1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 int iDb, /* Database the cursor belongs to, or -1 */ 245 u8 eCurType /* Type of the new cursor */ 246 ){ 247 /* Find the memory cell that will be used to store the blob of memory 248 ** required for this VdbeCursor structure. It is convenient to use a 249 ** vdbe memory cell to manage the memory allocation required for a 250 ** VdbeCursor structure for the following reasons: 251 ** 252 ** * Sometimes cursor numbers are used for a couple of different 253 ** purposes in a vdbe program. The different uses might require 254 ** different sized allocations. Memory cells provide growable 255 ** allocations. 256 ** 257 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 258 ** be freed lazily via the sqlite3_release_memory() API. This 259 ** minimizes the number of malloc calls made by the system. 260 ** 261 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 262 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 263 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 264 */ 265 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 266 267 int nByte; 268 VdbeCursor *pCx = 0; 269 nByte = 270 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 271 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 272 273 assert( iCur>=0 && iCur<p->nCursor ); 274 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 275 /* Before calling sqlite3VdbeFreeCursor(), ensure the isEphemeral flag 276 ** is clear. Otherwise, if this is an ephemeral cursor created by 277 ** OP_OpenDup, the cursor will not be closed and will still be part 278 ** of a BtShared.pCursor list. */ 279 if( p->apCsr[iCur]->pBtx==0 ) p->apCsr[iCur]->isEphemeral = 0; 280 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 281 p->apCsr[iCur] = 0; 282 } 283 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 284 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 285 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 286 pCx->eCurType = eCurType; 287 pCx->iDb = iDb; 288 pCx->nField = nField; 289 pCx->aOffset = &pCx->aType[nField]; 290 if( eCurType==CURTYPE_BTREE ){ 291 pCx->uc.pCursor = (BtCursor*) 292 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 293 sqlite3BtreeCursorZero(pCx->uc.pCursor); 294 } 295 } 296 return pCx; 297 } 298 299 /* 300 ** The string in pRec is known to look like an integer and to have a 301 ** floating point value of rValue. Return true and set *piValue to the 302 ** integer value if the string is in range to be an integer. Otherwise, 303 ** return false. 304 */ 305 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 306 i64 iValue = (double)rValue; 307 if( sqlite3RealSameAsInt(rValue,iValue) ){ 308 *piValue = iValue; 309 return 1; 310 } 311 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 312 } 313 314 /* 315 ** Try to convert a value into a numeric representation if we can 316 ** do so without loss of information. In other words, if the string 317 ** looks like a number, convert it into a number. If it does not 318 ** look like a number, leave it alone. 319 ** 320 ** If the bTryForInt flag is true, then extra effort is made to give 321 ** an integer representation. Strings that look like floating point 322 ** values but which have no fractional component (example: '48.00') 323 ** will have a MEM_Int representation when bTryForInt is true. 324 ** 325 ** If bTryForInt is false, then if the input string contains a decimal 326 ** point or exponential notation, the result is only MEM_Real, even 327 ** if there is an exact integer representation of the quantity. 328 */ 329 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 330 double rValue; 331 u8 enc = pRec->enc; 332 int rc; 333 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 334 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 335 if( rc<=0 ) return; 336 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 337 pRec->flags |= MEM_Int; 338 }else{ 339 pRec->u.r = rValue; 340 pRec->flags |= MEM_Real; 341 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 342 } 343 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 344 ** string representation after computing a numeric equivalent, because the 345 ** string representation might not be the canonical representation for the 346 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 347 pRec->flags &= ~MEM_Str; 348 } 349 350 /* 351 ** Processing is determine by the affinity parameter: 352 ** 353 ** SQLITE_AFF_INTEGER: 354 ** SQLITE_AFF_REAL: 355 ** SQLITE_AFF_NUMERIC: 356 ** Try to convert pRec to an integer representation or a 357 ** floating-point representation if an integer representation 358 ** is not possible. Note that the integer representation is 359 ** always preferred, even if the affinity is REAL, because 360 ** an integer representation is more space efficient on disk. 361 ** 362 ** SQLITE_AFF_TEXT: 363 ** Convert pRec to a text representation. 364 ** 365 ** SQLITE_AFF_BLOB: 366 ** SQLITE_AFF_NONE: 367 ** No-op. pRec is unchanged. 368 */ 369 static void applyAffinity( 370 Mem *pRec, /* The value to apply affinity to */ 371 char affinity, /* The affinity to be applied */ 372 u8 enc /* Use this text encoding */ 373 ){ 374 if( affinity>=SQLITE_AFF_NUMERIC ){ 375 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 376 || affinity==SQLITE_AFF_NUMERIC ); 377 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 378 if( (pRec->flags & MEM_Real)==0 ){ 379 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 380 }else{ 381 sqlite3VdbeIntegerAffinity(pRec); 382 } 383 } 384 }else if( affinity==SQLITE_AFF_TEXT ){ 385 /* Only attempt the conversion to TEXT if there is an integer or real 386 ** representation (blob and NULL do not get converted) but no string 387 ** representation. It would be harmless to repeat the conversion if 388 ** there is already a string rep, but it is pointless to waste those 389 ** CPU cycles. */ 390 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 391 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 392 testcase( pRec->flags & MEM_Int ); 393 testcase( pRec->flags & MEM_Real ); 394 testcase( pRec->flags & MEM_IntReal ); 395 sqlite3VdbeMemStringify(pRec, enc, 1); 396 } 397 } 398 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 399 } 400 } 401 402 /* 403 ** Try to convert the type of a function argument or a result column 404 ** into a numeric representation. Use either INTEGER or REAL whichever 405 ** is appropriate. But only do the conversion if it is possible without 406 ** loss of information and return the revised type of the argument. 407 */ 408 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 409 int eType = sqlite3_value_type(pVal); 410 if( eType==SQLITE_TEXT ){ 411 Mem *pMem = (Mem*)pVal; 412 applyNumericAffinity(pMem, 0); 413 eType = sqlite3_value_type(pVal); 414 } 415 return eType; 416 } 417 418 /* 419 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 420 ** not the internal Mem* type. 421 */ 422 void sqlite3ValueApplyAffinity( 423 sqlite3_value *pVal, 424 u8 affinity, 425 u8 enc 426 ){ 427 applyAffinity((Mem *)pVal, affinity, enc); 428 } 429 430 /* 431 ** pMem currently only holds a string type (or maybe a BLOB that we can 432 ** interpret as a string if we want to). Compute its corresponding 433 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 434 ** accordingly. 435 */ 436 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 437 int rc; 438 sqlite3_int64 ix; 439 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 440 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 441 ExpandBlob(pMem); 442 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 443 if( rc<=0 ){ 444 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 445 pMem->u.i = ix; 446 return MEM_Int; 447 }else{ 448 return MEM_Real; 449 } 450 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 451 pMem->u.i = ix; 452 return MEM_Int; 453 } 454 return MEM_Real; 455 } 456 457 /* 458 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 459 ** none. 460 ** 461 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 462 ** But it does set pMem->u.r and pMem->u.i appropriately. 463 */ 464 static u16 numericType(Mem *pMem){ 465 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 466 testcase( pMem->flags & MEM_Int ); 467 testcase( pMem->flags & MEM_Real ); 468 testcase( pMem->flags & MEM_IntReal ); 469 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 470 } 471 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 472 testcase( pMem->flags & MEM_Str ); 473 testcase( pMem->flags & MEM_Blob ); 474 return computeNumericType(pMem); 475 } 476 return 0; 477 } 478 479 #ifdef SQLITE_DEBUG 480 /* 481 ** Write a nice string representation of the contents of cell pMem 482 ** into buffer zBuf, length nBuf. 483 */ 484 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 485 int f = pMem->flags; 486 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 487 if( f&MEM_Blob ){ 488 int i; 489 char c; 490 if( f & MEM_Dyn ){ 491 c = 'z'; 492 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 493 }else if( f & MEM_Static ){ 494 c = 't'; 495 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 496 }else if( f & MEM_Ephem ){ 497 c = 'e'; 498 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 499 }else{ 500 c = 's'; 501 } 502 sqlite3_str_appendf(pStr, "%cx[", c); 503 for(i=0; i<25 && i<pMem->n; i++){ 504 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 505 } 506 sqlite3_str_appendf(pStr, "|"); 507 for(i=0; i<25 && i<pMem->n; i++){ 508 char z = pMem->z[i]; 509 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 510 } 511 sqlite3_str_appendf(pStr,"]"); 512 if( f & MEM_Zero ){ 513 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 514 } 515 }else if( f & MEM_Str ){ 516 int j; 517 u8 c; 518 if( f & MEM_Dyn ){ 519 c = 'z'; 520 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 521 }else if( f & MEM_Static ){ 522 c = 't'; 523 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 524 }else if( f & MEM_Ephem ){ 525 c = 'e'; 526 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 527 }else{ 528 c = 's'; 529 } 530 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 531 for(j=0; j<25 && j<pMem->n; j++){ 532 c = pMem->z[j]; 533 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 534 } 535 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 536 } 537 } 538 #endif 539 540 #ifdef SQLITE_DEBUG 541 /* 542 ** Print the value of a register for tracing purposes: 543 */ 544 static void memTracePrint(Mem *p){ 545 if( p->flags & MEM_Undefined ){ 546 printf(" undefined"); 547 }else if( p->flags & MEM_Null ){ 548 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 549 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 550 printf(" si:%lld", p->u.i); 551 }else if( (p->flags & (MEM_IntReal))!=0 ){ 552 printf(" ir:%lld", p->u.i); 553 }else if( p->flags & MEM_Int ){ 554 printf(" i:%lld", p->u.i); 555 #ifndef SQLITE_OMIT_FLOATING_POINT 556 }else if( p->flags & MEM_Real ){ 557 printf(" r:%.17g", p->u.r); 558 #endif 559 }else if( sqlite3VdbeMemIsRowSet(p) ){ 560 printf(" (rowset)"); 561 }else{ 562 StrAccum acc; 563 char zBuf[1000]; 564 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 565 sqlite3VdbeMemPrettyPrint(p, &acc); 566 printf(" %s", sqlite3StrAccumFinish(&acc)); 567 } 568 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 569 } 570 static void registerTrace(int iReg, Mem *p){ 571 printf("R[%d] = ", iReg); 572 memTracePrint(p); 573 if( p->pScopyFrom ){ 574 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 575 } 576 printf("\n"); 577 sqlite3VdbeCheckMemInvariants(p); 578 } 579 #endif 580 581 #ifdef SQLITE_DEBUG 582 /* 583 ** Show the values of all registers in the virtual machine. Used for 584 ** interactive debugging. 585 */ 586 void sqlite3VdbeRegisterDump(Vdbe *v){ 587 int i; 588 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 589 } 590 #endif /* SQLITE_DEBUG */ 591 592 593 #ifdef SQLITE_DEBUG 594 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 595 #else 596 # define REGISTER_TRACE(R,M) 597 #endif 598 599 600 #ifdef VDBE_PROFILE 601 602 /* 603 ** hwtime.h contains inline assembler code for implementing 604 ** high-performance timing routines. 605 */ 606 #include "hwtime.h" 607 608 #endif 609 610 #ifndef NDEBUG 611 /* 612 ** This function is only called from within an assert() expression. It 613 ** checks that the sqlite3.nTransaction variable is correctly set to 614 ** the number of non-transaction savepoints currently in the 615 ** linked list starting at sqlite3.pSavepoint. 616 ** 617 ** Usage: 618 ** 619 ** assert( checkSavepointCount(db) ); 620 */ 621 static int checkSavepointCount(sqlite3 *db){ 622 int n = 0; 623 Savepoint *p; 624 for(p=db->pSavepoint; p; p=p->pNext) n++; 625 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 626 return 1; 627 } 628 #endif 629 630 /* 631 ** Return the register of pOp->p2 after first preparing it to be 632 ** overwritten with an integer value. 633 */ 634 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 635 sqlite3VdbeMemSetNull(pOut); 636 pOut->flags = MEM_Int; 637 return pOut; 638 } 639 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 640 Mem *pOut; 641 assert( pOp->p2>0 ); 642 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 643 pOut = &p->aMem[pOp->p2]; 644 memAboutToChange(p, pOut); 645 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 646 return out2PrereleaseWithClear(pOut); 647 }else{ 648 pOut->flags = MEM_Int; 649 return pOut; 650 } 651 } 652 653 654 /* 655 ** Execute as much of a VDBE program as we can. 656 ** This is the core of sqlite3_step(). 657 */ 658 int sqlite3VdbeExec( 659 Vdbe *p /* The VDBE */ 660 ){ 661 Op *aOp = p->aOp; /* Copy of p->aOp */ 662 Op *pOp = aOp; /* Current operation */ 663 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 664 Op *pOrigOp; /* Value of pOp at the top of the loop */ 665 #endif 666 #ifdef SQLITE_DEBUG 667 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 668 #endif 669 int rc = SQLITE_OK; /* Value to return */ 670 sqlite3 *db = p->db; /* The database */ 671 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 672 u8 encoding = ENC(db); /* The database encoding */ 673 int iCompare = 0; /* Result of last comparison */ 674 u64 nVmStep = 0; /* Number of virtual machine steps */ 675 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 676 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 677 #endif 678 Mem *aMem = p->aMem; /* Copy of p->aMem */ 679 Mem *pIn1 = 0; /* 1st input operand */ 680 Mem *pIn2 = 0; /* 2nd input operand */ 681 Mem *pIn3 = 0; /* 3rd input operand */ 682 Mem *pOut = 0; /* Output operand */ 683 #ifdef VDBE_PROFILE 684 u64 start; /* CPU clock count at start of opcode */ 685 #endif 686 /*** INSERT STACK UNION HERE ***/ 687 688 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 689 sqlite3VdbeEnter(p); 690 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 691 if( db->xProgress ){ 692 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 693 assert( 0 < db->nProgressOps ); 694 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 695 }else{ 696 nProgressLimit = LARGEST_UINT64; 697 } 698 #endif 699 if( p->rc==SQLITE_NOMEM ){ 700 /* This happens if a malloc() inside a call to sqlite3_column_text() or 701 ** sqlite3_column_text16() failed. */ 702 goto no_mem; 703 } 704 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 705 testcase( p->rc!=SQLITE_OK ); 706 p->rc = SQLITE_OK; 707 assert( p->bIsReader || p->readOnly!=0 ); 708 p->iCurrentTime = 0; 709 assert( p->explain==0 ); 710 p->pResultSet = 0; 711 db->busyHandler.nBusy = 0; 712 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 713 sqlite3VdbeIOTraceSql(p); 714 #ifdef SQLITE_DEBUG 715 sqlite3BeginBenignMalloc(); 716 if( p->pc==0 717 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 718 ){ 719 int i; 720 int once = 1; 721 sqlite3VdbePrintSql(p); 722 if( p->db->flags & SQLITE_VdbeListing ){ 723 printf("VDBE Program Listing:\n"); 724 for(i=0; i<p->nOp; i++){ 725 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 726 } 727 } 728 if( p->db->flags & SQLITE_VdbeEQP ){ 729 for(i=0; i<p->nOp; i++){ 730 if( aOp[i].opcode==OP_Explain ){ 731 if( once ) printf("VDBE Query Plan:\n"); 732 printf("%s\n", aOp[i].p4.z); 733 once = 0; 734 } 735 } 736 } 737 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 738 } 739 sqlite3EndBenignMalloc(); 740 #endif 741 for(pOp=&aOp[p->pc]; 1; pOp++){ 742 /* Errors are detected by individual opcodes, with an immediate 743 ** jumps to abort_due_to_error. */ 744 assert( rc==SQLITE_OK ); 745 746 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 747 #ifdef VDBE_PROFILE 748 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 749 #endif 750 nVmStep++; 751 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 752 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 753 #endif 754 755 /* Only allow tracing if SQLITE_DEBUG is defined. 756 */ 757 #ifdef SQLITE_DEBUG 758 if( db->flags & SQLITE_VdbeTrace ){ 759 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 760 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 761 } 762 #endif 763 764 765 /* Check to see if we need to simulate an interrupt. This only happens 766 ** if we have a special test build. 767 */ 768 #ifdef SQLITE_TEST 769 if( sqlite3_interrupt_count>0 ){ 770 sqlite3_interrupt_count--; 771 if( sqlite3_interrupt_count==0 ){ 772 sqlite3_interrupt(db); 773 } 774 } 775 #endif 776 777 /* Sanity checking on other operands */ 778 #ifdef SQLITE_DEBUG 779 { 780 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 781 if( (opProperty & OPFLG_IN1)!=0 ){ 782 assert( pOp->p1>0 ); 783 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 784 assert( memIsValid(&aMem[pOp->p1]) ); 785 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 786 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 787 } 788 if( (opProperty & OPFLG_IN2)!=0 ){ 789 assert( pOp->p2>0 ); 790 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 791 assert( memIsValid(&aMem[pOp->p2]) ); 792 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 793 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 794 } 795 if( (opProperty & OPFLG_IN3)!=0 ){ 796 assert( pOp->p3>0 ); 797 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 798 assert( memIsValid(&aMem[pOp->p3]) ); 799 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 800 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 801 } 802 if( (opProperty & OPFLG_OUT2)!=0 ){ 803 assert( pOp->p2>0 ); 804 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 805 memAboutToChange(p, &aMem[pOp->p2]); 806 } 807 if( (opProperty & OPFLG_OUT3)!=0 ){ 808 assert( pOp->p3>0 ); 809 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 810 memAboutToChange(p, &aMem[pOp->p3]); 811 } 812 } 813 #endif 814 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 815 pOrigOp = pOp; 816 #endif 817 818 switch( pOp->opcode ){ 819 820 /***************************************************************************** 821 ** What follows is a massive switch statement where each case implements a 822 ** separate instruction in the virtual machine. If we follow the usual 823 ** indentation conventions, each case should be indented by 6 spaces. But 824 ** that is a lot of wasted space on the left margin. So the code within 825 ** the switch statement will break with convention and be flush-left. Another 826 ** big comment (similar to this one) will mark the point in the code where 827 ** we transition back to normal indentation. 828 ** 829 ** The formatting of each case is important. The makefile for SQLite 830 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 831 ** file looking for lines that begin with "case OP_". The opcodes.h files 832 ** will be filled with #defines that give unique integer values to each 833 ** opcode and the opcodes.c file is filled with an array of strings where 834 ** each string is the symbolic name for the corresponding opcode. If the 835 ** case statement is followed by a comment of the form "/# same as ... #/" 836 ** that comment is used to determine the particular value of the opcode. 837 ** 838 ** Other keywords in the comment that follows each case are used to 839 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 840 ** Keywords include: in1, in2, in3, out2, out3. See 841 ** the mkopcodeh.awk script for additional information. 842 ** 843 ** Documentation about VDBE opcodes is generated by scanning this file 844 ** for lines of that contain "Opcode:". That line and all subsequent 845 ** comment lines are used in the generation of the opcode.html documentation 846 ** file. 847 ** 848 ** SUMMARY: 849 ** 850 ** Formatting is important to scripts that scan this file. 851 ** Do not deviate from the formatting style currently in use. 852 ** 853 *****************************************************************************/ 854 855 /* Opcode: Goto * P2 * * * 856 ** 857 ** An unconditional jump to address P2. 858 ** The next instruction executed will be 859 ** the one at index P2 from the beginning of 860 ** the program. 861 ** 862 ** The P1 parameter is not actually used by this opcode. However, it 863 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 864 ** that this Goto is the bottom of a loop and that the lines from P2 down 865 ** to the current line should be indented for EXPLAIN output. 866 */ 867 case OP_Goto: { /* jump */ 868 869 #ifdef SQLITE_DEBUG 870 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 871 ** means we should really jump back to the preceeding OP_ReleaseReg 872 ** instruction. */ 873 if( pOp->p5 ){ 874 assert( pOp->p2 < (int)(pOp - aOp) ); 875 assert( pOp->p2 > 1 ); 876 pOp = &aOp[pOp->p2 - 2]; 877 assert( pOp[1].opcode==OP_ReleaseReg ); 878 goto check_for_interrupt; 879 } 880 #endif 881 882 jump_to_p2_and_check_for_interrupt: 883 pOp = &aOp[pOp->p2 - 1]; 884 885 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 886 ** OP_VNext, or OP_SorterNext) all jump here upon 887 ** completion. Check to see if sqlite3_interrupt() has been called 888 ** or if the progress callback needs to be invoked. 889 ** 890 ** This code uses unstructured "goto" statements and does not look clean. 891 ** But that is not due to sloppy coding habits. The code is written this 892 ** way for performance, to avoid having to run the interrupt and progress 893 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 894 ** faster according to "valgrind --tool=cachegrind" */ 895 check_for_interrupt: 896 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 897 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 898 /* Call the progress callback if it is configured and the required number 899 ** of VDBE ops have been executed (either since this invocation of 900 ** sqlite3VdbeExec() or since last time the progress callback was called). 901 ** If the progress callback returns non-zero, exit the virtual machine with 902 ** a return code SQLITE_ABORT. 903 */ 904 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 905 assert( db->nProgressOps!=0 ); 906 nProgressLimit += db->nProgressOps; 907 if( db->xProgress(db->pProgressArg) ){ 908 nProgressLimit = LARGEST_UINT64; 909 rc = SQLITE_INTERRUPT; 910 goto abort_due_to_error; 911 } 912 } 913 #endif 914 915 break; 916 } 917 918 /* Opcode: Gosub P1 P2 * * * 919 ** 920 ** Write the current address onto register P1 921 ** and then jump to address P2. 922 */ 923 case OP_Gosub: { /* jump */ 924 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 925 pIn1 = &aMem[pOp->p1]; 926 assert( VdbeMemDynamic(pIn1)==0 ); 927 memAboutToChange(p, pIn1); 928 pIn1->flags = MEM_Int; 929 pIn1->u.i = (int)(pOp-aOp); 930 REGISTER_TRACE(pOp->p1, pIn1); 931 932 /* Most jump operations do a goto to this spot in order to update 933 ** the pOp pointer. */ 934 jump_to_p2: 935 pOp = &aOp[pOp->p2 - 1]; 936 break; 937 } 938 939 /* Opcode: Return P1 * * * * 940 ** 941 ** Jump to the next instruction after the address in register P1. After 942 ** the jump, register P1 becomes undefined. 943 */ 944 case OP_Return: { /* in1 */ 945 pIn1 = &aMem[pOp->p1]; 946 assert( pIn1->flags==MEM_Int ); 947 pOp = &aOp[pIn1->u.i]; 948 pIn1->flags = MEM_Undefined; 949 break; 950 } 951 952 /* Opcode: InitCoroutine P1 P2 P3 * * 953 ** 954 ** Set up register P1 so that it will Yield to the coroutine 955 ** located at address P3. 956 ** 957 ** If P2!=0 then the coroutine implementation immediately follows 958 ** this opcode. So jump over the coroutine implementation to 959 ** address P2. 960 ** 961 ** See also: EndCoroutine 962 */ 963 case OP_InitCoroutine: { /* jump */ 964 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 965 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 966 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 967 pOut = &aMem[pOp->p1]; 968 assert( !VdbeMemDynamic(pOut) ); 969 pOut->u.i = pOp->p3 - 1; 970 pOut->flags = MEM_Int; 971 if( pOp->p2 ) goto jump_to_p2; 972 break; 973 } 974 975 /* Opcode: EndCoroutine P1 * * * * 976 ** 977 ** The instruction at the address in register P1 is a Yield. 978 ** Jump to the P2 parameter of that Yield. 979 ** After the jump, register P1 becomes undefined. 980 ** 981 ** See also: InitCoroutine 982 */ 983 case OP_EndCoroutine: { /* in1 */ 984 VdbeOp *pCaller; 985 pIn1 = &aMem[pOp->p1]; 986 assert( pIn1->flags==MEM_Int ); 987 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 988 pCaller = &aOp[pIn1->u.i]; 989 assert( pCaller->opcode==OP_Yield ); 990 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 991 pOp = &aOp[pCaller->p2 - 1]; 992 pIn1->flags = MEM_Undefined; 993 break; 994 } 995 996 /* Opcode: Yield P1 P2 * * * 997 ** 998 ** Swap the program counter with the value in register P1. This 999 ** has the effect of yielding to a coroutine. 1000 ** 1001 ** If the coroutine that is launched by this instruction ends with 1002 ** Yield or Return then continue to the next instruction. But if 1003 ** the coroutine launched by this instruction ends with 1004 ** EndCoroutine, then jump to P2 rather than continuing with the 1005 ** next instruction. 1006 ** 1007 ** See also: InitCoroutine 1008 */ 1009 case OP_Yield: { /* in1, jump */ 1010 int pcDest; 1011 pIn1 = &aMem[pOp->p1]; 1012 assert( VdbeMemDynamic(pIn1)==0 ); 1013 pIn1->flags = MEM_Int; 1014 pcDest = (int)pIn1->u.i; 1015 pIn1->u.i = (int)(pOp - aOp); 1016 REGISTER_TRACE(pOp->p1, pIn1); 1017 pOp = &aOp[pcDest]; 1018 break; 1019 } 1020 1021 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1022 ** Synopsis: if r[P3]=null halt 1023 ** 1024 ** Check the value in register P3. If it is NULL then Halt using 1025 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1026 ** value in register P3 is not NULL, then this routine is a no-op. 1027 ** The P5 parameter should be 1. 1028 */ 1029 case OP_HaltIfNull: { /* in3 */ 1030 pIn3 = &aMem[pOp->p3]; 1031 #ifdef SQLITE_DEBUG 1032 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1033 #endif 1034 if( (pIn3->flags & MEM_Null)==0 ) break; 1035 /* Fall through into OP_Halt */ 1036 /* no break */ deliberate_fall_through 1037 } 1038 1039 /* Opcode: Halt P1 P2 * P4 P5 1040 ** 1041 ** Exit immediately. All open cursors, etc are closed 1042 ** automatically. 1043 ** 1044 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1045 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1046 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1047 ** whether or not to rollback the current transaction. Do not rollback 1048 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1049 ** then back out all changes that have occurred during this execution of the 1050 ** VDBE, but do not rollback the transaction. 1051 ** 1052 ** If P4 is not null then it is an error message string. 1053 ** 1054 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1055 ** 1056 ** 0: (no change) 1057 ** 1: NOT NULL contraint failed: P4 1058 ** 2: UNIQUE constraint failed: P4 1059 ** 3: CHECK constraint failed: P4 1060 ** 4: FOREIGN KEY constraint failed: P4 1061 ** 1062 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1063 ** omitted. 1064 ** 1065 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1066 ** every program. So a jump past the last instruction of the program 1067 ** is the same as executing Halt. 1068 */ 1069 case OP_Halt: { 1070 VdbeFrame *pFrame; 1071 int pcx; 1072 1073 pcx = (int)(pOp - aOp); 1074 #ifdef SQLITE_DEBUG 1075 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1076 #endif 1077 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1078 /* Halt the sub-program. Return control to the parent frame. */ 1079 pFrame = p->pFrame; 1080 p->pFrame = pFrame->pParent; 1081 p->nFrame--; 1082 sqlite3VdbeSetChanges(db, p->nChange); 1083 pcx = sqlite3VdbeFrameRestore(pFrame); 1084 if( pOp->p2==OE_Ignore ){ 1085 /* Instruction pcx is the OP_Program that invoked the sub-program 1086 ** currently being halted. If the p2 instruction of this OP_Halt 1087 ** instruction is set to OE_Ignore, then the sub-program is throwing 1088 ** an IGNORE exception. In this case jump to the address specified 1089 ** as the p2 of the calling OP_Program. */ 1090 pcx = p->aOp[pcx].p2-1; 1091 } 1092 aOp = p->aOp; 1093 aMem = p->aMem; 1094 pOp = &aOp[pcx]; 1095 break; 1096 } 1097 p->rc = pOp->p1; 1098 p->errorAction = (u8)pOp->p2; 1099 p->pc = pcx; 1100 assert( pOp->p5<=4 ); 1101 if( p->rc ){ 1102 if( pOp->p5 ){ 1103 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1104 "FOREIGN KEY" }; 1105 testcase( pOp->p5==1 ); 1106 testcase( pOp->p5==2 ); 1107 testcase( pOp->p5==3 ); 1108 testcase( pOp->p5==4 ); 1109 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1110 if( pOp->p4.z ){ 1111 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1112 } 1113 }else{ 1114 sqlite3VdbeError(p, "%s", pOp->p4.z); 1115 } 1116 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1117 } 1118 rc = sqlite3VdbeHalt(p); 1119 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1120 if( rc==SQLITE_BUSY ){ 1121 p->rc = SQLITE_BUSY; 1122 }else{ 1123 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1124 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1125 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1126 } 1127 goto vdbe_return; 1128 } 1129 1130 /* Opcode: Integer P1 P2 * * * 1131 ** Synopsis: r[P2]=P1 1132 ** 1133 ** The 32-bit integer value P1 is written into register P2. 1134 */ 1135 case OP_Integer: { /* out2 */ 1136 pOut = out2Prerelease(p, pOp); 1137 pOut->u.i = pOp->p1; 1138 break; 1139 } 1140 1141 /* Opcode: Int64 * P2 * P4 * 1142 ** Synopsis: r[P2]=P4 1143 ** 1144 ** P4 is a pointer to a 64-bit integer value. 1145 ** Write that value into register P2. 1146 */ 1147 case OP_Int64: { /* out2 */ 1148 pOut = out2Prerelease(p, pOp); 1149 assert( pOp->p4.pI64!=0 ); 1150 pOut->u.i = *pOp->p4.pI64; 1151 break; 1152 } 1153 1154 #ifndef SQLITE_OMIT_FLOATING_POINT 1155 /* Opcode: Real * P2 * P4 * 1156 ** Synopsis: r[P2]=P4 1157 ** 1158 ** P4 is a pointer to a 64-bit floating point value. 1159 ** Write that value into register P2. 1160 */ 1161 case OP_Real: { /* same as TK_FLOAT, out2 */ 1162 pOut = out2Prerelease(p, pOp); 1163 pOut->flags = MEM_Real; 1164 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1165 pOut->u.r = *pOp->p4.pReal; 1166 break; 1167 } 1168 #endif 1169 1170 /* Opcode: String8 * P2 * P4 * 1171 ** Synopsis: r[P2]='P4' 1172 ** 1173 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1174 ** into a String opcode before it is executed for the first time. During 1175 ** this transformation, the length of string P4 is computed and stored 1176 ** as the P1 parameter. 1177 */ 1178 case OP_String8: { /* same as TK_STRING, out2 */ 1179 assert( pOp->p4.z!=0 ); 1180 pOut = out2Prerelease(p, pOp); 1181 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1182 1183 #ifndef SQLITE_OMIT_UTF16 1184 if( encoding!=SQLITE_UTF8 ){ 1185 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1186 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1187 if( rc ) goto too_big; 1188 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1189 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1190 assert( VdbeMemDynamic(pOut)==0 ); 1191 pOut->szMalloc = 0; 1192 pOut->flags |= MEM_Static; 1193 if( pOp->p4type==P4_DYNAMIC ){ 1194 sqlite3DbFree(db, pOp->p4.z); 1195 } 1196 pOp->p4type = P4_DYNAMIC; 1197 pOp->p4.z = pOut->z; 1198 pOp->p1 = pOut->n; 1199 } 1200 #endif 1201 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1202 goto too_big; 1203 } 1204 pOp->opcode = OP_String; 1205 assert( rc==SQLITE_OK ); 1206 /* Fall through to the next case, OP_String */ 1207 /* no break */ deliberate_fall_through 1208 } 1209 1210 /* Opcode: String P1 P2 P3 P4 P5 1211 ** Synopsis: r[P2]='P4' (len=P1) 1212 ** 1213 ** The string value P4 of length P1 (bytes) is stored in register P2. 1214 ** 1215 ** If P3 is not zero and the content of register P3 is equal to P5, then 1216 ** the datatype of the register P2 is converted to BLOB. The content is 1217 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1218 ** of a string, as if it had been CAST. In other words: 1219 ** 1220 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1221 */ 1222 case OP_String: { /* out2 */ 1223 assert( pOp->p4.z!=0 ); 1224 pOut = out2Prerelease(p, pOp); 1225 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1226 pOut->z = pOp->p4.z; 1227 pOut->n = pOp->p1; 1228 pOut->enc = encoding; 1229 UPDATE_MAX_BLOBSIZE(pOut); 1230 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1231 if( pOp->p3>0 ){ 1232 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1233 pIn3 = &aMem[pOp->p3]; 1234 assert( pIn3->flags & MEM_Int ); 1235 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1236 } 1237 #endif 1238 break; 1239 } 1240 1241 /* Opcode: Null P1 P2 P3 * * 1242 ** Synopsis: r[P2..P3]=NULL 1243 ** 1244 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1245 ** NULL into register P3 and every register in between P2 and P3. If P3 1246 ** is less than P2 (typically P3 is zero) then only register P2 is 1247 ** set to NULL. 1248 ** 1249 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1250 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1251 ** OP_Ne or OP_Eq. 1252 */ 1253 case OP_Null: { /* out2 */ 1254 int cnt; 1255 u16 nullFlag; 1256 pOut = out2Prerelease(p, pOp); 1257 cnt = pOp->p3-pOp->p2; 1258 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1259 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1260 pOut->n = 0; 1261 #ifdef SQLITE_DEBUG 1262 pOut->uTemp = 0; 1263 #endif 1264 while( cnt>0 ){ 1265 pOut++; 1266 memAboutToChange(p, pOut); 1267 sqlite3VdbeMemSetNull(pOut); 1268 pOut->flags = nullFlag; 1269 pOut->n = 0; 1270 cnt--; 1271 } 1272 break; 1273 } 1274 1275 /* Opcode: SoftNull P1 * * * * 1276 ** Synopsis: r[P1]=NULL 1277 ** 1278 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1279 ** instruction, but do not free any string or blob memory associated with 1280 ** the register, so that if the value was a string or blob that was 1281 ** previously copied using OP_SCopy, the copies will continue to be valid. 1282 */ 1283 case OP_SoftNull: { 1284 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1285 pOut = &aMem[pOp->p1]; 1286 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1287 break; 1288 } 1289 1290 /* Opcode: Blob P1 P2 * P4 * 1291 ** Synopsis: r[P2]=P4 (len=P1) 1292 ** 1293 ** P4 points to a blob of data P1 bytes long. Store this 1294 ** blob in register P2. 1295 */ 1296 case OP_Blob: { /* out2 */ 1297 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1298 pOut = out2Prerelease(p, pOp); 1299 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1300 pOut->enc = encoding; 1301 UPDATE_MAX_BLOBSIZE(pOut); 1302 break; 1303 } 1304 1305 /* Opcode: Variable P1 P2 * P4 * 1306 ** Synopsis: r[P2]=parameter(P1,P4) 1307 ** 1308 ** Transfer the values of bound parameter P1 into register P2 1309 ** 1310 ** If the parameter is named, then its name appears in P4. 1311 ** The P4 value is used by sqlite3_bind_parameter_name(). 1312 */ 1313 case OP_Variable: { /* out2 */ 1314 Mem *pVar; /* Value being transferred */ 1315 1316 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1317 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1318 pVar = &p->aVar[pOp->p1 - 1]; 1319 if( sqlite3VdbeMemTooBig(pVar) ){ 1320 goto too_big; 1321 } 1322 pOut = &aMem[pOp->p2]; 1323 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1324 memcpy(pOut, pVar, MEMCELLSIZE); 1325 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1326 pOut->flags |= MEM_Static|MEM_FromBind; 1327 UPDATE_MAX_BLOBSIZE(pOut); 1328 break; 1329 } 1330 1331 /* Opcode: Move P1 P2 P3 * * 1332 ** Synopsis: r[P2@P3]=r[P1@P3] 1333 ** 1334 ** Move the P3 values in register P1..P1+P3-1 over into 1335 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1336 ** left holding a NULL. It is an error for register ranges 1337 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1338 ** for P3 to be less than 1. 1339 */ 1340 case OP_Move: { 1341 int n; /* Number of registers left to copy */ 1342 int p1; /* Register to copy from */ 1343 int p2; /* Register to copy to */ 1344 1345 n = pOp->p3; 1346 p1 = pOp->p1; 1347 p2 = pOp->p2; 1348 assert( n>0 && p1>0 && p2>0 ); 1349 assert( p1+n<=p2 || p2+n<=p1 ); 1350 1351 pIn1 = &aMem[p1]; 1352 pOut = &aMem[p2]; 1353 do{ 1354 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1355 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1356 assert( memIsValid(pIn1) ); 1357 memAboutToChange(p, pOut); 1358 sqlite3VdbeMemMove(pOut, pIn1); 1359 #ifdef SQLITE_DEBUG 1360 pIn1->pScopyFrom = 0; 1361 { int i; 1362 for(i=1; i<p->nMem; i++){ 1363 if( aMem[i].pScopyFrom==pIn1 ){ 1364 aMem[i].pScopyFrom = pOut; 1365 } 1366 } 1367 } 1368 #endif 1369 Deephemeralize(pOut); 1370 REGISTER_TRACE(p2++, pOut); 1371 pIn1++; 1372 pOut++; 1373 }while( --n ); 1374 break; 1375 } 1376 1377 /* Opcode: Copy P1 P2 P3 * * 1378 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1379 ** 1380 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1381 ** 1382 ** This instruction makes a deep copy of the value. A duplicate 1383 ** is made of any string or blob constant. See also OP_SCopy. 1384 */ 1385 case OP_Copy: { 1386 int n; 1387 1388 n = pOp->p3; 1389 pIn1 = &aMem[pOp->p1]; 1390 pOut = &aMem[pOp->p2]; 1391 assert( pOut!=pIn1 ); 1392 while( 1 ){ 1393 memAboutToChange(p, pOut); 1394 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1395 Deephemeralize(pOut); 1396 #ifdef SQLITE_DEBUG 1397 pOut->pScopyFrom = 0; 1398 #endif 1399 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1400 if( (n--)==0 ) break; 1401 pOut++; 1402 pIn1++; 1403 } 1404 break; 1405 } 1406 1407 /* Opcode: SCopy P1 P2 * * * 1408 ** Synopsis: r[P2]=r[P1] 1409 ** 1410 ** Make a shallow copy of register P1 into register P2. 1411 ** 1412 ** This instruction makes a shallow copy of the value. If the value 1413 ** is a string or blob, then the copy is only a pointer to the 1414 ** original and hence if the original changes so will the copy. 1415 ** Worse, if the original is deallocated, the copy becomes invalid. 1416 ** Thus the program must guarantee that the original will not change 1417 ** during the lifetime of the copy. Use OP_Copy to make a complete 1418 ** copy. 1419 */ 1420 case OP_SCopy: { /* out2 */ 1421 pIn1 = &aMem[pOp->p1]; 1422 pOut = &aMem[pOp->p2]; 1423 assert( pOut!=pIn1 ); 1424 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1425 #ifdef SQLITE_DEBUG 1426 pOut->pScopyFrom = pIn1; 1427 pOut->mScopyFlags = pIn1->flags; 1428 #endif 1429 break; 1430 } 1431 1432 /* Opcode: IntCopy P1 P2 * * * 1433 ** Synopsis: r[P2]=r[P1] 1434 ** 1435 ** Transfer the integer value held in register P1 into register P2. 1436 ** 1437 ** This is an optimized version of SCopy that works only for integer 1438 ** values. 1439 */ 1440 case OP_IntCopy: { /* out2 */ 1441 pIn1 = &aMem[pOp->p1]; 1442 assert( (pIn1->flags & MEM_Int)!=0 ); 1443 pOut = &aMem[pOp->p2]; 1444 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1445 break; 1446 } 1447 1448 /* Opcode: ChngCntRow P1 P2 * * * 1449 ** Synopsis: output=r[P1] 1450 ** 1451 ** Output value in register P1 as the chance count for a DML statement, 1452 ** due to the "PRAGMA count_changes=ON" setting. Or, if there was a 1453 ** foreign key error in the statement, trigger the error now. 1454 ** 1455 ** This opcode is a variant of OP_ResultRow that checks the foreign key 1456 ** immediate constraint count and throws an error if the count is 1457 ** non-zero. The P2 opcode must be 1. 1458 */ 1459 case OP_ChngCntRow: { 1460 assert( pOp->p2==1 ); 1461 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1462 goto abort_due_to_error; 1463 } 1464 /* Fall through to the next case, OP_ResultRow */ 1465 /* no break */ deliberate_fall_through 1466 } 1467 1468 /* Opcode: ResultRow P1 P2 * * * 1469 ** Synopsis: output=r[P1@P2] 1470 ** 1471 ** The registers P1 through P1+P2-1 contain a single row of 1472 ** results. This opcode causes the sqlite3_step() call to terminate 1473 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1474 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1475 ** the result row. 1476 */ 1477 case OP_ResultRow: { 1478 Mem *pMem; 1479 int i; 1480 assert( p->nResColumn==pOp->p2 ); 1481 assert( pOp->p1>0 ); 1482 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1483 1484 /* Invalidate all ephemeral cursor row caches */ 1485 p->cacheCtr = (p->cacheCtr + 2)|1; 1486 1487 /* Make sure the results of the current row are \000 terminated 1488 ** and have an assigned type. The results are de-ephemeralized as 1489 ** a side effect. 1490 */ 1491 pMem = p->pResultSet = &aMem[pOp->p1]; 1492 for(i=0; i<pOp->p2; i++){ 1493 assert( memIsValid(&pMem[i]) ); 1494 Deephemeralize(&pMem[i]); 1495 assert( (pMem[i].flags & MEM_Ephem)==0 1496 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1497 sqlite3VdbeMemNulTerminate(&pMem[i]); 1498 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1499 #ifdef SQLITE_DEBUG 1500 /* The registers in the result will not be used again when the 1501 ** prepared statement restarts. This is because sqlite3_column() 1502 ** APIs might have caused type conversions of made other changes to 1503 ** the register values. Therefore, we can go ahead and break any 1504 ** OP_SCopy dependencies. */ 1505 pMem[i].pScopyFrom = 0; 1506 #endif 1507 } 1508 if( db->mallocFailed ) goto no_mem; 1509 1510 if( db->mTrace & SQLITE_TRACE_ROW ){ 1511 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1512 } 1513 1514 1515 /* Return SQLITE_ROW 1516 */ 1517 p->pc = (int)(pOp - aOp) + 1; 1518 rc = SQLITE_ROW; 1519 goto vdbe_return; 1520 } 1521 1522 /* Opcode: Concat P1 P2 P3 * * 1523 ** Synopsis: r[P3]=r[P2]+r[P1] 1524 ** 1525 ** Add the text in register P1 onto the end of the text in 1526 ** register P2 and store the result in register P3. 1527 ** If either the P1 or P2 text are NULL then store NULL in P3. 1528 ** 1529 ** P3 = P2 || P1 1530 ** 1531 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1532 ** if P3 is the same register as P2, the implementation is able 1533 ** to avoid a memcpy(). 1534 */ 1535 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1536 i64 nByte; /* Total size of the output string or blob */ 1537 u16 flags1; /* Initial flags for P1 */ 1538 u16 flags2; /* Initial flags for P2 */ 1539 1540 pIn1 = &aMem[pOp->p1]; 1541 pIn2 = &aMem[pOp->p2]; 1542 pOut = &aMem[pOp->p3]; 1543 testcase( pOut==pIn2 ); 1544 assert( pIn1!=pOut ); 1545 flags1 = pIn1->flags; 1546 testcase( flags1 & MEM_Null ); 1547 testcase( pIn2->flags & MEM_Null ); 1548 if( (flags1 | pIn2->flags) & MEM_Null ){ 1549 sqlite3VdbeMemSetNull(pOut); 1550 break; 1551 } 1552 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1553 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1554 flags1 = pIn1->flags & ~MEM_Str; 1555 }else if( (flags1 & MEM_Zero)!=0 ){ 1556 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1557 flags1 = pIn1->flags & ~MEM_Str; 1558 } 1559 flags2 = pIn2->flags; 1560 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1561 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1562 flags2 = pIn2->flags & ~MEM_Str; 1563 }else if( (flags2 & MEM_Zero)!=0 ){ 1564 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1565 flags2 = pIn2->flags & ~MEM_Str; 1566 } 1567 nByte = pIn1->n + pIn2->n; 1568 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1569 goto too_big; 1570 } 1571 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1572 goto no_mem; 1573 } 1574 MemSetTypeFlag(pOut, MEM_Str); 1575 if( pOut!=pIn2 ){ 1576 memcpy(pOut->z, pIn2->z, pIn2->n); 1577 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1578 pIn2->flags = flags2; 1579 } 1580 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1581 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1582 pIn1->flags = flags1; 1583 pOut->z[nByte]=0; 1584 pOut->z[nByte+1] = 0; 1585 pOut->z[nByte+2] = 0; 1586 pOut->flags |= MEM_Term; 1587 pOut->n = (int)nByte; 1588 pOut->enc = encoding; 1589 UPDATE_MAX_BLOBSIZE(pOut); 1590 break; 1591 } 1592 1593 /* Opcode: Add P1 P2 P3 * * 1594 ** Synopsis: r[P3]=r[P1]+r[P2] 1595 ** 1596 ** Add the value in register P1 to the value in register P2 1597 ** and store the result in register P3. 1598 ** If either input is NULL, the result is NULL. 1599 */ 1600 /* Opcode: Multiply P1 P2 P3 * * 1601 ** Synopsis: r[P3]=r[P1]*r[P2] 1602 ** 1603 ** 1604 ** Multiply the value in register P1 by the value in register P2 1605 ** and store the result in register P3. 1606 ** If either input is NULL, the result is NULL. 1607 */ 1608 /* Opcode: Subtract P1 P2 P3 * * 1609 ** Synopsis: r[P3]=r[P2]-r[P1] 1610 ** 1611 ** Subtract the value in register P1 from the value in register P2 1612 ** and store the result in register P3. 1613 ** If either input is NULL, the result is NULL. 1614 */ 1615 /* Opcode: Divide P1 P2 P3 * * 1616 ** Synopsis: r[P3]=r[P2]/r[P1] 1617 ** 1618 ** Divide the value in register P1 by the value in register P2 1619 ** and store the result in register P3 (P3=P2/P1). If the value in 1620 ** register P1 is zero, then the result is NULL. If either input is 1621 ** NULL, the result is NULL. 1622 */ 1623 /* Opcode: Remainder P1 P2 P3 * * 1624 ** Synopsis: r[P3]=r[P2]%r[P1] 1625 ** 1626 ** Compute the remainder after integer register P2 is divided by 1627 ** register P1 and store the result in register P3. 1628 ** If the value in register P1 is zero the result is NULL. 1629 ** If either operand is NULL, the result is NULL. 1630 */ 1631 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1632 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1633 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1634 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1635 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1636 u16 flags; /* Combined MEM_* flags from both inputs */ 1637 u16 type1; /* Numeric type of left operand */ 1638 u16 type2; /* Numeric type of right operand */ 1639 i64 iA; /* Integer value of left operand */ 1640 i64 iB; /* Integer value of right operand */ 1641 double rA; /* Real value of left operand */ 1642 double rB; /* Real value of right operand */ 1643 1644 pIn1 = &aMem[pOp->p1]; 1645 type1 = numericType(pIn1); 1646 pIn2 = &aMem[pOp->p2]; 1647 type2 = numericType(pIn2); 1648 pOut = &aMem[pOp->p3]; 1649 flags = pIn1->flags | pIn2->flags; 1650 if( (type1 & type2 & MEM_Int)!=0 ){ 1651 iA = pIn1->u.i; 1652 iB = pIn2->u.i; 1653 switch( pOp->opcode ){ 1654 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1655 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1656 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1657 case OP_Divide: { 1658 if( iA==0 ) goto arithmetic_result_is_null; 1659 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1660 iB /= iA; 1661 break; 1662 } 1663 default: { 1664 if( iA==0 ) goto arithmetic_result_is_null; 1665 if( iA==-1 ) iA = 1; 1666 iB %= iA; 1667 break; 1668 } 1669 } 1670 pOut->u.i = iB; 1671 MemSetTypeFlag(pOut, MEM_Int); 1672 }else if( (flags & MEM_Null)!=0 ){ 1673 goto arithmetic_result_is_null; 1674 }else{ 1675 fp_math: 1676 rA = sqlite3VdbeRealValue(pIn1); 1677 rB = sqlite3VdbeRealValue(pIn2); 1678 switch( pOp->opcode ){ 1679 case OP_Add: rB += rA; break; 1680 case OP_Subtract: rB -= rA; break; 1681 case OP_Multiply: rB *= rA; break; 1682 case OP_Divide: { 1683 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1684 if( rA==(double)0 ) goto arithmetic_result_is_null; 1685 rB /= rA; 1686 break; 1687 } 1688 default: { 1689 iA = sqlite3VdbeIntValue(pIn1); 1690 iB = sqlite3VdbeIntValue(pIn2); 1691 if( iA==0 ) goto arithmetic_result_is_null; 1692 if( iA==-1 ) iA = 1; 1693 rB = (double)(iB % iA); 1694 break; 1695 } 1696 } 1697 #ifdef SQLITE_OMIT_FLOATING_POINT 1698 pOut->u.i = rB; 1699 MemSetTypeFlag(pOut, MEM_Int); 1700 #else 1701 if( sqlite3IsNaN(rB) ){ 1702 goto arithmetic_result_is_null; 1703 } 1704 pOut->u.r = rB; 1705 MemSetTypeFlag(pOut, MEM_Real); 1706 #endif 1707 } 1708 break; 1709 1710 arithmetic_result_is_null: 1711 sqlite3VdbeMemSetNull(pOut); 1712 break; 1713 } 1714 1715 /* Opcode: CollSeq P1 * * P4 1716 ** 1717 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1718 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1719 ** be returned. This is used by the built-in min(), max() and nullif() 1720 ** functions. 1721 ** 1722 ** If P1 is not zero, then it is a register that a subsequent min() or 1723 ** max() aggregate will set to 1 if the current row is not the minimum or 1724 ** maximum. The P1 register is initialized to 0 by this instruction. 1725 ** 1726 ** The interface used by the implementation of the aforementioned functions 1727 ** to retrieve the collation sequence set by this opcode is not available 1728 ** publicly. Only built-in functions have access to this feature. 1729 */ 1730 case OP_CollSeq: { 1731 assert( pOp->p4type==P4_COLLSEQ ); 1732 if( pOp->p1 ){ 1733 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1734 } 1735 break; 1736 } 1737 1738 /* Opcode: BitAnd P1 P2 P3 * * 1739 ** Synopsis: r[P3]=r[P1]&r[P2] 1740 ** 1741 ** Take the bit-wise AND of the values in register P1 and P2 and 1742 ** store the result in register P3. 1743 ** If either input is NULL, the result is NULL. 1744 */ 1745 /* Opcode: BitOr P1 P2 P3 * * 1746 ** Synopsis: r[P3]=r[P1]|r[P2] 1747 ** 1748 ** Take the bit-wise OR of the values in register P1 and P2 and 1749 ** store the result in register P3. 1750 ** If either input is NULL, the result is NULL. 1751 */ 1752 /* Opcode: ShiftLeft P1 P2 P3 * * 1753 ** Synopsis: r[P3]=r[P2]<<r[P1] 1754 ** 1755 ** Shift the integer value in register P2 to the left by the 1756 ** number of bits specified by the integer in register P1. 1757 ** Store the result in register P3. 1758 ** If either input is NULL, the result is NULL. 1759 */ 1760 /* Opcode: ShiftRight P1 P2 P3 * * 1761 ** Synopsis: r[P3]=r[P2]>>r[P1] 1762 ** 1763 ** Shift the integer value in register P2 to the right by the 1764 ** number of bits specified by the integer in register P1. 1765 ** Store the result in register P3. 1766 ** If either input is NULL, the result is NULL. 1767 */ 1768 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1769 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1770 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1771 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1772 i64 iA; 1773 u64 uA; 1774 i64 iB; 1775 u8 op; 1776 1777 pIn1 = &aMem[pOp->p1]; 1778 pIn2 = &aMem[pOp->p2]; 1779 pOut = &aMem[pOp->p3]; 1780 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1781 sqlite3VdbeMemSetNull(pOut); 1782 break; 1783 } 1784 iA = sqlite3VdbeIntValue(pIn2); 1785 iB = sqlite3VdbeIntValue(pIn1); 1786 op = pOp->opcode; 1787 if( op==OP_BitAnd ){ 1788 iA &= iB; 1789 }else if( op==OP_BitOr ){ 1790 iA |= iB; 1791 }else if( iB!=0 ){ 1792 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1793 1794 /* If shifting by a negative amount, shift in the other direction */ 1795 if( iB<0 ){ 1796 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1797 op = 2*OP_ShiftLeft + 1 - op; 1798 iB = iB>(-64) ? -iB : 64; 1799 } 1800 1801 if( iB>=64 ){ 1802 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1803 }else{ 1804 memcpy(&uA, &iA, sizeof(uA)); 1805 if( op==OP_ShiftLeft ){ 1806 uA <<= iB; 1807 }else{ 1808 uA >>= iB; 1809 /* Sign-extend on a right shift of a negative number */ 1810 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1811 } 1812 memcpy(&iA, &uA, sizeof(iA)); 1813 } 1814 } 1815 pOut->u.i = iA; 1816 MemSetTypeFlag(pOut, MEM_Int); 1817 break; 1818 } 1819 1820 /* Opcode: AddImm P1 P2 * * * 1821 ** Synopsis: r[P1]=r[P1]+P2 1822 ** 1823 ** Add the constant P2 to the value in register P1. 1824 ** The result is always an integer. 1825 ** 1826 ** To force any register to be an integer, just add 0. 1827 */ 1828 case OP_AddImm: { /* in1 */ 1829 pIn1 = &aMem[pOp->p1]; 1830 memAboutToChange(p, pIn1); 1831 sqlite3VdbeMemIntegerify(pIn1); 1832 pIn1->u.i += pOp->p2; 1833 break; 1834 } 1835 1836 /* Opcode: MustBeInt P1 P2 * * * 1837 ** 1838 ** Force the value in register P1 to be an integer. If the value 1839 ** in P1 is not an integer and cannot be converted into an integer 1840 ** without data loss, then jump immediately to P2, or if P2==0 1841 ** raise an SQLITE_MISMATCH exception. 1842 */ 1843 case OP_MustBeInt: { /* jump, in1 */ 1844 pIn1 = &aMem[pOp->p1]; 1845 if( (pIn1->flags & MEM_Int)==0 ){ 1846 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1847 if( (pIn1->flags & MEM_Int)==0 ){ 1848 VdbeBranchTaken(1, 2); 1849 if( pOp->p2==0 ){ 1850 rc = SQLITE_MISMATCH; 1851 goto abort_due_to_error; 1852 }else{ 1853 goto jump_to_p2; 1854 } 1855 } 1856 } 1857 VdbeBranchTaken(0, 2); 1858 MemSetTypeFlag(pIn1, MEM_Int); 1859 break; 1860 } 1861 1862 #ifndef SQLITE_OMIT_FLOATING_POINT 1863 /* Opcode: RealAffinity P1 * * * * 1864 ** 1865 ** If register P1 holds an integer convert it to a real value. 1866 ** 1867 ** This opcode is used when extracting information from a column that 1868 ** has REAL affinity. Such column values may still be stored as 1869 ** integers, for space efficiency, but after extraction we want them 1870 ** to have only a real value. 1871 */ 1872 case OP_RealAffinity: { /* in1 */ 1873 pIn1 = &aMem[pOp->p1]; 1874 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1875 testcase( pIn1->flags & MEM_Int ); 1876 testcase( pIn1->flags & MEM_IntReal ); 1877 sqlite3VdbeMemRealify(pIn1); 1878 REGISTER_TRACE(pOp->p1, pIn1); 1879 } 1880 break; 1881 } 1882 #endif 1883 1884 #ifndef SQLITE_OMIT_CAST 1885 /* Opcode: Cast P1 P2 * * * 1886 ** Synopsis: affinity(r[P1]) 1887 ** 1888 ** Force the value in register P1 to be the type defined by P2. 1889 ** 1890 ** <ul> 1891 ** <li> P2=='A' → BLOB 1892 ** <li> P2=='B' → TEXT 1893 ** <li> P2=='C' → NUMERIC 1894 ** <li> P2=='D' → INTEGER 1895 ** <li> P2=='E' → REAL 1896 ** </ul> 1897 ** 1898 ** A NULL value is not changed by this routine. It remains NULL. 1899 */ 1900 case OP_Cast: { /* in1 */ 1901 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1902 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1903 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1904 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1905 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1906 testcase( pOp->p2==SQLITE_AFF_REAL ); 1907 pIn1 = &aMem[pOp->p1]; 1908 memAboutToChange(p, pIn1); 1909 rc = ExpandBlob(pIn1); 1910 if( rc ) goto abort_due_to_error; 1911 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1912 if( rc ) goto abort_due_to_error; 1913 UPDATE_MAX_BLOBSIZE(pIn1); 1914 REGISTER_TRACE(pOp->p1, pIn1); 1915 break; 1916 } 1917 #endif /* SQLITE_OMIT_CAST */ 1918 1919 /* Opcode: Eq P1 P2 P3 P4 P5 1920 ** Synopsis: IF r[P3]==r[P1] 1921 ** 1922 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1923 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1924 ** store the result of comparison in register P2. 1925 ** 1926 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1927 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1928 ** to coerce both inputs according to this affinity before the 1929 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1930 ** affinity is used. Note that the affinity conversions are stored 1931 ** back into the input registers P1 and P3. So this opcode can cause 1932 ** persistent changes to registers P1 and P3. 1933 ** 1934 ** Once any conversions have taken place, and neither value is NULL, 1935 ** the values are compared. If both values are blobs then memcmp() is 1936 ** used to determine the results of the comparison. If both values 1937 ** are text, then the appropriate collating function specified in 1938 ** P4 is used to do the comparison. If P4 is not specified then 1939 ** memcmp() is used to compare text string. If both values are 1940 ** numeric, then a numeric comparison is used. If the two values 1941 ** are of different types, then numbers are considered less than 1942 ** strings and strings are considered less than blobs. 1943 ** 1944 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1945 ** true or false and is never NULL. If both operands are NULL then the result 1946 ** of comparison is true. If either operand is NULL then the result is false. 1947 ** If neither operand is NULL the result is the same as it would be if 1948 ** the SQLITE_NULLEQ flag were omitted from P5. 1949 ** 1950 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1951 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1952 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1953 */ 1954 /* Opcode: Ne P1 P2 P3 P4 P5 1955 ** Synopsis: IF r[P3]!=r[P1] 1956 ** 1957 ** This works just like the Eq opcode except that the jump is taken if 1958 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1959 ** additional information. 1960 ** 1961 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1962 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1963 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1964 */ 1965 /* Opcode: Lt P1 P2 P3 P4 P5 1966 ** Synopsis: IF r[P3]<r[P1] 1967 ** 1968 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1969 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1970 ** the result of comparison (0 or 1 or NULL) into register P2. 1971 ** 1972 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1973 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1974 ** bit is clear then fall through if either operand is NULL. 1975 ** 1976 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1977 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1978 ** to coerce both inputs according to this affinity before the 1979 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1980 ** affinity is used. Note that the affinity conversions are stored 1981 ** back into the input registers P1 and P3. So this opcode can cause 1982 ** persistent changes to registers P1 and P3. 1983 ** 1984 ** Once any conversions have taken place, and neither value is NULL, 1985 ** the values are compared. If both values are blobs then memcmp() is 1986 ** used to determine the results of the comparison. If both values 1987 ** are text, then the appropriate collating function specified in 1988 ** P4 is used to do the comparison. If P4 is not specified then 1989 ** memcmp() is used to compare text string. If both values are 1990 ** numeric, then a numeric comparison is used. If the two values 1991 ** are of different types, then numbers are considered less than 1992 ** strings and strings are considered less than blobs. 1993 */ 1994 /* Opcode: Le P1 P2 P3 P4 P5 1995 ** Synopsis: IF r[P3]<=r[P1] 1996 ** 1997 ** This works just like the Lt opcode except that the jump is taken if 1998 ** the content of register P3 is less than or equal to the content of 1999 ** register P1. See the Lt opcode for additional information. 2000 */ 2001 /* Opcode: Gt P1 P2 P3 P4 P5 2002 ** Synopsis: IF r[P3]>r[P1] 2003 ** 2004 ** This works just like the Lt opcode except that the jump is taken if 2005 ** the content of register P3 is greater than the content of 2006 ** register P1. See the Lt opcode for additional information. 2007 */ 2008 /* Opcode: Ge P1 P2 P3 P4 P5 2009 ** Synopsis: IF r[P3]>=r[P1] 2010 ** 2011 ** This works just like the Lt opcode except that the jump is taken if 2012 ** the content of register P3 is greater than or equal to the content of 2013 ** register P1. See the Lt opcode for additional information. 2014 */ 2015 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2016 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2017 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2018 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2019 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2020 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2021 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2022 char affinity; /* Affinity to use for comparison */ 2023 u16 flags1; /* Copy of initial value of pIn1->flags */ 2024 u16 flags3; /* Copy of initial value of pIn3->flags */ 2025 2026 pIn1 = &aMem[pOp->p1]; 2027 pIn3 = &aMem[pOp->p3]; 2028 flags1 = pIn1->flags; 2029 flags3 = pIn3->flags; 2030 if( (flags1 | flags3)&MEM_Null ){ 2031 /* One or both operands are NULL */ 2032 if( pOp->p5 & SQLITE_NULLEQ ){ 2033 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2034 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2035 ** or not both operands are null. 2036 */ 2037 assert( (flags1 & MEM_Cleared)==0 ); 2038 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2039 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2040 if( (flags1&flags3&MEM_Null)!=0 2041 && (flags3&MEM_Cleared)==0 2042 ){ 2043 res = 0; /* Operands are equal */ 2044 }else{ 2045 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2046 } 2047 }else{ 2048 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2049 ** then the result is always NULL. 2050 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2051 */ 2052 if( pOp->p5 & SQLITE_STOREP2 ){ 2053 pOut = &aMem[pOp->p2]; 2054 iCompare = 1; /* Operands are not equal */ 2055 memAboutToChange(p, pOut); 2056 MemSetTypeFlag(pOut, MEM_Null); 2057 REGISTER_TRACE(pOp->p2, pOut); 2058 }else{ 2059 VdbeBranchTaken(2,3); 2060 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2061 goto jump_to_p2; 2062 } 2063 } 2064 break; 2065 } 2066 }else{ 2067 /* Neither operand is NULL. Do a comparison. */ 2068 affinity = pOp->p5 & SQLITE_AFF_MASK; 2069 if( affinity>=SQLITE_AFF_NUMERIC ){ 2070 if( (flags1 | flags3)&MEM_Str ){ 2071 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2072 applyNumericAffinity(pIn1,0); 2073 testcase( flags3==pIn3->flags ); 2074 flags3 = pIn3->flags; 2075 } 2076 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2077 applyNumericAffinity(pIn3,0); 2078 } 2079 } 2080 /* Handle the common case of integer comparison here, as an 2081 ** optimization, to avoid a call to sqlite3MemCompare() */ 2082 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2083 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2084 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2085 res = 0; 2086 goto compare_op; 2087 } 2088 }else if( affinity==SQLITE_AFF_TEXT ){ 2089 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2090 testcase( pIn1->flags & MEM_Int ); 2091 testcase( pIn1->flags & MEM_Real ); 2092 testcase( pIn1->flags & MEM_IntReal ); 2093 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2094 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2095 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2096 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 2097 } 2098 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2099 testcase( pIn3->flags & MEM_Int ); 2100 testcase( pIn3->flags & MEM_Real ); 2101 testcase( pIn3->flags & MEM_IntReal ); 2102 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2103 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2104 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2105 } 2106 } 2107 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2108 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2109 } 2110 compare_op: 2111 /* At this point, res is negative, zero, or positive if reg[P1] is 2112 ** less than, equal to, or greater than reg[P3], respectively. Compute 2113 ** the answer to this operator in res2, depending on what the comparison 2114 ** operator actually is. The next block of code depends on the fact 2115 ** that the 6 comparison operators are consecutive integers in this 2116 ** order: NE, EQ, GT, LE, LT, GE */ 2117 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2118 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2119 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 2120 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 2121 res2 = aLTb[pOp->opcode - OP_Ne]; 2122 }else if( res==0 ){ 2123 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2124 res2 = aEQb[pOp->opcode - OP_Ne]; 2125 }else{ 2126 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2127 res2 = aGTb[pOp->opcode - OP_Ne]; 2128 } 2129 2130 /* Undo any changes made by applyAffinity() to the input registers. */ 2131 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2132 pIn3->flags = flags3; 2133 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2134 pIn1->flags = flags1; 2135 2136 if( pOp->p5 & SQLITE_STOREP2 ){ 2137 pOut = &aMem[pOp->p2]; 2138 iCompare = res; 2139 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2140 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2141 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2142 ** is only used in contexts where either: 2143 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2144 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2145 ** Therefore it is not necessary to check the content of r[P2] for 2146 ** NULL. */ 2147 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2148 assert( res2==0 || res2==1 ); 2149 testcase( res2==0 && pOp->opcode==OP_Eq ); 2150 testcase( res2==1 && pOp->opcode==OP_Eq ); 2151 testcase( res2==0 && pOp->opcode==OP_Ne ); 2152 testcase( res2==1 && pOp->opcode==OP_Ne ); 2153 if( (pOp->opcode==OP_Eq)==res2 ) break; 2154 } 2155 memAboutToChange(p, pOut); 2156 MemSetTypeFlag(pOut, MEM_Int); 2157 pOut->u.i = res2; 2158 REGISTER_TRACE(pOp->p2, pOut); 2159 }else{ 2160 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2161 if( res2 ){ 2162 goto jump_to_p2; 2163 } 2164 } 2165 break; 2166 } 2167 2168 /* Opcode: ElseNotEq * P2 * * * 2169 ** 2170 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2171 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2172 ** opcodes are allowed to occur between this instruction and the previous 2173 ** OP_Lt or OP_Gt. Furthermore, the prior OP_Lt or OP_Gt must have the 2174 ** SQLITE_STOREP2 bit set in the P5 field. 2175 ** 2176 ** If result of an OP_Eq comparison on the same two operands as the 2177 ** prior OP_Lt or OP_Gt would have been NULL or false (0), then then 2178 ** jump to P2. If the result of an OP_Eq comparison on the two previous 2179 ** operands would have been true (1), then fall through. 2180 */ 2181 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2182 2183 #ifdef SQLITE_DEBUG 2184 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2185 ** OP_Gt with the SQLITE_STOREP2 flag set, with zero or more intervening 2186 ** OP_ReleaseReg opcodes */ 2187 int iAddr; 2188 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2189 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2190 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2191 assert( aOp[iAddr].p5 & SQLITE_STOREP2 ); 2192 break; 2193 } 2194 #endif /* SQLITE_DEBUG */ 2195 VdbeBranchTaken(iCompare!=0, 2); 2196 if( iCompare!=0 ) goto jump_to_p2; 2197 break; 2198 } 2199 2200 2201 /* Opcode: Permutation * * * P4 * 2202 ** 2203 ** Set the permutation used by the OP_Compare operator in the next 2204 ** instruction. The permutation is stored in the P4 operand. 2205 ** 2206 ** The permutation is only valid until the next OP_Compare that has 2207 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2208 ** occur immediately prior to the OP_Compare. 2209 ** 2210 ** The first integer in the P4 integer array is the length of the array 2211 ** and does not become part of the permutation. 2212 */ 2213 case OP_Permutation: { 2214 assert( pOp->p4type==P4_INTARRAY ); 2215 assert( pOp->p4.ai ); 2216 assert( pOp[1].opcode==OP_Compare ); 2217 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2218 break; 2219 } 2220 2221 /* Opcode: Compare P1 P2 P3 P4 P5 2222 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2223 ** 2224 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2225 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2226 ** the comparison for use by the next OP_Jump instruct. 2227 ** 2228 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2229 ** determined by the most recent OP_Permutation operator. If the 2230 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2231 ** order. 2232 ** 2233 ** P4 is a KeyInfo structure that defines collating sequences and sort 2234 ** orders for the comparison. The permutation applies to registers 2235 ** only. The KeyInfo elements are used sequentially. 2236 ** 2237 ** The comparison is a sort comparison, so NULLs compare equal, 2238 ** NULLs are less than numbers, numbers are less than strings, 2239 ** and strings are less than blobs. 2240 */ 2241 case OP_Compare: { 2242 int n; 2243 int i; 2244 int p1; 2245 int p2; 2246 const KeyInfo *pKeyInfo; 2247 u32 idx; 2248 CollSeq *pColl; /* Collating sequence to use on this term */ 2249 int bRev; /* True for DESCENDING sort order */ 2250 u32 *aPermute; /* The permutation */ 2251 2252 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2253 aPermute = 0; 2254 }else{ 2255 assert( pOp>aOp ); 2256 assert( pOp[-1].opcode==OP_Permutation ); 2257 assert( pOp[-1].p4type==P4_INTARRAY ); 2258 aPermute = pOp[-1].p4.ai + 1; 2259 assert( aPermute!=0 ); 2260 } 2261 n = pOp->p3; 2262 pKeyInfo = pOp->p4.pKeyInfo; 2263 assert( n>0 ); 2264 assert( pKeyInfo!=0 ); 2265 p1 = pOp->p1; 2266 p2 = pOp->p2; 2267 #ifdef SQLITE_DEBUG 2268 if( aPermute ){ 2269 int k, mx = 0; 2270 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2271 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2272 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2273 }else{ 2274 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2275 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2276 } 2277 #endif /* SQLITE_DEBUG */ 2278 for(i=0; i<n; i++){ 2279 idx = aPermute ? aPermute[i] : (u32)i; 2280 assert( memIsValid(&aMem[p1+idx]) ); 2281 assert( memIsValid(&aMem[p2+idx]) ); 2282 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2283 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2284 assert( i<pKeyInfo->nKeyField ); 2285 pColl = pKeyInfo->aColl[i]; 2286 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2287 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2288 if( iCompare ){ 2289 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2290 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2291 ){ 2292 iCompare = -iCompare; 2293 } 2294 if( bRev ) iCompare = -iCompare; 2295 break; 2296 } 2297 } 2298 break; 2299 } 2300 2301 /* Opcode: Jump P1 P2 P3 * * 2302 ** 2303 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2304 ** in the most recent OP_Compare instruction the P1 vector was less than 2305 ** equal to, or greater than the P2 vector, respectively. 2306 */ 2307 case OP_Jump: { /* jump */ 2308 if( iCompare<0 ){ 2309 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2310 }else if( iCompare==0 ){ 2311 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2312 }else{ 2313 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2314 } 2315 break; 2316 } 2317 2318 /* Opcode: And P1 P2 P3 * * 2319 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2320 ** 2321 ** Take the logical AND of the values in registers P1 and P2 and 2322 ** write the result into register P3. 2323 ** 2324 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2325 ** the other input is NULL. A NULL and true or two NULLs give 2326 ** a NULL output. 2327 */ 2328 /* Opcode: Or P1 P2 P3 * * 2329 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2330 ** 2331 ** Take the logical OR of the values in register P1 and P2 and 2332 ** store the answer in register P3. 2333 ** 2334 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2335 ** even if the other input is NULL. A NULL and false or two NULLs 2336 ** give a NULL output. 2337 */ 2338 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2339 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2340 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2341 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2342 2343 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2344 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2345 if( pOp->opcode==OP_And ){ 2346 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2347 v1 = and_logic[v1*3+v2]; 2348 }else{ 2349 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2350 v1 = or_logic[v1*3+v2]; 2351 } 2352 pOut = &aMem[pOp->p3]; 2353 if( v1==2 ){ 2354 MemSetTypeFlag(pOut, MEM_Null); 2355 }else{ 2356 pOut->u.i = v1; 2357 MemSetTypeFlag(pOut, MEM_Int); 2358 } 2359 break; 2360 } 2361 2362 /* Opcode: IsTrue P1 P2 P3 P4 * 2363 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2364 ** 2365 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2366 ** IS NOT FALSE operators. 2367 ** 2368 ** Interpret the value in register P1 as a boolean value. Store that 2369 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2370 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2371 ** is 1. 2372 ** 2373 ** The logic is summarized like this: 2374 ** 2375 ** <ul> 2376 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2377 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2378 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2379 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2380 ** </ul> 2381 */ 2382 case OP_IsTrue: { /* in1, out2 */ 2383 assert( pOp->p4type==P4_INT32 ); 2384 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2385 assert( pOp->p3==0 || pOp->p3==1 ); 2386 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2387 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2388 break; 2389 } 2390 2391 /* Opcode: Not P1 P2 * * * 2392 ** Synopsis: r[P2]= !r[P1] 2393 ** 2394 ** Interpret the value in register P1 as a boolean value. Store the 2395 ** boolean complement in register P2. If the value in register P1 is 2396 ** NULL, then a NULL is stored in P2. 2397 */ 2398 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2399 pIn1 = &aMem[pOp->p1]; 2400 pOut = &aMem[pOp->p2]; 2401 if( (pIn1->flags & MEM_Null)==0 ){ 2402 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2403 }else{ 2404 sqlite3VdbeMemSetNull(pOut); 2405 } 2406 break; 2407 } 2408 2409 /* Opcode: BitNot P1 P2 * * * 2410 ** Synopsis: r[P2]= ~r[P1] 2411 ** 2412 ** Interpret the content of register P1 as an integer. Store the 2413 ** ones-complement of the P1 value into register P2. If P1 holds 2414 ** a NULL then store a NULL in P2. 2415 */ 2416 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2417 pIn1 = &aMem[pOp->p1]; 2418 pOut = &aMem[pOp->p2]; 2419 sqlite3VdbeMemSetNull(pOut); 2420 if( (pIn1->flags & MEM_Null)==0 ){ 2421 pOut->flags = MEM_Int; 2422 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2423 } 2424 break; 2425 } 2426 2427 /* Opcode: Once P1 P2 * * * 2428 ** 2429 ** Fall through to the next instruction the first time this opcode is 2430 ** encountered on each invocation of the byte-code program. Jump to P2 2431 ** on the second and all subsequent encounters during the same invocation. 2432 ** 2433 ** Top-level programs determine first invocation by comparing the P1 2434 ** operand against the P1 operand on the OP_Init opcode at the beginning 2435 ** of the program. If the P1 values differ, then fall through and make 2436 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2437 ** the same then take the jump. 2438 ** 2439 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2440 ** whether or not the jump should be taken. The bitmask is necessary 2441 ** because the self-altering code trick does not work for recursive 2442 ** triggers. 2443 */ 2444 case OP_Once: { /* jump */ 2445 u32 iAddr; /* Address of this instruction */ 2446 assert( p->aOp[0].opcode==OP_Init ); 2447 if( p->pFrame ){ 2448 iAddr = (int)(pOp - p->aOp); 2449 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2450 VdbeBranchTaken(1, 2); 2451 goto jump_to_p2; 2452 } 2453 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2454 }else{ 2455 if( p->aOp[0].p1==pOp->p1 ){ 2456 VdbeBranchTaken(1, 2); 2457 goto jump_to_p2; 2458 } 2459 } 2460 VdbeBranchTaken(0, 2); 2461 pOp->p1 = p->aOp[0].p1; 2462 break; 2463 } 2464 2465 /* Opcode: If P1 P2 P3 * * 2466 ** 2467 ** Jump to P2 if the value in register P1 is true. The value 2468 ** is considered true if it is numeric and non-zero. If the value 2469 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2470 */ 2471 case OP_If: { /* jump, in1 */ 2472 int c; 2473 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2474 VdbeBranchTaken(c!=0, 2); 2475 if( c ) goto jump_to_p2; 2476 break; 2477 } 2478 2479 /* Opcode: IfNot P1 P2 P3 * * 2480 ** 2481 ** Jump to P2 if the value in register P1 is False. The value 2482 ** is considered false if it has a numeric value of zero. If the value 2483 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2484 */ 2485 case OP_IfNot: { /* jump, in1 */ 2486 int c; 2487 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2488 VdbeBranchTaken(c!=0, 2); 2489 if( c ) goto jump_to_p2; 2490 break; 2491 } 2492 2493 /* Opcode: IsNull P1 P2 * * * 2494 ** Synopsis: if r[P1]==NULL goto P2 2495 ** 2496 ** Jump to P2 if the value in register P1 is NULL. 2497 */ 2498 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2499 pIn1 = &aMem[pOp->p1]; 2500 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2501 if( (pIn1->flags & MEM_Null)!=0 ){ 2502 goto jump_to_p2; 2503 } 2504 break; 2505 } 2506 2507 /* Opcode: NotNull P1 P2 * * * 2508 ** Synopsis: if r[P1]!=NULL goto P2 2509 ** 2510 ** Jump to P2 if the value in register P1 is not NULL. 2511 */ 2512 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2513 pIn1 = &aMem[pOp->p1]; 2514 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2515 if( (pIn1->flags & MEM_Null)==0 ){ 2516 goto jump_to_p2; 2517 } 2518 break; 2519 } 2520 2521 /* Opcode: IfNullRow P1 P2 P3 * * 2522 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2523 ** 2524 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2525 ** If it is, then set register P3 to NULL and jump immediately to P2. 2526 ** If P1 is not on a NULL row, then fall through without making any 2527 ** changes. 2528 */ 2529 case OP_IfNullRow: { /* jump */ 2530 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2531 assert( p->apCsr[pOp->p1]!=0 ); 2532 if( p->apCsr[pOp->p1]->nullRow ){ 2533 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2534 goto jump_to_p2; 2535 } 2536 break; 2537 } 2538 2539 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2540 /* Opcode: Offset P1 P2 P3 * * 2541 ** Synopsis: r[P3] = sqlite_offset(P1) 2542 ** 2543 ** Store in register r[P3] the byte offset into the database file that is the 2544 ** start of the payload for the record at which that cursor P1 is currently 2545 ** pointing. 2546 ** 2547 ** P2 is the column number for the argument to the sqlite_offset() function. 2548 ** This opcode does not use P2 itself, but the P2 value is used by the 2549 ** code generator. The P1, P2, and P3 operands to this opcode are the 2550 ** same as for OP_Column. 2551 ** 2552 ** This opcode is only available if SQLite is compiled with the 2553 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2554 */ 2555 case OP_Offset: { /* out3 */ 2556 VdbeCursor *pC; /* The VDBE cursor */ 2557 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2558 pC = p->apCsr[pOp->p1]; 2559 pOut = &p->aMem[pOp->p3]; 2560 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2561 sqlite3VdbeMemSetNull(pOut); 2562 }else{ 2563 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2564 } 2565 break; 2566 } 2567 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2568 2569 /* Opcode: Column P1 P2 P3 P4 P5 2570 ** Synopsis: r[P3]=PX 2571 ** 2572 ** Interpret the data that cursor P1 points to as a structure built using 2573 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2574 ** information about the format of the data.) Extract the P2-th column 2575 ** from this record. If there are less that (P2+1) 2576 ** values in the record, extract a NULL. 2577 ** 2578 ** The value extracted is stored in register P3. 2579 ** 2580 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2581 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2582 ** the result. 2583 ** 2584 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2585 ** the result is guaranteed to only be used as the argument of a length() 2586 ** or typeof() function, respectively. The loading of large blobs can be 2587 ** skipped for length() and all content loading can be skipped for typeof(). 2588 */ 2589 case OP_Column: { 2590 u32 p2; /* column number to retrieve */ 2591 VdbeCursor *pC; /* The VDBE cursor */ 2592 BtCursor *pCrsr; /* The BTree cursor */ 2593 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2594 int len; /* The length of the serialized data for the column */ 2595 int i; /* Loop counter */ 2596 Mem *pDest; /* Where to write the extracted value */ 2597 Mem sMem; /* For storing the record being decoded */ 2598 const u8 *zData; /* Part of the record being decoded */ 2599 const u8 *zHdr; /* Next unparsed byte of the header */ 2600 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2601 u64 offset64; /* 64-bit offset */ 2602 u32 t; /* A type code from the record header */ 2603 Mem *pReg; /* PseudoTable input register */ 2604 2605 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2606 pC = p->apCsr[pOp->p1]; 2607 assert( pC!=0 ); 2608 p2 = (u32)pOp->p2; 2609 2610 /* If the cursor cache is stale (meaning it is not currently point at 2611 ** the correct row) then bring it up-to-date by doing the necessary 2612 ** B-Tree seek. */ 2613 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2614 if( rc ) goto abort_due_to_error; 2615 2616 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2617 pDest = &aMem[pOp->p3]; 2618 memAboutToChange(p, pDest); 2619 assert( pC!=0 ); 2620 assert( p2<(u32)pC->nField ); 2621 aOffset = pC->aOffset; 2622 assert( pC->eCurType!=CURTYPE_VTAB ); 2623 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2624 assert( pC->eCurType!=CURTYPE_SORTER ); 2625 2626 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2627 if( pC->nullRow ){ 2628 if( pC->eCurType==CURTYPE_PSEUDO ){ 2629 /* For the special case of as pseudo-cursor, the seekResult field 2630 ** identifies the register that holds the record */ 2631 assert( pC->seekResult>0 ); 2632 pReg = &aMem[pC->seekResult]; 2633 assert( pReg->flags & MEM_Blob ); 2634 assert( memIsValid(pReg) ); 2635 pC->payloadSize = pC->szRow = pReg->n; 2636 pC->aRow = (u8*)pReg->z; 2637 }else{ 2638 sqlite3VdbeMemSetNull(pDest); 2639 goto op_column_out; 2640 } 2641 }else{ 2642 pCrsr = pC->uc.pCursor; 2643 assert( pC->eCurType==CURTYPE_BTREE ); 2644 assert( pCrsr ); 2645 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2646 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2647 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2648 assert( pC->szRow<=pC->payloadSize ); 2649 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2650 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2651 goto too_big; 2652 } 2653 } 2654 pC->cacheStatus = p->cacheCtr; 2655 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2656 pC->nHdrParsed = 0; 2657 2658 2659 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2660 /* pC->aRow does not have to hold the entire row, but it does at least 2661 ** need to cover the header of the record. If pC->aRow does not contain 2662 ** the complete header, then set it to zero, forcing the header to be 2663 ** dynamically allocated. */ 2664 pC->aRow = 0; 2665 pC->szRow = 0; 2666 2667 /* Make sure a corrupt database has not given us an oversize header. 2668 ** Do this now to avoid an oversize memory allocation. 2669 ** 2670 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2671 ** types use so much data space that there can only be 4096 and 32 of 2672 ** them, respectively. So the maximum header length results from a 2673 ** 3-byte type for each of the maximum of 32768 columns plus three 2674 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2675 */ 2676 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2677 goto op_column_corrupt; 2678 } 2679 }else{ 2680 /* This is an optimization. By skipping over the first few tests 2681 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2682 ** measurable performance gain. 2683 ** 2684 ** This branch is taken even if aOffset[0]==0. Such a record is never 2685 ** generated by SQLite, and could be considered corruption, but we 2686 ** accept it for historical reasons. When aOffset[0]==0, the code this 2687 ** branch jumps to reads past the end of the record, but never more 2688 ** than a few bytes. Even if the record occurs at the end of the page 2689 ** content area, the "page header" comes after the page content and so 2690 ** this overread is harmless. Similar overreads can occur for a corrupt 2691 ** database file. 2692 */ 2693 zData = pC->aRow; 2694 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2695 testcase( aOffset[0]==0 ); 2696 goto op_column_read_header; 2697 } 2698 } 2699 2700 /* Make sure at least the first p2+1 entries of the header have been 2701 ** parsed and valid information is in aOffset[] and pC->aType[]. 2702 */ 2703 if( pC->nHdrParsed<=p2 ){ 2704 /* If there is more header available for parsing in the record, try 2705 ** to extract additional fields up through the p2+1-th field 2706 */ 2707 if( pC->iHdrOffset<aOffset[0] ){ 2708 /* Make sure zData points to enough of the record to cover the header. */ 2709 if( pC->aRow==0 ){ 2710 memset(&sMem, 0, sizeof(sMem)); 2711 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2712 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2713 zData = (u8*)sMem.z; 2714 }else{ 2715 zData = pC->aRow; 2716 } 2717 2718 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2719 op_column_read_header: 2720 i = pC->nHdrParsed; 2721 offset64 = aOffset[i]; 2722 zHdr = zData + pC->iHdrOffset; 2723 zEndHdr = zData + aOffset[0]; 2724 testcase( zHdr>=zEndHdr ); 2725 do{ 2726 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2727 zHdr++; 2728 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2729 }else{ 2730 zHdr += sqlite3GetVarint32(zHdr, &t); 2731 pC->aType[i] = t; 2732 offset64 += sqlite3VdbeSerialTypeLen(t); 2733 } 2734 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2735 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2736 2737 /* The record is corrupt if any of the following are true: 2738 ** (1) the bytes of the header extend past the declared header size 2739 ** (2) the entire header was used but not all data was used 2740 ** (3) the end of the data extends beyond the end of the record. 2741 */ 2742 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2743 || (offset64 > pC->payloadSize) 2744 ){ 2745 if( aOffset[0]==0 ){ 2746 i = 0; 2747 zHdr = zEndHdr; 2748 }else{ 2749 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2750 goto op_column_corrupt; 2751 } 2752 } 2753 2754 pC->nHdrParsed = i; 2755 pC->iHdrOffset = (u32)(zHdr - zData); 2756 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2757 }else{ 2758 t = 0; 2759 } 2760 2761 /* If after trying to extract new entries from the header, nHdrParsed is 2762 ** still not up to p2, that means that the record has fewer than p2 2763 ** columns. So the result will be either the default value or a NULL. 2764 */ 2765 if( pC->nHdrParsed<=p2 ){ 2766 if( pOp->p4type==P4_MEM ){ 2767 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2768 }else{ 2769 sqlite3VdbeMemSetNull(pDest); 2770 } 2771 goto op_column_out; 2772 } 2773 }else{ 2774 t = pC->aType[p2]; 2775 } 2776 2777 /* Extract the content for the p2+1-th column. Control can only 2778 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2779 ** all valid. 2780 */ 2781 assert( p2<pC->nHdrParsed ); 2782 assert( rc==SQLITE_OK ); 2783 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2784 if( VdbeMemDynamic(pDest) ){ 2785 sqlite3VdbeMemSetNull(pDest); 2786 } 2787 assert( t==pC->aType[p2] ); 2788 if( pC->szRow>=aOffset[p2+1] ){ 2789 /* This is the common case where the desired content fits on the original 2790 ** page - where the content is not on an overflow page */ 2791 zData = pC->aRow + aOffset[p2]; 2792 if( t<12 ){ 2793 sqlite3VdbeSerialGet(zData, t, pDest); 2794 }else{ 2795 /* If the column value is a string, we need a persistent value, not 2796 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2797 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2798 */ 2799 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2800 pDest->n = len = (t-12)/2; 2801 pDest->enc = encoding; 2802 if( pDest->szMalloc < len+2 ){ 2803 pDest->flags = MEM_Null; 2804 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2805 }else{ 2806 pDest->z = pDest->zMalloc; 2807 } 2808 memcpy(pDest->z, zData, len); 2809 pDest->z[len] = 0; 2810 pDest->z[len+1] = 0; 2811 pDest->flags = aFlag[t&1]; 2812 } 2813 }else{ 2814 pDest->enc = encoding; 2815 /* This branch happens only when content is on overflow pages */ 2816 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2817 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2818 || (len = sqlite3VdbeSerialTypeLen(t))==0 2819 ){ 2820 /* Content is irrelevant for 2821 ** 1. the typeof() function, 2822 ** 2. the length(X) function if X is a blob, and 2823 ** 3. if the content length is zero. 2824 ** So we might as well use bogus content rather than reading 2825 ** content from disk. 2826 ** 2827 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2828 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2829 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2830 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2831 ** and it begins with a bunch of zeros. 2832 */ 2833 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2834 }else{ 2835 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2836 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2837 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2838 pDest->flags &= ~MEM_Ephem; 2839 } 2840 } 2841 2842 op_column_out: 2843 UPDATE_MAX_BLOBSIZE(pDest); 2844 REGISTER_TRACE(pOp->p3, pDest); 2845 break; 2846 2847 op_column_corrupt: 2848 if( aOp[0].p3>0 ){ 2849 pOp = &aOp[aOp[0].p3-1]; 2850 break; 2851 }else{ 2852 rc = SQLITE_CORRUPT_BKPT; 2853 goto abort_due_to_error; 2854 } 2855 } 2856 2857 /* Opcode: Affinity P1 P2 * P4 * 2858 ** Synopsis: affinity(r[P1@P2]) 2859 ** 2860 ** Apply affinities to a range of P2 registers starting with P1. 2861 ** 2862 ** P4 is a string that is P2 characters long. The N-th character of the 2863 ** string indicates the column affinity that should be used for the N-th 2864 ** memory cell in the range. 2865 */ 2866 case OP_Affinity: { 2867 const char *zAffinity; /* The affinity to be applied */ 2868 2869 zAffinity = pOp->p4.z; 2870 assert( zAffinity!=0 ); 2871 assert( pOp->p2>0 ); 2872 assert( zAffinity[pOp->p2]==0 ); 2873 pIn1 = &aMem[pOp->p1]; 2874 while( 1 /*exit-by-break*/ ){ 2875 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2876 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 2877 applyAffinity(pIn1, zAffinity[0], encoding); 2878 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 2879 /* When applying REAL affinity, if the result is still an MEM_Int 2880 ** that will fit in 6 bytes, then change the type to MEM_IntReal 2881 ** so that we keep the high-resolution integer value but know that 2882 ** the type really wants to be REAL. */ 2883 testcase( pIn1->u.i==140737488355328LL ); 2884 testcase( pIn1->u.i==140737488355327LL ); 2885 testcase( pIn1->u.i==-140737488355328LL ); 2886 testcase( pIn1->u.i==-140737488355329LL ); 2887 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 2888 pIn1->flags |= MEM_IntReal; 2889 pIn1->flags &= ~MEM_Int; 2890 }else{ 2891 pIn1->u.r = (double)pIn1->u.i; 2892 pIn1->flags |= MEM_Real; 2893 pIn1->flags &= ~MEM_Int; 2894 } 2895 } 2896 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 2897 zAffinity++; 2898 if( zAffinity[0]==0 ) break; 2899 pIn1++; 2900 } 2901 break; 2902 } 2903 2904 /* Opcode: MakeRecord P1 P2 P3 P4 * 2905 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2906 ** 2907 ** Convert P2 registers beginning with P1 into the [record format] 2908 ** use as a data record in a database table or as a key 2909 ** in an index. The OP_Column opcode can decode the record later. 2910 ** 2911 ** P4 may be a string that is P2 characters long. The N-th character of the 2912 ** string indicates the column affinity that should be used for the N-th 2913 ** field of the index key. 2914 ** 2915 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2916 ** macros defined in sqliteInt.h. 2917 ** 2918 ** If P4 is NULL then all index fields have the affinity BLOB. 2919 ** 2920 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 2921 ** compile-time option is enabled: 2922 ** 2923 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 2924 ** of the right-most table that can be null-trimmed. 2925 ** 2926 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 2927 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 2928 ** accept no-change records with serial_type 10. This value is 2929 ** only used inside an assert() and does not affect the end result. 2930 */ 2931 case OP_MakeRecord: { 2932 Mem *pRec; /* The new record */ 2933 u64 nData; /* Number of bytes of data space */ 2934 int nHdr; /* Number of bytes of header space */ 2935 i64 nByte; /* Data space required for this record */ 2936 i64 nZero; /* Number of zero bytes at the end of the record */ 2937 int nVarint; /* Number of bytes in a varint */ 2938 u32 serial_type; /* Type field */ 2939 Mem *pData0; /* First field to be combined into the record */ 2940 Mem *pLast; /* Last field of the record */ 2941 int nField; /* Number of fields in the record */ 2942 char *zAffinity; /* The affinity string for the record */ 2943 int file_format; /* File format to use for encoding */ 2944 u32 len; /* Length of a field */ 2945 u8 *zHdr; /* Where to write next byte of the header */ 2946 u8 *zPayload; /* Where to write next byte of the payload */ 2947 2948 /* Assuming the record contains N fields, the record format looks 2949 ** like this: 2950 ** 2951 ** ------------------------------------------------------------------------ 2952 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2953 ** ------------------------------------------------------------------------ 2954 ** 2955 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2956 ** and so forth. 2957 ** 2958 ** Each type field is a varint representing the serial type of the 2959 ** corresponding data element (see sqlite3VdbeSerialType()). The 2960 ** hdr-size field is also a varint which is the offset from the beginning 2961 ** of the record to data0. 2962 */ 2963 nData = 0; /* Number of bytes of data space */ 2964 nHdr = 0; /* Number of bytes of header space */ 2965 nZero = 0; /* Number of zero bytes at the end of the record */ 2966 nField = pOp->p1; 2967 zAffinity = pOp->p4.z; 2968 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2969 pData0 = &aMem[nField]; 2970 nField = pOp->p2; 2971 pLast = &pData0[nField-1]; 2972 file_format = p->minWriteFileFormat; 2973 2974 /* Identify the output register */ 2975 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2976 pOut = &aMem[pOp->p3]; 2977 memAboutToChange(p, pOut); 2978 2979 /* Apply the requested affinity to all inputs 2980 */ 2981 assert( pData0<=pLast ); 2982 if( zAffinity ){ 2983 pRec = pData0; 2984 do{ 2985 applyAffinity(pRec, zAffinity[0], encoding); 2986 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 2987 pRec->flags |= MEM_IntReal; 2988 pRec->flags &= ~(MEM_Int); 2989 } 2990 REGISTER_TRACE((int)(pRec-aMem), pRec); 2991 zAffinity++; 2992 pRec++; 2993 assert( zAffinity[0]==0 || pRec<=pLast ); 2994 }while( zAffinity[0] ); 2995 } 2996 2997 #ifdef SQLITE_ENABLE_NULL_TRIM 2998 /* NULLs can be safely trimmed from the end of the record, as long as 2999 ** as the schema format is 2 or more and none of the omitted columns 3000 ** have a non-NULL default value. Also, the record must be left with 3001 ** at least one field. If P5>0 then it will be one more than the 3002 ** index of the right-most column with a non-NULL default value */ 3003 if( pOp->p5 ){ 3004 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3005 pLast--; 3006 nField--; 3007 } 3008 } 3009 #endif 3010 3011 /* Loop through the elements that will make up the record to figure 3012 ** out how much space is required for the new record. After this loop, 3013 ** the Mem.uTemp field of each term should hold the serial-type that will 3014 ** be used for that term in the generated record: 3015 ** 3016 ** Mem.uTemp value type 3017 ** --------------- --------------- 3018 ** 0 NULL 3019 ** 1 1-byte signed integer 3020 ** 2 2-byte signed integer 3021 ** 3 3-byte signed integer 3022 ** 4 4-byte signed integer 3023 ** 5 6-byte signed integer 3024 ** 6 8-byte signed integer 3025 ** 7 IEEE float 3026 ** 8 Integer constant 0 3027 ** 9 Integer constant 1 3028 ** 10,11 reserved for expansion 3029 ** N>=12 and even BLOB 3030 ** N>=13 and odd text 3031 ** 3032 ** The following additional values are computed: 3033 ** nHdr Number of bytes needed for the record header 3034 ** nData Number of bytes of data space needed for the record 3035 ** nZero Zero bytes at the end of the record 3036 */ 3037 pRec = pLast; 3038 do{ 3039 assert( memIsValid(pRec) ); 3040 if( pRec->flags & MEM_Null ){ 3041 if( pRec->flags & MEM_Zero ){ 3042 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3043 ** table methods that never invoke sqlite3_result_xxxxx() while 3044 ** computing an unchanging column value in an UPDATE statement. 3045 ** Give such values a special internal-use-only serial-type of 10 3046 ** so that they can be passed through to xUpdate and have 3047 ** a true sqlite3_value_nochange(). */ 3048 #ifndef SQLITE_ENABLE_NULL_TRIM 3049 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3050 #endif 3051 pRec->uTemp = 10; 3052 }else{ 3053 pRec->uTemp = 0; 3054 } 3055 nHdr++; 3056 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3057 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3058 i64 i = pRec->u.i; 3059 u64 uu; 3060 testcase( pRec->flags & MEM_Int ); 3061 testcase( pRec->flags & MEM_IntReal ); 3062 if( i<0 ){ 3063 uu = ~i; 3064 }else{ 3065 uu = i; 3066 } 3067 nHdr++; 3068 testcase( uu==127 ); testcase( uu==128 ); 3069 testcase( uu==32767 ); testcase( uu==32768 ); 3070 testcase( uu==8388607 ); testcase( uu==8388608 ); 3071 testcase( uu==2147483647 ); testcase( uu==2147483648 ); 3072 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3073 if( uu<=127 ){ 3074 if( (i&1)==i && file_format>=4 ){ 3075 pRec->uTemp = 8+(u32)uu; 3076 }else{ 3077 nData++; 3078 pRec->uTemp = 1; 3079 } 3080 }else if( uu<=32767 ){ 3081 nData += 2; 3082 pRec->uTemp = 2; 3083 }else if( uu<=8388607 ){ 3084 nData += 3; 3085 pRec->uTemp = 3; 3086 }else if( uu<=2147483647 ){ 3087 nData += 4; 3088 pRec->uTemp = 4; 3089 }else if( uu<=140737488355327LL ){ 3090 nData += 6; 3091 pRec->uTemp = 5; 3092 }else{ 3093 nData += 8; 3094 if( pRec->flags & MEM_IntReal ){ 3095 /* If the value is IntReal and is going to take up 8 bytes to store 3096 ** as an integer, then we might as well make it an 8-byte floating 3097 ** point value */ 3098 pRec->u.r = (double)pRec->u.i; 3099 pRec->flags &= ~MEM_IntReal; 3100 pRec->flags |= MEM_Real; 3101 pRec->uTemp = 7; 3102 }else{ 3103 pRec->uTemp = 6; 3104 } 3105 } 3106 }else if( pRec->flags & MEM_Real ){ 3107 nHdr++; 3108 nData += 8; 3109 pRec->uTemp = 7; 3110 }else{ 3111 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3112 assert( pRec->n>=0 ); 3113 len = (u32)pRec->n; 3114 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3115 if( pRec->flags & MEM_Zero ){ 3116 serial_type += pRec->u.nZero*2; 3117 if( nData ){ 3118 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3119 len += pRec->u.nZero; 3120 }else{ 3121 nZero += pRec->u.nZero; 3122 } 3123 } 3124 nData += len; 3125 nHdr += sqlite3VarintLen(serial_type); 3126 pRec->uTemp = serial_type; 3127 } 3128 if( pRec==pData0 ) break; 3129 pRec--; 3130 }while(1); 3131 3132 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3133 ** which determines the total number of bytes in the header. The varint 3134 ** value is the size of the header in bytes including the size varint 3135 ** itself. */ 3136 testcase( nHdr==126 ); 3137 testcase( nHdr==127 ); 3138 if( nHdr<=126 ){ 3139 /* The common case */ 3140 nHdr += 1; 3141 }else{ 3142 /* Rare case of a really large header */ 3143 nVarint = sqlite3VarintLen(nHdr); 3144 nHdr += nVarint; 3145 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3146 } 3147 nByte = nHdr+nData; 3148 3149 /* Make sure the output register has a buffer large enough to store 3150 ** the new record. The output register (pOp->p3) is not allowed to 3151 ** be one of the input registers (because the following call to 3152 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3153 */ 3154 if( nByte+nZero<=pOut->szMalloc ){ 3155 /* The output register is already large enough to hold the record. 3156 ** No error checks or buffer enlargement is required */ 3157 pOut->z = pOut->zMalloc; 3158 }else{ 3159 /* Need to make sure that the output is not too big and then enlarge 3160 ** the output register to hold the full result */ 3161 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3162 goto too_big; 3163 } 3164 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3165 goto no_mem; 3166 } 3167 } 3168 pOut->n = (int)nByte; 3169 pOut->flags = MEM_Blob; 3170 if( nZero ){ 3171 pOut->u.nZero = nZero; 3172 pOut->flags |= MEM_Zero; 3173 } 3174 UPDATE_MAX_BLOBSIZE(pOut); 3175 zHdr = (u8 *)pOut->z; 3176 zPayload = zHdr + nHdr; 3177 3178 /* Write the record */ 3179 zHdr += putVarint32(zHdr, nHdr); 3180 assert( pData0<=pLast ); 3181 pRec = pData0; 3182 do{ 3183 serial_type = pRec->uTemp; 3184 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3185 ** additional varints, one per column. */ 3186 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3187 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3188 ** immediately follow the header. */ 3189 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3190 }while( (++pRec)<=pLast ); 3191 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3192 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3193 3194 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3195 REGISTER_TRACE(pOp->p3, pOut); 3196 break; 3197 } 3198 3199 /* Opcode: Count P1 P2 p3 * * 3200 ** Synopsis: r[P2]=count() 3201 ** 3202 ** Store the number of entries (an integer value) in the table or index 3203 ** opened by cursor P1 in register P2. 3204 ** 3205 ** If P3==0, then an exact count is obtained, which involves visiting 3206 ** every btree page of the table. But if P3 is non-zero, an estimate 3207 ** is returned based on the current cursor position. 3208 */ 3209 case OP_Count: { /* out2 */ 3210 i64 nEntry; 3211 BtCursor *pCrsr; 3212 3213 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3214 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3215 assert( pCrsr ); 3216 if( pOp->p3 ){ 3217 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3218 }else{ 3219 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3220 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3221 if( rc ) goto abort_due_to_error; 3222 } 3223 pOut = out2Prerelease(p, pOp); 3224 pOut->u.i = nEntry; 3225 goto check_for_interrupt; 3226 } 3227 3228 /* Opcode: Savepoint P1 * * P4 * 3229 ** 3230 ** Open, release or rollback the savepoint named by parameter P4, depending 3231 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3232 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3233 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3234 */ 3235 case OP_Savepoint: { 3236 int p1; /* Value of P1 operand */ 3237 char *zName; /* Name of savepoint */ 3238 int nName; 3239 Savepoint *pNew; 3240 Savepoint *pSavepoint; 3241 Savepoint *pTmp; 3242 int iSavepoint; 3243 int ii; 3244 3245 p1 = pOp->p1; 3246 zName = pOp->p4.z; 3247 3248 /* Assert that the p1 parameter is valid. Also that if there is no open 3249 ** transaction, then there cannot be any savepoints. 3250 */ 3251 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3252 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3253 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3254 assert( checkSavepointCount(db) ); 3255 assert( p->bIsReader ); 3256 3257 if( p1==SAVEPOINT_BEGIN ){ 3258 if( db->nVdbeWrite>0 ){ 3259 /* A new savepoint cannot be created if there are active write 3260 ** statements (i.e. open read/write incremental blob handles). 3261 */ 3262 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3263 rc = SQLITE_BUSY; 3264 }else{ 3265 nName = sqlite3Strlen30(zName); 3266 3267 #ifndef SQLITE_OMIT_VIRTUALTABLE 3268 /* This call is Ok even if this savepoint is actually a transaction 3269 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3270 ** If this is a transaction savepoint being opened, it is guaranteed 3271 ** that the db->aVTrans[] array is empty. */ 3272 assert( db->autoCommit==0 || db->nVTrans==0 ); 3273 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3274 db->nStatement+db->nSavepoint); 3275 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3276 #endif 3277 3278 /* Create a new savepoint structure. */ 3279 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3280 if( pNew ){ 3281 pNew->zName = (char *)&pNew[1]; 3282 memcpy(pNew->zName, zName, nName+1); 3283 3284 /* If there is no open transaction, then mark this as a special 3285 ** "transaction savepoint". */ 3286 if( db->autoCommit ){ 3287 db->autoCommit = 0; 3288 db->isTransactionSavepoint = 1; 3289 }else{ 3290 db->nSavepoint++; 3291 } 3292 3293 /* Link the new savepoint into the database handle's list. */ 3294 pNew->pNext = db->pSavepoint; 3295 db->pSavepoint = pNew; 3296 pNew->nDeferredCons = db->nDeferredCons; 3297 pNew->nDeferredImmCons = db->nDeferredImmCons; 3298 } 3299 } 3300 }else{ 3301 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3302 iSavepoint = 0; 3303 3304 /* Find the named savepoint. If there is no such savepoint, then an 3305 ** an error is returned to the user. */ 3306 for( 3307 pSavepoint = db->pSavepoint; 3308 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3309 pSavepoint = pSavepoint->pNext 3310 ){ 3311 iSavepoint++; 3312 } 3313 if( !pSavepoint ){ 3314 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3315 rc = SQLITE_ERROR; 3316 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3317 /* It is not possible to release (commit) a savepoint if there are 3318 ** active write statements. 3319 */ 3320 sqlite3VdbeError(p, "cannot release savepoint - " 3321 "SQL statements in progress"); 3322 rc = SQLITE_BUSY; 3323 }else{ 3324 3325 /* Determine whether or not this is a transaction savepoint. If so, 3326 ** and this is a RELEASE command, then the current transaction 3327 ** is committed. 3328 */ 3329 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3330 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3331 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3332 goto vdbe_return; 3333 } 3334 db->autoCommit = 1; 3335 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3336 p->pc = (int)(pOp - aOp); 3337 db->autoCommit = 0; 3338 p->rc = rc = SQLITE_BUSY; 3339 goto vdbe_return; 3340 } 3341 rc = p->rc; 3342 if( rc ){ 3343 db->autoCommit = 0; 3344 }else{ 3345 db->isTransactionSavepoint = 0; 3346 } 3347 }else{ 3348 int isSchemaChange; 3349 iSavepoint = db->nSavepoint - iSavepoint - 1; 3350 if( p1==SAVEPOINT_ROLLBACK ){ 3351 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3352 for(ii=0; ii<db->nDb; ii++){ 3353 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3354 SQLITE_ABORT_ROLLBACK, 3355 isSchemaChange==0); 3356 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3357 } 3358 }else{ 3359 assert( p1==SAVEPOINT_RELEASE ); 3360 isSchemaChange = 0; 3361 } 3362 for(ii=0; ii<db->nDb; ii++){ 3363 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3364 if( rc!=SQLITE_OK ){ 3365 goto abort_due_to_error; 3366 } 3367 } 3368 if( isSchemaChange ){ 3369 sqlite3ExpirePreparedStatements(db, 0); 3370 sqlite3ResetAllSchemasOfConnection(db); 3371 db->mDbFlags |= DBFLAG_SchemaChange; 3372 } 3373 } 3374 if( rc ) goto abort_due_to_error; 3375 3376 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3377 ** savepoints nested inside of the savepoint being operated on. */ 3378 while( db->pSavepoint!=pSavepoint ){ 3379 pTmp = db->pSavepoint; 3380 db->pSavepoint = pTmp->pNext; 3381 sqlite3DbFree(db, pTmp); 3382 db->nSavepoint--; 3383 } 3384 3385 /* If it is a RELEASE, then destroy the savepoint being operated on 3386 ** too. If it is a ROLLBACK TO, then set the number of deferred 3387 ** constraint violations present in the database to the value stored 3388 ** when the savepoint was created. */ 3389 if( p1==SAVEPOINT_RELEASE ){ 3390 assert( pSavepoint==db->pSavepoint ); 3391 db->pSavepoint = pSavepoint->pNext; 3392 sqlite3DbFree(db, pSavepoint); 3393 if( !isTransaction ){ 3394 db->nSavepoint--; 3395 } 3396 }else{ 3397 assert( p1==SAVEPOINT_ROLLBACK ); 3398 db->nDeferredCons = pSavepoint->nDeferredCons; 3399 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3400 } 3401 3402 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3403 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3404 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3405 } 3406 } 3407 } 3408 if( rc ) goto abort_due_to_error; 3409 3410 break; 3411 } 3412 3413 /* Opcode: AutoCommit P1 P2 * * * 3414 ** 3415 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3416 ** back any currently active btree transactions. If there are any active 3417 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3418 ** there are active writing VMs or active VMs that use shared cache. 3419 ** 3420 ** This instruction causes the VM to halt. 3421 */ 3422 case OP_AutoCommit: { 3423 int desiredAutoCommit; 3424 int iRollback; 3425 3426 desiredAutoCommit = pOp->p1; 3427 iRollback = pOp->p2; 3428 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3429 assert( desiredAutoCommit==1 || iRollback==0 ); 3430 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3431 assert( p->bIsReader ); 3432 3433 if( desiredAutoCommit!=db->autoCommit ){ 3434 if( iRollback ){ 3435 assert( desiredAutoCommit==1 ); 3436 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3437 db->autoCommit = 1; 3438 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3439 /* If this instruction implements a COMMIT and other VMs are writing 3440 ** return an error indicating that the other VMs must complete first. 3441 */ 3442 sqlite3VdbeError(p, "cannot commit transaction - " 3443 "SQL statements in progress"); 3444 rc = SQLITE_BUSY; 3445 goto abort_due_to_error; 3446 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3447 goto vdbe_return; 3448 }else{ 3449 db->autoCommit = (u8)desiredAutoCommit; 3450 } 3451 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3452 p->pc = (int)(pOp - aOp); 3453 db->autoCommit = (u8)(1-desiredAutoCommit); 3454 p->rc = rc = SQLITE_BUSY; 3455 goto vdbe_return; 3456 } 3457 sqlite3CloseSavepoints(db); 3458 if( p->rc==SQLITE_OK ){ 3459 rc = SQLITE_DONE; 3460 }else{ 3461 rc = SQLITE_ERROR; 3462 } 3463 goto vdbe_return; 3464 }else{ 3465 sqlite3VdbeError(p, 3466 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3467 (iRollback)?"cannot rollback - no transaction is active": 3468 "cannot commit - no transaction is active")); 3469 3470 rc = SQLITE_ERROR; 3471 goto abort_due_to_error; 3472 } 3473 /*NOTREACHED*/ assert(0); 3474 } 3475 3476 /* Opcode: Transaction P1 P2 P3 P4 P5 3477 ** 3478 ** Begin a transaction on database P1 if a transaction is not already 3479 ** active. 3480 ** If P2 is non-zero, then a write-transaction is started, or if a 3481 ** read-transaction is already active, it is upgraded to a write-transaction. 3482 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3483 ** then an exclusive transaction is started. 3484 ** 3485 ** P1 is the index of the database file on which the transaction is 3486 ** started. Index 0 is the main database file and index 1 is the 3487 ** file used for temporary tables. Indices of 2 or more are used for 3488 ** attached databases. 3489 ** 3490 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3491 ** true (this flag is set if the Vdbe may modify more than one row and may 3492 ** throw an ABORT exception), a statement transaction may also be opened. 3493 ** More specifically, a statement transaction is opened iff the database 3494 ** connection is currently not in autocommit mode, or if there are other 3495 ** active statements. A statement transaction allows the changes made by this 3496 ** VDBE to be rolled back after an error without having to roll back the 3497 ** entire transaction. If no error is encountered, the statement transaction 3498 ** will automatically commit when the VDBE halts. 3499 ** 3500 ** If P5!=0 then this opcode also checks the schema cookie against P3 3501 ** and the schema generation counter against P4. 3502 ** The cookie changes its value whenever the database schema changes. 3503 ** This operation is used to detect when that the cookie has changed 3504 ** and that the current process needs to reread the schema. If the schema 3505 ** cookie in P3 differs from the schema cookie in the database header or 3506 ** if the schema generation counter in P4 differs from the current 3507 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3508 ** halts. The sqlite3_step() wrapper function might then reprepare the 3509 ** statement and rerun it from the beginning. 3510 */ 3511 case OP_Transaction: { 3512 Btree *pBt; 3513 int iMeta = 0; 3514 3515 assert( p->bIsReader ); 3516 assert( p->readOnly==0 || pOp->p2==0 ); 3517 assert( pOp->p2>=0 && pOp->p2<=2 ); 3518 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3519 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3520 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3521 rc = SQLITE_READONLY; 3522 goto abort_due_to_error; 3523 } 3524 pBt = db->aDb[pOp->p1].pBt; 3525 3526 if( pBt ){ 3527 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3528 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3529 testcase( rc==SQLITE_BUSY_RECOVERY ); 3530 if( rc!=SQLITE_OK ){ 3531 if( (rc&0xff)==SQLITE_BUSY ){ 3532 p->pc = (int)(pOp - aOp); 3533 p->rc = rc; 3534 goto vdbe_return; 3535 } 3536 goto abort_due_to_error; 3537 } 3538 3539 if( p->usesStmtJournal 3540 && pOp->p2 3541 && (db->autoCommit==0 || db->nVdbeRead>1) 3542 ){ 3543 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3544 if( p->iStatement==0 ){ 3545 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3546 db->nStatement++; 3547 p->iStatement = db->nSavepoint + db->nStatement; 3548 } 3549 3550 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3551 if( rc==SQLITE_OK ){ 3552 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3553 } 3554 3555 /* Store the current value of the database handles deferred constraint 3556 ** counter. If the statement transaction needs to be rolled back, 3557 ** the value of this counter needs to be restored too. */ 3558 p->nStmtDefCons = db->nDeferredCons; 3559 p->nStmtDefImmCons = db->nDeferredImmCons; 3560 } 3561 } 3562 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3563 if( pOp->p5 3564 && (iMeta!=pOp->p3 3565 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3566 ){ 3567 /* 3568 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3569 ** version is checked to ensure that the schema has not changed since the 3570 ** SQL statement was prepared. 3571 */ 3572 sqlite3DbFree(db, p->zErrMsg); 3573 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3574 /* If the schema-cookie from the database file matches the cookie 3575 ** stored with the in-memory representation of the schema, do 3576 ** not reload the schema from the database file. 3577 ** 3578 ** If virtual-tables are in use, this is not just an optimization. 3579 ** Often, v-tables store their data in other SQLite tables, which 3580 ** are queried from within xNext() and other v-table methods using 3581 ** prepared queries. If such a query is out-of-date, we do not want to 3582 ** discard the database schema, as the user code implementing the 3583 ** v-table would have to be ready for the sqlite3_vtab structure itself 3584 ** to be invalidated whenever sqlite3_step() is called from within 3585 ** a v-table method. 3586 */ 3587 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3588 sqlite3ResetOneSchema(db, pOp->p1); 3589 } 3590 p->expired = 1; 3591 rc = SQLITE_SCHEMA; 3592 } 3593 if( rc ) goto abort_due_to_error; 3594 break; 3595 } 3596 3597 /* Opcode: ReadCookie P1 P2 P3 * * 3598 ** 3599 ** Read cookie number P3 from database P1 and write it into register P2. 3600 ** P3==1 is the schema version. P3==2 is the database format. 3601 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3602 ** the main database file and P1==1 is the database file used to store 3603 ** temporary tables. 3604 ** 3605 ** There must be a read-lock on the database (either a transaction 3606 ** must be started or there must be an open cursor) before 3607 ** executing this instruction. 3608 */ 3609 case OP_ReadCookie: { /* out2 */ 3610 int iMeta; 3611 int iDb; 3612 int iCookie; 3613 3614 assert( p->bIsReader ); 3615 iDb = pOp->p1; 3616 iCookie = pOp->p3; 3617 assert( pOp->p3<SQLITE_N_BTREE_META ); 3618 assert( iDb>=0 && iDb<db->nDb ); 3619 assert( db->aDb[iDb].pBt!=0 ); 3620 assert( DbMaskTest(p->btreeMask, iDb) ); 3621 3622 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3623 pOut = out2Prerelease(p, pOp); 3624 pOut->u.i = iMeta; 3625 break; 3626 } 3627 3628 /* Opcode: SetCookie P1 P2 P3 * P5 3629 ** 3630 ** Write the integer value P3 into cookie number P2 of database P1. 3631 ** P2==1 is the schema version. P2==2 is the database format. 3632 ** P2==3 is the recommended pager cache 3633 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3634 ** database file used to store temporary tables. 3635 ** 3636 ** A transaction must be started before executing this opcode. 3637 ** 3638 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3639 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3640 ** has P5 set to 1, so that the internal schema version will be different 3641 ** from the database schema version, resulting in a schema reset. 3642 */ 3643 case OP_SetCookie: { 3644 Db *pDb; 3645 3646 sqlite3VdbeIncrWriteCounter(p, 0); 3647 assert( pOp->p2<SQLITE_N_BTREE_META ); 3648 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3649 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3650 assert( p->readOnly==0 ); 3651 pDb = &db->aDb[pOp->p1]; 3652 assert( pDb->pBt!=0 ); 3653 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3654 /* See note about index shifting on OP_ReadCookie */ 3655 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3656 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3657 /* When the schema cookie changes, record the new cookie internally */ 3658 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3659 db->mDbFlags |= DBFLAG_SchemaChange; 3660 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3661 /* Record changes in the file format */ 3662 pDb->pSchema->file_format = pOp->p3; 3663 } 3664 if( pOp->p1==1 ){ 3665 /* Invalidate all prepared statements whenever the TEMP database 3666 ** schema is changed. Ticket #1644 */ 3667 sqlite3ExpirePreparedStatements(db, 0); 3668 p->expired = 0; 3669 } 3670 if( rc ) goto abort_due_to_error; 3671 break; 3672 } 3673 3674 /* Opcode: OpenRead P1 P2 P3 P4 P5 3675 ** Synopsis: root=P2 iDb=P3 3676 ** 3677 ** Open a read-only cursor for the database table whose root page is 3678 ** P2 in a database file. The database file is determined by P3. 3679 ** P3==0 means the main database, P3==1 means the database used for 3680 ** temporary tables, and P3>1 means used the corresponding attached 3681 ** database. Give the new cursor an identifier of P1. The P1 3682 ** values need not be contiguous but all P1 values should be small integers. 3683 ** It is an error for P1 to be negative. 3684 ** 3685 ** Allowed P5 bits: 3686 ** <ul> 3687 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3688 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3689 ** of OP_SeekLE/OP_IdxLT) 3690 ** </ul> 3691 ** 3692 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3693 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3694 ** object, then table being opened must be an [index b-tree] where the 3695 ** KeyInfo object defines the content and collating 3696 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3697 ** value, then the table being opened must be a [table b-tree] with a 3698 ** number of columns no less than the value of P4. 3699 ** 3700 ** See also: OpenWrite, ReopenIdx 3701 */ 3702 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3703 ** Synopsis: root=P2 iDb=P3 3704 ** 3705 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3706 ** checks to see if the cursor on P1 is already open on the same 3707 ** b-tree and if it is this opcode becomes a no-op. In other words, 3708 ** if the cursor is already open, do not reopen it. 3709 ** 3710 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3711 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3712 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3713 ** number. 3714 ** 3715 ** Allowed P5 bits: 3716 ** <ul> 3717 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3718 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3719 ** of OP_SeekLE/OP_IdxLT) 3720 ** </ul> 3721 ** 3722 ** See also: OP_OpenRead, OP_OpenWrite 3723 */ 3724 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3725 ** Synopsis: root=P2 iDb=P3 3726 ** 3727 ** Open a read/write cursor named P1 on the table or index whose root 3728 ** page is P2 (or whose root page is held in register P2 if the 3729 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3730 ** 3731 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3732 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3733 ** object, then table being opened must be an [index b-tree] where the 3734 ** KeyInfo object defines the content and collating 3735 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3736 ** value, then the table being opened must be a [table b-tree] with a 3737 ** number of columns no less than the value of P4. 3738 ** 3739 ** Allowed P5 bits: 3740 ** <ul> 3741 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3742 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3743 ** of OP_SeekLE/OP_IdxLT) 3744 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3745 ** and subsequently delete entries in an index btree. This is a 3746 ** hint to the storage engine that the storage engine is allowed to 3747 ** ignore. The hint is not used by the official SQLite b*tree storage 3748 ** engine, but is used by COMDB2. 3749 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3750 ** as the root page, not the value of P2 itself. 3751 ** </ul> 3752 ** 3753 ** This instruction works like OpenRead except that it opens the cursor 3754 ** in read/write mode. 3755 ** 3756 ** See also: OP_OpenRead, OP_ReopenIdx 3757 */ 3758 case OP_ReopenIdx: { 3759 int nField; 3760 KeyInfo *pKeyInfo; 3761 u32 p2; 3762 int iDb; 3763 int wrFlag; 3764 Btree *pX; 3765 VdbeCursor *pCur; 3766 Db *pDb; 3767 3768 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3769 assert( pOp->p4type==P4_KEYINFO ); 3770 pCur = p->apCsr[pOp->p1]; 3771 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3772 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3773 goto open_cursor_set_hints; 3774 } 3775 /* If the cursor is not currently open or is open on a different 3776 ** index, then fall through into OP_OpenRead to force a reopen */ 3777 case OP_OpenRead: 3778 case OP_OpenWrite: 3779 3780 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3781 assert( p->bIsReader ); 3782 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3783 || p->readOnly==0 ); 3784 3785 if( p->expired==1 ){ 3786 rc = SQLITE_ABORT_ROLLBACK; 3787 goto abort_due_to_error; 3788 } 3789 3790 nField = 0; 3791 pKeyInfo = 0; 3792 p2 = (u32)pOp->p2; 3793 iDb = pOp->p3; 3794 assert( iDb>=0 && iDb<db->nDb ); 3795 assert( DbMaskTest(p->btreeMask, iDb) ); 3796 pDb = &db->aDb[iDb]; 3797 pX = pDb->pBt; 3798 assert( pX!=0 ); 3799 if( pOp->opcode==OP_OpenWrite ){ 3800 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3801 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3802 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3803 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3804 p->minWriteFileFormat = pDb->pSchema->file_format; 3805 } 3806 }else{ 3807 wrFlag = 0; 3808 } 3809 if( pOp->p5 & OPFLAG_P2ISREG ){ 3810 assert( p2>0 ); 3811 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 3812 assert( pOp->opcode==OP_OpenWrite ); 3813 pIn2 = &aMem[p2]; 3814 assert( memIsValid(pIn2) ); 3815 assert( (pIn2->flags & MEM_Int)!=0 ); 3816 sqlite3VdbeMemIntegerify(pIn2); 3817 p2 = (int)pIn2->u.i; 3818 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3819 ** that opcode will always set the p2 value to 2 or more or else fail. 3820 ** If there were a failure, the prepared statement would have halted 3821 ** before reaching this instruction. */ 3822 assert( p2>=2 ); 3823 } 3824 if( pOp->p4type==P4_KEYINFO ){ 3825 pKeyInfo = pOp->p4.pKeyInfo; 3826 assert( pKeyInfo->enc==ENC(db) ); 3827 assert( pKeyInfo->db==db ); 3828 nField = pKeyInfo->nAllField; 3829 }else if( pOp->p4type==P4_INT32 ){ 3830 nField = pOp->p4.i; 3831 } 3832 assert( pOp->p1>=0 ); 3833 assert( nField>=0 ); 3834 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3835 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3836 if( pCur==0 ) goto no_mem; 3837 pCur->nullRow = 1; 3838 pCur->isOrdered = 1; 3839 pCur->pgnoRoot = p2; 3840 #ifdef SQLITE_DEBUG 3841 pCur->wrFlag = wrFlag; 3842 #endif 3843 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3844 pCur->pKeyInfo = pKeyInfo; 3845 /* Set the VdbeCursor.isTable variable. Previous versions of 3846 ** SQLite used to check if the root-page flags were sane at this point 3847 ** and report database corruption if they were not, but this check has 3848 ** since moved into the btree layer. */ 3849 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3850 3851 open_cursor_set_hints: 3852 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3853 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3854 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3855 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3856 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3857 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3858 if( rc ) goto abort_due_to_error; 3859 break; 3860 } 3861 3862 /* Opcode: OpenDup P1 P2 * * * 3863 ** 3864 ** Open a new cursor P1 that points to the same ephemeral table as 3865 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3866 ** opcode. Only ephemeral cursors may be duplicated. 3867 ** 3868 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3869 */ 3870 case OP_OpenDup: { 3871 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3872 VdbeCursor *pCx; /* The new cursor */ 3873 3874 pOrig = p->apCsr[pOp->p2]; 3875 assert( pOrig ); 3876 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3877 3878 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3879 if( pCx==0 ) goto no_mem; 3880 pCx->nullRow = 1; 3881 pCx->isEphemeral = 1; 3882 pCx->pKeyInfo = pOrig->pKeyInfo; 3883 pCx->isTable = pOrig->isTable; 3884 pCx->pgnoRoot = pOrig->pgnoRoot; 3885 pCx->isOrdered = pOrig->isOrdered; 3886 rc = sqlite3BtreeCursor(pOrig->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3887 pCx->pKeyInfo, pCx->uc.pCursor); 3888 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3889 ** opened for a database. Since there is already an open cursor when this 3890 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3891 assert( rc==SQLITE_OK ); 3892 break; 3893 } 3894 3895 3896 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 3897 ** Synopsis: nColumn=P2 3898 ** 3899 ** Open a new cursor P1 to a transient table. 3900 ** The cursor is always opened read/write even if 3901 ** the main database is read-only. The ephemeral 3902 ** table is deleted automatically when the cursor is closed. 3903 ** 3904 ** If the cursor P1 is already opened on an ephemeral table, the table 3905 ** is cleared (all content is erased). 3906 ** 3907 ** P2 is the number of columns in the ephemeral table. 3908 ** The cursor points to a BTree table if P4==0 and to a BTree index 3909 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3910 ** that defines the format of keys in the index. 3911 ** 3912 ** The P5 parameter can be a mask of the BTREE_* flags defined 3913 ** in btree.h. These flags control aspects of the operation of 3914 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3915 ** added automatically. 3916 ** 3917 ** If P3 is positive, then reg[P3] is modified slightly so that it 3918 ** can be used as zero-length data for OP_Insert. This is an optimization 3919 ** that avoids an extra OP_Blob opcode to initialize that register. 3920 */ 3921 /* Opcode: OpenAutoindex P1 P2 * P4 * 3922 ** Synopsis: nColumn=P2 3923 ** 3924 ** This opcode works the same as OP_OpenEphemeral. It has a 3925 ** different name to distinguish its use. Tables created using 3926 ** by this opcode will be used for automatically created transient 3927 ** indices in joins. 3928 */ 3929 case OP_OpenAutoindex: 3930 case OP_OpenEphemeral: { 3931 VdbeCursor *pCx; 3932 KeyInfo *pKeyInfo; 3933 3934 static const int vfsFlags = 3935 SQLITE_OPEN_READWRITE | 3936 SQLITE_OPEN_CREATE | 3937 SQLITE_OPEN_EXCLUSIVE | 3938 SQLITE_OPEN_DELETEONCLOSE | 3939 SQLITE_OPEN_TRANSIENT_DB; 3940 assert( pOp->p1>=0 ); 3941 assert( pOp->p2>=0 ); 3942 if( pOp->p3>0 ){ 3943 /* Make register reg[P3] into a value that can be used as the data 3944 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 3945 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 3946 assert( pOp->opcode==OP_OpenEphemeral ); 3947 assert( aMem[pOp->p3].flags & MEM_Null ); 3948 aMem[pOp->p3].n = 0; 3949 aMem[pOp->p3].z = ""; 3950 } 3951 pCx = p->apCsr[pOp->p1]; 3952 if( pCx && ALWAYS(pCx->pBtx) ){ 3953 /* If the ephermeral table is already open, erase all existing content 3954 ** so that the table is empty again, rather than creating a new table. */ 3955 assert( pCx->isEphemeral ); 3956 pCx->seqCount = 0; 3957 pCx->cacheStatus = CACHE_STALE; 3958 rc = sqlite3BtreeClearTable(pCx->pBtx, pCx->pgnoRoot, 0); 3959 }else{ 3960 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3961 if( pCx==0 ) goto no_mem; 3962 pCx->isEphemeral = 1; 3963 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3964 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 3965 vfsFlags); 3966 if( rc==SQLITE_OK ){ 3967 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3968 } 3969 if( rc==SQLITE_OK ){ 3970 /* If a transient index is required, create it by calling 3971 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3972 ** opening it. If a transient table is required, just use the 3973 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3974 */ 3975 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3976 assert( pOp->p4type==P4_KEYINFO ); 3977 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pCx->pgnoRoot, 3978 BTREE_BLOBKEY | pOp->p5); 3979 if( rc==SQLITE_OK ){ 3980 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 3981 assert( pKeyInfo->db==db ); 3982 assert( pKeyInfo->enc==ENC(db) ); 3983 rc = sqlite3BtreeCursor(pCx->pBtx, pCx->pgnoRoot, BTREE_WRCSR, 3984 pKeyInfo, pCx->uc.pCursor); 3985 } 3986 pCx->isTable = 0; 3987 }else{ 3988 pCx->pgnoRoot = SCHEMA_ROOT; 3989 rc = sqlite3BtreeCursor(pCx->pBtx, SCHEMA_ROOT, BTREE_WRCSR, 3990 0, pCx->uc.pCursor); 3991 pCx->isTable = 1; 3992 } 3993 } 3994 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3995 } 3996 if( rc ) goto abort_due_to_error; 3997 pCx->nullRow = 1; 3998 break; 3999 } 4000 4001 /* Opcode: SorterOpen P1 P2 P3 P4 * 4002 ** 4003 ** This opcode works like OP_OpenEphemeral except that it opens 4004 ** a transient index that is specifically designed to sort large 4005 ** tables using an external merge-sort algorithm. 4006 ** 4007 ** If argument P3 is non-zero, then it indicates that the sorter may 4008 ** assume that a stable sort considering the first P3 fields of each 4009 ** key is sufficient to produce the required results. 4010 */ 4011 case OP_SorterOpen: { 4012 VdbeCursor *pCx; 4013 4014 assert( pOp->p1>=0 ); 4015 assert( pOp->p2>=0 ); 4016 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 4017 if( pCx==0 ) goto no_mem; 4018 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4019 assert( pCx->pKeyInfo->db==db ); 4020 assert( pCx->pKeyInfo->enc==ENC(db) ); 4021 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4022 if( rc ) goto abort_due_to_error; 4023 break; 4024 } 4025 4026 /* Opcode: SequenceTest P1 P2 * * * 4027 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4028 ** 4029 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4030 ** to P2. Regardless of whether or not the jump is taken, increment the 4031 ** the sequence value. 4032 */ 4033 case OP_SequenceTest: { 4034 VdbeCursor *pC; 4035 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4036 pC = p->apCsr[pOp->p1]; 4037 assert( isSorter(pC) ); 4038 if( (pC->seqCount++)==0 ){ 4039 goto jump_to_p2; 4040 } 4041 break; 4042 } 4043 4044 /* Opcode: OpenPseudo P1 P2 P3 * * 4045 ** Synopsis: P3 columns in r[P2] 4046 ** 4047 ** Open a new cursor that points to a fake table that contains a single 4048 ** row of data. The content of that one row is the content of memory 4049 ** register P2. In other words, cursor P1 becomes an alias for the 4050 ** MEM_Blob content contained in register P2. 4051 ** 4052 ** A pseudo-table created by this opcode is used to hold a single 4053 ** row output from the sorter so that the row can be decomposed into 4054 ** individual columns using the OP_Column opcode. The OP_Column opcode 4055 ** is the only cursor opcode that works with a pseudo-table. 4056 ** 4057 ** P3 is the number of fields in the records that will be stored by 4058 ** the pseudo-table. 4059 */ 4060 case OP_OpenPseudo: { 4061 VdbeCursor *pCx; 4062 4063 assert( pOp->p1>=0 ); 4064 assert( pOp->p3>=0 ); 4065 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 4066 if( pCx==0 ) goto no_mem; 4067 pCx->nullRow = 1; 4068 pCx->seekResult = pOp->p2; 4069 pCx->isTable = 1; 4070 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4071 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4072 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4073 ** which is a performance optimization */ 4074 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4075 assert( pOp->p5==0 ); 4076 break; 4077 } 4078 4079 /* Opcode: Close P1 * * * * 4080 ** 4081 ** Close a cursor previously opened as P1. If P1 is not 4082 ** currently open, this instruction is a no-op. 4083 */ 4084 case OP_Close: { 4085 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4086 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4087 p->apCsr[pOp->p1] = 0; 4088 break; 4089 } 4090 4091 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4092 /* Opcode: ColumnsUsed P1 * * P4 * 4093 ** 4094 ** This opcode (which only exists if SQLite was compiled with 4095 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4096 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4097 ** (P4_INT64) in which the first 63 bits are one for each of the 4098 ** first 63 columns of the table or index that are actually used 4099 ** by the cursor. The high-order bit is set if any column after 4100 ** the 64th is used. 4101 */ 4102 case OP_ColumnsUsed: { 4103 VdbeCursor *pC; 4104 pC = p->apCsr[pOp->p1]; 4105 assert( pC->eCurType==CURTYPE_BTREE ); 4106 pC->maskUsed = *(u64*)pOp->p4.pI64; 4107 break; 4108 } 4109 #endif 4110 4111 /* Opcode: SeekGE P1 P2 P3 P4 * 4112 ** Synopsis: key=r[P3@P4] 4113 ** 4114 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4115 ** use the value in register P3 as the key. If cursor P1 refers 4116 ** to an SQL index, then P3 is the first in an array of P4 registers 4117 ** that are used as an unpacked index key. 4118 ** 4119 ** Reposition cursor P1 so that it points to the smallest entry that 4120 ** is greater than or equal to the key value. If there are no records 4121 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4122 ** 4123 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4124 ** opcode will either land on a record that exactly matches the key, or 4125 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4126 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4127 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4128 ** IdxGT opcode will be used on subsequent loop iterations. The 4129 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4130 ** is an equality search. 4131 ** 4132 ** This opcode leaves the cursor configured to move in forward order, 4133 ** from the beginning toward the end. In other words, the cursor is 4134 ** configured to use Next, not Prev. 4135 ** 4136 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4137 */ 4138 /* Opcode: SeekGT P1 P2 P3 P4 * 4139 ** Synopsis: key=r[P3@P4] 4140 ** 4141 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4142 ** use the value in register P3 as a key. If cursor P1 refers 4143 ** to an SQL index, then P3 is the first in an array of P4 registers 4144 ** that are used as an unpacked index key. 4145 ** 4146 ** Reposition cursor P1 so that it points to the smallest entry that 4147 ** is greater than the key value. If there are no records greater than 4148 ** the key and P2 is not zero, then jump to P2. 4149 ** 4150 ** This opcode leaves the cursor configured to move in forward order, 4151 ** from the beginning toward the end. In other words, the cursor is 4152 ** configured to use Next, not Prev. 4153 ** 4154 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4155 */ 4156 /* Opcode: SeekLT P1 P2 P3 P4 * 4157 ** Synopsis: key=r[P3@P4] 4158 ** 4159 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4160 ** use the value in register P3 as a key. If cursor P1 refers 4161 ** to an SQL index, then P3 is the first in an array of P4 registers 4162 ** that are used as an unpacked index key. 4163 ** 4164 ** Reposition cursor P1 so that it points to the largest entry that 4165 ** is less than the key value. If there are no records less than 4166 ** the key and P2 is not zero, then jump to P2. 4167 ** 4168 ** This opcode leaves the cursor configured to move in reverse order, 4169 ** from the end toward the beginning. In other words, the cursor is 4170 ** configured to use Prev, not Next. 4171 ** 4172 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4173 */ 4174 /* Opcode: SeekLE P1 P2 P3 P4 * 4175 ** Synopsis: key=r[P3@P4] 4176 ** 4177 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4178 ** use the value in register P3 as a key. If cursor P1 refers 4179 ** to an SQL index, then P3 is the first in an array of P4 registers 4180 ** that are used as an unpacked index key. 4181 ** 4182 ** Reposition cursor P1 so that it points to the largest entry that 4183 ** is less than or equal to the key value. If there are no records 4184 ** less than or equal to the key and P2 is not zero, then jump to P2. 4185 ** 4186 ** This opcode leaves the cursor configured to move in reverse order, 4187 ** from the end toward the beginning. In other words, the cursor is 4188 ** configured to use Prev, not Next. 4189 ** 4190 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4191 ** opcode will either land on a record that exactly matches the key, or 4192 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4193 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4194 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4195 ** IdxGE opcode will be used on subsequent loop iterations. The 4196 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4197 ** is an equality search. 4198 ** 4199 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4200 */ 4201 case OP_SeekLT: /* jump, in3, group */ 4202 case OP_SeekLE: /* jump, in3, group */ 4203 case OP_SeekGE: /* jump, in3, group */ 4204 case OP_SeekGT: { /* jump, in3, group */ 4205 int res; /* Comparison result */ 4206 int oc; /* Opcode */ 4207 VdbeCursor *pC; /* The cursor to seek */ 4208 UnpackedRecord r; /* The key to seek for */ 4209 int nField; /* Number of columns or fields in the key */ 4210 i64 iKey; /* The rowid we are to seek to */ 4211 int eqOnly; /* Only interested in == results */ 4212 4213 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4214 assert( pOp->p2!=0 ); 4215 pC = p->apCsr[pOp->p1]; 4216 assert( pC!=0 ); 4217 assert( pC->eCurType==CURTYPE_BTREE ); 4218 assert( OP_SeekLE == OP_SeekLT+1 ); 4219 assert( OP_SeekGE == OP_SeekLT+2 ); 4220 assert( OP_SeekGT == OP_SeekLT+3 ); 4221 assert( pC->isOrdered ); 4222 assert( pC->uc.pCursor!=0 ); 4223 oc = pOp->opcode; 4224 eqOnly = 0; 4225 pC->nullRow = 0; 4226 #ifdef SQLITE_DEBUG 4227 pC->seekOp = pOp->opcode; 4228 #endif 4229 4230 pC->deferredMoveto = 0; 4231 pC->cacheStatus = CACHE_STALE; 4232 if( pC->isTable ){ 4233 u16 flags3, newType; 4234 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4235 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4236 || CORRUPT_DB ); 4237 4238 /* The input value in P3 might be of any type: integer, real, string, 4239 ** blob, or NULL. But it needs to be an integer before we can do 4240 ** the seek, so convert it. */ 4241 pIn3 = &aMem[pOp->p3]; 4242 flags3 = pIn3->flags; 4243 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4244 applyNumericAffinity(pIn3, 0); 4245 } 4246 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4247 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4248 pIn3->flags = flags3; /* But convert the type back to its original */ 4249 4250 /* If the P3 value could not be converted into an integer without 4251 ** loss of information, then special processing is required... */ 4252 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4253 if( (newType & MEM_Real)==0 ){ 4254 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4255 VdbeBranchTaken(1,2); 4256 goto jump_to_p2; 4257 }else{ 4258 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4259 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4260 goto seek_not_found; 4261 } 4262 }else 4263 4264 /* If the approximation iKey is larger than the actual real search 4265 ** term, substitute >= for > and < for <=. e.g. if the search term 4266 ** is 4.9 and the integer approximation 5: 4267 ** 4268 ** (x > 4.9) -> (x >= 5) 4269 ** (x <= 4.9) -> (x < 5) 4270 */ 4271 if( pIn3->u.r<(double)iKey ){ 4272 assert( OP_SeekGE==(OP_SeekGT-1) ); 4273 assert( OP_SeekLT==(OP_SeekLE-1) ); 4274 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4275 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4276 } 4277 4278 /* If the approximation iKey is smaller than the actual real search 4279 ** term, substitute <= for < and > for >=. */ 4280 else if( pIn3->u.r>(double)iKey ){ 4281 assert( OP_SeekLE==(OP_SeekLT+1) ); 4282 assert( OP_SeekGT==(OP_SeekGE+1) ); 4283 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4284 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4285 } 4286 } 4287 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 4288 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4289 if( rc!=SQLITE_OK ){ 4290 goto abort_due_to_error; 4291 } 4292 }else{ 4293 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4294 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4295 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4296 ** with the same key. 4297 */ 4298 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4299 eqOnly = 1; 4300 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4301 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4302 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4303 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4304 assert( pOp[1].p1==pOp[0].p1 ); 4305 assert( pOp[1].p2==pOp[0].p2 ); 4306 assert( pOp[1].p3==pOp[0].p3 ); 4307 assert( pOp[1].p4.i==pOp[0].p4.i ); 4308 } 4309 4310 nField = pOp->p4.i; 4311 assert( pOp->p4type==P4_INT32 ); 4312 assert( nField>0 ); 4313 r.pKeyInfo = pC->pKeyInfo; 4314 r.nField = (u16)nField; 4315 4316 /* The next line of code computes as follows, only faster: 4317 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4318 ** r.default_rc = -1; 4319 ** }else{ 4320 ** r.default_rc = +1; 4321 ** } 4322 */ 4323 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4324 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4325 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4326 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4327 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4328 4329 r.aMem = &aMem[pOp->p3]; 4330 #ifdef SQLITE_DEBUG 4331 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4332 #endif 4333 r.eqSeen = 0; 4334 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 4335 if( rc!=SQLITE_OK ){ 4336 goto abort_due_to_error; 4337 } 4338 if( eqOnly && r.eqSeen==0 ){ 4339 assert( res!=0 ); 4340 goto seek_not_found; 4341 } 4342 } 4343 #ifdef SQLITE_TEST 4344 sqlite3_search_count++; 4345 #endif 4346 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4347 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4348 res = 0; 4349 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4350 if( rc!=SQLITE_OK ){ 4351 if( rc==SQLITE_DONE ){ 4352 rc = SQLITE_OK; 4353 res = 1; 4354 }else{ 4355 goto abort_due_to_error; 4356 } 4357 } 4358 }else{ 4359 res = 0; 4360 } 4361 }else{ 4362 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4363 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4364 res = 0; 4365 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4366 if( rc!=SQLITE_OK ){ 4367 if( rc==SQLITE_DONE ){ 4368 rc = SQLITE_OK; 4369 res = 1; 4370 }else{ 4371 goto abort_due_to_error; 4372 } 4373 } 4374 }else{ 4375 /* res might be negative because the table is empty. Check to 4376 ** see if this is the case. 4377 */ 4378 res = sqlite3BtreeEof(pC->uc.pCursor); 4379 } 4380 } 4381 seek_not_found: 4382 assert( pOp->p2>0 ); 4383 VdbeBranchTaken(res!=0,2); 4384 if( res ){ 4385 goto jump_to_p2; 4386 }else if( eqOnly ){ 4387 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4388 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4389 } 4390 break; 4391 } 4392 4393 4394 /* Opcode: SeekScan P1 P2 * * * 4395 ** Synopsis: Scan-ahead up to P1 rows 4396 ** 4397 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4398 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4399 ** checked by assert() statements. 4400 ** 4401 ** This opcode uses the P1 through P4 operands of the subsequent 4402 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4403 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4404 ** the P1 and P2 operands of this opcode are also used, and are called 4405 ** This.P1 and This.P2. 4406 ** 4407 ** This opcode helps to optimize IN operators on a multi-column index 4408 ** where the IN operator is on the later terms of the index by avoiding 4409 ** unnecessary seeks on the btree, substituting steps to the next row 4410 ** of the b-tree instead. A correct answer is obtained if this opcode 4411 ** is omitted or is a no-op. 4412 ** 4413 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4414 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4415 ** to. Call this SeekGE.P4/P5 row the "target". 4416 ** 4417 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4418 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4419 ** 4420 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4421 ** might be the target row, or it might be near and slightly before the 4422 ** target row. This opcode attempts to position the cursor on the target 4423 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4424 ** between 0 and This.P1 times. 4425 ** 4426 ** There are three possible outcomes from this opcode:<ol> 4427 ** 4428 ** <li> If after This.P1 steps, the cursor is still point to a place that 4429 ** is earlier in the btree than the target row, 4430 ** then fall through into the subsquence OP_SeekGE opcode. 4431 ** 4432 ** <li> If the cursor is successfully moved to the target row by 0 or more 4433 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4434 ** past the OP_IdxGT opcode that follows the OP_SeekGE. 4435 ** 4436 ** <li> If the cursor ends up past the target row (indicating the the target 4437 ** row does not exist in the btree) then jump to SeekOP.P2. 4438 ** </ol> 4439 */ 4440 case OP_SeekScan: { 4441 VdbeCursor *pC; 4442 int res; 4443 int nStep; 4444 UnpackedRecord r; 4445 4446 assert( pOp[1].opcode==OP_SeekGE ); 4447 4448 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4449 ** follows the OP_SeekGE. */ 4450 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4451 assert( aOp[pOp->p2-1].opcode==OP_IdxGT ); 4452 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4453 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4454 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4455 4456 assert( pOp->p1>0 ); 4457 pC = p->apCsr[pOp[1].p1]; 4458 assert( pC!=0 ); 4459 assert( pC->eCurType==CURTYPE_BTREE ); 4460 assert( !pC->isTable ); 4461 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4462 #ifdef SQLITE_DEBUG 4463 if( db->flags&SQLITE_VdbeTrace ){ 4464 printf("... cursor not valid - fall through\n"); 4465 } 4466 #endif 4467 break; 4468 } 4469 nStep = pOp->p1; 4470 assert( nStep>=1 ); 4471 r.pKeyInfo = pC->pKeyInfo; 4472 r.nField = (u16)pOp[1].p4.i; 4473 r.default_rc = 0; 4474 r.aMem = &aMem[pOp[1].p3]; 4475 #ifdef SQLITE_DEBUG 4476 { 4477 int i; 4478 for(i=0; i<r.nField; i++){ 4479 assert( memIsValid(&r.aMem[i]) ); 4480 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4481 } 4482 } 4483 #endif 4484 res = 0; /* Not needed. Only used to silence a warning. */ 4485 while(1){ 4486 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4487 if( rc ) goto abort_due_to_error; 4488 if( res>0 ){ 4489 seekscan_search_fail: 4490 #ifdef SQLITE_DEBUG 4491 if( db->flags&SQLITE_VdbeTrace ){ 4492 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4493 } 4494 #endif 4495 VdbeBranchTaken(1,3); 4496 pOp++; 4497 goto jump_to_p2; 4498 } 4499 if( res==0 ){ 4500 #ifdef SQLITE_DEBUG 4501 if( db->flags&SQLITE_VdbeTrace ){ 4502 printf("... %d steps and then success\n", pOp->p1 - nStep); 4503 } 4504 #endif 4505 VdbeBranchTaken(2,3); 4506 goto jump_to_p2; 4507 break; 4508 } 4509 if( nStep<=0 ){ 4510 #ifdef SQLITE_DEBUG 4511 if( db->flags&SQLITE_VdbeTrace ){ 4512 printf("... fall through after %d steps\n", pOp->p1); 4513 } 4514 #endif 4515 VdbeBranchTaken(0,3); 4516 break; 4517 } 4518 nStep--; 4519 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4520 if( rc ){ 4521 if( rc==SQLITE_DONE ){ 4522 rc = SQLITE_OK; 4523 goto seekscan_search_fail; 4524 }else{ 4525 goto abort_due_to_error; 4526 } 4527 } 4528 } 4529 4530 break; 4531 } 4532 4533 4534 /* Opcode: SeekHit P1 P2 P3 * * 4535 ** Synopsis: set P2<=seekHit<=P3 4536 ** 4537 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4538 ** so that it is no less than P2 and no greater than P3. 4539 ** 4540 ** The seekHit integer represents the maximum of terms in an index for which 4541 ** there is known to be at least one match. If the seekHit value is smaller 4542 ** than the total number of equality terms in an index lookup, then the 4543 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4544 ** early, thus saving work. This is part of the IN-early-out optimization. 4545 ** 4546 ** P1 must be a valid b-tree cursor. 4547 */ 4548 case OP_SeekHit: { 4549 VdbeCursor *pC; 4550 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4551 pC = p->apCsr[pOp->p1]; 4552 assert( pC!=0 ); 4553 assert( pOp->p3>=pOp->p2 ); 4554 if( pC->seekHit<pOp->p2 ){ 4555 pC->seekHit = pOp->p2; 4556 }else if( pC->seekHit>pOp->p3 ){ 4557 pC->seekHit = pOp->p3; 4558 } 4559 break; 4560 } 4561 4562 /* Opcode: IfNotOpen P1 P2 * * * 4563 ** Synopsis: if( !csr[P1] ) goto P2 4564 ** 4565 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4566 */ 4567 case OP_IfNotOpen: { /* jump */ 4568 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4569 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4570 if( !p->apCsr[pOp->p1] ){ 4571 goto jump_to_p2_and_check_for_interrupt; 4572 } 4573 break; 4574 } 4575 4576 /* Opcode: Found P1 P2 P3 P4 * 4577 ** Synopsis: key=r[P3@P4] 4578 ** 4579 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4580 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4581 ** record. 4582 ** 4583 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4584 ** is a prefix of any entry in P1 then a jump is made to P2 and 4585 ** P1 is left pointing at the matching entry. 4586 ** 4587 ** This operation leaves the cursor in a state where it can be 4588 ** advanced in the forward direction. The Next instruction will work, 4589 ** but not the Prev instruction. 4590 ** 4591 ** See also: NotFound, NoConflict, NotExists. SeekGe 4592 */ 4593 /* Opcode: NotFound P1 P2 P3 P4 * 4594 ** Synopsis: key=r[P3@P4] 4595 ** 4596 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4597 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4598 ** record. 4599 ** 4600 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4601 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4602 ** does contain an entry whose prefix matches the P3/P4 record then control 4603 ** falls through to the next instruction and P1 is left pointing at the 4604 ** matching entry. 4605 ** 4606 ** This operation leaves the cursor in a state where it cannot be 4607 ** advanced in either direction. In other words, the Next and Prev 4608 ** opcodes do not work after this operation. 4609 ** 4610 ** See also: Found, NotExists, NoConflict, IfNoHope 4611 */ 4612 /* Opcode: IfNoHope P1 P2 P3 P4 * 4613 ** Synopsis: key=r[P3@P4] 4614 ** 4615 ** Register P3 is the first of P4 registers that form an unpacked 4616 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4617 ** In other words, the operands to this opcode are the same as the 4618 ** operands to OP_NotFound and OP_IdxGT. 4619 ** 4620 ** This opcode is an optimization attempt only. If this opcode always 4621 ** falls through, the correct answer is still obtained, but extra works 4622 ** is performed. 4623 ** 4624 ** A value of N in the seekHit flag of cursor P1 means that there exists 4625 ** a key P3:N that will match some record in the index. We want to know 4626 ** if it is possible for a record P3:P4 to match some record in the 4627 ** index. If it is not possible, we can skips some work. So if seekHit 4628 ** is less than P4, attempt to find out if a match is possible by running 4629 ** OP_NotFound. 4630 ** 4631 ** This opcode is used in IN clause processing for a multi-column key. 4632 ** If an IN clause is attached to an element of the key other than the 4633 ** left-most element, and if there are no matches on the most recent 4634 ** seek over the whole key, then it might be that one of the key element 4635 ** to the left is prohibiting a match, and hence there is "no hope" of 4636 ** any match regardless of how many IN clause elements are checked. 4637 ** In such a case, we abandon the IN clause search early, using this 4638 ** opcode. The opcode name comes from the fact that the 4639 ** jump is taken if there is "no hope" of achieving a match. 4640 ** 4641 ** See also: NotFound, SeekHit 4642 */ 4643 /* Opcode: NoConflict P1 P2 P3 P4 * 4644 ** Synopsis: key=r[P3@P4] 4645 ** 4646 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4647 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4648 ** record. 4649 ** 4650 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4651 ** contains any NULL value, jump immediately to P2. If all terms of the 4652 ** record are not-NULL then a check is done to determine if any row in the 4653 ** P1 index btree has a matching key prefix. If there are no matches, jump 4654 ** immediately to P2. If there is a match, fall through and leave the P1 4655 ** cursor pointing to the matching row. 4656 ** 4657 ** This opcode is similar to OP_NotFound with the exceptions that the 4658 ** branch is always taken if any part of the search key input is NULL. 4659 ** 4660 ** This operation leaves the cursor in a state where it cannot be 4661 ** advanced in either direction. In other words, the Next and Prev 4662 ** opcodes do not work after this operation. 4663 ** 4664 ** See also: NotFound, Found, NotExists 4665 */ 4666 case OP_IfNoHope: { /* jump, in3 */ 4667 VdbeCursor *pC; 4668 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4669 pC = p->apCsr[pOp->p1]; 4670 assert( pC!=0 ); 4671 if( pC->seekHit>=pOp->p4.i ) break; 4672 /* Fall through into OP_NotFound */ 4673 /* no break */ deliberate_fall_through 4674 } 4675 case OP_NoConflict: /* jump, in3 */ 4676 case OP_NotFound: /* jump, in3 */ 4677 case OP_Found: { /* jump, in3 */ 4678 int alreadyExists; 4679 int takeJump; 4680 int ii; 4681 VdbeCursor *pC; 4682 int res; 4683 UnpackedRecord *pFree; 4684 UnpackedRecord *pIdxKey; 4685 UnpackedRecord r; 4686 4687 #ifdef SQLITE_TEST 4688 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4689 #endif 4690 4691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4692 assert( pOp->p4type==P4_INT32 ); 4693 pC = p->apCsr[pOp->p1]; 4694 assert( pC!=0 ); 4695 #ifdef SQLITE_DEBUG 4696 pC->seekOp = pOp->opcode; 4697 #endif 4698 pIn3 = &aMem[pOp->p3]; 4699 assert( pC->eCurType==CURTYPE_BTREE ); 4700 assert( pC->uc.pCursor!=0 ); 4701 assert( pC->isTable==0 ); 4702 if( pOp->p4.i>0 ){ 4703 r.pKeyInfo = pC->pKeyInfo; 4704 r.nField = (u16)pOp->p4.i; 4705 r.aMem = pIn3; 4706 #ifdef SQLITE_DEBUG 4707 for(ii=0; ii<r.nField; ii++){ 4708 assert( memIsValid(&r.aMem[ii]) ); 4709 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4710 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4711 } 4712 #endif 4713 pIdxKey = &r; 4714 pFree = 0; 4715 }else{ 4716 assert( pIn3->flags & MEM_Blob ); 4717 rc = ExpandBlob(pIn3); 4718 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4719 if( rc ) goto no_mem; 4720 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4721 if( pIdxKey==0 ) goto no_mem; 4722 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4723 } 4724 pIdxKey->default_rc = 0; 4725 takeJump = 0; 4726 if( pOp->opcode==OP_NoConflict ){ 4727 /* For the OP_NoConflict opcode, take the jump if any of the 4728 ** input fields are NULL, since any key with a NULL will not 4729 ** conflict */ 4730 for(ii=0; ii<pIdxKey->nField; ii++){ 4731 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4732 takeJump = 1; 4733 break; 4734 } 4735 } 4736 } 4737 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4738 if( pFree ) sqlite3DbFreeNN(db, pFree); 4739 if( rc!=SQLITE_OK ){ 4740 goto abort_due_to_error; 4741 } 4742 pC->seekResult = res; 4743 alreadyExists = (res==0); 4744 pC->nullRow = 1-alreadyExists; 4745 pC->deferredMoveto = 0; 4746 pC->cacheStatus = CACHE_STALE; 4747 if( pOp->opcode==OP_Found ){ 4748 VdbeBranchTaken(alreadyExists!=0,2); 4749 if( alreadyExists ) goto jump_to_p2; 4750 }else{ 4751 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4752 if( takeJump || !alreadyExists ) goto jump_to_p2; 4753 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 4754 } 4755 break; 4756 } 4757 4758 /* Opcode: SeekRowid P1 P2 P3 * * 4759 ** Synopsis: intkey=r[P3] 4760 ** 4761 ** P1 is the index of a cursor open on an SQL table btree (with integer 4762 ** keys). If register P3 does not contain an integer or if P1 does not 4763 ** contain a record with rowid P3 then jump immediately to P2. 4764 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4765 ** a record with rowid P3 then 4766 ** leave the cursor pointing at that record and fall through to the next 4767 ** instruction. 4768 ** 4769 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4770 ** the P3 register must be guaranteed to contain an integer value. With this 4771 ** opcode, register P3 might not contain an integer. 4772 ** 4773 ** The OP_NotFound opcode performs the same operation on index btrees 4774 ** (with arbitrary multi-value keys). 4775 ** 4776 ** This opcode leaves the cursor in a state where it cannot be advanced 4777 ** in either direction. In other words, the Next and Prev opcodes will 4778 ** not work following this opcode. 4779 ** 4780 ** See also: Found, NotFound, NoConflict, SeekRowid 4781 */ 4782 /* Opcode: NotExists P1 P2 P3 * * 4783 ** Synopsis: intkey=r[P3] 4784 ** 4785 ** P1 is the index of a cursor open on an SQL table btree (with integer 4786 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4787 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4788 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4789 ** leave the cursor pointing at that record and fall through to the next 4790 ** instruction. 4791 ** 4792 ** The OP_SeekRowid opcode performs the same operation but also allows the 4793 ** P3 register to contain a non-integer value, in which case the jump is 4794 ** always taken. This opcode requires that P3 always contain an integer. 4795 ** 4796 ** The OP_NotFound opcode performs the same operation on index btrees 4797 ** (with arbitrary multi-value keys). 4798 ** 4799 ** This opcode leaves the cursor in a state where it cannot be advanced 4800 ** in either direction. In other words, the Next and Prev opcodes will 4801 ** not work following this opcode. 4802 ** 4803 ** See also: Found, NotFound, NoConflict, SeekRowid 4804 */ 4805 case OP_SeekRowid: { /* jump, in3 */ 4806 VdbeCursor *pC; 4807 BtCursor *pCrsr; 4808 int res; 4809 u64 iKey; 4810 4811 pIn3 = &aMem[pOp->p3]; 4812 testcase( pIn3->flags & MEM_Int ); 4813 testcase( pIn3->flags & MEM_IntReal ); 4814 testcase( pIn3->flags & MEM_Real ); 4815 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 4816 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 4817 /* If pIn3->u.i does not contain an integer, compute iKey as the 4818 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 4819 ** into an integer without loss of information. Take care to avoid 4820 ** changing the datatype of pIn3, however, as it is used by other 4821 ** parts of the prepared statement. */ 4822 Mem x = pIn3[0]; 4823 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 4824 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 4825 iKey = x.u.i; 4826 goto notExistsWithKey; 4827 } 4828 /* Fall through into OP_NotExists */ 4829 /* no break */ deliberate_fall_through 4830 case OP_NotExists: /* jump, in3 */ 4831 pIn3 = &aMem[pOp->p3]; 4832 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 4833 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4834 iKey = pIn3->u.i; 4835 notExistsWithKey: 4836 pC = p->apCsr[pOp->p1]; 4837 assert( pC!=0 ); 4838 #ifdef SQLITE_DEBUG 4839 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 4840 #endif 4841 assert( pC->isTable ); 4842 assert( pC->eCurType==CURTYPE_BTREE ); 4843 pCrsr = pC->uc.pCursor; 4844 assert( pCrsr!=0 ); 4845 res = 0; 4846 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4847 assert( rc==SQLITE_OK || res==0 ); 4848 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4849 pC->nullRow = 0; 4850 pC->cacheStatus = CACHE_STALE; 4851 pC->deferredMoveto = 0; 4852 VdbeBranchTaken(res!=0,2); 4853 pC->seekResult = res; 4854 if( res!=0 ){ 4855 assert( rc==SQLITE_OK ); 4856 if( pOp->p2==0 ){ 4857 rc = SQLITE_CORRUPT_BKPT; 4858 }else{ 4859 goto jump_to_p2; 4860 } 4861 } 4862 if( rc ) goto abort_due_to_error; 4863 break; 4864 } 4865 4866 /* Opcode: Sequence P1 P2 * * * 4867 ** Synopsis: r[P2]=cursor[P1].ctr++ 4868 ** 4869 ** Find the next available sequence number for cursor P1. 4870 ** Write the sequence number into register P2. 4871 ** The sequence number on the cursor is incremented after this 4872 ** instruction. 4873 */ 4874 case OP_Sequence: { /* out2 */ 4875 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4876 assert( p->apCsr[pOp->p1]!=0 ); 4877 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4878 pOut = out2Prerelease(p, pOp); 4879 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4880 break; 4881 } 4882 4883 4884 /* Opcode: NewRowid P1 P2 P3 * * 4885 ** Synopsis: r[P2]=rowid 4886 ** 4887 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4888 ** The record number is not previously used as a key in the database 4889 ** table that cursor P1 points to. The new record number is written 4890 ** written to register P2. 4891 ** 4892 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4893 ** the largest previously generated record number. No new record numbers are 4894 ** allowed to be less than this value. When this value reaches its maximum, 4895 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4896 ** generated record number. This P3 mechanism is used to help implement the 4897 ** AUTOINCREMENT feature. 4898 */ 4899 case OP_NewRowid: { /* out2 */ 4900 i64 v; /* The new rowid */ 4901 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4902 int res; /* Result of an sqlite3BtreeLast() */ 4903 int cnt; /* Counter to limit the number of searches */ 4904 #ifndef SQLITE_OMIT_AUTOINCREMENT 4905 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4906 VdbeFrame *pFrame; /* Root frame of VDBE */ 4907 #endif 4908 4909 v = 0; 4910 res = 0; 4911 pOut = out2Prerelease(p, pOp); 4912 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4913 pC = p->apCsr[pOp->p1]; 4914 assert( pC!=0 ); 4915 assert( pC->isTable ); 4916 assert( pC->eCurType==CURTYPE_BTREE ); 4917 assert( pC->uc.pCursor!=0 ); 4918 { 4919 /* The next rowid or record number (different terms for the same 4920 ** thing) is obtained in a two-step algorithm. 4921 ** 4922 ** First we attempt to find the largest existing rowid and add one 4923 ** to that. But if the largest existing rowid is already the maximum 4924 ** positive integer, we have to fall through to the second 4925 ** probabilistic algorithm 4926 ** 4927 ** The second algorithm is to select a rowid at random and see if 4928 ** it already exists in the table. If it does not exist, we have 4929 ** succeeded. If the random rowid does exist, we select a new one 4930 ** and try again, up to 100 times. 4931 */ 4932 assert( pC->isTable ); 4933 4934 #ifdef SQLITE_32BIT_ROWID 4935 # define MAX_ROWID 0x7fffffff 4936 #else 4937 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4938 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4939 ** to provide the constant while making all compilers happy. 4940 */ 4941 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4942 #endif 4943 4944 if( !pC->useRandomRowid ){ 4945 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4946 if( rc!=SQLITE_OK ){ 4947 goto abort_due_to_error; 4948 } 4949 if( res ){ 4950 v = 1; /* IMP: R-61914-48074 */ 4951 }else{ 4952 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4953 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4954 if( v>=MAX_ROWID ){ 4955 pC->useRandomRowid = 1; 4956 }else{ 4957 v++; /* IMP: R-29538-34987 */ 4958 } 4959 } 4960 } 4961 4962 #ifndef SQLITE_OMIT_AUTOINCREMENT 4963 if( pOp->p3 ){ 4964 /* Assert that P3 is a valid memory cell. */ 4965 assert( pOp->p3>0 ); 4966 if( p->pFrame ){ 4967 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4968 /* Assert that P3 is a valid memory cell. */ 4969 assert( pOp->p3<=pFrame->nMem ); 4970 pMem = &pFrame->aMem[pOp->p3]; 4971 }else{ 4972 /* Assert that P3 is a valid memory cell. */ 4973 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4974 pMem = &aMem[pOp->p3]; 4975 memAboutToChange(p, pMem); 4976 } 4977 assert( memIsValid(pMem) ); 4978 4979 REGISTER_TRACE(pOp->p3, pMem); 4980 sqlite3VdbeMemIntegerify(pMem); 4981 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4982 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4983 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4984 goto abort_due_to_error; 4985 } 4986 if( v<pMem->u.i+1 ){ 4987 v = pMem->u.i + 1; 4988 } 4989 pMem->u.i = v; 4990 } 4991 #endif 4992 if( pC->useRandomRowid ){ 4993 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4994 ** largest possible integer (9223372036854775807) then the database 4995 ** engine starts picking positive candidate ROWIDs at random until 4996 ** it finds one that is not previously used. */ 4997 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4998 ** an AUTOINCREMENT table. */ 4999 cnt = 0; 5000 do{ 5001 sqlite3_randomness(sizeof(v), &v); 5002 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5003 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 5004 0, &res))==SQLITE_OK) 5005 && (res==0) 5006 && (++cnt<100)); 5007 if( rc ) goto abort_due_to_error; 5008 if( res==0 ){ 5009 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5010 goto abort_due_to_error; 5011 } 5012 assert( v>0 ); /* EV: R-40812-03570 */ 5013 } 5014 pC->deferredMoveto = 0; 5015 pC->cacheStatus = CACHE_STALE; 5016 } 5017 pOut->u.i = v; 5018 break; 5019 } 5020 5021 /* Opcode: Insert P1 P2 P3 P4 P5 5022 ** Synopsis: intkey=r[P3] data=r[P2] 5023 ** 5024 ** Write an entry into the table of cursor P1. A new entry is 5025 ** created if it doesn't already exist or the data for an existing 5026 ** entry is overwritten. The data is the value MEM_Blob stored in register 5027 ** number P2. The key is stored in register P3. The key must 5028 ** be a MEM_Int. 5029 ** 5030 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5031 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5032 ** then rowid is stored for subsequent return by the 5033 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5034 ** 5035 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5036 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5037 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5038 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5039 ** 5040 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5041 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5042 ** is part of an INSERT operation. The difference is only important to 5043 ** the update hook. 5044 ** 5045 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5046 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5047 ** following a successful insert. 5048 ** 5049 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5050 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5051 ** and register P2 becomes ephemeral. If the cursor is changed, the 5052 ** value of register P2 will then change. Make sure this does not 5053 ** cause any problems.) 5054 ** 5055 ** This instruction only works on tables. The equivalent instruction 5056 ** for indices is OP_IdxInsert. 5057 */ 5058 case OP_Insert: { 5059 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5060 Mem *pKey; /* MEM cell holding key for the record */ 5061 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5062 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5063 const char *zDb; /* database name - used by the update hook */ 5064 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5065 BtreePayload x; /* Payload to be inserted */ 5066 5067 pData = &aMem[pOp->p2]; 5068 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5069 assert( memIsValid(pData) ); 5070 pC = p->apCsr[pOp->p1]; 5071 assert( pC!=0 ); 5072 assert( pC->eCurType==CURTYPE_BTREE ); 5073 assert( pC->deferredMoveto==0 ); 5074 assert( pC->uc.pCursor!=0 ); 5075 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5076 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5077 REGISTER_TRACE(pOp->p2, pData); 5078 sqlite3VdbeIncrWriteCounter(p, pC); 5079 5080 pKey = &aMem[pOp->p3]; 5081 assert( pKey->flags & MEM_Int ); 5082 assert( memIsValid(pKey) ); 5083 REGISTER_TRACE(pOp->p3, pKey); 5084 x.nKey = pKey->u.i; 5085 5086 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5087 assert( pC->iDb>=0 ); 5088 zDb = db->aDb[pC->iDb].zDbSName; 5089 pTab = pOp->p4.pTab; 5090 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5091 }else{ 5092 pTab = 0; 5093 zDb = 0; /* Not needed. Silence a compiler warning. */ 5094 } 5095 5096 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5097 /* Invoke the pre-update hook, if any */ 5098 if( pTab ){ 5099 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5100 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 5101 } 5102 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5103 /* Prevent post-update hook from running in cases when it should not */ 5104 pTab = 0; 5105 } 5106 } 5107 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5108 #endif 5109 5110 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5111 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5112 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5113 x.pData = pData->z; 5114 x.nData = pData->n; 5115 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5116 if( pData->flags & MEM_Zero ){ 5117 x.nZero = pData->u.nZero; 5118 }else{ 5119 x.nZero = 0; 5120 } 5121 x.pKey = 0; 5122 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5123 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5124 seekResult 5125 ); 5126 pC->deferredMoveto = 0; 5127 pC->cacheStatus = CACHE_STALE; 5128 5129 /* Invoke the update-hook if required. */ 5130 if( rc ) goto abort_due_to_error; 5131 if( pTab ){ 5132 assert( db->xUpdateCallback!=0 ); 5133 assert( pTab->aCol!=0 ); 5134 db->xUpdateCallback(db->pUpdateArg, 5135 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5136 zDb, pTab->zName, x.nKey); 5137 } 5138 break; 5139 } 5140 5141 /* Opcode: RowCell P1 P2 P3 * * 5142 ** 5143 ** P1 and P2 are both open cursors. Both must be opened on the same type 5144 ** of table - intkey or index. This opcode is used as part of copying 5145 ** the current row from P2 into P1. If the cursors are opened on intkey 5146 ** tables, register P3 contains the rowid to use with the new record in 5147 ** P1. If they are opened on index tables, P3 is not used. 5148 ** 5149 ** This opcode must be followed by either an Insert or InsertIdx opcode 5150 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5151 */ 5152 case OP_RowCell: { 5153 VdbeCursor *pDest; /* Cursor to write to */ 5154 VdbeCursor *pSrc; /* Cursor to read from */ 5155 i64 iKey; /* Rowid value to insert with */ 5156 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5157 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5158 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5159 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5160 pDest = p->apCsr[pOp->p1]; 5161 pSrc = p->apCsr[pOp->p2]; 5162 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5163 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5164 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5165 break; 5166 }; 5167 5168 /* Opcode: Delete P1 P2 P3 P4 P5 5169 ** 5170 ** Delete the record at which the P1 cursor is currently pointing. 5171 ** 5172 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5173 ** the cursor will be left pointing at either the next or the previous 5174 ** record in the table. If it is left pointing at the next record, then 5175 ** the next Next instruction will be a no-op. As a result, in this case 5176 ** it is ok to delete a record from within a Next loop. If 5177 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5178 ** left in an undefined state. 5179 ** 5180 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5181 ** delete one of several associated with deleting a table row and all its 5182 ** associated index entries. Exactly one of those deletes is the "primary" 5183 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5184 ** marked with the AUXDELETE flag. 5185 ** 5186 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5187 ** change count is incremented (otherwise not). 5188 ** 5189 ** P1 must not be pseudo-table. It has to be a real table with 5190 ** multiple rows. 5191 ** 5192 ** If P4 is not NULL then it points to a Table object. In this case either 5193 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5194 ** have been positioned using OP_NotFound prior to invoking this opcode in 5195 ** this case. Specifically, if one is configured, the pre-update hook is 5196 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5197 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5198 ** 5199 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5200 ** of the memory cell that contains the value that the rowid of the row will 5201 ** be set to by the update. 5202 */ 5203 case OP_Delete: { 5204 VdbeCursor *pC; 5205 const char *zDb; 5206 Table *pTab; 5207 int opflags; 5208 5209 opflags = pOp->p2; 5210 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5211 pC = p->apCsr[pOp->p1]; 5212 assert( pC!=0 ); 5213 assert( pC->eCurType==CURTYPE_BTREE ); 5214 assert( pC->uc.pCursor!=0 ); 5215 assert( pC->deferredMoveto==0 ); 5216 sqlite3VdbeIncrWriteCounter(p, pC); 5217 5218 #ifdef SQLITE_DEBUG 5219 if( pOp->p4type==P4_TABLE 5220 && HasRowid(pOp->p4.pTab) 5221 && pOp->p5==0 5222 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5223 ){ 5224 /* If p5 is zero, the seek operation that positioned the cursor prior to 5225 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5226 ** the row that is being deleted */ 5227 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5228 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5229 } 5230 #endif 5231 5232 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5233 ** the name of the db to pass as to it. Also set local pTab to a copy 5234 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5235 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5236 ** VdbeCursor.movetoTarget to the current rowid. */ 5237 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5238 assert( pC->iDb>=0 ); 5239 assert( pOp->p4.pTab!=0 ); 5240 zDb = db->aDb[pC->iDb].zDbSName; 5241 pTab = pOp->p4.pTab; 5242 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5243 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5244 } 5245 }else{ 5246 zDb = 0; /* Not needed. Silence a compiler warning. */ 5247 pTab = 0; /* Not needed. Silence a compiler warning. */ 5248 } 5249 5250 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5251 /* Invoke the pre-update-hook if required. */ 5252 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 5253 assert( !(opflags & OPFLAG_ISUPDATE) 5254 || HasRowid(pTab)==0 5255 || (aMem[pOp->p3].flags & MEM_Int) 5256 ); 5257 sqlite3VdbePreUpdateHook(p, pC, 5258 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5259 zDb, pTab, pC->movetoTarget, 5260 pOp->p3 5261 ); 5262 } 5263 if( opflags & OPFLAG_ISNOOP ) break; 5264 #endif 5265 5266 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5267 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5268 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5269 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5270 5271 #ifdef SQLITE_DEBUG 5272 if( p->pFrame==0 ){ 5273 if( pC->isEphemeral==0 5274 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5275 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5276 ){ 5277 nExtraDelete++; 5278 } 5279 if( pOp->p2 & OPFLAG_NCHANGE ){ 5280 nExtraDelete--; 5281 } 5282 } 5283 #endif 5284 5285 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5286 pC->cacheStatus = CACHE_STALE; 5287 pC->seekResult = 0; 5288 if( rc ) goto abort_due_to_error; 5289 5290 /* Invoke the update-hook if required. */ 5291 if( opflags & OPFLAG_NCHANGE ){ 5292 p->nChange++; 5293 if( db->xUpdateCallback && HasRowid(pTab) ){ 5294 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5295 pC->movetoTarget); 5296 assert( pC->iDb>=0 ); 5297 } 5298 } 5299 5300 break; 5301 } 5302 /* Opcode: ResetCount * * * * * 5303 ** 5304 ** The value of the change counter is copied to the database handle 5305 ** change counter (returned by subsequent calls to sqlite3_changes()). 5306 ** Then the VMs internal change counter resets to 0. 5307 ** This is used by trigger programs. 5308 */ 5309 case OP_ResetCount: { 5310 sqlite3VdbeSetChanges(db, p->nChange); 5311 p->nChange = 0; 5312 break; 5313 } 5314 5315 /* Opcode: SorterCompare P1 P2 P3 P4 5316 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5317 ** 5318 ** P1 is a sorter cursor. This instruction compares a prefix of the 5319 ** record blob in register P3 against a prefix of the entry that 5320 ** the sorter cursor currently points to. Only the first P4 fields 5321 ** of r[P3] and the sorter record are compared. 5322 ** 5323 ** If either P3 or the sorter contains a NULL in one of their significant 5324 ** fields (not counting the P4 fields at the end which are ignored) then 5325 ** the comparison is assumed to be equal. 5326 ** 5327 ** Fall through to next instruction if the two records compare equal to 5328 ** each other. Jump to P2 if they are different. 5329 */ 5330 case OP_SorterCompare: { 5331 VdbeCursor *pC; 5332 int res; 5333 int nKeyCol; 5334 5335 pC = p->apCsr[pOp->p1]; 5336 assert( isSorter(pC) ); 5337 assert( pOp->p4type==P4_INT32 ); 5338 pIn3 = &aMem[pOp->p3]; 5339 nKeyCol = pOp->p4.i; 5340 res = 0; 5341 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5342 VdbeBranchTaken(res!=0,2); 5343 if( rc ) goto abort_due_to_error; 5344 if( res ) goto jump_to_p2; 5345 break; 5346 }; 5347 5348 /* Opcode: SorterData P1 P2 P3 * * 5349 ** Synopsis: r[P2]=data 5350 ** 5351 ** Write into register P2 the current sorter data for sorter cursor P1. 5352 ** Then clear the column header cache on cursor P3. 5353 ** 5354 ** This opcode is normally use to move a record out of the sorter and into 5355 ** a register that is the source for a pseudo-table cursor created using 5356 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5357 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5358 ** us from having to issue a separate NullRow instruction to clear that cache. 5359 */ 5360 case OP_SorterData: { 5361 VdbeCursor *pC; 5362 5363 pOut = &aMem[pOp->p2]; 5364 pC = p->apCsr[pOp->p1]; 5365 assert( isSorter(pC) ); 5366 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5367 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5368 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5369 if( rc ) goto abort_due_to_error; 5370 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5371 break; 5372 } 5373 5374 /* Opcode: RowData P1 P2 P3 * * 5375 ** Synopsis: r[P2]=data 5376 ** 5377 ** Write into register P2 the complete row content for the row at 5378 ** which cursor P1 is currently pointing. 5379 ** There is no interpretation of the data. 5380 ** It is just copied onto the P2 register exactly as 5381 ** it is found in the database file. 5382 ** 5383 ** If cursor P1 is an index, then the content is the key of the row. 5384 ** If cursor P2 is a table, then the content extracted is the data. 5385 ** 5386 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5387 ** of a real table, not a pseudo-table. 5388 ** 5389 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5390 ** into the database page. That means that the content of the output 5391 ** register will be invalidated as soon as the cursor moves - including 5392 ** moves caused by other cursors that "save" the current cursors 5393 ** position in order that they can write to the same table. If P3==0 5394 ** then a copy of the data is made into memory. P3!=0 is faster, but 5395 ** P3==0 is safer. 5396 ** 5397 ** If P3!=0 then the content of the P2 register is unsuitable for use 5398 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5399 ** The P2 register content is invalidated by opcodes like OP_Function or 5400 ** by any use of another cursor pointing to the same table. 5401 */ 5402 case OP_RowData: { 5403 VdbeCursor *pC; 5404 BtCursor *pCrsr; 5405 u32 n; 5406 5407 pOut = out2Prerelease(p, pOp); 5408 5409 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5410 pC = p->apCsr[pOp->p1]; 5411 assert( pC!=0 ); 5412 assert( pC->eCurType==CURTYPE_BTREE ); 5413 assert( isSorter(pC)==0 ); 5414 assert( pC->nullRow==0 ); 5415 assert( pC->uc.pCursor!=0 ); 5416 pCrsr = pC->uc.pCursor; 5417 5418 /* The OP_RowData opcodes always follow OP_NotExists or 5419 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5420 ** that might invalidate the cursor. 5421 ** If this where not the case, on of the following assert()s 5422 ** would fail. Should this ever change (because of changes in the code 5423 ** generator) then the fix would be to insert a call to 5424 ** sqlite3VdbeCursorMoveto(). 5425 */ 5426 assert( pC->deferredMoveto==0 ); 5427 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5428 5429 n = sqlite3BtreePayloadSize(pCrsr); 5430 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5431 goto too_big; 5432 } 5433 testcase( n==0 ); 5434 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5435 if( rc ) goto abort_due_to_error; 5436 if( !pOp->p3 ) Deephemeralize(pOut); 5437 UPDATE_MAX_BLOBSIZE(pOut); 5438 REGISTER_TRACE(pOp->p2, pOut); 5439 break; 5440 } 5441 5442 /* Opcode: Rowid P1 P2 * * * 5443 ** Synopsis: r[P2]=rowid 5444 ** 5445 ** Store in register P2 an integer which is the key of the table entry that 5446 ** P1 is currently point to. 5447 ** 5448 ** P1 can be either an ordinary table or a virtual table. There used to 5449 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5450 ** one opcode now works for both table types. 5451 */ 5452 case OP_Rowid: { /* out2 */ 5453 VdbeCursor *pC; 5454 i64 v; 5455 sqlite3_vtab *pVtab; 5456 const sqlite3_module *pModule; 5457 5458 pOut = out2Prerelease(p, pOp); 5459 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5460 pC = p->apCsr[pOp->p1]; 5461 assert( pC!=0 ); 5462 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5463 if( pC->nullRow ){ 5464 pOut->flags = MEM_Null; 5465 break; 5466 }else if( pC->deferredMoveto ){ 5467 v = pC->movetoTarget; 5468 #ifndef SQLITE_OMIT_VIRTUALTABLE 5469 }else if( pC->eCurType==CURTYPE_VTAB ){ 5470 assert( pC->uc.pVCur!=0 ); 5471 pVtab = pC->uc.pVCur->pVtab; 5472 pModule = pVtab->pModule; 5473 assert( pModule->xRowid ); 5474 rc = pModule->xRowid(pC->uc.pVCur, &v); 5475 sqlite3VtabImportErrmsg(p, pVtab); 5476 if( rc ) goto abort_due_to_error; 5477 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5478 }else{ 5479 assert( pC->eCurType==CURTYPE_BTREE ); 5480 assert( pC->uc.pCursor!=0 ); 5481 rc = sqlite3VdbeCursorRestore(pC); 5482 if( rc ) goto abort_due_to_error; 5483 if( pC->nullRow ){ 5484 pOut->flags = MEM_Null; 5485 break; 5486 } 5487 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5488 } 5489 pOut->u.i = v; 5490 break; 5491 } 5492 5493 /* Opcode: NullRow P1 * * * * 5494 ** 5495 ** Move the cursor P1 to a null row. Any OP_Column operations 5496 ** that occur while the cursor is on the null row will always 5497 ** write a NULL. 5498 */ 5499 case OP_NullRow: { 5500 VdbeCursor *pC; 5501 5502 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5503 pC = p->apCsr[pOp->p1]; 5504 assert( pC!=0 ); 5505 pC->nullRow = 1; 5506 pC->cacheStatus = CACHE_STALE; 5507 if( pC->eCurType==CURTYPE_BTREE ){ 5508 assert( pC->uc.pCursor!=0 ); 5509 sqlite3BtreeClearCursor(pC->uc.pCursor); 5510 } 5511 #ifdef SQLITE_DEBUG 5512 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5513 #endif 5514 break; 5515 } 5516 5517 /* Opcode: SeekEnd P1 * * * * 5518 ** 5519 ** Position cursor P1 at the end of the btree for the purpose of 5520 ** appending a new entry onto the btree. 5521 ** 5522 ** It is assumed that the cursor is used only for appending and so 5523 ** if the cursor is valid, then the cursor must already be pointing 5524 ** at the end of the btree and so no changes are made to 5525 ** the cursor. 5526 */ 5527 /* Opcode: Last P1 P2 * * * 5528 ** 5529 ** The next use of the Rowid or Column or Prev instruction for P1 5530 ** will refer to the last entry in the database table or index. 5531 ** If the table or index is empty and P2>0, then jump immediately to P2. 5532 ** If P2 is 0 or if the table or index is not empty, fall through 5533 ** to the following instruction. 5534 ** 5535 ** This opcode leaves the cursor configured to move in reverse order, 5536 ** from the end toward the beginning. In other words, the cursor is 5537 ** configured to use Prev, not Next. 5538 */ 5539 case OP_SeekEnd: 5540 case OP_Last: { /* jump */ 5541 VdbeCursor *pC; 5542 BtCursor *pCrsr; 5543 int res; 5544 5545 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5546 pC = p->apCsr[pOp->p1]; 5547 assert( pC!=0 ); 5548 assert( pC->eCurType==CURTYPE_BTREE ); 5549 pCrsr = pC->uc.pCursor; 5550 res = 0; 5551 assert( pCrsr!=0 ); 5552 #ifdef SQLITE_DEBUG 5553 pC->seekOp = pOp->opcode; 5554 #endif 5555 if( pOp->opcode==OP_SeekEnd ){ 5556 assert( pOp->p2==0 ); 5557 pC->seekResult = -1; 5558 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5559 break; 5560 } 5561 } 5562 rc = sqlite3BtreeLast(pCrsr, &res); 5563 pC->nullRow = (u8)res; 5564 pC->deferredMoveto = 0; 5565 pC->cacheStatus = CACHE_STALE; 5566 if( rc ) goto abort_due_to_error; 5567 if( pOp->p2>0 ){ 5568 VdbeBranchTaken(res!=0,2); 5569 if( res ) goto jump_to_p2; 5570 } 5571 break; 5572 } 5573 5574 /* Opcode: IfSmaller P1 P2 P3 * * 5575 ** 5576 ** Estimate the number of rows in the table P1. Jump to P2 if that 5577 ** estimate is less than approximately 2**(0.1*P3). 5578 */ 5579 case OP_IfSmaller: { /* jump */ 5580 VdbeCursor *pC; 5581 BtCursor *pCrsr; 5582 int res; 5583 i64 sz; 5584 5585 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5586 pC = p->apCsr[pOp->p1]; 5587 assert( pC!=0 ); 5588 pCrsr = pC->uc.pCursor; 5589 assert( pCrsr ); 5590 rc = sqlite3BtreeFirst(pCrsr, &res); 5591 if( rc ) goto abort_due_to_error; 5592 if( res==0 ){ 5593 sz = sqlite3BtreeRowCountEst(pCrsr); 5594 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5595 } 5596 VdbeBranchTaken(res!=0,2); 5597 if( res ) goto jump_to_p2; 5598 break; 5599 } 5600 5601 5602 /* Opcode: SorterSort P1 P2 * * * 5603 ** 5604 ** After all records have been inserted into the Sorter object 5605 ** identified by P1, invoke this opcode to actually do the sorting. 5606 ** Jump to P2 if there are no records to be sorted. 5607 ** 5608 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5609 ** for Sorter objects. 5610 */ 5611 /* Opcode: Sort P1 P2 * * * 5612 ** 5613 ** This opcode does exactly the same thing as OP_Rewind except that 5614 ** it increments an undocumented global variable used for testing. 5615 ** 5616 ** Sorting is accomplished by writing records into a sorting index, 5617 ** then rewinding that index and playing it back from beginning to 5618 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5619 ** rewinding so that the global variable will be incremented and 5620 ** regression tests can determine whether or not the optimizer is 5621 ** correctly optimizing out sorts. 5622 */ 5623 case OP_SorterSort: /* jump */ 5624 case OP_Sort: { /* jump */ 5625 #ifdef SQLITE_TEST 5626 sqlite3_sort_count++; 5627 sqlite3_search_count--; 5628 #endif 5629 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5630 /* Fall through into OP_Rewind */ 5631 /* no break */ deliberate_fall_through 5632 } 5633 /* Opcode: Rewind P1 P2 * * * 5634 ** 5635 ** The next use of the Rowid or Column or Next instruction for P1 5636 ** will refer to the first entry in the database table or index. 5637 ** If the table or index is empty, jump immediately to P2. 5638 ** If the table or index is not empty, fall through to the following 5639 ** instruction. 5640 ** 5641 ** This opcode leaves the cursor configured to move in forward order, 5642 ** from the beginning toward the end. In other words, the cursor is 5643 ** configured to use Next, not Prev. 5644 */ 5645 case OP_Rewind: { /* jump */ 5646 VdbeCursor *pC; 5647 BtCursor *pCrsr; 5648 int res; 5649 5650 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5651 assert( pOp->p5==0 ); 5652 pC = p->apCsr[pOp->p1]; 5653 assert( pC!=0 ); 5654 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5655 res = 1; 5656 #ifdef SQLITE_DEBUG 5657 pC->seekOp = OP_Rewind; 5658 #endif 5659 if( isSorter(pC) ){ 5660 rc = sqlite3VdbeSorterRewind(pC, &res); 5661 }else{ 5662 assert( pC->eCurType==CURTYPE_BTREE ); 5663 pCrsr = pC->uc.pCursor; 5664 assert( pCrsr ); 5665 rc = sqlite3BtreeFirst(pCrsr, &res); 5666 pC->deferredMoveto = 0; 5667 pC->cacheStatus = CACHE_STALE; 5668 } 5669 if( rc ) goto abort_due_to_error; 5670 pC->nullRow = (u8)res; 5671 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5672 VdbeBranchTaken(res!=0,2); 5673 if( res ) goto jump_to_p2; 5674 break; 5675 } 5676 5677 /* Opcode: Next P1 P2 P3 P4 P5 5678 ** 5679 ** Advance cursor P1 so that it points to the next key/data pair in its 5680 ** table or index. If there are no more key/value pairs then fall through 5681 ** to the following instruction. But if the cursor advance was successful, 5682 ** jump immediately to P2. 5683 ** 5684 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5685 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5686 ** to follow SeekLT, SeekLE, or OP_Last. 5687 ** 5688 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5689 ** been opened prior to this opcode or the program will segfault. 5690 ** 5691 ** The P3 value is a hint to the btree implementation. If P3==1, that 5692 ** means P1 is an SQL index and that this instruction could have been 5693 ** omitted if that index had been unique. P3 is usually 0. P3 is 5694 ** always either 0 or 1. 5695 ** 5696 ** P4 is always of type P4_ADVANCE. The function pointer points to 5697 ** sqlite3BtreeNext(). 5698 ** 5699 ** If P5 is positive and the jump is taken, then event counter 5700 ** number P5-1 in the prepared statement is incremented. 5701 ** 5702 ** See also: Prev 5703 */ 5704 /* Opcode: Prev P1 P2 P3 P4 P5 5705 ** 5706 ** Back up cursor P1 so that it points to the previous key/data pair in its 5707 ** table or index. If there is no previous key/value pairs then fall through 5708 ** to the following instruction. But if the cursor backup was successful, 5709 ** jump immediately to P2. 5710 ** 5711 ** 5712 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5713 ** OP_Last opcode used to position the cursor. Prev is not allowed 5714 ** to follow SeekGT, SeekGE, or OP_Rewind. 5715 ** 5716 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5717 ** not open then the behavior is undefined. 5718 ** 5719 ** The P3 value is a hint to the btree implementation. If P3==1, that 5720 ** means P1 is an SQL index and that this instruction could have been 5721 ** omitted if that index had been unique. P3 is usually 0. P3 is 5722 ** always either 0 or 1. 5723 ** 5724 ** P4 is always of type P4_ADVANCE. The function pointer points to 5725 ** sqlite3BtreePrevious(). 5726 ** 5727 ** If P5 is positive and the jump is taken, then event counter 5728 ** number P5-1 in the prepared statement is incremented. 5729 */ 5730 /* Opcode: SorterNext P1 P2 * * P5 5731 ** 5732 ** This opcode works just like OP_Next except that P1 must be a 5733 ** sorter object for which the OP_SorterSort opcode has been 5734 ** invoked. This opcode advances the cursor to the next sorted 5735 ** record, or jumps to P2 if there are no more sorted records. 5736 */ 5737 case OP_SorterNext: { /* jump */ 5738 VdbeCursor *pC; 5739 5740 pC = p->apCsr[pOp->p1]; 5741 assert( isSorter(pC) ); 5742 rc = sqlite3VdbeSorterNext(db, pC); 5743 goto next_tail; 5744 case OP_Prev: /* jump */ 5745 case OP_Next: /* jump */ 5746 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5747 assert( pOp->p5<ArraySize(p->aCounter) ); 5748 pC = p->apCsr[pOp->p1]; 5749 assert( pC!=0 ); 5750 assert( pC->deferredMoveto==0 ); 5751 assert( pC->eCurType==CURTYPE_BTREE ); 5752 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5753 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5754 5755 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5756 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5757 assert( pOp->opcode!=OP_Next 5758 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5759 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5760 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 5761 || pC->seekOp==OP_IfNoHope); 5762 assert( pOp->opcode!=OP_Prev 5763 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5764 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 5765 || pC->seekOp==OP_NullRow); 5766 5767 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5768 next_tail: 5769 pC->cacheStatus = CACHE_STALE; 5770 VdbeBranchTaken(rc==SQLITE_OK,2); 5771 if( rc==SQLITE_OK ){ 5772 pC->nullRow = 0; 5773 p->aCounter[pOp->p5]++; 5774 #ifdef SQLITE_TEST 5775 sqlite3_search_count++; 5776 #endif 5777 goto jump_to_p2_and_check_for_interrupt; 5778 } 5779 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5780 rc = SQLITE_OK; 5781 pC->nullRow = 1; 5782 goto check_for_interrupt; 5783 } 5784 5785 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5786 ** Synopsis: key=r[P2] 5787 ** 5788 ** Register P2 holds an SQL index key made using the 5789 ** MakeRecord instructions. This opcode writes that key 5790 ** into the index P1. Data for the entry is nil. 5791 ** 5792 ** If P4 is not zero, then it is the number of values in the unpacked 5793 ** key of reg(P2). In that case, P3 is the index of the first register 5794 ** for the unpacked key. The availability of the unpacked key can sometimes 5795 ** be an optimization. 5796 ** 5797 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5798 ** that this insert is likely to be an append. 5799 ** 5800 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5801 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5802 ** then the change counter is unchanged. 5803 ** 5804 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5805 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5806 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5807 ** seeks on the cursor or if the most recent seek used a key equivalent 5808 ** to P2. 5809 ** 5810 ** This instruction only works for indices. The equivalent instruction 5811 ** for tables is OP_Insert. 5812 */ 5813 case OP_IdxInsert: { /* in2 */ 5814 VdbeCursor *pC; 5815 BtreePayload x; 5816 5817 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5818 pC = p->apCsr[pOp->p1]; 5819 sqlite3VdbeIncrWriteCounter(p, pC); 5820 assert( pC!=0 ); 5821 assert( !isSorter(pC) ); 5822 pIn2 = &aMem[pOp->p2]; 5823 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 5824 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5825 assert( pC->eCurType==CURTYPE_BTREE ); 5826 assert( pC->isTable==0 ); 5827 rc = ExpandBlob(pIn2); 5828 if( rc ) goto abort_due_to_error; 5829 x.nKey = pIn2->n; 5830 x.pKey = pIn2->z; 5831 x.aMem = aMem + pOp->p3; 5832 x.nMem = (u16)pOp->p4.i; 5833 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5834 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5835 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5836 ); 5837 assert( pC->deferredMoveto==0 ); 5838 pC->cacheStatus = CACHE_STALE; 5839 if( rc) goto abort_due_to_error; 5840 break; 5841 } 5842 5843 /* Opcode: SorterInsert P1 P2 * * * 5844 ** Synopsis: key=r[P2] 5845 ** 5846 ** Register P2 holds an SQL index key made using the 5847 ** MakeRecord instructions. This opcode writes that key 5848 ** into the sorter P1. Data for the entry is nil. 5849 */ 5850 case OP_SorterInsert: { /* in2 */ 5851 VdbeCursor *pC; 5852 5853 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5854 pC = p->apCsr[pOp->p1]; 5855 sqlite3VdbeIncrWriteCounter(p, pC); 5856 assert( pC!=0 ); 5857 assert( isSorter(pC) ); 5858 pIn2 = &aMem[pOp->p2]; 5859 assert( pIn2->flags & MEM_Blob ); 5860 assert( pC->isTable==0 ); 5861 rc = ExpandBlob(pIn2); 5862 if( rc ) goto abort_due_to_error; 5863 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5864 if( rc) goto abort_due_to_error; 5865 break; 5866 } 5867 5868 /* Opcode: IdxDelete P1 P2 P3 * P5 5869 ** Synopsis: key=r[P2@P3] 5870 ** 5871 ** The content of P3 registers starting at register P2 form 5872 ** an unpacked index key. This opcode removes that entry from the 5873 ** index opened by cursor P1. 5874 ** 5875 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 5876 ** if no matching index entry is found. This happens when running 5877 ** an UPDATE or DELETE statement and the index entry to be updated 5878 ** or deleted is not found. For some uses of IdxDelete 5879 ** (example: the EXCEPT operator) it does not matter that no matching 5880 ** entry is found. For those cases, P5 is zero. 5881 */ 5882 case OP_IdxDelete: { 5883 VdbeCursor *pC; 5884 BtCursor *pCrsr; 5885 int res; 5886 UnpackedRecord r; 5887 5888 assert( pOp->p3>0 ); 5889 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5890 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5891 pC = p->apCsr[pOp->p1]; 5892 assert( pC!=0 ); 5893 assert( pC->eCurType==CURTYPE_BTREE ); 5894 sqlite3VdbeIncrWriteCounter(p, pC); 5895 pCrsr = pC->uc.pCursor; 5896 assert( pCrsr!=0 ); 5897 r.pKeyInfo = pC->pKeyInfo; 5898 r.nField = (u16)pOp->p3; 5899 r.default_rc = 0; 5900 r.aMem = &aMem[pOp->p2]; 5901 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5902 if( rc ) goto abort_due_to_error; 5903 if( res==0 ){ 5904 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5905 if( rc ) goto abort_due_to_error; 5906 }else if( pOp->p5 ){ 5907 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 5908 goto abort_due_to_error; 5909 } 5910 assert( pC->deferredMoveto==0 ); 5911 pC->cacheStatus = CACHE_STALE; 5912 pC->seekResult = 0; 5913 break; 5914 } 5915 5916 /* Opcode: DeferredSeek P1 * P3 P4 * 5917 ** Synopsis: Move P3 to P1.rowid if needed 5918 ** 5919 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5920 ** table. This opcode does a deferred seek of the P3 table cursor 5921 ** to the row that corresponds to the current row of P1. 5922 ** 5923 ** This is a deferred seek. Nothing actually happens until 5924 ** the cursor is used to read a record. That way, if no reads 5925 ** occur, no unnecessary I/O happens. 5926 ** 5927 ** P4 may be an array of integers (type P4_INTARRAY) containing 5928 ** one entry for each column in the P3 table. If array entry a(i) 5929 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5930 ** equivalent to performing the deferred seek and then reading column i 5931 ** from P1. This information is stored in P3 and used to redirect 5932 ** reads against P3 over to P1, thus possibly avoiding the need to 5933 ** seek and read cursor P3. 5934 */ 5935 /* Opcode: IdxRowid P1 P2 * * * 5936 ** Synopsis: r[P2]=rowid 5937 ** 5938 ** Write into register P2 an integer which is the last entry in the record at 5939 ** the end of the index key pointed to by cursor P1. This integer should be 5940 ** the rowid of the table entry to which this index entry points. 5941 ** 5942 ** See also: Rowid, MakeRecord. 5943 */ 5944 case OP_DeferredSeek: 5945 case OP_IdxRowid: { /* out2 */ 5946 VdbeCursor *pC; /* The P1 index cursor */ 5947 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5948 i64 rowid; /* Rowid that P1 current points to */ 5949 5950 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5951 pC = p->apCsr[pOp->p1]; 5952 assert( pC!=0 ); 5953 assert( pC->eCurType==CURTYPE_BTREE ); 5954 assert( pC->uc.pCursor!=0 ); 5955 assert( pC->isTable==0 ); 5956 assert( pC->deferredMoveto==0 ); 5957 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5958 5959 /* The IdxRowid and Seek opcodes are combined because of the commonality 5960 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5961 rc = sqlite3VdbeCursorRestore(pC); 5962 5963 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5964 ** out from under the cursor. That will never happens for an IdxRowid 5965 ** or Seek opcode */ 5966 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5967 5968 if( !pC->nullRow ){ 5969 rowid = 0; /* Not needed. Only used to silence a warning. */ 5970 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5971 if( rc!=SQLITE_OK ){ 5972 goto abort_due_to_error; 5973 } 5974 if( pOp->opcode==OP_DeferredSeek ){ 5975 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5976 pTabCur = p->apCsr[pOp->p3]; 5977 assert( pTabCur!=0 ); 5978 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5979 assert( pTabCur->uc.pCursor!=0 ); 5980 assert( pTabCur->isTable ); 5981 pTabCur->nullRow = 0; 5982 pTabCur->movetoTarget = rowid; 5983 pTabCur->deferredMoveto = 1; 5984 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5985 pTabCur->aAltMap = pOp->p4.ai; 5986 pTabCur->pAltCursor = pC; 5987 }else{ 5988 pOut = out2Prerelease(p, pOp); 5989 pOut->u.i = rowid; 5990 } 5991 }else{ 5992 assert( pOp->opcode==OP_IdxRowid ); 5993 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5994 } 5995 break; 5996 } 5997 5998 /* Opcode: FinishSeek P1 * * * * 5999 ** 6000 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6001 ** seek operation now, without further delay. If the cursor seek has 6002 ** already occurred, this instruction is a no-op. 6003 */ 6004 case OP_FinishSeek: { 6005 VdbeCursor *pC; /* The P1 index cursor */ 6006 6007 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6008 pC = p->apCsr[pOp->p1]; 6009 if( pC->deferredMoveto ){ 6010 rc = sqlite3VdbeFinishMoveto(pC); 6011 if( rc ) goto abort_due_to_error; 6012 } 6013 break; 6014 } 6015 6016 /* Opcode: IdxGE P1 P2 P3 P4 * 6017 ** Synopsis: key=r[P3@P4] 6018 ** 6019 ** The P4 register values beginning with P3 form an unpacked index 6020 ** key that omits the PRIMARY KEY. Compare this key value against the index 6021 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6022 ** fields at the end. 6023 ** 6024 ** If the P1 index entry is greater than or equal to the key value 6025 ** then jump to P2. Otherwise fall through to the next instruction. 6026 */ 6027 /* Opcode: IdxGT P1 P2 P3 P4 * 6028 ** Synopsis: key=r[P3@P4] 6029 ** 6030 ** The P4 register values beginning with P3 form an unpacked index 6031 ** key that omits the PRIMARY KEY. Compare this key value against the index 6032 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6033 ** fields at the end. 6034 ** 6035 ** If the P1 index entry is greater than the key value 6036 ** then jump to P2. Otherwise fall through to the next instruction. 6037 */ 6038 /* Opcode: IdxLT P1 P2 P3 P4 * 6039 ** Synopsis: key=r[P3@P4] 6040 ** 6041 ** The P4 register values beginning with P3 form an unpacked index 6042 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6043 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6044 ** ROWID on the P1 index. 6045 ** 6046 ** If the P1 index entry is less than the key value then jump to P2. 6047 ** Otherwise fall through to the next instruction. 6048 */ 6049 /* Opcode: IdxLE P1 P2 P3 P4 * 6050 ** Synopsis: key=r[P3@P4] 6051 ** 6052 ** The P4 register values beginning with P3 form an unpacked index 6053 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6054 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6055 ** ROWID on the P1 index. 6056 ** 6057 ** If the P1 index entry is less than or equal to the key value then jump 6058 ** to P2. Otherwise fall through to the next instruction. 6059 */ 6060 case OP_IdxLE: /* jump */ 6061 case OP_IdxGT: /* jump */ 6062 case OP_IdxLT: /* jump */ 6063 case OP_IdxGE: { /* jump */ 6064 VdbeCursor *pC; 6065 int res; 6066 UnpackedRecord r; 6067 6068 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6069 pC = p->apCsr[pOp->p1]; 6070 assert( pC!=0 ); 6071 assert( pC->isOrdered ); 6072 assert( pC->eCurType==CURTYPE_BTREE ); 6073 assert( pC->uc.pCursor!=0); 6074 assert( pC->deferredMoveto==0 ); 6075 assert( pOp->p4type==P4_INT32 ); 6076 r.pKeyInfo = pC->pKeyInfo; 6077 r.nField = (u16)pOp->p4.i; 6078 if( pOp->opcode<OP_IdxLT ){ 6079 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6080 r.default_rc = -1; 6081 }else{ 6082 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6083 r.default_rc = 0; 6084 } 6085 r.aMem = &aMem[pOp->p3]; 6086 #ifdef SQLITE_DEBUG 6087 { 6088 int i; 6089 for(i=0; i<r.nField; i++){ 6090 assert( memIsValid(&r.aMem[i]) ); 6091 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6092 } 6093 } 6094 #endif 6095 6096 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6097 { 6098 i64 nCellKey = 0; 6099 BtCursor *pCur; 6100 Mem m; 6101 6102 assert( pC->eCurType==CURTYPE_BTREE ); 6103 pCur = pC->uc.pCursor; 6104 assert( sqlite3BtreeCursorIsValid(pCur) ); 6105 nCellKey = sqlite3BtreePayloadSize(pCur); 6106 /* nCellKey will always be between 0 and 0xffffffff because of the way 6107 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6108 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6109 rc = SQLITE_CORRUPT_BKPT; 6110 goto abort_due_to_error; 6111 } 6112 sqlite3VdbeMemInit(&m, db, 0); 6113 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6114 if( rc ) goto abort_due_to_error; 6115 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6116 sqlite3VdbeMemRelease(&m); 6117 } 6118 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6119 6120 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6121 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6122 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6123 res = -res; 6124 }else{ 6125 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6126 res++; 6127 } 6128 VdbeBranchTaken(res>0,2); 6129 assert( rc==SQLITE_OK ); 6130 if( res>0 ) goto jump_to_p2; 6131 break; 6132 } 6133 6134 /* Opcode: Destroy P1 P2 P3 * * 6135 ** 6136 ** Delete an entire database table or index whose root page in the database 6137 ** file is given by P1. 6138 ** 6139 ** The table being destroyed is in the main database file if P3==0. If 6140 ** P3==1 then the table to be clear is in the auxiliary database file 6141 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6142 ** 6143 ** If AUTOVACUUM is enabled then it is possible that another root page 6144 ** might be moved into the newly deleted root page in order to keep all 6145 ** root pages contiguous at the beginning of the database. The former 6146 ** value of the root page that moved - its value before the move occurred - 6147 ** is stored in register P2. If no page movement was required (because the 6148 ** table being dropped was already the last one in the database) then a 6149 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6150 ** is stored in register P2. 6151 ** 6152 ** This opcode throws an error if there are any active reader VMs when 6153 ** it is invoked. This is done to avoid the difficulty associated with 6154 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6155 ** database. This error is thrown even if the database is not an AUTOVACUUM 6156 ** db in order to avoid introducing an incompatibility between autovacuum 6157 ** and non-autovacuum modes. 6158 ** 6159 ** See also: Clear 6160 */ 6161 case OP_Destroy: { /* out2 */ 6162 int iMoved; 6163 int iDb; 6164 6165 sqlite3VdbeIncrWriteCounter(p, 0); 6166 assert( p->readOnly==0 ); 6167 assert( pOp->p1>1 ); 6168 pOut = out2Prerelease(p, pOp); 6169 pOut->flags = MEM_Null; 6170 if( db->nVdbeRead > db->nVDestroy+1 ){ 6171 rc = SQLITE_LOCKED; 6172 p->errorAction = OE_Abort; 6173 goto abort_due_to_error; 6174 }else{ 6175 iDb = pOp->p3; 6176 assert( DbMaskTest(p->btreeMask, iDb) ); 6177 iMoved = 0; /* Not needed. Only to silence a warning. */ 6178 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6179 pOut->flags = MEM_Int; 6180 pOut->u.i = iMoved; 6181 if( rc ) goto abort_due_to_error; 6182 #ifndef SQLITE_OMIT_AUTOVACUUM 6183 if( iMoved!=0 ){ 6184 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6185 /* All OP_Destroy operations occur on the same btree */ 6186 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6187 resetSchemaOnFault = iDb+1; 6188 } 6189 #endif 6190 } 6191 break; 6192 } 6193 6194 /* Opcode: Clear P1 P2 P3 6195 ** 6196 ** Delete all contents of the database table or index whose root page 6197 ** in the database file is given by P1. But, unlike Destroy, do not 6198 ** remove the table or index from the database file. 6199 ** 6200 ** The table being clear is in the main database file if P2==0. If 6201 ** P2==1 then the table to be clear is in the auxiliary database file 6202 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6203 ** 6204 ** If the P3 value is non-zero, then the table referred to must be an 6205 ** intkey table (an SQL table, not an index). In this case the row change 6206 ** count is incremented by the number of rows in the table being cleared. 6207 ** If P3 is greater than zero, then the value stored in register P3 is 6208 ** also incremented by the number of rows in the table being cleared. 6209 ** 6210 ** See also: Destroy 6211 */ 6212 case OP_Clear: { 6213 int nChange; 6214 6215 sqlite3VdbeIncrWriteCounter(p, 0); 6216 nChange = 0; 6217 assert( p->readOnly==0 ); 6218 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6219 rc = sqlite3BtreeClearTable( 6220 db->aDb[pOp->p2].pBt, (u32)pOp->p1, (pOp->p3 ? &nChange : 0) 6221 ); 6222 if( pOp->p3 ){ 6223 p->nChange += nChange; 6224 if( pOp->p3>0 ){ 6225 assert( memIsValid(&aMem[pOp->p3]) ); 6226 memAboutToChange(p, &aMem[pOp->p3]); 6227 aMem[pOp->p3].u.i += nChange; 6228 } 6229 } 6230 if( rc ) goto abort_due_to_error; 6231 break; 6232 } 6233 6234 /* Opcode: ResetSorter P1 * * * * 6235 ** 6236 ** Delete all contents from the ephemeral table or sorter 6237 ** that is open on cursor P1. 6238 ** 6239 ** This opcode only works for cursors used for sorting and 6240 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6241 */ 6242 case OP_ResetSorter: { 6243 VdbeCursor *pC; 6244 6245 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6246 pC = p->apCsr[pOp->p1]; 6247 assert( pC!=0 ); 6248 if( isSorter(pC) ){ 6249 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6250 }else{ 6251 assert( pC->eCurType==CURTYPE_BTREE ); 6252 assert( pC->isEphemeral ); 6253 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6254 if( rc ) goto abort_due_to_error; 6255 } 6256 break; 6257 } 6258 6259 /* Opcode: CreateBtree P1 P2 P3 * * 6260 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6261 ** 6262 ** Allocate a new b-tree in the main database file if P1==0 or in the 6263 ** TEMP database file if P1==1 or in an attached database if 6264 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6265 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6266 ** The root page number of the new b-tree is stored in register P2. 6267 */ 6268 case OP_CreateBtree: { /* out2 */ 6269 Pgno pgno; 6270 Db *pDb; 6271 6272 sqlite3VdbeIncrWriteCounter(p, 0); 6273 pOut = out2Prerelease(p, pOp); 6274 pgno = 0; 6275 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6276 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6277 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6278 assert( p->readOnly==0 ); 6279 pDb = &db->aDb[pOp->p1]; 6280 assert( pDb->pBt!=0 ); 6281 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6282 if( rc ) goto abort_due_to_error; 6283 pOut->u.i = pgno; 6284 break; 6285 } 6286 6287 /* Opcode: SqlExec * * * P4 * 6288 ** 6289 ** Run the SQL statement or statements specified in the P4 string. 6290 */ 6291 case OP_SqlExec: { 6292 sqlite3VdbeIncrWriteCounter(p, 0); 6293 db->nSqlExec++; 6294 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6295 db->nSqlExec--; 6296 if( rc ) goto abort_due_to_error; 6297 break; 6298 } 6299 6300 /* Opcode: ParseSchema P1 * * P4 * 6301 ** 6302 ** Read and parse all entries from the schema table of database P1 6303 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6304 ** entire schema for P1 is reparsed. 6305 ** 6306 ** This opcode invokes the parser to create a new virtual machine, 6307 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6308 */ 6309 case OP_ParseSchema: { 6310 int iDb; 6311 const char *zSchema; 6312 char *zSql; 6313 InitData initData; 6314 6315 /* Any prepared statement that invokes this opcode will hold mutexes 6316 ** on every btree. This is a prerequisite for invoking 6317 ** sqlite3InitCallback(). 6318 */ 6319 #ifdef SQLITE_DEBUG 6320 for(iDb=0; iDb<db->nDb; iDb++){ 6321 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6322 } 6323 #endif 6324 6325 iDb = pOp->p1; 6326 assert( iDb>=0 && iDb<db->nDb ); 6327 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 6328 6329 #ifndef SQLITE_OMIT_ALTERTABLE 6330 if( pOp->p4.z==0 ){ 6331 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6332 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6333 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6334 db->mDbFlags |= DBFLAG_SchemaChange; 6335 p->expired = 0; 6336 }else 6337 #endif 6338 { 6339 zSchema = DFLT_SCHEMA_TABLE; 6340 initData.db = db; 6341 initData.iDb = iDb; 6342 initData.pzErrMsg = &p->zErrMsg; 6343 initData.mInitFlags = 0; 6344 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6345 zSql = sqlite3MPrintf(db, 6346 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6347 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6348 if( zSql==0 ){ 6349 rc = SQLITE_NOMEM_BKPT; 6350 }else{ 6351 assert( db->init.busy==0 ); 6352 db->init.busy = 1; 6353 initData.rc = SQLITE_OK; 6354 initData.nInitRow = 0; 6355 assert( !db->mallocFailed ); 6356 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6357 if( rc==SQLITE_OK ) rc = initData.rc; 6358 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6359 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6360 ** at least one SQL statement. Any less than that indicates that 6361 ** the sqlite_schema table is corrupt. */ 6362 rc = SQLITE_CORRUPT_BKPT; 6363 } 6364 sqlite3DbFreeNN(db, zSql); 6365 db->init.busy = 0; 6366 } 6367 } 6368 if( rc ){ 6369 sqlite3ResetAllSchemasOfConnection(db); 6370 if( rc==SQLITE_NOMEM ){ 6371 goto no_mem; 6372 } 6373 goto abort_due_to_error; 6374 } 6375 break; 6376 } 6377 6378 #if !defined(SQLITE_OMIT_ANALYZE) 6379 /* Opcode: LoadAnalysis P1 * * * * 6380 ** 6381 ** Read the sqlite_stat1 table for database P1 and load the content 6382 ** of that table into the internal index hash table. This will cause 6383 ** the analysis to be used when preparing all subsequent queries. 6384 */ 6385 case OP_LoadAnalysis: { 6386 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6387 rc = sqlite3AnalysisLoad(db, pOp->p1); 6388 if( rc ) goto abort_due_to_error; 6389 break; 6390 } 6391 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6392 6393 /* Opcode: DropTable P1 * * P4 * 6394 ** 6395 ** Remove the internal (in-memory) data structures that describe 6396 ** the table named P4 in database P1. This is called after a table 6397 ** is dropped from disk (using the Destroy opcode) in order to keep 6398 ** the internal representation of the 6399 ** schema consistent with what is on disk. 6400 */ 6401 case OP_DropTable: { 6402 sqlite3VdbeIncrWriteCounter(p, 0); 6403 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6404 break; 6405 } 6406 6407 /* Opcode: DropIndex P1 * * P4 * 6408 ** 6409 ** Remove the internal (in-memory) data structures that describe 6410 ** the index named P4 in database P1. This is called after an index 6411 ** is dropped from disk (using the Destroy opcode) 6412 ** in order to keep the internal representation of the 6413 ** schema consistent with what is on disk. 6414 */ 6415 case OP_DropIndex: { 6416 sqlite3VdbeIncrWriteCounter(p, 0); 6417 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6418 break; 6419 } 6420 6421 /* Opcode: DropTrigger P1 * * P4 * 6422 ** 6423 ** Remove the internal (in-memory) data structures that describe 6424 ** the trigger named P4 in database P1. This is called after a trigger 6425 ** is dropped from disk (using the Destroy opcode) in order to keep 6426 ** the internal representation of the 6427 ** schema consistent with what is on disk. 6428 */ 6429 case OP_DropTrigger: { 6430 sqlite3VdbeIncrWriteCounter(p, 0); 6431 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6432 break; 6433 } 6434 6435 6436 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6437 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6438 ** 6439 ** Do an analysis of the currently open database. Store in 6440 ** register P1 the text of an error message describing any problems. 6441 ** If no problems are found, store a NULL in register P1. 6442 ** 6443 ** The register P3 contains one less than the maximum number of allowed errors. 6444 ** At most reg(P3) errors will be reported. 6445 ** In other words, the analysis stops as soon as reg(P1) errors are 6446 ** seen. Reg(P1) is updated with the number of errors remaining. 6447 ** 6448 ** The root page numbers of all tables in the database are integers 6449 ** stored in P4_INTARRAY argument. 6450 ** 6451 ** If P5 is not zero, the check is done on the auxiliary database 6452 ** file, not the main database file. 6453 ** 6454 ** This opcode is used to implement the integrity_check pragma. 6455 */ 6456 case OP_IntegrityCk: { 6457 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6458 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6459 int nErr; /* Number of errors reported */ 6460 char *z; /* Text of the error report */ 6461 Mem *pnErr; /* Register keeping track of errors remaining */ 6462 6463 assert( p->bIsReader ); 6464 nRoot = pOp->p2; 6465 aRoot = pOp->p4.ai; 6466 assert( nRoot>0 ); 6467 assert( aRoot[0]==(Pgno)nRoot ); 6468 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6469 pnErr = &aMem[pOp->p3]; 6470 assert( (pnErr->flags & MEM_Int)!=0 ); 6471 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6472 pIn1 = &aMem[pOp->p1]; 6473 assert( pOp->p5<db->nDb ); 6474 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6475 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6476 (int)pnErr->u.i+1, &nErr); 6477 sqlite3VdbeMemSetNull(pIn1); 6478 if( nErr==0 ){ 6479 assert( z==0 ); 6480 }else if( z==0 ){ 6481 goto no_mem; 6482 }else{ 6483 pnErr->u.i -= nErr-1; 6484 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6485 } 6486 UPDATE_MAX_BLOBSIZE(pIn1); 6487 sqlite3VdbeChangeEncoding(pIn1, encoding); 6488 goto check_for_interrupt; 6489 } 6490 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6491 6492 /* Opcode: RowSetAdd P1 P2 * * * 6493 ** Synopsis: rowset(P1)=r[P2] 6494 ** 6495 ** Insert the integer value held by register P2 into a RowSet object 6496 ** held in register P1. 6497 ** 6498 ** An assertion fails if P2 is not an integer. 6499 */ 6500 case OP_RowSetAdd: { /* in1, in2 */ 6501 pIn1 = &aMem[pOp->p1]; 6502 pIn2 = &aMem[pOp->p2]; 6503 assert( (pIn2->flags & MEM_Int)!=0 ); 6504 if( (pIn1->flags & MEM_Blob)==0 ){ 6505 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6506 } 6507 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6508 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6509 break; 6510 } 6511 6512 /* Opcode: RowSetRead P1 P2 P3 * * 6513 ** Synopsis: r[P3]=rowset(P1) 6514 ** 6515 ** Extract the smallest value from the RowSet object in P1 6516 ** and put that value into register P3. 6517 ** Or, if RowSet object P1 is initially empty, leave P3 6518 ** unchanged and jump to instruction P2. 6519 */ 6520 case OP_RowSetRead: { /* jump, in1, out3 */ 6521 i64 val; 6522 6523 pIn1 = &aMem[pOp->p1]; 6524 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6525 if( (pIn1->flags & MEM_Blob)==0 6526 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6527 ){ 6528 /* The boolean index is empty */ 6529 sqlite3VdbeMemSetNull(pIn1); 6530 VdbeBranchTaken(1,2); 6531 goto jump_to_p2_and_check_for_interrupt; 6532 }else{ 6533 /* A value was pulled from the index */ 6534 VdbeBranchTaken(0,2); 6535 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6536 } 6537 goto check_for_interrupt; 6538 } 6539 6540 /* Opcode: RowSetTest P1 P2 P3 P4 6541 ** Synopsis: if r[P3] in rowset(P1) goto P2 6542 ** 6543 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6544 ** contains a RowSet object and that RowSet object contains 6545 ** the value held in P3, jump to register P2. Otherwise, insert the 6546 ** integer in P3 into the RowSet and continue on to the 6547 ** next opcode. 6548 ** 6549 ** The RowSet object is optimized for the case where sets of integers 6550 ** are inserted in distinct phases, which each set contains no duplicates. 6551 ** Each set is identified by a unique P4 value. The first set 6552 ** must have P4==0, the final set must have P4==-1, and for all other sets 6553 ** must have P4>0. 6554 ** 6555 ** This allows optimizations: (a) when P4==0 there is no need to test 6556 ** the RowSet object for P3, as it is guaranteed not to contain it, 6557 ** (b) when P4==-1 there is no need to insert the value, as it will 6558 ** never be tested for, and (c) when a value that is part of set X is 6559 ** inserted, there is no need to search to see if the same value was 6560 ** previously inserted as part of set X (only if it was previously 6561 ** inserted as part of some other set). 6562 */ 6563 case OP_RowSetTest: { /* jump, in1, in3 */ 6564 int iSet; 6565 int exists; 6566 6567 pIn1 = &aMem[pOp->p1]; 6568 pIn3 = &aMem[pOp->p3]; 6569 iSet = pOp->p4.i; 6570 assert( pIn3->flags&MEM_Int ); 6571 6572 /* If there is anything other than a rowset object in memory cell P1, 6573 ** delete it now and initialize P1 with an empty rowset 6574 */ 6575 if( (pIn1->flags & MEM_Blob)==0 ){ 6576 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6577 } 6578 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6579 assert( pOp->p4type==P4_INT32 ); 6580 assert( iSet==-1 || iSet>=0 ); 6581 if( iSet ){ 6582 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6583 VdbeBranchTaken(exists!=0,2); 6584 if( exists ) goto jump_to_p2; 6585 } 6586 if( iSet>=0 ){ 6587 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6588 } 6589 break; 6590 } 6591 6592 6593 #ifndef SQLITE_OMIT_TRIGGER 6594 6595 /* Opcode: Program P1 P2 P3 P4 P5 6596 ** 6597 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6598 ** 6599 ** P1 contains the address of the memory cell that contains the first memory 6600 ** cell in an array of values used as arguments to the sub-program. P2 6601 ** contains the address to jump to if the sub-program throws an IGNORE 6602 ** exception using the RAISE() function. Register P3 contains the address 6603 ** of a memory cell in this (the parent) VM that is used to allocate the 6604 ** memory required by the sub-vdbe at runtime. 6605 ** 6606 ** P4 is a pointer to the VM containing the trigger program. 6607 ** 6608 ** If P5 is non-zero, then recursive program invocation is enabled. 6609 */ 6610 case OP_Program: { /* jump */ 6611 int nMem; /* Number of memory registers for sub-program */ 6612 int nByte; /* Bytes of runtime space required for sub-program */ 6613 Mem *pRt; /* Register to allocate runtime space */ 6614 Mem *pMem; /* Used to iterate through memory cells */ 6615 Mem *pEnd; /* Last memory cell in new array */ 6616 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6617 SubProgram *pProgram; /* Sub-program to execute */ 6618 void *t; /* Token identifying trigger */ 6619 6620 pProgram = pOp->p4.pProgram; 6621 pRt = &aMem[pOp->p3]; 6622 assert( pProgram->nOp>0 ); 6623 6624 /* If the p5 flag is clear, then recursive invocation of triggers is 6625 ** disabled for backwards compatibility (p5 is set if this sub-program 6626 ** is really a trigger, not a foreign key action, and the flag set 6627 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6628 ** 6629 ** It is recursive invocation of triggers, at the SQL level, that is 6630 ** disabled. In some cases a single trigger may generate more than one 6631 ** SubProgram (if the trigger may be executed with more than one different 6632 ** ON CONFLICT algorithm). SubProgram structures associated with a 6633 ** single trigger all have the same value for the SubProgram.token 6634 ** variable. */ 6635 if( pOp->p5 ){ 6636 t = pProgram->token; 6637 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6638 if( pFrame ) break; 6639 } 6640 6641 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6642 rc = SQLITE_ERROR; 6643 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6644 goto abort_due_to_error; 6645 } 6646 6647 /* Register pRt is used to store the memory required to save the state 6648 ** of the current program, and the memory required at runtime to execute 6649 ** the trigger program. If this trigger has been fired before, then pRt 6650 ** is already allocated. Otherwise, it must be initialized. */ 6651 if( (pRt->flags&MEM_Blob)==0 ){ 6652 /* SubProgram.nMem is set to the number of memory cells used by the 6653 ** program stored in SubProgram.aOp. As well as these, one memory 6654 ** cell is required for each cursor used by the program. Set local 6655 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6656 */ 6657 nMem = pProgram->nMem + pProgram->nCsr; 6658 assert( nMem>0 ); 6659 if( pProgram->nCsr==0 ) nMem++; 6660 nByte = ROUND8(sizeof(VdbeFrame)) 6661 + nMem * sizeof(Mem) 6662 + pProgram->nCsr * sizeof(VdbeCursor*) 6663 + (pProgram->nOp + 7)/8; 6664 pFrame = sqlite3DbMallocZero(db, nByte); 6665 if( !pFrame ){ 6666 goto no_mem; 6667 } 6668 sqlite3VdbeMemRelease(pRt); 6669 pRt->flags = MEM_Blob|MEM_Dyn; 6670 pRt->z = (char*)pFrame; 6671 pRt->n = nByte; 6672 pRt->xDel = sqlite3VdbeFrameMemDel; 6673 6674 pFrame->v = p; 6675 pFrame->nChildMem = nMem; 6676 pFrame->nChildCsr = pProgram->nCsr; 6677 pFrame->pc = (int)(pOp - aOp); 6678 pFrame->aMem = p->aMem; 6679 pFrame->nMem = p->nMem; 6680 pFrame->apCsr = p->apCsr; 6681 pFrame->nCursor = p->nCursor; 6682 pFrame->aOp = p->aOp; 6683 pFrame->nOp = p->nOp; 6684 pFrame->token = pProgram->token; 6685 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6686 pFrame->anExec = p->anExec; 6687 #endif 6688 #ifdef SQLITE_DEBUG 6689 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6690 #endif 6691 6692 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6693 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6694 pMem->flags = MEM_Undefined; 6695 pMem->db = db; 6696 } 6697 }else{ 6698 pFrame = (VdbeFrame*)pRt->z; 6699 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6700 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6701 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6702 assert( pProgram->nCsr==pFrame->nChildCsr ); 6703 assert( (int)(pOp - aOp)==pFrame->pc ); 6704 } 6705 6706 p->nFrame++; 6707 pFrame->pParent = p->pFrame; 6708 pFrame->lastRowid = db->lastRowid; 6709 pFrame->nChange = p->nChange; 6710 pFrame->nDbChange = p->db->nChange; 6711 assert( pFrame->pAuxData==0 ); 6712 pFrame->pAuxData = p->pAuxData; 6713 p->pAuxData = 0; 6714 p->nChange = 0; 6715 p->pFrame = pFrame; 6716 p->aMem = aMem = VdbeFrameMem(pFrame); 6717 p->nMem = pFrame->nChildMem; 6718 p->nCursor = (u16)pFrame->nChildCsr; 6719 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6720 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6721 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6722 p->aOp = aOp = pProgram->aOp; 6723 p->nOp = pProgram->nOp; 6724 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6725 p->anExec = 0; 6726 #endif 6727 #ifdef SQLITE_DEBUG 6728 /* Verify that second and subsequent executions of the same trigger do not 6729 ** try to reuse register values from the first use. */ 6730 { 6731 int i; 6732 for(i=0; i<p->nMem; i++){ 6733 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6734 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6735 } 6736 } 6737 #endif 6738 pOp = &aOp[-1]; 6739 goto check_for_interrupt; 6740 } 6741 6742 /* Opcode: Param P1 P2 * * * 6743 ** 6744 ** This opcode is only ever present in sub-programs called via the 6745 ** OP_Program instruction. Copy a value currently stored in a memory 6746 ** cell of the calling (parent) frame to cell P2 in the current frames 6747 ** address space. This is used by trigger programs to access the new.* 6748 ** and old.* values. 6749 ** 6750 ** The address of the cell in the parent frame is determined by adding 6751 ** the value of the P1 argument to the value of the P1 argument to the 6752 ** calling OP_Program instruction. 6753 */ 6754 case OP_Param: { /* out2 */ 6755 VdbeFrame *pFrame; 6756 Mem *pIn; 6757 pOut = out2Prerelease(p, pOp); 6758 pFrame = p->pFrame; 6759 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6760 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6761 break; 6762 } 6763 6764 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6765 6766 #ifndef SQLITE_OMIT_FOREIGN_KEY 6767 /* Opcode: FkCounter P1 P2 * * * 6768 ** Synopsis: fkctr[P1]+=P2 6769 ** 6770 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6771 ** If P1 is non-zero, the database constraint counter is incremented 6772 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6773 ** statement counter is incremented (immediate foreign key constraints). 6774 */ 6775 case OP_FkCounter: { 6776 if( db->flags & SQLITE_DeferFKs ){ 6777 db->nDeferredImmCons += pOp->p2; 6778 }else if( pOp->p1 ){ 6779 db->nDeferredCons += pOp->p2; 6780 }else{ 6781 p->nFkConstraint += pOp->p2; 6782 } 6783 break; 6784 } 6785 6786 /* Opcode: FkIfZero P1 P2 * * * 6787 ** Synopsis: if fkctr[P1]==0 goto P2 6788 ** 6789 ** This opcode tests if a foreign key constraint-counter is currently zero. 6790 ** If so, jump to instruction P2. Otherwise, fall through to the next 6791 ** instruction. 6792 ** 6793 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6794 ** is zero (the one that counts deferred constraint violations). If P1 is 6795 ** zero, the jump is taken if the statement constraint-counter is zero 6796 ** (immediate foreign key constraint violations). 6797 */ 6798 case OP_FkIfZero: { /* jump */ 6799 if( pOp->p1 ){ 6800 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6801 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6802 }else{ 6803 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6804 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6805 } 6806 break; 6807 } 6808 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6809 6810 #ifndef SQLITE_OMIT_AUTOINCREMENT 6811 /* Opcode: MemMax P1 P2 * * * 6812 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6813 ** 6814 ** P1 is a register in the root frame of this VM (the root frame is 6815 ** different from the current frame if this instruction is being executed 6816 ** within a sub-program). Set the value of register P1 to the maximum of 6817 ** its current value and the value in register P2. 6818 ** 6819 ** This instruction throws an error if the memory cell is not initially 6820 ** an integer. 6821 */ 6822 case OP_MemMax: { /* in2 */ 6823 VdbeFrame *pFrame; 6824 if( p->pFrame ){ 6825 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6826 pIn1 = &pFrame->aMem[pOp->p1]; 6827 }else{ 6828 pIn1 = &aMem[pOp->p1]; 6829 } 6830 assert( memIsValid(pIn1) ); 6831 sqlite3VdbeMemIntegerify(pIn1); 6832 pIn2 = &aMem[pOp->p2]; 6833 sqlite3VdbeMemIntegerify(pIn2); 6834 if( pIn1->u.i<pIn2->u.i){ 6835 pIn1->u.i = pIn2->u.i; 6836 } 6837 break; 6838 } 6839 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6840 6841 /* Opcode: IfPos P1 P2 P3 * * 6842 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6843 ** 6844 ** Register P1 must contain an integer. 6845 ** If the value of register P1 is 1 or greater, subtract P3 from the 6846 ** value in P1 and jump to P2. 6847 ** 6848 ** If the initial value of register P1 is less than 1, then the 6849 ** value is unchanged and control passes through to the next instruction. 6850 */ 6851 case OP_IfPos: { /* jump, in1 */ 6852 pIn1 = &aMem[pOp->p1]; 6853 assert( pIn1->flags&MEM_Int ); 6854 VdbeBranchTaken( pIn1->u.i>0, 2); 6855 if( pIn1->u.i>0 ){ 6856 pIn1->u.i -= pOp->p3; 6857 goto jump_to_p2; 6858 } 6859 break; 6860 } 6861 6862 /* Opcode: OffsetLimit P1 P2 P3 * * 6863 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6864 ** 6865 ** This opcode performs a commonly used computation associated with 6866 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6867 ** holds the offset counter. The opcode computes the combined value 6868 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6869 ** value computed is the total number of rows that will need to be 6870 ** visited in order to complete the query. 6871 ** 6872 ** If r[P3] is zero or negative, that means there is no OFFSET 6873 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6874 ** 6875 ** if r[P1] is zero or negative, that means there is no LIMIT 6876 ** and r[P2] is set to -1. 6877 ** 6878 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6879 */ 6880 case OP_OffsetLimit: { /* in1, out2, in3 */ 6881 i64 x; 6882 pIn1 = &aMem[pOp->p1]; 6883 pIn3 = &aMem[pOp->p3]; 6884 pOut = out2Prerelease(p, pOp); 6885 assert( pIn1->flags & MEM_Int ); 6886 assert( pIn3->flags & MEM_Int ); 6887 x = pIn1->u.i; 6888 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6889 /* If the LIMIT is less than or equal to zero, loop forever. This 6890 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6891 ** also loop forever. This is undocumented. In fact, one could argue 6892 ** that the loop should terminate. But assuming 1 billion iterations 6893 ** per second (far exceeding the capabilities of any current hardware) 6894 ** it would take nearly 300 years to actually reach the limit. So 6895 ** looping forever is a reasonable approximation. */ 6896 pOut->u.i = -1; 6897 }else{ 6898 pOut->u.i = x; 6899 } 6900 break; 6901 } 6902 6903 /* Opcode: IfNotZero P1 P2 * * * 6904 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6905 ** 6906 ** Register P1 must contain an integer. If the content of register P1 is 6907 ** initially greater than zero, then decrement the value in register P1. 6908 ** If it is non-zero (negative or positive) and then also jump to P2. 6909 ** If register P1 is initially zero, leave it unchanged and fall through. 6910 */ 6911 case OP_IfNotZero: { /* jump, in1 */ 6912 pIn1 = &aMem[pOp->p1]; 6913 assert( pIn1->flags&MEM_Int ); 6914 VdbeBranchTaken(pIn1->u.i<0, 2); 6915 if( pIn1->u.i ){ 6916 if( pIn1->u.i>0 ) pIn1->u.i--; 6917 goto jump_to_p2; 6918 } 6919 break; 6920 } 6921 6922 /* Opcode: DecrJumpZero P1 P2 * * * 6923 ** Synopsis: if (--r[P1])==0 goto P2 6924 ** 6925 ** Register P1 must hold an integer. Decrement the value in P1 6926 ** and jump to P2 if the new value is exactly zero. 6927 */ 6928 case OP_DecrJumpZero: { /* jump, in1 */ 6929 pIn1 = &aMem[pOp->p1]; 6930 assert( pIn1->flags&MEM_Int ); 6931 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6932 VdbeBranchTaken(pIn1->u.i==0, 2); 6933 if( pIn1->u.i==0 ) goto jump_to_p2; 6934 break; 6935 } 6936 6937 6938 /* Opcode: AggStep * P2 P3 P4 P5 6939 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6940 ** 6941 ** Execute the xStep function for an aggregate. 6942 ** The function has P5 arguments. P4 is a pointer to the 6943 ** FuncDef structure that specifies the function. Register P3 is the 6944 ** accumulator. 6945 ** 6946 ** The P5 arguments are taken from register P2 and its 6947 ** successors. 6948 */ 6949 /* Opcode: AggInverse * P2 P3 P4 P5 6950 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6951 ** 6952 ** Execute the xInverse function for an aggregate. 6953 ** The function has P5 arguments. P4 is a pointer to the 6954 ** FuncDef structure that specifies the function. Register P3 is the 6955 ** accumulator. 6956 ** 6957 ** The P5 arguments are taken from register P2 and its 6958 ** successors. 6959 */ 6960 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6961 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6962 ** 6963 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6964 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6965 ** FuncDef structure that specifies the function. Register P3 is the 6966 ** accumulator. 6967 ** 6968 ** The P5 arguments are taken from register P2 and its 6969 ** successors. 6970 ** 6971 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6972 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6973 ** the opcode is changed. In this way, the initialization of the 6974 ** sqlite3_context only happens once, instead of on each call to the 6975 ** step function. 6976 */ 6977 case OP_AggInverse: 6978 case OP_AggStep: { 6979 int n; 6980 sqlite3_context *pCtx; 6981 6982 assert( pOp->p4type==P4_FUNCDEF ); 6983 n = pOp->p5; 6984 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6985 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6986 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6987 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6988 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6989 if( pCtx==0 ) goto no_mem; 6990 pCtx->pMem = 0; 6991 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6992 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6993 pCtx->pFunc = pOp->p4.pFunc; 6994 pCtx->iOp = (int)(pOp - aOp); 6995 pCtx->pVdbe = p; 6996 pCtx->skipFlag = 0; 6997 pCtx->isError = 0; 6998 pCtx->argc = n; 6999 pOp->p4type = P4_FUNCCTX; 7000 pOp->p4.pCtx = pCtx; 7001 7002 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7003 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7004 7005 pOp->opcode = OP_AggStep1; 7006 /* Fall through into OP_AggStep */ 7007 /* no break */ deliberate_fall_through 7008 } 7009 case OP_AggStep1: { 7010 int i; 7011 sqlite3_context *pCtx; 7012 Mem *pMem; 7013 7014 assert( pOp->p4type==P4_FUNCCTX ); 7015 pCtx = pOp->p4.pCtx; 7016 pMem = &aMem[pOp->p3]; 7017 7018 #ifdef SQLITE_DEBUG 7019 if( pOp->p1 ){ 7020 /* This is an OP_AggInverse call. Verify that xStep has always 7021 ** been called at least once prior to any xInverse call. */ 7022 assert( pMem->uTemp==0x1122e0e3 ); 7023 }else{ 7024 /* This is an OP_AggStep call. Mark it as such. */ 7025 pMem->uTemp = 0x1122e0e3; 7026 } 7027 #endif 7028 7029 /* If this function is inside of a trigger, the register array in aMem[] 7030 ** might change from one evaluation to the next. The next block of code 7031 ** checks to see if the register array has changed, and if so it 7032 ** reinitializes the relavant parts of the sqlite3_context object */ 7033 if( pCtx->pMem != pMem ){ 7034 pCtx->pMem = pMem; 7035 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7036 } 7037 7038 #ifdef SQLITE_DEBUG 7039 for(i=0; i<pCtx->argc; i++){ 7040 assert( memIsValid(pCtx->argv[i]) ); 7041 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7042 } 7043 #endif 7044 7045 pMem->n++; 7046 assert( pCtx->pOut->flags==MEM_Null ); 7047 assert( pCtx->isError==0 ); 7048 assert( pCtx->skipFlag==0 ); 7049 #ifndef SQLITE_OMIT_WINDOWFUNC 7050 if( pOp->p1 ){ 7051 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7052 }else 7053 #endif 7054 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7055 7056 if( pCtx->isError ){ 7057 if( pCtx->isError>0 ){ 7058 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7059 rc = pCtx->isError; 7060 } 7061 if( pCtx->skipFlag ){ 7062 assert( pOp[-1].opcode==OP_CollSeq ); 7063 i = pOp[-1].p1; 7064 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7065 pCtx->skipFlag = 0; 7066 } 7067 sqlite3VdbeMemRelease(pCtx->pOut); 7068 pCtx->pOut->flags = MEM_Null; 7069 pCtx->isError = 0; 7070 if( rc ) goto abort_due_to_error; 7071 } 7072 assert( pCtx->pOut->flags==MEM_Null ); 7073 assert( pCtx->skipFlag==0 ); 7074 break; 7075 } 7076 7077 /* Opcode: AggFinal P1 P2 * P4 * 7078 ** Synopsis: accum=r[P1] N=P2 7079 ** 7080 ** P1 is the memory location that is the accumulator for an aggregate 7081 ** or window function. Execute the finalizer function 7082 ** for an aggregate and store the result in P1. 7083 ** 7084 ** P2 is the number of arguments that the step function takes and 7085 ** P4 is a pointer to the FuncDef for this function. The P2 7086 ** argument is not used by this opcode. It is only there to disambiguate 7087 ** functions that can take varying numbers of arguments. The 7088 ** P4 argument is only needed for the case where 7089 ** the step function was not previously called. 7090 */ 7091 /* Opcode: AggValue * P2 P3 P4 * 7092 ** Synopsis: r[P3]=value N=P2 7093 ** 7094 ** Invoke the xValue() function and store the result in register P3. 7095 ** 7096 ** P2 is the number of arguments that the step function takes and 7097 ** P4 is a pointer to the FuncDef for this function. The P2 7098 ** argument is not used by this opcode. It is only there to disambiguate 7099 ** functions that can take varying numbers of arguments. The 7100 ** P4 argument is only needed for the case where 7101 ** the step function was not previously called. 7102 */ 7103 case OP_AggValue: 7104 case OP_AggFinal: { 7105 Mem *pMem; 7106 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7107 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7108 pMem = &aMem[pOp->p1]; 7109 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7110 #ifndef SQLITE_OMIT_WINDOWFUNC 7111 if( pOp->p3 ){ 7112 memAboutToChange(p, &aMem[pOp->p3]); 7113 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7114 pMem = &aMem[pOp->p3]; 7115 }else 7116 #endif 7117 { 7118 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7119 } 7120 7121 if( rc ){ 7122 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7123 goto abort_due_to_error; 7124 } 7125 sqlite3VdbeChangeEncoding(pMem, encoding); 7126 UPDATE_MAX_BLOBSIZE(pMem); 7127 if( sqlite3VdbeMemTooBig(pMem) ){ 7128 goto too_big; 7129 } 7130 break; 7131 } 7132 7133 #ifndef SQLITE_OMIT_WAL 7134 /* Opcode: Checkpoint P1 P2 P3 * * 7135 ** 7136 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7137 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7138 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7139 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7140 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7141 ** in the WAL that have been checkpointed after the checkpoint 7142 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7143 ** mem[P3+2] are initialized to -1. 7144 */ 7145 case OP_Checkpoint: { 7146 int i; /* Loop counter */ 7147 int aRes[3]; /* Results */ 7148 Mem *pMem; /* Write results here */ 7149 7150 assert( p->readOnly==0 ); 7151 aRes[0] = 0; 7152 aRes[1] = aRes[2] = -1; 7153 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7154 || pOp->p2==SQLITE_CHECKPOINT_FULL 7155 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7156 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7157 ); 7158 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7159 if( rc ){ 7160 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7161 rc = SQLITE_OK; 7162 aRes[0] = 1; 7163 } 7164 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7165 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7166 } 7167 break; 7168 }; 7169 #endif 7170 7171 #ifndef SQLITE_OMIT_PRAGMA 7172 /* Opcode: JournalMode P1 P2 P3 * * 7173 ** 7174 ** Change the journal mode of database P1 to P3. P3 must be one of the 7175 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7176 ** modes (delete, truncate, persist, off and memory), this is a simple 7177 ** operation. No IO is required. 7178 ** 7179 ** If changing into or out of WAL mode the procedure is more complicated. 7180 ** 7181 ** Write a string containing the final journal-mode to register P2. 7182 */ 7183 case OP_JournalMode: { /* out2 */ 7184 Btree *pBt; /* Btree to change journal mode of */ 7185 Pager *pPager; /* Pager associated with pBt */ 7186 int eNew; /* New journal mode */ 7187 int eOld; /* The old journal mode */ 7188 #ifndef SQLITE_OMIT_WAL 7189 const char *zFilename; /* Name of database file for pPager */ 7190 #endif 7191 7192 pOut = out2Prerelease(p, pOp); 7193 eNew = pOp->p3; 7194 assert( eNew==PAGER_JOURNALMODE_DELETE 7195 || eNew==PAGER_JOURNALMODE_TRUNCATE 7196 || eNew==PAGER_JOURNALMODE_PERSIST 7197 || eNew==PAGER_JOURNALMODE_OFF 7198 || eNew==PAGER_JOURNALMODE_MEMORY 7199 || eNew==PAGER_JOURNALMODE_WAL 7200 || eNew==PAGER_JOURNALMODE_QUERY 7201 ); 7202 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7203 assert( p->readOnly==0 ); 7204 7205 pBt = db->aDb[pOp->p1].pBt; 7206 pPager = sqlite3BtreePager(pBt); 7207 eOld = sqlite3PagerGetJournalMode(pPager); 7208 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7209 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7210 7211 #ifndef SQLITE_OMIT_WAL 7212 zFilename = sqlite3PagerFilename(pPager, 1); 7213 7214 /* Do not allow a transition to journal_mode=WAL for a database 7215 ** in temporary storage or if the VFS does not support shared memory 7216 */ 7217 if( eNew==PAGER_JOURNALMODE_WAL 7218 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7219 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7220 ){ 7221 eNew = eOld; 7222 } 7223 7224 if( (eNew!=eOld) 7225 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7226 ){ 7227 if( !db->autoCommit || db->nVdbeRead>1 ){ 7228 rc = SQLITE_ERROR; 7229 sqlite3VdbeError(p, 7230 "cannot change %s wal mode from within a transaction", 7231 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7232 ); 7233 goto abort_due_to_error; 7234 }else{ 7235 7236 if( eOld==PAGER_JOURNALMODE_WAL ){ 7237 /* If leaving WAL mode, close the log file. If successful, the call 7238 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7239 ** file. An EXCLUSIVE lock may still be held on the database file 7240 ** after a successful return. 7241 */ 7242 rc = sqlite3PagerCloseWal(pPager, db); 7243 if( rc==SQLITE_OK ){ 7244 sqlite3PagerSetJournalMode(pPager, eNew); 7245 } 7246 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7247 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7248 ** as an intermediate */ 7249 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7250 } 7251 7252 /* Open a transaction on the database file. Regardless of the journal 7253 ** mode, this transaction always uses a rollback journal. 7254 */ 7255 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7256 if( rc==SQLITE_OK ){ 7257 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7258 } 7259 } 7260 } 7261 #endif /* ifndef SQLITE_OMIT_WAL */ 7262 7263 if( rc ) eNew = eOld; 7264 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7265 7266 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7267 pOut->z = (char *)sqlite3JournalModename(eNew); 7268 pOut->n = sqlite3Strlen30(pOut->z); 7269 pOut->enc = SQLITE_UTF8; 7270 sqlite3VdbeChangeEncoding(pOut, encoding); 7271 if( rc ) goto abort_due_to_error; 7272 break; 7273 }; 7274 #endif /* SQLITE_OMIT_PRAGMA */ 7275 7276 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7277 /* Opcode: Vacuum P1 P2 * * * 7278 ** 7279 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7280 ** for an attached database. The "temp" database may not be vacuumed. 7281 ** 7282 ** If P2 is not zero, then it is a register holding a string which is 7283 ** the file into which the result of vacuum should be written. When 7284 ** P2 is zero, the vacuum overwrites the original database. 7285 */ 7286 case OP_Vacuum: { 7287 assert( p->readOnly==0 ); 7288 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7289 pOp->p2 ? &aMem[pOp->p2] : 0); 7290 if( rc ) goto abort_due_to_error; 7291 break; 7292 } 7293 #endif 7294 7295 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7296 /* Opcode: IncrVacuum P1 P2 * * * 7297 ** 7298 ** Perform a single step of the incremental vacuum procedure on 7299 ** the P1 database. If the vacuum has finished, jump to instruction 7300 ** P2. Otherwise, fall through to the next instruction. 7301 */ 7302 case OP_IncrVacuum: { /* jump */ 7303 Btree *pBt; 7304 7305 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7306 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7307 assert( p->readOnly==0 ); 7308 pBt = db->aDb[pOp->p1].pBt; 7309 rc = sqlite3BtreeIncrVacuum(pBt); 7310 VdbeBranchTaken(rc==SQLITE_DONE,2); 7311 if( rc ){ 7312 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7313 rc = SQLITE_OK; 7314 goto jump_to_p2; 7315 } 7316 break; 7317 } 7318 #endif 7319 7320 /* Opcode: Expire P1 P2 * * * 7321 ** 7322 ** Cause precompiled statements to expire. When an expired statement 7323 ** is executed using sqlite3_step() it will either automatically 7324 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7325 ** or it will fail with SQLITE_SCHEMA. 7326 ** 7327 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7328 ** then only the currently executing statement is expired. 7329 ** 7330 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7331 ** then running SQL statements are allowed to continue to run to completion. 7332 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7333 ** that might help the statement run faster but which does not affect the 7334 ** correctness of operation. 7335 */ 7336 case OP_Expire: { 7337 assert( pOp->p2==0 || pOp->p2==1 ); 7338 if( !pOp->p1 ){ 7339 sqlite3ExpirePreparedStatements(db, pOp->p2); 7340 }else{ 7341 p->expired = pOp->p2+1; 7342 } 7343 break; 7344 } 7345 7346 /* Opcode: CursorLock P1 * * * * 7347 ** 7348 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7349 ** written by an other cursor. 7350 */ 7351 case OP_CursorLock: { 7352 VdbeCursor *pC; 7353 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7354 pC = p->apCsr[pOp->p1]; 7355 assert( pC!=0 ); 7356 assert( pC->eCurType==CURTYPE_BTREE ); 7357 sqlite3BtreeCursorPin(pC->uc.pCursor); 7358 break; 7359 } 7360 7361 /* Opcode: CursorUnlock P1 * * * * 7362 ** 7363 ** Unlock the btree to which cursor P1 is pointing so that it can be 7364 ** written by other cursors. 7365 */ 7366 case OP_CursorUnlock: { 7367 VdbeCursor *pC; 7368 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7369 pC = p->apCsr[pOp->p1]; 7370 assert( pC!=0 ); 7371 assert( pC->eCurType==CURTYPE_BTREE ); 7372 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7373 break; 7374 } 7375 7376 #ifndef SQLITE_OMIT_SHARED_CACHE 7377 /* Opcode: TableLock P1 P2 P3 P4 * 7378 ** Synopsis: iDb=P1 root=P2 write=P3 7379 ** 7380 ** Obtain a lock on a particular table. This instruction is only used when 7381 ** the shared-cache feature is enabled. 7382 ** 7383 ** P1 is the index of the database in sqlite3.aDb[] of the database 7384 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7385 ** a write lock if P3==1. 7386 ** 7387 ** P2 contains the root-page of the table to lock. 7388 ** 7389 ** P4 contains a pointer to the name of the table being locked. This is only 7390 ** used to generate an error message if the lock cannot be obtained. 7391 */ 7392 case OP_TableLock: { 7393 u8 isWriteLock = (u8)pOp->p3; 7394 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7395 int p1 = pOp->p1; 7396 assert( p1>=0 && p1<db->nDb ); 7397 assert( DbMaskTest(p->btreeMask, p1) ); 7398 assert( isWriteLock==0 || isWriteLock==1 ); 7399 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7400 if( rc ){ 7401 if( (rc&0xFF)==SQLITE_LOCKED ){ 7402 const char *z = pOp->p4.z; 7403 sqlite3VdbeError(p, "database table is locked: %s", z); 7404 } 7405 goto abort_due_to_error; 7406 } 7407 } 7408 break; 7409 } 7410 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7411 7412 #ifndef SQLITE_OMIT_VIRTUALTABLE 7413 /* Opcode: VBegin * * * P4 * 7414 ** 7415 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7416 ** xBegin method for that table. 7417 ** 7418 ** Also, whether or not P4 is set, check that this is not being called from 7419 ** within a callback to a virtual table xSync() method. If it is, the error 7420 ** code will be set to SQLITE_LOCKED. 7421 */ 7422 case OP_VBegin: { 7423 VTable *pVTab; 7424 pVTab = pOp->p4.pVtab; 7425 rc = sqlite3VtabBegin(db, pVTab); 7426 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7427 if( rc ) goto abort_due_to_error; 7428 break; 7429 } 7430 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7431 7432 #ifndef SQLITE_OMIT_VIRTUALTABLE 7433 /* Opcode: VCreate P1 P2 * * * 7434 ** 7435 ** P2 is a register that holds the name of a virtual table in database 7436 ** P1. Call the xCreate method for that table. 7437 */ 7438 case OP_VCreate: { 7439 Mem sMem; /* For storing the record being decoded */ 7440 const char *zTab; /* Name of the virtual table */ 7441 7442 memset(&sMem, 0, sizeof(sMem)); 7443 sMem.db = db; 7444 /* Because P2 is always a static string, it is impossible for the 7445 ** sqlite3VdbeMemCopy() to fail */ 7446 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7447 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7448 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7449 assert( rc==SQLITE_OK ); 7450 zTab = (const char*)sqlite3_value_text(&sMem); 7451 assert( zTab || db->mallocFailed ); 7452 if( zTab ){ 7453 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7454 } 7455 sqlite3VdbeMemRelease(&sMem); 7456 if( rc ) goto abort_due_to_error; 7457 break; 7458 } 7459 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7460 7461 #ifndef SQLITE_OMIT_VIRTUALTABLE 7462 /* Opcode: VDestroy P1 * * P4 * 7463 ** 7464 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7465 ** of that table. 7466 */ 7467 case OP_VDestroy: { 7468 db->nVDestroy++; 7469 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7470 db->nVDestroy--; 7471 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7472 if( rc ) goto abort_due_to_error; 7473 break; 7474 } 7475 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7476 7477 #ifndef SQLITE_OMIT_VIRTUALTABLE 7478 /* Opcode: VOpen P1 * * P4 * 7479 ** 7480 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7481 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7482 ** table and stores that cursor in P1. 7483 */ 7484 case OP_VOpen: { 7485 VdbeCursor *pCur; 7486 sqlite3_vtab_cursor *pVCur; 7487 sqlite3_vtab *pVtab; 7488 const sqlite3_module *pModule; 7489 7490 assert( p->bIsReader ); 7491 pCur = 0; 7492 pVCur = 0; 7493 pVtab = pOp->p4.pVtab->pVtab; 7494 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7495 rc = SQLITE_LOCKED; 7496 goto abort_due_to_error; 7497 } 7498 pModule = pVtab->pModule; 7499 rc = pModule->xOpen(pVtab, &pVCur); 7500 sqlite3VtabImportErrmsg(p, pVtab); 7501 if( rc ) goto abort_due_to_error; 7502 7503 /* Initialize sqlite3_vtab_cursor base class */ 7504 pVCur->pVtab = pVtab; 7505 7506 /* Initialize vdbe cursor object */ 7507 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 7508 if( pCur ){ 7509 pCur->uc.pVCur = pVCur; 7510 pVtab->nRef++; 7511 }else{ 7512 assert( db->mallocFailed ); 7513 pModule->xClose(pVCur); 7514 goto no_mem; 7515 } 7516 break; 7517 } 7518 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7519 7520 #ifndef SQLITE_OMIT_VIRTUALTABLE 7521 /* Opcode: VFilter P1 P2 P3 P4 * 7522 ** Synopsis: iplan=r[P3] zplan='P4' 7523 ** 7524 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7525 ** the filtered result set is empty. 7526 ** 7527 ** P4 is either NULL or a string that was generated by the xBestIndex 7528 ** method of the module. The interpretation of the P4 string is left 7529 ** to the module implementation. 7530 ** 7531 ** This opcode invokes the xFilter method on the virtual table specified 7532 ** by P1. The integer query plan parameter to xFilter is stored in register 7533 ** P3. Register P3+1 stores the argc parameter to be passed to the 7534 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7535 ** additional parameters which are passed to 7536 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7537 ** 7538 ** A jump is made to P2 if the result set after filtering would be empty. 7539 */ 7540 case OP_VFilter: { /* jump */ 7541 int nArg; 7542 int iQuery; 7543 const sqlite3_module *pModule; 7544 Mem *pQuery; 7545 Mem *pArgc; 7546 sqlite3_vtab_cursor *pVCur; 7547 sqlite3_vtab *pVtab; 7548 VdbeCursor *pCur; 7549 int res; 7550 int i; 7551 Mem **apArg; 7552 7553 pQuery = &aMem[pOp->p3]; 7554 pArgc = &pQuery[1]; 7555 pCur = p->apCsr[pOp->p1]; 7556 assert( memIsValid(pQuery) ); 7557 REGISTER_TRACE(pOp->p3, pQuery); 7558 assert( pCur->eCurType==CURTYPE_VTAB ); 7559 pVCur = pCur->uc.pVCur; 7560 pVtab = pVCur->pVtab; 7561 pModule = pVtab->pModule; 7562 7563 /* Grab the index number and argc parameters */ 7564 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7565 nArg = (int)pArgc->u.i; 7566 iQuery = (int)pQuery->u.i; 7567 7568 /* Invoke the xFilter method */ 7569 res = 0; 7570 apArg = p->apArg; 7571 for(i = 0; i<nArg; i++){ 7572 apArg[i] = &pArgc[i+1]; 7573 } 7574 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7575 sqlite3VtabImportErrmsg(p, pVtab); 7576 if( rc ) goto abort_due_to_error; 7577 res = pModule->xEof(pVCur); 7578 pCur->nullRow = 0; 7579 VdbeBranchTaken(res!=0,2); 7580 if( res ) goto jump_to_p2; 7581 break; 7582 } 7583 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7584 7585 #ifndef SQLITE_OMIT_VIRTUALTABLE 7586 /* Opcode: VColumn P1 P2 P3 * P5 7587 ** Synopsis: r[P3]=vcolumn(P2) 7588 ** 7589 ** Store in register P3 the value of the P2-th column of 7590 ** the current row of the virtual-table of cursor P1. 7591 ** 7592 ** If the VColumn opcode is being used to fetch the value of 7593 ** an unchanging column during an UPDATE operation, then the P5 7594 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7595 ** function to return true inside the xColumn method of the virtual 7596 ** table implementation. The P5 column might also contain other 7597 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7598 ** unused by OP_VColumn. 7599 */ 7600 case OP_VColumn: { 7601 sqlite3_vtab *pVtab; 7602 const sqlite3_module *pModule; 7603 Mem *pDest; 7604 sqlite3_context sContext; 7605 7606 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7607 assert( pCur->eCurType==CURTYPE_VTAB ); 7608 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7609 pDest = &aMem[pOp->p3]; 7610 memAboutToChange(p, pDest); 7611 if( pCur->nullRow ){ 7612 sqlite3VdbeMemSetNull(pDest); 7613 break; 7614 } 7615 pVtab = pCur->uc.pVCur->pVtab; 7616 pModule = pVtab->pModule; 7617 assert( pModule->xColumn ); 7618 memset(&sContext, 0, sizeof(sContext)); 7619 sContext.pOut = pDest; 7620 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7621 if( pOp->p5 & OPFLAG_NOCHNG ){ 7622 sqlite3VdbeMemSetNull(pDest); 7623 pDest->flags = MEM_Null|MEM_Zero; 7624 pDest->u.nZero = 0; 7625 }else{ 7626 MemSetTypeFlag(pDest, MEM_Null); 7627 } 7628 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7629 sqlite3VtabImportErrmsg(p, pVtab); 7630 if( sContext.isError>0 ){ 7631 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7632 rc = sContext.isError; 7633 } 7634 sqlite3VdbeChangeEncoding(pDest, encoding); 7635 REGISTER_TRACE(pOp->p3, pDest); 7636 UPDATE_MAX_BLOBSIZE(pDest); 7637 7638 if( sqlite3VdbeMemTooBig(pDest) ){ 7639 goto too_big; 7640 } 7641 if( rc ) goto abort_due_to_error; 7642 break; 7643 } 7644 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7645 7646 #ifndef SQLITE_OMIT_VIRTUALTABLE 7647 /* Opcode: VNext P1 P2 * * * 7648 ** 7649 ** Advance virtual table P1 to the next row in its result set and 7650 ** jump to instruction P2. Or, if the virtual table has reached 7651 ** the end of its result set, then fall through to the next instruction. 7652 */ 7653 case OP_VNext: { /* jump */ 7654 sqlite3_vtab *pVtab; 7655 const sqlite3_module *pModule; 7656 int res; 7657 VdbeCursor *pCur; 7658 7659 res = 0; 7660 pCur = p->apCsr[pOp->p1]; 7661 assert( pCur->eCurType==CURTYPE_VTAB ); 7662 if( pCur->nullRow ){ 7663 break; 7664 } 7665 pVtab = pCur->uc.pVCur->pVtab; 7666 pModule = pVtab->pModule; 7667 assert( pModule->xNext ); 7668 7669 /* Invoke the xNext() method of the module. There is no way for the 7670 ** underlying implementation to return an error if one occurs during 7671 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7672 ** data is available) and the error code returned when xColumn or 7673 ** some other method is next invoked on the save virtual table cursor. 7674 */ 7675 rc = pModule->xNext(pCur->uc.pVCur); 7676 sqlite3VtabImportErrmsg(p, pVtab); 7677 if( rc ) goto abort_due_to_error; 7678 res = pModule->xEof(pCur->uc.pVCur); 7679 VdbeBranchTaken(!res,2); 7680 if( !res ){ 7681 /* If there is data, jump to P2 */ 7682 goto jump_to_p2_and_check_for_interrupt; 7683 } 7684 goto check_for_interrupt; 7685 } 7686 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7687 7688 #ifndef SQLITE_OMIT_VIRTUALTABLE 7689 /* Opcode: VRename P1 * * P4 * 7690 ** 7691 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7692 ** This opcode invokes the corresponding xRename method. The value 7693 ** in register P1 is passed as the zName argument to the xRename method. 7694 */ 7695 case OP_VRename: { 7696 sqlite3_vtab *pVtab; 7697 Mem *pName; 7698 int isLegacy; 7699 7700 isLegacy = (db->flags & SQLITE_LegacyAlter); 7701 db->flags |= SQLITE_LegacyAlter; 7702 pVtab = pOp->p4.pVtab->pVtab; 7703 pName = &aMem[pOp->p1]; 7704 assert( pVtab->pModule->xRename ); 7705 assert( memIsValid(pName) ); 7706 assert( p->readOnly==0 ); 7707 REGISTER_TRACE(pOp->p1, pName); 7708 assert( pName->flags & MEM_Str ); 7709 testcase( pName->enc==SQLITE_UTF8 ); 7710 testcase( pName->enc==SQLITE_UTF16BE ); 7711 testcase( pName->enc==SQLITE_UTF16LE ); 7712 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7713 if( rc ) goto abort_due_to_error; 7714 rc = pVtab->pModule->xRename(pVtab, pName->z); 7715 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 7716 sqlite3VtabImportErrmsg(p, pVtab); 7717 p->expired = 0; 7718 if( rc ) goto abort_due_to_error; 7719 break; 7720 } 7721 #endif 7722 7723 #ifndef SQLITE_OMIT_VIRTUALTABLE 7724 /* Opcode: VUpdate P1 P2 P3 P4 P5 7725 ** Synopsis: data=r[P3@P2] 7726 ** 7727 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7728 ** This opcode invokes the corresponding xUpdate method. P2 values 7729 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7730 ** invocation. The value in register (P3+P2-1) corresponds to the 7731 ** p2th element of the argv array passed to xUpdate. 7732 ** 7733 ** The xUpdate method will do a DELETE or an INSERT or both. 7734 ** The argv[0] element (which corresponds to memory cell P3) 7735 ** is the rowid of a row to delete. If argv[0] is NULL then no 7736 ** deletion occurs. The argv[1] element is the rowid of the new 7737 ** row. This can be NULL to have the virtual table select the new 7738 ** rowid for itself. The subsequent elements in the array are 7739 ** the values of columns in the new row. 7740 ** 7741 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7742 ** a row to delete. 7743 ** 7744 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7745 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7746 ** is set to the value of the rowid for the row just inserted. 7747 ** 7748 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7749 ** apply in the case of a constraint failure on an insert or update. 7750 */ 7751 case OP_VUpdate: { 7752 sqlite3_vtab *pVtab; 7753 const sqlite3_module *pModule; 7754 int nArg; 7755 int i; 7756 sqlite_int64 rowid; 7757 Mem **apArg; 7758 Mem *pX; 7759 7760 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7761 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7762 ); 7763 assert( p->readOnly==0 ); 7764 if( db->mallocFailed ) goto no_mem; 7765 sqlite3VdbeIncrWriteCounter(p, 0); 7766 pVtab = pOp->p4.pVtab->pVtab; 7767 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7768 rc = SQLITE_LOCKED; 7769 goto abort_due_to_error; 7770 } 7771 pModule = pVtab->pModule; 7772 nArg = pOp->p2; 7773 assert( pOp->p4type==P4_VTAB ); 7774 if( ALWAYS(pModule->xUpdate) ){ 7775 u8 vtabOnConflict = db->vtabOnConflict; 7776 apArg = p->apArg; 7777 pX = &aMem[pOp->p3]; 7778 for(i=0; i<nArg; i++){ 7779 assert( memIsValid(pX) ); 7780 memAboutToChange(p, pX); 7781 apArg[i] = pX; 7782 pX++; 7783 } 7784 db->vtabOnConflict = pOp->p5; 7785 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7786 db->vtabOnConflict = vtabOnConflict; 7787 sqlite3VtabImportErrmsg(p, pVtab); 7788 if( rc==SQLITE_OK && pOp->p1 ){ 7789 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7790 db->lastRowid = rowid; 7791 } 7792 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7793 if( pOp->p5==OE_Ignore ){ 7794 rc = SQLITE_OK; 7795 }else{ 7796 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7797 } 7798 }else{ 7799 p->nChange++; 7800 } 7801 if( rc ) goto abort_due_to_error; 7802 } 7803 break; 7804 } 7805 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7806 7807 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7808 /* Opcode: Pagecount P1 P2 * * * 7809 ** 7810 ** Write the current number of pages in database P1 to memory cell P2. 7811 */ 7812 case OP_Pagecount: { /* out2 */ 7813 pOut = out2Prerelease(p, pOp); 7814 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7815 break; 7816 } 7817 #endif 7818 7819 7820 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7821 /* Opcode: MaxPgcnt P1 P2 P3 * * 7822 ** 7823 ** Try to set the maximum page count for database P1 to the value in P3. 7824 ** Do not let the maximum page count fall below the current page count and 7825 ** do not change the maximum page count value if P3==0. 7826 ** 7827 ** Store the maximum page count after the change in register P2. 7828 */ 7829 case OP_MaxPgcnt: { /* out2 */ 7830 unsigned int newMax; 7831 Btree *pBt; 7832 7833 pOut = out2Prerelease(p, pOp); 7834 pBt = db->aDb[pOp->p1].pBt; 7835 newMax = 0; 7836 if( pOp->p3 ){ 7837 newMax = sqlite3BtreeLastPage(pBt); 7838 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7839 } 7840 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7841 break; 7842 } 7843 #endif 7844 7845 /* Opcode: Function P1 P2 P3 P4 * 7846 ** Synopsis: r[P3]=func(r[P2@NP]) 7847 ** 7848 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7849 ** contains a pointer to the function to be run) with arguments taken 7850 ** from register P2 and successors. The number of arguments is in 7851 ** the sqlite3_context object that P4 points to. 7852 ** The result of the function is stored 7853 ** in register P3. Register P3 must not be one of the function inputs. 7854 ** 7855 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7856 ** function was determined to be constant at compile time. If the first 7857 ** argument was constant then bit 0 of P1 is set. This is used to determine 7858 ** whether meta data associated with a user function argument using the 7859 ** sqlite3_set_auxdata() API may be safely retained until the next 7860 ** invocation of this opcode. 7861 ** 7862 ** See also: AggStep, AggFinal, PureFunc 7863 */ 7864 /* Opcode: PureFunc P1 P2 P3 P4 * 7865 ** Synopsis: r[P3]=func(r[P2@NP]) 7866 ** 7867 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7868 ** contains a pointer to the function to be run) with arguments taken 7869 ** from register P2 and successors. The number of arguments is in 7870 ** the sqlite3_context object that P4 points to. 7871 ** The result of the function is stored 7872 ** in register P3. Register P3 must not be one of the function inputs. 7873 ** 7874 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7875 ** function was determined to be constant at compile time. If the first 7876 ** argument was constant then bit 0 of P1 is set. This is used to determine 7877 ** whether meta data associated with a user function argument using the 7878 ** sqlite3_set_auxdata() API may be safely retained until the next 7879 ** invocation of this opcode. 7880 ** 7881 ** This opcode works exactly like OP_Function. The only difference is in 7882 ** its name. This opcode is used in places where the function must be 7883 ** purely non-deterministic. Some built-in date/time functions can be 7884 ** either determinitic of non-deterministic, depending on their arguments. 7885 ** When those function are used in a non-deterministic way, they will check 7886 ** to see if they were called using OP_PureFunc instead of OP_Function, and 7887 ** if they were, they throw an error. 7888 ** 7889 ** See also: AggStep, AggFinal, Function 7890 */ 7891 case OP_PureFunc: /* group */ 7892 case OP_Function: { /* group */ 7893 int i; 7894 sqlite3_context *pCtx; 7895 7896 assert( pOp->p4type==P4_FUNCCTX ); 7897 pCtx = pOp->p4.pCtx; 7898 7899 /* If this function is inside of a trigger, the register array in aMem[] 7900 ** might change from one evaluation to the next. The next block of code 7901 ** checks to see if the register array has changed, and if so it 7902 ** reinitializes the relavant parts of the sqlite3_context object */ 7903 pOut = &aMem[pOp->p3]; 7904 if( pCtx->pOut != pOut ){ 7905 pCtx->pVdbe = p; 7906 pCtx->pOut = pOut; 7907 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7908 } 7909 assert( pCtx->pVdbe==p ); 7910 7911 memAboutToChange(p, pOut); 7912 #ifdef SQLITE_DEBUG 7913 for(i=0; i<pCtx->argc; i++){ 7914 assert( memIsValid(pCtx->argv[i]) ); 7915 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7916 } 7917 #endif 7918 MemSetTypeFlag(pOut, MEM_Null); 7919 assert( pCtx->isError==0 ); 7920 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7921 7922 /* If the function returned an error, throw an exception */ 7923 if( pCtx->isError ){ 7924 if( pCtx->isError>0 ){ 7925 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7926 rc = pCtx->isError; 7927 } 7928 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7929 pCtx->isError = 0; 7930 if( rc ) goto abort_due_to_error; 7931 } 7932 7933 /* Copy the result of the function into register P3 */ 7934 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7935 sqlite3VdbeChangeEncoding(pOut, encoding); 7936 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7937 } 7938 7939 REGISTER_TRACE(pOp->p3, pOut); 7940 UPDATE_MAX_BLOBSIZE(pOut); 7941 break; 7942 } 7943 7944 /* Opcode: Trace P1 P2 * P4 * 7945 ** 7946 ** Write P4 on the statement trace output if statement tracing is 7947 ** enabled. 7948 ** 7949 ** Operand P1 must be 0x7fffffff and P2 must positive. 7950 */ 7951 /* Opcode: Init P1 P2 P3 P4 * 7952 ** Synopsis: Start at P2 7953 ** 7954 ** Programs contain a single instance of this opcode as the very first 7955 ** opcode. 7956 ** 7957 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7958 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7959 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7960 ** 7961 ** If P2 is not zero, jump to instruction P2. 7962 ** 7963 ** Increment the value of P1 so that OP_Once opcodes will jump the 7964 ** first time they are evaluated for this run. 7965 ** 7966 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7967 ** error is encountered. 7968 */ 7969 case OP_Trace: 7970 case OP_Init: { /* jump */ 7971 int i; 7972 #ifndef SQLITE_OMIT_TRACE 7973 char *zTrace; 7974 #endif 7975 7976 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7977 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7978 ** 7979 ** This assert() provides evidence for: 7980 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7981 ** would have been returned by the legacy sqlite3_trace() interface by 7982 ** using the X argument when X begins with "--" and invoking 7983 ** sqlite3_expanded_sql(P) otherwise. 7984 */ 7985 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7986 7987 /* OP_Init is always instruction 0 */ 7988 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7989 7990 #ifndef SQLITE_OMIT_TRACE 7991 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7992 && !p->doingRerun 7993 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7994 ){ 7995 #ifndef SQLITE_OMIT_DEPRECATED 7996 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7997 char *z = sqlite3VdbeExpandSql(p, zTrace); 7998 db->trace.xLegacy(db->pTraceArg, z); 7999 sqlite3_free(z); 8000 }else 8001 #endif 8002 if( db->nVdbeExec>1 ){ 8003 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8004 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8005 sqlite3DbFree(db, z); 8006 }else{ 8007 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8008 } 8009 } 8010 #ifdef SQLITE_USE_FCNTL_TRACE 8011 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8012 if( zTrace ){ 8013 int j; 8014 for(j=0; j<db->nDb; j++){ 8015 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8016 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8017 } 8018 } 8019 #endif /* SQLITE_USE_FCNTL_TRACE */ 8020 #ifdef SQLITE_DEBUG 8021 if( (db->flags & SQLITE_SqlTrace)!=0 8022 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8023 ){ 8024 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8025 } 8026 #endif /* SQLITE_DEBUG */ 8027 #endif /* SQLITE_OMIT_TRACE */ 8028 assert( pOp->p2>0 ); 8029 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8030 if( pOp->opcode==OP_Trace ) break; 8031 for(i=1; i<p->nOp; i++){ 8032 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8033 } 8034 pOp->p1 = 0; 8035 } 8036 pOp->p1++; 8037 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8038 goto jump_to_p2; 8039 } 8040 8041 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8042 /* Opcode: CursorHint P1 * * P4 * 8043 ** 8044 ** Provide a hint to cursor P1 that it only needs to return rows that 8045 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8046 ** to values currently held in registers. TK_COLUMN terms in the P4 8047 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8048 */ 8049 case OP_CursorHint: { 8050 VdbeCursor *pC; 8051 8052 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8053 assert( pOp->p4type==P4_EXPR ); 8054 pC = p->apCsr[pOp->p1]; 8055 if( pC ){ 8056 assert( pC->eCurType==CURTYPE_BTREE ); 8057 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8058 pOp->p4.pExpr, aMem); 8059 } 8060 break; 8061 } 8062 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8063 8064 #ifdef SQLITE_DEBUG 8065 /* Opcode: Abortable * * * * * 8066 ** 8067 ** Verify that an Abort can happen. Assert if an Abort at this point 8068 ** might cause database corruption. This opcode only appears in debugging 8069 ** builds. 8070 ** 8071 ** An Abort is safe if either there have been no writes, or if there is 8072 ** an active statement journal. 8073 */ 8074 case OP_Abortable: { 8075 sqlite3VdbeAssertAbortable(p); 8076 break; 8077 } 8078 #endif 8079 8080 #ifdef SQLITE_DEBUG 8081 /* Opcode: ReleaseReg P1 P2 P3 * P5 8082 ** Synopsis: release r[P1@P2] mask P3 8083 ** 8084 ** Release registers from service. Any content that was in the 8085 ** the registers is unreliable after this opcode completes. 8086 ** 8087 ** The registers released will be the P2 registers starting at P1, 8088 ** except if bit ii of P3 set, then do not release register P1+ii. 8089 ** In other words, P3 is a mask of registers to preserve. 8090 ** 8091 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8092 ** that if the content of the released register was set using OP_SCopy, 8093 ** a change to the value of the source register for the OP_SCopy will no longer 8094 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8095 ** 8096 ** If P5 is set, then all released registers have their type set 8097 ** to MEM_Undefined so that any subsequent attempt to read the released 8098 ** register (before it is reinitialized) will generate an assertion fault. 8099 ** 8100 ** P5 ought to be set on every call to this opcode. 8101 ** However, there are places in the code generator will release registers 8102 ** before their are used, under the (valid) assumption that the registers 8103 ** will not be reallocated for some other purpose before they are used and 8104 ** hence are safe to release. 8105 ** 8106 ** This opcode is only available in testing and debugging builds. It is 8107 ** not generated for release builds. The purpose of this opcode is to help 8108 ** validate the generated bytecode. This opcode does not actually contribute 8109 ** to computing an answer. 8110 */ 8111 case OP_ReleaseReg: { 8112 Mem *pMem; 8113 int i; 8114 u32 constMask; 8115 assert( pOp->p1>0 ); 8116 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8117 pMem = &aMem[pOp->p1]; 8118 constMask = pOp->p3; 8119 for(i=0; i<pOp->p2; i++, pMem++){ 8120 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8121 pMem->pScopyFrom = 0; 8122 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8123 } 8124 } 8125 break; 8126 } 8127 #endif 8128 8129 /* Opcode: Noop * * * * * 8130 ** 8131 ** Do nothing. This instruction is often useful as a jump 8132 ** destination. 8133 */ 8134 /* 8135 ** The magic Explain opcode are only inserted when explain==2 (which 8136 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8137 ** This opcode records information from the optimizer. It is the 8138 ** the same as a no-op. This opcodesnever appears in a real VM program. 8139 */ 8140 default: { /* This is really OP_Noop, OP_Explain */ 8141 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8142 8143 break; 8144 } 8145 8146 /***************************************************************************** 8147 ** The cases of the switch statement above this line should all be indented 8148 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8149 ** readability. From this point on down, the normal indentation rules are 8150 ** restored. 8151 *****************************************************************************/ 8152 } 8153 8154 #ifdef VDBE_PROFILE 8155 { 8156 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8157 if( endTime>start ) pOrigOp->cycles += endTime - start; 8158 pOrigOp->cnt++; 8159 } 8160 #endif 8161 8162 /* The following code adds nothing to the actual functionality 8163 ** of the program. It is only here for testing and debugging. 8164 ** On the other hand, it does burn CPU cycles every time through 8165 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8166 */ 8167 #ifndef NDEBUG 8168 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8169 8170 #ifdef SQLITE_DEBUG 8171 if( db->flags & SQLITE_VdbeTrace ){ 8172 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8173 if( rc!=0 ) printf("rc=%d\n",rc); 8174 if( opProperty & (OPFLG_OUT2) ){ 8175 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8176 } 8177 if( opProperty & OPFLG_OUT3 ){ 8178 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8179 } 8180 if( opProperty==0xff ){ 8181 /* Never happens. This code exists to avoid a harmless linkage 8182 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8183 ** used. */ 8184 sqlite3VdbeRegisterDump(p); 8185 } 8186 } 8187 #endif /* SQLITE_DEBUG */ 8188 #endif /* NDEBUG */ 8189 } /* The end of the for(;;) loop the loops through opcodes */ 8190 8191 /* If we reach this point, it means that execution is finished with 8192 ** an error of some kind. 8193 */ 8194 abort_due_to_error: 8195 if( db->mallocFailed ){ 8196 rc = SQLITE_NOMEM_BKPT; 8197 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8198 rc = SQLITE_CORRUPT_BKPT; 8199 } 8200 assert( rc ); 8201 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8202 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8203 } 8204 p->rc = rc; 8205 sqlite3SystemError(db, rc); 8206 testcase( sqlite3GlobalConfig.xLog!=0 ); 8207 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8208 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8209 sqlite3VdbeHalt(p); 8210 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8211 rc = SQLITE_ERROR; 8212 if( resetSchemaOnFault>0 ){ 8213 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8214 } 8215 8216 /* This is the only way out of this procedure. We have to 8217 ** release the mutexes on btrees that were acquired at the 8218 ** top. */ 8219 vdbe_return: 8220 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8221 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8222 nProgressLimit += db->nProgressOps; 8223 if( db->xProgress(db->pProgressArg) ){ 8224 nProgressLimit = LARGEST_UINT64; 8225 rc = SQLITE_INTERRUPT; 8226 goto abort_due_to_error; 8227 } 8228 } 8229 #endif 8230 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8231 sqlite3VdbeLeave(p); 8232 assert( rc!=SQLITE_OK || nExtraDelete==0 8233 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8234 ); 8235 return rc; 8236 8237 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8238 ** is encountered. 8239 */ 8240 too_big: 8241 sqlite3VdbeError(p, "string or blob too big"); 8242 rc = SQLITE_TOOBIG; 8243 goto abort_due_to_error; 8244 8245 /* Jump to here if a malloc() fails. 8246 */ 8247 no_mem: 8248 sqlite3OomFault(db); 8249 sqlite3VdbeError(p, "out of memory"); 8250 rc = SQLITE_NOMEM_BKPT; 8251 goto abort_due_to_error; 8252 8253 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8254 ** flag. 8255 */ 8256 abort_due_to_interrupt: 8257 assert( AtomicLoad(&db->u1.isInterrupted) ); 8258 rc = SQLITE_INTERRUPT; 8259 goto abort_due_to_error; 8260 } 8261