xref: /sqlite-3.40.0/src/vdbe.c (revision 8f0c712a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files.  The formatting
17 ** of the code in this file is, therefore, important.  See other comments
18 ** in this file for details.  If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23 
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell.  This macro verifies that shallow copies are
27 ** not misused.  A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content.  If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy.  This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38 
39 /*
40 ** Given a cursor number and a column for a table or index, compute a
41 ** hash value for use in the Mem.iTabColHash value.  The iTabColHash
42 ** column is only used for verification - it is omitted from production
43 ** builds.  Collisions are harmless in the sense that the correct answer
44 ** still results.  The only harm of collisions is that they can potential
45 ** reduce column-cache error detection during SQLITE_DEBUG builds.
46 **
47 ** No valid hash should be 0.
48 */
49 #define TableColumnHash(T,C)  (((u32)(T)<<16)^(u32)(C+2))
50 
51 /*
52 ** The following global variable is incremented every time a cursor
53 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
54 ** procedures use this information to make sure that indices are
55 ** working correctly.  This variable has no function other than to
56 ** help verify the correct operation of the library.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_search_count = 0;
60 #endif
61 
62 /*
63 ** When this global variable is positive, it gets decremented once before
64 ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
65 ** field of the sqlite3 structure is set in order to simulate an interrupt.
66 **
67 ** This facility is used for testing purposes only.  It does not function
68 ** in an ordinary build.
69 */
70 #ifdef SQLITE_TEST
71 int sqlite3_interrupt_count = 0;
72 #endif
73 
74 /*
75 ** The next global variable is incremented each type the OP_Sort opcode
76 ** is executed.  The test procedures use this information to make sure that
77 ** sorting is occurring or not occurring at appropriate times.   This variable
78 ** has no function other than to help verify the correct operation of the
79 ** library.
80 */
81 #ifdef SQLITE_TEST
82 int sqlite3_sort_count = 0;
83 #endif
84 
85 /*
86 ** The next global variable records the size of the largest MEM_Blob
87 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
88 ** use this information to make sure that the zero-blob functionality
89 ** is working correctly.   This variable has no function other than to
90 ** help verify the correct operation of the library.
91 */
92 #ifdef SQLITE_TEST
93 int sqlite3_max_blobsize = 0;
94 static void updateMaxBlobsize(Mem *p){
95   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
96     sqlite3_max_blobsize = p->n;
97   }
98 }
99 #endif
100 
101 /*
102 ** This macro evaluates to true if either the update hook or the preupdate
103 ** hook are enabled for database connect DB.
104 */
105 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
106 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
107 #else
108 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
109 #endif
110 
111 /*
112 ** The next global variable is incremented each time the OP_Found opcode
113 ** is executed. This is used to test whether or not the foreign key
114 ** operation implemented using OP_FkIsZero is working. This variable
115 ** has no function other than to help verify the correct operation of the
116 ** library.
117 */
118 #ifdef SQLITE_TEST
119 int sqlite3_found_count = 0;
120 #endif
121 
122 /*
123 ** Test a register to see if it exceeds the current maximum blob size.
124 ** If it does, record the new maximum blob size.
125 */
126 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
127 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
128 #else
129 # define UPDATE_MAX_BLOBSIZE(P)
130 #endif
131 
132 /*
133 ** Invoke the VDBE coverage callback, if that callback is defined.  This
134 ** feature is used for test suite validation only and does not appear an
135 ** production builds.
136 **
137 ** M is an integer, 2 or 3, that indices how many different ways the
138 ** branch can go.  It is usually 2.  "I" is the direction the branch
139 ** goes.  0 means falls through.  1 means branch is taken.  2 means the
140 ** second alternative branch is taken.
141 **
142 ** iSrcLine is the source code line (from the __LINE__ macro) that
143 ** generated the VDBE instruction.  This instrumentation assumes that all
144 ** source code is in a single file (the amalgamation).  Special values 1
145 ** and 2 for the iSrcLine parameter mean that this particular branch is
146 ** always taken or never taken, respectively.
147 */
148 #if !defined(SQLITE_VDBE_COVERAGE)
149 # define VdbeBranchTaken(I,M)
150 #else
151 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
152   static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
153     if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
154       M = iSrcLine;
155       /* Assert the truth of VdbeCoverageAlwaysTaken() and
156       ** VdbeCoverageNeverTaken() */
157       assert( (M & I)==I );
158     }else{
159       if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
160       sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
161                                       iSrcLine,I,M);
162     }
163   }
164 #endif
165 
166 /*
167 ** Convert the given register into a string if it isn't one
168 ** already. Return non-zero if a malloc() fails.
169 */
170 #define Stringify(P, enc) \
171    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
172      { goto no_mem; }
173 
174 /*
175 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
176 ** a pointer to a dynamically allocated string where some other entity
177 ** is responsible for deallocating that string.  Because the register
178 ** does not control the string, it might be deleted without the register
179 ** knowing it.
180 **
181 ** This routine converts an ephemeral string into a dynamically allocated
182 ** string that the register itself controls.  In other words, it
183 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
184 */
185 #define Deephemeralize(P) \
186    if( ((P)->flags&MEM_Ephem)!=0 \
187        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
188 
189 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
190 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
191 
192 /*
193 ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
194 ** if we run out of memory.
195 */
196 static VdbeCursor *allocateCursor(
197   Vdbe *p,              /* The virtual machine */
198   int iCur,             /* Index of the new VdbeCursor */
199   int nField,           /* Number of fields in the table or index */
200   int iDb,              /* Database the cursor belongs to, or -1 */
201   u8 eCurType           /* Type of the new cursor */
202 ){
203   /* Find the memory cell that will be used to store the blob of memory
204   ** required for this VdbeCursor structure. It is convenient to use a
205   ** vdbe memory cell to manage the memory allocation required for a
206   ** VdbeCursor structure for the following reasons:
207   **
208   **   * Sometimes cursor numbers are used for a couple of different
209   **     purposes in a vdbe program. The different uses might require
210   **     different sized allocations. Memory cells provide growable
211   **     allocations.
212   **
213   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
214   **     be freed lazily via the sqlite3_release_memory() API. This
215   **     minimizes the number of malloc calls made by the system.
216   **
217   ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
218   ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
219   ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
220   */
221   Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
222 
223   int nByte;
224   VdbeCursor *pCx = 0;
225   nByte =
226       ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
227       (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
228 
229   assert( iCur>=0 && iCur<p->nCursor );
230   if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
231     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
232     p->apCsr[iCur] = 0;
233   }
234   if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
235     p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
236     memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
237     pCx->eCurType = eCurType;
238     pCx->iDb = iDb;
239     pCx->nField = nField;
240     pCx->aOffset = &pCx->aType[nField];
241     if( eCurType==CURTYPE_BTREE ){
242       pCx->uc.pCursor = (BtCursor*)
243           &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
244       sqlite3BtreeCursorZero(pCx->uc.pCursor);
245     }
246   }
247   return pCx;
248 }
249 
250 /*
251 ** Try to convert a value into a numeric representation if we can
252 ** do so without loss of information.  In other words, if the string
253 ** looks like a number, convert it into a number.  If it does not
254 ** look like a number, leave it alone.
255 **
256 ** If the bTryForInt flag is true, then extra effort is made to give
257 ** an integer representation.  Strings that look like floating point
258 ** values but which have no fractional component (example: '48.00')
259 ** will have a MEM_Int representation when bTryForInt is true.
260 **
261 ** If bTryForInt is false, then if the input string contains a decimal
262 ** point or exponential notation, the result is only MEM_Real, even
263 ** if there is an exact integer representation of the quantity.
264 */
265 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
266   double rValue;
267   i64 iValue;
268   u8 enc = pRec->enc;
269   assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
270   if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
271   if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
272     pRec->u.i = iValue;
273     pRec->flags |= MEM_Int;
274   }else{
275     pRec->u.r = rValue;
276     pRec->flags |= MEM_Real;
277     if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
278   }
279   /* TEXT->NUMERIC is many->one.  Hence, it is important to invalidate the
280   ** string representation after computing a numeric equivalent, because the
281   ** string representation might not be the canonical representation for the
282   ** numeric value.  Ticket [343634942dd54ab57b7024] 2018-01-31. */
283   pRec->flags &= ~MEM_Str;
284 }
285 
286 /*
287 ** Processing is determine by the affinity parameter:
288 **
289 ** SQLITE_AFF_INTEGER:
290 ** SQLITE_AFF_REAL:
291 ** SQLITE_AFF_NUMERIC:
292 **    Try to convert pRec to an integer representation or a
293 **    floating-point representation if an integer representation
294 **    is not possible.  Note that the integer representation is
295 **    always preferred, even if the affinity is REAL, because
296 **    an integer representation is more space efficient on disk.
297 **
298 ** SQLITE_AFF_TEXT:
299 **    Convert pRec to a text representation.
300 **
301 ** SQLITE_AFF_BLOB:
302 **    No-op.  pRec is unchanged.
303 */
304 static void applyAffinity(
305   Mem *pRec,          /* The value to apply affinity to */
306   char affinity,      /* The affinity to be applied */
307   u8 enc              /* Use this text encoding */
308 ){
309   if( affinity>=SQLITE_AFF_NUMERIC ){
310     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
311              || affinity==SQLITE_AFF_NUMERIC );
312     if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
313       if( (pRec->flags & MEM_Real)==0 ){
314         if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
315       }else{
316         sqlite3VdbeIntegerAffinity(pRec);
317       }
318     }
319   }else if( affinity==SQLITE_AFF_TEXT ){
320     /* Only attempt the conversion to TEXT if there is an integer or real
321     ** representation (blob and NULL do not get converted) but no string
322     ** representation.  It would be harmless to repeat the conversion if
323     ** there is already a string rep, but it is pointless to waste those
324     ** CPU cycles. */
325     if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
326       if( (pRec->flags&(MEM_Real|MEM_Int)) ){
327         sqlite3VdbeMemStringify(pRec, enc, 1);
328       }
329     }
330     pRec->flags &= ~(MEM_Real|MEM_Int);
331   }
332 }
333 
334 /*
335 ** Try to convert the type of a function argument or a result column
336 ** into a numeric representation.  Use either INTEGER or REAL whichever
337 ** is appropriate.  But only do the conversion if it is possible without
338 ** loss of information and return the revised type of the argument.
339 */
340 int sqlite3_value_numeric_type(sqlite3_value *pVal){
341   int eType = sqlite3_value_type(pVal);
342   if( eType==SQLITE_TEXT ){
343     Mem *pMem = (Mem*)pVal;
344     applyNumericAffinity(pMem, 0);
345     eType = sqlite3_value_type(pVal);
346   }
347   return eType;
348 }
349 
350 /*
351 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
352 ** not the internal Mem* type.
353 */
354 void sqlite3ValueApplyAffinity(
355   sqlite3_value *pVal,
356   u8 affinity,
357   u8 enc
358 ){
359   applyAffinity((Mem *)pVal, affinity, enc);
360 }
361 
362 /*
363 ** pMem currently only holds a string type (or maybe a BLOB that we can
364 ** interpret as a string if we want to).  Compute its corresponding
365 ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
366 ** accordingly.
367 */
368 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
369   assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
370   assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
371   if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
372     return 0;
373   }
374   if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
375     return MEM_Int;
376   }
377   return MEM_Real;
378 }
379 
380 /*
381 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
382 ** none.
383 **
384 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
385 ** But it does set pMem->u.r and pMem->u.i appropriately.
386 */
387 static u16 numericType(Mem *pMem){
388   if( pMem->flags & (MEM_Int|MEM_Real) ){
389     return pMem->flags & (MEM_Int|MEM_Real);
390   }
391   if( pMem->flags & (MEM_Str|MEM_Blob) ){
392     return computeNumericType(pMem);
393   }
394   return 0;
395 }
396 
397 #ifdef SQLITE_DEBUG
398 /*
399 ** Write a nice string representation of the contents of cell pMem
400 ** into buffer zBuf, length nBuf.
401 */
402 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
403   char *zCsr = zBuf;
404   int f = pMem->flags;
405 
406   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
407 
408   if( f&MEM_Blob ){
409     int i;
410     char c;
411     if( f & MEM_Dyn ){
412       c = 'z';
413       assert( (f & (MEM_Static|MEM_Ephem))==0 );
414     }else if( f & MEM_Static ){
415       c = 't';
416       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
417     }else if( f & MEM_Ephem ){
418       c = 'e';
419       assert( (f & (MEM_Static|MEM_Dyn))==0 );
420     }else{
421       c = 's';
422     }
423     *(zCsr++) = c;
424     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
425     zCsr += sqlite3Strlen30(zCsr);
426     for(i=0; i<16 && i<pMem->n; i++){
427       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
428       zCsr += sqlite3Strlen30(zCsr);
429     }
430     for(i=0; i<16 && i<pMem->n; i++){
431       char z = pMem->z[i];
432       if( z<32 || z>126 ) *zCsr++ = '.';
433       else *zCsr++ = z;
434     }
435     *(zCsr++) = ']';
436     if( f & MEM_Zero ){
437       sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
438       zCsr += sqlite3Strlen30(zCsr);
439     }
440     *zCsr = '\0';
441   }else if( f & MEM_Str ){
442     int j, k;
443     zBuf[0] = ' ';
444     if( f & MEM_Dyn ){
445       zBuf[1] = 'z';
446       assert( (f & (MEM_Static|MEM_Ephem))==0 );
447     }else if( f & MEM_Static ){
448       zBuf[1] = 't';
449       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
450     }else if( f & MEM_Ephem ){
451       zBuf[1] = 'e';
452       assert( (f & (MEM_Static|MEM_Dyn))==0 );
453     }else{
454       zBuf[1] = 's';
455     }
456     k = 2;
457     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
458     k += sqlite3Strlen30(&zBuf[k]);
459     zBuf[k++] = '[';
460     for(j=0; j<15 && j<pMem->n; j++){
461       u8 c = pMem->z[j];
462       if( c>=0x20 && c<0x7f ){
463         zBuf[k++] = c;
464       }else{
465         zBuf[k++] = '.';
466       }
467     }
468     zBuf[k++] = ']';
469     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
470     k += sqlite3Strlen30(&zBuf[k]);
471     zBuf[k++] = 0;
472   }
473 }
474 #endif
475 
476 #ifdef SQLITE_DEBUG
477 /*
478 ** Print the value of a register for tracing purposes:
479 */
480 static void memTracePrint(Mem *p){
481   if( p->flags & MEM_Undefined ){
482     printf(" undefined");
483   }else if( p->flags & MEM_Null ){
484     printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
485   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
486     printf(" si:%lld", p->u.i);
487   }else if( p->flags & MEM_Int ){
488     printf(" i:%lld", p->u.i);
489 #ifndef SQLITE_OMIT_FLOATING_POINT
490   }else if( p->flags & MEM_Real ){
491     printf(" r:%g", p->u.r);
492 #endif
493   }else if( p->flags & MEM_RowSet ){
494     printf(" (rowset)");
495   }else{
496     char zBuf[200];
497     sqlite3VdbeMemPrettyPrint(p, zBuf);
498     printf(" %s", zBuf);
499   }
500   if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
501 }
502 static void registerTrace(int iReg, Mem *p){
503   printf("REG[%d] = ", iReg);
504   memTracePrint(p);
505   printf("\n");
506   sqlite3VdbeCheckMemInvariants(p);
507 }
508 #endif
509 
510 #ifdef SQLITE_DEBUG
511 #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
512 #else
513 #  define REGISTER_TRACE(R,M)
514 #endif
515 
516 
517 #ifdef VDBE_PROFILE
518 
519 /*
520 ** hwtime.h contains inline assembler code for implementing
521 ** high-performance timing routines.
522 */
523 #include "hwtime.h"
524 
525 #endif
526 
527 #ifndef NDEBUG
528 /*
529 ** This function is only called from within an assert() expression. It
530 ** checks that the sqlite3.nTransaction variable is correctly set to
531 ** the number of non-transaction savepoints currently in the
532 ** linked list starting at sqlite3.pSavepoint.
533 **
534 ** Usage:
535 **
536 **     assert( checkSavepointCount(db) );
537 */
538 static int checkSavepointCount(sqlite3 *db){
539   int n = 0;
540   Savepoint *p;
541   for(p=db->pSavepoint; p; p=p->pNext) n++;
542   assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
543   return 1;
544 }
545 #endif
546 
547 /*
548 ** Return the register of pOp->p2 after first preparing it to be
549 ** overwritten with an integer value.
550 */
551 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
552   sqlite3VdbeMemSetNull(pOut);
553   pOut->flags = MEM_Int;
554   return pOut;
555 }
556 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
557   Mem *pOut;
558   assert( pOp->p2>0 );
559   assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
560   pOut = &p->aMem[pOp->p2];
561   memAboutToChange(p, pOut);
562   if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
563     return out2PrereleaseWithClear(pOut);
564   }else{
565     pOut->flags = MEM_Int;
566     return pOut;
567   }
568 }
569 
570 
571 /*
572 ** Execute as much of a VDBE program as we can.
573 ** This is the core of sqlite3_step().
574 */
575 int sqlite3VdbeExec(
576   Vdbe *p                    /* The VDBE */
577 ){
578   Op *aOp = p->aOp;          /* Copy of p->aOp */
579   Op *pOp = aOp;             /* Current operation */
580 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
581   Op *pOrigOp;               /* Value of pOp at the top of the loop */
582 #endif
583 #ifdef SQLITE_DEBUG
584   int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
585 #endif
586   int rc = SQLITE_OK;        /* Value to return */
587   sqlite3 *db = p->db;       /* The database */
588   u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
589   u8 encoding = ENC(db);     /* The database encoding */
590   int iCompare = 0;          /* Result of last comparison */
591   unsigned nVmStep = 0;      /* Number of virtual machine steps */
592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
593   unsigned nProgressLimit;   /* Invoke xProgress() when nVmStep reaches this */
594 #endif
595   Mem *aMem = p->aMem;       /* Copy of p->aMem */
596   Mem *pIn1 = 0;             /* 1st input operand */
597   Mem *pIn2 = 0;             /* 2nd input operand */
598   Mem *pIn3 = 0;             /* 3rd input operand */
599   Mem *pOut = 0;             /* Output operand */
600 #ifdef VDBE_PROFILE
601   u64 start;                 /* CPU clock count at start of opcode */
602 #endif
603   /*** INSERT STACK UNION HERE ***/
604 
605   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
606   sqlite3VdbeEnter(p);
607   if( p->rc==SQLITE_NOMEM ){
608     /* This happens if a malloc() inside a call to sqlite3_column_text() or
609     ** sqlite3_column_text16() failed.  */
610     goto no_mem;
611   }
612   assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
613   assert( p->bIsReader || p->readOnly!=0 );
614   p->iCurrentTime = 0;
615   assert( p->explain==0 );
616   p->pResultSet = 0;
617   db->busyHandler.nBusy = 0;
618   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
619   sqlite3VdbeIOTraceSql(p);
620 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
621   if( db->xProgress ){
622     u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
623     assert( 0 < db->nProgressOps );
624     nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
625   }else{
626     nProgressLimit = 0xffffffff;
627   }
628 #endif
629 #ifdef SQLITE_DEBUG
630   sqlite3BeginBenignMalloc();
631   if( p->pc==0
632    && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
633   ){
634     int i;
635     int once = 1;
636     sqlite3VdbePrintSql(p);
637     if( p->db->flags & SQLITE_VdbeListing ){
638       printf("VDBE Program Listing:\n");
639       for(i=0; i<p->nOp; i++){
640         sqlite3VdbePrintOp(stdout, i, &aOp[i]);
641       }
642     }
643     if( p->db->flags & SQLITE_VdbeEQP ){
644       for(i=0; i<p->nOp; i++){
645         if( aOp[i].opcode==OP_Explain ){
646           if( once ) printf("VDBE Query Plan:\n");
647           printf("%s\n", aOp[i].p4.z);
648           once = 0;
649         }
650       }
651     }
652     if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
653   }
654   sqlite3EndBenignMalloc();
655 #endif
656   for(pOp=&aOp[p->pc]; 1; pOp++){
657     /* Errors are detected by individual opcodes, with an immediate
658     ** jumps to abort_due_to_error. */
659     assert( rc==SQLITE_OK );
660 
661     assert( pOp>=aOp && pOp<&aOp[p->nOp]);
662 #ifdef VDBE_PROFILE
663     start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
664 #endif
665     nVmStep++;
666 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
667     if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
668 #endif
669 
670     /* Only allow tracing if SQLITE_DEBUG is defined.
671     */
672 #ifdef SQLITE_DEBUG
673     if( db->flags & SQLITE_VdbeTrace ){
674       sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
675     }
676 #endif
677 
678 
679     /* Check to see if we need to simulate an interrupt.  This only happens
680     ** if we have a special test build.
681     */
682 #ifdef SQLITE_TEST
683     if( sqlite3_interrupt_count>0 ){
684       sqlite3_interrupt_count--;
685       if( sqlite3_interrupt_count==0 ){
686         sqlite3_interrupt(db);
687       }
688     }
689 #endif
690 
691     /* Sanity checking on other operands */
692 #ifdef SQLITE_DEBUG
693     {
694       u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
695       if( (opProperty & OPFLG_IN1)!=0 ){
696         assert( pOp->p1>0 );
697         assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
698         assert( memIsValid(&aMem[pOp->p1]) );
699         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
700         REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
701       }
702       if( (opProperty & OPFLG_IN2)!=0 ){
703         assert( pOp->p2>0 );
704         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
705         assert( memIsValid(&aMem[pOp->p2]) );
706         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
707         REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
708       }
709       if( (opProperty & OPFLG_IN3)!=0 ){
710         assert( pOp->p3>0 );
711         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
712         assert( memIsValid(&aMem[pOp->p3]) );
713         assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
714         REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
715       }
716       if( (opProperty & OPFLG_OUT2)!=0 ){
717         assert( pOp->p2>0 );
718         assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
719         memAboutToChange(p, &aMem[pOp->p2]);
720       }
721       if( (opProperty & OPFLG_OUT3)!=0 ){
722         assert( pOp->p3>0 );
723         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
724         memAboutToChange(p, &aMem[pOp->p3]);
725       }
726     }
727 #endif
728 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
729     pOrigOp = pOp;
730 #endif
731 
732     switch( pOp->opcode ){
733 
734 /*****************************************************************************
735 ** What follows is a massive switch statement where each case implements a
736 ** separate instruction in the virtual machine.  If we follow the usual
737 ** indentation conventions, each case should be indented by 6 spaces.  But
738 ** that is a lot of wasted space on the left margin.  So the code within
739 ** the switch statement will break with convention and be flush-left. Another
740 ** big comment (similar to this one) will mark the point in the code where
741 ** we transition back to normal indentation.
742 **
743 ** The formatting of each case is important.  The makefile for SQLite
744 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
745 ** file looking for lines that begin with "case OP_".  The opcodes.h files
746 ** will be filled with #defines that give unique integer values to each
747 ** opcode and the opcodes.c file is filled with an array of strings where
748 ** each string is the symbolic name for the corresponding opcode.  If the
749 ** case statement is followed by a comment of the form "/# same as ... #/"
750 ** that comment is used to determine the particular value of the opcode.
751 **
752 ** Other keywords in the comment that follows each case are used to
753 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
754 ** Keywords include: in1, in2, in3, out2, out3.  See
755 ** the mkopcodeh.awk script for additional information.
756 **
757 ** Documentation about VDBE opcodes is generated by scanning this file
758 ** for lines of that contain "Opcode:".  That line and all subsequent
759 ** comment lines are used in the generation of the opcode.html documentation
760 ** file.
761 **
762 ** SUMMARY:
763 **
764 **     Formatting is important to scripts that scan this file.
765 **     Do not deviate from the formatting style currently in use.
766 **
767 *****************************************************************************/
768 
769 /* Opcode:  Goto * P2 * * *
770 **
771 ** An unconditional jump to address P2.
772 ** The next instruction executed will be
773 ** the one at index P2 from the beginning of
774 ** the program.
775 **
776 ** The P1 parameter is not actually used by this opcode.  However, it
777 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
778 ** that this Goto is the bottom of a loop and that the lines from P2 down
779 ** to the current line should be indented for EXPLAIN output.
780 */
781 case OP_Goto: {             /* jump */
782 jump_to_p2_and_check_for_interrupt:
783   pOp = &aOp[pOp->p2 - 1];
784 
785   /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
786   ** OP_VNext, or OP_SorterNext) all jump here upon
787   ** completion.  Check to see if sqlite3_interrupt() has been called
788   ** or if the progress callback needs to be invoked.
789   **
790   ** This code uses unstructured "goto" statements and does not look clean.
791   ** But that is not due to sloppy coding habits. The code is written this
792   ** way for performance, to avoid having to run the interrupt and progress
793   ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
794   ** faster according to "valgrind --tool=cachegrind" */
795 check_for_interrupt:
796   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
797 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
798   /* Call the progress callback if it is configured and the required number
799   ** of VDBE ops have been executed (either since this invocation of
800   ** sqlite3VdbeExec() or since last time the progress callback was called).
801   ** If the progress callback returns non-zero, exit the virtual machine with
802   ** a return code SQLITE_ABORT.
803   */
804   if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
805     assert( db->nProgressOps!=0 );
806     nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
807     if( db->xProgress(db->pProgressArg) ){
808       rc = SQLITE_INTERRUPT;
809       goto abort_due_to_error;
810     }
811   }
812 #endif
813 
814   break;
815 }
816 
817 /* Opcode:  Gosub P1 P2 * * *
818 **
819 ** Write the current address onto register P1
820 ** and then jump to address P2.
821 */
822 case OP_Gosub: {            /* jump */
823   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
824   pIn1 = &aMem[pOp->p1];
825   assert( VdbeMemDynamic(pIn1)==0 );
826   memAboutToChange(p, pIn1);
827   pIn1->flags = MEM_Int;
828   pIn1->u.i = (int)(pOp-aOp);
829   REGISTER_TRACE(pOp->p1, pIn1);
830 
831   /* Most jump operations do a goto to this spot in order to update
832   ** the pOp pointer. */
833 jump_to_p2:
834   pOp = &aOp[pOp->p2 - 1];
835   break;
836 }
837 
838 /* Opcode:  Return P1 * * * *
839 **
840 ** Jump to the next instruction after the address in register P1.  After
841 ** the jump, register P1 becomes undefined.
842 */
843 case OP_Return: {           /* in1 */
844   pIn1 = &aMem[pOp->p1];
845   assert( pIn1->flags==MEM_Int );
846   pOp = &aOp[pIn1->u.i];
847   pIn1->flags = MEM_Undefined;
848   break;
849 }
850 
851 /* Opcode: InitCoroutine P1 P2 P3 * *
852 **
853 ** Set up register P1 so that it will Yield to the coroutine
854 ** located at address P3.
855 **
856 ** If P2!=0 then the coroutine implementation immediately follows
857 ** this opcode.  So jump over the coroutine implementation to
858 ** address P2.
859 **
860 ** See also: EndCoroutine
861 */
862 case OP_InitCoroutine: {     /* jump */
863   assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
864   assert( pOp->p2>=0 && pOp->p2<p->nOp );
865   assert( pOp->p3>=0 && pOp->p3<p->nOp );
866   pOut = &aMem[pOp->p1];
867   assert( !VdbeMemDynamic(pOut) );
868   pOut->u.i = pOp->p3 - 1;
869   pOut->flags = MEM_Int;
870   if( pOp->p2 ) goto jump_to_p2;
871   break;
872 }
873 
874 /* Opcode:  EndCoroutine P1 * * * *
875 **
876 ** The instruction at the address in register P1 is a Yield.
877 ** Jump to the P2 parameter of that Yield.
878 ** After the jump, register P1 becomes undefined.
879 **
880 ** See also: InitCoroutine
881 */
882 case OP_EndCoroutine: {           /* in1 */
883   VdbeOp *pCaller;
884   pIn1 = &aMem[pOp->p1];
885   assert( pIn1->flags==MEM_Int );
886   assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
887   pCaller = &aOp[pIn1->u.i];
888   assert( pCaller->opcode==OP_Yield );
889   assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
890   pOp = &aOp[pCaller->p2 - 1];
891   pIn1->flags = MEM_Undefined;
892   break;
893 }
894 
895 /* Opcode:  Yield P1 P2 * * *
896 **
897 ** Swap the program counter with the value in register P1.  This
898 ** has the effect of yielding to a coroutine.
899 **
900 ** If the coroutine that is launched by this instruction ends with
901 ** Yield or Return then continue to the next instruction.  But if
902 ** the coroutine launched by this instruction ends with
903 ** EndCoroutine, then jump to P2 rather than continuing with the
904 ** next instruction.
905 **
906 ** See also: InitCoroutine
907 */
908 case OP_Yield: {            /* in1, jump */
909   int pcDest;
910   pIn1 = &aMem[pOp->p1];
911   assert( VdbeMemDynamic(pIn1)==0 );
912   pIn1->flags = MEM_Int;
913   pcDest = (int)pIn1->u.i;
914   pIn1->u.i = (int)(pOp - aOp);
915   REGISTER_TRACE(pOp->p1, pIn1);
916   pOp = &aOp[pcDest];
917   break;
918 }
919 
920 /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
921 ** Synopsis: if r[P3]=null halt
922 **
923 ** Check the value in register P3.  If it is NULL then Halt using
924 ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
925 ** value in register P3 is not NULL, then this routine is a no-op.
926 ** The P5 parameter should be 1.
927 */
928 case OP_HaltIfNull: {      /* in3 */
929   pIn3 = &aMem[pOp->p3];
930 #ifdef SQLITE_DEBUG
931   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
932 #endif
933   if( (pIn3->flags & MEM_Null)==0 ) break;
934   /* Fall through into OP_Halt */
935 }
936 
937 /* Opcode:  Halt P1 P2 * P4 P5
938 **
939 ** Exit immediately.  All open cursors, etc are closed
940 ** automatically.
941 **
942 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
943 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
944 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
945 ** whether or not to rollback the current transaction.  Do not rollback
946 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
947 ** then back out all changes that have occurred during this execution of the
948 ** VDBE, but do not rollback the transaction.
949 **
950 ** If P4 is not null then it is an error message string.
951 **
952 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
953 **
954 **    0:  (no change)
955 **    1:  NOT NULL contraint failed: P4
956 **    2:  UNIQUE constraint failed: P4
957 **    3:  CHECK constraint failed: P4
958 **    4:  FOREIGN KEY constraint failed: P4
959 **
960 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
961 ** omitted.
962 **
963 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
964 ** every program.  So a jump past the last instruction of the program
965 ** is the same as executing Halt.
966 */
967 case OP_Halt: {
968   VdbeFrame *pFrame;
969   int pcx;
970 
971   pcx = (int)(pOp - aOp);
972 #ifdef SQLITE_DEBUG
973   if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
974 #endif
975   if( pOp->p1==SQLITE_OK && p->pFrame ){
976     /* Halt the sub-program. Return control to the parent frame. */
977     pFrame = p->pFrame;
978     p->pFrame = pFrame->pParent;
979     p->nFrame--;
980     sqlite3VdbeSetChanges(db, p->nChange);
981     pcx = sqlite3VdbeFrameRestore(pFrame);
982     if( pOp->p2==OE_Ignore ){
983       /* Instruction pcx is the OP_Program that invoked the sub-program
984       ** currently being halted. If the p2 instruction of this OP_Halt
985       ** instruction is set to OE_Ignore, then the sub-program is throwing
986       ** an IGNORE exception. In this case jump to the address specified
987       ** as the p2 of the calling OP_Program.  */
988       pcx = p->aOp[pcx].p2-1;
989     }
990     aOp = p->aOp;
991     aMem = p->aMem;
992     pOp = &aOp[pcx];
993     break;
994   }
995   p->rc = pOp->p1;
996   p->errorAction = (u8)pOp->p2;
997   p->pc = pcx;
998   assert( pOp->p5<=4 );
999   if( p->rc ){
1000     if( pOp->p5 ){
1001       static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1002                                              "FOREIGN KEY" };
1003       testcase( pOp->p5==1 );
1004       testcase( pOp->p5==2 );
1005       testcase( pOp->p5==3 );
1006       testcase( pOp->p5==4 );
1007       sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1008       if( pOp->p4.z ){
1009         p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1010       }
1011     }else{
1012       sqlite3VdbeError(p, "%s", pOp->p4.z);
1013     }
1014     sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1015   }
1016   rc = sqlite3VdbeHalt(p);
1017   assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1018   if( rc==SQLITE_BUSY ){
1019     p->rc = SQLITE_BUSY;
1020   }else{
1021     assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1022     assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1023     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1024   }
1025   goto vdbe_return;
1026 }
1027 
1028 /* Opcode: Integer P1 P2 * * *
1029 ** Synopsis: r[P2]=P1
1030 **
1031 ** The 32-bit integer value P1 is written into register P2.
1032 */
1033 case OP_Integer: {         /* out2 */
1034   pOut = out2Prerelease(p, pOp);
1035   pOut->u.i = pOp->p1;
1036   break;
1037 }
1038 
1039 /* Opcode: Int64 * P2 * P4 *
1040 ** Synopsis: r[P2]=P4
1041 **
1042 ** P4 is a pointer to a 64-bit integer value.
1043 ** Write that value into register P2.
1044 */
1045 case OP_Int64: {           /* out2 */
1046   pOut = out2Prerelease(p, pOp);
1047   assert( pOp->p4.pI64!=0 );
1048   pOut->u.i = *pOp->p4.pI64;
1049   break;
1050 }
1051 
1052 #ifndef SQLITE_OMIT_FLOATING_POINT
1053 /* Opcode: Real * P2 * P4 *
1054 ** Synopsis: r[P2]=P4
1055 **
1056 ** P4 is a pointer to a 64-bit floating point value.
1057 ** Write that value into register P2.
1058 */
1059 case OP_Real: {            /* same as TK_FLOAT, out2 */
1060   pOut = out2Prerelease(p, pOp);
1061   pOut->flags = MEM_Real;
1062   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1063   pOut->u.r = *pOp->p4.pReal;
1064   break;
1065 }
1066 #endif
1067 
1068 /* Opcode: String8 * P2 * P4 *
1069 ** Synopsis: r[P2]='P4'
1070 **
1071 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1072 ** into a String opcode before it is executed for the first time.  During
1073 ** this transformation, the length of string P4 is computed and stored
1074 ** as the P1 parameter.
1075 */
1076 case OP_String8: {         /* same as TK_STRING, out2 */
1077   assert( pOp->p4.z!=0 );
1078   pOut = out2Prerelease(p, pOp);
1079   pOp->opcode = OP_String;
1080   pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1081 
1082 #ifndef SQLITE_OMIT_UTF16
1083   if( encoding!=SQLITE_UTF8 ){
1084     rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1085     assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1086     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1087     assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1088     assert( VdbeMemDynamic(pOut)==0 );
1089     pOut->szMalloc = 0;
1090     pOut->flags |= MEM_Static;
1091     if( pOp->p4type==P4_DYNAMIC ){
1092       sqlite3DbFree(db, pOp->p4.z);
1093     }
1094     pOp->p4type = P4_DYNAMIC;
1095     pOp->p4.z = pOut->z;
1096     pOp->p1 = pOut->n;
1097   }
1098   testcase( rc==SQLITE_TOOBIG );
1099 #endif
1100   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1101     goto too_big;
1102   }
1103   assert( rc==SQLITE_OK );
1104   /* Fall through to the next case, OP_String */
1105 }
1106 
1107 /* Opcode: String P1 P2 P3 P4 P5
1108 ** Synopsis: r[P2]='P4' (len=P1)
1109 **
1110 ** The string value P4 of length P1 (bytes) is stored in register P2.
1111 **
1112 ** If P3 is not zero and the content of register P3 is equal to P5, then
1113 ** the datatype of the register P2 is converted to BLOB.  The content is
1114 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1115 ** of a string, as if it had been CAST.  In other words:
1116 **
1117 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1118 */
1119 case OP_String: {          /* out2 */
1120   assert( pOp->p4.z!=0 );
1121   pOut = out2Prerelease(p, pOp);
1122   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1123   pOut->z = pOp->p4.z;
1124   pOut->n = pOp->p1;
1125   pOut->enc = encoding;
1126   UPDATE_MAX_BLOBSIZE(pOut);
1127 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1128   if( pOp->p3>0 ){
1129     assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1130     pIn3 = &aMem[pOp->p3];
1131     assert( pIn3->flags & MEM_Int );
1132     if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1133   }
1134 #endif
1135   break;
1136 }
1137 
1138 /* Opcode: Null P1 P2 P3 * *
1139 ** Synopsis: r[P2..P3]=NULL
1140 **
1141 ** Write a NULL into registers P2.  If P3 greater than P2, then also write
1142 ** NULL into register P3 and every register in between P2 and P3.  If P3
1143 ** is less than P2 (typically P3 is zero) then only register P2 is
1144 ** set to NULL.
1145 **
1146 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1147 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1148 ** OP_Ne or OP_Eq.
1149 */
1150 case OP_Null: {           /* out2 */
1151   int cnt;
1152   u16 nullFlag;
1153   pOut = out2Prerelease(p, pOp);
1154   cnt = pOp->p3-pOp->p2;
1155   assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1156   pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1157   pOut->n = 0;
1158 #ifdef SQLITE_DEBUG
1159   pOut->uTemp = 0;
1160 #endif
1161   while( cnt>0 ){
1162     pOut++;
1163     memAboutToChange(p, pOut);
1164     sqlite3VdbeMemSetNull(pOut);
1165     pOut->flags = nullFlag;
1166     pOut->n = 0;
1167     cnt--;
1168   }
1169   break;
1170 }
1171 
1172 /* Opcode: SoftNull P1 * * * *
1173 ** Synopsis: r[P1]=NULL
1174 **
1175 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1176 ** instruction, but do not free any string or blob memory associated with
1177 ** the register, so that if the value was a string or blob that was
1178 ** previously copied using OP_SCopy, the copies will continue to be valid.
1179 */
1180 case OP_SoftNull: {
1181   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1182   pOut = &aMem[pOp->p1];
1183   pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1184   break;
1185 }
1186 
1187 /* Opcode: Blob P1 P2 * P4 *
1188 ** Synopsis: r[P2]=P4 (len=P1)
1189 **
1190 ** P4 points to a blob of data P1 bytes long.  Store this
1191 ** blob in register P2.
1192 */
1193 case OP_Blob: {                /* out2 */
1194   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1195   pOut = out2Prerelease(p, pOp);
1196   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1197   pOut->enc = encoding;
1198   UPDATE_MAX_BLOBSIZE(pOut);
1199   break;
1200 }
1201 
1202 /* Opcode: Variable P1 P2 * P4 *
1203 ** Synopsis: r[P2]=parameter(P1,P4)
1204 **
1205 ** Transfer the values of bound parameter P1 into register P2
1206 **
1207 ** If the parameter is named, then its name appears in P4.
1208 ** The P4 value is used by sqlite3_bind_parameter_name().
1209 */
1210 case OP_Variable: {            /* out2 */
1211   Mem *pVar;       /* Value being transferred */
1212 
1213   assert( pOp->p1>0 && pOp->p1<=p->nVar );
1214   assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1215   pVar = &p->aVar[pOp->p1 - 1];
1216   if( sqlite3VdbeMemTooBig(pVar) ){
1217     goto too_big;
1218   }
1219   pOut = &aMem[pOp->p2];
1220   sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1221   UPDATE_MAX_BLOBSIZE(pOut);
1222   break;
1223 }
1224 
1225 /* Opcode: Move P1 P2 P3 * *
1226 ** Synopsis: r[P2@P3]=r[P1@P3]
1227 **
1228 ** Move the P3 values in register P1..P1+P3-1 over into
1229 ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
1230 ** left holding a NULL.  It is an error for register ranges
1231 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
1232 ** for P3 to be less than 1.
1233 */
1234 case OP_Move: {
1235   int n;           /* Number of registers left to copy */
1236   int p1;          /* Register to copy from */
1237   int p2;          /* Register to copy to */
1238 
1239   n = pOp->p3;
1240   p1 = pOp->p1;
1241   p2 = pOp->p2;
1242   assert( n>0 && p1>0 && p2>0 );
1243   assert( p1+n<=p2 || p2+n<=p1 );
1244 
1245   pIn1 = &aMem[p1];
1246   pOut = &aMem[p2];
1247   do{
1248     assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1249     assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1250     assert( memIsValid(pIn1) );
1251     memAboutToChange(p, pOut);
1252     sqlite3VdbeMemMove(pOut, pIn1);
1253 #ifdef SQLITE_DEBUG
1254     if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1255       pOut->pScopyFrom += pOp->p2 - p1;
1256     }
1257 #endif
1258     Deephemeralize(pOut);
1259     REGISTER_TRACE(p2++, pOut);
1260     pIn1++;
1261     pOut++;
1262   }while( --n );
1263   break;
1264 }
1265 
1266 /* Opcode: Copy P1 P2 P3 * *
1267 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1268 **
1269 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1270 **
1271 ** This instruction makes a deep copy of the value.  A duplicate
1272 ** is made of any string or blob constant.  See also OP_SCopy.
1273 */
1274 case OP_Copy: {
1275   int n;
1276 
1277   n = pOp->p3;
1278   pIn1 = &aMem[pOp->p1];
1279   pOut = &aMem[pOp->p2];
1280   assert( pOut!=pIn1 );
1281   while( 1 ){
1282     memAboutToChange(p, pOut);
1283     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1284     Deephemeralize(pOut);
1285 #ifdef SQLITE_DEBUG
1286     pOut->pScopyFrom = 0;
1287     pOut->iTabColHash = 0;
1288 #endif
1289     REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1290     if( (n--)==0 ) break;
1291     pOut++;
1292     pIn1++;
1293   }
1294   break;
1295 }
1296 
1297 /* Opcode: SCopy P1 P2 * * *
1298 ** Synopsis: r[P2]=r[P1]
1299 **
1300 ** Make a shallow copy of register P1 into register P2.
1301 **
1302 ** This instruction makes a shallow copy of the value.  If the value
1303 ** is a string or blob, then the copy is only a pointer to the
1304 ** original and hence if the original changes so will the copy.
1305 ** Worse, if the original is deallocated, the copy becomes invalid.
1306 ** Thus the program must guarantee that the original will not change
1307 ** during the lifetime of the copy.  Use OP_Copy to make a complete
1308 ** copy.
1309 */
1310 case OP_SCopy: {            /* out2 */
1311   pIn1 = &aMem[pOp->p1];
1312   pOut = &aMem[pOp->p2];
1313   assert( pOut!=pIn1 );
1314   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1315 #ifdef SQLITE_DEBUG
1316   pOut->pScopyFrom = pIn1;
1317   pOut->mScopyFlags = pIn1->flags;
1318 #endif
1319   break;
1320 }
1321 
1322 /* Opcode: IntCopy P1 P2 * * *
1323 ** Synopsis: r[P2]=r[P1]
1324 **
1325 ** Transfer the integer value held in register P1 into register P2.
1326 **
1327 ** This is an optimized version of SCopy that works only for integer
1328 ** values.
1329 */
1330 case OP_IntCopy: {            /* out2 */
1331   pIn1 = &aMem[pOp->p1];
1332   assert( (pIn1->flags & MEM_Int)!=0 );
1333   pOut = &aMem[pOp->p2];
1334   sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1335   break;
1336 }
1337 
1338 /* Opcode: ResultRow P1 P2 * * *
1339 ** Synopsis: output=r[P1@P2]
1340 **
1341 ** The registers P1 through P1+P2-1 contain a single row of
1342 ** results. This opcode causes the sqlite3_step() call to terminate
1343 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1344 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1345 ** the result row.
1346 */
1347 case OP_ResultRow: {
1348   Mem *pMem;
1349   int i;
1350   assert( p->nResColumn==pOp->p2 );
1351   assert( pOp->p1>0 );
1352   assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1353 
1354 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1355   /* Run the progress counter just before returning.
1356   */
1357   if( db->xProgress!=0
1358    && nVmStep>=nProgressLimit
1359    && db->xProgress(db->pProgressArg)!=0
1360   ){
1361     rc = SQLITE_INTERRUPT;
1362     goto abort_due_to_error;
1363   }
1364 #endif
1365 
1366   /* If this statement has violated immediate foreign key constraints, do
1367   ** not return the number of rows modified. And do not RELEASE the statement
1368   ** transaction. It needs to be rolled back.  */
1369   if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1370     assert( db->flags&SQLITE_CountRows );
1371     assert( p->usesStmtJournal );
1372     goto abort_due_to_error;
1373   }
1374 
1375   /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1376   ** DML statements invoke this opcode to return the number of rows
1377   ** modified to the user. This is the only way that a VM that
1378   ** opens a statement transaction may invoke this opcode.
1379   **
1380   ** In case this is such a statement, close any statement transaction
1381   ** opened by this VM before returning control to the user. This is to
1382   ** ensure that statement-transactions are always nested, not overlapping.
1383   ** If the open statement-transaction is not closed here, then the user
1384   ** may step another VM that opens its own statement transaction. This
1385   ** may lead to overlapping statement transactions.
1386   **
1387   ** The statement transaction is never a top-level transaction.  Hence
1388   ** the RELEASE call below can never fail.
1389   */
1390   assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1391   rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1392   assert( rc==SQLITE_OK );
1393 
1394   /* Invalidate all ephemeral cursor row caches */
1395   p->cacheCtr = (p->cacheCtr + 2)|1;
1396 
1397   /* Make sure the results of the current row are \000 terminated
1398   ** and have an assigned type.  The results are de-ephemeralized as
1399   ** a side effect.
1400   */
1401   pMem = p->pResultSet = &aMem[pOp->p1];
1402   for(i=0; i<pOp->p2; i++){
1403     assert( memIsValid(&pMem[i]) );
1404     Deephemeralize(&pMem[i]);
1405     assert( (pMem[i].flags & MEM_Ephem)==0
1406             || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1407     sqlite3VdbeMemNulTerminate(&pMem[i]);
1408     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1409   }
1410   if( db->mallocFailed ) goto no_mem;
1411 
1412   if( db->mTrace & SQLITE_TRACE_ROW ){
1413     db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1414   }
1415 
1416   /* Return SQLITE_ROW
1417   */
1418   p->pc = (int)(pOp - aOp) + 1;
1419   rc = SQLITE_ROW;
1420   goto vdbe_return;
1421 }
1422 
1423 /* Opcode: Concat P1 P2 P3 * *
1424 ** Synopsis: r[P3]=r[P2]+r[P1]
1425 **
1426 ** Add the text in register P1 onto the end of the text in
1427 ** register P2 and store the result in register P3.
1428 ** If either the P1 or P2 text are NULL then store NULL in P3.
1429 **
1430 **   P3 = P2 || P1
1431 **
1432 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1433 ** if P3 is the same register as P2, the implementation is able
1434 ** to avoid a memcpy().
1435 */
1436 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
1437   i64 nByte;
1438 
1439   pIn1 = &aMem[pOp->p1];
1440   pIn2 = &aMem[pOp->p2];
1441   pOut = &aMem[pOp->p3];
1442   assert( pIn1!=pOut );
1443   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1444     sqlite3VdbeMemSetNull(pOut);
1445     break;
1446   }
1447   if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1448   Stringify(pIn1, encoding);
1449   Stringify(pIn2, encoding);
1450   nByte = pIn1->n + pIn2->n;
1451   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1452     goto too_big;
1453   }
1454   if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1455     goto no_mem;
1456   }
1457   MemSetTypeFlag(pOut, MEM_Str);
1458   if( pOut!=pIn2 ){
1459     memcpy(pOut->z, pIn2->z, pIn2->n);
1460   }
1461   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1462   pOut->z[nByte]=0;
1463   pOut->z[nByte+1] = 0;
1464   pOut->flags |= MEM_Term;
1465   pOut->n = (int)nByte;
1466   pOut->enc = encoding;
1467   UPDATE_MAX_BLOBSIZE(pOut);
1468   break;
1469 }
1470 
1471 /* Opcode: Add P1 P2 P3 * *
1472 ** Synopsis: r[P3]=r[P1]+r[P2]
1473 **
1474 ** Add the value in register P1 to the value in register P2
1475 ** and store the result in register P3.
1476 ** If either input is NULL, the result is NULL.
1477 */
1478 /* Opcode: Multiply P1 P2 P3 * *
1479 ** Synopsis: r[P3]=r[P1]*r[P2]
1480 **
1481 **
1482 ** Multiply the value in register P1 by the value in register P2
1483 ** and store the result in register P3.
1484 ** If either input is NULL, the result is NULL.
1485 */
1486 /* Opcode: Subtract P1 P2 P3 * *
1487 ** Synopsis: r[P3]=r[P2]-r[P1]
1488 **
1489 ** Subtract the value in register P1 from the value in register P2
1490 ** and store the result in register P3.
1491 ** If either input is NULL, the result is NULL.
1492 */
1493 /* Opcode: Divide P1 P2 P3 * *
1494 ** Synopsis: r[P3]=r[P2]/r[P1]
1495 **
1496 ** Divide the value in register P1 by the value in register P2
1497 ** and store the result in register P3 (P3=P2/P1). If the value in
1498 ** register P1 is zero, then the result is NULL. If either input is
1499 ** NULL, the result is NULL.
1500 */
1501 /* Opcode: Remainder P1 P2 P3 * *
1502 ** Synopsis: r[P3]=r[P2]%r[P1]
1503 **
1504 ** Compute the remainder after integer register P2 is divided by
1505 ** register P1 and store the result in register P3.
1506 ** If the value in register P1 is zero the result is NULL.
1507 ** If either operand is NULL, the result is NULL.
1508 */
1509 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
1510 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
1511 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
1512 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
1513 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
1514   char bIntint;   /* Started out as two integer operands */
1515   u16 flags;      /* Combined MEM_* flags from both inputs */
1516   u16 type1;      /* Numeric type of left operand */
1517   u16 type2;      /* Numeric type of right operand */
1518   i64 iA;         /* Integer value of left operand */
1519   i64 iB;         /* Integer value of right operand */
1520   double rA;      /* Real value of left operand */
1521   double rB;      /* Real value of right operand */
1522 
1523   pIn1 = &aMem[pOp->p1];
1524   type1 = numericType(pIn1);
1525   pIn2 = &aMem[pOp->p2];
1526   type2 = numericType(pIn2);
1527   pOut = &aMem[pOp->p3];
1528   flags = pIn1->flags | pIn2->flags;
1529   if( (type1 & type2 & MEM_Int)!=0 ){
1530     iA = pIn1->u.i;
1531     iB = pIn2->u.i;
1532     bIntint = 1;
1533     switch( pOp->opcode ){
1534       case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
1535       case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
1536       case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
1537       case OP_Divide: {
1538         if( iA==0 ) goto arithmetic_result_is_null;
1539         if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1540         iB /= iA;
1541         break;
1542       }
1543       default: {
1544         if( iA==0 ) goto arithmetic_result_is_null;
1545         if( iA==-1 ) iA = 1;
1546         iB %= iA;
1547         break;
1548       }
1549     }
1550     pOut->u.i = iB;
1551     MemSetTypeFlag(pOut, MEM_Int);
1552   }else if( (flags & MEM_Null)!=0 ){
1553     goto arithmetic_result_is_null;
1554   }else{
1555     bIntint = 0;
1556 fp_math:
1557     rA = sqlite3VdbeRealValue(pIn1);
1558     rB = sqlite3VdbeRealValue(pIn2);
1559     switch( pOp->opcode ){
1560       case OP_Add:         rB += rA;       break;
1561       case OP_Subtract:    rB -= rA;       break;
1562       case OP_Multiply:    rB *= rA;       break;
1563       case OP_Divide: {
1564         /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1565         if( rA==(double)0 ) goto arithmetic_result_is_null;
1566         rB /= rA;
1567         break;
1568       }
1569       default: {
1570         iA = (i64)rA;
1571         iB = (i64)rB;
1572         if( iA==0 ) goto arithmetic_result_is_null;
1573         if( iA==-1 ) iA = 1;
1574         rB = (double)(iB % iA);
1575         break;
1576       }
1577     }
1578 #ifdef SQLITE_OMIT_FLOATING_POINT
1579     pOut->u.i = rB;
1580     MemSetTypeFlag(pOut, MEM_Int);
1581 #else
1582     if( sqlite3IsNaN(rB) ){
1583       goto arithmetic_result_is_null;
1584     }
1585     pOut->u.r = rB;
1586     MemSetTypeFlag(pOut, MEM_Real);
1587     if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1588       sqlite3VdbeIntegerAffinity(pOut);
1589     }
1590 #endif
1591   }
1592   break;
1593 
1594 arithmetic_result_is_null:
1595   sqlite3VdbeMemSetNull(pOut);
1596   break;
1597 }
1598 
1599 /* Opcode: CollSeq P1 * * P4
1600 **
1601 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1602 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1603 ** be returned. This is used by the built-in min(), max() and nullif()
1604 ** functions.
1605 **
1606 ** If P1 is not zero, then it is a register that a subsequent min() or
1607 ** max() aggregate will set to 1 if the current row is not the minimum or
1608 ** maximum.  The P1 register is initialized to 0 by this instruction.
1609 **
1610 ** The interface used by the implementation of the aforementioned functions
1611 ** to retrieve the collation sequence set by this opcode is not available
1612 ** publicly.  Only built-in functions have access to this feature.
1613 */
1614 case OP_CollSeq: {
1615   assert( pOp->p4type==P4_COLLSEQ );
1616   if( pOp->p1 ){
1617     sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1618   }
1619   break;
1620 }
1621 
1622 /* Opcode: BitAnd P1 P2 P3 * *
1623 ** Synopsis: r[P3]=r[P1]&r[P2]
1624 **
1625 ** Take the bit-wise AND of the values in register P1 and P2 and
1626 ** store the result in register P3.
1627 ** If either input is NULL, the result is NULL.
1628 */
1629 /* Opcode: BitOr P1 P2 P3 * *
1630 ** Synopsis: r[P3]=r[P1]|r[P2]
1631 **
1632 ** Take the bit-wise OR of the values in register P1 and P2 and
1633 ** store the result in register P3.
1634 ** If either input is NULL, the result is NULL.
1635 */
1636 /* Opcode: ShiftLeft P1 P2 P3 * *
1637 ** Synopsis: r[P3]=r[P2]<<r[P1]
1638 **
1639 ** Shift the integer value in register P2 to the left by the
1640 ** number of bits specified by the integer in register P1.
1641 ** Store the result in register P3.
1642 ** If either input is NULL, the result is NULL.
1643 */
1644 /* Opcode: ShiftRight P1 P2 P3 * *
1645 ** Synopsis: r[P3]=r[P2]>>r[P1]
1646 **
1647 ** Shift the integer value in register P2 to the right by the
1648 ** number of bits specified by the integer in register P1.
1649 ** Store the result in register P3.
1650 ** If either input is NULL, the result is NULL.
1651 */
1652 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
1653 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
1654 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
1655 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
1656   i64 iA;
1657   u64 uA;
1658   i64 iB;
1659   u8 op;
1660 
1661   pIn1 = &aMem[pOp->p1];
1662   pIn2 = &aMem[pOp->p2];
1663   pOut = &aMem[pOp->p3];
1664   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1665     sqlite3VdbeMemSetNull(pOut);
1666     break;
1667   }
1668   iA = sqlite3VdbeIntValue(pIn2);
1669   iB = sqlite3VdbeIntValue(pIn1);
1670   op = pOp->opcode;
1671   if( op==OP_BitAnd ){
1672     iA &= iB;
1673   }else if( op==OP_BitOr ){
1674     iA |= iB;
1675   }else if( iB!=0 ){
1676     assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1677 
1678     /* If shifting by a negative amount, shift in the other direction */
1679     if( iB<0 ){
1680       assert( OP_ShiftRight==OP_ShiftLeft+1 );
1681       op = 2*OP_ShiftLeft + 1 - op;
1682       iB = iB>(-64) ? -iB : 64;
1683     }
1684 
1685     if( iB>=64 ){
1686       iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1687     }else{
1688       memcpy(&uA, &iA, sizeof(uA));
1689       if( op==OP_ShiftLeft ){
1690         uA <<= iB;
1691       }else{
1692         uA >>= iB;
1693         /* Sign-extend on a right shift of a negative number */
1694         if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1695       }
1696       memcpy(&iA, &uA, sizeof(iA));
1697     }
1698   }
1699   pOut->u.i = iA;
1700   MemSetTypeFlag(pOut, MEM_Int);
1701   break;
1702 }
1703 
1704 /* Opcode: AddImm  P1 P2 * * *
1705 ** Synopsis: r[P1]=r[P1]+P2
1706 **
1707 ** Add the constant P2 to the value in register P1.
1708 ** The result is always an integer.
1709 **
1710 ** To force any register to be an integer, just add 0.
1711 */
1712 case OP_AddImm: {            /* in1 */
1713   pIn1 = &aMem[pOp->p1];
1714   memAboutToChange(p, pIn1);
1715   sqlite3VdbeMemIntegerify(pIn1);
1716   pIn1->u.i += pOp->p2;
1717   break;
1718 }
1719 
1720 /* Opcode: MustBeInt P1 P2 * * *
1721 **
1722 ** Force the value in register P1 to be an integer.  If the value
1723 ** in P1 is not an integer and cannot be converted into an integer
1724 ** without data loss, then jump immediately to P2, or if P2==0
1725 ** raise an SQLITE_MISMATCH exception.
1726 */
1727 case OP_MustBeInt: {            /* jump, in1 */
1728   pIn1 = &aMem[pOp->p1];
1729   if( (pIn1->flags & MEM_Int)==0 ){
1730     applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1731     VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1732     if( (pIn1->flags & MEM_Int)==0 ){
1733       if( pOp->p2==0 ){
1734         rc = SQLITE_MISMATCH;
1735         goto abort_due_to_error;
1736       }else{
1737         goto jump_to_p2;
1738       }
1739     }
1740   }
1741   MemSetTypeFlag(pIn1, MEM_Int);
1742   break;
1743 }
1744 
1745 #ifndef SQLITE_OMIT_FLOATING_POINT
1746 /* Opcode: RealAffinity P1 * * * *
1747 **
1748 ** If register P1 holds an integer convert it to a real value.
1749 **
1750 ** This opcode is used when extracting information from a column that
1751 ** has REAL affinity.  Such column values may still be stored as
1752 ** integers, for space efficiency, but after extraction we want them
1753 ** to have only a real value.
1754 */
1755 case OP_RealAffinity: {                  /* in1 */
1756   pIn1 = &aMem[pOp->p1];
1757   if( pIn1->flags & MEM_Int ){
1758     sqlite3VdbeMemRealify(pIn1);
1759   }
1760   break;
1761 }
1762 #endif
1763 
1764 #ifndef SQLITE_OMIT_CAST
1765 /* Opcode: Cast P1 P2 * * *
1766 ** Synopsis: affinity(r[P1])
1767 **
1768 ** Force the value in register P1 to be the type defined by P2.
1769 **
1770 ** <ul>
1771 ** <li> P2=='A' &rarr; BLOB
1772 ** <li> P2=='B' &rarr; TEXT
1773 ** <li> P2=='C' &rarr; NUMERIC
1774 ** <li> P2=='D' &rarr; INTEGER
1775 ** <li> P2=='E' &rarr; REAL
1776 ** </ul>
1777 **
1778 ** A NULL value is not changed by this routine.  It remains NULL.
1779 */
1780 case OP_Cast: {                  /* in1 */
1781   assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1782   testcase( pOp->p2==SQLITE_AFF_TEXT );
1783   testcase( pOp->p2==SQLITE_AFF_BLOB );
1784   testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1785   testcase( pOp->p2==SQLITE_AFF_INTEGER );
1786   testcase( pOp->p2==SQLITE_AFF_REAL );
1787   pIn1 = &aMem[pOp->p1];
1788   memAboutToChange(p, pIn1);
1789   rc = ExpandBlob(pIn1);
1790   sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1791   UPDATE_MAX_BLOBSIZE(pIn1);
1792   if( rc ) goto abort_due_to_error;
1793   break;
1794 }
1795 #endif /* SQLITE_OMIT_CAST */
1796 
1797 /* Opcode: Eq P1 P2 P3 P4 P5
1798 ** Synopsis: IF r[P3]==r[P1]
1799 **
1800 ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
1801 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
1802 ** store the result of comparison in register P2.
1803 **
1804 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1805 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1806 ** to coerce both inputs according to this affinity before the
1807 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1808 ** affinity is used. Note that the affinity conversions are stored
1809 ** back into the input registers P1 and P3.  So this opcode can cause
1810 ** persistent changes to registers P1 and P3.
1811 **
1812 ** Once any conversions have taken place, and neither value is NULL,
1813 ** the values are compared. If both values are blobs then memcmp() is
1814 ** used to determine the results of the comparison.  If both values
1815 ** are text, then the appropriate collating function specified in
1816 ** P4 is used to do the comparison.  If P4 is not specified then
1817 ** memcmp() is used to compare text string.  If both values are
1818 ** numeric, then a numeric comparison is used. If the two values
1819 ** are of different types, then numbers are considered less than
1820 ** strings and strings are considered less than blobs.
1821 **
1822 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1823 ** true or false and is never NULL.  If both operands are NULL then the result
1824 ** of comparison is true.  If either operand is NULL then the result is false.
1825 ** If neither operand is NULL the result is the same as it would be if
1826 ** the SQLITE_NULLEQ flag were omitted from P5.
1827 **
1828 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1829 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1830 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1831 */
1832 /* Opcode: Ne P1 P2 P3 P4 P5
1833 ** Synopsis: IF r[P3]!=r[P1]
1834 **
1835 ** This works just like the Eq opcode except that the jump is taken if
1836 ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
1837 ** additional information.
1838 **
1839 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1840 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1841 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1842 */
1843 /* Opcode: Lt P1 P2 P3 P4 P5
1844 ** Synopsis: IF r[P3]<r[P1]
1845 **
1846 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
1847 ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
1848 ** the result of comparison (0 or 1 or NULL) into register P2.
1849 **
1850 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1851 ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL
1852 ** bit is clear then fall through if either operand is NULL.
1853 **
1854 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1855 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1856 ** to coerce both inputs according to this affinity before the
1857 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1858 ** affinity is used. Note that the affinity conversions are stored
1859 ** back into the input registers P1 and P3.  So this opcode can cause
1860 ** persistent changes to registers P1 and P3.
1861 **
1862 ** Once any conversions have taken place, and neither value is NULL,
1863 ** the values are compared. If both values are blobs then memcmp() is
1864 ** used to determine the results of the comparison.  If both values
1865 ** are text, then the appropriate collating function specified in
1866 ** P4 is  used to do the comparison.  If P4 is not specified then
1867 ** memcmp() is used to compare text string.  If both values are
1868 ** numeric, then a numeric comparison is used. If the two values
1869 ** are of different types, then numbers are considered less than
1870 ** strings and strings are considered less than blobs.
1871 */
1872 /* Opcode: Le P1 P2 P3 P4 P5
1873 ** Synopsis: IF r[P3]<=r[P1]
1874 **
1875 ** This works just like the Lt opcode except that the jump is taken if
1876 ** the content of register P3 is less than or equal to the content of
1877 ** register P1.  See the Lt opcode for additional information.
1878 */
1879 /* Opcode: Gt P1 P2 P3 P4 P5
1880 ** Synopsis: IF r[P3]>r[P1]
1881 **
1882 ** This works just like the Lt opcode except that the jump is taken if
1883 ** the content of register P3 is greater than the content of
1884 ** register P1.  See the Lt opcode for additional information.
1885 */
1886 /* Opcode: Ge P1 P2 P3 P4 P5
1887 ** Synopsis: IF r[P3]>=r[P1]
1888 **
1889 ** This works just like the Lt opcode except that the jump is taken if
1890 ** the content of register P3 is greater than or equal to the content of
1891 ** register P1.  See the Lt opcode for additional information.
1892 */
1893 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
1894 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
1895 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
1896 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
1897 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
1898 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
1899   int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
1900   char affinity;      /* Affinity to use for comparison */
1901   u16 flags1;         /* Copy of initial value of pIn1->flags */
1902   u16 flags3;         /* Copy of initial value of pIn3->flags */
1903 
1904   pIn1 = &aMem[pOp->p1];
1905   pIn3 = &aMem[pOp->p3];
1906   flags1 = pIn1->flags;
1907   flags3 = pIn3->flags;
1908   if( (flags1 | flags3)&MEM_Null ){
1909     /* One or both operands are NULL */
1910     if( pOp->p5 & SQLITE_NULLEQ ){
1911       /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1912       ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1913       ** or not both operands are null.
1914       */
1915       assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1916       assert( (flags1 & MEM_Cleared)==0 );
1917       assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1918       if( (flags1&flags3&MEM_Null)!=0
1919        && (flags3&MEM_Cleared)==0
1920       ){
1921         res = 0;  /* Operands are equal */
1922       }else{
1923         res = 1;  /* Operands are not equal */
1924       }
1925     }else{
1926       /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1927       ** then the result is always NULL.
1928       ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1929       */
1930       if( pOp->p5 & SQLITE_STOREP2 ){
1931         pOut = &aMem[pOp->p2];
1932         iCompare = 1;    /* Operands are not equal */
1933         memAboutToChange(p, pOut);
1934         MemSetTypeFlag(pOut, MEM_Null);
1935         REGISTER_TRACE(pOp->p2, pOut);
1936       }else{
1937         VdbeBranchTaken(2,3);
1938         if( pOp->p5 & SQLITE_JUMPIFNULL ){
1939           goto jump_to_p2;
1940         }
1941       }
1942       break;
1943     }
1944   }else{
1945     /* Neither operand is NULL.  Do a comparison. */
1946     affinity = pOp->p5 & SQLITE_AFF_MASK;
1947     if( affinity>=SQLITE_AFF_NUMERIC ){
1948       if( (flags1 | flags3)&MEM_Str ){
1949         if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1950           applyNumericAffinity(pIn1,0);
1951           testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
1952           flags3 = pIn3->flags;
1953         }
1954         if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1955           applyNumericAffinity(pIn3,0);
1956         }
1957       }
1958       /* Handle the common case of integer comparison here, as an
1959       ** optimization, to avoid a call to sqlite3MemCompare() */
1960       if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1961         if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1962         if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1963         res = 0;
1964         goto compare_op;
1965       }
1966     }else if( affinity==SQLITE_AFF_TEXT ){
1967       if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
1968         testcase( pIn1->flags & MEM_Int );
1969         testcase( pIn1->flags & MEM_Real );
1970         sqlite3VdbeMemStringify(pIn1, encoding, 1);
1971         testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1972         flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
1973         assert( pIn1!=pIn3 );
1974       }
1975       if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
1976         testcase( pIn3->flags & MEM_Int );
1977         testcase( pIn3->flags & MEM_Real );
1978         sqlite3VdbeMemStringify(pIn3, encoding, 1);
1979         testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1980         flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
1981       }
1982     }
1983     assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1984     res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1985   }
1986 compare_op:
1987   /* At this point, res is negative, zero, or positive if reg[P1] is
1988   ** less than, equal to, or greater than reg[P3], respectively.  Compute
1989   ** the answer to this operator in res2, depending on what the comparison
1990   ** operator actually is.  The next block of code depends on the fact
1991   ** that the 6 comparison operators are consecutive integers in this
1992   ** order:  NE, EQ, GT, LE, LT, GE */
1993   assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
1994   assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
1995   if( res<0 ){                        /* ne, eq, gt, le, lt, ge */
1996     static const unsigned char aLTb[] = { 1,  0,  0,  1,  1,  0 };
1997     res2 = aLTb[pOp->opcode - OP_Ne];
1998   }else if( res==0 ){
1999     static const unsigned char aEQb[] = { 0,  1,  0,  1,  0,  1 };
2000     res2 = aEQb[pOp->opcode - OP_Ne];
2001   }else{
2002     static const unsigned char aGTb[] = { 1,  0,  1,  0,  0,  1 };
2003     res2 = aGTb[pOp->opcode - OP_Ne];
2004   }
2005 
2006   /* Undo any changes made by applyAffinity() to the input registers. */
2007   assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2008   pIn1->flags = flags1;
2009   assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2010   pIn3->flags = flags3;
2011 
2012   if( pOp->p5 & SQLITE_STOREP2 ){
2013     pOut = &aMem[pOp->p2];
2014     iCompare = res;
2015     if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2016       /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2017       ** and prevents OP_Ne from overwriting NULL with 0.  This flag
2018       ** is only used in contexts where either:
2019       **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2020       **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2021       ** Therefore it is not necessary to check the content of r[P2] for
2022       ** NULL. */
2023       assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2024       assert( res2==0 || res2==1 );
2025       testcase( res2==0 && pOp->opcode==OP_Eq );
2026       testcase( res2==1 && pOp->opcode==OP_Eq );
2027       testcase( res2==0 && pOp->opcode==OP_Ne );
2028       testcase( res2==1 && pOp->opcode==OP_Ne );
2029       if( (pOp->opcode==OP_Eq)==res2 ) break;
2030     }
2031     memAboutToChange(p, pOut);
2032     MemSetTypeFlag(pOut, MEM_Int);
2033     pOut->u.i = res2;
2034     REGISTER_TRACE(pOp->p2, pOut);
2035   }else{
2036     VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2037     if( res2 ){
2038       goto jump_to_p2;
2039     }
2040   }
2041   break;
2042 }
2043 
2044 /* Opcode: ElseNotEq * P2 * * *
2045 **
2046 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2047 ** If result of an OP_Eq comparison on the same two operands
2048 ** would have be NULL or false (0), then then jump to P2.
2049 ** If the result of an OP_Eq comparison on the two previous operands
2050 ** would have been true (1), then fall through.
2051 */
2052 case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
2053   assert( pOp>aOp );
2054   assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2055   assert( pOp[-1].p5 & SQLITE_STOREP2 );
2056   VdbeBranchTaken(iCompare!=0, 2);
2057   if( iCompare!=0 ) goto jump_to_p2;
2058   break;
2059 }
2060 
2061 
2062 /* Opcode: Permutation * * * P4 *
2063 **
2064 ** Set the permutation used by the OP_Compare operator in the next
2065 ** instruction.  The permutation is stored in the P4 operand.
2066 **
2067 ** The permutation is only valid until the next OP_Compare that has
2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2069 ** occur immediately prior to the OP_Compare.
2070 **
2071 ** The first integer in the P4 integer array is the length of the array
2072 ** and does not become part of the permutation.
2073 */
2074 case OP_Permutation: {
2075   assert( pOp->p4type==P4_INTARRAY );
2076   assert( pOp->p4.ai );
2077   assert( pOp[1].opcode==OP_Compare );
2078   assert( pOp[1].p5 & OPFLAG_PERMUTE );
2079   break;
2080 }
2081 
2082 /* Opcode: Compare P1 P2 P3 P4 P5
2083 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2084 **
2085 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2086 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
2087 ** the comparison for use by the next OP_Jump instruct.
2088 **
2089 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2090 ** determined by the most recent OP_Permutation operator.  If the
2091 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2092 ** order.
2093 **
2094 ** P4 is a KeyInfo structure that defines collating sequences and sort
2095 ** orders for the comparison.  The permutation applies to registers
2096 ** only.  The KeyInfo elements are used sequentially.
2097 **
2098 ** The comparison is a sort comparison, so NULLs compare equal,
2099 ** NULLs are less than numbers, numbers are less than strings,
2100 ** and strings are less than blobs.
2101 */
2102 case OP_Compare: {
2103   int n;
2104   int i;
2105   int p1;
2106   int p2;
2107   const KeyInfo *pKeyInfo;
2108   int idx;
2109   CollSeq *pColl;    /* Collating sequence to use on this term */
2110   int bRev;          /* True for DESCENDING sort order */
2111   int *aPermute;     /* The permutation */
2112 
2113   if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2114     aPermute = 0;
2115   }else{
2116     assert( pOp>aOp );
2117     assert( pOp[-1].opcode==OP_Permutation );
2118     assert( pOp[-1].p4type==P4_INTARRAY );
2119     aPermute = pOp[-1].p4.ai + 1;
2120     assert( aPermute!=0 );
2121   }
2122   n = pOp->p3;
2123   pKeyInfo = pOp->p4.pKeyInfo;
2124   assert( n>0 );
2125   assert( pKeyInfo!=0 );
2126   p1 = pOp->p1;
2127   p2 = pOp->p2;
2128 #ifdef SQLITE_DEBUG
2129   if( aPermute ){
2130     int k, mx = 0;
2131     for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2132     assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2133     assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2134   }else{
2135     assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2136     assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2137   }
2138 #endif /* SQLITE_DEBUG */
2139   for(i=0; i<n; i++){
2140     idx = aPermute ? aPermute[i] : i;
2141     assert( memIsValid(&aMem[p1+idx]) );
2142     assert( memIsValid(&aMem[p2+idx]) );
2143     REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2144     REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2145     assert( i<pKeyInfo->nKeyField );
2146     pColl = pKeyInfo->aColl[i];
2147     bRev = pKeyInfo->aSortOrder[i];
2148     iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2149     if( iCompare ){
2150       if( bRev ) iCompare = -iCompare;
2151       break;
2152     }
2153   }
2154   break;
2155 }
2156 
2157 /* Opcode: Jump P1 P2 P3 * *
2158 **
2159 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2160 ** in the most recent OP_Compare instruction the P1 vector was less than
2161 ** equal to, or greater than the P2 vector, respectively.
2162 */
2163 case OP_Jump: {             /* jump */
2164   if( iCompare<0 ){
2165     VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2166   }else if( iCompare==0 ){
2167     VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2168   }else{
2169     VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2170   }
2171   break;
2172 }
2173 
2174 /* Opcode: And P1 P2 P3 * *
2175 ** Synopsis: r[P3]=(r[P1] && r[P2])
2176 **
2177 ** Take the logical AND of the values in registers P1 and P2 and
2178 ** write the result into register P3.
2179 **
2180 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2181 ** the other input is NULL.  A NULL and true or two NULLs give
2182 ** a NULL output.
2183 */
2184 /* Opcode: Or P1 P2 P3 * *
2185 ** Synopsis: r[P3]=(r[P1] || r[P2])
2186 **
2187 ** Take the logical OR of the values in register P1 and P2 and
2188 ** store the answer in register P3.
2189 **
2190 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2191 ** even if the other input is NULL.  A NULL and false or two NULLs
2192 ** give a NULL output.
2193 */
2194 case OP_And:              /* same as TK_AND, in1, in2, out3 */
2195 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
2196   int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2197   int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2198 
2199   v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2200   v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2201   if( pOp->opcode==OP_And ){
2202     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2203     v1 = and_logic[v1*3+v2];
2204   }else{
2205     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2206     v1 = or_logic[v1*3+v2];
2207   }
2208   pOut = &aMem[pOp->p3];
2209   if( v1==2 ){
2210     MemSetTypeFlag(pOut, MEM_Null);
2211   }else{
2212     pOut->u.i = v1;
2213     MemSetTypeFlag(pOut, MEM_Int);
2214   }
2215   break;
2216 }
2217 
2218 /* Opcode: IsTrue P1 P2 P3 P4 *
2219 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2220 **
2221 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2222 ** IS NOT FALSE operators.
2223 **
2224 ** Interpret the value in register P1 as a boolean value.  Store that
2225 ** boolean (a 0 or 1) in register P2.  Or if the value in register P1 is
2226 ** NULL, then the P3 is stored in register P2.  Invert the answer if P4
2227 ** is 1.
2228 **
2229 ** The logic is summarized like this:
2230 **
2231 ** <ul>
2232 ** <li> If P3==0 and P4==0  then  r[P2] := r[P1] IS TRUE
2233 ** <li> If P3==1 and P4==1  then  r[P2] := r[P1] IS FALSE
2234 ** <li> If P3==0 and P4==1  then  r[P2] := r[P1] IS NOT TRUE
2235 ** <li> If P3==1 and P4==0  then  r[P2] := r[P1] IS NOT FALSE
2236 ** </ul>
2237 */
2238 case OP_IsTrue: {               /* in1, out2 */
2239   assert( pOp->p4type==P4_INT32 );
2240   assert( pOp->p4.i==0 || pOp->p4.i==1 );
2241   assert( pOp->p3==0 || pOp->p3==1 );
2242   sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2243       sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2244   break;
2245 }
2246 
2247 /* Opcode: Not P1 P2 * * *
2248 ** Synopsis: r[P2]= !r[P1]
2249 **
2250 ** Interpret the value in register P1 as a boolean value.  Store the
2251 ** boolean complement in register P2.  If the value in register P1 is
2252 ** NULL, then a NULL is stored in P2.
2253 */
2254 case OP_Not: {                /* same as TK_NOT, in1, out2 */
2255   pIn1 = &aMem[pOp->p1];
2256   pOut = &aMem[pOp->p2];
2257   if( (pIn1->flags & MEM_Null)==0 ){
2258     sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2259   }else{
2260     sqlite3VdbeMemSetNull(pOut);
2261   }
2262   break;
2263 }
2264 
2265 /* Opcode: BitNot P1 P2 * * *
2266 ** Synopsis: r[P2]= ~r[P1]
2267 **
2268 ** Interpret the content of register P1 as an integer.  Store the
2269 ** ones-complement of the P1 value into register P2.  If P1 holds
2270 ** a NULL then store a NULL in P2.
2271 */
2272 case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
2273   pIn1 = &aMem[pOp->p1];
2274   pOut = &aMem[pOp->p2];
2275   sqlite3VdbeMemSetNull(pOut);
2276   if( (pIn1->flags & MEM_Null)==0 ){
2277     pOut->flags = MEM_Int;
2278     pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2279   }
2280   break;
2281 }
2282 
2283 /* Opcode: Once P1 P2 * * *
2284 **
2285 ** Fall through to the next instruction the first time this opcode is
2286 ** encountered on each invocation of the byte-code program.  Jump to P2
2287 ** on the second and all subsequent encounters during the same invocation.
2288 **
2289 ** Top-level programs determine first invocation by comparing the P1
2290 ** operand against the P1 operand on the OP_Init opcode at the beginning
2291 ** of the program.  If the P1 values differ, then fall through and make
2292 ** the P1 of this opcode equal to the P1 of OP_Init.  If P1 values are
2293 ** the same then take the jump.
2294 **
2295 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2296 ** whether or not the jump should be taken.  The bitmask is necessary
2297 ** because the self-altering code trick does not work for recursive
2298 ** triggers.
2299 */
2300 case OP_Once: {             /* jump */
2301   u32 iAddr;                /* Address of this instruction */
2302   assert( p->aOp[0].opcode==OP_Init );
2303   if( p->pFrame ){
2304     iAddr = (int)(pOp - p->aOp);
2305     if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2306       VdbeBranchTaken(1, 2);
2307       goto jump_to_p2;
2308     }
2309     p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2310   }else{
2311     if( p->aOp[0].p1==pOp->p1 ){
2312       VdbeBranchTaken(1, 2);
2313       goto jump_to_p2;
2314     }
2315   }
2316   VdbeBranchTaken(0, 2);
2317   pOp->p1 = p->aOp[0].p1;
2318   break;
2319 }
2320 
2321 /* Opcode: If P1 P2 P3 * *
2322 **
2323 ** Jump to P2 if the value in register P1 is true.  The value
2324 ** is considered true if it is numeric and non-zero.  If the value
2325 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2326 */
2327 case OP_If:  {               /* jump, in1 */
2328   int c;
2329   c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2330   VdbeBranchTaken(c!=0, 2);
2331   if( c ) goto jump_to_p2;
2332   break;
2333 }
2334 
2335 /* Opcode: IfNot P1 P2 P3 * *
2336 **
2337 ** Jump to P2 if the value in register P1 is False.  The value
2338 ** is considered false if it has a numeric value of zero.  If the value
2339 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2340 */
2341 case OP_IfNot: {            /* jump, in1 */
2342   int c;
2343   c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2344   VdbeBranchTaken(c!=0, 2);
2345   if( c ) goto jump_to_p2;
2346   break;
2347 }
2348 
2349 /* Opcode: IsNull P1 P2 * * *
2350 ** Synopsis: if r[P1]==NULL goto P2
2351 **
2352 ** Jump to P2 if the value in register P1 is NULL.
2353 */
2354 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
2355   pIn1 = &aMem[pOp->p1];
2356   VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2357   if( (pIn1->flags & MEM_Null)!=0 ){
2358     goto jump_to_p2;
2359   }
2360   break;
2361 }
2362 
2363 /* Opcode: NotNull P1 P2 * * *
2364 ** Synopsis: if r[P1]!=NULL goto P2
2365 **
2366 ** Jump to P2 if the value in register P1 is not NULL.
2367 */
2368 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
2369   pIn1 = &aMem[pOp->p1];
2370   VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2371   if( (pIn1->flags & MEM_Null)==0 ){
2372     goto jump_to_p2;
2373   }
2374   break;
2375 }
2376 
2377 /* Opcode: IfNullRow P1 P2 P3 * *
2378 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2379 **
2380 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2381 ** If it is, then set register P3 to NULL and jump immediately to P2.
2382 ** If P1 is not on a NULL row, then fall through without making any
2383 ** changes.
2384 */
2385 case OP_IfNullRow: {         /* jump */
2386   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2387   assert( p->apCsr[pOp->p1]!=0 );
2388   if( p->apCsr[pOp->p1]->nullRow ){
2389     sqlite3VdbeMemSetNull(aMem + pOp->p3);
2390     goto jump_to_p2;
2391   }
2392   break;
2393 }
2394 
2395 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2396 /* Opcode: Offset P1 P2 P3 * *
2397 ** Synopsis: r[P3] = sqlite_offset(P1)
2398 **
2399 ** Store in register r[P3] the byte offset into the database file that is the
2400 ** start of the payload for the record at which that cursor P1 is currently
2401 ** pointing.
2402 **
2403 ** P2 is the column number for the argument to the sqlite_offset() function.
2404 ** This opcode does not use P2 itself, but the P2 value is used by the
2405 ** code generator.  The P1, P2, and P3 operands to this opcode are the
2406 ** same as for OP_Column.
2407 **
2408 ** This opcode is only available if SQLite is compiled with the
2409 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2410 */
2411 case OP_Offset: {          /* out3 */
2412   VdbeCursor *pC;    /* The VDBE cursor */
2413   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2414   pC = p->apCsr[pOp->p1];
2415   pOut = &p->aMem[pOp->p3];
2416   if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
2417     sqlite3VdbeMemSetNull(pOut);
2418   }else{
2419     sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2420   }
2421   break;
2422 }
2423 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2424 
2425 /* Opcode: Column P1 P2 P3 P4 P5
2426 ** Synopsis: r[P3]=PX
2427 **
2428 ** Interpret the data that cursor P1 points to as a structure built using
2429 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
2430 ** information about the format of the data.)  Extract the P2-th column
2431 ** from this record.  If there are less that (P2+1)
2432 ** values in the record, extract a NULL.
2433 **
2434 ** The value extracted is stored in register P3.
2435 **
2436 ** If the record contains fewer than P2 fields, then extract a NULL.  Or,
2437 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2438 ** the result.
2439 **
2440 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2441 ** then the cache of the cursor is reset prior to extracting the column.
2442 ** The first OP_Column against a pseudo-table after the value of the content
2443 ** register has changed should have this bit set.
2444 **
2445 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2446 ** the result is guaranteed to only be used as the argument of a length()
2447 ** or typeof() function, respectively.  The loading of large blobs can be
2448 ** skipped for length() and all content loading can be skipped for typeof().
2449 */
2450 case OP_Column: {
2451   int p2;            /* column number to retrieve */
2452   VdbeCursor *pC;    /* The VDBE cursor */
2453   BtCursor *pCrsr;   /* The BTree cursor */
2454   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2455   int len;           /* The length of the serialized data for the column */
2456   int i;             /* Loop counter */
2457   Mem *pDest;        /* Where to write the extracted value */
2458   Mem sMem;          /* For storing the record being decoded */
2459   const u8 *zData;   /* Part of the record being decoded */
2460   const u8 *zHdr;    /* Next unparsed byte of the header */
2461   const u8 *zEndHdr; /* Pointer to first byte after the header */
2462   u64 offset64;      /* 64-bit offset */
2463   u32 t;             /* A type code from the record header */
2464   Mem *pReg;         /* PseudoTable input register */
2465 
2466   pC = p->apCsr[pOp->p1];
2467   p2 = pOp->p2;
2468 
2469   /* If the cursor cache is stale (meaning it is not currently point at
2470   ** the correct row) then bring it up-to-date by doing the necessary
2471   ** B-Tree seek. */
2472   rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2473   if( rc ) goto abort_due_to_error;
2474 
2475   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2476   pDest = &aMem[pOp->p3];
2477   memAboutToChange(p, pDest);
2478   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2479   assert( pC!=0 );
2480   assert( p2<pC->nField );
2481   aOffset = pC->aOffset;
2482   assert( pC->eCurType!=CURTYPE_VTAB );
2483   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2484   assert( pC->eCurType!=CURTYPE_SORTER );
2485 
2486   if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
2487     if( pC->nullRow ){
2488       if( pC->eCurType==CURTYPE_PSEUDO ){
2489         /* For the special case of as pseudo-cursor, the seekResult field
2490         ** identifies the register that holds the record */
2491         assert( pC->seekResult>0 );
2492         pReg = &aMem[pC->seekResult];
2493         assert( pReg->flags & MEM_Blob );
2494         assert( memIsValid(pReg) );
2495         pC->payloadSize = pC->szRow = pReg->n;
2496         pC->aRow = (u8*)pReg->z;
2497       }else{
2498         sqlite3VdbeMemSetNull(pDest);
2499         goto op_column_out;
2500       }
2501     }else{
2502       pCrsr = pC->uc.pCursor;
2503       assert( pC->eCurType==CURTYPE_BTREE );
2504       assert( pCrsr );
2505       assert( sqlite3BtreeCursorIsValid(pCrsr) );
2506       pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2507       pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2508       assert( pC->szRow<=pC->payloadSize );
2509       assert( pC->szRow<=65536 );  /* Maximum page size is 64KiB */
2510       if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2511         goto too_big;
2512       }
2513     }
2514     pC->cacheStatus = p->cacheCtr;
2515     pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
2516     pC->nHdrParsed = 0;
2517 
2518 
2519     if( pC->szRow<aOffset[0] ){      /*OPTIMIZATION-IF-FALSE*/
2520       /* pC->aRow does not have to hold the entire row, but it does at least
2521       ** need to cover the header of the record.  If pC->aRow does not contain
2522       ** the complete header, then set it to zero, forcing the header to be
2523       ** dynamically allocated. */
2524       pC->aRow = 0;
2525       pC->szRow = 0;
2526 
2527       /* Make sure a corrupt database has not given us an oversize header.
2528       ** Do this now to avoid an oversize memory allocation.
2529       **
2530       ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
2531       ** types use so much data space that there can only be 4096 and 32 of
2532       ** them, respectively.  So the maximum header length results from a
2533       ** 3-byte type for each of the maximum of 32768 columns plus three
2534       ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
2535       */
2536       if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2537         goto op_column_corrupt;
2538       }
2539     }else{
2540       /* This is an optimization.  By skipping over the first few tests
2541       ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2542       ** measurable performance gain.
2543       **
2544       ** This branch is taken even if aOffset[0]==0.  Such a record is never
2545       ** generated by SQLite, and could be considered corruption, but we
2546       ** accept it for historical reasons.  When aOffset[0]==0, the code this
2547       ** branch jumps to reads past the end of the record, but never more
2548       ** than a few bytes.  Even if the record occurs at the end of the page
2549       ** content area, the "page header" comes after the page content and so
2550       ** this overread is harmless.  Similar overreads can occur for a corrupt
2551       ** database file.
2552       */
2553       zData = pC->aRow;
2554       assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
2555       testcase( aOffset[0]==0 );
2556       goto op_column_read_header;
2557     }
2558   }
2559 
2560   /* Make sure at least the first p2+1 entries of the header have been
2561   ** parsed and valid information is in aOffset[] and pC->aType[].
2562   */
2563   if( pC->nHdrParsed<=p2 ){
2564     /* If there is more header available for parsing in the record, try
2565     ** to extract additional fields up through the p2+1-th field
2566     */
2567     if( pC->iHdrOffset<aOffset[0] ){
2568       /* Make sure zData points to enough of the record to cover the header. */
2569       if( pC->aRow==0 ){
2570         memset(&sMem, 0, sizeof(sMem));
2571         rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2572         if( rc!=SQLITE_OK ) goto abort_due_to_error;
2573         zData = (u8*)sMem.z;
2574       }else{
2575         zData = pC->aRow;
2576       }
2577 
2578       /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2579     op_column_read_header:
2580       i = pC->nHdrParsed;
2581       offset64 = aOffset[i];
2582       zHdr = zData + pC->iHdrOffset;
2583       zEndHdr = zData + aOffset[0];
2584       testcase( zHdr>=zEndHdr );
2585       do{
2586         if( (t = zHdr[0])<0x80 ){
2587           zHdr++;
2588           offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2589         }else{
2590           zHdr += sqlite3GetVarint32(zHdr, &t);
2591           offset64 += sqlite3VdbeSerialTypeLen(t);
2592         }
2593         pC->aType[i++] = t;
2594         aOffset[i] = (u32)(offset64 & 0xffffffff);
2595       }while( i<=p2 && zHdr<zEndHdr );
2596 
2597       /* The record is corrupt if any of the following are true:
2598       ** (1) the bytes of the header extend past the declared header size
2599       ** (2) the entire header was used but not all data was used
2600       ** (3) the end of the data extends beyond the end of the record.
2601       */
2602       if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2603        || (offset64 > pC->payloadSize)
2604       ){
2605         if( aOffset[0]==0 ){
2606           i = 0;
2607           zHdr = zEndHdr;
2608         }else{
2609           if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2610           goto op_column_corrupt;
2611         }
2612       }
2613 
2614       pC->nHdrParsed = i;
2615       pC->iHdrOffset = (u32)(zHdr - zData);
2616       if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2617     }else{
2618       t = 0;
2619     }
2620 
2621     /* If after trying to extract new entries from the header, nHdrParsed is
2622     ** still not up to p2, that means that the record has fewer than p2
2623     ** columns.  So the result will be either the default value or a NULL.
2624     */
2625     if( pC->nHdrParsed<=p2 ){
2626       if( pOp->p4type==P4_MEM ){
2627         sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2628       }else{
2629         sqlite3VdbeMemSetNull(pDest);
2630       }
2631       goto op_column_out;
2632     }
2633   }else{
2634     t = pC->aType[p2];
2635   }
2636 
2637   /* Extract the content for the p2+1-th column.  Control can only
2638   ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2639   ** all valid.
2640   */
2641   assert( p2<pC->nHdrParsed );
2642   assert( rc==SQLITE_OK );
2643   assert( sqlite3VdbeCheckMemInvariants(pDest) );
2644   if( VdbeMemDynamic(pDest) ){
2645     sqlite3VdbeMemSetNull(pDest);
2646   }
2647   assert( t==pC->aType[p2] );
2648   if( pC->szRow>=aOffset[p2+1] ){
2649     /* This is the common case where the desired content fits on the original
2650     ** page - where the content is not on an overflow page */
2651     zData = pC->aRow + aOffset[p2];
2652     if( t<12 ){
2653       sqlite3VdbeSerialGet(zData, t, pDest);
2654     }else{
2655       /* If the column value is a string, we need a persistent value, not
2656       ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
2657       ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2658       */
2659       static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2660       pDest->n = len = (t-12)/2;
2661       pDest->enc = encoding;
2662       if( pDest->szMalloc < len+2 ){
2663         pDest->flags = MEM_Null;
2664         if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2665       }else{
2666         pDest->z = pDest->zMalloc;
2667       }
2668       memcpy(pDest->z, zData, len);
2669       pDest->z[len] = 0;
2670       pDest->z[len+1] = 0;
2671       pDest->flags = aFlag[t&1];
2672     }
2673   }else{
2674     pDest->enc = encoding;
2675     /* This branch happens only when content is on overflow pages */
2676     if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2677           && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2678      || (len = sqlite3VdbeSerialTypeLen(t))==0
2679     ){
2680       /* Content is irrelevant for
2681       **    1. the typeof() function,
2682       **    2. the length(X) function if X is a blob, and
2683       **    3. if the content length is zero.
2684       ** So we might as well use bogus content rather than reading
2685       ** content from disk.
2686       **
2687       ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2688       ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2689       ** read up to 16. So 16 bytes of bogus content is supplied.
2690       */
2691       static u8 aZero[16];  /* This is the bogus content */
2692       sqlite3VdbeSerialGet(aZero, t, pDest);
2693     }else{
2694       rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2695       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2696       sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2697       pDest->flags &= ~MEM_Ephem;
2698     }
2699   }
2700 
2701 op_column_out:
2702   UPDATE_MAX_BLOBSIZE(pDest);
2703   REGISTER_TRACE(pOp->p3, pDest);
2704   break;
2705 
2706 op_column_corrupt:
2707   if( aOp[0].p3>0 ){
2708     pOp = &aOp[aOp[0].p3-1];
2709     break;
2710   }else{
2711     rc = SQLITE_CORRUPT_BKPT;
2712     goto abort_due_to_error;
2713   }
2714 }
2715 
2716 /* Opcode: Affinity P1 P2 * P4 *
2717 ** Synopsis: affinity(r[P1@P2])
2718 **
2719 ** Apply affinities to a range of P2 registers starting with P1.
2720 **
2721 ** P4 is a string that is P2 characters long. The N-th character of the
2722 ** string indicates the column affinity that should be used for the N-th
2723 ** memory cell in the range.
2724 */
2725 case OP_Affinity: {
2726   const char *zAffinity;   /* The affinity to be applied */
2727 
2728   zAffinity = pOp->p4.z;
2729   assert( zAffinity!=0 );
2730   assert( pOp->p2>0 );
2731   assert( zAffinity[pOp->p2]==0 );
2732   pIn1 = &aMem[pOp->p1];
2733   do{
2734     assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2735     assert( memIsValid(pIn1) );
2736     applyAffinity(pIn1, *(zAffinity++), encoding);
2737     pIn1++;
2738   }while( zAffinity[0] );
2739   break;
2740 }
2741 
2742 /* Opcode: MakeRecord P1 P2 P3 P4 *
2743 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2744 **
2745 ** Convert P2 registers beginning with P1 into the [record format]
2746 ** use as a data record in a database table or as a key
2747 ** in an index.  The OP_Column opcode can decode the record later.
2748 **
2749 ** P4 may be a string that is P2 characters long.  The N-th character of the
2750 ** string indicates the column affinity that should be used for the N-th
2751 ** field of the index key.
2752 **
2753 ** The mapping from character to affinity is given by the SQLITE_AFF_
2754 ** macros defined in sqliteInt.h.
2755 **
2756 ** If P4 is NULL then all index fields have the affinity BLOB.
2757 */
2758 case OP_MakeRecord: {
2759   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2760   Mem *pRec;             /* The new record */
2761   u64 nData;             /* Number of bytes of data space */
2762   int nHdr;              /* Number of bytes of header space */
2763   i64 nByte;             /* Data space required for this record */
2764   i64 nZero;             /* Number of zero bytes at the end of the record */
2765   int nVarint;           /* Number of bytes in a varint */
2766   u32 serial_type;       /* Type field */
2767   Mem *pData0;           /* First field to be combined into the record */
2768   Mem *pLast;            /* Last field of the record */
2769   int nField;            /* Number of fields in the record */
2770   char *zAffinity;       /* The affinity string for the record */
2771   int file_format;       /* File format to use for encoding */
2772   int i;                 /* Space used in zNewRecord[] header */
2773   int j;                 /* Space used in zNewRecord[] content */
2774   u32 len;               /* Length of a field */
2775 
2776   /* Assuming the record contains N fields, the record format looks
2777   ** like this:
2778   **
2779   ** ------------------------------------------------------------------------
2780   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2781   ** ------------------------------------------------------------------------
2782   **
2783   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
2784   ** and so forth.
2785   **
2786   ** Each type field is a varint representing the serial type of the
2787   ** corresponding data element (see sqlite3VdbeSerialType()). The
2788   ** hdr-size field is also a varint which is the offset from the beginning
2789   ** of the record to data0.
2790   */
2791   nData = 0;         /* Number of bytes of data space */
2792   nHdr = 0;          /* Number of bytes of header space */
2793   nZero = 0;         /* Number of zero bytes at the end of the record */
2794   nField = pOp->p1;
2795   zAffinity = pOp->p4.z;
2796   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2797   pData0 = &aMem[nField];
2798   nField = pOp->p2;
2799   pLast = &pData0[nField-1];
2800   file_format = p->minWriteFileFormat;
2801 
2802   /* Identify the output register */
2803   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2804   pOut = &aMem[pOp->p3];
2805   memAboutToChange(p, pOut);
2806 
2807   /* Apply the requested affinity to all inputs
2808   */
2809   assert( pData0<=pLast );
2810   if( zAffinity ){
2811     pRec = pData0;
2812     do{
2813       applyAffinity(pRec++, *(zAffinity++), encoding);
2814       assert( zAffinity[0]==0 || pRec<=pLast );
2815     }while( zAffinity[0] );
2816   }
2817 
2818 #ifdef SQLITE_ENABLE_NULL_TRIM
2819   /* NULLs can be safely trimmed from the end of the record, as long as
2820   ** as the schema format is 2 or more and none of the omitted columns
2821   ** have a non-NULL default value.  Also, the record must be left with
2822   ** at least one field.  If P5>0 then it will be one more than the
2823   ** index of the right-most column with a non-NULL default value */
2824   if( pOp->p5 ){
2825     while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2826       pLast--;
2827       nField--;
2828     }
2829   }
2830 #endif
2831 
2832   /* Loop through the elements that will make up the record to figure
2833   ** out how much space is required for the new record.
2834   */
2835   pRec = pLast;
2836   do{
2837     assert( memIsValid(pRec) );
2838     serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2839     if( pRec->flags & MEM_Zero ){
2840       if( serial_type==0 ){
2841         /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2842         ** table methods that never invoke sqlite3_result_xxxxx() while
2843         ** computing an unchanging column value in an UPDATE statement.
2844         ** Give such values a special internal-use-only serial-type of 10
2845         ** so that they can be passed through to xUpdate and have
2846         ** a true sqlite3_value_nochange(). */
2847         assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
2848         serial_type = 10;
2849       }else if( nData ){
2850         if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2851       }else{
2852         nZero += pRec->u.nZero;
2853         len -= pRec->u.nZero;
2854       }
2855     }
2856     nData += len;
2857     testcase( serial_type==127 );
2858     testcase( serial_type==128 );
2859     nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2860     pRec->uTemp = serial_type;
2861     if( pRec==pData0 ) break;
2862     pRec--;
2863   }while(1);
2864 
2865   /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2866   ** which determines the total number of bytes in the header. The varint
2867   ** value is the size of the header in bytes including the size varint
2868   ** itself. */
2869   testcase( nHdr==126 );
2870   testcase( nHdr==127 );
2871   if( nHdr<=126 ){
2872     /* The common case */
2873     nHdr += 1;
2874   }else{
2875     /* Rare case of a really large header */
2876     nVarint = sqlite3VarintLen(nHdr);
2877     nHdr += nVarint;
2878     if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2879   }
2880   nByte = nHdr+nData;
2881   if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2882     goto too_big;
2883   }
2884 
2885   /* Make sure the output register has a buffer large enough to store
2886   ** the new record. The output register (pOp->p3) is not allowed to
2887   ** be one of the input registers (because the following call to
2888   ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2889   */
2890   if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2891     goto no_mem;
2892   }
2893   zNewRecord = (u8 *)pOut->z;
2894 
2895   /* Write the record */
2896   i = putVarint32(zNewRecord, nHdr);
2897   j = nHdr;
2898   assert( pData0<=pLast );
2899   pRec = pData0;
2900   do{
2901     serial_type = pRec->uTemp;
2902     /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2903     ** additional varints, one per column. */
2904     i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
2905     /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2906     ** immediately follow the header. */
2907     j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2908   }while( (++pRec)<=pLast );
2909   assert( i==nHdr );
2910   assert( j==nByte );
2911 
2912   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2913   pOut->n = (int)nByte;
2914   pOut->flags = MEM_Blob;
2915   if( nZero ){
2916     pOut->u.nZero = nZero;
2917     pOut->flags |= MEM_Zero;
2918   }
2919   REGISTER_TRACE(pOp->p3, pOut);
2920   UPDATE_MAX_BLOBSIZE(pOut);
2921   break;
2922 }
2923 
2924 /* Opcode: Count P1 P2 * * *
2925 ** Synopsis: r[P2]=count()
2926 **
2927 ** Store the number of entries (an integer value) in the table or index
2928 ** opened by cursor P1 in register P2
2929 */
2930 #ifndef SQLITE_OMIT_BTREECOUNT
2931 case OP_Count: {         /* out2 */
2932   i64 nEntry;
2933   BtCursor *pCrsr;
2934 
2935   assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2936   pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2937   assert( pCrsr );
2938   nEntry = 0;  /* Not needed.  Only used to silence a warning. */
2939   rc = sqlite3BtreeCount(pCrsr, &nEntry);
2940   if( rc ) goto abort_due_to_error;
2941   pOut = out2Prerelease(p, pOp);
2942   pOut->u.i = nEntry;
2943   break;
2944 }
2945 #endif
2946 
2947 /* Opcode: Savepoint P1 * * P4 *
2948 **
2949 ** Open, release or rollback the savepoint named by parameter P4, depending
2950 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2951 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2952 */
2953 case OP_Savepoint: {
2954   int p1;                         /* Value of P1 operand */
2955   char *zName;                    /* Name of savepoint */
2956   int nName;
2957   Savepoint *pNew;
2958   Savepoint *pSavepoint;
2959   Savepoint *pTmp;
2960   int iSavepoint;
2961   int ii;
2962 
2963   p1 = pOp->p1;
2964   zName = pOp->p4.z;
2965 
2966   /* Assert that the p1 parameter is valid. Also that if there is no open
2967   ** transaction, then there cannot be any savepoints.
2968   */
2969   assert( db->pSavepoint==0 || db->autoCommit==0 );
2970   assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2971   assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2972   assert( checkSavepointCount(db) );
2973   assert( p->bIsReader );
2974 
2975   if( p1==SAVEPOINT_BEGIN ){
2976     if( db->nVdbeWrite>0 ){
2977       /* A new savepoint cannot be created if there are active write
2978       ** statements (i.e. open read/write incremental blob handles).
2979       */
2980       sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2981       rc = SQLITE_BUSY;
2982     }else{
2983       nName = sqlite3Strlen30(zName);
2984 
2985 #ifndef SQLITE_OMIT_VIRTUALTABLE
2986       /* This call is Ok even if this savepoint is actually a transaction
2987       ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2988       ** If this is a transaction savepoint being opened, it is guaranteed
2989       ** that the db->aVTrans[] array is empty.  */
2990       assert( db->autoCommit==0 || db->nVTrans==0 );
2991       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2992                                 db->nStatement+db->nSavepoint);
2993       if( rc!=SQLITE_OK ) goto abort_due_to_error;
2994 #endif
2995 
2996       /* Create a new savepoint structure. */
2997       pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2998       if( pNew ){
2999         pNew->zName = (char *)&pNew[1];
3000         memcpy(pNew->zName, zName, nName+1);
3001 
3002         /* If there is no open transaction, then mark this as a special
3003         ** "transaction savepoint". */
3004         if( db->autoCommit ){
3005           db->autoCommit = 0;
3006           db->isTransactionSavepoint = 1;
3007         }else{
3008           db->nSavepoint++;
3009         }
3010 
3011         /* Link the new savepoint into the database handle's list. */
3012         pNew->pNext = db->pSavepoint;
3013         db->pSavepoint = pNew;
3014         pNew->nDeferredCons = db->nDeferredCons;
3015         pNew->nDeferredImmCons = db->nDeferredImmCons;
3016       }
3017     }
3018   }else{
3019     iSavepoint = 0;
3020 
3021     /* Find the named savepoint. If there is no such savepoint, then an
3022     ** an error is returned to the user.  */
3023     for(
3024       pSavepoint = db->pSavepoint;
3025       pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3026       pSavepoint = pSavepoint->pNext
3027     ){
3028       iSavepoint++;
3029     }
3030     if( !pSavepoint ){
3031       sqlite3VdbeError(p, "no such savepoint: %s", zName);
3032       rc = SQLITE_ERROR;
3033     }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3034       /* It is not possible to release (commit) a savepoint if there are
3035       ** active write statements.
3036       */
3037       sqlite3VdbeError(p, "cannot release savepoint - "
3038                           "SQL statements in progress");
3039       rc = SQLITE_BUSY;
3040     }else{
3041 
3042       /* Determine whether or not this is a transaction savepoint. If so,
3043       ** and this is a RELEASE command, then the current transaction
3044       ** is committed.
3045       */
3046       int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3047       if( isTransaction && p1==SAVEPOINT_RELEASE ){
3048         if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3049           goto vdbe_return;
3050         }
3051         db->autoCommit = 1;
3052         if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3053           p->pc = (int)(pOp - aOp);
3054           db->autoCommit = 0;
3055           p->rc = rc = SQLITE_BUSY;
3056           goto vdbe_return;
3057         }
3058         db->isTransactionSavepoint = 0;
3059         rc = p->rc;
3060       }else{
3061         int isSchemaChange;
3062         iSavepoint = db->nSavepoint - iSavepoint - 1;
3063         if( p1==SAVEPOINT_ROLLBACK ){
3064           isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3065           for(ii=0; ii<db->nDb; ii++){
3066             rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3067                                        SQLITE_ABORT_ROLLBACK,
3068                                        isSchemaChange==0);
3069             if( rc!=SQLITE_OK ) goto abort_due_to_error;
3070           }
3071         }else{
3072           isSchemaChange = 0;
3073         }
3074         for(ii=0; ii<db->nDb; ii++){
3075           rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3076           if( rc!=SQLITE_OK ){
3077             goto abort_due_to_error;
3078           }
3079         }
3080         if( isSchemaChange ){
3081           sqlite3ExpirePreparedStatements(db);
3082           sqlite3ResetAllSchemasOfConnection(db);
3083           db->mDbFlags |= DBFLAG_SchemaChange;
3084         }
3085       }
3086 
3087       /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3088       ** savepoints nested inside of the savepoint being operated on. */
3089       while( db->pSavepoint!=pSavepoint ){
3090         pTmp = db->pSavepoint;
3091         db->pSavepoint = pTmp->pNext;
3092         sqlite3DbFree(db, pTmp);
3093         db->nSavepoint--;
3094       }
3095 
3096       /* If it is a RELEASE, then destroy the savepoint being operated on
3097       ** too. If it is a ROLLBACK TO, then set the number of deferred
3098       ** constraint violations present in the database to the value stored
3099       ** when the savepoint was created.  */
3100       if( p1==SAVEPOINT_RELEASE ){
3101         assert( pSavepoint==db->pSavepoint );
3102         db->pSavepoint = pSavepoint->pNext;
3103         sqlite3DbFree(db, pSavepoint);
3104         if( !isTransaction ){
3105           db->nSavepoint--;
3106         }
3107       }else{
3108         db->nDeferredCons = pSavepoint->nDeferredCons;
3109         db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3110       }
3111 
3112       if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3113         rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3114         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3115       }
3116     }
3117   }
3118   if( rc ) goto abort_due_to_error;
3119 
3120   break;
3121 }
3122 
3123 /* Opcode: AutoCommit P1 P2 * * *
3124 **
3125 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3126 ** back any currently active btree transactions. If there are any active
3127 ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
3128 ** there are active writing VMs or active VMs that use shared cache.
3129 **
3130 ** This instruction causes the VM to halt.
3131 */
3132 case OP_AutoCommit: {
3133   int desiredAutoCommit;
3134   int iRollback;
3135 
3136   desiredAutoCommit = pOp->p1;
3137   iRollback = pOp->p2;
3138   assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3139   assert( desiredAutoCommit==1 || iRollback==0 );
3140   assert( db->nVdbeActive>0 );  /* At least this one VM is active */
3141   assert( p->bIsReader );
3142 
3143   if( desiredAutoCommit!=db->autoCommit ){
3144     if( iRollback ){
3145       assert( desiredAutoCommit==1 );
3146       sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3147       db->autoCommit = 1;
3148     }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3149       /* If this instruction implements a COMMIT and other VMs are writing
3150       ** return an error indicating that the other VMs must complete first.
3151       */
3152       sqlite3VdbeError(p, "cannot commit transaction - "
3153                           "SQL statements in progress");
3154       rc = SQLITE_BUSY;
3155       goto abort_due_to_error;
3156     }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3157       goto vdbe_return;
3158     }else{
3159       db->autoCommit = (u8)desiredAutoCommit;
3160     }
3161     if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3162       p->pc = (int)(pOp - aOp);
3163       db->autoCommit = (u8)(1-desiredAutoCommit);
3164       p->rc = rc = SQLITE_BUSY;
3165       goto vdbe_return;
3166     }
3167     assert( db->nStatement==0 );
3168     sqlite3CloseSavepoints(db);
3169     if( p->rc==SQLITE_OK ){
3170       rc = SQLITE_DONE;
3171     }else{
3172       rc = SQLITE_ERROR;
3173     }
3174     goto vdbe_return;
3175   }else{
3176     sqlite3VdbeError(p,
3177         (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3178         (iRollback)?"cannot rollback - no transaction is active":
3179                    "cannot commit - no transaction is active"));
3180 
3181     rc = SQLITE_ERROR;
3182     goto abort_due_to_error;
3183   }
3184   break;
3185 }
3186 
3187 /* Opcode: Transaction P1 P2 P3 P4 P5
3188 **
3189 ** Begin a transaction on database P1 if a transaction is not already
3190 ** active.
3191 ** If P2 is non-zero, then a write-transaction is started, or if a
3192 ** read-transaction is already active, it is upgraded to a write-transaction.
3193 ** If P2 is zero, then a read-transaction is started.
3194 **
3195 ** P1 is the index of the database file on which the transaction is
3196 ** started.  Index 0 is the main database file and index 1 is the
3197 ** file used for temporary tables.  Indices of 2 or more are used for
3198 ** attached databases.
3199 **
3200 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3201 ** true (this flag is set if the Vdbe may modify more than one row and may
3202 ** throw an ABORT exception), a statement transaction may also be opened.
3203 ** More specifically, a statement transaction is opened iff the database
3204 ** connection is currently not in autocommit mode, or if there are other
3205 ** active statements. A statement transaction allows the changes made by this
3206 ** VDBE to be rolled back after an error without having to roll back the
3207 ** entire transaction. If no error is encountered, the statement transaction
3208 ** will automatically commit when the VDBE halts.
3209 **
3210 ** If P5!=0 then this opcode also checks the schema cookie against P3
3211 ** and the schema generation counter against P4.
3212 ** The cookie changes its value whenever the database schema changes.
3213 ** This operation is used to detect when that the cookie has changed
3214 ** and that the current process needs to reread the schema.  If the schema
3215 ** cookie in P3 differs from the schema cookie in the database header or
3216 ** if the schema generation counter in P4 differs from the current
3217 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3218 ** halts.  The sqlite3_step() wrapper function might then reprepare the
3219 ** statement and rerun it from the beginning.
3220 */
3221 case OP_Transaction: {
3222   Btree *pBt;
3223   int iMeta = 0;
3224 
3225   assert( p->bIsReader );
3226   assert( p->readOnly==0 || pOp->p2==0 );
3227   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3228   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3229   if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3230     rc = SQLITE_READONLY;
3231     goto abort_due_to_error;
3232   }
3233   pBt = db->aDb[pOp->p1].pBt;
3234 
3235   if( pBt ){
3236     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3237     testcase( rc==SQLITE_BUSY_SNAPSHOT );
3238     testcase( rc==SQLITE_BUSY_RECOVERY );
3239     if( rc!=SQLITE_OK ){
3240       if( (rc&0xff)==SQLITE_BUSY ){
3241         p->pc = (int)(pOp - aOp);
3242         p->rc = rc;
3243         goto vdbe_return;
3244       }
3245       goto abort_due_to_error;
3246     }
3247 
3248     if( pOp->p2 && p->usesStmtJournal
3249      && (db->autoCommit==0 || db->nVdbeRead>1)
3250     ){
3251       assert( sqlite3BtreeIsInTrans(pBt) );
3252       if( p->iStatement==0 ){
3253         assert( db->nStatement>=0 && db->nSavepoint>=0 );
3254         db->nStatement++;
3255         p->iStatement = db->nSavepoint + db->nStatement;
3256       }
3257 
3258       rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3259       if( rc==SQLITE_OK ){
3260         rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3261       }
3262 
3263       /* Store the current value of the database handles deferred constraint
3264       ** counter. If the statement transaction needs to be rolled back,
3265       ** the value of this counter needs to be restored too.  */
3266       p->nStmtDefCons = db->nDeferredCons;
3267       p->nStmtDefImmCons = db->nDeferredImmCons;
3268     }
3269   }
3270   assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3271   if( pOp->p5
3272    && (iMeta!=pOp->p3
3273       || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i)
3274   ){
3275     /*
3276     ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3277     ** version is checked to ensure that the schema has not changed since the
3278     ** SQL statement was prepared.
3279     */
3280     sqlite3DbFree(db, p->zErrMsg);
3281     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3282     /* If the schema-cookie from the database file matches the cookie
3283     ** stored with the in-memory representation of the schema, do
3284     ** not reload the schema from the database file.
3285     **
3286     ** If virtual-tables are in use, this is not just an optimization.
3287     ** Often, v-tables store their data in other SQLite tables, which
3288     ** are queried from within xNext() and other v-table methods using
3289     ** prepared queries. If such a query is out-of-date, we do not want to
3290     ** discard the database schema, as the user code implementing the
3291     ** v-table would have to be ready for the sqlite3_vtab structure itself
3292     ** to be invalidated whenever sqlite3_step() is called from within
3293     ** a v-table method.
3294     */
3295     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3296       sqlite3ResetOneSchema(db, pOp->p1);
3297     }
3298     p->expired = 1;
3299     rc = SQLITE_SCHEMA;
3300   }
3301   if( rc ) goto abort_due_to_error;
3302   break;
3303 }
3304 
3305 /* Opcode: ReadCookie P1 P2 P3 * *
3306 **
3307 ** Read cookie number P3 from database P1 and write it into register P2.
3308 ** P3==1 is the schema version.  P3==2 is the database format.
3309 ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
3310 ** the main database file and P1==1 is the database file used to store
3311 ** temporary tables.
3312 **
3313 ** There must be a read-lock on the database (either a transaction
3314 ** must be started or there must be an open cursor) before
3315 ** executing this instruction.
3316 */
3317 case OP_ReadCookie: {               /* out2 */
3318   int iMeta;
3319   int iDb;
3320   int iCookie;
3321 
3322   assert( p->bIsReader );
3323   iDb = pOp->p1;
3324   iCookie = pOp->p3;
3325   assert( pOp->p3<SQLITE_N_BTREE_META );
3326   assert( iDb>=0 && iDb<db->nDb );
3327   assert( db->aDb[iDb].pBt!=0 );
3328   assert( DbMaskTest(p->btreeMask, iDb) );
3329 
3330   sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3331   pOut = out2Prerelease(p, pOp);
3332   pOut->u.i = iMeta;
3333   break;
3334 }
3335 
3336 /* Opcode: SetCookie P1 P2 P3 * *
3337 **
3338 ** Write the integer value P3 into cookie number P2 of database P1.
3339 ** P2==1 is the schema version.  P2==2 is the database format.
3340 ** P2==3 is the recommended pager cache
3341 ** size, and so forth.  P1==0 is the main database file and P1==1 is the
3342 ** database file used to store temporary tables.
3343 **
3344 ** A transaction must be started before executing this opcode.
3345 */
3346 case OP_SetCookie: {
3347   Db *pDb;
3348 
3349   sqlite3VdbeIncrWriteCounter(p, 0);
3350   assert( pOp->p2<SQLITE_N_BTREE_META );
3351   assert( pOp->p1>=0 && pOp->p1<db->nDb );
3352   assert( DbMaskTest(p->btreeMask, pOp->p1) );
3353   assert( p->readOnly==0 );
3354   pDb = &db->aDb[pOp->p1];
3355   assert( pDb->pBt!=0 );
3356   assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3357   /* See note about index shifting on OP_ReadCookie */
3358   rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3359   if( pOp->p2==BTREE_SCHEMA_VERSION ){
3360     /* When the schema cookie changes, record the new cookie internally */
3361     pDb->pSchema->schema_cookie = pOp->p3;
3362     db->mDbFlags |= DBFLAG_SchemaChange;
3363   }else if( pOp->p2==BTREE_FILE_FORMAT ){
3364     /* Record changes in the file format */
3365     pDb->pSchema->file_format = pOp->p3;
3366   }
3367   if( pOp->p1==1 ){
3368     /* Invalidate all prepared statements whenever the TEMP database
3369     ** schema is changed.  Ticket #1644 */
3370     sqlite3ExpirePreparedStatements(db);
3371     p->expired = 0;
3372   }
3373   if( rc ) goto abort_due_to_error;
3374   break;
3375 }
3376 
3377 /* Opcode: OpenRead P1 P2 P3 P4 P5
3378 ** Synopsis: root=P2 iDb=P3
3379 **
3380 ** Open a read-only cursor for the database table whose root page is
3381 ** P2 in a database file.  The database file is determined by P3.
3382 ** P3==0 means the main database, P3==1 means the database used for
3383 ** temporary tables, and P3>1 means used the corresponding attached
3384 ** database.  Give the new cursor an identifier of P1.  The P1
3385 ** values need not be contiguous but all P1 values should be small integers.
3386 ** It is an error for P1 to be negative.
3387 **
3388 ** Allowed P5 bits:
3389 ** <ul>
3390 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3391 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3392 **       of OP_SeekLE/OP_IdxGT)
3393 ** </ul>
3394 **
3395 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3396 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3397 ** object, then table being opened must be an [index b-tree] where the
3398 ** KeyInfo object defines the content and collating
3399 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3400 ** value, then the table being opened must be a [table b-tree] with a
3401 ** number of columns no less than the value of P4.
3402 **
3403 ** See also: OpenWrite, ReopenIdx
3404 */
3405 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3406 ** Synopsis: root=P2 iDb=P3
3407 **
3408 ** The ReopenIdx opcode works like OP_OpenRead except that it first
3409 ** checks to see if the cursor on P1 is already open on the same
3410 ** b-tree and if it is this opcode becomes a no-op.  In other words,
3411 ** if the cursor is already open, do not reopen it.
3412 **
3413 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3414 ** and with P4 being a P4_KEYINFO object.  Furthermore, the P3 value must
3415 ** be the same as every other ReopenIdx or OpenRead for the same cursor
3416 ** number.
3417 **
3418 ** Allowed P5 bits:
3419 ** <ul>
3420 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3421 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3422 **       of OP_SeekLE/OP_IdxGT)
3423 ** </ul>
3424 **
3425 ** See also: OP_OpenRead, OP_OpenWrite
3426 */
3427 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3428 ** Synopsis: root=P2 iDb=P3
3429 **
3430 ** Open a read/write cursor named P1 on the table or index whose root
3431 ** page is P2 (or whose root page is held in register P2 if the
3432 ** OPFLAG_P2ISREG bit is set in P5 - see below).
3433 **
3434 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3435 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3436 ** object, then table being opened must be an [index b-tree] where the
3437 ** KeyInfo object defines the content and collating
3438 ** sequence of that index b-tree. Otherwise, if P4 is an integer
3439 ** value, then the table being opened must be a [table b-tree] with a
3440 ** number of columns no less than the value of P4.
3441 **
3442 ** Allowed P5 bits:
3443 ** <ul>
3444 ** <li>  <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3445 **       equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3446 **       of OP_SeekLE/OP_IdxGT)
3447 ** <li>  <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3448 **       and subsequently delete entries in an index btree.  This is a
3449 **       hint to the storage engine that the storage engine is allowed to
3450 **       ignore.  The hint is not used by the official SQLite b*tree storage
3451 **       engine, but is used by COMDB2.
3452 ** <li>  <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3453 **       as the root page, not the value of P2 itself.
3454 ** </ul>
3455 **
3456 ** This instruction works like OpenRead except that it opens the cursor
3457 ** in read/write mode.
3458 **
3459 ** See also: OP_OpenRead, OP_ReopenIdx
3460 */
3461 case OP_ReopenIdx: {
3462   int nField;
3463   KeyInfo *pKeyInfo;
3464   int p2;
3465   int iDb;
3466   int wrFlag;
3467   Btree *pX;
3468   VdbeCursor *pCur;
3469   Db *pDb;
3470 
3471   assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3472   assert( pOp->p4type==P4_KEYINFO );
3473   pCur = p->apCsr[pOp->p1];
3474   if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3475     assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
3476     goto open_cursor_set_hints;
3477   }
3478   /* If the cursor is not currently open or is open on a different
3479   ** index, then fall through into OP_OpenRead to force a reopen */
3480 case OP_OpenRead:
3481 case OP_OpenWrite:
3482 
3483   assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3484   assert( p->bIsReader );
3485   assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3486           || p->readOnly==0 );
3487 
3488   if( p->expired ){
3489     rc = SQLITE_ABORT_ROLLBACK;
3490     goto abort_due_to_error;
3491   }
3492 
3493   nField = 0;
3494   pKeyInfo = 0;
3495   p2 = pOp->p2;
3496   iDb = pOp->p3;
3497   assert( iDb>=0 && iDb<db->nDb );
3498   assert( DbMaskTest(p->btreeMask, iDb) );
3499   pDb = &db->aDb[iDb];
3500   pX = pDb->pBt;
3501   assert( pX!=0 );
3502   if( pOp->opcode==OP_OpenWrite ){
3503     assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3504     wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3505     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3506     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3507       p->minWriteFileFormat = pDb->pSchema->file_format;
3508     }
3509   }else{
3510     wrFlag = 0;
3511   }
3512   if( pOp->p5 & OPFLAG_P2ISREG ){
3513     assert( p2>0 );
3514     assert( p2<=(p->nMem+1 - p->nCursor) );
3515     assert( pOp->opcode==OP_OpenWrite );
3516     pIn2 = &aMem[p2];
3517     assert( memIsValid(pIn2) );
3518     assert( (pIn2->flags & MEM_Int)!=0 );
3519     sqlite3VdbeMemIntegerify(pIn2);
3520     p2 = (int)pIn2->u.i;
3521     /* The p2 value always comes from a prior OP_CreateBtree opcode and
3522     ** that opcode will always set the p2 value to 2 or more or else fail.
3523     ** If there were a failure, the prepared statement would have halted
3524     ** before reaching this instruction. */
3525     assert( p2>=2 );
3526   }
3527   if( pOp->p4type==P4_KEYINFO ){
3528     pKeyInfo = pOp->p4.pKeyInfo;
3529     assert( pKeyInfo->enc==ENC(db) );
3530     assert( pKeyInfo->db==db );
3531     nField = pKeyInfo->nAllField;
3532   }else if( pOp->p4type==P4_INT32 ){
3533     nField = pOp->p4.i;
3534   }
3535   assert( pOp->p1>=0 );
3536   assert( nField>=0 );
3537   testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
3538   pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3539   if( pCur==0 ) goto no_mem;
3540   pCur->nullRow = 1;
3541   pCur->isOrdered = 1;
3542   pCur->pgnoRoot = p2;
3543 #ifdef SQLITE_DEBUG
3544   pCur->wrFlag = wrFlag;
3545 #endif
3546   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3547   pCur->pKeyInfo = pKeyInfo;
3548   /* Set the VdbeCursor.isTable variable. Previous versions of
3549   ** SQLite used to check if the root-page flags were sane at this point
3550   ** and report database corruption if they were not, but this check has
3551   ** since moved into the btree layer.  */
3552   pCur->isTable = pOp->p4type!=P4_KEYINFO;
3553 
3554 open_cursor_set_hints:
3555   assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3556   assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3557   testcase( pOp->p5 & OPFLAG_BULKCSR );
3558 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3559   testcase( pOp->p2 & OPFLAG_SEEKEQ );
3560 #endif
3561   sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3562                                (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3563   if( rc ) goto abort_due_to_error;
3564   break;
3565 }
3566 
3567 /* Opcode: OpenDup P1 P2 * * *
3568 **
3569 ** Open a new cursor P1 that points to the same ephemeral table as
3570 ** cursor P2.  The P2 cursor must have been opened by a prior OP_OpenEphemeral
3571 ** opcode.  Only ephemeral cursors may be duplicated.
3572 **
3573 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3574 */
3575 case OP_OpenDup: {
3576   VdbeCursor *pOrig;    /* The original cursor to be duplicated */
3577   VdbeCursor *pCx;      /* The new cursor */
3578 
3579   pOrig = p->apCsr[pOp->p2];
3580   assert( pOrig->pBtx!=0 );  /* Only ephemeral cursors can be duplicated */
3581 
3582   pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3583   if( pCx==0 ) goto no_mem;
3584   pCx->nullRow = 1;
3585   pCx->isEphemeral = 1;
3586   pCx->pKeyInfo = pOrig->pKeyInfo;
3587   pCx->isTable = pOrig->isTable;
3588   rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3589                           pCx->pKeyInfo, pCx->uc.pCursor);
3590   /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3591   ** opened for a database.  Since there is already an open cursor when this
3592   ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3593   assert( rc==SQLITE_OK );
3594   break;
3595 }
3596 
3597 
3598 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3599 ** Synopsis: nColumn=P2
3600 **
3601 ** Open a new cursor P1 to a transient table.
3602 ** The cursor is always opened read/write even if
3603 ** the main database is read-only.  The ephemeral
3604 ** table is deleted automatically when the cursor is closed.
3605 **
3606 ** P2 is the number of columns in the ephemeral table.
3607 ** The cursor points to a BTree table if P4==0 and to a BTree index
3608 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
3609 ** that defines the format of keys in the index.
3610 **
3611 ** The P5 parameter can be a mask of the BTREE_* flags defined
3612 ** in btree.h.  These flags control aspects of the operation of
3613 ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3614 ** added automatically.
3615 */
3616 /* Opcode: OpenAutoindex P1 P2 * P4 *
3617 ** Synopsis: nColumn=P2
3618 **
3619 ** This opcode works the same as OP_OpenEphemeral.  It has a
3620 ** different name to distinguish its use.  Tables created using
3621 ** by this opcode will be used for automatically created transient
3622 ** indices in joins.
3623 */
3624 case OP_OpenAutoindex:
3625 case OP_OpenEphemeral: {
3626   VdbeCursor *pCx;
3627   KeyInfo *pKeyInfo;
3628 
3629   static const int vfsFlags =
3630       SQLITE_OPEN_READWRITE |
3631       SQLITE_OPEN_CREATE |
3632       SQLITE_OPEN_EXCLUSIVE |
3633       SQLITE_OPEN_DELETEONCLOSE |
3634       SQLITE_OPEN_TRANSIENT_DB;
3635   assert( pOp->p1>=0 );
3636   assert( pOp->p2>=0 );
3637   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3638   if( pCx==0 ) goto no_mem;
3639   pCx->nullRow = 1;
3640   pCx->isEphemeral = 1;
3641   rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3642                         BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3643   if( rc==SQLITE_OK ){
3644     rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1, 0);
3645   }
3646   if( rc==SQLITE_OK ){
3647     /* If a transient index is required, create it by calling
3648     ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3649     ** opening it. If a transient table is required, just use the
3650     ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3651     */
3652     if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3653       int pgno;
3654       assert( pOp->p4type==P4_KEYINFO );
3655       rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
3656       if( rc==SQLITE_OK ){
3657         assert( pgno==MASTER_ROOT+1 );
3658         assert( pKeyInfo->db==db );
3659         assert( pKeyInfo->enc==ENC(db) );
3660         rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
3661                                 pKeyInfo, pCx->uc.pCursor);
3662       }
3663       pCx->isTable = 0;
3664     }else{
3665       rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3666                               0, pCx->uc.pCursor);
3667       pCx->isTable = 1;
3668     }
3669   }
3670   if( rc ) goto abort_due_to_error;
3671   pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3672   break;
3673 }
3674 
3675 /* Opcode: SorterOpen P1 P2 P3 P4 *
3676 **
3677 ** This opcode works like OP_OpenEphemeral except that it opens
3678 ** a transient index that is specifically designed to sort large
3679 ** tables using an external merge-sort algorithm.
3680 **
3681 ** If argument P3 is non-zero, then it indicates that the sorter may
3682 ** assume that a stable sort considering the first P3 fields of each
3683 ** key is sufficient to produce the required results.
3684 */
3685 case OP_SorterOpen: {
3686   VdbeCursor *pCx;
3687 
3688   assert( pOp->p1>=0 );
3689   assert( pOp->p2>=0 );
3690   pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3691   if( pCx==0 ) goto no_mem;
3692   pCx->pKeyInfo = pOp->p4.pKeyInfo;
3693   assert( pCx->pKeyInfo->db==db );
3694   assert( pCx->pKeyInfo->enc==ENC(db) );
3695   rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3696   if( rc ) goto abort_due_to_error;
3697   break;
3698 }
3699 
3700 /* Opcode: SequenceTest P1 P2 * * *
3701 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3702 **
3703 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3704 ** to P2. Regardless of whether or not the jump is taken, increment the
3705 ** the sequence value.
3706 */
3707 case OP_SequenceTest: {
3708   VdbeCursor *pC;
3709   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3710   pC = p->apCsr[pOp->p1];
3711   assert( isSorter(pC) );
3712   if( (pC->seqCount++)==0 ){
3713     goto jump_to_p2;
3714   }
3715   break;
3716 }
3717 
3718 /* Opcode: OpenPseudo P1 P2 P3 * *
3719 ** Synopsis: P3 columns in r[P2]
3720 **
3721 ** Open a new cursor that points to a fake table that contains a single
3722 ** row of data.  The content of that one row is the content of memory
3723 ** register P2.  In other words, cursor P1 becomes an alias for the
3724 ** MEM_Blob content contained in register P2.
3725 **
3726 ** A pseudo-table created by this opcode is used to hold a single
3727 ** row output from the sorter so that the row can be decomposed into
3728 ** individual columns using the OP_Column opcode.  The OP_Column opcode
3729 ** is the only cursor opcode that works with a pseudo-table.
3730 **
3731 ** P3 is the number of fields in the records that will be stored by
3732 ** the pseudo-table.
3733 */
3734 case OP_OpenPseudo: {
3735   VdbeCursor *pCx;
3736 
3737   assert( pOp->p1>=0 );
3738   assert( pOp->p3>=0 );
3739   pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3740   if( pCx==0 ) goto no_mem;
3741   pCx->nullRow = 1;
3742   pCx->seekResult = pOp->p2;
3743   pCx->isTable = 1;
3744   /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3745   ** can be safely passed to sqlite3VdbeCursorMoveto().  This avoids a test
3746   ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3747   ** which is a performance optimization */
3748   pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
3749   assert( pOp->p5==0 );
3750   break;
3751 }
3752 
3753 /* Opcode: Close P1 * * * *
3754 **
3755 ** Close a cursor previously opened as P1.  If P1 is not
3756 ** currently open, this instruction is a no-op.
3757 */
3758 case OP_Close: {
3759   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3760   sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3761   p->apCsr[pOp->p1] = 0;
3762   break;
3763 }
3764 
3765 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3766 /* Opcode: ColumnsUsed P1 * * P4 *
3767 **
3768 ** This opcode (which only exists if SQLite was compiled with
3769 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3770 ** table or index for cursor P1 are used.  P4 is a 64-bit integer
3771 ** (P4_INT64) in which the first 63 bits are one for each of the
3772 ** first 63 columns of the table or index that are actually used
3773 ** by the cursor.  The high-order bit is set if any column after
3774 ** the 64th is used.
3775 */
3776 case OP_ColumnsUsed: {
3777   VdbeCursor *pC;
3778   pC = p->apCsr[pOp->p1];
3779   assert( pC->eCurType==CURTYPE_BTREE );
3780   pC->maskUsed = *(u64*)pOp->p4.pI64;
3781   break;
3782 }
3783 #endif
3784 
3785 /* Opcode: SeekGE P1 P2 P3 P4 *
3786 ** Synopsis: key=r[P3@P4]
3787 **
3788 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3789 ** use the value in register P3 as the key.  If cursor P1 refers
3790 ** to an SQL index, then P3 is the first in an array of P4 registers
3791 ** that are used as an unpacked index key.
3792 **
3793 ** Reposition cursor P1 so that  it points to the smallest entry that
3794 ** is greater than or equal to the key value. If there are no records
3795 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3796 **
3797 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3798 ** opcode will always land on a record that equally equals the key, or
3799 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3800 ** opcode must be followed by an IdxLE opcode with the same arguments.
3801 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3802 ** IdxLE opcode will be used on subsequent loop iterations.
3803 **
3804 ** This opcode leaves the cursor configured to move in forward order,
3805 ** from the beginning toward the end.  In other words, the cursor is
3806 ** configured to use Next, not Prev.
3807 **
3808 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3809 */
3810 /* Opcode: SeekGT P1 P2 P3 P4 *
3811 ** Synopsis: key=r[P3@P4]
3812 **
3813 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3814 ** use the value in register P3 as a key. If cursor P1 refers
3815 ** to an SQL index, then P3 is the first in an array of P4 registers
3816 ** that are used as an unpacked index key.
3817 **
3818 ** Reposition cursor P1 so that  it points to the smallest entry that
3819 ** is greater than the key value. If there are no records greater than
3820 ** the key and P2 is not zero, then jump to P2.
3821 **
3822 ** This opcode leaves the cursor configured to move in forward order,
3823 ** from the beginning toward the end.  In other words, the cursor is
3824 ** configured to use Next, not Prev.
3825 **
3826 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3827 */
3828 /* Opcode: SeekLT P1 P2 P3 P4 *
3829 ** Synopsis: key=r[P3@P4]
3830 **
3831 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3832 ** use the value in register P3 as a key. If cursor P1 refers
3833 ** to an SQL index, then P3 is the first in an array of P4 registers
3834 ** that are used as an unpacked index key.
3835 **
3836 ** Reposition cursor P1 so that  it points to the largest entry that
3837 ** is less than the key value. If there are no records less than
3838 ** the key and P2 is not zero, then jump to P2.
3839 **
3840 ** This opcode leaves the cursor configured to move in reverse order,
3841 ** from the end toward the beginning.  In other words, the cursor is
3842 ** configured to use Prev, not Next.
3843 **
3844 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3845 */
3846 /* Opcode: SeekLE P1 P2 P3 P4 *
3847 ** Synopsis: key=r[P3@P4]
3848 **
3849 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3850 ** use the value in register P3 as a key. If cursor P1 refers
3851 ** to an SQL index, then P3 is the first in an array of P4 registers
3852 ** that are used as an unpacked index key.
3853 **
3854 ** Reposition cursor P1 so that it points to the largest entry that
3855 ** is less than or equal to the key value. If there are no records
3856 ** less than or equal to the key and P2 is not zero, then jump to P2.
3857 **
3858 ** This opcode leaves the cursor configured to move in reverse order,
3859 ** from the end toward the beginning.  In other words, the cursor is
3860 ** configured to use Prev, not Next.
3861 **
3862 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3863 ** opcode will always land on a record that equally equals the key, or
3864 ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
3865 ** opcode must be followed by an IdxGE opcode with the same arguments.
3866 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3867 ** IdxGE opcode will be used on subsequent loop iterations.
3868 **
3869 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3870 */
3871 case OP_SeekLT:         /* jump, in3 */
3872 case OP_SeekLE:         /* jump, in3 */
3873 case OP_SeekGE:         /* jump, in3 */
3874 case OP_SeekGT: {       /* jump, in3 */
3875   int res;           /* Comparison result */
3876   int oc;            /* Opcode */
3877   VdbeCursor *pC;    /* The cursor to seek */
3878   UnpackedRecord r;  /* The key to seek for */
3879   int nField;        /* Number of columns or fields in the key */
3880   i64 iKey;          /* The rowid we are to seek to */
3881   int eqOnly;        /* Only interested in == results */
3882 
3883   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3884   assert( pOp->p2!=0 );
3885   pC = p->apCsr[pOp->p1];
3886   assert( pC!=0 );
3887   assert( pC->eCurType==CURTYPE_BTREE );
3888   assert( OP_SeekLE == OP_SeekLT+1 );
3889   assert( OP_SeekGE == OP_SeekLT+2 );
3890   assert( OP_SeekGT == OP_SeekLT+3 );
3891   assert( pC->isOrdered );
3892   assert( pC->uc.pCursor!=0 );
3893   oc = pOp->opcode;
3894   eqOnly = 0;
3895   pC->nullRow = 0;
3896 #ifdef SQLITE_DEBUG
3897   pC->seekOp = pOp->opcode;
3898 #endif
3899 
3900   if( pC->isTable ){
3901     /* The BTREE_SEEK_EQ flag is only set on index cursors */
3902     assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3903               || CORRUPT_DB );
3904 
3905     /* The input value in P3 might be of any type: integer, real, string,
3906     ** blob, or NULL.  But it needs to be an integer before we can do
3907     ** the seek, so convert it. */
3908     pIn3 = &aMem[pOp->p3];
3909     if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3910       applyNumericAffinity(pIn3, 0);
3911     }
3912     iKey = sqlite3VdbeIntValue(pIn3);
3913 
3914     /* If the P3 value could not be converted into an integer without
3915     ** loss of information, then special processing is required... */
3916     if( (pIn3->flags & MEM_Int)==0 ){
3917       if( (pIn3->flags & MEM_Real)==0 ){
3918         /* If the P3 value cannot be converted into any kind of a number,
3919         ** then the seek is not possible, so jump to P2 */
3920         VdbeBranchTaken(1,2); goto jump_to_p2;
3921         break;
3922       }
3923 
3924       /* If the approximation iKey is larger than the actual real search
3925       ** term, substitute >= for > and < for <=. e.g. if the search term
3926       ** is 4.9 and the integer approximation 5:
3927       **
3928       **        (x >  4.9)    ->     (x >= 5)
3929       **        (x <= 4.9)    ->     (x <  5)
3930       */
3931       if( pIn3->u.r<(double)iKey ){
3932         assert( OP_SeekGE==(OP_SeekGT-1) );
3933         assert( OP_SeekLT==(OP_SeekLE-1) );
3934         assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3935         if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3936       }
3937 
3938       /* If the approximation iKey is smaller than the actual real search
3939       ** term, substitute <= for < and > for >=.  */
3940       else if( pIn3->u.r>(double)iKey ){
3941         assert( OP_SeekLE==(OP_SeekLT+1) );
3942         assert( OP_SeekGT==(OP_SeekGE+1) );
3943         assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3944         if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3945       }
3946     }
3947     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3948     pC->movetoTarget = iKey;  /* Used by OP_Delete */
3949     if( rc!=SQLITE_OK ){
3950       goto abort_due_to_error;
3951     }
3952   }else{
3953     /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3954     ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3955     ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3956     */
3957     if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3958       eqOnly = 1;
3959       assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3960       assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3961       assert( pOp[1].p1==pOp[0].p1 );
3962       assert( pOp[1].p2==pOp[0].p2 );
3963       assert( pOp[1].p3==pOp[0].p3 );
3964       assert( pOp[1].p4.i==pOp[0].p4.i );
3965     }
3966 
3967     nField = pOp->p4.i;
3968     assert( pOp->p4type==P4_INT32 );
3969     assert( nField>0 );
3970     r.pKeyInfo = pC->pKeyInfo;
3971     r.nField = (u16)nField;
3972 
3973     /* The next line of code computes as follows, only faster:
3974     **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
3975     **     r.default_rc = -1;
3976     **   }else{
3977     **     r.default_rc = +1;
3978     **   }
3979     */
3980     r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3981     assert( oc!=OP_SeekGT || r.default_rc==-1 );
3982     assert( oc!=OP_SeekLE || r.default_rc==-1 );
3983     assert( oc!=OP_SeekGE || r.default_rc==+1 );
3984     assert( oc!=OP_SeekLT || r.default_rc==+1 );
3985 
3986     r.aMem = &aMem[pOp->p3];
3987 #ifdef SQLITE_DEBUG
3988     { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3989 #endif
3990     r.eqSeen = 0;
3991     rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3992     if( rc!=SQLITE_OK ){
3993       goto abort_due_to_error;
3994     }
3995     if( eqOnly && r.eqSeen==0 ){
3996       assert( res!=0 );
3997       goto seek_not_found;
3998     }
3999   }
4000   pC->deferredMoveto = 0;
4001   pC->cacheStatus = CACHE_STALE;
4002 #ifdef SQLITE_TEST
4003   sqlite3_search_count++;
4004 #endif
4005   if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
4006     if( res<0 || (res==0 && oc==OP_SeekGT) ){
4007       res = 0;
4008       rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4009       if( rc!=SQLITE_OK ){
4010         if( rc==SQLITE_DONE ){
4011           rc = SQLITE_OK;
4012           res = 1;
4013         }else{
4014           goto abort_due_to_error;
4015         }
4016       }
4017     }else{
4018       res = 0;
4019     }
4020   }else{
4021     assert( oc==OP_SeekLT || oc==OP_SeekLE );
4022     if( res>0 || (res==0 && oc==OP_SeekLT) ){
4023       res = 0;
4024       rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4025       if( rc!=SQLITE_OK ){
4026         if( rc==SQLITE_DONE ){
4027           rc = SQLITE_OK;
4028           res = 1;
4029         }else{
4030           goto abort_due_to_error;
4031         }
4032       }
4033     }else{
4034       /* res might be negative because the table is empty.  Check to
4035       ** see if this is the case.
4036       */
4037       res = sqlite3BtreeEof(pC->uc.pCursor);
4038     }
4039   }
4040 seek_not_found:
4041   assert( pOp->p2>0 );
4042   VdbeBranchTaken(res!=0,2);
4043   if( res ){
4044     goto jump_to_p2;
4045   }else if( eqOnly ){
4046     assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4047     pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4048   }
4049   break;
4050 }
4051 
4052 /* Opcode: SeekHit P1 P2 * * *
4053 ** Synopsis: seekHit=P2
4054 **
4055 ** Set the seekHit flag on cursor P1 to the value in P2.
4056 ** The seekHit flag is used by the IfNoHope opcode.
4057 **
4058 ** P1 must be a valid b-tree cursor.  P2 must be a boolean value,
4059 ** either 0 or 1.
4060 */
4061 case OP_SeekHit: {
4062   VdbeCursor *pC;
4063   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4064   pC = p->apCsr[pOp->p1];
4065   assert( pC!=0 );
4066   assert( pOp->p2==0 || pOp->p2==1 );
4067   pC->seekHit = pOp->p2 & 1;
4068   break;
4069 }
4070 
4071 /* Opcode: Found P1 P2 P3 P4 *
4072 ** Synopsis: key=r[P3@P4]
4073 **
4074 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4075 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4076 ** record.
4077 **
4078 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4079 ** is a prefix of any entry in P1 then a jump is made to P2 and
4080 ** P1 is left pointing at the matching entry.
4081 **
4082 ** This operation leaves the cursor in a state where it can be
4083 ** advanced in the forward direction.  The Next instruction will work,
4084 ** but not the Prev instruction.
4085 **
4086 ** See also: NotFound, NoConflict, NotExists. SeekGe
4087 */
4088 /* Opcode: NotFound P1 P2 P3 P4 *
4089 ** Synopsis: key=r[P3@P4]
4090 **
4091 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4092 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4093 ** record.
4094 **
4095 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4096 ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1
4097 ** does contain an entry whose prefix matches the P3/P4 record then control
4098 ** falls through to the next instruction and P1 is left pointing at the
4099 ** matching entry.
4100 **
4101 ** This operation leaves the cursor in a state where it cannot be
4102 ** advanced in either direction.  In other words, the Next and Prev
4103 ** opcodes do not work after this operation.
4104 **
4105 ** See also: Found, NotExists, NoConflict, IfNoHope
4106 */
4107 /* Opcode: IfNoHope P1 P2 P3 P4 *
4108 ** Synopsis: key=r[P3@P4]
4109 **
4110 ** Register P3 is the first of P4 registers that form an unpacked
4111 ** record.
4112 **
4113 ** Cursor P1 is on an index btree.  If the seekHit flag is set on P1, then
4114 ** this opcode is a no-op.  But if the seekHit flag of P1 is clear, then
4115 ** check to see if there is any entry in P1 that matches the
4116 ** prefix identified by P3 and P4.  If no entry matches the prefix,
4117 ** jump to P2.  Otherwise fall through.
4118 **
4119 ** This opcode behaves like OP_NotFound if the seekHit
4120 ** flag is clear and it behaves like OP_Noop if the seekHit flag is set.
4121 **
4122 ** This opcode is used in IN clause processing for a multi-column key.
4123 ** If an IN clause is attached to an element of the key other than the
4124 ** left-most element, and if there are no matches on the most recent
4125 ** seek over the whole key, then it might be that one of the key element
4126 ** to the left is prohibiting a match, and hence there is "no hope" of
4127 ** any match regardless of how many IN clause elements are checked.
4128 ** In such a case, we abandon the IN clause search early, using this
4129 ** opcode.  The opcode name comes from the fact that the
4130 ** jump is taken if there is "no hope" of achieving a match.
4131 **
4132 ** See also: NotFound, SeekHit
4133 */
4134 /* Opcode: NoConflict P1 P2 P3 P4 *
4135 ** Synopsis: key=r[P3@P4]
4136 **
4137 ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
4138 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4139 ** record.
4140 **
4141 ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
4142 ** contains any NULL value, jump immediately to P2.  If all terms of the
4143 ** record are not-NULL then a check is done to determine if any row in the
4144 ** P1 index btree has a matching key prefix.  If there are no matches, jump
4145 ** immediately to P2.  If there is a match, fall through and leave the P1
4146 ** cursor pointing to the matching row.
4147 **
4148 ** This opcode is similar to OP_NotFound with the exceptions that the
4149 ** branch is always taken if any part of the search key input is NULL.
4150 **
4151 ** This operation leaves the cursor in a state where it cannot be
4152 ** advanced in either direction.  In other words, the Next and Prev
4153 ** opcodes do not work after this operation.
4154 **
4155 ** See also: NotFound, Found, NotExists
4156 */
4157 case OP_IfNoHope: {     /* jump, in3 */
4158   VdbeCursor *pC;
4159   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4160   pC = p->apCsr[pOp->p1];
4161   assert( pC!=0 );
4162   if( pC->seekHit ) break;
4163   /* Fall through into OP_NotFound */
4164 }
4165 case OP_NoConflict:     /* jump, in3 */
4166 case OP_NotFound:       /* jump, in3 */
4167 case OP_Found: {        /* jump, in3 */
4168   int alreadyExists;
4169   int takeJump;
4170   int ii;
4171   VdbeCursor *pC;
4172   int res;
4173   UnpackedRecord *pFree;
4174   UnpackedRecord *pIdxKey;
4175   UnpackedRecord r;
4176 
4177 #ifdef SQLITE_TEST
4178   if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4179 #endif
4180 
4181   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4182   assert( pOp->p4type==P4_INT32 );
4183   pC = p->apCsr[pOp->p1];
4184   assert( pC!=0 );
4185 #ifdef SQLITE_DEBUG
4186   pC->seekOp = pOp->opcode;
4187 #endif
4188   pIn3 = &aMem[pOp->p3];
4189   assert( pC->eCurType==CURTYPE_BTREE );
4190   assert( pC->uc.pCursor!=0 );
4191   assert( pC->isTable==0 );
4192   if( pOp->p4.i>0 ){
4193     r.pKeyInfo = pC->pKeyInfo;
4194     r.nField = (u16)pOp->p4.i;
4195     r.aMem = pIn3;
4196 #ifdef SQLITE_DEBUG
4197     for(ii=0; ii<r.nField; ii++){
4198       assert( memIsValid(&r.aMem[ii]) );
4199       assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4200       if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4201     }
4202 #endif
4203     pIdxKey = &r;
4204     pFree = 0;
4205   }else{
4206     assert( pIn3->flags & MEM_Blob );
4207     rc = ExpandBlob(pIn3);
4208     assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4209     if( rc ) goto no_mem;
4210     pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4211     if( pIdxKey==0 ) goto no_mem;
4212     sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4213   }
4214   pIdxKey->default_rc = 0;
4215   takeJump = 0;
4216   if( pOp->opcode==OP_NoConflict ){
4217     /* For the OP_NoConflict opcode, take the jump if any of the
4218     ** input fields are NULL, since any key with a NULL will not
4219     ** conflict */
4220     for(ii=0; ii<pIdxKey->nField; ii++){
4221       if( pIdxKey->aMem[ii].flags & MEM_Null ){
4222         takeJump = 1;
4223         break;
4224       }
4225     }
4226   }
4227   rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4228   if( pFree ) sqlite3DbFreeNN(db, pFree);
4229   if( rc!=SQLITE_OK ){
4230     goto abort_due_to_error;
4231   }
4232   pC->seekResult = res;
4233   alreadyExists = (res==0);
4234   pC->nullRow = 1-alreadyExists;
4235   pC->deferredMoveto = 0;
4236   pC->cacheStatus = CACHE_STALE;
4237   if( pOp->opcode==OP_Found ){
4238     VdbeBranchTaken(alreadyExists!=0,2);
4239     if( alreadyExists ) goto jump_to_p2;
4240   }else{
4241     VdbeBranchTaken(takeJump||alreadyExists==0,2);
4242     if( takeJump || !alreadyExists ) goto jump_to_p2;
4243   }
4244   break;
4245 }
4246 
4247 /* Opcode: SeekRowid P1 P2 P3 * *
4248 ** Synopsis: intkey=r[P3]
4249 **
4250 ** P1 is the index of a cursor open on an SQL table btree (with integer
4251 ** keys).  If register P3 does not contain an integer or if P1 does not
4252 ** contain a record with rowid P3 then jump immediately to P2.
4253 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4254 ** a record with rowid P3 then
4255 ** leave the cursor pointing at that record and fall through to the next
4256 ** instruction.
4257 **
4258 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4259 ** the P3 register must be guaranteed to contain an integer value.  With this
4260 ** opcode, register P3 might not contain an integer.
4261 **
4262 ** The OP_NotFound opcode performs the same operation on index btrees
4263 ** (with arbitrary multi-value keys).
4264 **
4265 ** This opcode leaves the cursor in a state where it cannot be advanced
4266 ** in either direction.  In other words, the Next and Prev opcodes will
4267 ** not work following this opcode.
4268 **
4269 ** See also: Found, NotFound, NoConflict, SeekRowid
4270 */
4271 /* Opcode: NotExists P1 P2 P3 * *
4272 ** Synopsis: intkey=r[P3]
4273 **
4274 ** P1 is the index of a cursor open on an SQL table btree (with integer
4275 ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
4276 ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
4277 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4278 ** leave the cursor pointing at that record and fall through to the next
4279 ** instruction.
4280 **
4281 ** The OP_SeekRowid opcode performs the same operation but also allows the
4282 ** P3 register to contain a non-integer value, in which case the jump is
4283 ** always taken.  This opcode requires that P3 always contain an integer.
4284 **
4285 ** The OP_NotFound opcode performs the same operation on index btrees
4286 ** (with arbitrary multi-value keys).
4287 **
4288 ** This opcode leaves the cursor in a state where it cannot be advanced
4289 ** in either direction.  In other words, the Next and Prev opcodes will
4290 ** not work following this opcode.
4291 **
4292 ** See also: Found, NotFound, NoConflict, SeekRowid
4293 */
4294 case OP_SeekRowid: {        /* jump, in3 */
4295   VdbeCursor *pC;
4296   BtCursor *pCrsr;
4297   int res;
4298   u64 iKey;
4299 
4300   pIn3 = &aMem[pOp->p3];
4301   if( (pIn3->flags & MEM_Int)==0 ){
4302     applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4303     if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4304   }
4305   /* Fall through into OP_NotExists */
4306 case OP_NotExists:          /* jump, in3 */
4307   pIn3 = &aMem[pOp->p3];
4308   assert( pIn3->flags & MEM_Int );
4309   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4310   pC = p->apCsr[pOp->p1];
4311   assert( pC!=0 );
4312 #ifdef SQLITE_DEBUG
4313   pC->seekOp = OP_SeekRowid;
4314 #endif
4315   assert( pC->isTable );
4316   assert( pC->eCurType==CURTYPE_BTREE );
4317   pCrsr = pC->uc.pCursor;
4318   assert( pCrsr!=0 );
4319   res = 0;
4320   iKey = pIn3->u.i;
4321   rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4322   assert( rc==SQLITE_OK || res==0 );
4323   pC->movetoTarget = iKey;  /* Used by OP_Delete */
4324   pC->nullRow = 0;
4325   pC->cacheStatus = CACHE_STALE;
4326   pC->deferredMoveto = 0;
4327   VdbeBranchTaken(res!=0,2);
4328   pC->seekResult = res;
4329   if( res!=0 ){
4330     assert( rc==SQLITE_OK );
4331     if( pOp->p2==0 ){
4332       rc = SQLITE_CORRUPT_BKPT;
4333     }else{
4334       goto jump_to_p2;
4335     }
4336   }
4337   if( rc ) goto abort_due_to_error;
4338   break;
4339 }
4340 
4341 /* Opcode: Sequence P1 P2 * * *
4342 ** Synopsis: r[P2]=cursor[P1].ctr++
4343 **
4344 ** Find the next available sequence number for cursor P1.
4345 ** Write the sequence number into register P2.
4346 ** The sequence number on the cursor is incremented after this
4347 ** instruction.
4348 */
4349 case OP_Sequence: {           /* out2 */
4350   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4351   assert( p->apCsr[pOp->p1]!=0 );
4352   assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4353   pOut = out2Prerelease(p, pOp);
4354   pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4355   break;
4356 }
4357 
4358 
4359 /* Opcode: NewRowid P1 P2 P3 * *
4360 ** Synopsis: r[P2]=rowid
4361 **
4362 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4363 ** The record number is not previously used as a key in the database
4364 ** table that cursor P1 points to.  The new record number is written
4365 ** written to register P2.
4366 **
4367 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4368 ** the largest previously generated record number. No new record numbers are
4369 ** allowed to be less than this value. When this value reaches its maximum,
4370 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4371 ** generated record number. This P3 mechanism is used to help implement the
4372 ** AUTOINCREMENT feature.
4373 */
4374 case OP_NewRowid: {           /* out2 */
4375   i64 v;                 /* The new rowid */
4376   VdbeCursor *pC;        /* Cursor of table to get the new rowid */
4377   int res;               /* Result of an sqlite3BtreeLast() */
4378   int cnt;               /* Counter to limit the number of searches */
4379   Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
4380   VdbeFrame *pFrame;     /* Root frame of VDBE */
4381 
4382   v = 0;
4383   res = 0;
4384   pOut = out2Prerelease(p, pOp);
4385   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4386   pC = p->apCsr[pOp->p1];
4387   assert( pC!=0 );
4388   assert( pC->isTable );
4389   assert( pC->eCurType==CURTYPE_BTREE );
4390   assert( pC->uc.pCursor!=0 );
4391   {
4392     /* The next rowid or record number (different terms for the same
4393     ** thing) is obtained in a two-step algorithm.
4394     **
4395     ** First we attempt to find the largest existing rowid and add one
4396     ** to that.  But if the largest existing rowid is already the maximum
4397     ** positive integer, we have to fall through to the second
4398     ** probabilistic algorithm
4399     **
4400     ** The second algorithm is to select a rowid at random and see if
4401     ** it already exists in the table.  If it does not exist, we have
4402     ** succeeded.  If the random rowid does exist, we select a new one
4403     ** and try again, up to 100 times.
4404     */
4405     assert( pC->isTable );
4406 
4407 #ifdef SQLITE_32BIT_ROWID
4408 #   define MAX_ROWID 0x7fffffff
4409 #else
4410     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4411     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
4412     ** to provide the constant while making all compilers happy.
4413     */
4414 #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4415 #endif
4416 
4417     if( !pC->useRandomRowid ){
4418       rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4419       if( rc!=SQLITE_OK ){
4420         goto abort_due_to_error;
4421       }
4422       if( res ){
4423         v = 1;   /* IMP: R-61914-48074 */
4424       }else{
4425         assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4426         v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4427         if( v>=MAX_ROWID ){
4428           pC->useRandomRowid = 1;
4429         }else{
4430           v++;   /* IMP: R-29538-34987 */
4431         }
4432       }
4433     }
4434 
4435 #ifndef SQLITE_OMIT_AUTOINCREMENT
4436     if( pOp->p3 ){
4437       /* Assert that P3 is a valid memory cell. */
4438       assert( pOp->p3>0 );
4439       if( p->pFrame ){
4440         for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4441         /* Assert that P3 is a valid memory cell. */
4442         assert( pOp->p3<=pFrame->nMem );
4443         pMem = &pFrame->aMem[pOp->p3];
4444       }else{
4445         /* Assert that P3 is a valid memory cell. */
4446         assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4447         pMem = &aMem[pOp->p3];
4448         memAboutToChange(p, pMem);
4449       }
4450       assert( memIsValid(pMem) );
4451 
4452       REGISTER_TRACE(pOp->p3, pMem);
4453       sqlite3VdbeMemIntegerify(pMem);
4454       assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
4455       if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4456         rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
4457         goto abort_due_to_error;
4458       }
4459       if( v<pMem->u.i+1 ){
4460         v = pMem->u.i + 1;
4461       }
4462       pMem->u.i = v;
4463     }
4464 #endif
4465     if( pC->useRandomRowid ){
4466       /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4467       ** largest possible integer (9223372036854775807) then the database
4468       ** engine starts picking positive candidate ROWIDs at random until
4469       ** it finds one that is not previously used. */
4470       assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
4471                              ** an AUTOINCREMENT table. */
4472       cnt = 0;
4473       do{
4474         sqlite3_randomness(sizeof(v), &v);
4475         v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
4476       }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4477                                                  0, &res))==SQLITE_OK)
4478             && (res==0)
4479             && (++cnt<100));
4480       if( rc ) goto abort_due_to_error;
4481       if( res==0 ){
4482         rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
4483         goto abort_due_to_error;
4484       }
4485       assert( v>0 );  /* EV: R-40812-03570 */
4486     }
4487     pC->deferredMoveto = 0;
4488     pC->cacheStatus = CACHE_STALE;
4489   }
4490   pOut->u.i = v;
4491   break;
4492 }
4493 
4494 /* Opcode: Insert P1 P2 P3 P4 P5
4495 ** Synopsis: intkey=r[P3] data=r[P2]
4496 **
4497 ** Write an entry into the table of cursor P1.  A new entry is
4498 ** created if it doesn't already exist or the data for an existing
4499 ** entry is overwritten.  The data is the value MEM_Blob stored in register
4500 ** number P2. The key is stored in register P3. The key must
4501 ** be a MEM_Int.
4502 **
4503 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4504 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
4505 ** then rowid is stored for subsequent return by the
4506 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4507 **
4508 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4509 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
4510 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4511 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4512 **
4513 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4514 ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
4515 ** is part of an INSERT operation.  The difference is only important to
4516 ** the update hook.
4517 **
4518 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4519 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4520 ** following a successful insert.
4521 **
4522 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4523 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4524 ** and register P2 becomes ephemeral.  If the cursor is changed, the
4525 ** value of register P2 will then change.  Make sure this does not
4526 ** cause any problems.)
4527 **
4528 ** This instruction only works on tables.  The equivalent instruction
4529 ** for indices is OP_IdxInsert.
4530 */
4531 /* Opcode: InsertInt P1 P2 P3 P4 P5
4532 ** Synopsis: intkey=P3 data=r[P2]
4533 **
4534 ** This works exactly like OP_Insert except that the key is the
4535 ** integer value P3, not the value of the integer stored in register P3.
4536 */
4537 case OP_Insert:
4538 case OP_InsertInt: {
4539   Mem *pData;       /* MEM cell holding data for the record to be inserted */
4540   Mem *pKey;        /* MEM cell holding key  for the record */
4541   VdbeCursor *pC;   /* Cursor to table into which insert is written */
4542   int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
4543   const char *zDb;  /* database name - used by the update hook */
4544   Table *pTab;      /* Table structure - used by update and pre-update hooks */
4545   BtreePayload x;   /* Payload to be inserted */
4546 
4547   pData = &aMem[pOp->p2];
4548   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4549   assert( memIsValid(pData) );
4550   pC = p->apCsr[pOp->p1];
4551   assert( pC!=0 );
4552   assert( pC->eCurType==CURTYPE_BTREE );
4553   assert( pC->uc.pCursor!=0 );
4554   assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4555   assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4556   REGISTER_TRACE(pOp->p2, pData);
4557   sqlite3VdbeIncrWriteCounter(p, pC);
4558 
4559   if( pOp->opcode==OP_Insert ){
4560     pKey = &aMem[pOp->p3];
4561     assert( pKey->flags & MEM_Int );
4562     assert( memIsValid(pKey) );
4563     REGISTER_TRACE(pOp->p3, pKey);
4564     x.nKey = pKey->u.i;
4565   }else{
4566     assert( pOp->opcode==OP_InsertInt );
4567     x.nKey = pOp->p3;
4568   }
4569 
4570   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4571     assert( pC->iDb>=0 );
4572     zDb = db->aDb[pC->iDb].zDbSName;
4573     pTab = pOp->p4.pTab;
4574     assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4575   }else{
4576     pTab = 0;
4577     zDb = 0;  /* Not needed.  Silence a compiler warning. */
4578   }
4579 
4580 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4581   /* Invoke the pre-update hook, if any */
4582   if( pTab ){
4583     if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4584       sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4585     }
4586     if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4587       /* Prevent post-update hook from running in cases when it should not */
4588       pTab = 0;
4589     }
4590   }
4591   if( pOp->p5 & OPFLAG_ISNOOP ) break;
4592 #endif
4593 
4594   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4595   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4596   assert( pData->flags & (MEM_Blob|MEM_Str) );
4597   x.pData = pData->z;
4598   x.nData = pData->n;
4599   seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4600   if( pData->flags & MEM_Zero ){
4601     x.nZero = pData->u.nZero;
4602   }else{
4603     x.nZero = 0;
4604   }
4605   x.pKey = 0;
4606   rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4607       (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4608   );
4609   pC->deferredMoveto = 0;
4610   pC->cacheStatus = CACHE_STALE;
4611 
4612   /* Invoke the update-hook if required. */
4613   if( rc ) goto abort_due_to_error;
4614   if( pTab ){
4615     assert( db->xUpdateCallback!=0 );
4616     assert( pTab->aCol!=0 );
4617     db->xUpdateCallback(db->pUpdateArg,
4618            (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4619            zDb, pTab->zName, x.nKey);
4620   }
4621   break;
4622 }
4623 
4624 /* Opcode: Delete P1 P2 P3 P4 P5
4625 **
4626 ** Delete the record at which the P1 cursor is currently pointing.
4627 **
4628 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4629 ** the cursor will be left pointing at  either the next or the previous
4630 ** record in the table. If it is left pointing at the next record, then
4631 ** the next Next instruction will be a no-op. As a result, in this case
4632 ** it is ok to delete a record from within a Next loop. If
4633 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4634 ** left in an undefined state.
4635 **
4636 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4637 ** delete one of several associated with deleting a table row and all its
4638 ** associated index entries.  Exactly one of those deletes is the "primary"
4639 ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
4640 ** marked with the AUXDELETE flag.
4641 **
4642 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4643 ** change count is incremented (otherwise not).
4644 **
4645 ** P1 must not be pseudo-table.  It has to be a real table with
4646 ** multiple rows.
4647 **
4648 ** If P4 is not NULL then it points to a Table object. In this case either
4649 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4650 ** have been positioned using OP_NotFound prior to invoking this opcode in
4651 ** this case. Specifically, if one is configured, the pre-update hook is
4652 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4653 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4654 **
4655 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4656 ** of the memory cell that contains the value that the rowid of the row will
4657 ** be set to by the update.
4658 */
4659 case OP_Delete: {
4660   VdbeCursor *pC;
4661   const char *zDb;
4662   Table *pTab;
4663   int opflags;
4664 
4665   opflags = pOp->p2;
4666   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4667   pC = p->apCsr[pOp->p1];
4668   assert( pC!=0 );
4669   assert( pC->eCurType==CURTYPE_BTREE );
4670   assert( pC->uc.pCursor!=0 );
4671   assert( pC->deferredMoveto==0 );
4672   sqlite3VdbeIncrWriteCounter(p, pC);
4673 
4674 #ifdef SQLITE_DEBUG
4675   if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4676     /* If p5 is zero, the seek operation that positioned the cursor prior to
4677     ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4678     ** the row that is being deleted */
4679     i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4680     assert( pC->movetoTarget==iKey );
4681   }
4682 #endif
4683 
4684   /* If the update-hook or pre-update-hook will be invoked, set zDb to
4685   ** the name of the db to pass as to it. Also set local pTab to a copy
4686   ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4687   ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4688   ** VdbeCursor.movetoTarget to the current rowid.  */
4689   if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4690     assert( pC->iDb>=0 );
4691     assert( pOp->p4.pTab!=0 );
4692     zDb = db->aDb[pC->iDb].zDbSName;
4693     pTab = pOp->p4.pTab;
4694     if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4695       pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4696     }
4697   }else{
4698     zDb = 0;   /* Not needed.  Silence a compiler warning. */
4699     pTab = 0;  /* Not needed.  Silence a compiler warning. */
4700   }
4701 
4702 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4703   /* Invoke the pre-update-hook if required. */
4704   if( db->xPreUpdateCallback && pOp->p4.pTab ){
4705     assert( !(opflags & OPFLAG_ISUPDATE)
4706          || HasRowid(pTab)==0
4707          || (aMem[pOp->p3].flags & MEM_Int)
4708     );
4709     sqlite3VdbePreUpdateHook(p, pC,
4710         (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4711         zDb, pTab, pC->movetoTarget,
4712         pOp->p3
4713     );
4714   }
4715   if( opflags & OPFLAG_ISNOOP ) break;
4716 #endif
4717 
4718   /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4719   assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4720   assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4721   assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4722 
4723 #ifdef SQLITE_DEBUG
4724   if( p->pFrame==0 ){
4725     if( pC->isEphemeral==0
4726         && (pOp->p5 & OPFLAG_AUXDELETE)==0
4727         && (pC->wrFlag & OPFLAG_FORDELETE)==0
4728       ){
4729       nExtraDelete++;
4730     }
4731     if( pOp->p2 & OPFLAG_NCHANGE ){
4732       nExtraDelete--;
4733     }
4734   }
4735 #endif
4736 
4737   rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4738   pC->cacheStatus = CACHE_STALE;
4739   pC->seekResult = 0;
4740   if( rc ) goto abort_due_to_error;
4741 
4742   /* Invoke the update-hook if required. */
4743   if( opflags & OPFLAG_NCHANGE ){
4744     p->nChange++;
4745     if( db->xUpdateCallback && HasRowid(pTab) ){
4746       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4747           pC->movetoTarget);
4748       assert( pC->iDb>=0 );
4749     }
4750   }
4751 
4752   break;
4753 }
4754 /* Opcode: ResetCount * * * * *
4755 **
4756 ** The value of the change counter is copied to the database handle
4757 ** change counter (returned by subsequent calls to sqlite3_changes()).
4758 ** Then the VMs internal change counter resets to 0.
4759 ** This is used by trigger programs.
4760 */
4761 case OP_ResetCount: {
4762   sqlite3VdbeSetChanges(db, p->nChange);
4763   p->nChange = 0;
4764   break;
4765 }
4766 
4767 /* Opcode: SorterCompare P1 P2 P3 P4
4768 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4769 **
4770 ** P1 is a sorter cursor. This instruction compares a prefix of the
4771 ** record blob in register P3 against a prefix of the entry that
4772 ** the sorter cursor currently points to.  Only the first P4 fields
4773 ** of r[P3] and the sorter record are compared.
4774 **
4775 ** If either P3 or the sorter contains a NULL in one of their significant
4776 ** fields (not counting the P4 fields at the end which are ignored) then
4777 ** the comparison is assumed to be equal.
4778 **
4779 ** Fall through to next instruction if the two records compare equal to
4780 ** each other.  Jump to P2 if they are different.
4781 */
4782 case OP_SorterCompare: {
4783   VdbeCursor *pC;
4784   int res;
4785   int nKeyCol;
4786 
4787   pC = p->apCsr[pOp->p1];
4788   assert( isSorter(pC) );
4789   assert( pOp->p4type==P4_INT32 );
4790   pIn3 = &aMem[pOp->p3];
4791   nKeyCol = pOp->p4.i;
4792   res = 0;
4793   rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4794   VdbeBranchTaken(res!=0,2);
4795   if( rc ) goto abort_due_to_error;
4796   if( res ) goto jump_to_p2;
4797   break;
4798 };
4799 
4800 /* Opcode: SorterData P1 P2 P3 * *
4801 ** Synopsis: r[P2]=data
4802 **
4803 ** Write into register P2 the current sorter data for sorter cursor P1.
4804 ** Then clear the column header cache on cursor P3.
4805 **
4806 ** This opcode is normally use to move a record out of the sorter and into
4807 ** a register that is the source for a pseudo-table cursor created using
4808 ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
4809 ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
4810 ** us from having to issue a separate NullRow instruction to clear that cache.
4811 */
4812 case OP_SorterData: {
4813   VdbeCursor *pC;
4814 
4815   pOut = &aMem[pOp->p2];
4816   pC = p->apCsr[pOp->p1];
4817   assert( isSorter(pC) );
4818   rc = sqlite3VdbeSorterRowkey(pC, pOut);
4819   assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4820   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4821   if( rc ) goto abort_due_to_error;
4822   p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4823   break;
4824 }
4825 
4826 /* Opcode: RowData P1 P2 P3 * *
4827 ** Synopsis: r[P2]=data
4828 **
4829 ** Write into register P2 the complete row content for the row at
4830 ** which cursor P1 is currently pointing.
4831 ** There is no interpretation of the data.
4832 ** It is just copied onto the P2 register exactly as
4833 ** it is found in the database file.
4834 **
4835 ** If cursor P1 is an index, then the content is the key of the row.
4836 ** If cursor P2 is a table, then the content extracted is the data.
4837 **
4838 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4839 ** of a real table, not a pseudo-table.
4840 **
4841 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
4842 ** into the database page.  That means that the content of the output
4843 ** register will be invalidated as soon as the cursor moves - including
4844 ** moves caused by other cursors that "save" the current cursors
4845 ** position in order that they can write to the same table.  If P3==0
4846 ** then a copy of the data is made into memory.  P3!=0 is faster, but
4847 ** P3==0 is safer.
4848 **
4849 ** If P3!=0 then the content of the P2 register is unsuitable for use
4850 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4851 ** The P2 register content is invalidated by opcodes like OP_Function or
4852 ** by any use of another cursor pointing to the same table.
4853 */
4854 case OP_RowData: {
4855   VdbeCursor *pC;
4856   BtCursor *pCrsr;
4857   u32 n;
4858 
4859   pOut = out2Prerelease(p, pOp);
4860 
4861   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4862   pC = p->apCsr[pOp->p1];
4863   assert( pC!=0 );
4864   assert( pC->eCurType==CURTYPE_BTREE );
4865   assert( isSorter(pC)==0 );
4866   assert( pC->nullRow==0 );
4867   assert( pC->uc.pCursor!=0 );
4868   pCrsr = pC->uc.pCursor;
4869 
4870   /* The OP_RowData opcodes always follow OP_NotExists or
4871   ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4872   ** that might invalidate the cursor.
4873   ** If this where not the case, on of the following assert()s
4874   ** would fail.  Should this ever change (because of changes in the code
4875   ** generator) then the fix would be to insert a call to
4876   ** sqlite3VdbeCursorMoveto().
4877   */
4878   assert( pC->deferredMoveto==0 );
4879   assert( sqlite3BtreeCursorIsValid(pCrsr) );
4880 #if 0  /* Not required due to the previous to assert() statements */
4881   rc = sqlite3VdbeCursorMoveto(pC);
4882   if( rc!=SQLITE_OK ) goto abort_due_to_error;
4883 #endif
4884 
4885   n = sqlite3BtreePayloadSize(pCrsr);
4886   if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4887     goto too_big;
4888   }
4889   testcase( n==0 );
4890   rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
4891   if( rc ) goto abort_due_to_error;
4892   if( !pOp->p3 ) Deephemeralize(pOut);
4893   UPDATE_MAX_BLOBSIZE(pOut);
4894   REGISTER_TRACE(pOp->p2, pOut);
4895   break;
4896 }
4897 
4898 /* Opcode: Rowid P1 P2 * * *
4899 ** Synopsis: r[P2]=rowid
4900 **
4901 ** Store in register P2 an integer which is the key of the table entry that
4902 ** P1 is currently point to.
4903 **
4904 ** P1 can be either an ordinary table or a virtual table.  There used to
4905 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4906 ** one opcode now works for both table types.
4907 */
4908 case OP_Rowid: {                 /* out2 */
4909   VdbeCursor *pC;
4910   i64 v;
4911   sqlite3_vtab *pVtab;
4912   const sqlite3_module *pModule;
4913 
4914   pOut = out2Prerelease(p, pOp);
4915   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4916   pC = p->apCsr[pOp->p1];
4917   assert( pC!=0 );
4918   assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4919   if( pC->nullRow ){
4920     pOut->flags = MEM_Null;
4921     break;
4922   }else if( pC->deferredMoveto ){
4923     v = pC->movetoTarget;
4924 #ifndef SQLITE_OMIT_VIRTUALTABLE
4925   }else if( pC->eCurType==CURTYPE_VTAB ){
4926     assert( pC->uc.pVCur!=0 );
4927     pVtab = pC->uc.pVCur->pVtab;
4928     pModule = pVtab->pModule;
4929     assert( pModule->xRowid );
4930     rc = pModule->xRowid(pC->uc.pVCur, &v);
4931     sqlite3VtabImportErrmsg(p, pVtab);
4932     if( rc ) goto abort_due_to_error;
4933 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4934   }else{
4935     assert( pC->eCurType==CURTYPE_BTREE );
4936     assert( pC->uc.pCursor!=0 );
4937     rc = sqlite3VdbeCursorRestore(pC);
4938     if( rc ) goto abort_due_to_error;
4939     if( pC->nullRow ){
4940       pOut->flags = MEM_Null;
4941       break;
4942     }
4943     v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4944   }
4945   pOut->u.i = v;
4946   break;
4947 }
4948 
4949 /* Opcode: NullRow P1 * * * *
4950 **
4951 ** Move the cursor P1 to a null row.  Any OP_Column operations
4952 ** that occur while the cursor is on the null row will always
4953 ** write a NULL.
4954 */
4955 case OP_NullRow: {
4956   VdbeCursor *pC;
4957 
4958   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4959   pC = p->apCsr[pOp->p1];
4960   assert( pC!=0 );
4961   pC->nullRow = 1;
4962   pC->cacheStatus = CACHE_STALE;
4963   if( pC->eCurType==CURTYPE_BTREE ){
4964     assert( pC->uc.pCursor!=0 );
4965     sqlite3BtreeClearCursor(pC->uc.pCursor);
4966   }
4967 #ifdef SQLITE_DEBUG
4968   if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
4969 #endif
4970   break;
4971 }
4972 
4973 /* Opcode: SeekEnd P1 * * * *
4974 **
4975 ** Position cursor P1 at the end of the btree for the purpose of
4976 ** appending a new entry onto the btree.
4977 **
4978 ** It is assumed that the cursor is used only for appending and so
4979 ** if the cursor is valid, then the cursor must already be pointing
4980 ** at the end of the btree and so no changes are made to
4981 ** the cursor.
4982 */
4983 /* Opcode: Last P1 P2 * * *
4984 **
4985 ** The next use of the Rowid or Column or Prev instruction for P1
4986 ** will refer to the last entry in the database table or index.
4987 ** If the table or index is empty and P2>0, then jump immediately to P2.
4988 ** If P2 is 0 or if the table or index is not empty, fall through
4989 ** to the following instruction.
4990 **
4991 ** This opcode leaves the cursor configured to move in reverse order,
4992 ** from the end toward the beginning.  In other words, the cursor is
4993 ** configured to use Prev, not Next.
4994 */
4995 case OP_SeekEnd:
4996 case OP_Last: {        /* jump */
4997   VdbeCursor *pC;
4998   BtCursor *pCrsr;
4999   int res;
5000 
5001   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5002   pC = p->apCsr[pOp->p1];
5003   assert( pC!=0 );
5004   assert( pC->eCurType==CURTYPE_BTREE );
5005   pCrsr = pC->uc.pCursor;
5006   res = 0;
5007   assert( pCrsr!=0 );
5008 #ifdef SQLITE_DEBUG
5009   pC->seekOp = pOp->opcode;
5010 #endif
5011   if( pOp->opcode==OP_SeekEnd ){
5012     assert( pOp->p2==0 );
5013     pC->seekResult = -1;
5014     if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5015       break;
5016     }
5017   }
5018   rc = sqlite3BtreeLast(pCrsr, &res);
5019   pC->nullRow = (u8)res;
5020   pC->deferredMoveto = 0;
5021   pC->cacheStatus = CACHE_STALE;
5022   if( rc ) goto abort_due_to_error;
5023   if( pOp->p2>0 ){
5024     VdbeBranchTaken(res!=0,2);
5025     if( res ) goto jump_to_p2;
5026   }
5027   break;
5028 }
5029 
5030 /* Opcode: IfSmaller P1 P2 P3 * *
5031 **
5032 ** Estimate the number of rows in the table P1.  Jump to P2 if that
5033 ** estimate is less than approximately 2**(0.1*P3).
5034 */
5035 case OP_IfSmaller: {        /* jump */
5036   VdbeCursor *pC;
5037   BtCursor *pCrsr;
5038   int res;
5039   i64 sz;
5040 
5041   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5042   pC = p->apCsr[pOp->p1];
5043   assert( pC!=0 );
5044   pCrsr = pC->uc.pCursor;
5045   assert( pCrsr );
5046   rc = sqlite3BtreeFirst(pCrsr, &res);
5047   if( rc ) goto abort_due_to_error;
5048   if( res==0 ){
5049     sz = sqlite3BtreeRowCountEst(pCrsr);
5050     if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5051   }
5052   VdbeBranchTaken(res!=0,2);
5053   if( res ) goto jump_to_p2;
5054   break;
5055 }
5056 
5057 
5058 /* Opcode: SorterSort P1 P2 * * *
5059 **
5060 ** After all records have been inserted into the Sorter object
5061 ** identified by P1, invoke this opcode to actually do the sorting.
5062 ** Jump to P2 if there are no records to be sorted.
5063 **
5064 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5065 ** for Sorter objects.
5066 */
5067 /* Opcode: Sort P1 P2 * * *
5068 **
5069 ** This opcode does exactly the same thing as OP_Rewind except that
5070 ** it increments an undocumented global variable used for testing.
5071 **
5072 ** Sorting is accomplished by writing records into a sorting index,
5073 ** then rewinding that index and playing it back from beginning to
5074 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
5075 ** rewinding so that the global variable will be incremented and
5076 ** regression tests can determine whether or not the optimizer is
5077 ** correctly optimizing out sorts.
5078 */
5079 case OP_SorterSort:    /* jump */
5080 case OP_Sort: {        /* jump */
5081 #ifdef SQLITE_TEST
5082   sqlite3_sort_count++;
5083   sqlite3_search_count--;
5084 #endif
5085   p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5086   /* Fall through into OP_Rewind */
5087 }
5088 /* Opcode: Rewind P1 P2 * * P5
5089 **
5090 ** The next use of the Rowid or Column or Next instruction for P1
5091 ** will refer to the first entry in the database table or index.
5092 ** If the table or index is empty, jump immediately to P2.
5093 ** If the table or index is not empty, fall through to the following
5094 ** instruction.
5095 **
5096 ** If P5 is non-zero and the table is not empty, then the "skip-next"
5097 ** flag is set on the cursor so that the next OP_Next instruction
5098 ** executed on it is a no-op.
5099 **
5100 ** This opcode leaves the cursor configured to move in forward order,
5101 ** from the beginning toward the end.  In other words, the cursor is
5102 ** configured to use Next, not Prev.
5103 */
5104 case OP_Rewind: {        /* jump */
5105   VdbeCursor *pC;
5106   BtCursor *pCrsr;
5107   int res;
5108 
5109   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5110   pC = p->apCsr[pOp->p1];
5111   assert( pC!=0 );
5112   assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
5113   res = 1;
5114 #ifdef SQLITE_DEBUG
5115   pC->seekOp = OP_Rewind;
5116 #endif
5117   if( isSorter(pC) ){
5118     rc = sqlite3VdbeSorterRewind(pC, &res);
5119   }else{
5120     assert( pC->eCurType==CURTYPE_BTREE );
5121     pCrsr = pC->uc.pCursor;
5122     assert( pCrsr );
5123     rc = sqlite3BtreeFirst(pCrsr, &res);
5124 #ifndef SQLITE_OMIT_WINDOWFUNC
5125     if( pOp->p5 ) sqlite3BtreeSkipNext(pCrsr);
5126 #endif
5127     pC->deferredMoveto = 0;
5128     pC->cacheStatus = CACHE_STALE;
5129   }
5130   if( rc ) goto abort_due_to_error;
5131   pC->nullRow = (u8)res;
5132   assert( pOp->p2>0 && pOp->p2<p->nOp );
5133   VdbeBranchTaken(res!=0,2);
5134   if( res ) goto jump_to_p2;
5135   break;
5136 }
5137 
5138 /* Opcode: Next P1 P2 P3 P4 P5
5139 **
5140 ** Advance cursor P1 so that it points to the next key/data pair in its
5141 ** table or index.  If there are no more key/value pairs then fall through
5142 ** to the following instruction.  But if the cursor advance was successful,
5143 ** jump immediately to P2.
5144 **
5145 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5146 ** OP_Rewind opcode used to position the cursor.  Next is not allowed
5147 ** to follow SeekLT, SeekLE, or OP_Last.
5148 **
5149 ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
5150 ** been opened prior to this opcode or the program will segfault.
5151 **
5152 ** The P3 value is a hint to the btree implementation. If P3==1, that
5153 ** means P1 is an SQL index and that this instruction could have been
5154 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5155 ** always either 0 or 1.
5156 **
5157 ** P4 is always of type P4_ADVANCE. The function pointer points to
5158 ** sqlite3BtreeNext().
5159 **
5160 ** If P5 is positive and the jump is taken, then event counter
5161 ** number P5-1 in the prepared statement is incremented.
5162 **
5163 ** See also: Prev
5164 */
5165 /* Opcode: Prev P1 P2 P3 P4 P5
5166 **
5167 ** Back up cursor P1 so that it points to the previous key/data pair in its
5168 ** table or index.  If there is no previous key/value pairs then fall through
5169 ** to the following instruction.  But if the cursor backup was successful,
5170 ** jump immediately to P2.
5171 **
5172 **
5173 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5174 ** OP_Last opcode used to position the cursor.  Prev is not allowed
5175 ** to follow SeekGT, SeekGE, or OP_Rewind.
5176 **
5177 ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
5178 ** not open then the behavior is undefined.
5179 **
5180 ** The P3 value is a hint to the btree implementation. If P3==1, that
5181 ** means P1 is an SQL index and that this instruction could have been
5182 ** omitted if that index had been unique.  P3 is usually 0.  P3 is
5183 ** always either 0 or 1.
5184 **
5185 ** P4 is always of type P4_ADVANCE. The function pointer points to
5186 ** sqlite3BtreePrevious().
5187 **
5188 ** If P5 is positive and the jump is taken, then event counter
5189 ** number P5-1 in the prepared statement is incremented.
5190 */
5191 /* Opcode: SorterNext P1 P2 * * P5
5192 **
5193 ** This opcode works just like OP_Next except that P1 must be a
5194 ** sorter object for which the OP_SorterSort opcode has been
5195 ** invoked.  This opcode advances the cursor to the next sorted
5196 ** record, or jumps to P2 if there are no more sorted records.
5197 */
5198 case OP_SorterNext: {  /* jump */
5199   VdbeCursor *pC;
5200 
5201   pC = p->apCsr[pOp->p1];
5202   assert( isSorter(pC) );
5203   rc = sqlite3VdbeSorterNext(db, pC);
5204   goto next_tail;
5205 case OP_Prev:          /* jump */
5206 case OP_Next:          /* jump */
5207   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5208   assert( pOp->p5<ArraySize(p->aCounter) );
5209   pC = p->apCsr[pOp->p1];
5210   assert( pC!=0 );
5211   assert( pC->deferredMoveto==0 );
5212   assert( pC->eCurType==CURTYPE_BTREE );
5213   assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5214   assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5215 
5216   /* The Next opcode is only used after SeekGT, SeekGE, Rewind, and Found.
5217   ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5218   assert( pOp->opcode!=OP_Next
5219        || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5220        || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
5221        || pC->seekOp==OP_NullRow);
5222   assert( pOp->opcode!=OP_Prev
5223        || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5224        || pC->seekOp==OP_Last
5225        || pC->seekOp==OP_NullRow);
5226 
5227   rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
5228 next_tail:
5229   pC->cacheStatus = CACHE_STALE;
5230   VdbeBranchTaken(rc==SQLITE_OK,2);
5231   if( rc==SQLITE_OK ){
5232     pC->nullRow = 0;
5233     p->aCounter[pOp->p5]++;
5234 #ifdef SQLITE_TEST
5235     sqlite3_search_count++;
5236 #endif
5237     goto jump_to_p2_and_check_for_interrupt;
5238   }
5239   if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5240   rc = SQLITE_OK;
5241   pC->nullRow = 1;
5242   goto check_for_interrupt;
5243 }
5244 
5245 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5246 ** Synopsis: key=r[P2]
5247 **
5248 ** Register P2 holds an SQL index key made using the
5249 ** MakeRecord instructions.  This opcode writes that key
5250 ** into the index P1.  Data for the entry is nil.
5251 **
5252 ** If P4 is not zero, then it is the number of values in the unpacked
5253 ** key of reg(P2).  In that case, P3 is the index of the first register
5254 ** for the unpacked key.  The availability of the unpacked key can sometimes
5255 ** be an optimization.
5256 **
5257 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5258 ** that this insert is likely to be an append.
5259 **
5260 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5261 ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
5262 ** then the change counter is unchanged.
5263 **
5264 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5265 ** run faster by avoiding an unnecessary seek on cursor P1.  However,
5266 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5267 ** seeks on the cursor or if the most recent seek used a key equivalent
5268 ** to P2.
5269 **
5270 ** This instruction only works for indices.  The equivalent instruction
5271 ** for tables is OP_Insert.
5272 */
5273 /* Opcode: SorterInsert P1 P2 * * *
5274 ** Synopsis: key=r[P2]
5275 **
5276 ** Register P2 holds an SQL index key made using the
5277 ** MakeRecord instructions.  This opcode writes that key
5278 ** into the sorter P1.  Data for the entry is nil.
5279 */
5280 case OP_SorterInsert:       /* in2 */
5281 case OP_IdxInsert: {        /* in2 */
5282   VdbeCursor *pC;
5283   BtreePayload x;
5284 
5285   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5286   pC = p->apCsr[pOp->p1];
5287   sqlite3VdbeIncrWriteCounter(p, pC);
5288   assert( pC!=0 );
5289   assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5290   pIn2 = &aMem[pOp->p2];
5291   assert( pIn2->flags & MEM_Blob );
5292   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5293   assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5294   assert( pC->isTable==0 );
5295   rc = ExpandBlob(pIn2);
5296   if( rc ) goto abort_due_to_error;
5297   if( pOp->opcode==OP_SorterInsert ){
5298     rc = sqlite3VdbeSorterWrite(pC, pIn2);
5299   }else{
5300     x.nKey = pIn2->n;
5301     x.pKey = pIn2->z;
5302     x.aMem = aMem + pOp->p3;
5303     x.nMem = (u16)pOp->p4.i;
5304     rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5305          (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5306         ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5307         );
5308     assert( pC->deferredMoveto==0 );
5309     pC->cacheStatus = CACHE_STALE;
5310   }
5311   if( rc) goto abort_due_to_error;
5312   break;
5313 }
5314 
5315 /* Opcode: IdxDelete P1 P2 P3 * *
5316 ** Synopsis: key=r[P2@P3]
5317 **
5318 ** The content of P3 registers starting at register P2 form
5319 ** an unpacked index key. This opcode removes that entry from the
5320 ** index opened by cursor P1.
5321 */
5322 case OP_IdxDelete: {
5323   VdbeCursor *pC;
5324   BtCursor *pCrsr;
5325   int res;
5326   UnpackedRecord r;
5327 
5328   assert( pOp->p3>0 );
5329   assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5330   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5331   pC = p->apCsr[pOp->p1];
5332   assert( pC!=0 );
5333   assert( pC->eCurType==CURTYPE_BTREE );
5334   sqlite3VdbeIncrWriteCounter(p, pC);
5335   pCrsr = pC->uc.pCursor;
5336   assert( pCrsr!=0 );
5337   assert( pOp->p5==0 );
5338   r.pKeyInfo = pC->pKeyInfo;
5339   r.nField = (u16)pOp->p3;
5340   r.default_rc = 0;
5341   r.aMem = &aMem[pOp->p2];
5342   rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5343   if( rc ) goto abort_due_to_error;
5344   if( res==0 ){
5345     rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5346     if( rc ) goto abort_due_to_error;
5347   }
5348   assert( pC->deferredMoveto==0 );
5349   pC->cacheStatus = CACHE_STALE;
5350   pC->seekResult = 0;
5351   break;
5352 }
5353 
5354 /* Opcode: DeferredSeek P1 * P3 P4 *
5355 ** Synopsis: Move P3 to P1.rowid if needed
5356 **
5357 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5358 ** table.  This opcode does a deferred seek of the P3 table cursor
5359 ** to the row that corresponds to the current row of P1.
5360 **
5361 ** This is a deferred seek.  Nothing actually happens until
5362 ** the cursor is used to read a record.  That way, if no reads
5363 ** occur, no unnecessary I/O happens.
5364 **
5365 ** P4 may be an array of integers (type P4_INTARRAY) containing
5366 ** one entry for each column in the P3 table.  If array entry a(i)
5367 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5368 ** equivalent to performing the deferred seek and then reading column i
5369 ** from P1.  This information is stored in P3 and used to redirect
5370 ** reads against P3 over to P1, thus possibly avoiding the need to
5371 ** seek and read cursor P3.
5372 */
5373 /* Opcode: IdxRowid P1 P2 * * *
5374 ** Synopsis: r[P2]=rowid
5375 **
5376 ** Write into register P2 an integer which is the last entry in the record at
5377 ** the end of the index key pointed to by cursor P1.  This integer should be
5378 ** the rowid of the table entry to which this index entry points.
5379 **
5380 ** See also: Rowid, MakeRecord.
5381 */
5382 case OP_DeferredSeek:
5383 case OP_IdxRowid: {           /* out2 */
5384   VdbeCursor *pC;             /* The P1 index cursor */
5385   VdbeCursor *pTabCur;        /* The P2 table cursor (OP_DeferredSeek only) */
5386   i64 rowid;                  /* Rowid that P1 current points to */
5387 
5388   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5389   pC = p->apCsr[pOp->p1];
5390   assert( pC!=0 );
5391   assert( pC->eCurType==CURTYPE_BTREE );
5392   assert( pC->uc.pCursor!=0 );
5393   assert( pC->isTable==0 );
5394   assert( pC->deferredMoveto==0 );
5395   assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5396 
5397   /* The IdxRowid and Seek opcodes are combined because of the commonality
5398   ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5399   rc = sqlite3VdbeCursorRestore(pC);
5400 
5401   /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5402   ** out from under the cursor.  That will never happens for an IdxRowid
5403   ** or Seek opcode */
5404   if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5405 
5406   if( !pC->nullRow ){
5407     rowid = 0;  /* Not needed.  Only used to silence a warning. */
5408     rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5409     if( rc!=SQLITE_OK ){
5410       goto abort_due_to_error;
5411     }
5412     if( pOp->opcode==OP_DeferredSeek ){
5413       assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5414       pTabCur = p->apCsr[pOp->p3];
5415       assert( pTabCur!=0 );
5416       assert( pTabCur->eCurType==CURTYPE_BTREE );
5417       assert( pTabCur->uc.pCursor!=0 );
5418       assert( pTabCur->isTable );
5419       pTabCur->nullRow = 0;
5420       pTabCur->movetoTarget = rowid;
5421       pTabCur->deferredMoveto = 1;
5422       assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5423       pTabCur->aAltMap = pOp->p4.ai;
5424       pTabCur->pAltCursor = pC;
5425     }else{
5426       pOut = out2Prerelease(p, pOp);
5427       pOut->u.i = rowid;
5428     }
5429   }else{
5430     assert( pOp->opcode==OP_IdxRowid );
5431     sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5432   }
5433   break;
5434 }
5435 
5436 /* Opcode: IdxGE P1 P2 P3 P4 P5
5437 ** Synopsis: key=r[P3@P4]
5438 **
5439 ** The P4 register values beginning with P3 form an unpacked index
5440 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5441 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5442 ** fields at the end.
5443 **
5444 ** If the P1 index entry is greater than or equal to the key value
5445 ** then jump to P2.  Otherwise fall through to the next instruction.
5446 */
5447 /* Opcode: IdxGT P1 P2 P3 P4 P5
5448 ** Synopsis: key=r[P3@P4]
5449 **
5450 ** The P4 register values beginning with P3 form an unpacked index
5451 ** key that omits the PRIMARY KEY.  Compare this key value against the index
5452 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5453 ** fields at the end.
5454 **
5455 ** If the P1 index entry is greater than the key value
5456 ** then jump to P2.  Otherwise fall through to the next instruction.
5457 */
5458 /* Opcode: IdxLT P1 P2 P3 P4 P5
5459 ** Synopsis: key=r[P3@P4]
5460 **
5461 ** The P4 register values beginning with P3 form an unpacked index
5462 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5463 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5464 ** ROWID on the P1 index.
5465 **
5466 ** If the P1 index entry is less than the key value then jump to P2.
5467 ** Otherwise fall through to the next instruction.
5468 */
5469 /* Opcode: IdxLE P1 P2 P3 P4 P5
5470 ** Synopsis: key=r[P3@P4]
5471 **
5472 ** The P4 register values beginning with P3 form an unpacked index
5473 ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
5474 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5475 ** ROWID on the P1 index.
5476 **
5477 ** If the P1 index entry is less than or equal to the key value then jump
5478 ** to P2. Otherwise fall through to the next instruction.
5479 */
5480 case OP_IdxLE:          /* jump */
5481 case OP_IdxGT:          /* jump */
5482 case OP_IdxLT:          /* jump */
5483 case OP_IdxGE:  {       /* jump */
5484   VdbeCursor *pC;
5485   int res;
5486   UnpackedRecord r;
5487 
5488   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5489   pC = p->apCsr[pOp->p1];
5490   assert( pC!=0 );
5491   assert( pC->isOrdered );
5492   assert( pC->eCurType==CURTYPE_BTREE );
5493   assert( pC->uc.pCursor!=0);
5494   assert( pC->deferredMoveto==0 );
5495   assert( pOp->p5==0 || pOp->p5==1 );
5496   assert( pOp->p4type==P4_INT32 );
5497   r.pKeyInfo = pC->pKeyInfo;
5498   r.nField = (u16)pOp->p4.i;
5499   if( pOp->opcode<OP_IdxLT ){
5500     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5501     r.default_rc = -1;
5502   }else{
5503     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5504     r.default_rc = 0;
5505   }
5506   r.aMem = &aMem[pOp->p3];
5507 #ifdef SQLITE_DEBUG
5508   { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5509 #endif
5510   res = 0;  /* Not needed.  Only used to silence a warning. */
5511   rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5512   assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5513   if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5514     assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5515     res = -res;
5516   }else{
5517     assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5518     res++;
5519   }
5520   VdbeBranchTaken(res>0,2);
5521   if( rc ) goto abort_due_to_error;
5522   if( res>0 ) goto jump_to_p2;
5523   break;
5524 }
5525 
5526 /* Opcode: Destroy P1 P2 P3 * *
5527 **
5528 ** Delete an entire database table or index whose root page in the database
5529 ** file is given by P1.
5530 **
5531 ** The table being destroyed is in the main database file if P3==0.  If
5532 ** P3==1 then the table to be clear is in the auxiliary database file
5533 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5534 **
5535 ** If AUTOVACUUM is enabled then it is possible that another root page
5536 ** might be moved into the newly deleted root page in order to keep all
5537 ** root pages contiguous at the beginning of the database.  The former
5538 ** value of the root page that moved - its value before the move occurred -
5539 ** is stored in register P2. If no page movement was required (because the
5540 ** table being dropped was already the last one in the database) then a
5541 ** zero is stored in register P2.  If AUTOVACUUM is disabled then a zero
5542 ** is stored in register P2.
5543 **
5544 ** This opcode throws an error if there are any active reader VMs when
5545 ** it is invoked. This is done to avoid the difficulty associated with
5546 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5547 ** database. This error is thrown even if the database is not an AUTOVACUUM
5548 ** db in order to avoid introducing an incompatibility between autovacuum
5549 ** and non-autovacuum modes.
5550 **
5551 ** See also: Clear
5552 */
5553 case OP_Destroy: {     /* out2 */
5554   int iMoved;
5555   int iDb;
5556 
5557   sqlite3VdbeIncrWriteCounter(p, 0);
5558   assert( p->readOnly==0 );
5559   assert( pOp->p1>1 );
5560   pOut = out2Prerelease(p, pOp);
5561   pOut->flags = MEM_Null;
5562   if( db->nVdbeRead > db->nVDestroy+1 ){
5563     rc = SQLITE_LOCKED;
5564     p->errorAction = OE_Abort;
5565     goto abort_due_to_error;
5566   }else{
5567     iDb = pOp->p3;
5568     assert( DbMaskTest(p->btreeMask, iDb) );
5569     iMoved = 0;  /* Not needed.  Only to silence a warning. */
5570     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5571     pOut->flags = MEM_Int;
5572     pOut->u.i = iMoved;
5573     if( rc ) goto abort_due_to_error;
5574 #ifndef SQLITE_OMIT_AUTOVACUUM
5575     if( iMoved!=0 ){
5576       sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5577       /* All OP_Destroy operations occur on the same btree */
5578       assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5579       resetSchemaOnFault = iDb+1;
5580     }
5581 #endif
5582   }
5583   break;
5584 }
5585 
5586 /* Opcode: Clear P1 P2 P3
5587 **
5588 ** Delete all contents of the database table or index whose root page
5589 ** in the database file is given by P1.  But, unlike Destroy, do not
5590 ** remove the table or index from the database file.
5591 **
5592 ** The table being clear is in the main database file if P2==0.  If
5593 ** P2==1 then the table to be clear is in the auxiliary database file
5594 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5595 **
5596 ** If the P3 value is non-zero, then the table referred to must be an
5597 ** intkey table (an SQL table, not an index). In this case the row change
5598 ** count is incremented by the number of rows in the table being cleared.
5599 ** If P3 is greater than zero, then the value stored in register P3 is
5600 ** also incremented by the number of rows in the table being cleared.
5601 **
5602 ** See also: Destroy
5603 */
5604 case OP_Clear: {
5605   int nChange;
5606 
5607   sqlite3VdbeIncrWriteCounter(p, 0);
5608   nChange = 0;
5609   assert( p->readOnly==0 );
5610   assert( DbMaskTest(p->btreeMask, pOp->p2) );
5611   rc = sqlite3BtreeClearTable(
5612       db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5613   );
5614   if( pOp->p3 ){
5615     p->nChange += nChange;
5616     if( pOp->p3>0 ){
5617       assert( memIsValid(&aMem[pOp->p3]) );
5618       memAboutToChange(p, &aMem[pOp->p3]);
5619       aMem[pOp->p3].u.i += nChange;
5620     }
5621   }
5622   if( rc ) goto abort_due_to_error;
5623   break;
5624 }
5625 
5626 /* Opcode: ResetSorter P1 * * * *
5627 **
5628 ** Delete all contents from the ephemeral table or sorter
5629 ** that is open on cursor P1.
5630 **
5631 ** This opcode only works for cursors used for sorting and
5632 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5633 */
5634 case OP_ResetSorter: {
5635   VdbeCursor *pC;
5636 
5637   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5638   pC = p->apCsr[pOp->p1];
5639   assert( pC!=0 );
5640   if( isSorter(pC) ){
5641     sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5642   }else{
5643     assert( pC->eCurType==CURTYPE_BTREE );
5644     assert( pC->isEphemeral );
5645     rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5646     if( rc ) goto abort_due_to_error;
5647   }
5648   break;
5649 }
5650 
5651 /* Opcode: CreateBtree P1 P2 P3 * *
5652 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5653 **
5654 ** Allocate a new b-tree in the main database file if P1==0 or in the
5655 ** TEMP database file if P1==1 or in an attached database if
5656 ** P1>1.  The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5657 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
5658 ** The root page number of the new b-tree is stored in register P2.
5659 */
5660 case OP_CreateBtree: {          /* out2 */
5661   int pgno;
5662   Db *pDb;
5663 
5664   sqlite3VdbeIncrWriteCounter(p, 0);
5665   pOut = out2Prerelease(p, pOp);
5666   pgno = 0;
5667   assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
5668   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5669   assert( DbMaskTest(p->btreeMask, pOp->p1) );
5670   assert( p->readOnly==0 );
5671   pDb = &db->aDb[pOp->p1];
5672   assert( pDb->pBt!=0 );
5673   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
5674   if( rc ) goto abort_due_to_error;
5675   pOut->u.i = pgno;
5676   break;
5677 }
5678 
5679 /* Opcode: SqlExec * * * P4 *
5680 **
5681 ** Run the SQL statement or statements specified in the P4 string.
5682 */
5683 case OP_SqlExec: {
5684   sqlite3VdbeIncrWriteCounter(p, 0);
5685   db->nSqlExec++;
5686   rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
5687   db->nSqlExec--;
5688   if( rc ) goto abort_due_to_error;
5689   break;
5690 }
5691 
5692 /* Opcode: ParseSchema P1 * * P4 *
5693 **
5694 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5695 ** that match the WHERE clause P4.
5696 **
5697 ** This opcode invokes the parser to create a new virtual machine,
5698 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
5699 */
5700 case OP_ParseSchema: {
5701   int iDb;
5702   const char *zMaster;
5703   char *zSql;
5704   InitData initData;
5705 
5706   /* Any prepared statement that invokes this opcode will hold mutexes
5707   ** on every btree.  This is a prerequisite for invoking
5708   ** sqlite3InitCallback().
5709   */
5710 #ifdef SQLITE_DEBUG
5711   for(iDb=0; iDb<db->nDb; iDb++){
5712     assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5713   }
5714 #endif
5715 
5716   iDb = pOp->p1;
5717   assert( iDb>=0 && iDb<db->nDb );
5718   assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5719   /* Used to be a conditional */ {
5720     zMaster = MASTER_NAME;
5721     initData.db = db;
5722     initData.iDb = pOp->p1;
5723     initData.pzErrMsg = &p->zErrMsg;
5724     zSql = sqlite3MPrintf(db,
5725        "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5726        db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5727     if( zSql==0 ){
5728       rc = SQLITE_NOMEM_BKPT;
5729     }else{
5730       assert( db->init.busy==0 );
5731       db->init.busy = 1;
5732       initData.rc = SQLITE_OK;
5733       assert( !db->mallocFailed );
5734       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5735       if( rc==SQLITE_OK ) rc = initData.rc;
5736       sqlite3DbFreeNN(db, zSql);
5737       db->init.busy = 0;
5738     }
5739   }
5740   if( rc ){
5741     sqlite3ResetAllSchemasOfConnection(db);
5742     if( rc==SQLITE_NOMEM ){
5743       goto no_mem;
5744     }
5745     goto abort_due_to_error;
5746   }
5747   break;
5748 }
5749 
5750 #if !defined(SQLITE_OMIT_ANALYZE)
5751 /* Opcode: LoadAnalysis P1 * * * *
5752 **
5753 ** Read the sqlite_stat1 table for database P1 and load the content
5754 ** of that table into the internal index hash table.  This will cause
5755 ** the analysis to be used when preparing all subsequent queries.
5756 */
5757 case OP_LoadAnalysis: {
5758   assert( pOp->p1>=0 && pOp->p1<db->nDb );
5759   rc = sqlite3AnalysisLoad(db, pOp->p1);
5760   if( rc ) goto abort_due_to_error;
5761   break;
5762 }
5763 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5764 
5765 /* Opcode: DropTable P1 * * P4 *
5766 **
5767 ** Remove the internal (in-memory) data structures that describe
5768 ** the table named P4 in database P1.  This is called after a table
5769 ** is dropped from disk (using the Destroy opcode) in order to keep
5770 ** the internal representation of the
5771 ** schema consistent with what is on disk.
5772 */
5773 case OP_DropTable: {
5774   sqlite3VdbeIncrWriteCounter(p, 0);
5775   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5776   break;
5777 }
5778 
5779 /* Opcode: DropIndex P1 * * P4 *
5780 **
5781 ** Remove the internal (in-memory) data structures that describe
5782 ** the index named P4 in database P1.  This is called after an index
5783 ** is dropped from disk (using the Destroy opcode)
5784 ** in order to keep the internal representation of the
5785 ** schema consistent with what is on disk.
5786 */
5787 case OP_DropIndex: {
5788   sqlite3VdbeIncrWriteCounter(p, 0);
5789   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5790   break;
5791 }
5792 
5793 /* Opcode: DropTrigger P1 * * P4 *
5794 **
5795 ** Remove the internal (in-memory) data structures that describe
5796 ** the trigger named P4 in database P1.  This is called after a trigger
5797 ** is dropped from disk (using the Destroy opcode) in order to keep
5798 ** the internal representation of the
5799 ** schema consistent with what is on disk.
5800 */
5801 case OP_DropTrigger: {
5802   sqlite3VdbeIncrWriteCounter(p, 0);
5803   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5804   break;
5805 }
5806 
5807 
5808 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5809 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5810 **
5811 ** Do an analysis of the currently open database.  Store in
5812 ** register P1 the text of an error message describing any problems.
5813 ** If no problems are found, store a NULL in register P1.
5814 **
5815 ** The register P3 contains one less than the maximum number of allowed errors.
5816 ** At most reg(P3) errors will be reported.
5817 ** In other words, the analysis stops as soon as reg(P1) errors are
5818 ** seen.  Reg(P1) is updated with the number of errors remaining.
5819 **
5820 ** The root page numbers of all tables in the database are integers
5821 ** stored in P4_INTARRAY argument.
5822 **
5823 ** If P5 is not zero, the check is done on the auxiliary database
5824 ** file, not the main database file.
5825 **
5826 ** This opcode is used to implement the integrity_check pragma.
5827 */
5828 case OP_IntegrityCk: {
5829   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
5830   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
5831   int nErr;       /* Number of errors reported */
5832   char *z;        /* Text of the error report */
5833   Mem *pnErr;     /* Register keeping track of errors remaining */
5834 
5835   assert( p->bIsReader );
5836   nRoot = pOp->p2;
5837   aRoot = pOp->p4.ai;
5838   assert( nRoot>0 );
5839   assert( aRoot[0]==nRoot );
5840   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5841   pnErr = &aMem[pOp->p3];
5842   assert( (pnErr->flags & MEM_Int)!=0 );
5843   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5844   pIn1 = &aMem[pOp->p1];
5845   assert( pOp->p5<db->nDb );
5846   assert( DbMaskTest(p->btreeMask, pOp->p5) );
5847   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
5848                                  (int)pnErr->u.i+1, &nErr);
5849   sqlite3VdbeMemSetNull(pIn1);
5850   if( nErr==0 ){
5851     assert( z==0 );
5852   }else if( z==0 ){
5853     goto no_mem;
5854   }else{
5855     pnErr->u.i -= nErr-1;
5856     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5857   }
5858   UPDATE_MAX_BLOBSIZE(pIn1);
5859   sqlite3VdbeChangeEncoding(pIn1, encoding);
5860   break;
5861 }
5862 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5863 
5864 /* Opcode: RowSetAdd P1 P2 * * *
5865 ** Synopsis: rowset(P1)=r[P2]
5866 **
5867 ** Insert the integer value held by register P2 into a RowSet object
5868 ** held in register P1.
5869 **
5870 ** An assertion fails if P2 is not an integer.
5871 */
5872 case OP_RowSetAdd: {       /* in1, in2 */
5873   pIn1 = &aMem[pOp->p1];
5874   pIn2 = &aMem[pOp->p2];
5875   assert( (pIn2->flags & MEM_Int)!=0 );
5876   if( (pIn1->flags & MEM_RowSet)==0 ){
5877     sqlite3VdbeMemSetRowSet(pIn1);
5878     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5879   }
5880   sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5881   break;
5882 }
5883 
5884 /* Opcode: RowSetRead P1 P2 P3 * *
5885 ** Synopsis: r[P3]=rowset(P1)
5886 **
5887 ** Extract the smallest value from the RowSet object in P1
5888 ** and put that value into register P3.
5889 ** Or, if RowSet object P1 is initially empty, leave P3
5890 ** unchanged and jump to instruction P2.
5891 */
5892 case OP_RowSetRead: {       /* jump, in1, out3 */
5893   i64 val;
5894 
5895   pIn1 = &aMem[pOp->p1];
5896   if( (pIn1->flags & MEM_RowSet)==0
5897    || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5898   ){
5899     /* The boolean index is empty */
5900     sqlite3VdbeMemSetNull(pIn1);
5901     VdbeBranchTaken(1,2);
5902     goto jump_to_p2_and_check_for_interrupt;
5903   }else{
5904     /* A value was pulled from the index */
5905     VdbeBranchTaken(0,2);
5906     sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5907   }
5908   goto check_for_interrupt;
5909 }
5910 
5911 /* Opcode: RowSetTest P1 P2 P3 P4
5912 ** Synopsis: if r[P3] in rowset(P1) goto P2
5913 **
5914 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5915 ** contains a RowSet object and that RowSet object contains
5916 ** the value held in P3, jump to register P2. Otherwise, insert the
5917 ** integer in P3 into the RowSet and continue on to the
5918 ** next opcode.
5919 **
5920 ** The RowSet object is optimized for the case where sets of integers
5921 ** are inserted in distinct phases, which each set contains no duplicates.
5922 ** Each set is identified by a unique P4 value. The first set
5923 ** must have P4==0, the final set must have P4==-1, and for all other sets
5924 ** must have P4>0.
5925 **
5926 ** This allows optimizations: (a) when P4==0 there is no need to test
5927 ** the RowSet object for P3, as it is guaranteed not to contain it,
5928 ** (b) when P4==-1 there is no need to insert the value, as it will
5929 ** never be tested for, and (c) when a value that is part of set X is
5930 ** inserted, there is no need to search to see if the same value was
5931 ** previously inserted as part of set X (only if it was previously
5932 ** inserted as part of some other set).
5933 */
5934 case OP_RowSetTest: {                     /* jump, in1, in3 */
5935   int iSet;
5936   int exists;
5937 
5938   pIn1 = &aMem[pOp->p1];
5939   pIn3 = &aMem[pOp->p3];
5940   iSet = pOp->p4.i;
5941   assert( pIn3->flags&MEM_Int );
5942 
5943   /* If there is anything other than a rowset object in memory cell P1,
5944   ** delete it now and initialize P1 with an empty rowset
5945   */
5946   if( (pIn1->flags & MEM_RowSet)==0 ){
5947     sqlite3VdbeMemSetRowSet(pIn1);
5948     if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5949   }
5950 
5951   assert( pOp->p4type==P4_INT32 );
5952   assert( iSet==-1 || iSet>=0 );
5953   if( iSet ){
5954     exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5955     VdbeBranchTaken(exists!=0,2);
5956     if( exists ) goto jump_to_p2;
5957   }
5958   if( iSet>=0 ){
5959     sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5960   }
5961   break;
5962 }
5963 
5964 
5965 #ifndef SQLITE_OMIT_TRIGGER
5966 
5967 /* Opcode: Program P1 P2 P3 P4 P5
5968 **
5969 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5970 **
5971 ** P1 contains the address of the memory cell that contains the first memory
5972 ** cell in an array of values used as arguments to the sub-program. P2
5973 ** contains the address to jump to if the sub-program throws an IGNORE
5974 ** exception using the RAISE() function. Register P3 contains the address
5975 ** of a memory cell in this (the parent) VM that is used to allocate the
5976 ** memory required by the sub-vdbe at runtime.
5977 **
5978 ** P4 is a pointer to the VM containing the trigger program.
5979 **
5980 ** If P5 is non-zero, then recursive program invocation is enabled.
5981 */
5982 case OP_Program: {        /* jump */
5983   int nMem;               /* Number of memory registers for sub-program */
5984   int nByte;              /* Bytes of runtime space required for sub-program */
5985   Mem *pRt;               /* Register to allocate runtime space */
5986   Mem *pMem;              /* Used to iterate through memory cells */
5987   Mem *pEnd;              /* Last memory cell in new array */
5988   VdbeFrame *pFrame;      /* New vdbe frame to execute in */
5989   SubProgram *pProgram;   /* Sub-program to execute */
5990   void *t;                /* Token identifying trigger */
5991 
5992   pProgram = pOp->p4.pProgram;
5993   pRt = &aMem[pOp->p3];
5994   assert( pProgram->nOp>0 );
5995 
5996   /* If the p5 flag is clear, then recursive invocation of triggers is
5997   ** disabled for backwards compatibility (p5 is set if this sub-program
5998   ** is really a trigger, not a foreign key action, and the flag set
5999   ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6000   **
6001   ** It is recursive invocation of triggers, at the SQL level, that is
6002   ** disabled. In some cases a single trigger may generate more than one
6003   ** SubProgram (if the trigger may be executed with more than one different
6004   ** ON CONFLICT algorithm). SubProgram structures associated with a
6005   ** single trigger all have the same value for the SubProgram.token
6006   ** variable.  */
6007   if( pOp->p5 ){
6008     t = pProgram->token;
6009     for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6010     if( pFrame ) break;
6011   }
6012 
6013   if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6014     rc = SQLITE_ERROR;
6015     sqlite3VdbeError(p, "too many levels of trigger recursion");
6016     goto abort_due_to_error;
6017   }
6018 
6019   /* Register pRt is used to store the memory required to save the state
6020   ** of the current program, and the memory required at runtime to execute
6021   ** the trigger program. If this trigger has been fired before, then pRt
6022   ** is already allocated. Otherwise, it must be initialized.  */
6023   if( (pRt->flags&MEM_Frame)==0 ){
6024     /* SubProgram.nMem is set to the number of memory cells used by the
6025     ** program stored in SubProgram.aOp. As well as these, one memory
6026     ** cell is required for each cursor used by the program. Set local
6027     ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
6028     */
6029     nMem = pProgram->nMem + pProgram->nCsr;
6030     assert( nMem>0 );
6031     if( pProgram->nCsr==0 ) nMem++;
6032     nByte = ROUND8(sizeof(VdbeFrame))
6033               + nMem * sizeof(Mem)
6034               + pProgram->nCsr * sizeof(VdbeCursor*)
6035               + (pProgram->nOp + 7)/8;
6036     pFrame = sqlite3DbMallocZero(db, nByte);
6037     if( !pFrame ){
6038       goto no_mem;
6039     }
6040     sqlite3VdbeMemRelease(pRt);
6041     pRt->flags = MEM_Frame;
6042     pRt->u.pFrame = pFrame;
6043 
6044     pFrame->v = p;
6045     pFrame->nChildMem = nMem;
6046     pFrame->nChildCsr = pProgram->nCsr;
6047     pFrame->pc = (int)(pOp - aOp);
6048     pFrame->aMem = p->aMem;
6049     pFrame->nMem = p->nMem;
6050     pFrame->apCsr = p->apCsr;
6051     pFrame->nCursor = p->nCursor;
6052     pFrame->aOp = p->aOp;
6053     pFrame->nOp = p->nOp;
6054     pFrame->token = pProgram->token;
6055 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6056     pFrame->anExec = p->anExec;
6057 #endif
6058 
6059     pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
6060     for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
6061       pMem->flags = MEM_Undefined;
6062       pMem->db = db;
6063     }
6064   }else{
6065     pFrame = pRt->u.pFrame;
6066     assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6067         || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
6068     assert( pProgram->nCsr==pFrame->nChildCsr );
6069     assert( (int)(pOp - aOp)==pFrame->pc );
6070   }
6071 
6072   p->nFrame++;
6073   pFrame->pParent = p->pFrame;
6074   pFrame->lastRowid = db->lastRowid;
6075   pFrame->nChange = p->nChange;
6076   pFrame->nDbChange = p->db->nChange;
6077   assert( pFrame->pAuxData==0 );
6078   pFrame->pAuxData = p->pAuxData;
6079   p->pAuxData = 0;
6080   p->nChange = 0;
6081   p->pFrame = pFrame;
6082   p->aMem = aMem = VdbeFrameMem(pFrame);
6083   p->nMem = pFrame->nChildMem;
6084   p->nCursor = (u16)pFrame->nChildCsr;
6085   p->apCsr = (VdbeCursor **)&aMem[p->nMem];
6086   pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
6087   memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
6088   p->aOp = aOp = pProgram->aOp;
6089   p->nOp = pProgram->nOp;
6090 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
6091   p->anExec = 0;
6092 #endif
6093   pOp = &aOp[-1];
6094 
6095   break;
6096 }
6097 
6098 /* Opcode: Param P1 P2 * * *
6099 **
6100 ** This opcode is only ever present in sub-programs called via the
6101 ** OP_Program instruction. Copy a value currently stored in a memory
6102 ** cell of the calling (parent) frame to cell P2 in the current frames
6103 ** address space. This is used by trigger programs to access the new.*
6104 ** and old.* values.
6105 **
6106 ** The address of the cell in the parent frame is determined by adding
6107 ** the value of the P1 argument to the value of the P1 argument to the
6108 ** calling OP_Program instruction.
6109 */
6110 case OP_Param: {           /* out2 */
6111   VdbeFrame *pFrame;
6112   Mem *pIn;
6113   pOut = out2Prerelease(p, pOp);
6114   pFrame = p->pFrame;
6115   pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
6116   sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6117   break;
6118 }
6119 
6120 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6121 
6122 #ifndef SQLITE_OMIT_FOREIGN_KEY
6123 /* Opcode: FkCounter P1 P2 * * *
6124 ** Synopsis: fkctr[P1]+=P2
6125 **
6126 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6127 ** If P1 is non-zero, the database constraint counter is incremented
6128 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6129 ** statement counter is incremented (immediate foreign key constraints).
6130 */
6131 case OP_FkCounter: {
6132   if( db->flags & SQLITE_DeferFKs ){
6133     db->nDeferredImmCons += pOp->p2;
6134   }else if( pOp->p1 ){
6135     db->nDeferredCons += pOp->p2;
6136   }else{
6137     p->nFkConstraint += pOp->p2;
6138   }
6139   break;
6140 }
6141 
6142 /* Opcode: FkIfZero P1 P2 * * *
6143 ** Synopsis: if fkctr[P1]==0 goto P2
6144 **
6145 ** This opcode tests if a foreign key constraint-counter is currently zero.
6146 ** If so, jump to instruction P2. Otherwise, fall through to the next
6147 ** instruction.
6148 **
6149 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6150 ** is zero (the one that counts deferred constraint violations). If P1 is
6151 ** zero, the jump is taken if the statement constraint-counter is zero
6152 ** (immediate foreign key constraint violations).
6153 */
6154 case OP_FkIfZero: {         /* jump */
6155   if( pOp->p1 ){
6156     VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
6157     if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6158   }else{
6159     VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
6160     if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
6161   }
6162   break;
6163 }
6164 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6165 
6166 #ifndef SQLITE_OMIT_AUTOINCREMENT
6167 /* Opcode: MemMax P1 P2 * * *
6168 ** Synopsis: r[P1]=max(r[P1],r[P2])
6169 **
6170 ** P1 is a register in the root frame of this VM (the root frame is
6171 ** different from the current frame if this instruction is being executed
6172 ** within a sub-program). Set the value of register P1 to the maximum of
6173 ** its current value and the value in register P2.
6174 **
6175 ** This instruction throws an error if the memory cell is not initially
6176 ** an integer.
6177 */
6178 case OP_MemMax: {        /* in2 */
6179   VdbeFrame *pFrame;
6180   if( p->pFrame ){
6181     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6182     pIn1 = &pFrame->aMem[pOp->p1];
6183   }else{
6184     pIn1 = &aMem[pOp->p1];
6185   }
6186   assert( memIsValid(pIn1) );
6187   sqlite3VdbeMemIntegerify(pIn1);
6188   pIn2 = &aMem[pOp->p2];
6189   sqlite3VdbeMemIntegerify(pIn2);
6190   if( pIn1->u.i<pIn2->u.i){
6191     pIn1->u.i = pIn2->u.i;
6192   }
6193   break;
6194 }
6195 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6196 
6197 /* Opcode: IfPos P1 P2 P3 * *
6198 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6199 **
6200 ** Register P1 must contain an integer.
6201 ** If the value of register P1 is 1 or greater, subtract P3 from the
6202 ** value in P1 and jump to P2.
6203 **
6204 ** If the initial value of register P1 is less than 1, then the
6205 ** value is unchanged and control passes through to the next instruction.
6206 */
6207 case OP_IfPos: {        /* jump, in1 */
6208   pIn1 = &aMem[pOp->p1];
6209   assert( pIn1->flags&MEM_Int );
6210   VdbeBranchTaken( pIn1->u.i>0, 2);
6211   if( pIn1->u.i>0 ){
6212     pIn1->u.i -= pOp->p3;
6213     goto jump_to_p2;
6214   }
6215   break;
6216 }
6217 
6218 /* Opcode: OffsetLimit P1 P2 P3 * *
6219 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6220 **
6221 ** This opcode performs a commonly used computation associated with
6222 ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
6223 ** holds the offset counter.  The opcode computes the combined value
6224 ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
6225 ** value computed is the total number of rows that will need to be
6226 ** visited in order to complete the query.
6227 **
6228 ** If r[P3] is zero or negative, that means there is no OFFSET
6229 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6230 **
6231 ** if r[P1] is zero or negative, that means there is no LIMIT
6232 ** and r[P2] is set to -1.
6233 **
6234 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6235 */
6236 case OP_OffsetLimit: {    /* in1, out2, in3 */
6237   i64 x;
6238   pIn1 = &aMem[pOp->p1];
6239   pIn3 = &aMem[pOp->p3];
6240   pOut = out2Prerelease(p, pOp);
6241   assert( pIn1->flags & MEM_Int );
6242   assert( pIn3->flags & MEM_Int );
6243   x = pIn1->u.i;
6244   if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6245     /* If the LIMIT is less than or equal to zero, loop forever.  This
6246     ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
6247     ** also loop forever.  This is undocumented.  In fact, one could argue
6248     ** that the loop should terminate.  But assuming 1 billion iterations
6249     ** per second (far exceeding the capabilities of any current hardware)
6250     ** it would take nearly 300 years to actually reach the limit.  So
6251     ** looping forever is a reasonable approximation. */
6252     pOut->u.i = -1;
6253   }else{
6254     pOut->u.i = x;
6255   }
6256   break;
6257 }
6258 
6259 /* Opcode: IfNotZero P1 P2 * * *
6260 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6261 **
6262 ** Register P1 must contain an integer.  If the content of register P1 is
6263 ** initially greater than zero, then decrement the value in register P1.
6264 ** If it is non-zero (negative or positive) and then also jump to P2.
6265 ** If register P1 is initially zero, leave it unchanged and fall through.
6266 */
6267 case OP_IfNotZero: {        /* jump, in1 */
6268   pIn1 = &aMem[pOp->p1];
6269   assert( pIn1->flags&MEM_Int );
6270   VdbeBranchTaken(pIn1->u.i<0, 2);
6271   if( pIn1->u.i ){
6272      if( pIn1->u.i>0 ) pIn1->u.i--;
6273      goto jump_to_p2;
6274   }
6275   break;
6276 }
6277 
6278 /* Opcode: DecrJumpZero P1 P2 * * *
6279 ** Synopsis: if (--r[P1])==0 goto P2
6280 **
6281 ** Register P1 must hold an integer.  Decrement the value in P1
6282 ** and jump to P2 if the new value is exactly zero.
6283 */
6284 case OP_DecrJumpZero: {      /* jump, in1 */
6285   pIn1 = &aMem[pOp->p1];
6286   assert( pIn1->flags&MEM_Int );
6287   if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6288   VdbeBranchTaken(pIn1->u.i==0, 2);
6289   if( pIn1->u.i==0 ) goto jump_to_p2;
6290   break;
6291 }
6292 
6293 
6294 /* Opcode: AggStep * P2 P3 P4 P5
6295 ** Synopsis: accum=r[P3] step(r[P2@P5])
6296 **
6297 ** Execute the xStep function for an aggregate.
6298 ** The function has P5 arguments.  P4 is a pointer to the
6299 ** FuncDef structure that specifies the function.  Register P3 is the
6300 ** accumulator.
6301 **
6302 ** The P5 arguments are taken from register P2 and its
6303 ** successors.
6304 */
6305 /* Opcode: AggInverse * P2 P3 P4 P5
6306 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
6307 **
6308 ** Execute the xInverse function for an aggregate.
6309 ** The function has P5 arguments.  P4 is a pointer to the
6310 ** FuncDef structure that specifies the function.  Register P3 is the
6311 ** accumulator.
6312 **
6313 ** The P5 arguments are taken from register P2 and its
6314 ** successors.
6315 */
6316 /* Opcode: AggStep1 P1 P2 P3 P4 P5
6317 ** Synopsis: accum=r[P3] step(r[P2@P5])
6318 **
6319 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
6320 ** aggregate.  The function has P5 arguments.  P4 is a pointer to the
6321 ** FuncDef structure that specifies the function.  Register P3 is the
6322 ** accumulator.
6323 **
6324 ** The P5 arguments are taken from register P2 and its
6325 ** successors.
6326 **
6327 ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
6328 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6329 ** the opcode is changed.  In this way, the initialization of the
6330 ** sqlite3_context only happens once, instead of on each call to the
6331 ** step function.
6332 */
6333 case OP_AggInverse:
6334 case OP_AggStep: {
6335   int n;
6336   sqlite3_context *pCtx;
6337 
6338   assert( pOp->p4type==P4_FUNCDEF );
6339   n = pOp->p5;
6340   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6341   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6342   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6343   pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6344                (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
6345   if( pCtx==0 ) goto no_mem;
6346   pCtx->pMem = 0;
6347   pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6348   sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
6349   pCtx->pFunc = pOp->p4.pFunc;
6350   pCtx->iOp = (int)(pOp - aOp);
6351   pCtx->pVdbe = p;
6352   pCtx->skipFlag = 0;
6353   pCtx->isError = 0;
6354   pCtx->argc = n;
6355   pOp->p4type = P4_FUNCCTX;
6356   pOp->p4.pCtx = pCtx;
6357 
6358   /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
6359   assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
6360 
6361   pOp->opcode = OP_AggStep1;
6362   /* Fall through into OP_AggStep */
6363 }
6364 case OP_AggStep1: {
6365   int i;
6366   sqlite3_context *pCtx;
6367   Mem *pMem;
6368 
6369   assert( pOp->p4type==P4_FUNCCTX );
6370   pCtx = pOp->p4.pCtx;
6371   pMem = &aMem[pOp->p3];
6372 
6373 #ifdef SQLITE_DEBUG
6374   if( pOp->p1 ){
6375     /* This is an OP_AggInverse call.  Verify that xStep has always
6376     ** been called at least once prior to any xInverse call. */
6377     assert( pMem->uTemp==0x1122e0e3 );
6378   }else{
6379     /* This is an OP_AggStep call.  Mark it as such. */
6380     pMem->uTemp = 0x1122e0e3;
6381   }
6382 #endif
6383 
6384   /* If this function is inside of a trigger, the register array in aMem[]
6385   ** might change from one evaluation to the next.  The next block of code
6386   ** checks to see if the register array has changed, and if so it
6387   ** reinitializes the relavant parts of the sqlite3_context object */
6388   if( pCtx->pMem != pMem ){
6389     pCtx->pMem = pMem;
6390     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6391   }
6392 
6393 #ifdef SQLITE_DEBUG
6394   for(i=0; i<pCtx->argc; i++){
6395     assert( memIsValid(pCtx->argv[i]) );
6396     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6397   }
6398 #endif
6399 
6400   pMem->n++;
6401   assert( pCtx->pOut->flags==MEM_Null );
6402   assert( pCtx->isError==0 );
6403   assert( pCtx->skipFlag==0 );
6404 #ifndef SQLITE_OMIT_WINDOWFUNC
6405   if( pOp->p1 ){
6406     (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
6407   }else
6408 #endif
6409   (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6410 
6411   if( pCtx->isError ){
6412     if( pCtx->isError>0 ){
6413       sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
6414       rc = pCtx->isError;
6415     }
6416     if( pCtx->skipFlag ){
6417       assert( pOp[-1].opcode==OP_CollSeq );
6418       i = pOp[-1].p1;
6419       if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6420       pCtx->skipFlag = 0;
6421     }
6422     sqlite3VdbeMemRelease(pCtx->pOut);
6423     pCtx->pOut->flags = MEM_Null;
6424     pCtx->isError = 0;
6425     if( rc ) goto abort_due_to_error;
6426   }
6427   assert( pCtx->pOut->flags==MEM_Null );
6428   assert( pCtx->skipFlag==0 );
6429   break;
6430 }
6431 
6432 /* Opcode: AggFinal P1 P2 * P4 *
6433 ** Synopsis: accum=r[P1] N=P2
6434 **
6435 ** P1 is the memory location that is the accumulator for an aggregate
6436 ** or window function.  Execute the finalizer function
6437 ** for an aggregate and store the result in P1.
6438 **
6439 ** P2 is the number of arguments that the step function takes and
6440 ** P4 is a pointer to the FuncDef for this function.  The P2
6441 ** argument is not used by this opcode.  It is only there to disambiguate
6442 ** functions that can take varying numbers of arguments.  The
6443 ** P4 argument is only needed for the case where
6444 ** the step function was not previously called.
6445 */
6446 /* Opcode: AggValue * P2 P3 P4 *
6447 ** Synopsis: r[P3]=value N=P2
6448 **
6449 ** Invoke the xValue() function and store the result in register P3.
6450 **
6451 ** P2 is the number of arguments that the step function takes and
6452 ** P4 is a pointer to the FuncDef for this function.  The P2
6453 ** argument is not used by this opcode.  It is only there to disambiguate
6454 ** functions that can take varying numbers of arguments.  The
6455 ** P4 argument is only needed for the case where
6456 ** the step function was not previously called.
6457 */
6458 case OP_AggValue:
6459 case OP_AggFinal: {
6460   Mem *pMem;
6461   assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6462   assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
6463   pMem = &aMem[pOp->p1];
6464   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6465 #ifndef SQLITE_OMIT_WINDOWFUNC
6466   if( pOp->p3 ){
6467     rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
6468     pMem = &aMem[pOp->p3];
6469   }else
6470 #endif
6471   {
6472     rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6473   }
6474 
6475   if( rc ){
6476     sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6477     goto abort_due_to_error;
6478   }
6479   sqlite3VdbeChangeEncoding(pMem, encoding);
6480   UPDATE_MAX_BLOBSIZE(pMem);
6481   if( sqlite3VdbeMemTooBig(pMem) ){
6482     goto too_big;
6483   }
6484   break;
6485 }
6486 
6487 #ifndef SQLITE_OMIT_WAL
6488 /* Opcode: Checkpoint P1 P2 P3 * *
6489 **
6490 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6491 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6492 ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
6493 ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
6494 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6495 ** in the WAL that have been checkpointed after the checkpoint
6496 ** completes into mem[P3+2].  However on an error, mem[P3+1] and
6497 ** mem[P3+2] are initialized to -1.
6498 */
6499 case OP_Checkpoint: {
6500   int i;                          /* Loop counter */
6501   int aRes[3];                    /* Results */
6502   Mem *pMem;                      /* Write results here */
6503 
6504   assert( p->readOnly==0 );
6505   aRes[0] = 0;
6506   aRes[1] = aRes[2] = -1;
6507   assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6508        || pOp->p2==SQLITE_CHECKPOINT_FULL
6509        || pOp->p2==SQLITE_CHECKPOINT_RESTART
6510        || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6511   );
6512   rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6513   if( rc ){
6514     if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6515     rc = SQLITE_OK;
6516     aRes[0] = 1;
6517   }
6518   for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6519     sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6520   }
6521   break;
6522 };
6523 #endif
6524 
6525 #ifndef SQLITE_OMIT_PRAGMA
6526 /* Opcode: JournalMode P1 P2 P3 * *
6527 **
6528 ** Change the journal mode of database P1 to P3. P3 must be one of the
6529 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6530 ** modes (delete, truncate, persist, off and memory), this is a simple
6531 ** operation. No IO is required.
6532 **
6533 ** If changing into or out of WAL mode the procedure is more complicated.
6534 **
6535 ** Write a string containing the final journal-mode to register P2.
6536 */
6537 case OP_JournalMode: {    /* out2 */
6538   Btree *pBt;                     /* Btree to change journal mode of */
6539   Pager *pPager;                  /* Pager associated with pBt */
6540   int eNew;                       /* New journal mode */
6541   int eOld;                       /* The old journal mode */
6542 #ifndef SQLITE_OMIT_WAL
6543   const char *zFilename;          /* Name of database file for pPager */
6544 #endif
6545 
6546   pOut = out2Prerelease(p, pOp);
6547   eNew = pOp->p3;
6548   assert( eNew==PAGER_JOURNALMODE_DELETE
6549        || eNew==PAGER_JOURNALMODE_TRUNCATE
6550        || eNew==PAGER_JOURNALMODE_PERSIST
6551        || eNew==PAGER_JOURNALMODE_OFF
6552        || eNew==PAGER_JOURNALMODE_MEMORY
6553        || eNew==PAGER_JOURNALMODE_WAL
6554        || eNew==PAGER_JOURNALMODE_QUERY
6555   );
6556   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6557   assert( p->readOnly==0 );
6558 
6559   pBt = db->aDb[pOp->p1].pBt;
6560   pPager = sqlite3BtreePager(pBt);
6561   eOld = sqlite3PagerGetJournalMode(pPager);
6562   if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6563   if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6564 
6565 #ifndef SQLITE_OMIT_WAL
6566   zFilename = sqlite3PagerFilename(pPager, 1);
6567 
6568   /* Do not allow a transition to journal_mode=WAL for a database
6569   ** in temporary storage or if the VFS does not support shared memory
6570   */
6571   if( eNew==PAGER_JOURNALMODE_WAL
6572    && (sqlite3Strlen30(zFilename)==0           /* Temp file */
6573        || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
6574   ){
6575     eNew = eOld;
6576   }
6577 
6578   if( (eNew!=eOld)
6579    && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6580   ){
6581     if( !db->autoCommit || db->nVdbeRead>1 ){
6582       rc = SQLITE_ERROR;
6583       sqlite3VdbeError(p,
6584           "cannot change %s wal mode from within a transaction",
6585           (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6586       );
6587       goto abort_due_to_error;
6588     }else{
6589 
6590       if( eOld==PAGER_JOURNALMODE_WAL ){
6591         /* If leaving WAL mode, close the log file. If successful, the call
6592         ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6593         ** file. An EXCLUSIVE lock may still be held on the database file
6594         ** after a successful return.
6595         */
6596         rc = sqlite3PagerCloseWal(pPager, db);
6597         if( rc==SQLITE_OK ){
6598           sqlite3PagerSetJournalMode(pPager, eNew);
6599         }
6600       }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6601         /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
6602         ** as an intermediate */
6603         sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6604       }
6605 
6606       /* Open a transaction on the database file. Regardless of the journal
6607       ** mode, this transaction always uses a rollback journal.
6608       */
6609       assert( sqlite3BtreeIsInTrans(pBt)==0 );
6610       if( rc==SQLITE_OK ){
6611         rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6612       }
6613     }
6614   }
6615 #endif /* ifndef SQLITE_OMIT_WAL */
6616 
6617   if( rc ) eNew = eOld;
6618   eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6619 
6620   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6621   pOut->z = (char *)sqlite3JournalModename(eNew);
6622   pOut->n = sqlite3Strlen30(pOut->z);
6623   pOut->enc = SQLITE_UTF8;
6624   sqlite3VdbeChangeEncoding(pOut, encoding);
6625   if( rc ) goto abort_due_to_error;
6626   break;
6627 };
6628 #endif /* SQLITE_OMIT_PRAGMA */
6629 
6630 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6631 /* Opcode: Vacuum P1 * * * *
6632 **
6633 ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
6634 ** for an attached database.  The "temp" database may not be vacuumed.
6635 */
6636 case OP_Vacuum: {
6637   assert( p->readOnly==0 );
6638   rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6639   if( rc ) goto abort_due_to_error;
6640   break;
6641 }
6642 #endif
6643 
6644 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6645 /* Opcode: IncrVacuum P1 P2 * * *
6646 **
6647 ** Perform a single step of the incremental vacuum procedure on
6648 ** the P1 database. If the vacuum has finished, jump to instruction
6649 ** P2. Otherwise, fall through to the next instruction.
6650 */
6651 case OP_IncrVacuum: {        /* jump */
6652   Btree *pBt;
6653 
6654   assert( pOp->p1>=0 && pOp->p1<db->nDb );
6655   assert( DbMaskTest(p->btreeMask, pOp->p1) );
6656   assert( p->readOnly==0 );
6657   pBt = db->aDb[pOp->p1].pBt;
6658   rc = sqlite3BtreeIncrVacuum(pBt);
6659   VdbeBranchTaken(rc==SQLITE_DONE,2);
6660   if( rc ){
6661     if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6662     rc = SQLITE_OK;
6663     goto jump_to_p2;
6664   }
6665   break;
6666 }
6667 #endif
6668 
6669 /* Opcode: Expire P1 * * * *
6670 **
6671 ** Cause precompiled statements to expire.  When an expired statement
6672 ** is executed using sqlite3_step() it will either automatically
6673 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6674 ** or it will fail with SQLITE_SCHEMA.
6675 **
6676 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6677 ** then only the currently executing statement is expired.
6678 */
6679 case OP_Expire: {
6680   if( !pOp->p1 ){
6681     sqlite3ExpirePreparedStatements(db);
6682   }else{
6683     p->expired = 1;
6684   }
6685   break;
6686 }
6687 
6688 #ifndef SQLITE_OMIT_SHARED_CACHE
6689 /* Opcode: TableLock P1 P2 P3 P4 *
6690 ** Synopsis: iDb=P1 root=P2 write=P3
6691 **
6692 ** Obtain a lock on a particular table. This instruction is only used when
6693 ** the shared-cache feature is enabled.
6694 **
6695 ** P1 is the index of the database in sqlite3.aDb[] of the database
6696 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
6697 ** a write lock if P3==1.
6698 **
6699 ** P2 contains the root-page of the table to lock.
6700 **
6701 ** P4 contains a pointer to the name of the table being locked. This is only
6702 ** used to generate an error message if the lock cannot be obtained.
6703 */
6704 case OP_TableLock: {
6705   u8 isWriteLock = (u8)pOp->p3;
6706   if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
6707     int p1 = pOp->p1;
6708     assert( p1>=0 && p1<db->nDb );
6709     assert( DbMaskTest(p->btreeMask, p1) );
6710     assert( isWriteLock==0 || isWriteLock==1 );
6711     rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6712     if( rc ){
6713       if( (rc&0xFF)==SQLITE_LOCKED ){
6714         const char *z = pOp->p4.z;
6715         sqlite3VdbeError(p, "database table is locked: %s", z);
6716       }
6717       goto abort_due_to_error;
6718     }
6719   }
6720   break;
6721 }
6722 #endif /* SQLITE_OMIT_SHARED_CACHE */
6723 
6724 #ifndef SQLITE_OMIT_VIRTUALTABLE
6725 /* Opcode: VBegin * * * P4 *
6726 **
6727 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6728 ** xBegin method for that table.
6729 **
6730 ** Also, whether or not P4 is set, check that this is not being called from
6731 ** within a callback to a virtual table xSync() method. If it is, the error
6732 ** code will be set to SQLITE_LOCKED.
6733 */
6734 case OP_VBegin: {
6735   VTable *pVTab;
6736   pVTab = pOp->p4.pVtab;
6737   rc = sqlite3VtabBegin(db, pVTab);
6738   if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6739   if( rc ) goto abort_due_to_error;
6740   break;
6741 }
6742 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6743 
6744 #ifndef SQLITE_OMIT_VIRTUALTABLE
6745 /* Opcode: VCreate P1 P2 * * *
6746 **
6747 ** P2 is a register that holds the name of a virtual table in database
6748 ** P1. Call the xCreate method for that table.
6749 */
6750 case OP_VCreate: {
6751   Mem sMem;          /* For storing the record being decoded */
6752   const char *zTab;  /* Name of the virtual table */
6753 
6754   memset(&sMem, 0, sizeof(sMem));
6755   sMem.db = db;
6756   /* Because P2 is always a static string, it is impossible for the
6757   ** sqlite3VdbeMemCopy() to fail */
6758   assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6759   assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6760   rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6761   assert( rc==SQLITE_OK );
6762   zTab = (const char*)sqlite3_value_text(&sMem);
6763   assert( zTab || db->mallocFailed );
6764   if( zTab ){
6765     rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6766   }
6767   sqlite3VdbeMemRelease(&sMem);
6768   if( rc ) goto abort_due_to_error;
6769   break;
6770 }
6771 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6772 
6773 #ifndef SQLITE_OMIT_VIRTUALTABLE
6774 /* Opcode: VDestroy P1 * * P4 *
6775 **
6776 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
6777 ** of that table.
6778 */
6779 case OP_VDestroy: {
6780   db->nVDestroy++;
6781   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6782   db->nVDestroy--;
6783   if( rc ) goto abort_due_to_error;
6784   break;
6785 }
6786 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6787 
6788 #ifndef SQLITE_OMIT_VIRTUALTABLE
6789 /* Opcode: VOpen P1 * * P4 *
6790 **
6791 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6792 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
6793 ** table and stores that cursor in P1.
6794 */
6795 case OP_VOpen: {
6796   VdbeCursor *pCur;
6797   sqlite3_vtab_cursor *pVCur;
6798   sqlite3_vtab *pVtab;
6799   const sqlite3_module *pModule;
6800 
6801   assert( p->bIsReader );
6802   pCur = 0;
6803   pVCur = 0;
6804   pVtab = pOp->p4.pVtab->pVtab;
6805   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6806     rc = SQLITE_LOCKED;
6807     goto abort_due_to_error;
6808   }
6809   pModule = pVtab->pModule;
6810   rc = pModule->xOpen(pVtab, &pVCur);
6811   sqlite3VtabImportErrmsg(p, pVtab);
6812   if( rc ) goto abort_due_to_error;
6813 
6814   /* Initialize sqlite3_vtab_cursor base class */
6815   pVCur->pVtab = pVtab;
6816 
6817   /* Initialize vdbe cursor object */
6818   pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6819   if( pCur ){
6820     pCur->uc.pVCur = pVCur;
6821     pVtab->nRef++;
6822   }else{
6823     assert( db->mallocFailed );
6824     pModule->xClose(pVCur);
6825     goto no_mem;
6826   }
6827   break;
6828 }
6829 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6830 
6831 #ifndef SQLITE_OMIT_VIRTUALTABLE
6832 /* Opcode: VFilter P1 P2 P3 P4 *
6833 ** Synopsis: iplan=r[P3] zplan='P4'
6834 **
6835 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
6836 ** the filtered result set is empty.
6837 **
6838 ** P4 is either NULL or a string that was generated by the xBestIndex
6839 ** method of the module.  The interpretation of the P4 string is left
6840 ** to the module implementation.
6841 **
6842 ** This opcode invokes the xFilter method on the virtual table specified
6843 ** by P1.  The integer query plan parameter to xFilter is stored in register
6844 ** P3. Register P3+1 stores the argc parameter to be passed to the
6845 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6846 ** additional parameters which are passed to
6847 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6848 **
6849 ** A jump is made to P2 if the result set after filtering would be empty.
6850 */
6851 case OP_VFilter: {   /* jump */
6852   int nArg;
6853   int iQuery;
6854   const sqlite3_module *pModule;
6855   Mem *pQuery;
6856   Mem *pArgc;
6857   sqlite3_vtab_cursor *pVCur;
6858   sqlite3_vtab *pVtab;
6859   VdbeCursor *pCur;
6860   int res;
6861   int i;
6862   Mem **apArg;
6863 
6864   pQuery = &aMem[pOp->p3];
6865   pArgc = &pQuery[1];
6866   pCur = p->apCsr[pOp->p1];
6867   assert( memIsValid(pQuery) );
6868   REGISTER_TRACE(pOp->p3, pQuery);
6869   assert( pCur->eCurType==CURTYPE_VTAB );
6870   pVCur = pCur->uc.pVCur;
6871   pVtab = pVCur->pVtab;
6872   pModule = pVtab->pModule;
6873 
6874   /* Grab the index number and argc parameters */
6875   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6876   nArg = (int)pArgc->u.i;
6877   iQuery = (int)pQuery->u.i;
6878 
6879   /* Invoke the xFilter method */
6880   res = 0;
6881   apArg = p->apArg;
6882   for(i = 0; i<nArg; i++){
6883     apArg[i] = &pArgc[i+1];
6884   }
6885   rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6886   sqlite3VtabImportErrmsg(p, pVtab);
6887   if( rc ) goto abort_due_to_error;
6888   res = pModule->xEof(pVCur);
6889   pCur->nullRow = 0;
6890   VdbeBranchTaken(res!=0,2);
6891   if( res ) goto jump_to_p2;
6892   break;
6893 }
6894 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6895 
6896 #ifndef SQLITE_OMIT_VIRTUALTABLE
6897 /* Opcode: VColumn P1 P2 P3 * P5
6898 ** Synopsis: r[P3]=vcolumn(P2)
6899 **
6900 ** Store in register P3 the value of the P2-th column of
6901 ** the current row of the virtual-table of cursor P1.
6902 **
6903 ** If the VColumn opcode is being used to fetch the value of
6904 ** an unchanging column during an UPDATE operation, then the P5
6905 ** value is 1.  Otherwise, P5 is 0.  The P5 value is returned
6906 ** by sqlite3_vtab_nochange() routine and can be used
6907 ** by virtual table implementations to return special "no-change"
6908 ** marks which can be more efficient, depending on the virtual table.
6909 */
6910 case OP_VColumn: {
6911   sqlite3_vtab *pVtab;
6912   const sqlite3_module *pModule;
6913   Mem *pDest;
6914   sqlite3_context sContext;
6915 
6916   VdbeCursor *pCur = p->apCsr[pOp->p1];
6917   assert( pCur->eCurType==CURTYPE_VTAB );
6918   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6919   pDest = &aMem[pOp->p3];
6920   memAboutToChange(p, pDest);
6921   if( pCur->nullRow ){
6922     sqlite3VdbeMemSetNull(pDest);
6923     break;
6924   }
6925   pVtab = pCur->uc.pVCur->pVtab;
6926   pModule = pVtab->pModule;
6927   assert( pModule->xColumn );
6928   memset(&sContext, 0, sizeof(sContext));
6929   sContext.pOut = pDest;
6930   if( pOp->p5 ){
6931     sqlite3VdbeMemSetNull(pDest);
6932     pDest->flags = MEM_Null|MEM_Zero;
6933     pDest->u.nZero = 0;
6934   }else{
6935     MemSetTypeFlag(pDest, MEM_Null);
6936   }
6937   rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6938   sqlite3VtabImportErrmsg(p, pVtab);
6939   if( sContext.isError>0 ){
6940     sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
6941     rc = sContext.isError;
6942   }
6943   sqlite3VdbeChangeEncoding(pDest, encoding);
6944   REGISTER_TRACE(pOp->p3, pDest);
6945   UPDATE_MAX_BLOBSIZE(pDest);
6946 
6947   if( sqlite3VdbeMemTooBig(pDest) ){
6948     goto too_big;
6949   }
6950   if( rc ) goto abort_due_to_error;
6951   break;
6952 }
6953 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6954 
6955 #ifndef SQLITE_OMIT_VIRTUALTABLE
6956 /* Opcode: VNext P1 P2 * * *
6957 **
6958 ** Advance virtual table P1 to the next row in its result set and
6959 ** jump to instruction P2.  Or, if the virtual table has reached
6960 ** the end of its result set, then fall through to the next instruction.
6961 */
6962 case OP_VNext: {   /* jump */
6963   sqlite3_vtab *pVtab;
6964   const sqlite3_module *pModule;
6965   int res;
6966   VdbeCursor *pCur;
6967 
6968   res = 0;
6969   pCur = p->apCsr[pOp->p1];
6970   assert( pCur->eCurType==CURTYPE_VTAB );
6971   if( pCur->nullRow ){
6972     break;
6973   }
6974   pVtab = pCur->uc.pVCur->pVtab;
6975   pModule = pVtab->pModule;
6976   assert( pModule->xNext );
6977 
6978   /* Invoke the xNext() method of the module. There is no way for the
6979   ** underlying implementation to return an error if one occurs during
6980   ** xNext(). Instead, if an error occurs, true is returned (indicating that
6981   ** data is available) and the error code returned when xColumn or
6982   ** some other method is next invoked on the save virtual table cursor.
6983   */
6984   rc = pModule->xNext(pCur->uc.pVCur);
6985   sqlite3VtabImportErrmsg(p, pVtab);
6986   if( rc ) goto abort_due_to_error;
6987   res = pModule->xEof(pCur->uc.pVCur);
6988   VdbeBranchTaken(!res,2);
6989   if( !res ){
6990     /* If there is data, jump to P2 */
6991     goto jump_to_p2_and_check_for_interrupt;
6992   }
6993   goto check_for_interrupt;
6994 }
6995 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6996 
6997 #ifndef SQLITE_OMIT_VIRTUALTABLE
6998 /* Opcode: VRename P1 * * P4 *
6999 **
7000 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7001 ** This opcode invokes the corresponding xRename method. The value
7002 ** in register P1 is passed as the zName argument to the xRename method.
7003 */
7004 case OP_VRename: {
7005   sqlite3_vtab *pVtab;
7006   Mem *pName;
7007 
7008   pVtab = pOp->p4.pVtab->pVtab;
7009   pName = &aMem[pOp->p1];
7010   assert( pVtab->pModule->xRename );
7011   assert( memIsValid(pName) );
7012   assert( p->readOnly==0 );
7013   REGISTER_TRACE(pOp->p1, pName);
7014   assert( pName->flags & MEM_Str );
7015   testcase( pName->enc==SQLITE_UTF8 );
7016   testcase( pName->enc==SQLITE_UTF16BE );
7017   testcase( pName->enc==SQLITE_UTF16LE );
7018   rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
7019   if( rc ) goto abort_due_to_error;
7020   rc = pVtab->pModule->xRename(pVtab, pName->z);
7021   sqlite3VtabImportErrmsg(p, pVtab);
7022   p->expired = 0;
7023   if( rc ) goto abort_due_to_error;
7024   break;
7025 }
7026 #endif
7027 
7028 #ifndef SQLITE_OMIT_VIRTUALTABLE
7029 /* Opcode: VUpdate P1 P2 P3 P4 P5
7030 ** Synopsis: data=r[P3@P2]
7031 **
7032 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7033 ** This opcode invokes the corresponding xUpdate method. P2 values
7034 ** are contiguous memory cells starting at P3 to pass to the xUpdate
7035 ** invocation. The value in register (P3+P2-1) corresponds to the
7036 ** p2th element of the argv array passed to xUpdate.
7037 **
7038 ** The xUpdate method will do a DELETE or an INSERT or both.
7039 ** The argv[0] element (which corresponds to memory cell P3)
7040 ** is the rowid of a row to delete.  If argv[0] is NULL then no
7041 ** deletion occurs.  The argv[1] element is the rowid of the new
7042 ** row.  This can be NULL to have the virtual table select the new
7043 ** rowid for itself.  The subsequent elements in the array are
7044 ** the values of columns in the new row.
7045 **
7046 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
7047 ** a row to delete.
7048 **
7049 ** P1 is a boolean flag. If it is set to true and the xUpdate call
7050 ** is successful, then the value returned by sqlite3_last_insert_rowid()
7051 ** is set to the value of the rowid for the row just inserted.
7052 **
7053 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
7054 ** apply in the case of a constraint failure on an insert or update.
7055 */
7056 case OP_VUpdate: {
7057   sqlite3_vtab *pVtab;
7058   const sqlite3_module *pModule;
7059   int nArg;
7060   int i;
7061   sqlite_int64 rowid;
7062   Mem **apArg;
7063   Mem *pX;
7064 
7065   assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback
7066        || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
7067   );
7068   assert( p->readOnly==0 );
7069   if( db->mallocFailed ) goto no_mem;
7070   sqlite3VdbeIncrWriteCounter(p, 0);
7071   pVtab = pOp->p4.pVtab->pVtab;
7072   if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7073     rc = SQLITE_LOCKED;
7074     goto abort_due_to_error;
7075   }
7076   pModule = pVtab->pModule;
7077   nArg = pOp->p2;
7078   assert( pOp->p4type==P4_VTAB );
7079   if( ALWAYS(pModule->xUpdate) ){
7080     u8 vtabOnConflict = db->vtabOnConflict;
7081     apArg = p->apArg;
7082     pX = &aMem[pOp->p3];
7083     for(i=0; i<nArg; i++){
7084       assert( memIsValid(pX) );
7085       memAboutToChange(p, pX);
7086       apArg[i] = pX;
7087       pX++;
7088     }
7089     db->vtabOnConflict = pOp->p5;
7090     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
7091     db->vtabOnConflict = vtabOnConflict;
7092     sqlite3VtabImportErrmsg(p, pVtab);
7093     if( rc==SQLITE_OK && pOp->p1 ){
7094       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
7095       db->lastRowid = rowid;
7096     }
7097     if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
7098       if( pOp->p5==OE_Ignore ){
7099         rc = SQLITE_OK;
7100       }else{
7101         p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
7102       }
7103     }else{
7104       p->nChange++;
7105     }
7106     if( rc ) goto abort_due_to_error;
7107   }
7108   break;
7109 }
7110 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7111 
7112 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7113 /* Opcode: Pagecount P1 P2 * * *
7114 **
7115 ** Write the current number of pages in database P1 to memory cell P2.
7116 */
7117 case OP_Pagecount: {            /* out2 */
7118   pOut = out2Prerelease(p, pOp);
7119   pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
7120   break;
7121 }
7122 #endif
7123 
7124 
7125 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
7126 /* Opcode: MaxPgcnt P1 P2 P3 * *
7127 **
7128 ** Try to set the maximum page count for database P1 to the value in P3.
7129 ** Do not let the maximum page count fall below the current page count and
7130 ** do not change the maximum page count value if P3==0.
7131 **
7132 ** Store the maximum page count after the change in register P2.
7133 */
7134 case OP_MaxPgcnt: {            /* out2 */
7135   unsigned int newMax;
7136   Btree *pBt;
7137 
7138   pOut = out2Prerelease(p, pOp);
7139   pBt = db->aDb[pOp->p1].pBt;
7140   newMax = 0;
7141   if( pOp->p3 ){
7142     newMax = sqlite3BtreeLastPage(pBt);
7143     if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
7144   }
7145   pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
7146   break;
7147 }
7148 #endif
7149 
7150 /* Opcode: Function0 P1 P2 P3 P4 P5
7151 ** Synopsis: r[P3]=func(r[P2@P5])
7152 **
7153 ** Invoke a user function (P4 is a pointer to a FuncDef object that
7154 ** defines the function) with P5 arguments taken from register P2 and
7155 ** successors.  The result of the function is stored in register P3.
7156 ** Register P3 must not be one of the function inputs.
7157 **
7158 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7159 ** function was determined to be constant at compile time. If the first
7160 ** argument was constant then bit 0 of P1 is set. This is used to determine
7161 ** whether meta data associated with a user function argument using the
7162 ** sqlite3_set_auxdata() API may be safely retained until the next
7163 ** invocation of this opcode.
7164 **
7165 ** See also: Function, AggStep, AggFinal
7166 */
7167 /* Opcode: Function P1 P2 P3 P4 P5
7168 ** Synopsis: r[P3]=func(r[P2@P5])
7169 **
7170 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7171 ** contains a pointer to the function to be run) with P5 arguments taken
7172 ** from register P2 and successors.  The result of the function is stored
7173 ** in register P3.  Register P3 must not be one of the function inputs.
7174 **
7175 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7176 ** function was determined to be constant at compile time. If the first
7177 ** argument was constant then bit 0 of P1 is set. This is used to determine
7178 ** whether meta data associated with a user function argument using the
7179 ** sqlite3_set_auxdata() API may be safely retained until the next
7180 ** invocation of this opcode.
7181 **
7182 ** SQL functions are initially coded as OP_Function0 with P4 pointing
7183 ** to a FuncDef object.  But on first evaluation, the P4 operand is
7184 ** automatically converted into an sqlite3_context object and the operation
7185 ** changed to this OP_Function opcode.  In this way, the initialization of
7186 ** the sqlite3_context object occurs only once, rather than once for each
7187 ** evaluation of the function.
7188 **
7189 ** See also: Function0, AggStep, AggFinal
7190 */
7191 case OP_PureFunc0:
7192 case OP_Function0: {
7193   int n;
7194   sqlite3_context *pCtx;
7195 
7196   assert( pOp->p4type==P4_FUNCDEF );
7197   n = pOp->p5;
7198   assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7199   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7200   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7201   pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
7202   if( pCtx==0 ) goto no_mem;
7203   pCtx->pOut = 0;
7204   pCtx->pFunc = pOp->p4.pFunc;
7205   pCtx->iOp = (int)(pOp - aOp);
7206   pCtx->pVdbe = p;
7207   pCtx->isError = 0;
7208   pCtx->argc = n;
7209   pOp->p4type = P4_FUNCCTX;
7210   pOp->p4.pCtx = pCtx;
7211   assert( OP_PureFunc == OP_PureFunc0+2 );
7212   assert( OP_Function == OP_Function0+2 );
7213   pOp->opcode += 2;
7214   /* Fall through into OP_Function */
7215 }
7216 case OP_PureFunc:
7217 case OP_Function: {
7218   int i;
7219   sqlite3_context *pCtx;
7220 
7221   assert( pOp->p4type==P4_FUNCCTX );
7222   pCtx = pOp->p4.pCtx;
7223 
7224   /* If this function is inside of a trigger, the register array in aMem[]
7225   ** might change from one evaluation to the next.  The next block of code
7226   ** checks to see if the register array has changed, and if so it
7227   ** reinitializes the relavant parts of the sqlite3_context object */
7228   pOut = &aMem[pOp->p3];
7229   if( pCtx->pOut != pOut ){
7230     pCtx->pOut = pOut;
7231     for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7232   }
7233 
7234   memAboutToChange(p, pOut);
7235 #ifdef SQLITE_DEBUG
7236   for(i=0; i<pCtx->argc; i++){
7237     assert( memIsValid(pCtx->argv[i]) );
7238     REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7239   }
7240 #endif
7241   MemSetTypeFlag(pOut, MEM_Null);
7242   assert( pCtx->isError==0 );
7243   (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7244 
7245   /* If the function returned an error, throw an exception */
7246   if( pCtx->isError ){
7247     if( pCtx->isError>0 ){
7248       sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7249       rc = pCtx->isError;
7250     }
7251     sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
7252     pCtx->isError = 0;
7253     if( rc ) goto abort_due_to_error;
7254   }
7255 
7256   /* Copy the result of the function into register P3 */
7257   if( pOut->flags & (MEM_Str|MEM_Blob) ){
7258     sqlite3VdbeChangeEncoding(pOut, encoding);
7259     if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7260   }
7261 
7262   REGISTER_TRACE(pOp->p3, pOut);
7263   UPDATE_MAX_BLOBSIZE(pOut);
7264   break;
7265 }
7266 
7267 /* Opcode: Trace P1 P2 * P4 *
7268 **
7269 ** Write P4 on the statement trace output if statement tracing is
7270 ** enabled.
7271 **
7272 ** Operand P1 must be 0x7fffffff and P2 must positive.
7273 */
7274 /* Opcode: Init P1 P2 P3 P4 *
7275 ** Synopsis: Start at P2
7276 **
7277 ** Programs contain a single instance of this opcode as the very first
7278 ** opcode.
7279 **
7280 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7281 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7282 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7283 **
7284 ** If P2 is not zero, jump to instruction P2.
7285 **
7286 ** Increment the value of P1 so that OP_Once opcodes will jump the
7287 ** first time they are evaluated for this run.
7288 **
7289 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7290 ** error is encountered.
7291 */
7292 case OP_Trace:
7293 case OP_Init: {          /* jump */
7294   int i;
7295 #ifndef SQLITE_OMIT_TRACE
7296   char *zTrace;
7297 #endif
7298 
7299   /* If the P4 argument is not NULL, then it must be an SQL comment string.
7300   ** The "--" string is broken up to prevent false-positives with srcck1.c.
7301   **
7302   ** This assert() provides evidence for:
7303   ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7304   ** would have been returned by the legacy sqlite3_trace() interface by
7305   ** using the X argument when X begins with "--" and invoking
7306   ** sqlite3_expanded_sql(P) otherwise.
7307   */
7308   assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
7309 
7310   /* OP_Init is always instruction 0 */
7311   assert( pOp==p->aOp || pOp->opcode==OP_Trace );
7312 
7313 #ifndef SQLITE_OMIT_TRACE
7314   if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
7315    && !p->doingRerun
7316    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7317   ){
7318 #ifndef SQLITE_OMIT_DEPRECATED
7319     if( db->mTrace & SQLITE_TRACE_LEGACY ){
7320       void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
7321       char *z = sqlite3VdbeExpandSql(p, zTrace);
7322       x(db->pTraceArg, z);
7323       sqlite3_free(z);
7324     }else
7325 #endif
7326     if( db->nVdbeExec>1 ){
7327       char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7328       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7329       sqlite3DbFree(db, z);
7330     }else{
7331       (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
7332     }
7333   }
7334 #ifdef SQLITE_USE_FCNTL_TRACE
7335   zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7336   if( zTrace ){
7337     int j;
7338     for(j=0; j<db->nDb; j++){
7339       if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7340       sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
7341     }
7342   }
7343 #endif /* SQLITE_USE_FCNTL_TRACE */
7344 #ifdef SQLITE_DEBUG
7345   if( (db->flags & SQLITE_SqlTrace)!=0
7346    && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7347   ){
7348     sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7349   }
7350 #endif /* SQLITE_DEBUG */
7351 #endif /* SQLITE_OMIT_TRACE */
7352   assert( pOp->p2>0 );
7353   if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
7354     if( pOp->opcode==OP_Trace ) break;
7355     for(i=1; i<p->nOp; i++){
7356       if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7357     }
7358     pOp->p1 = 0;
7359   }
7360   pOp->p1++;
7361   p->aCounter[SQLITE_STMTSTATUS_RUN]++;
7362   goto jump_to_p2;
7363 }
7364 
7365 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7366 /* Opcode: CursorHint P1 * * P4 *
7367 **
7368 ** Provide a hint to cursor P1 that it only needs to return rows that
7369 ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
7370 ** to values currently held in registers.  TK_COLUMN terms in the P4
7371 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7372 */
7373 case OP_CursorHint: {
7374   VdbeCursor *pC;
7375 
7376   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7377   assert( pOp->p4type==P4_EXPR );
7378   pC = p->apCsr[pOp->p1];
7379   if( pC ){
7380     assert( pC->eCurType==CURTYPE_BTREE );
7381     sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7382                            pOp->p4.pExpr, aMem);
7383   }
7384   break;
7385 }
7386 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7387 
7388 #ifdef SQLITE_DEBUG
7389 /* Opcode:  Abortable   * * * * *
7390 **
7391 ** Verify that an Abort can happen.  Assert if an Abort at this point
7392 ** might cause database corruption.  This opcode only appears in debugging
7393 ** builds.
7394 **
7395 ** An Abort is safe if either there have been no writes, or if there is
7396 ** an active statement journal.
7397 */
7398 case OP_Abortable: {
7399   sqlite3VdbeAssertAbortable(p);
7400   break;
7401 }
7402 #endif
7403 
7404 #ifdef SQLITE_DEBUG_COLUMNCACHE
7405 /* Opcode:  SetTabCol   P1 P2 P3 * *
7406 **
7407 ** Set a flag in register REG[P3] indicating that it holds the value
7408 ** of column P2 from the table on cursor P1.  This flag is checked
7409 ** by a subsequent VerifyTabCol opcode.
7410 **
7411 ** This opcode only appears SQLITE_DEBUG builds.  It is used to verify
7412 ** that the expression table column cache is working correctly.
7413 */
7414 case OP_SetTabCol: {
7415   aMem[pOp->p3].iTabColHash = TableColumnHash(pOp->p1,pOp->p2);
7416   break;
7417 }
7418 /* Opcode:  VerifyTabCol   P1 P2 P3 * *
7419 **
7420 ** Verify that register REG[P3] contains the value of column P2 from
7421 ** cursor P1.  Assert() if this is not the case.
7422 **
7423 ** This opcode only appears SQLITE_DEBUG builds.  It is used to verify
7424 ** that the expression table column cache is working correctly.
7425 */
7426 case OP_VerifyTabCol: {
7427   assert( aMem[pOp->p3].iTabColHash == TableColumnHash(pOp->p1,pOp->p2) );
7428   break;
7429 }
7430 #endif
7431 
7432 /* Opcode: Noop * * * * *
7433 **
7434 ** Do nothing.  This instruction is often useful as a jump
7435 ** destination.
7436 */
7437 /*
7438 ** The magic Explain opcode are only inserted when explain==2 (which
7439 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7440 ** This opcode records information from the optimizer.  It is the
7441 ** the same as a no-op.  This opcodesnever appears in a real VM program.
7442 */
7443 default: {          /* This is really OP_Noop, OP_Explain */
7444   assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
7445 
7446   break;
7447 }
7448 
7449 /*****************************************************************************
7450 ** The cases of the switch statement above this line should all be indented
7451 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
7452 ** readability.  From this point on down, the normal indentation rules are
7453 ** restored.
7454 *****************************************************************************/
7455     }
7456 
7457 #ifdef VDBE_PROFILE
7458     {
7459       u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
7460       if( endTime>start ) pOrigOp->cycles += endTime - start;
7461       pOrigOp->cnt++;
7462     }
7463 #endif
7464 
7465     /* The following code adds nothing to the actual functionality
7466     ** of the program.  It is only here for testing and debugging.
7467     ** On the other hand, it does burn CPU cycles every time through
7468     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
7469     */
7470 #ifndef NDEBUG
7471     assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7472 
7473 #ifdef SQLITE_DEBUG
7474     if( db->flags & SQLITE_VdbeTrace ){
7475       u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7476       if( rc!=0 ) printf("rc=%d\n",rc);
7477       if( opProperty & (OPFLG_OUT2) ){
7478         registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7479       }
7480       if( opProperty & OPFLG_OUT3 ){
7481         registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7482       }
7483     }
7484 #endif  /* SQLITE_DEBUG */
7485 #endif  /* NDEBUG */
7486   }  /* The end of the for(;;) loop the loops through opcodes */
7487 
7488   /* If we reach this point, it means that execution is finished with
7489   ** an error of some kind.
7490   */
7491 abort_due_to_error:
7492   if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7493   assert( rc );
7494   if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7495     sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7496   }
7497   p->rc = rc;
7498   sqlite3SystemError(db, rc);
7499   testcase( sqlite3GlobalConfig.xLog!=0 );
7500   sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7501                    (int)(pOp - aOp), p->zSql, p->zErrMsg);
7502   sqlite3VdbeHalt(p);
7503   if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7504   rc = SQLITE_ERROR;
7505   if( resetSchemaOnFault>0 ){
7506     sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7507   }
7508 
7509   /* This is the only way out of this procedure.  We have to
7510   ** release the mutexes on btrees that were acquired at the
7511   ** top. */
7512 vdbe_return:
7513   testcase( nVmStep>0 );
7514   p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7515   sqlite3VdbeLeave(p);
7516   assert( rc!=SQLITE_OK || nExtraDelete==0
7517        || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7518   );
7519   return rc;
7520 
7521   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7522   ** is encountered.
7523   */
7524 too_big:
7525   sqlite3VdbeError(p, "string or blob too big");
7526   rc = SQLITE_TOOBIG;
7527   goto abort_due_to_error;
7528 
7529   /* Jump to here if a malloc() fails.
7530   */
7531 no_mem:
7532   sqlite3OomFault(db);
7533   sqlite3VdbeError(p, "out of memory");
7534   rc = SQLITE_NOMEM_BKPT;
7535   goto abort_due_to_error;
7536 
7537   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7538   ** flag.
7539   */
7540 abort_due_to_interrupt:
7541   assert( db->u1.isInterrupted );
7542   rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7543   p->rc = rc;
7544   sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7545   goto abort_due_to_error;
7546 }
7547