persist, off and memory), this is a simple
6300 ** operation. No IO is required.
6301 **
6302 ** If changing into or out of WAL mode the procedure is more complicated.
6303 **
6304 ** Write a string containing the final journal-mode to register P2.
6305 */
6306 case OP_JournalMode: {    /* out2 */
6307   Btree *pBt;                     /* Btree to change journal mode of */
6308   Pager *pPager;                  /* Pager associated with pBt */
6309   int eNew;                       /* New journal mode */
6310   int eOld;                       /* The old journal mode */
6311 #ifndef SQLITE_OMIT_WAL
6312   const char *zFilename;          /* Name of database file for pPager */
6313 #endif
6314 
6315   pOut = out2Prerelease(p, pOp);
6316   eNew = pOp->p3;
6317   assert( eNew==PAGER_JOURNALMODE_DELETE
6318        || eNew==PAGER_JOURNALMODE_TRUNCATE
6319        || eNew==PAGER_JOURNALMODE_PERSIST
6320        || eNew==PAGER_JOURNALMODE_OFF
6321        || eNew==PAGER_JOURNALMODE_MEMORY
6322        || eNew==PAGER_JOURNALMODE_WAL
6323        || eNew==PAGER_JOURNALMODE_QUERY
6324   );
6325   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6326   assert( p->readOnly==0 );
6327 
6328   pBt = db->aDb[pOp->p1].pBt;
6329   pPager = sqlite3BtreePager(pBt);
6330   eOld = sqlite3PagerGetJournalMode(pPager);
6331   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6332   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6333 
6334 #ifndef SQLITE_OMIT_WAL
6335   zFilename = sqlite3PagerFilename(pPager, 1);
6336 
6337   /* Do not allow a transition to journal_mode=WAL for a database
6338   ** in temporary storage or if the VFS does not support shared memory
6339   */
6340   if( eNew==PAGER_JOURNALMODE_WAL
6341    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6342        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6343   ){
6344     eNew = eOld;
6345   }
6346 
6347   if( (eNew!=eOld)
6348    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6349   ){
6350     if( !db->autoCommit || db->nVdbeRead>1 ){
6351       rc = SQLITE_ERROR;
6352       sqlite3VdbeError(p,
6353           "cannot change %s wal mode from within a transaction",
6354           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6355       );
6356       goto abort_due_to_error;
6357     }else{
6358 
6359       if( eOld==PAGER_JOURNALMODE_WAL ){
6360         /* If leaving WAL mode, close the log file. If successful, the call
6361         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6362         ** file. An EXCLUSIVE lock may still be held on the database file
6363         ** after a successful return.
6364         */
6365         rc = sqlite3PagerCloseWal(pPager, db);
6366         if( rc==SQLITE_OK ){
6367           sqlite3PagerSetJournalMode(pPager, eNew);
6368         }
6369       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6370         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6371         ** as an intermediate */
6372         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6373       }
6374 
6375       /* Open a transaction on the database file. Regardless of the journal
6376       ** mode, this transaction always uses a rollback journal.
6377       */
6378       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6379       if( rc==SQLITE_OK ){
6380         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6381       }
6382     }
6383   }
6384 #endif /* ifndef SQLITE_OMIT_WAL */
6385 
6386   if( rc ) eNew = eOld;
6387   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6388 
6389   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6390   pOut->z = (char *)sqlite3JournalModename(eNew);
6391   pOut->n = sqlite3Strlen30(pOut->z);
6392   pOut->enc = SQLITE_UTF8;
6393   sqlite3VdbeChangeEncoding(pOut, encoding);
6394   if( rc ) goto abort_due_to_error;
6395   break;
6396 };
6397 #endif /* SQLITE_OMIT_PRAGMA */
6398 
6399 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6400 /* Opcode: Vacuum P1 * * * *
6401 **
6402 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6403 ** for an attached database.  The "temp" database may not be vacuumed.
6404 */
6405 case OP_Vacuum: {
6406   assert( p->readOnly==0 );
6407   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6408   if( rc ) goto abort_due_to_error;
6409   break;
6410 }
6411 #endif
6412 
6413 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6414 /* Opcode: IncrVacuum P1 P2 * * *
6415 **
6416 ** Perform a single step of the incremental vacuum procedure on
6417 ** the P1 database. If the vacuum has finished, jump to instruction
6418 ** P2. Otherwise, fall through to the next instruction.
6419 */
6420 case OP_IncrVacuum: {        /* jump */
6421   Btree *pBt;
6422 
6423   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6424   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6425   assert( p->readOnly==0 );
6426   pBt = db->aDb[pOp->p1].pBt;
6427   rc = sqlite3BtreeIncrVacuum(pBt);
6428   VdbeBranchTaken(rc==SQLITE_DONE,2);
6429   if( rc ){
6430     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6431     rc = SQLITE_OK;
6432     goto jump_to_p2;
6433   }
6434   break;
6435 }
6436 #endif
6437 
6438 /* Opcode: Expire P1 * * * *
6439 **
6440 ** Cause precompiled statements to expire.  When an expired statement
6441 ** is executed using sqlite3_step() it will either automatically
6442 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6443 ** or it will fail with SQLITE_SCHEMA.
6444 **
6445 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6446 ** then only the currently executing statement is expired.
6447 */
6448 case OP_Expire: {
6449   if( !pOp->p1 ){
6450     sqlite3ExpirePreparedStatements(db);
6451   }else{
6452     p->expired = 1;
6453   }
6454   break;
6455 }
6456 
6457 #ifndef SQLITE_OMIT_SHARED_CACHE
6458 /* Opcode: TableLock P1 P2 P3 P4 *
6459 ** Synopsis: iDb=P1 root=P2 write=P3
6460 **
6461 ** Obtain a lock on a particular table. This instruction is only used when
6462 ** the shared-cache feature is enabled.
6463 **
6464 ** P1 is the index of the database in sqlite3.aDb[] of the database
6465 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6466 ** a write lock if P3==1.
6467 **
6468 ** P2 contains the root-page of the table to lock.
6469 **
6470 ** P4 contains a pointer to the name of the table being locked. This is only
6471 ** used to generate an error message if the lock cannot be obtained.
6472 */
6473 case OP_TableLock: {
6474   u8 isWriteLock = (u8)pOp->p3;
6475   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
6476     int p1 = pOp->p1;
6477     assert( p1>=0 && p1<db->nDb );
6478     assert( DbMaskTest(p->btreeMask, p1) );
6479     assert( isWriteLock==0 || isWriteLock==1 );
6480     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6481     if( rc ){
6482       if( (rc&0xFF)==SQLITE_LOCKED ){
6483         const char *z = pOp->p4.z;
6484         sqlite3VdbeError(p, "database table is locked: %s", z);
6485       }
6486       goto abort_due_to_error;
6487     }
6488   }
6489   break;
6490 }
6491 #endif /* SQLITE_OMIT_SHARED_CACHE */
6492 
6493 #ifndef SQLITE_OMIT_VIRTUALTABLE
6494 /* Opcode: VBegin * * * P4 *
6495 **
6496 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6497 ** xBegin method for that table.
6498 **
6499 ** Also, whether or not P4 is set, check that this is not being called from
6500 ** within a callback to a virtual table xSync() method. If it is, the error
6501 ** code will be set to SQLITE_LOCKED.
6502 */
6503 case OP_VBegin: {
6504   VTable *pVTab;
6505   pVTab = pOp->p4.pVtab;
6506   rc = sqlite3VtabBegin(db, pVTab);
6507   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6508   if( rc ) goto abort_due_to_error;
6509   break;
6510 }
6511 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6512 
6513 #ifndef SQLITE_OMIT_VIRTUALTABLE
6514 /* Opcode: VCreate P1 P2 * * *
6515 **
6516 ** P2 is a register that holds the name of a virtual table in database
6517 ** P1. Call the xCreate method for that table.
6518 */
6519 case OP_VCreate: {
6520   Mem sMem;          /* For storing the record being decoded */
6521   const char *zTab;  /* Name of the virtual table */
6522 
6523   memset(&sMem, 0, sizeof(sMem));
6524   sMem.db = db;
6525   /* Because P2 is always a static string, it is impossible for the
6526   ** sqlite3VdbeMemCopy() to fail */
6527   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6528   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6529   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6530   assert( rc==SQLITE_OK );
6531   zTab = (const char*)sqlite3_value_text(&sMem);
6532   assert( zTab || db->mallocFailed );
6533   if( zTab ){
6534     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6535   }
6536   sqlite3VdbeMemRelease(&sMem);
6537   if( rc ) goto abort_due_to_error;
6538   break;
6539 }
6540 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6541 
6542 #ifndef SQLITE_OMIT_VIRTUALTABLE
6543 /* Opcode: VDestroy P1 * * P4 *
6544 **
6545 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6546 ** of that table.
6547 */
6548 case OP_VDestroy: {
6549   db->nVDestroy++;
6550   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6551   db->nVDestroy--;
6552   if( rc ) goto abort_due_to_error;
6553   break;
6554 }
6555 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6556 
6557 #ifndef SQLITE_OMIT_VIRTUALTABLE
6558 /* Opcode: VOpen P1 * * P4 *
6559 **
6560 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6561 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6562 ** table and stores that cursor in P1.
6563 */
6564 case OP_VOpen: {
6565   VdbeCursor *pCur;
6566   sqlite3_vtab_cursor *pVCur;
6567   sqlite3_vtab *pVtab;
6568   const sqlite3_module *pModule;
6569 
6570   assert( p->bIsReader );
6571   pCur = 0;
6572   pVCur = 0;
6573   pVtab = pOp->p4.pVtab->pVtab;
6574   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6575     rc = SQLITE_LOCKED;
6576     goto abort_due_to_error;
6577   }
6578   pModule = pVtab->pModule;
6579   rc = pModule->xOpen(pVtab, &pVCur);
6580   sqlite3VtabImportErrmsg(p, pVtab);
6581   if( rc ) goto abort_due_to_error;
6582 
6583   /* Initialize sqlite3_vtab_cursor base class */
6584   pVCur->pVtab = pVtab;
6585 
6586   /* Initialize vdbe cursor object */
6587   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6588   if( pCur ){
6589     pCur->uc.pVCur = pVCur;
6590     pVtab->nRef++;
6591   }else{
6592     assert( db->mallocFailed );
6593     pModule->xClose(pVCur);
6594     goto no_mem;
6595   }
6596   break;
6597 }
6598 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6599 
6600 #ifndef SQLITE_OMIT_VIRTUALTABLE
6601 /* Opcode: VFilter P1 P2 P3 P4 *
6602 ** Synopsis: iplan=r[P3] zplan='P4'
6603 **
6604 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6605 ** the filtered result set is empty.
6606 **
6607 ** P4 is either NULL or a string that was generated by the xBestIndex
6608 ** method of the module.  The interpretation of the P4 string is left
6609 ** to the module implementation.
6610 **
6611 ** This opcode invokes the xFilter method on the virtual table specified
6612 ** by P1.  The integer query plan parameter to xFilter is stored in register
6613 ** P3. Register P3+1 stores the argc parameter to be passed to the
6614 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6615 ** additional parameters which are passed to
6616 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6617 **
6618 ** A jump is made to P2 if the result set after filtering would be empty.
6619 */
6620 case OP_VFilter: {   /* jump */
6621   int nArg;
6622   int iQuery;
6623   const sqlite3_module *pModule;
6624   Mem *pQuery;
6625   Mem *pArgc;
6626   sqlite3_vtab_cursor *pVCur;
6627   sqlite3_vtab *pVtab;
6628   VdbeCursor *pCur;
6629   int res;
6630   int i;
6631   Mem **apArg;
6632 
6633   pQuery = &aMem[pOp->p3];
6634   pArgc = &pQuery[1];
6635   pCur = p->apCsr[pOp->p1];
6636   assert( memIsValid(pQuery) );
6637   REGISTER_TRACE(pOp->p3, pQuery);
6638   assert( pCur->eCurType==CURTYPE_VTAB );
6639   pVCur = pCur->uc.pVCur;
6640   pVtab = pVCur->pVtab;
6641   pModule = pVtab->pModule;
6642 
6643   /* Grab the index number and argc parameters */
6644   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6645   nArg = (int)pArgc->u.i;
6646   iQuery = (int)pQuery->u.i;
6647 
6648   /* Invoke the xFilter method */
6649   res = 0;
6650   apArg = p->apArg;
6651   for(i = 0; i<nArg; i++){
6652     apArg[i] = &pArgc[i+1];
6653   }
6654   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6655   sqlite3VtabImportErrmsg(p, pVtab);
6656   if( rc ) goto abort_due_to_error;
6657   res = pModule->xEof(pVCur);
6658   pCur->nullRow = 0;
6659   VdbeBranchTaken(res!=0,2);
6660   if( res ) goto jump_to_p2;
6661   break;
6662 }
6663 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6664 
6665 #ifndef SQLITE_OMIT_VIRTUALTABLE
6666 /* Opcode: VColumn P1 P2 P3 * *
6667 ** Synopsis: r[P3]=vcolumn(P2)
6668 **
6669 ** Store the value of the P2-th column of
6670 ** the row of the virtual-table that the
6671 ** P1 cursor is pointing to into register P3.
6672 */
6673 case OP_VColumn: {
6674   sqlite3_vtab *pVtab;
6675   const sqlite3_module *pModule;
6676   Mem *pDest;
6677   sqlite3_context sContext;
6678 
6679   VdbeCursor *pCur = p->apCsr[pOp->p1];
6680   assert( pCur->eCurType==CURTYPE_VTAB );
6681   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6682   pDest = &aMem[pOp->p3];
6683   memAboutToChange(p, pDest);
6684   if( pCur->nullRow ){
6685     sqlite3VdbeMemSetNull(pDest);
6686     break;
6687   }
6688   pVtab = pCur->uc.pVCur->pVtab;
6689   pModule = pVtab->pModule;
6690   assert( pModule->xColumn );
6691   memset(&sContext, 0, sizeof(sContext));
6692   sContext.pOut = pDest;
6693   MemSetTypeFlag(pDest, MEM_Null);
6694   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6695   sqlite3VtabImportErrmsg(p, pVtab);
6696   if( sContext.isError ){
6697     rc = sContext.isError;
6698   }
6699   sqlite3VdbeChangeEncoding(pDest, encoding);
6700   REGISTER_TRACE(pOp->p3, pDest);
6701   UPDATE_MAX_BLOBSIZE(pDest);
6702 
6703   if( sqlite3VdbeMemTooBig(pDest) ){
6704     goto too_big;
6705   }
6706   if( rc ) goto abort_due_to_error;
6707   break;
6708 }
6709 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6710 
6711 #ifndef SQLITE_OMIT_VIRTUALTABLE
6712 /* Opcode: VNext P1 P2 * * *
6713 **
6714 ** Advance virtual table P1 to the next row in its result set and
6715 ** jump to instruction P2.  Or, if the virtual table has reached
6716 ** the end of its result set, then fall through to the next instruction.
6717 */
6718 case OP_VNext: {   /* jump */
6719   sqlite3_vtab *pVtab;
6720   const sqlite3_module *pModule;
6721   int res;
6722   VdbeCursor *pCur;
6723 
6724   res = 0;
6725   pCur = p->apCsr[pOp->p1];
6726   assert( pCur->eCurType==CURTYPE_VTAB );
6727   if( pCur->nullRow ){
6728     break;
6729   }
6730   pVtab = pCur->uc.pVCur->pVtab;
6731   pModule = pVtab->pModule;
6732   assert( pModule->xNext );
6733 
6734   /* Invoke the xNext() method of the module. There is no way for the
6735   ** underlying implementation to return an error if one occurs during
6736   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6737   ** data is available) and the error code returned when xColumn or
6738   ** some other method is next invoked on the save virtual table cursor.
6739   */
6740   rc = pModule->xNext(pCur->uc.pVCur);
6741   sqlite3VtabImportErrmsg(p, pVtab);
6742   if( rc ) goto abort_due_to_error;
6743   res = pModule->xEof(pCur->uc.pVCur);
6744   VdbeBranchTaken(!res,2);
6745   if( !res ){
6746     /* If there is data, jump to P2 */
6747     goto jump_to_p2_and_check_for_interrupt;
6748   }
6749   goto check_for_interrupt;
6750 }
6751 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6752 
6753 #ifndef SQLITE_OMIT_VIRTUALTABLE
6754 /* Opcode: VRename P1 * * P4 *
6755 **
6756 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6757 ** This opcode invokes the corresponding xRename method. The value
6758 ** in register P1 is passed as the zName argument to the xRename method.
6759 */
6760 case OP_VRename: {
6761   sqlite3_vtab *pVtab;
6762   Mem *pName;
6763 
6764   pVtab = pOp->p4.pVtab->pVtab;
6765   pName = &aMem[pOp->p1];
6766   assert( pVtab->pModule->xRename );
6767   assert( memIsValid(pName) );
6768   assert( p->readOnly==0 );
6769   REGISTER_TRACE(pOp->p1, pName);
6770   assert( pName->flags & MEM_Str );
6771   testcase( pName->enc==SQLITE_UTF8 );
6772   testcase( pName->enc==SQLITE_UTF16BE );
6773   testcase( pName->enc==SQLITE_UTF16LE );
6774   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6775   if( rc ) goto abort_due_to_error;
6776   rc = pVtab->pModule->xRename(pVtab, pName->z);
6777   sqlite3VtabImportErrmsg(p, pVtab);
6778   p->expired = 0;
6779   if( rc ) goto abort_due_to_error;
6780   break;
6781 }
6782 #endif
6783 
6784 #ifndef SQLITE_OMIT_VIRTUALTABLE
6785 /* Opcode: VUpdate P1 P2 P3 P4 P5
6786 ** Synopsis: data=r[P3@P2]
6787 **
6788 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6789 ** This opcode invokes the corresponding xUpdate method. P2 values
6790 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6791 ** invocation. The value in register (P3+P2-1) corresponds to the
6792 ** p2th element of the argv array passed to xUpdate.
6793 **
6794 ** The xUpdate method will do a DELETE or an INSERT or both.
6795 ** The argv[0] element (which corresponds to memory cell P3)
6796 ** is the rowid of a row to delete.  If argv[0] is NULL then no
6797 ** deletion occurs.  The argv[1] element is the rowid of the new
6798 ** row.  This can be NULL to have the virtual table select the new
6799 ** rowid for itself.  The subsequent elements in the array are
6800 ** the values of columns in the new row.
6801 **
6802 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
6803 ** a row to delete.
6804 **
6805 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6806 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6807 ** is set to the value of the rowid for the row just inserted.
6808 **
6809 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6810 ** apply in the case of a constraint failure on an insert or update.
6811 */
6812 case OP_VUpdate: {
6813   sqlite3_vtab *pVtab;
6814   const sqlite3_module *pModule;
6815   int nArg;
6816   int i;
6817   sqlite_int64 rowid;
6818   Mem **apArg;
6819   Mem *pX;
6820 
6821   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
6822        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6823   );
6824   assert( p->readOnly==0 );
6825   pVtab = pOp->p4.pVtab->pVtab;
6826   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6827     rc = SQLITE_LOCKED;
6828     goto abort_due_to_error;
6829   }
6830   pModule = pVtab->pModule;
6831   nArg = pOp->p2;
6832   assert( pOp->p4type==P4_VTAB );
6833   if( ALWAYS(pModule->xUpdate) ){
6834     u8 vtabOnConflict = db->vtabOnConflict;
6835     apArg = p->apArg;
6836     pX = &aMem[pOp->p3];
6837     for(i=0; i<nArg; i++){
6838       assert( memIsValid(pX) );
6839       memAboutToChange(p, pX);
6840       apArg[i] = pX;
6841       pX++;
6842     }
6843     db->vtabOnConflict = pOp->p5;
6844     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6845     db->vtabOnConflict = vtabOnConflict;
6846     sqlite3VtabImportErrmsg(p, pVtab);
6847     if( rc==SQLITE_OK && pOp->p1 ){
6848       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6849       db->lastRowid = rowid;
6850     }
6851     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6852       if( pOp->p5==OE_Ignore ){
6853         rc = SQLITE_OK;
6854       }else{
6855         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6856       }
6857     }else{
6858       p->nChange++;
6859     }
6860     if( rc ) goto abort_due_to_error;
6861   }
6862   break;
6863 }
6864 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6865 
6866 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6867 /* Opcode: Pagecount P1 P2 * * *
6868 **
6869 ** Write the current number of pages in database P1 to memory cell P2.
6870 */
6871 case OP_Pagecount: {            /* out2 */
6872   pOut = out2Prerelease(p, pOp);
6873   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6874   break;
6875 }
6876 #endif
6877 
6878 
6879 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
6880 /* Opcode: MaxPgcnt P1 P2 P3 * *
6881 **
6882 ** Try to set the maximum page count for database P1 to the value in P3.
6883 ** Do not let the maximum page count fall below the current page count and
6884 ** do not change the maximum page count value if P3==0.
6885 **
6886 ** Store the maximum page count after the change in register P2.
6887 */
6888 case OP_MaxPgcnt: {            /* out2 */
6889   unsigned int newMax;
6890   Btree *pBt;
6891 
6892   pOut = out2Prerelease(p, pOp);
6893   pBt = db->aDb[pOp->p1].pBt;
6894   newMax = 0;
6895   if( pOp->p3 ){
6896     newMax = sqlite3BtreeLastPage(pBt);
6897     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6898   }
6899   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6900   break;
6901 }
6902 #endif
6903 
6904 /* Opcode: Function0 P1 P2 P3 P4 P5
6905 ** Synopsis: r[P3]=func(r[P2@P5])
6906 **
6907 ** Invoke a user function (P4 is a pointer to a FuncDef object that
6908 ** defines the function) with P5 arguments taken from register P2 and
6909 ** successors.  The result of the function is stored in register P3.
6910 ** Register P3 must not be one of the function inputs.
6911 **
6912 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
6913 ** function was determined to be constant at compile time. If the first
6914 ** argument was constant then bit 0 of P1 is set. This is used to determine
6915 ** whether meta data associated with a user function argument using the
6916 ** sqlite3_set_auxdata() API may be safely retained until the next
6917 ** invocation of this opcode.
6918 **
6919 ** See also: Function, AggStep, AggFinal
6920 */
6921 /* Opcode: Function P1 P2 P3 P4 P5
6922 ** Synopsis: r[P3]=func(r[P2@P5])
6923 **
6924 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
6925 ** contains a pointer to the function to be run) with P5 arguments taken
6926 ** from register P2 and successors.  The result of the function is stored
6927 ** in register P3.  Register P3 must not be one of the function inputs.
6928 **
6929 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
6930 ** function was determined to be constant at compile time. If the first
6931 ** argument was constant then bit 0 of P1 is set. This is used to determine
6932 ** whether meta data associated with a user function argument using the
6933 ** sqlite3_set_auxdata() API may be safely retained until the next
6934 ** invocation of this opcode.
6935 **
6936 ** SQL functions are initially coded as OP_Function0 with P4 pointing
6937 ** to a FuncDef object.  But on first evaluation, the P4 operand is
6938 ** automatically converted into an sqlite3_context object and the operation
6939 ** changed to this OP_Function opcode.  In this way, the initialization of
6940 ** the sqlite3_context object occurs only once, rather than once for each
6941 ** evaluation of the function.
6942 **
6943 ** See also: Function0, AggStep, AggFinal
6944 */
6945 case OP_PureFunc0:
6946 case OP_Function0: {
6947   int n;
6948   sqlite3_context *pCtx;
6949 
6950   assert( pOp->p4type==P4_FUNCDEF );
6951   n = pOp->p5;
6952   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6953   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6954   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6955   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6956   if( pCtx==0 ) goto no_mem;
6957   pCtx->pOut = 0;
6958   pCtx->pFunc = pOp->p4.pFunc;
6959   pCtx->iOp = (int)(pOp - aOp);
6960   pCtx->pVdbe = p;
6961   pCtx->argc = n;
6962   pOp->p4type = P4_FUNCCTX;
6963   pOp->p4.pCtx = pCtx;
6964   assert( OP_PureFunc == OP_PureFunc0+2 );
6965   assert( OP_Function == OP_Function0+2 );
6966   pOp->opcode += 2;
6967   /* Fall through into OP_Function */
6968 }
6969 case OP_PureFunc:
6970 case OP_Function: {
6971   int i;
6972   sqlite3_context *pCtx;
6973 
6974   assert( pOp->p4type==P4_FUNCCTX );
6975   pCtx = pOp->p4.pCtx;
6976 
6977   /* If this function is inside of a trigger, the register array in aMem[]
6978   ** might change from one evaluation to the next.  The next block of code
6979   ** checks to see if the register array has changed, and if so it
6980   ** reinitializes the relavant parts of the sqlite3_context object */
6981   pOut = &aMem[pOp->p3];
6982   if( pCtx->pOut != pOut ){
6983     pCtx->pOut = pOut;
6984     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6985   }
6986 
6987   memAboutToChange(p, pOut);
6988 #ifdef SQLITE_DEBUG
6989   for(i=0; i<pCtx->argc; i++){
6990     assert( memIsValid(pCtx->argv[i]) );
6991     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6992   }
6993 #endif
6994   MemSetTypeFlag(pOut, MEM_Null);
6995   pCtx->fErrorOrAux = 0;
6996   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
6997 
6998   /* If the function returned an error, throw an exception */
6999   if( pCtx->fErrorOrAux ){
7000     if( pCtx->isError ){
7001       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7002       rc = pCtx->isError;
7003     }
7004     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7005     if( rc ) goto abort_due_to_error;
7006   }
7007 
7008   /* Copy the result of the function into register P3 */
7009   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7010     sqlite3VdbeChangeEncoding(pOut, encoding);
7011     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7012   }
7013 
7014   REGISTER_TRACE(pOp->p3, pOut);
7015   UPDATE_MAX_BLOBSIZE(pOut);
7016   break;
7017 }
7018 
7019 
7020 /* Opcode: Init P1 P2 P3 P4 *
7021 ** Synopsis: Start at P2
7022 **
7023 ** Programs contain a single instance of this opcode as the very first
7024 ** opcode.
7025 **
7026 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7027 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7028 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7029 **
7030 ** If P2 is not zero, jump to instruction P2.
7031 **
7032 ** Increment the value of P1 so that OP_Once opcodes will jump the
7033 ** first time they are evaluated for this run.
7034 **
7035 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7036 ** error is encountered.
7037 */
7038 case OP_Init: {          /* jump */
7039   char *zTrace;
7040   int i;
7041 
7042   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7043   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7044   **
7045   ** This assert() provides evidence for:
7046   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7047   ** would have been returned by the legacy sqlite3_trace() interface by
7048   ** using the X argument when X begins with "--" and invoking
7049   ** sqlite3_expanded_sql(P) otherwise.
7050   */
7051   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7052   assert( pOp==p->aOp );  /* Always instruction 0 */
7053 
7054 #ifndef SQLITE_OMIT_TRACE
7055   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7056    && !p->doingRerun
7057    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7058   ){
7059 #ifndef SQLITE_OMIT_DEPRECATED
7060     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7061       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7062       char *z = sqlite3VdbeExpandSql(p, zTrace);
7063       x(db->pTraceArg, z);
7064       sqlite3_free(z);
7065     }else
7066 #endif
7067     if( db->nVdbeExec>1 ){
7068       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7069       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7070       sqlite3DbFree(db, z);
7071     }else{
7072       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7073     }
7074   }
7075 #ifdef SQLITE_USE_FCNTL_TRACE
7076   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7077   if( zTrace ){
7078     int j;
7079     for(j=0; j<db->nDb; j++){
7080       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7081       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7082     }
7083   }
7084 #endif /* SQLITE_USE_FCNTL_TRACE */
7085 #ifdef SQLITE_DEBUG
7086   if( (db->flags & SQLITE_SqlTrace)!=0
7087    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7088   ){
7089     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7090   }
7091 #endif /* SQLITE_DEBUG */
7092 #endif /* SQLITE_OMIT_TRACE */
7093   assert( pOp->p2>0 );
7094   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7095     for(i=1; i<p->nOp; i++){
7096       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7097     }
7098     pOp->p1 = 0;
7099   }
7100   pOp->p1++;
7101   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7102   goto jump_to_p2;
7103 }
7104 
7105 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7106 /* Opcode: CursorHint P1 * * P4 *
7107 **
7108 ** Provide a hint to cursor P1 that it only needs to return rows that
7109 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7110 ** to values currently held in registers.  TK_COLUMN terms in the P4
7111 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7112 */
7113 case OP_CursorHint: {
7114   VdbeCursor *pC;
7115 
7116   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7117   assert( pOp->p4type==P4_EXPR );
7118   pC = p->apCsr[pOp->p1];
7119   if( pC ){
7120     assert( pC->eCurType==CURTYPE_BTREE );
7121     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7122                            pOp->p4.pExpr, aMem);
7123   }
7124   break;
7125 }
7126 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7127 
7128 /* Opcode: Noop * * * * *
7129 **
7130 ** Do nothing.  This instruction is often useful as a jump
7131 ** destination.
7132 */
7133 /*
7134 ** The magic Explain opcode are only inserted when explain==2 (which
7135 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7136 ** This opcode records information from the optimizer.  It is the
7137 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7138 */
7139 default: {          /* This is really OP_Noop and OP_Explain */
7140   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7141   break;
7142 }
7143 
7144 /*****************************************************************************
7145 ** The cases of the switch statement above this line should all be indented
7146 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7147 ** readability.  From this point on down, the normal indentation rules are
7148 ** restored.
7149 *****************************************************************************/
7150     }
7151 
7152 #ifdef VDBE_PROFILE
7153     {
7154       u64 endTime = sqlite3Hwtime();
7155       if( endTime>start ) pOrigOp->cycles += endTime - start;
7156       pOrigOp->cnt++;
7157     }
7158 #endif
7159 
7160     /* The following code adds nothing to the actual functionality
7161     ** of the program.  It is only here for testing and debugging.
7162     ** On the other hand, it does burn CPU cycles every time through
7163     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7164     */
7165 #ifndef NDEBUG
7166     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7167 
7168 #ifdef SQLITE_DEBUG
7169     if( db->flags & SQLITE_VdbeTrace ){
7170       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7171       if( rc!=0 ) printf("rc=%d\n",rc);
7172       if( opProperty & (OPFLG_OUT2) ){
7173         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7174       }
7175       if( opProperty & OPFLG_OUT3 ){
7176         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7177       }
7178     }
7179 #endif  /* SQLITE_DEBUG */
7180 #endif  /* NDEBUG */
7181   }  /* The end of the for(;;) loop the loops through opcodes */
7182 
7183   /* If we reach this point, it means that execution is finished with
7184   ** an error of some kind.
7185   */
7186 abort_due_to_error:
7187   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7188   assert( rc );
7189   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7190     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7191   }
7192   p->rc = rc;
7193   sqlite3SystemError(db, rc);
7194   testcase( sqlite3GlobalConfig.xLog!=0 );
7195   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7196                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7197   sqlite3VdbeHalt(p);
7198   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7199   rc = SQLITE_ERROR;
7200   if( resetSchemaOnFault>0 ){
7201     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7202   }
7203 
7204   /* This is the only way out of this procedure.  We have to
7205   ** release the mutexes on btrees that were acquired at the
7206   ** top. */
7207 vdbe_return:
7208   testcase( nVmStep>0 );
7209   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7210   sqlite3VdbeLeave(p);
7211   assert( rc!=SQLITE_OK || nExtraDelete==0
7212        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7213   );
7214   return rc;
7215 
7216   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7217   ** is encountered.
7218   */
7219 too_big:
7220   sqlite3VdbeError(p, "string or blob too big");
7221   rc = SQLITE_TOOBIG;
7222   goto abort_due_to_error;
7223 
7224   /* Jump to here if a malloc() fails.
7225   */
7226 no_mem:
7227   sqlite3OomFault(db);
7228   sqlite3VdbeError(p, "out of memory");
7229   rc = SQLITE_NOMEM_BKPT;
7230   goto abort_due_to_error;
7231 
7232   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7233   ** flag.
7234   */
7235 abort_due_to_interrupt:
7236   assert( db->u1.isInterrupted );
7237   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7238   p->rc = rc;
7239   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7240   goto abort_due_to_error;
7241 }
7242