xref: /sqlite-3.40.0/src/vdbe.c (revision 9dbf96bd)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly.  This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49 
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only.  It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61 
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed.  The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times.   This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72 
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly.   This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84     sqlite3_max_blobsize = p->n;
85   }
86 }
87 #endif
88 
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98 
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109 
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119 
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on.  The breakpoint fires right after
123 ** each opcode is printed.  Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint.  GDB example:
125 **
126 **         break test_trace_breakpoint if pc=22
127 **
128 ** Other useful labels for breakpoints include:
129 **   test_addop_breakpoint(pc,pOp)
130 **   sqlite3CorruptError(lineno)
131 **   sqlite3MisuseError(lineno)
132 **   sqlite3CantopenError(lineno)
133 */
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135   static int n = 0;
136   n++;
137 }
138 #endif
139 
140 /*
141 ** Invoke the VDBE coverage callback, if that callback is defined.  This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
144 **
145 ** M is the type of branch.  I is the direction taken for this instance of
146 ** the branch.
147 **
148 **   M: 2 - two-way branch (I=0: fall-thru   1: jump                )
149 **      3 - two-way + NULL (I=0: fall-thru   1: jump      2: NULL   )
150 **      4 - OP_Jump        (I=0: jump p1     1: jump p2   2: jump p3)
151 **
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken).  If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL.  For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run.  I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
159 **
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits.  The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags.  The lower three bits of the flags indicate
164 ** values for I that should never occur.  For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken.  If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
168 **
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal.  In other words, I==0 and I==2
171 ** should be treated as equivalent
172 **
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds.  But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
176 */
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181   static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182     u8 mNever;
183     assert( I<=2 );  /* 0: fall through,  1: taken,  2: alternate taken */
184     assert( M<=4 );  /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185     assert( I<M );   /* I can only be 2 if M is 3 or 4 */
186     /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187     I = 1<<I;
188     /* The upper 8 bits of iSrcLine are flags.  The lower three bits of
189     ** the flags indicate directions that the branch can never go.  If
190     ** a branch really does go in one of those directions, assert right
191     ** away. */
192     mNever = iSrcLine >> 24;
193     assert( (I & mNever)==0 );
194     if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
195     /* Invoke the branch coverage callback with three arguments:
196     **    iSrcLine - the line number of the VdbeCoverage() macro, with
197     **               flags removed.
198     **    I        - Mask of bits 0x07 indicating which cases are are
199     **               fulfilled by this instance of the jump.  0x01 means
200     **               fall-thru, 0x02 means taken, 0x04 means NULL.  Any
201     **               impossible cases (ex: if the comparison is never NULL)
202     **               are filled in automatically so that the coverage
203     **               measurement logic does not flag those impossible cases
204     **               as missed coverage.
205     **    M        - Type of jump.  Same as M argument above
206     */
207     I |= mNever;
208     if( M==2 ) I |= 0x04;
209     if( M==4 ){
210       I |= 0x08;
211       if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
212     }
213     sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214                                     iSrcLine&0xffffff, I, M);
215   }
216 #endif
217 
218 /*
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string.  Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
224 **
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls.  In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
228 */
229 #define Deephemeralize(P) \
230    if( ((P)->flags&MEM_Ephem)!=0 \
231        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
232 
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
235 
236 /*
237 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
238 ** if we run out of memory.
239 */
240 static VdbeCursor *allocateCursor(
241   Vdbe *p,              /* The virtual machine */
242   int iCur,             /* Index of the new VdbeCursor */
243   int nField,           /* Number of fields in the table or index */
244   u8 eCurType           /* Type of the new cursor */
245 ){
246   /* Find the memory cell that will be used to store the blob of memory
247   ** required for this VdbeCursor structure. It is convenient to use a
248   ** vdbe memory cell to manage the memory allocation required for a
249   ** VdbeCursor structure for the following reasons:
250   **
251   **   * Sometimes cursor numbers are used for a couple of different
252   **     purposes in a vdbe program. The different uses might require
253   **     different sized allocations. Memory cells provide growable
254   **     allocations.
255   **
256   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257   **     be freed lazily via the sqlite3_release_memory() API. This
258   **     minimizes the number of malloc calls made by the system.
259   **
260   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
262   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
263   */
264   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
265 
266   int nByte;
267   VdbeCursor *pCx = 0;
268   nByte =
269       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
271 
272   assert( iCur>=0 && iCur<p->nCursor );
273   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
275     p->apCsr[iCur] = 0;
276   }
277 
278   /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279   ** the pMem used to hold space for the cursor has enough storage available
280   ** in pMem->zMalloc.  But for the special case of the aMem[] entries used
281   ** to hold cursors, it is faster to in-line the logic. */
282   assert( pMem->flags==MEM_Undefined );
283   assert( (pMem->flags & MEM_Dyn)==0 );
284   assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285   if( pMem->szMalloc<nByte ){
286     if( pMem->szMalloc>0 ){
287       sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
288     }
289     pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290     if( pMem->zMalloc==0 ){
291       pMem->szMalloc = 0;
292       return 0;
293     }
294     pMem->szMalloc = nByte;
295   }
296 
297   p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298   memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299   pCx->eCurType = eCurType;
300   pCx->nField = nField;
301   pCx->aOffset = &pCx->aType[nField];
302   if( eCurType==CURTYPE_BTREE ){
303     pCx->uc.pCursor = (BtCursor*)
304         &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305     sqlite3BtreeCursorZero(pCx->uc.pCursor);
306   }
307   return pCx;
308 }
309 
310 /*
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue.  Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer.  Otherwise,
314 ** return false.
315 */
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317   i64 iValue = (double)rValue;
318   if( sqlite3RealSameAsInt(rValue,iValue) ){
319     *piValue = iValue;
320     return 1;
321   }
322   return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
323 }
324 
325 /*
326 ** Try to convert a value into a numeric representation if we can
327 ** do so without loss of information.  In other words, if the string
328 ** looks like a number, convert it into a number.  If it does not
329 ** look like a number, leave it alone.
330 **
331 ** If the bTryForInt flag is true, then extra effort is made to give
332 ** an integer representation.  Strings that look like floating point
333 ** values but which have no fractional component (example: '48.00')
334 ** will have a MEM_Int representation when bTryForInt is true.
335 **
336 ** If bTryForInt is false, then if the input string contains a decimal
337 ** point or exponential notation, the result is only MEM_Real, even
338 ** if there is an exact integer representation of the quantity.
339 */
340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
341   double rValue;
342   u8 enc = pRec->enc;
343   int rc;
344   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
345   rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
346   if( rc<=0 ) return;
347   if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
348     pRec->flags |= MEM_Int;
349   }else{
350     pRec->u.r = rValue;
351     pRec->flags |= MEM_Real;
352     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
353   }
354   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
355   ** string representation after computing a numeric equivalent, because the
356   ** string representation might not be the canonical representation for the
357   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
358   pRec->flags &= ~MEM_Str;
359 }
360 
361 /*
362 ** Processing is determine by the affinity parameter:
363 **
364 ** SQLITE_AFF_INTEGER:
365 ** SQLITE_AFF_REAL:
366 ** SQLITE_AFF_NUMERIC:
367 **    Try to convert pRec to an integer representation or a
368 **    floating-point representation if an integer representation
369 **    is not possible.  Note that the integer representation is
370 **    always preferred, even if the affinity is REAL, because
371 **    an integer representation is more space efficient on disk.
372 **
373 ** SQLITE_AFF_TEXT:
374 **    Convert pRec to a text representation.
375 **
376 ** SQLITE_AFF_BLOB:
377 ** SQLITE_AFF_NONE:
378 **    No-op.  pRec is unchanged.
379 */
380 static void applyAffinity(
381   Mem *pRec,          /* The value to apply affinity to */
382   char affinity,      /* The affinity to be applied */
383   u8 enc              /* Use this text encoding */
384 ){
385   if( affinity>=SQLITE_AFF_NUMERIC ){
386     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
387              || affinity==SQLITE_AFF_NUMERIC );
388     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
389       if( (pRec->flags & MEM_Real)==0 ){
390         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
391       }else{
392         sqlite3VdbeIntegerAffinity(pRec);
393       }
394     }
395   }else if( affinity==SQLITE_AFF_TEXT ){
396     /* Only attempt the conversion to TEXT if there is an integer or real
397     ** representation (blob and NULL do not get converted) but no string
398     ** representation.  It would be harmless to repeat the conversion if
399     ** there is already a string rep, but it is pointless to waste those
400     ** CPU cycles. */
401     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
402       if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
403         testcase( pRec->flags & MEM_Int );
404         testcase( pRec->flags & MEM_Real );
405         testcase( pRec->flags & MEM_IntReal );
406         sqlite3VdbeMemStringify(pRec, enc, 1);
407       }
408     }
409     pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
410   }
411 }
412 
413 /*
414 ** Try to convert the type of a function argument or a result column
415 ** into a numeric representation.  Use either INTEGER or REAL whichever
416 ** is appropriate.  But only do the conversion if it is possible without
417 ** loss of information and return the revised type of the argument.
418 */
419 int sqlite3_value_numeric_type(sqlite3_value *pVal){
420   int eType = sqlite3_value_type(pVal);
421   if( eType==SQLITE_TEXT ){
422     Mem *pMem = (Mem*)pVal;
423     applyNumericAffinity(pMem, 0);
424     eType = sqlite3_value_type(pVal);
425   }
426   return eType;
427 }
428 
429 /*
430 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
431 ** not the internal Mem* type.
432 */
433 void sqlite3ValueApplyAffinity(
434   sqlite3_value *pVal,
435   u8 affinity,
436   u8 enc
437 ){
438   applyAffinity((Mem *)pVal, affinity, enc);
439 }
440 
441 /*
442 ** pMem currently only holds a string type (or maybe a BLOB that we can
443 ** interpret as a string if we want to).  Compute its corresponding
444 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
445 ** accordingly.
446 */
447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
448   int rc;
449   sqlite3_int64 ix;
450   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
451   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
452   if( ExpandBlob(pMem) ){
453     pMem->u.i = 0;
454     return MEM_Int;
455   }
456   rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
457   if( rc<=0 ){
458     if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
459       pMem->u.i = ix;
460       return MEM_Int;
461     }else{
462       return MEM_Real;
463     }
464   }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
465     pMem->u.i = ix;
466     return MEM_Int;
467   }
468   return MEM_Real;
469 }
470 
471 /*
472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
473 ** none.
474 **
475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
476 ** But it does set pMem->u.r and pMem->u.i appropriately.
477 */
478 static u16 numericType(Mem *pMem){
479   if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
480     testcase( pMem->flags & MEM_Int );
481     testcase( pMem->flags & MEM_Real );
482     testcase( pMem->flags & MEM_IntReal );
483     return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
484   }
485   if( pMem->flags & (MEM_Str|MEM_Blob) ){
486     testcase( pMem->flags & MEM_Str );
487     testcase( pMem->flags & MEM_Blob );
488     return computeNumericType(pMem);
489   }
490   return 0;
491 }
492 
493 #ifdef SQLITE_DEBUG
494 /*
495 ** Write a nice string representation of the contents of cell pMem
496 ** into buffer zBuf, length nBuf.
497 */
498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
499   int f = pMem->flags;
500   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
501   if( f&MEM_Blob ){
502     int i;
503     char c;
504     if( f & MEM_Dyn ){
505       c = 'z';
506       assert( (f & (MEM_Static|MEM_Ephem))==0 );
507     }else if( f & MEM_Static ){
508       c = 't';
509       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
510     }else if( f & MEM_Ephem ){
511       c = 'e';
512       assert( (f & (MEM_Static|MEM_Dyn))==0 );
513     }else{
514       c = 's';
515     }
516     sqlite3_str_appendf(pStr, "%cx[", c);
517     for(i=0; i<25 && i<pMem->n; i++){
518       sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
519     }
520     sqlite3_str_appendf(pStr, "|");
521     for(i=0; i<25 && i<pMem->n; i++){
522       char z = pMem->z[i];
523       sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
524     }
525     sqlite3_str_appendf(pStr,"]");
526     if( f & MEM_Zero ){
527       sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
528     }
529   }else if( f & MEM_Str ){
530     int j;
531     u8 c;
532     if( f & MEM_Dyn ){
533       c = 'z';
534       assert( (f & (MEM_Static|MEM_Ephem))==0 );
535     }else if( f & MEM_Static ){
536       c = 't';
537       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
538     }else if( f & MEM_Ephem ){
539       c = 'e';
540       assert( (f & (MEM_Static|MEM_Dyn))==0 );
541     }else{
542       c = 's';
543     }
544     sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
545     for(j=0; j<25 && j<pMem->n; j++){
546       c = pMem->z[j];
547       sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
548     }
549     sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
550   }
551 }
552 #endif
553 
554 #ifdef SQLITE_DEBUG
555 /*
556 ** Print the value of a register for tracing purposes:
557 */
558 static void memTracePrint(Mem *p){
559   if( p->flags & MEM_Undefined ){
560     printf(" undefined");
561   }else if( p->flags & MEM_Null ){
562     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
563   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
564     printf(" si:%lld", p->u.i);
565   }else if( (p->flags & (MEM_IntReal))!=0 ){
566     printf(" ir:%lld", p->u.i);
567   }else if( p->flags & MEM_Int ){
568     printf(" i:%lld", p->u.i);
569 #ifndef SQLITE_OMIT_FLOATING_POINT
570   }else if( p->flags & MEM_Real ){
571     printf(" r:%.17g", p->u.r);
572 #endif
573   }else if( sqlite3VdbeMemIsRowSet(p) ){
574     printf(" (rowset)");
575   }else{
576     StrAccum acc;
577     char zBuf[1000];
578     sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
579     sqlite3VdbeMemPrettyPrint(p, &acc);
580     printf(" %s", sqlite3StrAccumFinish(&acc));
581   }
582   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
583 }
584 static void registerTrace(int iReg, Mem *p){
585   printf("R[%d] = ", iReg);
586   memTracePrint(p);
587   if( p->pScopyFrom ){
588     printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
589   }
590   printf("\n");
591   sqlite3VdbeCheckMemInvariants(p);
592 }
593 /**/ void sqlite3PrintMem(Mem *pMem){
594   memTracePrint(pMem);
595   printf("\n");
596   fflush(stdout);
597 }
598 #endif
599 
600 #ifdef SQLITE_DEBUG
601 /*
602 ** Show the values of all registers in the virtual machine.  Used for
603 ** interactive debugging.
604 */
605 void sqlite3VdbeRegisterDump(Vdbe *v){
606   int i;
607   for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
608 }
609 #endif /* SQLITE_DEBUG */
610 
611 
612 #ifdef SQLITE_DEBUG
613 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
614 #else
615 #  define REGISTER_TRACE(R,M)
616 #endif
617 
618 
619 #ifdef VDBE_PROFILE
620 
621 /*
622 ** hwtime.h contains inline assembler code for implementing
623 ** high-performance timing routines.
624 */
625 #include "hwtime.h"
626 
627 #endif
628 
629 #ifndef NDEBUG
630 /*
631 ** This function is only called from within an assert() expression. It
632 ** checks that the sqlite3.nTransaction variable is correctly set to
633 ** the number of non-transaction savepoints currently in the
634 ** linked list starting at sqlite3.pSavepoint.
635 **
636 ** Usage:
637 **
638 **     assert( checkSavepointCount(db) );
639 */
640 static int checkSavepointCount(sqlite3 *db){
641   int n = 0;
642   Savepoint *p;
643   for(p=db->pSavepoint; p; p=p->pNext) n++;
644   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
645   return 1;
646 }
647 #endif
648 
649 /*
650 ** Return the register of pOp->p2 after first preparing it to be
651 ** overwritten with an integer value.
652 */
653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
654   sqlite3VdbeMemSetNull(pOut);
655   pOut->flags = MEM_Int;
656   return pOut;
657 }
658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
659   Mem *pOut;
660   assert( pOp->p2>0 );
661   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
662   pOut = &p->aMem[pOp->p2];
663   memAboutToChange(p, pOut);
664   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
665     return out2PrereleaseWithClear(pOut);
666   }else{
667     pOut->flags = MEM_Int;
668     return pOut;
669   }
670 }
671 
672 /*
673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
674 ** with pOp->p3.  Return the hash.
675 */
676 static u64 filterHash(const Mem *aMem, const Op *pOp){
677   int i, mx;
678   u64 h = 0;
679 
680   i = pOp->p3;
681   assert( pOp->p4type==P4_INT32 );
682   for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
683     const Mem *p = &aMem[i];
684     if( p->flags & (MEM_Int|MEM_IntReal) ){
685       h += p->u.i;
686     }else if( p->flags & MEM_Real ){
687       h += sqlite3VdbeIntValue(p);
688     }else if( p->flags & (MEM_Str|MEM_Blob) ){
689       h += p->n;
690       if( p->flags & MEM_Zero ) h += p->u.nZero;
691     }
692   }
693   return h;
694 }
695 
696 /*
697 ** Return the symbolic name for the data type of a pMem
698 */
699 static const char *vdbeMemTypeName(Mem *pMem){
700   static const char *azTypes[] = {
701       /* SQLITE_INTEGER */ "INT",
702       /* SQLITE_FLOAT   */ "REAL",
703       /* SQLITE_TEXT    */ "TEXT",
704       /* SQLITE_BLOB    */ "BLOB",
705       /* SQLITE_NULL    */ "NULL"
706   };
707   return azTypes[sqlite3_value_type(pMem)-1];
708 }
709 
710 /*
711 ** Execute as much of a VDBE program as we can.
712 ** This is the core of sqlite3_step().
713 */
714 int sqlite3VdbeExec(
715   Vdbe *p                    /* The VDBE */
716 ){
717   Op *aOp = p->aOp;          /* Copy of p->aOp */
718   Op *pOp = aOp;             /* Current operation */
719 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
720   Op *pOrigOp;               /* Value of pOp at the top of the loop */
721 #endif
722 #ifdef SQLITE_DEBUG
723   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
724 #endif
725   int rc = SQLITE_OK;        /* Value to return */
726   sqlite3 *db = p->db;       /* The database */
727   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
728   u8 encoding = ENC(db);     /* The database encoding */
729   int iCompare = 0;          /* Result of last comparison */
730   u64 nVmStep = 0;           /* Number of virtual machine steps */
731 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
732   u64 nProgressLimit;        /* Invoke xProgress() when nVmStep reaches this */
733 #endif
734   Mem *aMem = p->aMem;       /* Copy of p->aMem */
735   Mem *pIn1 = 0;             /* 1st input operand */
736   Mem *pIn2 = 0;             /* 2nd input operand */
737   Mem *pIn3 = 0;             /* 3rd input operand */
738   Mem *pOut = 0;             /* Output operand */
739 #ifdef VDBE_PROFILE
740   u64 start;                 /* CPU clock count at start of opcode */
741 #endif
742   /*** INSERT STACK UNION HERE ***/
743 
744   assert( p->iVdbeMagic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
745   sqlite3VdbeEnter(p);
746 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
747   if( db->xProgress ){
748     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
749     assert( 0 < db->nProgressOps );
750     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
751   }else{
752     nProgressLimit = LARGEST_UINT64;
753   }
754 #endif
755   if( p->rc==SQLITE_NOMEM ){
756     /* This happens if a malloc() inside a call to sqlite3_column_text() or
757     ** sqlite3_column_text16() failed.  */
758     goto no_mem;
759   }
760   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
761   testcase( p->rc!=SQLITE_OK );
762   p->rc = SQLITE_OK;
763   assert( p->bIsReader || p->readOnly!=0 );
764   p->iCurrentTime = 0;
765   assert( p->explain==0 );
766   p->pResultSet = 0;
767   db->busyHandler.nBusy = 0;
768   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
769   sqlite3VdbeIOTraceSql(p);
770 #ifdef SQLITE_DEBUG
771   sqlite3BeginBenignMalloc();
772   if( p->pc==0
773    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
774   ){
775     int i;
776     int once = 1;
777     sqlite3VdbePrintSql(p);
778     if( p->db->flags & SQLITE_VdbeListing ){
779       printf("VDBE Program Listing:\n");
780       for(i=0; i<p->nOp; i++){
781         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
782       }
783     }
784     if( p->db->flags & SQLITE_VdbeEQP ){
785       for(i=0; i<p->nOp; i++){
786         if( aOp[i].opcode==OP_Explain ){
787           if( once ) printf("VDBE Query Plan:\n");
788           printf("%s\n", aOp[i].p4.z);
789           once = 0;
790         }
791       }
792     }
793     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
794   }
795   sqlite3EndBenignMalloc();
796 #endif
797   for(pOp=&aOp[p->pc]; 1; pOp++){
798     /* Errors are detected by individual opcodes, with an immediate
799     ** jumps to abort_due_to_error. */
800     assert( rc==SQLITE_OK );
801 
802     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
803 #ifdef VDBE_PROFILE
804     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
805 #endif
806     nVmStep++;
807 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
808     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
809 #endif
810 
811     /* Only allow tracing if SQLITE_DEBUG is defined.
812     */
813 #ifdef SQLITE_DEBUG
814     if( db->flags & SQLITE_VdbeTrace ){
815       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
816       test_trace_breakpoint((int)(pOp - aOp),pOp,p);
817     }
818 #endif
819 
820 
821     /* Check to see if we need to simulate an interrupt.  This only happens
822     ** if we have a special test build.
823     */
824 #ifdef SQLITE_TEST
825     if( sqlite3_interrupt_count>0 ){
826       sqlite3_interrupt_count--;
827       if( sqlite3_interrupt_count==0 ){
828         sqlite3_interrupt(db);
829       }
830     }
831 #endif
832 
833     /* Sanity checking on other operands */
834 #ifdef SQLITE_DEBUG
835     {
836       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
837       if( (opProperty & OPFLG_IN1)!=0 ){
838         assert( pOp->p1>0 );
839         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
840         assert( memIsValid(&aMem[pOp->p1]) );
841         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
842         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
843       }
844       if( (opProperty & OPFLG_IN2)!=0 ){
845         assert( pOp->p2>0 );
846         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
847         assert( memIsValid(&aMem[pOp->p2]) );
848         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
849         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
850       }
851       if( (opProperty & OPFLG_IN3)!=0 ){
852         assert( pOp->p3>0 );
853         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
854         assert( memIsValid(&aMem[pOp->p3]) );
855         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
856         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
857       }
858       if( (opProperty & OPFLG_OUT2)!=0 ){
859         assert( pOp->p2>0 );
860         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
861         memAboutToChange(p, &aMem[pOp->p2]);
862       }
863       if( (opProperty & OPFLG_OUT3)!=0 ){
864         assert( pOp->p3>0 );
865         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
866         memAboutToChange(p, &aMem[pOp->p3]);
867       }
868     }
869 #endif
870 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
871     pOrigOp = pOp;
872 #endif
873 
874     switch( pOp->opcode ){
875 
876 /*****************************************************************************
877 ** What follows is a massive switch statement where each case implements a
878 ** separate instruction in the virtual machine.  If we follow the usual
879 ** indentation conventions, each case should be indented by 6 spaces.  But
880 ** that is a lot of wasted space on the left margin.  So the code within
881 ** the switch statement will break with convention and be flush-left. Another
882 ** big comment (similar to this one) will mark the point in the code where
883 ** we transition back to normal indentation.
884 **
885 ** The formatting of each case is important.  The makefile for SQLite
886 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
887 ** file looking for lines that begin with "case OP_".  The opcodes.h files
888 ** will be filled with #defines that give unique integer values to each
889 ** opcode and the opcodes.c file is filled with an array of strings where
890 ** each string is the symbolic name for the corresponding opcode.  If the
891 ** case statement is followed by a comment of the form "/# same as ... #/"
892 ** that comment is used to determine the particular value of the opcode.
893 **
894 ** Other keywords in the comment that follows each case are used to
895 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
896 ** Keywords include: in1, in2, in3, out2, out3.  See
897 ** the mkopcodeh.awk script for additional information.
898 **
899 ** Documentation about VDBE opcodes is generated by scanning this file
900 ** for lines of that contain "Opcode:".  That line and all subsequent
901 ** comment lines are used in the generation of the opcode.html documentation
902 ** file.
903 **
904 ** SUMMARY:
905 **
906 **     Formatting is important to scripts that scan this file.
907 **     Do not deviate from the formatting style currently in use.
908 **
909 *****************************************************************************/
910 
911 /* Opcode:  Goto * P2 * * *
912 **
913 ** An unconditional jump to address P2.
914 ** The next instruction executed will be
915 ** the one at index P2 from the beginning of
916 ** the program.
917 **
918 ** The P1 parameter is not actually used by this opcode.  However, it
919 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
920 ** that this Goto is the bottom of a loop and that the lines from P2 down
921 ** to the current line should be indented for EXPLAIN output.
922 */
923 case OP_Goto: {             /* jump */
924 
925 #ifdef SQLITE_DEBUG
926   /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
927   ** means we should really jump back to the preceeding OP_ReleaseReg
928   ** instruction. */
929   if( pOp->p5 ){
930     assert( pOp->p2 < (int)(pOp - aOp) );
931     assert( pOp->p2 > 1 );
932     pOp = &aOp[pOp->p2 - 2];
933     assert( pOp[1].opcode==OP_ReleaseReg );
934     goto check_for_interrupt;
935   }
936 #endif
937 
938 jump_to_p2_and_check_for_interrupt:
939   pOp = &aOp[pOp->p2 - 1];
940 
941   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
942   ** OP_VNext, or OP_SorterNext) all jump here upon
943   ** completion.  Check to see if sqlite3_interrupt() has been called
944   ** or if the progress callback needs to be invoked.
945   **
946   ** This code uses unstructured "goto" statements and does not look clean.
947   ** But that is not due to sloppy coding habits. The code is written this
948   ** way for performance, to avoid having to run the interrupt and progress
949   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
950   ** faster according to "valgrind --tool=cachegrind" */
951 check_for_interrupt:
952   if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
953 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
954   /* Call the progress callback if it is configured and the required number
955   ** of VDBE ops have been executed (either since this invocation of
956   ** sqlite3VdbeExec() or since last time the progress callback was called).
957   ** If the progress callback returns non-zero, exit the virtual machine with
958   ** a return code SQLITE_ABORT.
959   */
960   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
961     assert( db->nProgressOps!=0 );
962     nProgressLimit += db->nProgressOps;
963     if( db->xProgress(db->pProgressArg) ){
964       nProgressLimit = LARGEST_UINT64;
965       rc = SQLITE_INTERRUPT;
966       goto abort_due_to_error;
967     }
968   }
969 #endif
970 
971   break;
972 }
973 
974 /* Opcode:  Gosub P1 P2 * * *
975 **
976 ** Write the current address onto register P1
977 ** and then jump to address P2.
978 */
979 case OP_Gosub: {            /* jump */
980   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
981   pIn1 = &aMem[pOp->p1];
982   assert( VdbeMemDynamic(pIn1)==0 );
983   memAboutToChange(p, pIn1);
984   pIn1->flags = MEM_Int;
985   pIn1->u.i = (int)(pOp-aOp);
986   REGISTER_TRACE(pOp->p1, pIn1);
987 
988   /* Most jump operations do a goto to this spot in order to update
989   ** the pOp pointer. */
990 jump_to_p2:
991   pOp = &aOp[pOp->p2 - 1];
992   break;
993 }
994 
995 /* Opcode:  Return P1 * * * *
996 **
997 ** Jump to the next instruction after the address in register P1.  After
998 ** the jump, register P1 becomes undefined.
999 */
1000 case OP_Return: {           /* in1 */
1001   pIn1 = &aMem[pOp->p1];
1002   assert( pIn1->flags==MEM_Int );
1003   pOp = &aOp[pIn1->u.i];
1004   pIn1->flags = MEM_Undefined;
1005   break;
1006 }
1007 
1008 /* Opcode: InitCoroutine P1 P2 P3 * *
1009 **
1010 ** Set up register P1 so that it will Yield to the coroutine
1011 ** located at address P3.
1012 **
1013 ** If P2!=0 then the coroutine implementation immediately follows
1014 ** this opcode.  So jump over the coroutine implementation to
1015 ** address P2.
1016 **
1017 ** See also: EndCoroutine
1018 */
1019 case OP_InitCoroutine: {     /* jump */
1020   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
1021   assert( pOp->p2>=0 && pOp->p2<p->nOp );
1022   assert( pOp->p3>=0 && pOp->p3<p->nOp );
1023   pOut = &aMem[pOp->p1];
1024   assert( !VdbeMemDynamic(pOut) );
1025   pOut->u.i = pOp->p3 - 1;
1026   pOut->flags = MEM_Int;
1027   if( pOp->p2 ) goto jump_to_p2;
1028   break;
1029 }
1030 
1031 /* Opcode:  EndCoroutine P1 * * * *
1032 **
1033 ** The instruction at the address in register P1 is a Yield.
1034 ** Jump to the P2 parameter of that Yield.
1035 ** After the jump, register P1 becomes undefined.
1036 **
1037 ** See also: InitCoroutine
1038 */
1039 case OP_EndCoroutine: {           /* in1 */
1040   VdbeOp *pCaller;
1041   pIn1 = &aMem[pOp->p1];
1042   assert( pIn1->flags==MEM_Int );
1043   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1044   pCaller = &aOp[pIn1->u.i];
1045   assert( pCaller->opcode==OP_Yield );
1046   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1047   pOp = &aOp[pCaller->p2 - 1];
1048   pIn1->flags = MEM_Undefined;
1049   break;
1050 }
1051 
1052 /* Opcode:  Yield P1 P2 * * *
1053 **
1054 ** Swap the program counter with the value in register P1.  This
1055 ** has the effect of yielding to a coroutine.
1056 **
1057 ** If the coroutine that is launched by this instruction ends with
1058 ** Yield or Return then continue to the next instruction.  But if
1059 ** the coroutine launched by this instruction ends with
1060 ** EndCoroutine, then jump to P2 rather than continuing with the
1061 ** next instruction.
1062 **
1063 ** See also: InitCoroutine
1064 */
1065 case OP_Yield: {            /* in1, jump */
1066   int pcDest;
1067   pIn1 = &aMem[pOp->p1];
1068   assert( VdbeMemDynamic(pIn1)==0 );
1069   pIn1->flags = MEM_Int;
1070   pcDest = (int)pIn1->u.i;
1071   pIn1->u.i = (int)(pOp - aOp);
1072   REGISTER_TRACE(pOp->p1, pIn1);
1073   pOp = &aOp[pcDest];
1074   break;
1075 }
1076 
1077 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
1078 ** Synopsis: if r[P3]=null halt
1079 **
1080 ** Check the value in register P3.  If it is NULL then Halt using
1081 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
1082 ** value in register P3 is not NULL, then this routine is a no-op.
1083 ** The P5 parameter should be 1.
1084 */
1085 case OP_HaltIfNull: {      /* in3 */
1086   pIn3 = &aMem[pOp->p3];
1087 #ifdef SQLITE_DEBUG
1088   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1089 #endif
1090   if( (pIn3->flags & MEM_Null)==0 ) break;
1091   /* Fall through into OP_Halt */
1092   /* no break */ deliberate_fall_through
1093 }
1094 
1095 /* Opcode:  Halt P1 P2 * P4 P5
1096 **
1097 ** Exit immediately.  All open cursors, etc are closed
1098 ** automatically.
1099 **
1100 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1101 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
1102 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
1103 ** whether or not to rollback the current transaction.  Do not rollback
1104 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
1105 ** then back out all changes that have occurred during this execution of the
1106 ** VDBE, but do not rollback the transaction.
1107 **
1108 ** If P4 is not null then it is an error message string.
1109 **
1110 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1111 **
1112 **    0:  (no change)
1113 **    1:  NOT NULL contraint failed: P4
1114 **    2:  UNIQUE constraint failed: P4
1115 **    3:  CHECK constraint failed: P4
1116 **    4:  FOREIGN KEY constraint failed: P4
1117 **
1118 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1119 ** omitted.
1120 **
1121 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1122 ** every program.  So a jump past the last instruction of the program
1123 ** is the same as executing Halt.
1124 */
1125 case OP_Halt: {
1126   VdbeFrame *pFrame;
1127   int pcx;
1128 
1129   pcx = (int)(pOp - aOp);
1130 #ifdef SQLITE_DEBUG
1131   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1132 #endif
1133   if( pOp->p1==SQLITE_OK && p->pFrame ){
1134     /* Halt the sub-program. Return control to the parent frame. */
1135     pFrame = p->pFrame;
1136     p->pFrame = pFrame->pParent;
1137     p->nFrame--;
1138     sqlite3VdbeSetChanges(db, p->nChange);
1139     pcx = sqlite3VdbeFrameRestore(pFrame);
1140     if( pOp->p2==OE_Ignore ){
1141       /* Instruction pcx is the OP_Program that invoked the sub-program
1142       ** currently being halted. If the p2 instruction of this OP_Halt
1143       ** instruction is set to OE_Ignore, then the sub-program is throwing
1144       ** an IGNORE exception. In this case jump to the address specified
1145       ** as the p2 of the calling OP_Program.  */
1146       pcx = p->aOp[pcx].p2-1;
1147     }
1148     aOp = p->aOp;
1149     aMem = p->aMem;
1150     pOp = &aOp[pcx];
1151     break;
1152   }
1153   p->rc = pOp->p1;
1154   p->errorAction = (u8)pOp->p2;
1155   p->pc = pcx;
1156   assert( pOp->p5<=4 );
1157   if( p->rc ){
1158     if( pOp->p5 ){
1159       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1160                                              "FOREIGN KEY" };
1161       testcase( pOp->p5==1 );
1162       testcase( pOp->p5==2 );
1163       testcase( pOp->p5==3 );
1164       testcase( pOp->p5==4 );
1165       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1166       if( pOp->p4.z ){
1167         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1168       }
1169     }else{
1170       sqlite3VdbeError(p, "%s", pOp->p4.z);
1171     }
1172     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1173   }
1174   rc = sqlite3VdbeHalt(p);
1175   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1176   if( rc==SQLITE_BUSY ){
1177     p->rc = SQLITE_BUSY;
1178   }else{
1179     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1180     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1181     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1182   }
1183   goto vdbe_return;
1184 }
1185 
1186 /* Opcode: Integer P1 P2 * * *
1187 ** Synopsis: r[P2]=P1
1188 **
1189 ** The 32-bit integer value P1 is written into register P2.
1190 */
1191 case OP_Integer: {         /* out2 */
1192   pOut = out2Prerelease(p, pOp);
1193   pOut->u.i = pOp->p1;
1194   break;
1195 }
1196 
1197 /* Opcode: Int64 * P2 * P4 *
1198 ** Synopsis: r[P2]=P4
1199 **
1200 ** P4 is a pointer to a 64-bit integer value.
1201 ** Write that value into register P2.
1202 */
1203 case OP_Int64: {           /* out2 */
1204   pOut = out2Prerelease(p, pOp);
1205   assert( pOp->p4.pI64!=0 );
1206   pOut->u.i = *pOp->p4.pI64;
1207   break;
1208 }
1209 
1210 #ifndef SQLITE_OMIT_FLOATING_POINT
1211 /* Opcode: Real * P2 * P4 *
1212 ** Synopsis: r[P2]=P4
1213 **
1214 ** P4 is a pointer to a 64-bit floating point value.
1215 ** Write that value into register P2.
1216 */
1217 case OP_Real: {            /* same as TK_FLOAT, out2 */
1218   pOut = out2Prerelease(p, pOp);
1219   pOut->flags = MEM_Real;
1220   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1221   pOut->u.r = *pOp->p4.pReal;
1222   break;
1223 }
1224 #endif
1225 
1226 /* Opcode: String8 * P2 * P4 *
1227 ** Synopsis: r[P2]='P4'
1228 **
1229 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1230 ** into a String opcode before it is executed for the first time.  During
1231 ** this transformation, the length of string P4 is computed and stored
1232 ** as the P1 parameter.
1233 */
1234 case OP_String8: {         /* same as TK_STRING, out2 */
1235   assert( pOp->p4.z!=0 );
1236   pOut = out2Prerelease(p, pOp);
1237   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1238 
1239 #ifndef SQLITE_OMIT_UTF16
1240   if( encoding!=SQLITE_UTF8 ){
1241     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1242     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1243     if( rc ) goto too_big;
1244     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1245     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1246     assert( VdbeMemDynamic(pOut)==0 );
1247     pOut->szMalloc = 0;
1248     pOut->flags |= MEM_Static;
1249     if( pOp->p4type==P4_DYNAMIC ){
1250       sqlite3DbFree(db, pOp->p4.z);
1251     }
1252     pOp->p4type = P4_DYNAMIC;
1253     pOp->p4.z = pOut->z;
1254     pOp->p1 = pOut->n;
1255   }
1256 #endif
1257   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1258     goto too_big;
1259   }
1260   pOp->opcode = OP_String;
1261   assert( rc==SQLITE_OK );
1262   /* Fall through to the next case, OP_String */
1263   /* no break */ deliberate_fall_through
1264 }
1265 
1266 /* Opcode: String P1 P2 P3 P4 P5
1267 ** Synopsis: r[P2]='P4' (len=P1)
1268 **
1269 ** The string value P4 of length P1 (bytes) is stored in register P2.
1270 **
1271 ** If P3 is not zero and the content of register P3 is equal to P5, then
1272 ** the datatype of the register P2 is converted to BLOB.  The content is
1273 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1274 ** of a string, as if it had been CAST.  In other words:
1275 **
1276 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1277 */
1278 case OP_String: {          /* out2 */
1279   assert( pOp->p4.z!=0 );
1280   pOut = out2Prerelease(p, pOp);
1281   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1282   pOut->z = pOp->p4.z;
1283   pOut->n = pOp->p1;
1284   pOut->enc = encoding;
1285   UPDATE_MAX_BLOBSIZE(pOut);
1286 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1287   if( pOp->p3>0 ){
1288     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1289     pIn3 = &aMem[pOp->p3];
1290     assert( pIn3->flags & MEM_Int );
1291     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1292   }
1293 #endif
1294   break;
1295 }
1296 
1297 /* Opcode: Null P1 P2 P3 * *
1298 ** Synopsis: r[P2..P3]=NULL
1299 **
1300 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1301 ** NULL into register P3 and every register in between P2 and P3.  If P3
1302 ** is less than P2 (typically P3 is zero) then only register P2 is
1303 ** set to NULL.
1304 **
1305 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1306 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1307 ** OP_Ne or OP_Eq.
1308 */
1309 case OP_Null: {           /* out2 */
1310   int cnt;
1311   u16 nullFlag;
1312   pOut = out2Prerelease(p, pOp);
1313   cnt = pOp->p3-pOp->p2;
1314   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1315   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1316   pOut->n = 0;
1317 #ifdef SQLITE_DEBUG
1318   pOut->uTemp = 0;
1319 #endif
1320   while( cnt>0 ){
1321     pOut++;
1322     memAboutToChange(p, pOut);
1323     sqlite3VdbeMemSetNull(pOut);
1324     pOut->flags = nullFlag;
1325     pOut->n = 0;
1326     cnt--;
1327   }
1328   break;
1329 }
1330 
1331 /* Opcode: SoftNull P1 * * * *
1332 ** Synopsis: r[P1]=NULL
1333 **
1334 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1335 ** instruction, but do not free any string or blob memory associated with
1336 ** the register, so that if the value was a string or blob that was
1337 ** previously copied using OP_SCopy, the copies will continue to be valid.
1338 */
1339 case OP_SoftNull: {
1340   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1341   pOut = &aMem[pOp->p1];
1342   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1343   break;
1344 }
1345 
1346 /* Opcode: Blob P1 P2 * P4 *
1347 ** Synopsis: r[P2]=P4 (len=P1)
1348 **
1349 ** P4 points to a blob of data P1 bytes long.  Store this
1350 ** blob in register P2.  If P4 is a NULL pointer, then construct
1351 ** a zero-filled blob that is P1 bytes long in P2.
1352 */
1353 case OP_Blob: {                /* out2 */
1354   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1355   pOut = out2Prerelease(p, pOp);
1356   if( pOp->p4.z==0 ){
1357     sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1358     if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1359   }else{
1360     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1361   }
1362   pOut->enc = encoding;
1363   UPDATE_MAX_BLOBSIZE(pOut);
1364   break;
1365 }
1366 
1367 /* Opcode: Variable P1 P2 * P4 *
1368 ** Synopsis: r[P2]=parameter(P1,P4)
1369 **
1370 ** Transfer the values of bound parameter P1 into register P2
1371 **
1372 ** If the parameter is named, then its name appears in P4.
1373 ** The P4 value is used by sqlite3_bind_parameter_name().
1374 */
1375 case OP_Variable: {            /* out2 */
1376   Mem *pVar;       /* Value being transferred */
1377 
1378   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1379   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1380   pVar = &p->aVar[pOp->p1 - 1];
1381   if( sqlite3VdbeMemTooBig(pVar) ){
1382     goto too_big;
1383   }
1384   pOut = &aMem[pOp->p2];
1385   if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1386   memcpy(pOut, pVar, MEMCELLSIZE);
1387   pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1388   pOut->flags |= MEM_Static|MEM_FromBind;
1389   UPDATE_MAX_BLOBSIZE(pOut);
1390   break;
1391 }
1392 
1393 /* Opcode: Move P1 P2 P3 * *
1394 ** Synopsis: r[P2@P3]=r[P1@P3]
1395 **
1396 ** Move the P3 values in register P1..P1+P3-1 over into
1397 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1398 ** left holding a NULL.  It is an error for register ranges
1399 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1400 ** for P3 to be less than 1.
1401 */
1402 case OP_Move: {
1403   int n;           /* Number of registers left to copy */
1404   int p1;          /* Register to copy from */
1405   int p2;          /* Register to copy to */
1406 
1407   n = pOp->p3;
1408   p1 = pOp->p1;
1409   p2 = pOp->p2;
1410   assert( n>0 && p1>0 && p2>0 );
1411   assert( p1+n<=p2 || p2+n<=p1 );
1412 
1413   pIn1 = &aMem[p1];
1414   pOut = &aMem[p2];
1415   do{
1416     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1417     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1418     assert( memIsValid(pIn1) );
1419     memAboutToChange(p, pOut);
1420     sqlite3VdbeMemMove(pOut, pIn1);
1421 #ifdef SQLITE_DEBUG
1422     pIn1->pScopyFrom = 0;
1423     { int i;
1424       for(i=1; i<p->nMem; i++){
1425         if( aMem[i].pScopyFrom==pIn1 ){
1426           aMem[i].pScopyFrom = pOut;
1427         }
1428       }
1429     }
1430 #endif
1431     Deephemeralize(pOut);
1432     REGISTER_TRACE(p2++, pOut);
1433     pIn1++;
1434     pOut++;
1435   }while( --n );
1436   break;
1437 }
1438 
1439 /* Opcode: Copy P1 P2 P3 * *
1440 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1441 **
1442 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1443 **
1444 ** This instruction makes a deep copy of the value.  A duplicate
1445 ** is made of any string or blob constant.  See also OP_SCopy.
1446 */
1447 case OP_Copy: {
1448   int n;
1449 
1450   n = pOp->p3;
1451   pIn1 = &aMem[pOp->p1];
1452   pOut = &aMem[pOp->p2];
1453   assert( pOut!=pIn1 );
1454   while( 1 ){
1455     memAboutToChange(p, pOut);
1456     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1457     Deephemeralize(pOut);
1458 #ifdef SQLITE_DEBUG
1459     pOut->pScopyFrom = 0;
1460 #endif
1461     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1462     if( (n--)==0 ) break;
1463     pOut++;
1464     pIn1++;
1465   }
1466   break;
1467 }
1468 
1469 /* Opcode: SCopy P1 P2 * * *
1470 ** Synopsis: r[P2]=r[P1]
1471 **
1472 ** Make a shallow copy of register P1 into register P2.
1473 **
1474 ** This instruction makes a shallow copy of the value.  If the value
1475 ** is a string or blob, then the copy is only a pointer to the
1476 ** original and hence if the original changes so will the copy.
1477 ** Worse, if the original is deallocated, the copy becomes invalid.
1478 ** Thus the program must guarantee that the original will not change
1479 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1480 ** copy.
1481 */
1482 case OP_SCopy: {            /* out2 */
1483   pIn1 = &aMem[pOp->p1];
1484   pOut = &aMem[pOp->p2];
1485   assert( pOut!=pIn1 );
1486   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1487 #ifdef SQLITE_DEBUG
1488   pOut->pScopyFrom = pIn1;
1489   pOut->mScopyFlags = pIn1->flags;
1490 #endif
1491   break;
1492 }
1493 
1494 /* Opcode: IntCopy P1 P2 * * *
1495 ** Synopsis: r[P2]=r[P1]
1496 **
1497 ** Transfer the integer value held in register P1 into register P2.
1498 **
1499 ** This is an optimized version of SCopy that works only for integer
1500 ** values.
1501 */
1502 case OP_IntCopy: {            /* out2 */
1503   pIn1 = &aMem[pOp->p1];
1504   assert( (pIn1->flags & MEM_Int)!=0 );
1505   pOut = &aMem[pOp->p2];
1506   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1507   break;
1508 }
1509 
1510 /* Opcode: FkCheck * * * * *
1511 **
1512 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1513 ** foreign key constraint violations.  If there are no foreign key
1514 ** constraint violations, this is a no-op.
1515 **
1516 ** FK constraint violations are also checked when the prepared statement
1517 ** exits.  This opcode is used to raise foreign key constraint errors prior
1518 ** to returning results such as a row change count or the result of a
1519 ** RETURNING clause.
1520 */
1521 case OP_FkCheck: {
1522   if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1523     goto abort_due_to_error;
1524   }
1525   break;
1526 }
1527 
1528 /* Opcode: ResultRow P1 P2 * * *
1529 ** Synopsis: output=r[P1@P2]
1530 **
1531 ** The registers P1 through P1+P2-1 contain a single row of
1532 ** results. This opcode causes the sqlite3_step() call to terminate
1533 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1534 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1535 ** the result row.
1536 */
1537 case OP_ResultRow: {
1538   Mem *pMem;
1539   int i;
1540   assert( p->nResColumn==pOp->p2 );
1541   assert( pOp->p1>0 || CORRUPT_DB );
1542   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1543 
1544   /* Invalidate all ephemeral cursor row caches */
1545   p->cacheCtr = (p->cacheCtr + 2)|1;
1546 
1547   /* Make sure the results of the current row are \000 terminated
1548   ** and have an assigned type.  The results are de-ephemeralized as
1549   ** a side effect.
1550   */
1551   pMem = p->pResultSet = &aMem[pOp->p1];
1552   for(i=0; i<pOp->p2; i++){
1553     assert( memIsValid(&pMem[i]) );
1554     Deephemeralize(&pMem[i]);
1555     assert( (pMem[i].flags & MEM_Ephem)==0
1556             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1557     sqlite3VdbeMemNulTerminate(&pMem[i]);
1558     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1559 #ifdef SQLITE_DEBUG
1560     /* The registers in the result will not be used again when the
1561     ** prepared statement restarts.  This is because sqlite3_column()
1562     ** APIs might have caused type conversions of made other changes to
1563     ** the register values.  Therefore, we can go ahead and break any
1564     ** OP_SCopy dependencies. */
1565     pMem[i].pScopyFrom = 0;
1566 #endif
1567   }
1568   if( db->mallocFailed ) goto no_mem;
1569 
1570   if( db->mTrace & SQLITE_TRACE_ROW ){
1571     db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1572   }
1573 
1574 
1575   /* Return SQLITE_ROW
1576   */
1577   p->pc = (int)(pOp - aOp) + 1;
1578   rc = SQLITE_ROW;
1579   goto vdbe_return;
1580 }
1581 
1582 /* Opcode: Concat P1 P2 P3 * *
1583 ** Synopsis: r[P3]=r[P2]+r[P1]
1584 **
1585 ** Add the text in register P1 onto the end of the text in
1586 ** register P2 and store the result in register P3.
1587 ** If either the P1 or P2 text are NULL then store NULL in P3.
1588 **
1589 **   P3 = P2 || P1
1590 **
1591 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1592 ** if P3 is the same register as P2, the implementation is able
1593 ** to avoid a memcpy().
1594 */
1595 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1596   i64 nByte;          /* Total size of the output string or blob */
1597   u16 flags1;         /* Initial flags for P1 */
1598   u16 flags2;         /* Initial flags for P2 */
1599 
1600   pIn1 = &aMem[pOp->p1];
1601   pIn2 = &aMem[pOp->p2];
1602   pOut = &aMem[pOp->p3];
1603   testcase( pOut==pIn2 );
1604   assert( pIn1!=pOut );
1605   flags1 = pIn1->flags;
1606   testcase( flags1 & MEM_Null );
1607   testcase( pIn2->flags & MEM_Null );
1608   if( (flags1 | pIn2->flags) & MEM_Null ){
1609     sqlite3VdbeMemSetNull(pOut);
1610     break;
1611   }
1612   if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1613     if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1614     flags1 = pIn1->flags & ~MEM_Str;
1615   }else if( (flags1 & MEM_Zero)!=0 ){
1616     if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1617     flags1 = pIn1->flags & ~MEM_Str;
1618   }
1619   flags2 = pIn2->flags;
1620   if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1621     if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1622     flags2 = pIn2->flags & ~MEM_Str;
1623   }else if( (flags2 & MEM_Zero)!=0 ){
1624     if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1625     flags2 = pIn2->flags & ~MEM_Str;
1626   }
1627   nByte = pIn1->n + pIn2->n;
1628   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1629     goto too_big;
1630   }
1631   if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){
1632     goto no_mem;
1633   }
1634   MemSetTypeFlag(pOut, MEM_Str);
1635   if( pOut!=pIn2 ){
1636     memcpy(pOut->z, pIn2->z, pIn2->n);
1637     assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1638     pIn2->flags = flags2;
1639   }
1640   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1641   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1642   pIn1->flags = flags1;
1643   pOut->z[nByte]=0;
1644   pOut->z[nByte+1] = 0;
1645   pOut->z[nByte+2] = 0;
1646   pOut->flags |= MEM_Term;
1647   pOut->n = (int)nByte;
1648   pOut->enc = encoding;
1649   UPDATE_MAX_BLOBSIZE(pOut);
1650   break;
1651 }
1652 
1653 /* Opcode: Add P1 P2 P3 * *
1654 ** Synopsis: r[P3]=r[P1]+r[P2]
1655 **
1656 ** Add the value in register P1 to the value in register P2
1657 ** and store the result in register P3.
1658 ** If either input is NULL, the result is NULL.
1659 */
1660 /* Opcode: Multiply P1 P2 P3 * *
1661 ** Synopsis: r[P3]=r[P1]*r[P2]
1662 **
1663 **
1664 ** Multiply the value in register P1 by the value in register P2
1665 ** and store the result in register P3.
1666 ** If either input is NULL, the result is NULL.
1667 */
1668 /* Opcode: Subtract P1 P2 P3 * *
1669 ** Synopsis: r[P3]=r[P2]-r[P1]
1670 **
1671 ** Subtract the value in register P1 from the value in register P2
1672 ** and store the result in register P3.
1673 ** If either input is NULL, the result is NULL.
1674 */
1675 /* Opcode: Divide P1 P2 P3 * *
1676 ** Synopsis: r[P3]=r[P2]/r[P1]
1677 **
1678 ** Divide the value in register P1 by the value in register P2
1679 ** and store the result in register P3 (P3=P2/P1). If the value in
1680 ** register P1 is zero, then the result is NULL. If either input is
1681 ** NULL, the result is NULL.
1682 */
1683 /* Opcode: Remainder P1 P2 P3 * *
1684 ** Synopsis: r[P3]=r[P2]%r[P1]
1685 **
1686 ** Compute the remainder after integer register P2 is divided by
1687 ** register P1 and store the result in register P3.
1688 ** If the value in register P1 is zero the result is NULL.
1689 ** If either operand is NULL, the result is NULL.
1690 */
1691 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1692 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1693 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1694 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1695 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1696   u16 flags;      /* Combined MEM_* flags from both inputs */
1697   u16 type1;      /* Numeric type of left operand */
1698   u16 type2;      /* Numeric type of right operand */
1699   i64 iA;         /* Integer value of left operand */
1700   i64 iB;         /* Integer value of right operand */
1701   double rA;      /* Real value of left operand */
1702   double rB;      /* Real value of right operand */
1703 
1704   pIn1 = &aMem[pOp->p1];
1705   type1 = numericType(pIn1);
1706   pIn2 = &aMem[pOp->p2];
1707   type2 = numericType(pIn2);
1708   pOut = &aMem[pOp->p3];
1709   flags = pIn1->flags | pIn2->flags;
1710   if( (type1 & type2 & MEM_Int)!=0 ){
1711     iA = pIn1->u.i;
1712     iB = pIn2->u.i;
1713     switch( pOp->opcode ){
1714       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1715       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1716       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1717       case OP_Divide: {
1718         if( iA==0 ) goto arithmetic_result_is_null;
1719         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1720         iB /= iA;
1721         break;
1722       }
1723       default: {
1724         if( iA==0 ) goto arithmetic_result_is_null;
1725         if( iA==-1 ) iA = 1;
1726         iB %= iA;
1727         break;
1728       }
1729     }
1730     pOut->u.i = iB;
1731     MemSetTypeFlag(pOut, MEM_Int);
1732   }else if( (flags & MEM_Null)!=0 ){
1733     goto arithmetic_result_is_null;
1734   }else{
1735 fp_math:
1736     rA = sqlite3VdbeRealValue(pIn1);
1737     rB = sqlite3VdbeRealValue(pIn2);
1738     switch( pOp->opcode ){
1739       case OP_Add:         rB += rA;       break;
1740       case OP_Subtract:    rB -= rA;       break;
1741       case OP_Multiply:    rB *= rA;       break;
1742       case OP_Divide: {
1743         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1744         if( rA==(double)0 ) goto arithmetic_result_is_null;
1745         rB /= rA;
1746         break;
1747       }
1748       default: {
1749         iA = sqlite3VdbeIntValue(pIn1);
1750         iB = sqlite3VdbeIntValue(pIn2);
1751         if( iA==0 ) goto arithmetic_result_is_null;
1752         if( iA==-1 ) iA = 1;
1753         rB = (double)(iB % iA);
1754         break;
1755       }
1756     }
1757 #ifdef SQLITE_OMIT_FLOATING_POINT
1758     pOut->u.i = rB;
1759     MemSetTypeFlag(pOut, MEM_Int);
1760 #else
1761     if( sqlite3IsNaN(rB) ){
1762       goto arithmetic_result_is_null;
1763     }
1764     pOut->u.r = rB;
1765     MemSetTypeFlag(pOut, MEM_Real);
1766 #endif
1767   }
1768   break;
1769 
1770 arithmetic_result_is_null:
1771   sqlite3VdbeMemSetNull(pOut);
1772   break;
1773 }
1774 
1775 /* Opcode: CollSeq P1 * * P4
1776 **
1777 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1778 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1779 ** be returned. This is used by the built-in min(), max() and nullif()
1780 ** functions.
1781 **
1782 ** If P1 is not zero, then it is a register that a subsequent min() or
1783 ** max() aggregate will set to 1 if the current row is not the minimum or
1784 ** maximum.  The P1 register is initialized to 0 by this instruction.
1785 **
1786 ** The interface used by the implementation of the aforementioned functions
1787 ** to retrieve the collation sequence set by this opcode is not available
1788 ** publicly.  Only built-in functions have access to this feature.
1789 */
1790 case OP_CollSeq: {
1791   assert( pOp->p4type==P4_COLLSEQ );
1792   if( pOp->p1 ){
1793     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1794   }
1795   break;
1796 }
1797 
1798 /* Opcode: BitAnd P1 P2 P3 * *
1799 ** Synopsis: r[P3]=r[P1]&r[P2]
1800 **
1801 ** Take the bit-wise AND of the values in register P1 and P2 and
1802 ** store the result in register P3.
1803 ** If either input is NULL, the result is NULL.
1804 */
1805 /* Opcode: BitOr P1 P2 P3 * *
1806 ** Synopsis: r[P3]=r[P1]|r[P2]
1807 **
1808 ** Take the bit-wise OR of the values in register P1 and P2 and
1809 ** store the result in register P3.
1810 ** If either input is NULL, the result is NULL.
1811 */
1812 /* Opcode: ShiftLeft P1 P2 P3 * *
1813 ** Synopsis: r[P3]=r[P2]<<r[P1]
1814 **
1815 ** Shift the integer value in register P2 to the left by the
1816 ** number of bits specified by the integer in register P1.
1817 ** Store the result in register P3.
1818 ** If either input is NULL, the result is NULL.
1819 */
1820 /* Opcode: ShiftRight P1 P2 P3 * *
1821 ** Synopsis: r[P3]=r[P2]>>r[P1]
1822 **
1823 ** Shift the integer value in register P2 to the right by the
1824 ** number of bits specified by the integer in register P1.
1825 ** Store the result in register P3.
1826 ** If either input is NULL, the result is NULL.
1827 */
1828 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1829 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1830 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1831 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1832   i64 iA;
1833   u64 uA;
1834   i64 iB;
1835   u8 op;
1836 
1837   pIn1 = &aMem[pOp->p1];
1838   pIn2 = &aMem[pOp->p2];
1839   pOut = &aMem[pOp->p3];
1840   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1841     sqlite3VdbeMemSetNull(pOut);
1842     break;
1843   }
1844   iA = sqlite3VdbeIntValue(pIn2);
1845   iB = sqlite3VdbeIntValue(pIn1);
1846   op = pOp->opcode;
1847   if( op==OP_BitAnd ){
1848     iA &= iB;
1849   }else if( op==OP_BitOr ){
1850     iA |= iB;
1851   }else if( iB!=0 ){
1852     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1853 
1854     /* If shifting by a negative amount, shift in the other direction */
1855     if( iB<0 ){
1856       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1857       op = 2*OP_ShiftLeft + 1 - op;
1858       iB = iB>(-64) ? -iB : 64;
1859     }
1860 
1861     if( iB>=64 ){
1862       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1863     }else{
1864       memcpy(&uA, &iA, sizeof(uA));
1865       if( op==OP_ShiftLeft ){
1866         uA <<= iB;
1867       }else{
1868         uA >>= iB;
1869         /* Sign-extend on a right shift of a negative number */
1870         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1871       }
1872       memcpy(&iA, &uA, sizeof(iA));
1873     }
1874   }
1875   pOut->u.i = iA;
1876   MemSetTypeFlag(pOut, MEM_Int);
1877   break;
1878 }
1879 
1880 /* Opcode: AddImm  P1 P2 * * *
1881 ** Synopsis: r[P1]=r[P1]+P2
1882 **
1883 ** Add the constant P2 to the value in register P1.
1884 ** The result is always an integer.
1885 **
1886 ** To force any register to be an integer, just add 0.
1887 */
1888 case OP_AddImm: {            /* in1 */
1889   pIn1 = &aMem[pOp->p1];
1890   memAboutToChange(p, pIn1);
1891   sqlite3VdbeMemIntegerify(pIn1);
1892   pIn1->u.i += pOp->p2;
1893   break;
1894 }
1895 
1896 /* Opcode: MustBeInt P1 P2 * * *
1897 **
1898 ** Force the value in register P1 to be an integer.  If the value
1899 ** in P1 is not an integer and cannot be converted into an integer
1900 ** without data loss, then jump immediately to P2, or if P2==0
1901 ** raise an SQLITE_MISMATCH exception.
1902 */
1903 case OP_MustBeInt: {            /* jump, in1 */
1904   pIn1 = &aMem[pOp->p1];
1905   if( (pIn1->flags & MEM_Int)==0 ){
1906     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1907     if( (pIn1->flags & MEM_Int)==0 ){
1908       VdbeBranchTaken(1, 2);
1909       if( pOp->p2==0 ){
1910         rc = SQLITE_MISMATCH;
1911         goto abort_due_to_error;
1912       }else{
1913         goto jump_to_p2;
1914       }
1915     }
1916   }
1917   VdbeBranchTaken(0, 2);
1918   MemSetTypeFlag(pIn1, MEM_Int);
1919   break;
1920 }
1921 
1922 #ifndef SQLITE_OMIT_FLOATING_POINT
1923 /* Opcode: RealAffinity P1 * * * *
1924 **
1925 ** If register P1 holds an integer convert it to a real value.
1926 **
1927 ** This opcode is used when extracting information from a column that
1928 ** has REAL affinity.  Such column values may still be stored as
1929 ** integers, for space efficiency, but after extraction we want them
1930 ** to have only a real value.
1931 */
1932 case OP_RealAffinity: {                  /* in1 */
1933   pIn1 = &aMem[pOp->p1];
1934   if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1935     testcase( pIn1->flags & MEM_Int );
1936     testcase( pIn1->flags & MEM_IntReal );
1937     sqlite3VdbeMemRealify(pIn1);
1938     REGISTER_TRACE(pOp->p1, pIn1);
1939   }
1940   break;
1941 }
1942 #endif
1943 
1944 #ifndef SQLITE_OMIT_CAST
1945 /* Opcode: Cast P1 P2 * * *
1946 ** Synopsis: affinity(r[P1])
1947 **
1948 ** Force the value in register P1 to be the type defined by P2.
1949 **
1950 ** <ul>
1951 ** <li> P2=='A' &rarr; BLOB
1952 ** <li> P2=='B' &rarr; TEXT
1953 ** <li> P2=='C' &rarr; NUMERIC
1954 ** <li> P2=='D' &rarr; INTEGER
1955 ** <li> P2=='E' &rarr; REAL
1956 ** </ul>
1957 **
1958 ** A NULL value is not changed by this routine.  It remains NULL.
1959 */
1960 case OP_Cast: {                  /* in1 */
1961   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1962   testcase( pOp->p2==SQLITE_AFF_TEXT );
1963   testcase( pOp->p2==SQLITE_AFF_BLOB );
1964   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1965   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1966   testcase( pOp->p2==SQLITE_AFF_REAL );
1967   pIn1 = &aMem[pOp->p1];
1968   memAboutToChange(p, pIn1);
1969   rc = ExpandBlob(pIn1);
1970   if( rc ) goto abort_due_to_error;
1971   rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1972   if( rc ) goto abort_due_to_error;
1973   UPDATE_MAX_BLOBSIZE(pIn1);
1974   REGISTER_TRACE(pOp->p1, pIn1);
1975   break;
1976 }
1977 #endif /* SQLITE_OMIT_CAST */
1978 
1979 /* Opcode: Eq P1 P2 P3 P4 P5
1980 ** Synopsis: IF r[P3]==r[P1]
1981 **
1982 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1983 ** jump to address P2.
1984 **
1985 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1986 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1987 ** to coerce both inputs according to this affinity before the
1988 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1989 ** affinity is used. Note that the affinity conversions are stored
1990 ** back into the input registers P1 and P3.  So this opcode can cause
1991 ** persistent changes to registers P1 and P3.
1992 **
1993 ** Once any conversions have taken place, and neither value is NULL,
1994 ** the values are compared. If both values are blobs then memcmp() is
1995 ** used to determine the results of the comparison.  If both values
1996 ** are text, then the appropriate collating function specified in
1997 ** P4 is used to do the comparison.  If P4 is not specified then
1998 ** memcmp() is used to compare text string.  If both values are
1999 ** numeric, then a numeric comparison is used. If the two values
2000 ** are of different types, then numbers are considered less than
2001 ** strings and strings are considered less than blobs.
2002 **
2003 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2004 ** true or false and is never NULL.  If both operands are NULL then the result
2005 ** of comparison is true.  If either operand is NULL then the result is false.
2006 ** If neither operand is NULL the result is the same as it would be if
2007 ** the SQLITE_NULLEQ flag were omitted from P5.
2008 **
2009 ** This opcode saves the result of comparison for use by the new
2010 ** OP_Jump opcode.
2011 */
2012 /* Opcode: Ne P1 P2 P3 P4 P5
2013 ** Synopsis: IF r[P3]!=r[P1]
2014 **
2015 ** This works just like the Eq opcode except that the jump is taken if
2016 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
2017 ** additional information.
2018 */
2019 /* Opcode: Lt P1 P2 P3 P4 P5
2020 ** Synopsis: IF r[P3]<r[P1]
2021 **
2022 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
2023 ** jump to address P2.
2024 **
2025 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2026 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
2027 ** bit is clear then fall through if either operand is NULL.
2028 **
2029 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2030 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2031 ** to coerce both inputs according to this affinity before the
2032 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2033 ** affinity is used. Note that the affinity conversions are stored
2034 ** back into the input registers P1 and P3.  So this opcode can cause
2035 ** persistent changes to registers P1 and P3.
2036 **
2037 ** Once any conversions have taken place, and neither value is NULL,
2038 ** the values are compared. If both values are blobs then memcmp() is
2039 ** used to determine the results of the comparison.  If both values
2040 ** are text, then the appropriate collating function specified in
2041 ** P4 is  used to do the comparison.  If P4 is not specified then
2042 ** memcmp() is used to compare text string.  If both values are
2043 ** numeric, then a numeric comparison is used. If the two values
2044 ** are of different types, then numbers are considered less than
2045 ** strings and strings are considered less than blobs.
2046 **
2047 ** This opcode saves the result of comparison for use by the new
2048 ** OP_Jump opcode.
2049 */
2050 /* Opcode: Le P1 P2 P3 P4 P5
2051 ** Synopsis: IF r[P3]<=r[P1]
2052 **
2053 ** This works just like the Lt opcode except that the jump is taken if
2054 ** the content of register P3 is less than or equal to the content of
2055 ** register P1.  See the Lt opcode for additional information.
2056 */
2057 /* Opcode: Gt P1 P2 P3 P4 P5
2058 ** Synopsis: IF r[P3]>r[P1]
2059 **
2060 ** This works just like the Lt opcode except that the jump is taken if
2061 ** the content of register P3 is greater than the content of
2062 ** register P1.  See the Lt opcode for additional information.
2063 */
2064 /* Opcode: Ge P1 P2 P3 P4 P5
2065 ** Synopsis: IF r[P3]>=r[P1]
2066 **
2067 ** This works just like the Lt opcode except that the jump is taken if
2068 ** the content of register P3 is greater than or equal to the content of
2069 ** register P1.  See the Lt opcode for additional information.
2070 */
2071 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
2072 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
2073 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
2074 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
2075 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
2076 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
2077   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
2078   char affinity;      /* Affinity to use for comparison */
2079   u16 flags1;         /* Copy of initial value of pIn1->flags */
2080   u16 flags3;         /* Copy of initial value of pIn3->flags */
2081 
2082   pIn1 = &aMem[pOp->p1];
2083   pIn3 = &aMem[pOp->p3];
2084   flags1 = pIn1->flags;
2085   flags3 = pIn3->flags;
2086   if( (flags1 & flags3 & MEM_Int)!=0 ){
2087     assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2088     /* Common case of comparison of two integers */
2089     if( pIn3->u.i > pIn1->u.i ){
2090       iCompare = +1;
2091       if( sqlite3aGTb[pOp->opcode] ){
2092         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2093         goto jump_to_p2;
2094       }
2095     }else if( pIn3->u.i < pIn1->u.i ){
2096       iCompare = -1;
2097       if( sqlite3aLTb[pOp->opcode] ){
2098         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2099         goto jump_to_p2;
2100       }
2101     }else{
2102       iCompare = 0;
2103       if( sqlite3aEQb[pOp->opcode] ){
2104         VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2105         goto jump_to_p2;
2106       }
2107     }
2108     VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2109     break;
2110   }
2111   if( (flags1 | flags3)&MEM_Null ){
2112     /* One or both operands are NULL */
2113     if( pOp->p5 & SQLITE_NULLEQ ){
2114       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2115       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2116       ** or not both operands are null.
2117       */
2118       assert( (flags1 & MEM_Cleared)==0 );
2119       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2120       testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2121       if( (flags1&flags3&MEM_Null)!=0
2122        && (flags3&MEM_Cleared)==0
2123       ){
2124         res = 0;  /* Operands are equal */
2125       }else{
2126         res = ((flags3 & MEM_Null) ? -1 : +1);  /* Operands are not equal */
2127       }
2128     }else{
2129       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2130       ** then the result is always NULL.
2131       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2132       */
2133       iCompare = 1;    /* Operands are not equal */
2134       VdbeBranchTaken(2,3);
2135       if( pOp->p5 & SQLITE_JUMPIFNULL ){
2136         goto jump_to_p2;
2137       }
2138       break;
2139     }
2140   }else{
2141     /* Neither operand is NULL and we couldn't do the special high-speed
2142     ** integer comparison case.  So do a general-case comparison. */
2143     affinity = pOp->p5 & SQLITE_AFF_MASK;
2144     if( affinity>=SQLITE_AFF_NUMERIC ){
2145       if( (flags1 | flags3)&MEM_Str ){
2146         if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2147           applyNumericAffinity(pIn1,0);
2148           testcase( flags3==pIn3->flags );
2149           flags3 = pIn3->flags;
2150         }
2151         if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2152           applyNumericAffinity(pIn3,0);
2153         }
2154       }
2155     }else if( affinity==SQLITE_AFF_TEXT ){
2156       if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2157         testcase( pIn1->flags & MEM_Int );
2158         testcase( pIn1->flags & MEM_Real );
2159         testcase( pIn1->flags & MEM_IntReal );
2160         sqlite3VdbeMemStringify(pIn1, encoding, 1);
2161         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2162         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2163         if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2164       }
2165       if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2166         testcase( pIn3->flags & MEM_Int );
2167         testcase( pIn3->flags & MEM_Real );
2168         testcase( pIn3->flags & MEM_IntReal );
2169         sqlite3VdbeMemStringify(pIn3, encoding, 1);
2170         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2171         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2172       }
2173     }
2174     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2175     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2176   }
2177 
2178   /* At this point, res is negative, zero, or positive if reg[P1] is
2179   ** less than, equal to, or greater than reg[P3], respectively.  Compute
2180   ** the answer to this operator in res2, depending on what the comparison
2181   ** operator actually is.  The next block of code depends on the fact
2182   ** that the 6 comparison operators are consecutive integers in this
2183   ** order:  NE, EQ, GT, LE, LT, GE */
2184   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2185   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2186   if( res<0 ){
2187     res2 = sqlite3aLTb[pOp->opcode];
2188   }else if( res==0 ){
2189     res2 = sqlite3aEQb[pOp->opcode];
2190   }else{
2191     res2 = sqlite3aGTb[pOp->opcode];
2192   }
2193   iCompare = res;
2194 
2195   /* Undo any changes made by applyAffinity() to the input registers. */
2196   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2197   pIn3->flags = flags3;
2198   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2199   pIn1->flags = flags1;
2200 
2201   VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2202   if( res2 ){
2203     goto jump_to_p2;
2204   }
2205   break;
2206 }
2207 
2208 /* Opcode: ElseEq * P2 * * *
2209 **
2210 ** This opcode must follow an OP_Lt or OP_Gt comparison operator.  There
2211 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2212 ** opcodes are allowed to occur between this instruction and the previous
2213 ** OP_Lt or OP_Gt.
2214 **
2215 ** If result of an OP_Eq comparison on the same two operands as the
2216 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2217 ** If the result of an OP_Eq comparison on the two previous
2218 ** operands would have been false or NULL, then fall through.
2219 */
2220 case OP_ElseEq: {       /* same as TK_ESCAPE, jump */
2221 
2222 #ifdef SQLITE_DEBUG
2223   /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2224   ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2225   int iAddr;
2226   for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2227     if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2228     assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2229     break;
2230   }
2231 #endif /* SQLITE_DEBUG */
2232   VdbeBranchTaken(iCompare==0, 2);
2233   if( iCompare==0 ) goto jump_to_p2;
2234   break;
2235 }
2236 
2237 
2238 /* Opcode: Permutation * * * P4 *
2239 **
2240 ** Set the permutation used by the OP_Compare operator in the next
2241 ** instruction.  The permutation is stored in the P4 operand.
2242 **
2243 ** The permutation is only valid until the next OP_Compare that has
2244 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2245 ** occur immediately prior to the OP_Compare.
2246 **
2247 ** The first integer in the P4 integer array is the length of the array
2248 ** and does not become part of the permutation.
2249 */
2250 case OP_Permutation: {
2251   assert( pOp->p4type==P4_INTARRAY );
2252   assert( pOp->p4.ai );
2253   assert( pOp[1].opcode==OP_Compare );
2254   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2255   break;
2256 }
2257 
2258 /* Opcode: Compare P1 P2 P3 P4 P5
2259 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2260 **
2261 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2262 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2263 ** the comparison for use by the next OP_Jump instruct.
2264 **
2265 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2266 ** determined by the most recent OP_Permutation operator.  If the
2267 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2268 ** order.
2269 **
2270 ** P4 is a KeyInfo structure that defines collating sequences and sort
2271 ** orders for the comparison.  The permutation applies to registers
2272 ** only.  The KeyInfo elements are used sequentially.
2273 **
2274 ** The comparison is a sort comparison, so NULLs compare equal,
2275 ** NULLs are less than numbers, numbers are less than strings,
2276 ** and strings are less than blobs.
2277 */
2278 case OP_Compare: {
2279   int n;
2280   int i;
2281   int p1;
2282   int p2;
2283   const KeyInfo *pKeyInfo;
2284   u32 idx;
2285   CollSeq *pColl;    /* Collating sequence to use on this term */
2286   int bRev;          /* True for DESCENDING sort order */
2287   u32 *aPermute;     /* The permutation */
2288 
2289   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2290     aPermute = 0;
2291   }else{
2292     assert( pOp>aOp );
2293     assert( pOp[-1].opcode==OP_Permutation );
2294     assert( pOp[-1].p4type==P4_INTARRAY );
2295     aPermute = pOp[-1].p4.ai + 1;
2296     assert( aPermute!=0 );
2297   }
2298   n = pOp->p3;
2299   pKeyInfo = pOp->p4.pKeyInfo;
2300   assert( n>0 );
2301   assert( pKeyInfo!=0 );
2302   p1 = pOp->p1;
2303   p2 = pOp->p2;
2304 #ifdef SQLITE_DEBUG
2305   if( aPermute ){
2306     int k, mx = 0;
2307     for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2308     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2309     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2310   }else{
2311     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2312     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2313   }
2314 #endif /* SQLITE_DEBUG */
2315   for(i=0; i<n; i++){
2316     idx = aPermute ? aPermute[i] : (u32)i;
2317     assert( memIsValid(&aMem[p1+idx]) );
2318     assert( memIsValid(&aMem[p2+idx]) );
2319     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2320     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2321     assert( i<pKeyInfo->nKeyField );
2322     pColl = pKeyInfo->aColl[i];
2323     bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2324     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2325     if( iCompare ){
2326       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2327        && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2328       ){
2329         iCompare = -iCompare;
2330       }
2331       if( bRev ) iCompare = -iCompare;
2332       break;
2333     }
2334   }
2335   break;
2336 }
2337 
2338 /* Opcode: Jump P1 P2 P3 * *
2339 **
2340 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2341 ** in the most recent OP_Compare instruction the P1 vector was less than
2342 ** equal to, or greater than the P2 vector, respectively.
2343 */
2344 case OP_Jump: {             /* jump */
2345   if( iCompare<0 ){
2346     VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2347   }else if( iCompare==0 ){
2348     VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2349   }else{
2350     VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2351   }
2352   break;
2353 }
2354 
2355 /* Opcode: And P1 P2 P3 * *
2356 ** Synopsis: r[P3]=(r[P1] && r[P2])
2357 **
2358 ** Take the logical AND of the values in registers P1 and P2 and
2359 ** write the result into register P3.
2360 **
2361 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2362 ** the other input is NULL.  A NULL and true or two NULLs give
2363 ** a NULL output.
2364 */
2365 /* Opcode: Or P1 P2 P3 * *
2366 ** Synopsis: r[P3]=(r[P1] || r[P2])
2367 **
2368 ** Take the logical OR of the values in register P1 and P2 and
2369 ** store the answer in register P3.
2370 **
2371 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2372 ** even if the other input is NULL.  A NULL and false or two NULLs
2373 ** give a NULL output.
2374 */
2375 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2376 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2377   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2378   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2379 
2380   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2381   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2382   if( pOp->opcode==OP_And ){
2383     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2384     v1 = and_logic[v1*3+v2];
2385   }else{
2386     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2387     v1 = or_logic[v1*3+v2];
2388   }
2389   pOut = &aMem[pOp->p3];
2390   if( v1==2 ){
2391     MemSetTypeFlag(pOut, MEM_Null);
2392   }else{
2393     pOut->u.i = v1;
2394     MemSetTypeFlag(pOut, MEM_Int);
2395   }
2396   break;
2397 }
2398 
2399 /* Opcode: IsTrue P1 P2 P3 P4 *
2400 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2401 **
2402 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2403 ** IS NOT FALSE operators.
2404 **
2405 ** Interpret the value in register P1 as a boolean value.  Store that
2406 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2407 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2408 ** is 1.
2409 **
2410 ** The logic is summarized like this:
2411 **
2412 ** <ul>
2413 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2414 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2415 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2416 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2417 ** </ul>
2418 */
2419 case OP_IsTrue: {               /* in1, out2 */
2420   assert( pOp->p4type==P4_INT32 );
2421   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2422   assert( pOp->p3==0 || pOp->p3==1 );
2423   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2424       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2425   break;
2426 }
2427 
2428 /* Opcode: Not P1 P2 * * *
2429 ** Synopsis: r[P2]= !r[P1]
2430 **
2431 ** Interpret the value in register P1 as a boolean value.  Store the
2432 ** boolean complement in register P2.  If the value in register P1 is
2433 ** NULL, then a NULL is stored in P2.
2434 */
2435 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2436   pIn1 = &aMem[pOp->p1];
2437   pOut = &aMem[pOp->p2];
2438   if( (pIn1->flags & MEM_Null)==0 ){
2439     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2440   }else{
2441     sqlite3VdbeMemSetNull(pOut);
2442   }
2443   break;
2444 }
2445 
2446 /* Opcode: BitNot P1 P2 * * *
2447 ** Synopsis: r[P2]= ~r[P1]
2448 **
2449 ** Interpret the content of register P1 as an integer.  Store the
2450 ** ones-complement of the P1 value into register P2.  If P1 holds
2451 ** a NULL then store a NULL in P2.
2452 */
2453 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2454   pIn1 = &aMem[pOp->p1];
2455   pOut = &aMem[pOp->p2];
2456   sqlite3VdbeMemSetNull(pOut);
2457   if( (pIn1->flags & MEM_Null)==0 ){
2458     pOut->flags = MEM_Int;
2459     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2460   }
2461   break;
2462 }
2463 
2464 /* Opcode: Once P1 P2 * * *
2465 **
2466 ** Fall through to the next instruction the first time this opcode is
2467 ** encountered on each invocation of the byte-code program.  Jump to P2
2468 ** on the second and all subsequent encounters during the same invocation.
2469 **
2470 ** Top-level programs determine first invocation by comparing the P1
2471 ** operand against the P1 operand on the OP_Init opcode at the beginning
2472 ** of the program.  If the P1 values differ, then fall through and make
2473 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2474 ** the same then take the jump.
2475 **
2476 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2477 ** whether or not the jump should be taken.  The bitmask is necessary
2478 ** because the self-altering code trick does not work for recursive
2479 ** triggers.
2480 */
2481 case OP_Once: {             /* jump */
2482   u32 iAddr;                /* Address of this instruction */
2483   assert( p->aOp[0].opcode==OP_Init );
2484   if( p->pFrame ){
2485     iAddr = (int)(pOp - p->aOp);
2486     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2487       VdbeBranchTaken(1, 2);
2488       goto jump_to_p2;
2489     }
2490     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2491   }else{
2492     if( p->aOp[0].p1==pOp->p1 ){
2493       VdbeBranchTaken(1, 2);
2494       goto jump_to_p2;
2495     }
2496   }
2497   VdbeBranchTaken(0, 2);
2498   pOp->p1 = p->aOp[0].p1;
2499   break;
2500 }
2501 
2502 /* Opcode: If P1 P2 P3 * *
2503 **
2504 ** Jump to P2 if the value in register P1 is true.  The value
2505 ** is considered true if it is numeric and non-zero.  If the value
2506 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2507 */
2508 case OP_If:  {               /* jump, in1 */
2509   int c;
2510   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2511   VdbeBranchTaken(c!=0, 2);
2512   if( c ) goto jump_to_p2;
2513   break;
2514 }
2515 
2516 /* Opcode: IfNot P1 P2 P3 * *
2517 **
2518 ** Jump to P2 if the value in register P1 is False.  The value
2519 ** is considered false if it has a numeric value of zero.  If the value
2520 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2521 */
2522 case OP_IfNot: {            /* jump, in1 */
2523   int c;
2524   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2525   VdbeBranchTaken(c!=0, 2);
2526   if( c ) goto jump_to_p2;
2527   break;
2528 }
2529 
2530 /* Opcode: IsNull P1 P2 * * *
2531 ** Synopsis: if r[P1]==NULL goto P2
2532 **
2533 ** Jump to P2 if the value in register P1 is NULL.
2534 */
2535 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2536   pIn1 = &aMem[pOp->p1];
2537   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2538   if( (pIn1->flags & MEM_Null)!=0 ){
2539     goto jump_to_p2;
2540   }
2541   break;
2542 }
2543 
2544 /* Opcode: IsNullOrType P1 P2 P3 * *
2545 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2546 **
2547 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2548 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2549 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2550 */
2551 case OP_IsNullOrType: {      /* jump, in1 */
2552   int doTheJump;
2553   pIn1 = &aMem[pOp->p1];
2554   doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
2555   VdbeBranchTaken( doTheJump, 2);
2556   if( doTheJump ) goto jump_to_p2;
2557   break;
2558 }
2559 
2560 /* Opcode: ZeroOrNull P1 P2 P3 * *
2561 ** Synopsis: r[P2] = 0 OR NULL
2562 **
2563 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2564 ** register P2.  If either registers P1 or P3 are NULL then put
2565 ** a NULL in register P2.
2566 */
2567 case OP_ZeroOrNull: {            /* in1, in2, out2, in3 */
2568   if( (aMem[pOp->p1].flags & MEM_Null)!=0
2569    || (aMem[pOp->p3].flags & MEM_Null)!=0
2570   ){
2571     sqlite3VdbeMemSetNull(aMem + pOp->p2);
2572   }else{
2573     sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2574   }
2575   break;
2576 }
2577 
2578 /* Opcode: NotNull P1 P2 * * *
2579 ** Synopsis: if r[P1]!=NULL goto P2
2580 **
2581 ** Jump to P2 if the value in register P1 is not NULL.
2582 */
2583 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2584   pIn1 = &aMem[pOp->p1];
2585   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2586   if( (pIn1->flags & MEM_Null)==0 ){
2587     goto jump_to_p2;
2588   }
2589   break;
2590 }
2591 
2592 /* Opcode: IfNullRow P1 P2 P3 * *
2593 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2594 **
2595 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2596 ** If it is, then set register P3 to NULL and jump immediately to P2.
2597 ** If P1 is not on a NULL row, then fall through without making any
2598 ** changes.
2599 */
2600 case OP_IfNullRow: {         /* jump */
2601   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2602   assert( p->apCsr[pOp->p1]!=0 );
2603   if( p->apCsr[pOp->p1]->nullRow ){
2604     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2605     goto jump_to_p2;
2606   }
2607   break;
2608 }
2609 
2610 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2611 /* Opcode: Offset P1 P2 P3 * *
2612 ** Synopsis: r[P3] = sqlite_offset(P1)
2613 **
2614 ** Store in register r[P3] the byte offset into the database file that is the
2615 ** start of the payload for the record at which that cursor P1 is currently
2616 ** pointing.
2617 **
2618 ** P2 is the column number for the argument to the sqlite_offset() function.
2619 ** This opcode does not use P2 itself, but the P2 value is used by the
2620 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2621 ** same as for OP_Column.
2622 **
2623 ** This opcode is only available if SQLite is compiled with the
2624 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2625 */
2626 case OP_Offset: {          /* out3 */
2627   VdbeCursor *pC;    /* The VDBE cursor */
2628   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2629   pC = p->apCsr[pOp->p1];
2630   pOut = &p->aMem[pOp->p3];
2631   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2632     sqlite3VdbeMemSetNull(pOut);
2633   }else{
2634     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2635   }
2636   break;
2637 }
2638 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2639 
2640 /* Opcode: Column P1 P2 P3 P4 P5
2641 ** Synopsis: r[P3]=PX
2642 **
2643 ** Interpret the data that cursor P1 points to as a structure built using
2644 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2645 ** information about the format of the data.)  Extract the P2-th column
2646 ** from this record.  If there are less that (P2+1)
2647 ** values in the record, extract a NULL.
2648 **
2649 ** The value extracted is stored in register P3.
2650 **
2651 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2652 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2653 ** the result.
2654 **
2655 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2656 ** the result is guaranteed to only be used as the argument of a length()
2657 ** or typeof() function, respectively.  The loading of large blobs can be
2658 ** skipped for length() and all content loading can be skipped for typeof().
2659 */
2660 case OP_Column: {
2661   u32 p2;            /* column number to retrieve */
2662   VdbeCursor *pC;    /* The VDBE cursor */
2663   BtCursor *pCrsr;   /* The BTree cursor */
2664   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2665   int len;           /* The length of the serialized data for the column */
2666   int i;             /* Loop counter */
2667   Mem *pDest;        /* Where to write the extracted value */
2668   Mem sMem;          /* For storing the record being decoded */
2669   const u8 *zData;   /* Part of the record being decoded */
2670   const u8 *zHdr;    /* Next unparsed byte of the header */
2671   const u8 *zEndHdr; /* Pointer to first byte after the header */
2672   u64 offset64;      /* 64-bit offset */
2673   u32 t;             /* A type code from the record header */
2674   Mem *pReg;         /* PseudoTable input register */
2675 
2676   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2677   pC = p->apCsr[pOp->p1];
2678   assert( pC!=0 );
2679   p2 = (u32)pOp->p2;
2680 
2681   /* If the cursor cache is stale (meaning it is not currently point at
2682   ** the correct row) then bring it up-to-date by doing the necessary
2683   ** B-Tree seek. */
2684   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2685   if( rc ) goto abort_due_to_error;
2686 
2687   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2688   pDest = &aMem[pOp->p3];
2689   memAboutToChange(p, pDest);
2690   assert( pC!=0 );
2691   assert( p2<(u32)pC->nField );
2692   aOffset = pC->aOffset;
2693   assert( aOffset==pC->aType+pC->nField );
2694   assert( pC->eCurType!=CURTYPE_VTAB );
2695   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2696   assert( pC->eCurType!=CURTYPE_SORTER );
2697 
2698   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2699     if( pC->nullRow ){
2700       if( pC->eCurType==CURTYPE_PSEUDO ){
2701         /* For the special case of as pseudo-cursor, the seekResult field
2702         ** identifies the register that holds the record */
2703         assert( pC->seekResult>0 );
2704         pReg = &aMem[pC->seekResult];
2705         assert( pReg->flags & MEM_Blob );
2706         assert( memIsValid(pReg) );
2707         pC->payloadSize = pC->szRow = pReg->n;
2708         pC->aRow = (u8*)pReg->z;
2709       }else{
2710         sqlite3VdbeMemSetNull(pDest);
2711         goto op_column_out;
2712       }
2713     }else{
2714       pCrsr = pC->uc.pCursor;
2715       assert( pC->eCurType==CURTYPE_BTREE );
2716       assert( pCrsr );
2717       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2718       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2719       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2720       assert( pC->szRow<=pC->payloadSize );
2721       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2722       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2723         goto too_big;
2724       }
2725     }
2726     pC->cacheStatus = p->cacheCtr;
2727     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2728     pC->nHdrParsed = 0;
2729 
2730 
2731     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2732       /* pC->aRow does not have to hold the entire row, but it does at least
2733       ** need to cover the header of the record.  If pC->aRow does not contain
2734       ** the complete header, then set it to zero, forcing the header to be
2735       ** dynamically allocated. */
2736       pC->aRow = 0;
2737       pC->szRow = 0;
2738 
2739       /* Make sure a corrupt database has not given us an oversize header.
2740       ** Do this now to avoid an oversize memory allocation.
2741       **
2742       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2743       ** types use so much data space that there can only be 4096 and 32 of
2744       ** them, respectively.  So the maximum header length results from a
2745       ** 3-byte type for each of the maximum of 32768 columns plus three
2746       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2747       */
2748       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2749         goto op_column_corrupt;
2750       }
2751     }else{
2752       /* This is an optimization.  By skipping over the first few tests
2753       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2754       ** measurable performance gain.
2755       **
2756       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2757       ** generated by SQLite, and could be considered corruption, but we
2758       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2759       ** branch jumps to reads past the end of the record, but never more
2760       ** than a few bytes.  Even if the record occurs at the end of the page
2761       ** content area, the "page header" comes after the page content and so
2762       ** this overread is harmless.  Similar overreads can occur for a corrupt
2763       ** database file.
2764       */
2765       zData = pC->aRow;
2766       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2767       testcase( aOffset[0]==0 );
2768       goto op_column_read_header;
2769     }
2770   }
2771 
2772   /* Make sure at least the first p2+1 entries of the header have been
2773   ** parsed and valid information is in aOffset[] and pC->aType[].
2774   */
2775   if( pC->nHdrParsed<=p2 ){
2776     /* If there is more header available for parsing in the record, try
2777     ** to extract additional fields up through the p2+1-th field
2778     */
2779     if( pC->iHdrOffset<aOffset[0] ){
2780       /* Make sure zData points to enough of the record to cover the header. */
2781       if( pC->aRow==0 ){
2782         memset(&sMem, 0, sizeof(sMem));
2783         rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2784         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2785         zData = (u8*)sMem.z;
2786       }else{
2787         zData = pC->aRow;
2788       }
2789 
2790       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2791     op_column_read_header:
2792       i = pC->nHdrParsed;
2793       offset64 = aOffset[i];
2794       zHdr = zData + pC->iHdrOffset;
2795       zEndHdr = zData + aOffset[0];
2796       testcase( zHdr>=zEndHdr );
2797       do{
2798         if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2799           zHdr++;
2800           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2801         }else{
2802           zHdr += sqlite3GetVarint32(zHdr, &t);
2803           pC->aType[i] = t;
2804           offset64 += sqlite3VdbeSerialTypeLen(t);
2805         }
2806         aOffset[++i] = (u32)(offset64 & 0xffffffff);
2807       }while( (u32)i<=p2 && zHdr<zEndHdr );
2808 
2809       /* The record is corrupt if any of the following are true:
2810       ** (1) the bytes of the header extend past the declared header size
2811       ** (2) the entire header was used but not all data was used
2812       ** (3) the end of the data extends beyond the end of the record.
2813       */
2814       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2815        || (offset64 > pC->payloadSize)
2816       ){
2817         if( aOffset[0]==0 ){
2818           i = 0;
2819           zHdr = zEndHdr;
2820         }else{
2821           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2822           goto op_column_corrupt;
2823         }
2824       }
2825 
2826       pC->nHdrParsed = i;
2827       pC->iHdrOffset = (u32)(zHdr - zData);
2828       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2829     }else{
2830       t = 0;
2831     }
2832 
2833     /* If after trying to extract new entries from the header, nHdrParsed is
2834     ** still not up to p2, that means that the record has fewer than p2
2835     ** columns.  So the result will be either the default value or a NULL.
2836     */
2837     if( pC->nHdrParsed<=p2 ){
2838       if( pOp->p4type==P4_MEM ){
2839         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2840       }else{
2841         sqlite3VdbeMemSetNull(pDest);
2842       }
2843       goto op_column_out;
2844     }
2845   }else{
2846     t = pC->aType[p2];
2847   }
2848 
2849   /* Extract the content for the p2+1-th column.  Control can only
2850   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2851   ** all valid.
2852   */
2853   assert( p2<pC->nHdrParsed );
2854   assert( rc==SQLITE_OK );
2855   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2856   if( VdbeMemDynamic(pDest) ){
2857     sqlite3VdbeMemSetNull(pDest);
2858   }
2859   assert( t==pC->aType[p2] );
2860   if( pC->szRow>=aOffset[p2+1] ){
2861     /* This is the common case where the desired content fits on the original
2862     ** page - where the content is not on an overflow page */
2863     zData = pC->aRow + aOffset[p2];
2864     if( t<12 ){
2865       sqlite3VdbeSerialGet(zData, t, pDest);
2866     }else{
2867       /* If the column value is a string, we need a persistent value, not
2868       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2869       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2870       */
2871       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2872       pDest->n = len = (t-12)/2;
2873       pDest->enc = encoding;
2874       if( pDest->szMalloc < len+2 ){
2875         pDest->flags = MEM_Null;
2876         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2877       }else{
2878         pDest->z = pDest->zMalloc;
2879       }
2880       memcpy(pDest->z, zData, len);
2881       pDest->z[len] = 0;
2882       pDest->z[len+1] = 0;
2883       pDest->flags = aFlag[t&1];
2884     }
2885   }else{
2886     pDest->enc = encoding;
2887     /* This branch happens only when content is on overflow pages */
2888     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2889           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2890      || (len = sqlite3VdbeSerialTypeLen(t))==0
2891     ){
2892       /* Content is irrelevant for
2893       **    1. the typeof() function,
2894       **    2. the length(X) function if X is a blob, and
2895       **    3. if the content length is zero.
2896       ** So we might as well use bogus content rather than reading
2897       ** content from disk.
2898       **
2899       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2900       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2901       ** read more.  Use the global constant sqlite3CtypeMap[] as the array,
2902       ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2903       ** and it begins with a bunch of zeros.
2904       */
2905       sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2906     }else{
2907       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2908       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2909       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2910       pDest->flags &= ~MEM_Ephem;
2911     }
2912   }
2913 
2914 op_column_out:
2915   UPDATE_MAX_BLOBSIZE(pDest);
2916   REGISTER_TRACE(pOp->p3, pDest);
2917   break;
2918 
2919 op_column_corrupt:
2920   if( aOp[0].p3>0 ){
2921     pOp = &aOp[aOp[0].p3-1];
2922     break;
2923   }else{
2924     rc = SQLITE_CORRUPT_BKPT;
2925     goto abort_due_to_error;
2926   }
2927 }
2928 
2929 /* Opcode: TypeCheck P1 P2 P3 P4 *
2930 ** Synopsis: typecheck(r[P1@P2])
2931 **
2932 ** Apply affinities to the range of P2 registers beginning with P1.
2933 ** Take the affinities from the Table object in P4.  If any value
2934 ** cannot be coerced into the correct type, then raise an error.
2935 **
2936 ** This opcode is similar to OP_Affinity except that this opcode
2937 ** forces the register type to the Table column type.  This is used
2938 ** to implement "strict affinity".
2939 **
2940 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
2941 ** is zero.  When P3 is non-zero, no type checking occurs for
2942 ** static generated columns.  Virtual columns are computed at query time
2943 ** and so they are never checked.
2944 **
2945 ** Preconditions:
2946 **
2947 ** <ul>
2948 ** <li> P2 should be the number of non-virtual columns in the
2949 **      table of P4.
2950 ** <li> Table P4 should be a STRICT table.
2951 ** </ul>
2952 **
2953 ** If any precondition is false, an assertion fault occurs.
2954 */
2955 case OP_TypeCheck: {
2956   Table *pTab;
2957   Column *aCol;
2958   int i;
2959 
2960   assert( pOp->p4type==P4_TABLE );
2961   pTab = pOp->p4.pTab;
2962   assert( pTab->tabFlags & TF_Strict );
2963   assert( pTab->nNVCol==pOp->p2 );
2964   aCol = pTab->aCol;
2965   pIn1 = &aMem[pOp->p1];
2966   for(i=0; i<pTab->nCol; i++){
2967     if( aCol[i].colFlags & COLFLAG_GENERATED ){
2968       if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
2969       if( pOp->p3 ){ pIn1++; continue; }
2970     }
2971     assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
2972     applyAffinity(pIn1, aCol[i].affinity, encoding);
2973     if( (pIn1->flags & MEM_Null)==0 ){
2974       switch( aCol[i].eCType ){
2975         case COLTYPE_BLOB: {
2976           if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
2977           break;
2978         }
2979         case COLTYPE_INTEGER:
2980         case COLTYPE_INT: {
2981           if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
2982           break;
2983         }
2984         case COLTYPE_TEXT: {
2985           if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
2986           break;
2987         }
2988         case COLTYPE_REAL: {
2989           if( pIn1->flags & MEM_Int ){
2990             /* When applying REAL affinity, if the result is still an MEM_Int
2991             ** that will fit in 6 bytes, then change the type to MEM_IntReal
2992             ** so that we keep the high-resolution integer value but know that
2993             ** the type really wants to be REAL. */
2994             testcase( pIn1->u.i==140737488355328LL );
2995             testcase( pIn1->u.i==140737488355327LL );
2996             testcase( pIn1->u.i==-140737488355328LL );
2997             testcase( pIn1->u.i==-140737488355329LL );
2998             if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
2999               pIn1->flags |= MEM_IntReal;
3000               pIn1->flags &= ~MEM_Int;
3001             }else{
3002               pIn1->u.r = (double)pIn1->u.i;
3003               pIn1->flags |= MEM_Real;
3004               pIn1->flags &= ~MEM_Int;
3005             }
3006           }else if( (pIn1->flags & MEM_Real)==0 ){
3007             goto vdbe_type_error;
3008           }
3009           break;
3010         }
3011         default: {
3012           /* COLTYPE_ANY.  Accept anything. */
3013           break;
3014         }
3015       }
3016     }
3017     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3018     pIn1++;
3019   }
3020   assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3021   break;
3022 
3023 vdbe_type_error:
3024   sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3025      vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3026      pTab->zName, aCol[i].zCnName);
3027   rc = SQLITE_CONSTRAINT_DATATYPE;
3028   goto abort_due_to_error;
3029 }
3030 
3031 /* Opcode: Affinity P1 P2 * P4 *
3032 ** Synopsis: affinity(r[P1@P2])
3033 **
3034 ** Apply affinities to a range of P2 registers starting with P1.
3035 **
3036 ** P4 is a string that is P2 characters long. The N-th character of the
3037 ** string indicates the column affinity that should be used for the N-th
3038 ** memory cell in the range.
3039 */
3040 case OP_Affinity: {
3041   const char *zAffinity;   /* The affinity to be applied */
3042 
3043   zAffinity = pOp->p4.z;
3044   assert( zAffinity!=0 );
3045   assert( pOp->p2>0 );
3046   assert( zAffinity[pOp->p2]==0 );
3047   pIn1 = &aMem[pOp->p1];
3048   while( 1 /*exit-by-break*/ ){
3049     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3050     assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3051     applyAffinity(pIn1, zAffinity[0], encoding);
3052     if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3053       /* When applying REAL affinity, if the result is still an MEM_Int
3054       ** that will fit in 6 bytes, then change the type to MEM_IntReal
3055       ** so that we keep the high-resolution integer value but know that
3056       ** the type really wants to be REAL. */
3057       testcase( pIn1->u.i==140737488355328LL );
3058       testcase( pIn1->u.i==140737488355327LL );
3059       testcase( pIn1->u.i==-140737488355328LL );
3060       testcase( pIn1->u.i==-140737488355329LL );
3061       if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3062         pIn1->flags |= MEM_IntReal;
3063         pIn1->flags &= ~MEM_Int;
3064       }else{
3065         pIn1->u.r = (double)pIn1->u.i;
3066         pIn1->flags |= MEM_Real;
3067         pIn1->flags &= ~MEM_Int;
3068       }
3069     }
3070     REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3071     zAffinity++;
3072     if( zAffinity[0]==0 ) break;
3073     pIn1++;
3074   }
3075   break;
3076 }
3077 
3078 /* Opcode: MakeRecord P1 P2 P3 P4 *
3079 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3080 **
3081 ** Convert P2 registers beginning with P1 into the [record format]
3082 ** use as a data record in a database table or as a key
3083 ** in an index.  The OP_Column opcode can decode the record later.
3084 **
3085 ** P4 may be a string that is P2 characters long.  The N-th character of the
3086 ** string indicates the column affinity that should be used for the N-th
3087 ** field of the index key.
3088 **
3089 ** The mapping from character to affinity is given by the SQLITE_AFF_
3090 ** macros defined in sqliteInt.h.
3091 **
3092 ** If P4 is NULL then all index fields have the affinity BLOB.
3093 **
3094 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3095 ** compile-time option is enabled:
3096 **
3097 **   * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3098 **     of the right-most table that can be null-trimmed.
3099 **
3100 **   * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3101 **     OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3102 **     accept no-change records with serial_type 10.  This value is
3103 **     only used inside an assert() and does not affect the end result.
3104 */
3105 case OP_MakeRecord: {
3106   Mem *pRec;             /* The new record */
3107   u64 nData;             /* Number of bytes of data space */
3108   int nHdr;              /* Number of bytes of header space */
3109   i64 nByte;             /* Data space required for this record */
3110   i64 nZero;             /* Number of zero bytes at the end of the record */
3111   int nVarint;           /* Number of bytes in a varint */
3112   u32 serial_type;       /* Type field */
3113   Mem *pData0;           /* First field to be combined into the record */
3114   Mem *pLast;            /* Last field of the record */
3115   int nField;            /* Number of fields in the record */
3116   char *zAffinity;       /* The affinity string for the record */
3117   int file_format;       /* File format to use for encoding */
3118   u32 len;               /* Length of a field */
3119   u8 *zHdr;              /* Where to write next byte of the header */
3120   u8 *zPayload;          /* Where to write next byte of the payload */
3121 
3122   /* Assuming the record contains N fields, the record format looks
3123   ** like this:
3124   **
3125   ** ------------------------------------------------------------------------
3126   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3127   ** ------------------------------------------------------------------------
3128   **
3129   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
3130   ** and so forth.
3131   **
3132   ** Each type field is a varint representing the serial type of the
3133   ** corresponding data element (see sqlite3VdbeSerialType()). The
3134   ** hdr-size field is also a varint which is the offset from the beginning
3135   ** of the record to data0.
3136   */
3137   nData = 0;         /* Number of bytes of data space */
3138   nHdr = 0;          /* Number of bytes of header space */
3139   nZero = 0;         /* Number of zero bytes at the end of the record */
3140   nField = pOp->p1;
3141   zAffinity = pOp->p4.z;
3142   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3143   pData0 = &aMem[nField];
3144   nField = pOp->p2;
3145   pLast = &pData0[nField-1];
3146   file_format = p->minWriteFileFormat;
3147 
3148   /* Identify the output register */
3149   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3150   pOut = &aMem[pOp->p3];
3151   memAboutToChange(p, pOut);
3152 
3153   /* Apply the requested affinity to all inputs
3154   */
3155   assert( pData0<=pLast );
3156   if( zAffinity ){
3157     pRec = pData0;
3158     do{
3159       applyAffinity(pRec, zAffinity[0], encoding);
3160       if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3161         pRec->flags |= MEM_IntReal;
3162         pRec->flags &= ~(MEM_Int);
3163       }
3164       REGISTER_TRACE((int)(pRec-aMem), pRec);
3165       zAffinity++;
3166       pRec++;
3167       assert( zAffinity[0]==0 || pRec<=pLast );
3168     }while( zAffinity[0] );
3169   }
3170 
3171 #ifdef SQLITE_ENABLE_NULL_TRIM
3172   /* NULLs can be safely trimmed from the end of the record, as long as
3173   ** as the schema format is 2 or more and none of the omitted columns
3174   ** have a non-NULL default value.  Also, the record must be left with
3175   ** at least one field.  If P5>0 then it will be one more than the
3176   ** index of the right-most column with a non-NULL default value */
3177   if( pOp->p5 ){
3178     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3179       pLast--;
3180       nField--;
3181     }
3182   }
3183 #endif
3184 
3185   /* Loop through the elements that will make up the record to figure
3186   ** out how much space is required for the new record.  After this loop,
3187   ** the Mem.uTemp field of each term should hold the serial-type that will
3188   ** be used for that term in the generated record:
3189   **
3190   **   Mem.uTemp value    type
3191   **   ---------------    ---------------
3192   **      0               NULL
3193   **      1               1-byte signed integer
3194   **      2               2-byte signed integer
3195   **      3               3-byte signed integer
3196   **      4               4-byte signed integer
3197   **      5               6-byte signed integer
3198   **      6               8-byte signed integer
3199   **      7               IEEE float
3200   **      8               Integer constant 0
3201   **      9               Integer constant 1
3202   **     10,11            reserved for expansion
3203   **    N>=12 and even    BLOB
3204   **    N>=13 and odd     text
3205   **
3206   ** The following additional values are computed:
3207   **     nHdr        Number of bytes needed for the record header
3208   **     nData       Number of bytes of data space needed for the record
3209   **     nZero       Zero bytes at the end of the record
3210   */
3211   pRec = pLast;
3212   do{
3213     assert( memIsValid(pRec) );
3214     if( pRec->flags & MEM_Null ){
3215       if( pRec->flags & MEM_Zero ){
3216         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3217         ** table methods that never invoke sqlite3_result_xxxxx() while
3218         ** computing an unchanging column value in an UPDATE statement.
3219         ** Give such values a special internal-use-only serial-type of 10
3220         ** so that they can be passed through to xUpdate and have
3221         ** a true sqlite3_value_nochange(). */
3222 #ifndef SQLITE_ENABLE_NULL_TRIM
3223         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3224 #endif
3225         pRec->uTemp = 10;
3226       }else{
3227         pRec->uTemp = 0;
3228       }
3229       nHdr++;
3230     }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3231       /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3232       i64 i = pRec->u.i;
3233       u64 uu;
3234       testcase( pRec->flags & MEM_Int );
3235       testcase( pRec->flags & MEM_IntReal );
3236       if( i<0 ){
3237         uu = ~i;
3238       }else{
3239         uu = i;
3240       }
3241       nHdr++;
3242       testcase( uu==127 );               testcase( uu==128 );
3243       testcase( uu==32767 );             testcase( uu==32768 );
3244       testcase( uu==8388607 );           testcase( uu==8388608 );
3245       testcase( uu==2147483647 );        testcase( uu==2147483648 );
3246       testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3247       if( uu<=127 ){
3248         if( (i&1)==i && file_format>=4 ){
3249           pRec->uTemp = 8+(u32)uu;
3250         }else{
3251           nData++;
3252           pRec->uTemp = 1;
3253         }
3254       }else if( uu<=32767 ){
3255         nData += 2;
3256         pRec->uTemp = 2;
3257       }else if( uu<=8388607 ){
3258         nData += 3;
3259         pRec->uTemp = 3;
3260       }else if( uu<=2147483647 ){
3261         nData += 4;
3262         pRec->uTemp = 4;
3263       }else if( uu<=140737488355327LL ){
3264         nData += 6;
3265         pRec->uTemp = 5;
3266       }else{
3267         nData += 8;
3268         if( pRec->flags & MEM_IntReal ){
3269           /* If the value is IntReal and is going to take up 8 bytes to store
3270           ** as an integer, then we might as well make it an 8-byte floating
3271           ** point value */
3272           pRec->u.r = (double)pRec->u.i;
3273           pRec->flags &= ~MEM_IntReal;
3274           pRec->flags |= MEM_Real;
3275           pRec->uTemp = 7;
3276         }else{
3277           pRec->uTemp = 6;
3278         }
3279       }
3280     }else if( pRec->flags & MEM_Real ){
3281       nHdr++;
3282       nData += 8;
3283       pRec->uTemp = 7;
3284     }else{
3285       assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3286       assert( pRec->n>=0 );
3287       len = (u32)pRec->n;
3288       serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3289       if( pRec->flags & MEM_Zero ){
3290         serial_type += pRec->u.nZero*2;
3291         if( nData ){
3292           if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3293           len += pRec->u.nZero;
3294         }else{
3295           nZero += pRec->u.nZero;
3296         }
3297       }
3298       nData += len;
3299       nHdr += sqlite3VarintLen(serial_type);
3300       pRec->uTemp = serial_type;
3301     }
3302     if( pRec==pData0 ) break;
3303     pRec--;
3304   }while(1);
3305 
3306   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3307   ** which determines the total number of bytes in the header. The varint
3308   ** value is the size of the header in bytes including the size varint
3309   ** itself. */
3310   testcase( nHdr==126 );
3311   testcase( nHdr==127 );
3312   if( nHdr<=126 ){
3313     /* The common case */
3314     nHdr += 1;
3315   }else{
3316     /* Rare case of a really large header */
3317     nVarint = sqlite3VarintLen(nHdr);
3318     nHdr += nVarint;
3319     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3320   }
3321   nByte = nHdr+nData;
3322 
3323   /* Make sure the output register has a buffer large enough to store
3324   ** the new record. The output register (pOp->p3) is not allowed to
3325   ** be one of the input registers (because the following call to
3326   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3327   */
3328   if( nByte+nZero<=pOut->szMalloc ){
3329     /* The output register is already large enough to hold the record.
3330     ** No error checks or buffer enlargement is required */
3331     pOut->z = pOut->zMalloc;
3332   }else{
3333     /* Need to make sure that the output is not too big and then enlarge
3334     ** the output register to hold the full result */
3335     if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3336       goto too_big;
3337     }
3338     if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3339       goto no_mem;
3340     }
3341   }
3342   pOut->n = (int)nByte;
3343   pOut->flags = MEM_Blob;
3344   if( nZero ){
3345     pOut->u.nZero = nZero;
3346     pOut->flags |= MEM_Zero;
3347   }
3348   UPDATE_MAX_BLOBSIZE(pOut);
3349   zHdr = (u8 *)pOut->z;
3350   zPayload = zHdr + nHdr;
3351 
3352   /* Write the record */
3353   zHdr += putVarint32(zHdr, nHdr);
3354   assert( pData0<=pLast );
3355   pRec = pData0;
3356   do{
3357     serial_type = pRec->uTemp;
3358     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3359     ** additional varints, one per column. */
3360     zHdr += putVarint32(zHdr, serial_type);            /* serial type */
3361     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
3362     ** immediately follow the header. */
3363     zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */
3364   }while( (++pRec)<=pLast );
3365   assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3366   assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3367 
3368   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3369   REGISTER_TRACE(pOp->p3, pOut);
3370   break;
3371 }
3372 
3373 /* Opcode: Count P1 P2 P3 * *
3374 ** Synopsis: r[P2]=count()
3375 **
3376 ** Store the number of entries (an integer value) in the table or index
3377 ** opened by cursor P1 in register P2.
3378 **
3379 ** If P3==0, then an exact count is obtained, which involves visiting
3380 ** every btree page of the table.  But if P3 is non-zero, an estimate
3381 ** is returned based on the current cursor position.
3382 */
3383 case OP_Count: {         /* out2 */
3384   i64 nEntry;
3385   BtCursor *pCrsr;
3386 
3387   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3388   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3389   assert( pCrsr );
3390   if( pOp->p3 ){
3391     nEntry = sqlite3BtreeRowCountEst(pCrsr);
3392   }else{
3393     nEntry = 0;  /* Not needed.  Only used to silence a warning. */
3394     rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3395     if( rc ) goto abort_due_to_error;
3396   }
3397   pOut = out2Prerelease(p, pOp);
3398   pOut->u.i = nEntry;
3399   goto check_for_interrupt;
3400 }
3401 
3402 /* Opcode: Savepoint P1 * * P4 *
3403 **
3404 ** Open, release or rollback the savepoint named by parameter P4, depending
3405 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3406 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3407 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3408 */
3409 case OP_Savepoint: {
3410   int p1;                         /* Value of P1 operand */
3411   char *zName;                    /* Name of savepoint */
3412   int nName;
3413   Savepoint *pNew;
3414   Savepoint *pSavepoint;
3415   Savepoint *pTmp;
3416   int iSavepoint;
3417   int ii;
3418 
3419   p1 = pOp->p1;
3420   zName = pOp->p4.z;
3421 
3422   /* Assert that the p1 parameter is valid. Also that if there is no open
3423   ** transaction, then there cannot be any savepoints.
3424   */
3425   assert( db->pSavepoint==0 || db->autoCommit==0 );
3426   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3427   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3428   assert( checkSavepointCount(db) );
3429   assert( p->bIsReader );
3430 
3431   if( p1==SAVEPOINT_BEGIN ){
3432     if( db->nVdbeWrite>0 ){
3433       /* A new savepoint cannot be created if there are active write
3434       ** statements (i.e. open read/write incremental blob handles).
3435       */
3436       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3437       rc = SQLITE_BUSY;
3438     }else{
3439       nName = sqlite3Strlen30(zName);
3440 
3441 #ifndef SQLITE_OMIT_VIRTUALTABLE
3442       /* This call is Ok even if this savepoint is actually a transaction
3443       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3444       ** If this is a transaction savepoint being opened, it is guaranteed
3445       ** that the db->aVTrans[] array is empty.  */
3446       assert( db->autoCommit==0 || db->nVTrans==0 );
3447       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3448                                 db->nStatement+db->nSavepoint);
3449       if( rc!=SQLITE_OK ) goto abort_due_to_error;
3450 #endif
3451 
3452       /* Create a new savepoint structure. */
3453       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3454       if( pNew ){
3455         pNew->zName = (char *)&pNew[1];
3456         memcpy(pNew->zName, zName, nName+1);
3457 
3458         /* If there is no open transaction, then mark this as a special
3459         ** "transaction savepoint". */
3460         if( db->autoCommit ){
3461           db->autoCommit = 0;
3462           db->isTransactionSavepoint = 1;
3463         }else{
3464           db->nSavepoint++;
3465         }
3466 
3467         /* Link the new savepoint into the database handle's list. */
3468         pNew->pNext = db->pSavepoint;
3469         db->pSavepoint = pNew;
3470         pNew->nDeferredCons = db->nDeferredCons;
3471         pNew->nDeferredImmCons = db->nDeferredImmCons;
3472       }
3473     }
3474   }else{
3475     assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3476     iSavepoint = 0;
3477 
3478     /* Find the named savepoint. If there is no such savepoint, then an
3479     ** an error is returned to the user.  */
3480     for(
3481       pSavepoint = db->pSavepoint;
3482       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3483       pSavepoint = pSavepoint->pNext
3484     ){
3485       iSavepoint++;
3486     }
3487     if( !pSavepoint ){
3488       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3489       rc = SQLITE_ERROR;
3490     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3491       /* It is not possible to release (commit) a savepoint if there are
3492       ** active write statements.
3493       */
3494       sqlite3VdbeError(p, "cannot release savepoint - "
3495                           "SQL statements in progress");
3496       rc = SQLITE_BUSY;
3497     }else{
3498 
3499       /* Determine whether or not this is a transaction savepoint. If so,
3500       ** and this is a RELEASE command, then the current transaction
3501       ** is committed.
3502       */
3503       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3504       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3505         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3506           goto vdbe_return;
3507         }
3508         db->autoCommit = 1;
3509         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3510           p->pc = (int)(pOp - aOp);
3511           db->autoCommit = 0;
3512           p->rc = rc = SQLITE_BUSY;
3513           goto vdbe_return;
3514         }
3515         rc = p->rc;
3516         if( rc ){
3517           db->autoCommit = 0;
3518         }else{
3519           db->isTransactionSavepoint = 0;
3520         }
3521       }else{
3522         int isSchemaChange;
3523         iSavepoint = db->nSavepoint - iSavepoint - 1;
3524         if( p1==SAVEPOINT_ROLLBACK ){
3525           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3526           for(ii=0; ii<db->nDb; ii++){
3527             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3528                                        SQLITE_ABORT_ROLLBACK,
3529                                        isSchemaChange==0);
3530             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3531           }
3532         }else{
3533           assert( p1==SAVEPOINT_RELEASE );
3534           isSchemaChange = 0;
3535         }
3536         for(ii=0; ii<db->nDb; ii++){
3537           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3538           if( rc!=SQLITE_OK ){
3539             goto abort_due_to_error;
3540           }
3541         }
3542         if( isSchemaChange ){
3543           sqlite3ExpirePreparedStatements(db, 0);
3544           sqlite3ResetAllSchemasOfConnection(db);
3545           db->mDbFlags |= DBFLAG_SchemaChange;
3546         }
3547       }
3548       if( rc ) goto abort_due_to_error;
3549 
3550       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3551       ** savepoints nested inside of the savepoint being operated on. */
3552       while( db->pSavepoint!=pSavepoint ){
3553         pTmp = db->pSavepoint;
3554         db->pSavepoint = pTmp->pNext;
3555         sqlite3DbFree(db, pTmp);
3556         db->nSavepoint--;
3557       }
3558 
3559       /* If it is a RELEASE, then destroy the savepoint being operated on
3560       ** too. If it is a ROLLBACK TO, then set the number of deferred
3561       ** constraint violations present in the database to the value stored
3562       ** when the savepoint was created.  */
3563       if( p1==SAVEPOINT_RELEASE ){
3564         assert( pSavepoint==db->pSavepoint );
3565         db->pSavepoint = pSavepoint->pNext;
3566         sqlite3DbFree(db, pSavepoint);
3567         if( !isTransaction ){
3568           db->nSavepoint--;
3569         }
3570       }else{
3571         assert( p1==SAVEPOINT_ROLLBACK );
3572         db->nDeferredCons = pSavepoint->nDeferredCons;
3573         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3574       }
3575 
3576       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3577         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3578         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3579       }
3580     }
3581   }
3582   if( rc ) goto abort_due_to_error;
3583 
3584   break;
3585 }
3586 
3587 /* Opcode: AutoCommit P1 P2 * * *
3588 **
3589 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3590 ** back any currently active btree transactions. If there are any active
3591 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3592 ** there are active writing VMs or active VMs that use shared cache.
3593 **
3594 ** This instruction causes the VM to halt.
3595 */
3596 case OP_AutoCommit: {
3597   int desiredAutoCommit;
3598   int iRollback;
3599 
3600   desiredAutoCommit = pOp->p1;
3601   iRollback = pOp->p2;
3602   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3603   assert( desiredAutoCommit==1 || iRollback==0 );
3604   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3605   assert( p->bIsReader );
3606 
3607   if( desiredAutoCommit!=db->autoCommit ){
3608     if( iRollback ){
3609       assert( desiredAutoCommit==1 );
3610       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3611       db->autoCommit = 1;
3612     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3613       /* If this instruction implements a COMMIT and other VMs are writing
3614       ** return an error indicating that the other VMs must complete first.
3615       */
3616       sqlite3VdbeError(p, "cannot commit transaction - "
3617                           "SQL statements in progress");
3618       rc = SQLITE_BUSY;
3619       goto abort_due_to_error;
3620     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3621       goto vdbe_return;
3622     }else{
3623       db->autoCommit = (u8)desiredAutoCommit;
3624     }
3625     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3626       p->pc = (int)(pOp - aOp);
3627       db->autoCommit = (u8)(1-desiredAutoCommit);
3628       p->rc = rc = SQLITE_BUSY;
3629       goto vdbe_return;
3630     }
3631     sqlite3CloseSavepoints(db);
3632     if( p->rc==SQLITE_OK ){
3633       rc = SQLITE_DONE;
3634     }else{
3635       rc = SQLITE_ERROR;
3636     }
3637     goto vdbe_return;
3638   }else{
3639     sqlite3VdbeError(p,
3640         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3641         (iRollback)?"cannot rollback - no transaction is active":
3642                    "cannot commit - no transaction is active"));
3643 
3644     rc = SQLITE_ERROR;
3645     goto abort_due_to_error;
3646   }
3647   /*NOTREACHED*/ assert(0);
3648 }
3649 
3650 /* Opcode: Transaction P1 P2 P3 P4 P5
3651 **
3652 ** Begin a transaction on database P1 if a transaction is not already
3653 ** active.
3654 ** If P2 is non-zero, then a write-transaction is started, or if a
3655 ** read-transaction is already active, it is upgraded to a write-transaction.
3656 ** If P2 is zero, then a read-transaction is started.  If P2 is 2 or more
3657 ** then an exclusive transaction is started.
3658 **
3659 ** P1 is the index of the database file on which the transaction is
3660 ** started.  Index 0 is the main database file and index 1 is the
3661 ** file used for temporary tables.  Indices of 2 or more are used for
3662 ** attached databases.
3663 **
3664 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3665 ** true (this flag is set if the Vdbe may modify more than one row and may
3666 ** throw an ABORT exception), a statement transaction may also be opened.
3667 ** More specifically, a statement transaction is opened iff the database
3668 ** connection is currently not in autocommit mode, or if there are other
3669 ** active statements. A statement transaction allows the changes made by this
3670 ** VDBE to be rolled back after an error without having to roll back the
3671 ** entire transaction. If no error is encountered, the statement transaction
3672 ** will automatically commit when the VDBE halts.
3673 **
3674 ** If P5!=0 then this opcode also checks the schema cookie against P3
3675 ** and the schema generation counter against P4.
3676 ** The cookie changes its value whenever the database schema changes.
3677 ** This operation is used to detect when that the cookie has changed
3678 ** and that the current process needs to reread the schema.  If the schema
3679 ** cookie in P3 differs from the schema cookie in the database header or
3680 ** if the schema generation counter in P4 differs from the current
3681 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3682 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3683 ** statement and rerun it from the beginning.
3684 */
3685 case OP_Transaction: {
3686   Btree *pBt;
3687   int iMeta = 0;
3688 
3689   assert( p->bIsReader );
3690   assert( p->readOnly==0 || pOp->p2==0 );
3691   assert( pOp->p2>=0 && pOp->p2<=2 );
3692   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3693   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3694   assert( rc==SQLITE_OK );
3695   if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3696     if( db->flags & SQLITE_QueryOnly ){
3697       /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3698       rc = SQLITE_READONLY;
3699     }else{
3700       /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3701       ** transaction */
3702       rc = SQLITE_CORRUPT;
3703     }
3704     goto abort_due_to_error;
3705   }
3706   pBt = db->aDb[pOp->p1].pBt;
3707 
3708   if( pBt ){
3709     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3710     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3711     testcase( rc==SQLITE_BUSY_RECOVERY );
3712     if( rc!=SQLITE_OK ){
3713       if( (rc&0xff)==SQLITE_BUSY ){
3714         p->pc = (int)(pOp - aOp);
3715         p->rc = rc;
3716         goto vdbe_return;
3717       }
3718       goto abort_due_to_error;
3719     }
3720 
3721     if( p->usesStmtJournal
3722      && pOp->p2
3723      && (db->autoCommit==0 || db->nVdbeRead>1)
3724     ){
3725       assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3726       if( p->iStatement==0 ){
3727         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3728         db->nStatement++;
3729         p->iStatement = db->nSavepoint + db->nStatement;
3730       }
3731 
3732       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3733       if( rc==SQLITE_OK ){
3734         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3735       }
3736 
3737       /* Store the current value of the database handles deferred constraint
3738       ** counter. If the statement transaction needs to be rolled back,
3739       ** the value of this counter needs to be restored too.  */
3740       p->nStmtDefCons = db->nDeferredCons;
3741       p->nStmtDefImmCons = db->nDeferredImmCons;
3742     }
3743   }
3744   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3745   if( rc==SQLITE_OK
3746    && pOp->p5
3747    && (iMeta!=pOp->p3
3748       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3749   ){
3750     /*
3751     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3752     ** version is checked to ensure that the schema has not changed since the
3753     ** SQL statement was prepared.
3754     */
3755     sqlite3DbFree(db, p->zErrMsg);
3756     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3757     /* If the schema-cookie from the database file matches the cookie
3758     ** stored with the in-memory representation of the schema, do
3759     ** not reload the schema from the database file.
3760     **
3761     ** If virtual-tables are in use, this is not just an optimization.
3762     ** Often, v-tables store their data in other SQLite tables, which
3763     ** are queried from within xNext() and other v-table methods using
3764     ** prepared queries. If such a query is out-of-date, we do not want to
3765     ** discard the database schema, as the user code implementing the
3766     ** v-table would have to be ready for the sqlite3_vtab structure itself
3767     ** to be invalidated whenever sqlite3_step() is called from within
3768     ** a v-table method.
3769     */
3770     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3771       sqlite3ResetOneSchema(db, pOp->p1);
3772     }
3773     p->expired = 1;
3774     rc = SQLITE_SCHEMA;
3775   }
3776   if( rc ) goto abort_due_to_error;
3777   break;
3778 }
3779 
3780 /* Opcode: ReadCookie P1 P2 P3 * *
3781 **
3782 ** Read cookie number P3 from database P1 and write it into register P2.
3783 ** P3==1 is the schema version.  P3==2 is the database format.
3784 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3785 ** the main database file and P1==1 is the database file used to store
3786 ** temporary tables.
3787 **
3788 ** There must be a read-lock on the database (either a transaction
3789 ** must be started or there must be an open cursor) before
3790 ** executing this instruction.
3791 */
3792 case OP_ReadCookie: {               /* out2 */
3793   int iMeta;
3794   int iDb;
3795   int iCookie;
3796 
3797   assert( p->bIsReader );
3798   iDb = pOp->p1;
3799   iCookie = pOp->p3;
3800   assert( pOp->p3<SQLITE_N_BTREE_META );
3801   assert( iDb>=0 && iDb<db->nDb );
3802   assert( db->aDb[iDb].pBt!=0 );
3803   assert( DbMaskTest(p->btreeMask, iDb) );
3804 
3805   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3806   pOut = out2Prerelease(p, pOp);
3807   pOut->u.i = iMeta;
3808   break;
3809 }
3810 
3811 /* Opcode: SetCookie P1 P2 P3 * P5
3812 **
3813 ** Write the integer value P3 into cookie number P2 of database P1.
3814 ** P2==1 is the schema version.  P2==2 is the database format.
3815 ** P2==3 is the recommended pager cache
3816 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3817 ** database file used to store temporary tables.
3818 **
3819 ** A transaction must be started before executing this opcode.
3820 **
3821 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3822 ** schema version is set to P3-P5.  The "PRAGMA schema_version=N" statement
3823 ** has P5 set to 1, so that the internal schema version will be different
3824 ** from the database schema version, resulting in a schema reset.
3825 */
3826 case OP_SetCookie: {
3827   Db *pDb;
3828 
3829   sqlite3VdbeIncrWriteCounter(p, 0);
3830   assert( pOp->p2<SQLITE_N_BTREE_META );
3831   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3832   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3833   assert( p->readOnly==0 );
3834   pDb = &db->aDb[pOp->p1];
3835   assert( pDb->pBt!=0 );
3836   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3837   /* See note about index shifting on OP_ReadCookie */
3838   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3839   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3840     /* When the schema cookie changes, record the new cookie internally */
3841     pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5;
3842     db->mDbFlags |= DBFLAG_SchemaChange;
3843     sqlite3FkClearTriggerCache(db, pOp->p1);
3844   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3845     /* Record changes in the file format */
3846     pDb->pSchema->file_format = pOp->p3;
3847   }
3848   if( pOp->p1==1 ){
3849     /* Invalidate all prepared statements whenever the TEMP database
3850     ** schema is changed.  Ticket #1644 */
3851     sqlite3ExpirePreparedStatements(db, 0);
3852     p->expired = 0;
3853   }
3854   if( rc ) goto abort_due_to_error;
3855   break;
3856 }
3857 
3858 /* Opcode: OpenRead P1 P2 P3 P4 P5
3859 ** Synopsis: root=P2 iDb=P3
3860 **
3861 ** Open a read-only cursor for the database table whose root page is
3862 ** P2 in a database file.  The database file is determined by P3.
3863 ** P3==0 means the main database, P3==1 means the database used for
3864 ** temporary tables, and P3>1 means used the corresponding attached
3865 ** database.  Give the new cursor an identifier of P1.  The P1
3866 ** values need not be contiguous but all P1 values should be small integers.
3867 ** It is an error for P1 to be negative.
3868 **
3869 ** Allowed P5 bits:
3870 ** <ul>
3871 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3872 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3873 **       of OP_SeekLE/OP_IdxLT)
3874 ** </ul>
3875 **
3876 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3877 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3878 ** object, then table being opened must be an [index b-tree] where the
3879 ** KeyInfo object defines the content and collating
3880 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3881 ** value, then the table being opened must be a [table b-tree] with a
3882 ** number of columns no less than the value of P4.
3883 **
3884 ** See also: OpenWrite, ReopenIdx
3885 */
3886 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3887 ** Synopsis: root=P2 iDb=P3
3888 **
3889 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3890 ** checks to see if the cursor on P1 is already open on the same
3891 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3892 ** if the cursor is already open, do not reopen it.
3893 **
3894 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3895 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3896 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3897 ** number.
3898 **
3899 ** Allowed P5 bits:
3900 ** <ul>
3901 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3902 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3903 **       of OP_SeekLE/OP_IdxLT)
3904 ** </ul>
3905 **
3906 ** See also: OP_OpenRead, OP_OpenWrite
3907 */
3908 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3909 ** Synopsis: root=P2 iDb=P3
3910 **
3911 ** Open a read/write cursor named P1 on the table or index whose root
3912 ** page is P2 (or whose root page is held in register P2 if the
3913 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3914 **
3915 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3916 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3917 ** object, then table being opened must be an [index b-tree] where the
3918 ** KeyInfo object defines the content and collating
3919 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3920 ** value, then the table being opened must be a [table b-tree] with a
3921 ** number of columns no less than the value of P4.
3922 **
3923 ** Allowed P5 bits:
3924 ** <ul>
3925 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3926 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3927 **       of OP_SeekLE/OP_IdxLT)
3928 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3929 **       and subsequently delete entries in an index btree.  This is a
3930 **       hint to the storage engine that the storage engine is allowed to
3931 **       ignore.  The hint is not used by the official SQLite b*tree storage
3932 **       engine, but is used by COMDB2.
3933 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3934 **       as the root page, not the value of P2 itself.
3935 ** </ul>
3936 **
3937 ** This instruction works like OpenRead except that it opens the cursor
3938 ** in read/write mode.
3939 **
3940 ** See also: OP_OpenRead, OP_ReopenIdx
3941 */
3942 case OP_ReopenIdx: {
3943   int nField;
3944   KeyInfo *pKeyInfo;
3945   u32 p2;
3946   int iDb;
3947   int wrFlag;
3948   Btree *pX;
3949   VdbeCursor *pCur;
3950   Db *pDb;
3951 
3952   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3953   assert( pOp->p4type==P4_KEYINFO );
3954   pCur = p->apCsr[pOp->p1];
3955   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3956     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3957     assert( pCur->eCurType==CURTYPE_BTREE );
3958     sqlite3BtreeClearCursor(pCur->uc.pCursor);
3959     goto open_cursor_set_hints;
3960   }
3961   /* If the cursor is not currently open or is open on a different
3962   ** index, then fall through into OP_OpenRead to force a reopen */
3963 case OP_OpenRead:
3964 case OP_OpenWrite:
3965 
3966   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3967   assert( p->bIsReader );
3968   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3969           || p->readOnly==0 );
3970 
3971   if( p->expired==1 ){
3972     rc = SQLITE_ABORT_ROLLBACK;
3973     goto abort_due_to_error;
3974   }
3975 
3976   nField = 0;
3977   pKeyInfo = 0;
3978   p2 = (u32)pOp->p2;
3979   iDb = pOp->p3;
3980   assert( iDb>=0 && iDb<db->nDb );
3981   assert( DbMaskTest(p->btreeMask, iDb) );
3982   pDb = &db->aDb[iDb];
3983   pX = pDb->pBt;
3984   assert( pX!=0 );
3985   if( pOp->opcode==OP_OpenWrite ){
3986     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3987     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3988     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3989     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3990       p->minWriteFileFormat = pDb->pSchema->file_format;
3991     }
3992   }else{
3993     wrFlag = 0;
3994   }
3995   if( pOp->p5 & OPFLAG_P2ISREG ){
3996     assert( p2>0 );
3997     assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
3998     assert( pOp->opcode==OP_OpenWrite );
3999     pIn2 = &aMem[p2];
4000     assert( memIsValid(pIn2) );
4001     assert( (pIn2->flags & MEM_Int)!=0 );
4002     sqlite3VdbeMemIntegerify(pIn2);
4003     p2 = (int)pIn2->u.i;
4004     /* The p2 value always comes from a prior OP_CreateBtree opcode and
4005     ** that opcode will always set the p2 value to 2 or more or else fail.
4006     ** If there were a failure, the prepared statement would have halted
4007     ** before reaching this instruction. */
4008     assert( p2>=2 );
4009   }
4010   if( pOp->p4type==P4_KEYINFO ){
4011     pKeyInfo = pOp->p4.pKeyInfo;
4012     assert( pKeyInfo->enc==ENC(db) );
4013     assert( pKeyInfo->db==db );
4014     nField = pKeyInfo->nAllField;
4015   }else if( pOp->p4type==P4_INT32 ){
4016     nField = pOp->p4.i;
4017   }
4018   assert( pOp->p1>=0 );
4019   assert( nField>=0 );
4020   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
4021   pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4022   if( pCur==0 ) goto no_mem;
4023   pCur->iDb = iDb;
4024   pCur->nullRow = 1;
4025   pCur->isOrdered = 1;
4026   pCur->pgnoRoot = p2;
4027 #ifdef SQLITE_DEBUG
4028   pCur->wrFlag = wrFlag;
4029 #endif
4030   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4031   pCur->pKeyInfo = pKeyInfo;
4032   /* Set the VdbeCursor.isTable variable. Previous versions of
4033   ** SQLite used to check if the root-page flags were sane at this point
4034   ** and report database corruption if they were not, but this check has
4035   ** since moved into the btree layer.  */
4036   pCur->isTable = pOp->p4type!=P4_KEYINFO;
4037 
4038 open_cursor_set_hints:
4039   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4040   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4041   testcase( pOp->p5 & OPFLAG_BULKCSR );
4042   testcase( pOp->p2 & OPFLAG_SEEKEQ );
4043   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4044                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4045   if( rc ) goto abort_due_to_error;
4046   break;
4047 }
4048 
4049 /* Opcode: OpenDup P1 P2 * * *
4050 **
4051 ** Open a new cursor P1 that points to the same ephemeral table as
4052 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
4053 ** opcode.  Only ephemeral cursors may be duplicated.
4054 **
4055 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4056 */
4057 case OP_OpenDup: {
4058   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
4059   VdbeCursor *pCx;      /* The new cursor */
4060 
4061   pOrig = p->apCsr[pOp->p2];
4062   assert( pOrig );
4063   assert( pOrig->isEphemeral );  /* Only ephemeral cursors can be duplicated */
4064 
4065   pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4066   if( pCx==0 ) goto no_mem;
4067   pCx->nullRow = 1;
4068   pCx->isEphemeral = 1;
4069   pCx->pKeyInfo = pOrig->pKeyInfo;
4070   pCx->isTable = pOrig->isTable;
4071   pCx->pgnoRoot = pOrig->pgnoRoot;
4072   pCx->isOrdered = pOrig->isOrdered;
4073   pCx->ub.pBtx = pOrig->ub.pBtx;
4074   pCx->hasBeenDuped = 1;
4075   pOrig->hasBeenDuped = 1;
4076   rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4077                           pCx->pKeyInfo, pCx->uc.pCursor);
4078   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4079   ** opened for a database.  Since there is already an open cursor when this
4080   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4081   assert( rc==SQLITE_OK );
4082   break;
4083 }
4084 
4085 
4086 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4087 ** Synopsis: nColumn=P2
4088 **
4089 ** Open a new cursor P1 to a transient table.
4090 ** The cursor is always opened read/write even if
4091 ** the main database is read-only.  The ephemeral
4092 ** table is deleted automatically when the cursor is closed.
4093 **
4094 ** If the cursor P1 is already opened on an ephemeral table, the table
4095 ** is cleared (all content is erased).
4096 **
4097 ** P2 is the number of columns in the ephemeral table.
4098 ** The cursor points to a BTree table if P4==0 and to a BTree index
4099 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
4100 ** that defines the format of keys in the index.
4101 **
4102 ** The P5 parameter can be a mask of the BTREE_* flags defined
4103 ** in btree.h.  These flags control aspects of the operation of
4104 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4105 ** added automatically.
4106 **
4107 ** If P3 is positive, then reg[P3] is modified slightly so that it
4108 ** can be used as zero-length data for OP_Insert.  This is an optimization
4109 ** that avoids an extra OP_Blob opcode to initialize that register.
4110 */
4111 /* Opcode: OpenAutoindex P1 P2 * P4 *
4112 ** Synopsis: nColumn=P2
4113 **
4114 ** This opcode works the same as OP_OpenEphemeral.  It has a
4115 ** different name to distinguish its use.  Tables created using
4116 ** by this opcode will be used for automatically created transient
4117 ** indices in joins.
4118 */
4119 case OP_OpenAutoindex:
4120 case OP_OpenEphemeral: {
4121   VdbeCursor *pCx;
4122   KeyInfo *pKeyInfo;
4123 
4124   static const int vfsFlags =
4125       SQLITE_OPEN_READWRITE |
4126       SQLITE_OPEN_CREATE |
4127       SQLITE_OPEN_EXCLUSIVE |
4128       SQLITE_OPEN_DELETEONCLOSE |
4129       SQLITE_OPEN_TRANSIENT_DB;
4130   assert( pOp->p1>=0 );
4131   assert( pOp->p2>=0 );
4132   if( pOp->p3>0 ){
4133     /* Make register reg[P3] into a value that can be used as the data
4134     ** form sqlite3BtreeInsert() where the length of the data is zero. */
4135     assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4136     assert( pOp->opcode==OP_OpenEphemeral );
4137     assert( aMem[pOp->p3].flags & MEM_Null );
4138     aMem[pOp->p3].n = 0;
4139     aMem[pOp->p3].z = "";
4140   }
4141   pCx = p->apCsr[pOp->p1];
4142   if( pCx && !pCx->hasBeenDuped &&  ALWAYS(pOp->p2<=pCx->nField) ){
4143     /* If the ephermeral table is already open and has no duplicates from
4144     ** OP_OpenDup, then erase all existing content so that the table is
4145     ** empty again, rather than creating a new table. */
4146     assert( pCx->isEphemeral );
4147     pCx->seqCount = 0;
4148     pCx->cacheStatus = CACHE_STALE;
4149     rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4150   }else{
4151     pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4152     if( pCx==0 ) goto no_mem;
4153     pCx->isEphemeral = 1;
4154     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4155                           BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4156                           vfsFlags);
4157     if( rc==SQLITE_OK ){
4158       rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4159       if( rc==SQLITE_OK ){
4160         /* If a transient index is required, create it by calling
4161         ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4162         ** opening it. If a transient table is required, just use the
4163         ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4164         */
4165         if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4166           assert( pOp->p4type==P4_KEYINFO );
4167           rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4168               BTREE_BLOBKEY | pOp->p5);
4169           if( rc==SQLITE_OK ){
4170             assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4171             assert( pKeyInfo->db==db );
4172             assert( pKeyInfo->enc==ENC(db) );
4173             rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4174                 pKeyInfo, pCx->uc.pCursor);
4175           }
4176           pCx->isTable = 0;
4177         }else{
4178           pCx->pgnoRoot = SCHEMA_ROOT;
4179           rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4180               0, pCx->uc.pCursor);
4181           pCx->isTable = 1;
4182         }
4183       }
4184       pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4185       if( rc ){
4186         sqlite3BtreeClose(pCx->ub.pBtx);
4187       }
4188     }
4189   }
4190   if( rc ) goto abort_due_to_error;
4191   pCx->nullRow = 1;
4192   break;
4193 }
4194 
4195 /* Opcode: SorterOpen P1 P2 P3 P4 *
4196 **
4197 ** This opcode works like OP_OpenEphemeral except that it opens
4198 ** a transient index that is specifically designed to sort large
4199 ** tables using an external merge-sort algorithm.
4200 **
4201 ** If argument P3 is non-zero, then it indicates that the sorter may
4202 ** assume that a stable sort considering the first P3 fields of each
4203 ** key is sufficient to produce the required results.
4204 */
4205 case OP_SorterOpen: {
4206   VdbeCursor *pCx;
4207 
4208   assert( pOp->p1>=0 );
4209   assert( pOp->p2>=0 );
4210   pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4211   if( pCx==0 ) goto no_mem;
4212   pCx->pKeyInfo = pOp->p4.pKeyInfo;
4213   assert( pCx->pKeyInfo->db==db );
4214   assert( pCx->pKeyInfo->enc==ENC(db) );
4215   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4216   if( rc ) goto abort_due_to_error;
4217   break;
4218 }
4219 
4220 /* Opcode: SequenceTest P1 P2 * * *
4221 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4222 **
4223 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4224 ** to P2. Regardless of whether or not the jump is taken, increment the
4225 ** the sequence value.
4226 */
4227 case OP_SequenceTest: {
4228   VdbeCursor *pC;
4229   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4230   pC = p->apCsr[pOp->p1];
4231   assert( isSorter(pC) );
4232   if( (pC->seqCount++)==0 ){
4233     goto jump_to_p2;
4234   }
4235   break;
4236 }
4237 
4238 /* Opcode: OpenPseudo P1 P2 P3 * *
4239 ** Synopsis: P3 columns in r[P2]
4240 **
4241 ** Open a new cursor that points to a fake table that contains a single
4242 ** row of data.  The content of that one row is the content of memory
4243 ** register P2.  In other words, cursor P1 becomes an alias for the
4244 ** MEM_Blob content contained in register P2.
4245 **
4246 ** A pseudo-table created by this opcode is used to hold a single
4247 ** row output from the sorter so that the row can be decomposed into
4248 ** individual columns using the OP_Column opcode.  The OP_Column opcode
4249 ** is the only cursor opcode that works with a pseudo-table.
4250 **
4251 ** P3 is the number of fields in the records that will be stored by
4252 ** the pseudo-table.
4253 */
4254 case OP_OpenPseudo: {
4255   VdbeCursor *pCx;
4256 
4257   assert( pOp->p1>=0 );
4258   assert( pOp->p3>=0 );
4259   pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4260   if( pCx==0 ) goto no_mem;
4261   pCx->nullRow = 1;
4262   pCx->seekResult = pOp->p2;
4263   pCx->isTable = 1;
4264   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4265   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
4266   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4267   ** which is a performance optimization */
4268   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4269   assert( pOp->p5==0 );
4270   break;
4271 }
4272 
4273 /* Opcode: Close P1 * * * *
4274 **
4275 ** Close a cursor previously opened as P1.  If P1 is not
4276 ** currently open, this instruction is a no-op.
4277 */
4278 case OP_Close: {
4279   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4280   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4281   p->apCsr[pOp->p1] = 0;
4282   break;
4283 }
4284 
4285 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4286 /* Opcode: ColumnsUsed P1 * * P4 *
4287 **
4288 ** This opcode (which only exists if SQLite was compiled with
4289 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4290 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
4291 ** (P4_INT64) in which the first 63 bits are one for each of the
4292 ** first 63 columns of the table or index that are actually used
4293 ** by the cursor.  The high-order bit is set if any column after
4294 ** the 64th is used.
4295 */
4296 case OP_ColumnsUsed: {
4297   VdbeCursor *pC;
4298   pC = p->apCsr[pOp->p1];
4299   assert( pC->eCurType==CURTYPE_BTREE );
4300   pC->maskUsed = *(u64*)pOp->p4.pI64;
4301   break;
4302 }
4303 #endif
4304 
4305 /* Opcode: SeekGE P1 P2 P3 P4 *
4306 ** Synopsis: key=r[P3@P4]
4307 **
4308 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4309 ** use the value in register P3 as the key.  If cursor P1 refers
4310 ** to an SQL index, then P3 is the first in an array of P4 registers
4311 ** that are used as an unpacked index key.
4312 **
4313 ** Reposition cursor P1 so that  it points to the smallest entry that
4314 ** is greater than or equal to the key value. If there are no records
4315 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4316 **
4317 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4318 ** opcode will either land on a record that exactly matches the key, or
4319 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4320 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4321 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4322 ** IdxGT opcode will be used on subsequent loop iterations.  The
4323 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4324 ** is an equality search.
4325 **
4326 ** This opcode leaves the cursor configured to move in forward order,
4327 ** from the beginning toward the end.  In other words, the cursor is
4328 ** configured to use Next, not Prev.
4329 **
4330 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4331 */
4332 /* Opcode: SeekGT P1 P2 P3 P4 *
4333 ** Synopsis: key=r[P3@P4]
4334 **
4335 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4336 ** use the value in register P3 as a key. If cursor P1 refers
4337 ** to an SQL index, then P3 is the first in an array of P4 registers
4338 ** that are used as an unpacked index key.
4339 **
4340 ** Reposition cursor P1 so that it points to the smallest entry that
4341 ** is greater than the key value. If there are no records greater than
4342 ** the key and P2 is not zero, then jump to P2.
4343 **
4344 ** This opcode leaves the cursor configured to move in forward order,
4345 ** from the beginning toward the end.  In other words, the cursor is
4346 ** configured to use Next, not Prev.
4347 **
4348 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4349 */
4350 /* Opcode: SeekLT P1 P2 P3 P4 *
4351 ** Synopsis: key=r[P3@P4]
4352 **
4353 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4354 ** use the value in register P3 as a key. If cursor P1 refers
4355 ** to an SQL index, then P3 is the first in an array of P4 registers
4356 ** that are used as an unpacked index key.
4357 **
4358 ** Reposition cursor P1 so that  it points to the largest entry that
4359 ** is less than the key value. If there are no records less than
4360 ** the key and P2 is not zero, then jump to P2.
4361 **
4362 ** This opcode leaves the cursor configured to move in reverse order,
4363 ** from the end toward the beginning.  In other words, the cursor is
4364 ** configured to use Prev, not Next.
4365 **
4366 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4367 */
4368 /* Opcode: SeekLE P1 P2 P3 P4 *
4369 ** Synopsis: key=r[P3@P4]
4370 **
4371 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4372 ** use the value in register P3 as a key. If cursor P1 refers
4373 ** to an SQL index, then P3 is the first in an array of P4 registers
4374 ** that are used as an unpacked index key.
4375 **
4376 ** Reposition cursor P1 so that it points to the largest entry that
4377 ** is less than or equal to the key value. If there are no records
4378 ** less than or equal to the key and P2 is not zero, then jump to P2.
4379 **
4380 ** This opcode leaves the cursor configured to move in reverse order,
4381 ** from the end toward the beginning.  In other words, the cursor is
4382 ** configured to use Prev, not Next.
4383 **
4384 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4385 ** opcode will either land on a record that exactly matches the key, or
4386 ** else it will cause a jump to P2.  When the cursor is OPFLAG_SEEKEQ,
4387 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4388 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4389 ** IdxGE opcode will be used on subsequent loop iterations.  The
4390 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4391 ** is an equality search.
4392 **
4393 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4394 */
4395 case OP_SeekLT:         /* jump, in3, group */
4396 case OP_SeekLE:         /* jump, in3, group */
4397 case OP_SeekGE:         /* jump, in3, group */
4398 case OP_SeekGT: {       /* jump, in3, group */
4399   int res;           /* Comparison result */
4400   int oc;            /* Opcode */
4401   VdbeCursor *pC;    /* The cursor to seek */
4402   UnpackedRecord r;  /* The key to seek for */
4403   int nField;        /* Number of columns or fields in the key */
4404   i64 iKey;          /* The rowid we are to seek to */
4405   int eqOnly;        /* Only interested in == results */
4406 
4407   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4408   assert( pOp->p2!=0 );
4409   pC = p->apCsr[pOp->p1];
4410   assert( pC!=0 );
4411   assert( pC->eCurType==CURTYPE_BTREE );
4412   assert( OP_SeekLE == OP_SeekLT+1 );
4413   assert( OP_SeekGE == OP_SeekLT+2 );
4414   assert( OP_SeekGT == OP_SeekLT+3 );
4415   assert( pC->isOrdered );
4416   assert( pC->uc.pCursor!=0 );
4417   oc = pOp->opcode;
4418   eqOnly = 0;
4419   pC->nullRow = 0;
4420 #ifdef SQLITE_DEBUG
4421   pC->seekOp = pOp->opcode;
4422 #endif
4423 
4424   pC->deferredMoveto = 0;
4425   pC->cacheStatus = CACHE_STALE;
4426   if( pC->isTable ){
4427     u16 flags3, newType;
4428     /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4429     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4430               || CORRUPT_DB );
4431 
4432     /* The input value in P3 might be of any type: integer, real, string,
4433     ** blob, or NULL.  But it needs to be an integer before we can do
4434     ** the seek, so convert it. */
4435     pIn3 = &aMem[pOp->p3];
4436     flags3 = pIn3->flags;
4437     if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4438       applyNumericAffinity(pIn3, 0);
4439     }
4440     iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4441     newType = pIn3->flags; /* Record the type after applying numeric affinity */
4442     pIn3->flags = flags3;  /* But convert the type back to its original */
4443 
4444     /* If the P3 value could not be converted into an integer without
4445     ** loss of information, then special processing is required... */
4446     if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4447       int c;
4448       if( (newType & MEM_Real)==0 ){
4449         if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4450           VdbeBranchTaken(1,2);
4451           goto jump_to_p2;
4452         }else{
4453           rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4454           if( rc!=SQLITE_OK ) goto abort_due_to_error;
4455           goto seek_not_found;
4456         }
4457       }
4458       c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4459 
4460       /* If the approximation iKey is larger than the actual real search
4461       ** term, substitute >= for > and < for <=. e.g. if the search term
4462       ** is 4.9 and the integer approximation 5:
4463       **
4464       **        (x >  4.9)    ->     (x >= 5)
4465       **        (x <= 4.9)    ->     (x <  5)
4466       */
4467       if( c>0 ){
4468         assert( OP_SeekGE==(OP_SeekGT-1) );
4469         assert( OP_SeekLT==(OP_SeekLE-1) );
4470         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4471         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4472       }
4473 
4474       /* If the approximation iKey is smaller than the actual real search
4475       ** term, substitute <= for < and > for >=.  */
4476       else if( c<0 ){
4477         assert( OP_SeekLE==(OP_SeekLT+1) );
4478         assert( OP_SeekGT==(OP_SeekGE+1) );
4479         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4480         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4481       }
4482     }
4483     rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4484     pC->movetoTarget = iKey;  /* Used by OP_Delete */
4485     if( rc!=SQLITE_OK ){
4486       goto abort_due_to_error;
4487     }
4488   }else{
4489     /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4490     ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4491     ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4492     ** with the same key.
4493     */
4494     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4495       eqOnly = 1;
4496       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4497       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4498       assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4499       assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4500       assert( pOp[1].p1==pOp[0].p1 );
4501       assert( pOp[1].p2==pOp[0].p2 );
4502       assert( pOp[1].p3==pOp[0].p3 );
4503       assert( pOp[1].p4.i==pOp[0].p4.i );
4504     }
4505 
4506     nField = pOp->p4.i;
4507     assert( pOp->p4type==P4_INT32 );
4508     assert( nField>0 );
4509     r.pKeyInfo = pC->pKeyInfo;
4510     r.nField = (u16)nField;
4511 
4512     /* The next line of code computes as follows, only faster:
4513     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
4514     **     r.default_rc = -1;
4515     **   }else{
4516     **     r.default_rc = +1;
4517     **   }
4518     */
4519     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4520     assert( oc!=OP_SeekGT || r.default_rc==-1 );
4521     assert( oc!=OP_SeekLE || r.default_rc==-1 );
4522     assert( oc!=OP_SeekGE || r.default_rc==+1 );
4523     assert( oc!=OP_SeekLT || r.default_rc==+1 );
4524 
4525     r.aMem = &aMem[pOp->p3];
4526 #ifdef SQLITE_DEBUG
4527     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4528 #endif
4529     r.eqSeen = 0;
4530     rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4531     if( rc!=SQLITE_OK ){
4532       goto abort_due_to_error;
4533     }
4534     if( eqOnly && r.eqSeen==0 ){
4535       assert( res!=0 );
4536       goto seek_not_found;
4537     }
4538   }
4539 #ifdef SQLITE_TEST
4540   sqlite3_search_count++;
4541 #endif
4542   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4543     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4544       res = 0;
4545       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4546       if( rc!=SQLITE_OK ){
4547         if( rc==SQLITE_DONE ){
4548           rc = SQLITE_OK;
4549           res = 1;
4550         }else{
4551           goto abort_due_to_error;
4552         }
4553       }
4554     }else{
4555       res = 0;
4556     }
4557   }else{
4558     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4559     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4560       res = 0;
4561       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4562       if( rc!=SQLITE_OK ){
4563         if( rc==SQLITE_DONE ){
4564           rc = SQLITE_OK;
4565           res = 1;
4566         }else{
4567           goto abort_due_to_error;
4568         }
4569       }
4570     }else{
4571       /* res might be negative because the table is empty.  Check to
4572       ** see if this is the case.
4573       */
4574       res = sqlite3BtreeEof(pC->uc.pCursor);
4575     }
4576   }
4577 seek_not_found:
4578   assert( pOp->p2>0 );
4579   VdbeBranchTaken(res!=0,2);
4580   if( res ){
4581     goto jump_to_p2;
4582   }else if( eqOnly ){
4583     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4584     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4585   }
4586   break;
4587 }
4588 
4589 
4590 /* Opcode: SeekScan  P1 P2 * * *
4591 ** Synopsis: Scan-ahead up to P1 rows
4592 **
4593 ** This opcode is a prefix opcode to OP_SeekGE.  In other words, this
4594 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4595 ** checked by assert() statements.
4596 **
4597 ** This opcode uses the P1 through P4 operands of the subsequent
4598 ** OP_SeekGE.  In the text that follows, the operands of the subsequent
4599 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4.   Only
4600 ** the P1 and P2 operands of this opcode are also used, and  are called
4601 ** This.P1 and This.P2.
4602 **
4603 ** This opcode helps to optimize IN operators on a multi-column index
4604 ** where the IN operator is on the later terms of the index by avoiding
4605 ** unnecessary seeks on the btree, substituting steps to the next row
4606 ** of the b-tree instead.  A correct answer is obtained if this opcode
4607 ** is omitted or is a no-op.
4608 **
4609 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4610 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4611 ** to.  Call this SeekGE.P4/P5 row the "target".
4612 **
4613 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4614 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4615 **
4616 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4617 ** might be the target row, or it might be near and slightly before the
4618 ** target row.  This opcode attempts to position the cursor on the target
4619 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4620 ** between 0 and This.P1 times.
4621 **
4622 ** There are three possible outcomes from this opcode:<ol>
4623 **
4624 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4625 **      is earlier in the btree than the target row, then fall through
4626 **      into the subsquence OP_SeekGE opcode.
4627 **
4628 ** <li> If the cursor is successfully moved to the target row by 0 or more
4629 **      sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4630 **      past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4631 **
4632 ** <li> If the cursor ends up past the target row (indicating the the target
4633 **      row does not exist in the btree) then jump to SeekOP.P2.
4634 ** </ol>
4635 */
4636 case OP_SeekScan: {
4637   VdbeCursor *pC;
4638   int res;
4639   int nStep;
4640   UnpackedRecord r;
4641 
4642   assert( pOp[1].opcode==OP_SeekGE );
4643 
4644   /* pOp->p2 points to the first instruction past the OP_IdxGT that
4645   ** follows the OP_SeekGE.  */
4646   assert( pOp->p2>=(int)(pOp-aOp)+2 );
4647   assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
4648   testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4649   assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4650   assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4651   assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4652 
4653   assert( pOp->p1>0 );
4654   pC = p->apCsr[pOp[1].p1];
4655   assert( pC!=0 );
4656   assert( pC->eCurType==CURTYPE_BTREE );
4657   assert( !pC->isTable );
4658   if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4659 #ifdef SQLITE_DEBUG
4660      if( db->flags&SQLITE_VdbeTrace ){
4661        printf("... cursor not valid - fall through\n");
4662      }
4663 #endif
4664     break;
4665   }
4666   nStep = pOp->p1;
4667   assert( nStep>=1 );
4668   r.pKeyInfo = pC->pKeyInfo;
4669   r.nField = (u16)pOp[1].p4.i;
4670   r.default_rc = 0;
4671   r.aMem = &aMem[pOp[1].p3];
4672 #ifdef SQLITE_DEBUG
4673   {
4674     int i;
4675     for(i=0; i<r.nField; i++){
4676       assert( memIsValid(&r.aMem[i]) );
4677       REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4678     }
4679   }
4680 #endif
4681   res = 0;  /* Not needed.  Only used to silence a warning. */
4682   while(1){
4683     rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4684     if( rc ) goto abort_due_to_error;
4685     if( res>0 ){
4686       seekscan_search_fail:
4687 #ifdef SQLITE_DEBUG
4688       if( db->flags&SQLITE_VdbeTrace ){
4689         printf("... %d steps and then skip\n", pOp->p1 - nStep);
4690       }
4691 #endif
4692       VdbeBranchTaken(1,3);
4693       pOp++;
4694       goto jump_to_p2;
4695     }
4696     if( res==0 ){
4697 #ifdef SQLITE_DEBUG
4698       if( db->flags&SQLITE_VdbeTrace ){
4699         printf("... %d steps and then success\n", pOp->p1 - nStep);
4700       }
4701 #endif
4702       VdbeBranchTaken(2,3);
4703       goto jump_to_p2;
4704       break;
4705     }
4706     if( nStep<=0 ){
4707 #ifdef SQLITE_DEBUG
4708       if( db->flags&SQLITE_VdbeTrace ){
4709         printf("... fall through after %d steps\n", pOp->p1);
4710       }
4711 #endif
4712       VdbeBranchTaken(0,3);
4713       break;
4714     }
4715     nStep--;
4716     rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4717     if( rc ){
4718       if( rc==SQLITE_DONE ){
4719         rc = SQLITE_OK;
4720         goto seekscan_search_fail;
4721       }else{
4722         goto abort_due_to_error;
4723       }
4724     }
4725   }
4726 
4727   break;
4728 }
4729 
4730 
4731 /* Opcode: SeekHit P1 P2 P3 * *
4732 ** Synopsis: set P2<=seekHit<=P3
4733 **
4734 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4735 ** so that it is no less than P2 and no greater than P3.
4736 **
4737 ** The seekHit integer represents the maximum of terms in an index for which
4738 ** there is known to be at least one match.  If the seekHit value is smaller
4739 ** than the total number of equality terms in an index lookup, then the
4740 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4741 ** early, thus saving work.  This is part of the IN-early-out optimization.
4742 **
4743 ** P1 must be a valid b-tree cursor.
4744 */
4745 case OP_SeekHit: {
4746   VdbeCursor *pC;
4747   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4748   pC = p->apCsr[pOp->p1];
4749   assert( pC!=0 );
4750   assert( pOp->p3>=pOp->p2 );
4751   if( pC->seekHit<pOp->p2 ){
4752 #ifdef SQLITE_DEBUG
4753     if( db->flags&SQLITE_VdbeTrace ){
4754       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4755     }
4756 #endif
4757     pC->seekHit = pOp->p2;
4758   }else if( pC->seekHit>pOp->p3 ){
4759 #ifdef SQLITE_DEBUG
4760     if( db->flags&SQLITE_VdbeTrace ){
4761       printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4762     }
4763 #endif
4764     pC->seekHit = pOp->p3;
4765   }
4766   break;
4767 }
4768 
4769 /* Opcode: IfNotOpen P1 P2 * * *
4770 ** Synopsis: if( !csr[P1] ) goto P2
4771 **
4772 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4773 */
4774 case OP_IfNotOpen: {        /* jump */
4775   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4776   VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4777   if( !p->apCsr[pOp->p1] ){
4778     goto jump_to_p2_and_check_for_interrupt;
4779   }
4780   break;
4781 }
4782 
4783 /* Opcode: Found P1 P2 P3 P4 *
4784 ** Synopsis: key=r[P3@P4]
4785 **
4786 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4787 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4788 ** record.
4789 **
4790 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4791 ** is a prefix of any entry in P1 then a jump is made to P2 and
4792 ** P1 is left pointing at the matching entry.
4793 **
4794 ** This operation leaves the cursor in a state where it can be
4795 ** advanced in the forward direction.  The Next instruction will work,
4796 ** but not the Prev instruction.
4797 **
4798 ** See also: NotFound, NoConflict, NotExists. SeekGe
4799 */
4800 /* Opcode: NotFound P1 P2 P3 P4 *
4801 ** Synopsis: key=r[P3@P4]
4802 **
4803 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4804 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4805 ** record.
4806 **
4807 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4808 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4809 ** does contain an entry whose prefix matches the P3/P4 record then control
4810 ** falls through to the next instruction and P1 is left pointing at the
4811 ** matching entry.
4812 **
4813 ** This operation leaves the cursor in a state where it cannot be
4814 ** advanced in either direction.  In other words, the Next and Prev
4815 ** opcodes do not work after this operation.
4816 **
4817 ** See also: Found, NotExists, NoConflict, IfNoHope
4818 */
4819 /* Opcode: IfNoHope P1 P2 P3 P4 *
4820 ** Synopsis: key=r[P3@P4]
4821 **
4822 ** Register P3 is the first of P4 registers that form an unpacked
4823 ** record.  Cursor P1 is an index btree.  P2 is a jump destination.
4824 ** In other words, the operands to this opcode are the same as the
4825 ** operands to OP_NotFound and OP_IdxGT.
4826 **
4827 ** This opcode is an optimization attempt only.  If this opcode always
4828 ** falls through, the correct answer is still obtained, but extra works
4829 ** is performed.
4830 **
4831 ** A value of N in the seekHit flag of cursor P1 means that there exists
4832 ** a key P3:N that will match some record in the index.  We want to know
4833 ** if it is possible for a record P3:P4 to match some record in the
4834 ** index.  If it is not possible, we can skips some work.  So if seekHit
4835 ** is less than P4, attempt to find out if a match is possible by running
4836 ** OP_NotFound.
4837 **
4838 ** This opcode is used in IN clause processing for a multi-column key.
4839 ** If an IN clause is attached to an element of the key other than the
4840 ** left-most element, and if there are no matches on the most recent
4841 ** seek over the whole key, then it might be that one of the key element
4842 ** to the left is prohibiting a match, and hence there is "no hope" of
4843 ** any match regardless of how many IN clause elements are checked.
4844 ** In such a case, we abandon the IN clause search early, using this
4845 ** opcode.  The opcode name comes from the fact that the
4846 ** jump is taken if there is "no hope" of achieving a match.
4847 **
4848 ** See also: NotFound, SeekHit
4849 */
4850 /* Opcode: NoConflict P1 P2 P3 P4 *
4851 ** Synopsis: key=r[P3@P4]
4852 **
4853 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4854 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4855 ** record.
4856 **
4857 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4858 ** contains any NULL value, jump immediately to P2.  If all terms of the
4859 ** record are not-NULL then a check is done to determine if any row in the
4860 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4861 ** immediately to P2.  If there is a match, fall through and leave the P1
4862 ** cursor pointing to the matching row.
4863 **
4864 ** This opcode is similar to OP_NotFound with the exceptions that the
4865 ** branch is always taken if any part of the search key input is NULL.
4866 **
4867 ** This operation leaves the cursor in a state where it cannot be
4868 ** advanced in either direction.  In other words, the Next and Prev
4869 ** opcodes do not work after this operation.
4870 **
4871 ** See also: NotFound, Found, NotExists
4872 */
4873 case OP_IfNoHope: {     /* jump, in3 */
4874   VdbeCursor *pC;
4875   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4876   pC = p->apCsr[pOp->p1];
4877   assert( pC!=0 );
4878 #ifdef SQLITE_DEBUG
4879   if( db->flags&SQLITE_VdbeTrace ){
4880     printf("seekHit is %d\n", pC->seekHit);
4881   }
4882 #endif
4883   if( pC->seekHit>=pOp->p4.i ) break;
4884   /* Fall through into OP_NotFound */
4885   /* no break */ deliberate_fall_through
4886 }
4887 case OP_NoConflict:     /* jump, in3 */
4888 case OP_NotFound:       /* jump, in3 */
4889 case OP_Found: {        /* jump, in3 */
4890   int alreadyExists;
4891   int takeJump;
4892   int ii;
4893   VdbeCursor *pC;
4894   int res;
4895   UnpackedRecord *pFree;
4896   UnpackedRecord *pIdxKey;
4897   UnpackedRecord r;
4898 
4899 #ifdef SQLITE_TEST
4900   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4901 #endif
4902 
4903   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4904   assert( pOp->p4type==P4_INT32 );
4905   pC = p->apCsr[pOp->p1];
4906   assert( pC!=0 );
4907 #ifdef SQLITE_DEBUG
4908   pC->seekOp = pOp->opcode;
4909 #endif
4910   pIn3 = &aMem[pOp->p3];
4911   assert( pC->eCurType==CURTYPE_BTREE );
4912   assert( pC->uc.pCursor!=0 );
4913   assert( pC->isTable==0 );
4914   if( pOp->p4.i>0 ){
4915     r.pKeyInfo = pC->pKeyInfo;
4916     r.nField = (u16)pOp->p4.i;
4917     r.aMem = pIn3;
4918 #ifdef SQLITE_DEBUG
4919     for(ii=0; ii<r.nField; ii++){
4920       assert( memIsValid(&r.aMem[ii]) );
4921       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4922       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4923     }
4924 #endif
4925     pIdxKey = &r;
4926     pFree = 0;
4927   }else{
4928     assert( pIn3->flags & MEM_Blob );
4929     rc = ExpandBlob(pIn3);
4930     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4931     if( rc ) goto no_mem;
4932     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4933     if( pIdxKey==0 ) goto no_mem;
4934     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4935   }
4936   pIdxKey->default_rc = 0;
4937   takeJump = 0;
4938   if( pOp->opcode==OP_NoConflict ){
4939     /* For the OP_NoConflict opcode, take the jump if any of the
4940     ** input fields are NULL, since any key with a NULL will not
4941     ** conflict */
4942     for(ii=0; ii<pIdxKey->nField; ii++){
4943       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4944         takeJump = 1;
4945         break;
4946       }
4947     }
4948   }
4949   rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res);
4950   if( pFree ) sqlite3DbFreeNN(db, pFree);
4951   if( rc!=SQLITE_OK ){
4952     goto abort_due_to_error;
4953   }
4954   pC->seekResult = res;
4955   alreadyExists = (res==0);
4956   pC->nullRow = 1-alreadyExists;
4957   pC->deferredMoveto = 0;
4958   pC->cacheStatus = CACHE_STALE;
4959   if( pOp->opcode==OP_Found ){
4960     VdbeBranchTaken(alreadyExists!=0,2);
4961     if( alreadyExists ) goto jump_to_p2;
4962   }else{
4963     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4964     if( takeJump || !alreadyExists ) goto jump_to_p2;
4965     if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i;
4966   }
4967   break;
4968 }
4969 
4970 /* Opcode: SeekRowid P1 P2 P3 * *
4971 ** Synopsis: intkey=r[P3]
4972 **
4973 ** P1 is the index of a cursor open on an SQL table btree (with integer
4974 ** keys).  If register P3 does not contain an integer or if P1 does not
4975 ** contain a record with rowid P3 then jump immediately to P2.
4976 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4977 ** a record with rowid P3 then
4978 ** leave the cursor pointing at that record and fall through to the next
4979 ** instruction.
4980 **
4981 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4982 ** the P3 register must be guaranteed to contain an integer value.  With this
4983 ** opcode, register P3 might not contain an integer.
4984 **
4985 ** The OP_NotFound opcode performs the same operation on index btrees
4986 ** (with arbitrary multi-value keys).
4987 **
4988 ** This opcode leaves the cursor in a state where it cannot be advanced
4989 ** in either direction.  In other words, the Next and Prev opcodes will
4990 ** not work following this opcode.
4991 **
4992 ** See also: Found, NotFound, NoConflict, SeekRowid
4993 */
4994 /* Opcode: NotExists P1 P2 P3 * *
4995 ** Synopsis: intkey=r[P3]
4996 **
4997 ** P1 is the index of a cursor open on an SQL table btree (with integer
4998 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4999 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
5000 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5001 ** leave the cursor pointing at that record and fall through to the next
5002 ** instruction.
5003 **
5004 ** The OP_SeekRowid opcode performs the same operation but also allows the
5005 ** P3 register to contain a non-integer value, in which case the jump is
5006 ** always taken.  This opcode requires that P3 always contain an integer.
5007 **
5008 ** The OP_NotFound opcode performs the same operation on index btrees
5009 ** (with arbitrary multi-value keys).
5010 **
5011 ** This opcode leaves the cursor in a state where it cannot be advanced
5012 ** in either direction.  In other words, the Next and Prev opcodes will
5013 ** not work following this opcode.
5014 **
5015 ** See also: Found, NotFound, NoConflict, SeekRowid
5016 */
5017 case OP_SeekRowid: {        /* jump, in3 */
5018   VdbeCursor *pC;
5019   BtCursor *pCrsr;
5020   int res;
5021   u64 iKey;
5022 
5023   pIn3 = &aMem[pOp->p3];
5024   testcase( pIn3->flags & MEM_Int );
5025   testcase( pIn3->flags & MEM_IntReal );
5026   testcase( pIn3->flags & MEM_Real );
5027   testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5028   if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5029     /* If pIn3->u.i does not contain an integer, compute iKey as the
5030     ** integer value of pIn3.  Jump to P2 if pIn3 cannot be converted
5031     ** into an integer without loss of information.  Take care to avoid
5032     ** changing the datatype of pIn3, however, as it is used by other
5033     ** parts of the prepared statement. */
5034     Mem x = pIn3[0];
5035     applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5036     if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5037     iKey = x.u.i;
5038     goto notExistsWithKey;
5039   }
5040   /* Fall through into OP_NotExists */
5041   /* no break */ deliberate_fall_through
5042 case OP_NotExists:          /* jump, in3 */
5043   pIn3 = &aMem[pOp->p3];
5044   assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5045   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5046   iKey = pIn3->u.i;
5047 notExistsWithKey:
5048   pC = p->apCsr[pOp->p1];
5049   assert( pC!=0 );
5050 #ifdef SQLITE_DEBUG
5051   if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5052 #endif
5053   assert( pC->isTable );
5054   assert( pC->eCurType==CURTYPE_BTREE );
5055   pCrsr = pC->uc.pCursor;
5056   assert( pCrsr!=0 );
5057   res = 0;
5058   rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5059   assert( rc==SQLITE_OK || res==0 );
5060   pC->movetoTarget = iKey;  /* Used by OP_Delete */
5061   pC->nullRow = 0;
5062   pC->cacheStatus = CACHE_STALE;
5063   pC->deferredMoveto = 0;
5064   VdbeBranchTaken(res!=0,2);
5065   pC->seekResult = res;
5066   if( res!=0 ){
5067     assert( rc==SQLITE_OK );
5068     if( pOp->p2==0 ){
5069       rc = SQLITE_CORRUPT_BKPT;
5070     }else{
5071       goto jump_to_p2;
5072     }
5073   }
5074   if( rc ) goto abort_due_to_error;
5075   break;
5076 }
5077 
5078 /* Opcode: Sequence P1 P2 * * *
5079 ** Synopsis: r[P2]=cursor[P1].ctr++
5080 **
5081 ** Find the next available sequence number for cursor P1.
5082 ** Write the sequence number into register P2.
5083 ** The sequence number on the cursor is incremented after this
5084 ** instruction.
5085 */
5086 case OP_Sequence: {           /* out2 */
5087   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5088   assert( p->apCsr[pOp->p1]!=0 );
5089   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5090   pOut = out2Prerelease(p, pOp);
5091   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5092   break;
5093 }
5094 
5095 
5096 /* Opcode: NewRowid P1 P2 P3 * *
5097 ** Synopsis: r[P2]=rowid
5098 **
5099 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5100 ** The record number is not previously used as a key in the database
5101 ** table that cursor P1 points to.  The new record number is written
5102 ** written to register P2.
5103 **
5104 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5105 ** the largest previously generated record number. No new record numbers are
5106 ** allowed to be less than this value. When this value reaches its maximum,
5107 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5108 ** generated record number. This P3 mechanism is used to help implement the
5109 ** AUTOINCREMENT feature.
5110 */
5111 case OP_NewRowid: {           /* out2 */
5112   i64 v;                 /* The new rowid */
5113   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
5114   int res;               /* Result of an sqlite3BtreeLast() */
5115   int cnt;               /* Counter to limit the number of searches */
5116 #ifndef SQLITE_OMIT_AUTOINCREMENT
5117   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
5118   VdbeFrame *pFrame;     /* Root frame of VDBE */
5119 #endif
5120 
5121   v = 0;
5122   res = 0;
5123   pOut = out2Prerelease(p, pOp);
5124   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5125   pC = p->apCsr[pOp->p1];
5126   assert( pC!=0 );
5127   assert( pC->isTable );
5128   assert( pC->eCurType==CURTYPE_BTREE );
5129   assert( pC->uc.pCursor!=0 );
5130   {
5131     /* The next rowid or record number (different terms for the same
5132     ** thing) is obtained in a two-step algorithm.
5133     **
5134     ** First we attempt to find the largest existing rowid and add one
5135     ** to that.  But if the largest existing rowid is already the maximum
5136     ** positive integer, we have to fall through to the second
5137     ** probabilistic algorithm
5138     **
5139     ** The second algorithm is to select a rowid at random and see if
5140     ** it already exists in the table.  If it does not exist, we have
5141     ** succeeded.  If the random rowid does exist, we select a new one
5142     ** and try again, up to 100 times.
5143     */
5144     assert( pC->isTable );
5145 
5146 #ifdef SQLITE_32BIT_ROWID
5147 #   define MAX_ROWID 0x7fffffff
5148 #else
5149     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5150     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
5151     ** to provide the constant while making all compilers happy.
5152     */
5153 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5154 #endif
5155 
5156     if( !pC->useRandomRowid ){
5157       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5158       if( rc!=SQLITE_OK ){
5159         goto abort_due_to_error;
5160       }
5161       if( res ){
5162         v = 1;   /* IMP: R-61914-48074 */
5163       }else{
5164         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5165         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5166         if( v>=MAX_ROWID ){
5167           pC->useRandomRowid = 1;
5168         }else{
5169           v++;   /* IMP: R-29538-34987 */
5170         }
5171       }
5172     }
5173 
5174 #ifndef SQLITE_OMIT_AUTOINCREMENT
5175     if( pOp->p3 ){
5176       /* Assert that P3 is a valid memory cell. */
5177       assert( pOp->p3>0 );
5178       if( p->pFrame ){
5179         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5180         /* Assert that P3 is a valid memory cell. */
5181         assert( pOp->p3<=pFrame->nMem );
5182         pMem = &pFrame->aMem[pOp->p3];
5183       }else{
5184         /* Assert that P3 is a valid memory cell. */
5185         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5186         pMem = &aMem[pOp->p3];
5187         memAboutToChange(p, pMem);
5188       }
5189       assert( memIsValid(pMem) );
5190 
5191       REGISTER_TRACE(pOp->p3, pMem);
5192       sqlite3VdbeMemIntegerify(pMem);
5193       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
5194       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5195         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
5196         goto abort_due_to_error;
5197       }
5198       if( v<pMem->u.i+1 ){
5199         v = pMem->u.i + 1;
5200       }
5201       pMem->u.i = v;
5202     }
5203 #endif
5204     if( pC->useRandomRowid ){
5205       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5206       ** largest possible integer (9223372036854775807) then the database
5207       ** engine starts picking positive candidate ROWIDs at random until
5208       ** it finds one that is not previously used. */
5209       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
5210                              ** an AUTOINCREMENT table. */
5211       cnt = 0;
5212       do{
5213         sqlite3_randomness(sizeof(v), &v);
5214         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
5215       }while(  ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5216                                                  0, &res))==SQLITE_OK)
5217             && (res==0)
5218             && (++cnt<100));
5219       if( rc ) goto abort_due_to_error;
5220       if( res==0 ){
5221         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
5222         goto abort_due_to_error;
5223       }
5224       assert( v>0 );  /* EV: R-40812-03570 */
5225     }
5226     pC->deferredMoveto = 0;
5227     pC->cacheStatus = CACHE_STALE;
5228   }
5229   pOut->u.i = v;
5230   break;
5231 }
5232 
5233 /* Opcode: Insert P1 P2 P3 P4 P5
5234 ** Synopsis: intkey=r[P3] data=r[P2]
5235 **
5236 ** Write an entry into the table of cursor P1.  A new entry is
5237 ** created if it doesn't already exist or the data for an existing
5238 ** entry is overwritten.  The data is the value MEM_Blob stored in register
5239 ** number P2. The key is stored in register P3. The key must
5240 ** be a MEM_Int.
5241 **
5242 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5243 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
5244 ** then rowid is stored for subsequent return by the
5245 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5246 **
5247 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5248 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5249 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5250 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5251 **
5252 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5253 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
5254 ** is part of an INSERT operation.  The difference is only important to
5255 ** the update hook.
5256 **
5257 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5258 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5259 ** following a successful insert.
5260 **
5261 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5262 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5263 ** and register P2 becomes ephemeral.  If the cursor is changed, the
5264 ** value of register P2 will then change.  Make sure this does not
5265 ** cause any problems.)
5266 **
5267 ** This instruction only works on tables.  The equivalent instruction
5268 ** for indices is OP_IdxInsert.
5269 */
5270 case OP_Insert: {
5271   Mem *pData;       /* MEM cell holding data for the record to be inserted */
5272   Mem *pKey;        /* MEM cell holding key  for the record */
5273   VdbeCursor *pC;   /* Cursor to table into which insert is written */
5274   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
5275   const char *zDb;  /* database name - used by the update hook */
5276   Table *pTab;      /* Table structure - used by update and pre-update hooks */
5277   BtreePayload x;   /* Payload to be inserted */
5278 
5279   pData = &aMem[pOp->p2];
5280   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5281   assert( memIsValid(pData) );
5282   pC = p->apCsr[pOp->p1];
5283   assert( pC!=0 );
5284   assert( pC->eCurType==CURTYPE_BTREE );
5285   assert( pC->deferredMoveto==0 );
5286   assert( pC->uc.pCursor!=0 );
5287   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5288   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5289   REGISTER_TRACE(pOp->p2, pData);
5290   sqlite3VdbeIncrWriteCounter(p, pC);
5291 
5292   pKey = &aMem[pOp->p3];
5293   assert( pKey->flags & MEM_Int );
5294   assert( memIsValid(pKey) );
5295   REGISTER_TRACE(pOp->p3, pKey);
5296   x.nKey = pKey->u.i;
5297 
5298   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5299     assert( pC->iDb>=0 );
5300     zDb = db->aDb[pC->iDb].zDbSName;
5301     pTab = pOp->p4.pTab;
5302     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5303   }else{
5304     pTab = 0;
5305     zDb = 0;
5306   }
5307 
5308 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5309   /* Invoke the pre-update hook, if any */
5310   if( pTab ){
5311     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5312       sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5313     }
5314     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5315       /* Prevent post-update hook from running in cases when it should not */
5316       pTab = 0;
5317     }
5318   }
5319   if( pOp->p5 & OPFLAG_ISNOOP ) break;
5320 #endif
5321 
5322   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5323   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5324   assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5325   x.pData = pData->z;
5326   x.nData = pData->n;
5327   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5328   if( pData->flags & MEM_Zero ){
5329     x.nZero = pData->u.nZero;
5330   }else{
5331     x.nZero = 0;
5332   }
5333   x.pKey = 0;
5334   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5335       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5336       seekResult
5337   );
5338   pC->deferredMoveto = 0;
5339   pC->cacheStatus = CACHE_STALE;
5340 
5341   /* Invoke the update-hook if required. */
5342   if( rc ) goto abort_due_to_error;
5343   if( pTab ){
5344     assert( db->xUpdateCallback!=0 );
5345     assert( pTab->aCol!=0 );
5346     db->xUpdateCallback(db->pUpdateArg,
5347            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5348            zDb, pTab->zName, x.nKey);
5349   }
5350   break;
5351 }
5352 
5353 /* Opcode: RowCell P1 P2 P3 * *
5354 **
5355 ** P1 and P2 are both open cursors. Both must be opened on the same type
5356 ** of table - intkey or index. This opcode is used as part of copying
5357 ** the current row from P2 into P1. If the cursors are opened on intkey
5358 ** tables, register P3 contains the rowid to use with the new record in
5359 ** P1. If they are opened on index tables, P3 is not used.
5360 **
5361 ** This opcode must be followed by either an Insert or InsertIdx opcode
5362 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5363 */
5364 case OP_RowCell: {
5365   VdbeCursor *pDest;              /* Cursor to write to */
5366   VdbeCursor *pSrc;               /* Cursor to read from */
5367   i64 iKey;                       /* Rowid value to insert with */
5368   assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5369   assert( pOp[1].opcode==OP_Insert    || pOp->p3==0 );
5370   assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5371   assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5372   pDest = p->apCsr[pOp->p1];
5373   pSrc = p->apCsr[pOp->p2];
5374   iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5375   rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5376   if( rc!=SQLITE_OK ) goto abort_due_to_error;
5377   break;
5378 };
5379 
5380 /* Opcode: Delete P1 P2 P3 P4 P5
5381 **
5382 ** Delete the record at which the P1 cursor is currently pointing.
5383 **
5384 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5385 ** the cursor will be left pointing at  either the next or the previous
5386 ** record in the table. If it is left pointing at the next record, then
5387 ** the next Next instruction will be a no-op. As a result, in this case
5388 ** it is ok to delete a record from within a Next loop. If
5389 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5390 ** left in an undefined state.
5391 **
5392 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5393 ** delete one of several associated with deleting a table row and all its
5394 ** associated index entries.  Exactly one of those deletes is the "primary"
5395 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
5396 ** marked with the AUXDELETE flag.
5397 **
5398 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5399 ** change count is incremented (otherwise not).
5400 **
5401 ** P1 must not be pseudo-table.  It has to be a real table with
5402 ** multiple rows.
5403 **
5404 ** If P4 is not NULL then it points to a Table object. In this case either
5405 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5406 ** have been positioned using OP_NotFound prior to invoking this opcode in
5407 ** this case. Specifically, if one is configured, the pre-update hook is
5408 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5409 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5410 **
5411 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5412 ** of the memory cell that contains the value that the rowid of the row will
5413 ** be set to by the update.
5414 */
5415 case OP_Delete: {
5416   VdbeCursor *pC;
5417   const char *zDb;
5418   Table *pTab;
5419   int opflags;
5420 
5421   opflags = pOp->p2;
5422   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5423   pC = p->apCsr[pOp->p1];
5424   assert( pC!=0 );
5425   assert( pC->eCurType==CURTYPE_BTREE );
5426   assert( pC->uc.pCursor!=0 );
5427   assert( pC->deferredMoveto==0 );
5428   sqlite3VdbeIncrWriteCounter(p, pC);
5429 
5430 #ifdef SQLITE_DEBUG
5431   if( pOp->p4type==P4_TABLE
5432    && HasRowid(pOp->p4.pTab)
5433    && pOp->p5==0
5434    && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5435   ){
5436     /* If p5 is zero, the seek operation that positioned the cursor prior to
5437     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5438     ** the row that is being deleted */
5439     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5440     assert( CORRUPT_DB || pC->movetoTarget==iKey );
5441   }
5442 #endif
5443 
5444   /* If the update-hook or pre-update-hook will be invoked, set zDb to
5445   ** the name of the db to pass as to it. Also set local pTab to a copy
5446   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5447   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5448   ** VdbeCursor.movetoTarget to the current rowid.  */
5449   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5450     assert( pC->iDb>=0 );
5451     assert( pOp->p4.pTab!=0 );
5452     zDb = db->aDb[pC->iDb].zDbSName;
5453     pTab = pOp->p4.pTab;
5454     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5455       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5456     }
5457   }else{
5458     zDb = 0;
5459     pTab = 0;
5460   }
5461 
5462 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5463   /* Invoke the pre-update-hook if required. */
5464   assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5465   if( db->xPreUpdateCallback && pTab ){
5466     assert( !(opflags & OPFLAG_ISUPDATE)
5467          || HasRowid(pTab)==0
5468          || (aMem[pOp->p3].flags & MEM_Int)
5469     );
5470     sqlite3VdbePreUpdateHook(p, pC,
5471         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5472         zDb, pTab, pC->movetoTarget,
5473         pOp->p3, -1
5474     );
5475   }
5476   if( opflags & OPFLAG_ISNOOP ) break;
5477 #endif
5478 
5479   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5480   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5481   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5482   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5483 
5484 #ifdef SQLITE_DEBUG
5485   if( p->pFrame==0 ){
5486     if( pC->isEphemeral==0
5487         && (pOp->p5 & OPFLAG_AUXDELETE)==0
5488         && (pC->wrFlag & OPFLAG_FORDELETE)==0
5489       ){
5490       nExtraDelete++;
5491     }
5492     if( pOp->p2 & OPFLAG_NCHANGE ){
5493       nExtraDelete--;
5494     }
5495   }
5496 #endif
5497 
5498   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5499   pC->cacheStatus = CACHE_STALE;
5500   pC->seekResult = 0;
5501   if( rc ) goto abort_due_to_error;
5502 
5503   /* Invoke the update-hook if required. */
5504   if( opflags & OPFLAG_NCHANGE ){
5505     p->nChange++;
5506     if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5507       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5508           pC->movetoTarget);
5509       assert( pC->iDb>=0 );
5510     }
5511   }
5512 
5513   break;
5514 }
5515 /* Opcode: ResetCount * * * * *
5516 **
5517 ** The value of the change counter is copied to the database handle
5518 ** change counter (returned by subsequent calls to sqlite3_changes()).
5519 ** Then the VMs internal change counter resets to 0.
5520 ** This is used by trigger programs.
5521 */
5522 case OP_ResetCount: {
5523   sqlite3VdbeSetChanges(db, p->nChange);
5524   p->nChange = 0;
5525   break;
5526 }
5527 
5528 /* Opcode: SorterCompare P1 P2 P3 P4
5529 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5530 **
5531 ** P1 is a sorter cursor. This instruction compares a prefix of the
5532 ** record blob in register P3 against a prefix of the entry that
5533 ** the sorter cursor currently points to.  Only the first P4 fields
5534 ** of r[P3] and the sorter record are compared.
5535 **
5536 ** If either P3 or the sorter contains a NULL in one of their significant
5537 ** fields (not counting the P4 fields at the end which are ignored) then
5538 ** the comparison is assumed to be equal.
5539 **
5540 ** Fall through to next instruction if the two records compare equal to
5541 ** each other.  Jump to P2 if they are different.
5542 */
5543 case OP_SorterCompare: {
5544   VdbeCursor *pC;
5545   int res;
5546   int nKeyCol;
5547 
5548   pC = p->apCsr[pOp->p1];
5549   assert( isSorter(pC) );
5550   assert( pOp->p4type==P4_INT32 );
5551   pIn3 = &aMem[pOp->p3];
5552   nKeyCol = pOp->p4.i;
5553   res = 0;
5554   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5555   VdbeBranchTaken(res!=0,2);
5556   if( rc ) goto abort_due_to_error;
5557   if( res ) goto jump_to_p2;
5558   break;
5559 };
5560 
5561 /* Opcode: SorterData P1 P2 P3 * *
5562 ** Synopsis: r[P2]=data
5563 **
5564 ** Write into register P2 the current sorter data for sorter cursor P1.
5565 ** Then clear the column header cache on cursor P3.
5566 **
5567 ** This opcode is normally use to move a record out of the sorter and into
5568 ** a register that is the source for a pseudo-table cursor created using
5569 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
5570 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
5571 ** us from having to issue a separate NullRow instruction to clear that cache.
5572 */
5573 case OP_SorterData: {
5574   VdbeCursor *pC;
5575 
5576   pOut = &aMem[pOp->p2];
5577   pC = p->apCsr[pOp->p1];
5578   assert( isSorter(pC) );
5579   rc = sqlite3VdbeSorterRowkey(pC, pOut);
5580   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5581   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5582   if( rc ) goto abort_due_to_error;
5583   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5584   break;
5585 }
5586 
5587 /* Opcode: RowData P1 P2 P3 * *
5588 ** Synopsis: r[P2]=data
5589 **
5590 ** Write into register P2 the complete row content for the row at
5591 ** which cursor P1 is currently pointing.
5592 ** There is no interpretation of the data.
5593 ** It is just copied onto the P2 register exactly as
5594 ** it is found in the database file.
5595 **
5596 ** If cursor P1 is an index, then the content is the key of the row.
5597 ** If cursor P2 is a table, then the content extracted is the data.
5598 **
5599 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5600 ** of a real table, not a pseudo-table.
5601 **
5602 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5603 ** into the database page.  That means that the content of the output
5604 ** register will be invalidated as soon as the cursor moves - including
5605 ** moves caused by other cursors that "save" the current cursors
5606 ** position in order that they can write to the same table.  If P3==0
5607 ** then a copy of the data is made into memory.  P3!=0 is faster, but
5608 ** P3==0 is safer.
5609 **
5610 ** If P3!=0 then the content of the P2 register is unsuitable for use
5611 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5612 ** The P2 register content is invalidated by opcodes like OP_Function or
5613 ** by any use of another cursor pointing to the same table.
5614 */
5615 case OP_RowData: {
5616   VdbeCursor *pC;
5617   BtCursor *pCrsr;
5618   u32 n;
5619 
5620   pOut = out2Prerelease(p, pOp);
5621 
5622   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5623   pC = p->apCsr[pOp->p1];
5624   assert( pC!=0 );
5625   assert( pC->eCurType==CURTYPE_BTREE );
5626   assert( isSorter(pC)==0 );
5627   assert( pC->nullRow==0 );
5628   assert( pC->uc.pCursor!=0 );
5629   pCrsr = pC->uc.pCursor;
5630 
5631   /* The OP_RowData opcodes always follow OP_NotExists or
5632   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5633   ** that might invalidate the cursor.
5634   ** If this where not the case, on of the following assert()s
5635   ** would fail.  Should this ever change (because of changes in the code
5636   ** generator) then the fix would be to insert a call to
5637   ** sqlite3VdbeCursorMoveto().
5638   */
5639   assert( pC->deferredMoveto==0 );
5640   assert( sqlite3BtreeCursorIsValid(pCrsr) );
5641 
5642   n = sqlite3BtreePayloadSize(pCrsr);
5643   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5644     goto too_big;
5645   }
5646   testcase( n==0 );
5647   rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5648   if( rc ) goto abort_due_to_error;
5649   if( !pOp->p3 ) Deephemeralize(pOut);
5650   UPDATE_MAX_BLOBSIZE(pOut);
5651   REGISTER_TRACE(pOp->p2, pOut);
5652   break;
5653 }
5654 
5655 /* Opcode: Rowid P1 P2 * * *
5656 ** Synopsis: r[P2]=rowid
5657 **
5658 ** Store in register P2 an integer which is the key of the table entry that
5659 ** P1 is currently point to.
5660 **
5661 ** P1 can be either an ordinary table or a virtual table.  There used to
5662 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5663 ** one opcode now works for both table types.
5664 */
5665 case OP_Rowid: {                 /* out2 */
5666   VdbeCursor *pC;
5667   i64 v;
5668   sqlite3_vtab *pVtab;
5669   const sqlite3_module *pModule;
5670 
5671   pOut = out2Prerelease(p, pOp);
5672   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5673   pC = p->apCsr[pOp->p1];
5674   assert( pC!=0 );
5675   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5676   if( pC->nullRow ){
5677     pOut->flags = MEM_Null;
5678     break;
5679   }else if( pC->deferredMoveto ){
5680     v = pC->movetoTarget;
5681 #ifndef SQLITE_OMIT_VIRTUALTABLE
5682   }else if( pC->eCurType==CURTYPE_VTAB ){
5683     assert( pC->uc.pVCur!=0 );
5684     pVtab = pC->uc.pVCur->pVtab;
5685     pModule = pVtab->pModule;
5686     assert( pModule->xRowid );
5687     rc = pModule->xRowid(pC->uc.pVCur, &v);
5688     sqlite3VtabImportErrmsg(p, pVtab);
5689     if( rc ) goto abort_due_to_error;
5690 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5691   }else{
5692     assert( pC->eCurType==CURTYPE_BTREE );
5693     assert( pC->uc.pCursor!=0 );
5694     rc = sqlite3VdbeCursorRestore(pC);
5695     if( rc ) goto abort_due_to_error;
5696     if( pC->nullRow ){
5697       pOut->flags = MEM_Null;
5698       break;
5699     }
5700     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5701   }
5702   pOut->u.i = v;
5703   break;
5704 }
5705 
5706 /* Opcode: NullRow P1 * * * *
5707 **
5708 ** Move the cursor P1 to a null row.  Any OP_Column operations
5709 ** that occur while the cursor is on the null row will always
5710 ** write a NULL.
5711 */
5712 case OP_NullRow: {
5713   VdbeCursor *pC;
5714 
5715   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5716   pC = p->apCsr[pOp->p1];
5717   assert( pC!=0 );
5718   pC->nullRow = 1;
5719   pC->cacheStatus = CACHE_STALE;
5720   if( pC->eCurType==CURTYPE_BTREE ){
5721     assert( pC->uc.pCursor!=0 );
5722     sqlite3BtreeClearCursor(pC->uc.pCursor);
5723   }
5724 #ifdef SQLITE_DEBUG
5725   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5726 #endif
5727   break;
5728 }
5729 
5730 /* Opcode: SeekEnd P1 * * * *
5731 **
5732 ** Position cursor P1 at the end of the btree for the purpose of
5733 ** appending a new entry onto the btree.
5734 **
5735 ** It is assumed that the cursor is used only for appending and so
5736 ** if the cursor is valid, then the cursor must already be pointing
5737 ** at the end of the btree and so no changes are made to
5738 ** the cursor.
5739 */
5740 /* Opcode: Last P1 P2 * * *
5741 **
5742 ** The next use of the Rowid or Column or Prev instruction for P1
5743 ** will refer to the last entry in the database table or index.
5744 ** If the table or index is empty and P2>0, then jump immediately to P2.
5745 ** If P2 is 0 or if the table or index is not empty, fall through
5746 ** to the following instruction.
5747 **
5748 ** This opcode leaves the cursor configured to move in reverse order,
5749 ** from the end toward the beginning.  In other words, the cursor is
5750 ** configured to use Prev, not Next.
5751 */
5752 case OP_SeekEnd:
5753 case OP_Last: {        /* jump */
5754   VdbeCursor *pC;
5755   BtCursor *pCrsr;
5756   int res;
5757 
5758   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5759   pC = p->apCsr[pOp->p1];
5760   assert( pC!=0 );
5761   assert( pC->eCurType==CURTYPE_BTREE );
5762   pCrsr = pC->uc.pCursor;
5763   res = 0;
5764   assert( pCrsr!=0 );
5765 #ifdef SQLITE_DEBUG
5766   pC->seekOp = pOp->opcode;
5767 #endif
5768   if( pOp->opcode==OP_SeekEnd ){
5769     assert( pOp->p2==0 );
5770     pC->seekResult = -1;
5771     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5772       break;
5773     }
5774   }
5775   rc = sqlite3BtreeLast(pCrsr, &res);
5776   pC->nullRow = (u8)res;
5777   pC->deferredMoveto = 0;
5778   pC->cacheStatus = CACHE_STALE;
5779   if( rc ) goto abort_due_to_error;
5780   if( pOp->p2>0 ){
5781     VdbeBranchTaken(res!=0,2);
5782     if( res ) goto jump_to_p2;
5783   }
5784   break;
5785 }
5786 
5787 /* Opcode: IfSmaller P1 P2 P3 * *
5788 **
5789 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5790 ** estimate is less than approximately 2**(0.1*P3).
5791 */
5792 case OP_IfSmaller: {        /* jump */
5793   VdbeCursor *pC;
5794   BtCursor *pCrsr;
5795   int res;
5796   i64 sz;
5797 
5798   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5799   pC = p->apCsr[pOp->p1];
5800   assert( pC!=0 );
5801   pCrsr = pC->uc.pCursor;
5802   assert( pCrsr );
5803   rc = sqlite3BtreeFirst(pCrsr, &res);
5804   if( rc ) goto abort_due_to_error;
5805   if( res==0 ){
5806     sz = sqlite3BtreeRowCountEst(pCrsr);
5807     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5808   }
5809   VdbeBranchTaken(res!=0,2);
5810   if( res ) goto jump_to_p2;
5811   break;
5812 }
5813 
5814 
5815 /* Opcode: SorterSort P1 P2 * * *
5816 **
5817 ** After all records have been inserted into the Sorter object
5818 ** identified by P1, invoke this opcode to actually do the sorting.
5819 ** Jump to P2 if there are no records to be sorted.
5820 **
5821 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5822 ** for Sorter objects.
5823 */
5824 /* Opcode: Sort P1 P2 * * *
5825 **
5826 ** This opcode does exactly the same thing as OP_Rewind except that
5827 ** it increments an undocumented global variable used for testing.
5828 **
5829 ** Sorting is accomplished by writing records into a sorting index,
5830 ** then rewinding that index and playing it back from beginning to
5831 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5832 ** rewinding so that the global variable will be incremented and
5833 ** regression tests can determine whether or not the optimizer is
5834 ** correctly optimizing out sorts.
5835 */
5836 case OP_SorterSort:    /* jump */
5837 case OP_Sort: {        /* jump */
5838 #ifdef SQLITE_TEST
5839   sqlite3_sort_count++;
5840   sqlite3_search_count--;
5841 #endif
5842   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5843   /* Fall through into OP_Rewind */
5844   /* no break */ deliberate_fall_through
5845 }
5846 /* Opcode: Rewind P1 P2 * * *
5847 **
5848 ** The next use of the Rowid or Column or Next instruction for P1
5849 ** will refer to the first entry in the database table or index.
5850 ** If the table or index is empty, jump immediately to P2.
5851 ** If the table or index is not empty, fall through to the following
5852 ** instruction.
5853 **
5854 ** This opcode leaves the cursor configured to move in forward order,
5855 ** from the beginning toward the end.  In other words, the cursor is
5856 ** configured to use Next, not Prev.
5857 */
5858 case OP_Rewind: {        /* jump */
5859   VdbeCursor *pC;
5860   BtCursor *pCrsr;
5861   int res;
5862 
5863   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5864   assert( pOp->p5==0 );
5865   pC = p->apCsr[pOp->p1];
5866   assert( pC!=0 );
5867   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5868   res = 1;
5869 #ifdef SQLITE_DEBUG
5870   pC->seekOp = OP_Rewind;
5871 #endif
5872   if( isSorter(pC) ){
5873     rc = sqlite3VdbeSorterRewind(pC, &res);
5874   }else{
5875     assert( pC->eCurType==CURTYPE_BTREE );
5876     pCrsr = pC->uc.pCursor;
5877     assert( pCrsr );
5878     rc = sqlite3BtreeFirst(pCrsr, &res);
5879     pC->deferredMoveto = 0;
5880     pC->cacheStatus = CACHE_STALE;
5881   }
5882   if( rc ) goto abort_due_to_error;
5883   pC->nullRow = (u8)res;
5884   assert( pOp->p2>0 && pOp->p2<p->nOp );
5885   VdbeBranchTaken(res!=0,2);
5886   if( res ) goto jump_to_p2;
5887   break;
5888 }
5889 
5890 /* Opcode: Next P1 P2 P3 P4 P5
5891 **
5892 ** Advance cursor P1 so that it points to the next key/data pair in its
5893 ** table or index.  If there are no more key/value pairs then fall through
5894 ** to the following instruction.  But if the cursor advance was successful,
5895 ** jump immediately to P2.
5896 **
5897 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5898 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5899 ** to follow SeekLT, SeekLE, or OP_Last.
5900 **
5901 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5902 ** been opened prior to this opcode or the program will segfault.
5903 **
5904 ** The P3 value is a hint to the btree implementation. If P3==1, that
5905 ** means P1 is an SQL index and that this instruction could have been
5906 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5907 ** always either 0 or 1.
5908 **
5909 ** P4 is always of type P4_ADVANCE. The function pointer points to
5910 ** sqlite3BtreeNext().
5911 **
5912 ** If P5 is positive and the jump is taken, then event counter
5913 ** number P5-1 in the prepared statement is incremented.
5914 **
5915 ** See also: Prev
5916 */
5917 /* Opcode: Prev P1 P2 P3 P4 P5
5918 **
5919 ** Back up cursor P1 so that it points to the previous key/data pair in its
5920 ** table or index.  If there is no previous key/value pairs then fall through
5921 ** to the following instruction.  But if the cursor backup was successful,
5922 ** jump immediately to P2.
5923 **
5924 **
5925 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5926 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5927 ** to follow SeekGT, SeekGE, or OP_Rewind.
5928 **
5929 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5930 ** not open then the behavior is undefined.
5931 **
5932 ** The P3 value is a hint to the btree implementation. If P3==1, that
5933 ** means P1 is an SQL index and that this instruction could have been
5934 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5935 ** always either 0 or 1.
5936 **
5937 ** P4 is always of type P4_ADVANCE. The function pointer points to
5938 ** sqlite3BtreePrevious().
5939 **
5940 ** If P5 is positive and the jump is taken, then event counter
5941 ** number P5-1 in the prepared statement is incremented.
5942 */
5943 /* Opcode: SorterNext P1 P2 * * P5
5944 **
5945 ** This opcode works just like OP_Next except that P1 must be a
5946 ** sorter object for which the OP_SorterSort opcode has been
5947 ** invoked.  This opcode advances the cursor to the next sorted
5948 ** record, or jumps to P2 if there are no more sorted records.
5949 */
5950 case OP_SorterNext: {  /* jump */
5951   VdbeCursor *pC;
5952 
5953   pC = p->apCsr[pOp->p1];
5954   assert( isSorter(pC) );
5955   rc = sqlite3VdbeSorterNext(db, pC);
5956   goto next_tail;
5957 case OP_Prev:          /* jump */
5958 case OP_Next:          /* jump */
5959   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5960   assert( pOp->p5<ArraySize(p->aCounter) );
5961   pC = p->apCsr[pOp->p1];
5962   assert( pC!=0 );
5963   assert( pC->deferredMoveto==0 );
5964   assert( pC->eCurType==CURTYPE_BTREE );
5965   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5966   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5967 
5968   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5969   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5970   assert( pOp->opcode!=OP_Next
5971        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5972        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5973        || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
5974        || pC->seekOp==OP_IfNoHope);
5975   assert( pOp->opcode!=OP_Prev
5976        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5977        || pC->seekOp==OP_Last   || pC->seekOp==OP_IfNoHope
5978        || pC->seekOp==OP_NullRow);
5979 
5980   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5981 next_tail:
5982   pC->cacheStatus = CACHE_STALE;
5983   VdbeBranchTaken(rc==SQLITE_OK,2);
5984   if( rc==SQLITE_OK ){
5985     pC->nullRow = 0;
5986     p->aCounter[pOp->p5]++;
5987 #ifdef SQLITE_TEST
5988     sqlite3_search_count++;
5989 #endif
5990     goto jump_to_p2_and_check_for_interrupt;
5991   }
5992   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5993   rc = SQLITE_OK;
5994   pC->nullRow = 1;
5995   goto check_for_interrupt;
5996 }
5997 
5998 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5999 ** Synopsis: key=r[P2]
6000 **
6001 ** Register P2 holds an SQL index key made using the
6002 ** MakeRecord instructions.  This opcode writes that key
6003 ** into the index P1.  Data for the entry is nil.
6004 **
6005 ** If P4 is not zero, then it is the number of values in the unpacked
6006 ** key of reg(P2).  In that case, P3 is the index of the first register
6007 ** for the unpacked key.  The availability of the unpacked key can sometimes
6008 ** be an optimization.
6009 **
6010 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6011 ** that this insert is likely to be an append.
6012 **
6013 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6014 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
6015 ** then the change counter is unchanged.
6016 **
6017 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6018 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
6019 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6020 ** seeks on the cursor or if the most recent seek used a key equivalent
6021 ** to P2.
6022 **
6023 ** This instruction only works for indices.  The equivalent instruction
6024 ** for tables is OP_Insert.
6025 */
6026 case OP_IdxInsert: {        /* in2 */
6027   VdbeCursor *pC;
6028   BtreePayload x;
6029 
6030   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6031   pC = p->apCsr[pOp->p1];
6032   sqlite3VdbeIncrWriteCounter(p, pC);
6033   assert( pC!=0 );
6034   assert( !isSorter(pC) );
6035   pIn2 = &aMem[pOp->p2];
6036   assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6037   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6038   assert( pC->eCurType==CURTYPE_BTREE );
6039   assert( pC->isTable==0 );
6040   rc = ExpandBlob(pIn2);
6041   if( rc ) goto abort_due_to_error;
6042   x.nKey = pIn2->n;
6043   x.pKey = pIn2->z;
6044   x.aMem = aMem + pOp->p3;
6045   x.nMem = (u16)pOp->p4.i;
6046   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6047        (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6048       ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6049       );
6050   assert( pC->deferredMoveto==0 );
6051   pC->cacheStatus = CACHE_STALE;
6052   if( rc) goto abort_due_to_error;
6053   break;
6054 }
6055 
6056 /* Opcode: SorterInsert P1 P2 * * *
6057 ** Synopsis: key=r[P2]
6058 **
6059 ** Register P2 holds an SQL index key made using the
6060 ** MakeRecord instructions.  This opcode writes that key
6061 ** into the sorter P1.  Data for the entry is nil.
6062 */
6063 case OP_SorterInsert: {     /* in2 */
6064   VdbeCursor *pC;
6065 
6066   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6067   pC = p->apCsr[pOp->p1];
6068   sqlite3VdbeIncrWriteCounter(p, pC);
6069   assert( pC!=0 );
6070   assert( isSorter(pC) );
6071   pIn2 = &aMem[pOp->p2];
6072   assert( pIn2->flags & MEM_Blob );
6073   assert( pC->isTable==0 );
6074   rc = ExpandBlob(pIn2);
6075   if( rc ) goto abort_due_to_error;
6076   rc = sqlite3VdbeSorterWrite(pC, pIn2);
6077   if( rc) goto abort_due_to_error;
6078   break;
6079 }
6080 
6081 /* Opcode: IdxDelete P1 P2 P3 * P5
6082 ** Synopsis: key=r[P2@P3]
6083 **
6084 ** The content of P3 registers starting at register P2 form
6085 ** an unpacked index key. This opcode removes that entry from the
6086 ** index opened by cursor P1.
6087 **
6088 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6089 ** if no matching index entry is found.  This happens when running
6090 ** an UPDATE or DELETE statement and the index entry to be updated
6091 ** or deleted is not found.  For some uses of IdxDelete
6092 ** (example:  the EXCEPT operator) it does not matter that no matching
6093 ** entry is found.  For those cases, P5 is zero.  Also, do not raise
6094 ** this (self-correcting and non-critical) error if in writable_schema mode.
6095 */
6096 case OP_IdxDelete: {
6097   VdbeCursor *pC;
6098   BtCursor *pCrsr;
6099   int res;
6100   UnpackedRecord r;
6101 
6102   assert( pOp->p3>0 );
6103   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6104   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6105   pC = p->apCsr[pOp->p1];
6106   assert( pC!=0 );
6107   assert( pC->eCurType==CURTYPE_BTREE );
6108   sqlite3VdbeIncrWriteCounter(p, pC);
6109   pCrsr = pC->uc.pCursor;
6110   assert( pCrsr!=0 );
6111   r.pKeyInfo = pC->pKeyInfo;
6112   r.nField = (u16)pOp->p3;
6113   r.default_rc = 0;
6114   r.aMem = &aMem[pOp->p2];
6115   rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6116   if( rc ) goto abort_due_to_error;
6117   if( res==0 ){
6118     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6119     if( rc ) goto abort_due_to_error;
6120   }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6121     rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6122     goto abort_due_to_error;
6123   }
6124   assert( pC->deferredMoveto==0 );
6125   pC->cacheStatus = CACHE_STALE;
6126   pC->seekResult = 0;
6127   break;
6128 }
6129 
6130 /* Opcode: DeferredSeek P1 * P3 P4 *
6131 ** Synopsis: Move P3 to P1.rowid if needed
6132 **
6133 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6134 ** table.  This opcode does a deferred seek of the P3 table cursor
6135 ** to the row that corresponds to the current row of P1.
6136 **
6137 ** This is a deferred seek.  Nothing actually happens until
6138 ** the cursor is used to read a record.  That way, if no reads
6139 ** occur, no unnecessary I/O happens.
6140 **
6141 ** P4 may be an array of integers (type P4_INTARRAY) containing
6142 ** one entry for each column in the P3 table.  If array entry a(i)
6143 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6144 ** equivalent to performing the deferred seek and then reading column i
6145 ** from P1.  This information is stored in P3 and used to redirect
6146 ** reads against P3 over to P1, thus possibly avoiding the need to
6147 ** seek and read cursor P3.
6148 */
6149 /* Opcode: IdxRowid P1 P2 * * *
6150 ** Synopsis: r[P2]=rowid
6151 **
6152 ** Write into register P2 an integer which is the last entry in the record at
6153 ** the end of the index key pointed to by cursor P1.  This integer should be
6154 ** the rowid of the table entry to which this index entry points.
6155 **
6156 ** See also: Rowid, MakeRecord.
6157 */
6158 case OP_DeferredSeek:
6159 case OP_IdxRowid: {           /* out2 */
6160   VdbeCursor *pC;             /* The P1 index cursor */
6161   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
6162   i64 rowid;                  /* Rowid that P1 current points to */
6163 
6164   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6165   pC = p->apCsr[pOp->p1];
6166   assert( pC!=0 );
6167   assert( pC->eCurType==CURTYPE_BTREE );
6168   assert( pC->uc.pCursor!=0 );
6169   assert( pC->isTable==0 );
6170   assert( pC->deferredMoveto==0 );
6171   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6172 
6173   /* The IdxRowid and Seek opcodes are combined because of the commonality
6174   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6175   rc = sqlite3VdbeCursorRestore(pC);
6176 
6177   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
6178   ** out from under the cursor.  That will never happens for an IdxRowid
6179   ** or Seek opcode */
6180   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
6181 
6182   if( !pC->nullRow ){
6183     rowid = 0;  /* Not needed.  Only used to silence a warning. */
6184     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6185     if( rc!=SQLITE_OK ){
6186       goto abort_due_to_error;
6187     }
6188     if( pOp->opcode==OP_DeferredSeek ){
6189       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6190       pTabCur = p->apCsr[pOp->p3];
6191       assert( pTabCur!=0 );
6192       assert( pTabCur->eCurType==CURTYPE_BTREE );
6193       assert( pTabCur->uc.pCursor!=0 );
6194       assert( pTabCur->isTable );
6195       pTabCur->nullRow = 0;
6196       pTabCur->movetoTarget = rowid;
6197       pTabCur->deferredMoveto = 1;
6198       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6199       assert( !pTabCur->isEphemeral );
6200       pTabCur->ub.aAltMap = pOp->p4.ai;
6201       assert( !pC->isEphemeral );
6202       pTabCur->pAltCursor = pC;
6203     }else{
6204       pOut = out2Prerelease(p, pOp);
6205       pOut->u.i = rowid;
6206     }
6207   }else{
6208     assert( pOp->opcode==OP_IdxRowid );
6209     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6210   }
6211   break;
6212 }
6213 
6214 /* Opcode: FinishSeek P1 * * * *
6215 **
6216 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6217 ** seek operation now, without further delay.  If the cursor seek has
6218 ** already occurred, this instruction is a no-op.
6219 */
6220 case OP_FinishSeek: {
6221   VdbeCursor *pC;             /* The P1 index cursor */
6222 
6223   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6224   pC = p->apCsr[pOp->p1];
6225   if( pC->deferredMoveto ){
6226     rc = sqlite3VdbeFinishMoveto(pC);
6227     if( rc ) goto abort_due_to_error;
6228   }
6229   break;
6230 }
6231 
6232 /* Opcode: IdxGE P1 P2 P3 P4 *
6233 ** Synopsis: key=r[P3@P4]
6234 **
6235 ** The P4 register values beginning with P3 form an unpacked index
6236 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6237 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6238 ** fields at the end.
6239 **
6240 ** If the P1 index entry is greater than or equal to the key value
6241 ** then jump to P2.  Otherwise fall through to the next instruction.
6242 */
6243 /* Opcode: IdxGT P1 P2 P3 P4 *
6244 ** Synopsis: key=r[P3@P4]
6245 **
6246 ** The P4 register values beginning with P3 form an unpacked index
6247 ** key that omits the PRIMARY KEY.  Compare this key value against the index
6248 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6249 ** fields at the end.
6250 **
6251 ** If the P1 index entry is greater than the key value
6252 ** then jump to P2.  Otherwise fall through to the next instruction.
6253 */
6254 /* Opcode: IdxLT P1 P2 P3 P4 *
6255 ** Synopsis: key=r[P3@P4]
6256 **
6257 ** The P4 register values beginning with P3 form an unpacked index
6258 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6259 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6260 ** ROWID on the P1 index.
6261 **
6262 ** If the P1 index entry is less than the key value then jump to P2.
6263 ** Otherwise fall through to the next instruction.
6264 */
6265 /* Opcode: IdxLE P1 P2 P3 P4 *
6266 ** Synopsis: key=r[P3@P4]
6267 **
6268 ** The P4 register values beginning with P3 form an unpacked index
6269 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
6270 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6271 ** ROWID on the P1 index.
6272 **
6273 ** If the P1 index entry is less than or equal to the key value then jump
6274 ** to P2. Otherwise fall through to the next instruction.
6275 */
6276 case OP_IdxLE:          /* jump */
6277 case OP_IdxGT:          /* jump */
6278 case OP_IdxLT:          /* jump */
6279 case OP_IdxGE:  {       /* jump */
6280   VdbeCursor *pC;
6281   int res;
6282   UnpackedRecord r;
6283 
6284   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6285   pC = p->apCsr[pOp->p1];
6286   assert( pC!=0 );
6287   assert( pC->isOrdered );
6288   assert( pC->eCurType==CURTYPE_BTREE );
6289   assert( pC->uc.pCursor!=0);
6290   assert( pC->deferredMoveto==0 );
6291   assert( pOp->p4type==P4_INT32 );
6292   r.pKeyInfo = pC->pKeyInfo;
6293   r.nField = (u16)pOp->p4.i;
6294   if( pOp->opcode<OP_IdxLT ){
6295     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6296     r.default_rc = -1;
6297   }else{
6298     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6299     r.default_rc = 0;
6300   }
6301   r.aMem = &aMem[pOp->p3];
6302 #ifdef SQLITE_DEBUG
6303   {
6304     int i;
6305     for(i=0; i<r.nField; i++){
6306       assert( memIsValid(&r.aMem[i]) );
6307       REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6308     }
6309   }
6310 #endif
6311 
6312   /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6313   {
6314     i64 nCellKey = 0;
6315     BtCursor *pCur;
6316     Mem m;
6317 
6318     assert( pC->eCurType==CURTYPE_BTREE );
6319     pCur = pC->uc.pCursor;
6320     assert( sqlite3BtreeCursorIsValid(pCur) );
6321     nCellKey = sqlite3BtreePayloadSize(pCur);
6322     /* nCellKey will always be between 0 and 0xffffffff because of the way
6323     ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6324     if( nCellKey<=0 || nCellKey>0x7fffffff ){
6325       rc = SQLITE_CORRUPT_BKPT;
6326       goto abort_due_to_error;
6327     }
6328     sqlite3VdbeMemInit(&m, db, 0);
6329     rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6330     if( rc ) goto abort_due_to_error;
6331     res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6332     sqlite3VdbeMemRelease(&m);
6333   }
6334   /* End of inlined sqlite3VdbeIdxKeyCompare() */
6335 
6336   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6337   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6338     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6339     res = -res;
6340   }else{
6341     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6342     res++;
6343   }
6344   VdbeBranchTaken(res>0,2);
6345   assert( rc==SQLITE_OK );
6346   if( res>0 ) goto jump_to_p2;
6347   break;
6348 }
6349 
6350 /* Opcode: Destroy P1 P2 P3 * *
6351 **
6352 ** Delete an entire database table or index whose root page in the database
6353 ** file is given by P1.
6354 **
6355 ** The table being destroyed is in the main database file if P3==0.  If
6356 ** P3==1 then the table to be clear is in the auxiliary database file
6357 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6358 **
6359 ** If AUTOVACUUM is enabled then it is possible that another root page
6360 ** might be moved into the newly deleted root page in order to keep all
6361 ** root pages contiguous at the beginning of the database.  The former
6362 ** value of the root page that moved - its value before the move occurred -
6363 ** is stored in register P2. If no page movement was required (because the
6364 ** table being dropped was already the last one in the database) then a
6365 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
6366 ** is stored in register P2.
6367 **
6368 ** This opcode throws an error if there are any active reader VMs when
6369 ** it is invoked. This is done to avoid the difficulty associated with
6370 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6371 ** database. This error is thrown even if the database is not an AUTOVACUUM
6372 ** db in order to avoid introducing an incompatibility between autovacuum
6373 ** and non-autovacuum modes.
6374 **
6375 ** See also: Clear
6376 */
6377 case OP_Destroy: {     /* out2 */
6378   int iMoved;
6379   int iDb;
6380 
6381   sqlite3VdbeIncrWriteCounter(p, 0);
6382   assert( p->readOnly==0 );
6383   assert( pOp->p1>1 );
6384   pOut = out2Prerelease(p, pOp);
6385   pOut->flags = MEM_Null;
6386   if( db->nVdbeRead > db->nVDestroy+1 ){
6387     rc = SQLITE_LOCKED;
6388     p->errorAction = OE_Abort;
6389     goto abort_due_to_error;
6390   }else{
6391     iDb = pOp->p3;
6392     assert( DbMaskTest(p->btreeMask, iDb) );
6393     iMoved = 0;  /* Not needed.  Only to silence a warning. */
6394     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6395     pOut->flags = MEM_Int;
6396     pOut->u.i = iMoved;
6397     if( rc ) goto abort_due_to_error;
6398 #ifndef SQLITE_OMIT_AUTOVACUUM
6399     if( iMoved!=0 ){
6400       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6401       /* All OP_Destroy operations occur on the same btree */
6402       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6403       resetSchemaOnFault = iDb+1;
6404     }
6405 #endif
6406   }
6407   break;
6408 }
6409 
6410 /* Opcode: Clear P1 P2 P3
6411 **
6412 ** Delete all contents of the database table or index whose root page
6413 ** in the database file is given by P1.  But, unlike Destroy, do not
6414 ** remove the table or index from the database file.
6415 **
6416 ** The table being clear is in the main database file if P2==0.  If
6417 ** P2==1 then the table to be clear is in the auxiliary database file
6418 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6419 **
6420 ** If the P3 value is non-zero, then the row change count is incremented
6421 ** by the number of rows in the table being cleared. If P3 is greater
6422 ** than zero, then the value stored in register P3 is also incremented
6423 ** by the number of rows in the table being cleared.
6424 **
6425 ** See also: Destroy
6426 */
6427 case OP_Clear: {
6428   i64 nChange;
6429 
6430   sqlite3VdbeIncrWriteCounter(p, 0);
6431   nChange = 0;
6432   assert( p->readOnly==0 );
6433   assert( DbMaskTest(p->btreeMask, pOp->p2) );
6434   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6435   if( pOp->p3 ){
6436     p->nChange += nChange;
6437     if( pOp->p3>0 ){
6438       assert( memIsValid(&aMem[pOp->p3]) );
6439       memAboutToChange(p, &aMem[pOp->p3]);
6440       aMem[pOp->p3].u.i += nChange;
6441     }
6442   }
6443   if( rc ) goto abort_due_to_error;
6444   break;
6445 }
6446 
6447 /* Opcode: ResetSorter P1 * * * *
6448 **
6449 ** Delete all contents from the ephemeral table or sorter
6450 ** that is open on cursor P1.
6451 **
6452 ** This opcode only works for cursors used for sorting and
6453 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6454 */
6455 case OP_ResetSorter: {
6456   VdbeCursor *pC;
6457 
6458   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6459   pC = p->apCsr[pOp->p1];
6460   assert( pC!=0 );
6461   if( isSorter(pC) ){
6462     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6463   }else{
6464     assert( pC->eCurType==CURTYPE_BTREE );
6465     assert( pC->isEphemeral );
6466     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6467     if( rc ) goto abort_due_to_error;
6468   }
6469   break;
6470 }
6471 
6472 /* Opcode: CreateBtree P1 P2 P3 * *
6473 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6474 **
6475 ** Allocate a new b-tree in the main database file if P1==0 or in the
6476 ** TEMP database file if P1==1 or in an attached database if
6477 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6478 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6479 ** The root page number of the new b-tree is stored in register P2.
6480 */
6481 case OP_CreateBtree: {          /* out2 */
6482   Pgno pgno;
6483   Db *pDb;
6484 
6485   sqlite3VdbeIncrWriteCounter(p, 0);
6486   pOut = out2Prerelease(p, pOp);
6487   pgno = 0;
6488   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6489   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6490   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6491   assert( p->readOnly==0 );
6492   pDb = &db->aDb[pOp->p1];
6493   assert( pDb->pBt!=0 );
6494   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6495   if( rc ) goto abort_due_to_error;
6496   pOut->u.i = pgno;
6497   break;
6498 }
6499 
6500 /* Opcode: SqlExec * * * P4 *
6501 **
6502 ** Run the SQL statement or statements specified in the P4 string.
6503 */
6504 case OP_SqlExec: {
6505   sqlite3VdbeIncrWriteCounter(p, 0);
6506   db->nSqlExec++;
6507   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6508   db->nSqlExec--;
6509   if( rc ) goto abort_due_to_error;
6510   break;
6511 }
6512 
6513 /* Opcode: ParseSchema P1 * * P4 *
6514 **
6515 ** Read and parse all entries from the schema table of database P1
6516 ** that match the WHERE clause P4.  If P4 is a NULL pointer, then the
6517 ** entire schema for P1 is reparsed.
6518 **
6519 ** This opcode invokes the parser to create a new virtual machine,
6520 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
6521 */
6522 case OP_ParseSchema: {
6523   int iDb;
6524   const char *zSchema;
6525   char *zSql;
6526   InitData initData;
6527 
6528   /* Any prepared statement that invokes this opcode will hold mutexes
6529   ** on every btree.  This is a prerequisite for invoking
6530   ** sqlite3InitCallback().
6531   */
6532 #ifdef SQLITE_DEBUG
6533   for(iDb=0; iDb<db->nDb; iDb++){
6534     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6535   }
6536 #endif
6537 
6538   iDb = pOp->p1;
6539   assert( iDb>=0 && iDb<db->nDb );
6540   assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6541            || db->mallocFailed
6542            || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6543 
6544 #ifndef SQLITE_OMIT_ALTERTABLE
6545   if( pOp->p4.z==0 ){
6546     sqlite3SchemaClear(db->aDb[iDb].pSchema);
6547     db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6548     rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6549     db->mDbFlags |= DBFLAG_SchemaChange;
6550     p->expired = 0;
6551   }else
6552 #endif
6553   {
6554     zSchema = LEGACY_SCHEMA_TABLE;
6555     initData.db = db;
6556     initData.iDb = iDb;
6557     initData.pzErrMsg = &p->zErrMsg;
6558     initData.mInitFlags = 0;
6559     initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6560     zSql = sqlite3MPrintf(db,
6561        "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6562        db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6563     if( zSql==0 ){
6564       rc = SQLITE_NOMEM_BKPT;
6565     }else{
6566       assert( db->init.busy==0 );
6567       db->init.busy = 1;
6568       initData.rc = SQLITE_OK;
6569       initData.nInitRow = 0;
6570       assert( !db->mallocFailed );
6571       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6572       if( rc==SQLITE_OK ) rc = initData.rc;
6573       if( rc==SQLITE_OK && initData.nInitRow==0 ){
6574         /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6575         ** at least one SQL statement. Any less than that indicates that
6576         ** the sqlite_schema table is corrupt. */
6577         rc = SQLITE_CORRUPT_BKPT;
6578       }
6579       sqlite3DbFreeNN(db, zSql);
6580       db->init.busy = 0;
6581     }
6582   }
6583   if( rc ){
6584     sqlite3ResetAllSchemasOfConnection(db);
6585     if( rc==SQLITE_NOMEM ){
6586       goto no_mem;
6587     }
6588     goto abort_due_to_error;
6589   }
6590   break;
6591 }
6592 
6593 #if !defined(SQLITE_OMIT_ANALYZE)
6594 /* Opcode: LoadAnalysis P1 * * * *
6595 **
6596 ** Read the sqlite_stat1 table for database P1 and load the content
6597 ** of that table into the internal index hash table.  This will cause
6598 ** the analysis to be used when preparing all subsequent queries.
6599 */
6600 case OP_LoadAnalysis: {
6601   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6602   rc = sqlite3AnalysisLoad(db, pOp->p1);
6603   if( rc ) goto abort_due_to_error;
6604   break;
6605 }
6606 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6607 
6608 /* Opcode: DropTable P1 * * P4 *
6609 **
6610 ** Remove the internal (in-memory) data structures that describe
6611 ** the table named P4 in database P1.  This is called after a table
6612 ** is dropped from disk (using the Destroy opcode) in order to keep
6613 ** the internal representation of the
6614 ** schema consistent with what is on disk.
6615 */
6616 case OP_DropTable: {
6617   sqlite3VdbeIncrWriteCounter(p, 0);
6618   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6619   break;
6620 }
6621 
6622 /* Opcode: DropIndex P1 * * P4 *
6623 **
6624 ** Remove the internal (in-memory) data structures that describe
6625 ** the index named P4 in database P1.  This is called after an index
6626 ** is dropped from disk (using the Destroy opcode)
6627 ** in order to keep the internal representation of the
6628 ** schema consistent with what is on disk.
6629 */
6630 case OP_DropIndex: {
6631   sqlite3VdbeIncrWriteCounter(p, 0);
6632   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6633   break;
6634 }
6635 
6636 /* Opcode: DropTrigger P1 * * P4 *
6637 **
6638 ** Remove the internal (in-memory) data structures that describe
6639 ** the trigger named P4 in database P1.  This is called after a trigger
6640 ** is dropped from disk (using the Destroy opcode) in order to keep
6641 ** the internal representation of the
6642 ** schema consistent with what is on disk.
6643 */
6644 case OP_DropTrigger: {
6645   sqlite3VdbeIncrWriteCounter(p, 0);
6646   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6647   break;
6648 }
6649 
6650 
6651 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6652 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6653 **
6654 ** Do an analysis of the currently open database.  Store in
6655 ** register P1 the text of an error message describing any problems.
6656 ** If no problems are found, store a NULL in register P1.
6657 **
6658 ** The register P3 contains one less than the maximum number of allowed errors.
6659 ** At most reg(P3) errors will be reported.
6660 ** In other words, the analysis stops as soon as reg(P1) errors are
6661 ** seen.  Reg(P1) is updated with the number of errors remaining.
6662 **
6663 ** The root page numbers of all tables in the database are integers
6664 ** stored in P4_INTARRAY argument.
6665 **
6666 ** If P5 is not zero, the check is done on the auxiliary database
6667 ** file, not the main database file.
6668 **
6669 ** This opcode is used to implement the integrity_check pragma.
6670 */
6671 case OP_IntegrityCk: {
6672   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
6673   Pgno *aRoot;    /* Array of rootpage numbers for tables to be checked */
6674   int nErr;       /* Number of errors reported */
6675   char *z;        /* Text of the error report */
6676   Mem *pnErr;     /* Register keeping track of errors remaining */
6677 
6678   assert( p->bIsReader );
6679   nRoot = pOp->p2;
6680   aRoot = pOp->p4.ai;
6681   assert( nRoot>0 );
6682   assert( aRoot[0]==(Pgno)nRoot );
6683   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6684   pnErr = &aMem[pOp->p3];
6685   assert( (pnErr->flags & MEM_Int)!=0 );
6686   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6687   pIn1 = &aMem[pOp->p1];
6688   assert( pOp->p5<db->nDb );
6689   assert( DbMaskTest(p->btreeMask, pOp->p5) );
6690   z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6691                                  (int)pnErr->u.i+1, &nErr);
6692   sqlite3VdbeMemSetNull(pIn1);
6693   if( nErr==0 ){
6694     assert( z==0 );
6695   }else if( z==0 ){
6696     goto no_mem;
6697   }else{
6698     pnErr->u.i -= nErr-1;
6699     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6700   }
6701   UPDATE_MAX_BLOBSIZE(pIn1);
6702   sqlite3VdbeChangeEncoding(pIn1, encoding);
6703   goto check_for_interrupt;
6704 }
6705 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6706 
6707 /* Opcode: RowSetAdd P1 P2 * * *
6708 ** Synopsis: rowset(P1)=r[P2]
6709 **
6710 ** Insert the integer value held by register P2 into a RowSet object
6711 ** held in register P1.
6712 **
6713 ** An assertion fails if P2 is not an integer.
6714 */
6715 case OP_RowSetAdd: {       /* in1, in2 */
6716   pIn1 = &aMem[pOp->p1];
6717   pIn2 = &aMem[pOp->p2];
6718   assert( (pIn2->flags & MEM_Int)!=0 );
6719   if( (pIn1->flags & MEM_Blob)==0 ){
6720     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6721   }
6722   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6723   sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6724   break;
6725 }
6726 
6727 /* Opcode: RowSetRead P1 P2 P3 * *
6728 ** Synopsis: r[P3]=rowset(P1)
6729 **
6730 ** Extract the smallest value from the RowSet object in P1
6731 ** and put that value into register P3.
6732 ** Or, if RowSet object P1 is initially empty, leave P3
6733 ** unchanged and jump to instruction P2.
6734 */
6735 case OP_RowSetRead: {       /* jump, in1, out3 */
6736   i64 val;
6737 
6738   pIn1 = &aMem[pOp->p1];
6739   assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6740   if( (pIn1->flags & MEM_Blob)==0
6741    || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6742   ){
6743     /* The boolean index is empty */
6744     sqlite3VdbeMemSetNull(pIn1);
6745     VdbeBranchTaken(1,2);
6746     goto jump_to_p2_and_check_for_interrupt;
6747   }else{
6748     /* A value was pulled from the index */
6749     VdbeBranchTaken(0,2);
6750     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6751   }
6752   goto check_for_interrupt;
6753 }
6754 
6755 /* Opcode: RowSetTest P1 P2 P3 P4
6756 ** Synopsis: if r[P3] in rowset(P1) goto P2
6757 **
6758 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6759 ** contains a RowSet object and that RowSet object contains
6760 ** the value held in P3, jump to register P2. Otherwise, insert the
6761 ** integer in P3 into the RowSet and continue on to the
6762 ** next opcode.
6763 **
6764 ** The RowSet object is optimized for the case where sets of integers
6765 ** are inserted in distinct phases, which each set contains no duplicates.
6766 ** Each set is identified by a unique P4 value. The first set
6767 ** must have P4==0, the final set must have P4==-1, and for all other sets
6768 ** must have P4>0.
6769 **
6770 ** This allows optimizations: (a) when P4==0 there is no need to test
6771 ** the RowSet object for P3, as it is guaranteed not to contain it,
6772 ** (b) when P4==-1 there is no need to insert the value, as it will
6773 ** never be tested for, and (c) when a value that is part of set X is
6774 ** inserted, there is no need to search to see if the same value was
6775 ** previously inserted as part of set X (only if it was previously
6776 ** inserted as part of some other set).
6777 */
6778 case OP_RowSetTest: {                     /* jump, in1, in3 */
6779   int iSet;
6780   int exists;
6781 
6782   pIn1 = &aMem[pOp->p1];
6783   pIn3 = &aMem[pOp->p3];
6784   iSet = pOp->p4.i;
6785   assert( pIn3->flags&MEM_Int );
6786 
6787   /* If there is anything other than a rowset object in memory cell P1,
6788   ** delete it now and initialize P1 with an empty rowset
6789   */
6790   if( (pIn1->flags & MEM_Blob)==0 ){
6791     if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6792   }
6793   assert( sqlite3VdbeMemIsRowSet(pIn1) );
6794   assert( pOp->p4type==P4_INT32 );
6795   assert( iSet==-1 || iSet>=0 );
6796   if( iSet ){
6797     exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6798     VdbeBranchTaken(exists!=0,2);
6799     if( exists ) goto jump_to_p2;
6800   }
6801   if( iSet>=0 ){
6802     sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6803   }
6804   break;
6805 }
6806 
6807 
6808 #ifndef SQLITE_OMIT_TRIGGER
6809 
6810 /* Opcode: Program P1 P2 P3 P4 P5
6811 **
6812 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6813 **
6814 ** P1 contains the address of the memory cell that contains the first memory
6815 ** cell in an array of values used as arguments to the sub-program. P2
6816 ** contains the address to jump to if the sub-program throws an IGNORE
6817 ** exception using the RAISE() function. Register P3 contains the address
6818 ** of a memory cell in this (the parent) VM that is used to allocate the
6819 ** memory required by the sub-vdbe at runtime.
6820 **
6821 ** P4 is a pointer to the VM containing the trigger program.
6822 **
6823 ** If P5 is non-zero, then recursive program invocation is enabled.
6824 */
6825 case OP_Program: {        /* jump */
6826   int nMem;               /* Number of memory registers for sub-program */
6827   int nByte;              /* Bytes of runtime space required for sub-program */
6828   Mem *pRt;               /* Register to allocate runtime space */
6829   Mem *pMem;              /* Used to iterate through memory cells */
6830   Mem *pEnd;              /* Last memory cell in new array */
6831   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
6832   SubProgram *pProgram;   /* Sub-program to execute */
6833   void *t;                /* Token identifying trigger */
6834 
6835   pProgram = pOp->p4.pProgram;
6836   pRt = &aMem[pOp->p3];
6837   assert( pProgram->nOp>0 );
6838 
6839   /* If the p5 flag is clear, then recursive invocation of triggers is
6840   ** disabled for backwards compatibility (p5 is set if this sub-program
6841   ** is really a trigger, not a foreign key action, and the flag set
6842   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6843   **
6844   ** It is recursive invocation of triggers, at the SQL level, that is
6845   ** disabled. In some cases a single trigger may generate more than one
6846   ** SubProgram (if the trigger may be executed with more than one different
6847   ** ON CONFLICT algorithm). SubProgram structures associated with a
6848   ** single trigger all have the same value for the SubProgram.token
6849   ** variable.  */
6850   if( pOp->p5 ){
6851     t = pProgram->token;
6852     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6853     if( pFrame ) break;
6854   }
6855 
6856   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6857     rc = SQLITE_ERROR;
6858     sqlite3VdbeError(p, "too many levels of trigger recursion");
6859     goto abort_due_to_error;
6860   }
6861 
6862   /* Register pRt is used to store the memory required to save the state
6863   ** of the current program, and the memory required at runtime to execute
6864   ** the trigger program. If this trigger has been fired before, then pRt
6865   ** is already allocated. Otherwise, it must be initialized.  */
6866   if( (pRt->flags&MEM_Blob)==0 ){
6867     /* SubProgram.nMem is set to the number of memory cells used by the
6868     ** program stored in SubProgram.aOp. As well as these, one memory
6869     ** cell is required for each cursor used by the program. Set local
6870     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6871     */
6872     nMem = pProgram->nMem + pProgram->nCsr;
6873     assert( nMem>0 );
6874     if( pProgram->nCsr==0 ) nMem++;
6875     nByte = ROUND8(sizeof(VdbeFrame))
6876               + nMem * sizeof(Mem)
6877               + pProgram->nCsr * sizeof(VdbeCursor*)
6878               + (pProgram->nOp + 7)/8;
6879     pFrame = sqlite3DbMallocZero(db, nByte);
6880     if( !pFrame ){
6881       goto no_mem;
6882     }
6883     sqlite3VdbeMemRelease(pRt);
6884     pRt->flags = MEM_Blob|MEM_Dyn;
6885     pRt->z = (char*)pFrame;
6886     pRt->n = nByte;
6887     pRt->xDel = sqlite3VdbeFrameMemDel;
6888 
6889     pFrame->v = p;
6890     pFrame->nChildMem = nMem;
6891     pFrame->nChildCsr = pProgram->nCsr;
6892     pFrame->pc = (int)(pOp - aOp);
6893     pFrame->aMem = p->aMem;
6894     pFrame->nMem = p->nMem;
6895     pFrame->apCsr = p->apCsr;
6896     pFrame->nCursor = p->nCursor;
6897     pFrame->aOp = p->aOp;
6898     pFrame->nOp = p->nOp;
6899     pFrame->token = pProgram->token;
6900 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6901     pFrame->anExec = p->anExec;
6902 #endif
6903 #ifdef SQLITE_DEBUG
6904     pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
6905 #endif
6906 
6907     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6908     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6909       pMem->flags = MEM_Undefined;
6910       pMem->db = db;
6911     }
6912   }else{
6913     pFrame = (VdbeFrame*)pRt->z;
6914     assert( pRt->xDel==sqlite3VdbeFrameMemDel );
6915     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6916         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6917     assert( pProgram->nCsr==pFrame->nChildCsr );
6918     assert( (int)(pOp - aOp)==pFrame->pc );
6919   }
6920 
6921   p->nFrame++;
6922   pFrame->pParent = p->pFrame;
6923   pFrame->lastRowid = db->lastRowid;
6924   pFrame->nChange = p->nChange;
6925   pFrame->nDbChange = p->db->nChange;
6926   assert( pFrame->pAuxData==0 );
6927   pFrame->pAuxData = p->pAuxData;
6928   p->pAuxData = 0;
6929   p->nChange = 0;
6930   p->pFrame = pFrame;
6931   p->aMem = aMem = VdbeFrameMem(pFrame);
6932   p->nMem = pFrame->nChildMem;
6933   p->nCursor = (u16)pFrame->nChildCsr;
6934   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6935   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6936   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6937   p->aOp = aOp = pProgram->aOp;
6938   p->nOp = pProgram->nOp;
6939 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6940   p->anExec = 0;
6941 #endif
6942 #ifdef SQLITE_DEBUG
6943   /* Verify that second and subsequent executions of the same trigger do not
6944   ** try to reuse register values from the first use. */
6945   {
6946     int i;
6947     for(i=0; i<p->nMem; i++){
6948       aMem[i].pScopyFrom = 0;  /* Prevent false-positive AboutToChange() errs */
6949       MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
6950     }
6951   }
6952 #endif
6953   pOp = &aOp[-1];
6954   goto check_for_interrupt;
6955 }
6956 
6957 /* Opcode: Param P1 P2 * * *
6958 **
6959 ** This opcode is only ever present in sub-programs called via the
6960 ** OP_Program instruction. Copy a value currently stored in a memory
6961 ** cell of the calling (parent) frame to cell P2 in the current frames
6962 ** address space. This is used by trigger programs to access the new.*
6963 ** and old.* values.
6964 **
6965 ** The address of the cell in the parent frame is determined by adding
6966 ** the value of the P1 argument to the value of the P1 argument to the
6967 ** calling OP_Program instruction.
6968 */
6969 case OP_Param: {           /* out2 */
6970   VdbeFrame *pFrame;
6971   Mem *pIn;
6972   pOut = out2Prerelease(p, pOp);
6973   pFrame = p->pFrame;
6974   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6975   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6976   break;
6977 }
6978 
6979 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6980 
6981 #ifndef SQLITE_OMIT_FOREIGN_KEY
6982 /* Opcode: FkCounter P1 P2 * * *
6983 ** Synopsis: fkctr[P1]+=P2
6984 **
6985 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6986 ** If P1 is non-zero, the database constraint counter is incremented
6987 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6988 ** statement counter is incremented (immediate foreign key constraints).
6989 */
6990 case OP_FkCounter: {
6991   if( db->flags & SQLITE_DeferFKs ){
6992     db->nDeferredImmCons += pOp->p2;
6993   }else if( pOp->p1 ){
6994     db->nDeferredCons += pOp->p2;
6995   }else{
6996     p->nFkConstraint += pOp->p2;
6997   }
6998   break;
6999 }
7000 
7001 /* Opcode: FkIfZero P1 P2 * * *
7002 ** Synopsis: if fkctr[P1]==0 goto P2
7003 **
7004 ** This opcode tests if a foreign key constraint-counter is currently zero.
7005 ** If so, jump to instruction P2. Otherwise, fall through to the next
7006 ** instruction.
7007 **
7008 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7009 ** is zero (the one that counts deferred constraint violations). If P1 is
7010 ** zero, the jump is taken if the statement constraint-counter is zero
7011 ** (immediate foreign key constraint violations).
7012 */
7013 case OP_FkIfZero: {         /* jump */
7014   if( pOp->p1 ){
7015     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7016     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7017   }else{
7018     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7019     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7020   }
7021   break;
7022 }
7023 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7024 
7025 #ifndef SQLITE_OMIT_AUTOINCREMENT
7026 /* Opcode: MemMax P1 P2 * * *
7027 ** Synopsis: r[P1]=max(r[P1],r[P2])
7028 **
7029 ** P1 is a register in the root frame of this VM (the root frame is
7030 ** different from the current frame if this instruction is being executed
7031 ** within a sub-program). Set the value of register P1 to the maximum of
7032 ** its current value and the value in register P2.
7033 **
7034 ** This instruction throws an error if the memory cell is not initially
7035 ** an integer.
7036 */
7037 case OP_MemMax: {        /* in2 */
7038   VdbeFrame *pFrame;
7039   if( p->pFrame ){
7040     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7041     pIn1 = &pFrame->aMem[pOp->p1];
7042   }else{
7043     pIn1 = &aMem[pOp->p1];
7044   }
7045   assert( memIsValid(pIn1) );
7046   sqlite3VdbeMemIntegerify(pIn1);
7047   pIn2 = &aMem[pOp->p2];
7048   sqlite3VdbeMemIntegerify(pIn2);
7049   if( pIn1->u.i<pIn2->u.i){
7050     pIn1->u.i = pIn2->u.i;
7051   }
7052   break;
7053 }
7054 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7055 
7056 /* Opcode: IfPos P1 P2 P3 * *
7057 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7058 **
7059 ** Register P1 must contain an integer.
7060 ** If the value of register P1 is 1 or greater, subtract P3 from the
7061 ** value in P1 and jump to P2.
7062 **
7063 ** If the initial value of register P1 is less than 1, then the
7064 ** value is unchanged and control passes through to the next instruction.
7065 */
7066 case OP_IfPos: {        /* jump, in1 */
7067   pIn1 = &aMem[pOp->p1];
7068   assert( pIn1->flags&MEM_Int );
7069   VdbeBranchTaken( pIn1->u.i>0, 2);
7070   if( pIn1->u.i>0 ){
7071     pIn1->u.i -= pOp->p3;
7072     goto jump_to_p2;
7073   }
7074   break;
7075 }
7076 
7077 /* Opcode: OffsetLimit P1 P2 P3 * *
7078 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7079 **
7080 ** This opcode performs a commonly used computation associated with
7081 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
7082 ** holds the offset counter.  The opcode computes the combined value
7083 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
7084 ** value computed is the total number of rows that will need to be
7085 ** visited in order to complete the query.
7086 **
7087 ** If r[P3] is zero or negative, that means there is no OFFSET
7088 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7089 **
7090 ** if r[P1] is zero or negative, that means there is no LIMIT
7091 ** and r[P2] is set to -1.
7092 **
7093 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7094 */
7095 case OP_OffsetLimit: {    /* in1, out2, in3 */
7096   i64 x;
7097   pIn1 = &aMem[pOp->p1];
7098   pIn3 = &aMem[pOp->p3];
7099   pOut = out2Prerelease(p, pOp);
7100   assert( pIn1->flags & MEM_Int );
7101   assert( pIn3->flags & MEM_Int );
7102   x = pIn1->u.i;
7103   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7104     /* If the LIMIT is less than or equal to zero, loop forever.  This
7105     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
7106     ** also loop forever.  This is undocumented.  In fact, one could argue
7107     ** that the loop should terminate.  But assuming 1 billion iterations
7108     ** per second (far exceeding the capabilities of any current hardware)
7109     ** it would take nearly 300 years to actually reach the limit.  So
7110     ** looping forever is a reasonable approximation. */
7111     pOut->u.i = -1;
7112   }else{
7113     pOut->u.i = x;
7114   }
7115   break;
7116 }
7117 
7118 /* Opcode: IfNotZero P1 P2 * * *
7119 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7120 **
7121 ** Register P1 must contain an integer.  If the content of register P1 is
7122 ** initially greater than zero, then decrement the value in register P1.
7123 ** If it is non-zero (negative or positive) and then also jump to P2.
7124 ** If register P1 is initially zero, leave it unchanged and fall through.
7125 */
7126 case OP_IfNotZero: {        /* jump, in1 */
7127   pIn1 = &aMem[pOp->p1];
7128   assert( pIn1->flags&MEM_Int );
7129   VdbeBranchTaken(pIn1->u.i<0, 2);
7130   if( pIn1->u.i ){
7131      if( pIn1->u.i>0 ) pIn1->u.i--;
7132      goto jump_to_p2;
7133   }
7134   break;
7135 }
7136 
7137 /* Opcode: DecrJumpZero P1 P2 * * *
7138 ** Synopsis: if (--r[P1])==0 goto P2
7139 **
7140 ** Register P1 must hold an integer.  Decrement the value in P1
7141 ** and jump to P2 if the new value is exactly zero.
7142 */
7143 case OP_DecrJumpZero: {      /* jump, in1 */
7144   pIn1 = &aMem[pOp->p1];
7145   assert( pIn1->flags&MEM_Int );
7146   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7147   VdbeBranchTaken(pIn1->u.i==0, 2);
7148   if( pIn1->u.i==0 ) goto jump_to_p2;
7149   break;
7150 }
7151 
7152 
7153 /* Opcode: AggStep * P2 P3 P4 P5
7154 ** Synopsis: accum=r[P3] step(r[P2@P5])
7155 **
7156 ** Execute the xStep function for an aggregate.
7157 ** The function has P5 arguments.  P4 is a pointer to the
7158 ** FuncDef structure that specifies the function.  Register P3 is the
7159 ** accumulator.
7160 **
7161 ** The P5 arguments are taken from register P2 and its
7162 ** successors.
7163 */
7164 /* Opcode: AggInverse * P2 P3 P4 P5
7165 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7166 **
7167 ** Execute the xInverse function for an aggregate.
7168 ** The function has P5 arguments.  P4 is a pointer to the
7169 ** FuncDef structure that specifies the function.  Register P3 is the
7170 ** accumulator.
7171 **
7172 ** The P5 arguments are taken from register P2 and its
7173 ** successors.
7174 */
7175 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7176 ** Synopsis: accum=r[P3] step(r[P2@P5])
7177 **
7178 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7179 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
7180 ** FuncDef structure that specifies the function.  Register P3 is the
7181 ** accumulator.
7182 **
7183 ** The P5 arguments are taken from register P2 and its
7184 ** successors.
7185 **
7186 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
7187 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7188 ** the opcode is changed.  In this way, the initialization of the
7189 ** sqlite3_context only happens once, instead of on each call to the
7190 ** step function.
7191 */
7192 case OP_AggInverse:
7193 case OP_AggStep: {
7194   int n;
7195   sqlite3_context *pCtx;
7196 
7197   assert( pOp->p4type==P4_FUNCDEF );
7198   n = pOp->p5;
7199   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7200   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7201   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7202   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7203                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7204   if( pCtx==0 ) goto no_mem;
7205   pCtx->pMem = 0;
7206   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7207   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7208   pCtx->pFunc = pOp->p4.pFunc;
7209   pCtx->iOp = (int)(pOp - aOp);
7210   pCtx->pVdbe = p;
7211   pCtx->skipFlag = 0;
7212   pCtx->isError = 0;
7213   pCtx->argc = n;
7214   pOp->p4type = P4_FUNCCTX;
7215   pOp->p4.pCtx = pCtx;
7216 
7217   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7218   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7219 
7220   pOp->opcode = OP_AggStep1;
7221   /* Fall through into OP_AggStep */
7222   /* no break */ deliberate_fall_through
7223 }
7224 case OP_AggStep1: {
7225   int i;
7226   sqlite3_context *pCtx;
7227   Mem *pMem;
7228 
7229   assert( pOp->p4type==P4_FUNCCTX );
7230   pCtx = pOp->p4.pCtx;
7231   pMem = &aMem[pOp->p3];
7232 
7233 #ifdef SQLITE_DEBUG
7234   if( pOp->p1 ){
7235     /* This is an OP_AggInverse call.  Verify that xStep has always
7236     ** been called at least once prior to any xInverse call. */
7237     assert( pMem->uTemp==0x1122e0e3 );
7238   }else{
7239     /* This is an OP_AggStep call.  Mark it as such. */
7240     pMem->uTemp = 0x1122e0e3;
7241   }
7242 #endif
7243 
7244   /* If this function is inside of a trigger, the register array in aMem[]
7245   ** might change from one evaluation to the next.  The next block of code
7246   ** checks to see if the register array has changed, and if so it
7247   ** reinitializes the relavant parts of the sqlite3_context object */
7248   if( pCtx->pMem != pMem ){
7249     pCtx->pMem = pMem;
7250     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7251   }
7252 
7253 #ifdef SQLITE_DEBUG
7254   for(i=0; i<pCtx->argc; i++){
7255     assert( memIsValid(pCtx->argv[i]) );
7256     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7257   }
7258 #endif
7259 
7260   pMem->n++;
7261   assert( pCtx->pOut->flags==MEM_Null );
7262   assert( pCtx->isError==0 );
7263   assert( pCtx->skipFlag==0 );
7264 #ifndef SQLITE_OMIT_WINDOWFUNC
7265   if( pOp->p1 ){
7266     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7267   }else
7268 #endif
7269   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7270 
7271   if( pCtx->isError ){
7272     if( pCtx->isError>0 ){
7273       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7274       rc = pCtx->isError;
7275     }
7276     if( pCtx->skipFlag ){
7277       assert( pOp[-1].opcode==OP_CollSeq );
7278       i = pOp[-1].p1;
7279       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7280       pCtx->skipFlag = 0;
7281     }
7282     sqlite3VdbeMemRelease(pCtx->pOut);
7283     pCtx->pOut->flags = MEM_Null;
7284     pCtx->isError = 0;
7285     if( rc ) goto abort_due_to_error;
7286   }
7287   assert( pCtx->pOut->flags==MEM_Null );
7288   assert( pCtx->skipFlag==0 );
7289   break;
7290 }
7291 
7292 /* Opcode: AggFinal P1 P2 * P4 *
7293 ** Synopsis: accum=r[P1] N=P2
7294 **
7295 ** P1 is the memory location that is the accumulator for an aggregate
7296 ** or window function.  Execute the finalizer function
7297 ** for an aggregate and store the result in P1.
7298 **
7299 ** P2 is the number of arguments that the step function takes and
7300 ** P4 is a pointer to the FuncDef for this function.  The P2
7301 ** argument is not used by this opcode.  It is only there to disambiguate
7302 ** functions that can take varying numbers of arguments.  The
7303 ** P4 argument is only needed for the case where
7304 ** the step function was not previously called.
7305 */
7306 /* Opcode: AggValue * P2 P3 P4 *
7307 ** Synopsis: r[P3]=value N=P2
7308 **
7309 ** Invoke the xValue() function and store the result in register P3.
7310 **
7311 ** P2 is the number of arguments that the step function takes and
7312 ** P4 is a pointer to the FuncDef for this function.  The P2
7313 ** argument is not used by this opcode.  It is only there to disambiguate
7314 ** functions that can take varying numbers of arguments.  The
7315 ** P4 argument is only needed for the case where
7316 ** the step function was not previously called.
7317 */
7318 case OP_AggValue:
7319 case OP_AggFinal: {
7320   Mem *pMem;
7321   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7322   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7323   pMem = &aMem[pOp->p1];
7324   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7325 #ifndef SQLITE_OMIT_WINDOWFUNC
7326   if( pOp->p3 ){
7327     memAboutToChange(p, &aMem[pOp->p3]);
7328     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7329     pMem = &aMem[pOp->p3];
7330   }else
7331 #endif
7332   {
7333     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7334   }
7335 
7336   if( rc ){
7337     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7338     goto abort_due_to_error;
7339   }
7340   sqlite3VdbeChangeEncoding(pMem, encoding);
7341   UPDATE_MAX_BLOBSIZE(pMem);
7342   if( sqlite3VdbeMemTooBig(pMem) ){
7343     goto too_big;
7344   }
7345   break;
7346 }
7347 
7348 #ifndef SQLITE_OMIT_WAL
7349 /* Opcode: Checkpoint P1 P2 P3 * *
7350 **
7351 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7352 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7353 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
7354 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
7355 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7356 ** in the WAL that have been checkpointed after the checkpoint
7357 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
7358 ** mem[P3+2] are initialized to -1.
7359 */
7360 case OP_Checkpoint: {
7361   int i;                          /* Loop counter */
7362   int aRes[3];                    /* Results */
7363   Mem *pMem;                      /* Write results here */
7364 
7365   assert( p->readOnly==0 );
7366   aRes[0] = 0;
7367   aRes[1] = aRes[2] = -1;
7368   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7369        || pOp->p2==SQLITE_CHECKPOINT_FULL
7370        || pOp->p2==SQLITE_CHECKPOINT_RESTART
7371        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7372   );
7373   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7374   if( rc ){
7375     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7376     rc = SQLITE_OK;
7377     aRes[0] = 1;
7378   }
7379   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7380     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7381   }
7382   break;
7383 };
7384 #endif
7385 
7386 #ifndef SQLITE_OMIT_PRAGMA
7387 /* Opcode: JournalMode P1 P2 P3 * *
7388 **
7389 ** Change the journal mode of database P1 to P3. P3 must be one of the
7390 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7391 ** modes (delete, truncate, persist, off and memory), this is a simple
7392 ** operation. No IO is required.
7393 **
7394 ** If changing into or out of WAL mode the procedure is more complicated.
7395 **
7396 ** Write a string containing the final journal-mode to register P2.
7397 */
7398 case OP_JournalMode: {    /* out2 */
7399   Btree *pBt;                     /* Btree to change journal mode of */
7400   Pager *pPager;                  /* Pager associated with pBt */
7401   int eNew;                       /* New journal mode */
7402   int eOld;                       /* The old journal mode */
7403 #ifndef SQLITE_OMIT_WAL
7404   const char *zFilename;          /* Name of database file for pPager */
7405 #endif
7406 
7407   pOut = out2Prerelease(p, pOp);
7408   eNew = pOp->p3;
7409   assert( eNew==PAGER_JOURNALMODE_DELETE
7410        || eNew==PAGER_JOURNALMODE_TRUNCATE
7411        || eNew==PAGER_JOURNALMODE_PERSIST
7412        || eNew==PAGER_JOURNALMODE_OFF
7413        || eNew==PAGER_JOURNALMODE_MEMORY
7414        || eNew==PAGER_JOURNALMODE_WAL
7415        || eNew==PAGER_JOURNALMODE_QUERY
7416   );
7417   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7418   assert( p->readOnly==0 );
7419 
7420   pBt = db->aDb[pOp->p1].pBt;
7421   pPager = sqlite3BtreePager(pBt);
7422   eOld = sqlite3PagerGetJournalMode(pPager);
7423   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7424   assert( sqlite3BtreeHoldsMutex(pBt) );
7425   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7426 
7427 #ifndef SQLITE_OMIT_WAL
7428   zFilename = sqlite3PagerFilename(pPager, 1);
7429 
7430   /* Do not allow a transition to journal_mode=WAL for a database
7431   ** in temporary storage or if the VFS does not support shared memory
7432   */
7433   if( eNew==PAGER_JOURNALMODE_WAL
7434    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
7435        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
7436   ){
7437     eNew = eOld;
7438   }
7439 
7440   if( (eNew!=eOld)
7441    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7442   ){
7443     if( !db->autoCommit || db->nVdbeRead>1 ){
7444       rc = SQLITE_ERROR;
7445       sqlite3VdbeError(p,
7446           "cannot change %s wal mode from within a transaction",
7447           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7448       );
7449       goto abort_due_to_error;
7450     }else{
7451 
7452       if( eOld==PAGER_JOURNALMODE_WAL ){
7453         /* If leaving WAL mode, close the log file. If successful, the call
7454         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7455         ** file. An EXCLUSIVE lock may still be held on the database file
7456         ** after a successful return.
7457         */
7458         rc = sqlite3PagerCloseWal(pPager, db);
7459         if( rc==SQLITE_OK ){
7460           sqlite3PagerSetJournalMode(pPager, eNew);
7461         }
7462       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7463         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
7464         ** as an intermediate */
7465         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7466       }
7467 
7468       /* Open a transaction on the database file. Regardless of the journal
7469       ** mode, this transaction always uses a rollback journal.
7470       */
7471       assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7472       if( rc==SQLITE_OK ){
7473         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7474       }
7475     }
7476   }
7477 #endif /* ifndef SQLITE_OMIT_WAL */
7478 
7479   if( rc ) eNew = eOld;
7480   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7481 
7482   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7483   pOut->z = (char *)sqlite3JournalModename(eNew);
7484   pOut->n = sqlite3Strlen30(pOut->z);
7485   pOut->enc = SQLITE_UTF8;
7486   sqlite3VdbeChangeEncoding(pOut, encoding);
7487   if( rc ) goto abort_due_to_error;
7488   break;
7489 };
7490 #endif /* SQLITE_OMIT_PRAGMA */
7491 
7492 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7493 /* Opcode: Vacuum P1 P2 * * *
7494 **
7495 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
7496 ** for an attached database.  The "temp" database may not be vacuumed.
7497 **
7498 ** If P2 is not zero, then it is a register holding a string which is
7499 ** the file into which the result of vacuum should be written.  When
7500 ** P2 is zero, the vacuum overwrites the original database.
7501 */
7502 case OP_Vacuum: {
7503   assert( p->readOnly==0 );
7504   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7505                         pOp->p2 ? &aMem[pOp->p2] : 0);
7506   if( rc ) goto abort_due_to_error;
7507   break;
7508 }
7509 #endif
7510 
7511 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7512 /* Opcode: IncrVacuum P1 P2 * * *
7513 **
7514 ** Perform a single step of the incremental vacuum procedure on
7515 ** the P1 database. If the vacuum has finished, jump to instruction
7516 ** P2. Otherwise, fall through to the next instruction.
7517 */
7518 case OP_IncrVacuum: {        /* jump */
7519   Btree *pBt;
7520 
7521   assert( pOp->p1>=0 && pOp->p1<db->nDb );
7522   assert( DbMaskTest(p->btreeMask, pOp->p1) );
7523   assert( p->readOnly==0 );
7524   pBt = db->aDb[pOp->p1].pBt;
7525   rc = sqlite3BtreeIncrVacuum(pBt);
7526   VdbeBranchTaken(rc==SQLITE_DONE,2);
7527   if( rc ){
7528     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7529     rc = SQLITE_OK;
7530     goto jump_to_p2;
7531   }
7532   break;
7533 }
7534 #endif
7535 
7536 /* Opcode: Expire P1 P2 * * *
7537 **
7538 ** Cause precompiled statements to expire.  When an expired statement
7539 ** is executed using sqlite3_step() it will either automatically
7540 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7541 ** or it will fail with SQLITE_SCHEMA.
7542 **
7543 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7544 ** then only the currently executing statement is expired.
7545 **
7546 ** If P2 is 0, then SQL statements are expired immediately.  If P2 is 1,
7547 ** then running SQL statements are allowed to continue to run to completion.
7548 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7549 ** that might help the statement run faster but which does not affect the
7550 ** correctness of operation.
7551 */
7552 case OP_Expire: {
7553   assert( pOp->p2==0 || pOp->p2==1 );
7554   if( !pOp->p1 ){
7555     sqlite3ExpirePreparedStatements(db, pOp->p2);
7556   }else{
7557     p->expired = pOp->p2+1;
7558   }
7559   break;
7560 }
7561 
7562 /* Opcode: CursorLock P1 * * * *
7563 **
7564 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7565 ** written by an other cursor.
7566 */
7567 case OP_CursorLock: {
7568   VdbeCursor *pC;
7569   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7570   pC = p->apCsr[pOp->p1];
7571   assert( pC!=0 );
7572   assert( pC->eCurType==CURTYPE_BTREE );
7573   sqlite3BtreeCursorPin(pC->uc.pCursor);
7574   break;
7575 }
7576 
7577 /* Opcode: CursorUnlock P1 * * * *
7578 **
7579 ** Unlock the btree to which cursor P1 is pointing so that it can be
7580 ** written by other cursors.
7581 */
7582 case OP_CursorUnlock: {
7583   VdbeCursor *pC;
7584   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7585   pC = p->apCsr[pOp->p1];
7586   assert( pC!=0 );
7587   assert( pC->eCurType==CURTYPE_BTREE );
7588   sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7589   break;
7590 }
7591 
7592 #ifndef SQLITE_OMIT_SHARED_CACHE
7593 /* Opcode: TableLock P1 P2 P3 P4 *
7594 ** Synopsis: iDb=P1 root=P2 write=P3
7595 **
7596 ** Obtain a lock on a particular table. This instruction is only used when
7597 ** the shared-cache feature is enabled.
7598 **
7599 ** P1 is the index of the database in sqlite3.aDb[] of the database
7600 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
7601 ** a write lock if P3==1.
7602 **
7603 ** P2 contains the root-page of the table to lock.
7604 **
7605 ** P4 contains a pointer to the name of the table being locked. This is only
7606 ** used to generate an error message if the lock cannot be obtained.
7607 */
7608 case OP_TableLock: {
7609   u8 isWriteLock = (u8)pOp->p3;
7610   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7611     int p1 = pOp->p1;
7612     assert( p1>=0 && p1<db->nDb );
7613     assert( DbMaskTest(p->btreeMask, p1) );
7614     assert( isWriteLock==0 || isWriteLock==1 );
7615     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7616     if( rc ){
7617       if( (rc&0xFF)==SQLITE_LOCKED ){
7618         const char *z = pOp->p4.z;
7619         sqlite3VdbeError(p, "database table is locked: %s", z);
7620       }
7621       goto abort_due_to_error;
7622     }
7623   }
7624   break;
7625 }
7626 #endif /* SQLITE_OMIT_SHARED_CACHE */
7627 
7628 #ifndef SQLITE_OMIT_VIRTUALTABLE
7629 /* Opcode: VBegin * * * P4 *
7630 **
7631 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7632 ** xBegin method for that table.
7633 **
7634 ** Also, whether or not P4 is set, check that this is not being called from
7635 ** within a callback to a virtual table xSync() method. If it is, the error
7636 ** code will be set to SQLITE_LOCKED.
7637 */
7638 case OP_VBegin: {
7639   VTable *pVTab;
7640   pVTab = pOp->p4.pVtab;
7641   rc = sqlite3VtabBegin(db, pVTab);
7642   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7643   if( rc ) goto abort_due_to_error;
7644   break;
7645 }
7646 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7647 
7648 #ifndef SQLITE_OMIT_VIRTUALTABLE
7649 /* Opcode: VCreate P1 P2 * * *
7650 **
7651 ** P2 is a register that holds the name of a virtual table in database
7652 ** P1. Call the xCreate method for that table.
7653 */
7654 case OP_VCreate: {
7655   Mem sMem;          /* For storing the record being decoded */
7656   const char *zTab;  /* Name of the virtual table */
7657 
7658   memset(&sMem, 0, sizeof(sMem));
7659   sMem.db = db;
7660   /* Because P2 is always a static string, it is impossible for the
7661   ** sqlite3VdbeMemCopy() to fail */
7662   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7663   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7664   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7665   assert( rc==SQLITE_OK );
7666   zTab = (const char*)sqlite3_value_text(&sMem);
7667   assert( zTab || db->mallocFailed );
7668   if( zTab ){
7669     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7670   }
7671   sqlite3VdbeMemRelease(&sMem);
7672   if( rc ) goto abort_due_to_error;
7673   break;
7674 }
7675 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7676 
7677 #ifndef SQLITE_OMIT_VIRTUALTABLE
7678 /* Opcode: VDestroy P1 * * P4 *
7679 **
7680 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
7681 ** of that table.
7682 */
7683 case OP_VDestroy: {
7684   db->nVDestroy++;
7685   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7686   db->nVDestroy--;
7687   assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7688   if( rc ) goto abort_due_to_error;
7689   break;
7690 }
7691 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7692 
7693 #ifndef SQLITE_OMIT_VIRTUALTABLE
7694 /* Opcode: VOpen P1 * * P4 *
7695 **
7696 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7697 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
7698 ** table and stores that cursor in P1.
7699 */
7700 case OP_VOpen: {
7701   VdbeCursor *pCur;
7702   sqlite3_vtab_cursor *pVCur;
7703   sqlite3_vtab *pVtab;
7704   const sqlite3_module *pModule;
7705 
7706   assert( p->bIsReader );
7707   pCur = 0;
7708   pVCur = 0;
7709   pVtab = pOp->p4.pVtab->pVtab;
7710   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7711     rc = SQLITE_LOCKED;
7712     goto abort_due_to_error;
7713   }
7714   pModule = pVtab->pModule;
7715   rc = pModule->xOpen(pVtab, &pVCur);
7716   sqlite3VtabImportErrmsg(p, pVtab);
7717   if( rc ) goto abort_due_to_error;
7718 
7719   /* Initialize sqlite3_vtab_cursor base class */
7720   pVCur->pVtab = pVtab;
7721 
7722   /* Initialize vdbe cursor object */
7723   pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7724   if( pCur ){
7725     pCur->uc.pVCur = pVCur;
7726     pVtab->nRef++;
7727   }else{
7728     assert( db->mallocFailed );
7729     pModule->xClose(pVCur);
7730     goto no_mem;
7731   }
7732   break;
7733 }
7734 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7735 
7736 #ifndef SQLITE_OMIT_VIRTUALTABLE
7737 /* Opcode: VFilter P1 P2 P3 P4 *
7738 ** Synopsis: iplan=r[P3] zplan='P4'
7739 **
7740 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
7741 ** the filtered result set is empty.
7742 **
7743 ** P4 is either NULL or a string that was generated by the xBestIndex
7744 ** method of the module.  The interpretation of the P4 string is left
7745 ** to the module implementation.
7746 **
7747 ** This opcode invokes the xFilter method on the virtual table specified
7748 ** by P1.  The integer query plan parameter to xFilter is stored in register
7749 ** P3. Register P3+1 stores the argc parameter to be passed to the
7750 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7751 ** additional parameters which are passed to
7752 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7753 **
7754 ** A jump is made to P2 if the result set after filtering would be empty.
7755 */
7756 case OP_VFilter: {   /* jump */
7757   int nArg;
7758   int iQuery;
7759   const sqlite3_module *pModule;
7760   Mem *pQuery;
7761   Mem *pArgc;
7762   sqlite3_vtab_cursor *pVCur;
7763   sqlite3_vtab *pVtab;
7764   VdbeCursor *pCur;
7765   int res;
7766   int i;
7767   Mem **apArg;
7768 
7769   pQuery = &aMem[pOp->p3];
7770   pArgc = &pQuery[1];
7771   pCur = p->apCsr[pOp->p1];
7772   assert( memIsValid(pQuery) );
7773   REGISTER_TRACE(pOp->p3, pQuery);
7774   assert( pCur!=0 );
7775   assert( pCur->eCurType==CURTYPE_VTAB );
7776   pVCur = pCur->uc.pVCur;
7777   pVtab = pVCur->pVtab;
7778   pModule = pVtab->pModule;
7779 
7780   /* Grab the index number and argc parameters */
7781   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7782   nArg = (int)pArgc->u.i;
7783   iQuery = (int)pQuery->u.i;
7784 
7785   /* Invoke the xFilter method */
7786   apArg = p->apArg;
7787   for(i = 0; i<nArg; i++){
7788     apArg[i] = &pArgc[i+1];
7789   }
7790   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7791   sqlite3VtabImportErrmsg(p, pVtab);
7792   if( rc ) goto abort_due_to_error;
7793   res = pModule->xEof(pVCur);
7794   pCur->nullRow = 0;
7795   VdbeBranchTaken(res!=0,2);
7796   if( res ) goto jump_to_p2;
7797   break;
7798 }
7799 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7800 
7801 #ifndef SQLITE_OMIT_VIRTUALTABLE
7802 /* Opcode: VColumn P1 P2 P3 * P5
7803 ** Synopsis: r[P3]=vcolumn(P2)
7804 **
7805 ** Store in register P3 the value of the P2-th column of
7806 ** the current row of the virtual-table of cursor P1.
7807 **
7808 ** If the VColumn opcode is being used to fetch the value of
7809 ** an unchanging column during an UPDATE operation, then the P5
7810 ** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
7811 ** function to return true inside the xColumn method of the virtual
7812 ** table implementation.  The P5 column might also contain other
7813 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7814 ** unused by OP_VColumn.
7815 */
7816 case OP_VColumn: {
7817   sqlite3_vtab *pVtab;
7818   const sqlite3_module *pModule;
7819   Mem *pDest;
7820   sqlite3_context sContext;
7821 
7822   VdbeCursor *pCur = p->apCsr[pOp->p1];
7823   assert( pCur!=0 );
7824   assert( pCur->eCurType==CURTYPE_VTAB );
7825   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7826   pDest = &aMem[pOp->p3];
7827   memAboutToChange(p, pDest);
7828   if( pCur->nullRow ){
7829     sqlite3VdbeMemSetNull(pDest);
7830     break;
7831   }
7832   pVtab = pCur->uc.pVCur->pVtab;
7833   pModule = pVtab->pModule;
7834   assert( pModule->xColumn );
7835   memset(&sContext, 0, sizeof(sContext));
7836   sContext.pOut = pDest;
7837   assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7838   if( pOp->p5 & OPFLAG_NOCHNG ){
7839     sqlite3VdbeMemSetNull(pDest);
7840     pDest->flags = MEM_Null|MEM_Zero;
7841     pDest->u.nZero = 0;
7842   }else{
7843     MemSetTypeFlag(pDest, MEM_Null);
7844   }
7845   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
7846   sqlite3VtabImportErrmsg(p, pVtab);
7847   if( sContext.isError>0 ){
7848     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
7849     rc = sContext.isError;
7850   }
7851   sqlite3VdbeChangeEncoding(pDest, encoding);
7852   REGISTER_TRACE(pOp->p3, pDest);
7853   UPDATE_MAX_BLOBSIZE(pDest);
7854 
7855   if( sqlite3VdbeMemTooBig(pDest) ){
7856     goto too_big;
7857   }
7858   if( rc ) goto abort_due_to_error;
7859   break;
7860 }
7861 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7862 
7863 #ifndef SQLITE_OMIT_VIRTUALTABLE
7864 /* Opcode: VNext P1 P2 * * *
7865 **
7866 ** Advance virtual table P1 to the next row in its result set and
7867 ** jump to instruction P2.  Or, if the virtual table has reached
7868 ** the end of its result set, then fall through to the next instruction.
7869 */
7870 case OP_VNext: {   /* jump */
7871   sqlite3_vtab *pVtab;
7872   const sqlite3_module *pModule;
7873   int res;
7874   VdbeCursor *pCur;
7875 
7876   pCur = p->apCsr[pOp->p1];
7877   assert( pCur!=0 );
7878   assert( pCur->eCurType==CURTYPE_VTAB );
7879   if( pCur->nullRow ){
7880     break;
7881   }
7882   pVtab = pCur->uc.pVCur->pVtab;
7883   pModule = pVtab->pModule;
7884   assert( pModule->xNext );
7885 
7886   /* Invoke the xNext() method of the module. There is no way for the
7887   ** underlying implementation to return an error if one occurs during
7888   ** xNext(). Instead, if an error occurs, true is returned (indicating that
7889   ** data is available) and the error code returned when xColumn or
7890   ** some other method is next invoked on the save virtual table cursor.
7891   */
7892   rc = pModule->xNext(pCur->uc.pVCur);
7893   sqlite3VtabImportErrmsg(p, pVtab);
7894   if( rc ) goto abort_due_to_error;
7895   res = pModule->xEof(pCur->uc.pVCur);
7896   VdbeBranchTaken(!res,2);
7897   if( !res ){
7898     /* If there is data, jump to P2 */
7899     goto jump_to_p2_and_check_for_interrupt;
7900   }
7901   goto check_for_interrupt;
7902 }
7903 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7904 
7905 #ifndef SQLITE_OMIT_VIRTUALTABLE
7906 /* Opcode: VRename P1 * * P4 *
7907 **
7908 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7909 ** This opcode invokes the corresponding xRename method. The value
7910 ** in register P1 is passed as the zName argument to the xRename method.
7911 */
7912 case OP_VRename: {
7913   sqlite3_vtab *pVtab;
7914   Mem *pName;
7915   int isLegacy;
7916 
7917   isLegacy = (db->flags & SQLITE_LegacyAlter);
7918   db->flags |= SQLITE_LegacyAlter;
7919   pVtab = pOp->p4.pVtab->pVtab;
7920   pName = &aMem[pOp->p1];
7921   assert( pVtab->pModule->xRename );
7922   assert( memIsValid(pName) );
7923   assert( p->readOnly==0 );
7924   REGISTER_TRACE(pOp->p1, pName);
7925   assert( pName->flags & MEM_Str );
7926   testcase( pName->enc==SQLITE_UTF8 );
7927   testcase( pName->enc==SQLITE_UTF16BE );
7928   testcase( pName->enc==SQLITE_UTF16LE );
7929   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7930   if( rc ) goto abort_due_to_error;
7931   rc = pVtab->pModule->xRename(pVtab, pName->z);
7932   if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
7933   sqlite3VtabImportErrmsg(p, pVtab);
7934   p->expired = 0;
7935   if( rc ) goto abort_due_to_error;
7936   break;
7937 }
7938 #endif
7939 
7940 #ifndef SQLITE_OMIT_VIRTUALTABLE
7941 /* Opcode: VUpdate P1 P2 P3 P4 P5
7942 ** Synopsis: data=r[P3@P2]
7943 **
7944 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7945 ** This opcode invokes the corresponding xUpdate method. P2 values
7946 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7947 ** invocation. The value in register (P3+P2-1) corresponds to the
7948 ** p2th element of the argv array passed to xUpdate.
7949 **
7950 ** The xUpdate method will do a DELETE or an INSERT or both.
7951 ** The argv[0] element (which corresponds to memory cell P3)
7952 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7953 ** deletion occurs.  The argv[1] element is the rowid of the new
7954 ** row.  This can be NULL to have the virtual table select the new
7955 ** rowid for itself.  The subsequent elements in the array are
7956 ** the values of columns in the new row.
7957 **
7958 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7959 ** a row to delete.
7960 **
7961 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7962 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7963 ** is set to the value of the rowid for the row just inserted.
7964 **
7965 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7966 ** apply in the case of a constraint failure on an insert or update.
7967 */
7968 case OP_VUpdate: {
7969   sqlite3_vtab *pVtab;
7970   const sqlite3_module *pModule;
7971   int nArg;
7972   int i;
7973   sqlite_int64 rowid = 0;
7974   Mem **apArg;
7975   Mem *pX;
7976 
7977   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7978        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7979   );
7980   assert( p->readOnly==0 );
7981   if( db->mallocFailed ) goto no_mem;
7982   sqlite3VdbeIncrWriteCounter(p, 0);
7983   pVtab = pOp->p4.pVtab->pVtab;
7984   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7985     rc = SQLITE_LOCKED;
7986     goto abort_due_to_error;
7987   }
7988   pModule = pVtab->pModule;
7989   nArg = pOp->p2;
7990   assert( pOp->p4type==P4_VTAB );
7991   if( ALWAYS(pModule->xUpdate) ){
7992     u8 vtabOnConflict = db->vtabOnConflict;
7993     apArg = p->apArg;
7994     pX = &aMem[pOp->p3];
7995     for(i=0; i<nArg; i++){
7996       assert( memIsValid(pX) );
7997       memAboutToChange(p, pX);
7998       apArg[i] = pX;
7999       pX++;
8000     }
8001     db->vtabOnConflict = pOp->p5;
8002     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8003     db->vtabOnConflict = vtabOnConflict;
8004     sqlite3VtabImportErrmsg(p, pVtab);
8005     if( rc==SQLITE_OK && pOp->p1 ){
8006       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8007       db->lastRowid = rowid;
8008     }
8009     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8010       if( pOp->p5==OE_Ignore ){
8011         rc = SQLITE_OK;
8012       }else{
8013         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8014       }
8015     }else{
8016       p->nChange++;
8017     }
8018     if( rc ) goto abort_due_to_error;
8019   }
8020   break;
8021 }
8022 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8023 
8024 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8025 /* Opcode: Pagecount P1 P2 * * *
8026 **
8027 ** Write the current number of pages in database P1 to memory cell P2.
8028 */
8029 case OP_Pagecount: {            /* out2 */
8030   pOut = out2Prerelease(p, pOp);
8031   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8032   break;
8033 }
8034 #endif
8035 
8036 
8037 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
8038 /* Opcode: MaxPgcnt P1 P2 P3 * *
8039 **
8040 ** Try to set the maximum page count for database P1 to the value in P3.
8041 ** Do not let the maximum page count fall below the current page count and
8042 ** do not change the maximum page count value if P3==0.
8043 **
8044 ** Store the maximum page count after the change in register P2.
8045 */
8046 case OP_MaxPgcnt: {            /* out2 */
8047   unsigned int newMax;
8048   Btree *pBt;
8049 
8050   pOut = out2Prerelease(p, pOp);
8051   pBt = db->aDb[pOp->p1].pBt;
8052   newMax = 0;
8053   if( pOp->p3 ){
8054     newMax = sqlite3BtreeLastPage(pBt);
8055     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8056   }
8057   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8058   break;
8059 }
8060 #endif
8061 
8062 /* Opcode: Function P1 P2 P3 P4 *
8063 ** Synopsis: r[P3]=func(r[P2@NP])
8064 **
8065 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8066 ** contains a pointer to the function to be run) with arguments taken
8067 ** from register P2 and successors.  The number of arguments is in
8068 ** the sqlite3_context object that P4 points to.
8069 ** The result of the function is stored
8070 ** in register P3.  Register P3 must not be one of the function inputs.
8071 **
8072 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8073 ** function was determined to be constant at compile time. If the first
8074 ** argument was constant then bit 0 of P1 is set. This is used to determine
8075 ** whether meta data associated with a user function argument using the
8076 ** sqlite3_set_auxdata() API may be safely retained until the next
8077 ** invocation of this opcode.
8078 **
8079 ** See also: AggStep, AggFinal, PureFunc
8080 */
8081 /* Opcode: PureFunc P1 P2 P3 P4 *
8082 ** Synopsis: r[P3]=func(r[P2@NP])
8083 **
8084 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8085 ** contains a pointer to the function to be run) with arguments taken
8086 ** from register P2 and successors.  The number of arguments is in
8087 ** the sqlite3_context object that P4 points to.
8088 ** The result of the function is stored
8089 ** in register P3.  Register P3 must not be one of the function inputs.
8090 **
8091 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8092 ** function was determined to be constant at compile time. If the first
8093 ** argument was constant then bit 0 of P1 is set. This is used to determine
8094 ** whether meta data associated with a user function argument using the
8095 ** sqlite3_set_auxdata() API may be safely retained until the next
8096 ** invocation of this opcode.
8097 **
8098 ** This opcode works exactly like OP_Function.  The only difference is in
8099 ** its name.  This opcode is used in places where the function must be
8100 ** purely non-deterministic.  Some built-in date/time functions can be
8101 ** either determinitic of non-deterministic, depending on their arguments.
8102 ** When those function are used in a non-deterministic way, they will check
8103 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8104 ** if they were, they throw an error.
8105 **
8106 ** See also: AggStep, AggFinal, Function
8107 */
8108 case OP_PureFunc:              /* group */
8109 case OP_Function: {            /* group */
8110   int i;
8111   sqlite3_context *pCtx;
8112 
8113   assert( pOp->p4type==P4_FUNCCTX );
8114   pCtx = pOp->p4.pCtx;
8115 
8116   /* If this function is inside of a trigger, the register array in aMem[]
8117   ** might change from one evaluation to the next.  The next block of code
8118   ** checks to see if the register array has changed, and if so it
8119   ** reinitializes the relavant parts of the sqlite3_context object */
8120   pOut = &aMem[pOp->p3];
8121   if( pCtx->pOut != pOut ){
8122     pCtx->pVdbe = p;
8123     pCtx->pOut = pOut;
8124     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8125   }
8126   assert( pCtx->pVdbe==p );
8127 
8128   memAboutToChange(p, pOut);
8129 #ifdef SQLITE_DEBUG
8130   for(i=0; i<pCtx->argc; i++){
8131     assert( memIsValid(pCtx->argv[i]) );
8132     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8133   }
8134 #endif
8135   MemSetTypeFlag(pOut, MEM_Null);
8136   assert( pCtx->isError==0 );
8137   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8138 
8139   /* If the function returned an error, throw an exception */
8140   if( pCtx->isError ){
8141     if( pCtx->isError>0 ){
8142       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8143       rc = pCtx->isError;
8144     }
8145     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8146     pCtx->isError = 0;
8147     if( rc ) goto abort_due_to_error;
8148   }
8149 
8150   /* Copy the result of the function into register P3 */
8151   if( pOut->flags & (MEM_Str|MEM_Blob) ){
8152     sqlite3VdbeChangeEncoding(pOut, encoding);
8153     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
8154   }
8155 
8156   REGISTER_TRACE(pOp->p3, pOut);
8157   UPDATE_MAX_BLOBSIZE(pOut);
8158   break;
8159 }
8160 
8161 /* Opcode: FilterAdd P1 * P3 P4 *
8162 ** Synopsis: filter(P1) += key(P3@P4)
8163 **
8164 ** Compute a hash on the P4 registers starting with r[P3] and
8165 ** add that hash to the bloom filter contained in r[P1].
8166 */
8167 case OP_FilterAdd: {
8168   u64 h;
8169 
8170   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8171   pIn1 = &aMem[pOp->p1];
8172   assert( pIn1->flags & MEM_Blob );
8173   assert( pIn1->n>0 );
8174   h = filterHash(aMem, pOp);
8175 #ifdef SQLITE_DEBUG
8176   if( db->flags&SQLITE_VdbeTrace ){
8177     int ii;
8178     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8179       registerTrace(ii, &aMem[ii]);
8180     }
8181     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8182   }
8183 #endif
8184   h %= pIn1->n;
8185   pIn1->z[h/8] |= 1<<(h&7);
8186   break;
8187 }
8188 
8189 /* Opcode: Filter P1 P2 P3 P4 *
8190 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8191 **
8192 ** Compute a hash on the key contained in the P4 registers starting
8193 ** with r[P3].  Check to see if that hash is found in the
8194 ** bloom filter hosted by register P1.  If it is not present then
8195 ** maybe jump to P2.  Otherwise fall through.
8196 **
8197 ** False negatives are harmless.  It is always safe to fall through,
8198 ** even if the value is in the bloom filter.  A false negative causes
8199 ** more CPU cycles to be used, but it should still yield the correct
8200 ** answer.  However, an incorrect answer may well arise from a
8201 ** false positive - if the jump is taken when it should fall through.
8202 */
8203 case OP_Filter: {          /* jump */
8204   u64 h;
8205 
8206   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8207   pIn1 = &aMem[pOp->p1];
8208   assert( (pIn1->flags & MEM_Blob)!=0 );
8209   assert( pIn1->n >= 1 );
8210   h = filterHash(aMem, pOp);
8211 #ifdef SQLITE_DEBUG
8212   if( db->flags&SQLITE_VdbeTrace ){
8213     int ii;
8214     for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8215       registerTrace(ii, &aMem[ii]);
8216     }
8217     printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8218   }
8219 #endif
8220   h %= pIn1->n;
8221   if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8222     VdbeBranchTaken(1, 2);
8223     p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8224     goto jump_to_p2;
8225   }else{
8226     p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8227     VdbeBranchTaken(0, 2);
8228   }
8229   break;
8230 }
8231 
8232 /* Opcode: Trace P1 P2 * P4 *
8233 **
8234 ** Write P4 on the statement trace output if statement tracing is
8235 ** enabled.
8236 **
8237 ** Operand P1 must be 0x7fffffff and P2 must positive.
8238 */
8239 /* Opcode: Init P1 P2 P3 P4 *
8240 ** Synopsis: Start at P2
8241 **
8242 ** Programs contain a single instance of this opcode as the very first
8243 ** opcode.
8244 **
8245 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8246 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8247 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8248 **
8249 ** If P2 is not zero, jump to instruction P2.
8250 **
8251 ** Increment the value of P1 so that OP_Once opcodes will jump the
8252 ** first time they are evaluated for this run.
8253 **
8254 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8255 ** error is encountered.
8256 */
8257 case OP_Trace:
8258 case OP_Init: {          /* jump */
8259   int i;
8260 #ifndef SQLITE_OMIT_TRACE
8261   char *zTrace;
8262 #endif
8263 
8264   /* If the P4 argument is not NULL, then it must be an SQL comment string.
8265   ** The "--" string is broken up to prevent false-positives with srcck1.c.
8266   **
8267   ** This assert() provides evidence for:
8268   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8269   ** would have been returned by the legacy sqlite3_trace() interface by
8270   ** using the X argument when X begins with "--" and invoking
8271   ** sqlite3_expanded_sql(P) otherwise.
8272   */
8273   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8274 
8275   /* OP_Init is always instruction 0 */
8276   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8277 
8278 #ifndef SQLITE_OMIT_TRACE
8279   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8280    && !p->doingRerun
8281    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8282   ){
8283 #ifndef SQLITE_OMIT_DEPRECATED
8284     if( db->mTrace & SQLITE_TRACE_LEGACY ){
8285       char *z = sqlite3VdbeExpandSql(p, zTrace);
8286       db->trace.xLegacy(db->pTraceArg, z);
8287       sqlite3_free(z);
8288     }else
8289 #endif
8290     if( db->nVdbeExec>1 ){
8291       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8292       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8293       sqlite3DbFree(db, z);
8294     }else{
8295       (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8296     }
8297   }
8298 #ifdef SQLITE_USE_FCNTL_TRACE
8299   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8300   if( zTrace ){
8301     int j;
8302     for(j=0; j<db->nDb; j++){
8303       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8304       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8305     }
8306   }
8307 #endif /* SQLITE_USE_FCNTL_TRACE */
8308 #ifdef SQLITE_DEBUG
8309   if( (db->flags & SQLITE_SqlTrace)!=0
8310    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8311   ){
8312     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8313   }
8314 #endif /* SQLITE_DEBUG */
8315 #endif /* SQLITE_OMIT_TRACE */
8316   assert( pOp->p2>0 );
8317   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8318     if( pOp->opcode==OP_Trace ) break;
8319     for(i=1; i<p->nOp; i++){
8320       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8321     }
8322     pOp->p1 = 0;
8323   }
8324   pOp->p1++;
8325   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8326   goto jump_to_p2;
8327 }
8328 
8329 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8330 /* Opcode: CursorHint P1 * * P4 *
8331 **
8332 ** Provide a hint to cursor P1 that it only needs to return rows that
8333 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
8334 ** to values currently held in registers.  TK_COLUMN terms in the P4
8335 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8336 */
8337 case OP_CursorHint: {
8338   VdbeCursor *pC;
8339 
8340   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8341   assert( pOp->p4type==P4_EXPR );
8342   pC = p->apCsr[pOp->p1];
8343   if( pC ){
8344     assert( pC->eCurType==CURTYPE_BTREE );
8345     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8346                            pOp->p4.pExpr, aMem);
8347   }
8348   break;
8349 }
8350 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8351 
8352 #ifdef SQLITE_DEBUG
8353 /* Opcode:  Abortable   * * * * *
8354 **
8355 ** Verify that an Abort can happen.  Assert if an Abort at this point
8356 ** might cause database corruption.  This opcode only appears in debugging
8357 ** builds.
8358 **
8359 ** An Abort is safe if either there have been no writes, or if there is
8360 ** an active statement journal.
8361 */
8362 case OP_Abortable: {
8363   sqlite3VdbeAssertAbortable(p);
8364   break;
8365 }
8366 #endif
8367 
8368 #ifdef SQLITE_DEBUG
8369 /* Opcode:  ReleaseReg   P1 P2 P3 * P5
8370 ** Synopsis: release r[P1@P2] mask P3
8371 **
8372 ** Release registers from service.  Any content that was in the
8373 ** the registers is unreliable after this opcode completes.
8374 **
8375 ** The registers released will be the P2 registers starting at P1,
8376 ** except if bit ii of P3 set, then do not release register P1+ii.
8377 ** In other words, P3 is a mask of registers to preserve.
8378 **
8379 ** Releasing a register clears the Mem.pScopyFrom pointer.  That means
8380 ** that if the content of the released register was set using OP_SCopy,
8381 ** a change to the value of the source register for the OP_SCopy will no longer
8382 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8383 **
8384 ** If P5 is set, then all released registers have their type set
8385 ** to MEM_Undefined so that any subsequent attempt to read the released
8386 ** register (before it is reinitialized) will generate an assertion fault.
8387 **
8388 ** P5 ought to be set on every call to this opcode.
8389 ** However, there are places in the code generator will release registers
8390 ** before their are used, under the (valid) assumption that the registers
8391 ** will not be reallocated for some other purpose before they are used and
8392 ** hence are safe to release.
8393 **
8394 ** This opcode is only available in testing and debugging builds.  It is
8395 ** not generated for release builds.  The purpose of this opcode is to help
8396 ** validate the generated bytecode.  This opcode does not actually contribute
8397 ** to computing an answer.
8398 */
8399 case OP_ReleaseReg: {
8400   Mem *pMem;
8401   int i;
8402   u32 constMask;
8403   assert( pOp->p1>0 );
8404   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8405   pMem = &aMem[pOp->p1];
8406   constMask = pOp->p3;
8407   for(i=0; i<pOp->p2; i++, pMem++){
8408     if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8409       pMem->pScopyFrom = 0;
8410       if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8411     }
8412   }
8413   break;
8414 }
8415 #endif
8416 
8417 /* Opcode: Noop * * * * *
8418 **
8419 ** Do nothing.  This instruction is often useful as a jump
8420 ** destination.
8421 */
8422 /*
8423 ** The magic Explain opcode are only inserted when explain==2 (which
8424 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8425 ** This opcode records information from the optimizer.  It is the
8426 ** the same as a no-op.  This opcodesnever appears in a real VM program.
8427 */
8428 default: {          /* This is really OP_Noop, OP_Explain */
8429   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8430 
8431   break;
8432 }
8433 
8434 /*****************************************************************************
8435 ** The cases of the switch statement above this line should all be indented
8436 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
8437 ** readability.  From this point on down, the normal indentation rules are
8438 ** restored.
8439 *****************************************************************************/
8440     }
8441 
8442 #ifdef VDBE_PROFILE
8443     {
8444       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8445       if( endTime>start ) pOrigOp->cycles += endTime - start;
8446       pOrigOp->cnt++;
8447     }
8448 #endif
8449 
8450     /* The following code adds nothing to the actual functionality
8451     ** of the program.  It is only here for testing and debugging.
8452     ** On the other hand, it does burn CPU cycles every time through
8453     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
8454     */
8455 #ifndef NDEBUG
8456     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8457 
8458 #ifdef SQLITE_DEBUG
8459     if( db->flags & SQLITE_VdbeTrace ){
8460       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8461       if( rc!=0 ) printf("rc=%d\n",rc);
8462       if( opProperty & (OPFLG_OUT2) ){
8463         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8464       }
8465       if( opProperty & OPFLG_OUT3 ){
8466         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8467       }
8468       if( opProperty==0xff ){
8469         /* Never happens.  This code exists to avoid a harmless linkage
8470         ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8471         ** used. */
8472         sqlite3VdbeRegisterDump(p);
8473       }
8474     }
8475 #endif  /* SQLITE_DEBUG */
8476 #endif  /* NDEBUG */
8477   }  /* The end of the for(;;) loop the loops through opcodes */
8478 
8479   /* If we reach this point, it means that execution is finished with
8480   ** an error of some kind.
8481   */
8482 abort_due_to_error:
8483   if( db->mallocFailed ){
8484     rc = SQLITE_NOMEM_BKPT;
8485   }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8486     rc = SQLITE_CORRUPT_BKPT;
8487   }
8488   assert( rc );
8489 #ifdef SQLITE_DEBUG
8490   if( db->flags & SQLITE_VdbeTrace ){
8491     const char *zTrace = p->zSql;
8492     if( zTrace==0 ){
8493       if( aOp[0].opcode==OP_Trace ){
8494         zTrace = aOp[0].p4.z;
8495       }
8496       if( zTrace==0 ) zTrace = "???";
8497     }
8498     printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8499   }
8500 #endif
8501   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8502     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8503   }
8504   p->rc = rc;
8505   sqlite3SystemError(db, rc);
8506   testcase( sqlite3GlobalConfig.xLog!=0 );
8507   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8508                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
8509   sqlite3VdbeHalt(p);
8510   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8511   if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8512     db->flags |= SQLITE_CorruptRdOnly;
8513   }
8514   rc = SQLITE_ERROR;
8515   if( resetSchemaOnFault>0 ){
8516     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8517   }
8518 
8519   /* This is the only way out of this procedure.  We have to
8520   ** release the mutexes on btrees that were acquired at the
8521   ** top. */
8522 vdbe_return:
8523 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8524   while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8525     nProgressLimit += db->nProgressOps;
8526     if( db->xProgress(db->pProgressArg) ){
8527       nProgressLimit = LARGEST_UINT64;
8528       rc = SQLITE_INTERRUPT;
8529       goto abort_due_to_error;
8530     }
8531   }
8532 #endif
8533   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8534   sqlite3VdbeLeave(p);
8535   assert( rc!=SQLITE_OK || nExtraDelete==0
8536        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8537   );
8538   return rc;
8539 
8540   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8541   ** is encountered.
8542   */
8543 too_big:
8544   sqlite3VdbeError(p, "string or blob too big");
8545   rc = SQLITE_TOOBIG;
8546   goto abort_due_to_error;
8547 
8548   /* Jump to here if a malloc() fails.
8549   */
8550 no_mem:
8551   sqlite3OomFault(db);
8552   sqlite3VdbeError(p, "out of memory");
8553   rc = SQLITE_NOMEM_BKPT;
8554   goto abort_due_to_error;
8555 
8556   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8557   ** flag.
8558   */
8559 abort_due_to_interrupt:
8560   assert( AtomicLoad(&db->u1.isInterrupted) );
8561   rc = SQLITE_INTERRUPT;
8562   goto abort_due_to_error;
8563 }
8564