1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue; 318 iValue = sqlite3RealToI64(rValue); 319 if( sqlite3RealSameAsInt(rValue,iValue) ){ 320 *piValue = iValue; 321 return 1; 322 } 323 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 324 } 325 326 /* 327 ** Try to convert a value into a numeric representation if we can 328 ** do so without loss of information. In other words, if the string 329 ** looks like a number, convert it into a number. If it does not 330 ** look like a number, leave it alone. 331 ** 332 ** If the bTryForInt flag is true, then extra effort is made to give 333 ** an integer representation. Strings that look like floating point 334 ** values but which have no fractional component (example: '48.00') 335 ** will have a MEM_Int representation when bTryForInt is true. 336 ** 337 ** If bTryForInt is false, then if the input string contains a decimal 338 ** point or exponential notation, the result is only MEM_Real, even 339 ** if there is an exact integer representation of the quantity. 340 */ 341 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 342 double rValue; 343 u8 enc = pRec->enc; 344 int rc; 345 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 346 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 347 if( rc<=0 ) return; 348 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 349 pRec->flags |= MEM_Int; 350 }else{ 351 pRec->u.r = rValue; 352 pRec->flags |= MEM_Real; 353 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 354 } 355 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 356 ** string representation after computing a numeric equivalent, because the 357 ** string representation might not be the canonical representation for the 358 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 359 pRec->flags &= ~MEM_Str; 360 } 361 362 /* 363 ** Processing is determine by the affinity parameter: 364 ** 365 ** SQLITE_AFF_INTEGER: 366 ** SQLITE_AFF_REAL: 367 ** SQLITE_AFF_NUMERIC: 368 ** Try to convert pRec to an integer representation or a 369 ** floating-point representation if an integer representation 370 ** is not possible. Note that the integer representation is 371 ** always preferred, even if the affinity is REAL, because 372 ** an integer representation is more space efficient on disk. 373 ** 374 ** SQLITE_AFF_TEXT: 375 ** Convert pRec to a text representation. 376 ** 377 ** SQLITE_AFF_BLOB: 378 ** SQLITE_AFF_NONE: 379 ** No-op. pRec is unchanged. 380 */ 381 static void applyAffinity( 382 Mem *pRec, /* The value to apply affinity to */ 383 char affinity, /* The affinity to be applied */ 384 u8 enc /* Use this text encoding */ 385 ){ 386 if( affinity>=SQLITE_AFF_NUMERIC ){ 387 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 388 || affinity==SQLITE_AFF_NUMERIC ); 389 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 390 if( (pRec->flags & MEM_Real)==0 ){ 391 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 392 }else{ 393 sqlite3VdbeIntegerAffinity(pRec); 394 } 395 } 396 }else if( affinity==SQLITE_AFF_TEXT ){ 397 /* Only attempt the conversion to TEXT if there is an integer or real 398 ** representation (blob and NULL do not get converted) but no string 399 ** representation. It would be harmless to repeat the conversion if 400 ** there is already a string rep, but it is pointless to waste those 401 ** CPU cycles. */ 402 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 403 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 404 testcase( pRec->flags & MEM_Int ); 405 testcase( pRec->flags & MEM_Real ); 406 testcase( pRec->flags & MEM_IntReal ); 407 sqlite3VdbeMemStringify(pRec, enc, 1); 408 } 409 } 410 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 411 } 412 } 413 414 /* 415 ** Try to convert the type of a function argument or a result column 416 ** into a numeric representation. Use either INTEGER or REAL whichever 417 ** is appropriate. But only do the conversion if it is possible without 418 ** loss of information and return the revised type of the argument. 419 */ 420 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 421 int eType = sqlite3_value_type(pVal); 422 if( eType==SQLITE_TEXT ){ 423 Mem *pMem = (Mem*)pVal; 424 applyNumericAffinity(pMem, 0); 425 eType = sqlite3_value_type(pVal); 426 } 427 return eType; 428 } 429 430 /* 431 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 432 ** not the internal Mem* type. 433 */ 434 void sqlite3ValueApplyAffinity( 435 sqlite3_value *pVal, 436 u8 affinity, 437 u8 enc 438 ){ 439 applyAffinity((Mem *)pVal, affinity, enc); 440 } 441 442 /* 443 ** pMem currently only holds a string type (or maybe a BLOB that we can 444 ** interpret as a string if we want to). Compute its corresponding 445 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 446 ** accordingly. 447 */ 448 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 449 int rc; 450 sqlite3_int64 ix; 451 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 452 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 453 if( ExpandBlob(pMem) ){ 454 pMem->u.i = 0; 455 return MEM_Int; 456 } 457 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 458 if( rc<=0 ){ 459 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 460 pMem->u.i = ix; 461 return MEM_Int; 462 }else{ 463 return MEM_Real; 464 } 465 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 466 pMem->u.i = ix; 467 return MEM_Int; 468 } 469 return MEM_Real; 470 } 471 472 /* 473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 474 ** none. 475 ** 476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 477 ** But it does set pMem->u.r and pMem->u.i appropriately. 478 */ 479 static u16 numericType(Mem *pMem){ 480 assert( (pMem->flags & MEM_Null)==0 481 || pMem->db==0 || pMem->db->mallocFailed ); 482 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ 483 testcase( pMem->flags & MEM_Int ); 484 testcase( pMem->flags & MEM_Real ); 485 testcase( pMem->flags & MEM_IntReal ); 486 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); 487 } 488 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 489 testcase( pMem->flags & MEM_Str ); 490 testcase( pMem->flags & MEM_Blob ); 491 return computeNumericType(pMem); 492 return 0; 493 } 494 495 #ifdef SQLITE_DEBUG 496 /* 497 ** Write a nice string representation of the contents of cell pMem 498 ** into buffer zBuf, length nBuf. 499 */ 500 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 501 int f = pMem->flags; 502 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 503 if( f&MEM_Blob ){ 504 int i; 505 char c; 506 if( f & MEM_Dyn ){ 507 c = 'z'; 508 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 509 }else if( f & MEM_Static ){ 510 c = 't'; 511 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 512 }else if( f & MEM_Ephem ){ 513 c = 'e'; 514 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 515 }else{ 516 c = 's'; 517 } 518 sqlite3_str_appendf(pStr, "%cx[", c); 519 for(i=0; i<25 && i<pMem->n; i++){ 520 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 521 } 522 sqlite3_str_appendf(pStr, "|"); 523 for(i=0; i<25 && i<pMem->n; i++){ 524 char z = pMem->z[i]; 525 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 526 } 527 sqlite3_str_appendf(pStr,"]"); 528 if( f & MEM_Zero ){ 529 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 530 } 531 }else if( f & MEM_Str ){ 532 int j; 533 u8 c; 534 if( f & MEM_Dyn ){ 535 c = 'z'; 536 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 537 }else if( f & MEM_Static ){ 538 c = 't'; 539 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 540 }else if( f & MEM_Ephem ){ 541 c = 'e'; 542 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 543 }else{ 544 c = 's'; 545 } 546 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 547 for(j=0; j<25 && j<pMem->n; j++){ 548 c = pMem->z[j]; 549 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 550 } 551 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 552 } 553 } 554 #endif 555 556 #ifdef SQLITE_DEBUG 557 /* 558 ** Print the value of a register for tracing purposes: 559 */ 560 static void memTracePrint(Mem *p){ 561 if( p->flags & MEM_Undefined ){ 562 printf(" undefined"); 563 }else if( p->flags & MEM_Null ){ 564 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 565 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 566 printf(" si:%lld", p->u.i); 567 }else if( (p->flags & (MEM_IntReal))!=0 ){ 568 printf(" ir:%lld", p->u.i); 569 }else if( p->flags & MEM_Int ){ 570 printf(" i:%lld", p->u.i); 571 #ifndef SQLITE_OMIT_FLOATING_POINT 572 }else if( p->flags & MEM_Real ){ 573 printf(" r:%.17g", p->u.r); 574 #endif 575 }else if( sqlite3VdbeMemIsRowSet(p) ){ 576 printf(" (rowset)"); 577 }else{ 578 StrAccum acc; 579 char zBuf[1000]; 580 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 581 sqlite3VdbeMemPrettyPrint(p, &acc); 582 printf(" %s", sqlite3StrAccumFinish(&acc)); 583 } 584 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 585 } 586 static void registerTrace(int iReg, Mem *p){ 587 printf("R[%d] = ", iReg); 588 memTracePrint(p); 589 if( p->pScopyFrom ){ 590 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 591 } 592 printf("\n"); 593 sqlite3VdbeCheckMemInvariants(p); 594 } 595 /**/ void sqlite3PrintMem(Mem *pMem){ 596 memTracePrint(pMem); 597 printf("\n"); 598 fflush(stdout); 599 } 600 #endif 601 602 #ifdef SQLITE_DEBUG 603 /* 604 ** Show the values of all registers in the virtual machine. Used for 605 ** interactive debugging. 606 */ 607 void sqlite3VdbeRegisterDump(Vdbe *v){ 608 int i; 609 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 610 } 611 #endif /* SQLITE_DEBUG */ 612 613 614 #ifdef SQLITE_DEBUG 615 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 616 #else 617 # define REGISTER_TRACE(R,M) 618 #endif 619 620 621 #ifdef VDBE_PROFILE 622 623 /* 624 ** hwtime.h contains inline assembler code for implementing 625 ** high-performance timing routines. 626 */ 627 #include "hwtime.h" 628 629 #endif 630 631 #ifndef NDEBUG 632 /* 633 ** This function is only called from within an assert() expression. It 634 ** checks that the sqlite3.nTransaction variable is correctly set to 635 ** the number of non-transaction savepoints currently in the 636 ** linked list starting at sqlite3.pSavepoint. 637 ** 638 ** Usage: 639 ** 640 ** assert( checkSavepointCount(db) ); 641 */ 642 static int checkSavepointCount(sqlite3 *db){ 643 int n = 0; 644 Savepoint *p; 645 for(p=db->pSavepoint; p; p=p->pNext) n++; 646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 647 return 1; 648 } 649 #endif 650 651 /* 652 ** Return the register of pOp->p2 after first preparing it to be 653 ** overwritten with an integer value. 654 */ 655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 656 sqlite3VdbeMemSetNull(pOut); 657 pOut->flags = MEM_Int; 658 return pOut; 659 } 660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 661 Mem *pOut; 662 assert( pOp->p2>0 ); 663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 664 pOut = &p->aMem[pOp->p2]; 665 memAboutToChange(p, pOut); 666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 667 return out2PrereleaseWithClear(pOut); 668 }else{ 669 pOut->flags = MEM_Int; 670 return pOut; 671 } 672 } 673 674 /* 675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 676 ** with pOp->p3. Return the hash. 677 */ 678 static u64 filterHash(const Mem *aMem, const Op *pOp){ 679 int i, mx; 680 u64 h = 0; 681 682 assert( pOp->p4type==P4_INT32 ); 683 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 684 const Mem *p = &aMem[i]; 685 if( p->flags & (MEM_Int|MEM_IntReal) ){ 686 h += p->u.i; 687 }else if( p->flags & MEM_Real ){ 688 h += sqlite3VdbeIntValue(p); 689 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 690 h += p->n; 691 if( p->flags & MEM_Zero ) h += p->u.nZero; 692 } 693 } 694 return h; 695 } 696 697 /* 698 ** Return the symbolic name for the data type of a pMem 699 */ 700 static const char *vdbeMemTypeName(Mem *pMem){ 701 static const char *azTypes[] = { 702 /* SQLITE_INTEGER */ "INT", 703 /* SQLITE_FLOAT */ "REAL", 704 /* SQLITE_TEXT */ "TEXT", 705 /* SQLITE_BLOB */ "BLOB", 706 /* SQLITE_NULL */ "NULL" 707 }; 708 return azTypes[sqlite3_value_type(pMem)-1]; 709 } 710 711 /* 712 ** Execute as much of a VDBE program as we can. 713 ** This is the core of sqlite3_step(). 714 */ 715 int sqlite3VdbeExec( 716 Vdbe *p /* The VDBE */ 717 ){ 718 Op *aOp = p->aOp; /* Copy of p->aOp */ 719 Op *pOp = aOp; /* Current operation */ 720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 721 Op *pOrigOp; /* Value of pOp at the top of the loop */ 722 #endif 723 #ifdef SQLITE_DEBUG 724 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 725 #endif 726 int rc = SQLITE_OK; /* Value to return */ 727 sqlite3 *db = p->db; /* The database */ 728 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 729 u8 encoding = ENC(db); /* The database encoding */ 730 int iCompare = 0; /* Result of last comparison */ 731 u64 nVmStep = 0; /* Number of virtual machine steps */ 732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 733 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 734 #endif 735 Mem *aMem = p->aMem; /* Copy of p->aMem */ 736 Mem *pIn1 = 0; /* 1st input operand */ 737 Mem *pIn2 = 0; /* 2nd input operand */ 738 Mem *pIn3 = 0; /* 3rd input operand */ 739 Mem *pOut = 0; /* Output operand */ 740 #ifdef VDBE_PROFILE 741 u64 start; /* CPU clock count at start of opcode */ 742 #endif 743 /*** INSERT STACK UNION HERE ***/ 744 745 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 746 sqlite3VdbeEnter(p); 747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 748 if( db->xProgress ){ 749 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 750 assert( 0 < db->nProgressOps ); 751 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 752 }else{ 753 nProgressLimit = LARGEST_UINT64; 754 } 755 #endif 756 if( p->rc==SQLITE_NOMEM ){ 757 /* This happens if a malloc() inside a call to sqlite3_column_text() or 758 ** sqlite3_column_text16() failed. */ 759 goto no_mem; 760 } 761 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 762 testcase( p->rc!=SQLITE_OK ); 763 p->rc = SQLITE_OK; 764 assert( p->bIsReader || p->readOnly!=0 ); 765 p->iCurrentTime = 0; 766 assert( p->explain==0 ); 767 p->pResultSet = 0; 768 db->busyHandler.nBusy = 0; 769 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 770 sqlite3VdbeIOTraceSql(p); 771 #ifdef SQLITE_DEBUG 772 sqlite3BeginBenignMalloc(); 773 if( p->pc==0 774 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 775 ){ 776 int i; 777 int once = 1; 778 sqlite3VdbePrintSql(p); 779 if( p->db->flags & SQLITE_VdbeListing ){ 780 printf("VDBE Program Listing:\n"); 781 for(i=0; i<p->nOp; i++){ 782 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 783 } 784 } 785 if( p->db->flags & SQLITE_VdbeEQP ){ 786 for(i=0; i<p->nOp; i++){ 787 if( aOp[i].opcode==OP_Explain ){ 788 if( once ) printf("VDBE Query Plan:\n"); 789 printf("%s\n", aOp[i].p4.z); 790 once = 0; 791 } 792 } 793 } 794 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 795 } 796 sqlite3EndBenignMalloc(); 797 #endif 798 for(pOp=&aOp[p->pc]; 1; pOp++){ 799 /* Errors are detected by individual opcodes, with an immediate 800 ** jumps to abort_due_to_error. */ 801 assert( rc==SQLITE_OK ); 802 803 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 804 #ifdef VDBE_PROFILE 805 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 806 #endif 807 nVmStep++; 808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 809 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 810 #endif 811 812 /* Only allow tracing if SQLITE_DEBUG is defined. 813 */ 814 #ifdef SQLITE_DEBUG 815 if( db->flags & SQLITE_VdbeTrace ){ 816 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 817 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 818 } 819 #endif 820 821 822 /* Check to see if we need to simulate an interrupt. This only happens 823 ** if we have a special test build. 824 */ 825 #ifdef SQLITE_TEST 826 if( sqlite3_interrupt_count>0 ){ 827 sqlite3_interrupt_count--; 828 if( sqlite3_interrupt_count==0 ){ 829 sqlite3_interrupt(db); 830 } 831 } 832 #endif 833 834 /* Sanity checking on other operands */ 835 #ifdef SQLITE_DEBUG 836 { 837 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 838 if( (opProperty & OPFLG_IN1)!=0 ){ 839 assert( pOp->p1>0 ); 840 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 841 assert( memIsValid(&aMem[pOp->p1]) ); 842 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 843 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 844 } 845 if( (opProperty & OPFLG_IN2)!=0 ){ 846 assert( pOp->p2>0 ); 847 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 848 assert( memIsValid(&aMem[pOp->p2]) ); 849 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 850 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 851 } 852 if( (opProperty & OPFLG_IN3)!=0 ){ 853 assert( pOp->p3>0 ); 854 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 855 assert( memIsValid(&aMem[pOp->p3]) ); 856 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 857 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 858 } 859 if( (opProperty & OPFLG_OUT2)!=0 ){ 860 assert( pOp->p2>0 ); 861 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 862 memAboutToChange(p, &aMem[pOp->p2]); 863 } 864 if( (opProperty & OPFLG_OUT3)!=0 ){ 865 assert( pOp->p3>0 ); 866 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 867 memAboutToChange(p, &aMem[pOp->p3]); 868 } 869 } 870 #endif 871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 872 pOrigOp = pOp; 873 #endif 874 875 switch( pOp->opcode ){ 876 877 /***************************************************************************** 878 ** What follows is a massive switch statement where each case implements a 879 ** separate instruction in the virtual machine. If we follow the usual 880 ** indentation conventions, each case should be indented by 6 spaces. But 881 ** that is a lot of wasted space on the left margin. So the code within 882 ** the switch statement will break with convention and be flush-left. Another 883 ** big comment (similar to this one) will mark the point in the code where 884 ** we transition back to normal indentation. 885 ** 886 ** The formatting of each case is important. The makefile for SQLite 887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 888 ** file looking for lines that begin with "case OP_". The opcodes.h files 889 ** will be filled with #defines that give unique integer values to each 890 ** opcode and the opcodes.c file is filled with an array of strings where 891 ** each string is the symbolic name for the corresponding opcode. If the 892 ** case statement is followed by a comment of the form "/# same as ... #/" 893 ** that comment is used to determine the particular value of the opcode. 894 ** 895 ** Other keywords in the comment that follows each case are used to 896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 897 ** Keywords include: in1, in2, in3, out2, out3. See 898 ** the mkopcodeh.awk script for additional information. 899 ** 900 ** Documentation about VDBE opcodes is generated by scanning this file 901 ** for lines of that contain "Opcode:". That line and all subsequent 902 ** comment lines are used in the generation of the opcode.html documentation 903 ** file. 904 ** 905 ** SUMMARY: 906 ** 907 ** Formatting is important to scripts that scan this file. 908 ** Do not deviate from the formatting style currently in use. 909 ** 910 *****************************************************************************/ 911 912 /* Opcode: Goto * P2 * * * 913 ** 914 ** An unconditional jump to address P2. 915 ** The next instruction executed will be 916 ** the one at index P2 from the beginning of 917 ** the program. 918 ** 919 ** The P1 parameter is not actually used by this opcode. However, it 920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 921 ** that this Goto is the bottom of a loop and that the lines from P2 down 922 ** to the current line should be indented for EXPLAIN output. 923 */ 924 case OP_Goto: { /* jump */ 925 926 #ifdef SQLITE_DEBUG 927 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 928 ** means we should really jump back to the preceeding OP_ReleaseReg 929 ** instruction. */ 930 if( pOp->p5 ){ 931 assert( pOp->p2 < (int)(pOp - aOp) ); 932 assert( pOp->p2 > 1 ); 933 pOp = &aOp[pOp->p2 - 2]; 934 assert( pOp[1].opcode==OP_ReleaseReg ); 935 goto check_for_interrupt; 936 } 937 #endif 938 939 jump_to_p2_and_check_for_interrupt: 940 pOp = &aOp[pOp->p2 - 1]; 941 942 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 943 ** OP_VNext, or OP_SorterNext) all jump here upon 944 ** completion. Check to see if sqlite3_interrupt() has been called 945 ** or if the progress callback needs to be invoked. 946 ** 947 ** This code uses unstructured "goto" statements and does not look clean. 948 ** But that is not due to sloppy coding habits. The code is written this 949 ** way for performance, to avoid having to run the interrupt and progress 950 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 951 ** faster according to "valgrind --tool=cachegrind" */ 952 check_for_interrupt: 953 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 955 /* Call the progress callback if it is configured and the required number 956 ** of VDBE ops have been executed (either since this invocation of 957 ** sqlite3VdbeExec() or since last time the progress callback was called). 958 ** If the progress callback returns non-zero, exit the virtual machine with 959 ** a return code SQLITE_ABORT. 960 */ 961 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 962 assert( db->nProgressOps!=0 ); 963 nProgressLimit += db->nProgressOps; 964 if( db->xProgress(db->pProgressArg) ){ 965 nProgressLimit = LARGEST_UINT64; 966 rc = SQLITE_INTERRUPT; 967 goto abort_due_to_error; 968 } 969 } 970 #endif 971 972 break; 973 } 974 975 /* Opcode: Gosub P1 P2 * * * 976 ** 977 ** Write the current address onto register P1 978 ** and then jump to address P2. 979 */ 980 case OP_Gosub: { /* jump */ 981 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 982 pIn1 = &aMem[pOp->p1]; 983 assert( VdbeMemDynamic(pIn1)==0 ); 984 memAboutToChange(p, pIn1); 985 pIn1->flags = MEM_Int; 986 pIn1->u.i = (int)(pOp-aOp); 987 REGISTER_TRACE(pOp->p1, pIn1); 988 goto jump_to_p2_and_check_for_interrupt; 989 } 990 991 /* Opcode: Return P1 P2 P3 * * 992 ** 993 ** Jump to the address stored in register P1. If P1 is a return address 994 ** register, then this accomplishes a return from a subroutine. 995 ** 996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 997 ** values, otherwise execution falls through to the next opcode, and the 998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 999 ** integer or else an assert() is raised. P3 should be set to 1 when 1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 1001 ** otherwise. 1002 ** 1003 ** The value in register P1 is unchanged by this opcode. 1004 ** 1005 ** P2 is not used by the byte-code engine. However, if P2 is positive 1006 ** and also less than the current address, then the "EXPLAIN" output 1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up 1008 ** to be not including the current Return. P2 should be the first opcode 1009 ** in the subroutine from which this opcode is returning. Thus the P2 1010 ** value is a byte-code indentation hint. See tag-20220407a in 1011 ** wherecode.c and shell.c. 1012 */ 1013 case OP_Return: { /* in1 */ 1014 pIn1 = &aMem[pOp->p1]; 1015 if( pIn1->flags & MEM_Int ){ 1016 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 1017 pOp = &aOp[pIn1->u.i]; 1018 }else if( ALWAYS(pOp->p3) ){ 1019 VdbeBranchTaken(0, 2); 1020 } 1021 break; 1022 } 1023 1024 /* Opcode: InitCoroutine P1 P2 P3 * * 1025 ** 1026 ** Set up register P1 so that it will Yield to the coroutine 1027 ** located at address P3. 1028 ** 1029 ** If P2!=0 then the coroutine implementation immediately follows 1030 ** this opcode. So jump over the coroutine implementation to 1031 ** address P2. 1032 ** 1033 ** See also: EndCoroutine 1034 */ 1035 case OP_InitCoroutine: { /* jump */ 1036 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1037 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1038 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1039 pOut = &aMem[pOp->p1]; 1040 assert( !VdbeMemDynamic(pOut) ); 1041 pOut->u.i = pOp->p3 - 1; 1042 pOut->flags = MEM_Int; 1043 if( pOp->p2==0 ) break; 1044 1045 /* Most jump operations do a goto to this spot in order to update 1046 ** the pOp pointer. */ 1047 jump_to_p2: 1048 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 1049 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 1050 pOp = &aOp[pOp->p2 - 1]; 1051 break; 1052 } 1053 1054 /* Opcode: EndCoroutine P1 * * * * 1055 ** 1056 ** The instruction at the address in register P1 is a Yield. 1057 ** Jump to the P2 parameter of that Yield. 1058 ** After the jump, register P1 becomes undefined. 1059 ** 1060 ** See also: InitCoroutine 1061 */ 1062 case OP_EndCoroutine: { /* in1 */ 1063 VdbeOp *pCaller; 1064 pIn1 = &aMem[pOp->p1]; 1065 assert( pIn1->flags==MEM_Int ); 1066 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1067 pCaller = &aOp[pIn1->u.i]; 1068 assert( pCaller->opcode==OP_Yield ); 1069 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1070 pOp = &aOp[pCaller->p2 - 1]; 1071 pIn1->flags = MEM_Undefined; 1072 break; 1073 } 1074 1075 /* Opcode: Yield P1 P2 * * * 1076 ** 1077 ** Swap the program counter with the value in register P1. This 1078 ** has the effect of yielding to a coroutine. 1079 ** 1080 ** If the coroutine that is launched by this instruction ends with 1081 ** Yield or Return then continue to the next instruction. But if 1082 ** the coroutine launched by this instruction ends with 1083 ** EndCoroutine, then jump to P2 rather than continuing with the 1084 ** next instruction. 1085 ** 1086 ** See also: InitCoroutine 1087 */ 1088 case OP_Yield: { /* in1, jump */ 1089 int pcDest; 1090 pIn1 = &aMem[pOp->p1]; 1091 assert( VdbeMemDynamic(pIn1)==0 ); 1092 pIn1->flags = MEM_Int; 1093 pcDest = (int)pIn1->u.i; 1094 pIn1->u.i = (int)(pOp - aOp); 1095 REGISTER_TRACE(pOp->p1, pIn1); 1096 pOp = &aOp[pcDest]; 1097 break; 1098 } 1099 1100 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1101 ** Synopsis: if r[P3]=null halt 1102 ** 1103 ** Check the value in register P3. If it is NULL then Halt using 1104 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1105 ** value in register P3 is not NULL, then this routine is a no-op. 1106 ** The P5 parameter should be 1. 1107 */ 1108 case OP_HaltIfNull: { /* in3 */ 1109 pIn3 = &aMem[pOp->p3]; 1110 #ifdef SQLITE_DEBUG 1111 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1112 #endif 1113 if( (pIn3->flags & MEM_Null)==0 ) break; 1114 /* Fall through into OP_Halt */ 1115 /* no break */ deliberate_fall_through 1116 } 1117 1118 /* Opcode: Halt P1 P2 * P4 P5 1119 ** 1120 ** Exit immediately. All open cursors, etc are closed 1121 ** automatically. 1122 ** 1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1124 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1125 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1126 ** whether or not to rollback the current transaction. Do not rollback 1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1128 ** then back out all changes that have occurred during this execution of the 1129 ** VDBE, but do not rollback the transaction. 1130 ** 1131 ** If P4 is not null then it is an error message string. 1132 ** 1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1134 ** 1135 ** 0: (no change) 1136 ** 1: NOT NULL contraint failed: P4 1137 ** 2: UNIQUE constraint failed: P4 1138 ** 3: CHECK constraint failed: P4 1139 ** 4: FOREIGN KEY constraint failed: P4 1140 ** 1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1142 ** omitted. 1143 ** 1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1145 ** every program. So a jump past the last instruction of the program 1146 ** is the same as executing Halt. 1147 */ 1148 case OP_Halt: { 1149 VdbeFrame *pFrame; 1150 int pcx; 1151 1152 #ifdef SQLITE_DEBUG 1153 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1154 #endif 1155 if( p->pFrame && pOp->p1==SQLITE_OK ){ 1156 /* Halt the sub-program. Return control to the parent frame. */ 1157 pFrame = p->pFrame; 1158 p->pFrame = pFrame->pParent; 1159 p->nFrame--; 1160 sqlite3VdbeSetChanges(db, p->nChange); 1161 pcx = sqlite3VdbeFrameRestore(pFrame); 1162 if( pOp->p2==OE_Ignore ){ 1163 /* Instruction pcx is the OP_Program that invoked the sub-program 1164 ** currently being halted. If the p2 instruction of this OP_Halt 1165 ** instruction is set to OE_Ignore, then the sub-program is throwing 1166 ** an IGNORE exception. In this case jump to the address specified 1167 ** as the p2 of the calling OP_Program. */ 1168 pcx = p->aOp[pcx].p2-1; 1169 } 1170 aOp = p->aOp; 1171 aMem = p->aMem; 1172 pOp = &aOp[pcx]; 1173 break; 1174 } 1175 p->rc = pOp->p1; 1176 p->errorAction = (u8)pOp->p2; 1177 assert( pOp->p5<=4 ); 1178 if( p->rc ){ 1179 if( pOp->p5 ){ 1180 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1181 "FOREIGN KEY" }; 1182 testcase( pOp->p5==1 ); 1183 testcase( pOp->p5==2 ); 1184 testcase( pOp->p5==3 ); 1185 testcase( pOp->p5==4 ); 1186 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1187 if( pOp->p4.z ){ 1188 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1189 } 1190 }else{ 1191 sqlite3VdbeError(p, "%s", pOp->p4.z); 1192 } 1193 pcx = (int)(pOp - aOp); 1194 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1195 } 1196 rc = sqlite3VdbeHalt(p); 1197 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1198 if( rc==SQLITE_BUSY ){ 1199 p->rc = SQLITE_BUSY; 1200 }else{ 1201 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1202 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1203 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1204 } 1205 goto vdbe_return; 1206 } 1207 1208 /* Opcode: Integer P1 P2 * * * 1209 ** Synopsis: r[P2]=P1 1210 ** 1211 ** The 32-bit integer value P1 is written into register P2. 1212 */ 1213 case OP_Integer: { /* out2 */ 1214 pOut = out2Prerelease(p, pOp); 1215 pOut->u.i = pOp->p1; 1216 break; 1217 } 1218 1219 /* Opcode: Int64 * P2 * P4 * 1220 ** Synopsis: r[P2]=P4 1221 ** 1222 ** P4 is a pointer to a 64-bit integer value. 1223 ** Write that value into register P2. 1224 */ 1225 case OP_Int64: { /* out2 */ 1226 pOut = out2Prerelease(p, pOp); 1227 assert( pOp->p4.pI64!=0 ); 1228 pOut->u.i = *pOp->p4.pI64; 1229 break; 1230 } 1231 1232 #ifndef SQLITE_OMIT_FLOATING_POINT 1233 /* Opcode: Real * P2 * P4 * 1234 ** Synopsis: r[P2]=P4 1235 ** 1236 ** P4 is a pointer to a 64-bit floating point value. 1237 ** Write that value into register P2. 1238 */ 1239 case OP_Real: { /* same as TK_FLOAT, out2 */ 1240 pOut = out2Prerelease(p, pOp); 1241 pOut->flags = MEM_Real; 1242 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1243 pOut->u.r = *pOp->p4.pReal; 1244 break; 1245 } 1246 #endif 1247 1248 /* Opcode: String8 * P2 * P4 * 1249 ** Synopsis: r[P2]='P4' 1250 ** 1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1252 ** into a String opcode before it is executed for the first time. During 1253 ** this transformation, the length of string P4 is computed and stored 1254 ** as the P1 parameter. 1255 */ 1256 case OP_String8: { /* same as TK_STRING, out2 */ 1257 assert( pOp->p4.z!=0 ); 1258 pOut = out2Prerelease(p, pOp); 1259 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1260 1261 #ifndef SQLITE_OMIT_UTF16 1262 if( encoding!=SQLITE_UTF8 ){ 1263 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1264 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1265 if( rc ) goto too_big; 1266 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1267 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1268 assert( VdbeMemDynamic(pOut)==0 ); 1269 pOut->szMalloc = 0; 1270 pOut->flags |= MEM_Static; 1271 if( pOp->p4type==P4_DYNAMIC ){ 1272 sqlite3DbFree(db, pOp->p4.z); 1273 } 1274 pOp->p4type = P4_DYNAMIC; 1275 pOp->p4.z = pOut->z; 1276 pOp->p1 = pOut->n; 1277 } 1278 #endif 1279 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1280 goto too_big; 1281 } 1282 pOp->opcode = OP_String; 1283 assert( rc==SQLITE_OK ); 1284 /* Fall through to the next case, OP_String */ 1285 /* no break */ deliberate_fall_through 1286 } 1287 1288 /* Opcode: String P1 P2 P3 P4 P5 1289 ** Synopsis: r[P2]='P4' (len=P1) 1290 ** 1291 ** The string value P4 of length P1 (bytes) is stored in register P2. 1292 ** 1293 ** If P3 is not zero and the content of register P3 is equal to P5, then 1294 ** the datatype of the register P2 is converted to BLOB. The content is 1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1296 ** of a string, as if it had been CAST. In other words: 1297 ** 1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1299 */ 1300 case OP_String: { /* out2 */ 1301 assert( pOp->p4.z!=0 ); 1302 pOut = out2Prerelease(p, pOp); 1303 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1304 pOut->z = pOp->p4.z; 1305 pOut->n = pOp->p1; 1306 pOut->enc = encoding; 1307 UPDATE_MAX_BLOBSIZE(pOut); 1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1309 if( pOp->p3>0 ){ 1310 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1311 pIn3 = &aMem[pOp->p3]; 1312 assert( pIn3->flags & MEM_Int ); 1313 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1314 } 1315 #endif 1316 break; 1317 } 1318 1319 /* Opcode: BeginSubrtn * P2 * * * 1320 ** Synopsis: r[P2]=NULL 1321 ** 1322 ** Mark the beginning of a subroutine that can be entered in-line 1323 ** or that can be called using OP_Gosub. The subroutine should 1324 ** be terminated by an OP_Return instruction that has a P1 operand that 1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 1326 ** If the subroutine is entered in-line, then the OP_Return will simply 1327 ** fall through. But if the subroutine is entered using OP_Gosub, then 1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 1329 ** 1330 ** This routine works by loading a NULL into the P2 register. When the 1331 ** return address register contains a NULL, the OP_Return instruction is 1332 ** a no-op that simply falls through to the next instruction (assuming that 1333 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 1334 ** entered in-line, then the OP_Return will cause in-line execution to 1335 ** continue. But if the subroutine is entered via OP_Gosub, then the 1336 ** OP_Return will cause a return to the address following the OP_Gosub. 1337 ** 1338 ** This opcode is identical to OP_Null. It has a different name 1339 ** only to make the byte code easier to read and verify. 1340 */ 1341 /* Opcode: Null P1 P2 P3 * * 1342 ** Synopsis: r[P2..P3]=NULL 1343 ** 1344 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1345 ** NULL into register P3 and every register in between P2 and P3. If P3 1346 ** is less than P2 (typically P3 is zero) then only register P2 is 1347 ** set to NULL. 1348 ** 1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1351 ** OP_Ne or OP_Eq. 1352 */ 1353 case OP_BeginSubrtn: 1354 case OP_Null: { /* out2 */ 1355 int cnt; 1356 u16 nullFlag; 1357 pOut = out2Prerelease(p, pOp); 1358 cnt = pOp->p3-pOp->p2; 1359 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1360 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1361 pOut->n = 0; 1362 #ifdef SQLITE_DEBUG 1363 pOut->uTemp = 0; 1364 #endif 1365 while( cnt>0 ){ 1366 pOut++; 1367 memAboutToChange(p, pOut); 1368 sqlite3VdbeMemSetNull(pOut); 1369 pOut->flags = nullFlag; 1370 pOut->n = 0; 1371 cnt--; 1372 } 1373 break; 1374 } 1375 1376 /* Opcode: SoftNull P1 * * * * 1377 ** Synopsis: r[P1]=NULL 1378 ** 1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1380 ** instruction, but do not free any string or blob memory associated with 1381 ** the register, so that if the value was a string or blob that was 1382 ** previously copied using OP_SCopy, the copies will continue to be valid. 1383 */ 1384 case OP_SoftNull: { 1385 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1386 pOut = &aMem[pOp->p1]; 1387 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1388 break; 1389 } 1390 1391 /* Opcode: Blob P1 P2 * P4 * 1392 ** Synopsis: r[P2]=P4 (len=P1) 1393 ** 1394 ** P4 points to a blob of data P1 bytes long. Store this 1395 ** blob in register P2. If P4 is a NULL pointer, then construct 1396 ** a zero-filled blob that is P1 bytes long in P2. 1397 */ 1398 case OP_Blob: { /* out2 */ 1399 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1400 pOut = out2Prerelease(p, pOp); 1401 if( pOp->p4.z==0 ){ 1402 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1403 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1404 }else{ 1405 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1406 } 1407 pOut->enc = encoding; 1408 UPDATE_MAX_BLOBSIZE(pOut); 1409 break; 1410 } 1411 1412 /* Opcode: Variable P1 P2 * P4 * 1413 ** Synopsis: r[P2]=parameter(P1,P4) 1414 ** 1415 ** Transfer the values of bound parameter P1 into register P2 1416 ** 1417 ** If the parameter is named, then its name appears in P4. 1418 ** The P4 value is used by sqlite3_bind_parameter_name(). 1419 */ 1420 case OP_Variable: { /* out2 */ 1421 Mem *pVar; /* Value being transferred */ 1422 1423 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1424 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1425 pVar = &p->aVar[pOp->p1 - 1]; 1426 if( sqlite3VdbeMemTooBig(pVar) ){ 1427 goto too_big; 1428 } 1429 pOut = &aMem[pOp->p2]; 1430 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1431 memcpy(pOut, pVar, MEMCELLSIZE); 1432 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1433 pOut->flags |= MEM_Static|MEM_FromBind; 1434 UPDATE_MAX_BLOBSIZE(pOut); 1435 break; 1436 } 1437 1438 /* Opcode: Move P1 P2 P3 * * 1439 ** Synopsis: r[P2@P3]=r[P1@P3] 1440 ** 1441 ** Move the P3 values in register P1..P1+P3-1 over into 1442 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1443 ** left holding a NULL. It is an error for register ranges 1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1445 ** for P3 to be less than 1. 1446 */ 1447 case OP_Move: { 1448 int n; /* Number of registers left to copy */ 1449 int p1; /* Register to copy from */ 1450 int p2; /* Register to copy to */ 1451 1452 n = pOp->p3; 1453 p1 = pOp->p1; 1454 p2 = pOp->p2; 1455 assert( n>0 && p1>0 && p2>0 ); 1456 assert( p1+n<=p2 || p2+n<=p1 ); 1457 1458 pIn1 = &aMem[p1]; 1459 pOut = &aMem[p2]; 1460 do{ 1461 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1462 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1463 assert( memIsValid(pIn1) ); 1464 memAboutToChange(p, pOut); 1465 sqlite3VdbeMemMove(pOut, pIn1); 1466 #ifdef SQLITE_DEBUG 1467 pIn1->pScopyFrom = 0; 1468 { int i; 1469 for(i=1; i<p->nMem; i++){ 1470 if( aMem[i].pScopyFrom==pIn1 ){ 1471 aMem[i].pScopyFrom = pOut; 1472 } 1473 } 1474 } 1475 #endif 1476 Deephemeralize(pOut); 1477 REGISTER_TRACE(p2++, pOut); 1478 pIn1++; 1479 pOut++; 1480 }while( --n ); 1481 break; 1482 } 1483 1484 /* Opcode: Copy P1 P2 P3 * P5 1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1486 ** 1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1488 ** 1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 1490 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 1491 ** be merged. The 0x0001 bit is used by the query planner and does not 1492 ** come into play during query execution. 1493 ** 1494 ** This instruction makes a deep copy of the value. A duplicate 1495 ** is made of any string or blob constant. See also OP_SCopy. 1496 */ 1497 case OP_Copy: { 1498 int n; 1499 1500 n = pOp->p3; 1501 pIn1 = &aMem[pOp->p1]; 1502 pOut = &aMem[pOp->p2]; 1503 assert( pOut!=pIn1 ); 1504 while( 1 ){ 1505 memAboutToChange(p, pOut); 1506 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1507 Deephemeralize(pOut); 1508 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 1509 pOut->flags &= ~MEM_Subtype; 1510 } 1511 #ifdef SQLITE_DEBUG 1512 pOut->pScopyFrom = 0; 1513 #endif 1514 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1515 if( (n--)==0 ) break; 1516 pOut++; 1517 pIn1++; 1518 } 1519 break; 1520 } 1521 1522 /* Opcode: SCopy P1 P2 * * * 1523 ** Synopsis: r[P2]=r[P1] 1524 ** 1525 ** Make a shallow copy of register P1 into register P2. 1526 ** 1527 ** This instruction makes a shallow copy of the value. If the value 1528 ** is a string or blob, then the copy is only a pointer to the 1529 ** original and hence if the original changes so will the copy. 1530 ** Worse, if the original is deallocated, the copy becomes invalid. 1531 ** Thus the program must guarantee that the original will not change 1532 ** during the lifetime of the copy. Use OP_Copy to make a complete 1533 ** copy. 1534 */ 1535 case OP_SCopy: { /* out2 */ 1536 pIn1 = &aMem[pOp->p1]; 1537 pOut = &aMem[pOp->p2]; 1538 assert( pOut!=pIn1 ); 1539 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1540 #ifdef SQLITE_DEBUG 1541 pOut->pScopyFrom = pIn1; 1542 pOut->mScopyFlags = pIn1->flags; 1543 #endif 1544 break; 1545 } 1546 1547 /* Opcode: IntCopy P1 P2 * * * 1548 ** Synopsis: r[P2]=r[P1] 1549 ** 1550 ** Transfer the integer value held in register P1 into register P2. 1551 ** 1552 ** This is an optimized version of SCopy that works only for integer 1553 ** values. 1554 */ 1555 case OP_IntCopy: { /* out2 */ 1556 pIn1 = &aMem[pOp->p1]; 1557 assert( (pIn1->flags & MEM_Int)!=0 ); 1558 pOut = &aMem[pOp->p2]; 1559 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1560 break; 1561 } 1562 1563 /* Opcode: FkCheck * * * * * 1564 ** 1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1566 ** foreign key constraint violations. If there are no foreign key 1567 ** constraint violations, this is a no-op. 1568 ** 1569 ** FK constraint violations are also checked when the prepared statement 1570 ** exits. This opcode is used to raise foreign key constraint errors prior 1571 ** to returning results such as a row change count or the result of a 1572 ** RETURNING clause. 1573 */ 1574 case OP_FkCheck: { 1575 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1576 goto abort_due_to_error; 1577 } 1578 break; 1579 } 1580 1581 /* Opcode: ResultRow P1 P2 * * * 1582 ** Synopsis: output=r[P1@P2] 1583 ** 1584 ** The registers P1 through P1+P2-1 contain a single row of 1585 ** results. This opcode causes the sqlite3_step() call to terminate 1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1588 ** the result row. 1589 */ 1590 case OP_ResultRow: { 1591 assert( p->nResColumn==pOp->p2 ); 1592 assert( pOp->p1>0 || CORRUPT_DB ); 1593 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1594 1595 p->cacheCtr = (p->cacheCtr + 2)|1; 1596 p->pResultSet = &aMem[pOp->p1]; 1597 #ifdef SQLITE_DEBUG 1598 { 1599 Mem *pMem = p->pResultSet; 1600 int i; 1601 for(i=0; i<pOp->p2; i++){ 1602 assert( memIsValid(&pMem[i]) ); 1603 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1604 /* The registers in the result will not be used again when the 1605 ** prepared statement restarts. This is because sqlite3_column() 1606 ** APIs might have caused type conversions of made other changes to 1607 ** the register values. Therefore, we can go ahead and break any 1608 ** OP_SCopy dependencies. */ 1609 pMem[i].pScopyFrom = 0; 1610 } 1611 } 1612 #endif 1613 if( db->mallocFailed ) goto no_mem; 1614 if( db->mTrace & SQLITE_TRACE_ROW ){ 1615 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1616 } 1617 p->pc = (int)(pOp - aOp) + 1; 1618 rc = SQLITE_ROW; 1619 goto vdbe_return; 1620 } 1621 1622 /* Opcode: Concat P1 P2 P3 * * 1623 ** Synopsis: r[P3]=r[P2]+r[P1] 1624 ** 1625 ** Add the text in register P1 onto the end of the text in 1626 ** register P2 and store the result in register P3. 1627 ** If either the P1 or P2 text are NULL then store NULL in P3. 1628 ** 1629 ** P3 = P2 || P1 1630 ** 1631 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1632 ** if P3 is the same register as P2, the implementation is able 1633 ** to avoid a memcpy(). 1634 */ 1635 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1636 i64 nByte; /* Total size of the output string or blob */ 1637 u16 flags1; /* Initial flags for P1 */ 1638 u16 flags2; /* Initial flags for P2 */ 1639 1640 pIn1 = &aMem[pOp->p1]; 1641 pIn2 = &aMem[pOp->p2]; 1642 pOut = &aMem[pOp->p3]; 1643 testcase( pOut==pIn2 ); 1644 assert( pIn1!=pOut ); 1645 flags1 = pIn1->flags; 1646 testcase( flags1 & MEM_Null ); 1647 testcase( pIn2->flags & MEM_Null ); 1648 if( (flags1 | pIn2->flags) & MEM_Null ){ 1649 sqlite3VdbeMemSetNull(pOut); 1650 break; 1651 } 1652 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1653 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1654 flags1 = pIn1->flags & ~MEM_Str; 1655 }else if( (flags1 & MEM_Zero)!=0 ){ 1656 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1657 flags1 = pIn1->flags & ~MEM_Str; 1658 } 1659 flags2 = pIn2->flags; 1660 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1661 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1662 flags2 = pIn2->flags & ~MEM_Str; 1663 }else if( (flags2 & MEM_Zero)!=0 ){ 1664 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1665 flags2 = pIn2->flags & ~MEM_Str; 1666 } 1667 nByte = pIn1->n + pIn2->n; 1668 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1669 goto too_big; 1670 } 1671 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1672 goto no_mem; 1673 } 1674 MemSetTypeFlag(pOut, MEM_Str); 1675 if( pOut!=pIn2 ){ 1676 memcpy(pOut->z, pIn2->z, pIn2->n); 1677 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1678 pIn2->flags = flags2; 1679 } 1680 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1681 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1682 pIn1->flags = flags1; 1683 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 1684 pOut->z[nByte]=0; 1685 pOut->z[nByte+1] = 0; 1686 pOut->flags |= MEM_Term; 1687 pOut->n = (int)nByte; 1688 pOut->enc = encoding; 1689 UPDATE_MAX_BLOBSIZE(pOut); 1690 break; 1691 } 1692 1693 /* Opcode: Add P1 P2 P3 * * 1694 ** Synopsis: r[P3]=r[P1]+r[P2] 1695 ** 1696 ** Add the value in register P1 to the value in register P2 1697 ** and store the result in register P3. 1698 ** If either input is NULL, the result is NULL. 1699 */ 1700 /* Opcode: Multiply P1 P2 P3 * * 1701 ** Synopsis: r[P3]=r[P1]*r[P2] 1702 ** 1703 ** 1704 ** Multiply the value in register P1 by the value in register P2 1705 ** and store the result in register P3. 1706 ** If either input is NULL, the result is NULL. 1707 */ 1708 /* Opcode: Subtract P1 P2 P3 * * 1709 ** Synopsis: r[P3]=r[P2]-r[P1] 1710 ** 1711 ** Subtract the value in register P1 from the value in register P2 1712 ** and store the result in register P3. 1713 ** If either input is NULL, the result is NULL. 1714 */ 1715 /* Opcode: Divide P1 P2 P3 * * 1716 ** Synopsis: r[P3]=r[P2]/r[P1] 1717 ** 1718 ** Divide the value in register P1 by the value in register P2 1719 ** and store the result in register P3 (P3=P2/P1). If the value in 1720 ** register P1 is zero, then the result is NULL. If either input is 1721 ** NULL, the result is NULL. 1722 */ 1723 /* Opcode: Remainder P1 P2 P3 * * 1724 ** Synopsis: r[P3]=r[P2]%r[P1] 1725 ** 1726 ** Compute the remainder after integer register P2 is divided by 1727 ** register P1 and store the result in register P3. 1728 ** If the value in register P1 is zero the result is NULL. 1729 ** If either operand is NULL, the result is NULL. 1730 */ 1731 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1732 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1733 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1734 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1735 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1736 u16 type1; /* Numeric type of left operand */ 1737 u16 type2; /* Numeric type of right operand */ 1738 i64 iA; /* Integer value of left operand */ 1739 i64 iB; /* Integer value of right operand */ 1740 double rA; /* Real value of left operand */ 1741 double rB; /* Real value of right operand */ 1742 1743 pIn1 = &aMem[pOp->p1]; 1744 type1 = pIn1->flags; 1745 pIn2 = &aMem[pOp->p2]; 1746 type2 = pIn2->flags; 1747 pOut = &aMem[pOp->p3]; 1748 if( (type1 & type2 & MEM_Int)!=0 ){ 1749 int_math: 1750 iA = pIn1->u.i; 1751 iB = pIn2->u.i; 1752 switch( pOp->opcode ){ 1753 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1754 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1755 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1756 case OP_Divide: { 1757 if( iA==0 ) goto arithmetic_result_is_null; 1758 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1759 iB /= iA; 1760 break; 1761 } 1762 default: { 1763 if( iA==0 ) goto arithmetic_result_is_null; 1764 if( iA==-1 ) iA = 1; 1765 iB %= iA; 1766 break; 1767 } 1768 } 1769 pOut->u.i = iB; 1770 MemSetTypeFlag(pOut, MEM_Int); 1771 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 1772 goto arithmetic_result_is_null; 1773 }else{ 1774 type1 = numericType(pIn1); 1775 type2 = numericType(pIn2); 1776 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 1777 fp_math: 1778 rA = sqlite3VdbeRealValue(pIn1); 1779 rB = sqlite3VdbeRealValue(pIn2); 1780 switch( pOp->opcode ){ 1781 case OP_Add: rB += rA; break; 1782 case OP_Subtract: rB -= rA; break; 1783 case OP_Multiply: rB *= rA; break; 1784 case OP_Divide: { 1785 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1786 if( rA==(double)0 ) goto arithmetic_result_is_null; 1787 rB /= rA; 1788 break; 1789 } 1790 default: { 1791 iA = sqlite3VdbeIntValue(pIn1); 1792 iB = sqlite3VdbeIntValue(pIn2); 1793 if( iA==0 ) goto arithmetic_result_is_null; 1794 if( iA==-1 ) iA = 1; 1795 rB = (double)(iB % iA); 1796 break; 1797 } 1798 } 1799 #ifdef SQLITE_OMIT_FLOATING_POINT 1800 pOut->u.i = rB; 1801 MemSetTypeFlag(pOut, MEM_Int); 1802 #else 1803 if( sqlite3IsNaN(rB) ){ 1804 goto arithmetic_result_is_null; 1805 } 1806 pOut->u.r = rB; 1807 MemSetTypeFlag(pOut, MEM_Real); 1808 #endif 1809 } 1810 break; 1811 1812 arithmetic_result_is_null: 1813 sqlite3VdbeMemSetNull(pOut); 1814 break; 1815 } 1816 1817 /* Opcode: CollSeq P1 * * P4 1818 ** 1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1821 ** be returned. This is used by the built-in min(), max() and nullif() 1822 ** functions. 1823 ** 1824 ** If P1 is not zero, then it is a register that a subsequent min() or 1825 ** max() aggregate will set to 1 if the current row is not the minimum or 1826 ** maximum. The P1 register is initialized to 0 by this instruction. 1827 ** 1828 ** The interface used by the implementation of the aforementioned functions 1829 ** to retrieve the collation sequence set by this opcode is not available 1830 ** publicly. Only built-in functions have access to this feature. 1831 */ 1832 case OP_CollSeq: { 1833 assert( pOp->p4type==P4_COLLSEQ ); 1834 if( pOp->p1 ){ 1835 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1836 } 1837 break; 1838 } 1839 1840 /* Opcode: BitAnd P1 P2 P3 * * 1841 ** Synopsis: r[P3]=r[P1]&r[P2] 1842 ** 1843 ** Take the bit-wise AND of the values in register P1 and P2 and 1844 ** store the result in register P3. 1845 ** If either input is NULL, the result is NULL. 1846 */ 1847 /* Opcode: BitOr P1 P2 P3 * * 1848 ** Synopsis: r[P3]=r[P1]|r[P2] 1849 ** 1850 ** Take the bit-wise OR of the values in register P1 and P2 and 1851 ** store the result in register P3. 1852 ** If either input is NULL, the result is NULL. 1853 */ 1854 /* Opcode: ShiftLeft P1 P2 P3 * * 1855 ** Synopsis: r[P3]=r[P2]<<r[P1] 1856 ** 1857 ** Shift the integer value in register P2 to the left by the 1858 ** number of bits specified by the integer in register P1. 1859 ** Store the result in register P3. 1860 ** If either input is NULL, the result is NULL. 1861 */ 1862 /* Opcode: ShiftRight P1 P2 P3 * * 1863 ** Synopsis: r[P3]=r[P2]>>r[P1] 1864 ** 1865 ** Shift the integer value in register P2 to the right by the 1866 ** number of bits specified by the integer in register P1. 1867 ** Store the result in register P3. 1868 ** If either input is NULL, the result is NULL. 1869 */ 1870 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1871 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1872 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1873 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1874 i64 iA; 1875 u64 uA; 1876 i64 iB; 1877 u8 op; 1878 1879 pIn1 = &aMem[pOp->p1]; 1880 pIn2 = &aMem[pOp->p2]; 1881 pOut = &aMem[pOp->p3]; 1882 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1883 sqlite3VdbeMemSetNull(pOut); 1884 break; 1885 } 1886 iA = sqlite3VdbeIntValue(pIn2); 1887 iB = sqlite3VdbeIntValue(pIn1); 1888 op = pOp->opcode; 1889 if( op==OP_BitAnd ){ 1890 iA &= iB; 1891 }else if( op==OP_BitOr ){ 1892 iA |= iB; 1893 }else if( iB!=0 ){ 1894 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1895 1896 /* If shifting by a negative amount, shift in the other direction */ 1897 if( iB<0 ){ 1898 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1899 op = 2*OP_ShiftLeft + 1 - op; 1900 iB = iB>(-64) ? -iB : 64; 1901 } 1902 1903 if( iB>=64 ){ 1904 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1905 }else{ 1906 memcpy(&uA, &iA, sizeof(uA)); 1907 if( op==OP_ShiftLeft ){ 1908 uA <<= iB; 1909 }else{ 1910 uA >>= iB; 1911 /* Sign-extend on a right shift of a negative number */ 1912 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1913 } 1914 memcpy(&iA, &uA, sizeof(iA)); 1915 } 1916 } 1917 pOut->u.i = iA; 1918 MemSetTypeFlag(pOut, MEM_Int); 1919 break; 1920 } 1921 1922 /* Opcode: AddImm P1 P2 * * * 1923 ** Synopsis: r[P1]=r[P1]+P2 1924 ** 1925 ** Add the constant P2 to the value in register P1. 1926 ** The result is always an integer. 1927 ** 1928 ** To force any register to be an integer, just add 0. 1929 */ 1930 case OP_AddImm: { /* in1 */ 1931 pIn1 = &aMem[pOp->p1]; 1932 memAboutToChange(p, pIn1); 1933 sqlite3VdbeMemIntegerify(pIn1); 1934 pIn1->u.i += pOp->p2; 1935 break; 1936 } 1937 1938 /* Opcode: MustBeInt P1 P2 * * * 1939 ** 1940 ** Force the value in register P1 to be an integer. If the value 1941 ** in P1 is not an integer and cannot be converted into an integer 1942 ** without data loss, then jump immediately to P2, or if P2==0 1943 ** raise an SQLITE_MISMATCH exception. 1944 */ 1945 case OP_MustBeInt: { /* jump, in1 */ 1946 pIn1 = &aMem[pOp->p1]; 1947 if( (pIn1->flags & MEM_Int)==0 ){ 1948 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1949 if( (pIn1->flags & MEM_Int)==0 ){ 1950 VdbeBranchTaken(1, 2); 1951 if( pOp->p2==0 ){ 1952 rc = SQLITE_MISMATCH; 1953 goto abort_due_to_error; 1954 }else{ 1955 goto jump_to_p2; 1956 } 1957 } 1958 } 1959 VdbeBranchTaken(0, 2); 1960 MemSetTypeFlag(pIn1, MEM_Int); 1961 break; 1962 } 1963 1964 #ifndef SQLITE_OMIT_FLOATING_POINT 1965 /* Opcode: RealAffinity P1 * * * * 1966 ** 1967 ** If register P1 holds an integer convert it to a real value. 1968 ** 1969 ** This opcode is used when extracting information from a column that 1970 ** has REAL affinity. Such column values may still be stored as 1971 ** integers, for space efficiency, but after extraction we want them 1972 ** to have only a real value. 1973 */ 1974 case OP_RealAffinity: { /* in1 */ 1975 pIn1 = &aMem[pOp->p1]; 1976 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1977 testcase( pIn1->flags & MEM_Int ); 1978 testcase( pIn1->flags & MEM_IntReal ); 1979 sqlite3VdbeMemRealify(pIn1); 1980 REGISTER_TRACE(pOp->p1, pIn1); 1981 } 1982 break; 1983 } 1984 #endif 1985 1986 #ifndef SQLITE_OMIT_CAST 1987 /* Opcode: Cast P1 P2 * * * 1988 ** Synopsis: affinity(r[P1]) 1989 ** 1990 ** Force the value in register P1 to be the type defined by P2. 1991 ** 1992 ** <ul> 1993 ** <li> P2=='A' → BLOB 1994 ** <li> P2=='B' → TEXT 1995 ** <li> P2=='C' → NUMERIC 1996 ** <li> P2=='D' → INTEGER 1997 ** <li> P2=='E' → REAL 1998 ** </ul> 1999 ** 2000 ** A NULL value is not changed by this routine. It remains NULL. 2001 */ 2002 case OP_Cast: { /* in1 */ 2003 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 2004 testcase( pOp->p2==SQLITE_AFF_TEXT ); 2005 testcase( pOp->p2==SQLITE_AFF_BLOB ); 2006 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 2007 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 2008 testcase( pOp->p2==SQLITE_AFF_REAL ); 2009 pIn1 = &aMem[pOp->p1]; 2010 memAboutToChange(p, pIn1); 2011 rc = ExpandBlob(pIn1); 2012 if( rc ) goto abort_due_to_error; 2013 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 2014 if( rc ) goto abort_due_to_error; 2015 UPDATE_MAX_BLOBSIZE(pIn1); 2016 REGISTER_TRACE(pOp->p1, pIn1); 2017 break; 2018 } 2019 #endif /* SQLITE_OMIT_CAST */ 2020 2021 /* Opcode: Eq P1 P2 P3 P4 P5 2022 ** Synopsis: IF r[P3]==r[P1] 2023 ** 2024 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 2025 ** jump to address P2. 2026 ** 2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2029 ** to coerce both inputs according to this affinity before the 2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2031 ** affinity is used. Note that the affinity conversions are stored 2032 ** back into the input registers P1 and P3. So this opcode can cause 2033 ** persistent changes to registers P1 and P3. 2034 ** 2035 ** Once any conversions have taken place, and neither value is NULL, 2036 ** the values are compared. If both values are blobs then memcmp() is 2037 ** used to determine the results of the comparison. If both values 2038 ** are text, then the appropriate collating function specified in 2039 ** P4 is used to do the comparison. If P4 is not specified then 2040 ** memcmp() is used to compare text string. If both values are 2041 ** numeric, then a numeric comparison is used. If the two values 2042 ** are of different types, then numbers are considered less than 2043 ** strings and strings are considered less than blobs. 2044 ** 2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2046 ** true or false and is never NULL. If both operands are NULL then the result 2047 ** of comparison is true. If either operand is NULL then the result is false. 2048 ** If neither operand is NULL the result is the same as it would be if 2049 ** the SQLITE_NULLEQ flag were omitted from P5. 2050 ** 2051 ** This opcode saves the result of comparison for use by the new 2052 ** OP_Jump opcode. 2053 */ 2054 /* Opcode: Ne P1 P2 P3 P4 P5 2055 ** Synopsis: IF r[P3]!=r[P1] 2056 ** 2057 ** This works just like the Eq opcode except that the jump is taken if 2058 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2059 ** additional information. 2060 */ 2061 /* Opcode: Lt P1 P2 P3 P4 P5 2062 ** Synopsis: IF r[P3]<r[P1] 2063 ** 2064 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2065 ** jump to address P2. 2066 ** 2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2068 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2069 ** bit is clear then fall through if either operand is NULL. 2070 ** 2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2073 ** to coerce both inputs according to this affinity before the 2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2075 ** affinity is used. Note that the affinity conversions are stored 2076 ** back into the input registers P1 and P3. So this opcode can cause 2077 ** persistent changes to registers P1 and P3. 2078 ** 2079 ** Once any conversions have taken place, and neither value is NULL, 2080 ** the values are compared. If both values are blobs then memcmp() is 2081 ** used to determine the results of the comparison. If both values 2082 ** are text, then the appropriate collating function specified in 2083 ** P4 is used to do the comparison. If P4 is not specified then 2084 ** memcmp() is used to compare text string. If both values are 2085 ** numeric, then a numeric comparison is used. If the two values 2086 ** are of different types, then numbers are considered less than 2087 ** strings and strings are considered less than blobs. 2088 ** 2089 ** This opcode saves the result of comparison for use by the new 2090 ** OP_Jump opcode. 2091 */ 2092 /* Opcode: Le P1 P2 P3 P4 P5 2093 ** Synopsis: IF r[P3]<=r[P1] 2094 ** 2095 ** This works just like the Lt opcode except that the jump is taken if 2096 ** the content of register P3 is less than or equal to the content of 2097 ** register P1. See the Lt opcode for additional information. 2098 */ 2099 /* Opcode: Gt P1 P2 P3 P4 P5 2100 ** Synopsis: IF r[P3]>r[P1] 2101 ** 2102 ** This works just like the Lt opcode except that the jump is taken if 2103 ** the content of register P3 is greater than the content of 2104 ** register P1. See the Lt opcode for additional information. 2105 */ 2106 /* Opcode: Ge P1 P2 P3 P4 P5 2107 ** Synopsis: IF r[P3]>=r[P1] 2108 ** 2109 ** This works just like the Lt opcode except that the jump is taken if 2110 ** the content of register P3 is greater than or equal to the content of 2111 ** register P1. See the Lt opcode for additional information. 2112 */ 2113 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2114 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2115 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2116 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2117 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2118 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2119 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2120 char affinity; /* Affinity to use for comparison */ 2121 u16 flags1; /* Copy of initial value of pIn1->flags */ 2122 u16 flags3; /* Copy of initial value of pIn3->flags */ 2123 2124 pIn1 = &aMem[pOp->p1]; 2125 pIn3 = &aMem[pOp->p3]; 2126 flags1 = pIn1->flags; 2127 flags3 = pIn3->flags; 2128 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2129 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2130 /* Common case of comparison of two integers */ 2131 if( pIn3->u.i > pIn1->u.i ){ 2132 if( sqlite3aGTb[pOp->opcode] ){ 2133 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2134 goto jump_to_p2; 2135 } 2136 iCompare = +1; 2137 }else if( pIn3->u.i < pIn1->u.i ){ 2138 if( sqlite3aLTb[pOp->opcode] ){ 2139 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2140 goto jump_to_p2; 2141 } 2142 iCompare = -1; 2143 }else{ 2144 if( sqlite3aEQb[pOp->opcode] ){ 2145 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2146 goto jump_to_p2; 2147 } 2148 iCompare = 0; 2149 } 2150 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2151 break; 2152 } 2153 if( (flags1 | flags3)&MEM_Null ){ 2154 /* One or both operands are NULL */ 2155 if( pOp->p5 & SQLITE_NULLEQ ){ 2156 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2157 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2158 ** or not both operands are null. 2159 */ 2160 assert( (flags1 & MEM_Cleared)==0 ); 2161 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2162 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2163 if( (flags1&flags3&MEM_Null)!=0 2164 && (flags3&MEM_Cleared)==0 2165 ){ 2166 res = 0; /* Operands are equal */ 2167 }else{ 2168 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2169 } 2170 }else{ 2171 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2172 ** then the result is always NULL. 2173 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2174 */ 2175 VdbeBranchTaken(2,3); 2176 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2177 goto jump_to_p2; 2178 } 2179 iCompare = 1; /* Operands are not equal */ 2180 break; 2181 } 2182 }else{ 2183 /* Neither operand is NULL and we couldn't do the special high-speed 2184 ** integer comparison case. So do a general-case comparison. */ 2185 affinity = pOp->p5 & SQLITE_AFF_MASK; 2186 if( affinity>=SQLITE_AFF_NUMERIC ){ 2187 if( (flags1 | flags3)&MEM_Str ){ 2188 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2189 applyNumericAffinity(pIn1,0); 2190 testcase( flags3==pIn3->flags ); 2191 flags3 = pIn3->flags; 2192 } 2193 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2194 applyNumericAffinity(pIn3,0); 2195 } 2196 } 2197 }else if( affinity==SQLITE_AFF_TEXT ){ 2198 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2199 testcase( pIn1->flags & MEM_Int ); 2200 testcase( pIn1->flags & MEM_Real ); 2201 testcase( pIn1->flags & MEM_IntReal ); 2202 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2203 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2204 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2205 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2206 } 2207 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2208 testcase( pIn3->flags & MEM_Int ); 2209 testcase( pIn3->flags & MEM_Real ); 2210 testcase( pIn3->flags & MEM_IntReal ); 2211 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2212 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2213 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2214 } 2215 } 2216 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2217 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2218 } 2219 2220 /* At this point, res is negative, zero, or positive if reg[P1] is 2221 ** less than, equal to, or greater than reg[P3], respectively. Compute 2222 ** the answer to this operator in res2, depending on what the comparison 2223 ** operator actually is. The next block of code depends on the fact 2224 ** that the 6 comparison operators are consecutive integers in this 2225 ** order: NE, EQ, GT, LE, LT, GE */ 2226 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2227 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2228 if( res<0 ){ 2229 res2 = sqlite3aLTb[pOp->opcode]; 2230 }else if( res==0 ){ 2231 res2 = sqlite3aEQb[pOp->opcode]; 2232 }else{ 2233 res2 = sqlite3aGTb[pOp->opcode]; 2234 } 2235 iCompare = res; 2236 2237 /* Undo any changes made by applyAffinity() to the input registers. */ 2238 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2239 pIn3->flags = flags3; 2240 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2241 pIn1->flags = flags1; 2242 2243 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2244 if( res2 ){ 2245 goto jump_to_p2; 2246 } 2247 break; 2248 } 2249 2250 /* Opcode: ElseEq * P2 * * * 2251 ** 2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2254 ** opcodes are allowed to occur between this instruction and the previous 2255 ** OP_Lt or OP_Gt. 2256 ** 2257 ** If result of an OP_Eq comparison on the same two operands as the 2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2259 ** If the result of an OP_Eq comparison on the two previous 2260 ** operands would have been false or NULL, then fall through. 2261 */ 2262 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2263 2264 #ifdef SQLITE_DEBUG 2265 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2266 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2267 int iAddr; 2268 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2269 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2270 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2271 break; 2272 } 2273 #endif /* SQLITE_DEBUG */ 2274 VdbeBranchTaken(iCompare==0, 2); 2275 if( iCompare==0 ) goto jump_to_p2; 2276 break; 2277 } 2278 2279 2280 /* Opcode: Permutation * * * P4 * 2281 ** 2282 ** Set the permutation used by the OP_Compare operator in the next 2283 ** instruction. The permutation is stored in the P4 operand. 2284 ** 2285 ** The permutation is only valid for the next opcode which must be 2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 2287 ** 2288 ** The first integer in the P4 integer array is the length of the array 2289 ** and does not become part of the permutation. 2290 */ 2291 case OP_Permutation: { 2292 assert( pOp->p4type==P4_INTARRAY ); 2293 assert( pOp->p4.ai ); 2294 assert( pOp[1].opcode==OP_Compare ); 2295 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2296 break; 2297 } 2298 2299 /* Opcode: Compare P1 P2 P3 P4 P5 2300 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2301 ** 2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2304 ** the comparison for use by the next OP_Jump instruct. 2305 ** 2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2307 ** determined by the most recent OP_Permutation operator. If the 2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2309 ** order. 2310 ** 2311 ** P4 is a KeyInfo structure that defines collating sequences and sort 2312 ** orders for the comparison. The permutation applies to registers 2313 ** only. The KeyInfo elements are used sequentially. 2314 ** 2315 ** The comparison is a sort comparison, so NULLs compare equal, 2316 ** NULLs are less than numbers, numbers are less than strings, 2317 ** and strings are less than blobs. 2318 ** 2319 ** This opcode must be immediately followed by an OP_Jump opcode. 2320 */ 2321 case OP_Compare: { 2322 int n; 2323 int i; 2324 int p1; 2325 int p2; 2326 const KeyInfo *pKeyInfo; 2327 u32 idx; 2328 CollSeq *pColl; /* Collating sequence to use on this term */ 2329 int bRev; /* True for DESCENDING sort order */ 2330 u32 *aPermute; /* The permutation */ 2331 2332 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2333 aPermute = 0; 2334 }else{ 2335 assert( pOp>aOp ); 2336 assert( pOp[-1].opcode==OP_Permutation ); 2337 assert( pOp[-1].p4type==P4_INTARRAY ); 2338 aPermute = pOp[-1].p4.ai + 1; 2339 assert( aPermute!=0 ); 2340 } 2341 n = pOp->p3; 2342 pKeyInfo = pOp->p4.pKeyInfo; 2343 assert( n>0 ); 2344 assert( pKeyInfo!=0 ); 2345 p1 = pOp->p1; 2346 p2 = pOp->p2; 2347 #ifdef SQLITE_DEBUG 2348 if( aPermute ){ 2349 int k, mx = 0; 2350 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2351 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2352 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2353 }else{ 2354 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2355 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2356 } 2357 #endif /* SQLITE_DEBUG */ 2358 for(i=0; i<n; i++){ 2359 idx = aPermute ? aPermute[i] : (u32)i; 2360 assert( memIsValid(&aMem[p1+idx]) ); 2361 assert( memIsValid(&aMem[p2+idx]) ); 2362 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2363 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2364 assert( i<pKeyInfo->nKeyField ); 2365 pColl = pKeyInfo->aColl[i]; 2366 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2367 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2368 if( iCompare ){ 2369 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2370 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2371 ){ 2372 iCompare = -iCompare; 2373 } 2374 if( bRev ) iCompare = -iCompare; 2375 break; 2376 } 2377 } 2378 assert( pOp[1].opcode==OP_Jump ); 2379 break; 2380 } 2381 2382 /* Opcode: Jump P1 P2 P3 * * 2383 ** 2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2385 ** in the most recent OP_Compare instruction the P1 vector was less than 2386 ** equal to, or greater than the P2 vector, respectively. 2387 ** 2388 ** This opcode must immediately follow an OP_Compare opcode. 2389 */ 2390 case OP_Jump: { /* jump */ 2391 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 2392 if( iCompare<0 ){ 2393 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2394 }else if( iCompare==0 ){ 2395 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2396 }else{ 2397 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2398 } 2399 break; 2400 } 2401 2402 /* Opcode: And P1 P2 P3 * * 2403 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2404 ** 2405 ** Take the logical AND of the values in registers P1 and P2 and 2406 ** write the result into register P3. 2407 ** 2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2409 ** the other input is NULL. A NULL and true or two NULLs give 2410 ** a NULL output. 2411 */ 2412 /* Opcode: Or P1 P2 P3 * * 2413 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2414 ** 2415 ** Take the logical OR of the values in register P1 and P2 and 2416 ** store the answer in register P3. 2417 ** 2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2419 ** even if the other input is NULL. A NULL and false or two NULLs 2420 ** give a NULL output. 2421 */ 2422 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2423 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2424 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2425 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2426 2427 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2428 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2429 if( pOp->opcode==OP_And ){ 2430 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2431 v1 = and_logic[v1*3+v2]; 2432 }else{ 2433 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2434 v1 = or_logic[v1*3+v2]; 2435 } 2436 pOut = &aMem[pOp->p3]; 2437 if( v1==2 ){ 2438 MemSetTypeFlag(pOut, MEM_Null); 2439 }else{ 2440 pOut->u.i = v1; 2441 MemSetTypeFlag(pOut, MEM_Int); 2442 } 2443 break; 2444 } 2445 2446 /* Opcode: IsTrue P1 P2 P3 P4 * 2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2448 ** 2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2450 ** IS NOT FALSE operators. 2451 ** 2452 ** Interpret the value in register P1 as a boolean value. Store that 2453 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2454 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2455 ** is 1. 2456 ** 2457 ** The logic is summarized like this: 2458 ** 2459 ** <ul> 2460 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2461 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2462 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2463 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2464 ** </ul> 2465 */ 2466 case OP_IsTrue: { /* in1, out2 */ 2467 assert( pOp->p4type==P4_INT32 ); 2468 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2469 assert( pOp->p3==0 || pOp->p3==1 ); 2470 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2471 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2472 break; 2473 } 2474 2475 /* Opcode: Not P1 P2 * * * 2476 ** Synopsis: r[P2]= !r[P1] 2477 ** 2478 ** Interpret the value in register P1 as a boolean value. Store the 2479 ** boolean complement in register P2. If the value in register P1 is 2480 ** NULL, then a NULL is stored in P2. 2481 */ 2482 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2483 pIn1 = &aMem[pOp->p1]; 2484 pOut = &aMem[pOp->p2]; 2485 if( (pIn1->flags & MEM_Null)==0 ){ 2486 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2487 }else{ 2488 sqlite3VdbeMemSetNull(pOut); 2489 } 2490 break; 2491 } 2492 2493 /* Opcode: BitNot P1 P2 * * * 2494 ** Synopsis: r[P2]= ~r[P1] 2495 ** 2496 ** Interpret the content of register P1 as an integer. Store the 2497 ** ones-complement of the P1 value into register P2. If P1 holds 2498 ** a NULL then store a NULL in P2. 2499 */ 2500 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2501 pIn1 = &aMem[pOp->p1]; 2502 pOut = &aMem[pOp->p2]; 2503 sqlite3VdbeMemSetNull(pOut); 2504 if( (pIn1->flags & MEM_Null)==0 ){ 2505 pOut->flags = MEM_Int; 2506 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2507 } 2508 break; 2509 } 2510 2511 /* Opcode: Once P1 P2 * * * 2512 ** 2513 ** Fall through to the next instruction the first time this opcode is 2514 ** encountered on each invocation of the byte-code program. Jump to P2 2515 ** on the second and all subsequent encounters during the same invocation. 2516 ** 2517 ** Top-level programs determine first invocation by comparing the P1 2518 ** operand against the P1 operand on the OP_Init opcode at the beginning 2519 ** of the program. If the P1 values differ, then fall through and make 2520 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2521 ** the same then take the jump. 2522 ** 2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2524 ** whether or not the jump should be taken. The bitmask is necessary 2525 ** because the self-altering code trick does not work for recursive 2526 ** triggers. 2527 */ 2528 case OP_Once: { /* jump */ 2529 u32 iAddr; /* Address of this instruction */ 2530 assert( p->aOp[0].opcode==OP_Init ); 2531 if( p->pFrame ){ 2532 iAddr = (int)(pOp - p->aOp); 2533 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2534 VdbeBranchTaken(1, 2); 2535 goto jump_to_p2; 2536 } 2537 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2538 }else{ 2539 if( p->aOp[0].p1==pOp->p1 ){ 2540 VdbeBranchTaken(1, 2); 2541 goto jump_to_p2; 2542 } 2543 } 2544 VdbeBranchTaken(0, 2); 2545 pOp->p1 = p->aOp[0].p1; 2546 break; 2547 } 2548 2549 /* Opcode: If P1 P2 P3 * * 2550 ** 2551 ** Jump to P2 if the value in register P1 is true. The value 2552 ** is considered true if it is numeric and non-zero. If the value 2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2554 */ 2555 case OP_If: { /* jump, in1 */ 2556 int c; 2557 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2558 VdbeBranchTaken(c!=0, 2); 2559 if( c ) goto jump_to_p2; 2560 break; 2561 } 2562 2563 /* Opcode: IfNot P1 P2 P3 * * 2564 ** 2565 ** Jump to P2 if the value in register P1 is False. The value 2566 ** is considered false if it has a numeric value of zero. If the value 2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2568 */ 2569 case OP_IfNot: { /* jump, in1 */ 2570 int c; 2571 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2572 VdbeBranchTaken(c!=0, 2); 2573 if( c ) goto jump_to_p2; 2574 break; 2575 } 2576 2577 /* Opcode: IsNull P1 P2 * * * 2578 ** Synopsis: if r[P1]==NULL goto P2 2579 ** 2580 ** Jump to P2 if the value in register P1 is NULL. 2581 */ 2582 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2583 pIn1 = &aMem[pOp->p1]; 2584 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2585 if( (pIn1->flags & MEM_Null)!=0 ){ 2586 goto jump_to_p2; 2587 } 2588 break; 2589 } 2590 2591 /* Opcode: IsNullOrType P1 P2 P3 * * 2592 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2593 ** 2594 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2595 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2596 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2597 */ 2598 case OP_IsNullOrType: { /* jump, in1 */ 2599 int doTheJump; 2600 pIn1 = &aMem[pOp->p1]; 2601 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2602 VdbeBranchTaken( doTheJump, 2); 2603 if( doTheJump ) goto jump_to_p2; 2604 break; 2605 } 2606 2607 /* Opcode: ZeroOrNull P1 P2 P3 * * 2608 ** Synopsis: r[P2] = 0 OR NULL 2609 ** 2610 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2611 ** register P2. If either registers P1 or P3 are NULL then put 2612 ** a NULL in register P2. 2613 */ 2614 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2615 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2616 || (aMem[pOp->p3].flags & MEM_Null)!=0 2617 ){ 2618 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2619 }else{ 2620 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2621 } 2622 break; 2623 } 2624 2625 /* Opcode: NotNull P1 P2 * * * 2626 ** Synopsis: if r[P1]!=NULL goto P2 2627 ** 2628 ** Jump to P2 if the value in register P1 is not NULL. 2629 */ 2630 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2631 pIn1 = &aMem[pOp->p1]; 2632 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2633 if( (pIn1->flags & MEM_Null)==0 ){ 2634 goto jump_to_p2; 2635 } 2636 break; 2637 } 2638 2639 /* Opcode: IfNullRow P1 P2 P3 * * 2640 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2641 ** 2642 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2643 ** If it is, then set register P3 to NULL and jump immediately to P2. 2644 ** If P1 is not on a NULL row, then fall through without making any 2645 ** changes. 2646 ** 2647 ** If P1 is not an open cursor, then this opcode is a no-op. 2648 */ 2649 case OP_IfNullRow: { /* jump */ 2650 VdbeCursor *pC; 2651 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2652 pC = p->apCsr[pOp->p1]; 2653 if( ALWAYS(pC) && pC->nullRow ){ 2654 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2655 goto jump_to_p2; 2656 } 2657 break; 2658 } 2659 2660 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2661 /* Opcode: Offset P1 P2 P3 * * 2662 ** Synopsis: r[P3] = sqlite_offset(P1) 2663 ** 2664 ** Store in register r[P3] the byte offset into the database file that is the 2665 ** start of the payload for the record at which that cursor P1 is currently 2666 ** pointing. 2667 ** 2668 ** P2 is the column number for the argument to the sqlite_offset() function. 2669 ** This opcode does not use P2 itself, but the P2 value is used by the 2670 ** code generator. The P1, P2, and P3 operands to this opcode are the 2671 ** same as for OP_Column. 2672 ** 2673 ** This opcode is only available if SQLite is compiled with the 2674 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2675 */ 2676 case OP_Offset: { /* out3 */ 2677 VdbeCursor *pC; /* The VDBE cursor */ 2678 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2679 pC = p->apCsr[pOp->p1]; 2680 pOut = &p->aMem[pOp->p3]; 2681 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 2682 sqlite3VdbeMemSetNull(pOut); 2683 }else{ 2684 if( pC->deferredMoveto ){ 2685 rc = sqlite3VdbeFinishMoveto(pC); 2686 if( rc ) goto abort_due_to_error; 2687 } 2688 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 2689 sqlite3VdbeMemSetNull(pOut); 2690 }else{ 2691 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2692 } 2693 } 2694 break; 2695 } 2696 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2697 2698 /* Opcode: Column P1 P2 P3 P4 P5 2699 ** Synopsis: r[P3]=PX cursor P1 column P2 2700 ** 2701 ** Interpret the data that cursor P1 points to as a structure built using 2702 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2703 ** information about the format of the data.) Extract the P2-th column 2704 ** from this record. If there are less that (P2+1) 2705 ** values in the record, extract a NULL. 2706 ** 2707 ** The value extracted is stored in register P3. 2708 ** 2709 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2710 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2711 ** the result. 2712 ** 2713 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2714 ** the result is guaranteed to only be used as the argument of a length() 2715 ** or typeof() function, respectively. The loading of large blobs can be 2716 ** skipped for length() and all content loading can be skipped for typeof(). 2717 */ 2718 case OP_Column: { 2719 u32 p2; /* column number to retrieve */ 2720 VdbeCursor *pC; /* The VDBE cursor */ 2721 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2722 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2723 int len; /* The length of the serialized data for the column */ 2724 int i; /* Loop counter */ 2725 Mem *pDest; /* Where to write the extracted value */ 2726 Mem sMem; /* For storing the record being decoded */ 2727 const u8 *zData; /* Part of the record being decoded */ 2728 const u8 *zHdr; /* Next unparsed byte of the header */ 2729 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2730 u64 offset64; /* 64-bit offset */ 2731 u32 t; /* A type code from the record header */ 2732 Mem *pReg; /* PseudoTable input register */ 2733 2734 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2735 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2736 pC = p->apCsr[pOp->p1]; 2737 p2 = (u32)pOp->p2; 2738 2739 op_column_restart: 2740 assert( pC!=0 ); 2741 assert( p2<(u32)pC->nField 2742 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 2743 aOffset = pC->aOffset; 2744 assert( aOffset==pC->aType+pC->nField ); 2745 assert( pC->eCurType!=CURTYPE_VTAB ); 2746 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2747 assert( pC->eCurType!=CURTYPE_SORTER ); 2748 2749 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2750 if( pC->nullRow ){ 2751 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 2752 /* For the special case of as pseudo-cursor, the seekResult field 2753 ** identifies the register that holds the record */ 2754 pReg = &aMem[pC->seekResult]; 2755 assert( pReg->flags & MEM_Blob ); 2756 assert( memIsValid(pReg) ); 2757 pC->payloadSize = pC->szRow = pReg->n; 2758 pC->aRow = (u8*)pReg->z; 2759 }else{ 2760 pDest = &aMem[pOp->p3]; 2761 memAboutToChange(p, pDest); 2762 sqlite3VdbeMemSetNull(pDest); 2763 goto op_column_out; 2764 } 2765 }else{ 2766 pCrsr = pC->uc.pCursor; 2767 if( pC->deferredMoveto ){ 2768 u32 iMap; 2769 assert( !pC->isEphemeral ); 2770 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2771 pC = pC->pAltCursor; 2772 p2 = iMap - 1; 2773 goto op_column_restart; 2774 } 2775 rc = sqlite3VdbeFinishMoveto(pC); 2776 if( rc ) goto abort_due_to_error; 2777 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2778 rc = sqlite3VdbeHandleMovedCursor(pC); 2779 if( rc ) goto abort_due_to_error; 2780 goto op_column_restart; 2781 } 2782 assert( pC->eCurType==CURTYPE_BTREE ); 2783 assert( pCrsr ); 2784 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2785 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2786 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2787 assert( pC->szRow<=pC->payloadSize ); 2788 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2789 } 2790 pC->cacheStatus = p->cacheCtr; 2791 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 2792 pC->iHdrOffset = 1; 2793 }else{ 2794 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 2795 } 2796 pC->nHdrParsed = 0; 2797 2798 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2799 /* pC->aRow does not have to hold the entire row, but it does at least 2800 ** need to cover the header of the record. If pC->aRow does not contain 2801 ** the complete header, then set it to zero, forcing the header to be 2802 ** dynamically allocated. */ 2803 pC->aRow = 0; 2804 pC->szRow = 0; 2805 2806 /* Make sure a corrupt database has not given us an oversize header. 2807 ** Do this now to avoid an oversize memory allocation. 2808 ** 2809 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2810 ** types use so much data space that there can only be 4096 and 32 of 2811 ** them, respectively. So the maximum header length results from a 2812 ** 3-byte type for each of the maximum of 32768 columns plus three 2813 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2814 */ 2815 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2816 goto op_column_corrupt; 2817 } 2818 }else{ 2819 /* This is an optimization. By skipping over the first few tests 2820 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2821 ** measurable performance gain. 2822 ** 2823 ** This branch is taken even if aOffset[0]==0. Such a record is never 2824 ** generated by SQLite, and could be considered corruption, but we 2825 ** accept it for historical reasons. When aOffset[0]==0, the code this 2826 ** branch jumps to reads past the end of the record, but never more 2827 ** than a few bytes. Even if the record occurs at the end of the page 2828 ** content area, the "page header" comes after the page content and so 2829 ** this overread is harmless. Similar overreads can occur for a corrupt 2830 ** database file. 2831 */ 2832 zData = pC->aRow; 2833 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2834 testcase( aOffset[0]==0 ); 2835 goto op_column_read_header; 2836 } 2837 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2838 rc = sqlite3VdbeHandleMovedCursor(pC); 2839 if( rc ) goto abort_due_to_error; 2840 goto op_column_restart; 2841 } 2842 2843 /* Make sure at least the first p2+1 entries of the header have been 2844 ** parsed and valid information is in aOffset[] and pC->aType[]. 2845 */ 2846 if( pC->nHdrParsed<=p2 ){ 2847 /* If there is more header available for parsing in the record, try 2848 ** to extract additional fields up through the p2+1-th field 2849 */ 2850 if( pC->iHdrOffset<aOffset[0] ){ 2851 /* Make sure zData points to enough of the record to cover the header. */ 2852 if( pC->aRow==0 ){ 2853 memset(&sMem, 0, sizeof(sMem)); 2854 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2855 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2856 zData = (u8*)sMem.z; 2857 }else{ 2858 zData = pC->aRow; 2859 } 2860 2861 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2862 op_column_read_header: 2863 i = pC->nHdrParsed; 2864 offset64 = aOffset[i]; 2865 zHdr = zData + pC->iHdrOffset; 2866 zEndHdr = zData + aOffset[0]; 2867 testcase( zHdr>=zEndHdr ); 2868 do{ 2869 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2870 zHdr++; 2871 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2872 }else{ 2873 zHdr += sqlite3GetVarint32(zHdr, &t); 2874 pC->aType[i] = t; 2875 offset64 += sqlite3VdbeSerialTypeLen(t); 2876 } 2877 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2878 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2879 2880 /* The record is corrupt if any of the following are true: 2881 ** (1) the bytes of the header extend past the declared header size 2882 ** (2) the entire header was used but not all data was used 2883 ** (3) the end of the data extends beyond the end of the record. 2884 */ 2885 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2886 || (offset64 > pC->payloadSize) 2887 ){ 2888 if( aOffset[0]==0 ){ 2889 i = 0; 2890 zHdr = zEndHdr; 2891 }else{ 2892 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2893 goto op_column_corrupt; 2894 } 2895 } 2896 2897 pC->nHdrParsed = i; 2898 pC->iHdrOffset = (u32)(zHdr - zData); 2899 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2900 }else{ 2901 t = 0; 2902 } 2903 2904 /* If after trying to extract new entries from the header, nHdrParsed is 2905 ** still not up to p2, that means that the record has fewer than p2 2906 ** columns. So the result will be either the default value or a NULL. 2907 */ 2908 if( pC->nHdrParsed<=p2 ){ 2909 pDest = &aMem[pOp->p3]; 2910 memAboutToChange(p, pDest); 2911 if( pOp->p4type==P4_MEM ){ 2912 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2913 }else{ 2914 sqlite3VdbeMemSetNull(pDest); 2915 } 2916 goto op_column_out; 2917 } 2918 }else{ 2919 t = pC->aType[p2]; 2920 } 2921 2922 /* Extract the content for the p2+1-th column. Control can only 2923 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2924 ** all valid. 2925 */ 2926 assert( p2<pC->nHdrParsed ); 2927 assert( rc==SQLITE_OK ); 2928 pDest = &aMem[pOp->p3]; 2929 memAboutToChange(p, pDest); 2930 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2931 if( VdbeMemDynamic(pDest) ){ 2932 sqlite3VdbeMemSetNull(pDest); 2933 } 2934 assert( t==pC->aType[p2] ); 2935 if( pC->szRow>=aOffset[p2+1] ){ 2936 /* This is the common case where the desired content fits on the original 2937 ** page - where the content is not on an overflow page */ 2938 zData = pC->aRow + aOffset[p2]; 2939 if( t<12 ){ 2940 sqlite3VdbeSerialGet(zData, t, pDest); 2941 }else{ 2942 /* If the column value is a string, we need a persistent value, not 2943 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2944 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2945 */ 2946 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2947 pDest->n = len = (t-12)/2; 2948 pDest->enc = encoding; 2949 if( pDest->szMalloc < len+2 ){ 2950 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2951 pDest->flags = MEM_Null; 2952 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2953 }else{ 2954 pDest->z = pDest->zMalloc; 2955 } 2956 memcpy(pDest->z, zData, len); 2957 pDest->z[len] = 0; 2958 pDest->z[len+1] = 0; 2959 pDest->flags = aFlag[t&1]; 2960 } 2961 }else{ 2962 pDest->enc = encoding; 2963 /* This branch happens only when content is on overflow pages */ 2964 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2965 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2966 || (len = sqlite3VdbeSerialTypeLen(t))==0 2967 ){ 2968 /* Content is irrelevant for 2969 ** 1. the typeof() function, 2970 ** 2. the length(X) function if X is a blob, and 2971 ** 3. if the content length is zero. 2972 ** So we might as well use bogus content rather than reading 2973 ** content from disk. 2974 ** 2975 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2976 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2977 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2978 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2979 ** and it begins with a bunch of zeros. 2980 */ 2981 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2982 }else{ 2983 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2984 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2985 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2986 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2987 pDest->flags &= ~MEM_Ephem; 2988 } 2989 } 2990 2991 op_column_out: 2992 UPDATE_MAX_BLOBSIZE(pDest); 2993 REGISTER_TRACE(pOp->p3, pDest); 2994 break; 2995 2996 op_column_corrupt: 2997 if( aOp[0].p3>0 ){ 2998 pOp = &aOp[aOp[0].p3-1]; 2999 break; 3000 }else{ 3001 rc = SQLITE_CORRUPT_BKPT; 3002 goto abort_due_to_error; 3003 } 3004 } 3005 3006 /* Opcode: TypeCheck P1 P2 P3 P4 * 3007 ** Synopsis: typecheck(r[P1@P2]) 3008 ** 3009 ** Apply affinities to the range of P2 registers beginning with P1. 3010 ** Take the affinities from the Table object in P4. If any value 3011 ** cannot be coerced into the correct type, then raise an error. 3012 ** 3013 ** This opcode is similar to OP_Affinity except that this opcode 3014 ** forces the register type to the Table column type. This is used 3015 ** to implement "strict affinity". 3016 ** 3017 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 3018 ** is zero. When P3 is non-zero, no type checking occurs for 3019 ** static generated columns. Virtual columns are computed at query time 3020 ** and so they are never checked. 3021 ** 3022 ** Preconditions: 3023 ** 3024 ** <ul> 3025 ** <li> P2 should be the number of non-virtual columns in the 3026 ** table of P4. 3027 ** <li> Table P4 should be a STRICT table. 3028 ** </ul> 3029 ** 3030 ** If any precondition is false, an assertion fault occurs. 3031 */ 3032 case OP_TypeCheck: { 3033 Table *pTab; 3034 Column *aCol; 3035 int i; 3036 3037 assert( pOp->p4type==P4_TABLE ); 3038 pTab = pOp->p4.pTab; 3039 assert( pTab->tabFlags & TF_Strict ); 3040 assert( pTab->nNVCol==pOp->p2 ); 3041 aCol = pTab->aCol; 3042 pIn1 = &aMem[pOp->p1]; 3043 for(i=0; i<pTab->nCol; i++){ 3044 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 3045 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 3046 if( pOp->p3 ){ pIn1++; continue; } 3047 } 3048 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3049 applyAffinity(pIn1, aCol[i].affinity, encoding); 3050 if( (pIn1->flags & MEM_Null)==0 ){ 3051 switch( aCol[i].eCType ){ 3052 case COLTYPE_BLOB: { 3053 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3054 break; 3055 } 3056 case COLTYPE_INTEGER: 3057 case COLTYPE_INT: { 3058 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3059 break; 3060 } 3061 case COLTYPE_TEXT: { 3062 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3063 break; 3064 } 3065 case COLTYPE_REAL: { 3066 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3067 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3068 if( pIn1->flags & MEM_Int ){ 3069 /* When applying REAL affinity, if the result is still an MEM_Int 3070 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3071 ** so that we keep the high-resolution integer value but know that 3072 ** the type really wants to be REAL. */ 3073 testcase( pIn1->u.i==140737488355328LL ); 3074 testcase( pIn1->u.i==140737488355327LL ); 3075 testcase( pIn1->u.i==-140737488355328LL ); 3076 testcase( pIn1->u.i==-140737488355329LL ); 3077 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3078 pIn1->flags |= MEM_IntReal; 3079 pIn1->flags &= ~MEM_Int; 3080 }else{ 3081 pIn1->u.r = (double)pIn1->u.i; 3082 pIn1->flags |= MEM_Real; 3083 pIn1->flags &= ~MEM_Int; 3084 } 3085 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3086 goto vdbe_type_error; 3087 } 3088 break; 3089 } 3090 default: { 3091 /* COLTYPE_ANY. Accept anything. */ 3092 break; 3093 } 3094 } 3095 } 3096 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3097 pIn1++; 3098 } 3099 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3100 break; 3101 3102 vdbe_type_error: 3103 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3104 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3105 pTab->zName, aCol[i].zCnName); 3106 rc = SQLITE_CONSTRAINT_DATATYPE; 3107 goto abort_due_to_error; 3108 } 3109 3110 /* Opcode: Affinity P1 P2 * P4 * 3111 ** Synopsis: affinity(r[P1@P2]) 3112 ** 3113 ** Apply affinities to a range of P2 registers starting with P1. 3114 ** 3115 ** P4 is a string that is P2 characters long. The N-th character of the 3116 ** string indicates the column affinity that should be used for the N-th 3117 ** memory cell in the range. 3118 */ 3119 case OP_Affinity: { 3120 const char *zAffinity; /* The affinity to be applied */ 3121 3122 zAffinity = pOp->p4.z; 3123 assert( zAffinity!=0 ); 3124 assert( pOp->p2>0 ); 3125 assert( zAffinity[pOp->p2]==0 ); 3126 pIn1 = &aMem[pOp->p1]; 3127 while( 1 /*exit-by-break*/ ){ 3128 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3129 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3130 applyAffinity(pIn1, zAffinity[0], encoding); 3131 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3132 /* When applying REAL affinity, if the result is still an MEM_Int 3133 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3134 ** so that we keep the high-resolution integer value but know that 3135 ** the type really wants to be REAL. */ 3136 testcase( pIn1->u.i==140737488355328LL ); 3137 testcase( pIn1->u.i==140737488355327LL ); 3138 testcase( pIn1->u.i==-140737488355328LL ); 3139 testcase( pIn1->u.i==-140737488355329LL ); 3140 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3141 pIn1->flags |= MEM_IntReal; 3142 pIn1->flags &= ~MEM_Int; 3143 }else{ 3144 pIn1->u.r = (double)pIn1->u.i; 3145 pIn1->flags |= MEM_Real; 3146 pIn1->flags &= ~MEM_Int; 3147 } 3148 } 3149 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3150 zAffinity++; 3151 if( zAffinity[0]==0 ) break; 3152 pIn1++; 3153 } 3154 break; 3155 } 3156 3157 /* Opcode: MakeRecord P1 P2 P3 P4 * 3158 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3159 ** 3160 ** Convert P2 registers beginning with P1 into the [record format] 3161 ** use as a data record in a database table or as a key 3162 ** in an index. The OP_Column opcode can decode the record later. 3163 ** 3164 ** P4 may be a string that is P2 characters long. The N-th character of the 3165 ** string indicates the column affinity that should be used for the N-th 3166 ** field of the index key. 3167 ** 3168 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3169 ** macros defined in sqliteInt.h. 3170 ** 3171 ** If P4 is NULL then all index fields have the affinity BLOB. 3172 ** 3173 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3174 ** compile-time option is enabled: 3175 ** 3176 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3177 ** of the right-most table that can be null-trimmed. 3178 ** 3179 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3180 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3181 ** accept no-change records with serial_type 10. This value is 3182 ** only used inside an assert() and does not affect the end result. 3183 */ 3184 case OP_MakeRecord: { 3185 Mem *pRec; /* The new record */ 3186 u64 nData; /* Number of bytes of data space */ 3187 int nHdr; /* Number of bytes of header space */ 3188 i64 nByte; /* Data space required for this record */ 3189 i64 nZero; /* Number of zero bytes at the end of the record */ 3190 int nVarint; /* Number of bytes in a varint */ 3191 u32 serial_type; /* Type field */ 3192 Mem *pData0; /* First field to be combined into the record */ 3193 Mem *pLast; /* Last field of the record */ 3194 int nField; /* Number of fields in the record */ 3195 char *zAffinity; /* The affinity string for the record */ 3196 u32 len; /* Length of a field */ 3197 u8 *zHdr; /* Where to write next byte of the header */ 3198 u8 *zPayload; /* Where to write next byte of the payload */ 3199 3200 /* Assuming the record contains N fields, the record format looks 3201 ** like this: 3202 ** 3203 ** ------------------------------------------------------------------------ 3204 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3205 ** ------------------------------------------------------------------------ 3206 ** 3207 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3208 ** and so forth. 3209 ** 3210 ** Each type field is a varint representing the serial type of the 3211 ** corresponding data element (see sqlite3VdbeSerialType()). The 3212 ** hdr-size field is also a varint which is the offset from the beginning 3213 ** of the record to data0. 3214 */ 3215 nData = 0; /* Number of bytes of data space */ 3216 nHdr = 0; /* Number of bytes of header space */ 3217 nZero = 0; /* Number of zero bytes at the end of the record */ 3218 nField = pOp->p1; 3219 zAffinity = pOp->p4.z; 3220 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3221 pData0 = &aMem[nField]; 3222 nField = pOp->p2; 3223 pLast = &pData0[nField-1]; 3224 3225 /* Identify the output register */ 3226 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3227 pOut = &aMem[pOp->p3]; 3228 memAboutToChange(p, pOut); 3229 3230 /* Apply the requested affinity to all inputs 3231 */ 3232 assert( pData0<=pLast ); 3233 if( zAffinity ){ 3234 pRec = pData0; 3235 do{ 3236 applyAffinity(pRec, zAffinity[0], encoding); 3237 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3238 pRec->flags |= MEM_IntReal; 3239 pRec->flags &= ~(MEM_Int); 3240 } 3241 REGISTER_TRACE((int)(pRec-aMem), pRec); 3242 zAffinity++; 3243 pRec++; 3244 assert( zAffinity[0]==0 || pRec<=pLast ); 3245 }while( zAffinity[0] ); 3246 } 3247 3248 #ifdef SQLITE_ENABLE_NULL_TRIM 3249 /* NULLs can be safely trimmed from the end of the record, as long as 3250 ** as the schema format is 2 or more and none of the omitted columns 3251 ** have a non-NULL default value. Also, the record must be left with 3252 ** at least one field. If P5>0 then it will be one more than the 3253 ** index of the right-most column with a non-NULL default value */ 3254 if( pOp->p5 ){ 3255 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3256 pLast--; 3257 nField--; 3258 } 3259 } 3260 #endif 3261 3262 /* Loop through the elements that will make up the record to figure 3263 ** out how much space is required for the new record. After this loop, 3264 ** the Mem.uTemp field of each term should hold the serial-type that will 3265 ** be used for that term in the generated record: 3266 ** 3267 ** Mem.uTemp value type 3268 ** --------------- --------------- 3269 ** 0 NULL 3270 ** 1 1-byte signed integer 3271 ** 2 2-byte signed integer 3272 ** 3 3-byte signed integer 3273 ** 4 4-byte signed integer 3274 ** 5 6-byte signed integer 3275 ** 6 8-byte signed integer 3276 ** 7 IEEE float 3277 ** 8 Integer constant 0 3278 ** 9 Integer constant 1 3279 ** 10,11 reserved for expansion 3280 ** N>=12 and even BLOB 3281 ** N>=13 and odd text 3282 ** 3283 ** The following additional values are computed: 3284 ** nHdr Number of bytes needed for the record header 3285 ** nData Number of bytes of data space needed for the record 3286 ** nZero Zero bytes at the end of the record 3287 */ 3288 pRec = pLast; 3289 do{ 3290 assert( memIsValid(pRec) ); 3291 if( pRec->flags & MEM_Null ){ 3292 if( pRec->flags & MEM_Zero ){ 3293 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3294 ** table methods that never invoke sqlite3_result_xxxxx() while 3295 ** computing an unchanging column value in an UPDATE statement. 3296 ** Give such values a special internal-use-only serial-type of 10 3297 ** so that they can be passed through to xUpdate and have 3298 ** a true sqlite3_value_nochange(). */ 3299 #ifndef SQLITE_ENABLE_NULL_TRIM 3300 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3301 #endif 3302 pRec->uTemp = 10; 3303 }else{ 3304 pRec->uTemp = 0; 3305 } 3306 nHdr++; 3307 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3308 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3309 i64 i = pRec->u.i; 3310 u64 uu; 3311 testcase( pRec->flags & MEM_Int ); 3312 testcase( pRec->flags & MEM_IntReal ); 3313 if( i<0 ){ 3314 uu = ~i; 3315 }else{ 3316 uu = i; 3317 } 3318 nHdr++; 3319 testcase( uu==127 ); testcase( uu==128 ); 3320 testcase( uu==32767 ); testcase( uu==32768 ); 3321 testcase( uu==8388607 ); testcase( uu==8388608 ); 3322 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3323 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3324 if( uu<=127 ){ 3325 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3326 pRec->uTemp = 8+(u32)uu; 3327 }else{ 3328 nData++; 3329 pRec->uTemp = 1; 3330 } 3331 }else if( uu<=32767 ){ 3332 nData += 2; 3333 pRec->uTemp = 2; 3334 }else if( uu<=8388607 ){ 3335 nData += 3; 3336 pRec->uTemp = 3; 3337 }else if( uu<=2147483647 ){ 3338 nData += 4; 3339 pRec->uTemp = 4; 3340 }else if( uu<=140737488355327LL ){ 3341 nData += 6; 3342 pRec->uTemp = 5; 3343 }else{ 3344 nData += 8; 3345 if( pRec->flags & MEM_IntReal ){ 3346 /* If the value is IntReal and is going to take up 8 bytes to store 3347 ** as an integer, then we might as well make it an 8-byte floating 3348 ** point value */ 3349 pRec->u.r = (double)pRec->u.i; 3350 pRec->flags &= ~MEM_IntReal; 3351 pRec->flags |= MEM_Real; 3352 pRec->uTemp = 7; 3353 }else{ 3354 pRec->uTemp = 6; 3355 } 3356 } 3357 }else if( pRec->flags & MEM_Real ){ 3358 nHdr++; 3359 nData += 8; 3360 pRec->uTemp = 7; 3361 }else{ 3362 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3363 assert( pRec->n>=0 ); 3364 len = (u32)pRec->n; 3365 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3366 if( pRec->flags & MEM_Zero ){ 3367 serial_type += pRec->u.nZero*2; 3368 if( nData ){ 3369 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3370 len += pRec->u.nZero; 3371 }else{ 3372 nZero += pRec->u.nZero; 3373 } 3374 } 3375 nData += len; 3376 nHdr += sqlite3VarintLen(serial_type); 3377 pRec->uTemp = serial_type; 3378 } 3379 if( pRec==pData0 ) break; 3380 pRec--; 3381 }while(1); 3382 3383 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3384 ** which determines the total number of bytes in the header. The varint 3385 ** value is the size of the header in bytes including the size varint 3386 ** itself. */ 3387 testcase( nHdr==126 ); 3388 testcase( nHdr==127 ); 3389 if( nHdr<=126 ){ 3390 /* The common case */ 3391 nHdr += 1; 3392 }else{ 3393 /* Rare case of a really large header */ 3394 nVarint = sqlite3VarintLen(nHdr); 3395 nHdr += nVarint; 3396 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3397 } 3398 nByte = nHdr+nData; 3399 3400 /* Make sure the output register has a buffer large enough to store 3401 ** the new record. The output register (pOp->p3) is not allowed to 3402 ** be one of the input registers (because the following call to 3403 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3404 */ 3405 if( nByte+nZero<=pOut->szMalloc ){ 3406 /* The output register is already large enough to hold the record. 3407 ** No error checks or buffer enlargement is required */ 3408 pOut->z = pOut->zMalloc; 3409 }else{ 3410 /* Need to make sure that the output is not too big and then enlarge 3411 ** the output register to hold the full result */ 3412 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3413 goto too_big; 3414 } 3415 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3416 goto no_mem; 3417 } 3418 } 3419 pOut->n = (int)nByte; 3420 pOut->flags = MEM_Blob; 3421 if( nZero ){ 3422 pOut->u.nZero = nZero; 3423 pOut->flags |= MEM_Zero; 3424 } 3425 UPDATE_MAX_BLOBSIZE(pOut); 3426 zHdr = (u8 *)pOut->z; 3427 zPayload = zHdr + nHdr; 3428 3429 /* Write the record */ 3430 if( nHdr<0x80 ){ 3431 *(zHdr++) = nHdr; 3432 }else{ 3433 zHdr += sqlite3PutVarint(zHdr,nHdr); 3434 } 3435 assert( pData0<=pLast ); 3436 pRec = pData0; 3437 while( 1 /*exit-by-break*/ ){ 3438 serial_type = pRec->uTemp; 3439 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3440 ** additional varints, one per column. 3441 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 3442 ** immediately follow the header. */ 3443 if( serial_type<=7 ){ 3444 *(zHdr++) = serial_type; 3445 if( serial_type==0 ){ 3446 /* NULL value. No change in zPayload */ 3447 }else{ 3448 u64 v; 3449 u32 i; 3450 if( serial_type==7 ){ 3451 assert( sizeof(v)==sizeof(pRec->u.r) ); 3452 memcpy(&v, &pRec->u.r, sizeof(v)); 3453 swapMixedEndianFloat(v); 3454 }else{ 3455 v = pRec->u.i; 3456 } 3457 len = i = sqlite3SmallTypeSizes[serial_type]; 3458 assert( i>0 ); 3459 while( 1 /*exit-by-break*/ ){ 3460 zPayload[--i] = (u8)(v&0xFF); 3461 if( i==0 ) break; 3462 v >>= 8; 3463 } 3464 zPayload += len; 3465 } 3466 }else if( serial_type<0x80 ){ 3467 *(zHdr++) = serial_type; 3468 if( serial_type>=14 && pRec->n>0 ){ 3469 assert( pRec->z!=0 ); 3470 memcpy(zPayload, pRec->z, pRec->n); 3471 zPayload += pRec->n; 3472 } 3473 }else{ 3474 zHdr += sqlite3PutVarint(zHdr, serial_type); 3475 if( pRec->n ){ 3476 assert( pRec->z!=0 ); 3477 memcpy(zPayload, pRec->z, pRec->n); 3478 zPayload += pRec->n; 3479 } 3480 } 3481 if( pRec==pLast ) break; 3482 pRec++; 3483 } 3484 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3485 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3486 3487 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3488 REGISTER_TRACE(pOp->p3, pOut); 3489 break; 3490 } 3491 3492 /* Opcode: Count P1 P2 P3 * * 3493 ** Synopsis: r[P2]=count() 3494 ** 3495 ** Store the number of entries (an integer value) in the table or index 3496 ** opened by cursor P1 in register P2. 3497 ** 3498 ** If P3==0, then an exact count is obtained, which involves visiting 3499 ** every btree page of the table. But if P3 is non-zero, an estimate 3500 ** is returned based on the current cursor position. 3501 */ 3502 case OP_Count: { /* out2 */ 3503 i64 nEntry; 3504 BtCursor *pCrsr; 3505 3506 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3507 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3508 assert( pCrsr ); 3509 if( pOp->p3 ){ 3510 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3511 }else{ 3512 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3513 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3514 if( rc ) goto abort_due_to_error; 3515 } 3516 pOut = out2Prerelease(p, pOp); 3517 pOut->u.i = nEntry; 3518 goto check_for_interrupt; 3519 } 3520 3521 /* Opcode: Savepoint P1 * * P4 * 3522 ** 3523 ** Open, release or rollback the savepoint named by parameter P4, depending 3524 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3525 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3526 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3527 */ 3528 case OP_Savepoint: { 3529 int p1; /* Value of P1 operand */ 3530 char *zName; /* Name of savepoint */ 3531 int nName; 3532 Savepoint *pNew; 3533 Savepoint *pSavepoint; 3534 Savepoint *pTmp; 3535 int iSavepoint; 3536 int ii; 3537 3538 p1 = pOp->p1; 3539 zName = pOp->p4.z; 3540 3541 /* Assert that the p1 parameter is valid. Also that if there is no open 3542 ** transaction, then there cannot be any savepoints. 3543 */ 3544 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3545 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3546 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3547 assert( checkSavepointCount(db) ); 3548 assert( p->bIsReader ); 3549 3550 if( p1==SAVEPOINT_BEGIN ){ 3551 if( db->nVdbeWrite>0 ){ 3552 /* A new savepoint cannot be created if there are active write 3553 ** statements (i.e. open read/write incremental blob handles). 3554 */ 3555 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3556 rc = SQLITE_BUSY; 3557 }else{ 3558 nName = sqlite3Strlen30(zName); 3559 3560 #ifndef SQLITE_OMIT_VIRTUALTABLE 3561 /* This call is Ok even if this savepoint is actually a transaction 3562 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3563 ** If this is a transaction savepoint being opened, it is guaranteed 3564 ** that the db->aVTrans[] array is empty. */ 3565 assert( db->autoCommit==0 || db->nVTrans==0 ); 3566 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3567 db->nStatement+db->nSavepoint); 3568 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3569 #endif 3570 3571 /* Create a new savepoint structure. */ 3572 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3573 if( pNew ){ 3574 pNew->zName = (char *)&pNew[1]; 3575 memcpy(pNew->zName, zName, nName+1); 3576 3577 /* If there is no open transaction, then mark this as a special 3578 ** "transaction savepoint". */ 3579 if( db->autoCommit ){ 3580 db->autoCommit = 0; 3581 db->isTransactionSavepoint = 1; 3582 }else{ 3583 db->nSavepoint++; 3584 } 3585 3586 /* Link the new savepoint into the database handle's list. */ 3587 pNew->pNext = db->pSavepoint; 3588 db->pSavepoint = pNew; 3589 pNew->nDeferredCons = db->nDeferredCons; 3590 pNew->nDeferredImmCons = db->nDeferredImmCons; 3591 } 3592 } 3593 }else{ 3594 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3595 iSavepoint = 0; 3596 3597 /* Find the named savepoint. If there is no such savepoint, then an 3598 ** an error is returned to the user. */ 3599 for( 3600 pSavepoint = db->pSavepoint; 3601 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3602 pSavepoint = pSavepoint->pNext 3603 ){ 3604 iSavepoint++; 3605 } 3606 if( !pSavepoint ){ 3607 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3608 rc = SQLITE_ERROR; 3609 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3610 /* It is not possible to release (commit) a savepoint if there are 3611 ** active write statements. 3612 */ 3613 sqlite3VdbeError(p, "cannot release savepoint - " 3614 "SQL statements in progress"); 3615 rc = SQLITE_BUSY; 3616 }else{ 3617 3618 /* Determine whether or not this is a transaction savepoint. If so, 3619 ** and this is a RELEASE command, then the current transaction 3620 ** is committed. 3621 */ 3622 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3623 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3624 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3625 goto vdbe_return; 3626 } 3627 db->autoCommit = 1; 3628 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3629 p->pc = (int)(pOp - aOp); 3630 db->autoCommit = 0; 3631 p->rc = rc = SQLITE_BUSY; 3632 goto vdbe_return; 3633 } 3634 rc = p->rc; 3635 if( rc ){ 3636 db->autoCommit = 0; 3637 }else{ 3638 db->isTransactionSavepoint = 0; 3639 } 3640 }else{ 3641 int isSchemaChange; 3642 iSavepoint = db->nSavepoint - iSavepoint - 1; 3643 if( p1==SAVEPOINT_ROLLBACK ){ 3644 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3645 for(ii=0; ii<db->nDb; ii++){ 3646 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3647 SQLITE_ABORT_ROLLBACK, 3648 isSchemaChange==0); 3649 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3650 } 3651 }else{ 3652 assert( p1==SAVEPOINT_RELEASE ); 3653 isSchemaChange = 0; 3654 } 3655 for(ii=0; ii<db->nDb; ii++){ 3656 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3657 if( rc!=SQLITE_OK ){ 3658 goto abort_due_to_error; 3659 } 3660 } 3661 if( isSchemaChange ){ 3662 sqlite3ExpirePreparedStatements(db, 0); 3663 sqlite3ResetAllSchemasOfConnection(db); 3664 db->mDbFlags |= DBFLAG_SchemaChange; 3665 } 3666 } 3667 if( rc ) goto abort_due_to_error; 3668 3669 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3670 ** savepoints nested inside of the savepoint being operated on. */ 3671 while( db->pSavepoint!=pSavepoint ){ 3672 pTmp = db->pSavepoint; 3673 db->pSavepoint = pTmp->pNext; 3674 sqlite3DbFree(db, pTmp); 3675 db->nSavepoint--; 3676 } 3677 3678 /* If it is a RELEASE, then destroy the savepoint being operated on 3679 ** too. If it is a ROLLBACK TO, then set the number of deferred 3680 ** constraint violations present in the database to the value stored 3681 ** when the savepoint was created. */ 3682 if( p1==SAVEPOINT_RELEASE ){ 3683 assert( pSavepoint==db->pSavepoint ); 3684 db->pSavepoint = pSavepoint->pNext; 3685 sqlite3DbFree(db, pSavepoint); 3686 if( !isTransaction ){ 3687 db->nSavepoint--; 3688 } 3689 }else{ 3690 assert( p1==SAVEPOINT_ROLLBACK ); 3691 db->nDeferredCons = pSavepoint->nDeferredCons; 3692 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3693 } 3694 3695 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3696 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3697 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3698 } 3699 } 3700 } 3701 if( rc ) goto abort_due_to_error; 3702 if( p->eVdbeState==VDBE_HALT_STATE ){ 3703 rc = SQLITE_DONE; 3704 goto vdbe_return; 3705 } 3706 break; 3707 } 3708 3709 /* Opcode: AutoCommit P1 P2 * * * 3710 ** 3711 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3712 ** back any currently active btree transactions. If there are any active 3713 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3714 ** there are active writing VMs or active VMs that use shared cache. 3715 ** 3716 ** This instruction causes the VM to halt. 3717 */ 3718 case OP_AutoCommit: { 3719 int desiredAutoCommit; 3720 int iRollback; 3721 3722 desiredAutoCommit = pOp->p1; 3723 iRollback = pOp->p2; 3724 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3725 assert( desiredAutoCommit==1 || iRollback==0 ); 3726 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3727 assert( p->bIsReader ); 3728 3729 if( desiredAutoCommit!=db->autoCommit ){ 3730 if( iRollback ){ 3731 assert( desiredAutoCommit==1 ); 3732 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3733 db->autoCommit = 1; 3734 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3735 /* If this instruction implements a COMMIT and other VMs are writing 3736 ** return an error indicating that the other VMs must complete first. 3737 */ 3738 sqlite3VdbeError(p, "cannot commit transaction - " 3739 "SQL statements in progress"); 3740 rc = SQLITE_BUSY; 3741 goto abort_due_to_error; 3742 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3743 goto vdbe_return; 3744 }else{ 3745 db->autoCommit = (u8)desiredAutoCommit; 3746 } 3747 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3748 p->pc = (int)(pOp - aOp); 3749 db->autoCommit = (u8)(1-desiredAutoCommit); 3750 p->rc = rc = SQLITE_BUSY; 3751 goto vdbe_return; 3752 } 3753 sqlite3CloseSavepoints(db); 3754 if( p->rc==SQLITE_OK ){ 3755 rc = SQLITE_DONE; 3756 }else{ 3757 rc = SQLITE_ERROR; 3758 } 3759 goto vdbe_return; 3760 }else{ 3761 sqlite3VdbeError(p, 3762 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3763 (iRollback)?"cannot rollback - no transaction is active": 3764 "cannot commit - no transaction is active")); 3765 3766 rc = SQLITE_ERROR; 3767 goto abort_due_to_error; 3768 } 3769 /*NOTREACHED*/ assert(0); 3770 } 3771 3772 /* Opcode: Transaction P1 P2 P3 P4 P5 3773 ** 3774 ** Begin a transaction on database P1 if a transaction is not already 3775 ** active. 3776 ** If P2 is non-zero, then a write-transaction is started, or if a 3777 ** read-transaction is already active, it is upgraded to a write-transaction. 3778 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3779 ** then an exclusive transaction is started. 3780 ** 3781 ** P1 is the index of the database file on which the transaction is 3782 ** started. Index 0 is the main database file and index 1 is the 3783 ** file used for temporary tables. Indices of 2 or more are used for 3784 ** attached databases. 3785 ** 3786 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3787 ** true (this flag is set if the Vdbe may modify more than one row and may 3788 ** throw an ABORT exception), a statement transaction may also be opened. 3789 ** More specifically, a statement transaction is opened iff the database 3790 ** connection is currently not in autocommit mode, or if there are other 3791 ** active statements. A statement transaction allows the changes made by this 3792 ** VDBE to be rolled back after an error without having to roll back the 3793 ** entire transaction. If no error is encountered, the statement transaction 3794 ** will automatically commit when the VDBE halts. 3795 ** 3796 ** If P5!=0 then this opcode also checks the schema cookie against P3 3797 ** and the schema generation counter against P4. 3798 ** The cookie changes its value whenever the database schema changes. 3799 ** This operation is used to detect when that the cookie has changed 3800 ** and that the current process needs to reread the schema. If the schema 3801 ** cookie in P3 differs from the schema cookie in the database header or 3802 ** if the schema generation counter in P4 differs from the current 3803 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3804 ** halts. The sqlite3_step() wrapper function might then reprepare the 3805 ** statement and rerun it from the beginning. 3806 */ 3807 case OP_Transaction: { 3808 Btree *pBt; 3809 Db *pDb; 3810 int iMeta = 0; 3811 3812 assert( p->bIsReader ); 3813 assert( p->readOnly==0 || pOp->p2==0 ); 3814 assert( pOp->p2>=0 && pOp->p2<=2 ); 3815 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3816 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3817 assert( rc==SQLITE_OK ); 3818 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3819 if( db->flags & SQLITE_QueryOnly ){ 3820 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3821 rc = SQLITE_READONLY; 3822 }else{ 3823 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3824 ** transaction */ 3825 rc = SQLITE_CORRUPT; 3826 } 3827 goto abort_due_to_error; 3828 } 3829 pDb = &db->aDb[pOp->p1]; 3830 pBt = pDb->pBt; 3831 3832 if( pBt ){ 3833 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3834 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3835 testcase( rc==SQLITE_BUSY_RECOVERY ); 3836 if( rc!=SQLITE_OK ){ 3837 if( (rc&0xff)==SQLITE_BUSY ){ 3838 p->pc = (int)(pOp - aOp); 3839 p->rc = rc; 3840 goto vdbe_return; 3841 } 3842 goto abort_due_to_error; 3843 } 3844 3845 if( p->usesStmtJournal 3846 && pOp->p2 3847 && (db->autoCommit==0 || db->nVdbeRead>1) 3848 ){ 3849 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3850 if( p->iStatement==0 ){ 3851 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3852 db->nStatement++; 3853 p->iStatement = db->nSavepoint + db->nStatement; 3854 } 3855 3856 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3857 if( rc==SQLITE_OK ){ 3858 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3859 } 3860 3861 /* Store the current value of the database handles deferred constraint 3862 ** counter. If the statement transaction needs to be rolled back, 3863 ** the value of this counter needs to be restored too. */ 3864 p->nStmtDefCons = db->nDeferredCons; 3865 p->nStmtDefImmCons = db->nDeferredImmCons; 3866 } 3867 } 3868 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3869 if( rc==SQLITE_OK 3870 && pOp->p5 3871 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 3872 ){ 3873 /* 3874 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3875 ** version is checked to ensure that the schema has not changed since the 3876 ** SQL statement was prepared. 3877 */ 3878 sqlite3DbFree(db, p->zErrMsg); 3879 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3880 /* If the schema-cookie from the database file matches the cookie 3881 ** stored with the in-memory representation of the schema, do 3882 ** not reload the schema from the database file. 3883 ** 3884 ** If virtual-tables are in use, this is not just an optimization. 3885 ** Often, v-tables store their data in other SQLite tables, which 3886 ** are queried from within xNext() and other v-table methods using 3887 ** prepared queries. If such a query is out-of-date, we do not want to 3888 ** discard the database schema, as the user code implementing the 3889 ** v-table would have to be ready for the sqlite3_vtab structure itself 3890 ** to be invalidated whenever sqlite3_step() is called from within 3891 ** a v-table method. 3892 */ 3893 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3894 sqlite3ResetOneSchema(db, pOp->p1); 3895 } 3896 p->expired = 1; 3897 rc = SQLITE_SCHEMA; 3898 3899 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 3900 ** from being modified in sqlite3VdbeHalt(). If this statement is 3901 ** reprepared, changeCntOn will be set again. */ 3902 p->changeCntOn = 0; 3903 } 3904 if( rc ) goto abort_due_to_error; 3905 break; 3906 } 3907 3908 /* Opcode: ReadCookie P1 P2 P3 * * 3909 ** 3910 ** Read cookie number P3 from database P1 and write it into register P2. 3911 ** P3==1 is the schema version. P3==2 is the database format. 3912 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3913 ** the main database file and P1==1 is the database file used to store 3914 ** temporary tables. 3915 ** 3916 ** There must be a read-lock on the database (either a transaction 3917 ** must be started or there must be an open cursor) before 3918 ** executing this instruction. 3919 */ 3920 case OP_ReadCookie: { /* out2 */ 3921 int iMeta; 3922 int iDb; 3923 int iCookie; 3924 3925 assert( p->bIsReader ); 3926 iDb = pOp->p1; 3927 iCookie = pOp->p3; 3928 assert( pOp->p3<SQLITE_N_BTREE_META ); 3929 assert( iDb>=0 && iDb<db->nDb ); 3930 assert( db->aDb[iDb].pBt!=0 ); 3931 assert( DbMaskTest(p->btreeMask, iDb) ); 3932 3933 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3934 pOut = out2Prerelease(p, pOp); 3935 pOut->u.i = iMeta; 3936 break; 3937 } 3938 3939 /* Opcode: SetCookie P1 P2 P3 * P5 3940 ** 3941 ** Write the integer value P3 into cookie number P2 of database P1. 3942 ** P2==1 is the schema version. P2==2 is the database format. 3943 ** P2==3 is the recommended pager cache 3944 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3945 ** database file used to store temporary tables. 3946 ** 3947 ** A transaction must be started before executing this opcode. 3948 ** 3949 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3950 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3951 ** has P5 set to 1, so that the internal schema version will be different 3952 ** from the database schema version, resulting in a schema reset. 3953 */ 3954 case OP_SetCookie: { 3955 Db *pDb; 3956 3957 sqlite3VdbeIncrWriteCounter(p, 0); 3958 assert( pOp->p2<SQLITE_N_BTREE_META ); 3959 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3960 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3961 assert( p->readOnly==0 ); 3962 pDb = &db->aDb[pOp->p1]; 3963 assert( pDb->pBt!=0 ); 3964 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3965 /* See note about index shifting on OP_ReadCookie */ 3966 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3967 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3968 /* When the schema cookie changes, record the new cookie internally */ 3969 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 3970 db->mDbFlags |= DBFLAG_SchemaChange; 3971 sqlite3FkClearTriggerCache(db, pOp->p1); 3972 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3973 /* Record changes in the file format */ 3974 pDb->pSchema->file_format = pOp->p3; 3975 } 3976 if( pOp->p1==1 ){ 3977 /* Invalidate all prepared statements whenever the TEMP database 3978 ** schema is changed. Ticket #1644 */ 3979 sqlite3ExpirePreparedStatements(db, 0); 3980 p->expired = 0; 3981 } 3982 if( rc ) goto abort_due_to_error; 3983 break; 3984 } 3985 3986 /* Opcode: OpenRead P1 P2 P3 P4 P5 3987 ** Synopsis: root=P2 iDb=P3 3988 ** 3989 ** Open a read-only cursor for the database table whose root page is 3990 ** P2 in a database file. The database file is determined by P3. 3991 ** P3==0 means the main database, P3==1 means the database used for 3992 ** temporary tables, and P3>1 means used the corresponding attached 3993 ** database. Give the new cursor an identifier of P1. The P1 3994 ** values need not be contiguous but all P1 values should be small integers. 3995 ** It is an error for P1 to be negative. 3996 ** 3997 ** Allowed P5 bits: 3998 ** <ul> 3999 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4000 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4001 ** of OP_SeekLE/OP_IdxLT) 4002 ** </ul> 4003 ** 4004 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4005 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4006 ** object, then table being opened must be an [index b-tree] where the 4007 ** KeyInfo object defines the content and collating 4008 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4009 ** value, then the table being opened must be a [table b-tree] with a 4010 ** number of columns no less than the value of P4. 4011 ** 4012 ** See also: OpenWrite, ReopenIdx 4013 */ 4014 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 4015 ** Synopsis: root=P2 iDb=P3 4016 ** 4017 ** The ReopenIdx opcode works like OP_OpenRead except that it first 4018 ** checks to see if the cursor on P1 is already open on the same 4019 ** b-tree and if it is this opcode becomes a no-op. In other words, 4020 ** if the cursor is already open, do not reopen it. 4021 ** 4022 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 4023 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 4024 ** be the same as every other ReopenIdx or OpenRead for the same cursor 4025 ** number. 4026 ** 4027 ** Allowed P5 bits: 4028 ** <ul> 4029 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4030 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4031 ** of OP_SeekLE/OP_IdxLT) 4032 ** </ul> 4033 ** 4034 ** See also: OP_OpenRead, OP_OpenWrite 4035 */ 4036 /* Opcode: OpenWrite P1 P2 P3 P4 P5 4037 ** Synopsis: root=P2 iDb=P3 4038 ** 4039 ** Open a read/write cursor named P1 on the table or index whose root 4040 ** page is P2 (or whose root page is held in register P2 if the 4041 ** OPFLAG_P2ISREG bit is set in P5 - see below). 4042 ** 4043 ** The P4 value may be either an integer (P4_INT32) or a pointer to 4044 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 4045 ** object, then table being opened must be an [index b-tree] where the 4046 ** KeyInfo object defines the content and collating 4047 ** sequence of that index b-tree. Otherwise, if P4 is an integer 4048 ** value, then the table being opened must be a [table b-tree] with a 4049 ** number of columns no less than the value of P4. 4050 ** 4051 ** Allowed P5 bits: 4052 ** <ul> 4053 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 4054 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 4055 ** of OP_SeekLE/OP_IdxLT) 4056 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 4057 ** and subsequently delete entries in an index btree. This is a 4058 ** hint to the storage engine that the storage engine is allowed to 4059 ** ignore. The hint is not used by the official SQLite b*tree storage 4060 ** engine, but is used by COMDB2. 4061 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 4062 ** as the root page, not the value of P2 itself. 4063 ** </ul> 4064 ** 4065 ** This instruction works like OpenRead except that it opens the cursor 4066 ** in read/write mode. 4067 ** 4068 ** See also: OP_OpenRead, OP_ReopenIdx 4069 */ 4070 case OP_ReopenIdx: { 4071 int nField; 4072 KeyInfo *pKeyInfo; 4073 u32 p2; 4074 int iDb; 4075 int wrFlag; 4076 Btree *pX; 4077 VdbeCursor *pCur; 4078 Db *pDb; 4079 4080 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4081 assert( pOp->p4type==P4_KEYINFO ); 4082 pCur = p->apCsr[pOp->p1]; 4083 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 4084 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 4085 assert( pCur->eCurType==CURTYPE_BTREE ); 4086 sqlite3BtreeClearCursor(pCur->uc.pCursor); 4087 goto open_cursor_set_hints; 4088 } 4089 /* If the cursor is not currently open or is open on a different 4090 ** index, then fall through into OP_OpenRead to force a reopen */ 4091 case OP_OpenRead: 4092 case OP_OpenWrite: 4093 4094 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4095 assert( p->bIsReader ); 4096 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 4097 || p->readOnly==0 ); 4098 4099 if( p->expired==1 ){ 4100 rc = SQLITE_ABORT_ROLLBACK; 4101 goto abort_due_to_error; 4102 } 4103 4104 nField = 0; 4105 pKeyInfo = 0; 4106 p2 = (u32)pOp->p2; 4107 iDb = pOp->p3; 4108 assert( iDb>=0 && iDb<db->nDb ); 4109 assert( DbMaskTest(p->btreeMask, iDb) ); 4110 pDb = &db->aDb[iDb]; 4111 pX = pDb->pBt; 4112 assert( pX!=0 ); 4113 if( pOp->opcode==OP_OpenWrite ){ 4114 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4115 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4116 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4117 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4118 p->minWriteFileFormat = pDb->pSchema->file_format; 4119 } 4120 }else{ 4121 wrFlag = 0; 4122 } 4123 if( pOp->p5 & OPFLAG_P2ISREG ){ 4124 assert( p2>0 ); 4125 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4126 assert( pOp->opcode==OP_OpenWrite ); 4127 pIn2 = &aMem[p2]; 4128 assert( memIsValid(pIn2) ); 4129 assert( (pIn2->flags & MEM_Int)!=0 ); 4130 sqlite3VdbeMemIntegerify(pIn2); 4131 p2 = (int)pIn2->u.i; 4132 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4133 ** that opcode will always set the p2 value to 2 or more or else fail. 4134 ** If there were a failure, the prepared statement would have halted 4135 ** before reaching this instruction. */ 4136 assert( p2>=2 ); 4137 } 4138 if( pOp->p4type==P4_KEYINFO ){ 4139 pKeyInfo = pOp->p4.pKeyInfo; 4140 assert( pKeyInfo->enc==ENC(db) ); 4141 assert( pKeyInfo->db==db ); 4142 nField = pKeyInfo->nAllField; 4143 }else if( pOp->p4type==P4_INT32 ){ 4144 nField = pOp->p4.i; 4145 } 4146 assert( pOp->p1>=0 ); 4147 assert( nField>=0 ); 4148 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4149 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4150 if( pCur==0 ) goto no_mem; 4151 pCur->iDb = iDb; 4152 pCur->nullRow = 1; 4153 pCur->isOrdered = 1; 4154 pCur->pgnoRoot = p2; 4155 #ifdef SQLITE_DEBUG 4156 pCur->wrFlag = wrFlag; 4157 #endif 4158 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4159 pCur->pKeyInfo = pKeyInfo; 4160 /* Set the VdbeCursor.isTable variable. Previous versions of 4161 ** SQLite used to check if the root-page flags were sane at this point 4162 ** and report database corruption if they were not, but this check has 4163 ** since moved into the btree layer. */ 4164 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4165 4166 open_cursor_set_hints: 4167 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4168 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4169 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4170 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4171 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4172 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4173 if( rc ) goto abort_due_to_error; 4174 break; 4175 } 4176 4177 /* Opcode: OpenDup P1 P2 * * * 4178 ** 4179 ** Open a new cursor P1 that points to the same ephemeral table as 4180 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4181 ** opcode. Only ephemeral cursors may be duplicated. 4182 ** 4183 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4184 */ 4185 case OP_OpenDup: { 4186 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4187 VdbeCursor *pCx; /* The new cursor */ 4188 4189 pOrig = p->apCsr[pOp->p2]; 4190 assert( pOrig ); 4191 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4192 4193 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4194 if( pCx==0 ) goto no_mem; 4195 pCx->nullRow = 1; 4196 pCx->isEphemeral = 1; 4197 pCx->pKeyInfo = pOrig->pKeyInfo; 4198 pCx->isTable = pOrig->isTable; 4199 pCx->pgnoRoot = pOrig->pgnoRoot; 4200 pCx->isOrdered = pOrig->isOrdered; 4201 pCx->ub.pBtx = pOrig->ub.pBtx; 4202 pCx->noReuse = 1; 4203 pOrig->noReuse = 1; 4204 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4205 pCx->pKeyInfo, pCx->uc.pCursor); 4206 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4207 ** opened for a database. Since there is already an open cursor when this 4208 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4209 assert( rc==SQLITE_OK ); 4210 break; 4211 } 4212 4213 4214 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4215 ** Synopsis: nColumn=P2 4216 ** 4217 ** Open a new cursor P1 to a transient table. 4218 ** The cursor is always opened read/write even if 4219 ** the main database is read-only. The ephemeral 4220 ** table is deleted automatically when the cursor is closed. 4221 ** 4222 ** If the cursor P1 is already opened on an ephemeral table, the table 4223 ** is cleared (all content is erased). 4224 ** 4225 ** P2 is the number of columns in the ephemeral table. 4226 ** The cursor points to a BTree table if P4==0 and to a BTree index 4227 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4228 ** that defines the format of keys in the index. 4229 ** 4230 ** The P5 parameter can be a mask of the BTREE_* flags defined 4231 ** in btree.h. These flags control aspects of the operation of 4232 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4233 ** added automatically. 4234 ** 4235 ** If P3 is positive, then reg[P3] is modified slightly so that it 4236 ** can be used as zero-length data for OP_Insert. This is an optimization 4237 ** that avoids an extra OP_Blob opcode to initialize that register. 4238 */ 4239 /* Opcode: OpenAutoindex P1 P2 * P4 * 4240 ** Synopsis: nColumn=P2 4241 ** 4242 ** This opcode works the same as OP_OpenEphemeral. It has a 4243 ** different name to distinguish its use. Tables created using 4244 ** by this opcode will be used for automatically created transient 4245 ** indices in joins. 4246 */ 4247 case OP_OpenAutoindex: 4248 case OP_OpenEphemeral: { 4249 VdbeCursor *pCx; 4250 KeyInfo *pKeyInfo; 4251 4252 static const int vfsFlags = 4253 SQLITE_OPEN_READWRITE | 4254 SQLITE_OPEN_CREATE | 4255 SQLITE_OPEN_EXCLUSIVE | 4256 SQLITE_OPEN_DELETEONCLOSE | 4257 SQLITE_OPEN_TRANSIENT_DB; 4258 assert( pOp->p1>=0 ); 4259 assert( pOp->p2>=0 ); 4260 if( pOp->p3>0 ){ 4261 /* Make register reg[P3] into a value that can be used as the data 4262 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4263 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4264 assert( pOp->opcode==OP_OpenEphemeral ); 4265 assert( aMem[pOp->p3].flags & MEM_Null ); 4266 aMem[pOp->p3].n = 0; 4267 aMem[pOp->p3].z = ""; 4268 } 4269 pCx = p->apCsr[pOp->p1]; 4270 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 4271 /* If the ephermeral table is already open and has no duplicates from 4272 ** OP_OpenDup, then erase all existing content so that the table is 4273 ** empty again, rather than creating a new table. */ 4274 assert( pCx->isEphemeral ); 4275 pCx->seqCount = 0; 4276 pCx->cacheStatus = CACHE_STALE; 4277 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4278 }else{ 4279 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4280 if( pCx==0 ) goto no_mem; 4281 pCx->isEphemeral = 1; 4282 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4283 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4284 vfsFlags); 4285 if( rc==SQLITE_OK ){ 4286 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4287 if( rc==SQLITE_OK ){ 4288 /* If a transient index is required, create it by calling 4289 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4290 ** opening it. If a transient table is required, just use the 4291 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4292 */ 4293 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4294 assert( pOp->p4type==P4_KEYINFO ); 4295 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4296 BTREE_BLOBKEY | pOp->p5); 4297 if( rc==SQLITE_OK ){ 4298 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4299 assert( pKeyInfo->db==db ); 4300 assert( pKeyInfo->enc==ENC(db) ); 4301 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4302 pKeyInfo, pCx->uc.pCursor); 4303 } 4304 pCx->isTable = 0; 4305 }else{ 4306 pCx->pgnoRoot = SCHEMA_ROOT; 4307 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4308 0, pCx->uc.pCursor); 4309 pCx->isTable = 1; 4310 } 4311 } 4312 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4313 if( rc ){ 4314 sqlite3BtreeClose(pCx->ub.pBtx); 4315 } 4316 } 4317 } 4318 if( rc ) goto abort_due_to_error; 4319 pCx->nullRow = 1; 4320 break; 4321 } 4322 4323 /* Opcode: SorterOpen P1 P2 P3 P4 * 4324 ** 4325 ** This opcode works like OP_OpenEphemeral except that it opens 4326 ** a transient index that is specifically designed to sort large 4327 ** tables using an external merge-sort algorithm. 4328 ** 4329 ** If argument P3 is non-zero, then it indicates that the sorter may 4330 ** assume that a stable sort considering the first P3 fields of each 4331 ** key is sufficient to produce the required results. 4332 */ 4333 case OP_SorterOpen: { 4334 VdbeCursor *pCx; 4335 4336 assert( pOp->p1>=0 ); 4337 assert( pOp->p2>=0 ); 4338 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4339 if( pCx==0 ) goto no_mem; 4340 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4341 assert( pCx->pKeyInfo->db==db ); 4342 assert( pCx->pKeyInfo->enc==ENC(db) ); 4343 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4344 if( rc ) goto abort_due_to_error; 4345 break; 4346 } 4347 4348 /* Opcode: SequenceTest P1 P2 * * * 4349 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4350 ** 4351 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4352 ** to P2. Regardless of whether or not the jump is taken, increment the 4353 ** the sequence value. 4354 */ 4355 case OP_SequenceTest: { 4356 VdbeCursor *pC; 4357 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4358 pC = p->apCsr[pOp->p1]; 4359 assert( isSorter(pC) ); 4360 if( (pC->seqCount++)==0 ){ 4361 goto jump_to_p2; 4362 } 4363 break; 4364 } 4365 4366 /* Opcode: OpenPseudo P1 P2 P3 * * 4367 ** Synopsis: P3 columns in r[P2] 4368 ** 4369 ** Open a new cursor that points to a fake table that contains a single 4370 ** row of data. The content of that one row is the content of memory 4371 ** register P2. In other words, cursor P1 becomes an alias for the 4372 ** MEM_Blob content contained in register P2. 4373 ** 4374 ** A pseudo-table created by this opcode is used to hold a single 4375 ** row output from the sorter so that the row can be decomposed into 4376 ** individual columns using the OP_Column opcode. The OP_Column opcode 4377 ** is the only cursor opcode that works with a pseudo-table. 4378 ** 4379 ** P3 is the number of fields in the records that will be stored by 4380 ** the pseudo-table. 4381 */ 4382 case OP_OpenPseudo: { 4383 VdbeCursor *pCx; 4384 4385 assert( pOp->p1>=0 ); 4386 assert( pOp->p3>=0 ); 4387 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4388 if( pCx==0 ) goto no_mem; 4389 pCx->nullRow = 1; 4390 pCx->seekResult = pOp->p2; 4391 pCx->isTable = 1; 4392 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4393 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4394 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4395 ** which is a performance optimization */ 4396 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4397 assert( pOp->p5==0 ); 4398 break; 4399 } 4400 4401 /* Opcode: Close P1 * * * * 4402 ** 4403 ** Close a cursor previously opened as P1. If P1 is not 4404 ** currently open, this instruction is a no-op. 4405 */ 4406 case OP_Close: { 4407 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4408 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4409 p->apCsr[pOp->p1] = 0; 4410 break; 4411 } 4412 4413 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4414 /* Opcode: ColumnsUsed P1 * * P4 * 4415 ** 4416 ** This opcode (which only exists if SQLite was compiled with 4417 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4418 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4419 ** (P4_INT64) in which the first 63 bits are one for each of the 4420 ** first 63 columns of the table or index that are actually used 4421 ** by the cursor. The high-order bit is set if any column after 4422 ** the 64th is used. 4423 */ 4424 case OP_ColumnsUsed: { 4425 VdbeCursor *pC; 4426 pC = p->apCsr[pOp->p1]; 4427 assert( pC->eCurType==CURTYPE_BTREE ); 4428 pC->maskUsed = *(u64*)pOp->p4.pI64; 4429 break; 4430 } 4431 #endif 4432 4433 /* Opcode: SeekGE P1 P2 P3 P4 * 4434 ** Synopsis: key=r[P3@P4] 4435 ** 4436 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4437 ** use the value in register P3 as the key. If cursor P1 refers 4438 ** to an SQL index, then P3 is the first in an array of P4 registers 4439 ** that are used as an unpacked index key. 4440 ** 4441 ** Reposition cursor P1 so that it points to the smallest entry that 4442 ** is greater than or equal to the key value. If there are no records 4443 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4444 ** 4445 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4446 ** opcode will either land on a record that exactly matches the key, or 4447 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4448 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4449 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4450 ** IdxGT opcode will be used on subsequent loop iterations. The 4451 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4452 ** is an equality search. 4453 ** 4454 ** This opcode leaves the cursor configured to move in forward order, 4455 ** from the beginning toward the end. In other words, the cursor is 4456 ** configured to use Next, not Prev. 4457 ** 4458 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4459 */ 4460 /* Opcode: SeekGT P1 P2 P3 P4 * 4461 ** Synopsis: key=r[P3@P4] 4462 ** 4463 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4464 ** use the value in register P3 as a key. If cursor P1 refers 4465 ** to an SQL index, then P3 is the first in an array of P4 registers 4466 ** that are used as an unpacked index key. 4467 ** 4468 ** Reposition cursor P1 so that it points to the smallest entry that 4469 ** is greater than the key value. If there are no records greater than 4470 ** the key and P2 is not zero, then jump to P2. 4471 ** 4472 ** This opcode leaves the cursor configured to move in forward order, 4473 ** from the beginning toward the end. In other words, the cursor is 4474 ** configured to use Next, not Prev. 4475 ** 4476 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4477 */ 4478 /* Opcode: SeekLT P1 P2 P3 P4 * 4479 ** Synopsis: key=r[P3@P4] 4480 ** 4481 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4482 ** use the value in register P3 as a key. If cursor P1 refers 4483 ** to an SQL index, then P3 is the first in an array of P4 registers 4484 ** that are used as an unpacked index key. 4485 ** 4486 ** Reposition cursor P1 so that it points to the largest entry that 4487 ** is less than the key value. If there are no records less than 4488 ** the key and P2 is not zero, then jump to P2. 4489 ** 4490 ** This opcode leaves the cursor configured to move in reverse order, 4491 ** from the end toward the beginning. In other words, the cursor is 4492 ** configured to use Prev, not Next. 4493 ** 4494 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4495 */ 4496 /* Opcode: SeekLE P1 P2 P3 P4 * 4497 ** Synopsis: key=r[P3@P4] 4498 ** 4499 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4500 ** use the value in register P3 as a key. If cursor P1 refers 4501 ** to an SQL index, then P3 is the first in an array of P4 registers 4502 ** that are used as an unpacked index key. 4503 ** 4504 ** Reposition cursor P1 so that it points to the largest entry that 4505 ** is less than or equal to the key value. If there are no records 4506 ** less than or equal to the key and P2 is not zero, then jump to P2. 4507 ** 4508 ** This opcode leaves the cursor configured to move in reverse order, 4509 ** from the end toward the beginning. In other words, the cursor is 4510 ** configured to use Prev, not Next. 4511 ** 4512 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4513 ** opcode will either land on a record that exactly matches the key, or 4514 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4515 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4516 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4517 ** IdxGE opcode will be used on subsequent loop iterations. The 4518 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4519 ** is an equality search. 4520 ** 4521 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4522 */ 4523 case OP_SeekLT: /* jump, in3, group */ 4524 case OP_SeekLE: /* jump, in3, group */ 4525 case OP_SeekGE: /* jump, in3, group */ 4526 case OP_SeekGT: { /* jump, in3, group */ 4527 int res; /* Comparison result */ 4528 int oc; /* Opcode */ 4529 VdbeCursor *pC; /* The cursor to seek */ 4530 UnpackedRecord r; /* The key to seek for */ 4531 int nField; /* Number of columns or fields in the key */ 4532 i64 iKey; /* The rowid we are to seek to */ 4533 int eqOnly; /* Only interested in == results */ 4534 4535 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4536 assert( pOp->p2!=0 ); 4537 pC = p->apCsr[pOp->p1]; 4538 assert( pC!=0 ); 4539 assert( pC->eCurType==CURTYPE_BTREE ); 4540 assert( OP_SeekLE == OP_SeekLT+1 ); 4541 assert( OP_SeekGE == OP_SeekLT+2 ); 4542 assert( OP_SeekGT == OP_SeekLT+3 ); 4543 assert( pC->isOrdered ); 4544 assert( pC->uc.pCursor!=0 ); 4545 oc = pOp->opcode; 4546 eqOnly = 0; 4547 pC->nullRow = 0; 4548 #ifdef SQLITE_DEBUG 4549 pC->seekOp = pOp->opcode; 4550 #endif 4551 4552 pC->deferredMoveto = 0; 4553 pC->cacheStatus = CACHE_STALE; 4554 if( pC->isTable ){ 4555 u16 flags3, newType; 4556 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4557 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4558 || CORRUPT_DB ); 4559 4560 /* The input value in P3 might be of any type: integer, real, string, 4561 ** blob, or NULL. But it needs to be an integer before we can do 4562 ** the seek, so convert it. */ 4563 pIn3 = &aMem[pOp->p3]; 4564 flags3 = pIn3->flags; 4565 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4566 applyNumericAffinity(pIn3, 0); 4567 } 4568 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4569 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4570 pIn3->flags = flags3; /* But convert the type back to its original */ 4571 4572 /* If the P3 value could not be converted into an integer without 4573 ** loss of information, then special processing is required... */ 4574 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4575 int c; 4576 if( (newType & MEM_Real)==0 ){ 4577 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4578 VdbeBranchTaken(1,2); 4579 goto jump_to_p2; 4580 }else{ 4581 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4582 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4583 goto seek_not_found; 4584 } 4585 } 4586 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4587 4588 /* If the approximation iKey is larger than the actual real search 4589 ** term, substitute >= for > and < for <=. e.g. if the search term 4590 ** is 4.9 and the integer approximation 5: 4591 ** 4592 ** (x > 4.9) -> (x >= 5) 4593 ** (x <= 4.9) -> (x < 5) 4594 */ 4595 if( c>0 ){ 4596 assert( OP_SeekGE==(OP_SeekGT-1) ); 4597 assert( OP_SeekLT==(OP_SeekLE-1) ); 4598 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4599 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4600 } 4601 4602 /* If the approximation iKey is smaller than the actual real search 4603 ** term, substitute <= for < and > for >=. */ 4604 else if( c<0 ){ 4605 assert( OP_SeekLE==(OP_SeekLT+1) ); 4606 assert( OP_SeekGT==(OP_SeekGE+1) ); 4607 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4608 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4609 } 4610 } 4611 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4612 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4613 if( rc!=SQLITE_OK ){ 4614 goto abort_due_to_error; 4615 } 4616 }else{ 4617 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4618 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4619 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4620 ** with the same key. 4621 */ 4622 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4623 eqOnly = 1; 4624 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4625 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4626 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4627 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4628 assert( pOp[1].p1==pOp[0].p1 ); 4629 assert( pOp[1].p2==pOp[0].p2 ); 4630 assert( pOp[1].p3==pOp[0].p3 ); 4631 assert( pOp[1].p4.i==pOp[0].p4.i ); 4632 } 4633 4634 nField = pOp->p4.i; 4635 assert( pOp->p4type==P4_INT32 ); 4636 assert( nField>0 ); 4637 r.pKeyInfo = pC->pKeyInfo; 4638 r.nField = (u16)nField; 4639 4640 /* The next line of code computes as follows, only faster: 4641 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4642 ** r.default_rc = -1; 4643 ** }else{ 4644 ** r.default_rc = +1; 4645 ** } 4646 */ 4647 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4648 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4649 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4650 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4651 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4652 4653 r.aMem = &aMem[pOp->p3]; 4654 #ifdef SQLITE_DEBUG 4655 { 4656 int i; 4657 for(i=0; i<r.nField; i++){ 4658 assert( memIsValid(&r.aMem[i]) ); 4659 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 4660 } 4661 } 4662 #endif 4663 r.eqSeen = 0; 4664 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4665 if( rc!=SQLITE_OK ){ 4666 goto abort_due_to_error; 4667 } 4668 if( eqOnly && r.eqSeen==0 ){ 4669 assert( res!=0 ); 4670 goto seek_not_found; 4671 } 4672 } 4673 #ifdef SQLITE_TEST 4674 sqlite3_search_count++; 4675 #endif 4676 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4677 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4678 res = 0; 4679 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4680 if( rc!=SQLITE_OK ){ 4681 if( rc==SQLITE_DONE ){ 4682 rc = SQLITE_OK; 4683 res = 1; 4684 }else{ 4685 goto abort_due_to_error; 4686 } 4687 } 4688 }else{ 4689 res = 0; 4690 } 4691 }else{ 4692 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4693 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4694 res = 0; 4695 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4696 if( rc!=SQLITE_OK ){ 4697 if( rc==SQLITE_DONE ){ 4698 rc = SQLITE_OK; 4699 res = 1; 4700 }else{ 4701 goto abort_due_to_error; 4702 } 4703 } 4704 }else{ 4705 /* res might be negative because the table is empty. Check to 4706 ** see if this is the case. 4707 */ 4708 res = sqlite3BtreeEof(pC->uc.pCursor); 4709 } 4710 } 4711 seek_not_found: 4712 assert( pOp->p2>0 ); 4713 VdbeBranchTaken(res!=0,2); 4714 if( res ){ 4715 goto jump_to_p2; 4716 }else if( eqOnly ){ 4717 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4718 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4719 } 4720 break; 4721 } 4722 4723 4724 /* Opcode: SeekScan P1 P2 * * * 4725 ** Synopsis: Scan-ahead up to P1 rows 4726 ** 4727 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4728 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4729 ** checked by assert() statements. 4730 ** 4731 ** This opcode uses the P1 through P4 operands of the subsequent 4732 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4733 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4734 ** the P1 and P2 operands of this opcode are also used, and are called 4735 ** This.P1 and This.P2. 4736 ** 4737 ** This opcode helps to optimize IN operators on a multi-column index 4738 ** where the IN operator is on the later terms of the index by avoiding 4739 ** unnecessary seeks on the btree, substituting steps to the next row 4740 ** of the b-tree instead. A correct answer is obtained if this opcode 4741 ** is omitted or is a no-op. 4742 ** 4743 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4744 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4745 ** to. Call this SeekGE.P4/P5 row the "target". 4746 ** 4747 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4748 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4749 ** 4750 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4751 ** might be the target row, or it might be near and slightly before the 4752 ** target row. This opcode attempts to position the cursor on the target 4753 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4754 ** between 0 and This.P1 times. 4755 ** 4756 ** There are three possible outcomes from this opcode:<ol> 4757 ** 4758 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4759 ** is earlier in the btree than the target row, then fall through 4760 ** into the subsquence OP_SeekGE opcode. 4761 ** 4762 ** <li> If the cursor is successfully moved to the target row by 0 or more 4763 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4764 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4765 ** 4766 ** <li> If the cursor ends up past the target row (indicating that the target 4767 ** row does not exist in the btree) then jump to SeekOP.P2. 4768 ** </ol> 4769 */ 4770 case OP_SeekScan: { 4771 VdbeCursor *pC; 4772 int res; 4773 int nStep; 4774 UnpackedRecord r; 4775 4776 assert( pOp[1].opcode==OP_SeekGE ); 4777 4778 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4779 ** follows the OP_SeekGE. */ 4780 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4781 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4782 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4783 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4784 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4785 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4786 4787 assert( pOp->p1>0 ); 4788 pC = p->apCsr[pOp[1].p1]; 4789 assert( pC!=0 ); 4790 assert( pC->eCurType==CURTYPE_BTREE ); 4791 assert( !pC->isTable ); 4792 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4793 #ifdef SQLITE_DEBUG 4794 if( db->flags&SQLITE_VdbeTrace ){ 4795 printf("... cursor not valid - fall through\n"); 4796 } 4797 #endif 4798 break; 4799 } 4800 nStep = pOp->p1; 4801 assert( nStep>=1 ); 4802 r.pKeyInfo = pC->pKeyInfo; 4803 r.nField = (u16)pOp[1].p4.i; 4804 r.default_rc = 0; 4805 r.aMem = &aMem[pOp[1].p3]; 4806 #ifdef SQLITE_DEBUG 4807 { 4808 int i; 4809 for(i=0; i<r.nField; i++){ 4810 assert( memIsValid(&r.aMem[i]) ); 4811 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4812 } 4813 } 4814 #endif 4815 res = 0; /* Not needed. Only used to silence a warning. */ 4816 while(1){ 4817 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4818 if( rc ) goto abort_due_to_error; 4819 if( res>0 ){ 4820 seekscan_search_fail: 4821 #ifdef SQLITE_DEBUG 4822 if( db->flags&SQLITE_VdbeTrace ){ 4823 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4824 } 4825 #endif 4826 VdbeBranchTaken(1,3); 4827 pOp++; 4828 goto jump_to_p2; 4829 } 4830 if( res==0 ){ 4831 #ifdef SQLITE_DEBUG 4832 if( db->flags&SQLITE_VdbeTrace ){ 4833 printf("... %d steps and then success\n", pOp->p1 - nStep); 4834 } 4835 #endif 4836 VdbeBranchTaken(2,3); 4837 goto jump_to_p2; 4838 break; 4839 } 4840 if( nStep<=0 ){ 4841 #ifdef SQLITE_DEBUG 4842 if( db->flags&SQLITE_VdbeTrace ){ 4843 printf("... fall through after %d steps\n", pOp->p1); 4844 } 4845 #endif 4846 VdbeBranchTaken(0,3); 4847 break; 4848 } 4849 nStep--; 4850 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4851 if( rc ){ 4852 if( rc==SQLITE_DONE ){ 4853 rc = SQLITE_OK; 4854 goto seekscan_search_fail; 4855 }else{ 4856 goto abort_due_to_error; 4857 } 4858 } 4859 } 4860 4861 break; 4862 } 4863 4864 4865 /* Opcode: SeekHit P1 P2 P3 * * 4866 ** Synopsis: set P2<=seekHit<=P3 4867 ** 4868 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4869 ** so that it is no less than P2 and no greater than P3. 4870 ** 4871 ** The seekHit integer represents the maximum of terms in an index for which 4872 ** there is known to be at least one match. If the seekHit value is smaller 4873 ** than the total number of equality terms in an index lookup, then the 4874 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4875 ** early, thus saving work. This is part of the IN-early-out optimization. 4876 ** 4877 ** P1 must be a valid b-tree cursor. 4878 */ 4879 case OP_SeekHit: { 4880 VdbeCursor *pC; 4881 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4882 pC = p->apCsr[pOp->p1]; 4883 assert( pC!=0 ); 4884 assert( pOp->p3>=pOp->p2 ); 4885 if( pC->seekHit<pOp->p2 ){ 4886 #ifdef SQLITE_DEBUG 4887 if( db->flags&SQLITE_VdbeTrace ){ 4888 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4889 } 4890 #endif 4891 pC->seekHit = pOp->p2; 4892 }else if( pC->seekHit>pOp->p3 ){ 4893 #ifdef SQLITE_DEBUG 4894 if( db->flags&SQLITE_VdbeTrace ){ 4895 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4896 } 4897 #endif 4898 pC->seekHit = pOp->p3; 4899 } 4900 break; 4901 } 4902 4903 /* Opcode: IfNotOpen P1 P2 * * * 4904 ** Synopsis: if( !csr[P1] ) goto P2 4905 ** 4906 ** If cursor P1 is not open or if P1 is set to a NULL row using the 4907 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. 4908 */ 4909 case OP_IfNotOpen: { /* jump */ 4910 VdbeCursor *pCur; 4911 4912 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4913 pCur = p->apCsr[pOp->p1]; 4914 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); 4915 if( pCur==0 || pCur->nullRow ){ 4916 goto jump_to_p2_and_check_for_interrupt; 4917 } 4918 break; 4919 } 4920 4921 /* Opcode: Found P1 P2 P3 P4 * 4922 ** Synopsis: key=r[P3@P4] 4923 ** 4924 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4925 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4926 ** record. 4927 ** 4928 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4929 ** is a prefix of any entry in P1 then a jump is made to P2 and 4930 ** P1 is left pointing at the matching entry. 4931 ** 4932 ** This operation leaves the cursor in a state where it can be 4933 ** advanced in the forward direction. The Next instruction will work, 4934 ** but not the Prev instruction. 4935 ** 4936 ** See also: NotFound, NoConflict, NotExists. SeekGe 4937 */ 4938 /* Opcode: NotFound P1 P2 P3 P4 * 4939 ** Synopsis: key=r[P3@P4] 4940 ** 4941 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4942 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4943 ** record. 4944 ** 4945 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4946 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4947 ** does contain an entry whose prefix matches the P3/P4 record then control 4948 ** falls through to the next instruction and P1 is left pointing at the 4949 ** matching entry. 4950 ** 4951 ** This operation leaves the cursor in a state where it cannot be 4952 ** advanced in either direction. In other words, the Next and Prev 4953 ** opcodes do not work after this operation. 4954 ** 4955 ** See also: Found, NotExists, NoConflict, IfNoHope 4956 */ 4957 /* Opcode: IfNoHope P1 P2 P3 P4 * 4958 ** Synopsis: key=r[P3@P4] 4959 ** 4960 ** Register P3 is the first of P4 registers that form an unpacked 4961 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4962 ** In other words, the operands to this opcode are the same as the 4963 ** operands to OP_NotFound and OP_IdxGT. 4964 ** 4965 ** This opcode is an optimization attempt only. If this opcode always 4966 ** falls through, the correct answer is still obtained, but extra works 4967 ** is performed. 4968 ** 4969 ** A value of N in the seekHit flag of cursor P1 means that there exists 4970 ** a key P3:N that will match some record in the index. We want to know 4971 ** if it is possible for a record P3:P4 to match some record in the 4972 ** index. If it is not possible, we can skips some work. So if seekHit 4973 ** is less than P4, attempt to find out if a match is possible by running 4974 ** OP_NotFound. 4975 ** 4976 ** This opcode is used in IN clause processing for a multi-column key. 4977 ** If an IN clause is attached to an element of the key other than the 4978 ** left-most element, and if there are no matches on the most recent 4979 ** seek over the whole key, then it might be that one of the key element 4980 ** to the left is prohibiting a match, and hence there is "no hope" of 4981 ** any match regardless of how many IN clause elements are checked. 4982 ** In such a case, we abandon the IN clause search early, using this 4983 ** opcode. The opcode name comes from the fact that the 4984 ** jump is taken if there is "no hope" of achieving a match. 4985 ** 4986 ** See also: NotFound, SeekHit 4987 */ 4988 /* Opcode: NoConflict P1 P2 P3 P4 * 4989 ** Synopsis: key=r[P3@P4] 4990 ** 4991 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4992 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4993 ** record. 4994 ** 4995 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4996 ** contains any NULL value, jump immediately to P2. If all terms of the 4997 ** record are not-NULL then a check is done to determine if any row in the 4998 ** P1 index btree has a matching key prefix. If there are no matches, jump 4999 ** immediately to P2. If there is a match, fall through and leave the P1 5000 ** cursor pointing to the matching row. 5001 ** 5002 ** This opcode is similar to OP_NotFound with the exceptions that the 5003 ** branch is always taken if any part of the search key input is NULL. 5004 ** 5005 ** This operation leaves the cursor in a state where it cannot be 5006 ** advanced in either direction. In other words, the Next and Prev 5007 ** opcodes do not work after this operation. 5008 ** 5009 ** See also: NotFound, Found, NotExists 5010 */ 5011 case OP_IfNoHope: { /* jump, in3 */ 5012 VdbeCursor *pC; 5013 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5014 pC = p->apCsr[pOp->p1]; 5015 assert( pC!=0 ); 5016 #ifdef SQLITE_DEBUG 5017 if( db->flags&SQLITE_VdbeTrace ){ 5018 printf("seekHit is %d\n", pC->seekHit); 5019 } 5020 #endif 5021 if( pC->seekHit>=pOp->p4.i ) break; 5022 /* Fall through into OP_NotFound */ 5023 /* no break */ deliberate_fall_through 5024 } 5025 case OP_NoConflict: /* jump, in3 */ 5026 case OP_NotFound: /* jump, in3 */ 5027 case OP_Found: { /* jump, in3 */ 5028 int alreadyExists; 5029 int ii; 5030 VdbeCursor *pC; 5031 UnpackedRecord *pIdxKey; 5032 UnpackedRecord r; 5033 5034 #ifdef SQLITE_TEST 5035 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 5036 #endif 5037 5038 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5039 assert( pOp->p4type==P4_INT32 ); 5040 pC = p->apCsr[pOp->p1]; 5041 assert( pC!=0 ); 5042 #ifdef SQLITE_DEBUG 5043 pC->seekOp = pOp->opcode; 5044 #endif 5045 r.aMem = &aMem[pOp->p3]; 5046 assert( pC->eCurType==CURTYPE_BTREE ); 5047 assert( pC->uc.pCursor!=0 ); 5048 assert( pC->isTable==0 ); 5049 r.nField = (u16)pOp->p4.i; 5050 if( r.nField>0 ){ 5051 /* Key values in an array of registers */ 5052 r.pKeyInfo = pC->pKeyInfo; 5053 r.default_rc = 0; 5054 #ifdef SQLITE_DEBUG 5055 for(ii=0; ii<r.nField; ii++){ 5056 assert( memIsValid(&r.aMem[ii]) ); 5057 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 5058 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 5059 } 5060 #endif 5061 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 5062 }else{ 5063 /* Composite key generated by OP_MakeRecord */ 5064 assert( r.aMem->flags & MEM_Blob ); 5065 assert( pOp->opcode!=OP_NoConflict ); 5066 rc = ExpandBlob(r.aMem); 5067 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5068 if( rc ) goto no_mem; 5069 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 5070 if( pIdxKey==0 ) goto no_mem; 5071 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 5072 pIdxKey->default_rc = 0; 5073 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 5074 sqlite3DbFreeNN(db, pIdxKey); 5075 } 5076 if( rc!=SQLITE_OK ){ 5077 goto abort_due_to_error; 5078 } 5079 alreadyExists = (pC->seekResult==0); 5080 pC->nullRow = 1-alreadyExists; 5081 pC->deferredMoveto = 0; 5082 pC->cacheStatus = CACHE_STALE; 5083 if( pOp->opcode==OP_Found ){ 5084 VdbeBranchTaken(alreadyExists!=0,2); 5085 if( alreadyExists ) goto jump_to_p2; 5086 }else{ 5087 if( !alreadyExists ){ 5088 VdbeBranchTaken(1,2); 5089 goto jump_to_p2; 5090 } 5091 if( pOp->opcode==OP_NoConflict ){ 5092 /* For the OP_NoConflict opcode, take the jump if any of the 5093 ** input fields are NULL, since any key with a NULL will not 5094 ** conflict */ 5095 for(ii=0; ii<r.nField; ii++){ 5096 if( r.aMem[ii].flags & MEM_Null ){ 5097 VdbeBranchTaken(1,2); 5098 goto jump_to_p2; 5099 } 5100 } 5101 } 5102 VdbeBranchTaken(0,2); 5103 if( pOp->opcode==OP_IfNoHope ){ 5104 pC->seekHit = pOp->p4.i; 5105 } 5106 } 5107 break; 5108 } 5109 5110 /* Opcode: SeekRowid P1 P2 P3 * * 5111 ** Synopsis: intkey=r[P3] 5112 ** 5113 ** P1 is the index of a cursor open on an SQL table btree (with integer 5114 ** keys). If register P3 does not contain an integer or if P1 does not 5115 ** contain a record with rowid P3 then jump immediately to P2. 5116 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5117 ** a record with rowid P3 then 5118 ** leave the cursor pointing at that record and fall through to the next 5119 ** instruction. 5120 ** 5121 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5122 ** the P3 register must be guaranteed to contain an integer value. With this 5123 ** opcode, register P3 might not contain an integer. 5124 ** 5125 ** The OP_NotFound opcode performs the same operation on index btrees 5126 ** (with arbitrary multi-value keys). 5127 ** 5128 ** This opcode leaves the cursor in a state where it cannot be advanced 5129 ** in either direction. In other words, the Next and Prev opcodes will 5130 ** not work following this opcode. 5131 ** 5132 ** See also: Found, NotFound, NoConflict, SeekRowid 5133 */ 5134 /* Opcode: NotExists P1 P2 P3 * * 5135 ** Synopsis: intkey=r[P3] 5136 ** 5137 ** P1 is the index of a cursor open on an SQL table btree (with integer 5138 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5139 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5140 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5141 ** leave the cursor pointing at that record and fall through to the next 5142 ** instruction. 5143 ** 5144 ** The OP_SeekRowid opcode performs the same operation but also allows the 5145 ** P3 register to contain a non-integer value, in which case the jump is 5146 ** always taken. This opcode requires that P3 always contain an integer. 5147 ** 5148 ** The OP_NotFound opcode performs the same operation on index btrees 5149 ** (with arbitrary multi-value keys). 5150 ** 5151 ** This opcode leaves the cursor in a state where it cannot be advanced 5152 ** in either direction. In other words, the Next and Prev opcodes will 5153 ** not work following this opcode. 5154 ** 5155 ** See also: Found, NotFound, NoConflict, SeekRowid 5156 */ 5157 case OP_SeekRowid: { /* jump, in3 */ 5158 VdbeCursor *pC; 5159 BtCursor *pCrsr; 5160 int res; 5161 u64 iKey; 5162 5163 pIn3 = &aMem[pOp->p3]; 5164 testcase( pIn3->flags & MEM_Int ); 5165 testcase( pIn3->flags & MEM_IntReal ); 5166 testcase( pIn3->flags & MEM_Real ); 5167 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5168 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5169 /* If pIn3->u.i does not contain an integer, compute iKey as the 5170 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5171 ** into an integer without loss of information. Take care to avoid 5172 ** changing the datatype of pIn3, however, as it is used by other 5173 ** parts of the prepared statement. */ 5174 Mem x = pIn3[0]; 5175 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5176 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5177 iKey = x.u.i; 5178 goto notExistsWithKey; 5179 } 5180 /* Fall through into OP_NotExists */ 5181 /* no break */ deliberate_fall_through 5182 case OP_NotExists: /* jump, in3 */ 5183 pIn3 = &aMem[pOp->p3]; 5184 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5185 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5186 iKey = pIn3->u.i; 5187 notExistsWithKey: 5188 pC = p->apCsr[pOp->p1]; 5189 assert( pC!=0 ); 5190 #ifdef SQLITE_DEBUG 5191 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5192 #endif 5193 assert( pC->isTable ); 5194 assert( pC->eCurType==CURTYPE_BTREE ); 5195 pCrsr = pC->uc.pCursor; 5196 assert( pCrsr!=0 ); 5197 res = 0; 5198 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5199 assert( rc==SQLITE_OK || res==0 ); 5200 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5201 pC->nullRow = 0; 5202 pC->cacheStatus = CACHE_STALE; 5203 pC->deferredMoveto = 0; 5204 VdbeBranchTaken(res!=0,2); 5205 pC->seekResult = res; 5206 if( res!=0 ){ 5207 assert( rc==SQLITE_OK ); 5208 if( pOp->p2==0 ){ 5209 rc = SQLITE_CORRUPT_BKPT; 5210 }else{ 5211 goto jump_to_p2; 5212 } 5213 } 5214 if( rc ) goto abort_due_to_error; 5215 break; 5216 } 5217 5218 /* Opcode: Sequence P1 P2 * * * 5219 ** Synopsis: r[P2]=cursor[P1].ctr++ 5220 ** 5221 ** Find the next available sequence number for cursor P1. 5222 ** Write the sequence number into register P2. 5223 ** The sequence number on the cursor is incremented after this 5224 ** instruction. 5225 */ 5226 case OP_Sequence: { /* out2 */ 5227 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5228 assert( p->apCsr[pOp->p1]!=0 ); 5229 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5230 pOut = out2Prerelease(p, pOp); 5231 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5232 break; 5233 } 5234 5235 5236 /* Opcode: NewRowid P1 P2 P3 * * 5237 ** Synopsis: r[P2]=rowid 5238 ** 5239 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5240 ** The record number is not previously used as a key in the database 5241 ** table that cursor P1 points to. The new record number is written 5242 ** written to register P2. 5243 ** 5244 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5245 ** the largest previously generated record number. No new record numbers are 5246 ** allowed to be less than this value. When this value reaches its maximum, 5247 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5248 ** generated record number. This P3 mechanism is used to help implement the 5249 ** AUTOINCREMENT feature. 5250 */ 5251 case OP_NewRowid: { /* out2 */ 5252 i64 v; /* The new rowid */ 5253 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5254 int res; /* Result of an sqlite3BtreeLast() */ 5255 int cnt; /* Counter to limit the number of searches */ 5256 #ifndef SQLITE_OMIT_AUTOINCREMENT 5257 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5258 VdbeFrame *pFrame; /* Root frame of VDBE */ 5259 #endif 5260 5261 v = 0; 5262 res = 0; 5263 pOut = out2Prerelease(p, pOp); 5264 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5265 pC = p->apCsr[pOp->p1]; 5266 assert( pC!=0 ); 5267 assert( pC->isTable ); 5268 assert( pC->eCurType==CURTYPE_BTREE ); 5269 assert( pC->uc.pCursor!=0 ); 5270 { 5271 /* The next rowid or record number (different terms for the same 5272 ** thing) is obtained in a two-step algorithm. 5273 ** 5274 ** First we attempt to find the largest existing rowid and add one 5275 ** to that. But if the largest existing rowid is already the maximum 5276 ** positive integer, we have to fall through to the second 5277 ** probabilistic algorithm 5278 ** 5279 ** The second algorithm is to select a rowid at random and see if 5280 ** it already exists in the table. If it does not exist, we have 5281 ** succeeded. If the random rowid does exist, we select a new one 5282 ** and try again, up to 100 times. 5283 */ 5284 assert( pC->isTable ); 5285 5286 #ifdef SQLITE_32BIT_ROWID 5287 # define MAX_ROWID 0x7fffffff 5288 #else 5289 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5290 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5291 ** to provide the constant while making all compilers happy. 5292 */ 5293 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5294 #endif 5295 5296 if( !pC->useRandomRowid ){ 5297 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5298 if( rc!=SQLITE_OK ){ 5299 goto abort_due_to_error; 5300 } 5301 if( res ){ 5302 v = 1; /* IMP: R-61914-48074 */ 5303 }else{ 5304 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5305 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5306 if( v>=MAX_ROWID ){ 5307 pC->useRandomRowid = 1; 5308 }else{ 5309 v++; /* IMP: R-29538-34987 */ 5310 } 5311 } 5312 } 5313 5314 #ifndef SQLITE_OMIT_AUTOINCREMENT 5315 if( pOp->p3 ){ 5316 /* Assert that P3 is a valid memory cell. */ 5317 assert( pOp->p3>0 ); 5318 if( p->pFrame ){ 5319 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5320 /* Assert that P3 is a valid memory cell. */ 5321 assert( pOp->p3<=pFrame->nMem ); 5322 pMem = &pFrame->aMem[pOp->p3]; 5323 }else{ 5324 /* Assert that P3 is a valid memory cell. */ 5325 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5326 pMem = &aMem[pOp->p3]; 5327 memAboutToChange(p, pMem); 5328 } 5329 assert( memIsValid(pMem) ); 5330 5331 REGISTER_TRACE(pOp->p3, pMem); 5332 sqlite3VdbeMemIntegerify(pMem); 5333 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5334 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5335 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5336 goto abort_due_to_error; 5337 } 5338 if( v<pMem->u.i+1 ){ 5339 v = pMem->u.i + 1; 5340 } 5341 pMem->u.i = v; 5342 } 5343 #endif 5344 if( pC->useRandomRowid ){ 5345 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5346 ** largest possible integer (9223372036854775807) then the database 5347 ** engine starts picking positive candidate ROWIDs at random until 5348 ** it finds one that is not previously used. */ 5349 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5350 ** an AUTOINCREMENT table. */ 5351 cnt = 0; 5352 do{ 5353 sqlite3_randomness(sizeof(v), &v); 5354 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5355 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5356 0, &res))==SQLITE_OK) 5357 && (res==0) 5358 && (++cnt<100)); 5359 if( rc ) goto abort_due_to_error; 5360 if( res==0 ){ 5361 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5362 goto abort_due_to_error; 5363 } 5364 assert( v>0 ); /* EV: R-40812-03570 */ 5365 } 5366 pC->deferredMoveto = 0; 5367 pC->cacheStatus = CACHE_STALE; 5368 } 5369 pOut->u.i = v; 5370 break; 5371 } 5372 5373 /* Opcode: Insert P1 P2 P3 P4 P5 5374 ** Synopsis: intkey=r[P3] data=r[P2] 5375 ** 5376 ** Write an entry into the table of cursor P1. A new entry is 5377 ** created if it doesn't already exist or the data for an existing 5378 ** entry is overwritten. The data is the value MEM_Blob stored in register 5379 ** number P2. The key is stored in register P3. The key must 5380 ** be a MEM_Int. 5381 ** 5382 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5383 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5384 ** then rowid is stored for subsequent return by the 5385 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5386 ** 5387 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5388 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5389 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5390 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5391 ** 5392 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5393 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5394 ** is part of an INSERT operation. The difference is only important to 5395 ** the update hook. 5396 ** 5397 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5398 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5399 ** following a successful insert. 5400 ** 5401 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5402 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5403 ** and register P2 becomes ephemeral. If the cursor is changed, the 5404 ** value of register P2 will then change. Make sure this does not 5405 ** cause any problems.) 5406 ** 5407 ** This instruction only works on tables. The equivalent instruction 5408 ** for indices is OP_IdxInsert. 5409 */ 5410 case OP_Insert: { 5411 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5412 Mem *pKey; /* MEM cell holding key for the record */ 5413 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5414 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5415 const char *zDb; /* database name - used by the update hook */ 5416 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5417 BtreePayload x; /* Payload to be inserted */ 5418 5419 pData = &aMem[pOp->p2]; 5420 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5421 assert( memIsValid(pData) ); 5422 pC = p->apCsr[pOp->p1]; 5423 assert( pC!=0 ); 5424 assert( pC->eCurType==CURTYPE_BTREE ); 5425 assert( pC->deferredMoveto==0 ); 5426 assert( pC->uc.pCursor!=0 ); 5427 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5428 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5429 REGISTER_TRACE(pOp->p2, pData); 5430 sqlite3VdbeIncrWriteCounter(p, pC); 5431 5432 pKey = &aMem[pOp->p3]; 5433 assert( pKey->flags & MEM_Int ); 5434 assert( memIsValid(pKey) ); 5435 REGISTER_TRACE(pOp->p3, pKey); 5436 x.nKey = pKey->u.i; 5437 5438 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5439 assert( pC->iDb>=0 ); 5440 zDb = db->aDb[pC->iDb].zDbSName; 5441 pTab = pOp->p4.pTab; 5442 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5443 }else{ 5444 pTab = 0; 5445 zDb = 0; 5446 } 5447 5448 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5449 /* Invoke the pre-update hook, if any */ 5450 if( pTab ){ 5451 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5452 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5453 } 5454 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5455 /* Prevent post-update hook from running in cases when it should not */ 5456 pTab = 0; 5457 } 5458 } 5459 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5460 #endif 5461 5462 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5463 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5464 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5465 x.pData = pData->z; 5466 x.nData = pData->n; 5467 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5468 if( pData->flags & MEM_Zero ){ 5469 x.nZero = pData->u.nZero; 5470 }else{ 5471 x.nZero = 0; 5472 } 5473 x.pKey = 0; 5474 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5475 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5476 seekResult 5477 ); 5478 pC->deferredMoveto = 0; 5479 pC->cacheStatus = CACHE_STALE; 5480 5481 /* Invoke the update-hook if required. */ 5482 if( rc ) goto abort_due_to_error; 5483 if( pTab ){ 5484 assert( db->xUpdateCallback!=0 ); 5485 assert( pTab->aCol!=0 ); 5486 db->xUpdateCallback(db->pUpdateArg, 5487 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5488 zDb, pTab->zName, x.nKey); 5489 } 5490 break; 5491 } 5492 5493 /* Opcode: RowCell P1 P2 P3 * * 5494 ** 5495 ** P1 and P2 are both open cursors. Both must be opened on the same type 5496 ** of table - intkey or index. This opcode is used as part of copying 5497 ** the current row from P2 into P1. If the cursors are opened on intkey 5498 ** tables, register P3 contains the rowid to use with the new record in 5499 ** P1. If they are opened on index tables, P3 is not used. 5500 ** 5501 ** This opcode must be followed by either an Insert or InsertIdx opcode 5502 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5503 */ 5504 case OP_RowCell: { 5505 VdbeCursor *pDest; /* Cursor to write to */ 5506 VdbeCursor *pSrc; /* Cursor to read from */ 5507 i64 iKey; /* Rowid value to insert with */ 5508 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5509 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5510 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5511 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5512 pDest = p->apCsr[pOp->p1]; 5513 pSrc = p->apCsr[pOp->p2]; 5514 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5515 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5516 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5517 break; 5518 }; 5519 5520 /* Opcode: Delete P1 P2 P3 P4 P5 5521 ** 5522 ** Delete the record at which the P1 cursor is currently pointing. 5523 ** 5524 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5525 ** the cursor will be left pointing at either the next or the previous 5526 ** record in the table. If it is left pointing at the next record, then 5527 ** the next Next instruction will be a no-op. As a result, in this case 5528 ** it is ok to delete a record from within a Next loop. If 5529 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5530 ** left in an undefined state. 5531 ** 5532 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5533 ** delete one of several associated with deleting a table row and all its 5534 ** associated index entries. Exactly one of those deletes is the "primary" 5535 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5536 ** marked with the AUXDELETE flag. 5537 ** 5538 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5539 ** change count is incremented (otherwise not). 5540 ** 5541 ** P1 must not be pseudo-table. It has to be a real table with 5542 ** multiple rows. 5543 ** 5544 ** If P4 is not NULL then it points to a Table object. In this case either 5545 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5546 ** have been positioned using OP_NotFound prior to invoking this opcode in 5547 ** this case. Specifically, if one is configured, the pre-update hook is 5548 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5549 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5550 ** 5551 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5552 ** of the memory cell that contains the value that the rowid of the row will 5553 ** be set to by the update. 5554 */ 5555 case OP_Delete: { 5556 VdbeCursor *pC; 5557 const char *zDb; 5558 Table *pTab; 5559 int opflags; 5560 5561 opflags = pOp->p2; 5562 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5563 pC = p->apCsr[pOp->p1]; 5564 assert( pC!=0 ); 5565 assert( pC->eCurType==CURTYPE_BTREE ); 5566 assert( pC->uc.pCursor!=0 ); 5567 assert( pC->deferredMoveto==0 ); 5568 sqlite3VdbeIncrWriteCounter(p, pC); 5569 5570 #ifdef SQLITE_DEBUG 5571 if( pOp->p4type==P4_TABLE 5572 && HasRowid(pOp->p4.pTab) 5573 && pOp->p5==0 5574 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5575 ){ 5576 /* If p5 is zero, the seek operation that positioned the cursor prior to 5577 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5578 ** the row that is being deleted */ 5579 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5580 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5581 } 5582 #endif 5583 5584 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5585 ** the name of the db to pass as to it. Also set local pTab to a copy 5586 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5587 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5588 ** VdbeCursor.movetoTarget to the current rowid. */ 5589 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5590 assert( pC->iDb>=0 ); 5591 assert( pOp->p4.pTab!=0 ); 5592 zDb = db->aDb[pC->iDb].zDbSName; 5593 pTab = pOp->p4.pTab; 5594 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5595 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5596 } 5597 }else{ 5598 zDb = 0; 5599 pTab = 0; 5600 } 5601 5602 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5603 /* Invoke the pre-update-hook if required. */ 5604 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5605 if( db->xPreUpdateCallback && pTab ){ 5606 assert( !(opflags & OPFLAG_ISUPDATE) 5607 || HasRowid(pTab)==0 5608 || (aMem[pOp->p3].flags & MEM_Int) 5609 ); 5610 sqlite3VdbePreUpdateHook(p, pC, 5611 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5612 zDb, pTab, pC->movetoTarget, 5613 pOp->p3, -1 5614 ); 5615 } 5616 if( opflags & OPFLAG_ISNOOP ) break; 5617 #endif 5618 5619 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5620 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5621 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5622 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5623 5624 #ifdef SQLITE_DEBUG 5625 if( p->pFrame==0 ){ 5626 if( pC->isEphemeral==0 5627 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5628 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5629 ){ 5630 nExtraDelete++; 5631 } 5632 if( pOp->p2 & OPFLAG_NCHANGE ){ 5633 nExtraDelete--; 5634 } 5635 } 5636 #endif 5637 5638 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5639 pC->cacheStatus = CACHE_STALE; 5640 pC->seekResult = 0; 5641 if( rc ) goto abort_due_to_error; 5642 5643 /* Invoke the update-hook if required. */ 5644 if( opflags & OPFLAG_NCHANGE ){ 5645 p->nChange++; 5646 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5647 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5648 pC->movetoTarget); 5649 assert( pC->iDb>=0 ); 5650 } 5651 } 5652 5653 break; 5654 } 5655 /* Opcode: ResetCount * * * * * 5656 ** 5657 ** The value of the change counter is copied to the database handle 5658 ** change counter (returned by subsequent calls to sqlite3_changes()). 5659 ** Then the VMs internal change counter resets to 0. 5660 ** This is used by trigger programs. 5661 */ 5662 case OP_ResetCount: { 5663 sqlite3VdbeSetChanges(db, p->nChange); 5664 p->nChange = 0; 5665 break; 5666 } 5667 5668 /* Opcode: SorterCompare P1 P2 P3 P4 5669 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5670 ** 5671 ** P1 is a sorter cursor. This instruction compares a prefix of the 5672 ** record blob in register P3 against a prefix of the entry that 5673 ** the sorter cursor currently points to. Only the first P4 fields 5674 ** of r[P3] and the sorter record are compared. 5675 ** 5676 ** If either P3 or the sorter contains a NULL in one of their significant 5677 ** fields (not counting the P4 fields at the end which are ignored) then 5678 ** the comparison is assumed to be equal. 5679 ** 5680 ** Fall through to next instruction if the two records compare equal to 5681 ** each other. Jump to P2 if they are different. 5682 */ 5683 case OP_SorterCompare: { 5684 VdbeCursor *pC; 5685 int res; 5686 int nKeyCol; 5687 5688 pC = p->apCsr[pOp->p1]; 5689 assert( isSorter(pC) ); 5690 assert( pOp->p4type==P4_INT32 ); 5691 pIn3 = &aMem[pOp->p3]; 5692 nKeyCol = pOp->p4.i; 5693 res = 0; 5694 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5695 VdbeBranchTaken(res!=0,2); 5696 if( rc ) goto abort_due_to_error; 5697 if( res ) goto jump_to_p2; 5698 break; 5699 }; 5700 5701 /* Opcode: SorterData P1 P2 P3 * * 5702 ** Synopsis: r[P2]=data 5703 ** 5704 ** Write into register P2 the current sorter data for sorter cursor P1. 5705 ** Then clear the column header cache on cursor P3. 5706 ** 5707 ** This opcode is normally use to move a record out of the sorter and into 5708 ** a register that is the source for a pseudo-table cursor created using 5709 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5710 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5711 ** us from having to issue a separate NullRow instruction to clear that cache. 5712 */ 5713 case OP_SorterData: { 5714 VdbeCursor *pC; 5715 5716 pOut = &aMem[pOp->p2]; 5717 pC = p->apCsr[pOp->p1]; 5718 assert( isSorter(pC) ); 5719 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5720 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5721 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5722 if( rc ) goto abort_due_to_error; 5723 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5724 break; 5725 } 5726 5727 /* Opcode: RowData P1 P2 P3 * * 5728 ** Synopsis: r[P2]=data 5729 ** 5730 ** Write into register P2 the complete row content for the row at 5731 ** which cursor P1 is currently pointing. 5732 ** There is no interpretation of the data. 5733 ** It is just copied onto the P2 register exactly as 5734 ** it is found in the database file. 5735 ** 5736 ** If cursor P1 is an index, then the content is the key of the row. 5737 ** If cursor P2 is a table, then the content extracted is the data. 5738 ** 5739 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5740 ** of a real table, not a pseudo-table. 5741 ** 5742 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5743 ** into the database page. That means that the content of the output 5744 ** register will be invalidated as soon as the cursor moves - including 5745 ** moves caused by other cursors that "save" the current cursors 5746 ** position in order that they can write to the same table. If P3==0 5747 ** then a copy of the data is made into memory. P3!=0 is faster, but 5748 ** P3==0 is safer. 5749 ** 5750 ** If P3!=0 then the content of the P2 register is unsuitable for use 5751 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5752 ** The P2 register content is invalidated by opcodes like OP_Function or 5753 ** by any use of another cursor pointing to the same table. 5754 */ 5755 case OP_RowData: { 5756 VdbeCursor *pC; 5757 BtCursor *pCrsr; 5758 u32 n; 5759 5760 pOut = out2Prerelease(p, pOp); 5761 5762 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5763 pC = p->apCsr[pOp->p1]; 5764 assert( pC!=0 ); 5765 assert( pC->eCurType==CURTYPE_BTREE ); 5766 assert( isSorter(pC)==0 ); 5767 assert( pC->nullRow==0 ); 5768 assert( pC->uc.pCursor!=0 ); 5769 pCrsr = pC->uc.pCursor; 5770 5771 /* The OP_RowData opcodes always follow OP_NotExists or 5772 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5773 ** that might invalidate the cursor. 5774 ** If this where not the case, on of the following assert()s 5775 ** would fail. Should this ever change (because of changes in the code 5776 ** generator) then the fix would be to insert a call to 5777 ** sqlite3VdbeCursorMoveto(). 5778 */ 5779 assert( pC->deferredMoveto==0 ); 5780 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5781 5782 n = sqlite3BtreePayloadSize(pCrsr); 5783 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5784 goto too_big; 5785 } 5786 testcase( n==0 ); 5787 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5788 if( rc ) goto abort_due_to_error; 5789 if( !pOp->p3 ) Deephemeralize(pOut); 5790 UPDATE_MAX_BLOBSIZE(pOut); 5791 REGISTER_TRACE(pOp->p2, pOut); 5792 break; 5793 } 5794 5795 /* Opcode: Rowid P1 P2 * * * 5796 ** Synopsis: r[P2]=PX rowid of P1 5797 ** 5798 ** Store in register P2 an integer which is the key of the table entry that 5799 ** P1 is currently point to. 5800 ** 5801 ** P1 can be either an ordinary table or a virtual table. There used to 5802 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5803 ** one opcode now works for both table types. 5804 */ 5805 case OP_Rowid: { /* out2 */ 5806 VdbeCursor *pC; 5807 i64 v; 5808 sqlite3_vtab *pVtab; 5809 const sqlite3_module *pModule; 5810 5811 pOut = out2Prerelease(p, pOp); 5812 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5813 pC = p->apCsr[pOp->p1]; 5814 assert( pC!=0 ); 5815 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5816 if( pC->nullRow ){ 5817 pOut->flags = MEM_Null; 5818 break; 5819 }else if( pC->deferredMoveto ){ 5820 v = pC->movetoTarget; 5821 #ifndef SQLITE_OMIT_VIRTUALTABLE 5822 }else if( pC->eCurType==CURTYPE_VTAB ){ 5823 assert( pC->uc.pVCur!=0 ); 5824 pVtab = pC->uc.pVCur->pVtab; 5825 pModule = pVtab->pModule; 5826 assert( pModule->xRowid ); 5827 rc = pModule->xRowid(pC->uc.pVCur, &v); 5828 sqlite3VtabImportErrmsg(p, pVtab); 5829 if( rc ) goto abort_due_to_error; 5830 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5831 }else{ 5832 assert( pC->eCurType==CURTYPE_BTREE ); 5833 assert( pC->uc.pCursor!=0 ); 5834 rc = sqlite3VdbeCursorRestore(pC); 5835 if( rc ) goto abort_due_to_error; 5836 if( pC->nullRow ){ 5837 pOut->flags = MEM_Null; 5838 break; 5839 } 5840 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5841 } 5842 pOut->u.i = v; 5843 break; 5844 } 5845 5846 /* Opcode: NullRow P1 * * * * 5847 ** 5848 ** Move the cursor P1 to a null row. Any OP_Column operations 5849 ** that occur while the cursor is on the null row will always 5850 ** write a NULL. 5851 ** 5852 ** If cursor P1 is not previously opened, open it now to a special 5853 ** pseudo-cursor that always returns NULL for every column. 5854 */ 5855 case OP_NullRow: { 5856 VdbeCursor *pC; 5857 5858 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5859 pC = p->apCsr[pOp->p1]; 5860 if( pC==0 ){ 5861 /* If the cursor is not already open, create a special kind of 5862 ** pseudo-cursor that always gives null rows. */ 5863 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 5864 if( pC==0 ) goto no_mem; 5865 pC->seekResult = 0; 5866 pC->isTable = 1; 5867 pC->noReuse = 1; 5868 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 5869 } 5870 pC->nullRow = 1; 5871 pC->cacheStatus = CACHE_STALE; 5872 if( pC->eCurType==CURTYPE_BTREE ){ 5873 assert( pC->uc.pCursor!=0 ); 5874 sqlite3BtreeClearCursor(pC->uc.pCursor); 5875 } 5876 #ifdef SQLITE_DEBUG 5877 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5878 #endif 5879 break; 5880 } 5881 5882 /* Opcode: SeekEnd P1 * * * * 5883 ** 5884 ** Position cursor P1 at the end of the btree for the purpose of 5885 ** appending a new entry onto the btree. 5886 ** 5887 ** It is assumed that the cursor is used only for appending and so 5888 ** if the cursor is valid, then the cursor must already be pointing 5889 ** at the end of the btree and so no changes are made to 5890 ** the cursor. 5891 */ 5892 /* Opcode: Last P1 P2 * * * 5893 ** 5894 ** The next use of the Rowid or Column or Prev instruction for P1 5895 ** will refer to the last entry in the database table or index. 5896 ** If the table or index is empty and P2>0, then jump immediately to P2. 5897 ** If P2 is 0 or if the table or index is not empty, fall through 5898 ** to the following instruction. 5899 ** 5900 ** This opcode leaves the cursor configured to move in reverse order, 5901 ** from the end toward the beginning. In other words, the cursor is 5902 ** configured to use Prev, not Next. 5903 */ 5904 case OP_SeekEnd: 5905 case OP_Last: { /* jump */ 5906 VdbeCursor *pC; 5907 BtCursor *pCrsr; 5908 int res; 5909 5910 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5911 pC = p->apCsr[pOp->p1]; 5912 assert( pC!=0 ); 5913 assert( pC->eCurType==CURTYPE_BTREE ); 5914 pCrsr = pC->uc.pCursor; 5915 res = 0; 5916 assert( pCrsr!=0 ); 5917 #ifdef SQLITE_DEBUG 5918 pC->seekOp = pOp->opcode; 5919 #endif 5920 if( pOp->opcode==OP_SeekEnd ){ 5921 assert( pOp->p2==0 ); 5922 pC->seekResult = -1; 5923 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5924 break; 5925 } 5926 } 5927 rc = sqlite3BtreeLast(pCrsr, &res); 5928 pC->nullRow = (u8)res; 5929 pC->deferredMoveto = 0; 5930 pC->cacheStatus = CACHE_STALE; 5931 if( rc ) goto abort_due_to_error; 5932 if( pOp->p2>0 ){ 5933 VdbeBranchTaken(res!=0,2); 5934 if( res ) goto jump_to_p2; 5935 } 5936 break; 5937 } 5938 5939 /* Opcode: IfSmaller P1 P2 P3 * * 5940 ** 5941 ** Estimate the number of rows in the table P1. Jump to P2 if that 5942 ** estimate is less than approximately 2**(0.1*P3). 5943 */ 5944 case OP_IfSmaller: { /* jump */ 5945 VdbeCursor *pC; 5946 BtCursor *pCrsr; 5947 int res; 5948 i64 sz; 5949 5950 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5951 pC = p->apCsr[pOp->p1]; 5952 assert( pC!=0 ); 5953 pCrsr = pC->uc.pCursor; 5954 assert( pCrsr ); 5955 rc = sqlite3BtreeFirst(pCrsr, &res); 5956 if( rc ) goto abort_due_to_error; 5957 if( res==0 ){ 5958 sz = sqlite3BtreeRowCountEst(pCrsr); 5959 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5960 } 5961 VdbeBranchTaken(res!=0,2); 5962 if( res ) goto jump_to_p2; 5963 break; 5964 } 5965 5966 5967 /* Opcode: SorterSort P1 P2 * * * 5968 ** 5969 ** After all records have been inserted into the Sorter object 5970 ** identified by P1, invoke this opcode to actually do the sorting. 5971 ** Jump to P2 if there are no records to be sorted. 5972 ** 5973 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5974 ** for Sorter objects. 5975 */ 5976 /* Opcode: Sort P1 P2 * * * 5977 ** 5978 ** This opcode does exactly the same thing as OP_Rewind except that 5979 ** it increments an undocumented global variable used for testing. 5980 ** 5981 ** Sorting is accomplished by writing records into a sorting index, 5982 ** then rewinding that index and playing it back from beginning to 5983 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5984 ** rewinding so that the global variable will be incremented and 5985 ** regression tests can determine whether or not the optimizer is 5986 ** correctly optimizing out sorts. 5987 */ 5988 case OP_SorterSort: /* jump */ 5989 case OP_Sort: { /* jump */ 5990 #ifdef SQLITE_TEST 5991 sqlite3_sort_count++; 5992 sqlite3_search_count--; 5993 #endif 5994 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5995 /* Fall through into OP_Rewind */ 5996 /* no break */ deliberate_fall_through 5997 } 5998 /* Opcode: Rewind P1 P2 * * * 5999 ** 6000 ** The next use of the Rowid or Column or Next instruction for P1 6001 ** will refer to the first entry in the database table or index. 6002 ** If the table or index is empty, jump immediately to P2. 6003 ** If the table or index is not empty, fall through to the following 6004 ** instruction. 6005 ** 6006 ** This opcode leaves the cursor configured to move in forward order, 6007 ** from the beginning toward the end. In other words, the cursor is 6008 ** configured to use Next, not Prev. 6009 */ 6010 case OP_Rewind: { /* jump */ 6011 VdbeCursor *pC; 6012 BtCursor *pCrsr; 6013 int res; 6014 6015 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6016 assert( pOp->p5==0 ); 6017 pC = p->apCsr[pOp->p1]; 6018 assert( pC!=0 ); 6019 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 6020 res = 1; 6021 #ifdef SQLITE_DEBUG 6022 pC->seekOp = OP_Rewind; 6023 #endif 6024 if( isSorter(pC) ){ 6025 rc = sqlite3VdbeSorterRewind(pC, &res); 6026 }else{ 6027 assert( pC->eCurType==CURTYPE_BTREE ); 6028 pCrsr = pC->uc.pCursor; 6029 assert( pCrsr ); 6030 rc = sqlite3BtreeFirst(pCrsr, &res); 6031 pC->deferredMoveto = 0; 6032 pC->cacheStatus = CACHE_STALE; 6033 } 6034 if( rc ) goto abort_due_to_error; 6035 pC->nullRow = (u8)res; 6036 assert( pOp->p2>0 && pOp->p2<p->nOp ); 6037 VdbeBranchTaken(res!=0,2); 6038 if( res ) goto jump_to_p2; 6039 break; 6040 } 6041 6042 /* Opcode: Next P1 P2 P3 * P5 6043 ** 6044 ** Advance cursor P1 so that it points to the next key/data pair in its 6045 ** table or index. If there are no more key/value pairs then fall through 6046 ** to the following instruction. But if the cursor advance was successful, 6047 ** jump immediately to P2. 6048 ** 6049 ** The Next opcode is only valid following an SeekGT, SeekGE, or 6050 ** OP_Rewind opcode used to position the cursor. Next is not allowed 6051 ** to follow SeekLT, SeekLE, or OP_Last. 6052 ** 6053 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 6054 ** been opened prior to this opcode or the program will segfault. 6055 ** 6056 ** The P3 value is a hint to the btree implementation. If P3==1, that 6057 ** means P1 is an SQL index and that this instruction could have been 6058 ** omitted if that index had been unique. P3 is usually 0. P3 is 6059 ** always either 0 or 1. 6060 ** 6061 ** If P5 is positive and the jump is taken, then event counter 6062 ** number P5-1 in the prepared statement is incremented. 6063 ** 6064 ** See also: Prev 6065 */ 6066 /* Opcode: Prev P1 P2 P3 * P5 6067 ** 6068 ** Back up cursor P1 so that it points to the previous key/data pair in its 6069 ** table or index. If there is no previous key/value pairs then fall through 6070 ** to the following instruction. But if the cursor backup was successful, 6071 ** jump immediately to P2. 6072 ** 6073 ** 6074 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 6075 ** OP_Last opcode used to position the cursor. Prev is not allowed 6076 ** to follow SeekGT, SeekGE, or OP_Rewind. 6077 ** 6078 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 6079 ** not open then the behavior is undefined. 6080 ** 6081 ** The P3 value is a hint to the btree implementation. If P3==1, that 6082 ** means P1 is an SQL index and that this instruction could have been 6083 ** omitted if that index had been unique. P3 is usually 0. P3 is 6084 ** always either 0 or 1. 6085 ** 6086 ** If P5 is positive and the jump is taken, then event counter 6087 ** number P5-1 in the prepared statement is incremented. 6088 */ 6089 /* Opcode: SorterNext P1 P2 * * P5 6090 ** 6091 ** This opcode works just like OP_Next except that P1 must be a 6092 ** sorter object for which the OP_SorterSort opcode has been 6093 ** invoked. This opcode advances the cursor to the next sorted 6094 ** record, or jumps to P2 if there are no more sorted records. 6095 */ 6096 case OP_SorterNext: { /* jump */ 6097 VdbeCursor *pC; 6098 6099 pC = p->apCsr[pOp->p1]; 6100 assert( isSorter(pC) ); 6101 rc = sqlite3VdbeSorterNext(db, pC); 6102 goto next_tail; 6103 6104 case OP_Prev: /* jump */ 6105 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6106 assert( pOp->p5==0 6107 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 6108 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 6109 pC = p->apCsr[pOp->p1]; 6110 assert( pC!=0 ); 6111 assert( pC->deferredMoveto==0 ); 6112 assert( pC->eCurType==CURTYPE_BTREE ); 6113 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 6114 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 6115 || pC->seekOp==OP_NullRow); 6116 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 6117 goto next_tail; 6118 6119 case OP_Next: /* jump */ 6120 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6121 assert( pOp->p5==0 6122 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 6123 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 6124 pC = p->apCsr[pOp->p1]; 6125 assert( pC!=0 ); 6126 assert( pC->deferredMoveto==0 ); 6127 assert( pC->eCurType==CURTYPE_BTREE ); 6128 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6129 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6130 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6131 || pC->seekOp==OP_IfNoHope); 6132 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6133 6134 next_tail: 6135 pC->cacheStatus = CACHE_STALE; 6136 VdbeBranchTaken(rc==SQLITE_OK,2); 6137 if( rc==SQLITE_OK ){ 6138 pC->nullRow = 0; 6139 p->aCounter[pOp->p5]++; 6140 #ifdef SQLITE_TEST 6141 sqlite3_search_count++; 6142 #endif 6143 goto jump_to_p2_and_check_for_interrupt; 6144 } 6145 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6146 rc = SQLITE_OK; 6147 pC->nullRow = 1; 6148 goto check_for_interrupt; 6149 } 6150 6151 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6152 ** Synopsis: key=r[P2] 6153 ** 6154 ** Register P2 holds an SQL index key made using the 6155 ** MakeRecord instructions. This opcode writes that key 6156 ** into the index P1. Data for the entry is nil. 6157 ** 6158 ** If P4 is not zero, then it is the number of values in the unpacked 6159 ** key of reg(P2). In that case, P3 is the index of the first register 6160 ** for the unpacked key. The availability of the unpacked key can sometimes 6161 ** be an optimization. 6162 ** 6163 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6164 ** that this insert is likely to be an append. 6165 ** 6166 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6167 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6168 ** then the change counter is unchanged. 6169 ** 6170 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6171 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6172 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6173 ** seeks on the cursor or if the most recent seek used a key equivalent 6174 ** to P2. 6175 ** 6176 ** This instruction only works for indices. The equivalent instruction 6177 ** for tables is OP_Insert. 6178 */ 6179 case OP_IdxInsert: { /* in2 */ 6180 VdbeCursor *pC; 6181 BtreePayload x; 6182 6183 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6184 pC = p->apCsr[pOp->p1]; 6185 sqlite3VdbeIncrWriteCounter(p, pC); 6186 assert( pC!=0 ); 6187 assert( !isSorter(pC) ); 6188 pIn2 = &aMem[pOp->p2]; 6189 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6190 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6191 assert( pC->eCurType==CURTYPE_BTREE ); 6192 assert( pC->isTable==0 ); 6193 rc = ExpandBlob(pIn2); 6194 if( rc ) goto abort_due_to_error; 6195 x.nKey = pIn2->n; 6196 x.pKey = pIn2->z; 6197 x.aMem = aMem + pOp->p3; 6198 x.nMem = (u16)pOp->p4.i; 6199 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6200 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6201 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6202 ); 6203 assert( pC->deferredMoveto==0 ); 6204 pC->cacheStatus = CACHE_STALE; 6205 if( rc) goto abort_due_to_error; 6206 break; 6207 } 6208 6209 /* Opcode: SorterInsert P1 P2 * * * 6210 ** Synopsis: key=r[P2] 6211 ** 6212 ** Register P2 holds an SQL index key made using the 6213 ** MakeRecord instructions. This opcode writes that key 6214 ** into the sorter P1. Data for the entry is nil. 6215 */ 6216 case OP_SorterInsert: { /* in2 */ 6217 VdbeCursor *pC; 6218 6219 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6220 pC = p->apCsr[pOp->p1]; 6221 sqlite3VdbeIncrWriteCounter(p, pC); 6222 assert( pC!=0 ); 6223 assert( isSorter(pC) ); 6224 pIn2 = &aMem[pOp->p2]; 6225 assert( pIn2->flags & MEM_Blob ); 6226 assert( pC->isTable==0 ); 6227 rc = ExpandBlob(pIn2); 6228 if( rc ) goto abort_due_to_error; 6229 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6230 if( rc) goto abort_due_to_error; 6231 break; 6232 } 6233 6234 /* Opcode: IdxDelete P1 P2 P3 * P5 6235 ** Synopsis: key=r[P2@P3] 6236 ** 6237 ** The content of P3 registers starting at register P2 form 6238 ** an unpacked index key. This opcode removes that entry from the 6239 ** index opened by cursor P1. 6240 ** 6241 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6242 ** if no matching index entry is found. This happens when running 6243 ** an UPDATE or DELETE statement and the index entry to be updated 6244 ** or deleted is not found. For some uses of IdxDelete 6245 ** (example: the EXCEPT operator) it does not matter that no matching 6246 ** entry is found. For those cases, P5 is zero. Also, do not raise 6247 ** this (self-correcting and non-critical) error if in writable_schema mode. 6248 */ 6249 case OP_IdxDelete: { 6250 VdbeCursor *pC; 6251 BtCursor *pCrsr; 6252 int res; 6253 UnpackedRecord r; 6254 6255 assert( pOp->p3>0 ); 6256 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6257 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6258 pC = p->apCsr[pOp->p1]; 6259 assert( pC!=0 ); 6260 assert( pC->eCurType==CURTYPE_BTREE ); 6261 sqlite3VdbeIncrWriteCounter(p, pC); 6262 pCrsr = pC->uc.pCursor; 6263 assert( pCrsr!=0 ); 6264 r.pKeyInfo = pC->pKeyInfo; 6265 r.nField = (u16)pOp->p3; 6266 r.default_rc = 0; 6267 r.aMem = &aMem[pOp->p2]; 6268 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6269 if( rc ) goto abort_due_to_error; 6270 if( res==0 ){ 6271 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6272 if( rc ) goto abort_due_to_error; 6273 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6274 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6275 goto abort_due_to_error; 6276 } 6277 assert( pC->deferredMoveto==0 ); 6278 pC->cacheStatus = CACHE_STALE; 6279 pC->seekResult = 0; 6280 break; 6281 } 6282 6283 /* Opcode: DeferredSeek P1 * P3 P4 * 6284 ** Synopsis: Move P3 to P1.rowid if needed 6285 ** 6286 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6287 ** table. This opcode does a deferred seek of the P3 table cursor 6288 ** to the row that corresponds to the current row of P1. 6289 ** 6290 ** This is a deferred seek. Nothing actually happens until 6291 ** the cursor is used to read a record. That way, if no reads 6292 ** occur, no unnecessary I/O happens. 6293 ** 6294 ** P4 may be an array of integers (type P4_INTARRAY) containing 6295 ** one entry for each column in the P3 table. If array entry a(i) 6296 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6297 ** equivalent to performing the deferred seek and then reading column i 6298 ** from P1. This information is stored in P3 and used to redirect 6299 ** reads against P3 over to P1, thus possibly avoiding the need to 6300 ** seek and read cursor P3. 6301 */ 6302 /* Opcode: IdxRowid P1 P2 * * * 6303 ** Synopsis: r[P2]=rowid 6304 ** 6305 ** Write into register P2 an integer which is the last entry in the record at 6306 ** the end of the index key pointed to by cursor P1. This integer should be 6307 ** the rowid of the table entry to which this index entry points. 6308 ** 6309 ** See also: Rowid, MakeRecord. 6310 */ 6311 case OP_DeferredSeek: 6312 case OP_IdxRowid: { /* out2 */ 6313 VdbeCursor *pC; /* The P1 index cursor */ 6314 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6315 i64 rowid; /* Rowid that P1 current points to */ 6316 6317 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6318 pC = p->apCsr[pOp->p1]; 6319 assert( pC!=0 ); 6320 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 6321 assert( pC->uc.pCursor!=0 ); 6322 assert( pC->isTable==0 || IsNullCursor(pC) ); 6323 assert( pC->deferredMoveto==0 ); 6324 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6325 6326 /* The IdxRowid and Seek opcodes are combined because of the commonality 6327 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6328 rc = sqlite3VdbeCursorRestore(pC); 6329 6330 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed 6331 ** since it was last positioned and an error (e.g. OOM or an IO error) 6332 ** occurs while trying to reposition it. */ 6333 if( rc!=SQLITE_OK ) goto abort_due_to_error; 6334 6335 if( !pC->nullRow ){ 6336 rowid = 0; /* Not needed. Only used to silence a warning. */ 6337 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6338 if( rc!=SQLITE_OK ){ 6339 goto abort_due_to_error; 6340 } 6341 if( pOp->opcode==OP_DeferredSeek ){ 6342 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6343 pTabCur = p->apCsr[pOp->p3]; 6344 assert( pTabCur!=0 ); 6345 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6346 assert( pTabCur->uc.pCursor!=0 ); 6347 assert( pTabCur->isTable ); 6348 pTabCur->nullRow = 0; 6349 pTabCur->movetoTarget = rowid; 6350 pTabCur->deferredMoveto = 1; 6351 pTabCur->cacheStatus = CACHE_STALE; 6352 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6353 assert( !pTabCur->isEphemeral ); 6354 pTabCur->ub.aAltMap = pOp->p4.ai; 6355 assert( !pC->isEphemeral ); 6356 pTabCur->pAltCursor = pC; 6357 }else{ 6358 pOut = out2Prerelease(p, pOp); 6359 pOut->u.i = rowid; 6360 } 6361 }else{ 6362 assert( pOp->opcode==OP_IdxRowid ); 6363 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6364 } 6365 break; 6366 } 6367 6368 /* Opcode: FinishSeek P1 * * * * 6369 ** 6370 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6371 ** seek operation now, without further delay. If the cursor seek has 6372 ** already occurred, this instruction is a no-op. 6373 */ 6374 case OP_FinishSeek: { 6375 VdbeCursor *pC; /* The P1 index cursor */ 6376 6377 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6378 pC = p->apCsr[pOp->p1]; 6379 if( pC->deferredMoveto ){ 6380 rc = sqlite3VdbeFinishMoveto(pC); 6381 if( rc ) goto abort_due_to_error; 6382 } 6383 break; 6384 } 6385 6386 /* Opcode: IdxGE P1 P2 P3 P4 * 6387 ** Synopsis: key=r[P3@P4] 6388 ** 6389 ** The P4 register values beginning with P3 form an unpacked index 6390 ** key that omits the PRIMARY KEY. Compare this key value against the index 6391 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6392 ** fields at the end. 6393 ** 6394 ** If the P1 index entry is greater than or equal to the key value 6395 ** then jump to P2. Otherwise fall through to the next instruction. 6396 */ 6397 /* Opcode: IdxGT P1 P2 P3 P4 * 6398 ** Synopsis: key=r[P3@P4] 6399 ** 6400 ** The P4 register values beginning with P3 form an unpacked index 6401 ** key that omits the PRIMARY KEY. Compare this key value against the index 6402 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6403 ** fields at the end. 6404 ** 6405 ** If the P1 index entry is greater than the key value 6406 ** then jump to P2. Otherwise fall through to the next instruction. 6407 */ 6408 /* Opcode: IdxLT P1 P2 P3 P4 * 6409 ** Synopsis: key=r[P3@P4] 6410 ** 6411 ** The P4 register values beginning with P3 form an unpacked index 6412 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6413 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6414 ** ROWID on the P1 index. 6415 ** 6416 ** If the P1 index entry is less than the key value then jump to P2. 6417 ** Otherwise fall through to the next instruction. 6418 */ 6419 /* Opcode: IdxLE P1 P2 P3 P4 * 6420 ** Synopsis: key=r[P3@P4] 6421 ** 6422 ** The P4 register values beginning with P3 form an unpacked index 6423 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6424 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6425 ** ROWID on the P1 index. 6426 ** 6427 ** If the P1 index entry is less than or equal to the key value then jump 6428 ** to P2. Otherwise fall through to the next instruction. 6429 */ 6430 case OP_IdxLE: /* jump */ 6431 case OP_IdxGT: /* jump */ 6432 case OP_IdxLT: /* jump */ 6433 case OP_IdxGE: { /* jump */ 6434 VdbeCursor *pC; 6435 int res; 6436 UnpackedRecord r; 6437 6438 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6439 pC = p->apCsr[pOp->p1]; 6440 assert( pC!=0 ); 6441 assert( pC->isOrdered ); 6442 assert( pC->eCurType==CURTYPE_BTREE ); 6443 assert( pC->uc.pCursor!=0); 6444 assert( pC->deferredMoveto==0 ); 6445 assert( pOp->p4type==P4_INT32 ); 6446 r.pKeyInfo = pC->pKeyInfo; 6447 r.nField = (u16)pOp->p4.i; 6448 if( pOp->opcode<OP_IdxLT ){ 6449 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6450 r.default_rc = -1; 6451 }else{ 6452 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6453 r.default_rc = 0; 6454 } 6455 r.aMem = &aMem[pOp->p3]; 6456 #ifdef SQLITE_DEBUG 6457 { 6458 int i; 6459 for(i=0; i<r.nField; i++){ 6460 assert( memIsValid(&r.aMem[i]) ); 6461 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6462 } 6463 } 6464 #endif 6465 6466 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6467 { 6468 i64 nCellKey = 0; 6469 BtCursor *pCur; 6470 Mem m; 6471 6472 assert( pC->eCurType==CURTYPE_BTREE ); 6473 pCur = pC->uc.pCursor; 6474 assert( sqlite3BtreeCursorIsValid(pCur) ); 6475 nCellKey = sqlite3BtreePayloadSize(pCur); 6476 /* nCellKey will always be between 0 and 0xffffffff because of the way 6477 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6478 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6479 rc = SQLITE_CORRUPT_BKPT; 6480 goto abort_due_to_error; 6481 } 6482 sqlite3VdbeMemInit(&m, db, 0); 6483 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6484 if( rc ) goto abort_due_to_error; 6485 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6486 sqlite3VdbeMemReleaseMalloc(&m); 6487 } 6488 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6489 6490 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6491 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6492 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6493 res = -res; 6494 }else{ 6495 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6496 res++; 6497 } 6498 VdbeBranchTaken(res>0,2); 6499 assert( rc==SQLITE_OK ); 6500 if( res>0 ) goto jump_to_p2; 6501 break; 6502 } 6503 6504 /* Opcode: Destroy P1 P2 P3 * * 6505 ** 6506 ** Delete an entire database table or index whose root page in the database 6507 ** file is given by P1. 6508 ** 6509 ** The table being destroyed is in the main database file if P3==0. If 6510 ** P3==1 then the table to be clear is in the auxiliary database file 6511 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6512 ** 6513 ** If AUTOVACUUM is enabled then it is possible that another root page 6514 ** might be moved into the newly deleted root page in order to keep all 6515 ** root pages contiguous at the beginning of the database. The former 6516 ** value of the root page that moved - its value before the move occurred - 6517 ** is stored in register P2. If no page movement was required (because the 6518 ** table being dropped was already the last one in the database) then a 6519 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6520 ** is stored in register P2. 6521 ** 6522 ** This opcode throws an error if there are any active reader VMs when 6523 ** it is invoked. This is done to avoid the difficulty associated with 6524 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6525 ** database. This error is thrown even if the database is not an AUTOVACUUM 6526 ** db in order to avoid introducing an incompatibility between autovacuum 6527 ** and non-autovacuum modes. 6528 ** 6529 ** See also: Clear 6530 */ 6531 case OP_Destroy: { /* out2 */ 6532 int iMoved; 6533 int iDb; 6534 6535 sqlite3VdbeIncrWriteCounter(p, 0); 6536 assert( p->readOnly==0 ); 6537 assert( pOp->p1>1 ); 6538 pOut = out2Prerelease(p, pOp); 6539 pOut->flags = MEM_Null; 6540 if( db->nVdbeRead > db->nVDestroy+1 ){ 6541 rc = SQLITE_LOCKED; 6542 p->errorAction = OE_Abort; 6543 goto abort_due_to_error; 6544 }else{ 6545 iDb = pOp->p3; 6546 assert( DbMaskTest(p->btreeMask, iDb) ); 6547 iMoved = 0; /* Not needed. Only to silence a warning. */ 6548 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6549 pOut->flags = MEM_Int; 6550 pOut->u.i = iMoved; 6551 if( rc ) goto abort_due_to_error; 6552 #ifndef SQLITE_OMIT_AUTOVACUUM 6553 if( iMoved!=0 ){ 6554 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6555 /* All OP_Destroy operations occur on the same btree */ 6556 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6557 resetSchemaOnFault = iDb+1; 6558 } 6559 #endif 6560 } 6561 break; 6562 } 6563 6564 /* Opcode: Clear P1 P2 P3 6565 ** 6566 ** Delete all contents of the database table or index whose root page 6567 ** in the database file is given by P1. But, unlike Destroy, do not 6568 ** remove the table or index from the database file. 6569 ** 6570 ** The table being clear is in the main database file if P2==0. If 6571 ** P2==1 then the table to be clear is in the auxiliary database file 6572 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6573 ** 6574 ** If the P3 value is non-zero, then the row change count is incremented 6575 ** by the number of rows in the table being cleared. If P3 is greater 6576 ** than zero, then the value stored in register P3 is also incremented 6577 ** by the number of rows in the table being cleared. 6578 ** 6579 ** See also: Destroy 6580 */ 6581 case OP_Clear: { 6582 i64 nChange; 6583 6584 sqlite3VdbeIncrWriteCounter(p, 0); 6585 nChange = 0; 6586 assert( p->readOnly==0 ); 6587 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6588 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6589 if( pOp->p3 ){ 6590 p->nChange += nChange; 6591 if( pOp->p3>0 ){ 6592 assert( memIsValid(&aMem[pOp->p3]) ); 6593 memAboutToChange(p, &aMem[pOp->p3]); 6594 aMem[pOp->p3].u.i += nChange; 6595 } 6596 } 6597 if( rc ) goto abort_due_to_error; 6598 break; 6599 } 6600 6601 /* Opcode: ResetSorter P1 * * * * 6602 ** 6603 ** Delete all contents from the ephemeral table or sorter 6604 ** that is open on cursor P1. 6605 ** 6606 ** This opcode only works for cursors used for sorting and 6607 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6608 */ 6609 case OP_ResetSorter: { 6610 VdbeCursor *pC; 6611 6612 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6613 pC = p->apCsr[pOp->p1]; 6614 assert( pC!=0 ); 6615 if( isSorter(pC) ){ 6616 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6617 }else{ 6618 assert( pC->eCurType==CURTYPE_BTREE ); 6619 assert( pC->isEphemeral ); 6620 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6621 if( rc ) goto abort_due_to_error; 6622 } 6623 break; 6624 } 6625 6626 /* Opcode: CreateBtree P1 P2 P3 * * 6627 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6628 ** 6629 ** Allocate a new b-tree in the main database file if P1==0 or in the 6630 ** TEMP database file if P1==1 or in an attached database if 6631 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6632 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6633 ** The root page number of the new b-tree is stored in register P2. 6634 */ 6635 case OP_CreateBtree: { /* out2 */ 6636 Pgno pgno; 6637 Db *pDb; 6638 6639 sqlite3VdbeIncrWriteCounter(p, 0); 6640 pOut = out2Prerelease(p, pOp); 6641 pgno = 0; 6642 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6643 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6644 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6645 assert( p->readOnly==0 ); 6646 pDb = &db->aDb[pOp->p1]; 6647 assert( pDb->pBt!=0 ); 6648 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6649 if( rc ) goto abort_due_to_error; 6650 pOut->u.i = pgno; 6651 break; 6652 } 6653 6654 /* Opcode: SqlExec * * * P4 * 6655 ** 6656 ** Run the SQL statement or statements specified in the P4 string. 6657 */ 6658 case OP_SqlExec: { 6659 sqlite3VdbeIncrWriteCounter(p, 0); 6660 db->nSqlExec++; 6661 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6662 db->nSqlExec--; 6663 if( rc ) goto abort_due_to_error; 6664 break; 6665 } 6666 6667 /* Opcode: ParseSchema P1 * * P4 * 6668 ** 6669 ** Read and parse all entries from the schema table of database P1 6670 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6671 ** entire schema for P1 is reparsed. 6672 ** 6673 ** This opcode invokes the parser to create a new virtual machine, 6674 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6675 */ 6676 case OP_ParseSchema: { 6677 int iDb; 6678 const char *zSchema; 6679 char *zSql; 6680 InitData initData; 6681 6682 /* Any prepared statement that invokes this opcode will hold mutexes 6683 ** on every btree. This is a prerequisite for invoking 6684 ** sqlite3InitCallback(). 6685 */ 6686 #ifdef SQLITE_DEBUG 6687 for(iDb=0; iDb<db->nDb; iDb++){ 6688 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6689 } 6690 #endif 6691 6692 iDb = pOp->p1; 6693 assert( iDb>=0 && iDb<db->nDb ); 6694 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6695 || db->mallocFailed 6696 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6697 6698 #ifndef SQLITE_OMIT_ALTERTABLE 6699 if( pOp->p4.z==0 ){ 6700 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6701 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6702 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6703 db->mDbFlags |= DBFLAG_SchemaChange; 6704 p->expired = 0; 6705 }else 6706 #endif 6707 { 6708 zSchema = LEGACY_SCHEMA_TABLE; 6709 initData.db = db; 6710 initData.iDb = iDb; 6711 initData.pzErrMsg = &p->zErrMsg; 6712 initData.mInitFlags = 0; 6713 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6714 zSql = sqlite3MPrintf(db, 6715 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6716 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6717 if( zSql==0 ){ 6718 rc = SQLITE_NOMEM_BKPT; 6719 }else{ 6720 assert( db->init.busy==0 ); 6721 db->init.busy = 1; 6722 initData.rc = SQLITE_OK; 6723 initData.nInitRow = 0; 6724 assert( !db->mallocFailed ); 6725 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6726 if( rc==SQLITE_OK ) rc = initData.rc; 6727 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6728 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6729 ** at least one SQL statement. Any less than that indicates that 6730 ** the sqlite_schema table is corrupt. */ 6731 rc = SQLITE_CORRUPT_BKPT; 6732 } 6733 sqlite3DbFreeNN(db, zSql); 6734 db->init.busy = 0; 6735 } 6736 } 6737 if( rc ){ 6738 sqlite3ResetAllSchemasOfConnection(db); 6739 if( rc==SQLITE_NOMEM ){ 6740 goto no_mem; 6741 } 6742 goto abort_due_to_error; 6743 } 6744 break; 6745 } 6746 6747 #if !defined(SQLITE_OMIT_ANALYZE) 6748 /* Opcode: LoadAnalysis P1 * * * * 6749 ** 6750 ** Read the sqlite_stat1 table for database P1 and load the content 6751 ** of that table into the internal index hash table. This will cause 6752 ** the analysis to be used when preparing all subsequent queries. 6753 */ 6754 case OP_LoadAnalysis: { 6755 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6756 rc = sqlite3AnalysisLoad(db, pOp->p1); 6757 if( rc ) goto abort_due_to_error; 6758 break; 6759 } 6760 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6761 6762 /* Opcode: DropTable P1 * * P4 * 6763 ** 6764 ** Remove the internal (in-memory) data structures that describe 6765 ** the table named P4 in database P1. This is called after a table 6766 ** is dropped from disk (using the Destroy opcode) in order to keep 6767 ** the internal representation of the 6768 ** schema consistent with what is on disk. 6769 */ 6770 case OP_DropTable: { 6771 sqlite3VdbeIncrWriteCounter(p, 0); 6772 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6773 break; 6774 } 6775 6776 /* Opcode: DropIndex P1 * * P4 * 6777 ** 6778 ** Remove the internal (in-memory) data structures that describe 6779 ** the index named P4 in database P1. This is called after an index 6780 ** is dropped from disk (using the Destroy opcode) 6781 ** in order to keep the internal representation of the 6782 ** schema consistent with what is on disk. 6783 */ 6784 case OP_DropIndex: { 6785 sqlite3VdbeIncrWriteCounter(p, 0); 6786 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6787 break; 6788 } 6789 6790 /* Opcode: DropTrigger P1 * * P4 * 6791 ** 6792 ** Remove the internal (in-memory) data structures that describe 6793 ** the trigger named P4 in database P1. This is called after a trigger 6794 ** is dropped from disk (using the Destroy opcode) in order to keep 6795 ** the internal representation of the 6796 ** schema consistent with what is on disk. 6797 */ 6798 case OP_DropTrigger: { 6799 sqlite3VdbeIncrWriteCounter(p, 0); 6800 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6801 break; 6802 } 6803 6804 6805 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6806 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6807 ** 6808 ** Do an analysis of the currently open database. Store in 6809 ** register P1 the text of an error message describing any problems. 6810 ** If no problems are found, store a NULL in register P1. 6811 ** 6812 ** The register P3 contains one less than the maximum number of allowed errors. 6813 ** At most reg(P3) errors will be reported. 6814 ** In other words, the analysis stops as soon as reg(P1) errors are 6815 ** seen. Reg(P1) is updated with the number of errors remaining. 6816 ** 6817 ** The root page numbers of all tables in the database are integers 6818 ** stored in P4_INTARRAY argument. 6819 ** 6820 ** If P5 is not zero, the check is done on the auxiliary database 6821 ** file, not the main database file. 6822 ** 6823 ** This opcode is used to implement the integrity_check pragma. 6824 */ 6825 case OP_IntegrityCk: { 6826 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6827 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6828 int nErr; /* Number of errors reported */ 6829 char *z; /* Text of the error report */ 6830 Mem *pnErr; /* Register keeping track of errors remaining */ 6831 6832 assert( p->bIsReader ); 6833 nRoot = pOp->p2; 6834 aRoot = pOp->p4.ai; 6835 assert( nRoot>0 ); 6836 assert( aRoot[0]==(Pgno)nRoot ); 6837 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6838 pnErr = &aMem[pOp->p3]; 6839 assert( (pnErr->flags & MEM_Int)!=0 ); 6840 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6841 pIn1 = &aMem[pOp->p1]; 6842 assert( pOp->p5<db->nDb ); 6843 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6844 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6845 (int)pnErr->u.i+1, &nErr); 6846 sqlite3VdbeMemSetNull(pIn1); 6847 if( nErr==0 ){ 6848 assert( z==0 ); 6849 }else if( z==0 ){ 6850 goto no_mem; 6851 }else{ 6852 pnErr->u.i -= nErr-1; 6853 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6854 } 6855 UPDATE_MAX_BLOBSIZE(pIn1); 6856 sqlite3VdbeChangeEncoding(pIn1, encoding); 6857 goto check_for_interrupt; 6858 } 6859 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6860 6861 /* Opcode: RowSetAdd P1 P2 * * * 6862 ** Synopsis: rowset(P1)=r[P2] 6863 ** 6864 ** Insert the integer value held by register P2 into a RowSet object 6865 ** held in register P1. 6866 ** 6867 ** An assertion fails if P2 is not an integer. 6868 */ 6869 case OP_RowSetAdd: { /* in1, in2 */ 6870 pIn1 = &aMem[pOp->p1]; 6871 pIn2 = &aMem[pOp->p2]; 6872 assert( (pIn2->flags & MEM_Int)!=0 ); 6873 if( (pIn1->flags & MEM_Blob)==0 ){ 6874 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6875 } 6876 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6877 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6878 break; 6879 } 6880 6881 /* Opcode: RowSetRead P1 P2 P3 * * 6882 ** Synopsis: r[P3]=rowset(P1) 6883 ** 6884 ** Extract the smallest value from the RowSet object in P1 6885 ** and put that value into register P3. 6886 ** Or, if RowSet object P1 is initially empty, leave P3 6887 ** unchanged and jump to instruction P2. 6888 */ 6889 case OP_RowSetRead: { /* jump, in1, out3 */ 6890 i64 val; 6891 6892 pIn1 = &aMem[pOp->p1]; 6893 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6894 if( (pIn1->flags & MEM_Blob)==0 6895 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6896 ){ 6897 /* The boolean index is empty */ 6898 sqlite3VdbeMemSetNull(pIn1); 6899 VdbeBranchTaken(1,2); 6900 goto jump_to_p2_and_check_for_interrupt; 6901 }else{ 6902 /* A value was pulled from the index */ 6903 VdbeBranchTaken(0,2); 6904 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6905 } 6906 goto check_for_interrupt; 6907 } 6908 6909 /* Opcode: RowSetTest P1 P2 P3 P4 6910 ** Synopsis: if r[P3] in rowset(P1) goto P2 6911 ** 6912 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6913 ** contains a RowSet object and that RowSet object contains 6914 ** the value held in P3, jump to register P2. Otherwise, insert the 6915 ** integer in P3 into the RowSet and continue on to the 6916 ** next opcode. 6917 ** 6918 ** The RowSet object is optimized for the case where sets of integers 6919 ** are inserted in distinct phases, which each set contains no duplicates. 6920 ** Each set is identified by a unique P4 value. The first set 6921 ** must have P4==0, the final set must have P4==-1, and for all other sets 6922 ** must have P4>0. 6923 ** 6924 ** This allows optimizations: (a) when P4==0 there is no need to test 6925 ** the RowSet object for P3, as it is guaranteed not to contain it, 6926 ** (b) when P4==-1 there is no need to insert the value, as it will 6927 ** never be tested for, and (c) when a value that is part of set X is 6928 ** inserted, there is no need to search to see if the same value was 6929 ** previously inserted as part of set X (only if it was previously 6930 ** inserted as part of some other set). 6931 */ 6932 case OP_RowSetTest: { /* jump, in1, in3 */ 6933 int iSet; 6934 int exists; 6935 6936 pIn1 = &aMem[pOp->p1]; 6937 pIn3 = &aMem[pOp->p3]; 6938 iSet = pOp->p4.i; 6939 assert( pIn3->flags&MEM_Int ); 6940 6941 /* If there is anything other than a rowset object in memory cell P1, 6942 ** delete it now and initialize P1 with an empty rowset 6943 */ 6944 if( (pIn1->flags & MEM_Blob)==0 ){ 6945 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6946 } 6947 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6948 assert( pOp->p4type==P4_INT32 ); 6949 assert( iSet==-1 || iSet>=0 ); 6950 if( iSet ){ 6951 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6952 VdbeBranchTaken(exists!=0,2); 6953 if( exists ) goto jump_to_p2; 6954 } 6955 if( iSet>=0 ){ 6956 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6957 } 6958 break; 6959 } 6960 6961 6962 #ifndef SQLITE_OMIT_TRIGGER 6963 6964 /* Opcode: Program P1 P2 P3 P4 P5 6965 ** 6966 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6967 ** 6968 ** P1 contains the address of the memory cell that contains the first memory 6969 ** cell in an array of values used as arguments to the sub-program. P2 6970 ** contains the address to jump to if the sub-program throws an IGNORE 6971 ** exception using the RAISE() function. Register P3 contains the address 6972 ** of a memory cell in this (the parent) VM that is used to allocate the 6973 ** memory required by the sub-vdbe at runtime. 6974 ** 6975 ** P4 is a pointer to the VM containing the trigger program. 6976 ** 6977 ** If P5 is non-zero, then recursive program invocation is enabled. 6978 */ 6979 case OP_Program: { /* jump */ 6980 int nMem; /* Number of memory registers for sub-program */ 6981 int nByte; /* Bytes of runtime space required for sub-program */ 6982 Mem *pRt; /* Register to allocate runtime space */ 6983 Mem *pMem; /* Used to iterate through memory cells */ 6984 Mem *pEnd; /* Last memory cell in new array */ 6985 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6986 SubProgram *pProgram; /* Sub-program to execute */ 6987 void *t; /* Token identifying trigger */ 6988 6989 pProgram = pOp->p4.pProgram; 6990 pRt = &aMem[pOp->p3]; 6991 assert( pProgram->nOp>0 ); 6992 6993 /* If the p5 flag is clear, then recursive invocation of triggers is 6994 ** disabled for backwards compatibility (p5 is set if this sub-program 6995 ** is really a trigger, not a foreign key action, and the flag set 6996 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6997 ** 6998 ** It is recursive invocation of triggers, at the SQL level, that is 6999 ** disabled. In some cases a single trigger may generate more than one 7000 ** SubProgram (if the trigger may be executed with more than one different 7001 ** ON CONFLICT algorithm). SubProgram structures associated with a 7002 ** single trigger all have the same value for the SubProgram.token 7003 ** variable. */ 7004 if( pOp->p5 ){ 7005 t = pProgram->token; 7006 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 7007 if( pFrame ) break; 7008 } 7009 7010 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 7011 rc = SQLITE_ERROR; 7012 sqlite3VdbeError(p, "too many levels of trigger recursion"); 7013 goto abort_due_to_error; 7014 } 7015 7016 /* Register pRt is used to store the memory required to save the state 7017 ** of the current program, and the memory required at runtime to execute 7018 ** the trigger program. If this trigger has been fired before, then pRt 7019 ** is already allocated. Otherwise, it must be initialized. */ 7020 if( (pRt->flags&MEM_Blob)==0 ){ 7021 /* SubProgram.nMem is set to the number of memory cells used by the 7022 ** program stored in SubProgram.aOp. As well as these, one memory 7023 ** cell is required for each cursor used by the program. Set local 7024 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 7025 */ 7026 nMem = pProgram->nMem + pProgram->nCsr; 7027 assert( nMem>0 ); 7028 if( pProgram->nCsr==0 ) nMem++; 7029 nByte = ROUND8(sizeof(VdbeFrame)) 7030 + nMem * sizeof(Mem) 7031 + pProgram->nCsr * sizeof(VdbeCursor*) 7032 + (pProgram->nOp + 7)/8; 7033 pFrame = sqlite3DbMallocZero(db, nByte); 7034 if( !pFrame ){ 7035 goto no_mem; 7036 } 7037 sqlite3VdbeMemRelease(pRt); 7038 pRt->flags = MEM_Blob|MEM_Dyn; 7039 pRt->z = (char*)pFrame; 7040 pRt->n = nByte; 7041 pRt->xDel = sqlite3VdbeFrameMemDel; 7042 7043 pFrame->v = p; 7044 pFrame->nChildMem = nMem; 7045 pFrame->nChildCsr = pProgram->nCsr; 7046 pFrame->pc = (int)(pOp - aOp); 7047 pFrame->aMem = p->aMem; 7048 pFrame->nMem = p->nMem; 7049 pFrame->apCsr = p->apCsr; 7050 pFrame->nCursor = p->nCursor; 7051 pFrame->aOp = p->aOp; 7052 pFrame->nOp = p->nOp; 7053 pFrame->token = pProgram->token; 7054 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7055 pFrame->anExec = p->anExec; 7056 #endif 7057 #ifdef SQLITE_DEBUG 7058 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 7059 #endif 7060 7061 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 7062 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 7063 pMem->flags = MEM_Undefined; 7064 pMem->db = db; 7065 } 7066 }else{ 7067 pFrame = (VdbeFrame*)pRt->z; 7068 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 7069 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 7070 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 7071 assert( pProgram->nCsr==pFrame->nChildCsr ); 7072 assert( (int)(pOp - aOp)==pFrame->pc ); 7073 } 7074 7075 p->nFrame++; 7076 pFrame->pParent = p->pFrame; 7077 pFrame->lastRowid = db->lastRowid; 7078 pFrame->nChange = p->nChange; 7079 pFrame->nDbChange = p->db->nChange; 7080 assert( pFrame->pAuxData==0 ); 7081 pFrame->pAuxData = p->pAuxData; 7082 p->pAuxData = 0; 7083 p->nChange = 0; 7084 p->pFrame = pFrame; 7085 p->aMem = aMem = VdbeFrameMem(pFrame); 7086 p->nMem = pFrame->nChildMem; 7087 p->nCursor = (u16)pFrame->nChildCsr; 7088 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 7089 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 7090 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 7091 p->aOp = aOp = pProgram->aOp; 7092 p->nOp = pProgram->nOp; 7093 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 7094 p->anExec = 0; 7095 #endif 7096 #ifdef SQLITE_DEBUG 7097 /* Verify that second and subsequent executions of the same trigger do not 7098 ** try to reuse register values from the first use. */ 7099 { 7100 int i; 7101 for(i=0; i<p->nMem; i++){ 7102 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 7103 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 7104 } 7105 } 7106 #endif 7107 pOp = &aOp[-1]; 7108 goto check_for_interrupt; 7109 } 7110 7111 /* Opcode: Param P1 P2 * * * 7112 ** 7113 ** This opcode is only ever present in sub-programs called via the 7114 ** OP_Program instruction. Copy a value currently stored in a memory 7115 ** cell of the calling (parent) frame to cell P2 in the current frames 7116 ** address space. This is used by trigger programs to access the new.* 7117 ** and old.* values. 7118 ** 7119 ** The address of the cell in the parent frame is determined by adding 7120 ** the value of the P1 argument to the value of the P1 argument to the 7121 ** calling OP_Program instruction. 7122 */ 7123 case OP_Param: { /* out2 */ 7124 VdbeFrame *pFrame; 7125 Mem *pIn; 7126 pOut = out2Prerelease(p, pOp); 7127 pFrame = p->pFrame; 7128 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7129 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7130 break; 7131 } 7132 7133 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7134 7135 #ifndef SQLITE_OMIT_FOREIGN_KEY 7136 /* Opcode: FkCounter P1 P2 * * * 7137 ** Synopsis: fkctr[P1]+=P2 7138 ** 7139 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7140 ** If P1 is non-zero, the database constraint counter is incremented 7141 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7142 ** statement counter is incremented (immediate foreign key constraints). 7143 */ 7144 case OP_FkCounter: { 7145 if( db->flags & SQLITE_DeferFKs ){ 7146 db->nDeferredImmCons += pOp->p2; 7147 }else if( pOp->p1 ){ 7148 db->nDeferredCons += pOp->p2; 7149 }else{ 7150 p->nFkConstraint += pOp->p2; 7151 } 7152 break; 7153 } 7154 7155 /* Opcode: FkIfZero P1 P2 * * * 7156 ** Synopsis: if fkctr[P1]==0 goto P2 7157 ** 7158 ** This opcode tests if a foreign key constraint-counter is currently zero. 7159 ** If so, jump to instruction P2. Otherwise, fall through to the next 7160 ** instruction. 7161 ** 7162 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7163 ** is zero (the one that counts deferred constraint violations). If P1 is 7164 ** zero, the jump is taken if the statement constraint-counter is zero 7165 ** (immediate foreign key constraint violations). 7166 */ 7167 case OP_FkIfZero: { /* jump */ 7168 if( pOp->p1 ){ 7169 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7170 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7171 }else{ 7172 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7173 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7174 } 7175 break; 7176 } 7177 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7178 7179 #ifndef SQLITE_OMIT_AUTOINCREMENT 7180 /* Opcode: MemMax P1 P2 * * * 7181 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7182 ** 7183 ** P1 is a register in the root frame of this VM (the root frame is 7184 ** different from the current frame if this instruction is being executed 7185 ** within a sub-program). Set the value of register P1 to the maximum of 7186 ** its current value and the value in register P2. 7187 ** 7188 ** This instruction throws an error if the memory cell is not initially 7189 ** an integer. 7190 */ 7191 case OP_MemMax: { /* in2 */ 7192 VdbeFrame *pFrame; 7193 if( p->pFrame ){ 7194 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7195 pIn1 = &pFrame->aMem[pOp->p1]; 7196 }else{ 7197 pIn1 = &aMem[pOp->p1]; 7198 } 7199 assert( memIsValid(pIn1) ); 7200 sqlite3VdbeMemIntegerify(pIn1); 7201 pIn2 = &aMem[pOp->p2]; 7202 sqlite3VdbeMemIntegerify(pIn2); 7203 if( pIn1->u.i<pIn2->u.i){ 7204 pIn1->u.i = pIn2->u.i; 7205 } 7206 break; 7207 } 7208 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7209 7210 /* Opcode: IfPos P1 P2 P3 * * 7211 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7212 ** 7213 ** Register P1 must contain an integer. 7214 ** If the value of register P1 is 1 or greater, subtract P3 from the 7215 ** value in P1 and jump to P2. 7216 ** 7217 ** If the initial value of register P1 is less than 1, then the 7218 ** value is unchanged and control passes through to the next instruction. 7219 */ 7220 case OP_IfPos: { /* jump, in1 */ 7221 pIn1 = &aMem[pOp->p1]; 7222 assert( pIn1->flags&MEM_Int ); 7223 VdbeBranchTaken( pIn1->u.i>0, 2); 7224 if( pIn1->u.i>0 ){ 7225 pIn1->u.i -= pOp->p3; 7226 goto jump_to_p2; 7227 } 7228 break; 7229 } 7230 7231 /* Opcode: OffsetLimit P1 P2 P3 * * 7232 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7233 ** 7234 ** This opcode performs a commonly used computation associated with 7235 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] 7236 ** holds the offset counter. The opcode computes the combined value 7237 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7238 ** value computed is the total number of rows that will need to be 7239 ** visited in order to complete the query. 7240 ** 7241 ** If r[P3] is zero or negative, that means there is no OFFSET 7242 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7243 ** 7244 ** if r[P1] is zero or negative, that means there is no LIMIT 7245 ** and r[P2] is set to -1. 7246 ** 7247 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7248 */ 7249 case OP_OffsetLimit: { /* in1, out2, in3 */ 7250 i64 x; 7251 pIn1 = &aMem[pOp->p1]; 7252 pIn3 = &aMem[pOp->p3]; 7253 pOut = out2Prerelease(p, pOp); 7254 assert( pIn1->flags & MEM_Int ); 7255 assert( pIn3->flags & MEM_Int ); 7256 x = pIn1->u.i; 7257 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7258 /* If the LIMIT is less than or equal to zero, loop forever. This 7259 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7260 ** also loop forever. This is undocumented. In fact, one could argue 7261 ** that the loop should terminate. But assuming 1 billion iterations 7262 ** per second (far exceeding the capabilities of any current hardware) 7263 ** it would take nearly 300 years to actually reach the limit. So 7264 ** looping forever is a reasonable approximation. */ 7265 pOut->u.i = -1; 7266 }else{ 7267 pOut->u.i = x; 7268 } 7269 break; 7270 } 7271 7272 /* Opcode: IfNotZero P1 P2 * * * 7273 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7274 ** 7275 ** Register P1 must contain an integer. If the content of register P1 is 7276 ** initially greater than zero, then decrement the value in register P1. 7277 ** If it is non-zero (negative or positive) and then also jump to P2. 7278 ** If register P1 is initially zero, leave it unchanged and fall through. 7279 */ 7280 case OP_IfNotZero: { /* jump, in1 */ 7281 pIn1 = &aMem[pOp->p1]; 7282 assert( pIn1->flags&MEM_Int ); 7283 VdbeBranchTaken(pIn1->u.i<0, 2); 7284 if( pIn1->u.i ){ 7285 if( pIn1->u.i>0 ) pIn1->u.i--; 7286 goto jump_to_p2; 7287 } 7288 break; 7289 } 7290 7291 /* Opcode: DecrJumpZero P1 P2 * * * 7292 ** Synopsis: if (--r[P1])==0 goto P2 7293 ** 7294 ** Register P1 must hold an integer. Decrement the value in P1 7295 ** and jump to P2 if the new value is exactly zero. 7296 */ 7297 case OP_DecrJumpZero: { /* jump, in1 */ 7298 pIn1 = &aMem[pOp->p1]; 7299 assert( pIn1->flags&MEM_Int ); 7300 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7301 VdbeBranchTaken(pIn1->u.i==0, 2); 7302 if( pIn1->u.i==0 ) goto jump_to_p2; 7303 break; 7304 } 7305 7306 7307 /* Opcode: AggStep * P2 P3 P4 P5 7308 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7309 ** 7310 ** Execute the xStep function for an aggregate. 7311 ** The function has P5 arguments. P4 is a pointer to the 7312 ** FuncDef structure that specifies the function. Register P3 is the 7313 ** accumulator. 7314 ** 7315 ** The P5 arguments are taken from register P2 and its 7316 ** successors. 7317 */ 7318 /* Opcode: AggInverse * P2 P3 P4 P5 7319 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7320 ** 7321 ** Execute the xInverse function for an aggregate. 7322 ** The function has P5 arguments. P4 is a pointer to the 7323 ** FuncDef structure that specifies the function. Register P3 is the 7324 ** accumulator. 7325 ** 7326 ** The P5 arguments are taken from register P2 and its 7327 ** successors. 7328 */ 7329 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7330 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7331 ** 7332 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7333 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7334 ** FuncDef structure that specifies the function. Register P3 is the 7335 ** accumulator. 7336 ** 7337 ** The P5 arguments are taken from register P2 and its 7338 ** successors. 7339 ** 7340 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7341 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7342 ** the opcode is changed. In this way, the initialization of the 7343 ** sqlite3_context only happens once, instead of on each call to the 7344 ** step function. 7345 */ 7346 case OP_AggInverse: 7347 case OP_AggStep: { 7348 int n; 7349 sqlite3_context *pCtx; 7350 7351 assert( pOp->p4type==P4_FUNCDEF ); 7352 n = pOp->p5; 7353 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7354 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7355 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7356 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7357 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7358 if( pCtx==0 ) goto no_mem; 7359 pCtx->pMem = 0; 7360 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7361 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7362 pCtx->pFunc = pOp->p4.pFunc; 7363 pCtx->iOp = (int)(pOp - aOp); 7364 pCtx->pVdbe = p; 7365 pCtx->skipFlag = 0; 7366 pCtx->isError = 0; 7367 pCtx->enc = encoding; 7368 pCtx->argc = n; 7369 pOp->p4type = P4_FUNCCTX; 7370 pOp->p4.pCtx = pCtx; 7371 7372 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7373 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7374 7375 pOp->opcode = OP_AggStep1; 7376 /* Fall through into OP_AggStep */ 7377 /* no break */ deliberate_fall_through 7378 } 7379 case OP_AggStep1: { 7380 int i; 7381 sqlite3_context *pCtx; 7382 Mem *pMem; 7383 7384 assert( pOp->p4type==P4_FUNCCTX ); 7385 pCtx = pOp->p4.pCtx; 7386 pMem = &aMem[pOp->p3]; 7387 7388 #ifdef SQLITE_DEBUG 7389 if( pOp->p1 ){ 7390 /* This is an OP_AggInverse call. Verify that xStep has always 7391 ** been called at least once prior to any xInverse call. */ 7392 assert( pMem->uTemp==0x1122e0e3 ); 7393 }else{ 7394 /* This is an OP_AggStep call. Mark it as such. */ 7395 pMem->uTemp = 0x1122e0e3; 7396 } 7397 #endif 7398 7399 /* If this function is inside of a trigger, the register array in aMem[] 7400 ** might change from one evaluation to the next. The next block of code 7401 ** checks to see if the register array has changed, and if so it 7402 ** reinitializes the relavant parts of the sqlite3_context object */ 7403 if( pCtx->pMem != pMem ){ 7404 pCtx->pMem = pMem; 7405 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7406 } 7407 7408 #ifdef SQLITE_DEBUG 7409 for(i=0; i<pCtx->argc; i++){ 7410 assert( memIsValid(pCtx->argv[i]) ); 7411 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7412 } 7413 #endif 7414 7415 pMem->n++; 7416 assert( pCtx->pOut->flags==MEM_Null ); 7417 assert( pCtx->isError==0 ); 7418 assert( pCtx->skipFlag==0 ); 7419 #ifndef SQLITE_OMIT_WINDOWFUNC 7420 if( pOp->p1 ){ 7421 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7422 }else 7423 #endif 7424 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7425 7426 if( pCtx->isError ){ 7427 if( pCtx->isError>0 ){ 7428 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7429 rc = pCtx->isError; 7430 } 7431 if( pCtx->skipFlag ){ 7432 assert( pOp[-1].opcode==OP_CollSeq ); 7433 i = pOp[-1].p1; 7434 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7435 pCtx->skipFlag = 0; 7436 } 7437 sqlite3VdbeMemRelease(pCtx->pOut); 7438 pCtx->pOut->flags = MEM_Null; 7439 pCtx->isError = 0; 7440 if( rc ) goto abort_due_to_error; 7441 } 7442 assert( pCtx->pOut->flags==MEM_Null ); 7443 assert( pCtx->skipFlag==0 ); 7444 break; 7445 } 7446 7447 /* Opcode: AggFinal P1 P2 * P4 * 7448 ** Synopsis: accum=r[P1] N=P2 7449 ** 7450 ** P1 is the memory location that is the accumulator for an aggregate 7451 ** or window function. Execute the finalizer function 7452 ** for an aggregate and store the result in P1. 7453 ** 7454 ** P2 is the number of arguments that the step function takes and 7455 ** P4 is a pointer to the FuncDef for this function. The P2 7456 ** argument is not used by this opcode. It is only there to disambiguate 7457 ** functions that can take varying numbers of arguments. The 7458 ** P4 argument is only needed for the case where 7459 ** the step function was not previously called. 7460 */ 7461 /* Opcode: AggValue * P2 P3 P4 * 7462 ** Synopsis: r[P3]=value N=P2 7463 ** 7464 ** Invoke the xValue() function and store the result in register P3. 7465 ** 7466 ** P2 is the number of arguments that the step function takes and 7467 ** P4 is a pointer to the FuncDef for this function. The P2 7468 ** argument is not used by this opcode. It is only there to disambiguate 7469 ** functions that can take varying numbers of arguments. The 7470 ** P4 argument is only needed for the case where 7471 ** the step function was not previously called. 7472 */ 7473 case OP_AggValue: 7474 case OP_AggFinal: { 7475 Mem *pMem; 7476 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7477 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7478 pMem = &aMem[pOp->p1]; 7479 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7480 #ifndef SQLITE_OMIT_WINDOWFUNC 7481 if( pOp->p3 ){ 7482 memAboutToChange(p, &aMem[pOp->p3]); 7483 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7484 pMem = &aMem[pOp->p3]; 7485 }else 7486 #endif 7487 { 7488 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7489 } 7490 7491 if( rc ){ 7492 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7493 goto abort_due_to_error; 7494 } 7495 sqlite3VdbeChangeEncoding(pMem, encoding); 7496 UPDATE_MAX_BLOBSIZE(pMem); 7497 break; 7498 } 7499 7500 #ifndef SQLITE_OMIT_WAL 7501 /* Opcode: Checkpoint P1 P2 P3 * * 7502 ** 7503 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7504 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7505 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7506 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7507 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7508 ** in the WAL that have been checkpointed after the checkpoint 7509 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7510 ** mem[P3+2] are initialized to -1. 7511 */ 7512 case OP_Checkpoint: { 7513 int i; /* Loop counter */ 7514 int aRes[3]; /* Results */ 7515 Mem *pMem; /* Write results here */ 7516 7517 assert( p->readOnly==0 ); 7518 aRes[0] = 0; 7519 aRes[1] = aRes[2] = -1; 7520 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7521 || pOp->p2==SQLITE_CHECKPOINT_FULL 7522 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7523 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7524 ); 7525 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7526 if( rc ){ 7527 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7528 rc = SQLITE_OK; 7529 aRes[0] = 1; 7530 } 7531 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7532 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7533 } 7534 break; 7535 }; 7536 #endif 7537 7538 #ifndef SQLITE_OMIT_PRAGMA 7539 /* Opcode: JournalMode P1 P2 P3 * * 7540 ** 7541 ** Change the journal mode of database P1 to P3. P3 must be one of the 7542 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7543 ** modes (delete, truncate, persist, off and memory), this is a simple 7544 ** operation. No IO is required. 7545 ** 7546 ** If changing into or out of WAL mode the procedure is more complicated. 7547 ** 7548 ** Write a string containing the final journal-mode to register P2. 7549 */ 7550 case OP_JournalMode: { /* out2 */ 7551 Btree *pBt; /* Btree to change journal mode of */ 7552 Pager *pPager; /* Pager associated with pBt */ 7553 int eNew; /* New journal mode */ 7554 int eOld; /* The old journal mode */ 7555 #ifndef SQLITE_OMIT_WAL 7556 const char *zFilename; /* Name of database file for pPager */ 7557 #endif 7558 7559 pOut = out2Prerelease(p, pOp); 7560 eNew = pOp->p3; 7561 assert( eNew==PAGER_JOURNALMODE_DELETE 7562 || eNew==PAGER_JOURNALMODE_TRUNCATE 7563 || eNew==PAGER_JOURNALMODE_PERSIST 7564 || eNew==PAGER_JOURNALMODE_OFF 7565 || eNew==PAGER_JOURNALMODE_MEMORY 7566 || eNew==PAGER_JOURNALMODE_WAL 7567 || eNew==PAGER_JOURNALMODE_QUERY 7568 ); 7569 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7570 assert( p->readOnly==0 ); 7571 7572 pBt = db->aDb[pOp->p1].pBt; 7573 pPager = sqlite3BtreePager(pBt); 7574 eOld = sqlite3PagerGetJournalMode(pPager); 7575 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7576 assert( sqlite3BtreeHoldsMutex(pBt) ); 7577 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7578 7579 #ifndef SQLITE_OMIT_WAL 7580 zFilename = sqlite3PagerFilename(pPager, 1); 7581 7582 /* Do not allow a transition to journal_mode=WAL for a database 7583 ** in temporary storage or if the VFS does not support shared memory 7584 */ 7585 if( eNew==PAGER_JOURNALMODE_WAL 7586 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7587 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7588 ){ 7589 eNew = eOld; 7590 } 7591 7592 if( (eNew!=eOld) 7593 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7594 ){ 7595 if( !db->autoCommit || db->nVdbeRead>1 ){ 7596 rc = SQLITE_ERROR; 7597 sqlite3VdbeError(p, 7598 "cannot change %s wal mode from within a transaction", 7599 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7600 ); 7601 goto abort_due_to_error; 7602 }else{ 7603 7604 if( eOld==PAGER_JOURNALMODE_WAL ){ 7605 /* If leaving WAL mode, close the log file. If successful, the call 7606 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7607 ** file. An EXCLUSIVE lock may still be held on the database file 7608 ** after a successful return. 7609 */ 7610 rc = sqlite3PagerCloseWal(pPager, db); 7611 if( rc==SQLITE_OK ){ 7612 sqlite3PagerSetJournalMode(pPager, eNew); 7613 } 7614 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7615 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7616 ** as an intermediate */ 7617 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7618 } 7619 7620 /* Open a transaction on the database file. Regardless of the journal 7621 ** mode, this transaction always uses a rollback journal. 7622 */ 7623 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7624 if( rc==SQLITE_OK ){ 7625 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7626 } 7627 } 7628 } 7629 #endif /* ifndef SQLITE_OMIT_WAL */ 7630 7631 if( rc ) eNew = eOld; 7632 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7633 7634 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7635 pOut->z = (char *)sqlite3JournalModename(eNew); 7636 pOut->n = sqlite3Strlen30(pOut->z); 7637 pOut->enc = SQLITE_UTF8; 7638 sqlite3VdbeChangeEncoding(pOut, encoding); 7639 if( rc ) goto abort_due_to_error; 7640 break; 7641 }; 7642 #endif /* SQLITE_OMIT_PRAGMA */ 7643 7644 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7645 /* Opcode: Vacuum P1 P2 * * * 7646 ** 7647 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7648 ** for an attached database. The "temp" database may not be vacuumed. 7649 ** 7650 ** If P2 is not zero, then it is a register holding a string which is 7651 ** the file into which the result of vacuum should be written. When 7652 ** P2 is zero, the vacuum overwrites the original database. 7653 */ 7654 case OP_Vacuum: { 7655 assert( p->readOnly==0 ); 7656 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7657 pOp->p2 ? &aMem[pOp->p2] : 0); 7658 if( rc ) goto abort_due_to_error; 7659 break; 7660 } 7661 #endif 7662 7663 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7664 /* Opcode: IncrVacuum P1 P2 * * * 7665 ** 7666 ** Perform a single step of the incremental vacuum procedure on 7667 ** the P1 database. If the vacuum has finished, jump to instruction 7668 ** P2. Otherwise, fall through to the next instruction. 7669 */ 7670 case OP_IncrVacuum: { /* jump */ 7671 Btree *pBt; 7672 7673 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7674 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7675 assert( p->readOnly==0 ); 7676 pBt = db->aDb[pOp->p1].pBt; 7677 rc = sqlite3BtreeIncrVacuum(pBt); 7678 VdbeBranchTaken(rc==SQLITE_DONE,2); 7679 if( rc ){ 7680 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7681 rc = SQLITE_OK; 7682 goto jump_to_p2; 7683 } 7684 break; 7685 } 7686 #endif 7687 7688 /* Opcode: Expire P1 P2 * * * 7689 ** 7690 ** Cause precompiled statements to expire. When an expired statement 7691 ** is executed using sqlite3_step() it will either automatically 7692 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7693 ** or it will fail with SQLITE_SCHEMA. 7694 ** 7695 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7696 ** then only the currently executing statement is expired. 7697 ** 7698 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7699 ** then running SQL statements are allowed to continue to run to completion. 7700 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7701 ** that might help the statement run faster but which does not affect the 7702 ** correctness of operation. 7703 */ 7704 case OP_Expire: { 7705 assert( pOp->p2==0 || pOp->p2==1 ); 7706 if( !pOp->p1 ){ 7707 sqlite3ExpirePreparedStatements(db, pOp->p2); 7708 }else{ 7709 p->expired = pOp->p2+1; 7710 } 7711 break; 7712 } 7713 7714 /* Opcode: CursorLock P1 * * * * 7715 ** 7716 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7717 ** written by an other cursor. 7718 */ 7719 case OP_CursorLock: { 7720 VdbeCursor *pC; 7721 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7722 pC = p->apCsr[pOp->p1]; 7723 assert( pC!=0 ); 7724 assert( pC->eCurType==CURTYPE_BTREE ); 7725 sqlite3BtreeCursorPin(pC->uc.pCursor); 7726 break; 7727 } 7728 7729 /* Opcode: CursorUnlock P1 * * * * 7730 ** 7731 ** Unlock the btree to which cursor P1 is pointing so that it can be 7732 ** written by other cursors. 7733 */ 7734 case OP_CursorUnlock: { 7735 VdbeCursor *pC; 7736 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7737 pC = p->apCsr[pOp->p1]; 7738 assert( pC!=0 ); 7739 assert( pC->eCurType==CURTYPE_BTREE ); 7740 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7741 break; 7742 } 7743 7744 #ifndef SQLITE_OMIT_SHARED_CACHE 7745 /* Opcode: TableLock P1 P2 P3 P4 * 7746 ** Synopsis: iDb=P1 root=P2 write=P3 7747 ** 7748 ** Obtain a lock on a particular table. This instruction is only used when 7749 ** the shared-cache feature is enabled. 7750 ** 7751 ** P1 is the index of the database in sqlite3.aDb[] of the database 7752 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7753 ** a write lock if P3==1. 7754 ** 7755 ** P2 contains the root-page of the table to lock. 7756 ** 7757 ** P4 contains a pointer to the name of the table being locked. This is only 7758 ** used to generate an error message if the lock cannot be obtained. 7759 */ 7760 case OP_TableLock: { 7761 u8 isWriteLock = (u8)pOp->p3; 7762 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7763 int p1 = pOp->p1; 7764 assert( p1>=0 && p1<db->nDb ); 7765 assert( DbMaskTest(p->btreeMask, p1) ); 7766 assert( isWriteLock==0 || isWriteLock==1 ); 7767 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7768 if( rc ){ 7769 if( (rc&0xFF)==SQLITE_LOCKED ){ 7770 const char *z = pOp->p4.z; 7771 sqlite3VdbeError(p, "database table is locked: %s", z); 7772 } 7773 goto abort_due_to_error; 7774 } 7775 } 7776 break; 7777 } 7778 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7779 7780 #ifndef SQLITE_OMIT_VIRTUALTABLE 7781 /* Opcode: VBegin * * * P4 * 7782 ** 7783 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7784 ** xBegin method for that table. 7785 ** 7786 ** Also, whether or not P4 is set, check that this is not being called from 7787 ** within a callback to a virtual table xSync() method. If it is, the error 7788 ** code will be set to SQLITE_LOCKED. 7789 */ 7790 case OP_VBegin: { 7791 VTable *pVTab; 7792 pVTab = pOp->p4.pVtab; 7793 rc = sqlite3VtabBegin(db, pVTab); 7794 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7795 if( rc ) goto abort_due_to_error; 7796 break; 7797 } 7798 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7799 7800 #ifndef SQLITE_OMIT_VIRTUALTABLE 7801 /* Opcode: VCreate P1 P2 * * * 7802 ** 7803 ** P2 is a register that holds the name of a virtual table in database 7804 ** P1. Call the xCreate method for that table. 7805 */ 7806 case OP_VCreate: { 7807 Mem sMem; /* For storing the record being decoded */ 7808 const char *zTab; /* Name of the virtual table */ 7809 7810 memset(&sMem, 0, sizeof(sMem)); 7811 sMem.db = db; 7812 /* Because P2 is always a static string, it is impossible for the 7813 ** sqlite3VdbeMemCopy() to fail */ 7814 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7815 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7816 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7817 assert( rc==SQLITE_OK ); 7818 zTab = (const char*)sqlite3_value_text(&sMem); 7819 assert( zTab || db->mallocFailed ); 7820 if( zTab ){ 7821 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7822 } 7823 sqlite3VdbeMemRelease(&sMem); 7824 if( rc ) goto abort_due_to_error; 7825 break; 7826 } 7827 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7828 7829 #ifndef SQLITE_OMIT_VIRTUALTABLE 7830 /* Opcode: VDestroy P1 * * P4 * 7831 ** 7832 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7833 ** of that table. 7834 */ 7835 case OP_VDestroy: { 7836 db->nVDestroy++; 7837 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7838 db->nVDestroy--; 7839 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7840 if( rc ) goto abort_due_to_error; 7841 break; 7842 } 7843 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7844 7845 #ifndef SQLITE_OMIT_VIRTUALTABLE 7846 /* Opcode: VOpen P1 * * P4 * 7847 ** 7848 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7849 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7850 ** table and stores that cursor in P1. 7851 */ 7852 case OP_VOpen: { 7853 VdbeCursor *pCur; 7854 sqlite3_vtab_cursor *pVCur; 7855 sqlite3_vtab *pVtab; 7856 const sqlite3_module *pModule; 7857 7858 assert( p->bIsReader ); 7859 pCur = 0; 7860 pVCur = 0; 7861 pVtab = pOp->p4.pVtab->pVtab; 7862 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7863 rc = SQLITE_LOCKED; 7864 goto abort_due_to_error; 7865 } 7866 pModule = pVtab->pModule; 7867 rc = pModule->xOpen(pVtab, &pVCur); 7868 sqlite3VtabImportErrmsg(p, pVtab); 7869 if( rc ) goto abort_due_to_error; 7870 7871 /* Initialize sqlite3_vtab_cursor base class */ 7872 pVCur->pVtab = pVtab; 7873 7874 /* Initialize vdbe cursor object */ 7875 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7876 if( pCur ){ 7877 pCur->uc.pVCur = pVCur; 7878 pVtab->nRef++; 7879 }else{ 7880 assert( db->mallocFailed ); 7881 pModule->xClose(pVCur); 7882 goto no_mem; 7883 } 7884 break; 7885 } 7886 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7887 7888 #ifndef SQLITE_OMIT_VIRTUALTABLE 7889 /* Opcode: VInitIn P1 P2 P3 * * 7890 ** Synopsis: r[P2]=ValueList(P1,P3) 7891 ** 7892 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7893 ** with cache register P3 and output register P3+1. This ValueList object 7894 ** can be used as the first argument to sqlite3_vtab_in_first() and 7895 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7896 ** cursor. Register P3 is used to hold the values returned by 7897 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7898 */ 7899 case OP_VInitIn: { /* out2 */ 7900 VdbeCursor *pC; /* The cursor containing the RHS values */ 7901 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7902 7903 pC = p->apCsr[pOp->p1]; 7904 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7905 if( pRhs==0 ) goto no_mem; 7906 pRhs->pCsr = pC->uc.pCursor; 7907 pRhs->pOut = &aMem[pOp->p3]; 7908 pOut = out2Prerelease(p, pOp); 7909 pOut->flags = MEM_Null; 7910 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7911 break; 7912 } 7913 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7914 7915 7916 #ifndef SQLITE_OMIT_VIRTUALTABLE 7917 /* Opcode: VFilter P1 P2 P3 P4 * 7918 ** Synopsis: iplan=r[P3] zplan='P4' 7919 ** 7920 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7921 ** the filtered result set is empty. 7922 ** 7923 ** P4 is either NULL or a string that was generated by the xBestIndex 7924 ** method of the module. The interpretation of the P4 string is left 7925 ** to the module implementation. 7926 ** 7927 ** This opcode invokes the xFilter method on the virtual table specified 7928 ** by P1. The integer query plan parameter to xFilter is stored in register 7929 ** P3. Register P3+1 stores the argc parameter to be passed to the 7930 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7931 ** additional parameters which are passed to 7932 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7933 ** 7934 ** A jump is made to P2 if the result set after filtering would be empty. 7935 */ 7936 case OP_VFilter: { /* jump */ 7937 int nArg; 7938 int iQuery; 7939 const sqlite3_module *pModule; 7940 Mem *pQuery; 7941 Mem *pArgc; 7942 sqlite3_vtab_cursor *pVCur; 7943 sqlite3_vtab *pVtab; 7944 VdbeCursor *pCur; 7945 int res; 7946 int i; 7947 Mem **apArg; 7948 7949 pQuery = &aMem[pOp->p3]; 7950 pArgc = &pQuery[1]; 7951 pCur = p->apCsr[pOp->p1]; 7952 assert( memIsValid(pQuery) ); 7953 REGISTER_TRACE(pOp->p3, pQuery); 7954 assert( pCur!=0 ); 7955 assert( pCur->eCurType==CURTYPE_VTAB ); 7956 pVCur = pCur->uc.pVCur; 7957 pVtab = pVCur->pVtab; 7958 pModule = pVtab->pModule; 7959 7960 /* Grab the index number and argc parameters */ 7961 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7962 nArg = (int)pArgc->u.i; 7963 iQuery = (int)pQuery->u.i; 7964 7965 /* Invoke the xFilter method */ 7966 apArg = p->apArg; 7967 for(i = 0; i<nArg; i++){ 7968 apArg[i] = &pArgc[i+1]; 7969 } 7970 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7971 sqlite3VtabImportErrmsg(p, pVtab); 7972 if( rc ) goto abort_due_to_error; 7973 res = pModule->xEof(pVCur); 7974 pCur->nullRow = 0; 7975 VdbeBranchTaken(res!=0,2); 7976 if( res ) goto jump_to_p2; 7977 break; 7978 } 7979 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7980 7981 #ifndef SQLITE_OMIT_VIRTUALTABLE 7982 /* Opcode: VColumn P1 P2 P3 * P5 7983 ** Synopsis: r[P3]=vcolumn(P2) 7984 ** 7985 ** Store in register P3 the value of the P2-th column of 7986 ** the current row of the virtual-table of cursor P1. 7987 ** 7988 ** If the VColumn opcode is being used to fetch the value of 7989 ** an unchanging column during an UPDATE operation, then the P5 7990 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7991 ** function to return true inside the xColumn method of the virtual 7992 ** table implementation. The P5 column might also contain other 7993 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7994 ** unused by OP_VColumn. 7995 */ 7996 case OP_VColumn: { 7997 sqlite3_vtab *pVtab; 7998 const sqlite3_module *pModule; 7999 Mem *pDest; 8000 sqlite3_context sContext; 8001 8002 VdbeCursor *pCur = p->apCsr[pOp->p1]; 8003 assert( pCur!=0 ); 8004 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 8005 pDest = &aMem[pOp->p3]; 8006 memAboutToChange(p, pDest); 8007 if( pCur->nullRow ){ 8008 sqlite3VdbeMemSetNull(pDest); 8009 break; 8010 } 8011 assert( pCur->eCurType==CURTYPE_VTAB ); 8012 pVtab = pCur->uc.pVCur->pVtab; 8013 pModule = pVtab->pModule; 8014 assert( pModule->xColumn ); 8015 memset(&sContext, 0, sizeof(sContext)); 8016 sContext.pOut = pDest; 8017 sContext.enc = encoding; 8018 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 8019 if( pOp->p5 & OPFLAG_NOCHNG ){ 8020 sqlite3VdbeMemSetNull(pDest); 8021 pDest->flags = MEM_Null|MEM_Zero; 8022 pDest->u.nZero = 0; 8023 }else{ 8024 MemSetTypeFlag(pDest, MEM_Null); 8025 } 8026 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 8027 sqlite3VtabImportErrmsg(p, pVtab); 8028 if( sContext.isError>0 ){ 8029 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 8030 rc = sContext.isError; 8031 } 8032 sqlite3VdbeChangeEncoding(pDest, encoding); 8033 REGISTER_TRACE(pOp->p3, pDest); 8034 UPDATE_MAX_BLOBSIZE(pDest); 8035 8036 if( rc ) goto abort_due_to_error; 8037 break; 8038 } 8039 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8040 8041 #ifndef SQLITE_OMIT_VIRTUALTABLE 8042 /* Opcode: VNext P1 P2 * * * 8043 ** 8044 ** Advance virtual table P1 to the next row in its result set and 8045 ** jump to instruction P2. Or, if the virtual table has reached 8046 ** the end of its result set, then fall through to the next instruction. 8047 */ 8048 case OP_VNext: { /* jump */ 8049 sqlite3_vtab *pVtab; 8050 const sqlite3_module *pModule; 8051 int res; 8052 VdbeCursor *pCur; 8053 8054 pCur = p->apCsr[pOp->p1]; 8055 assert( pCur!=0 ); 8056 assert( pCur->eCurType==CURTYPE_VTAB ); 8057 if( pCur->nullRow ){ 8058 break; 8059 } 8060 pVtab = pCur->uc.pVCur->pVtab; 8061 pModule = pVtab->pModule; 8062 assert( pModule->xNext ); 8063 8064 /* Invoke the xNext() method of the module. There is no way for the 8065 ** underlying implementation to return an error if one occurs during 8066 ** xNext(). Instead, if an error occurs, true is returned (indicating that 8067 ** data is available) and the error code returned when xColumn or 8068 ** some other method is next invoked on the save virtual table cursor. 8069 */ 8070 rc = pModule->xNext(pCur->uc.pVCur); 8071 sqlite3VtabImportErrmsg(p, pVtab); 8072 if( rc ) goto abort_due_to_error; 8073 res = pModule->xEof(pCur->uc.pVCur); 8074 VdbeBranchTaken(!res,2); 8075 if( !res ){ 8076 /* If there is data, jump to P2 */ 8077 goto jump_to_p2_and_check_for_interrupt; 8078 } 8079 goto check_for_interrupt; 8080 } 8081 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8082 8083 #ifndef SQLITE_OMIT_VIRTUALTABLE 8084 /* Opcode: VRename P1 * * P4 * 8085 ** 8086 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8087 ** This opcode invokes the corresponding xRename method. The value 8088 ** in register P1 is passed as the zName argument to the xRename method. 8089 */ 8090 case OP_VRename: { 8091 sqlite3_vtab *pVtab; 8092 Mem *pName; 8093 int isLegacy; 8094 8095 isLegacy = (db->flags & SQLITE_LegacyAlter); 8096 db->flags |= SQLITE_LegacyAlter; 8097 pVtab = pOp->p4.pVtab->pVtab; 8098 pName = &aMem[pOp->p1]; 8099 assert( pVtab->pModule->xRename ); 8100 assert( memIsValid(pName) ); 8101 assert( p->readOnly==0 ); 8102 REGISTER_TRACE(pOp->p1, pName); 8103 assert( pName->flags & MEM_Str ); 8104 testcase( pName->enc==SQLITE_UTF8 ); 8105 testcase( pName->enc==SQLITE_UTF16BE ); 8106 testcase( pName->enc==SQLITE_UTF16LE ); 8107 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 8108 if( rc ) goto abort_due_to_error; 8109 rc = pVtab->pModule->xRename(pVtab, pName->z); 8110 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 8111 sqlite3VtabImportErrmsg(p, pVtab); 8112 p->expired = 0; 8113 if( rc ) goto abort_due_to_error; 8114 break; 8115 } 8116 #endif 8117 8118 #ifndef SQLITE_OMIT_VIRTUALTABLE 8119 /* Opcode: VUpdate P1 P2 P3 P4 P5 8120 ** Synopsis: data=r[P3@P2] 8121 ** 8122 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8123 ** This opcode invokes the corresponding xUpdate method. P2 values 8124 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8125 ** invocation. The value in register (P3+P2-1) corresponds to the 8126 ** p2th element of the argv array passed to xUpdate. 8127 ** 8128 ** The xUpdate method will do a DELETE or an INSERT or both. 8129 ** The argv[0] element (which corresponds to memory cell P3) 8130 ** is the rowid of a row to delete. If argv[0] is NULL then no 8131 ** deletion occurs. The argv[1] element is the rowid of the new 8132 ** row. This can be NULL to have the virtual table select the new 8133 ** rowid for itself. The subsequent elements in the array are 8134 ** the values of columns in the new row. 8135 ** 8136 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8137 ** a row to delete. 8138 ** 8139 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8140 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8141 ** is set to the value of the rowid for the row just inserted. 8142 ** 8143 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8144 ** apply in the case of a constraint failure on an insert or update. 8145 */ 8146 case OP_VUpdate: { 8147 sqlite3_vtab *pVtab; 8148 const sqlite3_module *pModule; 8149 int nArg; 8150 int i; 8151 sqlite_int64 rowid = 0; 8152 Mem **apArg; 8153 Mem *pX; 8154 8155 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8156 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8157 ); 8158 assert( p->readOnly==0 ); 8159 if( db->mallocFailed ) goto no_mem; 8160 sqlite3VdbeIncrWriteCounter(p, 0); 8161 pVtab = pOp->p4.pVtab->pVtab; 8162 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8163 rc = SQLITE_LOCKED; 8164 goto abort_due_to_error; 8165 } 8166 pModule = pVtab->pModule; 8167 nArg = pOp->p2; 8168 assert( pOp->p4type==P4_VTAB ); 8169 if( ALWAYS(pModule->xUpdate) ){ 8170 u8 vtabOnConflict = db->vtabOnConflict; 8171 apArg = p->apArg; 8172 pX = &aMem[pOp->p3]; 8173 for(i=0; i<nArg; i++){ 8174 assert( memIsValid(pX) ); 8175 memAboutToChange(p, pX); 8176 apArg[i] = pX; 8177 pX++; 8178 } 8179 db->vtabOnConflict = pOp->p5; 8180 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8181 db->vtabOnConflict = vtabOnConflict; 8182 sqlite3VtabImportErrmsg(p, pVtab); 8183 if( rc==SQLITE_OK && pOp->p1 ){ 8184 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8185 db->lastRowid = rowid; 8186 } 8187 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8188 if( pOp->p5==OE_Ignore ){ 8189 rc = SQLITE_OK; 8190 }else{ 8191 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8192 } 8193 }else{ 8194 p->nChange++; 8195 } 8196 if( rc ) goto abort_due_to_error; 8197 } 8198 break; 8199 } 8200 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8201 8202 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8203 /* Opcode: Pagecount P1 P2 * * * 8204 ** 8205 ** Write the current number of pages in database P1 to memory cell P2. 8206 */ 8207 case OP_Pagecount: { /* out2 */ 8208 pOut = out2Prerelease(p, pOp); 8209 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8210 break; 8211 } 8212 #endif 8213 8214 8215 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8216 /* Opcode: MaxPgcnt P1 P2 P3 * * 8217 ** 8218 ** Try to set the maximum page count for database P1 to the value in P3. 8219 ** Do not let the maximum page count fall below the current page count and 8220 ** do not change the maximum page count value if P3==0. 8221 ** 8222 ** Store the maximum page count after the change in register P2. 8223 */ 8224 case OP_MaxPgcnt: { /* out2 */ 8225 unsigned int newMax; 8226 Btree *pBt; 8227 8228 pOut = out2Prerelease(p, pOp); 8229 pBt = db->aDb[pOp->p1].pBt; 8230 newMax = 0; 8231 if( pOp->p3 ){ 8232 newMax = sqlite3BtreeLastPage(pBt); 8233 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8234 } 8235 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8236 break; 8237 } 8238 #endif 8239 8240 /* Opcode: Function P1 P2 P3 P4 * 8241 ** Synopsis: r[P3]=func(r[P2@NP]) 8242 ** 8243 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8244 ** contains a pointer to the function to be run) with arguments taken 8245 ** from register P2 and successors. The number of arguments is in 8246 ** the sqlite3_context object that P4 points to. 8247 ** The result of the function is stored 8248 ** in register P3. Register P3 must not be one of the function inputs. 8249 ** 8250 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8251 ** function was determined to be constant at compile time. If the first 8252 ** argument was constant then bit 0 of P1 is set. This is used to determine 8253 ** whether meta data associated with a user function argument using the 8254 ** sqlite3_set_auxdata() API may be safely retained until the next 8255 ** invocation of this opcode. 8256 ** 8257 ** See also: AggStep, AggFinal, PureFunc 8258 */ 8259 /* Opcode: PureFunc P1 P2 P3 P4 * 8260 ** Synopsis: r[P3]=func(r[P2@NP]) 8261 ** 8262 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8263 ** contains a pointer to the function to be run) with arguments taken 8264 ** from register P2 and successors. The number of arguments is in 8265 ** the sqlite3_context object that P4 points to. 8266 ** The result of the function is stored 8267 ** in register P3. Register P3 must not be one of the function inputs. 8268 ** 8269 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8270 ** function was determined to be constant at compile time. If the first 8271 ** argument was constant then bit 0 of P1 is set. This is used to determine 8272 ** whether meta data associated with a user function argument using the 8273 ** sqlite3_set_auxdata() API may be safely retained until the next 8274 ** invocation of this opcode. 8275 ** 8276 ** This opcode works exactly like OP_Function. The only difference is in 8277 ** its name. This opcode is used in places where the function must be 8278 ** purely non-deterministic. Some built-in date/time functions can be 8279 ** either determinitic of non-deterministic, depending on their arguments. 8280 ** When those function are used in a non-deterministic way, they will check 8281 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8282 ** if they were, they throw an error. 8283 ** 8284 ** See also: AggStep, AggFinal, Function 8285 */ 8286 case OP_PureFunc: /* group */ 8287 case OP_Function: { /* group */ 8288 int i; 8289 sqlite3_context *pCtx; 8290 8291 assert( pOp->p4type==P4_FUNCCTX ); 8292 pCtx = pOp->p4.pCtx; 8293 8294 /* If this function is inside of a trigger, the register array in aMem[] 8295 ** might change from one evaluation to the next. The next block of code 8296 ** checks to see if the register array has changed, and if so it 8297 ** reinitializes the relavant parts of the sqlite3_context object */ 8298 pOut = &aMem[pOp->p3]; 8299 if( pCtx->pOut != pOut ){ 8300 pCtx->pVdbe = p; 8301 pCtx->pOut = pOut; 8302 pCtx->enc = encoding; 8303 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8304 } 8305 assert( pCtx->pVdbe==p ); 8306 8307 memAboutToChange(p, pOut); 8308 #ifdef SQLITE_DEBUG 8309 for(i=0; i<pCtx->argc; i++){ 8310 assert( memIsValid(pCtx->argv[i]) ); 8311 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8312 } 8313 #endif 8314 MemSetTypeFlag(pOut, MEM_Null); 8315 assert( pCtx->isError==0 ); 8316 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8317 8318 /* If the function returned an error, throw an exception */ 8319 if( pCtx->isError ){ 8320 if( pCtx->isError>0 ){ 8321 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8322 rc = pCtx->isError; 8323 } 8324 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8325 pCtx->isError = 0; 8326 if( rc ) goto abort_due_to_error; 8327 } 8328 8329 assert( (pOut->flags&MEM_Str)==0 8330 || pOut->enc==encoding 8331 || db->mallocFailed ); 8332 assert( !sqlite3VdbeMemTooBig(pOut) ); 8333 8334 REGISTER_TRACE(pOp->p3, pOut); 8335 UPDATE_MAX_BLOBSIZE(pOut); 8336 break; 8337 } 8338 8339 /* Opcode: ClrSubtype P1 * * * * 8340 ** Synopsis: r[P1].subtype = 0 8341 ** 8342 ** Clear the subtype from register P1. 8343 */ 8344 case OP_ClrSubtype: { /* in1 */ 8345 pIn1 = &aMem[pOp->p1]; 8346 pIn1->flags &= ~MEM_Subtype; 8347 break; 8348 } 8349 8350 /* Opcode: FilterAdd P1 * P3 P4 * 8351 ** Synopsis: filter(P1) += key(P3@P4) 8352 ** 8353 ** Compute a hash on the P4 registers starting with r[P3] and 8354 ** add that hash to the bloom filter contained in r[P1]. 8355 */ 8356 case OP_FilterAdd: { 8357 u64 h; 8358 8359 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8360 pIn1 = &aMem[pOp->p1]; 8361 assert( pIn1->flags & MEM_Blob ); 8362 assert( pIn1->n>0 ); 8363 h = filterHash(aMem, pOp); 8364 #ifdef SQLITE_DEBUG 8365 if( db->flags&SQLITE_VdbeTrace ){ 8366 int ii; 8367 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8368 registerTrace(ii, &aMem[ii]); 8369 } 8370 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8371 } 8372 #endif 8373 h %= pIn1->n; 8374 pIn1->z[h/8] |= 1<<(h&7); 8375 break; 8376 } 8377 8378 /* Opcode: Filter P1 P2 P3 P4 * 8379 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8380 ** 8381 ** Compute a hash on the key contained in the P4 registers starting 8382 ** with r[P3]. Check to see if that hash is found in the 8383 ** bloom filter hosted by register P1. If it is not present then 8384 ** maybe jump to P2. Otherwise fall through. 8385 ** 8386 ** False negatives are harmless. It is always safe to fall through, 8387 ** even if the value is in the bloom filter. A false negative causes 8388 ** more CPU cycles to be used, but it should still yield the correct 8389 ** answer. However, an incorrect answer may well arise from a 8390 ** false positive - if the jump is taken when it should fall through. 8391 */ 8392 case OP_Filter: { /* jump */ 8393 u64 h; 8394 8395 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8396 pIn1 = &aMem[pOp->p1]; 8397 assert( (pIn1->flags & MEM_Blob)!=0 ); 8398 assert( pIn1->n >= 1 ); 8399 h = filterHash(aMem, pOp); 8400 #ifdef SQLITE_DEBUG 8401 if( db->flags&SQLITE_VdbeTrace ){ 8402 int ii; 8403 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8404 registerTrace(ii, &aMem[ii]); 8405 } 8406 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8407 } 8408 #endif 8409 h %= pIn1->n; 8410 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8411 VdbeBranchTaken(1, 2); 8412 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8413 goto jump_to_p2; 8414 }else{ 8415 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8416 VdbeBranchTaken(0, 2); 8417 } 8418 break; 8419 } 8420 8421 /* Opcode: Trace P1 P2 * P4 * 8422 ** 8423 ** Write P4 on the statement trace output if statement tracing is 8424 ** enabled. 8425 ** 8426 ** Operand P1 must be 0x7fffffff and P2 must positive. 8427 */ 8428 /* Opcode: Init P1 P2 P3 P4 * 8429 ** Synopsis: Start at P2 8430 ** 8431 ** Programs contain a single instance of this opcode as the very first 8432 ** opcode. 8433 ** 8434 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8435 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8436 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8437 ** 8438 ** If P2 is not zero, jump to instruction P2. 8439 ** 8440 ** Increment the value of P1 so that OP_Once opcodes will jump the 8441 ** first time they are evaluated for this run. 8442 ** 8443 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8444 ** error is encountered. 8445 */ 8446 case OP_Trace: 8447 case OP_Init: { /* jump */ 8448 int i; 8449 #ifndef SQLITE_OMIT_TRACE 8450 char *zTrace; 8451 #endif 8452 8453 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8454 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8455 ** 8456 ** This assert() provides evidence for: 8457 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8458 ** would have been returned by the legacy sqlite3_trace() interface by 8459 ** using the X argument when X begins with "--" and invoking 8460 ** sqlite3_expanded_sql(P) otherwise. 8461 */ 8462 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8463 8464 /* OP_Init is always instruction 0 */ 8465 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8466 8467 #ifndef SQLITE_OMIT_TRACE 8468 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8469 && p->minWriteFileFormat!=254 /* tag-20220401a */ 8470 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8471 ){ 8472 #ifndef SQLITE_OMIT_DEPRECATED 8473 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8474 char *z = sqlite3VdbeExpandSql(p, zTrace); 8475 db->trace.xLegacy(db->pTraceArg, z); 8476 sqlite3_free(z); 8477 }else 8478 #endif 8479 if( db->nVdbeExec>1 ){ 8480 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8481 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8482 sqlite3DbFree(db, z); 8483 }else{ 8484 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8485 } 8486 } 8487 #ifdef SQLITE_USE_FCNTL_TRACE 8488 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8489 if( zTrace ){ 8490 int j; 8491 for(j=0; j<db->nDb; j++){ 8492 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8493 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8494 } 8495 } 8496 #endif /* SQLITE_USE_FCNTL_TRACE */ 8497 #ifdef SQLITE_DEBUG 8498 if( (db->flags & SQLITE_SqlTrace)!=0 8499 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8500 ){ 8501 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8502 } 8503 #endif /* SQLITE_DEBUG */ 8504 #endif /* SQLITE_OMIT_TRACE */ 8505 assert( pOp->p2>0 ); 8506 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8507 if( pOp->opcode==OP_Trace ) break; 8508 for(i=1; i<p->nOp; i++){ 8509 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8510 } 8511 pOp->p1 = 0; 8512 } 8513 pOp->p1++; 8514 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8515 goto jump_to_p2; 8516 } 8517 8518 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8519 /* Opcode: CursorHint P1 * * P4 * 8520 ** 8521 ** Provide a hint to cursor P1 that it only needs to return rows that 8522 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8523 ** to values currently held in registers. TK_COLUMN terms in the P4 8524 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8525 */ 8526 case OP_CursorHint: { 8527 VdbeCursor *pC; 8528 8529 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8530 assert( pOp->p4type==P4_EXPR ); 8531 pC = p->apCsr[pOp->p1]; 8532 if( pC ){ 8533 assert( pC->eCurType==CURTYPE_BTREE ); 8534 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8535 pOp->p4.pExpr, aMem); 8536 } 8537 break; 8538 } 8539 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8540 8541 #ifdef SQLITE_DEBUG 8542 /* Opcode: Abortable * * * * * 8543 ** 8544 ** Verify that an Abort can happen. Assert if an Abort at this point 8545 ** might cause database corruption. This opcode only appears in debugging 8546 ** builds. 8547 ** 8548 ** An Abort is safe if either there have been no writes, or if there is 8549 ** an active statement journal. 8550 */ 8551 case OP_Abortable: { 8552 sqlite3VdbeAssertAbortable(p); 8553 break; 8554 } 8555 #endif 8556 8557 #ifdef SQLITE_DEBUG 8558 /* Opcode: ReleaseReg P1 P2 P3 * P5 8559 ** Synopsis: release r[P1@P2] mask P3 8560 ** 8561 ** Release registers from service. Any content that was in the 8562 ** the registers is unreliable after this opcode completes. 8563 ** 8564 ** The registers released will be the P2 registers starting at P1, 8565 ** except if bit ii of P3 set, then do not release register P1+ii. 8566 ** In other words, P3 is a mask of registers to preserve. 8567 ** 8568 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8569 ** that if the content of the released register was set using OP_SCopy, 8570 ** a change to the value of the source register for the OP_SCopy will no longer 8571 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8572 ** 8573 ** If P5 is set, then all released registers have their type set 8574 ** to MEM_Undefined so that any subsequent attempt to read the released 8575 ** register (before it is reinitialized) will generate an assertion fault. 8576 ** 8577 ** P5 ought to be set on every call to this opcode. 8578 ** However, there are places in the code generator will release registers 8579 ** before their are used, under the (valid) assumption that the registers 8580 ** will not be reallocated for some other purpose before they are used and 8581 ** hence are safe to release. 8582 ** 8583 ** This opcode is only available in testing and debugging builds. It is 8584 ** not generated for release builds. The purpose of this opcode is to help 8585 ** validate the generated bytecode. This opcode does not actually contribute 8586 ** to computing an answer. 8587 */ 8588 case OP_ReleaseReg: { 8589 Mem *pMem; 8590 int i; 8591 u32 constMask; 8592 assert( pOp->p1>0 ); 8593 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8594 pMem = &aMem[pOp->p1]; 8595 constMask = pOp->p3; 8596 for(i=0; i<pOp->p2; i++, pMem++){ 8597 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8598 pMem->pScopyFrom = 0; 8599 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8600 } 8601 } 8602 break; 8603 } 8604 #endif 8605 8606 /* Opcode: Noop * * * * * 8607 ** 8608 ** Do nothing. This instruction is often useful as a jump 8609 ** destination. 8610 */ 8611 /* 8612 ** The magic Explain opcode are only inserted when explain==2 (which 8613 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8614 ** This opcode records information from the optimizer. It is the 8615 ** the same as a no-op. This opcodesnever appears in a real VM program. 8616 */ 8617 default: { /* This is really OP_Noop, OP_Explain */ 8618 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8619 8620 break; 8621 } 8622 8623 /***************************************************************************** 8624 ** The cases of the switch statement above this line should all be indented 8625 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8626 ** readability. From this point on down, the normal indentation rules are 8627 ** restored. 8628 *****************************************************************************/ 8629 } 8630 8631 #ifdef VDBE_PROFILE 8632 { 8633 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8634 if( endTime>start ) pOrigOp->cycles += endTime - start; 8635 pOrigOp->cnt++; 8636 } 8637 #endif 8638 8639 /* The following code adds nothing to the actual functionality 8640 ** of the program. It is only here for testing and debugging. 8641 ** On the other hand, it does burn CPU cycles every time through 8642 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8643 */ 8644 #ifndef NDEBUG 8645 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8646 8647 #ifdef SQLITE_DEBUG 8648 if( db->flags & SQLITE_VdbeTrace ){ 8649 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8650 if( rc!=0 ) printf("rc=%d\n",rc); 8651 if( opProperty & (OPFLG_OUT2) ){ 8652 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8653 } 8654 if( opProperty & OPFLG_OUT3 ){ 8655 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8656 } 8657 if( opProperty==0xff ){ 8658 /* Never happens. This code exists to avoid a harmless linkage 8659 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8660 ** used. */ 8661 sqlite3VdbeRegisterDump(p); 8662 } 8663 } 8664 #endif /* SQLITE_DEBUG */ 8665 #endif /* NDEBUG */ 8666 } /* The end of the for(;;) loop the loops through opcodes */ 8667 8668 /* If we reach this point, it means that execution is finished with 8669 ** an error of some kind. 8670 */ 8671 abort_due_to_error: 8672 if( db->mallocFailed ){ 8673 rc = SQLITE_NOMEM_BKPT; 8674 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8675 rc = SQLITE_CORRUPT_BKPT; 8676 } 8677 assert( rc ); 8678 #ifdef SQLITE_DEBUG 8679 if( db->flags & SQLITE_VdbeTrace ){ 8680 const char *zTrace = p->zSql; 8681 if( zTrace==0 ){ 8682 if( aOp[0].opcode==OP_Trace ){ 8683 zTrace = aOp[0].p4.z; 8684 } 8685 if( zTrace==0 ) zTrace = "???"; 8686 } 8687 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8688 } 8689 #endif 8690 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8691 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8692 } 8693 p->rc = rc; 8694 sqlite3SystemError(db, rc); 8695 testcase( sqlite3GlobalConfig.xLog!=0 ); 8696 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8697 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8698 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 8699 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8700 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8701 db->flags |= SQLITE_CorruptRdOnly; 8702 } 8703 rc = SQLITE_ERROR; 8704 if( resetSchemaOnFault>0 ){ 8705 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8706 } 8707 8708 /* This is the only way out of this procedure. We have to 8709 ** release the mutexes on btrees that were acquired at the 8710 ** top. */ 8711 vdbe_return: 8712 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8713 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8714 nProgressLimit += db->nProgressOps; 8715 if( db->xProgress(db->pProgressArg) ){ 8716 nProgressLimit = LARGEST_UINT64; 8717 rc = SQLITE_INTERRUPT; 8718 goto abort_due_to_error; 8719 } 8720 } 8721 #endif 8722 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8723 sqlite3VdbeLeave(p); 8724 assert( rc!=SQLITE_OK || nExtraDelete==0 8725 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8726 ); 8727 return rc; 8728 8729 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8730 ** is encountered. 8731 */ 8732 too_big: 8733 sqlite3VdbeError(p, "string or blob too big"); 8734 rc = SQLITE_TOOBIG; 8735 goto abort_due_to_error; 8736 8737 /* Jump to here if a malloc() fails. 8738 */ 8739 no_mem: 8740 sqlite3OomFault(db); 8741 sqlite3VdbeError(p, "out of memory"); 8742 rc = SQLITE_NOMEM_BKPT; 8743 goto abort_due_to_error; 8744 8745 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8746 ** flag. 8747 */ 8748 abort_due_to_interrupt: 8749 assert( AtomicLoad(&db->u1.isInterrupted) ); 8750 rc = SQLITE_INTERRUPT; 8751 goto abort_due_to_error; 8752 } 8753