1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 276 p->apCsr[iCur] = 0; 277 } 278 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 279 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 280 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 281 pCx->eCurType = eCurType; 282 pCx->iDb = iDb; 283 pCx->nField = nField; 284 pCx->aOffset = &pCx->aType[nField]; 285 if( eCurType==CURTYPE_BTREE ){ 286 pCx->uc.pCursor = (BtCursor*) 287 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 288 sqlite3BtreeCursorZero(pCx->uc.pCursor); 289 } 290 } 291 return pCx; 292 } 293 294 /* 295 ** The string in pRec is known to look like an integer and to have a 296 ** floating point value of rValue. Return true and set *piValue to the 297 ** integer value if the string is in range to be an integer. Otherwise, 298 ** return false. 299 */ 300 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 301 i64 iValue = (double)rValue; 302 if( sqlite3RealSameAsInt(rValue,iValue) ){ 303 *piValue = iValue; 304 return 1; 305 } 306 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 307 } 308 309 /* 310 ** Try to convert a value into a numeric representation if we can 311 ** do so without loss of information. In other words, if the string 312 ** looks like a number, convert it into a number. If it does not 313 ** look like a number, leave it alone. 314 ** 315 ** If the bTryForInt flag is true, then extra effort is made to give 316 ** an integer representation. Strings that look like floating point 317 ** values but which have no fractional component (example: '48.00') 318 ** will have a MEM_Int representation when bTryForInt is true. 319 ** 320 ** If bTryForInt is false, then if the input string contains a decimal 321 ** point or exponential notation, the result is only MEM_Real, even 322 ** if there is an exact integer representation of the quantity. 323 */ 324 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 325 double rValue; 326 u8 enc = pRec->enc; 327 int rc; 328 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 329 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 330 if( rc<=0 ) return; 331 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 332 pRec->flags |= MEM_Int; 333 }else{ 334 pRec->u.r = rValue; 335 pRec->flags |= MEM_Real; 336 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 337 } 338 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 339 ** string representation after computing a numeric equivalent, because the 340 ** string representation might not be the canonical representation for the 341 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 342 pRec->flags &= ~MEM_Str; 343 } 344 345 /* 346 ** Processing is determine by the affinity parameter: 347 ** 348 ** SQLITE_AFF_INTEGER: 349 ** SQLITE_AFF_REAL: 350 ** SQLITE_AFF_NUMERIC: 351 ** Try to convert pRec to an integer representation or a 352 ** floating-point representation if an integer representation 353 ** is not possible. Note that the integer representation is 354 ** always preferred, even if the affinity is REAL, because 355 ** an integer representation is more space efficient on disk. 356 ** 357 ** SQLITE_AFF_TEXT: 358 ** Convert pRec to a text representation. 359 ** 360 ** SQLITE_AFF_BLOB: 361 ** SQLITE_AFF_NONE: 362 ** No-op. pRec is unchanged. 363 */ 364 static void applyAffinity( 365 Mem *pRec, /* The value to apply affinity to */ 366 char affinity, /* The affinity to be applied */ 367 u8 enc /* Use this text encoding */ 368 ){ 369 if( affinity>=SQLITE_AFF_NUMERIC ){ 370 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 371 || affinity==SQLITE_AFF_NUMERIC ); 372 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 373 if( (pRec->flags & MEM_Real)==0 ){ 374 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 375 }else{ 376 sqlite3VdbeIntegerAffinity(pRec); 377 } 378 } 379 }else if( affinity==SQLITE_AFF_TEXT ){ 380 /* Only attempt the conversion to TEXT if there is an integer or real 381 ** representation (blob and NULL do not get converted) but no string 382 ** representation. It would be harmless to repeat the conversion if 383 ** there is already a string rep, but it is pointless to waste those 384 ** CPU cycles. */ 385 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 386 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 387 testcase( pRec->flags & MEM_Int ); 388 testcase( pRec->flags & MEM_Real ); 389 testcase( pRec->flags & MEM_IntReal ); 390 sqlite3VdbeMemStringify(pRec, enc, 1); 391 } 392 } 393 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 394 } 395 } 396 397 /* 398 ** Try to convert the type of a function argument or a result column 399 ** into a numeric representation. Use either INTEGER or REAL whichever 400 ** is appropriate. But only do the conversion if it is possible without 401 ** loss of information and return the revised type of the argument. 402 */ 403 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 404 int eType = sqlite3_value_type(pVal); 405 if( eType==SQLITE_TEXT ){ 406 Mem *pMem = (Mem*)pVal; 407 applyNumericAffinity(pMem, 0); 408 eType = sqlite3_value_type(pVal); 409 } 410 return eType; 411 } 412 413 /* 414 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 415 ** not the internal Mem* type. 416 */ 417 void sqlite3ValueApplyAffinity( 418 sqlite3_value *pVal, 419 u8 affinity, 420 u8 enc 421 ){ 422 applyAffinity((Mem *)pVal, affinity, enc); 423 } 424 425 /* 426 ** pMem currently only holds a string type (or maybe a BLOB that we can 427 ** interpret as a string if we want to). Compute its corresponding 428 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 429 ** accordingly. 430 */ 431 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 432 int rc; 433 sqlite3_int64 ix; 434 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 435 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 436 ExpandBlob(pMem); 437 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 438 if( rc<=0 ){ 439 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 440 pMem->u.i = ix; 441 return MEM_Int; 442 }else{ 443 return MEM_Real; 444 } 445 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 446 pMem->u.i = ix; 447 return MEM_Int; 448 } 449 return MEM_Real; 450 } 451 452 /* 453 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 454 ** none. 455 ** 456 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 457 ** But it does set pMem->u.r and pMem->u.i appropriately. 458 */ 459 static u16 numericType(Mem *pMem){ 460 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 461 testcase( pMem->flags & MEM_Int ); 462 testcase( pMem->flags & MEM_Real ); 463 testcase( pMem->flags & MEM_IntReal ); 464 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 465 } 466 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 467 testcase( pMem->flags & MEM_Str ); 468 testcase( pMem->flags & MEM_Blob ); 469 return computeNumericType(pMem); 470 } 471 return 0; 472 } 473 474 #ifdef SQLITE_DEBUG 475 /* 476 ** Write a nice string representation of the contents of cell pMem 477 ** into buffer zBuf, length nBuf. 478 */ 479 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 480 int f = pMem->flags; 481 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 482 if( f&MEM_Blob ){ 483 int i; 484 char c; 485 if( f & MEM_Dyn ){ 486 c = 'z'; 487 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 488 }else if( f & MEM_Static ){ 489 c = 't'; 490 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 491 }else if( f & MEM_Ephem ){ 492 c = 'e'; 493 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 494 }else{ 495 c = 's'; 496 } 497 sqlite3_str_appendf(pStr, "%cx[", c); 498 for(i=0; i<25 && i<pMem->n; i++){ 499 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 500 } 501 sqlite3_str_appendf(pStr, "|"); 502 for(i=0; i<25 && i<pMem->n; i++){ 503 char z = pMem->z[i]; 504 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 505 } 506 sqlite3_str_appendf(pStr,"]"); 507 if( f & MEM_Zero ){ 508 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 509 } 510 }else if( f & MEM_Str ){ 511 int j; 512 u8 c; 513 if( f & MEM_Dyn ){ 514 c = 'z'; 515 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 516 }else if( f & MEM_Static ){ 517 c = 't'; 518 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 519 }else if( f & MEM_Ephem ){ 520 c = 'e'; 521 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 522 }else{ 523 c = 's'; 524 } 525 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 526 for(j=0; j<25 && j<pMem->n; j++){ 527 c = pMem->z[j]; 528 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 529 } 530 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 531 } 532 } 533 #endif 534 535 #ifdef SQLITE_DEBUG 536 /* 537 ** Print the value of a register for tracing purposes: 538 */ 539 static void memTracePrint(Mem *p){ 540 if( p->flags & MEM_Undefined ){ 541 printf(" undefined"); 542 }else if( p->flags & MEM_Null ){ 543 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 544 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 545 printf(" si:%lld", p->u.i); 546 }else if( (p->flags & (MEM_IntReal))!=0 ){ 547 printf(" ir:%lld", p->u.i); 548 }else if( p->flags & MEM_Int ){ 549 printf(" i:%lld", p->u.i); 550 #ifndef SQLITE_OMIT_FLOATING_POINT 551 }else if( p->flags & MEM_Real ){ 552 printf(" r:%.17g", p->u.r); 553 #endif 554 }else if( sqlite3VdbeMemIsRowSet(p) ){ 555 printf(" (rowset)"); 556 }else{ 557 StrAccum acc; 558 char zBuf[1000]; 559 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 560 sqlite3VdbeMemPrettyPrint(p, &acc); 561 printf(" %s", sqlite3StrAccumFinish(&acc)); 562 } 563 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 564 } 565 static void registerTrace(int iReg, Mem *p){ 566 printf("R[%d] = ", iReg); 567 memTracePrint(p); 568 if( p->pScopyFrom ){ 569 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 570 } 571 printf("\n"); 572 sqlite3VdbeCheckMemInvariants(p); 573 } 574 #endif 575 576 #ifdef SQLITE_DEBUG 577 /* 578 ** Show the values of all registers in the virtual machine. Used for 579 ** interactive debugging. 580 */ 581 void sqlite3VdbeRegisterDump(Vdbe *v){ 582 int i; 583 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 584 } 585 #endif /* SQLITE_DEBUG */ 586 587 588 #ifdef SQLITE_DEBUG 589 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 590 #else 591 # define REGISTER_TRACE(R,M) 592 #endif 593 594 595 #ifdef VDBE_PROFILE 596 597 /* 598 ** hwtime.h contains inline assembler code for implementing 599 ** high-performance timing routines. 600 */ 601 #include "hwtime.h" 602 603 #endif 604 605 #ifndef NDEBUG 606 /* 607 ** This function is only called from within an assert() expression. It 608 ** checks that the sqlite3.nTransaction variable is correctly set to 609 ** the number of non-transaction savepoints currently in the 610 ** linked list starting at sqlite3.pSavepoint. 611 ** 612 ** Usage: 613 ** 614 ** assert( checkSavepointCount(db) ); 615 */ 616 static int checkSavepointCount(sqlite3 *db){ 617 int n = 0; 618 Savepoint *p; 619 for(p=db->pSavepoint; p; p=p->pNext) n++; 620 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 621 return 1; 622 } 623 #endif 624 625 /* 626 ** Return the register of pOp->p2 after first preparing it to be 627 ** overwritten with an integer value. 628 */ 629 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 630 sqlite3VdbeMemSetNull(pOut); 631 pOut->flags = MEM_Int; 632 return pOut; 633 } 634 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 635 Mem *pOut; 636 assert( pOp->p2>0 ); 637 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 638 pOut = &p->aMem[pOp->p2]; 639 memAboutToChange(p, pOut); 640 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 641 return out2PrereleaseWithClear(pOut); 642 }else{ 643 pOut->flags = MEM_Int; 644 return pOut; 645 } 646 } 647 648 649 /* 650 ** Execute as much of a VDBE program as we can. 651 ** This is the core of sqlite3_step(). 652 */ 653 int sqlite3VdbeExec( 654 Vdbe *p /* The VDBE */ 655 ){ 656 Op *aOp = p->aOp; /* Copy of p->aOp */ 657 Op *pOp = aOp; /* Current operation */ 658 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 659 Op *pOrigOp; /* Value of pOp at the top of the loop */ 660 #endif 661 #ifdef SQLITE_DEBUG 662 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 663 #endif 664 int rc = SQLITE_OK; /* Value to return */ 665 sqlite3 *db = p->db; /* The database */ 666 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 667 u8 encoding = ENC(db); /* The database encoding */ 668 int iCompare = 0; /* Result of last comparison */ 669 u64 nVmStep = 0; /* Number of virtual machine steps */ 670 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 671 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 672 #endif 673 Mem *aMem = p->aMem; /* Copy of p->aMem */ 674 Mem *pIn1 = 0; /* 1st input operand */ 675 Mem *pIn2 = 0; /* 2nd input operand */ 676 Mem *pIn3 = 0; /* 3rd input operand */ 677 Mem *pOut = 0; /* Output operand */ 678 #ifdef VDBE_PROFILE 679 u64 start; /* CPU clock count at start of opcode */ 680 #endif 681 /*** INSERT STACK UNION HERE ***/ 682 683 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 684 sqlite3VdbeEnter(p); 685 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 686 if( db->xProgress ){ 687 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 688 assert( 0 < db->nProgressOps ); 689 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 690 }else{ 691 nProgressLimit = LARGEST_UINT64; 692 } 693 #endif 694 if( p->rc==SQLITE_NOMEM ){ 695 /* This happens if a malloc() inside a call to sqlite3_column_text() or 696 ** sqlite3_column_text16() failed. */ 697 goto no_mem; 698 } 699 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 700 testcase( p->rc!=SQLITE_OK ); 701 p->rc = SQLITE_OK; 702 assert( p->bIsReader || p->readOnly!=0 ); 703 p->iCurrentTime = 0; 704 assert( p->explain==0 ); 705 p->pResultSet = 0; 706 db->busyHandler.nBusy = 0; 707 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 708 sqlite3VdbeIOTraceSql(p); 709 #ifdef SQLITE_DEBUG 710 sqlite3BeginBenignMalloc(); 711 if( p->pc==0 712 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 713 ){ 714 int i; 715 int once = 1; 716 sqlite3VdbePrintSql(p); 717 if( p->db->flags & SQLITE_VdbeListing ){ 718 printf("VDBE Program Listing:\n"); 719 for(i=0; i<p->nOp; i++){ 720 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 721 } 722 } 723 if( p->db->flags & SQLITE_VdbeEQP ){ 724 for(i=0; i<p->nOp; i++){ 725 if( aOp[i].opcode==OP_Explain ){ 726 if( once ) printf("VDBE Query Plan:\n"); 727 printf("%s\n", aOp[i].p4.z); 728 once = 0; 729 } 730 } 731 } 732 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 733 } 734 sqlite3EndBenignMalloc(); 735 #endif 736 for(pOp=&aOp[p->pc]; 1; pOp++){ 737 /* Errors are detected by individual opcodes, with an immediate 738 ** jumps to abort_due_to_error. */ 739 assert( rc==SQLITE_OK ); 740 741 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 742 #ifdef VDBE_PROFILE 743 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 744 #endif 745 nVmStep++; 746 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 747 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 748 #endif 749 750 /* Only allow tracing if SQLITE_DEBUG is defined. 751 */ 752 #ifdef SQLITE_DEBUG 753 if( db->flags & SQLITE_VdbeTrace ){ 754 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 755 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 756 } 757 #endif 758 759 760 /* Check to see if we need to simulate an interrupt. This only happens 761 ** if we have a special test build. 762 */ 763 #ifdef SQLITE_TEST 764 if( sqlite3_interrupt_count>0 ){ 765 sqlite3_interrupt_count--; 766 if( sqlite3_interrupt_count==0 ){ 767 sqlite3_interrupt(db); 768 } 769 } 770 #endif 771 772 /* Sanity checking on other operands */ 773 #ifdef SQLITE_DEBUG 774 { 775 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 776 if( (opProperty & OPFLG_IN1)!=0 ){ 777 assert( pOp->p1>0 ); 778 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 779 assert( memIsValid(&aMem[pOp->p1]) ); 780 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 781 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 782 } 783 if( (opProperty & OPFLG_IN2)!=0 ){ 784 assert( pOp->p2>0 ); 785 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 786 assert( memIsValid(&aMem[pOp->p2]) ); 787 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 788 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 789 } 790 if( (opProperty & OPFLG_IN3)!=0 ){ 791 assert( pOp->p3>0 ); 792 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 793 assert( memIsValid(&aMem[pOp->p3]) ); 794 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 795 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 796 } 797 if( (opProperty & OPFLG_OUT2)!=0 ){ 798 assert( pOp->p2>0 ); 799 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 800 memAboutToChange(p, &aMem[pOp->p2]); 801 } 802 if( (opProperty & OPFLG_OUT3)!=0 ){ 803 assert( pOp->p3>0 ); 804 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 805 memAboutToChange(p, &aMem[pOp->p3]); 806 } 807 } 808 #endif 809 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 810 pOrigOp = pOp; 811 #endif 812 813 switch( pOp->opcode ){ 814 815 /***************************************************************************** 816 ** What follows is a massive switch statement where each case implements a 817 ** separate instruction in the virtual machine. If we follow the usual 818 ** indentation conventions, each case should be indented by 6 spaces. But 819 ** that is a lot of wasted space on the left margin. So the code within 820 ** the switch statement will break with convention and be flush-left. Another 821 ** big comment (similar to this one) will mark the point in the code where 822 ** we transition back to normal indentation. 823 ** 824 ** The formatting of each case is important. The makefile for SQLite 825 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 826 ** file looking for lines that begin with "case OP_". The opcodes.h files 827 ** will be filled with #defines that give unique integer values to each 828 ** opcode and the opcodes.c file is filled with an array of strings where 829 ** each string is the symbolic name for the corresponding opcode. If the 830 ** case statement is followed by a comment of the form "/# same as ... #/" 831 ** that comment is used to determine the particular value of the opcode. 832 ** 833 ** Other keywords in the comment that follows each case are used to 834 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 835 ** Keywords include: in1, in2, in3, out2, out3. See 836 ** the mkopcodeh.awk script for additional information. 837 ** 838 ** Documentation about VDBE opcodes is generated by scanning this file 839 ** for lines of that contain "Opcode:". That line and all subsequent 840 ** comment lines are used in the generation of the opcode.html documentation 841 ** file. 842 ** 843 ** SUMMARY: 844 ** 845 ** Formatting is important to scripts that scan this file. 846 ** Do not deviate from the formatting style currently in use. 847 ** 848 *****************************************************************************/ 849 850 /* Opcode: Goto * P2 * * * 851 ** 852 ** An unconditional jump to address P2. 853 ** The next instruction executed will be 854 ** the one at index P2 from the beginning of 855 ** the program. 856 ** 857 ** The P1 parameter is not actually used by this opcode. However, it 858 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 859 ** that this Goto is the bottom of a loop and that the lines from P2 down 860 ** to the current line should be indented for EXPLAIN output. 861 */ 862 case OP_Goto: { /* jump */ 863 864 #ifdef SQLITE_DEBUG 865 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 866 ** means we should really jump back to the preceeding OP_ReleaseReg 867 ** instruction. */ 868 if( pOp->p5 ){ 869 assert( pOp->p2 < (int)(pOp - aOp) ); 870 assert( pOp->p2 > 1 ); 871 pOp = &aOp[pOp->p2 - 2]; 872 assert( pOp[1].opcode==OP_ReleaseReg ); 873 goto check_for_interrupt; 874 } 875 #endif 876 877 jump_to_p2_and_check_for_interrupt: 878 pOp = &aOp[pOp->p2 - 1]; 879 880 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 881 ** OP_VNext, or OP_SorterNext) all jump here upon 882 ** completion. Check to see if sqlite3_interrupt() has been called 883 ** or if the progress callback needs to be invoked. 884 ** 885 ** This code uses unstructured "goto" statements and does not look clean. 886 ** But that is not due to sloppy coding habits. The code is written this 887 ** way for performance, to avoid having to run the interrupt and progress 888 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 889 ** faster according to "valgrind --tool=cachegrind" */ 890 check_for_interrupt: 891 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 892 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 893 /* Call the progress callback if it is configured and the required number 894 ** of VDBE ops have been executed (either since this invocation of 895 ** sqlite3VdbeExec() or since last time the progress callback was called). 896 ** If the progress callback returns non-zero, exit the virtual machine with 897 ** a return code SQLITE_ABORT. 898 */ 899 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 900 assert( db->nProgressOps!=0 ); 901 nProgressLimit += db->nProgressOps; 902 if( db->xProgress(db->pProgressArg) ){ 903 nProgressLimit = LARGEST_UINT64; 904 rc = SQLITE_INTERRUPT; 905 goto abort_due_to_error; 906 } 907 } 908 #endif 909 910 break; 911 } 912 913 /* Opcode: Gosub P1 P2 * * * 914 ** 915 ** Write the current address onto register P1 916 ** and then jump to address P2. 917 */ 918 case OP_Gosub: { /* jump */ 919 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 920 pIn1 = &aMem[pOp->p1]; 921 assert( VdbeMemDynamic(pIn1)==0 ); 922 memAboutToChange(p, pIn1); 923 pIn1->flags = MEM_Int; 924 pIn1->u.i = (int)(pOp-aOp); 925 REGISTER_TRACE(pOp->p1, pIn1); 926 927 /* Most jump operations do a goto to this spot in order to update 928 ** the pOp pointer. */ 929 jump_to_p2: 930 pOp = &aOp[pOp->p2 - 1]; 931 break; 932 } 933 934 /* Opcode: Return P1 * * * * 935 ** 936 ** Jump to the next instruction after the address in register P1. After 937 ** the jump, register P1 becomes undefined. 938 */ 939 case OP_Return: { /* in1 */ 940 pIn1 = &aMem[pOp->p1]; 941 assert( pIn1->flags==MEM_Int ); 942 pOp = &aOp[pIn1->u.i]; 943 pIn1->flags = MEM_Undefined; 944 break; 945 } 946 947 /* Opcode: InitCoroutine P1 P2 P3 * * 948 ** 949 ** Set up register P1 so that it will Yield to the coroutine 950 ** located at address P3. 951 ** 952 ** If P2!=0 then the coroutine implementation immediately follows 953 ** this opcode. So jump over the coroutine implementation to 954 ** address P2. 955 ** 956 ** See also: EndCoroutine 957 */ 958 case OP_InitCoroutine: { /* jump */ 959 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 960 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 961 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 962 pOut = &aMem[pOp->p1]; 963 assert( !VdbeMemDynamic(pOut) ); 964 pOut->u.i = pOp->p3 - 1; 965 pOut->flags = MEM_Int; 966 if( pOp->p2 ) goto jump_to_p2; 967 break; 968 } 969 970 /* Opcode: EndCoroutine P1 * * * * 971 ** 972 ** The instruction at the address in register P1 is a Yield. 973 ** Jump to the P2 parameter of that Yield. 974 ** After the jump, register P1 becomes undefined. 975 ** 976 ** See also: InitCoroutine 977 */ 978 case OP_EndCoroutine: { /* in1 */ 979 VdbeOp *pCaller; 980 pIn1 = &aMem[pOp->p1]; 981 assert( pIn1->flags==MEM_Int ); 982 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 983 pCaller = &aOp[pIn1->u.i]; 984 assert( pCaller->opcode==OP_Yield ); 985 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 986 pOp = &aOp[pCaller->p2 - 1]; 987 pIn1->flags = MEM_Undefined; 988 break; 989 } 990 991 /* Opcode: Yield P1 P2 * * * 992 ** 993 ** Swap the program counter with the value in register P1. This 994 ** has the effect of yielding to a coroutine. 995 ** 996 ** If the coroutine that is launched by this instruction ends with 997 ** Yield or Return then continue to the next instruction. But if 998 ** the coroutine launched by this instruction ends with 999 ** EndCoroutine, then jump to P2 rather than continuing with the 1000 ** next instruction. 1001 ** 1002 ** See also: InitCoroutine 1003 */ 1004 case OP_Yield: { /* in1, jump */ 1005 int pcDest; 1006 pIn1 = &aMem[pOp->p1]; 1007 assert( VdbeMemDynamic(pIn1)==0 ); 1008 pIn1->flags = MEM_Int; 1009 pcDest = (int)pIn1->u.i; 1010 pIn1->u.i = (int)(pOp - aOp); 1011 REGISTER_TRACE(pOp->p1, pIn1); 1012 pOp = &aOp[pcDest]; 1013 break; 1014 } 1015 1016 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1017 ** Synopsis: if r[P3]=null halt 1018 ** 1019 ** Check the value in register P3. If it is NULL then Halt using 1020 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1021 ** value in register P3 is not NULL, then this routine is a no-op. 1022 ** The P5 parameter should be 1. 1023 */ 1024 case OP_HaltIfNull: { /* in3 */ 1025 pIn3 = &aMem[pOp->p3]; 1026 #ifdef SQLITE_DEBUG 1027 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1028 #endif 1029 if( (pIn3->flags & MEM_Null)==0 ) break; 1030 /* Fall through into OP_Halt */ 1031 /* no break */ deliberate_fall_through 1032 } 1033 1034 /* Opcode: Halt P1 P2 * P4 P5 1035 ** 1036 ** Exit immediately. All open cursors, etc are closed 1037 ** automatically. 1038 ** 1039 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1040 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1041 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1042 ** whether or not to rollback the current transaction. Do not rollback 1043 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1044 ** then back out all changes that have occurred during this execution of the 1045 ** VDBE, but do not rollback the transaction. 1046 ** 1047 ** If P4 is not null then it is an error message string. 1048 ** 1049 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1050 ** 1051 ** 0: (no change) 1052 ** 1: NOT NULL contraint failed: P4 1053 ** 2: UNIQUE constraint failed: P4 1054 ** 3: CHECK constraint failed: P4 1055 ** 4: FOREIGN KEY constraint failed: P4 1056 ** 1057 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1058 ** omitted. 1059 ** 1060 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1061 ** every program. So a jump past the last instruction of the program 1062 ** is the same as executing Halt. 1063 */ 1064 case OP_Halt: { 1065 VdbeFrame *pFrame; 1066 int pcx; 1067 1068 pcx = (int)(pOp - aOp); 1069 #ifdef SQLITE_DEBUG 1070 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1071 #endif 1072 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1073 /* Halt the sub-program. Return control to the parent frame. */ 1074 pFrame = p->pFrame; 1075 p->pFrame = pFrame->pParent; 1076 p->nFrame--; 1077 sqlite3VdbeSetChanges(db, p->nChange); 1078 pcx = sqlite3VdbeFrameRestore(pFrame); 1079 if( pOp->p2==OE_Ignore ){ 1080 /* Instruction pcx is the OP_Program that invoked the sub-program 1081 ** currently being halted. If the p2 instruction of this OP_Halt 1082 ** instruction is set to OE_Ignore, then the sub-program is throwing 1083 ** an IGNORE exception. In this case jump to the address specified 1084 ** as the p2 of the calling OP_Program. */ 1085 pcx = p->aOp[pcx].p2-1; 1086 } 1087 aOp = p->aOp; 1088 aMem = p->aMem; 1089 pOp = &aOp[pcx]; 1090 break; 1091 } 1092 p->rc = pOp->p1; 1093 p->errorAction = (u8)pOp->p2; 1094 p->pc = pcx; 1095 assert( pOp->p5<=4 ); 1096 if( p->rc ){ 1097 if( pOp->p5 ){ 1098 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1099 "FOREIGN KEY" }; 1100 testcase( pOp->p5==1 ); 1101 testcase( pOp->p5==2 ); 1102 testcase( pOp->p5==3 ); 1103 testcase( pOp->p5==4 ); 1104 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1105 if( pOp->p4.z ){ 1106 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1107 } 1108 }else{ 1109 sqlite3VdbeError(p, "%s", pOp->p4.z); 1110 } 1111 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1112 } 1113 rc = sqlite3VdbeHalt(p); 1114 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1115 if( rc==SQLITE_BUSY ){ 1116 p->rc = SQLITE_BUSY; 1117 }else{ 1118 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1119 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1120 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1121 } 1122 goto vdbe_return; 1123 } 1124 1125 /* Opcode: Integer P1 P2 * * * 1126 ** Synopsis: r[P2]=P1 1127 ** 1128 ** The 32-bit integer value P1 is written into register P2. 1129 */ 1130 case OP_Integer: { /* out2 */ 1131 pOut = out2Prerelease(p, pOp); 1132 pOut->u.i = pOp->p1; 1133 break; 1134 } 1135 1136 /* Opcode: Int64 * P2 * P4 * 1137 ** Synopsis: r[P2]=P4 1138 ** 1139 ** P4 is a pointer to a 64-bit integer value. 1140 ** Write that value into register P2. 1141 */ 1142 case OP_Int64: { /* out2 */ 1143 pOut = out2Prerelease(p, pOp); 1144 assert( pOp->p4.pI64!=0 ); 1145 pOut->u.i = *pOp->p4.pI64; 1146 break; 1147 } 1148 1149 #ifndef SQLITE_OMIT_FLOATING_POINT 1150 /* Opcode: Real * P2 * P4 * 1151 ** Synopsis: r[P2]=P4 1152 ** 1153 ** P4 is a pointer to a 64-bit floating point value. 1154 ** Write that value into register P2. 1155 */ 1156 case OP_Real: { /* same as TK_FLOAT, out2 */ 1157 pOut = out2Prerelease(p, pOp); 1158 pOut->flags = MEM_Real; 1159 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1160 pOut->u.r = *pOp->p4.pReal; 1161 break; 1162 } 1163 #endif 1164 1165 /* Opcode: String8 * P2 * P4 * 1166 ** Synopsis: r[P2]='P4' 1167 ** 1168 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1169 ** into a String opcode before it is executed for the first time. During 1170 ** this transformation, the length of string P4 is computed and stored 1171 ** as the P1 parameter. 1172 */ 1173 case OP_String8: { /* same as TK_STRING, out2 */ 1174 assert( pOp->p4.z!=0 ); 1175 pOut = out2Prerelease(p, pOp); 1176 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1177 1178 #ifndef SQLITE_OMIT_UTF16 1179 if( encoding!=SQLITE_UTF8 ){ 1180 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1181 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1182 if( rc ) goto too_big; 1183 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1184 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1185 assert( VdbeMemDynamic(pOut)==0 ); 1186 pOut->szMalloc = 0; 1187 pOut->flags |= MEM_Static; 1188 if( pOp->p4type==P4_DYNAMIC ){ 1189 sqlite3DbFree(db, pOp->p4.z); 1190 } 1191 pOp->p4type = P4_DYNAMIC; 1192 pOp->p4.z = pOut->z; 1193 pOp->p1 = pOut->n; 1194 } 1195 #endif 1196 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1197 goto too_big; 1198 } 1199 pOp->opcode = OP_String; 1200 assert( rc==SQLITE_OK ); 1201 /* Fall through to the next case, OP_String */ 1202 /* no break */ deliberate_fall_through 1203 } 1204 1205 /* Opcode: String P1 P2 P3 P4 P5 1206 ** Synopsis: r[P2]='P4' (len=P1) 1207 ** 1208 ** The string value P4 of length P1 (bytes) is stored in register P2. 1209 ** 1210 ** If P3 is not zero and the content of register P3 is equal to P5, then 1211 ** the datatype of the register P2 is converted to BLOB. The content is 1212 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1213 ** of a string, as if it had been CAST. In other words: 1214 ** 1215 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1216 */ 1217 case OP_String: { /* out2 */ 1218 assert( pOp->p4.z!=0 ); 1219 pOut = out2Prerelease(p, pOp); 1220 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1221 pOut->z = pOp->p4.z; 1222 pOut->n = pOp->p1; 1223 pOut->enc = encoding; 1224 UPDATE_MAX_BLOBSIZE(pOut); 1225 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1226 if( pOp->p3>0 ){ 1227 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1228 pIn3 = &aMem[pOp->p3]; 1229 assert( pIn3->flags & MEM_Int ); 1230 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1231 } 1232 #endif 1233 break; 1234 } 1235 1236 /* Opcode: Null P1 P2 P3 * * 1237 ** Synopsis: r[P2..P3]=NULL 1238 ** 1239 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1240 ** NULL into register P3 and every register in between P2 and P3. If P3 1241 ** is less than P2 (typically P3 is zero) then only register P2 is 1242 ** set to NULL. 1243 ** 1244 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1245 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1246 ** OP_Ne or OP_Eq. 1247 */ 1248 case OP_Null: { /* out2 */ 1249 int cnt; 1250 u16 nullFlag; 1251 pOut = out2Prerelease(p, pOp); 1252 cnt = pOp->p3-pOp->p2; 1253 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1254 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1255 pOut->n = 0; 1256 #ifdef SQLITE_DEBUG 1257 pOut->uTemp = 0; 1258 #endif 1259 while( cnt>0 ){ 1260 pOut++; 1261 memAboutToChange(p, pOut); 1262 sqlite3VdbeMemSetNull(pOut); 1263 pOut->flags = nullFlag; 1264 pOut->n = 0; 1265 cnt--; 1266 } 1267 break; 1268 } 1269 1270 /* Opcode: SoftNull P1 * * * * 1271 ** Synopsis: r[P1]=NULL 1272 ** 1273 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1274 ** instruction, but do not free any string or blob memory associated with 1275 ** the register, so that if the value was a string or blob that was 1276 ** previously copied using OP_SCopy, the copies will continue to be valid. 1277 */ 1278 case OP_SoftNull: { 1279 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1280 pOut = &aMem[pOp->p1]; 1281 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1282 break; 1283 } 1284 1285 /* Opcode: Blob P1 P2 * P4 * 1286 ** Synopsis: r[P2]=P4 (len=P1) 1287 ** 1288 ** P4 points to a blob of data P1 bytes long. Store this 1289 ** blob in register P2. 1290 */ 1291 case OP_Blob: { /* out2 */ 1292 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1293 pOut = out2Prerelease(p, pOp); 1294 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1295 pOut->enc = encoding; 1296 UPDATE_MAX_BLOBSIZE(pOut); 1297 break; 1298 } 1299 1300 /* Opcode: Variable P1 P2 * P4 * 1301 ** Synopsis: r[P2]=parameter(P1,P4) 1302 ** 1303 ** Transfer the values of bound parameter P1 into register P2 1304 ** 1305 ** If the parameter is named, then its name appears in P4. 1306 ** The P4 value is used by sqlite3_bind_parameter_name(). 1307 */ 1308 case OP_Variable: { /* out2 */ 1309 Mem *pVar; /* Value being transferred */ 1310 1311 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1312 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1313 pVar = &p->aVar[pOp->p1 - 1]; 1314 if( sqlite3VdbeMemTooBig(pVar) ){ 1315 goto too_big; 1316 } 1317 pOut = &aMem[pOp->p2]; 1318 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1319 memcpy(pOut, pVar, MEMCELLSIZE); 1320 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1321 pOut->flags |= MEM_Static|MEM_FromBind; 1322 UPDATE_MAX_BLOBSIZE(pOut); 1323 break; 1324 } 1325 1326 /* Opcode: Move P1 P2 P3 * * 1327 ** Synopsis: r[P2@P3]=r[P1@P3] 1328 ** 1329 ** Move the P3 values in register P1..P1+P3-1 over into 1330 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1331 ** left holding a NULL. It is an error for register ranges 1332 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1333 ** for P3 to be less than 1. 1334 */ 1335 case OP_Move: { 1336 int n; /* Number of registers left to copy */ 1337 int p1; /* Register to copy from */ 1338 int p2; /* Register to copy to */ 1339 1340 n = pOp->p3; 1341 p1 = pOp->p1; 1342 p2 = pOp->p2; 1343 assert( n>0 && p1>0 && p2>0 ); 1344 assert( p1+n<=p2 || p2+n<=p1 ); 1345 1346 pIn1 = &aMem[p1]; 1347 pOut = &aMem[p2]; 1348 do{ 1349 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1350 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1351 assert( memIsValid(pIn1) ); 1352 memAboutToChange(p, pOut); 1353 sqlite3VdbeMemMove(pOut, pIn1); 1354 #ifdef SQLITE_DEBUG 1355 pIn1->pScopyFrom = 0; 1356 { int i; 1357 for(i=1; i<p->nMem; i++){ 1358 if( aMem[i].pScopyFrom==pIn1 ){ 1359 aMem[i].pScopyFrom = pOut; 1360 } 1361 } 1362 } 1363 #endif 1364 Deephemeralize(pOut); 1365 REGISTER_TRACE(p2++, pOut); 1366 pIn1++; 1367 pOut++; 1368 }while( --n ); 1369 break; 1370 } 1371 1372 /* Opcode: Copy P1 P2 P3 * * 1373 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1374 ** 1375 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1376 ** 1377 ** This instruction makes a deep copy of the value. A duplicate 1378 ** is made of any string or blob constant. See also OP_SCopy. 1379 */ 1380 case OP_Copy: { 1381 int n; 1382 1383 n = pOp->p3; 1384 pIn1 = &aMem[pOp->p1]; 1385 pOut = &aMem[pOp->p2]; 1386 assert( pOut!=pIn1 ); 1387 while( 1 ){ 1388 memAboutToChange(p, pOut); 1389 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1390 Deephemeralize(pOut); 1391 #ifdef SQLITE_DEBUG 1392 pOut->pScopyFrom = 0; 1393 #endif 1394 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1395 if( (n--)==0 ) break; 1396 pOut++; 1397 pIn1++; 1398 } 1399 break; 1400 } 1401 1402 /* Opcode: SCopy P1 P2 * * * 1403 ** Synopsis: r[P2]=r[P1] 1404 ** 1405 ** Make a shallow copy of register P1 into register P2. 1406 ** 1407 ** This instruction makes a shallow copy of the value. If the value 1408 ** is a string or blob, then the copy is only a pointer to the 1409 ** original and hence if the original changes so will the copy. 1410 ** Worse, if the original is deallocated, the copy becomes invalid. 1411 ** Thus the program must guarantee that the original will not change 1412 ** during the lifetime of the copy. Use OP_Copy to make a complete 1413 ** copy. 1414 */ 1415 case OP_SCopy: { /* out2 */ 1416 pIn1 = &aMem[pOp->p1]; 1417 pOut = &aMem[pOp->p2]; 1418 assert( pOut!=pIn1 ); 1419 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1420 #ifdef SQLITE_DEBUG 1421 pOut->pScopyFrom = pIn1; 1422 pOut->mScopyFlags = pIn1->flags; 1423 #endif 1424 break; 1425 } 1426 1427 /* Opcode: IntCopy P1 P2 * * * 1428 ** Synopsis: r[P2]=r[P1] 1429 ** 1430 ** Transfer the integer value held in register P1 into register P2. 1431 ** 1432 ** This is an optimized version of SCopy that works only for integer 1433 ** values. 1434 */ 1435 case OP_IntCopy: { /* out2 */ 1436 pIn1 = &aMem[pOp->p1]; 1437 assert( (pIn1->flags & MEM_Int)!=0 ); 1438 pOut = &aMem[pOp->p2]; 1439 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1440 break; 1441 } 1442 1443 /* Opcode: ChngCntRow P1 P2 * * * 1444 ** Synopsis: output=r[P1] 1445 ** 1446 ** Output value in register P1 as the chance count for a DML statement, 1447 ** due to the "PRAGMA count_changes=ON" setting. Or, if there was a 1448 ** foreign key error in the statement, trigger the error now. 1449 ** 1450 ** This opcode is a variant of OP_ResultRow that checks the foreign key 1451 ** immediate constraint count and throws an error if the count is 1452 ** non-zero. The P2 opcode must be 1. 1453 */ 1454 case OP_ChngCntRow: { 1455 assert( pOp->p2==1 ); 1456 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1457 goto abort_due_to_error; 1458 } 1459 /* Fall through to the next case, OP_ResultRow */ 1460 /* no break */ deliberate_fall_through 1461 } 1462 1463 /* Opcode: ResultRow P1 P2 * * * 1464 ** Synopsis: output=r[P1@P2] 1465 ** 1466 ** The registers P1 through P1+P2-1 contain a single row of 1467 ** results. This opcode causes the sqlite3_step() call to terminate 1468 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1469 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1470 ** the result row. 1471 */ 1472 case OP_ResultRow: { 1473 Mem *pMem; 1474 int i; 1475 assert( p->nResColumn==pOp->p2 ); 1476 assert( pOp->p1>0 ); 1477 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1478 1479 /* Invalidate all ephemeral cursor row caches */ 1480 p->cacheCtr = (p->cacheCtr + 2)|1; 1481 1482 /* Make sure the results of the current row are \000 terminated 1483 ** and have an assigned type. The results are de-ephemeralized as 1484 ** a side effect. 1485 */ 1486 pMem = p->pResultSet = &aMem[pOp->p1]; 1487 for(i=0; i<pOp->p2; i++){ 1488 assert( memIsValid(&pMem[i]) ); 1489 Deephemeralize(&pMem[i]); 1490 assert( (pMem[i].flags & MEM_Ephem)==0 1491 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1492 sqlite3VdbeMemNulTerminate(&pMem[i]); 1493 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1494 #ifdef SQLITE_DEBUG 1495 /* The registers in the result will not be used again when the 1496 ** prepared statement restarts. This is because sqlite3_column() 1497 ** APIs might have caused type conversions of made other changes to 1498 ** the register values. Therefore, we can go ahead and break any 1499 ** OP_SCopy dependencies. */ 1500 pMem[i].pScopyFrom = 0; 1501 #endif 1502 } 1503 if( db->mallocFailed ) goto no_mem; 1504 1505 if( db->mTrace & SQLITE_TRACE_ROW ){ 1506 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1507 } 1508 1509 1510 /* Return SQLITE_ROW 1511 */ 1512 p->pc = (int)(pOp - aOp) + 1; 1513 rc = SQLITE_ROW; 1514 goto vdbe_return; 1515 } 1516 1517 /* Opcode: Concat P1 P2 P3 * * 1518 ** Synopsis: r[P3]=r[P2]+r[P1] 1519 ** 1520 ** Add the text in register P1 onto the end of the text in 1521 ** register P2 and store the result in register P3. 1522 ** If either the P1 or P2 text are NULL then store NULL in P3. 1523 ** 1524 ** P3 = P2 || P1 1525 ** 1526 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1527 ** if P3 is the same register as P2, the implementation is able 1528 ** to avoid a memcpy(). 1529 */ 1530 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1531 i64 nByte; /* Total size of the output string or blob */ 1532 u16 flags1; /* Initial flags for P1 */ 1533 u16 flags2; /* Initial flags for P2 */ 1534 1535 pIn1 = &aMem[pOp->p1]; 1536 pIn2 = &aMem[pOp->p2]; 1537 pOut = &aMem[pOp->p3]; 1538 testcase( pOut==pIn2 ); 1539 assert( pIn1!=pOut ); 1540 flags1 = pIn1->flags; 1541 testcase( flags1 & MEM_Null ); 1542 testcase( pIn2->flags & MEM_Null ); 1543 if( (flags1 | pIn2->flags) & MEM_Null ){ 1544 sqlite3VdbeMemSetNull(pOut); 1545 break; 1546 } 1547 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1548 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1549 flags1 = pIn1->flags & ~MEM_Str; 1550 }else if( (flags1 & MEM_Zero)!=0 ){ 1551 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1552 flags1 = pIn1->flags & ~MEM_Str; 1553 } 1554 flags2 = pIn2->flags; 1555 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1556 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1557 flags2 = pIn2->flags & ~MEM_Str; 1558 }else if( (flags2 & MEM_Zero)!=0 ){ 1559 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1560 flags2 = pIn2->flags & ~MEM_Str; 1561 } 1562 nByte = pIn1->n + pIn2->n; 1563 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1564 goto too_big; 1565 } 1566 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1567 goto no_mem; 1568 } 1569 MemSetTypeFlag(pOut, MEM_Str); 1570 if( pOut!=pIn2 ){ 1571 memcpy(pOut->z, pIn2->z, pIn2->n); 1572 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1573 pIn2->flags = flags2; 1574 } 1575 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1576 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1577 pIn1->flags = flags1; 1578 pOut->z[nByte]=0; 1579 pOut->z[nByte+1] = 0; 1580 pOut->z[nByte+2] = 0; 1581 pOut->flags |= MEM_Term; 1582 pOut->n = (int)nByte; 1583 pOut->enc = encoding; 1584 UPDATE_MAX_BLOBSIZE(pOut); 1585 break; 1586 } 1587 1588 /* Opcode: Add P1 P2 P3 * * 1589 ** Synopsis: r[P3]=r[P1]+r[P2] 1590 ** 1591 ** Add the value in register P1 to the value in register P2 1592 ** and store the result in register P3. 1593 ** If either input is NULL, the result is NULL. 1594 */ 1595 /* Opcode: Multiply P1 P2 P3 * * 1596 ** Synopsis: r[P3]=r[P1]*r[P2] 1597 ** 1598 ** 1599 ** Multiply the value in register P1 by the value in register P2 1600 ** and store the result in register P3. 1601 ** If either input is NULL, the result is NULL. 1602 */ 1603 /* Opcode: Subtract P1 P2 P3 * * 1604 ** Synopsis: r[P3]=r[P2]-r[P1] 1605 ** 1606 ** Subtract the value in register P1 from the value in register P2 1607 ** and store the result in register P3. 1608 ** If either input is NULL, the result is NULL. 1609 */ 1610 /* Opcode: Divide P1 P2 P3 * * 1611 ** Synopsis: r[P3]=r[P2]/r[P1] 1612 ** 1613 ** Divide the value in register P1 by the value in register P2 1614 ** and store the result in register P3 (P3=P2/P1). If the value in 1615 ** register P1 is zero, then the result is NULL. If either input is 1616 ** NULL, the result is NULL. 1617 */ 1618 /* Opcode: Remainder P1 P2 P3 * * 1619 ** Synopsis: r[P3]=r[P2]%r[P1] 1620 ** 1621 ** Compute the remainder after integer register P2 is divided by 1622 ** register P1 and store the result in register P3. 1623 ** If the value in register P1 is zero the result is NULL. 1624 ** If either operand is NULL, the result is NULL. 1625 */ 1626 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1627 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1628 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1629 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1630 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1631 u16 flags; /* Combined MEM_* flags from both inputs */ 1632 u16 type1; /* Numeric type of left operand */ 1633 u16 type2; /* Numeric type of right operand */ 1634 i64 iA; /* Integer value of left operand */ 1635 i64 iB; /* Integer value of right operand */ 1636 double rA; /* Real value of left operand */ 1637 double rB; /* Real value of right operand */ 1638 1639 pIn1 = &aMem[pOp->p1]; 1640 type1 = numericType(pIn1); 1641 pIn2 = &aMem[pOp->p2]; 1642 type2 = numericType(pIn2); 1643 pOut = &aMem[pOp->p3]; 1644 flags = pIn1->flags | pIn2->flags; 1645 if( (type1 & type2 & MEM_Int)!=0 ){ 1646 iA = pIn1->u.i; 1647 iB = pIn2->u.i; 1648 switch( pOp->opcode ){ 1649 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1650 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1651 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1652 case OP_Divide: { 1653 if( iA==0 ) goto arithmetic_result_is_null; 1654 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1655 iB /= iA; 1656 break; 1657 } 1658 default: { 1659 if( iA==0 ) goto arithmetic_result_is_null; 1660 if( iA==-1 ) iA = 1; 1661 iB %= iA; 1662 break; 1663 } 1664 } 1665 pOut->u.i = iB; 1666 MemSetTypeFlag(pOut, MEM_Int); 1667 }else if( (flags & MEM_Null)!=0 ){ 1668 goto arithmetic_result_is_null; 1669 }else{ 1670 fp_math: 1671 rA = sqlite3VdbeRealValue(pIn1); 1672 rB = sqlite3VdbeRealValue(pIn2); 1673 switch( pOp->opcode ){ 1674 case OP_Add: rB += rA; break; 1675 case OP_Subtract: rB -= rA; break; 1676 case OP_Multiply: rB *= rA; break; 1677 case OP_Divide: { 1678 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1679 if( rA==(double)0 ) goto arithmetic_result_is_null; 1680 rB /= rA; 1681 break; 1682 } 1683 default: { 1684 iA = sqlite3VdbeIntValue(pIn1); 1685 iB = sqlite3VdbeIntValue(pIn2); 1686 if( iA==0 ) goto arithmetic_result_is_null; 1687 if( iA==-1 ) iA = 1; 1688 rB = (double)(iB % iA); 1689 break; 1690 } 1691 } 1692 #ifdef SQLITE_OMIT_FLOATING_POINT 1693 pOut->u.i = rB; 1694 MemSetTypeFlag(pOut, MEM_Int); 1695 #else 1696 if( sqlite3IsNaN(rB) ){ 1697 goto arithmetic_result_is_null; 1698 } 1699 pOut->u.r = rB; 1700 MemSetTypeFlag(pOut, MEM_Real); 1701 #endif 1702 } 1703 break; 1704 1705 arithmetic_result_is_null: 1706 sqlite3VdbeMemSetNull(pOut); 1707 break; 1708 } 1709 1710 /* Opcode: CollSeq P1 * * P4 1711 ** 1712 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1713 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1714 ** be returned. This is used by the built-in min(), max() and nullif() 1715 ** functions. 1716 ** 1717 ** If P1 is not zero, then it is a register that a subsequent min() or 1718 ** max() aggregate will set to 1 if the current row is not the minimum or 1719 ** maximum. The P1 register is initialized to 0 by this instruction. 1720 ** 1721 ** The interface used by the implementation of the aforementioned functions 1722 ** to retrieve the collation sequence set by this opcode is not available 1723 ** publicly. Only built-in functions have access to this feature. 1724 */ 1725 case OP_CollSeq: { 1726 assert( pOp->p4type==P4_COLLSEQ ); 1727 if( pOp->p1 ){ 1728 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1729 } 1730 break; 1731 } 1732 1733 /* Opcode: BitAnd P1 P2 P3 * * 1734 ** Synopsis: r[P3]=r[P1]&r[P2] 1735 ** 1736 ** Take the bit-wise AND of the values in register P1 and P2 and 1737 ** store the result in register P3. 1738 ** If either input is NULL, the result is NULL. 1739 */ 1740 /* Opcode: BitOr P1 P2 P3 * * 1741 ** Synopsis: r[P3]=r[P1]|r[P2] 1742 ** 1743 ** Take the bit-wise OR of the values in register P1 and P2 and 1744 ** store the result in register P3. 1745 ** If either input is NULL, the result is NULL. 1746 */ 1747 /* Opcode: ShiftLeft P1 P2 P3 * * 1748 ** Synopsis: r[P3]=r[P2]<<r[P1] 1749 ** 1750 ** Shift the integer value in register P2 to the left by the 1751 ** number of bits specified by the integer in register P1. 1752 ** Store the result in register P3. 1753 ** If either input is NULL, the result is NULL. 1754 */ 1755 /* Opcode: ShiftRight P1 P2 P3 * * 1756 ** Synopsis: r[P3]=r[P2]>>r[P1] 1757 ** 1758 ** Shift the integer value in register P2 to the right by the 1759 ** number of bits specified by the integer in register P1. 1760 ** Store the result in register P3. 1761 ** If either input is NULL, the result is NULL. 1762 */ 1763 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1764 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1765 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1766 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1767 i64 iA; 1768 u64 uA; 1769 i64 iB; 1770 u8 op; 1771 1772 pIn1 = &aMem[pOp->p1]; 1773 pIn2 = &aMem[pOp->p2]; 1774 pOut = &aMem[pOp->p3]; 1775 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1776 sqlite3VdbeMemSetNull(pOut); 1777 break; 1778 } 1779 iA = sqlite3VdbeIntValue(pIn2); 1780 iB = sqlite3VdbeIntValue(pIn1); 1781 op = pOp->opcode; 1782 if( op==OP_BitAnd ){ 1783 iA &= iB; 1784 }else if( op==OP_BitOr ){ 1785 iA |= iB; 1786 }else if( iB!=0 ){ 1787 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1788 1789 /* If shifting by a negative amount, shift in the other direction */ 1790 if( iB<0 ){ 1791 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1792 op = 2*OP_ShiftLeft + 1 - op; 1793 iB = iB>(-64) ? -iB : 64; 1794 } 1795 1796 if( iB>=64 ){ 1797 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1798 }else{ 1799 memcpy(&uA, &iA, sizeof(uA)); 1800 if( op==OP_ShiftLeft ){ 1801 uA <<= iB; 1802 }else{ 1803 uA >>= iB; 1804 /* Sign-extend on a right shift of a negative number */ 1805 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1806 } 1807 memcpy(&iA, &uA, sizeof(iA)); 1808 } 1809 } 1810 pOut->u.i = iA; 1811 MemSetTypeFlag(pOut, MEM_Int); 1812 break; 1813 } 1814 1815 /* Opcode: AddImm P1 P2 * * * 1816 ** Synopsis: r[P1]=r[P1]+P2 1817 ** 1818 ** Add the constant P2 to the value in register P1. 1819 ** The result is always an integer. 1820 ** 1821 ** To force any register to be an integer, just add 0. 1822 */ 1823 case OP_AddImm: { /* in1 */ 1824 pIn1 = &aMem[pOp->p1]; 1825 memAboutToChange(p, pIn1); 1826 sqlite3VdbeMemIntegerify(pIn1); 1827 pIn1->u.i += pOp->p2; 1828 break; 1829 } 1830 1831 /* Opcode: MustBeInt P1 P2 * * * 1832 ** 1833 ** Force the value in register P1 to be an integer. If the value 1834 ** in P1 is not an integer and cannot be converted into an integer 1835 ** without data loss, then jump immediately to P2, or if P2==0 1836 ** raise an SQLITE_MISMATCH exception. 1837 */ 1838 case OP_MustBeInt: { /* jump, in1 */ 1839 pIn1 = &aMem[pOp->p1]; 1840 if( (pIn1->flags & MEM_Int)==0 ){ 1841 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1842 if( (pIn1->flags & MEM_Int)==0 ){ 1843 VdbeBranchTaken(1, 2); 1844 if( pOp->p2==0 ){ 1845 rc = SQLITE_MISMATCH; 1846 goto abort_due_to_error; 1847 }else{ 1848 goto jump_to_p2; 1849 } 1850 } 1851 } 1852 VdbeBranchTaken(0, 2); 1853 MemSetTypeFlag(pIn1, MEM_Int); 1854 break; 1855 } 1856 1857 #ifndef SQLITE_OMIT_FLOATING_POINT 1858 /* Opcode: RealAffinity P1 * * * * 1859 ** 1860 ** If register P1 holds an integer convert it to a real value. 1861 ** 1862 ** This opcode is used when extracting information from a column that 1863 ** has REAL affinity. Such column values may still be stored as 1864 ** integers, for space efficiency, but after extraction we want them 1865 ** to have only a real value. 1866 */ 1867 case OP_RealAffinity: { /* in1 */ 1868 pIn1 = &aMem[pOp->p1]; 1869 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1870 testcase( pIn1->flags & MEM_Int ); 1871 testcase( pIn1->flags & MEM_IntReal ); 1872 sqlite3VdbeMemRealify(pIn1); 1873 REGISTER_TRACE(pOp->p1, pIn1); 1874 } 1875 break; 1876 } 1877 #endif 1878 1879 #ifndef SQLITE_OMIT_CAST 1880 /* Opcode: Cast P1 P2 * * * 1881 ** Synopsis: affinity(r[P1]) 1882 ** 1883 ** Force the value in register P1 to be the type defined by P2. 1884 ** 1885 ** <ul> 1886 ** <li> P2=='A' → BLOB 1887 ** <li> P2=='B' → TEXT 1888 ** <li> P2=='C' → NUMERIC 1889 ** <li> P2=='D' → INTEGER 1890 ** <li> P2=='E' → REAL 1891 ** </ul> 1892 ** 1893 ** A NULL value is not changed by this routine. It remains NULL. 1894 */ 1895 case OP_Cast: { /* in1 */ 1896 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1897 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1898 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1899 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1900 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1901 testcase( pOp->p2==SQLITE_AFF_REAL ); 1902 pIn1 = &aMem[pOp->p1]; 1903 memAboutToChange(p, pIn1); 1904 rc = ExpandBlob(pIn1); 1905 if( rc ) goto abort_due_to_error; 1906 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1907 if( rc ) goto abort_due_to_error; 1908 UPDATE_MAX_BLOBSIZE(pIn1); 1909 REGISTER_TRACE(pOp->p1, pIn1); 1910 break; 1911 } 1912 #endif /* SQLITE_OMIT_CAST */ 1913 1914 /* Opcode: Eq P1 P2 P3 P4 P5 1915 ** Synopsis: IF r[P3]==r[P1] 1916 ** 1917 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1918 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1919 ** store the result of comparison in register P2. 1920 ** 1921 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1922 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1923 ** to coerce both inputs according to this affinity before the 1924 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1925 ** affinity is used. Note that the affinity conversions are stored 1926 ** back into the input registers P1 and P3. So this opcode can cause 1927 ** persistent changes to registers P1 and P3. 1928 ** 1929 ** Once any conversions have taken place, and neither value is NULL, 1930 ** the values are compared. If both values are blobs then memcmp() is 1931 ** used to determine the results of the comparison. If both values 1932 ** are text, then the appropriate collating function specified in 1933 ** P4 is used to do the comparison. If P4 is not specified then 1934 ** memcmp() is used to compare text string. If both values are 1935 ** numeric, then a numeric comparison is used. If the two values 1936 ** are of different types, then numbers are considered less than 1937 ** strings and strings are considered less than blobs. 1938 ** 1939 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1940 ** true or false and is never NULL. If both operands are NULL then the result 1941 ** of comparison is true. If either operand is NULL then the result is false. 1942 ** If neither operand is NULL the result is the same as it would be if 1943 ** the SQLITE_NULLEQ flag were omitted from P5. 1944 ** 1945 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1946 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1947 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1948 */ 1949 /* Opcode: Ne P1 P2 P3 P4 P5 1950 ** Synopsis: IF r[P3]!=r[P1] 1951 ** 1952 ** This works just like the Eq opcode except that the jump is taken if 1953 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1954 ** additional information. 1955 ** 1956 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1957 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1958 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1959 */ 1960 /* Opcode: Lt P1 P2 P3 P4 P5 1961 ** Synopsis: IF r[P3]<r[P1] 1962 ** 1963 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1964 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1965 ** the result of comparison (0 or 1 or NULL) into register P2. 1966 ** 1967 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1968 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1969 ** bit is clear then fall through if either operand is NULL. 1970 ** 1971 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1972 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1973 ** to coerce both inputs according to this affinity before the 1974 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1975 ** affinity is used. Note that the affinity conversions are stored 1976 ** back into the input registers P1 and P3. So this opcode can cause 1977 ** persistent changes to registers P1 and P3. 1978 ** 1979 ** Once any conversions have taken place, and neither value is NULL, 1980 ** the values are compared. If both values are blobs then memcmp() is 1981 ** used to determine the results of the comparison. If both values 1982 ** are text, then the appropriate collating function specified in 1983 ** P4 is used to do the comparison. If P4 is not specified then 1984 ** memcmp() is used to compare text string. If both values are 1985 ** numeric, then a numeric comparison is used. If the two values 1986 ** are of different types, then numbers are considered less than 1987 ** strings and strings are considered less than blobs. 1988 */ 1989 /* Opcode: Le P1 P2 P3 P4 P5 1990 ** Synopsis: IF r[P3]<=r[P1] 1991 ** 1992 ** This works just like the Lt opcode except that the jump is taken if 1993 ** the content of register P3 is less than or equal to the content of 1994 ** register P1. See the Lt opcode for additional information. 1995 */ 1996 /* Opcode: Gt P1 P2 P3 P4 P5 1997 ** Synopsis: IF r[P3]>r[P1] 1998 ** 1999 ** This works just like the Lt opcode except that the jump is taken if 2000 ** the content of register P3 is greater than the content of 2001 ** register P1. See the Lt opcode for additional information. 2002 */ 2003 /* Opcode: Ge P1 P2 P3 P4 P5 2004 ** Synopsis: IF r[P3]>=r[P1] 2005 ** 2006 ** This works just like the Lt opcode except that the jump is taken if 2007 ** the content of register P3 is greater than or equal to the content of 2008 ** register P1. See the Lt opcode for additional information. 2009 */ 2010 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2011 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2012 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2013 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2014 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2015 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2016 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2017 char affinity; /* Affinity to use for comparison */ 2018 u16 flags1; /* Copy of initial value of pIn1->flags */ 2019 u16 flags3; /* Copy of initial value of pIn3->flags */ 2020 2021 pIn1 = &aMem[pOp->p1]; 2022 pIn3 = &aMem[pOp->p3]; 2023 flags1 = pIn1->flags; 2024 flags3 = pIn3->flags; 2025 if( (flags1 | flags3)&MEM_Null ){ 2026 /* One or both operands are NULL */ 2027 if( pOp->p5 & SQLITE_NULLEQ ){ 2028 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2029 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2030 ** or not both operands are null. 2031 */ 2032 assert( (flags1 & MEM_Cleared)==0 ); 2033 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2034 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2035 if( (flags1&flags3&MEM_Null)!=0 2036 && (flags3&MEM_Cleared)==0 2037 ){ 2038 res = 0; /* Operands are equal */ 2039 }else{ 2040 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2041 } 2042 }else{ 2043 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2044 ** then the result is always NULL. 2045 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2046 */ 2047 if( pOp->p5 & SQLITE_STOREP2 ){ 2048 pOut = &aMem[pOp->p2]; 2049 iCompare = 1; /* Operands are not equal */ 2050 memAboutToChange(p, pOut); 2051 MemSetTypeFlag(pOut, MEM_Null); 2052 REGISTER_TRACE(pOp->p2, pOut); 2053 }else{ 2054 VdbeBranchTaken(2,3); 2055 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2056 goto jump_to_p2; 2057 } 2058 } 2059 break; 2060 } 2061 }else{ 2062 /* Neither operand is NULL. Do a comparison. */ 2063 affinity = pOp->p5 & SQLITE_AFF_MASK; 2064 if( affinity>=SQLITE_AFF_NUMERIC ){ 2065 if( (flags1 | flags3)&MEM_Str ){ 2066 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2067 applyNumericAffinity(pIn1,0); 2068 testcase( flags3==pIn3->flags ); 2069 flags3 = pIn3->flags; 2070 } 2071 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2072 applyNumericAffinity(pIn3,0); 2073 } 2074 } 2075 /* Handle the common case of integer comparison here, as an 2076 ** optimization, to avoid a call to sqlite3MemCompare() */ 2077 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2078 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2079 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2080 res = 0; 2081 goto compare_op; 2082 } 2083 }else if( affinity==SQLITE_AFF_TEXT ){ 2084 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2085 testcase( pIn1->flags & MEM_Int ); 2086 testcase( pIn1->flags & MEM_Real ); 2087 testcase( pIn1->flags & MEM_IntReal ); 2088 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2089 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2090 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2091 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2092 } 2093 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2094 testcase( pIn3->flags & MEM_Int ); 2095 testcase( pIn3->flags & MEM_Real ); 2096 testcase( pIn3->flags & MEM_IntReal ); 2097 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2098 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2099 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2100 } 2101 } 2102 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2103 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2104 } 2105 compare_op: 2106 /* At this point, res is negative, zero, or positive if reg[P1] is 2107 ** less than, equal to, or greater than reg[P3], respectively. Compute 2108 ** the answer to this operator in res2, depending on what the comparison 2109 ** operator actually is. The next block of code depends on the fact 2110 ** that the 6 comparison operators are consecutive integers in this 2111 ** order: NE, EQ, GT, LE, LT, GE */ 2112 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2113 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2114 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2115 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2116 res2 = aLTb[pOp->opcode - OP_Ne]; 2117 }else if( res==0 ){ 2118 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2119 res2 = aEQb[pOp->opcode - OP_Ne]; 2120 }else{ 2121 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2122 res2 = aGTb[pOp->opcode - OP_Ne]; 2123 } 2124 2125 /* Undo any changes made by applyAffinity() to the input registers. */ 2126 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2127 pIn3->flags = flags3; 2128 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2129 pIn1->flags = flags1; 2130 2131 if( pOp->p5 & SQLITE_STOREP2 ){ 2132 pOut = &aMem[pOp->p2]; 2133 iCompare = res; 2134 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2135 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2136 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2137 ** is only used in contexts where either: 2138 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2139 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2140 ** Therefore it is not necessary to check the content of r[P2] for 2141 ** NULL. */ 2142 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2143 assert( res2==0 || res2==1 ); 2144 testcase( res2==0 && pOp->opcode==OP_Eq ); 2145 testcase( res2==1 && pOp->opcode==OP_Eq ); 2146 testcase( res2==0 && pOp->opcode==OP_Ne ); 2147 testcase( res2==1 && pOp->opcode==OP_Ne ); 2148 if( (pOp->opcode==OP_Eq)==res2 ) break; 2149 } 2150 memAboutToChange(p, pOut); 2151 MemSetTypeFlag(pOut, MEM_Int); 2152 pOut->u.i = res2; 2153 REGISTER_TRACE(pOp->p2, pOut); 2154 }else{ 2155 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2156 if( res2 ){ 2157 goto jump_to_p2; 2158 } 2159 } 2160 break; 2161 } 2162 2163 /* Opcode: ElseNotEq * P2 * * * 2164 ** 2165 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2166 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2167 ** opcodes are allowed to occur between this instruction and the previous 2168 ** OP_Lt or OP_Gt. Furthermore, the prior OP_Lt or OP_Gt must have the 2169 ** SQLITE_STOREP2 bit set in the P5 field. 2170 ** 2171 ** If result of an OP_Eq comparison on the same two operands as the 2172 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then 2173 ** jump to P2. If the result of an OP_Eq comparison on the two previous 2174 ** operands would have been true (1), then fall through. 2175 */ 2176 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2177 2178 #ifdef SQLITE_DEBUG 2179 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2180 ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening 2181 ** OP_ReleaseReg opcodes */ 2182 int iAddr; 2183 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2184 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2185 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2186 assert( aOp[iAddr].p5 & SQLITE_STOREP2 ); 2187 break; 2188 } 2189 #endif /* SQLITE_DEBUG */ 2190 VdbeBranchTaken(iCompare!=0, 2); 2191 if( iCompare!=0 ) goto jump_to_p2; 2192 break; 2193 } 2194 2195 2196 /* Opcode: Permutation * * * P4 * 2197 ** 2198 ** Set the permutation used by the OP_Compare operator in the next 2199 ** instruction. The permutation is stored in the P4 operand. 2200 ** 2201 ** The permutation is only valid until the next OP_Compare that has 2202 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2203 ** occur immediately prior to the OP_Compare. 2204 ** 2205 ** The first integer in the P4 integer array is the length of the array 2206 ** and does not become part of the permutation. 2207 */ 2208 case OP_Permutation: { 2209 assert( pOp->p4type==P4_INTARRAY ); 2210 assert( pOp->p4.ai ); 2211 assert( pOp[1].opcode==OP_Compare ); 2212 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2213 break; 2214 } 2215 2216 /* Opcode: Compare P1 P2 P3 P4 P5 2217 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2218 ** 2219 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2220 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2221 ** the comparison for use by the next OP_Jump instruct. 2222 ** 2223 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2224 ** determined by the most recent OP_Permutation operator. If the 2225 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2226 ** order. 2227 ** 2228 ** P4 is a KeyInfo structure that defines collating sequences and sort 2229 ** orders for the comparison. The permutation applies to registers 2230 ** only. The KeyInfo elements are used sequentially. 2231 ** 2232 ** The comparison is a sort comparison, so NULLs compare equal, 2233 ** NULLs are less than numbers, numbers are less than strings, 2234 ** and strings are less than blobs. 2235 */ 2236 case OP_Compare: { 2237 int n; 2238 int i; 2239 int p1; 2240 int p2; 2241 const KeyInfo *pKeyInfo; 2242 u32 idx; 2243 CollSeq *pColl; /* Collating sequence to use on this term */ 2244 int bRev; /* True for DESCENDING sort order */ 2245 u32 *aPermute; /* The permutation */ 2246 2247 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2248 aPermute = 0; 2249 }else{ 2250 assert( pOp>aOp ); 2251 assert( pOp[-1].opcode==OP_Permutation ); 2252 assert( pOp[-1].p4type==P4_INTARRAY ); 2253 aPermute = pOp[-1].p4.ai + 1; 2254 assert( aPermute!=0 ); 2255 } 2256 n = pOp->p3; 2257 pKeyInfo = pOp->p4.pKeyInfo; 2258 assert( n>0 ); 2259 assert( pKeyInfo!=0 ); 2260 p1 = pOp->p1; 2261 p2 = pOp->p2; 2262 #ifdef SQLITE_DEBUG 2263 if( aPermute ){ 2264 int k, mx = 0; 2265 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2266 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2267 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2268 }else{ 2269 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2270 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2271 } 2272 #endif /* SQLITE_DEBUG */ 2273 for(i=0; i<n; i++){ 2274 idx = aPermute ? aPermute[i] : (u32)i; 2275 assert( memIsValid(&aMem[p1+idx]) ); 2276 assert( memIsValid(&aMem[p2+idx]) ); 2277 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2278 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2279 assert( i<pKeyInfo->nKeyField ); 2280 pColl = pKeyInfo->aColl[i]; 2281 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2282 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2283 if( iCompare ){ 2284 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2285 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2286 ){ 2287 iCompare = -iCompare; 2288 } 2289 if( bRev ) iCompare = -iCompare; 2290 break; 2291 } 2292 } 2293 break; 2294 } 2295 2296 /* Opcode: Jump P1 P2 P3 * * 2297 ** 2298 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2299 ** in the most recent OP_Compare instruction the P1 vector was less than 2300 ** equal to, or greater than the P2 vector, respectively. 2301 */ 2302 case OP_Jump: { /* jump */ 2303 if( iCompare<0 ){ 2304 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2305 }else if( iCompare==0 ){ 2306 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2307 }else{ 2308 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2309 } 2310 break; 2311 } 2312 2313 /* Opcode: And P1 P2 P3 * * 2314 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2315 ** 2316 ** Take the logical AND of the values in registers P1 and P2 and 2317 ** write the result into register P3. 2318 ** 2319 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2320 ** the other input is NULL. A NULL and true or two NULLs give 2321 ** a NULL output. 2322 */ 2323 /* Opcode: Or P1 P2 P3 * * 2324 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2325 ** 2326 ** Take the logical OR of the values in register P1 and P2 and 2327 ** store the answer in register P3. 2328 ** 2329 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2330 ** even if the other input is NULL. A NULL and false or two NULLs 2331 ** give a NULL output. 2332 */ 2333 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2334 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2335 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2336 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2337 2338 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2339 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2340 if( pOp->opcode==OP_And ){ 2341 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2342 v1 = and_logic[v1*3+v2]; 2343 }else{ 2344 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2345 v1 = or_logic[v1*3+v2]; 2346 } 2347 pOut = &aMem[pOp->p3]; 2348 if( v1==2 ){ 2349 MemSetTypeFlag(pOut, MEM_Null); 2350 }else{ 2351 pOut->u.i = v1; 2352 MemSetTypeFlag(pOut, MEM_Int); 2353 } 2354 break; 2355 } 2356 2357 /* Opcode: IsTrue P1 P2 P3 P4 * 2358 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2359 ** 2360 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2361 ** IS NOT FALSE operators. 2362 ** 2363 ** Interpret the value in register P1 as a boolean value. Store that 2364 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2365 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2366 ** is 1. 2367 ** 2368 ** The logic is summarized like this: 2369 ** 2370 ** <ul> 2371 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2372 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2373 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2374 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2375 ** </ul> 2376 */ 2377 case OP_IsTrue: { /* in1, out2 */ 2378 assert( pOp->p4type==P4_INT32 ); 2379 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2380 assert( pOp->p3==0 || pOp->p3==1 ); 2381 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2382 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2383 break; 2384 } 2385 2386 /* Opcode: Not P1 P2 * * * 2387 ** Synopsis: r[P2]= !r[P1] 2388 ** 2389 ** Interpret the value in register P1 as a boolean value. Store the 2390 ** boolean complement in register P2. If the value in register P1 is 2391 ** NULL, then a NULL is stored in P2. 2392 */ 2393 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2394 pIn1 = &aMem[pOp->p1]; 2395 pOut = &aMem[pOp->p2]; 2396 if( (pIn1->flags & MEM_Null)==0 ){ 2397 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2398 }else{ 2399 sqlite3VdbeMemSetNull(pOut); 2400 } 2401 break; 2402 } 2403 2404 /* Opcode: BitNot P1 P2 * * * 2405 ** Synopsis: r[P2]= ~r[P1] 2406 ** 2407 ** Interpret the content of register P1 as an integer. Store the 2408 ** ones-complement of the P1 value into register P2. If P1 holds 2409 ** a NULL then store a NULL in P2. 2410 */ 2411 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2412 pIn1 = &aMem[pOp->p1]; 2413 pOut = &aMem[pOp->p2]; 2414 sqlite3VdbeMemSetNull(pOut); 2415 if( (pIn1->flags & MEM_Null)==0 ){ 2416 pOut->flags = MEM_Int; 2417 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2418 } 2419 break; 2420 } 2421 2422 /* Opcode: Once P1 P2 * * * 2423 ** 2424 ** Fall through to the next instruction the first time this opcode is 2425 ** encountered on each invocation of the byte-code program. Jump to P2 2426 ** on the second and all subsequent encounters during the same invocation. 2427 ** 2428 ** Top-level programs determine first invocation by comparing the P1 2429 ** operand against the P1 operand on the OP_Init opcode at the beginning 2430 ** of the program. If the P1 values differ, then fall through and make 2431 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2432 ** the same then take the jump. 2433 ** 2434 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2435 ** whether or not the jump should be taken. The bitmask is necessary 2436 ** because the self-altering code trick does not work for recursive 2437 ** triggers. 2438 */ 2439 case OP_Once: { /* jump */ 2440 u32 iAddr; /* Address of this instruction */ 2441 assert( p->aOp[0].opcode==OP_Init ); 2442 if( p->pFrame ){ 2443 iAddr = (int)(pOp - p->aOp); 2444 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2445 VdbeBranchTaken(1, 2); 2446 goto jump_to_p2; 2447 } 2448 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2449 }else{ 2450 if( p->aOp[0].p1==pOp->p1 ){ 2451 VdbeBranchTaken(1, 2); 2452 goto jump_to_p2; 2453 } 2454 } 2455 VdbeBranchTaken(0, 2); 2456 pOp->p1 = p->aOp[0].p1; 2457 break; 2458 } 2459 2460 /* Opcode: If P1 P2 P3 * * 2461 ** 2462 ** Jump to P2 if the value in register P1 is true. The value 2463 ** is considered true if it is numeric and non-zero. If the value 2464 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2465 */ 2466 case OP_If: { /* jump, in1 */ 2467 int c; 2468 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2469 VdbeBranchTaken(c!=0, 2); 2470 if( c ) goto jump_to_p2; 2471 break; 2472 } 2473 2474 /* Opcode: IfNot P1 P2 P3 * * 2475 ** 2476 ** Jump to P2 if the value in register P1 is False. The value 2477 ** is considered false if it has a numeric value of zero. If the value 2478 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2479 */ 2480 case OP_IfNot: { /* jump, in1 */ 2481 int c; 2482 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2483 VdbeBranchTaken(c!=0, 2); 2484 if( c ) goto jump_to_p2; 2485 break; 2486 } 2487 2488 /* Opcode: IsNull P1 P2 * * * 2489 ** Synopsis: if r[P1]==NULL goto P2 2490 ** 2491 ** Jump to P2 if the value in register P1 is NULL. 2492 */ 2493 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2494 pIn1 = &aMem[pOp->p1]; 2495 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2496 if( (pIn1->flags & MEM_Null)!=0 ){ 2497 goto jump_to_p2; 2498 } 2499 break; 2500 } 2501 2502 /* Opcode: NotNull P1 P2 * * * 2503 ** Synopsis: if r[P1]!=NULL goto P2 2504 ** 2505 ** Jump to P2 if the value in register P1 is not NULL. 2506 */ 2507 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2508 pIn1 = &aMem[pOp->p1]; 2509 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2510 if( (pIn1->flags & MEM_Null)==0 ){ 2511 goto jump_to_p2; 2512 } 2513 break; 2514 } 2515 2516 /* Opcode: IfNullRow P1 P2 P3 * * 2517 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2518 ** 2519 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2520 ** If it is, then set register P3 to NULL and jump immediately to P2. 2521 ** If P1 is not on a NULL row, then fall through without making any 2522 ** changes. 2523 */ 2524 case OP_IfNullRow: { /* jump */ 2525 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2526 assert( p->apCsr[pOp->p1]!=0 ); 2527 if( p->apCsr[pOp->p1]->nullRow ){ 2528 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2529 goto jump_to_p2; 2530 } 2531 break; 2532 } 2533 2534 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2535 /* Opcode: Offset P1 P2 P3 * * 2536 ** Synopsis: r[P3] = sqlite_offset(P1) 2537 ** 2538 ** Store in register r[P3] the byte offset into the database file that is the 2539 ** start of the payload for the record at which that cursor P1 is currently 2540 ** pointing. 2541 ** 2542 ** P2 is the column number for the argument to the sqlite_offset() function. 2543 ** This opcode does not use P2 itself, but the P2 value is used by the 2544 ** code generator. The P1, P2, and P3 operands to this opcode are the 2545 ** same as for OP_Column. 2546 ** 2547 ** This opcode is only available if SQLite is compiled with the 2548 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2549 */ 2550 case OP_Offset: { /* out3 */ 2551 VdbeCursor *pC; /* The VDBE cursor */ 2552 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2553 pC = p->apCsr[pOp->p1]; 2554 pOut = &p->aMem[pOp->p3]; 2555 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2556 sqlite3VdbeMemSetNull(pOut); 2557 }else{ 2558 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2559 } 2560 break; 2561 } 2562 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2563 2564 /* Opcode: Column P1 P2 P3 P4 P5 2565 ** Synopsis: r[P3]=PX 2566 ** 2567 ** Interpret the data that cursor P1 points to as a structure built using 2568 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2569 ** information about the format of the data.) Extract the P2-th column 2570 ** from this record. If there are less that (P2+1) 2571 ** values in the record, extract a NULL. 2572 ** 2573 ** The value extracted is stored in register P3. 2574 ** 2575 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2576 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2577 ** the result. 2578 ** 2579 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2580 ** the result is guaranteed to only be used as the argument of a length() 2581 ** or typeof() function, respectively. The loading of large blobs can be 2582 ** skipped for length() and all content loading can be skipped for typeof(). 2583 */ 2584 case OP_Column: { 2585 u32 p2; /* column number to retrieve */ 2586 VdbeCursor *pC; /* The VDBE cursor */ 2587 BtCursor *pCrsr; /* The BTree cursor */ 2588 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2589 int len; /* The length of the serialized data for the column */ 2590 int i; /* Loop counter */ 2591 Mem *pDest; /* Where to write the extracted value */ 2592 Mem sMem; /* For storing the record being decoded */ 2593 const u8 *zData; /* Part of the record being decoded */ 2594 const u8 *zHdr; /* Next unparsed byte of the header */ 2595 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2596 u64 offset64; /* 64-bit offset */ 2597 u32 t; /* A type code from the record header */ 2598 Mem *pReg; /* PseudoTable input register */ 2599 2600 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2601 pC = p->apCsr[pOp->p1]; 2602 assert( pC!=0 ); 2603 p2 = (u32)pOp->p2; 2604 2605 /* If the cursor cache is stale (meaning it is not currently point at 2606 ** the correct row) then bring it up-to-date by doing the necessary 2607 ** B-Tree seek. */ 2608 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2609 if( rc ) goto abort_due_to_error; 2610 2611 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2612 pDest = &aMem[pOp->p3]; 2613 memAboutToChange(p, pDest); 2614 assert( pC!=0 ); 2615 assert( p2<(u32)pC->nField ); 2616 aOffset = pC->aOffset; 2617 assert( pC->eCurType!=CURTYPE_VTAB ); 2618 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2619 assert( pC->eCurType!=CURTYPE_SORTER ); 2620 2621 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2622 if( pC->nullRow ){ 2623 if( pC->eCurType==CURTYPE_PSEUDO ){ 2624 /* For the special case of as pseudo-cursor, the seekResult field 2625 ** identifies the register that holds the record */ 2626 assert( pC->seekResult>0 ); 2627 pReg = &aMem[pC->seekResult]; 2628 assert( pReg->flags & MEM_Blob ); 2629 assert( memIsValid(pReg) ); 2630 pC->payloadSize = pC->szRow = pReg->n; 2631 pC->aRow = (u8*)pReg->z; 2632 }else{ 2633 sqlite3VdbeMemSetNull(pDest); 2634 goto op_column_out; 2635 } 2636 }else{ 2637 pCrsr = pC->uc.pCursor; 2638 assert( pC->eCurType==CURTYPE_BTREE ); 2639 assert( pCrsr ); 2640 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2641 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2642 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2643 assert( pC->szRow<=pC->payloadSize ); 2644 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2645 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2646 goto too_big; 2647 } 2648 } 2649 pC->cacheStatus = p->cacheCtr; 2650 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2651 pC->nHdrParsed = 0; 2652 2653 2654 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2655 /* pC->aRow does not have to hold the entire row, but it does at least 2656 ** need to cover the header of the record. If pC->aRow does not contain 2657 ** the complete header, then set it to zero, forcing the header to be 2658 ** dynamically allocated. */ 2659 pC->aRow = 0; 2660 pC->szRow = 0; 2661 2662 /* Make sure a corrupt database has not given us an oversize header. 2663 ** Do this now to avoid an oversize memory allocation. 2664 ** 2665 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2666 ** types use so much data space that there can only be 4096 and 32 of 2667 ** them, respectively. So the maximum header length results from a 2668 ** 3-byte type for each of the maximum of 32768 columns plus three 2669 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2670 */ 2671 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2672 goto op_column_corrupt; 2673 } 2674 }else{ 2675 /* This is an optimization. By skipping over the first few tests 2676 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2677 ** measurable performance gain. 2678 ** 2679 ** This branch is taken even if aOffset[0]==0. Such a record is never 2680 ** generated by SQLite, and could be considered corruption, but we 2681 ** accept it for historical reasons. When aOffset[0]==0, the code this 2682 ** branch jumps to reads past the end of the record, but never more 2683 ** than a few bytes. Even if the record occurs at the end of the page 2684 ** content area, the "page header" comes after the page content and so 2685 ** this overread is harmless. Similar overreads can occur for a corrupt 2686 ** database file. 2687 */ 2688 zData = pC->aRow; 2689 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2690 testcase( aOffset[0]==0 ); 2691 goto op_column_read_header; 2692 } 2693 } 2694 2695 /* Make sure at least the first p2+1 entries of the header have been 2696 ** parsed and valid information is in aOffset[] and pC->aType[]. 2697 */ 2698 if( pC->nHdrParsed<=p2 ){ 2699 /* If there is more header available for parsing in the record, try 2700 ** to extract additional fields up through the p2+1-th field 2701 */ 2702 if( pC->iHdrOffset<aOffset[0] ){ 2703 /* Make sure zData points to enough of the record to cover the header. */ 2704 if( pC->aRow==0 ){ 2705 memset(&sMem, 0, sizeof(sMem)); 2706 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2707 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2708 zData = (u8*)sMem.z; 2709 }else{ 2710 zData = pC->aRow; 2711 } 2712 2713 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2714 op_column_read_header: 2715 i = pC->nHdrParsed; 2716 offset64 = aOffset[i]; 2717 zHdr = zData + pC->iHdrOffset; 2718 zEndHdr = zData + aOffset[0]; 2719 testcase( zHdr>=zEndHdr ); 2720 do{ 2721 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2722 zHdr++; 2723 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2724 }else{ 2725 zHdr += sqlite3GetVarint32(zHdr, &t); 2726 pC->aType[i] = t; 2727 offset64 += sqlite3VdbeSerialTypeLen(t); 2728 } 2729 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2730 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2731 2732 /* The record is corrupt if any of the following are true: 2733 ** (1) the bytes of the header extend past the declared header size 2734 ** (2) the entire header was used but not all data was used 2735 ** (3) the end of the data extends beyond the end of the record. 2736 */ 2737 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2738 || (offset64 > pC->payloadSize) 2739 ){ 2740 if( aOffset[0]==0 ){ 2741 i = 0; 2742 zHdr = zEndHdr; 2743 }else{ 2744 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2745 goto op_column_corrupt; 2746 } 2747 } 2748 2749 pC->nHdrParsed = i; 2750 pC->iHdrOffset = (u32)(zHdr - zData); 2751 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2752 }else{ 2753 t = 0; 2754 } 2755 2756 /* If after trying to extract new entries from the header, nHdrParsed is 2757 ** still not up to p2, that means that the record has fewer than p2 2758 ** columns. So the result will be either the default value or a NULL. 2759 */ 2760 if( pC->nHdrParsed<=p2 ){ 2761 if( pOp->p4type==P4_MEM ){ 2762 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2763 }else{ 2764 sqlite3VdbeMemSetNull(pDest); 2765 } 2766 goto op_column_out; 2767 } 2768 }else{ 2769 t = pC->aType[p2]; 2770 } 2771 2772 /* Extract the content for the p2+1-th column. Control can only 2773 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2774 ** all valid. 2775 */ 2776 assert( p2<pC->nHdrParsed ); 2777 assert( rc==SQLITE_OK ); 2778 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2779 if( VdbeMemDynamic(pDest) ){ 2780 sqlite3VdbeMemSetNull(pDest); 2781 } 2782 assert( t==pC->aType[p2] ); 2783 if( pC->szRow>=aOffset[p2+1] ){ 2784 /* This is the common case where the desired content fits on the original 2785 ** page - where the content is not on an overflow page */ 2786 zData = pC->aRow + aOffset[p2]; 2787 if( t<12 ){ 2788 sqlite3VdbeSerialGet(zData, t, pDest); 2789 }else{ 2790 /* If the column value is a string, we need a persistent value, not 2791 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2792 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2793 */ 2794 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2795 pDest->n = len = (t-12)/2; 2796 pDest->enc = encoding; 2797 if( pDest->szMalloc < len+2 ){ 2798 pDest->flags = MEM_Null; 2799 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2800 }else{ 2801 pDest->z = pDest->zMalloc; 2802 } 2803 memcpy(pDest->z, zData, len); 2804 pDest->z[len] = 0; 2805 pDest->z[len+1] = 0; 2806 pDest->flags = aFlag[t&1]; 2807 } 2808 }else{ 2809 pDest->enc = encoding; 2810 /* This branch happens only when content is on overflow pages */ 2811 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2812 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2813 || (len = sqlite3VdbeSerialTypeLen(t))==0 2814 ){ 2815 /* Content is irrelevant for 2816 ** 1. the typeof() function, 2817 ** 2. the length(X) function if X is a blob, and 2818 ** 3. if the content length is zero. 2819 ** So we might as well use bogus content rather than reading 2820 ** content from disk. 2821 ** 2822 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2823 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2824 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2825 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2826 ** and it begins with a bunch of zeros. 2827 */ 2828 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2829 }else{ 2830 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2831 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2832 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2833 pDest->flags &= ~MEM_Ephem; 2834 } 2835 } 2836 2837 op_column_out: 2838 UPDATE_MAX_BLOBSIZE(pDest); 2839 REGISTER_TRACE(pOp->p3, pDest); 2840 break; 2841 2842 op_column_corrupt: 2843 if( aOp[0].p3>0 ){ 2844 pOp = &aOp[aOp[0].p3-1]; 2845 break; 2846 }else{ 2847 rc = SQLITE_CORRUPT_BKPT; 2848 goto abort_due_to_error; 2849 } 2850 } 2851 2852 /* Opcode: Affinity P1 P2 * P4 * 2853 ** Synopsis: affinity(r[P1@P2]) 2854 ** 2855 ** Apply affinities to a range of P2 registers starting with P1. 2856 ** 2857 ** P4 is a string that is P2 characters long. The N-th character of the 2858 ** string indicates the column affinity that should be used for the N-th 2859 ** memory cell in the range. 2860 */ 2861 case OP_Affinity: { 2862 const char *zAffinity; /* The affinity to be applied */ 2863 2864 zAffinity = pOp->p4.z; 2865 assert( zAffinity!=0 ); 2866 assert( pOp->p2>0 ); 2867 assert( zAffinity[pOp->p2]==0 ); 2868 pIn1 = &aMem[pOp->p1]; 2869 while( 1 /*exit-by-break*/ ){ 2870 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2871 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2872 applyAffinity(pIn1, zAffinity[0], encoding); 2873 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2874 /* When applying REAL affinity, if the result is still an MEM_Int 2875 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2876 ** so that we keep the high-resolution integer value but know that 2877 ** the type really wants to be REAL. */ 2878 testcase( pIn1->u.i==140737488355328LL ); 2879 testcase( pIn1->u.i==140737488355327LL ); 2880 testcase( pIn1->u.i==-140737488355328LL ); 2881 testcase( pIn1->u.i==-140737488355329LL ); 2882 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2883 pIn1->flags |= MEM_IntReal; 2884 pIn1->flags &= ~MEM_Int; 2885 }else{ 2886 pIn1->u.r = (double)pIn1->u.i; 2887 pIn1->flags |= MEM_Real; 2888 pIn1->flags &= ~MEM_Int; 2889 } 2890 } 2891 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2892 zAffinity++; 2893 if( zAffinity[0]==0 ) break; 2894 pIn1++; 2895 } 2896 break; 2897 } 2898 2899 /* Opcode: MakeRecord P1 P2 P3 P4 * 2900 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2901 ** 2902 ** Convert P2 registers beginning with P1 into the [record format] 2903 ** use as a data record in a database table or as a key 2904 ** in an index. The OP_Column opcode can decode the record later. 2905 ** 2906 ** P4 may be a string that is P2 characters long. The N-th character of the 2907 ** string indicates the column affinity that should be used for the N-th 2908 ** field of the index key. 2909 ** 2910 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2911 ** macros defined in sqliteInt.h. 2912 ** 2913 ** If P4 is NULL then all index fields have the affinity BLOB. 2914 ** 2915 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 2916 ** compile-time option is enabled: 2917 ** 2918 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 2919 ** of the right-most table that can be null-trimmed. 2920 ** 2921 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 2922 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 2923 ** accept no-change records with serial_type 10. This value is 2924 ** only used inside an assert() and does not affect the end result. 2925 */ 2926 case OP_MakeRecord: { 2927 Mem *pRec; /* The new record */ 2928 u64 nData; /* Number of bytes of data space */ 2929 int nHdr; /* Number of bytes of header space */ 2930 i64 nByte; /* Data space required for this record */ 2931 i64 nZero; /* Number of zero bytes at the end of the record */ 2932 int nVarint; /* Number of bytes in a varint */ 2933 u32 serial_type; /* Type field */ 2934 Mem *pData0; /* First field to be combined into the record */ 2935 Mem *pLast; /* Last field of the record */ 2936 int nField; /* Number of fields in the record */ 2937 char *zAffinity; /* The affinity string for the record */ 2938 int file_format; /* File format to use for encoding */ 2939 u32 len; /* Length of a field */ 2940 u8 *zHdr; /* Where to write next byte of the header */ 2941 u8 *zPayload; /* Where to write next byte of the payload */ 2942 2943 /* Assuming the record contains N fields, the record format looks 2944 ** like this: 2945 ** 2946 ** ------------------------------------------------------------------------ 2947 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2948 ** ------------------------------------------------------------------------ 2949 ** 2950 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2951 ** and so forth. 2952 ** 2953 ** Each type field is a varint representing the serial type of the 2954 ** corresponding data element (see sqlite3VdbeSerialType()). The 2955 ** hdr-size field is also a varint which is the offset from the beginning 2956 ** of the record to data0. 2957 */ 2958 nData = 0; /* Number of bytes of data space */ 2959 nHdr = 0; /* Number of bytes of header space */ 2960 nZero = 0; /* Number of zero bytes at the end of the record */ 2961 nField = pOp->p1; 2962 zAffinity = pOp->p4.z; 2963 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2964 pData0 = &aMem[nField]; 2965 nField = pOp->p2; 2966 pLast = &pData0[nField-1]; 2967 file_format = p->minWriteFileFormat; 2968 2969 /* Identify the output register */ 2970 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2971 pOut = &aMem[pOp->p3]; 2972 memAboutToChange(p, pOut); 2973 2974 /* Apply the requested affinity to all inputs 2975 */ 2976 assert( pData0<=pLast ); 2977 if( zAffinity ){ 2978 pRec = pData0; 2979 do{ 2980 applyAffinity(pRec, zAffinity[0], encoding); 2981 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2982 pRec->flags |= MEM_IntReal; 2983 pRec->flags &= ~(MEM_Int); 2984 } 2985 REGISTER_TRACE((int)(pRec-aMem), pRec); 2986 zAffinity++; 2987 pRec++; 2988 assert( zAffinity[0]==0 || pRec<=pLast ); 2989 }while( zAffinity[0] ); 2990 } 2991 2992 #ifdef SQLITE_ENABLE_NULL_TRIM 2993 /* NULLs can be safely trimmed from the end of the record, as long as 2994 ** as the schema format is 2 or more and none of the omitted columns 2995 ** have a non-NULL default value. Also, the record must be left with 2996 ** at least one field. If P5>0 then it will be one more than the 2997 ** index of the right-most column with a non-NULL default value */ 2998 if( pOp->p5 ){ 2999 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3000 pLast--; 3001 nField--; 3002 } 3003 } 3004 #endif 3005 3006 /* Loop through the elements that will make up the record to figure 3007 ** out how much space is required for the new record. After this loop, 3008 ** the Mem.uTemp field of each term should hold the serial-type that will 3009 ** be used for that term in the generated record: 3010 ** 3011 ** Mem.uTemp value type 3012 ** --------------- --------------- 3013 ** 0 NULL 3014 ** 1 1-byte signed integer 3015 ** 2 2-byte signed integer 3016 ** 3 3-byte signed integer 3017 ** 4 4-byte signed integer 3018 ** 5 6-byte signed integer 3019 ** 6 8-byte signed integer 3020 ** 7 IEEE float 3021 ** 8 Integer constant 0 3022 ** 9 Integer constant 1 3023 ** 10,11 reserved for expansion 3024 ** N>=12 and even BLOB 3025 ** N>=13 and odd text 3026 ** 3027 ** The following additional values are computed: 3028 ** nHdr Number of bytes needed for the record header 3029 ** nData Number of bytes of data space needed for the record 3030 ** nZero Zero bytes at the end of the record 3031 */ 3032 pRec = pLast; 3033 do{ 3034 assert( memIsValid(pRec) ); 3035 if( pRec->flags & MEM_Null ){ 3036 if( pRec->flags & MEM_Zero ){ 3037 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3038 ** table methods that never invoke sqlite3_result_xxxxx() while 3039 ** computing an unchanging column value in an UPDATE statement. 3040 ** Give such values a special internal-use-only serial-type of 10 3041 ** so that they can be passed through to xUpdate and have 3042 ** a true sqlite3_value_nochange(). */ 3043 #ifndef SQLITE_ENABLE_NULL_TRIM 3044 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3045 #endif 3046 pRec->uTemp = 10; 3047 }else{ 3048 pRec->uTemp = 0; 3049 } 3050 nHdr++; 3051 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3052 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3053 i64 i = pRec->u.i; 3054 u64 uu; 3055 testcase( pRec->flags & MEM_Int ); 3056 testcase( pRec->flags & MEM_IntReal ); 3057 if( i<0 ){ 3058 uu = ~i; 3059 }else{ 3060 uu = i; 3061 } 3062 nHdr++; 3063 testcase( uu==127 ); testcase( uu==128 ); 3064 testcase( uu==32767 ); testcase( uu==32768 ); 3065 testcase( uu==8388607 ); testcase( uu==8388608 ); 3066 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3067 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3068 if( uu<=127 ){ 3069 if( (i&1)==i && file_format>=4 ){ 3070 pRec->uTemp = 8+(u32)uu; 3071 }else{ 3072 nData++; 3073 pRec->uTemp = 1; 3074 } 3075 }else if( uu<=32767 ){ 3076 nData += 2; 3077 pRec->uTemp = 2; 3078 }else if( uu<=8388607 ){ 3079 nData += 3; 3080 pRec->uTemp = 3; 3081 }else if( uu<=2147483647 ){ 3082 nData += 4; 3083 pRec->uTemp = 4; 3084 }else if( uu<=140737488355327LL ){ 3085 nData += 6; 3086 pRec->uTemp = 5; 3087 }else{ 3088 nData += 8; 3089 if( pRec->flags & MEM_IntReal ){ 3090 /* If the value is IntReal and is going to take up 8 bytes to store 3091 ** as an integer, then we might as well make it an 8-byte floating 3092 ** point value */ 3093 pRec->u.r = (double)pRec->u.i; 3094 pRec->flags &= ~MEM_IntReal; 3095 pRec->flags |= MEM_Real; 3096 pRec->uTemp = 7; 3097 }else{ 3098 pRec->uTemp = 6; 3099 } 3100 } 3101 }else if( pRec->flags & MEM_Real ){ 3102 nHdr++; 3103 nData += 8; 3104 pRec->uTemp = 7; 3105 }else{ 3106 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3107 assert( pRec->n>=0 ); 3108 len = (u32)pRec->n; 3109 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3110 if( pRec->flags & MEM_Zero ){ 3111 serial_type += pRec->u.nZero*2; 3112 if( nData ){ 3113 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3114 len += pRec->u.nZero; 3115 }else{ 3116 nZero += pRec->u.nZero; 3117 } 3118 } 3119 nData += len; 3120 nHdr += sqlite3VarintLen(serial_type); 3121 pRec->uTemp = serial_type; 3122 } 3123 if( pRec==pData0 ) break; 3124 pRec--; 3125 }while(1); 3126 3127 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3128 ** which determines the total number of bytes in the header. The varint 3129 ** value is the size of the header in bytes including the size varint 3130 ** itself. */ 3131 testcase( nHdr==126 ); 3132 testcase( nHdr==127 ); 3133 if( nHdr<=126 ){ 3134 /* The common case */ 3135 nHdr += 1; 3136 }else{ 3137 /* Rare case of a really large header */ 3138 nVarint = sqlite3VarintLen(nHdr); 3139 nHdr += nVarint; 3140 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3141 } 3142 nByte = nHdr+nData; 3143 3144 /* Make sure the output register has a buffer large enough to store 3145 ** the new record. The output register (pOp->p3) is not allowed to 3146 ** be one of the input registers (because the following call to 3147 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3148 */ 3149 if( nByte+nZero<=pOut->szMalloc ){ 3150 /* The output register is already large enough to hold the record. 3151 ** No error checks or buffer enlargement is required */ 3152 pOut->z = pOut->zMalloc; 3153 }else{ 3154 /* Need to make sure that the output is not too big and then enlarge 3155 ** the output register to hold the full result */ 3156 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3157 goto too_big; 3158 } 3159 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3160 goto no_mem; 3161 } 3162 } 3163 pOut->n = (int)nByte; 3164 pOut->flags = MEM_Blob; 3165 if( nZero ){ 3166 pOut->u.nZero = nZero; 3167 pOut->flags |= MEM_Zero; 3168 } 3169 UPDATE_MAX_BLOBSIZE(pOut); 3170 zHdr = (u8 *)pOut->z; 3171 zPayload = zHdr + nHdr; 3172 3173 /* Write the record */ 3174 zHdr += putVarint32(zHdr, nHdr); 3175 assert( pData0<=pLast ); 3176 pRec = pData0; 3177 do{ 3178 serial_type = pRec->uTemp; 3179 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3180 ** additional varints, one per column. */ 3181 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3182 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3183 ** immediately follow the header. */ 3184 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3185 }while( (++pRec)<=pLast ); 3186 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3187 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3188 3189 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3190 REGISTER_TRACE(pOp->p3, pOut); 3191 break; 3192 } 3193 3194 /* Opcode: Count P1 P2 p3 * * 3195 ** Synopsis: r[P2]=count() 3196 ** 3197 ** Store the number of entries (an integer value) in the table or index 3198 ** opened by cursor P1 in register P2. 3199 ** 3200 ** If P3==0, then an exact count is obtained, which involves visiting 3201 ** every btree page of the table. But if P3 is non-zero, an estimate 3202 ** is returned based on the current cursor position. 3203 */ 3204 case OP_Count: { /* out2 */ 3205 i64 nEntry; 3206 BtCursor *pCrsr; 3207 3208 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3209 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3210 assert( pCrsr ); 3211 if( pOp->p3 ){ 3212 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3213 }else{ 3214 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3215 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3216 if( rc ) goto abort_due_to_error; 3217 } 3218 pOut = out2Prerelease(p, pOp); 3219 pOut->u.i = nEntry; 3220 goto check_for_interrupt; 3221 } 3222 3223 /* Opcode: Savepoint P1 * * P4 * 3224 ** 3225 ** Open, release or rollback the savepoint named by parameter P4, depending 3226 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3227 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3228 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3229 */ 3230 case OP_Savepoint: { 3231 int p1; /* Value of P1 operand */ 3232 char *zName; /* Name of savepoint */ 3233 int nName; 3234 Savepoint *pNew; 3235 Savepoint *pSavepoint; 3236 Savepoint *pTmp; 3237 int iSavepoint; 3238 int ii; 3239 3240 p1 = pOp->p1; 3241 zName = pOp->p4.z; 3242 3243 /* Assert that the p1 parameter is valid. Also that if there is no open 3244 ** transaction, then there cannot be any savepoints. 3245 */ 3246 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3247 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3248 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3249 assert( checkSavepointCount(db) ); 3250 assert( p->bIsReader ); 3251 3252 if( p1==SAVEPOINT_BEGIN ){ 3253 if( db->nVdbeWrite>0 ){ 3254 /* A new savepoint cannot be created if there are active write 3255 ** statements (i.e. open read/write incremental blob handles). 3256 */ 3257 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3258 rc = SQLITE_BUSY; 3259 }else{ 3260 nName = sqlite3Strlen30(zName); 3261 3262 #ifndef SQLITE_OMIT_VIRTUALTABLE 3263 /* This call is Ok even if this savepoint is actually a transaction 3264 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3265 ** If this is a transaction savepoint being opened, it is guaranteed 3266 ** that the db->aVTrans[] array is empty. */ 3267 assert( db->autoCommit==0 || db->nVTrans==0 ); 3268 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3269 db->nStatement+db->nSavepoint); 3270 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3271 #endif 3272 3273 /* Create a new savepoint structure. */ 3274 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3275 if( pNew ){ 3276 pNew->zName = (char *)&pNew[1]; 3277 memcpy(pNew->zName, zName, nName+1); 3278 3279 /* If there is no open transaction, then mark this as a special 3280 ** "transaction savepoint". */ 3281 if( db->autoCommit ){ 3282 db->autoCommit = 0; 3283 db->isTransactionSavepoint = 1; 3284 }else{ 3285 db->nSavepoint++; 3286 } 3287 3288 /* Link the new savepoint into the database handle's list. */ 3289 pNew->pNext = db->pSavepoint; 3290 db->pSavepoint = pNew; 3291 pNew->nDeferredCons = db->nDeferredCons; 3292 pNew->nDeferredImmCons = db->nDeferredImmCons; 3293 } 3294 } 3295 }else{ 3296 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3297 iSavepoint = 0; 3298 3299 /* Find the named savepoint. If there is no such savepoint, then an 3300 ** an error is returned to the user. */ 3301 for( 3302 pSavepoint = db->pSavepoint; 3303 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3304 pSavepoint = pSavepoint->pNext 3305 ){ 3306 iSavepoint++; 3307 } 3308 if( !pSavepoint ){ 3309 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3310 rc = SQLITE_ERROR; 3311 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3312 /* It is not possible to release (commit) a savepoint if there are 3313 ** active write statements. 3314 */ 3315 sqlite3VdbeError(p, "cannot release savepoint - " 3316 "SQL statements in progress"); 3317 rc = SQLITE_BUSY; 3318 }else{ 3319 3320 /* Determine whether or not this is a transaction savepoint. If so, 3321 ** and this is a RELEASE command, then the current transaction 3322 ** is committed. 3323 */ 3324 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3325 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3326 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3327 goto vdbe_return; 3328 } 3329 db->autoCommit = 1; 3330 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3331 p->pc = (int)(pOp - aOp); 3332 db->autoCommit = 0; 3333 p->rc = rc = SQLITE_BUSY; 3334 goto vdbe_return; 3335 } 3336 rc = p->rc; 3337 if( rc ){ 3338 db->autoCommit = 0; 3339 }else{ 3340 db->isTransactionSavepoint = 0; 3341 } 3342 }else{ 3343 int isSchemaChange; 3344 iSavepoint = db->nSavepoint - iSavepoint - 1; 3345 if( p1==SAVEPOINT_ROLLBACK ){ 3346 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3347 for(ii=0; ii<db->nDb; ii++){ 3348 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3349 SQLITE_ABORT_ROLLBACK, 3350 isSchemaChange==0); 3351 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3352 } 3353 }else{ 3354 assert( p1==SAVEPOINT_RELEASE ); 3355 isSchemaChange = 0; 3356 } 3357 for(ii=0; ii<db->nDb; ii++){ 3358 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3359 if( rc!=SQLITE_OK ){ 3360 goto abort_due_to_error; 3361 } 3362 } 3363 if( isSchemaChange ){ 3364 sqlite3ExpirePreparedStatements(db, 0); 3365 sqlite3ResetAllSchemasOfConnection(db); 3366 db->mDbFlags |= DBFLAG_SchemaChange; 3367 } 3368 } 3369 if( rc ) goto abort_due_to_error; 3370 3371 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3372 ** savepoints nested inside of the savepoint being operated on. */ 3373 while( db->pSavepoint!=pSavepoint ){ 3374 pTmp = db->pSavepoint; 3375 db->pSavepoint = pTmp->pNext; 3376 sqlite3DbFree(db, pTmp); 3377 db->nSavepoint--; 3378 } 3379 3380 /* If it is a RELEASE, then destroy the savepoint being operated on 3381 ** too. If it is a ROLLBACK TO, then set the number of deferred 3382 ** constraint violations present in the database to the value stored 3383 ** when the savepoint was created. */ 3384 if( p1==SAVEPOINT_RELEASE ){ 3385 assert( pSavepoint==db->pSavepoint ); 3386 db->pSavepoint = pSavepoint->pNext; 3387 sqlite3DbFree(db, pSavepoint); 3388 if( !isTransaction ){ 3389 db->nSavepoint--; 3390 } 3391 }else{ 3392 assert( p1==SAVEPOINT_ROLLBACK ); 3393 db->nDeferredCons = pSavepoint->nDeferredCons; 3394 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3395 } 3396 3397 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3398 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3399 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3400 } 3401 } 3402 } 3403 if( rc ) goto abort_due_to_error; 3404 3405 break; 3406 } 3407 3408 /* Opcode: AutoCommit P1 P2 * * * 3409 ** 3410 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3411 ** back any currently active btree transactions. If there are any active 3412 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3413 ** there are active writing VMs or active VMs that use shared cache. 3414 ** 3415 ** This instruction causes the VM to halt. 3416 */ 3417 case OP_AutoCommit: { 3418 int desiredAutoCommit; 3419 int iRollback; 3420 3421 desiredAutoCommit = pOp->p1; 3422 iRollback = pOp->p2; 3423 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3424 assert( desiredAutoCommit==1 || iRollback==0 ); 3425 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3426 assert( p->bIsReader ); 3427 3428 if( desiredAutoCommit!=db->autoCommit ){ 3429 if( iRollback ){ 3430 assert( desiredAutoCommit==1 ); 3431 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3432 db->autoCommit = 1; 3433 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3434 /* If this instruction implements a COMMIT and other VMs are writing 3435 ** return an error indicating that the other VMs must complete first. 3436 */ 3437 sqlite3VdbeError(p, "cannot commit transaction - " 3438 "SQL statements in progress"); 3439 rc = SQLITE_BUSY; 3440 goto abort_due_to_error; 3441 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3442 goto vdbe_return; 3443 }else{ 3444 db->autoCommit = (u8)desiredAutoCommit; 3445 } 3446 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3447 p->pc = (int)(pOp - aOp); 3448 db->autoCommit = (u8)(1-desiredAutoCommit); 3449 p->rc = rc = SQLITE_BUSY; 3450 goto vdbe_return; 3451 } 3452 sqlite3CloseSavepoints(db); 3453 if( p->rc==SQLITE_OK ){ 3454 rc = SQLITE_DONE; 3455 }else{ 3456 rc = SQLITE_ERROR; 3457 } 3458 goto vdbe_return; 3459 }else{ 3460 sqlite3VdbeError(p, 3461 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3462 (iRollback)?"cannot rollback - no transaction is active": 3463 "cannot commit - no transaction is active")); 3464 3465 rc = SQLITE_ERROR; 3466 goto abort_due_to_error; 3467 } 3468 /*NOTREACHED*/ assert(0); 3469 } 3470 3471 /* Opcode: Transaction P1 P2 P3 P4 P5 3472 ** 3473 ** Begin a transaction on database P1 if a transaction is not already 3474 ** active. 3475 ** If P2 is non-zero, then a write-transaction is started, or if a 3476 ** read-transaction is already active, it is upgraded to a write-transaction. 3477 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3478 ** then an exclusive transaction is started. 3479 ** 3480 ** P1 is the index of the database file on which the transaction is 3481 ** started. Index 0 is the main database file and index 1 is the 3482 ** file used for temporary tables. Indices of 2 or more are used for 3483 ** attached databases. 3484 ** 3485 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3486 ** true (this flag is set if the Vdbe may modify more than one row and may 3487 ** throw an ABORT exception), a statement transaction may also be opened. 3488 ** More specifically, a statement transaction is opened iff the database 3489 ** connection is currently not in autocommit mode, or if there are other 3490 ** active statements. A statement transaction allows the changes made by this 3491 ** VDBE to be rolled back after an error without having to roll back the 3492 ** entire transaction. If no error is encountered, the statement transaction 3493 ** will automatically commit when the VDBE halts. 3494 ** 3495 ** If P5!=0 then this opcode also checks the schema cookie against P3 3496 ** and the schema generation counter against P4. 3497 ** The cookie changes its value whenever the database schema changes. 3498 ** This operation is used to detect when that the cookie has changed 3499 ** and that the current process needs to reread the schema. If the schema 3500 ** cookie in P3 differs from the schema cookie in the database header or 3501 ** if the schema generation counter in P4 differs from the current 3502 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3503 ** halts. The sqlite3_step() wrapper function might then reprepare the 3504 ** statement and rerun it from the beginning. 3505 */ 3506 case OP_Transaction: { 3507 Btree *pBt; 3508 int iMeta = 0; 3509 3510 assert( p->bIsReader ); 3511 assert( p->readOnly==0 || pOp->p2==0 ); 3512 assert( pOp->p2>=0 && pOp->p2<=2 ); 3513 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3514 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3515 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3516 rc = SQLITE_READONLY; 3517 goto abort_due_to_error; 3518 } 3519 pBt = db->aDb[pOp->p1].pBt; 3520 3521 if( pBt ){ 3522 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3523 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3524 testcase( rc==SQLITE_BUSY_RECOVERY ); 3525 if( rc!=SQLITE_OK ){ 3526 if( (rc&0xff)==SQLITE_BUSY ){ 3527 p->pc = (int)(pOp - aOp); 3528 p->rc = rc; 3529 goto vdbe_return; 3530 } 3531 goto abort_due_to_error; 3532 } 3533 3534 if( p->usesStmtJournal 3535 && pOp->p2 3536 && (db->autoCommit==0 || db->nVdbeRead>1) 3537 ){ 3538 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3539 if( p->iStatement==0 ){ 3540 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3541 db->nStatement++; 3542 p->iStatement = db->nSavepoint + db->nStatement; 3543 } 3544 3545 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3546 if( rc==SQLITE_OK ){ 3547 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3548 } 3549 3550 /* Store the current value of the database handles deferred constraint 3551 ** counter. If the statement transaction needs to be rolled back, 3552 ** the value of this counter needs to be restored too. */ 3553 p->nStmtDefCons = db->nDeferredCons; 3554 p->nStmtDefImmCons = db->nDeferredImmCons; 3555 } 3556 } 3557 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3558 if( pOp->p5 3559 && (iMeta!=pOp->p3 3560 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3561 ){ 3562 /* 3563 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3564 ** version is checked to ensure that the schema has not changed since the 3565 ** SQL statement was prepared. 3566 */ 3567 sqlite3DbFree(db, p->zErrMsg); 3568 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3569 /* If the schema-cookie from the database file matches the cookie 3570 ** stored with the in-memory representation of the schema, do 3571 ** not reload the schema from the database file. 3572 ** 3573 ** If virtual-tables are in use, this is not just an optimization. 3574 ** Often, v-tables store their data in other SQLite tables, which 3575 ** are queried from within xNext() and other v-table methods using 3576 ** prepared queries. If such a query is out-of-date, we do not want to 3577 ** discard the database schema, as the user code implementing the 3578 ** v-table would have to be ready for the sqlite3_vtab structure itself 3579 ** to be invalidated whenever sqlite3_step() is called from within 3580 ** a v-table method. 3581 */ 3582 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3583 sqlite3ResetOneSchema(db, pOp->p1); 3584 } 3585 p->expired = 1; 3586 rc = SQLITE_SCHEMA; 3587 } 3588 if( rc ) goto abort_due_to_error; 3589 break; 3590 } 3591 3592 /* Opcode: ReadCookie P1 P2 P3 * * 3593 ** 3594 ** Read cookie number P3 from database P1 and write it into register P2. 3595 ** P3==1 is the schema version. P3==2 is the database format. 3596 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3597 ** the main database file and P1==1 is the database file used to store 3598 ** temporary tables. 3599 ** 3600 ** There must be a read-lock on the database (either a transaction 3601 ** must be started or there must be an open cursor) before 3602 ** executing this instruction. 3603 */ 3604 case OP_ReadCookie: { /* out2 */ 3605 int iMeta; 3606 int iDb; 3607 int iCookie; 3608 3609 assert( p->bIsReader ); 3610 iDb = pOp->p1; 3611 iCookie = pOp->p3; 3612 assert( pOp->p3<SQLITE_N_BTREE_META ); 3613 assert( iDb>=0 && iDb<db->nDb ); 3614 assert( db->aDb[iDb].pBt!=0 ); 3615 assert( DbMaskTest(p->btreeMask, iDb) ); 3616 3617 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3618 pOut = out2Prerelease(p, pOp); 3619 pOut->u.i = iMeta; 3620 break; 3621 } 3622 3623 /* Opcode: SetCookie P1 P2 P3 * P5 3624 ** 3625 ** Write the integer value P3 into cookie number P2 of database P1. 3626 ** P2==1 is the schema version. P2==2 is the database format. 3627 ** P2==3 is the recommended pager cache 3628 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3629 ** database file used to store temporary tables. 3630 ** 3631 ** A transaction must be started before executing this opcode. 3632 ** 3633 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3634 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3635 ** has P5 set to 1, so that the internal schema version will be different 3636 ** from the database schema version, resulting in a schema reset. 3637 */ 3638 case OP_SetCookie: { 3639 Db *pDb; 3640 3641 sqlite3VdbeIncrWriteCounter(p, 0); 3642 assert( pOp->p2<SQLITE_N_BTREE_META ); 3643 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3644 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3645 assert( p->readOnly==0 ); 3646 pDb = &db->aDb[pOp->p1]; 3647 assert( pDb->pBt!=0 ); 3648 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3649 /* See note about index shifting on OP_ReadCookie */ 3650 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3651 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3652 /* When the schema cookie changes, record the new cookie internally */ 3653 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3654 db->mDbFlags |= DBFLAG_SchemaChange; 3655 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3656 /* Record changes in the file format */ 3657 pDb->pSchema->file_format = pOp->p3; 3658 } 3659 if( pOp->p1==1 ){ 3660 /* Invalidate all prepared statements whenever the TEMP database 3661 ** schema is changed. Ticket #1644 */ 3662 sqlite3ExpirePreparedStatements(db, 0); 3663 p->expired = 0; 3664 } 3665 if( rc ) goto abort_due_to_error; 3666 break; 3667 } 3668 3669 /* Opcode: OpenRead P1 P2 P3 P4 P5 3670 ** Synopsis: root=P2 iDb=P3 3671 ** 3672 ** Open a read-only cursor for the database table whose root page is 3673 ** P2 in a database file. The database file is determined by P3. 3674 ** P3==0 means the main database, P3==1 means the database used for 3675 ** temporary tables, and P3>1 means used the corresponding attached 3676 ** database. Give the new cursor an identifier of P1. The P1 3677 ** values need not be contiguous but all P1 values should be small integers. 3678 ** It is an error for P1 to be negative. 3679 ** 3680 ** Allowed P5 bits: 3681 ** <ul> 3682 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3683 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3684 ** of OP_SeekLE/OP_IdxLT) 3685 ** </ul> 3686 ** 3687 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3688 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3689 ** object, then table being opened must be an [index b-tree] where the 3690 ** KeyInfo object defines the content and collating 3691 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3692 ** value, then the table being opened must be a [table b-tree] with a 3693 ** number of columns no less than the value of P4. 3694 ** 3695 ** See also: OpenWrite, ReopenIdx 3696 */ 3697 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3698 ** Synopsis: root=P2 iDb=P3 3699 ** 3700 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3701 ** checks to see if the cursor on P1 is already open on the same 3702 ** b-tree and if it is this opcode becomes a no-op. In other words, 3703 ** if the cursor is already open, do not reopen it. 3704 ** 3705 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3706 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3707 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3708 ** number. 3709 ** 3710 ** Allowed P5 bits: 3711 ** <ul> 3712 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3713 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3714 ** of OP_SeekLE/OP_IdxLT) 3715 ** </ul> 3716 ** 3717 ** See also: OP_OpenRead, OP_OpenWrite 3718 */ 3719 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3720 ** Synopsis: root=P2 iDb=P3 3721 ** 3722 ** Open a read/write cursor named P1 on the table or index whose root 3723 ** page is P2 (or whose root page is held in register P2 if the 3724 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3725 ** 3726 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3727 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3728 ** object, then table being opened must be an [index b-tree] where the 3729 ** KeyInfo object defines the content and collating 3730 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3731 ** value, then the table being opened must be a [table b-tree] with a 3732 ** number of columns no less than the value of P4. 3733 ** 3734 ** Allowed P5 bits: 3735 ** <ul> 3736 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3737 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3738 ** of OP_SeekLE/OP_IdxLT) 3739 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3740 ** and subsequently delete entries in an index btree. This is a 3741 ** hint to the storage engine that the storage engine is allowed to 3742 ** ignore. The hint is not used by the official SQLite b*tree storage 3743 ** engine, but is used by COMDB2. 3744 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3745 ** as the root page, not the value of P2 itself. 3746 ** </ul> 3747 ** 3748 ** This instruction works like OpenRead except that it opens the cursor 3749 ** in read/write mode. 3750 ** 3751 ** See also: OP_OpenRead, OP_ReopenIdx 3752 */ 3753 case OP_ReopenIdx: { 3754 int nField; 3755 KeyInfo *pKeyInfo; 3756 u32 p2; 3757 int iDb; 3758 int wrFlag; 3759 Btree *pX; 3760 VdbeCursor *pCur; 3761 Db *pDb; 3762 3763 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3764 assert( pOp->p4type==P4_KEYINFO ); 3765 pCur = p->apCsr[pOp->p1]; 3766 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3767 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3768 goto open_cursor_set_hints; 3769 } 3770 /* If the cursor is not currently open or is open on a different 3771 ** index, then fall through into OP_OpenRead to force a reopen */ 3772 case OP_OpenRead: 3773 case OP_OpenWrite: 3774 3775 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3776 assert( p->bIsReader ); 3777 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3778 || p->readOnly==0 ); 3779 3780 if( p->expired==1 ){ 3781 rc = SQLITE_ABORT_ROLLBACK; 3782 goto abort_due_to_error; 3783 } 3784 3785 nField = 0; 3786 pKeyInfo = 0; 3787 p2 = (u32)pOp->p2; 3788 iDb = pOp->p3; 3789 assert( iDb>=0 && iDb<db->nDb ); 3790 assert( DbMaskTest(p->btreeMask, iDb) ); 3791 pDb = &db->aDb[iDb]; 3792 pX = pDb->pBt; 3793 assert( pX!=0 ); 3794 if( pOp->opcode==OP_OpenWrite ){ 3795 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3796 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3797 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3798 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3799 p->minWriteFileFormat = pDb->pSchema->file_format; 3800 } 3801 }else{ 3802 wrFlag = 0; 3803 } 3804 if( pOp->p5 & OPFLAG_P2ISREG ){ 3805 assert( p2>0 ); 3806 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3807 assert( pOp->opcode==OP_OpenWrite ); 3808 pIn2 = &aMem[p2]; 3809 assert( memIsValid(pIn2) ); 3810 assert( (pIn2->flags & MEM_Int)!=0 ); 3811 sqlite3VdbeMemIntegerify(pIn2); 3812 p2 = (int)pIn2->u.i; 3813 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3814 ** that opcode will always set the p2 value to 2 or more or else fail. 3815 ** If there were a failure, the prepared statement would have halted 3816 ** before reaching this instruction. */ 3817 assert( p2>=2 ); 3818 } 3819 if( pOp->p4type==P4_KEYINFO ){ 3820 pKeyInfo = pOp->p4.pKeyInfo; 3821 assert( pKeyInfo->enc==ENC(db) ); 3822 assert( pKeyInfo->db==db ); 3823 nField = pKeyInfo->nAllField; 3824 }else if( pOp->p4type==P4_INT32 ){ 3825 nField = pOp->p4.i; 3826 } 3827 assert( pOp->p1>=0 ); 3828 assert( nField>=0 ); 3829 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3830 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3831 if( pCur==0 ) goto no_mem; 3832 pCur->nullRow = 1; 3833 pCur->isOrdered = 1; 3834 pCur->pgnoRoot = p2; 3835 #ifdef SQLITE_DEBUG 3836 pCur->wrFlag = wrFlag; 3837 #endif 3838 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3839 pCur->pKeyInfo = pKeyInfo; 3840 /* Set the VdbeCursor.isTable variable. Previous versions of 3841 ** SQLite used to check if the root-page flags were sane at this point 3842 ** and report database corruption if they were not, but this check has 3843 ** since moved into the btree layer. */ 3844 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3845 3846 open_cursor_set_hints: 3847 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3848 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3849 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3850 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3851 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3852 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3853 if( rc ) goto abort_due_to_error; 3854 break; 3855 } 3856 3857 /* Opcode: OpenDup P1 P2 * * * 3858 ** 3859 ** Open a new cursor P1 that points to the same ephemeral table as 3860 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3861 ** opcode. Only ephemeral cursors may be duplicated. 3862 ** 3863 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3864 */ 3865 case OP_OpenDup: { 3866 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3867 VdbeCursor *pCx; /* The new cursor */ 3868 3869 pOrig = p->apCsr[pOp->p2]; 3870 assert( pOrig ); 3871 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 3872 3873 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3874 if( pCx==0 ) goto no_mem; 3875 pCx->nullRow = 1; 3876 pCx->isEphemeral = 1; 3877 pCx->pKeyInfo = pOrig->pKeyInfo; 3878 pCx->isTable = pOrig->isTable; 3879 pCx->pgnoRoot = pOrig->pgnoRoot; 3880 pCx->isOrdered = pOrig->isOrdered; 3881 pCx->pBtx = pOrig->pBtx; 3882 pCx->hasBeenDuped = 1; 3883 pOrig->hasBeenDuped = 1; 3884 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3885 pCx->pKeyInfo, pCx->uc.pCursor); 3886 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3887 ** opened for a database. Since there is already an open cursor when this 3888 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3889 assert( rc==SQLITE_OK ); 3890 break; 3891 } 3892 3893 3894 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 3895 ** Synopsis: nColumn=P2 3896 ** 3897 ** Open a new cursor P1 to a transient table. 3898 ** The cursor is always opened read/write even if 3899 ** the main database is read-only. The ephemeral 3900 ** table is deleted automatically when the cursor is closed. 3901 ** 3902 ** If the cursor P1 is already opened on an ephemeral table, the table 3903 ** is cleared (all content is erased). 3904 ** 3905 ** P2 is the number of columns in the ephemeral table. 3906 ** The cursor points to a BTree table if P4==0 and to a BTree index 3907 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3908 ** that defines the format of keys in the index. 3909 ** 3910 ** The P5 parameter can be a mask of the BTREE_* flags defined 3911 ** in btree.h. These flags control aspects of the operation of 3912 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3913 ** added automatically. 3914 ** 3915 ** If P3 is positive, then reg[P3] is modified slightly so that it 3916 ** can be used as zero-length data for OP_Insert. This is an optimization 3917 ** that avoids an extra OP_Blob opcode to initialize that register. 3918 */ 3919 /* Opcode: OpenAutoindex P1 P2 * P4 * 3920 ** Synopsis: nColumn=P2 3921 ** 3922 ** This opcode works the same as OP_OpenEphemeral. It has a 3923 ** different name to distinguish its use. Tables created using 3924 ** by this opcode will be used for automatically created transient 3925 ** indices in joins. 3926 */ 3927 case OP_OpenAutoindex: 3928 case OP_OpenEphemeral: { 3929 VdbeCursor *pCx; 3930 KeyInfo *pKeyInfo; 3931 3932 static const int vfsFlags = 3933 SQLITE_OPEN_READWRITE | 3934 SQLITE_OPEN_CREATE | 3935 SQLITE_OPEN_EXCLUSIVE | 3936 SQLITE_OPEN_DELETEONCLOSE | 3937 SQLITE_OPEN_TRANSIENT_DB; 3938 assert( pOp->p1>=0 ); 3939 assert( pOp->p2>=0 ); 3940 if( pOp->p3>0 ){ 3941 /* Make register reg[P3] into a value that can be used as the data 3942 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 3943 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 3944 assert( pOp->opcode==OP_OpenEphemeral ); 3945 assert( aMem[pOp->p3].flags & MEM_Null ); 3946 aMem[pOp->p3].n = 0; 3947 aMem[pOp->p3].z = ""; 3948 } 3949 pCx = p->apCsr[pOp->p1]; 3950 if( pCx && !pCx->hasBeenDuped ){ 3951 /* If the ephermeral table is already open and has no duplicates from 3952 ** OP_OpenDup, then erase all existing content so that the table is 3953 ** empty again, rather than creating a new table. */ 3954 assert( pCx->isEphemeral ); 3955 pCx->seqCount = 0; 3956 pCx->cacheStatus = CACHE_STALE; 3957 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3958 }else{ 3959 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3960 if( pCx==0 ) goto no_mem; 3961 pCx->isEphemeral = 1; 3962 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3963 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3964 vfsFlags); 3965 if( rc==SQLITE_OK ){ 3966 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3967 if( rc==SQLITE_OK ){ 3968 /* If a transient index is required, create it by calling 3969 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3970 ** opening it. If a transient table is required, just use the 3971 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3972 */ 3973 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3974 assert( pOp->p4type==P4_KEYINFO ); 3975 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot, 3976 BTREE_BLOBKEY | pOp->p5); 3977 if( rc==SQLITE_OK ){ 3978 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 3979 assert( pKeyInfo->db==db ); 3980 assert( pKeyInfo->enc==ENC(db) ); 3981 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3982 pKeyInfo, pCx->uc.pCursor); 3983 } 3984 pCx->isTable = 0; 3985 }else{ 3986 pCx->pgnoRoot = SCHEMA_ROOT; 3987 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 3988 0, pCx->uc.pCursor); 3989 pCx->isTable = 1; 3990 } 3991 } 3992 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3993 if( rc ){ 3994 sqlite3BtreeClose(pCx->pBtx); 3995 } 3996 } 3997 } 3998 if( rc ) goto abort_due_to_error; 3999 pCx->nullRow = 1; 4000 break; 4001 } 4002 4003 /* Opcode: SorterOpen P1 P2 P3 P4 * 4004 ** 4005 ** This opcode works like OP_OpenEphemeral except that it opens 4006 ** a transient index that is specifically designed to sort large 4007 ** tables using an external merge-sort algorithm. 4008 ** 4009 ** If argument P3 is non-zero, then it indicates that the sorter may 4010 ** assume that a stable sort considering the first P3 fields of each 4011 ** key is sufficient to produce the required results. 4012 */ 4013 case OP_SorterOpen: { 4014 VdbeCursor *pCx; 4015 4016 assert( pOp->p1>=0 ); 4017 assert( pOp->p2>=0 ); 4018 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 4019 if( pCx==0 ) goto no_mem; 4020 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4021 assert( pCx->pKeyInfo->db==db ); 4022 assert( pCx->pKeyInfo->enc==ENC(db) ); 4023 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4024 if( rc ) goto abort_due_to_error; 4025 break; 4026 } 4027 4028 /* Opcode: SequenceTest P1 P2 * * * 4029 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4030 ** 4031 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4032 ** to P2. Regardless of whether or not the jump is taken, increment the 4033 ** the sequence value. 4034 */ 4035 case OP_SequenceTest: { 4036 VdbeCursor *pC; 4037 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4038 pC = p->apCsr[pOp->p1]; 4039 assert( isSorter(pC) ); 4040 if( (pC->seqCount++)==0 ){ 4041 goto jump_to_p2; 4042 } 4043 break; 4044 } 4045 4046 /* Opcode: OpenPseudo P1 P2 P3 * * 4047 ** Synopsis: P3 columns in r[P2] 4048 ** 4049 ** Open a new cursor that points to a fake table that contains a single 4050 ** row of data. The content of that one row is the content of memory 4051 ** register P2. In other words, cursor P1 becomes an alias for the 4052 ** MEM_Blob content contained in register P2. 4053 ** 4054 ** A pseudo-table created by this opcode is used to hold a single 4055 ** row output from the sorter so that the row can be decomposed into 4056 ** individual columns using the OP_Column opcode. The OP_Column opcode 4057 ** is the only cursor opcode that works with a pseudo-table. 4058 ** 4059 ** P3 is the number of fields in the records that will be stored by 4060 ** the pseudo-table. 4061 */ 4062 case OP_OpenPseudo: { 4063 VdbeCursor *pCx; 4064 4065 assert( pOp->p1>=0 ); 4066 assert( pOp->p3>=0 ); 4067 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4068 if( pCx==0 ) goto no_mem; 4069 pCx->nullRow = 1; 4070 pCx->seekResult = pOp->p2; 4071 pCx->isTable = 1; 4072 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4073 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4074 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4075 ** which is a performance optimization */ 4076 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4077 assert( pOp->p5==0 ); 4078 break; 4079 } 4080 4081 /* Opcode: Close P1 * * * * 4082 ** 4083 ** Close a cursor previously opened as P1. If P1 is not 4084 ** currently open, this instruction is a no-op. 4085 */ 4086 case OP_Close: { 4087 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4088 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4089 p->apCsr[pOp->p1] = 0; 4090 break; 4091 } 4092 4093 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4094 /* Opcode: ColumnsUsed P1 * * P4 * 4095 ** 4096 ** This opcode (which only exists if SQLite was compiled with 4097 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4098 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4099 ** (P4_INT64) in which the first 63 bits are one for each of the 4100 ** first 63 columns of the table or index that are actually used 4101 ** by the cursor. The high-order bit is set if any column after 4102 ** the 64th is used. 4103 */ 4104 case OP_ColumnsUsed: { 4105 VdbeCursor *pC; 4106 pC = p->apCsr[pOp->p1]; 4107 assert( pC->eCurType==CURTYPE_BTREE ); 4108 pC->maskUsed = *(u64*)pOp->p4.pI64; 4109 break; 4110 } 4111 #endif 4112 4113 /* Opcode: SeekGE P1 P2 P3 P4 * 4114 ** Synopsis: key=r[P3@P4] 4115 ** 4116 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4117 ** use the value in register P3 as the key. If cursor P1 refers 4118 ** to an SQL index, then P3 is the first in an array of P4 registers 4119 ** that are used as an unpacked index key. 4120 ** 4121 ** Reposition cursor P1 so that it points to the smallest entry that 4122 ** is greater than or equal to the key value. If there are no records 4123 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4124 ** 4125 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4126 ** opcode will either land on a record that exactly matches the key, or 4127 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4128 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4129 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4130 ** IdxGT opcode will be used on subsequent loop iterations. The 4131 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4132 ** is an equality search. 4133 ** 4134 ** This opcode leaves the cursor configured to move in forward order, 4135 ** from the beginning toward the end. In other words, the cursor is 4136 ** configured to use Next, not Prev. 4137 ** 4138 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4139 */ 4140 /* Opcode: SeekGT P1 P2 P3 P4 * 4141 ** Synopsis: key=r[P3@P4] 4142 ** 4143 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4144 ** use the value in register P3 as a key. If cursor P1 refers 4145 ** to an SQL index, then P3 is the first in an array of P4 registers 4146 ** that are used as an unpacked index key. 4147 ** 4148 ** Reposition cursor P1 so that it points to the smallest entry that 4149 ** is greater than the key value. If there are no records greater than 4150 ** the key and P2 is not zero, then jump to P2. 4151 ** 4152 ** This opcode leaves the cursor configured to move in forward order, 4153 ** from the beginning toward the end. In other words, the cursor is 4154 ** configured to use Next, not Prev. 4155 ** 4156 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4157 */ 4158 /* Opcode: SeekLT P1 P2 P3 P4 * 4159 ** Synopsis: key=r[P3@P4] 4160 ** 4161 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4162 ** use the value in register P3 as a key. If cursor P1 refers 4163 ** to an SQL index, then P3 is the first in an array of P4 registers 4164 ** that are used as an unpacked index key. 4165 ** 4166 ** Reposition cursor P1 so that it points to the largest entry that 4167 ** is less than the key value. If there are no records less than 4168 ** the key and P2 is not zero, then jump to P2. 4169 ** 4170 ** This opcode leaves the cursor configured to move in reverse order, 4171 ** from the end toward the beginning. In other words, the cursor is 4172 ** configured to use Prev, not Next. 4173 ** 4174 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4175 */ 4176 /* Opcode: SeekLE P1 P2 P3 P4 * 4177 ** Synopsis: key=r[P3@P4] 4178 ** 4179 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4180 ** use the value in register P3 as a key. If cursor P1 refers 4181 ** to an SQL index, then P3 is the first in an array of P4 registers 4182 ** that are used as an unpacked index key. 4183 ** 4184 ** Reposition cursor P1 so that it points to the largest entry that 4185 ** is less than or equal to the key value. If there are no records 4186 ** less than or equal to the key and P2 is not zero, then jump to P2. 4187 ** 4188 ** This opcode leaves the cursor configured to move in reverse order, 4189 ** from the end toward the beginning. In other words, the cursor is 4190 ** configured to use Prev, not Next. 4191 ** 4192 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4193 ** opcode will either land on a record that exactly matches the key, or 4194 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4195 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4196 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4197 ** IdxGE opcode will be used on subsequent loop iterations. The 4198 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4199 ** is an equality search. 4200 ** 4201 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4202 */ 4203 case OP_SeekLT: /* jump, in3, group */ 4204 case OP_SeekLE: /* jump, in3, group */ 4205 case OP_SeekGE: /* jump, in3, group */ 4206 case OP_SeekGT: { /* jump, in3, group */ 4207 int res; /* Comparison result */ 4208 int oc; /* Opcode */ 4209 VdbeCursor *pC; /* The cursor to seek */ 4210 UnpackedRecord r; /* The key to seek for */ 4211 int nField; /* Number of columns or fields in the key */ 4212 i64 iKey; /* The rowid we are to seek to */ 4213 int eqOnly; /* Only interested in == results */ 4214 4215 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4216 assert( pOp->p2!=0 ); 4217 pC = p->apCsr[pOp->p1]; 4218 assert( pC!=0 ); 4219 assert( pC->eCurType==CURTYPE_BTREE ); 4220 assert( OP_SeekLE == OP_SeekLT+1 ); 4221 assert( OP_SeekGE == OP_SeekLT+2 ); 4222 assert( OP_SeekGT == OP_SeekLT+3 ); 4223 assert( pC->isOrdered ); 4224 assert( pC->uc.pCursor!=0 ); 4225 oc = pOp->opcode; 4226 eqOnly = 0; 4227 pC->nullRow = 0; 4228 #ifdef SQLITE_DEBUG 4229 pC->seekOp = pOp->opcode; 4230 #endif 4231 4232 pC->deferredMoveto = 0; 4233 pC->cacheStatus = CACHE_STALE; 4234 if( pC->isTable ){ 4235 u16 flags3, newType; 4236 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4237 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4238 || CORRUPT_DB ); 4239 4240 /* The input value in P3 might be of any type: integer, real, string, 4241 ** blob, or NULL. But it needs to be an integer before we can do 4242 ** the seek, so convert it. */ 4243 pIn3 = &aMem[pOp->p3]; 4244 flags3 = pIn3->flags; 4245 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4246 applyNumericAffinity(pIn3, 0); 4247 } 4248 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4249 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4250 pIn3->flags = flags3; /* But convert the type back to its original */ 4251 4252 /* If the P3 value could not be converted into an integer without 4253 ** loss of information, then special processing is required... */ 4254 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4255 if( (newType & MEM_Real)==0 ){ 4256 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4257 VdbeBranchTaken(1,2); 4258 goto jump_to_p2; 4259 }else{ 4260 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4261 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4262 goto seek_not_found; 4263 } 4264 }else 4265 4266 /* If the approximation iKey is larger than the actual real search 4267 ** term, substitute >= for > and < for <=. e.g. if the search term 4268 ** is 4.9 and the integer approximation 5: 4269 ** 4270 ** (x > 4.9) -> (x >= 5) 4271 ** (x <= 4.9) -> (x < 5) 4272 */ 4273 if( pIn3->u.r<(double)iKey ){ 4274 assert( OP_SeekGE==(OP_SeekGT-1) ); 4275 assert( OP_SeekLT==(OP_SeekLE-1) ); 4276 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4277 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4278 } 4279 4280 /* If the approximation iKey is smaller than the actual real search 4281 ** term, substitute <= for < and > for >=. */ 4282 else if( pIn3->u.r>(double)iKey ){ 4283 assert( OP_SeekLE==(OP_SeekLT+1) ); 4284 assert( OP_SeekGT==(OP_SeekGE+1) ); 4285 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4286 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4287 } 4288 } 4289 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4290 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4291 if( rc!=SQLITE_OK ){ 4292 goto abort_due_to_error; 4293 } 4294 }else{ 4295 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4296 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4297 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4298 ** with the same key. 4299 */ 4300 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4301 eqOnly = 1; 4302 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4303 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4304 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4305 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4306 assert( pOp[1].p1==pOp[0].p1 ); 4307 assert( pOp[1].p2==pOp[0].p2 ); 4308 assert( pOp[1].p3==pOp[0].p3 ); 4309 assert( pOp[1].p4.i==pOp[0].p4.i ); 4310 } 4311 4312 nField = pOp->p4.i; 4313 assert( pOp->p4type==P4_INT32 ); 4314 assert( nField>0 ); 4315 r.pKeyInfo = pC->pKeyInfo; 4316 r.nField = (u16)nField; 4317 4318 /* The next line of code computes as follows, only faster: 4319 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4320 ** r.default_rc = -1; 4321 ** }else{ 4322 ** r.default_rc = +1; 4323 ** } 4324 */ 4325 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4326 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4327 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4328 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4329 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4330 4331 r.aMem = &aMem[pOp->p3]; 4332 #ifdef SQLITE_DEBUG 4333 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4334 #endif 4335 r.eqSeen = 0; 4336 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4337 if( rc!=SQLITE_OK ){ 4338 goto abort_due_to_error; 4339 } 4340 if( eqOnly && r.eqSeen==0 ){ 4341 assert( res!=0 ); 4342 goto seek_not_found; 4343 } 4344 } 4345 #ifdef SQLITE_TEST 4346 sqlite3_search_count++; 4347 #endif 4348 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4349 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4350 res = 0; 4351 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4352 if( rc!=SQLITE_OK ){ 4353 if( rc==SQLITE_DONE ){ 4354 rc = SQLITE_OK; 4355 res = 1; 4356 }else{ 4357 goto abort_due_to_error; 4358 } 4359 } 4360 }else{ 4361 res = 0; 4362 } 4363 }else{ 4364 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4365 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4366 res = 0; 4367 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4368 if( rc!=SQLITE_OK ){ 4369 if( rc==SQLITE_DONE ){ 4370 rc = SQLITE_OK; 4371 res = 1; 4372 }else{ 4373 goto abort_due_to_error; 4374 } 4375 } 4376 }else{ 4377 /* res might be negative because the table is empty. Check to 4378 ** see if this is the case. 4379 */ 4380 res = sqlite3BtreeEof(pC->uc.pCursor); 4381 } 4382 } 4383 seek_not_found: 4384 assert( pOp->p2>0 ); 4385 VdbeBranchTaken(res!=0,2); 4386 if( res ){ 4387 goto jump_to_p2; 4388 }else if( eqOnly ){ 4389 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4390 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4391 } 4392 break; 4393 } 4394 4395 4396 /* Opcode: SeekScan P1 P2 * * * 4397 ** Synopsis: Scan-ahead up to P1 rows 4398 ** 4399 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4400 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4401 ** checked by assert() statements. 4402 ** 4403 ** This opcode uses the P1 through P4 operands of the subsequent 4404 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4405 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4406 ** the P1 and P2 operands of this opcode are also used, and are called 4407 ** This.P1 and This.P2. 4408 ** 4409 ** This opcode helps to optimize IN operators on a multi-column index 4410 ** where the IN operator is on the later terms of the index by avoiding 4411 ** unnecessary seeks on the btree, substituting steps to the next row 4412 ** of the b-tree instead. A correct answer is obtained if this opcode 4413 ** is omitted or is a no-op. 4414 ** 4415 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4416 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4417 ** to. Call this SeekGE.P4/P5 row the "target". 4418 ** 4419 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4420 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4421 ** 4422 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4423 ** might be the target row, or it might be near and slightly before the 4424 ** target row. This opcode attempts to position the cursor on the target 4425 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4426 ** between 0 and This.P1 times. 4427 ** 4428 ** There are three possible outcomes from this opcode:<ol> 4429 ** 4430 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4431 ** is earlier in the btree than the target row, then fall through 4432 ** into the subsquence OP_SeekGE opcode. 4433 ** 4434 ** <li> If the cursor is successfully moved to the target row by 0 or more 4435 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4436 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4437 ** 4438 ** <li> If the cursor ends up past the target row (indicating the the target 4439 ** row does not exist in the btree) then jump to SeekOP.P2. 4440 ** </ol> 4441 */ 4442 case OP_SeekScan: { 4443 VdbeCursor *pC; 4444 int res; 4445 int nStep; 4446 UnpackedRecord r; 4447 4448 assert( pOp[1].opcode==OP_SeekGE ); 4449 4450 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4451 ** follows the OP_SeekGE. */ 4452 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4453 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4454 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4455 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4456 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4457 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4458 4459 assert( pOp->p1>0 ); 4460 pC = p->apCsr[pOp[1].p1]; 4461 assert( pC!=0 ); 4462 assert( pC->eCurType==CURTYPE_BTREE ); 4463 assert( !pC->isTable ); 4464 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4465 #ifdef SQLITE_DEBUG 4466 if( db->flags&SQLITE_VdbeTrace ){ 4467 printf("... cursor not valid - fall through\n"); 4468 } 4469 #endif 4470 break; 4471 } 4472 nStep = pOp->p1; 4473 assert( nStep>=1 ); 4474 r.pKeyInfo = pC->pKeyInfo; 4475 r.nField = (u16)pOp[1].p4.i; 4476 r.default_rc = 0; 4477 r.aMem = &aMem[pOp[1].p3]; 4478 #ifdef SQLITE_DEBUG 4479 { 4480 int i; 4481 for(i=0; i<r.nField; i++){ 4482 assert( memIsValid(&r.aMem[i]) ); 4483 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4484 } 4485 } 4486 #endif 4487 res = 0; /* Not needed. Only used to silence a warning. */ 4488 while(1){ 4489 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4490 if( rc ) goto abort_due_to_error; 4491 if( res>0 ){ 4492 seekscan_search_fail: 4493 #ifdef SQLITE_DEBUG 4494 if( db->flags&SQLITE_VdbeTrace ){ 4495 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4496 } 4497 #endif 4498 VdbeBranchTaken(1,3); 4499 pOp++; 4500 goto jump_to_p2; 4501 } 4502 if( res==0 ){ 4503 #ifdef SQLITE_DEBUG 4504 if( db->flags&SQLITE_VdbeTrace ){ 4505 printf("... %d steps and then success\n", pOp->p1 - nStep); 4506 } 4507 #endif 4508 VdbeBranchTaken(2,3); 4509 goto jump_to_p2; 4510 break; 4511 } 4512 if( nStep<=0 ){ 4513 #ifdef SQLITE_DEBUG 4514 if( db->flags&SQLITE_VdbeTrace ){ 4515 printf("... fall through after %d steps\n", pOp->p1); 4516 } 4517 #endif 4518 VdbeBranchTaken(0,3); 4519 break; 4520 } 4521 nStep--; 4522 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4523 if( rc ){ 4524 if( rc==SQLITE_DONE ){ 4525 rc = SQLITE_OK; 4526 goto seekscan_search_fail; 4527 }else{ 4528 goto abort_due_to_error; 4529 } 4530 } 4531 } 4532 4533 break; 4534 } 4535 4536 4537 /* Opcode: SeekHit P1 P2 P3 * * 4538 ** Synopsis: set P2<=seekHit<=P3 4539 ** 4540 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4541 ** so that it is no less than P2 and no greater than P3. 4542 ** 4543 ** The seekHit integer represents the maximum of terms in an index for which 4544 ** there is known to be at least one match. If the seekHit value is smaller 4545 ** than the total number of equality terms in an index lookup, then the 4546 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4547 ** early, thus saving work. This is part of the IN-early-out optimization. 4548 ** 4549 ** P1 must be a valid b-tree cursor. 4550 */ 4551 case OP_SeekHit: { 4552 VdbeCursor *pC; 4553 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4554 pC = p->apCsr[pOp->p1]; 4555 assert( pC!=0 ); 4556 assert( pOp->p3>=pOp->p2 ); 4557 if( pC->seekHit<pOp->p2 ){ 4558 pC->seekHit = pOp->p2; 4559 }else if( pC->seekHit>pOp->p3 ){ 4560 pC->seekHit = pOp->p3; 4561 } 4562 break; 4563 } 4564 4565 /* Opcode: IfNotOpen P1 P2 * * * 4566 ** Synopsis: if( !csr[P1] ) goto P2 4567 ** 4568 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4569 */ 4570 case OP_IfNotOpen: { /* jump */ 4571 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4572 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4573 if( !p->apCsr[pOp->p1] ){ 4574 goto jump_to_p2_and_check_for_interrupt; 4575 } 4576 break; 4577 } 4578 4579 /* Opcode: Found P1 P2 P3 P4 * 4580 ** Synopsis: key=r[P3@P4] 4581 ** 4582 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4583 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4584 ** record. 4585 ** 4586 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4587 ** is a prefix of any entry in P1 then a jump is made to P2 and 4588 ** P1 is left pointing at the matching entry. 4589 ** 4590 ** This operation leaves the cursor in a state where it can be 4591 ** advanced in the forward direction. The Next instruction will work, 4592 ** but not the Prev instruction. 4593 ** 4594 ** See also: NotFound, NoConflict, NotExists. SeekGe 4595 */ 4596 /* Opcode: NotFound P1 P2 P3 P4 * 4597 ** Synopsis: key=r[P3@P4] 4598 ** 4599 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4600 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4601 ** record. 4602 ** 4603 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4604 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4605 ** does contain an entry whose prefix matches the P3/P4 record then control 4606 ** falls through to the next instruction and P1 is left pointing at the 4607 ** matching entry. 4608 ** 4609 ** This operation leaves the cursor in a state where it cannot be 4610 ** advanced in either direction. In other words, the Next and Prev 4611 ** opcodes do not work after this operation. 4612 ** 4613 ** See also: Found, NotExists, NoConflict, IfNoHope 4614 */ 4615 /* Opcode: IfNoHope P1 P2 P3 P4 * 4616 ** Synopsis: key=r[P3@P4] 4617 ** 4618 ** Register P3 is the first of P4 registers that form an unpacked 4619 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4620 ** In other words, the operands to this opcode are the same as the 4621 ** operands to OP_NotFound and OP_IdxGT. 4622 ** 4623 ** This opcode is an optimization attempt only. If this opcode always 4624 ** falls through, the correct answer is still obtained, but extra works 4625 ** is performed. 4626 ** 4627 ** A value of N in the seekHit flag of cursor P1 means that there exists 4628 ** a key P3:N that will match some record in the index. We want to know 4629 ** if it is possible for a record P3:P4 to match some record in the 4630 ** index. If it is not possible, we can skips some work. So if seekHit 4631 ** is less than P4, attempt to find out if a match is possible by running 4632 ** OP_NotFound. 4633 ** 4634 ** This opcode is used in IN clause processing for a multi-column key. 4635 ** If an IN clause is attached to an element of the key other than the 4636 ** left-most element, and if there are no matches on the most recent 4637 ** seek over the whole key, then it might be that one of the key element 4638 ** to the left is prohibiting a match, and hence there is "no hope" of 4639 ** any match regardless of how many IN clause elements are checked. 4640 ** In such a case, we abandon the IN clause search early, using this 4641 ** opcode. The opcode name comes from the fact that the 4642 ** jump is taken if there is "no hope" of achieving a match. 4643 ** 4644 ** See also: NotFound, SeekHit 4645 */ 4646 /* Opcode: NoConflict P1 P2 P3 P4 * 4647 ** Synopsis: key=r[P3@P4] 4648 ** 4649 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4650 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4651 ** record. 4652 ** 4653 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4654 ** contains any NULL value, jump immediately to P2. If all terms of the 4655 ** record are not-NULL then a check is done to determine if any row in the 4656 ** P1 index btree has a matching key prefix. If there are no matches, jump 4657 ** immediately to P2. If there is a match, fall through and leave the P1 4658 ** cursor pointing to the matching row. 4659 ** 4660 ** This opcode is similar to OP_NotFound with the exceptions that the 4661 ** branch is always taken if any part of the search key input is NULL. 4662 ** 4663 ** This operation leaves the cursor in a state where it cannot be 4664 ** advanced in either direction. In other words, the Next and Prev 4665 ** opcodes do not work after this operation. 4666 ** 4667 ** See also: NotFound, Found, NotExists 4668 */ 4669 case OP_IfNoHope: { /* jump, in3 */ 4670 VdbeCursor *pC; 4671 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4672 pC = p->apCsr[pOp->p1]; 4673 assert( pC!=0 ); 4674 if( pC->seekHit>=pOp->p4.i ) break; 4675 /* Fall through into OP_NotFound */ 4676 /* no break */ deliberate_fall_through 4677 } 4678 case OP_NoConflict: /* jump, in3 */ 4679 case OP_NotFound: /* jump, in3 */ 4680 case OP_Found: { /* jump, in3 */ 4681 int alreadyExists; 4682 int takeJump; 4683 int ii; 4684 VdbeCursor *pC; 4685 int res; 4686 UnpackedRecord *pFree; 4687 UnpackedRecord *pIdxKey; 4688 UnpackedRecord r; 4689 4690 #ifdef SQLITE_TEST 4691 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4692 #endif 4693 4694 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4695 assert( pOp->p4type==P4_INT32 ); 4696 pC = p->apCsr[pOp->p1]; 4697 assert( pC!=0 ); 4698 #ifdef SQLITE_DEBUG 4699 pC->seekOp = pOp->opcode; 4700 #endif 4701 pIn3 = &aMem[pOp->p3]; 4702 assert( pC->eCurType==CURTYPE_BTREE ); 4703 assert( pC->uc.pCursor!=0 ); 4704 assert( pC->isTable==0 ); 4705 if( pOp->p4.i>0 ){ 4706 r.pKeyInfo = pC->pKeyInfo; 4707 r.nField = (u16)pOp->p4.i; 4708 r.aMem = pIn3; 4709 #ifdef SQLITE_DEBUG 4710 for(ii=0; ii<r.nField; ii++){ 4711 assert( memIsValid(&r.aMem[ii]) ); 4712 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4713 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4714 } 4715 #endif 4716 pIdxKey = &r; 4717 pFree = 0; 4718 }else{ 4719 assert( pIn3->flags & MEM_Blob ); 4720 rc = ExpandBlob(pIn3); 4721 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4722 if( rc ) goto no_mem; 4723 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4724 if( pIdxKey==0 ) goto no_mem; 4725 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4726 } 4727 pIdxKey->default_rc = 0; 4728 takeJump = 0; 4729 if( pOp->opcode==OP_NoConflict ){ 4730 /* For the OP_NoConflict opcode, take the jump if any of the 4731 ** input fields are NULL, since any key with a NULL will not 4732 ** conflict */ 4733 for(ii=0; ii<pIdxKey->nField; ii++){ 4734 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4735 takeJump = 1; 4736 break; 4737 } 4738 } 4739 } 4740 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4741 if( pFree ) sqlite3DbFreeNN(db, pFree); 4742 if( rc!=SQLITE_OK ){ 4743 goto abort_due_to_error; 4744 } 4745 pC->seekResult = res; 4746 alreadyExists = (res==0); 4747 pC->nullRow = 1-alreadyExists; 4748 pC->deferredMoveto = 0; 4749 pC->cacheStatus = CACHE_STALE; 4750 if( pOp->opcode==OP_Found ){ 4751 VdbeBranchTaken(alreadyExists!=0,2); 4752 if( alreadyExists ) goto jump_to_p2; 4753 }else{ 4754 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4755 if( takeJump || !alreadyExists ) goto jump_to_p2; 4756 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4757 } 4758 break; 4759 } 4760 4761 /* Opcode: SeekRowid P1 P2 P3 * * 4762 ** Synopsis: intkey=r[P3] 4763 ** 4764 ** P1 is the index of a cursor open on an SQL table btree (with integer 4765 ** keys). If register P3 does not contain an integer or if P1 does not 4766 ** contain a record with rowid P3 then jump immediately to P2. 4767 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4768 ** a record with rowid P3 then 4769 ** leave the cursor pointing at that record and fall through to the next 4770 ** instruction. 4771 ** 4772 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4773 ** the P3 register must be guaranteed to contain an integer value. With this 4774 ** opcode, register P3 might not contain an integer. 4775 ** 4776 ** The OP_NotFound opcode performs the same operation on index btrees 4777 ** (with arbitrary multi-value keys). 4778 ** 4779 ** This opcode leaves the cursor in a state where it cannot be advanced 4780 ** in either direction. In other words, the Next and Prev opcodes will 4781 ** not work following this opcode. 4782 ** 4783 ** See also: Found, NotFound, NoConflict, SeekRowid 4784 */ 4785 /* Opcode: NotExists P1 P2 P3 * * 4786 ** Synopsis: intkey=r[P3] 4787 ** 4788 ** P1 is the index of a cursor open on an SQL table btree (with integer 4789 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4790 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4791 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4792 ** leave the cursor pointing at that record and fall through to the next 4793 ** instruction. 4794 ** 4795 ** The OP_SeekRowid opcode performs the same operation but also allows the 4796 ** P3 register to contain a non-integer value, in which case the jump is 4797 ** always taken. This opcode requires that P3 always contain an integer. 4798 ** 4799 ** The OP_NotFound opcode performs the same operation on index btrees 4800 ** (with arbitrary multi-value keys). 4801 ** 4802 ** This opcode leaves the cursor in a state where it cannot be advanced 4803 ** in either direction. In other words, the Next and Prev opcodes will 4804 ** not work following this opcode. 4805 ** 4806 ** See also: Found, NotFound, NoConflict, SeekRowid 4807 */ 4808 case OP_SeekRowid: { /* jump, in3 */ 4809 VdbeCursor *pC; 4810 BtCursor *pCrsr; 4811 int res; 4812 u64 iKey; 4813 4814 pIn3 = &aMem[pOp->p3]; 4815 testcase( pIn3->flags & MEM_Int ); 4816 testcase( pIn3->flags & MEM_IntReal ); 4817 testcase( pIn3->flags & MEM_Real ); 4818 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4819 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4820 /* If pIn3->u.i does not contain an integer, compute iKey as the 4821 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4822 ** into an integer without loss of information. Take care to avoid 4823 ** changing the datatype of pIn3, however, as it is used by other 4824 ** parts of the prepared statement. */ 4825 Mem x = pIn3[0]; 4826 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4827 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4828 iKey = x.u.i; 4829 goto notExistsWithKey; 4830 } 4831 /* Fall through into OP_NotExists */ 4832 /* no break */ deliberate_fall_through 4833 case OP_NotExists: /* jump, in3 */ 4834 pIn3 = &aMem[pOp->p3]; 4835 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4836 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4837 iKey = pIn3->u.i; 4838 notExistsWithKey: 4839 pC = p->apCsr[pOp->p1]; 4840 assert( pC!=0 ); 4841 #ifdef SQLITE_DEBUG 4842 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4843 #endif 4844 assert( pC->isTable ); 4845 assert( pC->eCurType==CURTYPE_BTREE ); 4846 pCrsr = pC->uc.pCursor; 4847 assert( pCrsr!=0 ); 4848 res = 0; 4849 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4850 assert( rc==SQLITE_OK || res==0 ); 4851 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4852 pC->nullRow = 0; 4853 pC->cacheStatus = CACHE_STALE; 4854 pC->deferredMoveto = 0; 4855 VdbeBranchTaken(res!=0,2); 4856 pC->seekResult = res; 4857 if( res!=0 ){ 4858 assert( rc==SQLITE_OK ); 4859 if( pOp->p2==0 ){ 4860 rc = SQLITE_CORRUPT_BKPT; 4861 }else{ 4862 goto jump_to_p2; 4863 } 4864 } 4865 if( rc ) goto abort_due_to_error; 4866 break; 4867 } 4868 4869 /* Opcode: Sequence P1 P2 * * * 4870 ** Synopsis: r[P2]=cursor[P1].ctr++ 4871 ** 4872 ** Find the next available sequence number for cursor P1. 4873 ** Write the sequence number into register P2. 4874 ** The sequence number on the cursor is incremented after this 4875 ** instruction. 4876 */ 4877 case OP_Sequence: { /* out2 */ 4878 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4879 assert( p->apCsr[pOp->p1]!=0 ); 4880 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4881 pOut = out2Prerelease(p, pOp); 4882 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4883 break; 4884 } 4885 4886 4887 /* Opcode: NewRowid P1 P2 P3 * * 4888 ** Synopsis: r[P2]=rowid 4889 ** 4890 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4891 ** The record number is not previously used as a key in the database 4892 ** table that cursor P1 points to. The new record number is written 4893 ** written to register P2. 4894 ** 4895 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4896 ** the largest previously generated record number. No new record numbers are 4897 ** allowed to be less than this value. When this value reaches its maximum, 4898 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4899 ** generated record number. This P3 mechanism is used to help implement the 4900 ** AUTOINCREMENT feature. 4901 */ 4902 case OP_NewRowid: { /* out2 */ 4903 i64 v; /* The new rowid */ 4904 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4905 int res; /* Result of an sqlite3BtreeLast() */ 4906 int cnt; /* Counter to limit the number of searches */ 4907 #ifndef SQLITE_OMIT_AUTOINCREMENT 4908 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4909 VdbeFrame *pFrame; /* Root frame of VDBE */ 4910 #endif 4911 4912 v = 0; 4913 res = 0; 4914 pOut = out2Prerelease(p, pOp); 4915 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4916 pC = p->apCsr[pOp->p1]; 4917 assert( pC!=0 ); 4918 assert( pC->isTable ); 4919 assert( pC->eCurType==CURTYPE_BTREE ); 4920 assert( pC->uc.pCursor!=0 ); 4921 { 4922 /* The next rowid or record number (different terms for the same 4923 ** thing) is obtained in a two-step algorithm. 4924 ** 4925 ** First we attempt to find the largest existing rowid and add one 4926 ** to that. But if the largest existing rowid is already the maximum 4927 ** positive integer, we have to fall through to the second 4928 ** probabilistic algorithm 4929 ** 4930 ** The second algorithm is to select a rowid at random and see if 4931 ** it already exists in the table. If it does not exist, we have 4932 ** succeeded. If the random rowid does exist, we select a new one 4933 ** and try again, up to 100 times. 4934 */ 4935 assert( pC->isTable ); 4936 4937 #ifdef SQLITE_32BIT_ROWID 4938 # define MAX_ROWID 0x7fffffff 4939 #else 4940 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4941 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4942 ** to provide the constant while making all compilers happy. 4943 */ 4944 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4945 #endif 4946 4947 if( !pC->useRandomRowid ){ 4948 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4949 if( rc!=SQLITE_OK ){ 4950 goto abort_due_to_error; 4951 } 4952 if( res ){ 4953 v = 1; /* IMP: R-61914-48074 */ 4954 }else{ 4955 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4956 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4957 if( v>=MAX_ROWID ){ 4958 pC->useRandomRowid = 1; 4959 }else{ 4960 v++; /* IMP: R-29538-34987 */ 4961 } 4962 } 4963 } 4964 4965 #ifndef SQLITE_OMIT_AUTOINCREMENT 4966 if( pOp->p3 ){ 4967 /* Assert that P3 is a valid memory cell. */ 4968 assert( pOp->p3>0 ); 4969 if( p->pFrame ){ 4970 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4971 /* Assert that P3 is a valid memory cell. */ 4972 assert( pOp->p3<=pFrame->nMem ); 4973 pMem = &pFrame->aMem[pOp->p3]; 4974 }else{ 4975 /* Assert that P3 is a valid memory cell. */ 4976 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4977 pMem = &aMem[pOp->p3]; 4978 memAboutToChange(p, pMem); 4979 } 4980 assert( memIsValid(pMem) ); 4981 4982 REGISTER_TRACE(pOp->p3, pMem); 4983 sqlite3VdbeMemIntegerify(pMem); 4984 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4985 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4986 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4987 goto abort_due_to_error; 4988 } 4989 if( v<pMem->u.i+1 ){ 4990 v = pMem->u.i + 1; 4991 } 4992 pMem->u.i = v; 4993 } 4994 #endif 4995 if( pC->useRandomRowid ){ 4996 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4997 ** largest possible integer (9223372036854775807) then the database 4998 ** engine starts picking positive candidate ROWIDs at random until 4999 ** it finds one that is not previously used. */ 5000 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5001 ** an AUTOINCREMENT table. */ 5002 cnt = 0; 5003 do{ 5004 sqlite3_randomness(sizeof(v), &v); 5005 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5006 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 5007 0, &res))==SQLITE_OK) 5008 && (res==0) 5009 && (++cnt<100)); 5010 if( rc ) goto abort_due_to_error; 5011 if( res==0 ){ 5012 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5013 goto abort_due_to_error; 5014 } 5015 assert( v>0 ); /* EV: R-40812-03570 */ 5016 } 5017 pC->deferredMoveto = 0; 5018 pC->cacheStatus = CACHE_STALE; 5019 } 5020 pOut->u.i = v; 5021 break; 5022 } 5023 5024 /* Opcode: Insert P1 P2 P3 P4 P5 5025 ** Synopsis: intkey=r[P3] data=r[P2] 5026 ** 5027 ** Write an entry into the table of cursor P1. A new entry is 5028 ** created if it doesn't already exist or the data for an existing 5029 ** entry is overwritten. The data is the value MEM_Blob stored in register 5030 ** number P2. The key is stored in register P3. The key must 5031 ** be a MEM_Int. 5032 ** 5033 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5034 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5035 ** then rowid is stored for subsequent return by the 5036 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5037 ** 5038 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5039 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5040 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5041 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5042 ** 5043 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5044 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5045 ** is part of an INSERT operation. The difference is only important to 5046 ** the update hook. 5047 ** 5048 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5049 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5050 ** following a successful insert. 5051 ** 5052 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5053 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5054 ** and register P2 becomes ephemeral. If the cursor is changed, the 5055 ** value of register P2 will then change. Make sure this does not 5056 ** cause any problems.) 5057 ** 5058 ** This instruction only works on tables. The equivalent instruction 5059 ** for indices is OP_IdxInsert. 5060 */ 5061 case OP_Insert: { 5062 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5063 Mem *pKey; /* MEM cell holding key for the record */ 5064 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5065 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5066 const char *zDb; /* database name - used by the update hook */ 5067 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5068 BtreePayload x; /* Payload to be inserted */ 5069 5070 pData = &aMem[pOp->p2]; 5071 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5072 assert( memIsValid(pData) ); 5073 pC = p->apCsr[pOp->p1]; 5074 assert( pC!=0 ); 5075 assert( pC->eCurType==CURTYPE_BTREE ); 5076 assert( pC->deferredMoveto==0 ); 5077 assert( pC->uc.pCursor!=0 ); 5078 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5079 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5080 REGISTER_TRACE(pOp->p2, pData); 5081 sqlite3VdbeIncrWriteCounter(p, pC); 5082 5083 pKey = &aMem[pOp->p3]; 5084 assert( pKey->flags & MEM_Int ); 5085 assert( memIsValid(pKey) ); 5086 REGISTER_TRACE(pOp->p3, pKey); 5087 x.nKey = pKey->u.i; 5088 5089 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5090 assert( pC->iDb>=0 ); 5091 zDb = db->aDb[pC->iDb].zDbSName; 5092 pTab = pOp->p4.pTab; 5093 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5094 }else{ 5095 pTab = 0; 5096 zDb = 0; /* Not needed. Silence a compiler warning. */ 5097 } 5098 5099 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5100 /* Invoke the pre-update hook, if any */ 5101 if( pTab ){ 5102 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5103 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 5104 } 5105 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5106 /* Prevent post-update hook from running in cases when it should not */ 5107 pTab = 0; 5108 } 5109 } 5110 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5111 #endif 5112 5113 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5114 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5115 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5116 x.pData = pData->z; 5117 x.nData = pData->n; 5118 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5119 if( pData->flags & MEM_Zero ){ 5120 x.nZero = pData->u.nZero; 5121 }else{ 5122 x.nZero = 0; 5123 } 5124 x.pKey = 0; 5125 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5126 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5127 seekResult 5128 ); 5129 pC->deferredMoveto = 0; 5130 pC->cacheStatus = CACHE_STALE; 5131 5132 /* Invoke the update-hook if required. */ 5133 if( rc ) goto abort_due_to_error; 5134 if( pTab ){ 5135 assert( db->xUpdateCallback!=0 ); 5136 assert( pTab->aCol!=0 ); 5137 db->xUpdateCallback(db->pUpdateArg, 5138 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5139 zDb, pTab->zName, x.nKey); 5140 } 5141 break; 5142 } 5143 5144 /* Opcode: RowCell P1 P2 P3 * * 5145 ** 5146 ** P1 and P2 are both open cursors. Both must be opened on the same type 5147 ** of table - intkey or index. This opcode is used as part of copying 5148 ** the current row from P2 into P1. If the cursors are opened on intkey 5149 ** tables, register P3 contains the rowid to use with the new record in 5150 ** P1. If they are opened on index tables, P3 is not used. 5151 ** 5152 ** This opcode must be followed by either an Insert or InsertIdx opcode 5153 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5154 */ 5155 case OP_RowCell: { 5156 VdbeCursor *pDest; /* Cursor to write to */ 5157 VdbeCursor *pSrc; /* Cursor to read from */ 5158 i64 iKey; /* Rowid value to insert with */ 5159 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5160 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5161 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5162 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5163 pDest = p->apCsr[pOp->p1]; 5164 pSrc = p->apCsr[pOp->p2]; 5165 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5166 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5167 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5168 break; 5169 }; 5170 5171 /* Opcode: Delete P1 P2 P3 P4 P5 5172 ** 5173 ** Delete the record at which the P1 cursor is currently pointing. 5174 ** 5175 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5176 ** the cursor will be left pointing at either the next or the previous 5177 ** record in the table. If it is left pointing at the next record, then 5178 ** the next Next instruction will be a no-op. As a result, in this case 5179 ** it is ok to delete a record from within a Next loop. If 5180 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5181 ** left in an undefined state. 5182 ** 5183 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5184 ** delete one of several associated with deleting a table row and all its 5185 ** associated index entries. Exactly one of those deletes is the "primary" 5186 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5187 ** marked with the AUXDELETE flag. 5188 ** 5189 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5190 ** change count is incremented (otherwise not). 5191 ** 5192 ** P1 must not be pseudo-table. It has to be a real table with 5193 ** multiple rows. 5194 ** 5195 ** If P4 is not NULL then it points to a Table object. In this case either 5196 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5197 ** have been positioned using OP_NotFound prior to invoking this opcode in 5198 ** this case. Specifically, if one is configured, the pre-update hook is 5199 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5200 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5201 ** 5202 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5203 ** of the memory cell that contains the value that the rowid of the row will 5204 ** be set to by the update. 5205 */ 5206 case OP_Delete: { 5207 VdbeCursor *pC; 5208 const char *zDb; 5209 Table *pTab; 5210 int opflags; 5211 5212 opflags = pOp->p2; 5213 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5214 pC = p->apCsr[pOp->p1]; 5215 assert( pC!=0 ); 5216 assert( pC->eCurType==CURTYPE_BTREE ); 5217 assert( pC->uc.pCursor!=0 ); 5218 assert( pC->deferredMoveto==0 ); 5219 sqlite3VdbeIncrWriteCounter(p, pC); 5220 5221 #ifdef SQLITE_DEBUG 5222 if( pOp->p4type==P4_TABLE 5223 && HasRowid(pOp->p4.pTab) 5224 && pOp->p5==0 5225 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5226 ){ 5227 /* If p5 is zero, the seek operation that positioned the cursor prior to 5228 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5229 ** the row that is being deleted */ 5230 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5231 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5232 } 5233 #endif 5234 5235 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5236 ** the name of the db to pass as to it. Also set local pTab to a copy 5237 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5238 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5239 ** VdbeCursor.movetoTarget to the current rowid. */ 5240 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5241 assert( pC->iDb>=0 ); 5242 assert( pOp->p4.pTab!=0 ); 5243 zDb = db->aDb[pC->iDb].zDbSName; 5244 pTab = pOp->p4.pTab; 5245 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5246 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5247 } 5248 }else{ 5249 zDb = 0; /* Not needed. Silence a compiler warning. */ 5250 pTab = 0; /* Not needed. Silence a compiler warning. */ 5251 } 5252 5253 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5254 /* Invoke the pre-update-hook if required. */ 5255 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 5256 assert( !(opflags & OPFLAG_ISUPDATE) 5257 || HasRowid(pTab)==0 5258 || (aMem[pOp->p3].flags & MEM_Int) 5259 ); 5260 sqlite3VdbePreUpdateHook(p, pC, 5261 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5262 zDb, pTab, pC->movetoTarget, 5263 pOp->p3 5264 ); 5265 } 5266 if( opflags & OPFLAG_ISNOOP ) break; 5267 #endif 5268 5269 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5270 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5271 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5272 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5273 5274 #ifdef SQLITE_DEBUG 5275 if( p->pFrame==0 ){ 5276 if( pC->isEphemeral==0 5277 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5278 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5279 ){ 5280 nExtraDelete++; 5281 } 5282 if( pOp->p2 & OPFLAG_NCHANGE ){ 5283 nExtraDelete--; 5284 } 5285 } 5286 #endif 5287 5288 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5289 pC->cacheStatus = CACHE_STALE; 5290 pC->seekResult = 0; 5291 if( rc ) goto abort_due_to_error; 5292 5293 /* Invoke the update-hook if required. */ 5294 if( opflags & OPFLAG_NCHANGE ){ 5295 p->nChange++; 5296 if( db->xUpdateCallback && HasRowid(pTab) ){ 5297 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5298 pC->movetoTarget); 5299 assert( pC->iDb>=0 ); 5300 } 5301 } 5302 5303 break; 5304 } 5305 /* Opcode: ResetCount * * * * * 5306 ** 5307 ** The value of the change counter is copied to the database handle 5308 ** change counter (returned by subsequent calls to sqlite3_changes()). 5309 ** Then the VMs internal change counter resets to 0. 5310 ** This is used by trigger programs. 5311 */ 5312 case OP_ResetCount: { 5313 sqlite3VdbeSetChanges(db, p->nChange); 5314 p->nChange = 0; 5315 break; 5316 } 5317 5318 /* Opcode: SorterCompare P1 P2 P3 P4 5319 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5320 ** 5321 ** P1 is a sorter cursor. This instruction compares a prefix of the 5322 ** record blob in register P3 against a prefix of the entry that 5323 ** the sorter cursor currently points to. Only the first P4 fields 5324 ** of r[P3] and the sorter record are compared. 5325 ** 5326 ** If either P3 or the sorter contains a NULL in one of their significant 5327 ** fields (not counting the P4 fields at the end which are ignored) then 5328 ** the comparison is assumed to be equal. 5329 ** 5330 ** Fall through to next instruction if the two records compare equal to 5331 ** each other. Jump to P2 if they are different. 5332 */ 5333 case OP_SorterCompare: { 5334 VdbeCursor *pC; 5335 int res; 5336 int nKeyCol; 5337 5338 pC = p->apCsr[pOp->p1]; 5339 assert( isSorter(pC) ); 5340 assert( pOp->p4type==P4_INT32 ); 5341 pIn3 = &aMem[pOp->p3]; 5342 nKeyCol = pOp->p4.i; 5343 res = 0; 5344 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5345 VdbeBranchTaken(res!=0,2); 5346 if( rc ) goto abort_due_to_error; 5347 if( res ) goto jump_to_p2; 5348 break; 5349 }; 5350 5351 /* Opcode: SorterData P1 P2 P3 * * 5352 ** Synopsis: r[P2]=data 5353 ** 5354 ** Write into register P2 the current sorter data for sorter cursor P1. 5355 ** Then clear the column header cache on cursor P3. 5356 ** 5357 ** This opcode is normally use to move a record out of the sorter and into 5358 ** a register that is the source for a pseudo-table cursor created using 5359 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5360 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5361 ** us from having to issue a separate NullRow instruction to clear that cache. 5362 */ 5363 case OP_SorterData: { 5364 VdbeCursor *pC; 5365 5366 pOut = &aMem[pOp->p2]; 5367 pC = p->apCsr[pOp->p1]; 5368 assert( isSorter(pC) ); 5369 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5370 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5371 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5372 if( rc ) goto abort_due_to_error; 5373 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5374 break; 5375 } 5376 5377 /* Opcode: RowData P1 P2 P3 * * 5378 ** Synopsis: r[P2]=data 5379 ** 5380 ** Write into register P2 the complete row content for the row at 5381 ** which cursor P1 is currently pointing. 5382 ** There is no interpretation of the data. 5383 ** It is just copied onto the P2 register exactly as 5384 ** it is found in the database file. 5385 ** 5386 ** If cursor P1 is an index, then the content is the key of the row. 5387 ** If cursor P2 is a table, then the content extracted is the data. 5388 ** 5389 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5390 ** of a real table, not a pseudo-table. 5391 ** 5392 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5393 ** into the database page. That means that the content of the output 5394 ** register will be invalidated as soon as the cursor moves - including 5395 ** moves caused by other cursors that "save" the current cursors 5396 ** position in order that they can write to the same table. If P3==0 5397 ** then a copy of the data is made into memory. P3!=0 is faster, but 5398 ** P3==0 is safer. 5399 ** 5400 ** If P3!=0 then the content of the P2 register is unsuitable for use 5401 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5402 ** The P2 register content is invalidated by opcodes like OP_Function or 5403 ** by any use of another cursor pointing to the same table. 5404 */ 5405 case OP_RowData: { 5406 VdbeCursor *pC; 5407 BtCursor *pCrsr; 5408 u32 n; 5409 5410 pOut = out2Prerelease(p, pOp); 5411 5412 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5413 pC = p->apCsr[pOp->p1]; 5414 assert( pC!=0 ); 5415 assert( pC->eCurType==CURTYPE_BTREE ); 5416 assert( isSorter(pC)==0 ); 5417 assert( pC->nullRow==0 ); 5418 assert( pC->uc.pCursor!=0 ); 5419 pCrsr = pC->uc.pCursor; 5420 5421 /* The OP_RowData opcodes always follow OP_NotExists or 5422 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5423 ** that might invalidate the cursor. 5424 ** If this where not the case, on of the following assert()s 5425 ** would fail. Should this ever change (because of changes in the code 5426 ** generator) then the fix would be to insert a call to 5427 ** sqlite3VdbeCursorMoveto(). 5428 */ 5429 assert( pC->deferredMoveto==0 ); 5430 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5431 5432 n = sqlite3BtreePayloadSize(pCrsr); 5433 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5434 goto too_big; 5435 } 5436 testcase( n==0 ); 5437 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5438 if( rc ) goto abort_due_to_error; 5439 if( !pOp->p3 ) Deephemeralize(pOut); 5440 UPDATE_MAX_BLOBSIZE(pOut); 5441 REGISTER_TRACE(pOp->p2, pOut); 5442 break; 5443 } 5444 5445 /* Opcode: Rowid P1 P2 * * * 5446 ** Synopsis: r[P2]=rowid 5447 ** 5448 ** Store in register P2 an integer which is the key of the table entry that 5449 ** P1 is currently point to. 5450 ** 5451 ** P1 can be either an ordinary table or a virtual table. There used to 5452 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5453 ** one opcode now works for both table types. 5454 */ 5455 case OP_Rowid: { /* out2 */ 5456 VdbeCursor *pC; 5457 i64 v; 5458 sqlite3_vtab *pVtab; 5459 const sqlite3_module *pModule; 5460 5461 pOut = out2Prerelease(p, pOp); 5462 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5463 pC = p->apCsr[pOp->p1]; 5464 assert( pC!=0 ); 5465 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5466 if( pC->nullRow ){ 5467 pOut->flags = MEM_Null; 5468 break; 5469 }else if( pC->deferredMoveto ){ 5470 v = pC->movetoTarget; 5471 #ifndef SQLITE_OMIT_VIRTUALTABLE 5472 }else if( pC->eCurType==CURTYPE_VTAB ){ 5473 assert( pC->uc.pVCur!=0 ); 5474 pVtab = pC->uc.pVCur->pVtab; 5475 pModule = pVtab->pModule; 5476 assert( pModule->xRowid ); 5477 rc = pModule->xRowid(pC->uc.pVCur, &v); 5478 sqlite3VtabImportErrmsg(p, pVtab); 5479 if( rc ) goto abort_due_to_error; 5480 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5481 }else{ 5482 assert( pC->eCurType==CURTYPE_BTREE ); 5483 assert( pC->uc.pCursor!=0 ); 5484 rc = sqlite3VdbeCursorRestore(pC); 5485 if( rc ) goto abort_due_to_error; 5486 if( pC->nullRow ){ 5487 pOut->flags = MEM_Null; 5488 break; 5489 } 5490 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5491 } 5492 pOut->u.i = v; 5493 break; 5494 } 5495 5496 /* Opcode: NullRow P1 * * * * 5497 ** 5498 ** Move the cursor P1 to a null row. Any OP_Column operations 5499 ** that occur while the cursor is on the null row will always 5500 ** write a NULL. 5501 */ 5502 case OP_NullRow: { 5503 VdbeCursor *pC; 5504 5505 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5506 pC = p->apCsr[pOp->p1]; 5507 assert( pC!=0 ); 5508 pC->nullRow = 1; 5509 pC->cacheStatus = CACHE_STALE; 5510 if( pC->eCurType==CURTYPE_BTREE ){ 5511 assert( pC->uc.pCursor!=0 ); 5512 sqlite3BtreeClearCursor(pC->uc.pCursor); 5513 } 5514 #ifdef SQLITE_DEBUG 5515 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5516 #endif 5517 break; 5518 } 5519 5520 /* Opcode: SeekEnd P1 * * * * 5521 ** 5522 ** Position cursor P1 at the end of the btree for the purpose of 5523 ** appending a new entry onto the btree. 5524 ** 5525 ** It is assumed that the cursor is used only for appending and so 5526 ** if the cursor is valid, then the cursor must already be pointing 5527 ** at the end of the btree and so no changes are made to 5528 ** the cursor. 5529 */ 5530 /* Opcode: Last P1 P2 * * * 5531 ** 5532 ** The next use of the Rowid or Column or Prev instruction for P1 5533 ** will refer to the last entry in the database table or index. 5534 ** If the table or index is empty and P2>0, then jump immediately to P2. 5535 ** If P2 is 0 or if the table or index is not empty, fall through 5536 ** to the following instruction. 5537 ** 5538 ** This opcode leaves the cursor configured to move in reverse order, 5539 ** from the end toward the beginning. In other words, the cursor is 5540 ** configured to use Prev, not Next. 5541 */ 5542 case OP_SeekEnd: 5543 case OP_Last: { /* jump */ 5544 VdbeCursor *pC; 5545 BtCursor *pCrsr; 5546 int res; 5547 5548 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5549 pC = p->apCsr[pOp->p1]; 5550 assert( pC!=0 ); 5551 assert( pC->eCurType==CURTYPE_BTREE ); 5552 pCrsr = pC->uc.pCursor; 5553 res = 0; 5554 assert( pCrsr!=0 ); 5555 #ifdef SQLITE_DEBUG 5556 pC->seekOp = pOp->opcode; 5557 #endif 5558 if( pOp->opcode==OP_SeekEnd ){ 5559 assert( pOp->p2==0 ); 5560 pC->seekResult = -1; 5561 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5562 break; 5563 } 5564 } 5565 rc = sqlite3BtreeLast(pCrsr, &res); 5566 pC->nullRow = (u8)res; 5567 pC->deferredMoveto = 0; 5568 pC->cacheStatus = CACHE_STALE; 5569 if( rc ) goto abort_due_to_error; 5570 if( pOp->p2>0 ){ 5571 VdbeBranchTaken(res!=0,2); 5572 if( res ) goto jump_to_p2; 5573 } 5574 break; 5575 } 5576 5577 /* Opcode: IfSmaller P1 P2 P3 * * 5578 ** 5579 ** Estimate the number of rows in the table P1. Jump to P2 if that 5580 ** estimate is less than approximately 2**(0.1*P3). 5581 */ 5582 case OP_IfSmaller: { /* jump */ 5583 VdbeCursor *pC; 5584 BtCursor *pCrsr; 5585 int res; 5586 i64 sz; 5587 5588 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5589 pC = p->apCsr[pOp->p1]; 5590 assert( pC!=0 ); 5591 pCrsr = pC->uc.pCursor; 5592 assert( pCrsr ); 5593 rc = sqlite3BtreeFirst(pCrsr, &res); 5594 if( rc ) goto abort_due_to_error; 5595 if( res==0 ){ 5596 sz = sqlite3BtreeRowCountEst(pCrsr); 5597 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5598 } 5599 VdbeBranchTaken(res!=0,2); 5600 if( res ) goto jump_to_p2; 5601 break; 5602 } 5603 5604 5605 /* Opcode: SorterSort P1 P2 * * * 5606 ** 5607 ** After all records have been inserted into the Sorter object 5608 ** identified by P1, invoke this opcode to actually do the sorting. 5609 ** Jump to P2 if there are no records to be sorted. 5610 ** 5611 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5612 ** for Sorter objects. 5613 */ 5614 /* Opcode: Sort P1 P2 * * * 5615 ** 5616 ** This opcode does exactly the same thing as OP_Rewind except that 5617 ** it increments an undocumented global variable used for testing. 5618 ** 5619 ** Sorting is accomplished by writing records into a sorting index, 5620 ** then rewinding that index and playing it back from beginning to 5621 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5622 ** rewinding so that the global variable will be incremented and 5623 ** regression tests can determine whether or not the optimizer is 5624 ** correctly optimizing out sorts. 5625 */ 5626 case OP_SorterSort: /* jump */ 5627 case OP_Sort: { /* jump */ 5628 #ifdef SQLITE_TEST 5629 sqlite3_sort_count++; 5630 sqlite3_search_count--; 5631 #endif 5632 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5633 /* Fall through into OP_Rewind */ 5634 /* no break */ deliberate_fall_through 5635 } 5636 /* Opcode: Rewind P1 P2 * * * 5637 ** 5638 ** The next use of the Rowid or Column or Next instruction for P1 5639 ** will refer to the first entry in the database table or index. 5640 ** If the table or index is empty, jump immediately to P2. 5641 ** If the table or index is not empty, fall through to the following 5642 ** instruction. 5643 ** 5644 ** This opcode leaves the cursor configured to move in forward order, 5645 ** from the beginning toward the end. In other words, the cursor is 5646 ** configured to use Next, not Prev. 5647 */ 5648 case OP_Rewind: { /* jump */ 5649 VdbeCursor *pC; 5650 BtCursor *pCrsr; 5651 int res; 5652 5653 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5654 assert( pOp->p5==0 ); 5655 pC = p->apCsr[pOp->p1]; 5656 assert( pC!=0 ); 5657 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5658 res = 1; 5659 #ifdef SQLITE_DEBUG 5660 pC->seekOp = OP_Rewind; 5661 #endif 5662 if( isSorter(pC) ){ 5663 rc = sqlite3VdbeSorterRewind(pC, &res); 5664 }else{ 5665 assert( pC->eCurType==CURTYPE_BTREE ); 5666 pCrsr = pC->uc.pCursor; 5667 assert( pCrsr ); 5668 rc = sqlite3BtreeFirst(pCrsr, &res); 5669 pC->deferredMoveto = 0; 5670 pC->cacheStatus = CACHE_STALE; 5671 } 5672 if( rc ) goto abort_due_to_error; 5673 pC->nullRow = (u8)res; 5674 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5675 VdbeBranchTaken(res!=0,2); 5676 if( res ) goto jump_to_p2; 5677 break; 5678 } 5679 5680 /* Opcode: Next P1 P2 P3 P4 P5 5681 ** 5682 ** Advance cursor P1 so that it points to the next key/data pair in its 5683 ** table or index. If there are no more key/value pairs then fall through 5684 ** to the following instruction. But if the cursor advance was successful, 5685 ** jump immediately to P2. 5686 ** 5687 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5688 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5689 ** to follow SeekLT, SeekLE, or OP_Last. 5690 ** 5691 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5692 ** been opened prior to this opcode or the program will segfault. 5693 ** 5694 ** The P3 value is a hint to the btree implementation. If P3==1, that 5695 ** means P1 is an SQL index and that this instruction could have been 5696 ** omitted if that index had been unique. P3 is usually 0. P3 is 5697 ** always either 0 or 1. 5698 ** 5699 ** P4 is always of type P4_ADVANCE. The function pointer points to 5700 ** sqlite3BtreeNext(). 5701 ** 5702 ** If P5 is positive and the jump is taken, then event counter 5703 ** number P5-1 in the prepared statement is incremented. 5704 ** 5705 ** See also: Prev 5706 */ 5707 /* Opcode: Prev P1 P2 P3 P4 P5 5708 ** 5709 ** Back up cursor P1 so that it points to the previous key/data pair in its 5710 ** table or index. If there is no previous key/value pairs then fall through 5711 ** to the following instruction. But if the cursor backup was successful, 5712 ** jump immediately to P2. 5713 ** 5714 ** 5715 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5716 ** OP_Last opcode used to position the cursor. Prev is not allowed 5717 ** to follow SeekGT, SeekGE, or OP_Rewind. 5718 ** 5719 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5720 ** not open then the behavior is undefined. 5721 ** 5722 ** The P3 value is a hint to the btree implementation. If P3==1, that 5723 ** means P1 is an SQL index and that this instruction could have been 5724 ** omitted if that index had been unique. P3 is usually 0. P3 is 5725 ** always either 0 or 1. 5726 ** 5727 ** P4 is always of type P4_ADVANCE. The function pointer points to 5728 ** sqlite3BtreePrevious(). 5729 ** 5730 ** If P5 is positive and the jump is taken, then event counter 5731 ** number P5-1 in the prepared statement is incremented. 5732 */ 5733 /* Opcode: SorterNext P1 P2 * * P5 5734 ** 5735 ** This opcode works just like OP_Next except that P1 must be a 5736 ** sorter object for which the OP_SorterSort opcode has been 5737 ** invoked. This opcode advances the cursor to the next sorted 5738 ** record, or jumps to P2 if there are no more sorted records. 5739 */ 5740 case OP_SorterNext: { /* jump */ 5741 VdbeCursor *pC; 5742 5743 pC = p->apCsr[pOp->p1]; 5744 assert( isSorter(pC) ); 5745 rc = sqlite3VdbeSorterNext(db, pC); 5746 goto next_tail; 5747 case OP_Prev: /* jump */ 5748 case OP_Next: /* jump */ 5749 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5750 assert( pOp->p5<ArraySize(p->aCounter) ); 5751 pC = p->apCsr[pOp->p1]; 5752 assert( pC!=0 ); 5753 assert( pC->deferredMoveto==0 ); 5754 assert( pC->eCurType==CURTYPE_BTREE ); 5755 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5756 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5757 5758 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5759 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5760 assert( pOp->opcode!=OP_Next 5761 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5762 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5763 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5764 || pC->seekOp==OP_IfNoHope); 5765 assert( pOp->opcode!=OP_Prev 5766 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5767 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5768 || pC->seekOp==OP_NullRow); 5769 5770 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5771 next_tail: 5772 pC->cacheStatus = CACHE_STALE; 5773 VdbeBranchTaken(rc==SQLITE_OK,2); 5774 if( rc==SQLITE_OK ){ 5775 pC->nullRow = 0; 5776 p->aCounter[pOp->p5]++; 5777 #ifdef SQLITE_TEST 5778 sqlite3_search_count++; 5779 #endif 5780 goto jump_to_p2_and_check_for_interrupt; 5781 } 5782 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5783 rc = SQLITE_OK; 5784 pC->nullRow = 1; 5785 goto check_for_interrupt; 5786 } 5787 5788 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5789 ** Synopsis: key=r[P2] 5790 ** 5791 ** Register P2 holds an SQL index key made using the 5792 ** MakeRecord instructions. This opcode writes that key 5793 ** into the index P1. Data for the entry is nil. 5794 ** 5795 ** If P4 is not zero, then it is the number of values in the unpacked 5796 ** key of reg(P2). In that case, P3 is the index of the first register 5797 ** for the unpacked key. The availability of the unpacked key can sometimes 5798 ** be an optimization. 5799 ** 5800 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5801 ** that this insert is likely to be an append. 5802 ** 5803 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5804 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5805 ** then the change counter is unchanged. 5806 ** 5807 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5808 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5809 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5810 ** seeks on the cursor or if the most recent seek used a key equivalent 5811 ** to P2. 5812 ** 5813 ** This instruction only works for indices. The equivalent instruction 5814 ** for tables is OP_Insert. 5815 */ 5816 case OP_IdxInsert: { /* in2 */ 5817 VdbeCursor *pC; 5818 BtreePayload x; 5819 5820 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5821 pC = p->apCsr[pOp->p1]; 5822 sqlite3VdbeIncrWriteCounter(p, pC); 5823 assert( pC!=0 ); 5824 assert( !isSorter(pC) ); 5825 pIn2 = &aMem[pOp->p2]; 5826 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 5827 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5828 assert( pC->eCurType==CURTYPE_BTREE ); 5829 assert( pC->isTable==0 ); 5830 rc = ExpandBlob(pIn2); 5831 if( rc ) goto abort_due_to_error; 5832 x.nKey = pIn2->n; 5833 x.pKey = pIn2->z; 5834 x.aMem = aMem + pOp->p3; 5835 x.nMem = (u16)pOp->p4.i; 5836 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5837 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5838 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5839 ); 5840 assert( pC->deferredMoveto==0 ); 5841 pC->cacheStatus = CACHE_STALE; 5842 if( rc) goto abort_due_to_error; 5843 break; 5844 } 5845 5846 /* Opcode: SorterInsert P1 P2 * * * 5847 ** Synopsis: key=r[P2] 5848 ** 5849 ** Register P2 holds an SQL index key made using the 5850 ** MakeRecord instructions. This opcode writes that key 5851 ** into the sorter P1. Data for the entry is nil. 5852 */ 5853 case OP_SorterInsert: { /* in2 */ 5854 VdbeCursor *pC; 5855 5856 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5857 pC = p->apCsr[pOp->p1]; 5858 sqlite3VdbeIncrWriteCounter(p, pC); 5859 assert( pC!=0 ); 5860 assert( isSorter(pC) ); 5861 pIn2 = &aMem[pOp->p2]; 5862 assert( pIn2->flags & MEM_Blob ); 5863 assert( pC->isTable==0 ); 5864 rc = ExpandBlob(pIn2); 5865 if( rc ) goto abort_due_to_error; 5866 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5867 if( rc) goto abort_due_to_error; 5868 break; 5869 } 5870 5871 /* Opcode: IdxDelete P1 P2 P3 * P5 5872 ** Synopsis: key=r[P2@P3] 5873 ** 5874 ** The content of P3 registers starting at register P2 form 5875 ** an unpacked index key. This opcode removes that entry from the 5876 ** index opened by cursor P1. 5877 ** 5878 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 5879 ** if no matching index entry is found. This happens when running 5880 ** an UPDATE or DELETE statement and the index entry to be updated 5881 ** or deleted is not found. For some uses of IdxDelete 5882 ** (example: the EXCEPT operator) it does not matter that no matching 5883 ** entry is found. For those cases, P5 is zero. 5884 */ 5885 case OP_IdxDelete: { 5886 VdbeCursor *pC; 5887 BtCursor *pCrsr; 5888 int res; 5889 UnpackedRecord r; 5890 5891 assert( pOp->p3>0 ); 5892 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5893 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5894 pC = p->apCsr[pOp->p1]; 5895 assert( pC!=0 ); 5896 assert( pC->eCurType==CURTYPE_BTREE ); 5897 sqlite3VdbeIncrWriteCounter(p, pC); 5898 pCrsr = pC->uc.pCursor; 5899 assert( pCrsr!=0 ); 5900 r.pKeyInfo = pC->pKeyInfo; 5901 r.nField = (u16)pOp->p3; 5902 r.default_rc = 0; 5903 r.aMem = &aMem[pOp->p2]; 5904 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5905 if( rc ) goto abort_due_to_error; 5906 if( res==0 ){ 5907 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5908 if( rc ) goto abort_due_to_error; 5909 }else if( pOp->p5 ){ 5910 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 5911 goto abort_due_to_error; 5912 } 5913 assert( pC->deferredMoveto==0 ); 5914 pC->cacheStatus = CACHE_STALE; 5915 pC->seekResult = 0; 5916 break; 5917 } 5918 5919 /* Opcode: DeferredSeek P1 * P3 P4 * 5920 ** Synopsis: Move P3 to P1.rowid if needed 5921 ** 5922 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5923 ** table. This opcode does a deferred seek of the P3 table cursor 5924 ** to the row that corresponds to the current row of P1. 5925 ** 5926 ** This is a deferred seek. Nothing actually happens until 5927 ** the cursor is used to read a record. That way, if no reads 5928 ** occur, no unnecessary I/O happens. 5929 ** 5930 ** P4 may be an array of integers (type P4_INTARRAY) containing 5931 ** one entry for each column in the P3 table. If array entry a(i) 5932 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5933 ** equivalent to performing the deferred seek and then reading column i 5934 ** from P1. This information is stored in P3 and used to redirect 5935 ** reads against P3 over to P1, thus possibly avoiding the need to 5936 ** seek and read cursor P3. 5937 */ 5938 /* Opcode: IdxRowid P1 P2 * * * 5939 ** Synopsis: r[P2]=rowid 5940 ** 5941 ** Write into register P2 an integer which is the last entry in the record at 5942 ** the end of the index key pointed to by cursor P1. This integer should be 5943 ** the rowid of the table entry to which this index entry points. 5944 ** 5945 ** See also: Rowid, MakeRecord. 5946 */ 5947 case OP_DeferredSeek: 5948 case OP_IdxRowid: { /* out2 */ 5949 VdbeCursor *pC; /* The P1 index cursor */ 5950 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5951 i64 rowid; /* Rowid that P1 current points to */ 5952 5953 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5954 pC = p->apCsr[pOp->p1]; 5955 assert( pC!=0 ); 5956 assert( pC->eCurType==CURTYPE_BTREE ); 5957 assert( pC->uc.pCursor!=0 ); 5958 assert( pC->isTable==0 ); 5959 assert( pC->deferredMoveto==0 ); 5960 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5961 5962 /* The IdxRowid and Seek opcodes are combined because of the commonality 5963 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5964 rc = sqlite3VdbeCursorRestore(pC); 5965 5966 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5967 ** out from under the cursor. That will never happens for an IdxRowid 5968 ** or Seek opcode */ 5969 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5970 5971 if( !pC->nullRow ){ 5972 rowid = 0; /* Not needed. Only used to silence a warning. */ 5973 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5974 if( rc!=SQLITE_OK ){ 5975 goto abort_due_to_error; 5976 } 5977 if( pOp->opcode==OP_DeferredSeek ){ 5978 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5979 pTabCur = p->apCsr[pOp->p3]; 5980 assert( pTabCur!=0 ); 5981 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5982 assert( pTabCur->uc.pCursor!=0 ); 5983 assert( pTabCur->isTable ); 5984 pTabCur->nullRow = 0; 5985 pTabCur->movetoTarget = rowid; 5986 pTabCur->deferredMoveto = 1; 5987 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5988 pTabCur->aAltMap = pOp->p4.ai; 5989 assert( !pC->isEphemeral ); 5990 assert( !pTabCur->isEphemeral ); 5991 pTabCur->pAltCursor = pC; 5992 }else{ 5993 pOut = out2Prerelease(p, pOp); 5994 pOut->u.i = rowid; 5995 } 5996 }else{ 5997 assert( pOp->opcode==OP_IdxRowid ); 5998 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5999 } 6000 break; 6001 } 6002 6003 /* Opcode: FinishSeek P1 * * * * 6004 ** 6005 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6006 ** seek operation now, without further delay. If the cursor seek has 6007 ** already occurred, this instruction is a no-op. 6008 */ 6009 case OP_FinishSeek: { 6010 VdbeCursor *pC; /* The P1 index cursor */ 6011 6012 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6013 pC = p->apCsr[pOp->p1]; 6014 if( pC->deferredMoveto ){ 6015 rc = sqlite3VdbeFinishMoveto(pC); 6016 if( rc ) goto abort_due_to_error; 6017 } 6018 break; 6019 } 6020 6021 /* Opcode: IdxGE P1 P2 P3 P4 * 6022 ** Synopsis: key=r[P3@P4] 6023 ** 6024 ** The P4 register values beginning with P3 form an unpacked index 6025 ** key that omits the PRIMARY KEY. Compare this key value against the index 6026 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6027 ** fields at the end. 6028 ** 6029 ** If the P1 index entry is greater than or equal to the key value 6030 ** then jump to P2. Otherwise fall through to the next instruction. 6031 */ 6032 /* Opcode: IdxGT P1 P2 P3 P4 * 6033 ** Synopsis: key=r[P3@P4] 6034 ** 6035 ** The P4 register values beginning with P3 form an unpacked index 6036 ** key that omits the PRIMARY KEY. Compare this key value against the index 6037 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6038 ** fields at the end. 6039 ** 6040 ** If the P1 index entry is greater than the key value 6041 ** then jump to P2. Otherwise fall through to the next instruction. 6042 */ 6043 /* Opcode: IdxLT P1 P2 P3 P4 * 6044 ** Synopsis: key=r[P3@P4] 6045 ** 6046 ** The P4 register values beginning with P3 form an unpacked index 6047 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6048 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6049 ** ROWID on the P1 index. 6050 ** 6051 ** If the P1 index entry is less than the key value then jump to P2. 6052 ** Otherwise fall through to the next instruction. 6053 */ 6054 /* Opcode: IdxLE P1 P2 P3 P4 * 6055 ** Synopsis: key=r[P3@P4] 6056 ** 6057 ** The P4 register values beginning with P3 form an unpacked index 6058 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6059 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6060 ** ROWID on the P1 index. 6061 ** 6062 ** If the P1 index entry is less than or equal to the key value then jump 6063 ** to P2. Otherwise fall through to the next instruction. 6064 */ 6065 case OP_IdxLE: /* jump */ 6066 case OP_IdxGT: /* jump */ 6067 case OP_IdxLT: /* jump */ 6068 case OP_IdxGE: { /* jump */ 6069 VdbeCursor *pC; 6070 int res; 6071 UnpackedRecord r; 6072 6073 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6074 pC = p->apCsr[pOp->p1]; 6075 assert( pC!=0 ); 6076 assert( pC->isOrdered ); 6077 assert( pC->eCurType==CURTYPE_BTREE ); 6078 assert( pC->uc.pCursor!=0); 6079 assert( pC->deferredMoveto==0 ); 6080 assert( pOp->p4type==P4_INT32 ); 6081 r.pKeyInfo = pC->pKeyInfo; 6082 r.nField = (u16)pOp->p4.i; 6083 if( pOp->opcode<OP_IdxLT ){ 6084 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6085 r.default_rc = -1; 6086 }else{ 6087 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6088 r.default_rc = 0; 6089 } 6090 r.aMem = &aMem[pOp->p3]; 6091 #ifdef SQLITE_DEBUG 6092 { 6093 int i; 6094 for(i=0; i<r.nField; i++){ 6095 assert( memIsValid(&r.aMem[i]) ); 6096 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6097 } 6098 } 6099 #endif 6100 6101 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6102 { 6103 i64 nCellKey = 0; 6104 BtCursor *pCur; 6105 Mem m; 6106 6107 assert( pC->eCurType==CURTYPE_BTREE ); 6108 pCur = pC->uc.pCursor; 6109 assert( sqlite3BtreeCursorIsValid(pCur) ); 6110 nCellKey = sqlite3BtreePayloadSize(pCur); 6111 /* nCellKey will always be between 0 and 0xffffffff because of the way 6112 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6113 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6114 rc = SQLITE_CORRUPT_BKPT; 6115 goto abort_due_to_error; 6116 } 6117 sqlite3VdbeMemInit(&m, db, 0); 6118 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6119 if( rc ) goto abort_due_to_error; 6120 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6121 sqlite3VdbeMemRelease(&m); 6122 } 6123 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6124 6125 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6126 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6127 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6128 res = -res; 6129 }else{ 6130 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6131 res++; 6132 } 6133 VdbeBranchTaken(res>0,2); 6134 assert( rc==SQLITE_OK ); 6135 if( res>0 ) goto jump_to_p2; 6136 break; 6137 } 6138 6139 /* Opcode: Destroy P1 P2 P3 * * 6140 ** 6141 ** Delete an entire database table or index whose root page in the database 6142 ** file is given by P1. 6143 ** 6144 ** The table being destroyed is in the main database file if P3==0. If 6145 ** P3==1 then the table to be clear is in the auxiliary database file 6146 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6147 ** 6148 ** If AUTOVACUUM is enabled then it is possible that another root page 6149 ** might be moved into the newly deleted root page in order to keep all 6150 ** root pages contiguous at the beginning of the database. The former 6151 ** value of the root page that moved - its value before the move occurred - 6152 ** is stored in register P2. If no page movement was required (because the 6153 ** table being dropped was already the last one in the database) then a 6154 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6155 ** is stored in register P2. 6156 ** 6157 ** This opcode throws an error if there are any active reader VMs when 6158 ** it is invoked. This is done to avoid the difficulty associated with 6159 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6160 ** database. This error is thrown even if the database is not an AUTOVACUUM 6161 ** db in order to avoid introducing an incompatibility between autovacuum 6162 ** and non-autovacuum modes. 6163 ** 6164 ** See also: Clear 6165 */ 6166 case OP_Destroy: { /* out2 */ 6167 int iMoved; 6168 int iDb; 6169 6170 sqlite3VdbeIncrWriteCounter(p, 0); 6171 assert( p->readOnly==0 ); 6172 assert( pOp->p1>1 ); 6173 pOut = out2Prerelease(p, pOp); 6174 pOut->flags = MEM_Null; 6175 if( db->nVdbeRead > db->nVDestroy+1 ){ 6176 rc = SQLITE_LOCKED; 6177 p->errorAction = OE_Abort; 6178 goto abort_due_to_error; 6179 }else{ 6180 iDb = pOp->p3; 6181 assert( DbMaskTest(p->btreeMask, iDb) ); 6182 iMoved = 0; /* Not needed. Only to silence a warning. */ 6183 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6184 pOut->flags = MEM_Int; 6185 pOut->u.i = iMoved; 6186 if( rc ) goto abort_due_to_error; 6187 #ifndef SQLITE_OMIT_AUTOVACUUM 6188 if( iMoved!=0 ){ 6189 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6190 /* All OP_Destroy operations occur on the same btree */ 6191 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6192 resetSchemaOnFault = iDb+1; 6193 } 6194 #endif 6195 } 6196 break; 6197 } 6198 6199 /* Opcode: Clear P1 P2 P3 6200 ** 6201 ** Delete all contents of the database table or index whose root page 6202 ** in the database file is given by P1. But, unlike Destroy, do not 6203 ** remove the table or index from the database file. 6204 ** 6205 ** The table being clear is in the main database file if P2==0. If 6206 ** P2==1 then the table to be clear is in the auxiliary database file 6207 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6208 ** 6209 ** If the P3 value is non-zero, then the table referred to must be an 6210 ** intkey table (an SQL table, not an index). In this case the row change 6211 ** count is incremented by the number of rows in the table being cleared. 6212 ** If P3 is greater than zero, then the value stored in register P3 is 6213 ** also incremented by the number of rows in the table being cleared. 6214 ** 6215 ** See also: Destroy 6216 */ 6217 case OP_Clear: { 6218 int nChange; 6219 6220 sqlite3VdbeIncrWriteCounter(p, 0); 6221 nChange = 0; 6222 assert( p->readOnly==0 ); 6223 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6224 rc = sqlite3BtreeClearTable( 6225 db->aDb[pOp->p2].pBt, (u32)pOp->p1, (pOp->p3 ? &nChange : 0) 6226 ); 6227 if( pOp->p3 ){ 6228 p->nChange += nChange; 6229 if( pOp->p3>0 ){ 6230 assert( memIsValid(&aMem[pOp->p3]) ); 6231 memAboutToChange(p, &aMem[pOp->p3]); 6232 aMem[pOp->p3].u.i += nChange; 6233 } 6234 } 6235 if( rc ) goto abort_due_to_error; 6236 break; 6237 } 6238 6239 /* Opcode: ResetSorter P1 * * * * 6240 ** 6241 ** Delete all contents from the ephemeral table or sorter 6242 ** that is open on cursor P1. 6243 ** 6244 ** This opcode only works for cursors used for sorting and 6245 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6246 */ 6247 case OP_ResetSorter: { 6248 VdbeCursor *pC; 6249 6250 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6251 pC = p->apCsr[pOp->p1]; 6252 assert( pC!=0 ); 6253 if( isSorter(pC) ){ 6254 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6255 }else{ 6256 assert( pC->eCurType==CURTYPE_BTREE ); 6257 assert( pC->isEphemeral ); 6258 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6259 if( rc ) goto abort_due_to_error; 6260 } 6261 break; 6262 } 6263 6264 /* Opcode: CreateBtree P1 P2 P3 * * 6265 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6266 ** 6267 ** Allocate a new b-tree in the main database file if P1==0 or in the 6268 ** TEMP database file if P1==1 or in an attached database if 6269 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6270 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6271 ** The root page number of the new b-tree is stored in register P2. 6272 */ 6273 case OP_CreateBtree: { /* out2 */ 6274 Pgno pgno; 6275 Db *pDb; 6276 6277 sqlite3VdbeIncrWriteCounter(p, 0); 6278 pOut = out2Prerelease(p, pOp); 6279 pgno = 0; 6280 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6281 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6282 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6283 assert( p->readOnly==0 ); 6284 pDb = &db->aDb[pOp->p1]; 6285 assert( pDb->pBt!=0 ); 6286 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6287 if( rc ) goto abort_due_to_error; 6288 pOut->u.i = pgno; 6289 break; 6290 } 6291 6292 /* Opcode: SqlExec * * * P4 * 6293 ** 6294 ** Run the SQL statement or statements specified in the P4 string. 6295 */ 6296 case OP_SqlExec: { 6297 sqlite3VdbeIncrWriteCounter(p, 0); 6298 db->nSqlExec++; 6299 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6300 db->nSqlExec--; 6301 if( rc ) goto abort_due_to_error; 6302 break; 6303 } 6304 6305 /* Opcode: ParseSchema P1 * * P4 * 6306 ** 6307 ** Read and parse all entries from the schema table of database P1 6308 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6309 ** entire schema for P1 is reparsed. 6310 ** 6311 ** This opcode invokes the parser to create a new virtual machine, 6312 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6313 */ 6314 case OP_ParseSchema: { 6315 int iDb; 6316 const char *zSchema; 6317 char *zSql; 6318 InitData initData; 6319 6320 /* Any prepared statement that invokes this opcode will hold mutexes 6321 ** on every btree. This is a prerequisite for invoking 6322 ** sqlite3InitCallback(). 6323 */ 6324 #ifdef SQLITE_DEBUG 6325 for(iDb=0; iDb<db->nDb; iDb++){ 6326 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6327 } 6328 #endif 6329 6330 iDb = pOp->p1; 6331 assert( iDb>=0 && iDb<db->nDb ); 6332 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 6333 6334 #ifndef SQLITE_OMIT_ALTERTABLE 6335 if( pOp->p4.z==0 ){ 6336 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6337 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6338 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6339 db->mDbFlags |= DBFLAG_SchemaChange; 6340 p->expired = 0; 6341 }else 6342 #endif 6343 { 6344 zSchema = DFLT_SCHEMA_TABLE; 6345 initData.db = db; 6346 initData.iDb = iDb; 6347 initData.pzErrMsg = &p->zErrMsg; 6348 initData.mInitFlags = 0; 6349 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6350 zSql = sqlite3MPrintf(db, 6351 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6352 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6353 if( zSql==0 ){ 6354 rc = SQLITE_NOMEM_BKPT; 6355 }else{ 6356 assert( db->init.busy==0 ); 6357 db->init.busy = 1; 6358 initData.rc = SQLITE_OK; 6359 initData.nInitRow = 0; 6360 assert( !db->mallocFailed ); 6361 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6362 if( rc==SQLITE_OK ) rc = initData.rc; 6363 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6364 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6365 ** at least one SQL statement. Any less than that indicates that 6366 ** the sqlite_schema table is corrupt. */ 6367 rc = SQLITE_CORRUPT_BKPT; 6368 } 6369 sqlite3DbFreeNN(db, zSql); 6370 db->init.busy = 0; 6371 } 6372 } 6373 if( rc ){ 6374 sqlite3ResetAllSchemasOfConnection(db); 6375 if( rc==SQLITE_NOMEM ){ 6376 goto no_mem; 6377 } 6378 goto abort_due_to_error; 6379 } 6380 break; 6381 } 6382 6383 #if !defined(SQLITE_OMIT_ANALYZE) 6384 /* Opcode: LoadAnalysis P1 * * * * 6385 ** 6386 ** Read the sqlite_stat1 table for database P1 and load the content 6387 ** of that table into the internal index hash table. This will cause 6388 ** the analysis to be used when preparing all subsequent queries. 6389 */ 6390 case OP_LoadAnalysis: { 6391 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6392 rc = sqlite3AnalysisLoad(db, pOp->p1); 6393 if( rc ) goto abort_due_to_error; 6394 break; 6395 } 6396 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6397 6398 /* Opcode: DropTable P1 * * P4 * 6399 ** 6400 ** Remove the internal (in-memory) data structures that describe 6401 ** the table named P4 in database P1. This is called after a table 6402 ** is dropped from disk (using the Destroy opcode) in order to keep 6403 ** the internal representation of the 6404 ** schema consistent with what is on disk. 6405 */ 6406 case OP_DropTable: { 6407 sqlite3VdbeIncrWriteCounter(p, 0); 6408 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6409 break; 6410 } 6411 6412 /* Opcode: DropIndex P1 * * P4 * 6413 ** 6414 ** Remove the internal (in-memory) data structures that describe 6415 ** the index named P4 in database P1. This is called after an index 6416 ** is dropped from disk (using the Destroy opcode) 6417 ** in order to keep the internal representation of the 6418 ** schema consistent with what is on disk. 6419 */ 6420 case OP_DropIndex: { 6421 sqlite3VdbeIncrWriteCounter(p, 0); 6422 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6423 break; 6424 } 6425 6426 /* Opcode: DropTrigger P1 * * P4 * 6427 ** 6428 ** Remove the internal (in-memory) data structures that describe 6429 ** the trigger named P4 in database P1. This is called after a trigger 6430 ** is dropped from disk (using the Destroy opcode) in order to keep 6431 ** the internal representation of the 6432 ** schema consistent with what is on disk. 6433 */ 6434 case OP_DropTrigger: { 6435 sqlite3VdbeIncrWriteCounter(p, 0); 6436 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6437 break; 6438 } 6439 6440 6441 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6442 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6443 ** 6444 ** Do an analysis of the currently open database. Store in 6445 ** register P1 the text of an error message describing any problems. 6446 ** If no problems are found, store a NULL in register P1. 6447 ** 6448 ** The register P3 contains one less than the maximum number of allowed errors. 6449 ** At most reg(P3) errors will be reported. 6450 ** In other words, the analysis stops as soon as reg(P1) errors are 6451 ** seen. Reg(P1) is updated with the number of errors remaining. 6452 ** 6453 ** The root page numbers of all tables in the database are integers 6454 ** stored in P4_INTARRAY argument. 6455 ** 6456 ** If P5 is not zero, the check is done on the auxiliary database 6457 ** file, not the main database file. 6458 ** 6459 ** This opcode is used to implement the integrity_check pragma. 6460 */ 6461 case OP_IntegrityCk: { 6462 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6463 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6464 int nErr; /* Number of errors reported */ 6465 char *z; /* Text of the error report */ 6466 Mem *pnErr; /* Register keeping track of errors remaining */ 6467 6468 assert( p->bIsReader ); 6469 nRoot = pOp->p2; 6470 aRoot = pOp->p4.ai; 6471 assert( nRoot>0 ); 6472 assert( aRoot[0]==(Pgno)nRoot ); 6473 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6474 pnErr = &aMem[pOp->p3]; 6475 assert( (pnErr->flags & MEM_Int)!=0 ); 6476 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6477 pIn1 = &aMem[pOp->p1]; 6478 assert( pOp->p5<db->nDb ); 6479 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6480 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6481 (int)pnErr->u.i+1, &nErr); 6482 sqlite3VdbeMemSetNull(pIn1); 6483 if( nErr==0 ){ 6484 assert( z==0 ); 6485 }else if( z==0 ){ 6486 goto no_mem; 6487 }else{ 6488 pnErr->u.i -= nErr-1; 6489 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6490 } 6491 UPDATE_MAX_BLOBSIZE(pIn1); 6492 sqlite3VdbeChangeEncoding(pIn1, encoding); 6493 goto check_for_interrupt; 6494 } 6495 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6496 6497 /* Opcode: RowSetAdd P1 P2 * * * 6498 ** Synopsis: rowset(P1)=r[P2] 6499 ** 6500 ** Insert the integer value held by register P2 into a RowSet object 6501 ** held in register P1. 6502 ** 6503 ** An assertion fails if P2 is not an integer. 6504 */ 6505 case OP_RowSetAdd: { /* in1, in2 */ 6506 pIn1 = &aMem[pOp->p1]; 6507 pIn2 = &aMem[pOp->p2]; 6508 assert( (pIn2->flags & MEM_Int)!=0 ); 6509 if( (pIn1->flags & MEM_Blob)==0 ){ 6510 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6511 } 6512 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6513 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6514 break; 6515 } 6516 6517 /* Opcode: RowSetRead P1 P2 P3 * * 6518 ** Synopsis: r[P3]=rowset(P1) 6519 ** 6520 ** Extract the smallest value from the RowSet object in P1 6521 ** and put that value into register P3. 6522 ** Or, if RowSet object P1 is initially empty, leave P3 6523 ** unchanged and jump to instruction P2. 6524 */ 6525 case OP_RowSetRead: { /* jump, in1, out3 */ 6526 i64 val; 6527 6528 pIn1 = &aMem[pOp->p1]; 6529 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6530 if( (pIn1->flags & MEM_Blob)==0 6531 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6532 ){ 6533 /* The boolean index is empty */ 6534 sqlite3VdbeMemSetNull(pIn1); 6535 VdbeBranchTaken(1,2); 6536 goto jump_to_p2_and_check_for_interrupt; 6537 }else{ 6538 /* A value was pulled from the index */ 6539 VdbeBranchTaken(0,2); 6540 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6541 } 6542 goto check_for_interrupt; 6543 } 6544 6545 /* Opcode: RowSetTest P1 P2 P3 P4 6546 ** Synopsis: if r[P3] in rowset(P1) goto P2 6547 ** 6548 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6549 ** contains a RowSet object and that RowSet object contains 6550 ** the value held in P3, jump to register P2. Otherwise, insert the 6551 ** integer in P3 into the RowSet and continue on to the 6552 ** next opcode. 6553 ** 6554 ** The RowSet object is optimized for the case where sets of integers 6555 ** are inserted in distinct phases, which each set contains no duplicates. 6556 ** Each set is identified by a unique P4 value. The first set 6557 ** must have P4==0, the final set must have P4==-1, and for all other sets 6558 ** must have P4>0. 6559 ** 6560 ** This allows optimizations: (a) when P4==0 there is no need to test 6561 ** the RowSet object for P3, as it is guaranteed not to contain it, 6562 ** (b) when P4==-1 there is no need to insert the value, as it will 6563 ** never be tested for, and (c) when a value that is part of set X is 6564 ** inserted, there is no need to search to see if the same value was 6565 ** previously inserted as part of set X (only if it was previously 6566 ** inserted as part of some other set). 6567 */ 6568 case OP_RowSetTest: { /* jump, in1, in3 */ 6569 int iSet; 6570 int exists; 6571 6572 pIn1 = &aMem[pOp->p1]; 6573 pIn3 = &aMem[pOp->p3]; 6574 iSet = pOp->p4.i; 6575 assert( pIn3->flags&MEM_Int ); 6576 6577 /* If there is anything other than a rowset object in memory cell P1, 6578 ** delete it now and initialize P1 with an empty rowset 6579 */ 6580 if( (pIn1->flags & MEM_Blob)==0 ){ 6581 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6582 } 6583 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6584 assert( pOp->p4type==P4_INT32 ); 6585 assert( iSet==-1 || iSet>=0 ); 6586 if( iSet ){ 6587 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6588 VdbeBranchTaken(exists!=0,2); 6589 if( exists ) goto jump_to_p2; 6590 } 6591 if( iSet>=0 ){ 6592 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6593 } 6594 break; 6595 } 6596 6597 6598 #ifndef SQLITE_OMIT_TRIGGER 6599 6600 /* Opcode: Program P1 P2 P3 P4 P5 6601 ** 6602 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6603 ** 6604 ** P1 contains the address of the memory cell that contains the first memory 6605 ** cell in an array of values used as arguments to the sub-program. P2 6606 ** contains the address to jump to if the sub-program throws an IGNORE 6607 ** exception using the RAISE() function. Register P3 contains the address 6608 ** of a memory cell in this (the parent) VM that is used to allocate the 6609 ** memory required by the sub-vdbe at runtime. 6610 ** 6611 ** P4 is a pointer to the VM containing the trigger program. 6612 ** 6613 ** If P5 is non-zero, then recursive program invocation is enabled. 6614 */ 6615 case OP_Program: { /* jump */ 6616 int nMem; /* Number of memory registers for sub-program */ 6617 int nByte; /* Bytes of runtime space required for sub-program */ 6618 Mem *pRt; /* Register to allocate runtime space */ 6619 Mem *pMem; /* Used to iterate through memory cells */ 6620 Mem *pEnd; /* Last memory cell in new array */ 6621 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6622 SubProgram *pProgram; /* Sub-program to execute */ 6623 void *t; /* Token identifying trigger */ 6624 6625 pProgram = pOp->p4.pProgram; 6626 pRt = &aMem[pOp->p3]; 6627 assert( pProgram->nOp>0 ); 6628 6629 /* If the p5 flag is clear, then recursive invocation of triggers is 6630 ** disabled for backwards compatibility (p5 is set if this sub-program 6631 ** is really a trigger, not a foreign key action, and the flag set 6632 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6633 ** 6634 ** It is recursive invocation of triggers, at the SQL level, that is 6635 ** disabled. In some cases a single trigger may generate more than one 6636 ** SubProgram (if the trigger may be executed with more than one different 6637 ** ON CONFLICT algorithm). SubProgram structures associated with a 6638 ** single trigger all have the same value for the SubProgram.token 6639 ** variable. */ 6640 if( pOp->p5 ){ 6641 t = pProgram->token; 6642 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6643 if( pFrame ) break; 6644 } 6645 6646 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6647 rc = SQLITE_ERROR; 6648 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6649 goto abort_due_to_error; 6650 } 6651 6652 /* Register pRt is used to store the memory required to save the state 6653 ** of the current program, and the memory required at runtime to execute 6654 ** the trigger program. If this trigger has been fired before, then pRt 6655 ** is already allocated. Otherwise, it must be initialized. */ 6656 if( (pRt->flags&MEM_Blob)==0 ){ 6657 /* SubProgram.nMem is set to the number of memory cells used by the 6658 ** program stored in SubProgram.aOp. As well as these, one memory 6659 ** cell is required for each cursor used by the program. Set local 6660 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6661 */ 6662 nMem = pProgram->nMem + pProgram->nCsr; 6663 assert( nMem>0 ); 6664 if( pProgram->nCsr==0 ) nMem++; 6665 nByte = ROUND8(sizeof(VdbeFrame)) 6666 + nMem * sizeof(Mem) 6667 + pProgram->nCsr * sizeof(VdbeCursor*) 6668 + (pProgram->nOp + 7)/8; 6669 pFrame = sqlite3DbMallocZero(db, nByte); 6670 if( !pFrame ){ 6671 goto no_mem; 6672 } 6673 sqlite3VdbeMemRelease(pRt); 6674 pRt->flags = MEM_Blob|MEM_Dyn; 6675 pRt->z = (char*)pFrame; 6676 pRt->n = nByte; 6677 pRt->xDel = sqlite3VdbeFrameMemDel; 6678 6679 pFrame->v = p; 6680 pFrame->nChildMem = nMem; 6681 pFrame->nChildCsr = pProgram->nCsr; 6682 pFrame->pc = (int)(pOp - aOp); 6683 pFrame->aMem = p->aMem; 6684 pFrame->nMem = p->nMem; 6685 pFrame->apCsr = p->apCsr; 6686 pFrame->nCursor = p->nCursor; 6687 pFrame->aOp = p->aOp; 6688 pFrame->nOp = p->nOp; 6689 pFrame->token = pProgram->token; 6690 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6691 pFrame->anExec = p->anExec; 6692 #endif 6693 #ifdef SQLITE_DEBUG 6694 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6695 #endif 6696 6697 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6698 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6699 pMem->flags = MEM_Undefined; 6700 pMem->db = db; 6701 } 6702 }else{ 6703 pFrame = (VdbeFrame*)pRt->z; 6704 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6705 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6706 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6707 assert( pProgram->nCsr==pFrame->nChildCsr ); 6708 assert( (int)(pOp - aOp)==pFrame->pc ); 6709 } 6710 6711 p->nFrame++; 6712 pFrame->pParent = p->pFrame; 6713 pFrame->lastRowid = db->lastRowid; 6714 pFrame->nChange = p->nChange; 6715 pFrame->nDbChange = p->db->nChange; 6716 assert( pFrame->pAuxData==0 ); 6717 pFrame->pAuxData = p->pAuxData; 6718 p->pAuxData = 0; 6719 p->nChange = 0; 6720 p->pFrame = pFrame; 6721 p->aMem = aMem = VdbeFrameMem(pFrame); 6722 p->nMem = pFrame->nChildMem; 6723 p->nCursor = (u16)pFrame->nChildCsr; 6724 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6725 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6726 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6727 p->aOp = aOp = pProgram->aOp; 6728 p->nOp = pProgram->nOp; 6729 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6730 p->anExec = 0; 6731 #endif 6732 #ifdef SQLITE_DEBUG 6733 /* Verify that second and subsequent executions of the same trigger do not 6734 ** try to reuse register values from the first use. */ 6735 { 6736 int i; 6737 for(i=0; i<p->nMem; i++){ 6738 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6739 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6740 } 6741 } 6742 #endif 6743 pOp = &aOp[-1]; 6744 goto check_for_interrupt; 6745 } 6746 6747 /* Opcode: Param P1 P2 * * * 6748 ** 6749 ** This opcode is only ever present in sub-programs called via the 6750 ** OP_Program instruction. Copy a value currently stored in a memory 6751 ** cell of the calling (parent) frame to cell P2 in the current frames 6752 ** address space. This is used by trigger programs to access the new.* 6753 ** and old.* values. 6754 ** 6755 ** The address of the cell in the parent frame is determined by adding 6756 ** the value of the P1 argument to the value of the P1 argument to the 6757 ** calling OP_Program instruction. 6758 */ 6759 case OP_Param: { /* out2 */ 6760 VdbeFrame *pFrame; 6761 Mem *pIn; 6762 pOut = out2Prerelease(p, pOp); 6763 pFrame = p->pFrame; 6764 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6765 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6766 break; 6767 } 6768 6769 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6770 6771 #ifndef SQLITE_OMIT_FOREIGN_KEY 6772 /* Opcode: FkCounter P1 P2 * * * 6773 ** Synopsis: fkctr[P1]+=P2 6774 ** 6775 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6776 ** If P1 is non-zero, the database constraint counter is incremented 6777 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6778 ** statement counter is incremented (immediate foreign key constraints). 6779 */ 6780 case OP_FkCounter: { 6781 if( db->flags & SQLITE_DeferFKs ){ 6782 db->nDeferredImmCons += pOp->p2; 6783 }else if( pOp->p1 ){ 6784 db->nDeferredCons += pOp->p2; 6785 }else{ 6786 p->nFkConstraint += pOp->p2; 6787 } 6788 break; 6789 } 6790 6791 /* Opcode: FkIfZero P1 P2 * * * 6792 ** Synopsis: if fkctr[P1]==0 goto P2 6793 ** 6794 ** This opcode tests if a foreign key constraint-counter is currently zero. 6795 ** If so, jump to instruction P2. Otherwise, fall through to the next 6796 ** instruction. 6797 ** 6798 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6799 ** is zero (the one that counts deferred constraint violations). If P1 is 6800 ** zero, the jump is taken if the statement constraint-counter is zero 6801 ** (immediate foreign key constraint violations). 6802 */ 6803 case OP_FkIfZero: { /* jump */ 6804 if( pOp->p1 ){ 6805 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6806 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6807 }else{ 6808 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6809 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6810 } 6811 break; 6812 } 6813 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6814 6815 #ifndef SQLITE_OMIT_AUTOINCREMENT 6816 /* Opcode: MemMax P1 P2 * * * 6817 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6818 ** 6819 ** P1 is a register in the root frame of this VM (the root frame is 6820 ** different from the current frame if this instruction is being executed 6821 ** within a sub-program). Set the value of register P1 to the maximum of 6822 ** its current value and the value in register P2. 6823 ** 6824 ** This instruction throws an error if the memory cell is not initially 6825 ** an integer. 6826 */ 6827 case OP_MemMax: { /* in2 */ 6828 VdbeFrame *pFrame; 6829 if( p->pFrame ){ 6830 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6831 pIn1 = &pFrame->aMem[pOp->p1]; 6832 }else{ 6833 pIn1 = &aMem[pOp->p1]; 6834 } 6835 assert( memIsValid(pIn1) ); 6836 sqlite3VdbeMemIntegerify(pIn1); 6837 pIn2 = &aMem[pOp->p2]; 6838 sqlite3VdbeMemIntegerify(pIn2); 6839 if( pIn1->u.i<pIn2->u.i){ 6840 pIn1->u.i = pIn2->u.i; 6841 } 6842 break; 6843 } 6844 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6845 6846 /* Opcode: IfPos P1 P2 P3 * * 6847 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6848 ** 6849 ** Register P1 must contain an integer. 6850 ** If the value of register P1 is 1 or greater, subtract P3 from the 6851 ** value in P1 and jump to P2. 6852 ** 6853 ** If the initial value of register P1 is less than 1, then the 6854 ** value is unchanged and control passes through to the next instruction. 6855 */ 6856 case OP_IfPos: { /* jump, in1 */ 6857 pIn1 = &aMem[pOp->p1]; 6858 assert( pIn1->flags&MEM_Int ); 6859 VdbeBranchTaken( pIn1->u.i>0, 2); 6860 if( pIn1->u.i>0 ){ 6861 pIn1->u.i -= pOp->p3; 6862 goto jump_to_p2; 6863 } 6864 break; 6865 } 6866 6867 /* Opcode: OffsetLimit P1 P2 P3 * * 6868 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6869 ** 6870 ** This opcode performs a commonly used computation associated with 6871 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6872 ** holds the offset counter. The opcode computes the combined value 6873 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6874 ** value computed is the total number of rows that will need to be 6875 ** visited in order to complete the query. 6876 ** 6877 ** If r[P3] is zero or negative, that means there is no OFFSET 6878 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6879 ** 6880 ** if r[P1] is zero or negative, that means there is no LIMIT 6881 ** and r[P2] is set to -1. 6882 ** 6883 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6884 */ 6885 case OP_OffsetLimit: { /* in1, out2, in3 */ 6886 i64 x; 6887 pIn1 = &aMem[pOp->p1]; 6888 pIn3 = &aMem[pOp->p3]; 6889 pOut = out2Prerelease(p, pOp); 6890 assert( pIn1->flags & MEM_Int ); 6891 assert( pIn3->flags & MEM_Int ); 6892 x = pIn1->u.i; 6893 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6894 /* If the LIMIT is less than or equal to zero, loop forever. This 6895 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6896 ** also loop forever. This is undocumented. In fact, one could argue 6897 ** that the loop should terminate. But assuming 1 billion iterations 6898 ** per second (far exceeding the capabilities of any current hardware) 6899 ** it would take nearly 300 years to actually reach the limit. So 6900 ** looping forever is a reasonable approximation. */ 6901 pOut->u.i = -1; 6902 }else{ 6903 pOut->u.i = x; 6904 } 6905 break; 6906 } 6907 6908 /* Opcode: IfNotZero P1 P2 * * * 6909 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6910 ** 6911 ** Register P1 must contain an integer. If the content of register P1 is 6912 ** initially greater than zero, then decrement the value in register P1. 6913 ** If it is non-zero (negative or positive) and then also jump to P2. 6914 ** If register P1 is initially zero, leave it unchanged and fall through. 6915 */ 6916 case OP_IfNotZero: { /* jump, in1 */ 6917 pIn1 = &aMem[pOp->p1]; 6918 assert( pIn1->flags&MEM_Int ); 6919 VdbeBranchTaken(pIn1->u.i<0, 2); 6920 if( pIn1->u.i ){ 6921 if( pIn1->u.i>0 ) pIn1->u.i--; 6922 goto jump_to_p2; 6923 } 6924 break; 6925 } 6926 6927 /* Opcode: DecrJumpZero P1 P2 * * * 6928 ** Synopsis: if (--r[P1])==0 goto P2 6929 ** 6930 ** Register P1 must hold an integer. Decrement the value in P1 6931 ** and jump to P2 if the new value is exactly zero. 6932 */ 6933 case OP_DecrJumpZero: { /* jump, in1 */ 6934 pIn1 = &aMem[pOp->p1]; 6935 assert( pIn1->flags&MEM_Int ); 6936 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6937 VdbeBranchTaken(pIn1->u.i==0, 2); 6938 if( pIn1->u.i==0 ) goto jump_to_p2; 6939 break; 6940 } 6941 6942 6943 /* Opcode: AggStep * P2 P3 P4 P5 6944 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6945 ** 6946 ** Execute the xStep function for an aggregate. 6947 ** The function has P5 arguments. P4 is a pointer to the 6948 ** FuncDef structure that specifies the function. Register P3 is the 6949 ** accumulator. 6950 ** 6951 ** The P5 arguments are taken from register P2 and its 6952 ** successors. 6953 */ 6954 /* Opcode: AggInverse * P2 P3 P4 P5 6955 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6956 ** 6957 ** Execute the xInverse function for an aggregate. 6958 ** The function has P5 arguments. P4 is a pointer to the 6959 ** FuncDef structure that specifies the function. Register P3 is the 6960 ** accumulator. 6961 ** 6962 ** The P5 arguments are taken from register P2 and its 6963 ** successors. 6964 */ 6965 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6966 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6967 ** 6968 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6969 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6970 ** FuncDef structure that specifies the function. Register P3 is the 6971 ** accumulator. 6972 ** 6973 ** The P5 arguments are taken from register P2 and its 6974 ** successors. 6975 ** 6976 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6977 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6978 ** the opcode is changed. In this way, the initialization of the 6979 ** sqlite3_context only happens once, instead of on each call to the 6980 ** step function. 6981 */ 6982 case OP_AggInverse: 6983 case OP_AggStep: { 6984 int n; 6985 sqlite3_context *pCtx; 6986 6987 assert( pOp->p4type==P4_FUNCDEF ); 6988 n = pOp->p5; 6989 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6990 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6991 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6992 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6993 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6994 if( pCtx==0 ) goto no_mem; 6995 pCtx->pMem = 0; 6996 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6997 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6998 pCtx->pFunc = pOp->p4.pFunc; 6999 pCtx->iOp = (int)(pOp - aOp); 7000 pCtx->pVdbe = p; 7001 pCtx->skipFlag = 0; 7002 pCtx->isError = 0; 7003 pCtx->argc = n; 7004 pOp->p4type = P4_FUNCCTX; 7005 pOp->p4.pCtx = pCtx; 7006 7007 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7008 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7009 7010 pOp->opcode = OP_AggStep1; 7011 /* Fall through into OP_AggStep */ 7012 /* no break */ deliberate_fall_through 7013 } 7014 case OP_AggStep1: { 7015 int i; 7016 sqlite3_context *pCtx; 7017 Mem *pMem; 7018 7019 assert( pOp->p4type==P4_FUNCCTX ); 7020 pCtx = pOp->p4.pCtx; 7021 pMem = &aMem[pOp->p3]; 7022 7023 #ifdef SQLITE_DEBUG 7024 if( pOp->p1 ){ 7025 /* This is an OP_AggInverse call. Verify that xStep has always 7026 ** been called at least once prior to any xInverse call. */ 7027 assert( pMem->uTemp==0x1122e0e3 ); 7028 }else{ 7029 /* This is an OP_AggStep call. Mark it as such. */ 7030 pMem->uTemp = 0x1122e0e3; 7031 } 7032 #endif 7033 7034 /* If this function is inside of a trigger, the register array in aMem[] 7035 ** might change from one evaluation to the next. The next block of code 7036 ** checks to see if the register array has changed, and if so it 7037 ** reinitializes the relavant parts of the sqlite3_context object */ 7038 if( pCtx->pMem != pMem ){ 7039 pCtx->pMem = pMem; 7040 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7041 } 7042 7043 #ifdef SQLITE_DEBUG 7044 for(i=0; i<pCtx->argc; i++){ 7045 assert( memIsValid(pCtx->argv[i]) ); 7046 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7047 } 7048 #endif 7049 7050 pMem->n++; 7051 assert( pCtx->pOut->flags==MEM_Null ); 7052 assert( pCtx->isError==0 ); 7053 assert( pCtx->skipFlag==0 ); 7054 #ifndef SQLITE_OMIT_WINDOWFUNC 7055 if( pOp->p1 ){ 7056 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7057 }else 7058 #endif 7059 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7060 7061 if( pCtx->isError ){ 7062 if( pCtx->isError>0 ){ 7063 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7064 rc = pCtx->isError; 7065 } 7066 if( pCtx->skipFlag ){ 7067 assert( pOp[-1].opcode==OP_CollSeq ); 7068 i = pOp[-1].p1; 7069 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7070 pCtx->skipFlag = 0; 7071 } 7072 sqlite3VdbeMemRelease(pCtx->pOut); 7073 pCtx->pOut->flags = MEM_Null; 7074 pCtx->isError = 0; 7075 if( rc ) goto abort_due_to_error; 7076 } 7077 assert( pCtx->pOut->flags==MEM_Null ); 7078 assert( pCtx->skipFlag==0 ); 7079 break; 7080 } 7081 7082 /* Opcode: AggFinal P1 P2 * P4 * 7083 ** Synopsis: accum=r[P1] N=P2 7084 ** 7085 ** P1 is the memory location that is the accumulator for an aggregate 7086 ** or window function. Execute the finalizer function 7087 ** for an aggregate and store the result in P1. 7088 ** 7089 ** P2 is the number of arguments that the step function takes and 7090 ** P4 is a pointer to the FuncDef for this function. The P2 7091 ** argument is not used by this opcode. It is only there to disambiguate 7092 ** functions that can take varying numbers of arguments. The 7093 ** P4 argument is only needed for the case where 7094 ** the step function was not previously called. 7095 */ 7096 /* Opcode: AggValue * P2 P3 P4 * 7097 ** Synopsis: r[P3]=value N=P2 7098 ** 7099 ** Invoke the xValue() function and store the result in register P3. 7100 ** 7101 ** P2 is the number of arguments that the step function takes and 7102 ** P4 is a pointer to the FuncDef for this function. The P2 7103 ** argument is not used by this opcode. It is only there to disambiguate 7104 ** functions that can take varying numbers of arguments. The 7105 ** P4 argument is only needed for the case where 7106 ** the step function was not previously called. 7107 */ 7108 case OP_AggValue: 7109 case OP_AggFinal: { 7110 Mem *pMem; 7111 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7112 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7113 pMem = &aMem[pOp->p1]; 7114 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7115 #ifndef SQLITE_OMIT_WINDOWFUNC 7116 if( pOp->p3 ){ 7117 memAboutToChange(p, &aMem[pOp->p3]); 7118 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7119 pMem = &aMem[pOp->p3]; 7120 }else 7121 #endif 7122 { 7123 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7124 } 7125 7126 if( rc ){ 7127 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7128 goto abort_due_to_error; 7129 } 7130 sqlite3VdbeChangeEncoding(pMem, encoding); 7131 UPDATE_MAX_BLOBSIZE(pMem); 7132 if( sqlite3VdbeMemTooBig(pMem) ){ 7133 goto too_big; 7134 } 7135 break; 7136 } 7137 7138 #ifndef SQLITE_OMIT_WAL 7139 /* Opcode: Checkpoint P1 P2 P3 * * 7140 ** 7141 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7142 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7143 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7144 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7145 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7146 ** in the WAL that have been checkpointed after the checkpoint 7147 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7148 ** mem[P3+2] are initialized to -1. 7149 */ 7150 case OP_Checkpoint: { 7151 int i; /* Loop counter */ 7152 int aRes[3]; /* Results */ 7153 Mem *pMem; /* Write results here */ 7154 7155 assert( p->readOnly==0 ); 7156 aRes[0] = 0; 7157 aRes[1] = aRes[2] = -1; 7158 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7159 || pOp->p2==SQLITE_CHECKPOINT_FULL 7160 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7161 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7162 ); 7163 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7164 if( rc ){ 7165 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7166 rc = SQLITE_OK; 7167 aRes[0] = 1; 7168 } 7169 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7170 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7171 } 7172 break; 7173 }; 7174 #endif 7175 7176 #ifndef SQLITE_OMIT_PRAGMA 7177 /* Opcode: JournalMode P1 P2 P3 * * 7178 ** 7179 ** Change the journal mode of database P1 to P3. P3 must be one of the 7180 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7181 ** modes (delete, truncate, persist, off and memory), this is a simple 7182 ** operation. No IO is required. 7183 ** 7184 ** If changing into or out of WAL mode the procedure is more complicated. 7185 ** 7186 ** Write a string containing the final journal-mode to register P2. 7187 */ 7188 case OP_JournalMode: { /* out2 */ 7189 Btree *pBt; /* Btree to change journal mode of */ 7190 Pager *pPager; /* Pager associated with pBt */ 7191 int eNew; /* New journal mode */ 7192 int eOld; /* The old journal mode */ 7193 #ifndef SQLITE_OMIT_WAL 7194 const char *zFilename; /* Name of database file for pPager */ 7195 #endif 7196 7197 pOut = out2Prerelease(p, pOp); 7198 eNew = pOp->p3; 7199 assert( eNew==PAGER_JOURNALMODE_DELETE 7200 || eNew==PAGER_JOURNALMODE_TRUNCATE 7201 || eNew==PAGER_JOURNALMODE_PERSIST 7202 || eNew==PAGER_JOURNALMODE_OFF 7203 || eNew==PAGER_JOURNALMODE_MEMORY 7204 || eNew==PAGER_JOURNALMODE_WAL 7205 || eNew==PAGER_JOURNALMODE_QUERY 7206 ); 7207 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7208 assert( p->readOnly==0 ); 7209 7210 pBt = db->aDb[pOp->p1].pBt; 7211 pPager = sqlite3BtreePager(pBt); 7212 eOld = sqlite3PagerGetJournalMode(pPager); 7213 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7214 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7215 7216 #ifndef SQLITE_OMIT_WAL 7217 zFilename = sqlite3PagerFilename(pPager, 1); 7218 7219 /* Do not allow a transition to journal_mode=WAL for a database 7220 ** in temporary storage or if the VFS does not support shared memory 7221 */ 7222 if( eNew==PAGER_JOURNALMODE_WAL 7223 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7224 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7225 ){ 7226 eNew = eOld; 7227 } 7228 7229 if( (eNew!=eOld) 7230 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7231 ){ 7232 if( !db->autoCommit || db->nVdbeRead>1 ){ 7233 rc = SQLITE_ERROR; 7234 sqlite3VdbeError(p, 7235 "cannot change %s wal mode from within a transaction", 7236 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7237 ); 7238 goto abort_due_to_error; 7239 }else{ 7240 7241 if( eOld==PAGER_JOURNALMODE_WAL ){ 7242 /* If leaving WAL mode, close the log file. If successful, the call 7243 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7244 ** file. An EXCLUSIVE lock may still be held on the database file 7245 ** after a successful return. 7246 */ 7247 rc = sqlite3PagerCloseWal(pPager, db); 7248 if( rc==SQLITE_OK ){ 7249 sqlite3PagerSetJournalMode(pPager, eNew); 7250 } 7251 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7252 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7253 ** as an intermediate */ 7254 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7255 } 7256 7257 /* Open a transaction on the database file. Regardless of the journal 7258 ** mode, this transaction always uses a rollback journal. 7259 */ 7260 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7261 if( rc==SQLITE_OK ){ 7262 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7263 } 7264 } 7265 } 7266 #endif /* ifndef SQLITE_OMIT_WAL */ 7267 7268 if( rc ) eNew = eOld; 7269 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7270 7271 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7272 pOut->z = (char *)sqlite3JournalModename(eNew); 7273 pOut->n = sqlite3Strlen30(pOut->z); 7274 pOut->enc = SQLITE_UTF8; 7275 sqlite3VdbeChangeEncoding(pOut, encoding); 7276 if( rc ) goto abort_due_to_error; 7277 break; 7278 }; 7279 #endif /* SQLITE_OMIT_PRAGMA */ 7280 7281 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7282 /* Opcode: Vacuum P1 P2 * * * 7283 ** 7284 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7285 ** for an attached database. The "temp" database may not be vacuumed. 7286 ** 7287 ** If P2 is not zero, then it is a register holding a string which is 7288 ** the file into which the result of vacuum should be written. When 7289 ** P2 is zero, the vacuum overwrites the original database. 7290 */ 7291 case OP_Vacuum: { 7292 assert( p->readOnly==0 ); 7293 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7294 pOp->p2 ? &aMem[pOp->p2] : 0); 7295 if( rc ) goto abort_due_to_error; 7296 break; 7297 } 7298 #endif 7299 7300 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7301 /* Opcode: IncrVacuum P1 P2 * * * 7302 ** 7303 ** Perform a single step of the incremental vacuum procedure on 7304 ** the P1 database. If the vacuum has finished, jump to instruction 7305 ** P2. Otherwise, fall through to the next instruction. 7306 */ 7307 case OP_IncrVacuum: { /* jump */ 7308 Btree *pBt; 7309 7310 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7311 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7312 assert( p->readOnly==0 ); 7313 pBt = db->aDb[pOp->p1].pBt; 7314 rc = sqlite3BtreeIncrVacuum(pBt); 7315 VdbeBranchTaken(rc==SQLITE_DONE,2); 7316 if( rc ){ 7317 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7318 rc = SQLITE_OK; 7319 goto jump_to_p2; 7320 } 7321 break; 7322 } 7323 #endif 7324 7325 /* Opcode: Expire P1 P2 * * * 7326 ** 7327 ** Cause precompiled statements to expire. When an expired statement 7328 ** is executed using sqlite3_step() it will either automatically 7329 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7330 ** or it will fail with SQLITE_SCHEMA. 7331 ** 7332 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7333 ** then only the currently executing statement is expired. 7334 ** 7335 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7336 ** then running SQL statements are allowed to continue to run to completion. 7337 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7338 ** that might help the statement run faster but which does not affect the 7339 ** correctness of operation. 7340 */ 7341 case OP_Expire: { 7342 assert( pOp->p2==0 || pOp->p2==1 ); 7343 if( !pOp->p1 ){ 7344 sqlite3ExpirePreparedStatements(db, pOp->p2); 7345 }else{ 7346 p->expired = pOp->p2+1; 7347 } 7348 break; 7349 } 7350 7351 /* Opcode: CursorLock P1 * * * * 7352 ** 7353 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7354 ** written by an other cursor. 7355 */ 7356 case OP_CursorLock: { 7357 VdbeCursor *pC; 7358 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7359 pC = p->apCsr[pOp->p1]; 7360 assert( pC!=0 ); 7361 assert( pC->eCurType==CURTYPE_BTREE ); 7362 sqlite3BtreeCursorPin(pC->uc.pCursor); 7363 break; 7364 } 7365 7366 /* Opcode: CursorUnlock P1 * * * * 7367 ** 7368 ** Unlock the btree to which cursor P1 is pointing so that it can be 7369 ** written by other cursors. 7370 */ 7371 case OP_CursorUnlock: { 7372 VdbeCursor *pC; 7373 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7374 pC = p->apCsr[pOp->p1]; 7375 assert( pC!=0 ); 7376 assert( pC->eCurType==CURTYPE_BTREE ); 7377 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7378 break; 7379 } 7380 7381 #ifndef SQLITE_OMIT_SHARED_CACHE 7382 /* Opcode: TableLock P1 P2 P3 P4 * 7383 ** Synopsis: iDb=P1 root=P2 write=P3 7384 ** 7385 ** Obtain a lock on a particular table. This instruction is only used when 7386 ** the shared-cache feature is enabled. 7387 ** 7388 ** P1 is the index of the database in sqlite3.aDb[] of the database 7389 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7390 ** a write lock if P3==1. 7391 ** 7392 ** P2 contains the root-page of the table to lock. 7393 ** 7394 ** P4 contains a pointer to the name of the table being locked. This is only 7395 ** used to generate an error message if the lock cannot be obtained. 7396 */ 7397 case OP_TableLock: { 7398 u8 isWriteLock = (u8)pOp->p3; 7399 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7400 int p1 = pOp->p1; 7401 assert( p1>=0 && p1<db->nDb ); 7402 assert( DbMaskTest(p->btreeMask, p1) ); 7403 assert( isWriteLock==0 || isWriteLock==1 ); 7404 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7405 if( rc ){ 7406 if( (rc&0xFF)==SQLITE_LOCKED ){ 7407 const char *z = pOp->p4.z; 7408 sqlite3VdbeError(p, "database table is locked: %s", z); 7409 } 7410 goto abort_due_to_error; 7411 } 7412 } 7413 break; 7414 } 7415 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7416 7417 #ifndef SQLITE_OMIT_VIRTUALTABLE 7418 /* Opcode: VBegin * * * P4 * 7419 ** 7420 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7421 ** xBegin method for that table. 7422 ** 7423 ** Also, whether or not P4 is set, check that this is not being called from 7424 ** within a callback to a virtual table xSync() method. If it is, the error 7425 ** code will be set to SQLITE_LOCKED. 7426 */ 7427 case OP_VBegin: { 7428 VTable *pVTab; 7429 pVTab = pOp->p4.pVtab; 7430 rc = sqlite3VtabBegin(db, pVTab); 7431 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7432 if( rc ) goto abort_due_to_error; 7433 break; 7434 } 7435 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7436 7437 #ifndef SQLITE_OMIT_VIRTUALTABLE 7438 /* Opcode: VCreate P1 P2 * * * 7439 ** 7440 ** P2 is a register that holds the name of a virtual table in database 7441 ** P1. Call the xCreate method for that table. 7442 */ 7443 case OP_VCreate: { 7444 Mem sMem; /* For storing the record being decoded */ 7445 const char *zTab; /* Name of the virtual table */ 7446 7447 memset(&sMem, 0, sizeof(sMem)); 7448 sMem.db = db; 7449 /* Because P2 is always a static string, it is impossible for the 7450 ** sqlite3VdbeMemCopy() to fail */ 7451 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7452 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7453 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7454 assert( rc==SQLITE_OK ); 7455 zTab = (const char*)sqlite3_value_text(&sMem); 7456 assert( zTab || db->mallocFailed ); 7457 if( zTab ){ 7458 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7459 } 7460 sqlite3VdbeMemRelease(&sMem); 7461 if( rc ) goto abort_due_to_error; 7462 break; 7463 } 7464 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7465 7466 #ifndef SQLITE_OMIT_VIRTUALTABLE 7467 /* Opcode: VDestroy P1 * * P4 * 7468 ** 7469 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7470 ** of that table. 7471 */ 7472 case OP_VDestroy: { 7473 db->nVDestroy++; 7474 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7475 db->nVDestroy--; 7476 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7477 if( rc ) goto abort_due_to_error; 7478 break; 7479 } 7480 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7481 7482 #ifndef SQLITE_OMIT_VIRTUALTABLE 7483 /* Opcode: VOpen P1 * * P4 * 7484 ** 7485 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7486 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7487 ** table and stores that cursor in P1. 7488 */ 7489 case OP_VOpen: { 7490 VdbeCursor *pCur; 7491 sqlite3_vtab_cursor *pVCur; 7492 sqlite3_vtab *pVtab; 7493 const sqlite3_module *pModule; 7494 7495 assert( p->bIsReader ); 7496 pCur = 0; 7497 pVCur = 0; 7498 pVtab = pOp->p4.pVtab->pVtab; 7499 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7500 rc = SQLITE_LOCKED; 7501 goto abort_due_to_error; 7502 } 7503 pModule = pVtab->pModule; 7504 rc = pModule->xOpen(pVtab, &pVCur); 7505 sqlite3VtabImportErrmsg(p, pVtab); 7506 if( rc ) goto abort_due_to_error; 7507 7508 /* Initialize sqlite3_vtab_cursor base class */ 7509 pVCur->pVtab = pVtab; 7510 7511 /* Initialize vdbe cursor object */ 7512 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7513 if( pCur ){ 7514 pCur->uc.pVCur = pVCur; 7515 pVtab->nRef++; 7516 }else{ 7517 assert( db->mallocFailed ); 7518 pModule->xClose(pVCur); 7519 goto no_mem; 7520 } 7521 break; 7522 } 7523 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7524 7525 #ifndef SQLITE_OMIT_VIRTUALTABLE 7526 /* Opcode: VFilter P1 P2 P3 P4 * 7527 ** Synopsis: iplan=r[P3] zplan='P4' 7528 ** 7529 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7530 ** the filtered result set is empty. 7531 ** 7532 ** P4 is either NULL or a string that was generated by the xBestIndex 7533 ** method of the module. The interpretation of the P4 string is left 7534 ** to the module implementation. 7535 ** 7536 ** This opcode invokes the xFilter method on the virtual table specified 7537 ** by P1. The integer query plan parameter to xFilter is stored in register 7538 ** P3. Register P3+1 stores the argc parameter to be passed to the 7539 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7540 ** additional parameters which are passed to 7541 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7542 ** 7543 ** A jump is made to P2 if the result set after filtering would be empty. 7544 */ 7545 case OP_VFilter: { /* jump */ 7546 int nArg; 7547 int iQuery; 7548 const sqlite3_module *pModule; 7549 Mem *pQuery; 7550 Mem *pArgc; 7551 sqlite3_vtab_cursor *pVCur; 7552 sqlite3_vtab *pVtab; 7553 VdbeCursor *pCur; 7554 int res; 7555 int i; 7556 Mem **apArg; 7557 7558 pQuery = &aMem[pOp->p3]; 7559 pArgc = &pQuery[1]; 7560 pCur = p->apCsr[pOp->p1]; 7561 assert( memIsValid(pQuery) ); 7562 REGISTER_TRACE(pOp->p3, pQuery); 7563 assert( pCur->eCurType==CURTYPE_VTAB ); 7564 pVCur = pCur->uc.pVCur; 7565 pVtab = pVCur->pVtab; 7566 pModule = pVtab->pModule; 7567 7568 /* Grab the index number and argc parameters */ 7569 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7570 nArg = (int)pArgc->u.i; 7571 iQuery = (int)pQuery->u.i; 7572 7573 /* Invoke the xFilter method */ 7574 res = 0; 7575 apArg = p->apArg; 7576 for(i = 0; i<nArg; i++){ 7577 apArg[i] = &pArgc[i+1]; 7578 } 7579 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7580 sqlite3VtabImportErrmsg(p, pVtab); 7581 if( rc ) goto abort_due_to_error; 7582 res = pModule->xEof(pVCur); 7583 pCur->nullRow = 0; 7584 VdbeBranchTaken(res!=0,2); 7585 if( res ) goto jump_to_p2; 7586 break; 7587 } 7588 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7589 7590 #ifndef SQLITE_OMIT_VIRTUALTABLE 7591 /* Opcode: VColumn P1 P2 P3 * P5 7592 ** Synopsis: r[P3]=vcolumn(P2) 7593 ** 7594 ** Store in register P3 the value of the P2-th column of 7595 ** the current row of the virtual-table of cursor P1. 7596 ** 7597 ** If the VColumn opcode is being used to fetch the value of 7598 ** an unchanging column during an UPDATE operation, then the P5 7599 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7600 ** function to return true inside the xColumn method of the virtual 7601 ** table implementation. The P5 column might also contain other 7602 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7603 ** unused by OP_VColumn. 7604 */ 7605 case OP_VColumn: { 7606 sqlite3_vtab *pVtab; 7607 const sqlite3_module *pModule; 7608 Mem *pDest; 7609 sqlite3_context sContext; 7610 7611 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7612 assert( pCur->eCurType==CURTYPE_VTAB ); 7613 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7614 pDest = &aMem[pOp->p3]; 7615 memAboutToChange(p, pDest); 7616 if( pCur->nullRow ){ 7617 sqlite3VdbeMemSetNull(pDest); 7618 break; 7619 } 7620 pVtab = pCur->uc.pVCur->pVtab; 7621 pModule = pVtab->pModule; 7622 assert( pModule->xColumn ); 7623 memset(&sContext, 0, sizeof(sContext)); 7624 sContext.pOut = pDest; 7625 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7626 if( pOp->p5 & OPFLAG_NOCHNG ){ 7627 sqlite3VdbeMemSetNull(pDest); 7628 pDest->flags = MEM_Null|MEM_Zero; 7629 pDest->u.nZero = 0; 7630 }else{ 7631 MemSetTypeFlag(pDest, MEM_Null); 7632 } 7633 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7634 sqlite3VtabImportErrmsg(p, pVtab); 7635 if( sContext.isError>0 ){ 7636 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7637 rc = sContext.isError; 7638 } 7639 sqlite3VdbeChangeEncoding(pDest, encoding); 7640 REGISTER_TRACE(pOp->p3, pDest); 7641 UPDATE_MAX_BLOBSIZE(pDest); 7642 7643 if( sqlite3VdbeMemTooBig(pDest) ){ 7644 goto too_big; 7645 } 7646 if( rc ) goto abort_due_to_error; 7647 break; 7648 } 7649 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7650 7651 #ifndef SQLITE_OMIT_VIRTUALTABLE 7652 /* Opcode: VNext P1 P2 * * * 7653 ** 7654 ** Advance virtual table P1 to the next row in its result set and 7655 ** jump to instruction P2. Or, if the virtual table has reached 7656 ** the end of its result set, then fall through to the next instruction. 7657 */ 7658 case OP_VNext: { /* jump */ 7659 sqlite3_vtab *pVtab; 7660 const sqlite3_module *pModule; 7661 int res; 7662 VdbeCursor *pCur; 7663 7664 res = 0; 7665 pCur = p->apCsr[pOp->p1]; 7666 assert( pCur->eCurType==CURTYPE_VTAB ); 7667 if( pCur->nullRow ){ 7668 break; 7669 } 7670 pVtab = pCur->uc.pVCur->pVtab; 7671 pModule = pVtab->pModule; 7672 assert( pModule->xNext ); 7673 7674 /* Invoke the xNext() method of the module. There is no way for the 7675 ** underlying implementation to return an error if one occurs during 7676 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7677 ** data is available) and the error code returned when xColumn or 7678 ** some other method is next invoked on the save virtual table cursor. 7679 */ 7680 rc = pModule->xNext(pCur->uc.pVCur); 7681 sqlite3VtabImportErrmsg(p, pVtab); 7682 if( rc ) goto abort_due_to_error; 7683 res = pModule->xEof(pCur->uc.pVCur); 7684 VdbeBranchTaken(!res,2); 7685 if( !res ){ 7686 /* If there is data, jump to P2 */ 7687 goto jump_to_p2_and_check_for_interrupt; 7688 } 7689 goto check_for_interrupt; 7690 } 7691 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7692 7693 #ifndef SQLITE_OMIT_VIRTUALTABLE 7694 /* Opcode: VRename P1 * * P4 * 7695 ** 7696 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7697 ** This opcode invokes the corresponding xRename method. The value 7698 ** in register P1 is passed as the zName argument to the xRename method. 7699 */ 7700 case OP_VRename: { 7701 sqlite3_vtab *pVtab; 7702 Mem *pName; 7703 int isLegacy; 7704 7705 isLegacy = (db->flags & SQLITE_LegacyAlter); 7706 db->flags |= SQLITE_LegacyAlter; 7707 pVtab = pOp->p4.pVtab->pVtab; 7708 pName = &aMem[pOp->p1]; 7709 assert( pVtab->pModule->xRename ); 7710 assert( memIsValid(pName) ); 7711 assert( p->readOnly==0 ); 7712 REGISTER_TRACE(pOp->p1, pName); 7713 assert( pName->flags & MEM_Str ); 7714 testcase( pName->enc==SQLITE_UTF8 ); 7715 testcase( pName->enc==SQLITE_UTF16BE ); 7716 testcase( pName->enc==SQLITE_UTF16LE ); 7717 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7718 if( rc ) goto abort_due_to_error; 7719 rc = pVtab->pModule->xRename(pVtab, pName->z); 7720 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7721 sqlite3VtabImportErrmsg(p, pVtab); 7722 p->expired = 0; 7723 if( rc ) goto abort_due_to_error; 7724 break; 7725 } 7726 #endif 7727 7728 #ifndef SQLITE_OMIT_VIRTUALTABLE 7729 /* Opcode: VUpdate P1 P2 P3 P4 P5 7730 ** Synopsis: data=r[P3@P2] 7731 ** 7732 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7733 ** This opcode invokes the corresponding xUpdate method. P2 values 7734 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7735 ** invocation. The value in register (P3+P2-1) corresponds to the 7736 ** p2th element of the argv array passed to xUpdate. 7737 ** 7738 ** The xUpdate method will do a DELETE or an INSERT or both. 7739 ** The argv[0] element (which corresponds to memory cell P3) 7740 ** is the rowid of a row to delete. If argv[0] is NULL then no 7741 ** deletion occurs. The argv[1] element is the rowid of the new 7742 ** row. This can be NULL to have the virtual table select the new 7743 ** rowid for itself. The subsequent elements in the array are 7744 ** the values of columns in the new row. 7745 ** 7746 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7747 ** a row to delete. 7748 ** 7749 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7750 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7751 ** is set to the value of the rowid for the row just inserted. 7752 ** 7753 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7754 ** apply in the case of a constraint failure on an insert or update. 7755 */ 7756 case OP_VUpdate: { 7757 sqlite3_vtab *pVtab; 7758 const sqlite3_module *pModule; 7759 int nArg; 7760 int i; 7761 sqlite_int64 rowid; 7762 Mem **apArg; 7763 Mem *pX; 7764 7765 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7766 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7767 ); 7768 assert( p->readOnly==0 ); 7769 if( db->mallocFailed ) goto no_mem; 7770 sqlite3VdbeIncrWriteCounter(p, 0); 7771 pVtab = pOp->p4.pVtab->pVtab; 7772 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7773 rc = SQLITE_LOCKED; 7774 goto abort_due_to_error; 7775 } 7776 pModule = pVtab->pModule; 7777 nArg = pOp->p2; 7778 assert( pOp->p4type==P4_VTAB ); 7779 if( ALWAYS(pModule->xUpdate) ){ 7780 u8 vtabOnConflict = db->vtabOnConflict; 7781 apArg = p->apArg; 7782 pX = &aMem[pOp->p3]; 7783 for(i=0; i<nArg; i++){ 7784 assert( memIsValid(pX) ); 7785 memAboutToChange(p, pX); 7786 apArg[i] = pX; 7787 pX++; 7788 } 7789 db->vtabOnConflict = pOp->p5; 7790 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7791 db->vtabOnConflict = vtabOnConflict; 7792 sqlite3VtabImportErrmsg(p, pVtab); 7793 if( rc==SQLITE_OK && pOp->p1 ){ 7794 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7795 db->lastRowid = rowid; 7796 } 7797 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7798 if( pOp->p5==OE_Ignore ){ 7799 rc = SQLITE_OK; 7800 }else{ 7801 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7802 } 7803 }else{ 7804 p->nChange++; 7805 } 7806 if( rc ) goto abort_due_to_error; 7807 } 7808 break; 7809 } 7810 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7811 7812 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7813 /* Opcode: Pagecount P1 P2 * * * 7814 ** 7815 ** Write the current number of pages in database P1 to memory cell P2. 7816 */ 7817 case OP_Pagecount: { /* out2 */ 7818 pOut = out2Prerelease(p, pOp); 7819 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7820 break; 7821 } 7822 #endif 7823 7824 7825 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7826 /* Opcode: MaxPgcnt P1 P2 P3 * * 7827 ** 7828 ** Try to set the maximum page count for database P1 to the value in P3. 7829 ** Do not let the maximum page count fall below the current page count and 7830 ** do not change the maximum page count value if P3==0. 7831 ** 7832 ** Store the maximum page count after the change in register P2. 7833 */ 7834 case OP_MaxPgcnt: { /* out2 */ 7835 unsigned int newMax; 7836 Btree *pBt; 7837 7838 pOut = out2Prerelease(p, pOp); 7839 pBt = db->aDb[pOp->p1].pBt; 7840 newMax = 0; 7841 if( pOp->p3 ){ 7842 newMax = sqlite3BtreeLastPage(pBt); 7843 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7844 } 7845 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7846 break; 7847 } 7848 #endif 7849 7850 /* Opcode: Function P1 P2 P3 P4 * 7851 ** Synopsis: r[P3]=func(r[P2@NP]) 7852 ** 7853 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7854 ** contains a pointer to the function to be run) with arguments taken 7855 ** from register P2 and successors. The number of arguments is in 7856 ** the sqlite3_context object that P4 points to. 7857 ** The result of the function is stored 7858 ** in register P3. Register P3 must not be one of the function inputs. 7859 ** 7860 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7861 ** function was determined to be constant at compile time. If the first 7862 ** argument was constant then bit 0 of P1 is set. This is used to determine 7863 ** whether meta data associated with a user function argument using the 7864 ** sqlite3_set_auxdata() API may be safely retained until the next 7865 ** invocation of this opcode. 7866 ** 7867 ** See also: AggStep, AggFinal, PureFunc 7868 */ 7869 /* Opcode: PureFunc P1 P2 P3 P4 * 7870 ** Synopsis: r[P3]=func(r[P2@NP]) 7871 ** 7872 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7873 ** contains a pointer to the function to be run) with arguments taken 7874 ** from register P2 and successors. The number of arguments is in 7875 ** the sqlite3_context object that P4 points to. 7876 ** The result of the function is stored 7877 ** in register P3. Register P3 must not be one of the function inputs. 7878 ** 7879 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7880 ** function was determined to be constant at compile time. If the first 7881 ** argument was constant then bit 0 of P1 is set. This is used to determine 7882 ** whether meta data associated with a user function argument using the 7883 ** sqlite3_set_auxdata() API may be safely retained until the next 7884 ** invocation of this opcode. 7885 ** 7886 ** This opcode works exactly like OP_Function. The only difference is in 7887 ** its name. This opcode is used in places where the function must be 7888 ** purely non-deterministic. Some built-in date/time functions can be 7889 ** either determinitic of non-deterministic, depending on their arguments. 7890 ** When those function are used in a non-deterministic way, they will check 7891 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7892 ** if they were, they throw an error. 7893 ** 7894 ** See also: AggStep, AggFinal, Function 7895 */ 7896 case OP_PureFunc: /* group */ 7897 case OP_Function: { /* group */ 7898 int i; 7899 sqlite3_context *pCtx; 7900 7901 assert( pOp->p4type==P4_FUNCCTX ); 7902 pCtx = pOp->p4.pCtx; 7903 7904 /* If this function is inside of a trigger, the register array in aMem[] 7905 ** might change from one evaluation to the next. The next block of code 7906 ** checks to see if the register array has changed, and if so it 7907 ** reinitializes the relavant parts of the sqlite3_context object */ 7908 pOut = &aMem[pOp->p3]; 7909 if( pCtx->pOut != pOut ){ 7910 pCtx->pVdbe = p; 7911 pCtx->pOut = pOut; 7912 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7913 } 7914 assert( pCtx->pVdbe==p ); 7915 7916 memAboutToChange(p, pOut); 7917 #ifdef SQLITE_DEBUG 7918 for(i=0; i<pCtx->argc; i++){ 7919 assert( memIsValid(pCtx->argv[i]) ); 7920 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7921 } 7922 #endif 7923 MemSetTypeFlag(pOut, MEM_Null); 7924 assert( pCtx->isError==0 ); 7925 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7926 7927 /* If the function returned an error, throw an exception */ 7928 if( pCtx->isError ){ 7929 if( pCtx->isError>0 ){ 7930 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7931 rc = pCtx->isError; 7932 } 7933 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7934 pCtx->isError = 0; 7935 if( rc ) goto abort_due_to_error; 7936 } 7937 7938 /* Copy the result of the function into register P3 */ 7939 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7940 sqlite3VdbeChangeEncoding(pOut, encoding); 7941 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7942 } 7943 7944 REGISTER_TRACE(pOp->p3, pOut); 7945 UPDATE_MAX_BLOBSIZE(pOut); 7946 break; 7947 } 7948 7949 /* Opcode: Trace P1 P2 * P4 * 7950 ** 7951 ** Write P4 on the statement trace output if statement tracing is 7952 ** enabled. 7953 ** 7954 ** Operand P1 must be 0x7fffffff and P2 must positive. 7955 */ 7956 /* Opcode: Init P1 P2 P3 P4 * 7957 ** Synopsis: Start at P2 7958 ** 7959 ** Programs contain a single instance of this opcode as the very first 7960 ** opcode. 7961 ** 7962 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7963 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7964 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7965 ** 7966 ** If P2 is not zero, jump to instruction P2. 7967 ** 7968 ** Increment the value of P1 so that OP_Once opcodes will jump the 7969 ** first time they are evaluated for this run. 7970 ** 7971 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7972 ** error is encountered. 7973 */ 7974 case OP_Trace: 7975 case OP_Init: { /* jump */ 7976 int i; 7977 #ifndef SQLITE_OMIT_TRACE 7978 char *zTrace; 7979 #endif 7980 7981 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7982 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7983 ** 7984 ** This assert() provides evidence for: 7985 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7986 ** would have been returned by the legacy sqlite3_trace() interface by 7987 ** using the X argument when X begins with "--" and invoking 7988 ** sqlite3_expanded_sql(P) otherwise. 7989 */ 7990 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7991 7992 /* OP_Init is always instruction 0 */ 7993 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7994 7995 #ifndef SQLITE_OMIT_TRACE 7996 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7997 && !p->doingRerun 7998 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7999 ){ 8000 #ifndef SQLITE_OMIT_DEPRECATED 8001 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8002 char *z = sqlite3VdbeExpandSql(p, zTrace); 8003 db->trace.xLegacy(db->pTraceArg, z); 8004 sqlite3_free(z); 8005 }else 8006 #endif 8007 if( db->nVdbeExec>1 ){ 8008 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8009 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8010 sqlite3DbFree(db, z); 8011 }else{ 8012 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8013 } 8014 } 8015 #ifdef SQLITE_USE_FCNTL_TRACE 8016 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8017 if( zTrace ){ 8018 int j; 8019 for(j=0; j<db->nDb; j++){ 8020 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8021 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8022 } 8023 } 8024 #endif /* SQLITE_USE_FCNTL_TRACE */ 8025 #ifdef SQLITE_DEBUG 8026 if( (db->flags & SQLITE_SqlTrace)!=0 8027 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8028 ){ 8029 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8030 } 8031 #endif /* SQLITE_DEBUG */ 8032 #endif /* SQLITE_OMIT_TRACE */ 8033 assert( pOp->p2>0 ); 8034 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8035 if( pOp->opcode==OP_Trace ) break; 8036 for(i=1; i<p->nOp; i++){ 8037 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8038 } 8039 pOp->p1 = 0; 8040 } 8041 pOp->p1++; 8042 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8043 goto jump_to_p2; 8044 } 8045 8046 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8047 /* Opcode: CursorHint P1 * * P4 * 8048 ** 8049 ** Provide a hint to cursor P1 that it only needs to return rows that 8050 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8051 ** to values currently held in registers. TK_COLUMN terms in the P4 8052 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8053 */ 8054 case OP_CursorHint: { 8055 VdbeCursor *pC; 8056 8057 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8058 assert( pOp->p4type==P4_EXPR ); 8059 pC = p->apCsr[pOp->p1]; 8060 if( pC ){ 8061 assert( pC->eCurType==CURTYPE_BTREE ); 8062 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8063 pOp->p4.pExpr, aMem); 8064 } 8065 break; 8066 } 8067 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8068 8069 #ifdef SQLITE_DEBUG 8070 /* Opcode: Abortable * * * * * 8071 ** 8072 ** Verify that an Abort can happen. Assert if an Abort at this point 8073 ** might cause database corruption. This opcode only appears in debugging 8074 ** builds. 8075 ** 8076 ** An Abort is safe if either there have been no writes, or if there is 8077 ** an active statement journal. 8078 */ 8079 case OP_Abortable: { 8080 sqlite3VdbeAssertAbortable(p); 8081 break; 8082 } 8083 #endif 8084 8085 #ifdef SQLITE_DEBUG 8086 /* Opcode: ReleaseReg P1 P2 P3 * P5 8087 ** Synopsis: release r[P1@P2] mask P3 8088 ** 8089 ** Release registers from service. Any content that was in the 8090 ** the registers is unreliable after this opcode completes. 8091 ** 8092 ** The registers released will be the P2 registers starting at P1, 8093 ** except if bit ii of P3 set, then do not release register P1+ii. 8094 ** In other words, P3 is a mask of registers to preserve. 8095 ** 8096 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8097 ** that if the content of the released register was set using OP_SCopy, 8098 ** a change to the value of the source register for the OP_SCopy will no longer 8099 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8100 ** 8101 ** If P5 is set, then all released registers have their type set 8102 ** to MEM_Undefined so that any subsequent attempt to read the released 8103 ** register (before it is reinitialized) will generate an assertion fault. 8104 ** 8105 ** P5 ought to be set on every call to this opcode. 8106 ** However, there are places in the code generator will release registers 8107 ** before their are used, under the (valid) assumption that the registers 8108 ** will not be reallocated for some other purpose before they are used and 8109 ** hence are safe to release. 8110 ** 8111 ** This opcode is only available in testing and debugging builds. It is 8112 ** not generated for release builds. The purpose of this opcode is to help 8113 ** validate the generated bytecode. This opcode does not actually contribute 8114 ** to computing an answer. 8115 */ 8116 case OP_ReleaseReg: { 8117 Mem *pMem; 8118 int i; 8119 u32 constMask; 8120 assert( pOp->p1>0 ); 8121 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8122 pMem = &aMem[pOp->p1]; 8123 constMask = pOp->p3; 8124 for(i=0; i<pOp->p2; i++, pMem++){ 8125 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8126 pMem->pScopyFrom = 0; 8127 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8128 } 8129 } 8130 break; 8131 } 8132 #endif 8133 8134 /* Opcode: Noop * * * * * 8135 ** 8136 ** Do nothing. This instruction is often useful as a jump 8137 ** destination. 8138 */ 8139 /* 8140 ** The magic Explain opcode are only inserted when explain==2 (which 8141 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8142 ** This opcode records information from the optimizer. It is the 8143 ** the same as a no-op. This opcodesnever appears in a real VM program. 8144 */ 8145 default: { /* This is really OP_Noop, OP_Explain */ 8146 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8147 8148 break; 8149 } 8150 8151 /***************************************************************************** 8152 ** The cases of the switch statement above this line should all be indented 8153 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8154 ** readability. From this point on down, the normal indentation rules are 8155 ** restored. 8156 *****************************************************************************/ 8157 } 8158 8159 #ifdef VDBE_PROFILE 8160 { 8161 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8162 if( endTime>start ) pOrigOp->cycles += endTime - start; 8163 pOrigOp->cnt++; 8164 } 8165 #endif 8166 8167 /* The following code adds nothing to the actual functionality 8168 ** of the program. It is only here for testing and debugging. 8169 ** On the other hand, it does burn CPU cycles every time through 8170 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8171 */ 8172 #ifndef NDEBUG 8173 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8174 8175 #ifdef SQLITE_DEBUG 8176 if( db->flags & SQLITE_VdbeTrace ){ 8177 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8178 if( rc!=0 ) printf("rc=%d\n",rc); 8179 if( opProperty & (OPFLG_OUT2) ){ 8180 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8181 } 8182 if( opProperty & OPFLG_OUT3 ){ 8183 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8184 } 8185 if( opProperty==0xff ){ 8186 /* Never happens. This code exists to avoid a harmless linkage 8187 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8188 ** used. */ 8189 sqlite3VdbeRegisterDump(p); 8190 } 8191 } 8192 #endif /* SQLITE_DEBUG */ 8193 #endif /* NDEBUG */ 8194 } /* The end of the for(;;) loop the loops through opcodes */ 8195 8196 /* If we reach this point, it means that execution is finished with 8197 ** an error of some kind. 8198 */ 8199 abort_due_to_error: 8200 if( db->mallocFailed ){ 8201 rc = SQLITE_NOMEM_BKPT; 8202 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8203 rc = SQLITE_CORRUPT_BKPT; 8204 } 8205 assert( rc ); 8206 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8207 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8208 } 8209 p->rc = rc; 8210 sqlite3SystemError(db, rc); 8211 testcase( sqlite3GlobalConfig.xLog!=0 ); 8212 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8213 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8214 sqlite3VdbeHalt(p); 8215 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8216 rc = SQLITE_ERROR; 8217 if( resetSchemaOnFault>0 ){ 8218 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8219 } 8220 8221 /* This is the only way out of this procedure. We have to 8222 ** release the mutexes on btrees that were acquired at the 8223 ** top. */ 8224 vdbe_return: 8225 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8226 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8227 nProgressLimit += db->nProgressOps; 8228 if( db->xProgress(db->pProgressArg) ){ 8229 nProgressLimit = LARGEST_UINT64; 8230 rc = SQLITE_INTERRUPT; 8231 goto abort_due_to_error; 8232 } 8233 } 8234 #endif 8235 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8236 sqlite3VdbeLeave(p); 8237 assert( rc!=SQLITE_OK || nExtraDelete==0 8238 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8239 ); 8240 return rc; 8241 8242 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8243 ** is encountered. 8244 */ 8245 too_big: 8246 sqlite3VdbeError(p, "string or blob too big"); 8247 rc = SQLITE_TOOBIG; 8248 goto abort_due_to_error; 8249 8250 /* Jump to here if a malloc() fails. 8251 */ 8252 no_mem: 8253 sqlite3OomFault(db); 8254 sqlite3VdbeError(p, "out of memory"); 8255 rc = SQLITE_NOMEM_BKPT; 8256 goto abort_due_to_error; 8257 8258 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8259 ** flag. 8260 */ 8261 abort_due_to_interrupt: 8262 assert( AtomicLoad(&db->u1.isInterrupted) ); 8263 rc = SQLITE_INTERRUPT; 8264 goto abort_due_to_error; 8265 } 8266