1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** Given a cursor number and a column for a table or index, compute a 41 ** hash value for use in the Mem.iTabColHash value. The iTabColHash 42 ** column is only used for verification - it is omitted from production 43 ** builds. Collisions are harmless in the sense that the correct answer 44 ** still results. The only harm of collisions is that they can potential 45 ** reduce column-cache error detection during SQLITE_DEBUG builds. 46 ** 47 ** No valid hash should be 0. 48 */ 49 #define TableColumnHash(T,C) (((u32)(T)<<16)^(u32)(C+2)) 50 51 /* 52 ** The following global variable is incremented every time a cursor 53 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 54 ** procedures use this information to make sure that indices are 55 ** working correctly. This variable has no function other than to 56 ** help verify the correct operation of the library. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_search_count = 0; 60 #endif 61 62 /* 63 ** When this global variable is positive, it gets decremented once before 64 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 65 ** field of the sqlite3 structure is set in order to simulate an interrupt. 66 ** 67 ** This facility is used for testing purposes only. It does not function 68 ** in an ordinary build. 69 */ 70 #ifdef SQLITE_TEST 71 int sqlite3_interrupt_count = 0; 72 #endif 73 74 /* 75 ** The next global variable is incremented each type the OP_Sort opcode 76 ** is executed. The test procedures use this information to make sure that 77 ** sorting is occurring or not occurring at appropriate times. This variable 78 ** has no function other than to help verify the correct operation of the 79 ** library. 80 */ 81 #ifdef SQLITE_TEST 82 int sqlite3_sort_count = 0; 83 #endif 84 85 /* 86 ** The next global variable records the size of the largest MEM_Blob 87 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 88 ** use this information to make sure that the zero-blob functionality 89 ** is working correctly. This variable has no function other than to 90 ** help verify the correct operation of the library. 91 */ 92 #ifdef SQLITE_TEST 93 int sqlite3_max_blobsize = 0; 94 static void updateMaxBlobsize(Mem *p){ 95 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 96 sqlite3_max_blobsize = p->n; 97 } 98 } 99 #endif 100 101 /* 102 ** This macro evaluates to true if either the update hook or the preupdate 103 ** hook are enabled for database connect DB. 104 */ 105 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 106 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 107 #else 108 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 109 #endif 110 111 /* 112 ** The next global variable is incremented each time the OP_Found opcode 113 ** is executed. This is used to test whether or not the foreign key 114 ** operation implemented using OP_FkIsZero is working. This variable 115 ** has no function other than to help verify the correct operation of the 116 ** library. 117 */ 118 #ifdef SQLITE_TEST 119 int sqlite3_found_count = 0; 120 #endif 121 122 /* 123 ** Test a register to see if it exceeds the current maximum blob size. 124 ** If it does, record the new maximum blob size. 125 */ 126 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 127 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 128 #else 129 # define UPDATE_MAX_BLOBSIZE(P) 130 #endif 131 132 /* 133 ** Invoke the VDBE coverage callback, if that callback is defined. This 134 ** feature is used for test suite validation only and does not appear an 135 ** production builds. 136 ** 137 ** M is an integer, 2 or 3, that indices how many different ways the 138 ** branch can go. It is usually 2. "I" is the direction the branch 139 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 140 ** second alternative branch is taken. 141 ** 142 ** iSrcLine is the source code line (from the __LINE__ macro) that 143 ** generated the VDBE instruction. This instrumentation assumes that all 144 ** source code is in a single file (the amalgamation). Special values 1 145 ** and 2 for the iSrcLine parameter mean that this particular branch is 146 ** always taken or never taken, respectively. 147 */ 148 #if !defined(SQLITE_VDBE_COVERAGE) 149 # define VdbeBranchTaken(I,M) 150 #else 151 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 152 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 153 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 154 M = iSrcLine; 155 /* Assert the truth of VdbeCoverageAlwaysTaken() and 156 ** VdbeCoverageNeverTaken() */ 157 assert( (M & I)==I ); 158 }else{ 159 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 160 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 161 iSrcLine,I,M); 162 } 163 } 164 #endif 165 166 /* 167 ** Convert the given register into a string if it isn't one 168 ** already. Return non-zero if a malloc() fails. 169 */ 170 #define Stringify(P, enc) \ 171 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 172 { goto no_mem; } 173 174 /* 175 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 176 ** a pointer to a dynamically allocated string where some other entity 177 ** is responsible for deallocating that string. Because the register 178 ** does not control the string, it might be deleted without the register 179 ** knowing it. 180 ** 181 ** This routine converts an ephemeral string into a dynamically allocated 182 ** string that the register itself controls. In other words, it 183 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 184 */ 185 #define Deephemeralize(P) \ 186 if( ((P)->flags&MEM_Ephem)!=0 \ 187 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 188 189 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 190 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 191 192 /* 193 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 194 ** if we run out of memory. 195 */ 196 static VdbeCursor *allocateCursor( 197 Vdbe *p, /* The virtual machine */ 198 int iCur, /* Index of the new VdbeCursor */ 199 int nField, /* Number of fields in the table or index */ 200 int iDb, /* Database the cursor belongs to, or -1 */ 201 u8 eCurType /* Type of the new cursor */ 202 ){ 203 /* Find the memory cell that will be used to store the blob of memory 204 ** required for this VdbeCursor structure. It is convenient to use a 205 ** vdbe memory cell to manage the memory allocation required for a 206 ** VdbeCursor structure for the following reasons: 207 ** 208 ** * Sometimes cursor numbers are used for a couple of different 209 ** purposes in a vdbe program. The different uses might require 210 ** different sized allocations. Memory cells provide growable 211 ** allocations. 212 ** 213 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 214 ** be freed lazily via the sqlite3_release_memory() API. This 215 ** minimizes the number of malloc calls made by the system. 216 ** 217 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 218 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 219 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 220 */ 221 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 222 223 int nByte; 224 VdbeCursor *pCx = 0; 225 nByte = 226 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 227 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 228 229 assert( iCur>=0 && iCur<p->nCursor ); 230 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 231 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 232 p->apCsr[iCur] = 0; 233 } 234 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 235 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 236 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 237 pCx->eCurType = eCurType; 238 pCx->iDb = iDb; 239 pCx->nField = nField; 240 pCx->aOffset = &pCx->aType[nField]; 241 if( eCurType==CURTYPE_BTREE ){ 242 pCx->uc.pCursor = (BtCursor*) 243 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 244 sqlite3BtreeCursorZero(pCx->uc.pCursor); 245 } 246 } 247 return pCx; 248 } 249 250 /* 251 ** Try to convert a value into a numeric representation if we can 252 ** do so without loss of information. In other words, if the string 253 ** looks like a number, convert it into a number. If it does not 254 ** look like a number, leave it alone. 255 ** 256 ** If the bTryForInt flag is true, then extra effort is made to give 257 ** an integer representation. Strings that look like floating point 258 ** values but which have no fractional component (example: '48.00') 259 ** will have a MEM_Int representation when bTryForInt is true. 260 ** 261 ** If bTryForInt is false, then if the input string contains a decimal 262 ** point or exponential notation, the result is only MEM_Real, even 263 ** if there is an exact integer representation of the quantity. 264 */ 265 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 266 double rValue; 267 i64 iValue; 268 u8 enc = pRec->enc; 269 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 270 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 271 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 272 pRec->u.i = iValue; 273 pRec->flags |= MEM_Int; 274 }else{ 275 pRec->u.r = rValue; 276 pRec->flags |= MEM_Real; 277 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 278 } 279 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 280 ** string representation after computing a numeric equivalent, because the 281 ** string representation might not be the canonical representation for the 282 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 283 pRec->flags &= ~MEM_Str; 284 } 285 286 /* 287 ** Processing is determine by the affinity parameter: 288 ** 289 ** SQLITE_AFF_INTEGER: 290 ** SQLITE_AFF_REAL: 291 ** SQLITE_AFF_NUMERIC: 292 ** Try to convert pRec to an integer representation or a 293 ** floating-point representation if an integer representation 294 ** is not possible. Note that the integer representation is 295 ** always preferred, even if the affinity is REAL, because 296 ** an integer representation is more space efficient on disk. 297 ** 298 ** SQLITE_AFF_TEXT: 299 ** Convert pRec to a text representation. 300 ** 301 ** SQLITE_AFF_BLOB: 302 ** No-op. pRec is unchanged. 303 */ 304 static void applyAffinity( 305 Mem *pRec, /* The value to apply affinity to */ 306 char affinity, /* The affinity to be applied */ 307 u8 enc /* Use this text encoding */ 308 ){ 309 if( affinity>=SQLITE_AFF_NUMERIC ){ 310 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 311 || affinity==SQLITE_AFF_NUMERIC ); 312 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 313 if( (pRec->flags & MEM_Real)==0 ){ 314 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 315 }else{ 316 sqlite3VdbeIntegerAffinity(pRec); 317 } 318 } 319 }else if( affinity==SQLITE_AFF_TEXT ){ 320 /* Only attempt the conversion to TEXT if there is an integer or real 321 ** representation (blob and NULL do not get converted) but no string 322 ** representation. It would be harmless to repeat the conversion if 323 ** there is already a string rep, but it is pointless to waste those 324 ** CPU cycles. */ 325 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 326 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 327 sqlite3VdbeMemStringify(pRec, enc, 1); 328 } 329 } 330 pRec->flags &= ~(MEM_Real|MEM_Int); 331 } 332 } 333 334 /* 335 ** Try to convert the type of a function argument or a result column 336 ** into a numeric representation. Use either INTEGER or REAL whichever 337 ** is appropriate. But only do the conversion if it is possible without 338 ** loss of information and return the revised type of the argument. 339 */ 340 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 341 int eType = sqlite3_value_type(pVal); 342 if( eType==SQLITE_TEXT ){ 343 Mem *pMem = (Mem*)pVal; 344 applyNumericAffinity(pMem, 0); 345 eType = sqlite3_value_type(pVal); 346 } 347 return eType; 348 } 349 350 /* 351 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 352 ** not the internal Mem* type. 353 */ 354 void sqlite3ValueApplyAffinity( 355 sqlite3_value *pVal, 356 u8 affinity, 357 u8 enc 358 ){ 359 applyAffinity((Mem *)pVal, affinity, enc); 360 } 361 362 /* 363 ** pMem currently only holds a string type (or maybe a BLOB that we can 364 ** interpret as a string if we want to). Compute its corresponding 365 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 366 ** accordingly. 367 */ 368 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 369 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 370 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 371 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 372 return 0; 373 } 374 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ 375 return MEM_Int; 376 } 377 return MEM_Real; 378 } 379 380 /* 381 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 382 ** none. 383 ** 384 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 385 ** But it does set pMem->u.r and pMem->u.i appropriately. 386 */ 387 static u16 numericType(Mem *pMem){ 388 if( pMem->flags & (MEM_Int|MEM_Real) ){ 389 return pMem->flags & (MEM_Int|MEM_Real); 390 } 391 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 392 return computeNumericType(pMem); 393 } 394 return 0; 395 } 396 397 #ifdef SQLITE_DEBUG 398 /* 399 ** Write a nice string representation of the contents of cell pMem 400 ** into buffer zBuf, length nBuf. 401 */ 402 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 403 char *zCsr = zBuf; 404 int f = pMem->flags; 405 406 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 407 408 if( f&MEM_Blob ){ 409 int i; 410 char c; 411 if( f & MEM_Dyn ){ 412 c = 'z'; 413 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 414 }else if( f & MEM_Static ){ 415 c = 't'; 416 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 417 }else if( f & MEM_Ephem ){ 418 c = 'e'; 419 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 420 }else{ 421 c = 's'; 422 } 423 *(zCsr++) = c; 424 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 425 zCsr += sqlite3Strlen30(zCsr); 426 for(i=0; i<16 && i<pMem->n; i++){ 427 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 428 zCsr += sqlite3Strlen30(zCsr); 429 } 430 for(i=0; i<16 && i<pMem->n; i++){ 431 char z = pMem->z[i]; 432 if( z<32 || z>126 ) *zCsr++ = '.'; 433 else *zCsr++ = z; 434 } 435 *(zCsr++) = ']'; 436 if( f & MEM_Zero ){ 437 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 438 zCsr += sqlite3Strlen30(zCsr); 439 } 440 *zCsr = '\0'; 441 }else if( f & MEM_Str ){ 442 int j, k; 443 zBuf[0] = ' '; 444 if( f & MEM_Dyn ){ 445 zBuf[1] = 'z'; 446 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 447 }else if( f & MEM_Static ){ 448 zBuf[1] = 't'; 449 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 450 }else if( f & MEM_Ephem ){ 451 zBuf[1] = 'e'; 452 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 453 }else{ 454 zBuf[1] = 's'; 455 } 456 k = 2; 457 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 458 k += sqlite3Strlen30(&zBuf[k]); 459 zBuf[k++] = '['; 460 for(j=0; j<15 && j<pMem->n; j++){ 461 u8 c = pMem->z[j]; 462 if( c>=0x20 && c<0x7f ){ 463 zBuf[k++] = c; 464 }else{ 465 zBuf[k++] = '.'; 466 } 467 } 468 zBuf[k++] = ']'; 469 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 470 k += sqlite3Strlen30(&zBuf[k]); 471 zBuf[k++] = 0; 472 } 473 } 474 #endif 475 476 #ifdef SQLITE_DEBUG 477 /* 478 ** Print the value of a register for tracing purposes: 479 */ 480 static void memTracePrint(Mem *p){ 481 if( p->flags & MEM_Undefined ){ 482 printf(" undefined"); 483 }else if( p->flags & MEM_Null ){ 484 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 485 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 486 printf(" si:%lld", p->u.i); 487 }else if( p->flags & MEM_Int ){ 488 printf(" i:%lld", p->u.i); 489 #ifndef SQLITE_OMIT_FLOATING_POINT 490 }else if( p->flags & MEM_Real ){ 491 printf(" r:%g", p->u.r); 492 #endif 493 }else if( p->flags & MEM_RowSet ){ 494 printf(" (rowset)"); 495 }else{ 496 char zBuf[200]; 497 sqlite3VdbeMemPrettyPrint(p, zBuf); 498 printf(" %s", zBuf); 499 } 500 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 501 } 502 static void registerTrace(int iReg, Mem *p){ 503 printf("REG[%d] = ", iReg); 504 memTracePrint(p); 505 printf("\n"); 506 sqlite3VdbeCheckMemInvariants(p); 507 } 508 #endif 509 510 #ifdef SQLITE_DEBUG 511 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 512 #else 513 # define REGISTER_TRACE(R,M) 514 #endif 515 516 517 #ifdef VDBE_PROFILE 518 519 /* 520 ** hwtime.h contains inline assembler code for implementing 521 ** high-performance timing routines. 522 */ 523 #include "hwtime.h" 524 525 #endif 526 527 #ifndef NDEBUG 528 /* 529 ** This function is only called from within an assert() expression. It 530 ** checks that the sqlite3.nTransaction variable is correctly set to 531 ** the number of non-transaction savepoints currently in the 532 ** linked list starting at sqlite3.pSavepoint. 533 ** 534 ** Usage: 535 ** 536 ** assert( checkSavepointCount(db) ); 537 */ 538 static int checkSavepointCount(sqlite3 *db){ 539 int n = 0; 540 Savepoint *p; 541 for(p=db->pSavepoint; p; p=p->pNext) n++; 542 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 543 return 1; 544 } 545 #endif 546 547 /* 548 ** Return the register of pOp->p2 after first preparing it to be 549 ** overwritten with an integer value. 550 */ 551 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 552 sqlite3VdbeMemSetNull(pOut); 553 pOut->flags = MEM_Int; 554 return pOut; 555 } 556 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 557 Mem *pOut; 558 assert( pOp->p2>0 ); 559 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 560 pOut = &p->aMem[pOp->p2]; 561 memAboutToChange(p, pOut); 562 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 563 return out2PrereleaseWithClear(pOut); 564 }else{ 565 pOut->flags = MEM_Int; 566 return pOut; 567 } 568 } 569 570 571 /* 572 ** Execute as much of a VDBE program as we can. 573 ** This is the core of sqlite3_step(). 574 */ 575 int sqlite3VdbeExec( 576 Vdbe *p /* The VDBE */ 577 ){ 578 Op *aOp = p->aOp; /* Copy of p->aOp */ 579 Op *pOp = aOp; /* Current operation */ 580 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 581 Op *pOrigOp; /* Value of pOp at the top of the loop */ 582 #endif 583 #ifdef SQLITE_DEBUG 584 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 585 #endif 586 int rc = SQLITE_OK; /* Value to return */ 587 sqlite3 *db = p->db; /* The database */ 588 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 589 u8 encoding = ENC(db); /* The database encoding */ 590 int iCompare = 0; /* Result of last comparison */ 591 unsigned nVmStep = 0; /* Number of virtual machine steps */ 592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 593 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 594 #endif 595 Mem *aMem = p->aMem; /* Copy of p->aMem */ 596 Mem *pIn1 = 0; /* 1st input operand */ 597 Mem *pIn2 = 0; /* 2nd input operand */ 598 Mem *pIn3 = 0; /* 3rd input operand */ 599 Mem *pOut = 0; /* Output operand */ 600 #ifdef VDBE_PROFILE 601 u64 start; /* CPU clock count at start of opcode */ 602 #endif 603 /*** INSERT STACK UNION HERE ***/ 604 605 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 606 sqlite3VdbeEnter(p); 607 if( p->rc==SQLITE_NOMEM ){ 608 /* This happens if a malloc() inside a call to sqlite3_column_text() or 609 ** sqlite3_column_text16() failed. */ 610 goto no_mem; 611 } 612 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 613 assert( p->bIsReader || p->readOnly!=0 ); 614 p->iCurrentTime = 0; 615 assert( p->explain==0 ); 616 p->pResultSet = 0; 617 db->busyHandler.nBusy = 0; 618 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 619 sqlite3VdbeIOTraceSql(p); 620 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 621 if( db->xProgress ){ 622 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 623 assert( 0 < db->nProgressOps ); 624 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 625 }else{ 626 nProgressLimit = 0xffffffff; 627 } 628 #endif 629 #ifdef SQLITE_DEBUG 630 sqlite3BeginBenignMalloc(); 631 if( p->pc==0 632 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 633 ){ 634 int i; 635 int once = 1; 636 sqlite3VdbePrintSql(p); 637 if( p->db->flags & SQLITE_VdbeListing ){ 638 printf("VDBE Program Listing:\n"); 639 for(i=0; i<p->nOp; i++){ 640 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 641 } 642 } 643 if( p->db->flags & SQLITE_VdbeEQP ){ 644 for(i=0; i<p->nOp; i++){ 645 if( aOp[i].opcode==OP_Explain ){ 646 if( once ) printf("VDBE Query Plan:\n"); 647 printf("%s\n", aOp[i].p4.z); 648 once = 0; 649 } 650 } 651 } 652 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 653 } 654 sqlite3EndBenignMalloc(); 655 #endif 656 for(pOp=&aOp[p->pc]; 1; pOp++){ 657 /* Errors are detected by individual opcodes, with an immediate 658 ** jumps to abort_due_to_error. */ 659 assert( rc==SQLITE_OK ); 660 661 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 662 #ifdef VDBE_PROFILE 663 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 664 #endif 665 nVmStep++; 666 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 667 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 668 #endif 669 670 /* Only allow tracing if SQLITE_DEBUG is defined. 671 */ 672 #ifdef SQLITE_DEBUG 673 if( db->flags & SQLITE_VdbeTrace ){ 674 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 675 } 676 #endif 677 678 679 /* Check to see if we need to simulate an interrupt. This only happens 680 ** if we have a special test build. 681 */ 682 #ifdef SQLITE_TEST 683 if( sqlite3_interrupt_count>0 ){ 684 sqlite3_interrupt_count--; 685 if( sqlite3_interrupt_count==0 ){ 686 sqlite3_interrupt(db); 687 } 688 } 689 #endif 690 691 /* Sanity checking on other operands */ 692 #ifdef SQLITE_DEBUG 693 { 694 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 695 if( (opProperty & OPFLG_IN1)!=0 ){ 696 assert( pOp->p1>0 ); 697 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 698 assert( memIsValid(&aMem[pOp->p1]) ); 699 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 700 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 701 } 702 if( (opProperty & OPFLG_IN2)!=0 ){ 703 assert( pOp->p2>0 ); 704 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 705 assert( memIsValid(&aMem[pOp->p2]) ); 706 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 707 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 708 } 709 if( (opProperty & OPFLG_IN3)!=0 ){ 710 assert( pOp->p3>0 ); 711 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 712 assert( memIsValid(&aMem[pOp->p3]) ); 713 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 714 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 715 } 716 if( (opProperty & OPFLG_OUT2)!=0 ){ 717 assert( pOp->p2>0 ); 718 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 719 memAboutToChange(p, &aMem[pOp->p2]); 720 } 721 if( (opProperty & OPFLG_OUT3)!=0 ){ 722 assert( pOp->p3>0 ); 723 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 724 memAboutToChange(p, &aMem[pOp->p3]); 725 } 726 } 727 #endif 728 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 729 pOrigOp = pOp; 730 #endif 731 732 switch( pOp->opcode ){ 733 734 /***************************************************************************** 735 ** What follows is a massive switch statement where each case implements a 736 ** separate instruction in the virtual machine. If we follow the usual 737 ** indentation conventions, each case should be indented by 6 spaces. But 738 ** that is a lot of wasted space on the left margin. So the code within 739 ** the switch statement will break with convention and be flush-left. Another 740 ** big comment (similar to this one) will mark the point in the code where 741 ** we transition back to normal indentation. 742 ** 743 ** The formatting of each case is important. The makefile for SQLite 744 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 745 ** file looking for lines that begin with "case OP_". The opcodes.h files 746 ** will be filled with #defines that give unique integer values to each 747 ** opcode and the opcodes.c file is filled with an array of strings where 748 ** each string is the symbolic name for the corresponding opcode. If the 749 ** case statement is followed by a comment of the form "/# same as ... #/" 750 ** that comment is used to determine the particular value of the opcode. 751 ** 752 ** Other keywords in the comment that follows each case are used to 753 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 754 ** Keywords include: in1, in2, in3, out2, out3. See 755 ** the mkopcodeh.awk script for additional information. 756 ** 757 ** Documentation about VDBE opcodes is generated by scanning this file 758 ** for lines of that contain "Opcode:". That line and all subsequent 759 ** comment lines are used in the generation of the opcode.html documentation 760 ** file. 761 ** 762 ** SUMMARY: 763 ** 764 ** Formatting is important to scripts that scan this file. 765 ** Do not deviate from the formatting style currently in use. 766 ** 767 *****************************************************************************/ 768 769 /* Opcode: Goto * P2 * * * 770 ** 771 ** An unconditional jump to address P2. 772 ** The next instruction executed will be 773 ** the one at index P2 from the beginning of 774 ** the program. 775 ** 776 ** The P1 parameter is not actually used by this opcode. However, it 777 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 778 ** that this Goto is the bottom of a loop and that the lines from P2 down 779 ** to the current line should be indented for EXPLAIN output. 780 */ 781 case OP_Goto: { /* jump */ 782 jump_to_p2_and_check_for_interrupt: 783 pOp = &aOp[pOp->p2 - 1]; 784 785 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 786 ** OP_VNext, or OP_SorterNext) all jump here upon 787 ** completion. Check to see if sqlite3_interrupt() has been called 788 ** or if the progress callback needs to be invoked. 789 ** 790 ** This code uses unstructured "goto" statements and does not look clean. 791 ** But that is not due to sloppy coding habits. The code is written this 792 ** way for performance, to avoid having to run the interrupt and progress 793 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 794 ** faster according to "valgrind --tool=cachegrind" */ 795 check_for_interrupt: 796 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 797 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 798 /* Call the progress callback if it is configured and the required number 799 ** of VDBE ops have been executed (either since this invocation of 800 ** sqlite3VdbeExec() or since last time the progress callback was called). 801 ** If the progress callback returns non-zero, exit the virtual machine with 802 ** a return code SQLITE_ABORT. 803 */ 804 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 805 assert( db->nProgressOps!=0 ); 806 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 807 if( db->xProgress(db->pProgressArg) ){ 808 rc = SQLITE_INTERRUPT; 809 goto abort_due_to_error; 810 } 811 } 812 #endif 813 814 break; 815 } 816 817 /* Opcode: Gosub P1 P2 * * * 818 ** 819 ** Write the current address onto register P1 820 ** and then jump to address P2. 821 */ 822 case OP_Gosub: { /* jump */ 823 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 824 pIn1 = &aMem[pOp->p1]; 825 assert( VdbeMemDynamic(pIn1)==0 ); 826 memAboutToChange(p, pIn1); 827 pIn1->flags = MEM_Int; 828 pIn1->u.i = (int)(pOp-aOp); 829 REGISTER_TRACE(pOp->p1, pIn1); 830 831 /* Most jump operations do a goto to this spot in order to update 832 ** the pOp pointer. */ 833 jump_to_p2: 834 pOp = &aOp[pOp->p2 - 1]; 835 break; 836 } 837 838 /* Opcode: Return P1 * * * * 839 ** 840 ** Jump to the next instruction after the address in register P1. After 841 ** the jump, register P1 becomes undefined. 842 */ 843 case OP_Return: { /* in1 */ 844 pIn1 = &aMem[pOp->p1]; 845 assert( pIn1->flags==MEM_Int ); 846 pOp = &aOp[pIn1->u.i]; 847 pIn1->flags = MEM_Undefined; 848 break; 849 } 850 851 /* Opcode: InitCoroutine P1 P2 P3 * * 852 ** 853 ** Set up register P1 so that it will Yield to the coroutine 854 ** located at address P3. 855 ** 856 ** If P2!=0 then the coroutine implementation immediately follows 857 ** this opcode. So jump over the coroutine implementation to 858 ** address P2. 859 ** 860 ** See also: EndCoroutine 861 */ 862 case OP_InitCoroutine: { /* jump */ 863 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 864 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 865 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 866 pOut = &aMem[pOp->p1]; 867 assert( !VdbeMemDynamic(pOut) ); 868 pOut->u.i = pOp->p3 - 1; 869 pOut->flags = MEM_Int; 870 if( pOp->p2 ) goto jump_to_p2; 871 break; 872 } 873 874 /* Opcode: EndCoroutine P1 * * * * 875 ** 876 ** The instruction at the address in register P1 is a Yield. 877 ** Jump to the P2 parameter of that Yield. 878 ** After the jump, register P1 becomes undefined. 879 ** 880 ** See also: InitCoroutine 881 */ 882 case OP_EndCoroutine: { /* in1 */ 883 VdbeOp *pCaller; 884 pIn1 = &aMem[pOp->p1]; 885 assert( pIn1->flags==MEM_Int ); 886 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 887 pCaller = &aOp[pIn1->u.i]; 888 assert( pCaller->opcode==OP_Yield ); 889 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 890 pOp = &aOp[pCaller->p2 - 1]; 891 pIn1->flags = MEM_Undefined; 892 break; 893 } 894 895 /* Opcode: Yield P1 P2 * * * 896 ** 897 ** Swap the program counter with the value in register P1. This 898 ** has the effect of yielding to a coroutine. 899 ** 900 ** If the coroutine that is launched by this instruction ends with 901 ** Yield or Return then continue to the next instruction. But if 902 ** the coroutine launched by this instruction ends with 903 ** EndCoroutine, then jump to P2 rather than continuing with the 904 ** next instruction. 905 ** 906 ** See also: InitCoroutine 907 */ 908 case OP_Yield: { /* in1, jump */ 909 int pcDest; 910 pIn1 = &aMem[pOp->p1]; 911 assert( VdbeMemDynamic(pIn1)==0 ); 912 pIn1->flags = MEM_Int; 913 pcDest = (int)pIn1->u.i; 914 pIn1->u.i = (int)(pOp - aOp); 915 REGISTER_TRACE(pOp->p1, pIn1); 916 pOp = &aOp[pcDest]; 917 break; 918 } 919 920 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 921 ** Synopsis: if r[P3]=null halt 922 ** 923 ** Check the value in register P3. If it is NULL then Halt using 924 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 925 ** value in register P3 is not NULL, then this routine is a no-op. 926 ** The P5 parameter should be 1. 927 */ 928 case OP_HaltIfNull: { /* in3 */ 929 pIn3 = &aMem[pOp->p3]; 930 #ifdef SQLITE_DEBUG 931 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 932 #endif 933 if( (pIn3->flags & MEM_Null)==0 ) break; 934 /* Fall through into OP_Halt */ 935 } 936 937 /* Opcode: Halt P1 P2 * P4 P5 938 ** 939 ** Exit immediately. All open cursors, etc are closed 940 ** automatically. 941 ** 942 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 943 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 944 ** For errors, it can be some other value. If P1!=0 then P2 will determine 945 ** whether or not to rollback the current transaction. Do not rollback 946 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 947 ** then back out all changes that have occurred during this execution of the 948 ** VDBE, but do not rollback the transaction. 949 ** 950 ** If P4 is not null then it is an error message string. 951 ** 952 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 953 ** 954 ** 0: (no change) 955 ** 1: NOT NULL contraint failed: P4 956 ** 2: UNIQUE constraint failed: P4 957 ** 3: CHECK constraint failed: P4 958 ** 4: FOREIGN KEY constraint failed: P4 959 ** 960 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 961 ** omitted. 962 ** 963 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 964 ** every program. So a jump past the last instruction of the program 965 ** is the same as executing Halt. 966 */ 967 case OP_Halt: { 968 VdbeFrame *pFrame; 969 int pcx; 970 971 pcx = (int)(pOp - aOp); 972 #ifdef SQLITE_DEBUG 973 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 974 #endif 975 if( pOp->p1==SQLITE_OK && p->pFrame ){ 976 /* Halt the sub-program. Return control to the parent frame. */ 977 pFrame = p->pFrame; 978 p->pFrame = pFrame->pParent; 979 p->nFrame--; 980 sqlite3VdbeSetChanges(db, p->nChange); 981 pcx = sqlite3VdbeFrameRestore(pFrame); 982 if( pOp->p2==OE_Ignore ){ 983 /* Instruction pcx is the OP_Program that invoked the sub-program 984 ** currently being halted. If the p2 instruction of this OP_Halt 985 ** instruction is set to OE_Ignore, then the sub-program is throwing 986 ** an IGNORE exception. In this case jump to the address specified 987 ** as the p2 of the calling OP_Program. */ 988 pcx = p->aOp[pcx].p2-1; 989 } 990 aOp = p->aOp; 991 aMem = p->aMem; 992 pOp = &aOp[pcx]; 993 break; 994 } 995 p->rc = pOp->p1; 996 p->errorAction = (u8)pOp->p2; 997 p->pc = pcx; 998 assert( pOp->p5<=4 ); 999 if( p->rc ){ 1000 if( pOp->p5 ){ 1001 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1002 "FOREIGN KEY" }; 1003 testcase( pOp->p5==1 ); 1004 testcase( pOp->p5==2 ); 1005 testcase( pOp->p5==3 ); 1006 testcase( pOp->p5==4 ); 1007 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1008 if( pOp->p4.z ){ 1009 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1010 } 1011 }else{ 1012 sqlite3VdbeError(p, "%s", pOp->p4.z); 1013 } 1014 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1015 } 1016 rc = sqlite3VdbeHalt(p); 1017 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1018 if( rc==SQLITE_BUSY ){ 1019 p->rc = SQLITE_BUSY; 1020 }else{ 1021 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1022 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1023 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1024 } 1025 goto vdbe_return; 1026 } 1027 1028 /* Opcode: Integer P1 P2 * * * 1029 ** Synopsis: r[P2]=P1 1030 ** 1031 ** The 32-bit integer value P1 is written into register P2. 1032 */ 1033 case OP_Integer: { /* out2 */ 1034 pOut = out2Prerelease(p, pOp); 1035 pOut->u.i = pOp->p1; 1036 break; 1037 } 1038 1039 /* Opcode: Int64 * P2 * P4 * 1040 ** Synopsis: r[P2]=P4 1041 ** 1042 ** P4 is a pointer to a 64-bit integer value. 1043 ** Write that value into register P2. 1044 */ 1045 case OP_Int64: { /* out2 */ 1046 pOut = out2Prerelease(p, pOp); 1047 assert( pOp->p4.pI64!=0 ); 1048 pOut->u.i = *pOp->p4.pI64; 1049 break; 1050 } 1051 1052 #ifndef SQLITE_OMIT_FLOATING_POINT 1053 /* Opcode: Real * P2 * P4 * 1054 ** Synopsis: r[P2]=P4 1055 ** 1056 ** P4 is a pointer to a 64-bit floating point value. 1057 ** Write that value into register P2. 1058 */ 1059 case OP_Real: { /* same as TK_FLOAT, out2 */ 1060 pOut = out2Prerelease(p, pOp); 1061 pOut->flags = MEM_Real; 1062 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1063 pOut->u.r = *pOp->p4.pReal; 1064 break; 1065 } 1066 #endif 1067 1068 /* Opcode: String8 * P2 * P4 * 1069 ** Synopsis: r[P2]='P4' 1070 ** 1071 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1072 ** into a String opcode before it is executed for the first time. During 1073 ** this transformation, the length of string P4 is computed and stored 1074 ** as the P1 parameter. 1075 */ 1076 case OP_String8: { /* same as TK_STRING, out2 */ 1077 assert( pOp->p4.z!=0 ); 1078 pOut = out2Prerelease(p, pOp); 1079 pOp->opcode = OP_String; 1080 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1081 1082 #ifndef SQLITE_OMIT_UTF16 1083 if( encoding!=SQLITE_UTF8 ){ 1084 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1085 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1086 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1087 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1088 assert( VdbeMemDynamic(pOut)==0 ); 1089 pOut->szMalloc = 0; 1090 pOut->flags |= MEM_Static; 1091 if( pOp->p4type==P4_DYNAMIC ){ 1092 sqlite3DbFree(db, pOp->p4.z); 1093 } 1094 pOp->p4type = P4_DYNAMIC; 1095 pOp->p4.z = pOut->z; 1096 pOp->p1 = pOut->n; 1097 } 1098 testcase( rc==SQLITE_TOOBIG ); 1099 #endif 1100 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1101 goto too_big; 1102 } 1103 assert( rc==SQLITE_OK ); 1104 /* Fall through to the next case, OP_String */ 1105 } 1106 1107 /* Opcode: String P1 P2 P3 P4 P5 1108 ** Synopsis: r[P2]='P4' (len=P1) 1109 ** 1110 ** The string value P4 of length P1 (bytes) is stored in register P2. 1111 ** 1112 ** If P3 is not zero and the content of register P3 is equal to P5, then 1113 ** the datatype of the register P2 is converted to BLOB. The content is 1114 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1115 ** of a string, as if it had been CAST. In other words: 1116 ** 1117 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1118 */ 1119 case OP_String: { /* out2 */ 1120 assert( pOp->p4.z!=0 ); 1121 pOut = out2Prerelease(p, pOp); 1122 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1123 pOut->z = pOp->p4.z; 1124 pOut->n = pOp->p1; 1125 pOut->enc = encoding; 1126 UPDATE_MAX_BLOBSIZE(pOut); 1127 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1128 if( pOp->p3>0 ){ 1129 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1130 pIn3 = &aMem[pOp->p3]; 1131 assert( pIn3->flags & MEM_Int ); 1132 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1133 } 1134 #endif 1135 break; 1136 } 1137 1138 /* Opcode: Null P1 P2 P3 * * 1139 ** Synopsis: r[P2..P3]=NULL 1140 ** 1141 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1142 ** NULL into register P3 and every register in between P2 and P3. If P3 1143 ** is less than P2 (typically P3 is zero) then only register P2 is 1144 ** set to NULL. 1145 ** 1146 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1147 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1148 ** OP_Ne or OP_Eq. 1149 */ 1150 case OP_Null: { /* out2 */ 1151 int cnt; 1152 u16 nullFlag; 1153 pOut = out2Prerelease(p, pOp); 1154 cnt = pOp->p3-pOp->p2; 1155 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1156 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1157 pOut->n = 0; 1158 #ifdef SQLITE_DEBUG 1159 pOut->uTemp = 0; 1160 #endif 1161 while( cnt>0 ){ 1162 pOut++; 1163 memAboutToChange(p, pOut); 1164 sqlite3VdbeMemSetNull(pOut); 1165 pOut->flags = nullFlag; 1166 pOut->n = 0; 1167 cnt--; 1168 } 1169 break; 1170 } 1171 1172 /* Opcode: SoftNull P1 * * * * 1173 ** Synopsis: r[P1]=NULL 1174 ** 1175 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1176 ** instruction, but do not free any string or blob memory associated with 1177 ** the register, so that if the value was a string or blob that was 1178 ** previously copied using OP_SCopy, the copies will continue to be valid. 1179 */ 1180 case OP_SoftNull: { 1181 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1182 pOut = &aMem[pOp->p1]; 1183 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1184 break; 1185 } 1186 1187 /* Opcode: Blob P1 P2 * P4 * 1188 ** Synopsis: r[P2]=P4 (len=P1) 1189 ** 1190 ** P4 points to a blob of data P1 bytes long. Store this 1191 ** blob in register P2. 1192 */ 1193 case OP_Blob: { /* out2 */ 1194 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1195 pOut = out2Prerelease(p, pOp); 1196 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1197 pOut->enc = encoding; 1198 UPDATE_MAX_BLOBSIZE(pOut); 1199 break; 1200 } 1201 1202 /* Opcode: Variable P1 P2 * P4 * 1203 ** Synopsis: r[P2]=parameter(P1,P4) 1204 ** 1205 ** Transfer the values of bound parameter P1 into register P2 1206 ** 1207 ** If the parameter is named, then its name appears in P4. 1208 ** The P4 value is used by sqlite3_bind_parameter_name(). 1209 */ 1210 case OP_Variable: { /* out2 */ 1211 Mem *pVar; /* Value being transferred */ 1212 1213 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1214 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1215 pVar = &p->aVar[pOp->p1 - 1]; 1216 if( sqlite3VdbeMemTooBig(pVar) ){ 1217 goto too_big; 1218 } 1219 pOut = &aMem[pOp->p2]; 1220 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1221 UPDATE_MAX_BLOBSIZE(pOut); 1222 break; 1223 } 1224 1225 /* Opcode: Move P1 P2 P3 * * 1226 ** Synopsis: r[P2@P3]=r[P1@P3] 1227 ** 1228 ** Move the P3 values in register P1..P1+P3-1 over into 1229 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1230 ** left holding a NULL. It is an error for register ranges 1231 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1232 ** for P3 to be less than 1. 1233 */ 1234 case OP_Move: { 1235 int n; /* Number of registers left to copy */ 1236 int p1; /* Register to copy from */ 1237 int p2; /* Register to copy to */ 1238 1239 n = pOp->p3; 1240 p1 = pOp->p1; 1241 p2 = pOp->p2; 1242 assert( n>0 && p1>0 && p2>0 ); 1243 assert( p1+n<=p2 || p2+n<=p1 ); 1244 1245 pIn1 = &aMem[p1]; 1246 pOut = &aMem[p2]; 1247 do{ 1248 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1249 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1250 assert( memIsValid(pIn1) ); 1251 memAboutToChange(p, pOut); 1252 sqlite3VdbeMemMove(pOut, pIn1); 1253 #ifdef SQLITE_DEBUG 1254 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1255 pOut->pScopyFrom += pOp->p2 - p1; 1256 } 1257 #endif 1258 Deephemeralize(pOut); 1259 REGISTER_TRACE(p2++, pOut); 1260 pIn1++; 1261 pOut++; 1262 }while( --n ); 1263 break; 1264 } 1265 1266 /* Opcode: Copy P1 P2 P3 * * 1267 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1268 ** 1269 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1270 ** 1271 ** This instruction makes a deep copy of the value. A duplicate 1272 ** is made of any string or blob constant. See also OP_SCopy. 1273 */ 1274 case OP_Copy: { 1275 int n; 1276 1277 n = pOp->p3; 1278 pIn1 = &aMem[pOp->p1]; 1279 pOut = &aMem[pOp->p2]; 1280 assert( pOut!=pIn1 ); 1281 while( 1 ){ 1282 memAboutToChange(p, pOut); 1283 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1284 Deephemeralize(pOut); 1285 #ifdef SQLITE_DEBUG 1286 pOut->pScopyFrom = 0; 1287 pOut->iTabColHash = 0; 1288 #endif 1289 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1290 if( (n--)==0 ) break; 1291 pOut++; 1292 pIn1++; 1293 } 1294 break; 1295 } 1296 1297 /* Opcode: SCopy P1 P2 * * * 1298 ** Synopsis: r[P2]=r[P1] 1299 ** 1300 ** Make a shallow copy of register P1 into register P2. 1301 ** 1302 ** This instruction makes a shallow copy of the value. If the value 1303 ** is a string or blob, then the copy is only a pointer to the 1304 ** original and hence if the original changes so will the copy. 1305 ** Worse, if the original is deallocated, the copy becomes invalid. 1306 ** Thus the program must guarantee that the original will not change 1307 ** during the lifetime of the copy. Use OP_Copy to make a complete 1308 ** copy. 1309 */ 1310 case OP_SCopy: { /* out2 */ 1311 pIn1 = &aMem[pOp->p1]; 1312 pOut = &aMem[pOp->p2]; 1313 assert( pOut!=pIn1 ); 1314 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1315 #ifdef SQLITE_DEBUG 1316 pOut->pScopyFrom = pIn1; 1317 pOut->mScopyFlags = pIn1->flags; 1318 #endif 1319 break; 1320 } 1321 1322 /* Opcode: IntCopy P1 P2 * * * 1323 ** Synopsis: r[P2]=r[P1] 1324 ** 1325 ** Transfer the integer value held in register P1 into register P2. 1326 ** 1327 ** This is an optimized version of SCopy that works only for integer 1328 ** values. 1329 */ 1330 case OP_IntCopy: { /* out2 */ 1331 pIn1 = &aMem[pOp->p1]; 1332 assert( (pIn1->flags & MEM_Int)!=0 ); 1333 pOut = &aMem[pOp->p2]; 1334 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1335 break; 1336 } 1337 1338 /* Opcode: ResultRow P1 P2 * * * 1339 ** Synopsis: output=r[P1@P2] 1340 ** 1341 ** The registers P1 through P1+P2-1 contain a single row of 1342 ** results. This opcode causes the sqlite3_step() call to terminate 1343 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1344 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1345 ** the result row. 1346 */ 1347 case OP_ResultRow: { 1348 Mem *pMem; 1349 int i; 1350 assert( p->nResColumn==pOp->p2 ); 1351 assert( pOp->p1>0 ); 1352 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1353 1354 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1355 /* Run the progress counter just before returning. 1356 */ 1357 if( db->xProgress!=0 1358 && nVmStep>=nProgressLimit 1359 && db->xProgress(db->pProgressArg)!=0 1360 ){ 1361 rc = SQLITE_INTERRUPT; 1362 goto abort_due_to_error; 1363 } 1364 #endif 1365 1366 /* If this statement has violated immediate foreign key constraints, do 1367 ** not return the number of rows modified. And do not RELEASE the statement 1368 ** transaction. It needs to be rolled back. */ 1369 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1370 assert( db->flags&SQLITE_CountRows ); 1371 assert( p->usesStmtJournal ); 1372 goto abort_due_to_error; 1373 } 1374 1375 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1376 ** DML statements invoke this opcode to return the number of rows 1377 ** modified to the user. This is the only way that a VM that 1378 ** opens a statement transaction may invoke this opcode. 1379 ** 1380 ** In case this is such a statement, close any statement transaction 1381 ** opened by this VM before returning control to the user. This is to 1382 ** ensure that statement-transactions are always nested, not overlapping. 1383 ** If the open statement-transaction is not closed here, then the user 1384 ** may step another VM that opens its own statement transaction. This 1385 ** may lead to overlapping statement transactions. 1386 ** 1387 ** The statement transaction is never a top-level transaction. Hence 1388 ** the RELEASE call below can never fail. 1389 */ 1390 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1391 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1392 assert( rc==SQLITE_OK ); 1393 1394 /* Invalidate all ephemeral cursor row caches */ 1395 p->cacheCtr = (p->cacheCtr + 2)|1; 1396 1397 /* Make sure the results of the current row are \000 terminated 1398 ** and have an assigned type. The results are de-ephemeralized as 1399 ** a side effect. 1400 */ 1401 pMem = p->pResultSet = &aMem[pOp->p1]; 1402 for(i=0; i<pOp->p2; i++){ 1403 assert( memIsValid(&pMem[i]) ); 1404 Deephemeralize(&pMem[i]); 1405 assert( (pMem[i].flags & MEM_Ephem)==0 1406 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1407 sqlite3VdbeMemNulTerminate(&pMem[i]); 1408 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1409 } 1410 if( db->mallocFailed ) goto no_mem; 1411 1412 if( db->mTrace & SQLITE_TRACE_ROW ){ 1413 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1414 } 1415 1416 /* Return SQLITE_ROW 1417 */ 1418 p->pc = (int)(pOp - aOp) + 1; 1419 rc = SQLITE_ROW; 1420 goto vdbe_return; 1421 } 1422 1423 /* Opcode: Concat P1 P2 P3 * * 1424 ** Synopsis: r[P3]=r[P2]+r[P1] 1425 ** 1426 ** Add the text in register P1 onto the end of the text in 1427 ** register P2 and store the result in register P3. 1428 ** If either the P1 or P2 text are NULL then store NULL in P3. 1429 ** 1430 ** P3 = P2 || P1 1431 ** 1432 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1433 ** if P3 is the same register as P2, the implementation is able 1434 ** to avoid a memcpy(). 1435 */ 1436 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1437 i64 nByte; 1438 1439 pIn1 = &aMem[pOp->p1]; 1440 pIn2 = &aMem[pOp->p2]; 1441 pOut = &aMem[pOp->p3]; 1442 assert( pIn1!=pOut ); 1443 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1444 sqlite3VdbeMemSetNull(pOut); 1445 break; 1446 } 1447 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1448 Stringify(pIn1, encoding); 1449 Stringify(pIn2, encoding); 1450 nByte = pIn1->n + pIn2->n; 1451 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1452 goto too_big; 1453 } 1454 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1455 goto no_mem; 1456 } 1457 MemSetTypeFlag(pOut, MEM_Str); 1458 if( pOut!=pIn2 ){ 1459 memcpy(pOut->z, pIn2->z, pIn2->n); 1460 } 1461 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1462 pOut->z[nByte]=0; 1463 pOut->z[nByte+1] = 0; 1464 pOut->flags |= MEM_Term; 1465 pOut->n = (int)nByte; 1466 pOut->enc = encoding; 1467 UPDATE_MAX_BLOBSIZE(pOut); 1468 break; 1469 } 1470 1471 /* Opcode: Add P1 P2 P3 * * 1472 ** Synopsis: r[P3]=r[P1]+r[P2] 1473 ** 1474 ** Add the value in register P1 to the value in register P2 1475 ** and store the result in register P3. 1476 ** If either input is NULL, the result is NULL. 1477 */ 1478 /* Opcode: Multiply P1 P2 P3 * * 1479 ** Synopsis: r[P3]=r[P1]*r[P2] 1480 ** 1481 ** 1482 ** Multiply the value in register P1 by the value in register P2 1483 ** and store the result in register P3. 1484 ** If either input is NULL, the result is NULL. 1485 */ 1486 /* Opcode: Subtract P1 P2 P3 * * 1487 ** Synopsis: r[P3]=r[P2]-r[P1] 1488 ** 1489 ** Subtract the value in register P1 from the value in register P2 1490 ** and store the result in register P3. 1491 ** If either input is NULL, the result is NULL. 1492 */ 1493 /* Opcode: Divide P1 P2 P3 * * 1494 ** Synopsis: r[P3]=r[P2]/r[P1] 1495 ** 1496 ** Divide the value in register P1 by the value in register P2 1497 ** and store the result in register P3 (P3=P2/P1). If the value in 1498 ** register P1 is zero, then the result is NULL. If either input is 1499 ** NULL, the result is NULL. 1500 */ 1501 /* Opcode: Remainder P1 P2 P3 * * 1502 ** Synopsis: r[P3]=r[P2]%r[P1] 1503 ** 1504 ** Compute the remainder after integer register P2 is divided by 1505 ** register P1 and store the result in register P3. 1506 ** If the value in register P1 is zero the result is NULL. 1507 ** If either operand is NULL, the result is NULL. 1508 */ 1509 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1510 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1511 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1512 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1513 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1514 char bIntint; /* Started out as two integer operands */ 1515 u16 flags; /* Combined MEM_* flags from both inputs */ 1516 u16 type1; /* Numeric type of left operand */ 1517 u16 type2; /* Numeric type of right operand */ 1518 i64 iA; /* Integer value of left operand */ 1519 i64 iB; /* Integer value of right operand */ 1520 double rA; /* Real value of left operand */ 1521 double rB; /* Real value of right operand */ 1522 1523 pIn1 = &aMem[pOp->p1]; 1524 type1 = numericType(pIn1); 1525 pIn2 = &aMem[pOp->p2]; 1526 type2 = numericType(pIn2); 1527 pOut = &aMem[pOp->p3]; 1528 flags = pIn1->flags | pIn2->flags; 1529 if( (type1 & type2 & MEM_Int)!=0 ){ 1530 iA = pIn1->u.i; 1531 iB = pIn2->u.i; 1532 bIntint = 1; 1533 switch( pOp->opcode ){ 1534 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1535 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1536 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1537 case OP_Divide: { 1538 if( iA==0 ) goto arithmetic_result_is_null; 1539 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1540 iB /= iA; 1541 break; 1542 } 1543 default: { 1544 if( iA==0 ) goto arithmetic_result_is_null; 1545 if( iA==-1 ) iA = 1; 1546 iB %= iA; 1547 break; 1548 } 1549 } 1550 pOut->u.i = iB; 1551 MemSetTypeFlag(pOut, MEM_Int); 1552 }else if( (flags & MEM_Null)!=0 ){ 1553 goto arithmetic_result_is_null; 1554 }else{ 1555 bIntint = 0; 1556 fp_math: 1557 rA = sqlite3VdbeRealValue(pIn1); 1558 rB = sqlite3VdbeRealValue(pIn2); 1559 switch( pOp->opcode ){ 1560 case OP_Add: rB += rA; break; 1561 case OP_Subtract: rB -= rA; break; 1562 case OP_Multiply: rB *= rA; break; 1563 case OP_Divide: { 1564 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1565 if( rA==(double)0 ) goto arithmetic_result_is_null; 1566 rB /= rA; 1567 break; 1568 } 1569 default: { 1570 iA = (i64)rA; 1571 iB = (i64)rB; 1572 if( iA==0 ) goto arithmetic_result_is_null; 1573 if( iA==-1 ) iA = 1; 1574 rB = (double)(iB % iA); 1575 break; 1576 } 1577 } 1578 #ifdef SQLITE_OMIT_FLOATING_POINT 1579 pOut->u.i = rB; 1580 MemSetTypeFlag(pOut, MEM_Int); 1581 #else 1582 if( sqlite3IsNaN(rB) ){ 1583 goto arithmetic_result_is_null; 1584 } 1585 pOut->u.r = rB; 1586 MemSetTypeFlag(pOut, MEM_Real); 1587 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1588 sqlite3VdbeIntegerAffinity(pOut); 1589 } 1590 #endif 1591 } 1592 break; 1593 1594 arithmetic_result_is_null: 1595 sqlite3VdbeMemSetNull(pOut); 1596 break; 1597 } 1598 1599 /* Opcode: CollSeq P1 * * P4 1600 ** 1601 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1602 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1603 ** be returned. This is used by the built-in min(), max() and nullif() 1604 ** functions. 1605 ** 1606 ** If P1 is not zero, then it is a register that a subsequent min() or 1607 ** max() aggregate will set to 1 if the current row is not the minimum or 1608 ** maximum. The P1 register is initialized to 0 by this instruction. 1609 ** 1610 ** The interface used by the implementation of the aforementioned functions 1611 ** to retrieve the collation sequence set by this opcode is not available 1612 ** publicly. Only built-in functions have access to this feature. 1613 */ 1614 case OP_CollSeq: { 1615 assert( pOp->p4type==P4_COLLSEQ ); 1616 if( pOp->p1 ){ 1617 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1618 } 1619 break; 1620 } 1621 1622 /* Opcode: BitAnd P1 P2 P3 * * 1623 ** Synopsis: r[P3]=r[P1]&r[P2] 1624 ** 1625 ** Take the bit-wise AND of the values in register P1 and P2 and 1626 ** store the result in register P3. 1627 ** If either input is NULL, the result is NULL. 1628 */ 1629 /* Opcode: BitOr P1 P2 P3 * * 1630 ** Synopsis: r[P3]=r[P1]|r[P2] 1631 ** 1632 ** Take the bit-wise OR of the values in register P1 and P2 and 1633 ** store the result in register P3. 1634 ** If either input is NULL, the result is NULL. 1635 */ 1636 /* Opcode: ShiftLeft P1 P2 P3 * * 1637 ** Synopsis: r[P3]=r[P2]<<r[P1] 1638 ** 1639 ** Shift the integer value in register P2 to the left by the 1640 ** number of bits specified by the integer in register P1. 1641 ** Store the result in register P3. 1642 ** If either input is NULL, the result is NULL. 1643 */ 1644 /* Opcode: ShiftRight P1 P2 P3 * * 1645 ** Synopsis: r[P3]=r[P2]>>r[P1] 1646 ** 1647 ** Shift the integer value in register P2 to the right by the 1648 ** number of bits specified by the integer in register P1. 1649 ** Store the result in register P3. 1650 ** If either input is NULL, the result is NULL. 1651 */ 1652 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1653 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1654 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1655 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1656 i64 iA; 1657 u64 uA; 1658 i64 iB; 1659 u8 op; 1660 1661 pIn1 = &aMem[pOp->p1]; 1662 pIn2 = &aMem[pOp->p2]; 1663 pOut = &aMem[pOp->p3]; 1664 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1665 sqlite3VdbeMemSetNull(pOut); 1666 break; 1667 } 1668 iA = sqlite3VdbeIntValue(pIn2); 1669 iB = sqlite3VdbeIntValue(pIn1); 1670 op = pOp->opcode; 1671 if( op==OP_BitAnd ){ 1672 iA &= iB; 1673 }else if( op==OP_BitOr ){ 1674 iA |= iB; 1675 }else if( iB!=0 ){ 1676 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1677 1678 /* If shifting by a negative amount, shift in the other direction */ 1679 if( iB<0 ){ 1680 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1681 op = 2*OP_ShiftLeft + 1 - op; 1682 iB = iB>(-64) ? -iB : 64; 1683 } 1684 1685 if( iB>=64 ){ 1686 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1687 }else{ 1688 memcpy(&uA, &iA, sizeof(uA)); 1689 if( op==OP_ShiftLeft ){ 1690 uA <<= iB; 1691 }else{ 1692 uA >>= iB; 1693 /* Sign-extend on a right shift of a negative number */ 1694 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1695 } 1696 memcpy(&iA, &uA, sizeof(iA)); 1697 } 1698 } 1699 pOut->u.i = iA; 1700 MemSetTypeFlag(pOut, MEM_Int); 1701 break; 1702 } 1703 1704 /* Opcode: AddImm P1 P2 * * * 1705 ** Synopsis: r[P1]=r[P1]+P2 1706 ** 1707 ** Add the constant P2 to the value in register P1. 1708 ** The result is always an integer. 1709 ** 1710 ** To force any register to be an integer, just add 0. 1711 */ 1712 case OP_AddImm: { /* in1 */ 1713 pIn1 = &aMem[pOp->p1]; 1714 memAboutToChange(p, pIn1); 1715 sqlite3VdbeMemIntegerify(pIn1); 1716 pIn1->u.i += pOp->p2; 1717 break; 1718 } 1719 1720 /* Opcode: MustBeInt P1 P2 * * * 1721 ** 1722 ** Force the value in register P1 to be an integer. If the value 1723 ** in P1 is not an integer and cannot be converted into an integer 1724 ** without data loss, then jump immediately to P2, or if P2==0 1725 ** raise an SQLITE_MISMATCH exception. 1726 */ 1727 case OP_MustBeInt: { /* jump, in1 */ 1728 pIn1 = &aMem[pOp->p1]; 1729 if( (pIn1->flags & MEM_Int)==0 ){ 1730 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1731 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1732 if( (pIn1->flags & MEM_Int)==0 ){ 1733 if( pOp->p2==0 ){ 1734 rc = SQLITE_MISMATCH; 1735 goto abort_due_to_error; 1736 }else{ 1737 goto jump_to_p2; 1738 } 1739 } 1740 } 1741 MemSetTypeFlag(pIn1, MEM_Int); 1742 break; 1743 } 1744 1745 #ifndef SQLITE_OMIT_FLOATING_POINT 1746 /* Opcode: RealAffinity P1 * * * * 1747 ** 1748 ** If register P1 holds an integer convert it to a real value. 1749 ** 1750 ** This opcode is used when extracting information from a column that 1751 ** has REAL affinity. Such column values may still be stored as 1752 ** integers, for space efficiency, but after extraction we want them 1753 ** to have only a real value. 1754 */ 1755 case OP_RealAffinity: { /* in1 */ 1756 pIn1 = &aMem[pOp->p1]; 1757 if( pIn1->flags & MEM_Int ){ 1758 sqlite3VdbeMemRealify(pIn1); 1759 } 1760 break; 1761 } 1762 #endif 1763 1764 #ifndef SQLITE_OMIT_CAST 1765 /* Opcode: Cast P1 P2 * * * 1766 ** Synopsis: affinity(r[P1]) 1767 ** 1768 ** Force the value in register P1 to be the type defined by P2. 1769 ** 1770 ** <ul> 1771 ** <li> P2=='A' → BLOB 1772 ** <li> P2=='B' → TEXT 1773 ** <li> P2=='C' → NUMERIC 1774 ** <li> P2=='D' → INTEGER 1775 ** <li> P2=='E' → REAL 1776 ** </ul> 1777 ** 1778 ** A NULL value is not changed by this routine. It remains NULL. 1779 */ 1780 case OP_Cast: { /* in1 */ 1781 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1782 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1783 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1784 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1785 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1786 testcase( pOp->p2==SQLITE_AFF_REAL ); 1787 pIn1 = &aMem[pOp->p1]; 1788 memAboutToChange(p, pIn1); 1789 rc = ExpandBlob(pIn1); 1790 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1791 UPDATE_MAX_BLOBSIZE(pIn1); 1792 if( rc ) goto abort_due_to_error; 1793 break; 1794 } 1795 #endif /* SQLITE_OMIT_CAST */ 1796 1797 /* Opcode: Eq P1 P2 P3 P4 P5 1798 ** Synopsis: IF r[P3]==r[P1] 1799 ** 1800 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1801 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1802 ** store the result of comparison in register P2. 1803 ** 1804 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1805 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1806 ** to coerce both inputs according to this affinity before the 1807 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1808 ** affinity is used. Note that the affinity conversions are stored 1809 ** back into the input registers P1 and P3. So this opcode can cause 1810 ** persistent changes to registers P1 and P3. 1811 ** 1812 ** Once any conversions have taken place, and neither value is NULL, 1813 ** the values are compared. If both values are blobs then memcmp() is 1814 ** used to determine the results of the comparison. If both values 1815 ** are text, then the appropriate collating function specified in 1816 ** P4 is used to do the comparison. If P4 is not specified then 1817 ** memcmp() is used to compare text string. If both values are 1818 ** numeric, then a numeric comparison is used. If the two values 1819 ** are of different types, then numbers are considered less than 1820 ** strings and strings are considered less than blobs. 1821 ** 1822 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1823 ** true or false and is never NULL. If both operands are NULL then the result 1824 ** of comparison is true. If either operand is NULL then the result is false. 1825 ** If neither operand is NULL the result is the same as it would be if 1826 ** the SQLITE_NULLEQ flag were omitted from P5. 1827 ** 1828 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1829 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1830 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1831 */ 1832 /* Opcode: Ne P1 P2 P3 P4 P5 1833 ** Synopsis: IF r[P3]!=r[P1] 1834 ** 1835 ** This works just like the Eq opcode except that the jump is taken if 1836 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1837 ** additional information. 1838 ** 1839 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1840 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1841 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1842 */ 1843 /* Opcode: Lt P1 P2 P3 P4 P5 1844 ** Synopsis: IF r[P3]<r[P1] 1845 ** 1846 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1847 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1848 ** the result of comparison (0 or 1 or NULL) into register P2. 1849 ** 1850 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1851 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1852 ** bit is clear then fall through if either operand is NULL. 1853 ** 1854 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1855 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1856 ** to coerce both inputs according to this affinity before the 1857 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1858 ** affinity is used. Note that the affinity conversions are stored 1859 ** back into the input registers P1 and P3. So this opcode can cause 1860 ** persistent changes to registers P1 and P3. 1861 ** 1862 ** Once any conversions have taken place, and neither value is NULL, 1863 ** the values are compared. If both values are blobs then memcmp() is 1864 ** used to determine the results of the comparison. If both values 1865 ** are text, then the appropriate collating function specified in 1866 ** P4 is used to do the comparison. If P4 is not specified then 1867 ** memcmp() is used to compare text string. If both values are 1868 ** numeric, then a numeric comparison is used. If the two values 1869 ** are of different types, then numbers are considered less than 1870 ** strings and strings are considered less than blobs. 1871 */ 1872 /* Opcode: Le P1 P2 P3 P4 P5 1873 ** Synopsis: IF r[P3]<=r[P1] 1874 ** 1875 ** This works just like the Lt opcode except that the jump is taken if 1876 ** the content of register P3 is less than or equal to the content of 1877 ** register P1. See the Lt opcode for additional information. 1878 */ 1879 /* Opcode: Gt P1 P2 P3 P4 P5 1880 ** Synopsis: IF r[P3]>r[P1] 1881 ** 1882 ** This works just like the Lt opcode except that the jump is taken if 1883 ** the content of register P3 is greater than the content of 1884 ** register P1. See the Lt opcode for additional information. 1885 */ 1886 /* Opcode: Ge P1 P2 P3 P4 P5 1887 ** Synopsis: IF r[P3]>=r[P1] 1888 ** 1889 ** This works just like the Lt opcode except that the jump is taken if 1890 ** the content of register P3 is greater than or equal to the content of 1891 ** register P1. See the Lt opcode for additional information. 1892 */ 1893 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1894 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1895 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1896 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1897 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1898 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1899 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1900 char affinity; /* Affinity to use for comparison */ 1901 u16 flags1; /* Copy of initial value of pIn1->flags */ 1902 u16 flags3; /* Copy of initial value of pIn3->flags */ 1903 1904 pIn1 = &aMem[pOp->p1]; 1905 pIn3 = &aMem[pOp->p3]; 1906 flags1 = pIn1->flags; 1907 flags3 = pIn3->flags; 1908 if( (flags1 | flags3)&MEM_Null ){ 1909 /* One or both operands are NULL */ 1910 if( pOp->p5 & SQLITE_NULLEQ ){ 1911 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1912 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1913 ** or not both operands are null. 1914 */ 1915 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1916 assert( (flags1 & MEM_Cleared)==0 ); 1917 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 1918 if( (flags1&flags3&MEM_Null)!=0 1919 && (flags3&MEM_Cleared)==0 1920 ){ 1921 res = 0; /* Operands are equal */ 1922 }else{ 1923 res = 1; /* Operands are not equal */ 1924 } 1925 }else{ 1926 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1927 ** then the result is always NULL. 1928 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1929 */ 1930 if( pOp->p5 & SQLITE_STOREP2 ){ 1931 pOut = &aMem[pOp->p2]; 1932 iCompare = 1; /* Operands are not equal */ 1933 memAboutToChange(p, pOut); 1934 MemSetTypeFlag(pOut, MEM_Null); 1935 REGISTER_TRACE(pOp->p2, pOut); 1936 }else{ 1937 VdbeBranchTaken(2,3); 1938 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1939 goto jump_to_p2; 1940 } 1941 } 1942 break; 1943 } 1944 }else{ 1945 /* Neither operand is NULL. Do a comparison. */ 1946 affinity = pOp->p5 & SQLITE_AFF_MASK; 1947 if( affinity>=SQLITE_AFF_NUMERIC ){ 1948 if( (flags1 | flags3)&MEM_Str ){ 1949 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1950 applyNumericAffinity(pIn1,0); 1951 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ 1952 flags3 = pIn3->flags; 1953 } 1954 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 1955 applyNumericAffinity(pIn3,0); 1956 } 1957 } 1958 /* Handle the common case of integer comparison here, as an 1959 ** optimization, to avoid a call to sqlite3MemCompare() */ 1960 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 1961 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 1962 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 1963 res = 0; 1964 goto compare_op; 1965 } 1966 }else if( affinity==SQLITE_AFF_TEXT ){ 1967 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 1968 testcase( pIn1->flags & MEM_Int ); 1969 testcase( pIn1->flags & MEM_Real ); 1970 sqlite3VdbeMemStringify(pIn1, encoding, 1); 1971 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 1972 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 1973 assert( pIn1!=pIn3 ); 1974 } 1975 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 1976 testcase( pIn3->flags & MEM_Int ); 1977 testcase( pIn3->flags & MEM_Real ); 1978 sqlite3VdbeMemStringify(pIn3, encoding, 1); 1979 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 1980 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 1981 } 1982 } 1983 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1984 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1985 } 1986 compare_op: 1987 /* At this point, res is negative, zero, or positive if reg[P1] is 1988 ** less than, equal to, or greater than reg[P3], respectively. Compute 1989 ** the answer to this operator in res2, depending on what the comparison 1990 ** operator actually is. The next block of code depends on the fact 1991 ** that the 6 comparison operators are consecutive integers in this 1992 ** order: NE, EQ, GT, LE, LT, GE */ 1993 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 1994 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 1995 if( res<0 ){ /* ne, eq, gt, le, lt, ge */ 1996 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 }; 1997 res2 = aLTb[pOp->opcode - OP_Ne]; 1998 }else if( res==0 ){ 1999 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 }; 2000 res2 = aEQb[pOp->opcode - OP_Ne]; 2001 }else{ 2002 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 }; 2003 res2 = aGTb[pOp->opcode - OP_Ne]; 2004 } 2005 2006 /* Undo any changes made by applyAffinity() to the input registers. */ 2007 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2008 pIn1->flags = flags1; 2009 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2010 pIn3->flags = flags3; 2011 2012 if( pOp->p5 & SQLITE_STOREP2 ){ 2013 pOut = &aMem[pOp->p2]; 2014 iCompare = res; 2015 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2016 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2017 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2018 ** is only used in contexts where either: 2019 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2020 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2021 ** Therefore it is not necessary to check the content of r[P2] for 2022 ** NULL. */ 2023 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2024 assert( res2==0 || res2==1 ); 2025 testcase( res2==0 && pOp->opcode==OP_Eq ); 2026 testcase( res2==1 && pOp->opcode==OP_Eq ); 2027 testcase( res2==0 && pOp->opcode==OP_Ne ); 2028 testcase( res2==1 && pOp->opcode==OP_Ne ); 2029 if( (pOp->opcode==OP_Eq)==res2 ) break; 2030 } 2031 memAboutToChange(p, pOut); 2032 MemSetTypeFlag(pOut, MEM_Int); 2033 pOut->u.i = res2; 2034 REGISTER_TRACE(pOp->p2, pOut); 2035 }else{ 2036 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2037 if( res2 ){ 2038 goto jump_to_p2; 2039 } 2040 } 2041 break; 2042 } 2043 2044 /* Opcode: ElseNotEq * P2 * * * 2045 ** 2046 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2047 ** If result of an OP_Eq comparison on the same two operands 2048 ** would have be NULL or false (0), then then jump to P2. 2049 ** If the result of an OP_Eq comparison on the two previous operands 2050 ** would have been true (1), then fall through. 2051 */ 2052 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2053 assert( pOp>aOp ); 2054 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2055 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2056 VdbeBranchTaken(iCompare!=0, 2); 2057 if( iCompare!=0 ) goto jump_to_p2; 2058 break; 2059 } 2060 2061 2062 /* Opcode: Permutation * * * P4 * 2063 ** 2064 ** Set the permutation used by the OP_Compare operator in the next 2065 ** instruction. The permutation is stored in the P4 operand. 2066 ** 2067 ** The permutation is only valid until the next OP_Compare that has 2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2069 ** occur immediately prior to the OP_Compare. 2070 ** 2071 ** The first integer in the P4 integer array is the length of the array 2072 ** and does not become part of the permutation. 2073 */ 2074 case OP_Permutation: { 2075 assert( pOp->p4type==P4_INTARRAY ); 2076 assert( pOp->p4.ai ); 2077 assert( pOp[1].opcode==OP_Compare ); 2078 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2079 break; 2080 } 2081 2082 /* Opcode: Compare P1 P2 P3 P4 P5 2083 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2084 ** 2085 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2086 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2087 ** the comparison for use by the next OP_Jump instruct. 2088 ** 2089 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2090 ** determined by the most recent OP_Permutation operator. If the 2091 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2092 ** order. 2093 ** 2094 ** P4 is a KeyInfo structure that defines collating sequences and sort 2095 ** orders for the comparison. The permutation applies to registers 2096 ** only. The KeyInfo elements are used sequentially. 2097 ** 2098 ** The comparison is a sort comparison, so NULLs compare equal, 2099 ** NULLs are less than numbers, numbers are less than strings, 2100 ** and strings are less than blobs. 2101 */ 2102 case OP_Compare: { 2103 int n; 2104 int i; 2105 int p1; 2106 int p2; 2107 const KeyInfo *pKeyInfo; 2108 int idx; 2109 CollSeq *pColl; /* Collating sequence to use on this term */ 2110 int bRev; /* True for DESCENDING sort order */ 2111 int *aPermute; /* The permutation */ 2112 2113 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2114 aPermute = 0; 2115 }else{ 2116 assert( pOp>aOp ); 2117 assert( pOp[-1].opcode==OP_Permutation ); 2118 assert( pOp[-1].p4type==P4_INTARRAY ); 2119 aPermute = pOp[-1].p4.ai + 1; 2120 assert( aPermute!=0 ); 2121 } 2122 n = pOp->p3; 2123 pKeyInfo = pOp->p4.pKeyInfo; 2124 assert( n>0 ); 2125 assert( pKeyInfo!=0 ); 2126 p1 = pOp->p1; 2127 p2 = pOp->p2; 2128 #ifdef SQLITE_DEBUG 2129 if( aPermute ){ 2130 int k, mx = 0; 2131 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2132 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2133 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2134 }else{ 2135 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2136 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2137 } 2138 #endif /* SQLITE_DEBUG */ 2139 for(i=0; i<n; i++){ 2140 idx = aPermute ? aPermute[i] : i; 2141 assert( memIsValid(&aMem[p1+idx]) ); 2142 assert( memIsValid(&aMem[p2+idx]) ); 2143 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2144 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2145 assert( i<pKeyInfo->nKeyField ); 2146 pColl = pKeyInfo->aColl[i]; 2147 bRev = pKeyInfo->aSortOrder[i]; 2148 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2149 if( iCompare ){ 2150 if( bRev ) iCompare = -iCompare; 2151 break; 2152 } 2153 } 2154 break; 2155 } 2156 2157 /* Opcode: Jump P1 P2 P3 * * 2158 ** 2159 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2160 ** in the most recent OP_Compare instruction the P1 vector was less than 2161 ** equal to, or greater than the P2 vector, respectively. 2162 */ 2163 case OP_Jump: { /* jump */ 2164 if( iCompare<0 ){ 2165 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2166 }else if( iCompare==0 ){ 2167 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2168 }else{ 2169 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2170 } 2171 break; 2172 } 2173 2174 /* Opcode: And P1 P2 P3 * * 2175 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2176 ** 2177 ** Take the logical AND of the values in registers P1 and P2 and 2178 ** write the result into register P3. 2179 ** 2180 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2181 ** the other input is NULL. A NULL and true or two NULLs give 2182 ** a NULL output. 2183 */ 2184 /* Opcode: Or P1 P2 P3 * * 2185 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2186 ** 2187 ** Take the logical OR of the values in register P1 and P2 and 2188 ** store the answer in register P3. 2189 ** 2190 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2191 ** even if the other input is NULL. A NULL and false or two NULLs 2192 ** give a NULL output. 2193 */ 2194 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2195 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2196 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2197 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2198 2199 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2200 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2201 if( pOp->opcode==OP_And ){ 2202 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2203 v1 = and_logic[v1*3+v2]; 2204 }else{ 2205 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2206 v1 = or_logic[v1*3+v2]; 2207 } 2208 pOut = &aMem[pOp->p3]; 2209 if( v1==2 ){ 2210 MemSetTypeFlag(pOut, MEM_Null); 2211 }else{ 2212 pOut->u.i = v1; 2213 MemSetTypeFlag(pOut, MEM_Int); 2214 } 2215 break; 2216 } 2217 2218 /* Opcode: IsTrue P1 P2 P3 P4 * 2219 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2220 ** 2221 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2222 ** IS NOT FALSE operators. 2223 ** 2224 ** Interpret the value in register P1 as a boolean value. Store that 2225 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2226 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2227 ** is 1. 2228 ** 2229 ** The logic is summarized like this: 2230 ** 2231 ** <ul> 2232 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2233 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2234 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2235 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2236 ** </ul> 2237 */ 2238 case OP_IsTrue: { /* in1, out2 */ 2239 assert( pOp->p4type==P4_INT32 ); 2240 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2241 assert( pOp->p3==0 || pOp->p3==1 ); 2242 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2243 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2244 break; 2245 } 2246 2247 /* Opcode: Not P1 P2 * * * 2248 ** Synopsis: r[P2]= !r[P1] 2249 ** 2250 ** Interpret the value in register P1 as a boolean value. Store the 2251 ** boolean complement in register P2. If the value in register P1 is 2252 ** NULL, then a NULL is stored in P2. 2253 */ 2254 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2255 pIn1 = &aMem[pOp->p1]; 2256 pOut = &aMem[pOp->p2]; 2257 if( (pIn1->flags & MEM_Null)==0 ){ 2258 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2259 }else{ 2260 sqlite3VdbeMemSetNull(pOut); 2261 } 2262 break; 2263 } 2264 2265 /* Opcode: BitNot P1 P2 * * * 2266 ** Synopsis: r[P2]= ~r[P1] 2267 ** 2268 ** Interpret the content of register P1 as an integer. Store the 2269 ** ones-complement of the P1 value into register P2. If P1 holds 2270 ** a NULL then store a NULL in P2. 2271 */ 2272 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2273 pIn1 = &aMem[pOp->p1]; 2274 pOut = &aMem[pOp->p2]; 2275 sqlite3VdbeMemSetNull(pOut); 2276 if( (pIn1->flags & MEM_Null)==0 ){ 2277 pOut->flags = MEM_Int; 2278 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2279 } 2280 break; 2281 } 2282 2283 /* Opcode: Once P1 P2 * * * 2284 ** 2285 ** Fall through to the next instruction the first time this opcode is 2286 ** encountered on each invocation of the byte-code program. Jump to P2 2287 ** on the second and all subsequent encounters during the same invocation. 2288 ** 2289 ** Top-level programs determine first invocation by comparing the P1 2290 ** operand against the P1 operand on the OP_Init opcode at the beginning 2291 ** of the program. If the P1 values differ, then fall through and make 2292 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2293 ** the same then take the jump. 2294 ** 2295 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2296 ** whether or not the jump should be taken. The bitmask is necessary 2297 ** because the self-altering code trick does not work for recursive 2298 ** triggers. 2299 */ 2300 case OP_Once: { /* jump */ 2301 u32 iAddr; /* Address of this instruction */ 2302 assert( p->aOp[0].opcode==OP_Init ); 2303 if( p->pFrame ){ 2304 iAddr = (int)(pOp - p->aOp); 2305 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2306 VdbeBranchTaken(1, 2); 2307 goto jump_to_p2; 2308 } 2309 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2310 }else{ 2311 if( p->aOp[0].p1==pOp->p1 ){ 2312 VdbeBranchTaken(1, 2); 2313 goto jump_to_p2; 2314 } 2315 } 2316 VdbeBranchTaken(0, 2); 2317 pOp->p1 = p->aOp[0].p1; 2318 break; 2319 } 2320 2321 /* Opcode: If P1 P2 P3 * * 2322 ** 2323 ** Jump to P2 if the value in register P1 is true. The value 2324 ** is considered true if it is numeric and non-zero. If the value 2325 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2326 */ 2327 case OP_If: { /* jump, in1 */ 2328 int c; 2329 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2330 VdbeBranchTaken(c!=0, 2); 2331 if( c ) goto jump_to_p2; 2332 break; 2333 } 2334 2335 /* Opcode: IfNot P1 P2 P3 * * 2336 ** 2337 ** Jump to P2 if the value in register P1 is False. The value 2338 ** is considered false if it has a numeric value of zero. If the value 2339 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2340 */ 2341 case OP_IfNot: { /* jump, in1 */ 2342 int c; 2343 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2344 VdbeBranchTaken(c!=0, 2); 2345 if( c ) goto jump_to_p2; 2346 break; 2347 } 2348 2349 /* Opcode: IsNull P1 P2 * * * 2350 ** Synopsis: if r[P1]==NULL goto P2 2351 ** 2352 ** Jump to P2 if the value in register P1 is NULL. 2353 */ 2354 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2355 pIn1 = &aMem[pOp->p1]; 2356 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2357 if( (pIn1->flags & MEM_Null)!=0 ){ 2358 goto jump_to_p2; 2359 } 2360 break; 2361 } 2362 2363 /* Opcode: NotNull P1 P2 * * * 2364 ** Synopsis: if r[P1]!=NULL goto P2 2365 ** 2366 ** Jump to P2 if the value in register P1 is not NULL. 2367 */ 2368 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2369 pIn1 = &aMem[pOp->p1]; 2370 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2371 if( (pIn1->flags & MEM_Null)==0 ){ 2372 goto jump_to_p2; 2373 } 2374 break; 2375 } 2376 2377 /* Opcode: IfNullRow P1 P2 P3 * * 2378 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2379 ** 2380 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2381 ** If it is, then set register P3 to NULL and jump immediately to P2. 2382 ** If P1 is not on a NULL row, then fall through without making any 2383 ** changes. 2384 */ 2385 case OP_IfNullRow: { /* jump */ 2386 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2387 assert( p->apCsr[pOp->p1]!=0 ); 2388 if( p->apCsr[pOp->p1]->nullRow ){ 2389 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2390 goto jump_to_p2; 2391 } 2392 break; 2393 } 2394 2395 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2396 /* Opcode: Offset P1 P2 P3 * * 2397 ** Synopsis: r[P3] = sqlite_offset(P1) 2398 ** 2399 ** Store in register r[P3] the byte offset into the database file that is the 2400 ** start of the payload for the record at which that cursor P1 is currently 2401 ** pointing. 2402 ** 2403 ** P2 is the column number for the argument to the sqlite_offset() function. 2404 ** This opcode does not use P2 itself, but the P2 value is used by the 2405 ** code generator. The P1, P2, and P3 operands to this opcode are the 2406 ** same as for OP_Column. 2407 ** 2408 ** This opcode is only available if SQLite is compiled with the 2409 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2410 */ 2411 case OP_Offset: { /* out3 */ 2412 VdbeCursor *pC; /* The VDBE cursor */ 2413 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2414 pC = p->apCsr[pOp->p1]; 2415 pOut = &p->aMem[pOp->p3]; 2416 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){ 2417 sqlite3VdbeMemSetNull(pOut); 2418 }else{ 2419 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2420 } 2421 break; 2422 } 2423 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2424 2425 /* Opcode: Column P1 P2 P3 P4 P5 2426 ** Synopsis: r[P3]=PX 2427 ** 2428 ** Interpret the data that cursor P1 points to as a structure built using 2429 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2430 ** information about the format of the data.) Extract the P2-th column 2431 ** from this record. If there are less that (P2+1) 2432 ** values in the record, extract a NULL. 2433 ** 2434 ** The value extracted is stored in register P3. 2435 ** 2436 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2437 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2438 ** the result. 2439 ** 2440 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2441 ** then the cache of the cursor is reset prior to extracting the column. 2442 ** The first OP_Column against a pseudo-table after the value of the content 2443 ** register has changed should have this bit set. 2444 ** 2445 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2446 ** the result is guaranteed to only be used as the argument of a length() 2447 ** or typeof() function, respectively. The loading of large blobs can be 2448 ** skipped for length() and all content loading can be skipped for typeof(). 2449 */ 2450 case OP_Column: { 2451 int p2; /* column number to retrieve */ 2452 VdbeCursor *pC; /* The VDBE cursor */ 2453 BtCursor *pCrsr; /* The BTree cursor */ 2454 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2455 int len; /* The length of the serialized data for the column */ 2456 int i; /* Loop counter */ 2457 Mem *pDest; /* Where to write the extracted value */ 2458 Mem sMem; /* For storing the record being decoded */ 2459 const u8 *zData; /* Part of the record being decoded */ 2460 const u8 *zHdr; /* Next unparsed byte of the header */ 2461 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2462 u64 offset64; /* 64-bit offset */ 2463 u32 t; /* A type code from the record header */ 2464 Mem *pReg; /* PseudoTable input register */ 2465 2466 pC = p->apCsr[pOp->p1]; 2467 p2 = pOp->p2; 2468 2469 /* If the cursor cache is stale (meaning it is not currently point at 2470 ** the correct row) then bring it up-to-date by doing the necessary 2471 ** B-Tree seek. */ 2472 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2473 if( rc ) goto abort_due_to_error; 2474 2475 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2476 pDest = &aMem[pOp->p3]; 2477 memAboutToChange(p, pDest); 2478 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2479 assert( pC!=0 ); 2480 assert( p2<pC->nField ); 2481 aOffset = pC->aOffset; 2482 assert( pC->eCurType!=CURTYPE_VTAB ); 2483 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2484 assert( pC->eCurType!=CURTYPE_SORTER ); 2485 2486 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2487 if( pC->nullRow ){ 2488 if( pC->eCurType==CURTYPE_PSEUDO ){ 2489 /* For the special case of as pseudo-cursor, the seekResult field 2490 ** identifies the register that holds the record */ 2491 assert( pC->seekResult>0 ); 2492 pReg = &aMem[pC->seekResult]; 2493 assert( pReg->flags & MEM_Blob ); 2494 assert( memIsValid(pReg) ); 2495 pC->payloadSize = pC->szRow = pReg->n; 2496 pC->aRow = (u8*)pReg->z; 2497 }else{ 2498 sqlite3VdbeMemSetNull(pDest); 2499 goto op_column_out; 2500 } 2501 }else{ 2502 pCrsr = pC->uc.pCursor; 2503 assert( pC->eCurType==CURTYPE_BTREE ); 2504 assert( pCrsr ); 2505 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2506 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2507 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2508 assert( pC->szRow<=pC->payloadSize ); 2509 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2510 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2511 goto too_big; 2512 } 2513 } 2514 pC->cacheStatus = p->cacheCtr; 2515 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2516 pC->nHdrParsed = 0; 2517 2518 2519 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2520 /* pC->aRow does not have to hold the entire row, but it does at least 2521 ** need to cover the header of the record. If pC->aRow does not contain 2522 ** the complete header, then set it to zero, forcing the header to be 2523 ** dynamically allocated. */ 2524 pC->aRow = 0; 2525 pC->szRow = 0; 2526 2527 /* Make sure a corrupt database has not given us an oversize header. 2528 ** Do this now to avoid an oversize memory allocation. 2529 ** 2530 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2531 ** types use so much data space that there can only be 4096 and 32 of 2532 ** them, respectively. So the maximum header length results from a 2533 ** 3-byte type for each of the maximum of 32768 columns plus three 2534 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2535 */ 2536 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2537 goto op_column_corrupt; 2538 } 2539 }else{ 2540 /* This is an optimization. By skipping over the first few tests 2541 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2542 ** measurable performance gain. 2543 ** 2544 ** This branch is taken even if aOffset[0]==0. Such a record is never 2545 ** generated by SQLite, and could be considered corruption, but we 2546 ** accept it for historical reasons. When aOffset[0]==0, the code this 2547 ** branch jumps to reads past the end of the record, but never more 2548 ** than a few bytes. Even if the record occurs at the end of the page 2549 ** content area, the "page header" comes after the page content and so 2550 ** this overread is harmless. Similar overreads can occur for a corrupt 2551 ** database file. 2552 */ 2553 zData = pC->aRow; 2554 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2555 testcase( aOffset[0]==0 ); 2556 goto op_column_read_header; 2557 } 2558 } 2559 2560 /* Make sure at least the first p2+1 entries of the header have been 2561 ** parsed and valid information is in aOffset[] and pC->aType[]. 2562 */ 2563 if( pC->nHdrParsed<=p2 ){ 2564 /* If there is more header available for parsing in the record, try 2565 ** to extract additional fields up through the p2+1-th field 2566 */ 2567 if( pC->iHdrOffset<aOffset[0] ){ 2568 /* Make sure zData points to enough of the record to cover the header. */ 2569 if( pC->aRow==0 ){ 2570 memset(&sMem, 0, sizeof(sMem)); 2571 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2572 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2573 zData = (u8*)sMem.z; 2574 }else{ 2575 zData = pC->aRow; 2576 } 2577 2578 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2579 op_column_read_header: 2580 i = pC->nHdrParsed; 2581 offset64 = aOffset[i]; 2582 zHdr = zData + pC->iHdrOffset; 2583 zEndHdr = zData + aOffset[0]; 2584 testcase( zHdr>=zEndHdr ); 2585 do{ 2586 if( (t = zHdr[0])<0x80 ){ 2587 zHdr++; 2588 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2589 }else{ 2590 zHdr += sqlite3GetVarint32(zHdr, &t); 2591 offset64 += sqlite3VdbeSerialTypeLen(t); 2592 } 2593 pC->aType[i++] = t; 2594 aOffset[i] = (u32)(offset64 & 0xffffffff); 2595 }while( i<=p2 && zHdr<zEndHdr ); 2596 2597 /* The record is corrupt if any of the following are true: 2598 ** (1) the bytes of the header extend past the declared header size 2599 ** (2) the entire header was used but not all data was used 2600 ** (3) the end of the data extends beyond the end of the record. 2601 */ 2602 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2603 || (offset64 > pC->payloadSize) 2604 ){ 2605 if( aOffset[0]==0 ){ 2606 i = 0; 2607 zHdr = zEndHdr; 2608 }else{ 2609 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2610 goto op_column_corrupt; 2611 } 2612 } 2613 2614 pC->nHdrParsed = i; 2615 pC->iHdrOffset = (u32)(zHdr - zData); 2616 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2617 }else{ 2618 t = 0; 2619 } 2620 2621 /* If after trying to extract new entries from the header, nHdrParsed is 2622 ** still not up to p2, that means that the record has fewer than p2 2623 ** columns. So the result will be either the default value or a NULL. 2624 */ 2625 if( pC->nHdrParsed<=p2 ){ 2626 if( pOp->p4type==P4_MEM ){ 2627 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2628 }else{ 2629 sqlite3VdbeMemSetNull(pDest); 2630 } 2631 goto op_column_out; 2632 } 2633 }else{ 2634 t = pC->aType[p2]; 2635 } 2636 2637 /* Extract the content for the p2+1-th column. Control can only 2638 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2639 ** all valid. 2640 */ 2641 assert( p2<pC->nHdrParsed ); 2642 assert( rc==SQLITE_OK ); 2643 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2644 if( VdbeMemDynamic(pDest) ){ 2645 sqlite3VdbeMemSetNull(pDest); 2646 } 2647 assert( t==pC->aType[p2] ); 2648 if( pC->szRow>=aOffset[p2+1] ){ 2649 /* This is the common case where the desired content fits on the original 2650 ** page - where the content is not on an overflow page */ 2651 zData = pC->aRow + aOffset[p2]; 2652 if( t<12 ){ 2653 sqlite3VdbeSerialGet(zData, t, pDest); 2654 }else{ 2655 /* If the column value is a string, we need a persistent value, not 2656 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2657 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2658 */ 2659 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2660 pDest->n = len = (t-12)/2; 2661 pDest->enc = encoding; 2662 if( pDest->szMalloc < len+2 ){ 2663 pDest->flags = MEM_Null; 2664 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2665 }else{ 2666 pDest->z = pDest->zMalloc; 2667 } 2668 memcpy(pDest->z, zData, len); 2669 pDest->z[len] = 0; 2670 pDest->z[len+1] = 0; 2671 pDest->flags = aFlag[t&1]; 2672 } 2673 }else{ 2674 pDest->enc = encoding; 2675 /* This branch happens only when content is on overflow pages */ 2676 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2677 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2678 || (len = sqlite3VdbeSerialTypeLen(t))==0 2679 ){ 2680 /* Content is irrelevant for 2681 ** 1. the typeof() function, 2682 ** 2. the length(X) function if X is a blob, and 2683 ** 3. if the content length is zero. 2684 ** So we might as well use bogus content rather than reading 2685 ** content from disk. 2686 ** 2687 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2688 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2689 ** read up to 16. So 16 bytes of bogus content is supplied. 2690 */ 2691 static u8 aZero[16]; /* This is the bogus content */ 2692 sqlite3VdbeSerialGet(aZero, t, pDest); 2693 }else{ 2694 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2695 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2696 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2697 pDest->flags &= ~MEM_Ephem; 2698 } 2699 } 2700 2701 op_column_out: 2702 UPDATE_MAX_BLOBSIZE(pDest); 2703 REGISTER_TRACE(pOp->p3, pDest); 2704 break; 2705 2706 op_column_corrupt: 2707 if( aOp[0].p3>0 ){ 2708 pOp = &aOp[aOp[0].p3-1]; 2709 break; 2710 }else{ 2711 rc = SQLITE_CORRUPT_BKPT; 2712 goto abort_due_to_error; 2713 } 2714 } 2715 2716 /* Opcode: Affinity P1 P2 * P4 * 2717 ** Synopsis: affinity(r[P1@P2]) 2718 ** 2719 ** Apply affinities to a range of P2 registers starting with P1. 2720 ** 2721 ** P4 is a string that is P2 characters long. The N-th character of the 2722 ** string indicates the column affinity that should be used for the N-th 2723 ** memory cell in the range. 2724 */ 2725 case OP_Affinity: { 2726 const char *zAffinity; /* The affinity to be applied */ 2727 2728 zAffinity = pOp->p4.z; 2729 assert( zAffinity!=0 ); 2730 assert( pOp->p2>0 ); 2731 assert( zAffinity[pOp->p2]==0 ); 2732 pIn1 = &aMem[pOp->p1]; 2733 do{ 2734 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2735 assert( memIsValid(pIn1) ); 2736 applyAffinity(pIn1, *(zAffinity++), encoding); 2737 pIn1++; 2738 }while( zAffinity[0] ); 2739 break; 2740 } 2741 2742 /* Opcode: MakeRecord P1 P2 P3 P4 * 2743 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2744 ** 2745 ** Convert P2 registers beginning with P1 into the [record format] 2746 ** use as a data record in a database table or as a key 2747 ** in an index. The OP_Column opcode can decode the record later. 2748 ** 2749 ** P4 may be a string that is P2 characters long. The N-th character of the 2750 ** string indicates the column affinity that should be used for the N-th 2751 ** field of the index key. 2752 ** 2753 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2754 ** macros defined in sqliteInt.h. 2755 ** 2756 ** If P4 is NULL then all index fields have the affinity BLOB. 2757 */ 2758 case OP_MakeRecord: { 2759 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2760 Mem *pRec; /* The new record */ 2761 u64 nData; /* Number of bytes of data space */ 2762 int nHdr; /* Number of bytes of header space */ 2763 i64 nByte; /* Data space required for this record */ 2764 i64 nZero; /* Number of zero bytes at the end of the record */ 2765 int nVarint; /* Number of bytes in a varint */ 2766 u32 serial_type; /* Type field */ 2767 Mem *pData0; /* First field to be combined into the record */ 2768 Mem *pLast; /* Last field of the record */ 2769 int nField; /* Number of fields in the record */ 2770 char *zAffinity; /* The affinity string for the record */ 2771 int file_format; /* File format to use for encoding */ 2772 int i; /* Space used in zNewRecord[] header */ 2773 int j; /* Space used in zNewRecord[] content */ 2774 u32 len; /* Length of a field */ 2775 2776 /* Assuming the record contains N fields, the record format looks 2777 ** like this: 2778 ** 2779 ** ------------------------------------------------------------------------ 2780 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2781 ** ------------------------------------------------------------------------ 2782 ** 2783 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2784 ** and so forth. 2785 ** 2786 ** Each type field is a varint representing the serial type of the 2787 ** corresponding data element (see sqlite3VdbeSerialType()). The 2788 ** hdr-size field is also a varint which is the offset from the beginning 2789 ** of the record to data0. 2790 */ 2791 nData = 0; /* Number of bytes of data space */ 2792 nHdr = 0; /* Number of bytes of header space */ 2793 nZero = 0; /* Number of zero bytes at the end of the record */ 2794 nField = pOp->p1; 2795 zAffinity = pOp->p4.z; 2796 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2797 pData0 = &aMem[nField]; 2798 nField = pOp->p2; 2799 pLast = &pData0[nField-1]; 2800 file_format = p->minWriteFileFormat; 2801 2802 /* Identify the output register */ 2803 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2804 pOut = &aMem[pOp->p3]; 2805 memAboutToChange(p, pOut); 2806 2807 /* Apply the requested affinity to all inputs 2808 */ 2809 assert( pData0<=pLast ); 2810 if( zAffinity ){ 2811 pRec = pData0; 2812 do{ 2813 applyAffinity(pRec++, *(zAffinity++), encoding); 2814 assert( zAffinity[0]==0 || pRec<=pLast ); 2815 }while( zAffinity[0] ); 2816 } 2817 2818 #ifdef SQLITE_ENABLE_NULL_TRIM 2819 /* NULLs can be safely trimmed from the end of the record, as long as 2820 ** as the schema format is 2 or more and none of the omitted columns 2821 ** have a non-NULL default value. Also, the record must be left with 2822 ** at least one field. If P5>0 then it will be one more than the 2823 ** index of the right-most column with a non-NULL default value */ 2824 if( pOp->p5 ){ 2825 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2826 pLast--; 2827 nField--; 2828 } 2829 } 2830 #endif 2831 2832 /* Loop through the elements that will make up the record to figure 2833 ** out how much space is required for the new record. 2834 */ 2835 pRec = pLast; 2836 do{ 2837 assert( memIsValid(pRec) ); 2838 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2839 if( pRec->flags & MEM_Zero ){ 2840 if( serial_type==0 ){ 2841 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 2842 ** table methods that never invoke sqlite3_result_xxxxx() while 2843 ** computing an unchanging column value in an UPDATE statement. 2844 ** Give such values a special internal-use-only serial-type of 10 2845 ** so that they can be passed through to xUpdate and have 2846 ** a true sqlite3_value_nochange(). */ 2847 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 2848 serial_type = 10; 2849 }else if( nData ){ 2850 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2851 }else{ 2852 nZero += pRec->u.nZero; 2853 len -= pRec->u.nZero; 2854 } 2855 } 2856 nData += len; 2857 testcase( serial_type==127 ); 2858 testcase( serial_type==128 ); 2859 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2860 pRec->uTemp = serial_type; 2861 if( pRec==pData0 ) break; 2862 pRec--; 2863 }while(1); 2864 2865 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2866 ** which determines the total number of bytes in the header. The varint 2867 ** value is the size of the header in bytes including the size varint 2868 ** itself. */ 2869 testcase( nHdr==126 ); 2870 testcase( nHdr==127 ); 2871 if( nHdr<=126 ){ 2872 /* The common case */ 2873 nHdr += 1; 2874 }else{ 2875 /* Rare case of a really large header */ 2876 nVarint = sqlite3VarintLen(nHdr); 2877 nHdr += nVarint; 2878 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2879 } 2880 nByte = nHdr+nData; 2881 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2882 goto too_big; 2883 } 2884 2885 /* Make sure the output register has a buffer large enough to store 2886 ** the new record. The output register (pOp->p3) is not allowed to 2887 ** be one of the input registers (because the following call to 2888 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2889 */ 2890 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2891 goto no_mem; 2892 } 2893 zNewRecord = (u8 *)pOut->z; 2894 2895 /* Write the record */ 2896 i = putVarint32(zNewRecord, nHdr); 2897 j = nHdr; 2898 assert( pData0<=pLast ); 2899 pRec = pData0; 2900 do{ 2901 serial_type = pRec->uTemp; 2902 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2903 ** additional varints, one per column. */ 2904 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2905 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2906 ** immediately follow the header. */ 2907 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2908 }while( (++pRec)<=pLast ); 2909 assert( i==nHdr ); 2910 assert( j==nByte ); 2911 2912 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2913 pOut->n = (int)nByte; 2914 pOut->flags = MEM_Blob; 2915 if( nZero ){ 2916 pOut->u.nZero = nZero; 2917 pOut->flags |= MEM_Zero; 2918 } 2919 REGISTER_TRACE(pOp->p3, pOut); 2920 UPDATE_MAX_BLOBSIZE(pOut); 2921 break; 2922 } 2923 2924 /* Opcode: Count P1 P2 * * * 2925 ** Synopsis: r[P2]=count() 2926 ** 2927 ** Store the number of entries (an integer value) in the table or index 2928 ** opened by cursor P1 in register P2 2929 */ 2930 #ifndef SQLITE_OMIT_BTREECOUNT 2931 case OP_Count: { /* out2 */ 2932 i64 nEntry; 2933 BtCursor *pCrsr; 2934 2935 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2936 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2937 assert( pCrsr ); 2938 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2939 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2940 if( rc ) goto abort_due_to_error; 2941 pOut = out2Prerelease(p, pOp); 2942 pOut->u.i = nEntry; 2943 break; 2944 } 2945 #endif 2946 2947 /* Opcode: Savepoint P1 * * P4 * 2948 ** 2949 ** Open, release or rollback the savepoint named by parameter P4, depending 2950 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2951 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2952 */ 2953 case OP_Savepoint: { 2954 int p1; /* Value of P1 operand */ 2955 char *zName; /* Name of savepoint */ 2956 int nName; 2957 Savepoint *pNew; 2958 Savepoint *pSavepoint; 2959 Savepoint *pTmp; 2960 int iSavepoint; 2961 int ii; 2962 2963 p1 = pOp->p1; 2964 zName = pOp->p4.z; 2965 2966 /* Assert that the p1 parameter is valid. Also that if there is no open 2967 ** transaction, then there cannot be any savepoints. 2968 */ 2969 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2970 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2971 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2972 assert( checkSavepointCount(db) ); 2973 assert( p->bIsReader ); 2974 2975 if( p1==SAVEPOINT_BEGIN ){ 2976 if( db->nVdbeWrite>0 ){ 2977 /* A new savepoint cannot be created if there are active write 2978 ** statements (i.e. open read/write incremental blob handles). 2979 */ 2980 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2981 rc = SQLITE_BUSY; 2982 }else{ 2983 nName = sqlite3Strlen30(zName); 2984 2985 #ifndef SQLITE_OMIT_VIRTUALTABLE 2986 /* This call is Ok even if this savepoint is actually a transaction 2987 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2988 ** If this is a transaction savepoint being opened, it is guaranteed 2989 ** that the db->aVTrans[] array is empty. */ 2990 assert( db->autoCommit==0 || db->nVTrans==0 ); 2991 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2992 db->nStatement+db->nSavepoint); 2993 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2994 #endif 2995 2996 /* Create a new savepoint structure. */ 2997 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 2998 if( pNew ){ 2999 pNew->zName = (char *)&pNew[1]; 3000 memcpy(pNew->zName, zName, nName+1); 3001 3002 /* If there is no open transaction, then mark this as a special 3003 ** "transaction savepoint". */ 3004 if( db->autoCommit ){ 3005 db->autoCommit = 0; 3006 db->isTransactionSavepoint = 1; 3007 }else{ 3008 db->nSavepoint++; 3009 } 3010 3011 /* Link the new savepoint into the database handle's list. */ 3012 pNew->pNext = db->pSavepoint; 3013 db->pSavepoint = pNew; 3014 pNew->nDeferredCons = db->nDeferredCons; 3015 pNew->nDeferredImmCons = db->nDeferredImmCons; 3016 } 3017 } 3018 }else{ 3019 iSavepoint = 0; 3020 3021 /* Find the named savepoint. If there is no such savepoint, then an 3022 ** an error is returned to the user. */ 3023 for( 3024 pSavepoint = db->pSavepoint; 3025 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3026 pSavepoint = pSavepoint->pNext 3027 ){ 3028 iSavepoint++; 3029 } 3030 if( !pSavepoint ){ 3031 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3032 rc = SQLITE_ERROR; 3033 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3034 /* It is not possible to release (commit) a savepoint if there are 3035 ** active write statements. 3036 */ 3037 sqlite3VdbeError(p, "cannot release savepoint - " 3038 "SQL statements in progress"); 3039 rc = SQLITE_BUSY; 3040 }else{ 3041 3042 /* Determine whether or not this is a transaction savepoint. If so, 3043 ** and this is a RELEASE command, then the current transaction 3044 ** is committed. 3045 */ 3046 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3047 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3048 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3049 goto vdbe_return; 3050 } 3051 db->autoCommit = 1; 3052 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3053 p->pc = (int)(pOp - aOp); 3054 db->autoCommit = 0; 3055 p->rc = rc = SQLITE_BUSY; 3056 goto vdbe_return; 3057 } 3058 db->isTransactionSavepoint = 0; 3059 rc = p->rc; 3060 }else{ 3061 int isSchemaChange; 3062 iSavepoint = db->nSavepoint - iSavepoint - 1; 3063 if( p1==SAVEPOINT_ROLLBACK ){ 3064 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3065 for(ii=0; ii<db->nDb; ii++){ 3066 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3067 SQLITE_ABORT_ROLLBACK, 3068 isSchemaChange==0); 3069 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3070 } 3071 }else{ 3072 isSchemaChange = 0; 3073 } 3074 for(ii=0; ii<db->nDb; ii++){ 3075 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3076 if( rc!=SQLITE_OK ){ 3077 goto abort_due_to_error; 3078 } 3079 } 3080 if( isSchemaChange ){ 3081 sqlite3ExpirePreparedStatements(db); 3082 sqlite3ResetAllSchemasOfConnection(db); 3083 db->mDbFlags |= DBFLAG_SchemaChange; 3084 } 3085 } 3086 3087 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3088 ** savepoints nested inside of the savepoint being operated on. */ 3089 while( db->pSavepoint!=pSavepoint ){ 3090 pTmp = db->pSavepoint; 3091 db->pSavepoint = pTmp->pNext; 3092 sqlite3DbFree(db, pTmp); 3093 db->nSavepoint--; 3094 } 3095 3096 /* If it is a RELEASE, then destroy the savepoint being operated on 3097 ** too. If it is a ROLLBACK TO, then set the number of deferred 3098 ** constraint violations present in the database to the value stored 3099 ** when the savepoint was created. */ 3100 if( p1==SAVEPOINT_RELEASE ){ 3101 assert( pSavepoint==db->pSavepoint ); 3102 db->pSavepoint = pSavepoint->pNext; 3103 sqlite3DbFree(db, pSavepoint); 3104 if( !isTransaction ){ 3105 db->nSavepoint--; 3106 } 3107 }else{ 3108 db->nDeferredCons = pSavepoint->nDeferredCons; 3109 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3110 } 3111 3112 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3113 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3114 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3115 } 3116 } 3117 } 3118 if( rc ) goto abort_due_to_error; 3119 3120 break; 3121 } 3122 3123 /* Opcode: AutoCommit P1 P2 * * * 3124 ** 3125 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3126 ** back any currently active btree transactions. If there are any active 3127 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3128 ** there are active writing VMs or active VMs that use shared cache. 3129 ** 3130 ** This instruction causes the VM to halt. 3131 */ 3132 case OP_AutoCommit: { 3133 int desiredAutoCommit; 3134 int iRollback; 3135 3136 desiredAutoCommit = pOp->p1; 3137 iRollback = pOp->p2; 3138 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3139 assert( desiredAutoCommit==1 || iRollback==0 ); 3140 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3141 assert( p->bIsReader ); 3142 3143 if( desiredAutoCommit!=db->autoCommit ){ 3144 if( iRollback ){ 3145 assert( desiredAutoCommit==1 ); 3146 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3147 db->autoCommit = 1; 3148 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3149 /* If this instruction implements a COMMIT and other VMs are writing 3150 ** return an error indicating that the other VMs must complete first. 3151 */ 3152 sqlite3VdbeError(p, "cannot commit transaction - " 3153 "SQL statements in progress"); 3154 rc = SQLITE_BUSY; 3155 goto abort_due_to_error; 3156 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3157 goto vdbe_return; 3158 }else{ 3159 db->autoCommit = (u8)desiredAutoCommit; 3160 } 3161 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3162 p->pc = (int)(pOp - aOp); 3163 db->autoCommit = (u8)(1-desiredAutoCommit); 3164 p->rc = rc = SQLITE_BUSY; 3165 goto vdbe_return; 3166 } 3167 assert( db->nStatement==0 ); 3168 sqlite3CloseSavepoints(db); 3169 if( p->rc==SQLITE_OK ){ 3170 rc = SQLITE_DONE; 3171 }else{ 3172 rc = SQLITE_ERROR; 3173 } 3174 goto vdbe_return; 3175 }else{ 3176 sqlite3VdbeError(p, 3177 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3178 (iRollback)?"cannot rollback - no transaction is active": 3179 "cannot commit - no transaction is active")); 3180 3181 rc = SQLITE_ERROR; 3182 goto abort_due_to_error; 3183 } 3184 break; 3185 } 3186 3187 /* Opcode: Transaction P1 P2 P3 P4 P5 3188 ** 3189 ** Begin a transaction on database P1 if a transaction is not already 3190 ** active. 3191 ** If P2 is non-zero, then a write-transaction is started, or if a 3192 ** read-transaction is already active, it is upgraded to a write-transaction. 3193 ** If P2 is zero, then a read-transaction is started. 3194 ** 3195 ** P1 is the index of the database file on which the transaction is 3196 ** started. Index 0 is the main database file and index 1 is the 3197 ** file used for temporary tables. Indices of 2 or more are used for 3198 ** attached databases. 3199 ** 3200 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3201 ** true (this flag is set if the Vdbe may modify more than one row and may 3202 ** throw an ABORT exception), a statement transaction may also be opened. 3203 ** More specifically, a statement transaction is opened iff the database 3204 ** connection is currently not in autocommit mode, or if there are other 3205 ** active statements. A statement transaction allows the changes made by this 3206 ** VDBE to be rolled back after an error without having to roll back the 3207 ** entire transaction. If no error is encountered, the statement transaction 3208 ** will automatically commit when the VDBE halts. 3209 ** 3210 ** If P5!=0 then this opcode also checks the schema cookie against P3 3211 ** and the schema generation counter against P4. 3212 ** The cookie changes its value whenever the database schema changes. 3213 ** This operation is used to detect when that the cookie has changed 3214 ** and that the current process needs to reread the schema. If the schema 3215 ** cookie in P3 differs from the schema cookie in the database header or 3216 ** if the schema generation counter in P4 differs from the current 3217 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3218 ** halts. The sqlite3_step() wrapper function might then reprepare the 3219 ** statement and rerun it from the beginning. 3220 */ 3221 case OP_Transaction: { 3222 Btree *pBt; 3223 int iMeta = 0; 3224 3225 assert( p->bIsReader ); 3226 assert( p->readOnly==0 || pOp->p2==0 ); 3227 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3228 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3229 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3230 rc = SQLITE_READONLY; 3231 goto abort_due_to_error; 3232 } 3233 pBt = db->aDb[pOp->p1].pBt; 3234 3235 if( pBt ){ 3236 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3237 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3238 testcase( rc==SQLITE_BUSY_RECOVERY ); 3239 if( rc!=SQLITE_OK ){ 3240 if( (rc&0xff)==SQLITE_BUSY ){ 3241 p->pc = (int)(pOp - aOp); 3242 p->rc = rc; 3243 goto vdbe_return; 3244 } 3245 goto abort_due_to_error; 3246 } 3247 3248 if( pOp->p2 && p->usesStmtJournal 3249 && (db->autoCommit==0 || db->nVdbeRead>1) 3250 ){ 3251 assert( sqlite3BtreeIsInTrans(pBt) ); 3252 if( p->iStatement==0 ){ 3253 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3254 db->nStatement++; 3255 p->iStatement = db->nSavepoint + db->nStatement; 3256 } 3257 3258 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3259 if( rc==SQLITE_OK ){ 3260 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3261 } 3262 3263 /* Store the current value of the database handles deferred constraint 3264 ** counter. If the statement transaction needs to be rolled back, 3265 ** the value of this counter needs to be restored too. */ 3266 p->nStmtDefCons = db->nDeferredCons; 3267 p->nStmtDefImmCons = db->nDeferredImmCons; 3268 } 3269 } 3270 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3271 if( pOp->p5 3272 && (iMeta!=pOp->p3 3273 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3274 ){ 3275 /* 3276 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3277 ** version is checked to ensure that the schema has not changed since the 3278 ** SQL statement was prepared. 3279 */ 3280 sqlite3DbFree(db, p->zErrMsg); 3281 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3282 /* If the schema-cookie from the database file matches the cookie 3283 ** stored with the in-memory representation of the schema, do 3284 ** not reload the schema from the database file. 3285 ** 3286 ** If virtual-tables are in use, this is not just an optimization. 3287 ** Often, v-tables store their data in other SQLite tables, which 3288 ** are queried from within xNext() and other v-table methods using 3289 ** prepared queries. If such a query is out-of-date, we do not want to 3290 ** discard the database schema, as the user code implementing the 3291 ** v-table would have to be ready for the sqlite3_vtab structure itself 3292 ** to be invalidated whenever sqlite3_step() is called from within 3293 ** a v-table method. 3294 */ 3295 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3296 sqlite3ResetOneSchema(db, pOp->p1); 3297 } 3298 p->expired = 1; 3299 rc = SQLITE_SCHEMA; 3300 } 3301 if( rc ) goto abort_due_to_error; 3302 break; 3303 } 3304 3305 /* Opcode: ReadCookie P1 P2 P3 * * 3306 ** 3307 ** Read cookie number P3 from database P1 and write it into register P2. 3308 ** P3==1 is the schema version. P3==2 is the database format. 3309 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3310 ** the main database file and P1==1 is the database file used to store 3311 ** temporary tables. 3312 ** 3313 ** There must be a read-lock on the database (either a transaction 3314 ** must be started or there must be an open cursor) before 3315 ** executing this instruction. 3316 */ 3317 case OP_ReadCookie: { /* out2 */ 3318 int iMeta; 3319 int iDb; 3320 int iCookie; 3321 3322 assert( p->bIsReader ); 3323 iDb = pOp->p1; 3324 iCookie = pOp->p3; 3325 assert( pOp->p3<SQLITE_N_BTREE_META ); 3326 assert( iDb>=0 && iDb<db->nDb ); 3327 assert( db->aDb[iDb].pBt!=0 ); 3328 assert( DbMaskTest(p->btreeMask, iDb) ); 3329 3330 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3331 pOut = out2Prerelease(p, pOp); 3332 pOut->u.i = iMeta; 3333 break; 3334 } 3335 3336 /* Opcode: SetCookie P1 P2 P3 * * 3337 ** 3338 ** Write the integer value P3 into cookie number P2 of database P1. 3339 ** P2==1 is the schema version. P2==2 is the database format. 3340 ** P2==3 is the recommended pager cache 3341 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3342 ** database file used to store temporary tables. 3343 ** 3344 ** A transaction must be started before executing this opcode. 3345 */ 3346 case OP_SetCookie: { 3347 Db *pDb; 3348 3349 sqlite3VdbeIncrWriteCounter(p, 0); 3350 assert( pOp->p2<SQLITE_N_BTREE_META ); 3351 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3352 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3353 assert( p->readOnly==0 ); 3354 pDb = &db->aDb[pOp->p1]; 3355 assert( pDb->pBt!=0 ); 3356 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3357 /* See note about index shifting on OP_ReadCookie */ 3358 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3359 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3360 /* When the schema cookie changes, record the new cookie internally */ 3361 pDb->pSchema->schema_cookie = pOp->p3; 3362 db->mDbFlags |= DBFLAG_SchemaChange; 3363 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3364 /* Record changes in the file format */ 3365 pDb->pSchema->file_format = pOp->p3; 3366 } 3367 if( pOp->p1==1 ){ 3368 /* Invalidate all prepared statements whenever the TEMP database 3369 ** schema is changed. Ticket #1644 */ 3370 sqlite3ExpirePreparedStatements(db); 3371 p->expired = 0; 3372 } 3373 if( rc ) goto abort_due_to_error; 3374 break; 3375 } 3376 3377 /* Opcode: OpenRead P1 P2 P3 P4 P5 3378 ** Synopsis: root=P2 iDb=P3 3379 ** 3380 ** Open a read-only cursor for the database table whose root page is 3381 ** P2 in a database file. The database file is determined by P3. 3382 ** P3==0 means the main database, P3==1 means the database used for 3383 ** temporary tables, and P3>1 means used the corresponding attached 3384 ** database. Give the new cursor an identifier of P1. The P1 3385 ** values need not be contiguous but all P1 values should be small integers. 3386 ** It is an error for P1 to be negative. 3387 ** 3388 ** Allowed P5 bits: 3389 ** <ul> 3390 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3391 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3392 ** of OP_SeekLE/OP_IdxGT) 3393 ** </ul> 3394 ** 3395 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3396 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3397 ** object, then table being opened must be an [index b-tree] where the 3398 ** KeyInfo object defines the content and collating 3399 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3400 ** value, then the table being opened must be a [table b-tree] with a 3401 ** number of columns no less than the value of P4. 3402 ** 3403 ** See also: OpenWrite, ReopenIdx 3404 */ 3405 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3406 ** Synopsis: root=P2 iDb=P3 3407 ** 3408 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3409 ** checks to see if the cursor on P1 is already open on the same 3410 ** b-tree and if it is this opcode becomes a no-op. In other words, 3411 ** if the cursor is already open, do not reopen it. 3412 ** 3413 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3414 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3415 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3416 ** number. 3417 ** 3418 ** Allowed P5 bits: 3419 ** <ul> 3420 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3421 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3422 ** of OP_SeekLE/OP_IdxGT) 3423 ** </ul> 3424 ** 3425 ** See also: OP_OpenRead, OP_OpenWrite 3426 */ 3427 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3428 ** Synopsis: root=P2 iDb=P3 3429 ** 3430 ** Open a read/write cursor named P1 on the table or index whose root 3431 ** page is P2 (or whose root page is held in register P2 if the 3432 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3433 ** 3434 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3435 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3436 ** object, then table being opened must be an [index b-tree] where the 3437 ** KeyInfo object defines the content and collating 3438 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3439 ** value, then the table being opened must be a [table b-tree] with a 3440 ** number of columns no less than the value of P4. 3441 ** 3442 ** Allowed P5 bits: 3443 ** <ul> 3444 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3445 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3446 ** of OP_SeekLE/OP_IdxGT) 3447 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3448 ** and subsequently delete entries in an index btree. This is a 3449 ** hint to the storage engine that the storage engine is allowed to 3450 ** ignore. The hint is not used by the official SQLite b*tree storage 3451 ** engine, but is used by COMDB2. 3452 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3453 ** as the root page, not the value of P2 itself. 3454 ** </ul> 3455 ** 3456 ** This instruction works like OpenRead except that it opens the cursor 3457 ** in read/write mode. 3458 ** 3459 ** See also: OP_OpenRead, OP_ReopenIdx 3460 */ 3461 case OP_ReopenIdx: { 3462 int nField; 3463 KeyInfo *pKeyInfo; 3464 int p2; 3465 int iDb; 3466 int wrFlag; 3467 Btree *pX; 3468 VdbeCursor *pCur; 3469 Db *pDb; 3470 3471 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3472 assert( pOp->p4type==P4_KEYINFO ); 3473 pCur = p->apCsr[pOp->p1]; 3474 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3475 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3476 goto open_cursor_set_hints; 3477 } 3478 /* If the cursor is not currently open or is open on a different 3479 ** index, then fall through into OP_OpenRead to force a reopen */ 3480 case OP_OpenRead: 3481 case OP_OpenWrite: 3482 3483 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3484 assert( p->bIsReader ); 3485 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3486 || p->readOnly==0 ); 3487 3488 if( p->expired ){ 3489 rc = SQLITE_ABORT_ROLLBACK; 3490 goto abort_due_to_error; 3491 } 3492 3493 nField = 0; 3494 pKeyInfo = 0; 3495 p2 = pOp->p2; 3496 iDb = pOp->p3; 3497 assert( iDb>=0 && iDb<db->nDb ); 3498 assert( DbMaskTest(p->btreeMask, iDb) ); 3499 pDb = &db->aDb[iDb]; 3500 pX = pDb->pBt; 3501 assert( pX!=0 ); 3502 if( pOp->opcode==OP_OpenWrite ){ 3503 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3504 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3505 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3506 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3507 p->minWriteFileFormat = pDb->pSchema->file_format; 3508 } 3509 }else{ 3510 wrFlag = 0; 3511 } 3512 if( pOp->p5 & OPFLAG_P2ISREG ){ 3513 assert( p2>0 ); 3514 assert( p2<=(p->nMem+1 - p->nCursor) ); 3515 assert( pOp->opcode==OP_OpenWrite ); 3516 pIn2 = &aMem[p2]; 3517 assert( memIsValid(pIn2) ); 3518 assert( (pIn2->flags & MEM_Int)!=0 ); 3519 sqlite3VdbeMemIntegerify(pIn2); 3520 p2 = (int)pIn2->u.i; 3521 /* The p2 value always comes from a prior OP_CreateBtree opcode and 3522 ** that opcode will always set the p2 value to 2 or more or else fail. 3523 ** If there were a failure, the prepared statement would have halted 3524 ** before reaching this instruction. */ 3525 assert( p2>=2 ); 3526 } 3527 if( pOp->p4type==P4_KEYINFO ){ 3528 pKeyInfo = pOp->p4.pKeyInfo; 3529 assert( pKeyInfo->enc==ENC(db) ); 3530 assert( pKeyInfo->db==db ); 3531 nField = pKeyInfo->nAllField; 3532 }else if( pOp->p4type==P4_INT32 ){ 3533 nField = pOp->p4.i; 3534 } 3535 assert( pOp->p1>=0 ); 3536 assert( nField>=0 ); 3537 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3538 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3539 if( pCur==0 ) goto no_mem; 3540 pCur->nullRow = 1; 3541 pCur->isOrdered = 1; 3542 pCur->pgnoRoot = p2; 3543 #ifdef SQLITE_DEBUG 3544 pCur->wrFlag = wrFlag; 3545 #endif 3546 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3547 pCur->pKeyInfo = pKeyInfo; 3548 /* Set the VdbeCursor.isTable variable. Previous versions of 3549 ** SQLite used to check if the root-page flags were sane at this point 3550 ** and report database corruption if they were not, but this check has 3551 ** since moved into the btree layer. */ 3552 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3553 3554 open_cursor_set_hints: 3555 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3556 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3557 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3558 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3559 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3560 #endif 3561 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3562 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3563 if( rc ) goto abort_due_to_error; 3564 break; 3565 } 3566 3567 /* Opcode: OpenDup P1 P2 * * * 3568 ** 3569 ** Open a new cursor P1 that points to the same ephemeral table as 3570 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 3571 ** opcode. Only ephemeral cursors may be duplicated. 3572 ** 3573 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 3574 */ 3575 case OP_OpenDup: { 3576 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 3577 VdbeCursor *pCx; /* The new cursor */ 3578 3579 pOrig = p->apCsr[pOp->p2]; 3580 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */ 3581 3582 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE); 3583 if( pCx==0 ) goto no_mem; 3584 pCx->nullRow = 1; 3585 pCx->isEphemeral = 1; 3586 pCx->pKeyInfo = pOrig->pKeyInfo; 3587 pCx->isTable = pOrig->isTable; 3588 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR, 3589 pCx->pKeyInfo, pCx->uc.pCursor); 3590 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 3591 ** opened for a database. Since there is already an open cursor when this 3592 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 3593 assert( rc==SQLITE_OK ); 3594 break; 3595 } 3596 3597 3598 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3599 ** Synopsis: nColumn=P2 3600 ** 3601 ** Open a new cursor P1 to a transient table. 3602 ** The cursor is always opened read/write even if 3603 ** the main database is read-only. The ephemeral 3604 ** table is deleted automatically when the cursor is closed. 3605 ** 3606 ** P2 is the number of columns in the ephemeral table. 3607 ** The cursor points to a BTree table if P4==0 and to a BTree index 3608 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3609 ** that defines the format of keys in the index. 3610 ** 3611 ** The P5 parameter can be a mask of the BTREE_* flags defined 3612 ** in btree.h. These flags control aspects of the operation of 3613 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3614 ** added automatically. 3615 */ 3616 /* Opcode: OpenAutoindex P1 P2 * P4 * 3617 ** Synopsis: nColumn=P2 3618 ** 3619 ** This opcode works the same as OP_OpenEphemeral. It has a 3620 ** different name to distinguish its use. Tables created using 3621 ** by this opcode will be used for automatically created transient 3622 ** indices in joins. 3623 */ 3624 case OP_OpenAutoindex: 3625 case OP_OpenEphemeral: { 3626 VdbeCursor *pCx; 3627 KeyInfo *pKeyInfo; 3628 3629 static const int vfsFlags = 3630 SQLITE_OPEN_READWRITE | 3631 SQLITE_OPEN_CREATE | 3632 SQLITE_OPEN_EXCLUSIVE | 3633 SQLITE_OPEN_DELETEONCLOSE | 3634 SQLITE_OPEN_TRANSIENT_DB; 3635 assert( pOp->p1>=0 ); 3636 assert( pOp->p2>=0 ); 3637 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3638 if( pCx==0 ) goto no_mem; 3639 pCx->nullRow = 1; 3640 pCx->isEphemeral = 1; 3641 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3642 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3643 if( rc==SQLITE_OK ){ 3644 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0); 3645 } 3646 if( rc==SQLITE_OK ){ 3647 /* If a transient index is required, create it by calling 3648 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3649 ** opening it. If a transient table is required, just use the 3650 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3651 */ 3652 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3653 int pgno; 3654 assert( pOp->p4type==P4_KEYINFO ); 3655 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3656 if( rc==SQLITE_OK ){ 3657 assert( pgno==MASTER_ROOT+1 ); 3658 assert( pKeyInfo->db==db ); 3659 assert( pKeyInfo->enc==ENC(db) ); 3660 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3661 pKeyInfo, pCx->uc.pCursor); 3662 } 3663 pCx->isTable = 0; 3664 }else{ 3665 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3666 0, pCx->uc.pCursor); 3667 pCx->isTable = 1; 3668 } 3669 } 3670 if( rc ) goto abort_due_to_error; 3671 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3672 break; 3673 } 3674 3675 /* Opcode: SorterOpen P1 P2 P3 P4 * 3676 ** 3677 ** This opcode works like OP_OpenEphemeral except that it opens 3678 ** a transient index that is specifically designed to sort large 3679 ** tables using an external merge-sort algorithm. 3680 ** 3681 ** If argument P3 is non-zero, then it indicates that the sorter may 3682 ** assume that a stable sort considering the first P3 fields of each 3683 ** key is sufficient to produce the required results. 3684 */ 3685 case OP_SorterOpen: { 3686 VdbeCursor *pCx; 3687 3688 assert( pOp->p1>=0 ); 3689 assert( pOp->p2>=0 ); 3690 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3691 if( pCx==0 ) goto no_mem; 3692 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3693 assert( pCx->pKeyInfo->db==db ); 3694 assert( pCx->pKeyInfo->enc==ENC(db) ); 3695 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3696 if( rc ) goto abort_due_to_error; 3697 break; 3698 } 3699 3700 /* Opcode: SequenceTest P1 P2 * * * 3701 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3702 ** 3703 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3704 ** to P2. Regardless of whether or not the jump is taken, increment the 3705 ** the sequence value. 3706 */ 3707 case OP_SequenceTest: { 3708 VdbeCursor *pC; 3709 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3710 pC = p->apCsr[pOp->p1]; 3711 assert( isSorter(pC) ); 3712 if( (pC->seqCount++)==0 ){ 3713 goto jump_to_p2; 3714 } 3715 break; 3716 } 3717 3718 /* Opcode: OpenPseudo P1 P2 P3 * * 3719 ** Synopsis: P3 columns in r[P2] 3720 ** 3721 ** Open a new cursor that points to a fake table that contains a single 3722 ** row of data. The content of that one row is the content of memory 3723 ** register P2. In other words, cursor P1 becomes an alias for the 3724 ** MEM_Blob content contained in register P2. 3725 ** 3726 ** A pseudo-table created by this opcode is used to hold a single 3727 ** row output from the sorter so that the row can be decomposed into 3728 ** individual columns using the OP_Column opcode. The OP_Column opcode 3729 ** is the only cursor opcode that works with a pseudo-table. 3730 ** 3731 ** P3 is the number of fields in the records that will be stored by 3732 ** the pseudo-table. 3733 */ 3734 case OP_OpenPseudo: { 3735 VdbeCursor *pCx; 3736 3737 assert( pOp->p1>=0 ); 3738 assert( pOp->p3>=0 ); 3739 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3740 if( pCx==0 ) goto no_mem; 3741 pCx->nullRow = 1; 3742 pCx->seekResult = pOp->p2; 3743 pCx->isTable = 1; 3744 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 3745 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 3746 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 3747 ** which is a performance optimization */ 3748 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 3749 assert( pOp->p5==0 ); 3750 break; 3751 } 3752 3753 /* Opcode: Close P1 * * * * 3754 ** 3755 ** Close a cursor previously opened as P1. If P1 is not 3756 ** currently open, this instruction is a no-op. 3757 */ 3758 case OP_Close: { 3759 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3760 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3761 p->apCsr[pOp->p1] = 0; 3762 break; 3763 } 3764 3765 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3766 /* Opcode: ColumnsUsed P1 * * P4 * 3767 ** 3768 ** This opcode (which only exists if SQLite was compiled with 3769 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3770 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3771 ** (P4_INT64) in which the first 63 bits are one for each of the 3772 ** first 63 columns of the table or index that are actually used 3773 ** by the cursor. The high-order bit is set if any column after 3774 ** the 64th is used. 3775 */ 3776 case OP_ColumnsUsed: { 3777 VdbeCursor *pC; 3778 pC = p->apCsr[pOp->p1]; 3779 assert( pC->eCurType==CURTYPE_BTREE ); 3780 pC->maskUsed = *(u64*)pOp->p4.pI64; 3781 break; 3782 } 3783 #endif 3784 3785 /* Opcode: SeekGE P1 P2 P3 P4 * 3786 ** Synopsis: key=r[P3@P4] 3787 ** 3788 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3789 ** use the value in register P3 as the key. If cursor P1 refers 3790 ** to an SQL index, then P3 is the first in an array of P4 registers 3791 ** that are used as an unpacked index key. 3792 ** 3793 ** Reposition cursor P1 so that it points to the smallest entry that 3794 ** is greater than or equal to the key value. If there are no records 3795 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3796 ** 3797 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3798 ** opcode will always land on a record that equally equals the key, or 3799 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3800 ** opcode must be followed by an IdxLE opcode with the same arguments. 3801 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3802 ** IdxLE opcode will be used on subsequent loop iterations. 3803 ** 3804 ** This opcode leaves the cursor configured to move in forward order, 3805 ** from the beginning toward the end. In other words, the cursor is 3806 ** configured to use Next, not Prev. 3807 ** 3808 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3809 */ 3810 /* Opcode: SeekGT P1 P2 P3 P4 * 3811 ** Synopsis: key=r[P3@P4] 3812 ** 3813 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3814 ** use the value in register P3 as a key. If cursor P1 refers 3815 ** to an SQL index, then P3 is the first in an array of P4 registers 3816 ** that are used as an unpacked index key. 3817 ** 3818 ** Reposition cursor P1 so that it points to the smallest entry that 3819 ** is greater than the key value. If there are no records greater than 3820 ** the key and P2 is not zero, then jump to P2. 3821 ** 3822 ** This opcode leaves the cursor configured to move in forward order, 3823 ** from the beginning toward the end. In other words, the cursor is 3824 ** configured to use Next, not Prev. 3825 ** 3826 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3827 */ 3828 /* Opcode: SeekLT P1 P2 P3 P4 * 3829 ** Synopsis: key=r[P3@P4] 3830 ** 3831 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3832 ** use the value in register P3 as a key. If cursor P1 refers 3833 ** to an SQL index, then P3 is the first in an array of P4 registers 3834 ** that are used as an unpacked index key. 3835 ** 3836 ** Reposition cursor P1 so that it points to the largest entry that 3837 ** is less than the key value. If there are no records less than 3838 ** the key and P2 is not zero, then jump to P2. 3839 ** 3840 ** This opcode leaves the cursor configured to move in reverse order, 3841 ** from the end toward the beginning. In other words, the cursor is 3842 ** configured to use Prev, not Next. 3843 ** 3844 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3845 */ 3846 /* Opcode: SeekLE P1 P2 P3 P4 * 3847 ** Synopsis: key=r[P3@P4] 3848 ** 3849 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3850 ** use the value in register P3 as a key. If cursor P1 refers 3851 ** to an SQL index, then P3 is the first in an array of P4 registers 3852 ** that are used as an unpacked index key. 3853 ** 3854 ** Reposition cursor P1 so that it points to the largest entry that 3855 ** is less than or equal to the key value. If there are no records 3856 ** less than or equal to the key and P2 is not zero, then jump to P2. 3857 ** 3858 ** This opcode leaves the cursor configured to move in reverse order, 3859 ** from the end toward the beginning. In other words, the cursor is 3860 ** configured to use Prev, not Next. 3861 ** 3862 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3863 ** opcode will always land on a record that equally equals the key, or 3864 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3865 ** opcode must be followed by an IdxGE opcode with the same arguments. 3866 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3867 ** IdxGE opcode will be used on subsequent loop iterations. 3868 ** 3869 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3870 */ 3871 case OP_SeekLT: /* jump, in3 */ 3872 case OP_SeekLE: /* jump, in3 */ 3873 case OP_SeekGE: /* jump, in3 */ 3874 case OP_SeekGT: { /* jump, in3 */ 3875 int res; /* Comparison result */ 3876 int oc; /* Opcode */ 3877 VdbeCursor *pC; /* The cursor to seek */ 3878 UnpackedRecord r; /* The key to seek for */ 3879 int nField; /* Number of columns or fields in the key */ 3880 i64 iKey; /* The rowid we are to seek to */ 3881 int eqOnly; /* Only interested in == results */ 3882 3883 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3884 assert( pOp->p2!=0 ); 3885 pC = p->apCsr[pOp->p1]; 3886 assert( pC!=0 ); 3887 assert( pC->eCurType==CURTYPE_BTREE ); 3888 assert( OP_SeekLE == OP_SeekLT+1 ); 3889 assert( OP_SeekGE == OP_SeekLT+2 ); 3890 assert( OP_SeekGT == OP_SeekLT+3 ); 3891 assert( pC->isOrdered ); 3892 assert( pC->uc.pCursor!=0 ); 3893 oc = pOp->opcode; 3894 eqOnly = 0; 3895 pC->nullRow = 0; 3896 #ifdef SQLITE_DEBUG 3897 pC->seekOp = pOp->opcode; 3898 #endif 3899 3900 if( pC->isTable ){ 3901 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3902 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3903 || CORRUPT_DB ); 3904 3905 /* The input value in P3 might be of any type: integer, real, string, 3906 ** blob, or NULL. But it needs to be an integer before we can do 3907 ** the seek, so convert it. */ 3908 pIn3 = &aMem[pOp->p3]; 3909 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3910 applyNumericAffinity(pIn3, 0); 3911 } 3912 iKey = sqlite3VdbeIntValue(pIn3); 3913 3914 /* If the P3 value could not be converted into an integer without 3915 ** loss of information, then special processing is required... */ 3916 if( (pIn3->flags & MEM_Int)==0 ){ 3917 if( (pIn3->flags & MEM_Real)==0 ){ 3918 /* If the P3 value cannot be converted into any kind of a number, 3919 ** then the seek is not possible, so jump to P2 */ 3920 VdbeBranchTaken(1,2); goto jump_to_p2; 3921 break; 3922 } 3923 3924 /* If the approximation iKey is larger than the actual real search 3925 ** term, substitute >= for > and < for <=. e.g. if the search term 3926 ** is 4.9 and the integer approximation 5: 3927 ** 3928 ** (x > 4.9) -> (x >= 5) 3929 ** (x <= 4.9) -> (x < 5) 3930 */ 3931 if( pIn3->u.r<(double)iKey ){ 3932 assert( OP_SeekGE==(OP_SeekGT-1) ); 3933 assert( OP_SeekLT==(OP_SeekLE-1) ); 3934 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3935 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3936 } 3937 3938 /* If the approximation iKey is smaller than the actual real search 3939 ** term, substitute <= for < and > for >=. */ 3940 else if( pIn3->u.r>(double)iKey ){ 3941 assert( OP_SeekLE==(OP_SeekLT+1) ); 3942 assert( OP_SeekGT==(OP_SeekGE+1) ); 3943 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3944 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3945 } 3946 } 3947 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3948 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3949 if( rc!=SQLITE_OK ){ 3950 goto abort_due_to_error; 3951 } 3952 }else{ 3953 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3954 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3955 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3956 */ 3957 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3958 eqOnly = 1; 3959 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3960 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3961 assert( pOp[1].p1==pOp[0].p1 ); 3962 assert( pOp[1].p2==pOp[0].p2 ); 3963 assert( pOp[1].p3==pOp[0].p3 ); 3964 assert( pOp[1].p4.i==pOp[0].p4.i ); 3965 } 3966 3967 nField = pOp->p4.i; 3968 assert( pOp->p4type==P4_INT32 ); 3969 assert( nField>0 ); 3970 r.pKeyInfo = pC->pKeyInfo; 3971 r.nField = (u16)nField; 3972 3973 /* The next line of code computes as follows, only faster: 3974 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3975 ** r.default_rc = -1; 3976 ** }else{ 3977 ** r.default_rc = +1; 3978 ** } 3979 */ 3980 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3981 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3982 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3983 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3984 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3985 3986 r.aMem = &aMem[pOp->p3]; 3987 #ifdef SQLITE_DEBUG 3988 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3989 #endif 3990 r.eqSeen = 0; 3991 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3992 if( rc!=SQLITE_OK ){ 3993 goto abort_due_to_error; 3994 } 3995 if( eqOnly && r.eqSeen==0 ){ 3996 assert( res!=0 ); 3997 goto seek_not_found; 3998 } 3999 } 4000 pC->deferredMoveto = 0; 4001 pC->cacheStatus = CACHE_STALE; 4002 #ifdef SQLITE_TEST 4003 sqlite3_search_count++; 4004 #endif 4005 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4006 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4007 res = 0; 4008 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4009 if( rc!=SQLITE_OK ){ 4010 if( rc==SQLITE_DONE ){ 4011 rc = SQLITE_OK; 4012 res = 1; 4013 }else{ 4014 goto abort_due_to_error; 4015 } 4016 } 4017 }else{ 4018 res = 0; 4019 } 4020 }else{ 4021 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4022 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4023 res = 0; 4024 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4025 if( rc!=SQLITE_OK ){ 4026 if( rc==SQLITE_DONE ){ 4027 rc = SQLITE_OK; 4028 res = 1; 4029 }else{ 4030 goto abort_due_to_error; 4031 } 4032 } 4033 }else{ 4034 /* res might be negative because the table is empty. Check to 4035 ** see if this is the case. 4036 */ 4037 res = sqlite3BtreeEof(pC->uc.pCursor); 4038 } 4039 } 4040 seek_not_found: 4041 assert( pOp->p2>0 ); 4042 VdbeBranchTaken(res!=0,2); 4043 if( res ){ 4044 goto jump_to_p2; 4045 }else if( eqOnly ){ 4046 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4047 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4048 } 4049 break; 4050 } 4051 4052 /* Opcode: SeekHit P1 P2 * * * 4053 ** Synopsis: seekHit=P2 4054 ** 4055 ** Set the seekHit flag on cursor P1 to the value in P2. 4056 ** The seekHit flag is used by the IfNoHope opcode. 4057 ** 4058 ** P1 must be a valid b-tree cursor. P2 must be a boolean value, 4059 ** either 0 or 1. 4060 */ 4061 case OP_SeekHit: { 4062 VdbeCursor *pC; 4063 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4064 pC = p->apCsr[pOp->p1]; 4065 assert( pC!=0 ); 4066 assert( pOp->p2==0 || pOp->p2==1 ); 4067 pC->seekHit = pOp->p2 & 1; 4068 break; 4069 } 4070 4071 /* Opcode: Found P1 P2 P3 P4 * 4072 ** Synopsis: key=r[P3@P4] 4073 ** 4074 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4075 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4076 ** record. 4077 ** 4078 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4079 ** is a prefix of any entry in P1 then a jump is made to P2 and 4080 ** P1 is left pointing at the matching entry. 4081 ** 4082 ** This operation leaves the cursor in a state where it can be 4083 ** advanced in the forward direction. The Next instruction will work, 4084 ** but not the Prev instruction. 4085 ** 4086 ** See also: NotFound, NoConflict, NotExists. SeekGe 4087 */ 4088 /* Opcode: NotFound P1 P2 P3 P4 * 4089 ** Synopsis: key=r[P3@P4] 4090 ** 4091 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4092 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4093 ** record. 4094 ** 4095 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4096 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4097 ** does contain an entry whose prefix matches the P3/P4 record then control 4098 ** falls through to the next instruction and P1 is left pointing at the 4099 ** matching entry. 4100 ** 4101 ** This operation leaves the cursor in a state where it cannot be 4102 ** advanced in either direction. In other words, the Next and Prev 4103 ** opcodes do not work after this operation. 4104 ** 4105 ** See also: Found, NotExists, NoConflict, IfNoHope 4106 */ 4107 /* Opcode: IfNoHope P1 P2 P3 P4 * 4108 ** Synopsis: key=r[P3@P4] 4109 ** 4110 ** Register P3 is the first of P4 registers that form an unpacked 4111 ** record. 4112 ** 4113 ** Cursor P1 is on an index btree. If the seekHit flag is set on P1, then 4114 ** this opcode is a no-op. But if the seekHit flag of P1 is clear, then 4115 ** check to see if there is any entry in P1 that matches the 4116 ** prefix identified by P3 and P4. If no entry matches the prefix, 4117 ** jump to P2. Otherwise fall through. 4118 ** 4119 ** This opcode behaves like OP_NotFound if the seekHit 4120 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set. 4121 ** 4122 ** This opcode is used in IN clause processing for a multi-column key. 4123 ** If an IN clause is attached to an element of the key other than the 4124 ** left-most element, and if there are no matches on the most recent 4125 ** seek over the whole key, then it might be that one of the key element 4126 ** to the left is prohibiting a match, and hence there is "no hope" of 4127 ** any match regardless of how many IN clause elements are checked. 4128 ** In such a case, we abandon the IN clause search early, using this 4129 ** opcode. The opcode name comes from the fact that the 4130 ** jump is taken if there is "no hope" of achieving a match. 4131 ** 4132 ** See also: NotFound, SeekHit 4133 */ 4134 /* Opcode: NoConflict P1 P2 P3 P4 * 4135 ** Synopsis: key=r[P3@P4] 4136 ** 4137 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4138 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4139 ** record. 4140 ** 4141 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4142 ** contains any NULL value, jump immediately to P2. If all terms of the 4143 ** record are not-NULL then a check is done to determine if any row in the 4144 ** P1 index btree has a matching key prefix. If there are no matches, jump 4145 ** immediately to P2. If there is a match, fall through and leave the P1 4146 ** cursor pointing to the matching row. 4147 ** 4148 ** This opcode is similar to OP_NotFound with the exceptions that the 4149 ** branch is always taken if any part of the search key input is NULL. 4150 ** 4151 ** This operation leaves the cursor in a state where it cannot be 4152 ** advanced in either direction. In other words, the Next and Prev 4153 ** opcodes do not work after this operation. 4154 ** 4155 ** See also: NotFound, Found, NotExists 4156 */ 4157 case OP_IfNoHope: { /* jump, in3 */ 4158 VdbeCursor *pC; 4159 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4160 pC = p->apCsr[pOp->p1]; 4161 assert( pC!=0 ); 4162 if( pC->seekHit ) break; 4163 /* Fall through into OP_NotFound */ 4164 } 4165 case OP_NoConflict: /* jump, in3 */ 4166 case OP_NotFound: /* jump, in3 */ 4167 case OP_Found: { /* jump, in3 */ 4168 int alreadyExists; 4169 int takeJump; 4170 int ii; 4171 VdbeCursor *pC; 4172 int res; 4173 UnpackedRecord *pFree; 4174 UnpackedRecord *pIdxKey; 4175 UnpackedRecord r; 4176 4177 #ifdef SQLITE_TEST 4178 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4179 #endif 4180 4181 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4182 assert( pOp->p4type==P4_INT32 ); 4183 pC = p->apCsr[pOp->p1]; 4184 assert( pC!=0 ); 4185 #ifdef SQLITE_DEBUG 4186 pC->seekOp = pOp->opcode; 4187 #endif 4188 pIn3 = &aMem[pOp->p3]; 4189 assert( pC->eCurType==CURTYPE_BTREE ); 4190 assert( pC->uc.pCursor!=0 ); 4191 assert( pC->isTable==0 ); 4192 if( pOp->p4.i>0 ){ 4193 r.pKeyInfo = pC->pKeyInfo; 4194 r.nField = (u16)pOp->p4.i; 4195 r.aMem = pIn3; 4196 #ifdef SQLITE_DEBUG 4197 for(ii=0; ii<r.nField; ii++){ 4198 assert( memIsValid(&r.aMem[ii]) ); 4199 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4200 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4201 } 4202 #endif 4203 pIdxKey = &r; 4204 pFree = 0; 4205 }else{ 4206 assert( pIn3->flags & MEM_Blob ); 4207 rc = ExpandBlob(pIn3); 4208 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4209 if( rc ) goto no_mem; 4210 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4211 if( pIdxKey==0 ) goto no_mem; 4212 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4213 } 4214 pIdxKey->default_rc = 0; 4215 takeJump = 0; 4216 if( pOp->opcode==OP_NoConflict ){ 4217 /* For the OP_NoConflict opcode, take the jump if any of the 4218 ** input fields are NULL, since any key with a NULL will not 4219 ** conflict */ 4220 for(ii=0; ii<pIdxKey->nField; ii++){ 4221 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4222 takeJump = 1; 4223 break; 4224 } 4225 } 4226 } 4227 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4228 if( pFree ) sqlite3DbFreeNN(db, pFree); 4229 if( rc!=SQLITE_OK ){ 4230 goto abort_due_to_error; 4231 } 4232 pC->seekResult = res; 4233 alreadyExists = (res==0); 4234 pC->nullRow = 1-alreadyExists; 4235 pC->deferredMoveto = 0; 4236 pC->cacheStatus = CACHE_STALE; 4237 if( pOp->opcode==OP_Found ){ 4238 VdbeBranchTaken(alreadyExists!=0,2); 4239 if( alreadyExists ) goto jump_to_p2; 4240 }else{ 4241 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4242 if( takeJump || !alreadyExists ) goto jump_to_p2; 4243 } 4244 break; 4245 } 4246 4247 /* Opcode: SeekRowid P1 P2 P3 * * 4248 ** Synopsis: intkey=r[P3] 4249 ** 4250 ** P1 is the index of a cursor open on an SQL table btree (with integer 4251 ** keys). If register P3 does not contain an integer or if P1 does not 4252 ** contain a record with rowid P3 then jump immediately to P2. 4253 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4254 ** a record with rowid P3 then 4255 ** leave the cursor pointing at that record and fall through to the next 4256 ** instruction. 4257 ** 4258 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4259 ** the P3 register must be guaranteed to contain an integer value. With this 4260 ** opcode, register P3 might not contain an integer. 4261 ** 4262 ** The OP_NotFound opcode performs the same operation on index btrees 4263 ** (with arbitrary multi-value keys). 4264 ** 4265 ** This opcode leaves the cursor in a state where it cannot be advanced 4266 ** in either direction. In other words, the Next and Prev opcodes will 4267 ** not work following this opcode. 4268 ** 4269 ** See also: Found, NotFound, NoConflict, SeekRowid 4270 */ 4271 /* Opcode: NotExists P1 P2 P3 * * 4272 ** Synopsis: intkey=r[P3] 4273 ** 4274 ** P1 is the index of a cursor open on an SQL table btree (with integer 4275 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4276 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4277 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4278 ** leave the cursor pointing at that record and fall through to the next 4279 ** instruction. 4280 ** 4281 ** The OP_SeekRowid opcode performs the same operation but also allows the 4282 ** P3 register to contain a non-integer value, in which case the jump is 4283 ** always taken. This opcode requires that P3 always contain an integer. 4284 ** 4285 ** The OP_NotFound opcode performs the same operation on index btrees 4286 ** (with arbitrary multi-value keys). 4287 ** 4288 ** This opcode leaves the cursor in a state where it cannot be advanced 4289 ** in either direction. In other words, the Next and Prev opcodes will 4290 ** not work following this opcode. 4291 ** 4292 ** See also: Found, NotFound, NoConflict, SeekRowid 4293 */ 4294 case OP_SeekRowid: { /* jump, in3 */ 4295 VdbeCursor *pC; 4296 BtCursor *pCrsr; 4297 int res; 4298 u64 iKey; 4299 4300 pIn3 = &aMem[pOp->p3]; 4301 if( (pIn3->flags & MEM_Int)==0 ){ 4302 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4303 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; 4304 } 4305 /* Fall through into OP_NotExists */ 4306 case OP_NotExists: /* jump, in3 */ 4307 pIn3 = &aMem[pOp->p3]; 4308 assert( pIn3->flags & MEM_Int ); 4309 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4310 pC = p->apCsr[pOp->p1]; 4311 assert( pC!=0 ); 4312 #ifdef SQLITE_DEBUG 4313 pC->seekOp = OP_SeekRowid; 4314 #endif 4315 assert( pC->isTable ); 4316 assert( pC->eCurType==CURTYPE_BTREE ); 4317 pCrsr = pC->uc.pCursor; 4318 assert( pCrsr!=0 ); 4319 res = 0; 4320 iKey = pIn3->u.i; 4321 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4322 assert( rc==SQLITE_OK || res==0 ); 4323 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4324 pC->nullRow = 0; 4325 pC->cacheStatus = CACHE_STALE; 4326 pC->deferredMoveto = 0; 4327 VdbeBranchTaken(res!=0,2); 4328 pC->seekResult = res; 4329 if( res!=0 ){ 4330 assert( rc==SQLITE_OK ); 4331 if( pOp->p2==0 ){ 4332 rc = SQLITE_CORRUPT_BKPT; 4333 }else{ 4334 goto jump_to_p2; 4335 } 4336 } 4337 if( rc ) goto abort_due_to_error; 4338 break; 4339 } 4340 4341 /* Opcode: Sequence P1 P2 * * * 4342 ** Synopsis: r[P2]=cursor[P1].ctr++ 4343 ** 4344 ** Find the next available sequence number for cursor P1. 4345 ** Write the sequence number into register P2. 4346 ** The sequence number on the cursor is incremented after this 4347 ** instruction. 4348 */ 4349 case OP_Sequence: { /* out2 */ 4350 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4351 assert( p->apCsr[pOp->p1]!=0 ); 4352 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4353 pOut = out2Prerelease(p, pOp); 4354 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4355 break; 4356 } 4357 4358 4359 /* Opcode: NewRowid P1 P2 P3 * * 4360 ** Synopsis: r[P2]=rowid 4361 ** 4362 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4363 ** The record number is not previously used as a key in the database 4364 ** table that cursor P1 points to. The new record number is written 4365 ** written to register P2. 4366 ** 4367 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4368 ** the largest previously generated record number. No new record numbers are 4369 ** allowed to be less than this value. When this value reaches its maximum, 4370 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4371 ** generated record number. This P3 mechanism is used to help implement the 4372 ** AUTOINCREMENT feature. 4373 */ 4374 case OP_NewRowid: { /* out2 */ 4375 i64 v; /* The new rowid */ 4376 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4377 int res; /* Result of an sqlite3BtreeLast() */ 4378 int cnt; /* Counter to limit the number of searches */ 4379 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4380 VdbeFrame *pFrame; /* Root frame of VDBE */ 4381 4382 v = 0; 4383 res = 0; 4384 pOut = out2Prerelease(p, pOp); 4385 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4386 pC = p->apCsr[pOp->p1]; 4387 assert( pC!=0 ); 4388 assert( pC->isTable ); 4389 assert( pC->eCurType==CURTYPE_BTREE ); 4390 assert( pC->uc.pCursor!=0 ); 4391 { 4392 /* The next rowid or record number (different terms for the same 4393 ** thing) is obtained in a two-step algorithm. 4394 ** 4395 ** First we attempt to find the largest existing rowid and add one 4396 ** to that. But if the largest existing rowid is already the maximum 4397 ** positive integer, we have to fall through to the second 4398 ** probabilistic algorithm 4399 ** 4400 ** The second algorithm is to select a rowid at random and see if 4401 ** it already exists in the table. If it does not exist, we have 4402 ** succeeded. If the random rowid does exist, we select a new one 4403 ** and try again, up to 100 times. 4404 */ 4405 assert( pC->isTable ); 4406 4407 #ifdef SQLITE_32BIT_ROWID 4408 # define MAX_ROWID 0x7fffffff 4409 #else 4410 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4411 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4412 ** to provide the constant while making all compilers happy. 4413 */ 4414 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4415 #endif 4416 4417 if( !pC->useRandomRowid ){ 4418 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4419 if( rc!=SQLITE_OK ){ 4420 goto abort_due_to_error; 4421 } 4422 if( res ){ 4423 v = 1; /* IMP: R-61914-48074 */ 4424 }else{ 4425 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4426 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4427 if( v>=MAX_ROWID ){ 4428 pC->useRandomRowid = 1; 4429 }else{ 4430 v++; /* IMP: R-29538-34987 */ 4431 } 4432 } 4433 } 4434 4435 #ifndef SQLITE_OMIT_AUTOINCREMENT 4436 if( pOp->p3 ){ 4437 /* Assert that P3 is a valid memory cell. */ 4438 assert( pOp->p3>0 ); 4439 if( p->pFrame ){ 4440 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4441 /* Assert that P3 is a valid memory cell. */ 4442 assert( pOp->p3<=pFrame->nMem ); 4443 pMem = &pFrame->aMem[pOp->p3]; 4444 }else{ 4445 /* Assert that P3 is a valid memory cell. */ 4446 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4447 pMem = &aMem[pOp->p3]; 4448 memAboutToChange(p, pMem); 4449 } 4450 assert( memIsValid(pMem) ); 4451 4452 REGISTER_TRACE(pOp->p3, pMem); 4453 sqlite3VdbeMemIntegerify(pMem); 4454 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4455 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4456 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4457 goto abort_due_to_error; 4458 } 4459 if( v<pMem->u.i+1 ){ 4460 v = pMem->u.i + 1; 4461 } 4462 pMem->u.i = v; 4463 } 4464 #endif 4465 if( pC->useRandomRowid ){ 4466 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4467 ** largest possible integer (9223372036854775807) then the database 4468 ** engine starts picking positive candidate ROWIDs at random until 4469 ** it finds one that is not previously used. */ 4470 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4471 ** an AUTOINCREMENT table. */ 4472 cnt = 0; 4473 do{ 4474 sqlite3_randomness(sizeof(v), &v); 4475 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4476 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4477 0, &res))==SQLITE_OK) 4478 && (res==0) 4479 && (++cnt<100)); 4480 if( rc ) goto abort_due_to_error; 4481 if( res==0 ){ 4482 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4483 goto abort_due_to_error; 4484 } 4485 assert( v>0 ); /* EV: R-40812-03570 */ 4486 } 4487 pC->deferredMoveto = 0; 4488 pC->cacheStatus = CACHE_STALE; 4489 } 4490 pOut->u.i = v; 4491 break; 4492 } 4493 4494 /* Opcode: Insert P1 P2 P3 P4 P5 4495 ** Synopsis: intkey=r[P3] data=r[P2] 4496 ** 4497 ** Write an entry into the table of cursor P1. A new entry is 4498 ** created if it doesn't already exist or the data for an existing 4499 ** entry is overwritten. The data is the value MEM_Blob stored in register 4500 ** number P2. The key is stored in register P3. The key must 4501 ** be a MEM_Int. 4502 ** 4503 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4504 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4505 ** then rowid is stored for subsequent return by the 4506 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4507 ** 4508 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4509 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4510 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4511 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4512 ** 4513 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4514 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4515 ** is part of an INSERT operation. The difference is only important to 4516 ** the update hook. 4517 ** 4518 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4519 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4520 ** following a successful insert. 4521 ** 4522 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4523 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4524 ** and register P2 becomes ephemeral. If the cursor is changed, the 4525 ** value of register P2 will then change. Make sure this does not 4526 ** cause any problems.) 4527 ** 4528 ** This instruction only works on tables. The equivalent instruction 4529 ** for indices is OP_IdxInsert. 4530 */ 4531 /* Opcode: InsertInt P1 P2 P3 P4 P5 4532 ** Synopsis: intkey=P3 data=r[P2] 4533 ** 4534 ** This works exactly like OP_Insert except that the key is the 4535 ** integer value P3, not the value of the integer stored in register P3. 4536 */ 4537 case OP_Insert: 4538 case OP_InsertInt: { 4539 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4540 Mem *pKey; /* MEM cell holding key for the record */ 4541 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4542 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4543 const char *zDb; /* database name - used by the update hook */ 4544 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4545 BtreePayload x; /* Payload to be inserted */ 4546 4547 pData = &aMem[pOp->p2]; 4548 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4549 assert( memIsValid(pData) ); 4550 pC = p->apCsr[pOp->p1]; 4551 assert( pC!=0 ); 4552 assert( pC->eCurType==CURTYPE_BTREE ); 4553 assert( pC->uc.pCursor!=0 ); 4554 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 4555 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4556 REGISTER_TRACE(pOp->p2, pData); 4557 sqlite3VdbeIncrWriteCounter(p, pC); 4558 4559 if( pOp->opcode==OP_Insert ){ 4560 pKey = &aMem[pOp->p3]; 4561 assert( pKey->flags & MEM_Int ); 4562 assert( memIsValid(pKey) ); 4563 REGISTER_TRACE(pOp->p3, pKey); 4564 x.nKey = pKey->u.i; 4565 }else{ 4566 assert( pOp->opcode==OP_InsertInt ); 4567 x.nKey = pOp->p3; 4568 } 4569 4570 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4571 assert( pC->iDb>=0 ); 4572 zDb = db->aDb[pC->iDb].zDbSName; 4573 pTab = pOp->p4.pTab; 4574 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 4575 }else{ 4576 pTab = 0; 4577 zDb = 0; /* Not needed. Silence a compiler warning. */ 4578 } 4579 4580 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4581 /* Invoke the pre-update hook, if any */ 4582 if( pTab ){ 4583 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 4584 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2); 4585 } 4586 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 4587 /* Prevent post-update hook from running in cases when it should not */ 4588 pTab = 0; 4589 } 4590 } 4591 if( pOp->p5 & OPFLAG_ISNOOP ) break; 4592 #endif 4593 4594 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4595 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 4596 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4597 x.pData = pData->z; 4598 x.nData = pData->n; 4599 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4600 if( pData->flags & MEM_Zero ){ 4601 x.nZero = pData->u.nZero; 4602 }else{ 4603 x.nZero = 0; 4604 } 4605 x.pKey = 0; 4606 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4607 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4608 ); 4609 pC->deferredMoveto = 0; 4610 pC->cacheStatus = CACHE_STALE; 4611 4612 /* Invoke the update-hook if required. */ 4613 if( rc ) goto abort_due_to_error; 4614 if( pTab ){ 4615 assert( db->xUpdateCallback!=0 ); 4616 assert( pTab->aCol!=0 ); 4617 db->xUpdateCallback(db->pUpdateArg, 4618 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 4619 zDb, pTab->zName, x.nKey); 4620 } 4621 break; 4622 } 4623 4624 /* Opcode: Delete P1 P2 P3 P4 P5 4625 ** 4626 ** Delete the record at which the P1 cursor is currently pointing. 4627 ** 4628 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4629 ** the cursor will be left pointing at either the next or the previous 4630 ** record in the table. If it is left pointing at the next record, then 4631 ** the next Next instruction will be a no-op. As a result, in this case 4632 ** it is ok to delete a record from within a Next loop. If 4633 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4634 ** left in an undefined state. 4635 ** 4636 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4637 ** delete one of several associated with deleting a table row and all its 4638 ** associated index entries. Exactly one of those deletes is the "primary" 4639 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4640 ** marked with the AUXDELETE flag. 4641 ** 4642 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4643 ** change count is incremented (otherwise not). 4644 ** 4645 ** P1 must not be pseudo-table. It has to be a real table with 4646 ** multiple rows. 4647 ** 4648 ** If P4 is not NULL then it points to a Table object. In this case either 4649 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4650 ** have been positioned using OP_NotFound prior to invoking this opcode in 4651 ** this case. Specifically, if one is configured, the pre-update hook is 4652 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4653 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4654 ** 4655 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4656 ** of the memory cell that contains the value that the rowid of the row will 4657 ** be set to by the update. 4658 */ 4659 case OP_Delete: { 4660 VdbeCursor *pC; 4661 const char *zDb; 4662 Table *pTab; 4663 int opflags; 4664 4665 opflags = pOp->p2; 4666 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4667 pC = p->apCsr[pOp->p1]; 4668 assert( pC!=0 ); 4669 assert( pC->eCurType==CURTYPE_BTREE ); 4670 assert( pC->uc.pCursor!=0 ); 4671 assert( pC->deferredMoveto==0 ); 4672 sqlite3VdbeIncrWriteCounter(p, pC); 4673 4674 #ifdef SQLITE_DEBUG 4675 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4676 /* If p5 is zero, the seek operation that positioned the cursor prior to 4677 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4678 ** the row that is being deleted */ 4679 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4680 assert( pC->movetoTarget==iKey ); 4681 } 4682 #endif 4683 4684 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4685 ** the name of the db to pass as to it. Also set local pTab to a copy 4686 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4687 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4688 ** VdbeCursor.movetoTarget to the current rowid. */ 4689 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4690 assert( pC->iDb>=0 ); 4691 assert( pOp->p4.pTab!=0 ); 4692 zDb = db->aDb[pC->iDb].zDbSName; 4693 pTab = pOp->p4.pTab; 4694 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4695 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4696 } 4697 }else{ 4698 zDb = 0; /* Not needed. Silence a compiler warning. */ 4699 pTab = 0; /* Not needed. Silence a compiler warning. */ 4700 } 4701 4702 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4703 /* Invoke the pre-update-hook if required. */ 4704 if( db->xPreUpdateCallback && pOp->p4.pTab ){ 4705 assert( !(opflags & OPFLAG_ISUPDATE) 4706 || HasRowid(pTab)==0 4707 || (aMem[pOp->p3].flags & MEM_Int) 4708 ); 4709 sqlite3VdbePreUpdateHook(p, pC, 4710 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4711 zDb, pTab, pC->movetoTarget, 4712 pOp->p3 4713 ); 4714 } 4715 if( opflags & OPFLAG_ISNOOP ) break; 4716 #endif 4717 4718 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4719 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4720 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4721 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4722 4723 #ifdef SQLITE_DEBUG 4724 if( p->pFrame==0 ){ 4725 if( pC->isEphemeral==0 4726 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4727 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4728 ){ 4729 nExtraDelete++; 4730 } 4731 if( pOp->p2 & OPFLAG_NCHANGE ){ 4732 nExtraDelete--; 4733 } 4734 } 4735 #endif 4736 4737 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4738 pC->cacheStatus = CACHE_STALE; 4739 pC->seekResult = 0; 4740 if( rc ) goto abort_due_to_error; 4741 4742 /* Invoke the update-hook if required. */ 4743 if( opflags & OPFLAG_NCHANGE ){ 4744 p->nChange++; 4745 if( db->xUpdateCallback && HasRowid(pTab) ){ 4746 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4747 pC->movetoTarget); 4748 assert( pC->iDb>=0 ); 4749 } 4750 } 4751 4752 break; 4753 } 4754 /* Opcode: ResetCount * * * * * 4755 ** 4756 ** The value of the change counter is copied to the database handle 4757 ** change counter (returned by subsequent calls to sqlite3_changes()). 4758 ** Then the VMs internal change counter resets to 0. 4759 ** This is used by trigger programs. 4760 */ 4761 case OP_ResetCount: { 4762 sqlite3VdbeSetChanges(db, p->nChange); 4763 p->nChange = 0; 4764 break; 4765 } 4766 4767 /* Opcode: SorterCompare P1 P2 P3 P4 4768 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4769 ** 4770 ** P1 is a sorter cursor. This instruction compares a prefix of the 4771 ** record blob in register P3 against a prefix of the entry that 4772 ** the sorter cursor currently points to. Only the first P4 fields 4773 ** of r[P3] and the sorter record are compared. 4774 ** 4775 ** If either P3 or the sorter contains a NULL in one of their significant 4776 ** fields (not counting the P4 fields at the end which are ignored) then 4777 ** the comparison is assumed to be equal. 4778 ** 4779 ** Fall through to next instruction if the two records compare equal to 4780 ** each other. Jump to P2 if they are different. 4781 */ 4782 case OP_SorterCompare: { 4783 VdbeCursor *pC; 4784 int res; 4785 int nKeyCol; 4786 4787 pC = p->apCsr[pOp->p1]; 4788 assert( isSorter(pC) ); 4789 assert( pOp->p4type==P4_INT32 ); 4790 pIn3 = &aMem[pOp->p3]; 4791 nKeyCol = pOp->p4.i; 4792 res = 0; 4793 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4794 VdbeBranchTaken(res!=0,2); 4795 if( rc ) goto abort_due_to_error; 4796 if( res ) goto jump_to_p2; 4797 break; 4798 }; 4799 4800 /* Opcode: SorterData P1 P2 P3 * * 4801 ** Synopsis: r[P2]=data 4802 ** 4803 ** Write into register P2 the current sorter data for sorter cursor P1. 4804 ** Then clear the column header cache on cursor P3. 4805 ** 4806 ** This opcode is normally use to move a record out of the sorter and into 4807 ** a register that is the source for a pseudo-table cursor created using 4808 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4809 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4810 ** us from having to issue a separate NullRow instruction to clear that cache. 4811 */ 4812 case OP_SorterData: { 4813 VdbeCursor *pC; 4814 4815 pOut = &aMem[pOp->p2]; 4816 pC = p->apCsr[pOp->p1]; 4817 assert( isSorter(pC) ); 4818 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4819 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4820 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4821 if( rc ) goto abort_due_to_error; 4822 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4823 break; 4824 } 4825 4826 /* Opcode: RowData P1 P2 P3 * * 4827 ** Synopsis: r[P2]=data 4828 ** 4829 ** Write into register P2 the complete row content for the row at 4830 ** which cursor P1 is currently pointing. 4831 ** There is no interpretation of the data. 4832 ** It is just copied onto the P2 register exactly as 4833 ** it is found in the database file. 4834 ** 4835 ** If cursor P1 is an index, then the content is the key of the row. 4836 ** If cursor P2 is a table, then the content extracted is the data. 4837 ** 4838 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4839 ** of a real table, not a pseudo-table. 4840 ** 4841 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 4842 ** into the database page. That means that the content of the output 4843 ** register will be invalidated as soon as the cursor moves - including 4844 ** moves caused by other cursors that "save" the current cursors 4845 ** position in order that they can write to the same table. If P3==0 4846 ** then a copy of the data is made into memory. P3!=0 is faster, but 4847 ** P3==0 is safer. 4848 ** 4849 ** If P3!=0 then the content of the P2 register is unsuitable for use 4850 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4851 ** The P2 register content is invalidated by opcodes like OP_Function or 4852 ** by any use of another cursor pointing to the same table. 4853 */ 4854 case OP_RowData: { 4855 VdbeCursor *pC; 4856 BtCursor *pCrsr; 4857 u32 n; 4858 4859 pOut = out2Prerelease(p, pOp); 4860 4861 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4862 pC = p->apCsr[pOp->p1]; 4863 assert( pC!=0 ); 4864 assert( pC->eCurType==CURTYPE_BTREE ); 4865 assert( isSorter(pC)==0 ); 4866 assert( pC->nullRow==0 ); 4867 assert( pC->uc.pCursor!=0 ); 4868 pCrsr = pC->uc.pCursor; 4869 4870 /* The OP_RowData opcodes always follow OP_NotExists or 4871 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4872 ** that might invalidate the cursor. 4873 ** If this where not the case, on of the following assert()s 4874 ** would fail. Should this ever change (because of changes in the code 4875 ** generator) then the fix would be to insert a call to 4876 ** sqlite3VdbeCursorMoveto(). 4877 */ 4878 assert( pC->deferredMoveto==0 ); 4879 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4880 #if 0 /* Not required due to the previous to assert() statements */ 4881 rc = sqlite3VdbeCursorMoveto(pC); 4882 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4883 #endif 4884 4885 n = sqlite3BtreePayloadSize(pCrsr); 4886 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4887 goto too_big; 4888 } 4889 testcase( n==0 ); 4890 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4891 if( rc ) goto abort_due_to_error; 4892 if( !pOp->p3 ) Deephemeralize(pOut); 4893 UPDATE_MAX_BLOBSIZE(pOut); 4894 REGISTER_TRACE(pOp->p2, pOut); 4895 break; 4896 } 4897 4898 /* Opcode: Rowid P1 P2 * * * 4899 ** Synopsis: r[P2]=rowid 4900 ** 4901 ** Store in register P2 an integer which is the key of the table entry that 4902 ** P1 is currently point to. 4903 ** 4904 ** P1 can be either an ordinary table or a virtual table. There used to 4905 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4906 ** one opcode now works for both table types. 4907 */ 4908 case OP_Rowid: { /* out2 */ 4909 VdbeCursor *pC; 4910 i64 v; 4911 sqlite3_vtab *pVtab; 4912 const sqlite3_module *pModule; 4913 4914 pOut = out2Prerelease(p, pOp); 4915 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4916 pC = p->apCsr[pOp->p1]; 4917 assert( pC!=0 ); 4918 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4919 if( pC->nullRow ){ 4920 pOut->flags = MEM_Null; 4921 break; 4922 }else if( pC->deferredMoveto ){ 4923 v = pC->movetoTarget; 4924 #ifndef SQLITE_OMIT_VIRTUALTABLE 4925 }else if( pC->eCurType==CURTYPE_VTAB ){ 4926 assert( pC->uc.pVCur!=0 ); 4927 pVtab = pC->uc.pVCur->pVtab; 4928 pModule = pVtab->pModule; 4929 assert( pModule->xRowid ); 4930 rc = pModule->xRowid(pC->uc.pVCur, &v); 4931 sqlite3VtabImportErrmsg(p, pVtab); 4932 if( rc ) goto abort_due_to_error; 4933 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4934 }else{ 4935 assert( pC->eCurType==CURTYPE_BTREE ); 4936 assert( pC->uc.pCursor!=0 ); 4937 rc = sqlite3VdbeCursorRestore(pC); 4938 if( rc ) goto abort_due_to_error; 4939 if( pC->nullRow ){ 4940 pOut->flags = MEM_Null; 4941 break; 4942 } 4943 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4944 } 4945 pOut->u.i = v; 4946 break; 4947 } 4948 4949 /* Opcode: NullRow P1 * * * * 4950 ** 4951 ** Move the cursor P1 to a null row. Any OP_Column operations 4952 ** that occur while the cursor is on the null row will always 4953 ** write a NULL. 4954 */ 4955 case OP_NullRow: { 4956 VdbeCursor *pC; 4957 4958 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4959 pC = p->apCsr[pOp->p1]; 4960 assert( pC!=0 ); 4961 pC->nullRow = 1; 4962 pC->cacheStatus = CACHE_STALE; 4963 if( pC->eCurType==CURTYPE_BTREE ){ 4964 assert( pC->uc.pCursor!=0 ); 4965 sqlite3BtreeClearCursor(pC->uc.pCursor); 4966 } 4967 #ifdef SQLITE_DEBUG 4968 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 4969 #endif 4970 break; 4971 } 4972 4973 /* Opcode: SeekEnd P1 * * * * 4974 ** 4975 ** Position cursor P1 at the end of the btree for the purpose of 4976 ** appending a new entry onto the btree. 4977 ** 4978 ** It is assumed that the cursor is used only for appending and so 4979 ** if the cursor is valid, then the cursor must already be pointing 4980 ** at the end of the btree and so no changes are made to 4981 ** the cursor. 4982 */ 4983 /* Opcode: Last P1 P2 * * * 4984 ** 4985 ** The next use of the Rowid or Column or Prev instruction for P1 4986 ** will refer to the last entry in the database table or index. 4987 ** If the table or index is empty and P2>0, then jump immediately to P2. 4988 ** If P2 is 0 or if the table or index is not empty, fall through 4989 ** to the following instruction. 4990 ** 4991 ** This opcode leaves the cursor configured to move in reverse order, 4992 ** from the end toward the beginning. In other words, the cursor is 4993 ** configured to use Prev, not Next. 4994 */ 4995 case OP_SeekEnd: 4996 case OP_Last: { /* jump */ 4997 VdbeCursor *pC; 4998 BtCursor *pCrsr; 4999 int res; 5000 5001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5002 pC = p->apCsr[pOp->p1]; 5003 assert( pC!=0 ); 5004 assert( pC->eCurType==CURTYPE_BTREE ); 5005 pCrsr = pC->uc.pCursor; 5006 res = 0; 5007 assert( pCrsr!=0 ); 5008 #ifdef SQLITE_DEBUG 5009 pC->seekOp = pOp->opcode; 5010 #endif 5011 if( pOp->opcode==OP_SeekEnd ){ 5012 assert( pOp->p2==0 ); 5013 pC->seekResult = -1; 5014 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5015 break; 5016 } 5017 } 5018 rc = sqlite3BtreeLast(pCrsr, &res); 5019 pC->nullRow = (u8)res; 5020 pC->deferredMoveto = 0; 5021 pC->cacheStatus = CACHE_STALE; 5022 if( rc ) goto abort_due_to_error; 5023 if( pOp->p2>0 ){ 5024 VdbeBranchTaken(res!=0,2); 5025 if( res ) goto jump_to_p2; 5026 } 5027 break; 5028 } 5029 5030 /* Opcode: IfSmaller P1 P2 P3 * * 5031 ** 5032 ** Estimate the number of rows in the table P1. Jump to P2 if that 5033 ** estimate is less than approximately 2**(0.1*P3). 5034 */ 5035 case OP_IfSmaller: { /* jump */ 5036 VdbeCursor *pC; 5037 BtCursor *pCrsr; 5038 int res; 5039 i64 sz; 5040 5041 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5042 pC = p->apCsr[pOp->p1]; 5043 assert( pC!=0 ); 5044 pCrsr = pC->uc.pCursor; 5045 assert( pCrsr ); 5046 rc = sqlite3BtreeFirst(pCrsr, &res); 5047 if( rc ) goto abort_due_to_error; 5048 if( res==0 ){ 5049 sz = sqlite3BtreeRowCountEst(pCrsr); 5050 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5051 } 5052 VdbeBranchTaken(res!=0,2); 5053 if( res ) goto jump_to_p2; 5054 break; 5055 } 5056 5057 5058 /* Opcode: SorterSort P1 P2 * * * 5059 ** 5060 ** After all records have been inserted into the Sorter object 5061 ** identified by P1, invoke this opcode to actually do the sorting. 5062 ** Jump to P2 if there are no records to be sorted. 5063 ** 5064 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5065 ** for Sorter objects. 5066 */ 5067 /* Opcode: Sort P1 P2 * * * 5068 ** 5069 ** This opcode does exactly the same thing as OP_Rewind except that 5070 ** it increments an undocumented global variable used for testing. 5071 ** 5072 ** Sorting is accomplished by writing records into a sorting index, 5073 ** then rewinding that index and playing it back from beginning to 5074 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5075 ** rewinding so that the global variable will be incremented and 5076 ** regression tests can determine whether or not the optimizer is 5077 ** correctly optimizing out sorts. 5078 */ 5079 case OP_SorterSort: /* jump */ 5080 case OP_Sort: { /* jump */ 5081 #ifdef SQLITE_TEST 5082 sqlite3_sort_count++; 5083 sqlite3_search_count--; 5084 #endif 5085 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5086 /* Fall through into OP_Rewind */ 5087 } 5088 /* Opcode: Rewind P1 P2 * * P5 5089 ** 5090 ** The next use of the Rowid or Column or Next instruction for P1 5091 ** will refer to the first entry in the database table or index. 5092 ** If the table or index is empty, jump immediately to P2. 5093 ** If the table or index is not empty, fall through to the following 5094 ** instruction. 5095 ** 5096 ** If P5 is non-zero and the table is not empty, then the "skip-next" 5097 ** flag is set on the cursor so that the next OP_Next instruction 5098 ** executed on it is a no-op. 5099 ** 5100 ** This opcode leaves the cursor configured to move in forward order, 5101 ** from the beginning toward the end. In other words, the cursor is 5102 ** configured to use Next, not Prev. 5103 */ 5104 case OP_Rewind: { /* jump */ 5105 VdbeCursor *pC; 5106 BtCursor *pCrsr; 5107 int res; 5108 5109 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5110 pC = p->apCsr[pOp->p1]; 5111 assert( pC!=0 ); 5112 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5113 res = 1; 5114 #ifdef SQLITE_DEBUG 5115 pC->seekOp = OP_Rewind; 5116 #endif 5117 if( isSorter(pC) ){ 5118 rc = sqlite3VdbeSorterRewind(pC, &res); 5119 }else{ 5120 assert( pC->eCurType==CURTYPE_BTREE ); 5121 pCrsr = pC->uc.pCursor; 5122 assert( pCrsr ); 5123 rc = sqlite3BtreeFirst(pCrsr, &res); 5124 #ifndef SQLITE_OMIT_WINDOWFUNC 5125 if( pOp->p5 ) sqlite3BtreeSkipNext(pCrsr); 5126 #endif 5127 pC->deferredMoveto = 0; 5128 pC->cacheStatus = CACHE_STALE; 5129 } 5130 if( rc ) goto abort_due_to_error; 5131 pC->nullRow = (u8)res; 5132 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5133 VdbeBranchTaken(res!=0,2); 5134 if( res ) goto jump_to_p2; 5135 break; 5136 } 5137 5138 /* Opcode: Next P1 P2 P3 P4 P5 5139 ** 5140 ** Advance cursor P1 so that it points to the next key/data pair in its 5141 ** table or index. If there are no more key/value pairs then fall through 5142 ** to the following instruction. But if the cursor advance was successful, 5143 ** jump immediately to P2. 5144 ** 5145 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5146 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5147 ** to follow SeekLT, SeekLE, or OP_Last. 5148 ** 5149 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5150 ** been opened prior to this opcode or the program will segfault. 5151 ** 5152 ** The P3 value is a hint to the btree implementation. If P3==1, that 5153 ** means P1 is an SQL index and that this instruction could have been 5154 ** omitted if that index had been unique. P3 is usually 0. P3 is 5155 ** always either 0 or 1. 5156 ** 5157 ** P4 is always of type P4_ADVANCE. The function pointer points to 5158 ** sqlite3BtreeNext(). 5159 ** 5160 ** If P5 is positive and the jump is taken, then event counter 5161 ** number P5-1 in the prepared statement is incremented. 5162 ** 5163 ** See also: Prev 5164 */ 5165 /* Opcode: Prev P1 P2 P3 P4 P5 5166 ** 5167 ** Back up cursor P1 so that it points to the previous key/data pair in its 5168 ** table or index. If there is no previous key/value pairs then fall through 5169 ** to the following instruction. But if the cursor backup was successful, 5170 ** jump immediately to P2. 5171 ** 5172 ** 5173 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5174 ** OP_Last opcode used to position the cursor. Prev is not allowed 5175 ** to follow SeekGT, SeekGE, or OP_Rewind. 5176 ** 5177 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5178 ** not open then the behavior is undefined. 5179 ** 5180 ** The P3 value is a hint to the btree implementation. If P3==1, that 5181 ** means P1 is an SQL index and that this instruction could have been 5182 ** omitted if that index had been unique. P3 is usually 0. P3 is 5183 ** always either 0 or 1. 5184 ** 5185 ** P4 is always of type P4_ADVANCE. The function pointer points to 5186 ** sqlite3BtreePrevious(). 5187 ** 5188 ** If P5 is positive and the jump is taken, then event counter 5189 ** number P5-1 in the prepared statement is incremented. 5190 */ 5191 /* Opcode: SorterNext P1 P2 * * P5 5192 ** 5193 ** This opcode works just like OP_Next except that P1 must be a 5194 ** sorter object for which the OP_SorterSort opcode has been 5195 ** invoked. This opcode advances the cursor to the next sorted 5196 ** record, or jumps to P2 if there are no more sorted records. 5197 */ 5198 case OP_SorterNext: { /* jump */ 5199 VdbeCursor *pC; 5200 5201 pC = p->apCsr[pOp->p1]; 5202 assert( isSorter(pC) ); 5203 rc = sqlite3VdbeSorterNext(db, pC); 5204 goto next_tail; 5205 case OP_Prev: /* jump */ 5206 case OP_Next: /* jump */ 5207 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5208 assert( pOp->p5<ArraySize(p->aCounter) ); 5209 pC = p->apCsr[pOp->p1]; 5210 assert( pC!=0 ); 5211 assert( pC->deferredMoveto==0 ); 5212 assert( pC->eCurType==CURTYPE_BTREE ); 5213 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5214 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5215 5216 /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found. 5217 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5218 assert( pOp->opcode!=OP_Next 5219 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5220 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 5221 || pC->seekOp==OP_NullRow); 5222 assert( pOp->opcode!=OP_Prev 5223 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5224 || pC->seekOp==OP_Last 5225 || pC->seekOp==OP_NullRow); 5226 5227 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3); 5228 next_tail: 5229 pC->cacheStatus = CACHE_STALE; 5230 VdbeBranchTaken(rc==SQLITE_OK,2); 5231 if( rc==SQLITE_OK ){ 5232 pC->nullRow = 0; 5233 p->aCounter[pOp->p5]++; 5234 #ifdef SQLITE_TEST 5235 sqlite3_search_count++; 5236 #endif 5237 goto jump_to_p2_and_check_for_interrupt; 5238 } 5239 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 5240 rc = SQLITE_OK; 5241 pC->nullRow = 1; 5242 goto check_for_interrupt; 5243 } 5244 5245 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5246 ** Synopsis: key=r[P2] 5247 ** 5248 ** Register P2 holds an SQL index key made using the 5249 ** MakeRecord instructions. This opcode writes that key 5250 ** into the index P1. Data for the entry is nil. 5251 ** 5252 ** If P4 is not zero, then it is the number of values in the unpacked 5253 ** key of reg(P2). In that case, P3 is the index of the first register 5254 ** for the unpacked key. The availability of the unpacked key can sometimes 5255 ** be an optimization. 5256 ** 5257 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5258 ** that this insert is likely to be an append. 5259 ** 5260 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5261 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5262 ** then the change counter is unchanged. 5263 ** 5264 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5265 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5266 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5267 ** seeks on the cursor or if the most recent seek used a key equivalent 5268 ** to P2. 5269 ** 5270 ** This instruction only works for indices. The equivalent instruction 5271 ** for tables is OP_Insert. 5272 */ 5273 /* Opcode: SorterInsert P1 P2 * * * 5274 ** Synopsis: key=r[P2] 5275 ** 5276 ** Register P2 holds an SQL index key made using the 5277 ** MakeRecord instructions. This opcode writes that key 5278 ** into the sorter P1. Data for the entry is nil. 5279 */ 5280 case OP_SorterInsert: /* in2 */ 5281 case OP_IdxInsert: { /* in2 */ 5282 VdbeCursor *pC; 5283 BtreePayload x; 5284 5285 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5286 pC = p->apCsr[pOp->p1]; 5287 sqlite3VdbeIncrWriteCounter(p, pC); 5288 assert( pC!=0 ); 5289 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5290 pIn2 = &aMem[pOp->p2]; 5291 assert( pIn2->flags & MEM_Blob ); 5292 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5293 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5294 assert( pC->isTable==0 ); 5295 rc = ExpandBlob(pIn2); 5296 if( rc ) goto abort_due_to_error; 5297 if( pOp->opcode==OP_SorterInsert ){ 5298 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5299 }else{ 5300 x.nKey = pIn2->n; 5301 x.pKey = pIn2->z; 5302 x.aMem = aMem + pOp->p3; 5303 x.nMem = (u16)pOp->p4.i; 5304 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5305 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5306 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5307 ); 5308 assert( pC->deferredMoveto==0 ); 5309 pC->cacheStatus = CACHE_STALE; 5310 } 5311 if( rc) goto abort_due_to_error; 5312 break; 5313 } 5314 5315 /* Opcode: IdxDelete P1 P2 P3 * * 5316 ** Synopsis: key=r[P2@P3] 5317 ** 5318 ** The content of P3 registers starting at register P2 form 5319 ** an unpacked index key. This opcode removes that entry from the 5320 ** index opened by cursor P1. 5321 */ 5322 case OP_IdxDelete: { 5323 VdbeCursor *pC; 5324 BtCursor *pCrsr; 5325 int res; 5326 UnpackedRecord r; 5327 5328 assert( pOp->p3>0 ); 5329 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5330 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5331 pC = p->apCsr[pOp->p1]; 5332 assert( pC!=0 ); 5333 assert( pC->eCurType==CURTYPE_BTREE ); 5334 sqlite3VdbeIncrWriteCounter(p, pC); 5335 pCrsr = pC->uc.pCursor; 5336 assert( pCrsr!=0 ); 5337 assert( pOp->p5==0 ); 5338 r.pKeyInfo = pC->pKeyInfo; 5339 r.nField = (u16)pOp->p3; 5340 r.default_rc = 0; 5341 r.aMem = &aMem[pOp->p2]; 5342 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5343 if( rc ) goto abort_due_to_error; 5344 if( res==0 ){ 5345 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5346 if( rc ) goto abort_due_to_error; 5347 } 5348 assert( pC->deferredMoveto==0 ); 5349 pC->cacheStatus = CACHE_STALE; 5350 pC->seekResult = 0; 5351 break; 5352 } 5353 5354 /* Opcode: DeferredSeek P1 * P3 P4 * 5355 ** Synopsis: Move P3 to P1.rowid if needed 5356 ** 5357 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5358 ** table. This opcode does a deferred seek of the P3 table cursor 5359 ** to the row that corresponds to the current row of P1. 5360 ** 5361 ** This is a deferred seek. Nothing actually happens until 5362 ** the cursor is used to read a record. That way, if no reads 5363 ** occur, no unnecessary I/O happens. 5364 ** 5365 ** P4 may be an array of integers (type P4_INTARRAY) containing 5366 ** one entry for each column in the P3 table. If array entry a(i) 5367 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5368 ** equivalent to performing the deferred seek and then reading column i 5369 ** from P1. This information is stored in P3 and used to redirect 5370 ** reads against P3 over to P1, thus possibly avoiding the need to 5371 ** seek and read cursor P3. 5372 */ 5373 /* Opcode: IdxRowid P1 P2 * * * 5374 ** Synopsis: r[P2]=rowid 5375 ** 5376 ** Write into register P2 an integer which is the last entry in the record at 5377 ** the end of the index key pointed to by cursor P1. This integer should be 5378 ** the rowid of the table entry to which this index entry points. 5379 ** 5380 ** See also: Rowid, MakeRecord. 5381 */ 5382 case OP_DeferredSeek: 5383 case OP_IdxRowid: { /* out2 */ 5384 VdbeCursor *pC; /* The P1 index cursor */ 5385 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 5386 i64 rowid; /* Rowid that P1 current points to */ 5387 5388 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5389 pC = p->apCsr[pOp->p1]; 5390 assert( pC!=0 ); 5391 assert( pC->eCurType==CURTYPE_BTREE ); 5392 assert( pC->uc.pCursor!=0 ); 5393 assert( pC->isTable==0 ); 5394 assert( pC->deferredMoveto==0 ); 5395 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5396 5397 /* The IdxRowid and Seek opcodes are combined because of the commonality 5398 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5399 rc = sqlite3VdbeCursorRestore(pC); 5400 5401 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5402 ** out from under the cursor. That will never happens for an IdxRowid 5403 ** or Seek opcode */ 5404 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5405 5406 if( !pC->nullRow ){ 5407 rowid = 0; /* Not needed. Only used to silence a warning. */ 5408 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5409 if( rc!=SQLITE_OK ){ 5410 goto abort_due_to_error; 5411 } 5412 if( pOp->opcode==OP_DeferredSeek ){ 5413 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5414 pTabCur = p->apCsr[pOp->p3]; 5415 assert( pTabCur!=0 ); 5416 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5417 assert( pTabCur->uc.pCursor!=0 ); 5418 assert( pTabCur->isTable ); 5419 pTabCur->nullRow = 0; 5420 pTabCur->movetoTarget = rowid; 5421 pTabCur->deferredMoveto = 1; 5422 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5423 pTabCur->aAltMap = pOp->p4.ai; 5424 pTabCur->pAltCursor = pC; 5425 }else{ 5426 pOut = out2Prerelease(p, pOp); 5427 pOut->u.i = rowid; 5428 } 5429 }else{ 5430 assert( pOp->opcode==OP_IdxRowid ); 5431 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5432 } 5433 break; 5434 } 5435 5436 /* Opcode: IdxGE P1 P2 P3 P4 P5 5437 ** Synopsis: key=r[P3@P4] 5438 ** 5439 ** The P4 register values beginning with P3 form an unpacked index 5440 ** key that omits the PRIMARY KEY. Compare this key value against the index 5441 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5442 ** fields at the end. 5443 ** 5444 ** If the P1 index entry is greater than or equal to the key value 5445 ** then jump to P2. Otherwise fall through to the next instruction. 5446 */ 5447 /* Opcode: IdxGT P1 P2 P3 P4 P5 5448 ** Synopsis: key=r[P3@P4] 5449 ** 5450 ** The P4 register values beginning with P3 form an unpacked index 5451 ** key that omits the PRIMARY KEY. Compare this key value against the index 5452 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5453 ** fields at the end. 5454 ** 5455 ** If the P1 index entry is greater than the key value 5456 ** then jump to P2. Otherwise fall through to the next instruction. 5457 */ 5458 /* Opcode: IdxLT P1 P2 P3 P4 P5 5459 ** Synopsis: key=r[P3@P4] 5460 ** 5461 ** The P4 register values beginning with P3 form an unpacked index 5462 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5463 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5464 ** ROWID on the P1 index. 5465 ** 5466 ** If the P1 index entry is less than the key value then jump to P2. 5467 ** Otherwise fall through to the next instruction. 5468 */ 5469 /* Opcode: IdxLE P1 P2 P3 P4 P5 5470 ** Synopsis: key=r[P3@P4] 5471 ** 5472 ** The P4 register values beginning with P3 form an unpacked index 5473 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5474 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5475 ** ROWID on the P1 index. 5476 ** 5477 ** If the P1 index entry is less than or equal to the key value then jump 5478 ** to P2. Otherwise fall through to the next instruction. 5479 */ 5480 case OP_IdxLE: /* jump */ 5481 case OP_IdxGT: /* jump */ 5482 case OP_IdxLT: /* jump */ 5483 case OP_IdxGE: { /* jump */ 5484 VdbeCursor *pC; 5485 int res; 5486 UnpackedRecord r; 5487 5488 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5489 pC = p->apCsr[pOp->p1]; 5490 assert( pC!=0 ); 5491 assert( pC->isOrdered ); 5492 assert( pC->eCurType==CURTYPE_BTREE ); 5493 assert( pC->uc.pCursor!=0); 5494 assert( pC->deferredMoveto==0 ); 5495 assert( pOp->p5==0 || pOp->p5==1 ); 5496 assert( pOp->p4type==P4_INT32 ); 5497 r.pKeyInfo = pC->pKeyInfo; 5498 r.nField = (u16)pOp->p4.i; 5499 if( pOp->opcode<OP_IdxLT ){ 5500 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5501 r.default_rc = -1; 5502 }else{ 5503 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5504 r.default_rc = 0; 5505 } 5506 r.aMem = &aMem[pOp->p3]; 5507 #ifdef SQLITE_DEBUG 5508 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5509 #endif 5510 res = 0; /* Not needed. Only used to silence a warning. */ 5511 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5512 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5513 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5514 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5515 res = -res; 5516 }else{ 5517 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5518 res++; 5519 } 5520 VdbeBranchTaken(res>0,2); 5521 if( rc ) goto abort_due_to_error; 5522 if( res>0 ) goto jump_to_p2; 5523 break; 5524 } 5525 5526 /* Opcode: Destroy P1 P2 P3 * * 5527 ** 5528 ** Delete an entire database table or index whose root page in the database 5529 ** file is given by P1. 5530 ** 5531 ** The table being destroyed is in the main database file if P3==0. If 5532 ** P3==1 then the table to be clear is in the auxiliary database file 5533 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5534 ** 5535 ** If AUTOVACUUM is enabled then it is possible that another root page 5536 ** might be moved into the newly deleted root page in order to keep all 5537 ** root pages contiguous at the beginning of the database. The former 5538 ** value of the root page that moved - its value before the move occurred - 5539 ** is stored in register P2. If no page movement was required (because the 5540 ** table being dropped was already the last one in the database) then a 5541 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 5542 ** is stored in register P2. 5543 ** 5544 ** This opcode throws an error if there are any active reader VMs when 5545 ** it is invoked. This is done to avoid the difficulty associated with 5546 ** updating existing cursors when a root page is moved in an AUTOVACUUM 5547 ** database. This error is thrown even if the database is not an AUTOVACUUM 5548 ** db in order to avoid introducing an incompatibility between autovacuum 5549 ** and non-autovacuum modes. 5550 ** 5551 ** See also: Clear 5552 */ 5553 case OP_Destroy: { /* out2 */ 5554 int iMoved; 5555 int iDb; 5556 5557 sqlite3VdbeIncrWriteCounter(p, 0); 5558 assert( p->readOnly==0 ); 5559 assert( pOp->p1>1 ); 5560 pOut = out2Prerelease(p, pOp); 5561 pOut->flags = MEM_Null; 5562 if( db->nVdbeRead > db->nVDestroy+1 ){ 5563 rc = SQLITE_LOCKED; 5564 p->errorAction = OE_Abort; 5565 goto abort_due_to_error; 5566 }else{ 5567 iDb = pOp->p3; 5568 assert( DbMaskTest(p->btreeMask, iDb) ); 5569 iMoved = 0; /* Not needed. Only to silence a warning. */ 5570 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5571 pOut->flags = MEM_Int; 5572 pOut->u.i = iMoved; 5573 if( rc ) goto abort_due_to_error; 5574 #ifndef SQLITE_OMIT_AUTOVACUUM 5575 if( iMoved!=0 ){ 5576 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5577 /* All OP_Destroy operations occur on the same btree */ 5578 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5579 resetSchemaOnFault = iDb+1; 5580 } 5581 #endif 5582 } 5583 break; 5584 } 5585 5586 /* Opcode: Clear P1 P2 P3 5587 ** 5588 ** Delete all contents of the database table or index whose root page 5589 ** in the database file is given by P1. But, unlike Destroy, do not 5590 ** remove the table or index from the database file. 5591 ** 5592 ** The table being clear is in the main database file if P2==0. If 5593 ** P2==1 then the table to be clear is in the auxiliary database file 5594 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5595 ** 5596 ** If the P3 value is non-zero, then the table referred to must be an 5597 ** intkey table (an SQL table, not an index). In this case the row change 5598 ** count is incremented by the number of rows in the table being cleared. 5599 ** If P3 is greater than zero, then the value stored in register P3 is 5600 ** also incremented by the number of rows in the table being cleared. 5601 ** 5602 ** See also: Destroy 5603 */ 5604 case OP_Clear: { 5605 int nChange; 5606 5607 sqlite3VdbeIncrWriteCounter(p, 0); 5608 nChange = 0; 5609 assert( p->readOnly==0 ); 5610 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5611 rc = sqlite3BtreeClearTable( 5612 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5613 ); 5614 if( pOp->p3 ){ 5615 p->nChange += nChange; 5616 if( pOp->p3>0 ){ 5617 assert( memIsValid(&aMem[pOp->p3]) ); 5618 memAboutToChange(p, &aMem[pOp->p3]); 5619 aMem[pOp->p3].u.i += nChange; 5620 } 5621 } 5622 if( rc ) goto abort_due_to_error; 5623 break; 5624 } 5625 5626 /* Opcode: ResetSorter P1 * * * * 5627 ** 5628 ** Delete all contents from the ephemeral table or sorter 5629 ** that is open on cursor P1. 5630 ** 5631 ** This opcode only works for cursors used for sorting and 5632 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5633 */ 5634 case OP_ResetSorter: { 5635 VdbeCursor *pC; 5636 5637 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5638 pC = p->apCsr[pOp->p1]; 5639 assert( pC!=0 ); 5640 if( isSorter(pC) ){ 5641 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5642 }else{ 5643 assert( pC->eCurType==CURTYPE_BTREE ); 5644 assert( pC->isEphemeral ); 5645 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5646 if( rc ) goto abort_due_to_error; 5647 } 5648 break; 5649 } 5650 5651 /* Opcode: CreateBtree P1 P2 P3 * * 5652 ** Synopsis: r[P2]=root iDb=P1 flags=P3 5653 ** 5654 ** Allocate a new b-tree in the main database file if P1==0 or in the 5655 ** TEMP database file if P1==1 or in an attached database if 5656 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 5657 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 5658 ** The root page number of the new b-tree is stored in register P2. 5659 */ 5660 case OP_CreateBtree: { /* out2 */ 5661 int pgno; 5662 Db *pDb; 5663 5664 sqlite3VdbeIncrWriteCounter(p, 0); 5665 pOut = out2Prerelease(p, pOp); 5666 pgno = 0; 5667 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 5668 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5669 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5670 assert( p->readOnly==0 ); 5671 pDb = &db->aDb[pOp->p1]; 5672 assert( pDb->pBt!=0 ); 5673 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 5674 if( rc ) goto abort_due_to_error; 5675 pOut->u.i = pgno; 5676 break; 5677 } 5678 5679 /* Opcode: SqlExec * * * P4 * 5680 ** 5681 ** Run the SQL statement or statements specified in the P4 string. 5682 */ 5683 case OP_SqlExec: { 5684 sqlite3VdbeIncrWriteCounter(p, 0); 5685 db->nSqlExec++; 5686 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 5687 db->nSqlExec--; 5688 if( rc ) goto abort_due_to_error; 5689 break; 5690 } 5691 5692 /* Opcode: ParseSchema P1 * * P4 * 5693 ** 5694 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5695 ** that match the WHERE clause P4. 5696 ** 5697 ** This opcode invokes the parser to create a new virtual machine, 5698 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5699 */ 5700 case OP_ParseSchema: { 5701 int iDb; 5702 const char *zMaster; 5703 char *zSql; 5704 InitData initData; 5705 5706 /* Any prepared statement that invokes this opcode will hold mutexes 5707 ** on every btree. This is a prerequisite for invoking 5708 ** sqlite3InitCallback(). 5709 */ 5710 #ifdef SQLITE_DEBUG 5711 for(iDb=0; iDb<db->nDb; iDb++){ 5712 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5713 } 5714 #endif 5715 5716 iDb = pOp->p1; 5717 assert( iDb>=0 && iDb<db->nDb ); 5718 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5719 /* Used to be a conditional */ { 5720 zMaster = MASTER_NAME; 5721 initData.db = db; 5722 initData.iDb = pOp->p1; 5723 initData.pzErrMsg = &p->zErrMsg; 5724 zSql = sqlite3MPrintf(db, 5725 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5726 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5727 if( zSql==0 ){ 5728 rc = SQLITE_NOMEM_BKPT; 5729 }else{ 5730 assert( db->init.busy==0 ); 5731 db->init.busy = 1; 5732 initData.rc = SQLITE_OK; 5733 assert( !db->mallocFailed ); 5734 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5735 if( rc==SQLITE_OK ) rc = initData.rc; 5736 sqlite3DbFreeNN(db, zSql); 5737 db->init.busy = 0; 5738 } 5739 } 5740 if( rc ){ 5741 sqlite3ResetAllSchemasOfConnection(db); 5742 if( rc==SQLITE_NOMEM ){ 5743 goto no_mem; 5744 } 5745 goto abort_due_to_error; 5746 } 5747 break; 5748 } 5749 5750 #if !defined(SQLITE_OMIT_ANALYZE) 5751 /* Opcode: LoadAnalysis P1 * * * * 5752 ** 5753 ** Read the sqlite_stat1 table for database P1 and load the content 5754 ** of that table into the internal index hash table. This will cause 5755 ** the analysis to be used when preparing all subsequent queries. 5756 */ 5757 case OP_LoadAnalysis: { 5758 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5759 rc = sqlite3AnalysisLoad(db, pOp->p1); 5760 if( rc ) goto abort_due_to_error; 5761 break; 5762 } 5763 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5764 5765 /* Opcode: DropTable P1 * * P4 * 5766 ** 5767 ** Remove the internal (in-memory) data structures that describe 5768 ** the table named P4 in database P1. This is called after a table 5769 ** is dropped from disk (using the Destroy opcode) in order to keep 5770 ** the internal representation of the 5771 ** schema consistent with what is on disk. 5772 */ 5773 case OP_DropTable: { 5774 sqlite3VdbeIncrWriteCounter(p, 0); 5775 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5776 break; 5777 } 5778 5779 /* Opcode: DropIndex P1 * * P4 * 5780 ** 5781 ** Remove the internal (in-memory) data structures that describe 5782 ** the index named P4 in database P1. This is called after an index 5783 ** is dropped from disk (using the Destroy opcode) 5784 ** in order to keep the internal representation of the 5785 ** schema consistent with what is on disk. 5786 */ 5787 case OP_DropIndex: { 5788 sqlite3VdbeIncrWriteCounter(p, 0); 5789 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5790 break; 5791 } 5792 5793 /* Opcode: DropTrigger P1 * * P4 * 5794 ** 5795 ** Remove the internal (in-memory) data structures that describe 5796 ** the trigger named P4 in database P1. This is called after a trigger 5797 ** is dropped from disk (using the Destroy opcode) in order to keep 5798 ** the internal representation of the 5799 ** schema consistent with what is on disk. 5800 */ 5801 case OP_DropTrigger: { 5802 sqlite3VdbeIncrWriteCounter(p, 0); 5803 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5804 break; 5805 } 5806 5807 5808 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5809 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5810 ** 5811 ** Do an analysis of the currently open database. Store in 5812 ** register P1 the text of an error message describing any problems. 5813 ** If no problems are found, store a NULL in register P1. 5814 ** 5815 ** The register P3 contains one less than the maximum number of allowed errors. 5816 ** At most reg(P3) errors will be reported. 5817 ** In other words, the analysis stops as soon as reg(P1) errors are 5818 ** seen. Reg(P1) is updated with the number of errors remaining. 5819 ** 5820 ** The root page numbers of all tables in the database are integers 5821 ** stored in P4_INTARRAY argument. 5822 ** 5823 ** If P5 is not zero, the check is done on the auxiliary database 5824 ** file, not the main database file. 5825 ** 5826 ** This opcode is used to implement the integrity_check pragma. 5827 */ 5828 case OP_IntegrityCk: { 5829 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5830 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5831 int nErr; /* Number of errors reported */ 5832 char *z; /* Text of the error report */ 5833 Mem *pnErr; /* Register keeping track of errors remaining */ 5834 5835 assert( p->bIsReader ); 5836 nRoot = pOp->p2; 5837 aRoot = pOp->p4.ai; 5838 assert( nRoot>0 ); 5839 assert( aRoot[0]==nRoot ); 5840 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5841 pnErr = &aMem[pOp->p3]; 5842 assert( (pnErr->flags & MEM_Int)!=0 ); 5843 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5844 pIn1 = &aMem[pOp->p1]; 5845 assert( pOp->p5<db->nDb ); 5846 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5847 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 5848 (int)pnErr->u.i+1, &nErr); 5849 sqlite3VdbeMemSetNull(pIn1); 5850 if( nErr==0 ){ 5851 assert( z==0 ); 5852 }else if( z==0 ){ 5853 goto no_mem; 5854 }else{ 5855 pnErr->u.i -= nErr-1; 5856 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5857 } 5858 UPDATE_MAX_BLOBSIZE(pIn1); 5859 sqlite3VdbeChangeEncoding(pIn1, encoding); 5860 break; 5861 } 5862 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5863 5864 /* Opcode: RowSetAdd P1 P2 * * * 5865 ** Synopsis: rowset(P1)=r[P2] 5866 ** 5867 ** Insert the integer value held by register P2 into a RowSet object 5868 ** held in register P1. 5869 ** 5870 ** An assertion fails if P2 is not an integer. 5871 */ 5872 case OP_RowSetAdd: { /* in1, in2 */ 5873 pIn1 = &aMem[pOp->p1]; 5874 pIn2 = &aMem[pOp->p2]; 5875 assert( (pIn2->flags & MEM_Int)!=0 ); 5876 if( (pIn1->flags & MEM_RowSet)==0 ){ 5877 sqlite3VdbeMemSetRowSet(pIn1); 5878 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5879 } 5880 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5881 break; 5882 } 5883 5884 /* Opcode: RowSetRead P1 P2 P3 * * 5885 ** Synopsis: r[P3]=rowset(P1) 5886 ** 5887 ** Extract the smallest value from the RowSet object in P1 5888 ** and put that value into register P3. 5889 ** Or, if RowSet object P1 is initially empty, leave P3 5890 ** unchanged and jump to instruction P2. 5891 */ 5892 case OP_RowSetRead: { /* jump, in1, out3 */ 5893 i64 val; 5894 5895 pIn1 = &aMem[pOp->p1]; 5896 if( (pIn1->flags & MEM_RowSet)==0 5897 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5898 ){ 5899 /* The boolean index is empty */ 5900 sqlite3VdbeMemSetNull(pIn1); 5901 VdbeBranchTaken(1,2); 5902 goto jump_to_p2_and_check_for_interrupt; 5903 }else{ 5904 /* A value was pulled from the index */ 5905 VdbeBranchTaken(0,2); 5906 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5907 } 5908 goto check_for_interrupt; 5909 } 5910 5911 /* Opcode: RowSetTest P1 P2 P3 P4 5912 ** Synopsis: if r[P3] in rowset(P1) goto P2 5913 ** 5914 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5915 ** contains a RowSet object and that RowSet object contains 5916 ** the value held in P3, jump to register P2. Otherwise, insert the 5917 ** integer in P3 into the RowSet and continue on to the 5918 ** next opcode. 5919 ** 5920 ** The RowSet object is optimized for the case where sets of integers 5921 ** are inserted in distinct phases, which each set contains no duplicates. 5922 ** Each set is identified by a unique P4 value. The first set 5923 ** must have P4==0, the final set must have P4==-1, and for all other sets 5924 ** must have P4>0. 5925 ** 5926 ** This allows optimizations: (a) when P4==0 there is no need to test 5927 ** the RowSet object for P3, as it is guaranteed not to contain it, 5928 ** (b) when P4==-1 there is no need to insert the value, as it will 5929 ** never be tested for, and (c) when a value that is part of set X is 5930 ** inserted, there is no need to search to see if the same value was 5931 ** previously inserted as part of set X (only if it was previously 5932 ** inserted as part of some other set). 5933 */ 5934 case OP_RowSetTest: { /* jump, in1, in3 */ 5935 int iSet; 5936 int exists; 5937 5938 pIn1 = &aMem[pOp->p1]; 5939 pIn3 = &aMem[pOp->p3]; 5940 iSet = pOp->p4.i; 5941 assert( pIn3->flags&MEM_Int ); 5942 5943 /* If there is anything other than a rowset object in memory cell P1, 5944 ** delete it now and initialize P1 with an empty rowset 5945 */ 5946 if( (pIn1->flags & MEM_RowSet)==0 ){ 5947 sqlite3VdbeMemSetRowSet(pIn1); 5948 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5949 } 5950 5951 assert( pOp->p4type==P4_INT32 ); 5952 assert( iSet==-1 || iSet>=0 ); 5953 if( iSet ){ 5954 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5955 VdbeBranchTaken(exists!=0,2); 5956 if( exists ) goto jump_to_p2; 5957 } 5958 if( iSet>=0 ){ 5959 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5960 } 5961 break; 5962 } 5963 5964 5965 #ifndef SQLITE_OMIT_TRIGGER 5966 5967 /* Opcode: Program P1 P2 P3 P4 P5 5968 ** 5969 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5970 ** 5971 ** P1 contains the address of the memory cell that contains the first memory 5972 ** cell in an array of values used as arguments to the sub-program. P2 5973 ** contains the address to jump to if the sub-program throws an IGNORE 5974 ** exception using the RAISE() function. Register P3 contains the address 5975 ** of a memory cell in this (the parent) VM that is used to allocate the 5976 ** memory required by the sub-vdbe at runtime. 5977 ** 5978 ** P4 is a pointer to the VM containing the trigger program. 5979 ** 5980 ** If P5 is non-zero, then recursive program invocation is enabled. 5981 */ 5982 case OP_Program: { /* jump */ 5983 int nMem; /* Number of memory registers for sub-program */ 5984 int nByte; /* Bytes of runtime space required for sub-program */ 5985 Mem *pRt; /* Register to allocate runtime space */ 5986 Mem *pMem; /* Used to iterate through memory cells */ 5987 Mem *pEnd; /* Last memory cell in new array */ 5988 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5989 SubProgram *pProgram; /* Sub-program to execute */ 5990 void *t; /* Token identifying trigger */ 5991 5992 pProgram = pOp->p4.pProgram; 5993 pRt = &aMem[pOp->p3]; 5994 assert( pProgram->nOp>0 ); 5995 5996 /* If the p5 flag is clear, then recursive invocation of triggers is 5997 ** disabled for backwards compatibility (p5 is set if this sub-program 5998 ** is really a trigger, not a foreign key action, and the flag set 5999 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6000 ** 6001 ** It is recursive invocation of triggers, at the SQL level, that is 6002 ** disabled. In some cases a single trigger may generate more than one 6003 ** SubProgram (if the trigger may be executed with more than one different 6004 ** ON CONFLICT algorithm). SubProgram structures associated with a 6005 ** single trigger all have the same value for the SubProgram.token 6006 ** variable. */ 6007 if( pOp->p5 ){ 6008 t = pProgram->token; 6009 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6010 if( pFrame ) break; 6011 } 6012 6013 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6014 rc = SQLITE_ERROR; 6015 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6016 goto abort_due_to_error; 6017 } 6018 6019 /* Register pRt is used to store the memory required to save the state 6020 ** of the current program, and the memory required at runtime to execute 6021 ** the trigger program. If this trigger has been fired before, then pRt 6022 ** is already allocated. Otherwise, it must be initialized. */ 6023 if( (pRt->flags&MEM_Frame)==0 ){ 6024 /* SubProgram.nMem is set to the number of memory cells used by the 6025 ** program stored in SubProgram.aOp. As well as these, one memory 6026 ** cell is required for each cursor used by the program. Set local 6027 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6028 */ 6029 nMem = pProgram->nMem + pProgram->nCsr; 6030 assert( nMem>0 ); 6031 if( pProgram->nCsr==0 ) nMem++; 6032 nByte = ROUND8(sizeof(VdbeFrame)) 6033 + nMem * sizeof(Mem) 6034 + pProgram->nCsr * sizeof(VdbeCursor*) 6035 + (pProgram->nOp + 7)/8; 6036 pFrame = sqlite3DbMallocZero(db, nByte); 6037 if( !pFrame ){ 6038 goto no_mem; 6039 } 6040 sqlite3VdbeMemRelease(pRt); 6041 pRt->flags = MEM_Frame; 6042 pRt->u.pFrame = pFrame; 6043 6044 pFrame->v = p; 6045 pFrame->nChildMem = nMem; 6046 pFrame->nChildCsr = pProgram->nCsr; 6047 pFrame->pc = (int)(pOp - aOp); 6048 pFrame->aMem = p->aMem; 6049 pFrame->nMem = p->nMem; 6050 pFrame->apCsr = p->apCsr; 6051 pFrame->nCursor = p->nCursor; 6052 pFrame->aOp = p->aOp; 6053 pFrame->nOp = p->nOp; 6054 pFrame->token = pProgram->token; 6055 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6056 pFrame->anExec = p->anExec; 6057 #endif 6058 6059 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6060 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6061 pMem->flags = MEM_Undefined; 6062 pMem->db = db; 6063 } 6064 }else{ 6065 pFrame = pRt->u.pFrame; 6066 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6067 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6068 assert( pProgram->nCsr==pFrame->nChildCsr ); 6069 assert( (int)(pOp - aOp)==pFrame->pc ); 6070 } 6071 6072 p->nFrame++; 6073 pFrame->pParent = p->pFrame; 6074 pFrame->lastRowid = db->lastRowid; 6075 pFrame->nChange = p->nChange; 6076 pFrame->nDbChange = p->db->nChange; 6077 assert( pFrame->pAuxData==0 ); 6078 pFrame->pAuxData = p->pAuxData; 6079 p->pAuxData = 0; 6080 p->nChange = 0; 6081 p->pFrame = pFrame; 6082 p->aMem = aMem = VdbeFrameMem(pFrame); 6083 p->nMem = pFrame->nChildMem; 6084 p->nCursor = (u16)pFrame->nChildCsr; 6085 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6086 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6087 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6088 p->aOp = aOp = pProgram->aOp; 6089 p->nOp = pProgram->nOp; 6090 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6091 p->anExec = 0; 6092 #endif 6093 pOp = &aOp[-1]; 6094 6095 break; 6096 } 6097 6098 /* Opcode: Param P1 P2 * * * 6099 ** 6100 ** This opcode is only ever present in sub-programs called via the 6101 ** OP_Program instruction. Copy a value currently stored in a memory 6102 ** cell of the calling (parent) frame to cell P2 in the current frames 6103 ** address space. This is used by trigger programs to access the new.* 6104 ** and old.* values. 6105 ** 6106 ** The address of the cell in the parent frame is determined by adding 6107 ** the value of the P1 argument to the value of the P1 argument to the 6108 ** calling OP_Program instruction. 6109 */ 6110 case OP_Param: { /* out2 */ 6111 VdbeFrame *pFrame; 6112 Mem *pIn; 6113 pOut = out2Prerelease(p, pOp); 6114 pFrame = p->pFrame; 6115 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 6116 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 6117 break; 6118 } 6119 6120 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 6121 6122 #ifndef SQLITE_OMIT_FOREIGN_KEY 6123 /* Opcode: FkCounter P1 P2 * * * 6124 ** Synopsis: fkctr[P1]+=P2 6125 ** 6126 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 6127 ** If P1 is non-zero, the database constraint counter is incremented 6128 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 6129 ** statement counter is incremented (immediate foreign key constraints). 6130 */ 6131 case OP_FkCounter: { 6132 if( db->flags & SQLITE_DeferFKs ){ 6133 db->nDeferredImmCons += pOp->p2; 6134 }else if( pOp->p1 ){ 6135 db->nDeferredCons += pOp->p2; 6136 }else{ 6137 p->nFkConstraint += pOp->p2; 6138 } 6139 break; 6140 } 6141 6142 /* Opcode: FkIfZero P1 P2 * * * 6143 ** Synopsis: if fkctr[P1]==0 goto P2 6144 ** 6145 ** This opcode tests if a foreign key constraint-counter is currently zero. 6146 ** If so, jump to instruction P2. Otherwise, fall through to the next 6147 ** instruction. 6148 ** 6149 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 6150 ** is zero (the one that counts deferred constraint violations). If P1 is 6151 ** zero, the jump is taken if the statement constraint-counter is zero 6152 ** (immediate foreign key constraint violations). 6153 */ 6154 case OP_FkIfZero: { /* jump */ 6155 if( pOp->p1 ){ 6156 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 6157 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6158 }else{ 6159 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 6160 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 6161 } 6162 break; 6163 } 6164 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 6165 6166 #ifndef SQLITE_OMIT_AUTOINCREMENT 6167 /* Opcode: MemMax P1 P2 * * * 6168 ** Synopsis: r[P1]=max(r[P1],r[P2]) 6169 ** 6170 ** P1 is a register in the root frame of this VM (the root frame is 6171 ** different from the current frame if this instruction is being executed 6172 ** within a sub-program). Set the value of register P1 to the maximum of 6173 ** its current value and the value in register P2. 6174 ** 6175 ** This instruction throws an error if the memory cell is not initially 6176 ** an integer. 6177 */ 6178 case OP_MemMax: { /* in2 */ 6179 VdbeFrame *pFrame; 6180 if( p->pFrame ){ 6181 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 6182 pIn1 = &pFrame->aMem[pOp->p1]; 6183 }else{ 6184 pIn1 = &aMem[pOp->p1]; 6185 } 6186 assert( memIsValid(pIn1) ); 6187 sqlite3VdbeMemIntegerify(pIn1); 6188 pIn2 = &aMem[pOp->p2]; 6189 sqlite3VdbeMemIntegerify(pIn2); 6190 if( pIn1->u.i<pIn2->u.i){ 6191 pIn1->u.i = pIn2->u.i; 6192 } 6193 break; 6194 } 6195 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 6196 6197 /* Opcode: IfPos P1 P2 P3 * * 6198 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 6199 ** 6200 ** Register P1 must contain an integer. 6201 ** If the value of register P1 is 1 or greater, subtract P3 from the 6202 ** value in P1 and jump to P2. 6203 ** 6204 ** If the initial value of register P1 is less than 1, then the 6205 ** value is unchanged and control passes through to the next instruction. 6206 */ 6207 case OP_IfPos: { /* jump, in1 */ 6208 pIn1 = &aMem[pOp->p1]; 6209 assert( pIn1->flags&MEM_Int ); 6210 VdbeBranchTaken( pIn1->u.i>0, 2); 6211 if( pIn1->u.i>0 ){ 6212 pIn1->u.i -= pOp->p3; 6213 goto jump_to_p2; 6214 } 6215 break; 6216 } 6217 6218 /* Opcode: OffsetLimit P1 P2 P3 * * 6219 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6220 ** 6221 ** This opcode performs a commonly used computation associated with 6222 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6223 ** holds the offset counter. The opcode computes the combined value 6224 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6225 ** value computed is the total number of rows that will need to be 6226 ** visited in order to complete the query. 6227 ** 6228 ** If r[P3] is zero or negative, that means there is no OFFSET 6229 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6230 ** 6231 ** if r[P1] is zero or negative, that means there is no LIMIT 6232 ** and r[P2] is set to -1. 6233 ** 6234 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6235 */ 6236 case OP_OffsetLimit: { /* in1, out2, in3 */ 6237 i64 x; 6238 pIn1 = &aMem[pOp->p1]; 6239 pIn3 = &aMem[pOp->p3]; 6240 pOut = out2Prerelease(p, pOp); 6241 assert( pIn1->flags & MEM_Int ); 6242 assert( pIn3->flags & MEM_Int ); 6243 x = pIn1->u.i; 6244 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6245 /* If the LIMIT is less than or equal to zero, loop forever. This 6246 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6247 ** also loop forever. This is undocumented. In fact, one could argue 6248 ** that the loop should terminate. But assuming 1 billion iterations 6249 ** per second (far exceeding the capabilities of any current hardware) 6250 ** it would take nearly 300 years to actually reach the limit. So 6251 ** looping forever is a reasonable approximation. */ 6252 pOut->u.i = -1; 6253 }else{ 6254 pOut->u.i = x; 6255 } 6256 break; 6257 } 6258 6259 /* Opcode: IfNotZero P1 P2 * * * 6260 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6261 ** 6262 ** Register P1 must contain an integer. If the content of register P1 is 6263 ** initially greater than zero, then decrement the value in register P1. 6264 ** If it is non-zero (negative or positive) and then also jump to P2. 6265 ** If register P1 is initially zero, leave it unchanged and fall through. 6266 */ 6267 case OP_IfNotZero: { /* jump, in1 */ 6268 pIn1 = &aMem[pOp->p1]; 6269 assert( pIn1->flags&MEM_Int ); 6270 VdbeBranchTaken(pIn1->u.i<0, 2); 6271 if( pIn1->u.i ){ 6272 if( pIn1->u.i>0 ) pIn1->u.i--; 6273 goto jump_to_p2; 6274 } 6275 break; 6276 } 6277 6278 /* Opcode: DecrJumpZero P1 P2 * * * 6279 ** Synopsis: if (--r[P1])==0 goto P2 6280 ** 6281 ** Register P1 must hold an integer. Decrement the value in P1 6282 ** and jump to P2 if the new value is exactly zero. 6283 */ 6284 case OP_DecrJumpZero: { /* jump, in1 */ 6285 pIn1 = &aMem[pOp->p1]; 6286 assert( pIn1->flags&MEM_Int ); 6287 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6288 VdbeBranchTaken(pIn1->u.i==0, 2); 6289 if( pIn1->u.i==0 ) goto jump_to_p2; 6290 break; 6291 } 6292 6293 6294 /* Opcode: AggStep * P2 P3 P4 P5 6295 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6296 ** 6297 ** Execute the xStep function for an aggregate. 6298 ** The function has P5 arguments. P4 is a pointer to the 6299 ** FuncDef structure that specifies the function. Register P3 is the 6300 ** accumulator. 6301 ** 6302 ** The P5 arguments are taken from register P2 and its 6303 ** successors. 6304 */ 6305 /* Opcode: AggInverse * P2 P3 P4 P5 6306 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 6307 ** 6308 ** Execute the xInverse function for an aggregate. 6309 ** The function has P5 arguments. P4 is a pointer to the 6310 ** FuncDef structure that specifies the function. Register P3 is the 6311 ** accumulator. 6312 ** 6313 ** The P5 arguments are taken from register P2 and its 6314 ** successors. 6315 */ 6316 /* Opcode: AggStep1 P1 P2 P3 P4 P5 6317 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6318 ** 6319 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 6320 ** aggregate. The function has P5 arguments. P4 is a pointer to the 6321 ** FuncDef structure that specifies the function. Register P3 is the 6322 ** accumulator. 6323 ** 6324 ** The P5 arguments are taken from register P2 and its 6325 ** successors. 6326 ** 6327 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6328 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6329 ** the opcode is changed. In this way, the initialization of the 6330 ** sqlite3_context only happens once, instead of on each call to the 6331 ** step function. 6332 */ 6333 case OP_AggInverse: 6334 case OP_AggStep: { 6335 int n; 6336 sqlite3_context *pCtx; 6337 6338 assert( pOp->p4type==P4_FUNCDEF ); 6339 n = pOp->p5; 6340 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6341 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6342 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6343 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 6344 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 6345 if( pCtx==0 ) goto no_mem; 6346 pCtx->pMem = 0; 6347 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 6348 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 6349 pCtx->pFunc = pOp->p4.pFunc; 6350 pCtx->iOp = (int)(pOp - aOp); 6351 pCtx->pVdbe = p; 6352 pCtx->skipFlag = 0; 6353 pCtx->isError = 0; 6354 pCtx->argc = n; 6355 pOp->p4type = P4_FUNCCTX; 6356 pOp->p4.pCtx = pCtx; 6357 6358 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 6359 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 6360 6361 pOp->opcode = OP_AggStep1; 6362 /* Fall through into OP_AggStep */ 6363 } 6364 case OP_AggStep1: { 6365 int i; 6366 sqlite3_context *pCtx; 6367 Mem *pMem; 6368 6369 assert( pOp->p4type==P4_FUNCCTX ); 6370 pCtx = pOp->p4.pCtx; 6371 pMem = &aMem[pOp->p3]; 6372 6373 #ifdef SQLITE_DEBUG 6374 if( pOp->p1 ){ 6375 /* This is an OP_AggInverse call. Verify that xStep has always 6376 ** been called at least once prior to any xInverse call. */ 6377 assert( pMem->uTemp==0x1122e0e3 ); 6378 }else{ 6379 /* This is an OP_AggStep call. Mark it as such. */ 6380 pMem->uTemp = 0x1122e0e3; 6381 } 6382 #endif 6383 6384 /* If this function is inside of a trigger, the register array in aMem[] 6385 ** might change from one evaluation to the next. The next block of code 6386 ** checks to see if the register array has changed, and if so it 6387 ** reinitializes the relavant parts of the sqlite3_context object */ 6388 if( pCtx->pMem != pMem ){ 6389 pCtx->pMem = pMem; 6390 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6391 } 6392 6393 #ifdef SQLITE_DEBUG 6394 for(i=0; i<pCtx->argc; i++){ 6395 assert( memIsValid(pCtx->argv[i]) ); 6396 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6397 } 6398 #endif 6399 6400 pMem->n++; 6401 assert( pCtx->pOut->flags==MEM_Null ); 6402 assert( pCtx->isError==0 ); 6403 assert( pCtx->skipFlag==0 ); 6404 #ifndef SQLITE_OMIT_WINDOWFUNC 6405 if( pOp->p1 ){ 6406 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 6407 }else 6408 #endif 6409 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6410 6411 if( pCtx->isError ){ 6412 if( pCtx->isError>0 ){ 6413 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 6414 rc = pCtx->isError; 6415 } 6416 if( pCtx->skipFlag ){ 6417 assert( pOp[-1].opcode==OP_CollSeq ); 6418 i = pOp[-1].p1; 6419 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6420 pCtx->skipFlag = 0; 6421 } 6422 sqlite3VdbeMemRelease(pCtx->pOut); 6423 pCtx->pOut->flags = MEM_Null; 6424 pCtx->isError = 0; 6425 if( rc ) goto abort_due_to_error; 6426 } 6427 assert( pCtx->pOut->flags==MEM_Null ); 6428 assert( pCtx->skipFlag==0 ); 6429 break; 6430 } 6431 6432 /* Opcode: AggFinal P1 P2 * P4 * 6433 ** Synopsis: accum=r[P1] N=P2 6434 ** 6435 ** P1 is the memory location that is the accumulator for an aggregate 6436 ** or window function. Execute the finalizer function 6437 ** for an aggregate and store the result in P1. 6438 ** 6439 ** P2 is the number of arguments that the step function takes and 6440 ** P4 is a pointer to the FuncDef for this function. The P2 6441 ** argument is not used by this opcode. It is only there to disambiguate 6442 ** functions that can take varying numbers of arguments. The 6443 ** P4 argument is only needed for the case where 6444 ** the step function was not previously called. 6445 */ 6446 /* Opcode: AggValue * P2 P3 P4 * 6447 ** Synopsis: r[P3]=value N=P2 6448 ** 6449 ** Invoke the xValue() function and store the result in register P3. 6450 ** 6451 ** P2 is the number of arguments that the step function takes and 6452 ** P4 is a pointer to the FuncDef for this function. The P2 6453 ** argument is not used by this opcode. It is only there to disambiguate 6454 ** functions that can take varying numbers of arguments. The 6455 ** P4 argument is only needed for the case where 6456 ** the step function was not previously called. 6457 */ 6458 case OP_AggValue: 6459 case OP_AggFinal: { 6460 Mem *pMem; 6461 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6462 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 6463 pMem = &aMem[pOp->p1]; 6464 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6465 #ifndef SQLITE_OMIT_WINDOWFUNC 6466 if( pOp->p3 ){ 6467 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 6468 pMem = &aMem[pOp->p3]; 6469 }else 6470 #endif 6471 { 6472 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6473 } 6474 6475 if( rc ){ 6476 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6477 goto abort_due_to_error; 6478 } 6479 sqlite3VdbeChangeEncoding(pMem, encoding); 6480 UPDATE_MAX_BLOBSIZE(pMem); 6481 if( sqlite3VdbeMemTooBig(pMem) ){ 6482 goto too_big; 6483 } 6484 break; 6485 } 6486 6487 #ifndef SQLITE_OMIT_WAL 6488 /* Opcode: Checkpoint P1 P2 P3 * * 6489 ** 6490 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6491 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6492 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6493 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6494 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6495 ** in the WAL that have been checkpointed after the checkpoint 6496 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6497 ** mem[P3+2] are initialized to -1. 6498 */ 6499 case OP_Checkpoint: { 6500 int i; /* Loop counter */ 6501 int aRes[3]; /* Results */ 6502 Mem *pMem; /* Write results here */ 6503 6504 assert( p->readOnly==0 ); 6505 aRes[0] = 0; 6506 aRes[1] = aRes[2] = -1; 6507 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6508 || pOp->p2==SQLITE_CHECKPOINT_FULL 6509 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6510 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6511 ); 6512 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6513 if( rc ){ 6514 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6515 rc = SQLITE_OK; 6516 aRes[0] = 1; 6517 } 6518 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6519 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6520 } 6521 break; 6522 }; 6523 #endif 6524 6525 #ifndef SQLITE_OMIT_PRAGMA 6526 /* Opcode: JournalMode P1 P2 P3 * * 6527 ** 6528 ** Change the journal mode of database P1 to P3. P3 must be one of the 6529 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6530 ** modes (delete, truncate, persist, off and memory), this is a simple 6531 ** operation. No IO is required. 6532 ** 6533 ** If changing into or out of WAL mode the procedure is more complicated. 6534 ** 6535 ** Write a string containing the final journal-mode to register P2. 6536 */ 6537 case OP_JournalMode: { /* out2 */ 6538 Btree *pBt; /* Btree to change journal mode of */ 6539 Pager *pPager; /* Pager associated with pBt */ 6540 int eNew; /* New journal mode */ 6541 int eOld; /* The old journal mode */ 6542 #ifndef SQLITE_OMIT_WAL 6543 const char *zFilename; /* Name of database file for pPager */ 6544 #endif 6545 6546 pOut = out2Prerelease(p, pOp); 6547 eNew = pOp->p3; 6548 assert( eNew==PAGER_JOURNALMODE_DELETE 6549 || eNew==PAGER_JOURNALMODE_TRUNCATE 6550 || eNew==PAGER_JOURNALMODE_PERSIST 6551 || eNew==PAGER_JOURNALMODE_OFF 6552 || eNew==PAGER_JOURNALMODE_MEMORY 6553 || eNew==PAGER_JOURNALMODE_WAL 6554 || eNew==PAGER_JOURNALMODE_QUERY 6555 ); 6556 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6557 assert( p->readOnly==0 ); 6558 6559 pBt = db->aDb[pOp->p1].pBt; 6560 pPager = sqlite3BtreePager(pBt); 6561 eOld = sqlite3PagerGetJournalMode(pPager); 6562 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6563 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6564 6565 #ifndef SQLITE_OMIT_WAL 6566 zFilename = sqlite3PagerFilename(pPager, 1); 6567 6568 /* Do not allow a transition to journal_mode=WAL for a database 6569 ** in temporary storage or if the VFS does not support shared memory 6570 */ 6571 if( eNew==PAGER_JOURNALMODE_WAL 6572 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6573 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6574 ){ 6575 eNew = eOld; 6576 } 6577 6578 if( (eNew!=eOld) 6579 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6580 ){ 6581 if( !db->autoCommit || db->nVdbeRead>1 ){ 6582 rc = SQLITE_ERROR; 6583 sqlite3VdbeError(p, 6584 "cannot change %s wal mode from within a transaction", 6585 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6586 ); 6587 goto abort_due_to_error; 6588 }else{ 6589 6590 if( eOld==PAGER_JOURNALMODE_WAL ){ 6591 /* If leaving WAL mode, close the log file. If successful, the call 6592 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6593 ** file. An EXCLUSIVE lock may still be held on the database file 6594 ** after a successful return. 6595 */ 6596 rc = sqlite3PagerCloseWal(pPager, db); 6597 if( rc==SQLITE_OK ){ 6598 sqlite3PagerSetJournalMode(pPager, eNew); 6599 } 6600 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6601 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6602 ** as an intermediate */ 6603 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6604 } 6605 6606 /* Open a transaction on the database file. Regardless of the journal 6607 ** mode, this transaction always uses a rollback journal. 6608 */ 6609 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6610 if( rc==SQLITE_OK ){ 6611 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6612 } 6613 } 6614 } 6615 #endif /* ifndef SQLITE_OMIT_WAL */ 6616 6617 if( rc ) eNew = eOld; 6618 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6619 6620 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6621 pOut->z = (char *)sqlite3JournalModename(eNew); 6622 pOut->n = sqlite3Strlen30(pOut->z); 6623 pOut->enc = SQLITE_UTF8; 6624 sqlite3VdbeChangeEncoding(pOut, encoding); 6625 if( rc ) goto abort_due_to_error; 6626 break; 6627 }; 6628 #endif /* SQLITE_OMIT_PRAGMA */ 6629 6630 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6631 /* Opcode: Vacuum P1 * * * * 6632 ** 6633 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6634 ** for an attached database. The "temp" database may not be vacuumed. 6635 */ 6636 case OP_Vacuum: { 6637 assert( p->readOnly==0 ); 6638 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6639 if( rc ) goto abort_due_to_error; 6640 break; 6641 } 6642 #endif 6643 6644 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6645 /* Opcode: IncrVacuum P1 P2 * * * 6646 ** 6647 ** Perform a single step of the incremental vacuum procedure on 6648 ** the P1 database. If the vacuum has finished, jump to instruction 6649 ** P2. Otherwise, fall through to the next instruction. 6650 */ 6651 case OP_IncrVacuum: { /* jump */ 6652 Btree *pBt; 6653 6654 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6655 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6656 assert( p->readOnly==0 ); 6657 pBt = db->aDb[pOp->p1].pBt; 6658 rc = sqlite3BtreeIncrVacuum(pBt); 6659 VdbeBranchTaken(rc==SQLITE_DONE,2); 6660 if( rc ){ 6661 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6662 rc = SQLITE_OK; 6663 goto jump_to_p2; 6664 } 6665 break; 6666 } 6667 #endif 6668 6669 /* Opcode: Expire P1 * * * * 6670 ** 6671 ** Cause precompiled statements to expire. When an expired statement 6672 ** is executed using sqlite3_step() it will either automatically 6673 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6674 ** or it will fail with SQLITE_SCHEMA. 6675 ** 6676 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6677 ** then only the currently executing statement is expired. 6678 */ 6679 case OP_Expire: { 6680 if( !pOp->p1 ){ 6681 sqlite3ExpirePreparedStatements(db); 6682 }else{ 6683 p->expired = 1; 6684 } 6685 break; 6686 } 6687 6688 #ifndef SQLITE_OMIT_SHARED_CACHE 6689 /* Opcode: TableLock P1 P2 P3 P4 * 6690 ** Synopsis: iDb=P1 root=P2 write=P3 6691 ** 6692 ** Obtain a lock on a particular table. This instruction is only used when 6693 ** the shared-cache feature is enabled. 6694 ** 6695 ** P1 is the index of the database in sqlite3.aDb[] of the database 6696 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6697 ** a write lock if P3==1. 6698 ** 6699 ** P2 contains the root-page of the table to lock. 6700 ** 6701 ** P4 contains a pointer to the name of the table being locked. This is only 6702 ** used to generate an error message if the lock cannot be obtained. 6703 */ 6704 case OP_TableLock: { 6705 u8 isWriteLock = (u8)pOp->p3; 6706 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 6707 int p1 = pOp->p1; 6708 assert( p1>=0 && p1<db->nDb ); 6709 assert( DbMaskTest(p->btreeMask, p1) ); 6710 assert( isWriteLock==0 || isWriteLock==1 ); 6711 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6712 if( rc ){ 6713 if( (rc&0xFF)==SQLITE_LOCKED ){ 6714 const char *z = pOp->p4.z; 6715 sqlite3VdbeError(p, "database table is locked: %s", z); 6716 } 6717 goto abort_due_to_error; 6718 } 6719 } 6720 break; 6721 } 6722 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6723 6724 #ifndef SQLITE_OMIT_VIRTUALTABLE 6725 /* Opcode: VBegin * * * P4 * 6726 ** 6727 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6728 ** xBegin method for that table. 6729 ** 6730 ** Also, whether or not P4 is set, check that this is not being called from 6731 ** within a callback to a virtual table xSync() method. If it is, the error 6732 ** code will be set to SQLITE_LOCKED. 6733 */ 6734 case OP_VBegin: { 6735 VTable *pVTab; 6736 pVTab = pOp->p4.pVtab; 6737 rc = sqlite3VtabBegin(db, pVTab); 6738 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6739 if( rc ) goto abort_due_to_error; 6740 break; 6741 } 6742 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6743 6744 #ifndef SQLITE_OMIT_VIRTUALTABLE 6745 /* Opcode: VCreate P1 P2 * * * 6746 ** 6747 ** P2 is a register that holds the name of a virtual table in database 6748 ** P1. Call the xCreate method for that table. 6749 */ 6750 case OP_VCreate: { 6751 Mem sMem; /* For storing the record being decoded */ 6752 const char *zTab; /* Name of the virtual table */ 6753 6754 memset(&sMem, 0, sizeof(sMem)); 6755 sMem.db = db; 6756 /* Because P2 is always a static string, it is impossible for the 6757 ** sqlite3VdbeMemCopy() to fail */ 6758 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6759 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6760 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6761 assert( rc==SQLITE_OK ); 6762 zTab = (const char*)sqlite3_value_text(&sMem); 6763 assert( zTab || db->mallocFailed ); 6764 if( zTab ){ 6765 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6766 } 6767 sqlite3VdbeMemRelease(&sMem); 6768 if( rc ) goto abort_due_to_error; 6769 break; 6770 } 6771 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6772 6773 #ifndef SQLITE_OMIT_VIRTUALTABLE 6774 /* Opcode: VDestroy P1 * * P4 * 6775 ** 6776 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6777 ** of that table. 6778 */ 6779 case OP_VDestroy: { 6780 db->nVDestroy++; 6781 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6782 db->nVDestroy--; 6783 if( rc ) goto abort_due_to_error; 6784 break; 6785 } 6786 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6787 6788 #ifndef SQLITE_OMIT_VIRTUALTABLE 6789 /* Opcode: VOpen P1 * * P4 * 6790 ** 6791 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6792 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6793 ** table and stores that cursor in P1. 6794 */ 6795 case OP_VOpen: { 6796 VdbeCursor *pCur; 6797 sqlite3_vtab_cursor *pVCur; 6798 sqlite3_vtab *pVtab; 6799 const sqlite3_module *pModule; 6800 6801 assert( p->bIsReader ); 6802 pCur = 0; 6803 pVCur = 0; 6804 pVtab = pOp->p4.pVtab->pVtab; 6805 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6806 rc = SQLITE_LOCKED; 6807 goto abort_due_to_error; 6808 } 6809 pModule = pVtab->pModule; 6810 rc = pModule->xOpen(pVtab, &pVCur); 6811 sqlite3VtabImportErrmsg(p, pVtab); 6812 if( rc ) goto abort_due_to_error; 6813 6814 /* Initialize sqlite3_vtab_cursor base class */ 6815 pVCur->pVtab = pVtab; 6816 6817 /* Initialize vdbe cursor object */ 6818 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6819 if( pCur ){ 6820 pCur->uc.pVCur = pVCur; 6821 pVtab->nRef++; 6822 }else{ 6823 assert( db->mallocFailed ); 6824 pModule->xClose(pVCur); 6825 goto no_mem; 6826 } 6827 break; 6828 } 6829 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6830 6831 #ifndef SQLITE_OMIT_VIRTUALTABLE 6832 /* Opcode: VFilter P1 P2 P3 P4 * 6833 ** Synopsis: iplan=r[P3] zplan='P4' 6834 ** 6835 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6836 ** the filtered result set is empty. 6837 ** 6838 ** P4 is either NULL or a string that was generated by the xBestIndex 6839 ** method of the module. The interpretation of the P4 string is left 6840 ** to the module implementation. 6841 ** 6842 ** This opcode invokes the xFilter method on the virtual table specified 6843 ** by P1. The integer query plan parameter to xFilter is stored in register 6844 ** P3. Register P3+1 stores the argc parameter to be passed to the 6845 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6846 ** additional parameters which are passed to 6847 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6848 ** 6849 ** A jump is made to P2 if the result set after filtering would be empty. 6850 */ 6851 case OP_VFilter: { /* jump */ 6852 int nArg; 6853 int iQuery; 6854 const sqlite3_module *pModule; 6855 Mem *pQuery; 6856 Mem *pArgc; 6857 sqlite3_vtab_cursor *pVCur; 6858 sqlite3_vtab *pVtab; 6859 VdbeCursor *pCur; 6860 int res; 6861 int i; 6862 Mem **apArg; 6863 6864 pQuery = &aMem[pOp->p3]; 6865 pArgc = &pQuery[1]; 6866 pCur = p->apCsr[pOp->p1]; 6867 assert( memIsValid(pQuery) ); 6868 REGISTER_TRACE(pOp->p3, pQuery); 6869 assert( pCur->eCurType==CURTYPE_VTAB ); 6870 pVCur = pCur->uc.pVCur; 6871 pVtab = pVCur->pVtab; 6872 pModule = pVtab->pModule; 6873 6874 /* Grab the index number and argc parameters */ 6875 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6876 nArg = (int)pArgc->u.i; 6877 iQuery = (int)pQuery->u.i; 6878 6879 /* Invoke the xFilter method */ 6880 res = 0; 6881 apArg = p->apArg; 6882 for(i = 0; i<nArg; i++){ 6883 apArg[i] = &pArgc[i+1]; 6884 } 6885 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6886 sqlite3VtabImportErrmsg(p, pVtab); 6887 if( rc ) goto abort_due_to_error; 6888 res = pModule->xEof(pVCur); 6889 pCur->nullRow = 0; 6890 VdbeBranchTaken(res!=0,2); 6891 if( res ) goto jump_to_p2; 6892 break; 6893 } 6894 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6895 6896 #ifndef SQLITE_OMIT_VIRTUALTABLE 6897 /* Opcode: VColumn P1 P2 P3 * P5 6898 ** Synopsis: r[P3]=vcolumn(P2) 6899 ** 6900 ** Store in register P3 the value of the P2-th column of 6901 ** the current row of the virtual-table of cursor P1. 6902 ** 6903 ** If the VColumn opcode is being used to fetch the value of 6904 ** an unchanging column during an UPDATE operation, then the P5 6905 ** value is 1. Otherwise, P5 is 0. The P5 value is returned 6906 ** by sqlite3_vtab_nochange() routine and can be used 6907 ** by virtual table implementations to return special "no-change" 6908 ** marks which can be more efficient, depending on the virtual table. 6909 */ 6910 case OP_VColumn: { 6911 sqlite3_vtab *pVtab; 6912 const sqlite3_module *pModule; 6913 Mem *pDest; 6914 sqlite3_context sContext; 6915 6916 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6917 assert( pCur->eCurType==CURTYPE_VTAB ); 6918 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6919 pDest = &aMem[pOp->p3]; 6920 memAboutToChange(p, pDest); 6921 if( pCur->nullRow ){ 6922 sqlite3VdbeMemSetNull(pDest); 6923 break; 6924 } 6925 pVtab = pCur->uc.pVCur->pVtab; 6926 pModule = pVtab->pModule; 6927 assert( pModule->xColumn ); 6928 memset(&sContext, 0, sizeof(sContext)); 6929 sContext.pOut = pDest; 6930 if( pOp->p5 ){ 6931 sqlite3VdbeMemSetNull(pDest); 6932 pDest->flags = MEM_Null|MEM_Zero; 6933 pDest->u.nZero = 0; 6934 }else{ 6935 MemSetTypeFlag(pDest, MEM_Null); 6936 } 6937 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6938 sqlite3VtabImportErrmsg(p, pVtab); 6939 if( sContext.isError>0 ){ 6940 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 6941 rc = sContext.isError; 6942 } 6943 sqlite3VdbeChangeEncoding(pDest, encoding); 6944 REGISTER_TRACE(pOp->p3, pDest); 6945 UPDATE_MAX_BLOBSIZE(pDest); 6946 6947 if( sqlite3VdbeMemTooBig(pDest) ){ 6948 goto too_big; 6949 } 6950 if( rc ) goto abort_due_to_error; 6951 break; 6952 } 6953 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6954 6955 #ifndef SQLITE_OMIT_VIRTUALTABLE 6956 /* Opcode: VNext P1 P2 * * * 6957 ** 6958 ** Advance virtual table P1 to the next row in its result set and 6959 ** jump to instruction P2. Or, if the virtual table has reached 6960 ** the end of its result set, then fall through to the next instruction. 6961 */ 6962 case OP_VNext: { /* jump */ 6963 sqlite3_vtab *pVtab; 6964 const sqlite3_module *pModule; 6965 int res; 6966 VdbeCursor *pCur; 6967 6968 res = 0; 6969 pCur = p->apCsr[pOp->p1]; 6970 assert( pCur->eCurType==CURTYPE_VTAB ); 6971 if( pCur->nullRow ){ 6972 break; 6973 } 6974 pVtab = pCur->uc.pVCur->pVtab; 6975 pModule = pVtab->pModule; 6976 assert( pModule->xNext ); 6977 6978 /* Invoke the xNext() method of the module. There is no way for the 6979 ** underlying implementation to return an error if one occurs during 6980 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6981 ** data is available) and the error code returned when xColumn or 6982 ** some other method is next invoked on the save virtual table cursor. 6983 */ 6984 rc = pModule->xNext(pCur->uc.pVCur); 6985 sqlite3VtabImportErrmsg(p, pVtab); 6986 if( rc ) goto abort_due_to_error; 6987 res = pModule->xEof(pCur->uc.pVCur); 6988 VdbeBranchTaken(!res,2); 6989 if( !res ){ 6990 /* If there is data, jump to P2 */ 6991 goto jump_to_p2_and_check_for_interrupt; 6992 } 6993 goto check_for_interrupt; 6994 } 6995 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6996 6997 #ifndef SQLITE_OMIT_VIRTUALTABLE 6998 /* Opcode: VRename P1 * * P4 * 6999 ** 7000 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7001 ** This opcode invokes the corresponding xRename method. The value 7002 ** in register P1 is passed as the zName argument to the xRename method. 7003 */ 7004 case OP_VRename: { 7005 sqlite3_vtab *pVtab; 7006 Mem *pName; 7007 7008 pVtab = pOp->p4.pVtab->pVtab; 7009 pName = &aMem[pOp->p1]; 7010 assert( pVtab->pModule->xRename ); 7011 assert( memIsValid(pName) ); 7012 assert( p->readOnly==0 ); 7013 REGISTER_TRACE(pOp->p1, pName); 7014 assert( pName->flags & MEM_Str ); 7015 testcase( pName->enc==SQLITE_UTF8 ); 7016 testcase( pName->enc==SQLITE_UTF16BE ); 7017 testcase( pName->enc==SQLITE_UTF16LE ); 7018 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7019 if( rc ) goto abort_due_to_error; 7020 rc = pVtab->pModule->xRename(pVtab, pName->z); 7021 sqlite3VtabImportErrmsg(p, pVtab); 7022 p->expired = 0; 7023 if( rc ) goto abort_due_to_error; 7024 break; 7025 } 7026 #endif 7027 7028 #ifndef SQLITE_OMIT_VIRTUALTABLE 7029 /* Opcode: VUpdate P1 P2 P3 P4 P5 7030 ** Synopsis: data=r[P3@P2] 7031 ** 7032 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7033 ** This opcode invokes the corresponding xUpdate method. P2 values 7034 ** are contiguous memory cells starting at P3 to pass to the xUpdate 7035 ** invocation. The value in register (P3+P2-1) corresponds to the 7036 ** p2th element of the argv array passed to xUpdate. 7037 ** 7038 ** The xUpdate method will do a DELETE or an INSERT or both. 7039 ** The argv[0] element (which corresponds to memory cell P3) 7040 ** is the rowid of a row to delete. If argv[0] is NULL then no 7041 ** deletion occurs. The argv[1] element is the rowid of the new 7042 ** row. This can be NULL to have the virtual table select the new 7043 ** rowid for itself. The subsequent elements in the array are 7044 ** the values of columns in the new row. 7045 ** 7046 ** If P2==1 then no insert is performed. argv[0] is the rowid of 7047 ** a row to delete. 7048 ** 7049 ** P1 is a boolean flag. If it is set to true and the xUpdate call 7050 ** is successful, then the value returned by sqlite3_last_insert_rowid() 7051 ** is set to the value of the rowid for the row just inserted. 7052 ** 7053 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 7054 ** apply in the case of a constraint failure on an insert or update. 7055 */ 7056 case OP_VUpdate: { 7057 sqlite3_vtab *pVtab; 7058 const sqlite3_module *pModule; 7059 int nArg; 7060 int i; 7061 sqlite_int64 rowid; 7062 Mem **apArg; 7063 Mem *pX; 7064 7065 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 7066 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 7067 ); 7068 assert( p->readOnly==0 ); 7069 if( db->mallocFailed ) goto no_mem; 7070 sqlite3VdbeIncrWriteCounter(p, 0); 7071 pVtab = pOp->p4.pVtab->pVtab; 7072 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7073 rc = SQLITE_LOCKED; 7074 goto abort_due_to_error; 7075 } 7076 pModule = pVtab->pModule; 7077 nArg = pOp->p2; 7078 assert( pOp->p4type==P4_VTAB ); 7079 if( ALWAYS(pModule->xUpdate) ){ 7080 u8 vtabOnConflict = db->vtabOnConflict; 7081 apArg = p->apArg; 7082 pX = &aMem[pOp->p3]; 7083 for(i=0; i<nArg; i++){ 7084 assert( memIsValid(pX) ); 7085 memAboutToChange(p, pX); 7086 apArg[i] = pX; 7087 pX++; 7088 } 7089 db->vtabOnConflict = pOp->p5; 7090 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 7091 db->vtabOnConflict = vtabOnConflict; 7092 sqlite3VtabImportErrmsg(p, pVtab); 7093 if( rc==SQLITE_OK && pOp->p1 ){ 7094 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 7095 db->lastRowid = rowid; 7096 } 7097 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 7098 if( pOp->p5==OE_Ignore ){ 7099 rc = SQLITE_OK; 7100 }else{ 7101 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 7102 } 7103 }else{ 7104 p->nChange++; 7105 } 7106 if( rc ) goto abort_due_to_error; 7107 } 7108 break; 7109 } 7110 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7111 7112 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7113 /* Opcode: Pagecount P1 P2 * * * 7114 ** 7115 ** Write the current number of pages in database P1 to memory cell P2. 7116 */ 7117 case OP_Pagecount: { /* out2 */ 7118 pOut = out2Prerelease(p, pOp); 7119 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 7120 break; 7121 } 7122 #endif 7123 7124 7125 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 7126 /* Opcode: MaxPgcnt P1 P2 P3 * * 7127 ** 7128 ** Try to set the maximum page count for database P1 to the value in P3. 7129 ** Do not let the maximum page count fall below the current page count and 7130 ** do not change the maximum page count value if P3==0. 7131 ** 7132 ** Store the maximum page count after the change in register P2. 7133 */ 7134 case OP_MaxPgcnt: { /* out2 */ 7135 unsigned int newMax; 7136 Btree *pBt; 7137 7138 pOut = out2Prerelease(p, pOp); 7139 pBt = db->aDb[pOp->p1].pBt; 7140 newMax = 0; 7141 if( pOp->p3 ){ 7142 newMax = sqlite3BtreeLastPage(pBt); 7143 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 7144 } 7145 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 7146 break; 7147 } 7148 #endif 7149 7150 /* Opcode: Function0 P1 P2 P3 P4 P5 7151 ** Synopsis: r[P3]=func(r[P2@P5]) 7152 ** 7153 ** Invoke a user function (P4 is a pointer to a FuncDef object that 7154 ** defines the function) with P5 arguments taken from register P2 and 7155 ** successors. The result of the function is stored in register P3. 7156 ** Register P3 must not be one of the function inputs. 7157 ** 7158 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7159 ** function was determined to be constant at compile time. If the first 7160 ** argument was constant then bit 0 of P1 is set. This is used to determine 7161 ** whether meta data associated with a user function argument using the 7162 ** sqlite3_set_auxdata() API may be safely retained until the next 7163 ** invocation of this opcode. 7164 ** 7165 ** See also: Function, AggStep, AggFinal 7166 */ 7167 /* Opcode: Function P1 P2 P3 P4 P5 7168 ** Synopsis: r[P3]=func(r[P2@P5]) 7169 ** 7170 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 7171 ** contains a pointer to the function to be run) with P5 arguments taken 7172 ** from register P2 and successors. The result of the function is stored 7173 ** in register P3. Register P3 must not be one of the function inputs. 7174 ** 7175 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 7176 ** function was determined to be constant at compile time. If the first 7177 ** argument was constant then bit 0 of P1 is set. This is used to determine 7178 ** whether meta data associated with a user function argument using the 7179 ** sqlite3_set_auxdata() API may be safely retained until the next 7180 ** invocation of this opcode. 7181 ** 7182 ** SQL functions are initially coded as OP_Function0 with P4 pointing 7183 ** to a FuncDef object. But on first evaluation, the P4 operand is 7184 ** automatically converted into an sqlite3_context object and the operation 7185 ** changed to this OP_Function opcode. In this way, the initialization of 7186 ** the sqlite3_context object occurs only once, rather than once for each 7187 ** evaluation of the function. 7188 ** 7189 ** See also: Function0, AggStep, AggFinal 7190 */ 7191 case OP_PureFunc0: 7192 case OP_Function0: { 7193 int n; 7194 sqlite3_context *pCtx; 7195 7196 assert( pOp->p4type==P4_FUNCDEF ); 7197 n = pOp->p5; 7198 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7199 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7200 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7201 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 7202 if( pCtx==0 ) goto no_mem; 7203 pCtx->pOut = 0; 7204 pCtx->pFunc = pOp->p4.pFunc; 7205 pCtx->iOp = (int)(pOp - aOp); 7206 pCtx->pVdbe = p; 7207 pCtx->isError = 0; 7208 pCtx->argc = n; 7209 pOp->p4type = P4_FUNCCTX; 7210 pOp->p4.pCtx = pCtx; 7211 assert( OP_PureFunc == OP_PureFunc0+2 ); 7212 assert( OP_Function == OP_Function0+2 ); 7213 pOp->opcode += 2; 7214 /* Fall through into OP_Function */ 7215 } 7216 case OP_PureFunc: 7217 case OP_Function: { 7218 int i; 7219 sqlite3_context *pCtx; 7220 7221 assert( pOp->p4type==P4_FUNCCTX ); 7222 pCtx = pOp->p4.pCtx; 7223 7224 /* If this function is inside of a trigger, the register array in aMem[] 7225 ** might change from one evaluation to the next. The next block of code 7226 ** checks to see if the register array has changed, and if so it 7227 ** reinitializes the relavant parts of the sqlite3_context object */ 7228 pOut = &aMem[pOp->p3]; 7229 if( pCtx->pOut != pOut ){ 7230 pCtx->pOut = pOut; 7231 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7232 } 7233 7234 memAboutToChange(p, pOut); 7235 #ifdef SQLITE_DEBUG 7236 for(i=0; i<pCtx->argc; i++){ 7237 assert( memIsValid(pCtx->argv[i]) ); 7238 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7239 } 7240 #endif 7241 MemSetTypeFlag(pOut, MEM_Null); 7242 assert( pCtx->isError==0 ); 7243 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 7244 7245 /* If the function returned an error, throw an exception */ 7246 if( pCtx->isError ){ 7247 if( pCtx->isError>0 ){ 7248 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 7249 rc = pCtx->isError; 7250 } 7251 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 7252 pCtx->isError = 0; 7253 if( rc ) goto abort_due_to_error; 7254 } 7255 7256 /* Copy the result of the function into register P3 */ 7257 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 7258 sqlite3VdbeChangeEncoding(pOut, encoding); 7259 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 7260 } 7261 7262 REGISTER_TRACE(pOp->p3, pOut); 7263 UPDATE_MAX_BLOBSIZE(pOut); 7264 break; 7265 } 7266 7267 /* Opcode: Trace P1 P2 * P4 * 7268 ** 7269 ** Write P4 on the statement trace output if statement tracing is 7270 ** enabled. 7271 ** 7272 ** Operand P1 must be 0x7fffffff and P2 must positive. 7273 */ 7274 /* Opcode: Init P1 P2 P3 P4 * 7275 ** Synopsis: Start at P2 7276 ** 7277 ** Programs contain a single instance of this opcode as the very first 7278 ** opcode. 7279 ** 7280 ** If tracing is enabled (by the sqlite3_trace()) interface, then 7281 ** the UTF-8 string contained in P4 is emitted on the trace callback. 7282 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 7283 ** 7284 ** If P2 is not zero, jump to instruction P2. 7285 ** 7286 ** Increment the value of P1 so that OP_Once opcodes will jump the 7287 ** first time they are evaluated for this run. 7288 ** 7289 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 7290 ** error is encountered. 7291 */ 7292 case OP_Trace: 7293 case OP_Init: { /* jump */ 7294 int i; 7295 #ifndef SQLITE_OMIT_TRACE 7296 char *zTrace; 7297 #endif 7298 7299 /* If the P4 argument is not NULL, then it must be an SQL comment string. 7300 ** The "--" string is broken up to prevent false-positives with srcck1.c. 7301 ** 7302 ** This assert() provides evidence for: 7303 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 7304 ** would have been returned by the legacy sqlite3_trace() interface by 7305 ** using the X argument when X begins with "--" and invoking 7306 ** sqlite3_expanded_sql(P) otherwise. 7307 */ 7308 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 7309 7310 /* OP_Init is always instruction 0 */ 7311 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 7312 7313 #ifndef SQLITE_OMIT_TRACE 7314 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 7315 && !p->doingRerun 7316 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7317 ){ 7318 #ifndef SQLITE_OMIT_DEPRECATED 7319 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 7320 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 7321 char *z = sqlite3VdbeExpandSql(p, zTrace); 7322 x(db->pTraceArg, z); 7323 sqlite3_free(z); 7324 }else 7325 #endif 7326 if( db->nVdbeExec>1 ){ 7327 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 7328 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 7329 sqlite3DbFree(db, z); 7330 }else{ 7331 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 7332 } 7333 } 7334 #ifdef SQLITE_USE_FCNTL_TRACE 7335 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 7336 if( zTrace ){ 7337 int j; 7338 for(j=0; j<db->nDb; j++){ 7339 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 7340 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 7341 } 7342 } 7343 #endif /* SQLITE_USE_FCNTL_TRACE */ 7344 #ifdef SQLITE_DEBUG 7345 if( (db->flags & SQLITE_SqlTrace)!=0 7346 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 7347 ){ 7348 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 7349 } 7350 #endif /* SQLITE_DEBUG */ 7351 #endif /* SQLITE_OMIT_TRACE */ 7352 assert( pOp->p2>0 ); 7353 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 7354 if( pOp->opcode==OP_Trace ) break; 7355 for(i=1; i<p->nOp; i++){ 7356 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 7357 } 7358 pOp->p1 = 0; 7359 } 7360 pOp->p1++; 7361 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 7362 goto jump_to_p2; 7363 } 7364 7365 #ifdef SQLITE_ENABLE_CURSOR_HINTS 7366 /* Opcode: CursorHint P1 * * P4 * 7367 ** 7368 ** Provide a hint to cursor P1 that it only needs to return rows that 7369 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 7370 ** to values currently held in registers. TK_COLUMN terms in the P4 7371 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 7372 */ 7373 case OP_CursorHint: { 7374 VdbeCursor *pC; 7375 7376 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7377 assert( pOp->p4type==P4_EXPR ); 7378 pC = p->apCsr[pOp->p1]; 7379 if( pC ){ 7380 assert( pC->eCurType==CURTYPE_BTREE ); 7381 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 7382 pOp->p4.pExpr, aMem); 7383 } 7384 break; 7385 } 7386 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 7387 7388 #ifdef SQLITE_DEBUG 7389 /* Opcode: Abortable * * * * * 7390 ** 7391 ** Verify that an Abort can happen. Assert if an Abort at this point 7392 ** might cause database corruption. This opcode only appears in debugging 7393 ** builds. 7394 ** 7395 ** An Abort is safe if either there have been no writes, or if there is 7396 ** an active statement journal. 7397 */ 7398 case OP_Abortable: { 7399 sqlite3VdbeAssertAbortable(p); 7400 break; 7401 } 7402 #endif 7403 7404 #ifdef SQLITE_DEBUG_COLUMNCACHE 7405 /* Opcode: SetTabCol P1 P2 P3 * * 7406 ** 7407 ** Set a flag in register REG[P3] indicating that it holds the value 7408 ** of column P2 from the table on cursor P1. This flag is checked 7409 ** by a subsequent VerifyTabCol opcode. 7410 ** 7411 ** This opcode only appears SQLITE_DEBUG builds. It is used to verify 7412 ** that the expression table column cache is working correctly. 7413 */ 7414 case OP_SetTabCol: { 7415 aMem[pOp->p3].iTabColHash = TableColumnHash(pOp->p1,pOp->p2); 7416 break; 7417 } 7418 /* Opcode: VerifyTabCol P1 P2 P3 * * 7419 ** 7420 ** Verify that register REG[P3] contains the value of column P2 from 7421 ** cursor P1. Assert() if this is not the case. 7422 ** 7423 ** This opcode only appears SQLITE_DEBUG builds. It is used to verify 7424 ** that the expression table column cache is working correctly. 7425 */ 7426 case OP_VerifyTabCol: { 7427 assert( aMem[pOp->p3].iTabColHash == TableColumnHash(pOp->p1,pOp->p2) ); 7428 break; 7429 } 7430 #endif 7431 7432 /* Opcode: Noop * * * * * 7433 ** 7434 ** Do nothing. This instruction is often useful as a jump 7435 ** destination. 7436 */ 7437 /* 7438 ** The magic Explain opcode are only inserted when explain==2 (which 7439 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 7440 ** This opcode records information from the optimizer. It is the 7441 ** the same as a no-op. This opcodesnever appears in a real VM program. 7442 */ 7443 default: { /* This is really OP_Noop, OP_Explain */ 7444 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 7445 7446 break; 7447 } 7448 7449 /***************************************************************************** 7450 ** The cases of the switch statement above this line should all be indented 7451 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 7452 ** readability. From this point on down, the normal indentation rules are 7453 ** restored. 7454 *****************************************************************************/ 7455 } 7456 7457 #ifdef VDBE_PROFILE 7458 { 7459 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 7460 if( endTime>start ) pOrigOp->cycles += endTime - start; 7461 pOrigOp->cnt++; 7462 } 7463 #endif 7464 7465 /* The following code adds nothing to the actual functionality 7466 ** of the program. It is only here for testing and debugging. 7467 ** On the other hand, it does burn CPU cycles every time through 7468 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 7469 */ 7470 #ifndef NDEBUG 7471 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7472 7473 #ifdef SQLITE_DEBUG 7474 if( db->flags & SQLITE_VdbeTrace ){ 7475 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7476 if( rc!=0 ) printf("rc=%d\n",rc); 7477 if( opProperty & (OPFLG_OUT2) ){ 7478 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7479 } 7480 if( opProperty & OPFLG_OUT3 ){ 7481 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7482 } 7483 } 7484 #endif /* SQLITE_DEBUG */ 7485 #endif /* NDEBUG */ 7486 } /* The end of the for(;;) loop the loops through opcodes */ 7487 7488 /* If we reach this point, it means that execution is finished with 7489 ** an error of some kind. 7490 */ 7491 abort_due_to_error: 7492 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7493 assert( rc ); 7494 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7495 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7496 } 7497 p->rc = rc; 7498 sqlite3SystemError(db, rc); 7499 testcase( sqlite3GlobalConfig.xLog!=0 ); 7500 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7501 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7502 sqlite3VdbeHalt(p); 7503 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7504 rc = SQLITE_ERROR; 7505 if( resetSchemaOnFault>0 ){ 7506 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7507 } 7508 7509 /* This is the only way out of this procedure. We have to 7510 ** release the mutexes on btrees that were acquired at the 7511 ** top. */ 7512 vdbe_return: 7513 testcase( nVmStep>0 ); 7514 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7515 sqlite3VdbeLeave(p); 7516 assert( rc!=SQLITE_OK || nExtraDelete==0 7517 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7518 ); 7519 return rc; 7520 7521 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7522 ** is encountered. 7523 */ 7524 too_big: 7525 sqlite3VdbeError(p, "string or blob too big"); 7526 rc = SQLITE_TOOBIG; 7527 goto abort_due_to_error; 7528 7529 /* Jump to here if a malloc() fails. 7530 */ 7531 no_mem: 7532 sqlite3OomFault(db); 7533 sqlite3VdbeError(p, "out of memory"); 7534 rc = SQLITE_NOMEM_BKPT; 7535 goto abort_due_to_error; 7536 7537 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7538 ** flag. 7539 */ 7540 abort_due_to_interrupt: 7541 assert( db->u1.isInterrupted ); 7542 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7543 p->rc = rc; 7544 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7545 goto abort_due_to_error; 7546 } 7547