1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 /* 121 ** Invoke the VDBE coverage callback, if that callback is defined. This 122 ** feature is used for test suite validation only and does not appear an 123 ** production builds. 124 ** 125 ** M is an integer, 2 or 3, that indices how many different ways the 126 ** branch can go. It is usually 2. "I" is the direction the branch 127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the 128 ** second alternative branch is taken. 129 ** 130 ** iSrcLine is the source code line (from the __LINE__ macro) that 131 ** generated the VDBE instruction. This instrumentation assumes that all 132 ** source code is in a single file (the amalgamation). Special values 1 133 ** and 2 for the iSrcLine parameter mean that this particular branch is 134 ** always taken or never taken, respectively. 135 */ 136 #if !defined(SQLITE_VDBE_COVERAGE) 137 # define VdbeBranchTaken(I,M) 138 #else 139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ 141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ 142 M = iSrcLine; 143 /* Assert the truth of VdbeCoverageAlwaysTaken() and 144 ** VdbeCoverageNeverTaken() */ 145 assert( (M & I)==I ); 146 }else{ 147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 149 iSrcLine,I,M); 150 } 151 } 152 #endif 153 154 /* 155 ** Convert the given register into a string if it isn't one 156 ** already. Return non-zero if a malloc() fails. 157 */ 158 #define Stringify(P, enc) \ 159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ 160 { goto no_mem; } 161 162 /* 163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 164 ** a pointer to a dynamically allocated string where some other entity 165 ** is responsible for deallocating that string. Because the register 166 ** does not control the string, it might be deleted without the register 167 ** knowing it. 168 ** 169 ** This routine converts an ephemeral string into a dynamically allocated 170 ** string that the register itself controls. In other words, it 171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 172 */ 173 #define Deephemeralize(P) \ 174 if( ((P)->flags&MEM_Ephem)!=0 \ 175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 176 177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 179 180 /* 181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 182 ** if we run out of memory. 183 */ 184 static VdbeCursor *allocateCursor( 185 Vdbe *p, /* The virtual machine */ 186 int iCur, /* Index of the new VdbeCursor */ 187 int nField, /* Number of fields in the table or index */ 188 int iDb, /* Database the cursor belongs to, or -1 */ 189 u8 eCurType /* Type of the new cursor */ 190 ){ 191 /* Find the memory cell that will be used to store the blob of memory 192 ** required for this VdbeCursor structure. It is convenient to use a 193 ** vdbe memory cell to manage the memory allocation required for a 194 ** VdbeCursor structure for the following reasons: 195 ** 196 ** * Sometimes cursor numbers are used for a couple of different 197 ** purposes in a vdbe program. The different uses might require 198 ** different sized allocations. Memory cells provide growable 199 ** allocations. 200 ** 201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 202 ** be freed lazily via the sqlite3_release_memory() API. This 203 ** minimizes the number of malloc calls made by the system. 204 ** 205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 208 */ 209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 210 211 int nByte; 212 VdbeCursor *pCx = 0; 213 nByte = 214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 216 217 assert( iCur>=0 && iCur<p->nCursor ); 218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 220 p->apCsr[iCur] = 0; 221 } 222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ 223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 225 pCx->eCurType = eCurType; 226 pCx->iDb = iDb; 227 pCx->nField = nField; 228 pCx->aOffset = &pCx->aType[nField]; 229 if( eCurType==CURTYPE_BTREE ){ 230 pCx->uc.pCursor = (BtCursor*) 231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 232 sqlite3BtreeCursorZero(pCx->uc.pCursor); 233 } 234 } 235 return pCx; 236 } 237 238 /* 239 ** Try to convert a value into a numeric representation if we can 240 ** do so without loss of information. In other words, if the string 241 ** looks like a number, convert it into a number. If it does not 242 ** look like a number, leave it alone. 243 ** 244 ** If the bTryForInt flag is true, then extra effort is made to give 245 ** an integer representation. Strings that look like floating point 246 ** values but which have no fractional component (example: '48.00') 247 ** will have a MEM_Int representation when bTryForInt is true. 248 ** 249 ** If bTryForInt is false, then if the input string contains a decimal 250 ** point or exponential notation, the result is only MEM_Real, even 251 ** if there is an exact integer representation of the quantity. 252 */ 253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 254 double rValue; 255 i64 iValue; 256 u8 enc = pRec->enc; 257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); 258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 260 pRec->u.i = iValue; 261 pRec->flags |= MEM_Int; 262 }else{ 263 pRec->u.r = rValue; 264 pRec->flags |= MEM_Real; 265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 266 } 267 } 268 269 /* 270 ** Processing is determine by the affinity parameter: 271 ** 272 ** SQLITE_AFF_INTEGER: 273 ** SQLITE_AFF_REAL: 274 ** SQLITE_AFF_NUMERIC: 275 ** Try to convert pRec to an integer representation or a 276 ** floating-point representation if an integer representation 277 ** is not possible. Note that the integer representation is 278 ** always preferred, even if the affinity is REAL, because 279 ** an integer representation is more space efficient on disk. 280 ** 281 ** SQLITE_AFF_TEXT: 282 ** Convert pRec to a text representation. 283 ** 284 ** SQLITE_AFF_BLOB: 285 ** No-op. pRec is unchanged. 286 */ 287 static void applyAffinity( 288 Mem *pRec, /* The value to apply affinity to */ 289 char affinity, /* The affinity to be applied */ 290 u8 enc /* Use this text encoding */ 291 ){ 292 if( affinity>=SQLITE_AFF_NUMERIC ){ 293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 294 || affinity==SQLITE_AFF_NUMERIC ); 295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 296 if( (pRec->flags & MEM_Real)==0 ){ 297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 298 }else{ 299 sqlite3VdbeIntegerAffinity(pRec); 300 } 301 } 302 }else if( affinity==SQLITE_AFF_TEXT ){ 303 /* Only attempt the conversion to TEXT if there is an integer or real 304 ** representation (blob and NULL do not get converted) but no string 305 ** representation. It would be harmless to repeat the conversion if 306 ** there is already a string rep, but it is pointless to waste those 307 ** CPU cycles. */ 308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ 310 sqlite3VdbeMemStringify(pRec, enc, 1); 311 } 312 } 313 pRec->flags &= ~(MEM_Real|MEM_Int); 314 } 315 } 316 317 /* 318 ** Try to convert the type of a function argument or a result column 319 ** into a numeric representation. Use either INTEGER or REAL whichever 320 ** is appropriate. But only do the conversion if it is possible without 321 ** loss of information and return the revised type of the argument. 322 */ 323 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 324 int eType = sqlite3_value_type(pVal); 325 if( eType==SQLITE_TEXT ){ 326 Mem *pMem = (Mem*)pVal; 327 applyNumericAffinity(pMem, 0); 328 eType = sqlite3_value_type(pVal); 329 } 330 return eType; 331 } 332 333 /* 334 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 335 ** not the internal Mem* type. 336 */ 337 void sqlite3ValueApplyAffinity( 338 sqlite3_value *pVal, 339 u8 affinity, 340 u8 enc 341 ){ 342 applyAffinity((Mem *)pVal, affinity, enc); 343 } 344 345 /* 346 ** pMem currently only holds a string type (or maybe a BLOB that we can 347 ** interpret as a string if we want to). Compute its corresponding 348 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 349 ** accordingly. 350 */ 351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); 353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ 355 return 0; 356 } 357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ 358 return MEM_Int; 359 } 360 return MEM_Real; 361 } 362 363 /* 364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 365 ** none. 366 ** 367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 368 ** But it does set pMem->u.r and pMem->u.i appropriately. 369 */ 370 static u16 numericType(Mem *pMem){ 371 if( pMem->flags & (MEM_Int|MEM_Real) ){ 372 return pMem->flags & (MEM_Int|MEM_Real); 373 } 374 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 375 return computeNumericType(pMem); 376 } 377 return 0; 378 } 379 380 #ifdef SQLITE_DEBUG 381 /* 382 ** Write a nice string representation of the contents of cell pMem 383 ** into buffer zBuf, length nBuf. 384 */ 385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 386 char *zCsr = zBuf; 387 int f = pMem->flags; 388 389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 390 391 if( f&MEM_Blob ){ 392 int i; 393 char c; 394 if( f & MEM_Dyn ){ 395 c = 'z'; 396 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 397 }else if( f & MEM_Static ){ 398 c = 't'; 399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 400 }else if( f & MEM_Ephem ){ 401 c = 'e'; 402 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 403 }else{ 404 c = 's'; 405 } 406 407 sqlite3_snprintf(100, zCsr, "%c", c); 408 zCsr += sqlite3Strlen30(zCsr); 409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 410 zCsr += sqlite3Strlen30(zCsr); 411 for(i=0; i<16 && i<pMem->n; i++){ 412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 413 zCsr += sqlite3Strlen30(zCsr); 414 } 415 for(i=0; i<16 && i<pMem->n; i++){ 416 char z = pMem->z[i]; 417 if( z<32 || z>126 ) *zCsr++ = '.'; 418 else *zCsr++ = z; 419 } 420 421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 422 zCsr += sqlite3Strlen30(zCsr); 423 if( f & MEM_Zero ){ 424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 425 zCsr += sqlite3Strlen30(zCsr); 426 } 427 *zCsr = '\0'; 428 }else if( f & MEM_Str ){ 429 int j, k; 430 zBuf[0] = ' '; 431 if( f & MEM_Dyn ){ 432 zBuf[1] = 'z'; 433 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 434 }else if( f & MEM_Static ){ 435 zBuf[1] = 't'; 436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 437 }else if( f & MEM_Ephem ){ 438 zBuf[1] = 'e'; 439 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 440 }else{ 441 zBuf[1] = 's'; 442 } 443 k = 2; 444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 445 k += sqlite3Strlen30(&zBuf[k]); 446 zBuf[k++] = '['; 447 for(j=0; j<15 && j<pMem->n; j++){ 448 u8 c = pMem->z[j]; 449 if( c>=0x20 && c<0x7f ){ 450 zBuf[k++] = c; 451 }else{ 452 zBuf[k++] = '.'; 453 } 454 } 455 zBuf[k++] = ']'; 456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 457 k += sqlite3Strlen30(&zBuf[k]); 458 zBuf[k++] = 0; 459 } 460 } 461 #endif 462 463 #ifdef SQLITE_DEBUG 464 /* 465 ** Print the value of a register for tracing purposes: 466 */ 467 static void memTracePrint(Mem *p){ 468 if( p->flags & MEM_Undefined ){ 469 printf(" undefined"); 470 }else if( p->flags & MEM_Null ){ 471 printf(" NULL"); 472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 473 printf(" si:%lld", p->u.i); 474 }else if( p->flags & MEM_Int ){ 475 printf(" i:%lld", p->u.i); 476 #ifndef SQLITE_OMIT_FLOATING_POINT 477 }else if( p->flags & MEM_Real ){ 478 printf(" r:%g", p->u.r); 479 #endif 480 }else if( p->flags & MEM_RowSet ){ 481 printf(" (rowset)"); 482 }else{ 483 char zBuf[200]; 484 sqlite3VdbeMemPrettyPrint(p, zBuf); 485 printf(" %s", zBuf); 486 } 487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 488 } 489 static void registerTrace(int iReg, Mem *p){ 490 printf("REG[%d] = ", iReg); 491 memTracePrint(p); 492 printf("\n"); 493 } 494 #endif 495 496 #ifdef SQLITE_DEBUG 497 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 498 #else 499 # define REGISTER_TRACE(R,M) 500 #endif 501 502 503 #ifdef VDBE_PROFILE 504 505 /* 506 ** hwtime.h contains inline assembler code for implementing 507 ** high-performance timing routines. 508 */ 509 #include "hwtime.h" 510 511 #endif 512 513 #ifndef NDEBUG 514 /* 515 ** This function is only called from within an assert() expression. It 516 ** checks that the sqlite3.nTransaction variable is correctly set to 517 ** the number of non-transaction savepoints currently in the 518 ** linked list starting at sqlite3.pSavepoint. 519 ** 520 ** Usage: 521 ** 522 ** assert( checkSavepointCount(db) ); 523 */ 524 static int checkSavepointCount(sqlite3 *db){ 525 int n = 0; 526 Savepoint *p; 527 for(p=db->pSavepoint; p; p=p->pNext) n++; 528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 529 return 1; 530 } 531 #endif 532 533 /* 534 ** Return the register of pOp->p2 after first preparing it to be 535 ** overwritten with an integer value. 536 */ 537 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 538 sqlite3VdbeMemSetNull(pOut); 539 pOut->flags = MEM_Int; 540 return pOut; 541 } 542 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 543 Mem *pOut; 544 assert( pOp->p2>0 ); 545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 546 pOut = &p->aMem[pOp->p2]; 547 memAboutToChange(p, pOut); 548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 549 return out2PrereleaseWithClear(pOut); 550 }else{ 551 pOut->flags = MEM_Int; 552 return pOut; 553 } 554 } 555 556 557 /* 558 ** Execute as much of a VDBE program as we can. 559 ** This is the core of sqlite3_step(). 560 */ 561 int sqlite3VdbeExec( 562 Vdbe *p /* The VDBE */ 563 ){ 564 Op *aOp = p->aOp; /* Copy of p->aOp */ 565 Op *pOp = aOp; /* Current operation */ 566 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 567 Op *pOrigOp; /* Value of pOp at the top of the loop */ 568 #endif 569 #ifdef SQLITE_DEBUG 570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 571 #endif 572 int rc = SQLITE_OK; /* Value to return */ 573 sqlite3 *db = p->db; /* The database */ 574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 575 u8 encoding = ENC(db); /* The database encoding */ 576 int iCompare = 0; /* Result of last comparison */ 577 unsigned nVmStep = 0; /* Number of virtual machine steps */ 578 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ 580 #endif 581 Mem *aMem = p->aMem; /* Copy of p->aMem */ 582 Mem *pIn1 = 0; /* 1st input operand */ 583 Mem *pIn2 = 0; /* 2nd input operand */ 584 Mem *pIn3 = 0; /* 3rd input operand */ 585 Mem *pOut = 0; /* Output operand */ 586 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 587 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ 588 #ifdef VDBE_PROFILE 589 u64 start; /* CPU clock count at start of opcode */ 590 #endif 591 /*** INSERT STACK UNION HERE ***/ 592 593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 594 sqlite3VdbeEnter(p); 595 if( p->rc==SQLITE_NOMEM ){ 596 /* This happens if a malloc() inside a call to sqlite3_column_text() or 597 ** sqlite3_column_text16() failed. */ 598 goto no_mem; 599 } 600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 601 assert( p->bIsReader || p->readOnly!=0 ); 602 p->rc = SQLITE_OK; 603 p->iCurrentTime = 0; 604 assert( p->explain==0 ); 605 p->pResultSet = 0; 606 db->busyHandler.nBusy = 0; 607 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 608 sqlite3VdbeIOTraceSql(p); 609 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 610 if( db->xProgress ){ 611 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 612 assert( 0 < db->nProgressOps ); 613 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 614 } 615 #endif 616 #ifdef SQLITE_DEBUG 617 sqlite3BeginBenignMalloc(); 618 if( p->pc==0 619 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 620 ){ 621 int i; 622 int once = 1; 623 sqlite3VdbePrintSql(p); 624 if( p->db->flags & SQLITE_VdbeListing ){ 625 printf("VDBE Program Listing:\n"); 626 for(i=0; i<p->nOp; i++){ 627 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 628 } 629 } 630 if( p->db->flags & SQLITE_VdbeEQP ){ 631 for(i=0; i<p->nOp; i++){ 632 if( aOp[i].opcode==OP_Explain ){ 633 if( once ) printf("VDBE Query Plan:\n"); 634 printf("%s\n", aOp[i].p4.z); 635 once = 0; 636 } 637 } 638 } 639 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 640 } 641 sqlite3EndBenignMalloc(); 642 #endif 643 for(pOp=&aOp[p->pc]; 1; pOp++){ 644 /* Errors are detected by individual opcodes, with an immediate 645 ** jumps to abort_due_to_error. */ 646 assert( rc==SQLITE_OK ); 647 648 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 649 #ifdef VDBE_PROFILE 650 start = sqlite3Hwtime(); 651 #endif 652 nVmStep++; 653 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 654 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 655 #endif 656 657 /* Only allow tracing if SQLITE_DEBUG is defined. 658 */ 659 #ifdef SQLITE_DEBUG 660 if( db->flags & SQLITE_VdbeTrace ){ 661 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 662 } 663 #endif 664 665 666 /* Check to see if we need to simulate an interrupt. This only happens 667 ** if we have a special test build. 668 */ 669 #ifdef SQLITE_TEST 670 if( sqlite3_interrupt_count>0 ){ 671 sqlite3_interrupt_count--; 672 if( sqlite3_interrupt_count==0 ){ 673 sqlite3_interrupt(db); 674 } 675 } 676 #endif 677 678 /* Sanity checking on other operands */ 679 #ifdef SQLITE_DEBUG 680 { 681 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 682 if( (opProperty & OPFLG_IN1)!=0 ){ 683 assert( pOp->p1>0 ); 684 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 685 assert( memIsValid(&aMem[pOp->p1]) ); 686 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 687 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 688 } 689 if( (opProperty & OPFLG_IN2)!=0 ){ 690 assert( pOp->p2>0 ); 691 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 692 assert( memIsValid(&aMem[pOp->p2]) ); 693 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 694 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 695 } 696 if( (opProperty & OPFLG_IN3)!=0 ){ 697 assert( pOp->p3>0 ); 698 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 699 assert( memIsValid(&aMem[pOp->p3]) ); 700 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 701 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 702 } 703 if( (opProperty & OPFLG_OUT2)!=0 ){ 704 assert( pOp->p2>0 ); 705 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 706 memAboutToChange(p, &aMem[pOp->p2]); 707 } 708 if( (opProperty & OPFLG_OUT3)!=0 ){ 709 assert( pOp->p3>0 ); 710 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 711 memAboutToChange(p, &aMem[pOp->p3]); 712 } 713 } 714 #endif 715 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 716 pOrigOp = pOp; 717 #endif 718 719 switch( pOp->opcode ){ 720 721 /***************************************************************************** 722 ** What follows is a massive switch statement where each case implements a 723 ** separate instruction in the virtual machine. If we follow the usual 724 ** indentation conventions, each case should be indented by 6 spaces. But 725 ** that is a lot of wasted space on the left margin. So the code within 726 ** the switch statement will break with convention and be flush-left. Another 727 ** big comment (similar to this one) will mark the point in the code where 728 ** we transition back to normal indentation. 729 ** 730 ** The formatting of each case is important. The makefile for SQLite 731 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 732 ** file looking for lines that begin with "case OP_". The opcodes.h files 733 ** will be filled with #defines that give unique integer values to each 734 ** opcode and the opcodes.c file is filled with an array of strings where 735 ** each string is the symbolic name for the corresponding opcode. If the 736 ** case statement is followed by a comment of the form "/# same as ... #/" 737 ** that comment is used to determine the particular value of the opcode. 738 ** 739 ** Other keywords in the comment that follows each case are used to 740 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 741 ** Keywords include: in1, in2, in3, out2, out3. See 742 ** the mkopcodeh.awk script for additional information. 743 ** 744 ** Documentation about VDBE opcodes is generated by scanning this file 745 ** for lines of that contain "Opcode:". That line and all subsequent 746 ** comment lines are used in the generation of the opcode.html documentation 747 ** file. 748 ** 749 ** SUMMARY: 750 ** 751 ** Formatting is important to scripts that scan this file. 752 ** Do not deviate from the formatting style currently in use. 753 ** 754 *****************************************************************************/ 755 756 /* Opcode: Goto * P2 * * * 757 ** 758 ** An unconditional jump to address P2. 759 ** The next instruction executed will be 760 ** the one at index P2 from the beginning of 761 ** the program. 762 ** 763 ** The P1 parameter is not actually used by this opcode. However, it 764 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 765 ** that this Goto is the bottom of a loop and that the lines from P2 down 766 ** to the current line should be indented for EXPLAIN output. 767 */ 768 case OP_Goto: { /* jump */ 769 jump_to_p2_and_check_for_interrupt: 770 pOp = &aOp[pOp->p2 - 1]; 771 772 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 773 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon 774 ** completion. Check to see if sqlite3_interrupt() has been called 775 ** or if the progress callback needs to be invoked. 776 ** 777 ** This code uses unstructured "goto" statements and does not look clean. 778 ** But that is not due to sloppy coding habits. The code is written this 779 ** way for performance, to avoid having to run the interrupt and progress 780 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 781 ** faster according to "valgrind --tool=cachegrind" */ 782 check_for_interrupt: 783 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 784 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 785 /* Call the progress callback if it is configured and the required number 786 ** of VDBE ops have been executed (either since this invocation of 787 ** sqlite3VdbeExec() or since last time the progress callback was called). 788 ** If the progress callback returns non-zero, exit the virtual machine with 789 ** a return code SQLITE_ABORT. 790 */ 791 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ 792 assert( db->nProgressOps!=0 ); 793 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); 794 if( db->xProgress(db->pProgressArg) ){ 795 rc = SQLITE_INTERRUPT; 796 goto abort_due_to_error; 797 } 798 } 799 #endif 800 801 break; 802 } 803 804 /* Opcode: Gosub P1 P2 * * * 805 ** 806 ** Write the current address onto register P1 807 ** and then jump to address P2. 808 */ 809 case OP_Gosub: { /* jump */ 810 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 811 pIn1 = &aMem[pOp->p1]; 812 assert( VdbeMemDynamic(pIn1)==0 ); 813 memAboutToChange(p, pIn1); 814 pIn1->flags = MEM_Int; 815 pIn1->u.i = (int)(pOp-aOp); 816 REGISTER_TRACE(pOp->p1, pIn1); 817 818 /* Most jump operations do a goto to this spot in order to update 819 ** the pOp pointer. */ 820 jump_to_p2: 821 pOp = &aOp[pOp->p2 - 1]; 822 break; 823 } 824 825 /* Opcode: Return P1 * * * * 826 ** 827 ** Jump to the next instruction after the address in register P1. After 828 ** the jump, register P1 becomes undefined. 829 */ 830 case OP_Return: { /* in1 */ 831 pIn1 = &aMem[pOp->p1]; 832 assert( pIn1->flags==MEM_Int ); 833 pOp = &aOp[pIn1->u.i]; 834 pIn1->flags = MEM_Undefined; 835 break; 836 } 837 838 /* Opcode: InitCoroutine P1 P2 P3 * * 839 ** 840 ** Set up register P1 so that it will Yield to the coroutine 841 ** located at address P3. 842 ** 843 ** If P2!=0 then the coroutine implementation immediately follows 844 ** this opcode. So jump over the coroutine implementation to 845 ** address P2. 846 ** 847 ** See also: EndCoroutine 848 */ 849 case OP_InitCoroutine: { /* jump */ 850 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 851 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 852 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 853 pOut = &aMem[pOp->p1]; 854 assert( !VdbeMemDynamic(pOut) ); 855 pOut->u.i = pOp->p3 - 1; 856 pOut->flags = MEM_Int; 857 if( pOp->p2 ) goto jump_to_p2; 858 break; 859 } 860 861 /* Opcode: EndCoroutine P1 * * * * 862 ** 863 ** The instruction at the address in register P1 is a Yield. 864 ** Jump to the P2 parameter of that Yield. 865 ** After the jump, register P1 becomes undefined. 866 ** 867 ** See also: InitCoroutine 868 */ 869 case OP_EndCoroutine: { /* in1 */ 870 VdbeOp *pCaller; 871 pIn1 = &aMem[pOp->p1]; 872 assert( pIn1->flags==MEM_Int ); 873 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 874 pCaller = &aOp[pIn1->u.i]; 875 assert( pCaller->opcode==OP_Yield ); 876 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 877 pOp = &aOp[pCaller->p2 - 1]; 878 pIn1->flags = MEM_Undefined; 879 break; 880 } 881 882 /* Opcode: Yield P1 P2 * * * 883 ** 884 ** Swap the program counter with the value in register P1. This 885 ** has the effect of yielding to a coroutine. 886 ** 887 ** If the coroutine that is launched by this instruction ends with 888 ** Yield or Return then continue to the next instruction. But if 889 ** the coroutine launched by this instruction ends with 890 ** EndCoroutine, then jump to P2 rather than continuing with the 891 ** next instruction. 892 ** 893 ** See also: InitCoroutine 894 */ 895 case OP_Yield: { /* in1, jump */ 896 int pcDest; 897 pIn1 = &aMem[pOp->p1]; 898 assert( VdbeMemDynamic(pIn1)==0 ); 899 pIn1->flags = MEM_Int; 900 pcDest = (int)pIn1->u.i; 901 pIn1->u.i = (int)(pOp - aOp); 902 REGISTER_TRACE(pOp->p1, pIn1); 903 pOp = &aOp[pcDest]; 904 break; 905 } 906 907 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 908 ** Synopsis: if r[P3]=null halt 909 ** 910 ** Check the value in register P3. If it is NULL then Halt using 911 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 912 ** value in register P3 is not NULL, then this routine is a no-op. 913 ** The P5 parameter should be 1. 914 */ 915 case OP_HaltIfNull: { /* in3 */ 916 pIn3 = &aMem[pOp->p3]; 917 if( (pIn3->flags & MEM_Null)==0 ) break; 918 /* Fall through into OP_Halt */ 919 } 920 921 /* Opcode: Halt P1 P2 * P4 P5 922 ** 923 ** Exit immediately. All open cursors, etc are closed 924 ** automatically. 925 ** 926 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 927 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 928 ** For errors, it can be some other value. If P1!=0 then P2 will determine 929 ** whether or not to rollback the current transaction. Do not rollback 930 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 931 ** then back out all changes that have occurred during this execution of the 932 ** VDBE, but do not rollback the transaction. 933 ** 934 ** If P4 is not null then it is an error message string. 935 ** 936 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 937 ** 938 ** 0: (no change) 939 ** 1: NOT NULL contraint failed: P4 940 ** 2: UNIQUE constraint failed: P4 941 ** 3: CHECK constraint failed: P4 942 ** 4: FOREIGN KEY constraint failed: P4 943 ** 944 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 945 ** omitted. 946 ** 947 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 948 ** every program. So a jump past the last instruction of the program 949 ** is the same as executing Halt. 950 */ 951 case OP_Halt: { 952 VdbeFrame *pFrame; 953 int pcx; 954 955 pcx = (int)(pOp - aOp); 956 if( pOp->p1==SQLITE_OK && p->pFrame ){ 957 /* Halt the sub-program. Return control to the parent frame. */ 958 pFrame = p->pFrame; 959 p->pFrame = pFrame->pParent; 960 p->nFrame--; 961 sqlite3VdbeSetChanges(db, p->nChange); 962 pcx = sqlite3VdbeFrameRestore(pFrame); 963 lastRowid = db->lastRowid; 964 if( pOp->p2==OE_Ignore ){ 965 /* Instruction pcx is the OP_Program that invoked the sub-program 966 ** currently being halted. If the p2 instruction of this OP_Halt 967 ** instruction is set to OE_Ignore, then the sub-program is throwing 968 ** an IGNORE exception. In this case jump to the address specified 969 ** as the p2 of the calling OP_Program. */ 970 pcx = p->aOp[pcx].p2-1; 971 } 972 aOp = p->aOp; 973 aMem = p->aMem; 974 pOp = &aOp[pcx]; 975 break; 976 } 977 p->rc = pOp->p1; 978 p->errorAction = (u8)pOp->p2; 979 p->pc = pcx; 980 assert( pOp->p5<=4 ); 981 if( p->rc ){ 982 if( pOp->p5 ){ 983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 984 "FOREIGN KEY" }; 985 testcase( pOp->p5==1 ); 986 testcase( pOp->p5==2 ); 987 testcase( pOp->p5==3 ); 988 testcase( pOp->p5==4 ); 989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 990 if( pOp->p4.z ){ 991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 992 } 993 }else{ 994 sqlite3VdbeError(p, "%s", pOp->p4.z); 995 } 996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 997 } 998 rc = sqlite3VdbeHalt(p); 999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1000 if( rc==SQLITE_BUSY ){ 1001 p->rc = SQLITE_BUSY; 1002 }else{ 1003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1006 } 1007 goto vdbe_return; 1008 } 1009 1010 /* Opcode: Integer P1 P2 * * * 1011 ** Synopsis: r[P2]=P1 1012 ** 1013 ** The 32-bit integer value P1 is written into register P2. 1014 */ 1015 case OP_Integer: { /* out2 */ 1016 pOut = out2Prerelease(p, pOp); 1017 pOut->u.i = pOp->p1; 1018 break; 1019 } 1020 1021 /* Opcode: Int64 * P2 * P4 * 1022 ** Synopsis: r[P2]=P4 1023 ** 1024 ** P4 is a pointer to a 64-bit integer value. 1025 ** Write that value into register P2. 1026 */ 1027 case OP_Int64: { /* out2 */ 1028 pOut = out2Prerelease(p, pOp); 1029 assert( pOp->p4.pI64!=0 ); 1030 pOut->u.i = *pOp->p4.pI64; 1031 break; 1032 } 1033 1034 #ifndef SQLITE_OMIT_FLOATING_POINT 1035 /* Opcode: Real * P2 * P4 * 1036 ** Synopsis: r[P2]=P4 1037 ** 1038 ** P4 is a pointer to a 64-bit floating point value. 1039 ** Write that value into register P2. 1040 */ 1041 case OP_Real: { /* same as TK_FLOAT, out2 */ 1042 pOut = out2Prerelease(p, pOp); 1043 pOut->flags = MEM_Real; 1044 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1045 pOut->u.r = *pOp->p4.pReal; 1046 break; 1047 } 1048 #endif 1049 1050 /* Opcode: String8 * P2 * P4 * 1051 ** Synopsis: r[P2]='P4' 1052 ** 1053 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1054 ** into a String opcode before it is executed for the first time. During 1055 ** this transformation, the length of string P4 is computed and stored 1056 ** as the P1 parameter. 1057 */ 1058 case OP_String8: { /* same as TK_STRING, out2 */ 1059 assert( pOp->p4.z!=0 ); 1060 pOut = out2Prerelease(p, pOp); 1061 pOp->opcode = OP_String; 1062 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1063 1064 #ifndef SQLITE_OMIT_UTF16 1065 if( encoding!=SQLITE_UTF8 ){ 1066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1070 assert( VdbeMemDynamic(pOut)==0 ); 1071 pOut->szMalloc = 0; 1072 pOut->flags |= MEM_Static; 1073 if( pOp->p4type==P4_DYNAMIC ){ 1074 sqlite3DbFree(db, pOp->p4.z); 1075 } 1076 pOp->p4type = P4_DYNAMIC; 1077 pOp->p4.z = pOut->z; 1078 pOp->p1 = pOut->n; 1079 } 1080 testcase( rc==SQLITE_TOOBIG ); 1081 #endif 1082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1083 goto too_big; 1084 } 1085 assert( rc==SQLITE_OK ); 1086 /* Fall through to the next case, OP_String */ 1087 } 1088 1089 /* Opcode: String P1 P2 P3 P4 P5 1090 ** Synopsis: r[P2]='P4' (len=P1) 1091 ** 1092 ** The string value P4 of length P1 (bytes) is stored in register P2. 1093 ** 1094 ** If P3 is not zero and the content of register P3 is equal to P5, then 1095 ** the datatype of the register P2 is converted to BLOB. The content is 1096 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1097 ** of a string, as if it had been CAST. In other words: 1098 ** 1099 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1100 */ 1101 case OP_String: { /* out2 */ 1102 assert( pOp->p4.z!=0 ); 1103 pOut = out2Prerelease(p, pOp); 1104 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1105 pOut->z = pOp->p4.z; 1106 pOut->n = pOp->p1; 1107 pOut->enc = encoding; 1108 UPDATE_MAX_BLOBSIZE(pOut); 1109 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1110 if( pOp->p3>0 ){ 1111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1112 pIn3 = &aMem[pOp->p3]; 1113 assert( pIn3->flags & MEM_Int ); 1114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1115 } 1116 #endif 1117 break; 1118 } 1119 1120 /* Opcode: Null P1 P2 P3 * * 1121 ** Synopsis: r[P2..P3]=NULL 1122 ** 1123 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1124 ** NULL into register P3 and every register in between P2 and P3. If P3 1125 ** is less than P2 (typically P3 is zero) then only register P2 is 1126 ** set to NULL. 1127 ** 1128 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1129 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1130 ** OP_Ne or OP_Eq. 1131 */ 1132 case OP_Null: { /* out2 */ 1133 int cnt; 1134 u16 nullFlag; 1135 pOut = out2Prerelease(p, pOp); 1136 cnt = pOp->p3-pOp->p2; 1137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1139 pOut->n = 0; 1140 while( cnt>0 ){ 1141 pOut++; 1142 memAboutToChange(p, pOut); 1143 sqlite3VdbeMemSetNull(pOut); 1144 pOut->flags = nullFlag; 1145 pOut->n = 0; 1146 cnt--; 1147 } 1148 break; 1149 } 1150 1151 /* Opcode: SoftNull P1 * * * * 1152 ** Synopsis: r[P1]=NULL 1153 ** 1154 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1155 ** instruction, but do not free any string or blob memory associated with 1156 ** the register, so that if the value was a string or blob that was 1157 ** previously copied using OP_SCopy, the copies will continue to be valid. 1158 */ 1159 case OP_SoftNull: { 1160 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1161 pOut = &aMem[pOp->p1]; 1162 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; 1163 break; 1164 } 1165 1166 /* Opcode: Blob P1 P2 * P4 * 1167 ** Synopsis: r[P2]=P4 (len=P1) 1168 ** 1169 ** P4 points to a blob of data P1 bytes long. Store this 1170 ** blob in register P2. 1171 */ 1172 case OP_Blob: { /* out2 */ 1173 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1174 pOut = out2Prerelease(p, pOp); 1175 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1176 pOut->enc = encoding; 1177 UPDATE_MAX_BLOBSIZE(pOut); 1178 break; 1179 } 1180 1181 /* Opcode: Variable P1 P2 * P4 * 1182 ** Synopsis: r[P2]=parameter(P1,P4) 1183 ** 1184 ** Transfer the values of bound parameter P1 into register P2 1185 ** 1186 ** If the parameter is named, then its name appears in P4. 1187 ** The P4 value is used by sqlite3_bind_parameter_name(). 1188 */ 1189 case OP_Variable: { /* out2 */ 1190 Mem *pVar; /* Value being transferred */ 1191 1192 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1193 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1194 pVar = &p->aVar[pOp->p1 - 1]; 1195 if( sqlite3VdbeMemTooBig(pVar) ){ 1196 goto too_big; 1197 } 1198 pOut = &aMem[pOp->p2]; 1199 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 1200 UPDATE_MAX_BLOBSIZE(pOut); 1201 break; 1202 } 1203 1204 /* Opcode: Move P1 P2 P3 * * 1205 ** Synopsis: r[P2@P3]=r[P1@P3] 1206 ** 1207 ** Move the P3 values in register P1..P1+P3-1 over into 1208 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1209 ** left holding a NULL. It is an error for register ranges 1210 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1211 ** for P3 to be less than 1. 1212 */ 1213 case OP_Move: { 1214 int n; /* Number of registers left to copy */ 1215 int p1; /* Register to copy from */ 1216 int p2; /* Register to copy to */ 1217 1218 n = pOp->p3; 1219 p1 = pOp->p1; 1220 p2 = pOp->p2; 1221 assert( n>0 && p1>0 && p2>0 ); 1222 assert( p1+n<=p2 || p2+n<=p1 ); 1223 1224 pIn1 = &aMem[p1]; 1225 pOut = &aMem[p2]; 1226 do{ 1227 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1228 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1229 assert( memIsValid(pIn1) ); 1230 memAboutToChange(p, pOut); 1231 sqlite3VdbeMemMove(pOut, pIn1); 1232 #ifdef SQLITE_DEBUG 1233 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ 1234 pOut->pScopyFrom += pOp->p2 - p1; 1235 } 1236 #endif 1237 Deephemeralize(pOut); 1238 REGISTER_TRACE(p2++, pOut); 1239 pIn1++; 1240 pOut++; 1241 }while( --n ); 1242 break; 1243 } 1244 1245 /* Opcode: Copy P1 P2 P3 * * 1246 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1247 ** 1248 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1249 ** 1250 ** This instruction makes a deep copy of the value. A duplicate 1251 ** is made of any string or blob constant. See also OP_SCopy. 1252 */ 1253 case OP_Copy: { 1254 int n; 1255 1256 n = pOp->p3; 1257 pIn1 = &aMem[pOp->p1]; 1258 pOut = &aMem[pOp->p2]; 1259 assert( pOut!=pIn1 ); 1260 while( 1 ){ 1261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1262 Deephemeralize(pOut); 1263 #ifdef SQLITE_DEBUG 1264 pOut->pScopyFrom = 0; 1265 #endif 1266 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1267 if( (n--)==0 ) break; 1268 pOut++; 1269 pIn1++; 1270 } 1271 break; 1272 } 1273 1274 /* Opcode: SCopy P1 P2 * * * 1275 ** Synopsis: r[P2]=r[P1] 1276 ** 1277 ** Make a shallow copy of register P1 into register P2. 1278 ** 1279 ** This instruction makes a shallow copy of the value. If the value 1280 ** is a string or blob, then the copy is only a pointer to the 1281 ** original and hence if the original changes so will the copy. 1282 ** Worse, if the original is deallocated, the copy becomes invalid. 1283 ** Thus the program must guarantee that the original will not change 1284 ** during the lifetime of the copy. Use OP_Copy to make a complete 1285 ** copy. 1286 */ 1287 case OP_SCopy: { /* out2 */ 1288 pIn1 = &aMem[pOp->p1]; 1289 pOut = &aMem[pOp->p2]; 1290 assert( pOut!=pIn1 ); 1291 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1292 #ifdef SQLITE_DEBUG 1293 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1294 #endif 1295 break; 1296 } 1297 1298 /* Opcode: IntCopy P1 P2 * * * 1299 ** Synopsis: r[P2]=r[P1] 1300 ** 1301 ** Transfer the integer value held in register P1 into register P2. 1302 ** 1303 ** This is an optimized version of SCopy that works only for integer 1304 ** values. 1305 */ 1306 case OP_IntCopy: { /* out2 */ 1307 pIn1 = &aMem[pOp->p1]; 1308 assert( (pIn1->flags & MEM_Int)!=0 ); 1309 pOut = &aMem[pOp->p2]; 1310 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1311 break; 1312 } 1313 1314 /* Opcode: ResultRow P1 P2 * * * 1315 ** Synopsis: output=r[P1@P2] 1316 ** 1317 ** The registers P1 through P1+P2-1 contain a single row of 1318 ** results. This opcode causes the sqlite3_step() call to terminate 1319 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1320 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1321 ** the result row. 1322 */ 1323 case OP_ResultRow: { 1324 Mem *pMem; 1325 int i; 1326 assert( p->nResColumn==pOp->p2 ); 1327 assert( pOp->p1>0 ); 1328 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1329 1330 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 1331 /* Run the progress counter just before returning. 1332 */ 1333 if( db->xProgress!=0 1334 && nVmStep>=nProgressLimit 1335 && db->xProgress(db->pProgressArg)!=0 1336 ){ 1337 rc = SQLITE_INTERRUPT; 1338 goto abort_due_to_error; 1339 } 1340 #endif 1341 1342 /* If this statement has violated immediate foreign key constraints, do 1343 ** not return the number of rows modified. And do not RELEASE the statement 1344 ** transaction. It needs to be rolled back. */ 1345 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1346 assert( db->flags&SQLITE_CountRows ); 1347 assert( p->usesStmtJournal ); 1348 goto abort_due_to_error; 1349 } 1350 1351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1352 ** DML statements invoke this opcode to return the number of rows 1353 ** modified to the user. This is the only way that a VM that 1354 ** opens a statement transaction may invoke this opcode. 1355 ** 1356 ** In case this is such a statement, close any statement transaction 1357 ** opened by this VM before returning control to the user. This is to 1358 ** ensure that statement-transactions are always nested, not overlapping. 1359 ** If the open statement-transaction is not closed here, then the user 1360 ** may step another VM that opens its own statement transaction. This 1361 ** may lead to overlapping statement transactions. 1362 ** 1363 ** The statement transaction is never a top-level transaction. Hence 1364 ** the RELEASE call below can never fail. 1365 */ 1366 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1367 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1368 assert( rc==SQLITE_OK ); 1369 1370 /* Invalidate all ephemeral cursor row caches */ 1371 p->cacheCtr = (p->cacheCtr + 2)|1; 1372 1373 /* Make sure the results of the current row are \000 terminated 1374 ** and have an assigned type. The results are de-ephemeralized as 1375 ** a side effect. 1376 */ 1377 pMem = p->pResultSet = &aMem[pOp->p1]; 1378 for(i=0; i<pOp->p2; i++){ 1379 assert( memIsValid(&pMem[i]) ); 1380 Deephemeralize(&pMem[i]); 1381 assert( (pMem[i].flags & MEM_Ephem)==0 1382 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1383 sqlite3VdbeMemNulTerminate(&pMem[i]); 1384 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1385 } 1386 if( db->mallocFailed ) goto no_mem; 1387 1388 if( db->mTrace & SQLITE_TRACE_ROW ){ 1389 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1390 } 1391 1392 /* Return SQLITE_ROW 1393 */ 1394 p->pc = (int)(pOp - aOp) + 1; 1395 rc = SQLITE_ROW; 1396 goto vdbe_return; 1397 } 1398 1399 /* Opcode: Concat P1 P2 P3 * * 1400 ** Synopsis: r[P3]=r[P2]+r[P1] 1401 ** 1402 ** Add the text in register P1 onto the end of the text in 1403 ** register P2 and store the result in register P3. 1404 ** If either the P1 or P2 text are NULL then store NULL in P3. 1405 ** 1406 ** P3 = P2 || P1 1407 ** 1408 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1409 ** if P3 is the same register as P2, the implementation is able 1410 ** to avoid a memcpy(). 1411 */ 1412 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1413 i64 nByte; 1414 1415 pIn1 = &aMem[pOp->p1]; 1416 pIn2 = &aMem[pOp->p2]; 1417 pOut = &aMem[pOp->p3]; 1418 assert( pIn1!=pOut ); 1419 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1420 sqlite3VdbeMemSetNull(pOut); 1421 break; 1422 } 1423 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1424 Stringify(pIn1, encoding); 1425 Stringify(pIn2, encoding); 1426 nByte = pIn1->n + pIn2->n; 1427 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1428 goto too_big; 1429 } 1430 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1431 goto no_mem; 1432 } 1433 MemSetTypeFlag(pOut, MEM_Str); 1434 if( pOut!=pIn2 ){ 1435 memcpy(pOut->z, pIn2->z, pIn2->n); 1436 } 1437 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1438 pOut->z[nByte]=0; 1439 pOut->z[nByte+1] = 0; 1440 pOut->flags |= MEM_Term; 1441 pOut->n = (int)nByte; 1442 pOut->enc = encoding; 1443 UPDATE_MAX_BLOBSIZE(pOut); 1444 break; 1445 } 1446 1447 /* Opcode: Add P1 P2 P3 * * 1448 ** Synopsis: r[P3]=r[P1]+r[P2] 1449 ** 1450 ** Add the value in register P1 to the value in register P2 1451 ** and store the result in register P3. 1452 ** If either input is NULL, the result is NULL. 1453 */ 1454 /* Opcode: Multiply P1 P2 P3 * * 1455 ** Synopsis: r[P3]=r[P1]*r[P2] 1456 ** 1457 ** 1458 ** Multiply the value in register P1 by the value in register P2 1459 ** and store the result in register P3. 1460 ** If either input is NULL, the result is NULL. 1461 */ 1462 /* Opcode: Subtract P1 P2 P3 * * 1463 ** Synopsis: r[P3]=r[P2]-r[P1] 1464 ** 1465 ** Subtract the value in register P1 from the value in register P2 1466 ** and store the result in register P3. 1467 ** If either input is NULL, the result is NULL. 1468 */ 1469 /* Opcode: Divide P1 P2 P3 * * 1470 ** Synopsis: r[P3]=r[P2]/r[P1] 1471 ** 1472 ** Divide the value in register P1 by the value in register P2 1473 ** and store the result in register P3 (P3=P2/P1). If the value in 1474 ** register P1 is zero, then the result is NULL. If either input is 1475 ** NULL, the result is NULL. 1476 */ 1477 /* Opcode: Remainder P1 P2 P3 * * 1478 ** Synopsis: r[P3]=r[P2]%r[P1] 1479 ** 1480 ** Compute the remainder after integer register P2 is divided by 1481 ** register P1 and store the result in register P3. 1482 ** If the value in register P1 is zero the result is NULL. 1483 ** If either operand is NULL, the result is NULL. 1484 */ 1485 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1486 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1487 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1488 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1489 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1490 char bIntint; /* Started out as two integer operands */ 1491 u16 flags; /* Combined MEM_* flags from both inputs */ 1492 u16 type1; /* Numeric type of left operand */ 1493 u16 type2; /* Numeric type of right operand */ 1494 i64 iA; /* Integer value of left operand */ 1495 i64 iB; /* Integer value of right operand */ 1496 double rA; /* Real value of left operand */ 1497 double rB; /* Real value of right operand */ 1498 1499 pIn1 = &aMem[pOp->p1]; 1500 type1 = numericType(pIn1); 1501 pIn2 = &aMem[pOp->p2]; 1502 type2 = numericType(pIn2); 1503 pOut = &aMem[pOp->p3]; 1504 flags = pIn1->flags | pIn2->flags; 1505 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1506 if( (type1 & type2 & MEM_Int)!=0 ){ 1507 iA = pIn1->u.i; 1508 iB = pIn2->u.i; 1509 bIntint = 1; 1510 switch( pOp->opcode ){ 1511 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1512 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1513 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1514 case OP_Divide: { 1515 if( iA==0 ) goto arithmetic_result_is_null; 1516 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1517 iB /= iA; 1518 break; 1519 } 1520 default: { 1521 if( iA==0 ) goto arithmetic_result_is_null; 1522 if( iA==-1 ) iA = 1; 1523 iB %= iA; 1524 break; 1525 } 1526 } 1527 pOut->u.i = iB; 1528 MemSetTypeFlag(pOut, MEM_Int); 1529 }else{ 1530 bIntint = 0; 1531 fp_math: 1532 rA = sqlite3VdbeRealValue(pIn1); 1533 rB = sqlite3VdbeRealValue(pIn2); 1534 switch( pOp->opcode ){ 1535 case OP_Add: rB += rA; break; 1536 case OP_Subtract: rB -= rA; break; 1537 case OP_Multiply: rB *= rA; break; 1538 case OP_Divide: { 1539 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1540 if( rA==(double)0 ) goto arithmetic_result_is_null; 1541 rB /= rA; 1542 break; 1543 } 1544 default: { 1545 iA = (i64)rA; 1546 iB = (i64)rB; 1547 if( iA==0 ) goto arithmetic_result_is_null; 1548 if( iA==-1 ) iA = 1; 1549 rB = (double)(iB % iA); 1550 break; 1551 } 1552 } 1553 #ifdef SQLITE_OMIT_FLOATING_POINT 1554 pOut->u.i = rB; 1555 MemSetTypeFlag(pOut, MEM_Int); 1556 #else 1557 if( sqlite3IsNaN(rB) ){ 1558 goto arithmetic_result_is_null; 1559 } 1560 pOut->u.r = rB; 1561 MemSetTypeFlag(pOut, MEM_Real); 1562 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ 1563 sqlite3VdbeIntegerAffinity(pOut); 1564 } 1565 #endif 1566 } 1567 break; 1568 1569 arithmetic_result_is_null: 1570 sqlite3VdbeMemSetNull(pOut); 1571 break; 1572 } 1573 1574 /* Opcode: CollSeq P1 * * P4 1575 ** 1576 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1577 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1578 ** be returned. This is used by the built-in min(), max() and nullif() 1579 ** functions. 1580 ** 1581 ** If P1 is not zero, then it is a register that a subsequent min() or 1582 ** max() aggregate will set to 1 if the current row is not the minimum or 1583 ** maximum. The P1 register is initialized to 0 by this instruction. 1584 ** 1585 ** The interface used by the implementation of the aforementioned functions 1586 ** to retrieve the collation sequence set by this opcode is not available 1587 ** publicly. Only built-in functions have access to this feature. 1588 */ 1589 case OP_CollSeq: { 1590 assert( pOp->p4type==P4_COLLSEQ ); 1591 if( pOp->p1 ){ 1592 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1593 } 1594 break; 1595 } 1596 1597 /* Opcode: Function0 P1 P2 P3 P4 P5 1598 ** Synopsis: r[P3]=func(r[P2@P5]) 1599 ** 1600 ** Invoke a user function (P4 is a pointer to a FuncDef object that 1601 ** defines the function) with P5 arguments taken from register P2 and 1602 ** successors. The result of the function is stored in register P3. 1603 ** Register P3 must not be one of the function inputs. 1604 ** 1605 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1606 ** function was determined to be constant at compile time. If the first 1607 ** argument was constant then bit 0 of P1 is set. This is used to determine 1608 ** whether meta data associated with a user function argument using the 1609 ** sqlite3_set_auxdata() API may be safely retained until the next 1610 ** invocation of this opcode. 1611 ** 1612 ** See also: Function, AggStep, AggFinal 1613 */ 1614 /* Opcode: Function P1 P2 P3 P4 P5 1615 ** Synopsis: r[P3]=func(r[P2@P5]) 1616 ** 1617 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 1618 ** contains a pointer to the function to be run) with P5 arguments taken 1619 ** from register P2 and successors. The result of the function is stored 1620 ** in register P3. Register P3 must not be one of the function inputs. 1621 ** 1622 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1623 ** function was determined to be constant at compile time. If the first 1624 ** argument was constant then bit 0 of P1 is set. This is used to determine 1625 ** whether meta data associated with a user function argument using the 1626 ** sqlite3_set_auxdata() API may be safely retained until the next 1627 ** invocation of this opcode. 1628 ** 1629 ** SQL functions are initially coded as OP_Function0 with P4 pointing 1630 ** to a FuncDef object. But on first evaluation, the P4 operand is 1631 ** automatically converted into an sqlite3_context object and the operation 1632 ** changed to this OP_Function opcode. In this way, the initialization of 1633 ** the sqlite3_context object occurs only once, rather than once for each 1634 ** evaluation of the function. 1635 ** 1636 ** See also: Function0, AggStep, AggFinal 1637 */ 1638 case OP_Function0: { 1639 int n; 1640 sqlite3_context *pCtx; 1641 1642 assert( pOp->p4type==P4_FUNCDEF ); 1643 n = pOp->p5; 1644 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 1645 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 1646 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1647 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 1648 if( pCtx==0 ) goto no_mem; 1649 pCtx->pOut = 0; 1650 pCtx->pFunc = pOp->p4.pFunc; 1651 pCtx->iOp = (int)(pOp - aOp); 1652 pCtx->pVdbe = p; 1653 pCtx->argc = n; 1654 pOp->p4type = P4_FUNCCTX; 1655 pOp->p4.pCtx = pCtx; 1656 pOp->opcode = OP_Function; 1657 /* Fall through into OP_Function */ 1658 } 1659 case OP_Function: { 1660 int i; 1661 sqlite3_context *pCtx; 1662 1663 assert( pOp->p4type==P4_FUNCCTX ); 1664 pCtx = pOp->p4.pCtx; 1665 1666 /* If this function is inside of a trigger, the register array in aMem[] 1667 ** might change from one evaluation to the next. The next block of code 1668 ** checks to see if the register array has changed, and if so it 1669 ** reinitializes the relavant parts of the sqlite3_context object */ 1670 pOut = &aMem[pOp->p3]; 1671 if( pCtx->pOut != pOut ){ 1672 pCtx->pOut = pOut; 1673 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 1674 } 1675 1676 memAboutToChange(p, pCtx->pOut); 1677 #ifdef SQLITE_DEBUG 1678 for(i=0; i<pCtx->argc; i++){ 1679 assert( memIsValid(pCtx->argv[i]) ); 1680 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 1681 } 1682 #endif 1683 MemSetTypeFlag(pCtx->pOut, MEM_Null); 1684 pCtx->fErrorOrAux = 0; 1685 db->lastRowid = lastRowid; 1686 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 1687 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */ 1688 1689 /* If the function returned an error, throw an exception */ 1690 if( pCtx->fErrorOrAux ){ 1691 if( pCtx->isError ){ 1692 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 1693 rc = pCtx->isError; 1694 } 1695 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 1696 if( rc ) goto abort_due_to_error; 1697 } 1698 1699 /* Copy the result of the function into register P3 */ 1700 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 1701 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); 1702 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; 1703 } 1704 1705 REGISTER_TRACE(pOp->p3, pCtx->pOut); 1706 UPDATE_MAX_BLOBSIZE(pCtx->pOut); 1707 break; 1708 } 1709 1710 /* Opcode: BitAnd P1 P2 P3 * * 1711 ** Synopsis: r[P3]=r[P1]&r[P2] 1712 ** 1713 ** Take the bit-wise AND of the values in register P1 and P2 and 1714 ** store the result in register P3. 1715 ** If either input is NULL, the result is NULL. 1716 */ 1717 /* Opcode: BitOr P1 P2 P3 * * 1718 ** Synopsis: r[P3]=r[P1]|r[P2] 1719 ** 1720 ** Take the bit-wise OR of the values in register P1 and P2 and 1721 ** store the result in register P3. 1722 ** If either input is NULL, the result is NULL. 1723 */ 1724 /* Opcode: ShiftLeft P1 P2 P3 * * 1725 ** Synopsis: r[P3]=r[P2]<<r[P1] 1726 ** 1727 ** Shift the integer value in register P2 to the left by the 1728 ** number of bits specified by the integer in register P1. 1729 ** Store the result in register P3. 1730 ** If either input is NULL, the result is NULL. 1731 */ 1732 /* Opcode: ShiftRight P1 P2 P3 * * 1733 ** Synopsis: r[P3]=r[P2]>>r[P1] 1734 ** 1735 ** Shift the integer value in register P2 to the right by the 1736 ** number of bits specified by the integer in register P1. 1737 ** Store the result in register P3. 1738 ** If either input is NULL, the result is NULL. 1739 */ 1740 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1741 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1742 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1743 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1744 i64 iA; 1745 u64 uA; 1746 i64 iB; 1747 u8 op; 1748 1749 pIn1 = &aMem[pOp->p1]; 1750 pIn2 = &aMem[pOp->p2]; 1751 pOut = &aMem[pOp->p3]; 1752 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1753 sqlite3VdbeMemSetNull(pOut); 1754 break; 1755 } 1756 iA = sqlite3VdbeIntValue(pIn2); 1757 iB = sqlite3VdbeIntValue(pIn1); 1758 op = pOp->opcode; 1759 if( op==OP_BitAnd ){ 1760 iA &= iB; 1761 }else if( op==OP_BitOr ){ 1762 iA |= iB; 1763 }else if( iB!=0 ){ 1764 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1765 1766 /* If shifting by a negative amount, shift in the other direction */ 1767 if( iB<0 ){ 1768 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1769 op = 2*OP_ShiftLeft + 1 - op; 1770 iB = iB>(-64) ? -iB : 64; 1771 } 1772 1773 if( iB>=64 ){ 1774 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1775 }else{ 1776 memcpy(&uA, &iA, sizeof(uA)); 1777 if( op==OP_ShiftLeft ){ 1778 uA <<= iB; 1779 }else{ 1780 uA >>= iB; 1781 /* Sign-extend on a right shift of a negative number */ 1782 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1783 } 1784 memcpy(&iA, &uA, sizeof(iA)); 1785 } 1786 } 1787 pOut->u.i = iA; 1788 MemSetTypeFlag(pOut, MEM_Int); 1789 break; 1790 } 1791 1792 /* Opcode: AddImm P1 P2 * * * 1793 ** Synopsis: r[P1]=r[P1]+P2 1794 ** 1795 ** Add the constant P2 to the value in register P1. 1796 ** The result is always an integer. 1797 ** 1798 ** To force any register to be an integer, just add 0. 1799 */ 1800 case OP_AddImm: { /* in1 */ 1801 pIn1 = &aMem[pOp->p1]; 1802 memAboutToChange(p, pIn1); 1803 sqlite3VdbeMemIntegerify(pIn1); 1804 pIn1->u.i += pOp->p2; 1805 break; 1806 } 1807 1808 /* Opcode: MustBeInt P1 P2 * * * 1809 ** 1810 ** Force the value in register P1 to be an integer. If the value 1811 ** in P1 is not an integer and cannot be converted into an integer 1812 ** without data loss, then jump immediately to P2, or if P2==0 1813 ** raise an SQLITE_MISMATCH exception. 1814 */ 1815 case OP_MustBeInt: { /* jump, in1 */ 1816 pIn1 = &aMem[pOp->p1]; 1817 if( (pIn1->flags & MEM_Int)==0 ){ 1818 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1819 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); 1820 if( (pIn1->flags & MEM_Int)==0 ){ 1821 if( pOp->p2==0 ){ 1822 rc = SQLITE_MISMATCH; 1823 goto abort_due_to_error; 1824 }else{ 1825 goto jump_to_p2; 1826 } 1827 } 1828 } 1829 MemSetTypeFlag(pIn1, MEM_Int); 1830 break; 1831 } 1832 1833 #ifndef SQLITE_OMIT_FLOATING_POINT 1834 /* Opcode: RealAffinity P1 * * * * 1835 ** 1836 ** If register P1 holds an integer convert it to a real value. 1837 ** 1838 ** This opcode is used when extracting information from a column that 1839 ** has REAL affinity. Such column values may still be stored as 1840 ** integers, for space efficiency, but after extraction we want them 1841 ** to have only a real value. 1842 */ 1843 case OP_RealAffinity: { /* in1 */ 1844 pIn1 = &aMem[pOp->p1]; 1845 if( pIn1->flags & MEM_Int ){ 1846 sqlite3VdbeMemRealify(pIn1); 1847 } 1848 break; 1849 } 1850 #endif 1851 1852 #ifndef SQLITE_OMIT_CAST 1853 /* Opcode: Cast P1 P2 * * * 1854 ** Synopsis: affinity(r[P1]) 1855 ** 1856 ** Force the value in register P1 to be the type defined by P2. 1857 ** 1858 ** <ul> 1859 ** <li value="97"> TEXT 1860 ** <li value="98"> BLOB 1861 ** <li value="99"> NUMERIC 1862 ** <li value="100"> INTEGER 1863 ** <li value="101"> REAL 1864 ** </ul> 1865 ** 1866 ** A NULL value is not changed by this routine. It remains NULL. 1867 */ 1868 case OP_Cast: { /* in1 */ 1869 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1870 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1871 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1872 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1873 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1874 testcase( pOp->p2==SQLITE_AFF_REAL ); 1875 pIn1 = &aMem[pOp->p1]; 1876 memAboutToChange(p, pIn1); 1877 rc = ExpandBlob(pIn1); 1878 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1879 UPDATE_MAX_BLOBSIZE(pIn1); 1880 if( rc ) goto abort_due_to_error; 1881 break; 1882 } 1883 #endif /* SQLITE_OMIT_CAST */ 1884 1885 /* Opcode: Eq P1 P2 P3 P4 P5 1886 ** Synopsis: IF r[P3]==r[P1] 1887 ** 1888 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1889 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then 1890 ** store the result of comparison in register P2. 1891 ** 1892 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1893 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1894 ** to coerce both inputs according to this affinity before the 1895 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1896 ** affinity is used. Note that the affinity conversions are stored 1897 ** back into the input registers P1 and P3. So this opcode can cause 1898 ** persistent changes to registers P1 and P3. 1899 ** 1900 ** Once any conversions have taken place, and neither value is NULL, 1901 ** the values are compared. If both values are blobs then memcmp() is 1902 ** used to determine the results of the comparison. If both values 1903 ** are text, then the appropriate collating function specified in 1904 ** P4 is used to do the comparison. If P4 is not specified then 1905 ** memcmp() is used to compare text string. If both values are 1906 ** numeric, then a numeric comparison is used. If the two values 1907 ** are of different types, then numbers are considered less than 1908 ** strings and strings are considered less than blobs. 1909 ** 1910 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1911 ** true or false and is never NULL. If both operands are NULL then the result 1912 ** of comparison is true. If either operand is NULL then the result is false. 1913 ** If neither operand is NULL the result is the same as it would be if 1914 ** the SQLITE_NULLEQ flag were omitted from P5. 1915 ** 1916 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1917 ** content of r[P2] is only changed if the new value is NULL or 0 (false). 1918 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). 1919 */ 1920 /* Opcode: Ne P1 P2 P3 P4 P5 1921 ** Synopsis: IF r[P3]!=r[P1] 1922 ** 1923 ** This works just like the Eq opcode except that the jump is taken if 1924 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 1925 ** additional information. 1926 ** 1927 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the 1928 ** content of r[P2] is only changed if the new value is NULL or 1 (true). 1929 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). 1930 */ 1931 /* Opcode: Lt P1 P2 P3 P4 P5 1932 ** Synopsis: IF r[P3]<r[P1] 1933 ** 1934 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1935 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store 1936 ** the result of comparison (0 or 1 or NULL) into register P2. 1937 ** 1938 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1939 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 1940 ** bit is clear then fall through if either operand is NULL. 1941 ** 1942 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1943 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1944 ** to coerce both inputs according to this affinity before the 1945 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1946 ** affinity is used. Note that the affinity conversions are stored 1947 ** back into the input registers P1 and P3. So this opcode can cause 1948 ** persistent changes to registers P1 and P3. 1949 ** 1950 ** Once any conversions have taken place, and neither value is NULL, 1951 ** the values are compared. If both values are blobs then memcmp() is 1952 ** used to determine the results of the comparison. If both values 1953 ** are text, then the appropriate collating function specified in 1954 ** P4 is used to do the comparison. If P4 is not specified then 1955 ** memcmp() is used to compare text string. If both values are 1956 ** numeric, then a numeric comparison is used. If the two values 1957 ** are of different types, then numbers are considered less than 1958 ** strings and strings are considered less than blobs. 1959 */ 1960 /* Opcode: Le P1 P2 P3 P4 P5 1961 ** Synopsis: IF r[P3]<=r[P1] 1962 ** 1963 ** This works just like the Lt opcode except that the jump is taken if 1964 ** the content of register P3 is less than or equal to the content of 1965 ** register P1. See the Lt opcode for additional information. 1966 */ 1967 /* Opcode: Gt P1 P2 P3 P4 P5 1968 ** Synopsis: IF r[P3]>r[P1] 1969 ** 1970 ** This works just like the Lt opcode except that the jump is taken if 1971 ** the content of register P3 is greater than the content of 1972 ** register P1. See the Lt opcode for additional information. 1973 */ 1974 /* Opcode: Ge P1 P2 P3 P4 P5 1975 ** Synopsis: IF r[P3]>=r[P1] 1976 ** 1977 ** This works just like the Lt opcode except that the jump is taken if 1978 ** the content of register P3 is greater than or equal to the content of 1979 ** register P1. See the Lt opcode for additional information. 1980 */ 1981 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1982 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1983 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1984 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1985 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1986 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1987 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 1988 char affinity; /* Affinity to use for comparison */ 1989 u16 flags1; /* Copy of initial value of pIn1->flags */ 1990 u16 flags3; /* Copy of initial value of pIn3->flags */ 1991 1992 pIn1 = &aMem[pOp->p1]; 1993 pIn3 = &aMem[pOp->p3]; 1994 flags1 = pIn1->flags; 1995 flags3 = pIn3->flags; 1996 if( (flags1 | flags3)&MEM_Null ){ 1997 /* One or both operands are NULL */ 1998 if( pOp->p5 & SQLITE_NULLEQ ){ 1999 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2000 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2001 ** or not both operands are null. 2002 */ 2003 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 2004 assert( (flags1 & MEM_Cleared)==0 ); 2005 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); 2006 if( (flags1&flags3&MEM_Null)!=0 2007 && (flags3&MEM_Cleared)==0 2008 ){ 2009 res = 0; /* Operands are equal */ 2010 }else{ 2011 res = 1; /* Operands are not equal */ 2012 } 2013 }else{ 2014 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2015 ** then the result is always NULL. 2016 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2017 */ 2018 if( pOp->p5 & SQLITE_STOREP2 ){ 2019 pOut = &aMem[pOp->p2]; 2020 iCompare = 1; /* Operands are not equal */ 2021 memAboutToChange(p, pOut); 2022 MemSetTypeFlag(pOut, MEM_Null); 2023 REGISTER_TRACE(pOp->p2, pOut); 2024 }else{ 2025 VdbeBranchTaken(2,3); 2026 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2027 goto jump_to_p2; 2028 } 2029 } 2030 break; 2031 } 2032 }else{ 2033 /* Neither operand is NULL. Do a comparison. */ 2034 affinity = pOp->p5 & SQLITE_AFF_MASK; 2035 if( affinity>=SQLITE_AFF_NUMERIC ){ 2036 if( (flags1 | flags3)&MEM_Str ){ 2037 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2038 applyNumericAffinity(pIn1,0); 2039 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ 2040 flags3 = pIn3->flags; 2041 } 2042 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 2043 applyNumericAffinity(pIn3,0); 2044 } 2045 } 2046 /* Handle the common case of integer comparison here, as an 2047 ** optimization, to avoid a call to sqlite3MemCompare() */ 2048 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ 2049 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } 2050 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } 2051 res = 0; 2052 goto compare_op; 2053 } 2054 }else if( affinity==SQLITE_AFF_TEXT ){ 2055 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ 2056 testcase( pIn1->flags & MEM_Int ); 2057 testcase( pIn1->flags & MEM_Real ); 2058 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2059 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2060 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2061 assert( pIn1!=pIn3 ); 2062 } 2063 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ 2064 testcase( pIn3->flags & MEM_Int ); 2065 testcase( pIn3->flags & MEM_Real ); 2066 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2067 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2068 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2069 } 2070 } 2071 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2072 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2073 } 2074 compare_op: 2075 switch( pOp->opcode ){ 2076 case OP_Eq: res2 = res==0; break; 2077 case OP_Ne: res2 = res; break; 2078 case OP_Lt: res2 = res<0; break; 2079 case OP_Le: res2 = res<=0; break; 2080 case OP_Gt: res2 = res>0; break; 2081 default: res2 = res>=0; break; 2082 } 2083 2084 /* Undo any changes made by applyAffinity() to the input registers. */ 2085 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2086 pIn1->flags = flags1; 2087 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2088 pIn3->flags = flags3; 2089 2090 if( pOp->p5 & SQLITE_STOREP2 ){ 2091 pOut = &aMem[pOp->p2]; 2092 iCompare = res; 2093 res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */ 2094 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ 2095 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 2096 ** and prevents OP_Ne from overwriting NULL with 0. This flag 2097 ** is only used in contexts where either: 2098 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) 2099 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) 2100 ** Therefore it is not necessary to check the content of r[P2] for 2101 ** NULL. */ 2102 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); 2103 assert( res2==0 || res2==1 ); 2104 testcase( res2==0 && pOp->opcode==OP_Eq ); 2105 testcase( res2==1 && pOp->opcode==OP_Eq ); 2106 testcase( res2==0 && pOp->opcode==OP_Ne ); 2107 testcase( res2==1 && pOp->opcode==OP_Ne ); 2108 if( (pOp->opcode==OP_Eq)==res2 ) break; 2109 } 2110 memAboutToChange(p, pOut); 2111 MemSetTypeFlag(pOut, MEM_Int); 2112 pOut->u.i = res2; 2113 REGISTER_TRACE(pOp->p2, pOut); 2114 }else{ 2115 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2116 if( res2 ){ 2117 goto jump_to_p2; 2118 } 2119 } 2120 break; 2121 } 2122 2123 /* Opcode: ElseNotEq * P2 * * * 2124 ** 2125 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. 2126 ** If result of an OP_Eq comparison on the same two operands 2127 ** would have be NULL or false (0), then then jump to P2. 2128 ** If the result of an OP_Eq comparison on the two previous operands 2129 ** would have been true (1), then fall through. 2130 */ 2131 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ 2132 assert( pOp>aOp ); 2133 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); 2134 assert( pOp[-1].p5 & SQLITE_STOREP2 ); 2135 VdbeBranchTaken(iCompare!=0, 2); 2136 if( iCompare!=0 ) goto jump_to_p2; 2137 break; 2138 } 2139 2140 2141 /* Opcode: Permutation * * * P4 * 2142 ** 2143 ** Set the permutation used by the OP_Compare operator to be the array 2144 ** of integers in P4. 2145 ** 2146 ** The permutation is only valid until the next OP_Compare that has 2147 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2148 ** occur immediately prior to the OP_Compare. 2149 ** 2150 ** The first integer in the P4 integer array is the length of the array 2151 ** and does not become part of the permutation. 2152 */ 2153 case OP_Permutation: { 2154 assert( pOp->p4type==P4_INTARRAY ); 2155 assert( pOp->p4.ai ); 2156 aPermute = pOp->p4.ai + 1; 2157 break; 2158 } 2159 2160 /* Opcode: Compare P1 P2 P3 P4 P5 2161 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2162 ** 2163 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2164 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2165 ** the comparison for use by the next OP_Jump instruct. 2166 ** 2167 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2168 ** determined by the most recent OP_Permutation operator. If the 2169 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2170 ** order. 2171 ** 2172 ** P4 is a KeyInfo structure that defines collating sequences and sort 2173 ** orders for the comparison. The permutation applies to registers 2174 ** only. The KeyInfo elements are used sequentially. 2175 ** 2176 ** The comparison is a sort comparison, so NULLs compare equal, 2177 ** NULLs are less than numbers, numbers are less than strings, 2178 ** and strings are less than blobs. 2179 */ 2180 case OP_Compare: { 2181 int n; 2182 int i; 2183 int p1; 2184 int p2; 2185 const KeyInfo *pKeyInfo; 2186 int idx; 2187 CollSeq *pColl; /* Collating sequence to use on this term */ 2188 int bRev; /* True for DESCENDING sort order */ 2189 2190 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; 2191 n = pOp->p3; 2192 pKeyInfo = pOp->p4.pKeyInfo; 2193 assert( n>0 ); 2194 assert( pKeyInfo!=0 ); 2195 p1 = pOp->p1; 2196 p2 = pOp->p2; 2197 #if SQLITE_DEBUG 2198 if( aPermute ){ 2199 int k, mx = 0; 2200 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 2201 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2202 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2203 }else{ 2204 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2205 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2206 } 2207 #endif /* SQLITE_DEBUG */ 2208 for(i=0; i<n; i++){ 2209 idx = aPermute ? aPermute[i] : i; 2210 assert( memIsValid(&aMem[p1+idx]) ); 2211 assert( memIsValid(&aMem[p2+idx]) ); 2212 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2213 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2214 assert( i<pKeyInfo->nField ); 2215 pColl = pKeyInfo->aColl[i]; 2216 bRev = pKeyInfo->aSortOrder[i]; 2217 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2218 if( iCompare ){ 2219 if( bRev ) iCompare = -iCompare; 2220 break; 2221 } 2222 } 2223 aPermute = 0; 2224 break; 2225 } 2226 2227 /* Opcode: Jump P1 P2 P3 * * 2228 ** 2229 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2230 ** in the most recent OP_Compare instruction the P1 vector was less than 2231 ** equal to, or greater than the P2 vector, respectively. 2232 */ 2233 case OP_Jump: { /* jump */ 2234 if( iCompare<0 ){ 2235 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; 2236 }else if( iCompare==0 ){ 2237 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; 2238 }else{ 2239 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; 2240 } 2241 break; 2242 } 2243 2244 /* Opcode: And P1 P2 P3 * * 2245 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2246 ** 2247 ** Take the logical AND of the values in registers P1 and P2 and 2248 ** write the result into register P3. 2249 ** 2250 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2251 ** the other input is NULL. A NULL and true or two NULLs give 2252 ** a NULL output. 2253 */ 2254 /* Opcode: Or P1 P2 P3 * * 2255 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2256 ** 2257 ** Take the logical OR of the values in register P1 and P2 and 2258 ** store the answer in register P3. 2259 ** 2260 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2261 ** even if the other input is NULL. A NULL and false or two NULLs 2262 ** give a NULL output. 2263 */ 2264 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2265 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2266 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2267 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2268 2269 pIn1 = &aMem[pOp->p1]; 2270 if( pIn1->flags & MEM_Null ){ 2271 v1 = 2; 2272 }else{ 2273 v1 = sqlite3VdbeIntValue(pIn1)!=0; 2274 } 2275 pIn2 = &aMem[pOp->p2]; 2276 if( pIn2->flags & MEM_Null ){ 2277 v2 = 2; 2278 }else{ 2279 v2 = sqlite3VdbeIntValue(pIn2)!=0; 2280 } 2281 if( pOp->opcode==OP_And ){ 2282 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2283 v1 = and_logic[v1*3+v2]; 2284 }else{ 2285 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2286 v1 = or_logic[v1*3+v2]; 2287 } 2288 pOut = &aMem[pOp->p3]; 2289 if( v1==2 ){ 2290 MemSetTypeFlag(pOut, MEM_Null); 2291 }else{ 2292 pOut->u.i = v1; 2293 MemSetTypeFlag(pOut, MEM_Int); 2294 } 2295 break; 2296 } 2297 2298 /* Opcode: Not P1 P2 * * * 2299 ** Synopsis: r[P2]= !r[P1] 2300 ** 2301 ** Interpret the value in register P1 as a boolean value. Store the 2302 ** boolean complement in register P2. If the value in register P1 is 2303 ** NULL, then a NULL is stored in P2. 2304 */ 2305 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2306 pIn1 = &aMem[pOp->p1]; 2307 pOut = &aMem[pOp->p2]; 2308 sqlite3VdbeMemSetNull(pOut); 2309 if( (pIn1->flags & MEM_Null)==0 ){ 2310 pOut->flags = MEM_Int; 2311 pOut->u.i = !sqlite3VdbeIntValue(pIn1); 2312 } 2313 break; 2314 } 2315 2316 /* Opcode: BitNot P1 P2 * * * 2317 ** Synopsis: r[P1]= ~r[P1] 2318 ** 2319 ** Interpret the content of register P1 as an integer. Store the 2320 ** ones-complement of the P1 value into register P2. If P1 holds 2321 ** a NULL then store a NULL in P2. 2322 */ 2323 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2324 pIn1 = &aMem[pOp->p1]; 2325 pOut = &aMem[pOp->p2]; 2326 sqlite3VdbeMemSetNull(pOut); 2327 if( (pIn1->flags & MEM_Null)==0 ){ 2328 pOut->flags = MEM_Int; 2329 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2330 } 2331 break; 2332 } 2333 2334 /* Opcode: Once P1 P2 * * * 2335 ** 2336 ** If the P1 value is equal to the P1 value on the OP_Init opcode at 2337 ** instruction 0, then jump to P2. If the two P1 values differ, then 2338 ** set the P1 value on this opcode to equal the P1 value on the OP_Init 2339 ** and fall through. 2340 */ 2341 case OP_Once: { /* jump */ 2342 assert( p->aOp[0].opcode==OP_Init ); 2343 VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2); 2344 if( p->aOp[0].p1==pOp->p1 ){ 2345 goto jump_to_p2; 2346 }else{ 2347 pOp->p1 = p->aOp[0].p1; 2348 } 2349 break; 2350 } 2351 2352 /* Opcode: If P1 P2 P3 * * 2353 ** 2354 ** Jump to P2 if the value in register P1 is true. The value 2355 ** is considered true if it is numeric and non-zero. If the value 2356 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2357 */ 2358 /* Opcode: IfNot P1 P2 P3 * * 2359 ** 2360 ** Jump to P2 if the value in register P1 is False. The value 2361 ** is considered false if it has a numeric value of zero. If the value 2362 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2363 */ 2364 case OP_If: /* jump, in1 */ 2365 case OP_IfNot: { /* jump, in1 */ 2366 int c; 2367 pIn1 = &aMem[pOp->p1]; 2368 if( pIn1->flags & MEM_Null ){ 2369 c = pOp->p3; 2370 }else{ 2371 #ifdef SQLITE_OMIT_FLOATING_POINT 2372 c = sqlite3VdbeIntValue(pIn1)!=0; 2373 #else 2374 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2375 #endif 2376 if( pOp->opcode==OP_IfNot ) c = !c; 2377 } 2378 VdbeBranchTaken(c!=0, 2); 2379 if( c ){ 2380 goto jump_to_p2; 2381 } 2382 break; 2383 } 2384 2385 /* Opcode: IsNull P1 P2 * * * 2386 ** Synopsis: if r[P1]==NULL goto P2 2387 ** 2388 ** Jump to P2 if the value in register P1 is NULL. 2389 */ 2390 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2391 pIn1 = &aMem[pOp->p1]; 2392 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2393 if( (pIn1->flags & MEM_Null)!=0 ){ 2394 goto jump_to_p2; 2395 } 2396 break; 2397 } 2398 2399 /* Opcode: NotNull P1 P2 * * * 2400 ** Synopsis: if r[P1]!=NULL goto P2 2401 ** 2402 ** Jump to P2 if the value in register P1 is not NULL. 2403 */ 2404 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2405 pIn1 = &aMem[pOp->p1]; 2406 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2407 if( (pIn1->flags & MEM_Null)==0 ){ 2408 goto jump_to_p2; 2409 } 2410 break; 2411 } 2412 2413 /* Opcode: Column P1 P2 P3 P4 P5 2414 ** Synopsis: r[P3]=PX 2415 ** 2416 ** Interpret the data that cursor P1 points to as a structure built using 2417 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2418 ** information about the format of the data.) Extract the P2-th column 2419 ** from this record. If there are less that (P2+1) 2420 ** values in the record, extract a NULL. 2421 ** 2422 ** The value extracted is stored in register P3. 2423 ** 2424 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2425 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2426 ** the result. 2427 ** 2428 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2429 ** then the cache of the cursor is reset prior to extracting the column. 2430 ** The first OP_Column against a pseudo-table after the value of the content 2431 ** register has changed should have this bit set. 2432 ** 2433 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when 2434 ** the result is guaranteed to only be used as the argument of a length() 2435 ** or typeof() function, respectively. The loading of large blobs can be 2436 ** skipped for length() and all content loading can be skipped for typeof(). 2437 */ 2438 case OP_Column: { 2439 int p2; /* column number to retrieve */ 2440 VdbeCursor *pC; /* The VDBE cursor */ 2441 BtCursor *pCrsr; /* The BTree cursor */ 2442 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2443 int len; /* The length of the serialized data for the column */ 2444 int i; /* Loop counter */ 2445 Mem *pDest; /* Where to write the extracted value */ 2446 Mem sMem; /* For storing the record being decoded */ 2447 const u8 *zData; /* Part of the record being decoded */ 2448 const u8 *zHdr; /* Next unparsed byte of the header */ 2449 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2450 u32 offset; /* Offset into the data */ 2451 u64 offset64; /* 64-bit offset */ 2452 u32 avail; /* Number of bytes of available data */ 2453 u32 t; /* A type code from the record header */ 2454 Mem *pReg; /* PseudoTable input register */ 2455 2456 pC = p->apCsr[pOp->p1]; 2457 p2 = pOp->p2; 2458 2459 /* If the cursor cache is stale, bring it up-to-date */ 2460 rc = sqlite3VdbeCursorMoveto(&pC, &p2); 2461 if( rc ) goto abort_due_to_error; 2462 2463 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2464 pDest = &aMem[pOp->p3]; 2465 memAboutToChange(p, pDest); 2466 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2467 assert( pC!=0 ); 2468 assert( p2<pC->nField ); 2469 aOffset = pC->aOffset; 2470 assert( pC->eCurType!=CURTYPE_VTAB ); 2471 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2472 assert( pC->eCurType!=CURTYPE_SORTER ); 2473 2474 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2475 if( pC->nullRow ){ 2476 if( pC->eCurType==CURTYPE_PSEUDO ){ 2477 assert( pC->uc.pseudoTableReg>0 ); 2478 pReg = &aMem[pC->uc.pseudoTableReg]; 2479 assert( pReg->flags & MEM_Blob ); 2480 assert( memIsValid(pReg) ); 2481 pC->payloadSize = pC->szRow = avail = pReg->n; 2482 pC->aRow = (u8*)pReg->z; 2483 }else{ 2484 sqlite3VdbeMemSetNull(pDest); 2485 goto op_column_out; 2486 } 2487 }else{ 2488 pCrsr = pC->uc.pCursor; 2489 assert( pC->eCurType==CURTYPE_BTREE ); 2490 assert( pCrsr ); 2491 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2492 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2493 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail); 2494 assert( avail<=65536 ); /* Maximum page size is 64KiB */ 2495 if( pC->payloadSize <= (u32)avail ){ 2496 pC->szRow = pC->payloadSize; 2497 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2498 goto too_big; 2499 }else{ 2500 pC->szRow = avail; 2501 } 2502 } 2503 pC->cacheStatus = p->cacheCtr; 2504 pC->iHdrOffset = getVarint32(pC->aRow, offset); 2505 pC->nHdrParsed = 0; 2506 aOffset[0] = offset; 2507 2508 2509 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/ 2510 /* pC->aRow does not have to hold the entire row, but it does at least 2511 ** need to cover the header of the record. If pC->aRow does not contain 2512 ** the complete header, then set it to zero, forcing the header to be 2513 ** dynamically allocated. */ 2514 pC->aRow = 0; 2515 pC->szRow = 0; 2516 2517 /* Make sure a corrupt database has not given us an oversize header. 2518 ** Do this now to avoid an oversize memory allocation. 2519 ** 2520 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2521 ** types use so much data space that there can only be 4096 and 32 of 2522 ** them, respectively. So the maximum header length results from a 2523 ** 3-byte type for each of the maximum of 32768 columns plus three 2524 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2525 */ 2526 if( offset > 98307 || offset > pC->payloadSize ){ 2527 rc = SQLITE_CORRUPT_BKPT; 2528 goto abort_due_to_error; 2529 } 2530 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/ 2531 /* The following goto is an optimization. It can be omitted and 2532 ** everything will still work. But OP_Column is measurably faster 2533 ** by skipping the subsequent conditional, which is always true. 2534 */ 2535 zData = pC->aRow; 2536 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2537 goto op_column_read_header; 2538 } 2539 } 2540 2541 /* Make sure at least the first p2+1 entries of the header have been 2542 ** parsed and valid information is in aOffset[] and pC->aType[]. 2543 */ 2544 if( pC->nHdrParsed<=p2 ){ 2545 /* If there is more header available for parsing in the record, try 2546 ** to extract additional fields up through the p2+1-th field 2547 */ 2548 if( pC->iHdrOffset<aOffset[0] ){ 2549 /* Make sure zData points to enough of the record to cover the header. */ 2550 if( pC->aRow==0 ){ 2551 memset(&sMem, 0, sizeof(sMem)); 2552 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); 2553 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2554 zData = (u8*)sMem.z; 2555 }else{ 2556 zData = pC->aRow; 2557 } 2558 2559 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2560 op_column_read_header: 2561 i = pC->nHdrParsed; 2562 offset64 = aOffset[i]; 2563 zHdr = zData + pC->iHdrOffset; 2564 zEndHdr = zData + aOffset[0]; 2565 do{ 2566 if( (t = zHdr[0])<0x80 ){ 2567 zHdr++; 2568 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2569 }else{ 2570 zHdr += sqlite3GetVarint32(zHdr, &t); 2571 offset64 += sqlite3VdbeSerialTypeLen(t); 2572 } 2573 pC->aType[i++] = t; 2574 aOffset[i] = (u32)(offset64 & 0xffffffff); 2575 }while( i<=p2 && zHdr<zEndHdr ); 2576 2577 /* The record is corrupt if any of the following are true: 2578 ** (1) the bytes of the header extend past the declared header size 2579 ** (2) the entire header was used but not all data was used 2580 ** (3) the end of the data extends beyond the end of the record. 2581 */ 2582 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2583 || (offset64 > pC->payloadSize) 2584 ){ 2585 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2586 rc = SQLITE_CORRUPT_BKPT; 2587 goto abort_due_to_error; 2588 } 2589 2590 pC->nHdrParsed = i; 2591 pC->iHdrOffset = (u32)(zHdr - zData); 2592 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2593 }else{ 2594 t = 0; 2595 } 2596 2597 /* If after trying to extract new entries from the header, nHdrParsed is 2598 ** still not up to p2, that means that the record has fewer than p2 2599 ** columns. So the result will be either the default value or a NULL. 2600 */ 2601 if( pC->nHdrParsed<=p2 ){ 2602 if( pOp->p4type==P4_MEM ){ 2603 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2604 }else{ 2605 sqlite3VdbeMemSetNull(pDest); 2606 } 2607 goto op_column_out; 2608 } 2609 }else{ 2610 t = pC->aType[p2]; 2611 } 2612 2613 /* Extract the content for the p2+1-th column. Control can only 2614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2615 ** all valid. 2616 */ 2617 assert( p2<pC->nHdrParsed ); 2618 assert( rc==SQLITE_OK ); 2619 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2620 if( VdbeMemDynamic(pDest) ){ 2621 sqlite3VdbeMemSetNull(pDest); 2622 } 2623 assert( t==pC->aType[p2] ); 2624 if( pC->szRow>=aOffset[p2+1] ){ 2625 /* This is the common case where the desired content fits on the original 2626 ** page - where the content is not on an overflow page */ 2627 zData = pC->aRow + aOffset[p2]; 2628 if( t<12 ){ 2629 sqlite3VdbeSerialGet(zData, t, pDest); 2630 }else{ 2631 /* If the column value is a string, we need a persistent value, not 2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2634 */ 2635 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2636 pDest->n = len = (t-12)/2; 2637 pDest->enc = encoding; 2638 if( pDest->szMalloc < len+2 ){ 2639 pDest->flags = MEM_Null; 2640 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2641 }else{ 2642 pDest->z = pDest->zMalloc; 2643 } 2644 memcpy(pDest->z, zData, len); 2645 pDest->z[len] = 0; 2646 pDest->z[len+1] = 0; 2647 pDest->flags = aFlag[t&1]; 2648 } 2649 }else{ 2650 pDest->enc = encoding; 2651 /* This branch happens only when content is on overflow pages */ 2652 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2653 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2654 || (len = sqlite3VdbeSerialTypeLen(t))==0 2655 ){ 2656 /* Content is irrelevant for 2657 ** 1. the typeof() function, 2658 ** 2. the length(X) function if X is a blob, and 2659 ** 3. if the content length is zero. 2660 ** So we might as well use bogus content rather than reading 2661 ** content from disk. */ 2662 static u8 aZero[8]; /* This is the bogus content */ 2663 sqlite3VdbeSerialGet(aZero, t, pDest); 2664 }else{ 2665 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2666 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2667 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2668 pDest->flags &= ~MEM_Ephem; 2669 } 2670 } 2671 2672 op_column_out: 2673 UPDATE_MAX_BLOBSIZE(pDest); 2674 REGISTER_TRACE(pOp->p3, pDest); 2675 break; 2676 } 2677 2678 /* Opcode: Affinity P1 P2 * P4 * 2679 ** Synopsis: affinity(r[P1@P2]) 2680 ** 2681 ** Apply affinities to a range of P2 registers starting with P1. 2682 ** 2683 ** P4 is a string that is P2 characters long. The nth character of the 2684 ** string indicates the column affinity that should be used for the nth 2685 ** memory cell in the range. 2686 */ 2687 case OP_Affinity: { 2688 const char *zAffinity; /* The affinity to be applied */ 2689 char cAff; /* A single character of affinity */ 2690 2691 zAffinity = pOp->p4.z; 2692 assert( zAffinity!=0 ); 2693 assert( zAffinity[pOp->p2]==0 ); 2694 pIn1 = &aMem[pOp->p1]; 2695 while( (cAff = *(zAffinity++))!=0 ){ 2696 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 2697 assert( memIsValid(pIn1) ); 2698 applyAffinity(pIn1, cAff, encoding); 2699 pIn1++; 2700 } 2701 break; 2702 } 2703 2704 /* Opcode: MakeRecord P1 P2 P3 P4 * 2705 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 2706 ** 2707 ** Convert P2 registers beginning with P1 into the [record format] 2708 ** use as a data record in a database table or as a key 2709 ** in an index. The OP_Column opcode can decode the record later. 2710 ** 2711 ** P4 may be a string that is P2 characters long. The nth character of the 2712 ** string indicates the column affinity that should be used for the nth 2713 ** field of the index key. 2714 ** 2715 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2716 ** macros defined in sqliteInt.h. 2717 ** 2718 ** If P4 is NULL then all index fields have the affinity BLOB. 2719 */ 2720 case OP_MakeRecord: { 2721 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2722 Mem *pRec; /* The new record */ 2723 u64 nData; /* Number of bytes of data space */ 2724 int nHdr; /* Number of bytes of header space */ 2725 i64 nByte; /* Data space required for this record */ 2726 i64 nZero; /* Number of zero bytes at the end of the record */ 2727 int nVarint; /* Number of bytes in a varint */ 2728 u32 serial_type; /* Type field */ 2729 Mem *pData0; /* First field to be combined into the record */ 2730 Mem *pLast; /* Last field of the record */ 2731 int nField; /* Number of fields in the record */ 2732 char *zAffinity; /* The affinity string for the record */ 2733 int file_format; /* File format to use for encoding */ 2734 int i; /* Space used in zNewRecord[] header */ 2735 int j; /* Space used in zNewRecord[] content */ 2736 u32 len; /* Length of a field */ 2737 2738 /* Assuming the record contains N fields, the record format looks 2739 ** like this: 2740 ** 2741 ** ------------------------------------------------------------------------ 2742 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2743 ** ------------------------------------------------------------------------ 2744 ** 2745 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2746 ** and so forth. 2747 ** 2748 ** Each type field is a varint representing the serial type of the 2749 ** corresponding data element (see sqlite3VdbeSerialType()). The 2750 ** hdr-size field is also a varint which is the offset from the beginning 2751 ** of the record to data0. 2752 */ 2753 nData = 0; /* Number of bytes of data space */ 2754 nHdr = 0; /* Number of bytes of header space */ 2755 nZero = 0; /* Number of zero bytes at the end of the record */ 2756 nField = pOp->p1; 2757 zAffinity = pOp->p4.z; 2758 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 2759 pData0 = &aMem[nField]; 2760 nField = pOp->p2; 2761 pLast = &pData0[nField-1]; 2762 file_format = p->minWriteFileFormat; 2763 2764 /* Identify the output register */ 2765 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2766 pOut = &aMem[pOp->p3]; 2767 memAboutToChange(p, pOut); 2768 2769 /* Apply the requested affinity to all inputs 2770 */ 2771 assert( pData0<=pLast ); 2772 if( zAffinity ){ 2773 pRec = pData0; 2774 do{ 2775 applyAffinity(pRec++, *(zAffinity++), encoding); 2776 assert( zAffinity[0]==0 || pRec<=pLast ); 2777 }while( zAffinity[0] ); 2778 } 2779 2780 #ifdef SQLITE_ENABLE_NULL_TRIM 2781 /* NULLs can be safely trimmed from the end of the record, as long as 2782 ** as the schema format is 2 or more and none of the omitted columns 2783 ** have a non-NULL default value. Also, the record must be left with 2784 ** at least one field. If P5>0 then it will be one more than the 2785 ** index of the right-most column with a non-NULL default value */ 2786 if( pOp->p5 ){ 2787 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 2788 pLast--; 2789 nField--; 2790 } 2791 } 2792 #endif 2793 2794 /* Loop through the elements that will make up the record to figure 2795 ** out how much space is required for the new record. 2796 */ 2797 pRec = pLast; 2798 do{ 2799 assert( memIsValid(pRec) ); 2800 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); 2801 if( pRec->flags & MEM_Zero ){ 2802 if( nData ){ 2803 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 2804 }else{ 2805 nZero += pRec->u.nZero; 2806 len -= pRec->u.nZero; 2807 } 2808 } 2809 nData += len; 2810 testcase( serial_type==127 ); 2811 testcase( serial_type==128 ); 2812 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); 2813 if( pRec==pData0 ) break; 2814 pRec--; 2815 }while(1); 2816 2817 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 2818 ** which determines the total number of bytes in the header. The varint 2819 ** value is the size of the header in bytes including the size varint 2820 ** itself. */ 2821 testcase( nHdr==126 ); 2822 testcase( nHdr==127 ); 2823 if( nHdr<=126 ){ 2824 /* The common case */ 2825 nHdr += 1; 2826 }else{ 2827 /* Rare case of a really large header */ 2828 nVarint = sqlite3VarintLen(nHdr); 2829 nHdr += nVarint; 2830 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 2831 } 2832 nByte = nHdr+nData; 2833 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2834 goto too_big; 2835 } 2836 2837 /* Make sure the output register has a buffer large enough to store 2838 ** the new record. The output register (pOp->p3) is not allowed to 2839 ** be one of the input registers (because the following call to 2840 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 2841 */ 2842 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 2843 goto no_mem; 2844 } 2845 zNewRecord = (u8 *)pOut->z; 2846 2847 /* Write the record */ 2848 i = putVarint32(zNewRecord, nHdr); 2849 j = nHdr; 2850 assert( pData0<=pLast ); 2851 pRec = pData0; 2852 do{ 2853 serial_type = pRec->uTemp; 2854 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 2855 ** additional varints, one per column. */ 2856 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2857 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 2858 ** immediately follow the header. */ 2859 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ 2860 }while( (++pRec)<=pLast ); 2861 assert( i==nHdr ); 2862 assert( j==nByte ); 2863 2864 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2865 pOut->n = (int)nByte; 2866 pOut->flags = MEM_Blob; 2867 if( nZero ){ 2868 pOut->u.nZero = nZero; 2869 pOut->flags |= MEM_Zero; 2870 } 2871 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2872 REGISTER_TRACE(pOp->p3, pOut); 2873 UPDATE_MAX_BLOBSIZE(pOut); 2874 break; 2875 } 2876 2877 /* Opcode: Count P1 P2 * * * 2878 ** Synopsis: r[P2]=count() 2879 ** 2880 ** Store the number of entries (an integer value) in the table or index 2881 ** opened by cursor P1 in register P2 2882 */ 2883 #ifndef SQLITE_OMIT_BTREECOUNT 2884 case OP_Count: { /* out2 */ 2885 i64 nEntry; 2886 BtCursor *pCrsr; 2887 2888 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 2889 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 2890 assert( pCrsr ); 2891 nEntry = 0; /* Not needed. Only used to silence a warning. */ 2892 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2893 if( rc ) goto abort_due_to_error; 2894 pOut = out2Prerelease(p, pOp); 2895 pOut->u.i = nEntry; 2896 break; 2897 } 2898 #endif 2899 2900 /* Opcode: Savepoint P1 * * P4 * 2901 ** 2902 ** Open, release or rollback the savepoint named by parameter P4, depending 2903 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2904 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2905 */ 2906 case OP_Savepoint: { 2907 int p1; /* Value of P1 operand */ 2908 char *zName; /* Name of savepoint */ 2909 int nName; 2910 Savepoint *pNew; 2911 Savepoint *pSavepoint; 2912 Savepoint *pTmp; 2913 int iSavepoint; 2914 int ii; 2915 2916 p1 = pOp->p1; 2917 zName = pOp->p4.z; 2918 2919 /* Assert that the p1 parameter is valid. Also that if there is no open 2920 ** transaction, then there cannot be any savepoints. 2921 */ 2922 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2923 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2924 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2925 assert( checkSavepointCount(db) ); 2926 assert( p->bIsReader ); 2927 2928 if( p1==SAVEPOINT_BEGIN ){ 2929 if( db->nVdbeWrite>0 ){ 2930 /* A new savepoint cannot be created if there are active write 2931 ** statements (i.e. open read/write incremental blob handles). 2932 */ 2933 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 2934 rc = SQLITE_BUSY; 2935 }else{ 2936 nName = sqlite3Strlen30(zName); 2937 2938 #ifndef SQLITE_OMIT_VIRTUALTABLE 2939 /* This call is Ok even if this savepoint is actually a transaction 2940 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 2941 ** If this is a transaction savepoint being opened, it is guaranteed 2942 ** that the db->aVTrans[] array is empty. */ 2943 assert( db->autoCommit==0 || db->nVTrans==0 ); 2944 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 2945 db->nStatement+db->nSavepoint); 2946 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2947 #endif 2948 2949 /* Create a new savepoint structure. */ 2950 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 2951 if( pNew ){ 2952 pNew->zName = (char *)&pNew[1]; 2953 memcpy(pNew->zName, zName, nName+1); 2954 2955 /* If there is no open transaction, then mark this as a special 2956 ** "transaction savepoint". */ 2957 if( db->autoCommit ){ 2958 db->autoCommit = 0; 2959 db->isTransactionSavepoint = 1; 2960 }else{ 2961 db->nSavepoint++; 2962 } 2963 2964 /* Link the new savepoint into the database handle's list. */ 2965 pNew->pNext = db->pSavepoint; 2966 db->pSavepoint = pNew; 2967 pNew->nDeferredCons = db->nDeferredCons; 2968 pNew->nDeferredImmCons = db->nDeferredImmCons; 2969 } 2970 } 2971 }else{ 2972 iSavepoint = 0; 2973 2974 /* Find the named savepoint. If there is no such savepoint, then an 2975 ** an error is returned to the user. */ 2976 for( 2977 pSavepoint = db->pSavepoint; 2978 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2979 pSavepoint = pSavepoint->pNext 2980 ){ 2981 iSavepoint++; 2982 } 2983 if( !pSavepoint ){ 2984 sqlite3VdbeError(p, "no such savepoint: %s", zName); 2985 rc = SQLITE_ERROR; 2986 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 2987 /* It is not possible to release (commit) a savepoint if there are 2988 ** active write statements. 2989 */ 2990 sqlite3VdbeError(p, "cannot release savepoint - " 2991 "SQL statements in progress"); 2992 rc = SQLITE_BUSY; 2993 }else{ 2994 2995 /* Determine whether or not this is a transaction savepoint. If so, 2996 ** and this is a RELEASE command, then the current transaction 2997 ** is committed. 2998 */ 2999 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3000 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3001 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3002 goto vdbe_return; 3003 } 3004 db->autoCommit = 1; 3005 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3006 p->pc = (int)(pOp - aOp); 3007 db->autoCommit = 0; 3008 p->rc = rc = SQLITE_BUSY; 3009 goto vdbe_return; 3010 } 3011 db->isTransactionSavepoint = 0; 3012 rc = p->rc; 3013 }else{ 3014 int isSchemaChange; 3015 iSavepoint = db->nSavepoint - iSavepoint - 1; 3016 if( p1==SAVEPOINT_ROLLBACK ){ 3017 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; 3018 for(ii=0; ii<db->nDb; ii++){ 3019 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3020 SQLITE_ABORT_ROLLBACK, 3021 isSchemaChange==0); 3022 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3023 } 3024 }else{ 3025 isSchemaChange = 0; 3026 } 3027 for(ii=0; ii<db->nDb; ii++){ 3028 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3029 if( rc!=SQLITE_OK ){ 3030 goto abort_due_to_error; 3031 } 3032 } 3033 if( isSchemaChange ){ 3034 sqlite3ExpirePreparedStatements(db); 3035 sqlite3ResetAllSchemasOfConnection(db); 3036 db->flags = (db->flags | SQLITE_InternChanges); 3037 } 3038 } 3039 3040 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3041 ** savepoints nested inside of the savepoint being operated on. */ 3042 while( db->pSavepoint!=pSavepoint ){ 3043 pTmp = db->pSavepoint; 3044 db->pSavepoint = pTmp->pNext; 3045 sqlite3DbFree(db, pTmp); 3046 db->nSavepoint--; 3047 } 3048 3049 /* If it is a RELEASE, then destroy the savepoint being operated on 3050 ** too. If it is a ROLLBACK TO, then set the number of deferred 3051 ** constraint violations present in the database to the value stored 3052 ** when the savepoint was created. */ 3053 if( p1==SAVEPOINT_RELEASE ){ 3054 assert( pSavepoint==db->pSavepoint ); 3055 db->pSavepoint = pSavepoint->pNext; 3056 sqlite3DbFree(db, pSavepoint); 3057 if( !isTransaction ){ 3058 db->nSavepoint--; 3059 } 3060 }else{ 3061 db->nDeferredCons = pSavepoint->nDeferredCons; 3062 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3063 } 3064 3065 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3066 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3067 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3068 } 3069 } 3070 } 3071 if( rc ) goto abort_due_to_error; 3072 3073 break; 3074 } 3075 3076 /* Opcode: AutoCommit P1 P2 * * * 3077 ** 3078 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3079 ** back any currently active btree transactions. If there are any active 3080 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3081 ** there are active writing VMs or active VMs that use shared cache. 3082 ** 3083 ** This instruction causes the VM to halt. 3084 */ 3085 case OP_AutoCommit: { 3086 int desiredAutoCommit; 3087 int iRollback; 3088 3089 desiredAutoCommit = pOp->p1; 3090 iRollback = pOp->p2; 3091 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3092 assert( desiredAutoCommit==1 || iRollback==0 ); 3093 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3094 assert( p->bIsReader ); 3095 3096 if( desiredAutoCommit!=db->autoCommit ){ 3097 if( iRollback ){ 3098 assert( desiredAutoCommit==1 ); 3099 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3100 db->autoCommit = 1; 3101 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3102 /* If this instruction implements a COMMIT and other VMs are writing 3103 ** return an error indicating that the other VMs must complete first. 3104 */ 3105 sqlite3VdbeError(p, "cannot commit transaction - " 3106 "SQL statements in progress"); 3107 rc = SQLITE_BUSY; 3108 goto abort_due_to_error; 3109 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3110 goto vdbe_return; 3111 }else{ 3112 db->autoCommit = (u8)desiredAutoCommit; 3113 } 3114 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3115 p->pc = (int)(pOp - aOp); 3116 db->autoCommit = (u8)(1-desiredAutoCommit); 3117 p->rc = rc = SQLITE_BUSY; 3118 goto vdbe_return; 3119 } 3120 assert( db->nStatement==0 ); 3121 sqlite3CloseSavepoints(db); 3122 if( p->rc==SQLITE_OK ){ 3123 rc = SQLITE_DONE; 3124 }else{ 3125 rc = SQLITE_ERROR; 3126 } 3127 goto vdbe_return; 3128 }else{ 3129 sqlite3VdbeError(p, 3130 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3131 (iRollback)?"cannot rollback - no transaction is active": 3132 "cannot commit - no transaction is active")); 3133 3134 rc = SQLITE_ERROR; 3135 goto abort_due_to_error; 3136 } 3137 break; 3138 } 3139 3140 /* Opcode: Transaction P1 P2 P3 P4 P5 3141 ** 3142 ** Begin a transaction on database P1 if a transaction is not already 3143 ** active. 3144 ** If P2 is non-zero, then a write-transaction is started, or if a 3145 ** read-transaction is already active, it is upgraded to a write-transaction. 3146 ** If P2 is zero, then a read-transaction is started. 3147 ** 3148 ** P1 is the index of the database file on which the transaction is 3149 ** started. Index 0 is the main database file and index 1 is the 3150 ** file used for temporary tables. Indices of 2 or more are used for 3151 ** attached databases. 3152 ** 3153 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3154 ** true (this flag is set if the Vdbe may modify more than one row and may 3155 ** throw an ABORT exception), a statement transaction may also be opened. 3156 ** More specifically, a statement transaction is opened iff the database 3157 ** connection is currently not in autocommit mode, or if there are other 3158 ** active statements. A statement transaction allows the changes made by this 3159 ** VDBE to be rolled back after an error without having to roll back the 3160 ** entire transaction. If no error is encountered, the statement transaction 3161 ** will automatically commit when the VDBE halts. 3162 ** 3163 ** If P5!=0 then this opcode also checks the schema cookie against P3 3164 ** and the schema generation counter against P4. 3165 ** The cookie changes its value whenever the database schema changes. 3166 ** This operation is used to detect when that the cookie has changed 3167 ** and that the current process needs to reread the schema. If the schema 3168 ** cookie in P3 differs from the schema cookie in the database header or 3169 ** if the schema generation counter in P4 differs from the current 3170 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3171 ** halts. The sqlite3_step() wrapper function might then reprepare the 3172 ** statement and rerun it from the beginning. 3173 */ 3174 case OP_Transaction: { 3175 Btree *pBt; 3176 int iMeta; 3177 int iGen; 3178 3179 assert( p->bIsReader ); 3180 assert( p->readOnly==0 || pOp->p2==0 ); 3181 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3182 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3183 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ 3184 rc = SQLITE_READONLY; 3185 goto abort_due_to_error; 3186 } 3187 pBt = db->aDb[pOp->p1].pBt; 3188 3189 if( pBt ){ 3190 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 3191 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3192 testcase( rc==SQLITE_BUSY_RECOVERY ); 3193 if( rc!=SQLITE_OK ){ 3194 if( (rc&0xff)==SQLITE_BUSY ){ 3195 p->pc = (int)(pOp - aOp); 3196 p->rc = rc; 3197 goto vdbe_return; 3198 } 3199 goto abort_due_to_error; 3200 } 3201 3202 if( pOp->p2 && p->usesStmtJournal 3203 && (db->autoCommit==0 || db->nVdbeRead>1) 3204 ){ 3205 assert( sqlite3BtreeIsInTrans(pBt) ); 3206 if( p->iStatement==0 ){ 3207 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3208 db->nStatement++; 3209 p->iStatement = db->nSavepoint + db->nStatement; 3210 } 3211 3212 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3213 if( rc==SQLITE_OK ){ 3214 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3215 } 3216 3217 /* Store the current value of the database handles deferred constraint 3218 ** counter. If the statement transaction needs to be rolled back, 3219 ** the value of this counter needs to be restored too. */ 3220 p->nStmtDefCons = db->nDeferredCons; 3221 p->nStmtDefImmCons = db->nDeferredImmCons; 3222 } 3223 3224 /* Gather the schema version number for checking: 3225 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3226 ** version is checked to ensure that the schema has not changed since the 3227 ** SQL statement was prepared. 3228 */ 3229 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 3230 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 3231 }else{ 3232 iGen = iMeta = 0; 3233 } 3234 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3235 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ 3236 sqlite3DbFree(db, p->zErrMsg); 3237 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3238 /* If the schema-cookie from the database file matches the cookie 3239 ** stored with the in-memory representation of the schema, do 3240 ** not reload the schema from the database file. 3241 ** 3242 ** If virtual-tables are in use, this is not just an optimization. 3243 ** Often, v-tables store their data in other SQLite tables, which 3244 ** are queried from within xNext() and other v-table methods using 3245 ** prepared queries. If such a query is out-of-date, we do not want to 3246 ** discard the database schema, as the user code implementing the 3247 ** v-table would have to be ready for the sqlite3_vtab structure itself 3248 ** to be invalidated whenever sqlite3_step() is called from within 3249 ** a v-table method. 3250 */ 3251 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3252 sqlite3ResetOneSchema(db, pOp->p1); 3253 } 3254 p->expired = 1; 3255 rc = SQLITE_SCHEMA; 3256 } 3257 if( rc ) goto abort_due_to_error; 3258 break; 3259 } 3260 3261 /* Opcode: ReadCookie P1 P2 P3 * * 3262 ** 3263 ** Read cookie number P3 from database P1 and write it into register P2. 3264 ** P3==1 is the schema version. P3==2 is the database format. 3265 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3266 ** the main database file and P1==1 is the database file used to store 3267 ** temporary tables. 3268 ** 3269 ** There must be a read-lock on the database (either a transaction 3270 ** must be started or there must be an open cursor) before 3271 ** executing this instruction. 3272 */ 3273 case OP_ReadCookie: { /* out2 */ 3274 int iMeta; 3275 int iDb; 3276 int iCookie; 3277 3278 assert( p->bIsReader ); 3279 iDb = pOp->p1; 3280 iCookie = pOp->p3; 3281 assert( pOp->p3<SQLITE_N_BTREE_META ); 3282 assert( iDb>=0 && iDb<db->nDb ); 3283 assert( db->aDb[iDb].pBt!=0 ); 3284 assert( DbMaskTest(p->btreeMask, iDb) ); 3285 3286 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3287 pOut = out2Prerelease(p, pOp); 3288 pOut->u.i = iMeta; 3289 break; 3290 } 3291 3292 /* Opcode: SetCookie P1 P2 P3 * * 3293 ** 3294 ** Write the integer value P3 into cookie number P2 of database P1. 3295 ** P2==1 is the schema version. P2==2 is the database format. 3296 ** P2==3 is the recommended pager cache 3297 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3298 ** database file used to store temporary tables. 3299 ** 3300 ** A transaction must be started before executing this opcode. 3301 */ 3302 case OP_SetCookie: { 3303 Db *pDb; 3304 assert( pOp->p2<SQLITE_N_BTREE_META ); 3305 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3306 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3307 assert( p->readOnly==0 ); 3308 pDb = &db->aDb[pOp->p1]; 3309 assert( pDb->pBt!=0 ); 3310 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3311 /* See note about index shifting on OP_ReadCookie */ 3312 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3313 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3314 /* When the schema cookie changes, record the new cookie internally */ 3315 pDb->pSchema->schema_cookie = pOp->p3; 3316 db->flags |= SQLITE_InternChanges; 3317 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3318 /* Record changes in the file format */ 3319 pDb->pSchema->file_format = pOp->p3; 3320 } 3321 if( pOp->p1==1 ){ 3322 /* Invalidate all prepared statements whenever the TEMP database 3323 ** schema is changed. Ticket #1644 */ 3324 sqlite3ExpirePreparedStatements(db); 3325 p->expired = 0; 3326 } 3327 if( rc ) goto abort_due_to_error; 3328 break; 3329 } 3330 3331 /* Opcode: OpenRead P1 P2 P3 P4 P5 3332 ** Synopsis: root=P2 iDb=P3 3333 ** 3334 ** Open a read-only cursor for the database table whose root page is 3335 ** P2 in a database file. The database file is determined by P3. 3336 ** P3==0 means the main database, P3==1 means the database used for 3337 ** temporary tables, and P3>1 means used the corresponding attached 3338 ** database. Give the new cursor an identifier of P1. The P1 3339 ** values need not be contiguous but all P1 values should be small integers. 3340 ** It is an error for P1 to be negative. 3341 ** 3342 ** If P5!=0 then use the content of register P2 as the root page, not 3343 ** the value of P2 itself. 3344 ** 3345 ** There will be a read lock on the database whenever there is an 3346 ** open cursor. If the database was unlocked prior to this instruction 3347 ** then a read lock is acquired as part of this instruction. A read 3348 ** lock allows other processes to read the database but prohibits 3349 ** any other process from modifying the database. The read lock is 3350 ** released when all cursors are closed. If this instruction attempts 3351 ** to get a read lock but fails, the script terminates with an 3352 ** SQLITE_BUSY error code. 3353 ** 3354 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3355 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3356 ** structure, then said structure defines the content and collating 3357 ** sequence of the index being opened. Otherwise, if P4 is an integer 3358 ** value, it is set to the number of columns in the table. 3359 ** 3360 ** See also: OpenWrite, ReopenIdx 3361 */ 3362 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3363 ** Synopsis: root=P2 iDb=P3 3364 ** 3365 ** The ReopenIdx opcode works exactly like ReadOpen except that it first 3366 ** checks to see if the cursor on P1 is already open with a root page 3367 ** number of P2 and if it is this opcode becomes a no-op. In other words, 3368 ** if the cursor is already open, do not reopen it. 3369 ** 3370 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being 3371 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as 3372 ** every other ReopenIdx or OpenRead for the same cursor number. 3373 ** 3374 ** See the OpenRead opcode documentation for additional information. 3375 */ 3376 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3377 ** Synopsis: root=P2 iDb=P3 3378 ** 3379 ** Open a read/write cursor named P1 on the table or index whose root 3380 ** page is P2. Or if P5!=0 use the content of register P2 to find the 3381 ** root page. 3382 ** 3383 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3384 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3385 ** structure, then said structure defines the content and collating 3386 ** sequence of the index being opened. Otherwise, if P4 is an integer 3387 ** value, it is set to the number of columns in the table, or to the 3388 ** largest index of any column of the table that is actually used. 3389 ** 3390 ** This instruction works just like OpenRead except that it opens the cursor 3391 ** in read/write mode. For a given table, there can be one or more read-only 3392 ** cursors or a single read/write cursor but not both. 3393 ** 3394 ** See also OpenRead. 3395 */ 3396 case OP_ReopenIdx: { 3397 int nField; 3398 KeyInfo *pKeyInfo; 3399 int p2; 3400 int iDb; 3401 int wrFlag; 3402 Btree *pX; 3403 VdbeCursor *pCur; 3404 Db *pDb; 3405 3406 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3407 assert( pOp->p4type==P4_KEYINFO ); 3408 pCur = p->apCsr[pOp->p1]; 3409 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3410 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3411 goto open_cursor_set_hints; 3412 } 3413 /* If the cursor is not currently open or is open on a different 3414 ** index, then fall through into OP_OpenRead to force a reopen */ 3415 case OP_OpenRead: 3416 case OP_OpenWrite: 3417 3418 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3419 assert( p->bIsReader ); 3420 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 3421 || p->readOnly==0 ); 3422 3423 if( p->expired ){ 3424 rc = SQLITE_ABORT_ROLLBACK; 3425 goto abort_due_to_error; 3426 } 3427 3428 nField = 0; 3429 pKeyInfo = 0; 3430 p2 = pOp->p2; 3431 iDb = pOp->p3; 3432 assert( iDb>=0 && iDb<db->nDb ); 3433 assert( DbMaskTest(p->btreeMask, iDb) ); 3434 pDb = &db->aDb[iDb]; 3435 pX = pDb->pBt; 3436 assert( pX!=0 ); 3437 if( pOp->opcode==OP_OpenWrite ){ 3438 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 3439 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 3440 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3441 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3442 p->minWriteFileFormat = pDb->pSchema->file_format; 3443 } 3444 }else{ 3445 wrFlag = 0; 3446 } 3447 if( pOp->p5 & OPFLAG_P2ISREG ){ 3448 assert( p2>0 ); 3449 assert( p2<=(p->nMem+1 - p->nCursor) ); 3450 pIn2 = &aMem[p2]; 3451 assert( memIsValid(pIn2) ); 3452 assert( (pIn2->flags & MEM_Int)!=0 ); 3453 sqlite3VdbeMemIntegerify(pIn2); 3454 p2 = (int)pIn2->u.i; 3455 /* The p2 value always comes from a prior OP_CreateTable opcode and 3456 ** that opcode will always set the p2 value to 2 or more or else fail. 3457 ** If there were a failure, the prepared statement would have halted 3458 ** before reaching this instruction. */ 3459 assert( p2>=2 ); 3460 } 3461 if( pOp->p4type==P4_KEYINFO ){ 3462 pKeyInfo = pOp->p4.pKeyInfo; 3463 assert( pKeyInfo->enc==ENC(db) ); 3464 assert( pKeyInfo->db==db ); 3465 nField = pKeyInfo->nField+pKeyInfo->nXField; 3466 }else if( pOp->p4type==P4_INT32 ){ 3467 nField = pOp->p4.i; 3468 } 3469 assert( pOp->p1>=0 ); 3470 assert( nField>=0 ); 3471 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 3472 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); 3473 if( pCur==0 ) goto no_mem; 3474 pCur->nullRow = 1; 3475 pCur->isOrdered = 1; 3476 pCur->pgnoRoot = p2; 3477 #ifdef SQLITE_DEBUG 3478 pCur->wrFlag = wrFlag; 3479 #endif 3480 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 3481 pCur->pKeyInfo = pKeyInfo; 3482 /* Set the VdbeCursor.isTable variable. Previous versions of 3483 ** SQLite used to check if the root-page flags were sane at this point 3484 ** and report database corruption if they were not, but this check has 3485 ** since moved into the btree layer. */ 3486 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3487 3488 open_cursor_set_hints: 3489 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 3490 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 3491 testcase( pOp->p5 & OPFLAG_BULKCSR ); 3492 #ifdef SQLITE_ENABLE_CURSOR_HINTS 3493 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 3494 #endif 3495 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 3496 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 3497 if( rc ) goto abort_due_to_error; 3498 break; 3499 } 3500 3501 /* Opcode: OpenEphemeral P1 P2 * P4 P5 3502 ** Synopsis: nColumn=P2 3503 ** 3504 ** Open a new cursor P1 to a transient table. 3505 ** The cursor is always opened read/write even if 3506 ** the main database is read-only. The ephemeral 3507 ** table is deleted automatically when the cursor is closed. 3508 ** 3509 ** P2 is the number of columns in the ephemeral table. 3510 ** The cursor points to a BTree table if P4==0 and to a BTree index 3511 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3512 ** that defines the format of keys in the index. 3513 ** 3514 ** The P5 parameter can be a mask of the BTREE_* flags defined 3515 ** in btree.h. These flags control aspects of the operation of 3516 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 3517 ** added automatically. 3518 */ 3519 /* Opcode: OpenAutoindex P1 P2 * P4 * 3520 ** Synopsis: nColumn=P2 3521 ** 3522 ** This opcode works the same as OP_OpenEphemeral. It has a 3523 ** different name to distinguish its use. Tables created using 3524 ** by this opcode will be used for automatically created transient 3525 ** indices in joins. 3526 */ 3527 case OP_OpenAutoindex: 3528 case OP_OpenEphemeral: { 3529 VdbeCursor *pCx; 3530 KeyInfo *pKeyInfo; 3531 3532 static const int vfsFlags = 3533 SQLITE_OPEN_READWRITE | 3534 SQLITE_OPEN_CREATE | 3535 SQLITE_OPEN_EXCLUSIVE | 3536 SQLITE_OPEN_DELETEONCLOSE | 3537 SQLITE_OPEN_TRANSIENT_DB; 3538 assert( pOp->p1>=0 ); 3539 assert( pOp->p2>=0 ); 3540 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); 3541 if( pCx==0 ) goto no_mem; 3542 pCx->nullRow = 1; 3543 pCx->isEphemeral = 1; 3544 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 3545 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3546 if( rc==SQLITE_OK ){ 3547 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1); 3548 } 3549 if( rc==SQLITE_OK ){ 3550 /* If a transient index is required, create it by calling 3551 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3552 ** opening it. If a transient table is required, just use the 3553 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3554 */ 3555 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 3556 int pgno; 3557 assert( pOp->p4type==P4_KEYINFO ); 3558 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 3559 if( rc==SQLITE_OK ){ 3560 assert( pgno==MASTER_ROOT+1 ); 3561 assert( pKeyInfo->db==db ); 3562 assert( pKeyInfo->enc==ENC(db) ); 3563 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, 3564 pKeyInfo, pCx->uc.pCursor); 3565 } 3566 pCx->isTable = 0; 3567 }else{ 3568 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, 3569 0, pCx->uc.pCursor); 3570 pCx->isTable = 1; 3571 } 3572 } 3573 if( rc ) goto abort_due_to_error; 3574 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3575 break; 3576 } 3577 3578 /* Opcode: SorterOpen P1 P2 P3 P4 * 3579 ** 3580 ** This opcode works like OP_OpenEphemeral except that it opens 3581 ** a transient index that is specifically designed to sort large 3582 ** tables using an external merge-sort algorithm. 3583 ** 3584 ** If argument P3 is non-zero, then it indicates that the sorter may 3585 ** assume that a stable sort considering the first P3 fields of each 3586 ** key is sufficient to produce the required results. 3587 */ 3588 case OP_SorterOpen: { 3589 VdbeCursor *pCx; 3590 3591 assert( pOp->p1>=0 ); 3592 assert( pOp->p2>=0 ); 3593 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); 3594 if( pCx==0 ) goto no_mem; 3595 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3596 assert( pCx->pKeyInfo->db==db ); 3597 assert( pCx->pKeyInfo->enc==ENC(db) ); 3598 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 3599 if( rc ) goto abort_due_to_error; 3600 break; 3601 } 3602 3603 /* Opcode: SequenceTest P1 P2 * * * 3604 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 3605 ** 3606 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 3607 ** to P2. Regardless of whether or not the jump is taken, increment the 3608 ** the sequence value. 3609 */ 3610 case OP_SequenceTest: { 3611 VdbeCursor *pC; 3612 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3613 pC = p->apCsr[pOp->p1]; 3614 assert( isSorter(pC) ); 3615 if( (pC->seqCount++)==0 ){ 3616 goto jump_to_p2; 3617 } 3618 break; 3619 } 3620 3621 /* Opcode: OpenPseudo P1 P2 P3 * * 3622 ** Synopsis: P3 columns in r[P2] 3623 ** 3624 ** Open a new cursor that points to a fake table that contains a single 3625 ** row of data. The content of that one row is the content of memory 3626 ** register P2. In other words, cursor P1 becomes an alias for the 3627 ** MEM_Blob content contained in register P2. 3628 ** 3629 ** A pseudo-table created by this opcode is used to hold a single 3630 ** row output from the sorter so that the row can be decomposed into 3631 ** individual columns using the OP_Column opcode. The OP_Column opcode 3632 ** is the only cursor opcode that works with a pseudo-table. 3633 ** 3634 ** P3 is the number of fields in the records that will be stored by 3635 ** the pseudo-table. 3636 */ 3637 case OP_OpenPseudo: { 3638 VdbeCursor *pCx; 3639 3640 assert( pOp->p1>=0 ); 3641 assert( pOp->p3>=0 ); 3642 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); 3643 if( pCx==0 ) goto no_mem; 3644 pCx->nullRow = 1; 3645 pCx->uc.pseudoTableReg = pOp->p2; 3646 pCx->isTable = 1; 3647 assert( pOp->p5==0 ); 3648 break; 3649 } 3650 3651 /* Opcode: Close P1 * * * * 3652 ** 3653 ** Close a cursor previously opened as P1. If P1 is not 3654 ** currently open, this instruction is a no-op. 3655 */ 3656 case OP_Close: { 3657 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3658 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3659 p->apCsr[pOp->p1] = 0; 3660 break; 3661 } 3662 3663 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 3664 /* Opcode: ColumnsUsed P1 * * P4 * 3665 ** 3666 ** This opcode (which only exists if SQLite was compiled with 3667 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 3668 ** table or index for cursor P1 are used. P4 is a 64-bit integer 3669 ** (P4_INT64) in which the first 63 bits are one for each of the 3670 ** first 63 columns of the table or index that are actually used 3671 ** by the cursor. The high-order bit is set if any column after 3672 ** the 64th is used. 3673 */ 3674 case OP_ColumnsUsed: { 3675 VdbeCursor *pC; 3676 pC = p->apCsr[pOp->p1]; 3677 assert( pC->eCurType==CURTYPE_BTREE ); 3678 pC->maskUsed = *(u64*)pOp->p4.pI64; 3679 break; 3680 } 3681 #endif 3682 3683 /* Opcode: SeekGE P1 P2 P3 P4 * 3684 ** Synopsis: key=r[P3@P4] 3685 ** 3686 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3687 ** use the value in register P3 as the key. If cursor P1 refers 3688 ** to an SQL index, then P3 is the first in an array of P4 registers 3689 ** that are used as an unpacked index key. 3690 ** 3691 ** Reposition cursor P1 so that it points to the smallest entry that 3692 ** is greater than or equal to the key value. If there are no records 3693 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3694 ** 3695 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3696 ** opcode will always land on a record that equally equals the key, or 3697 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3698 ** opcode must be followed by an IdxLE opcode with the same arguments. 3699 ** The IdxLE opcode will be skipped if this opcode succeeds, but the 3700 ** IdxLE opcode will be used on subsequent loop iterations. 3701 ** 3702 ** This opcode leaves the cursor configured to move in forward order, 3703 ** from the beginning toward the end. In other words, the cursor is 3704 ** configured to use Next, not Prev. 3705 ** 3706 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 3707 */ 3708 /* Opcode: SeekGT P1 P2 P3 P4 * 3709 ** Synopsis: key=r[P3@P4] 3710 ** 3711 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3712 ** use the value in register P3 as a key. If cursor P1 refers 3713 ** to an SQL index, then P3 is the first in an array of P4 registers 3714 ** that are used as an unpacked index key. 3715 ** 3716 ** Reposition cursor P1 so that it points to the smallest entry that 3717 ** is greater than the key value. If there are no records greater than 3718 ** the key and P2 is not zero, then jump to P2. 3719 ** 3720 ** This opcode leaves the cursor configured to move in forward order, 3721 ** from the beginning toward the end. In other words, the cursor is 3722 ** configured to use Next, not Prev. 3723 ** 3724 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 3725 */ 3726 /* Opcode: SeekLT P1 P2 P3 P4 * 3727 ** Synopsis: key=r[P3@P4] 3728 ** 3729 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3730 ** use the value in register P3 as a key. If cursor P1 refers 3731 ** to an SQL index, then P3 is the first in an array of P4 registers 3732 ** that are used as an unpacked index key. 3733 ** 3734 ** Reposition cursor P1 so that it points to the largest entry that 3735 ** is less than the key value. If there are no records less than 3736 ** the key and P2 is not zero, then jump to P2. 3737 ** 3738 ** This opcode leaves the cursor configured to move in reverse order, 3739 ** from the end toward the beginning. In other words, the cursor is 3740 ** configured to use Prev, not Next. 3741 ** 3742 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 3743 */ 3744 /* Opcode: SeekLE P1 P2 P3 P4 * 3745 ** Synopsis: key=r[P3@P4] 3746 ** 3747 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3748 ** use the value in register P3 as a key. If cursor P1 refers 3749 ** to an SQL index, then P3 is the first in an array of P4 registers 3750 ** that are used as an unpacked index key. 3751 ** 3752 ** Reposition cursor P1 so that it points to the largest entry that 3753 ** is less than or equal to the key value. If there are no records 3754 ** less than or equal to the key and P2 is not zero, then jump to P2. 3755 ** 3756 ** This opcode leaves the cursor configured to move in reverse order, 3757 ** from the end toward the beginning. In other words, the cursor is 3758 ** configured to use Prev, not Next. 3759 ** 3760 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 3761 ** opcode will always land on a record that equally equals the key, or 3762 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this 3763 ** opcode must be followed by an IdxGE opcode with the same arguments. 3764 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 3765 ** IdxGE opcode will be used on subsequent loop iterations. 3766 ** 3767 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 3768 */ 3769 case OP_SeekLT: /* jump, in3 */ 3770 case OP_SeekLE: /* jump, in3 */ 3771 case OP_SeekGE: /* jump, in3 */ 3772 case OP_SeekGT: { /* jump, in3 */ 3773 int res; /* Comparison result */ 3774 int oc; /* Opcode */ 3775 VdbeCursor *pC; /* The cursor to seek */ 3776 UnpackedRecord r; /* The key to seek for */ 3777 int nField; /* Number of columns or fields in the key */ 3778 i64 iKey; /* The rowid we are to seek to */ 3779 int eqOnly; /* Only interested in == results */ 3780 3781 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3782 assert( pOp->p2!=0 ); 3783 pC = p->apCsr[pOp->p1]; 3784 assert( pC!=0 ); 3785 assert( pC->eCurType==CURTYPE_BTREE ); 3786 assert( OP_SeekLE == OP_SeekLT+1 ); 3787 assert( OP_SeekGE == OP_SeekLT+2 ); 3788 assert( OP_SeekGT == OP_SeekLT+3 ); 3789 assert( pC->isOrdered ); 3790 assert( pC->uc.pCursor!=0 ); 3791 oc = pOp->opcode; 3792 eqOnly = 0; 3793 pC->nullRow = 0; 3794 #ifdef SQLITE_DEBUG 3795 pC->seekOp = pOp->opcode; 3796 #endif 3797 3798 if( pC->isTable ){ 3799 /* The BTREE_SEEK_EQ flag is only set on index cursors */ 3800 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 3801 || CORRUPT_DB ); 3802 3803 /* The input value in P3 might be of any type: integer, real, string, 3804 ** blob, or NULL. But it needs to be an integer before we can do 3805 ** the seek, so convert it. */ 3806 pIn3 = &aMem[pOp->p3]; 3807 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ 3808 applyNumericAffinity(pIn3, 0); 3809 } 3810 iKey = sqlite3VdbeIntValue(pIn3); 3811 3812 /* If the P3 value could not be converted into an integer without 3813 ** loss of information, then special processing is required... */ 3814 if( (pIn3->flags & MEM_Int)==0 ){ 3815 if( (pIn3->flags & MEM_Real)==0 ){ 3816 /* If the P3 value cannot be converted into any kind of a number, 3817 ** then the seek is not possible, so jump to P2 */ 3818 VdbeBranchTaken(1,2); goto jump_to_p2; 3819 break; 3820 } 3821 3822 /* If the approximation iKey is larger than the actual real search 3823 ** term, substitute >= for > and < for <=. e.g. if the search term 3824 ** is 4.9 and the integer approximation 5: 3825 ** 3826 ** (x > 4.9) -> (x >= 5) 3827 ** (x <= 4.9) -> (x < 5) 3828 */ 3829 if( pIn3->u.r<(double)iKey ){ 3830 assert( OP_SeekGE==(OP_SeekGT-1) ); 3831 assert( OP_SeekLT==(OP_SeekLE-1) ); 3832 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 3833 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 3834 } 3835 3836 /* If the approximation iKey is smaller than the actual real search 3837 ** term, substitute <= for < and > for >=. */ 3838 else if( pIn3->u.r>(double)iKey ){ 3839 assert( OP_SeekLE==(OP_SeekLT+1) ); 3840 assert( OP_SeekGT==(OP_SeekGE+1) ); 3841 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 3842 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 3843 } 3844 } 3845 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); 3846 pC->movetoTarget = iKey; /* Used by OP_Delete */ 3847 if( rc!=SQLITE_OK ){ 3848 goto abort_due_to_error; 3849 } 3850 }else{ 3851 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and 3852 ** OP_SeekLE opcodes are allowed, and these must be immediately followed 3853 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. 3854 */ 3855 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 3856 eqOnly = 1; 3857 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 3858 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3859 assert( pOp[1].p1==pOp[0].p1 ); 3860 assert( pOp[1].p2==pOp[0].p2 ); 3861 assert( pOp[1].p3==pOp[0].p3 ); 3862 assert( pOp[1].p4.i==pOp[0].p4.i ); 3863 } 3864 3865 nField = pOp->p4.i; 3866 assert( pOp->p4type==P4_INT32 ); 3867 assert( nField>0 ); 3868 r.pKeyInfo = pC->pKeyInfo; 3869 r.nField = (u16)nField; 3870 3871 /* The next line of code computes as follows, only faster: 3872 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 3873 ** r.default_rc = -1; 3874 ** }else{ 3875 ** r.default_rc = +1; 3876 ** } 3877 */ 3878 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 3879 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 3880 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 3881 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 3882 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 3883 3884 r.aMem = &aMem[pOp->p3]; 3885 #ifdef SQLITE_DEBUG 3886 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3887 #endif 3888 r.eqSeen = 0; 3889 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); 3890 if( rc!=SQLITE_OK ){ 3891 goto abort_due_to_error; 3892 } 3893 if( eqOnly && r.eqSeen==0 ){ 3894 assert( res!=0 ); 3895 goto seek_not_found; 3896 } 3897 } 3898 pC->deferredMoveto = 0; 3899 pC->cacheStatus = CACHE_STALE; 3900 #ifdef SQLITE_TEST 3901 sqlite3_search_count++; 3902 #endif 3903 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 3904 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 3905 res = 0; 3906 rc = sqlite3BtreeNext(pC->uc.pCursor, &res); 3907 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3908 }else{ 3909 res = 0; 3910 } 3911 }else{ 3912 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 3913 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 3914 res = 0; 3915 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); 3916 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3917 }else{ 3918 /* res might be negative because the table is empty. Check to 3919 ** see if this is the case. 3920 */ 3921 res = sqlite3BtreeEof(pC->uc.pCursor); 3922 } 3923 } 3924 seek_not_found: 3925 assert( pOp->p2>0 ); 3926 VdbeBranchTaken(res!=0,2); 3927 if( res ){ 3928 goto jump_to_p2; 3929 }else if( eqOnly ){ 3930 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 3931 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 3932 } 3933 break; 3934 } 3935 3936 /* Opcode: Found P1 P2 P3 P4 * 3937 ** Synopsis: key=r[P3@P4] 3938 ** 3939 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3940 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3941 ** record. 3942 ** 3943 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3944 ** is a prefix of any entry in P1 then a jump is made to P2 and 3945 ** P1 is left pointing at the matching entry. 3946 ** 3947 ** This operation leaves the cursor in a state where it can be 3948 ** advanced in the forward direction. The Next instruction will work, 3949 ** but not the Prev instruction. 3950 ** 3951 ** See also: NotFound, NoConflict, NotExists. SeekGe 3952 */ 3953 /* Opcode: NotFound P1 P2 P3 P4 * 3954 ** Synopsis: key=r[P3@P4] 3955 ** 3956 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3957 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3958 ** record. 3959 ** 3960 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3961 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3962 ** does contain an entry whose prefix matches the P3/P4 record then control 3963 ** falls through to the next instruction and P1 is left pointing at the 3964 ** matching entry. 3965 ** 3966 ** This operation leaves the cursor in a state where it cannot be 3967 ** advanced in either direction. In other words, the Next and Prev 3968 ** opcodes do not work after this operation. 3969 ** 3970 ** See also: Found, NotExists, NoConflict 3971 */ 3972 /* Opcode: NoConflict P1 P2 P3 P4 * 3973 ** Synopsis: key=r[P3@P4] 3974 ** 3975 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3976 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3977 ** record. 3978 ** 3979 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3980 ** contains any NULL value, jump immediately to P2. If all terms of the 3981 ** record are not-NULL then a check is done to determine if any row in the 3982 ** P1 index btree has a matching key prefix. If there are no matches, jump 3983 ** immediately to P2. If there is a match, fall through and leave the P1 3984 ** cursor pointing to the matching row. 3985 ** 3986 ** This opcode is similar to OP_NotFound with the exceptions that the 3987 ** branch is always taken if any part of the search key input is NULL. 3988 ** 3989 ** This operation leaves the cursor in a state where it cannot be 3990 ** advanced in either direction. In other words, the Next and Prev 3991 ** opcodes do not work after this operation. 3992 ** 3993 ** See also: NotFound, Found, NotExists 3994 */ 3995 case OP_NoConflict: /* jump, in3 */ 3996 case OP_NotFound: /* jump, in3 */ 3997 case OP_Found: { /* jump, in3 */ 3998 int alreadyExists; 3999 int takeJump; 4000 int ii; 4001 VdbeCursor *pC; 4002 int res; 4003 UnpackedRecord *pFree; 4004 UnpackedRecord *pIdxKey; 4005 UnpackedRecord r; 4006 4007 #ifdef SQLITE_TEST 4008 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4009 #endif 4010 4011 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4012 assert( pOp->p4type==P4_INT32 ); 4013 pC = p->apCsr[pOp->p1]; 4014 assert( pC!=0 ); 4015 #ifdef SQLITE_DEBUG 4016 pC->seekOp = pOp->opcode; 4017 #endif 4018 pIn3 = &aMem[pOp->p3]; 4019 assert( pC->eCurType==CURTYPE_BTREE ); 4020 assert( pC->uc.pCursor!=0 ); 4021 assert( pC->isTable==0 ); 4022 if( pOp->p4.i>0 ){ 4023 r.pKeyInfo = pC->pKeyInfo; 4024 r.nField = (u16)pOp->p4.i; 4025 r.aMem = pIn3; 4026 #ifdef SQLITE_DEBUG 4027 for(ii=0; ii<r.nField; ii++){ 4028 assert( memIsValid(&r.aMem[ii]) ); 4029 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4030 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4031 } 4032 #endif 4033 pIdxKey = &r; 4034 pFree = 0; 4035 }else{ 4036 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4037 if( pIdxKey==0 ) goto no_mem; 4038 assert( pIn3->flags & MEM_Blob ); 4039 (void)ExpandBlob(pIn3); 4040 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4041 } 4042 pIdxKey->default_rc = 0; 4043 takeJump = 0; 4044 if( pOp->opcode==OP_NoConflict ){ 4045 /* For the OP_NoConflict opcode, take the jump if any of the 4046 ** input fields are NULL, since any key with a NULL will not 4047 ** conflict */ 4048 for(ii=0; ii<pIdxKey->nField; ii++){ 4049 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4050 takeJump = 1; 4051 break; 4052 } 4053 } 4054 } 4055 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); 4056 if( pFree ) sqlite3DbFree(db, pFree); 4057 if( rc!=SQLITE_OK ){ 4058 goto abort_due_to_error; 4059 } 4060 pC->seekResult = res; 4061 alreadyExists = (res==0); 4062 pC->nullRow = 1-alreadyExists; 4063 pC->deferredMoveto = 0; 4064 pC->cacheStatus = CACHE_STALE; 4065 if( pOp->opcode==OP_Found ){ 4066 VdbeBranchTaken(alreadyExists!=0,2); 4067 if( alreadyExists ) goto jump_to_p2; 4068 }else{ 4069 VdbeBranchTaken(takeJump||alreadyExists==0,2); 4070 if( takeJump || !alreadyExists ) goto jump_to_p2; 4071 } 4072 break; 4073 } 4074 4075 /* Opcode: SeekRowid P1 P2 P3 * * 4076 ** Synopsis: intkey=r[P3] 4077 ** 4078 ** P1 is the index of a cursor open on an SQL table btree (with integer 4079 ** keys). If register P3 does not contain an integer or if P1 does not 4080 ** contain a record with rowid P3 then jump immediately to P2. 4081 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 4082 ** a record with rowid P3 then 4083 ** leave the cursor pointing at that record and fall through to the next 4084 ** instruction. 4085 ** 4086 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 4087 ** the P3 register must be guaranteed to contain an integer value. With this 4088 ** opcode, register P3 might not contain an integer. 4089 ** 4090 ** The OP_NotFound opcode performs the same operation on index btrees 4091 ** (with arbitrary multi-value keys). 4092 ** 4093 ** This opcode leaves the cursor in a state where it cannot be advanced 4094 ** in either direction. In other words, the Next and Prev opcodes will 4095 ** not work following this opcode. 4096 ** 4097 ** See also: Found, NotFound, NoConflict, SeekRowid 4098 */ 4099 /* Opcode: NotExists P1 P2 P3 * * 4100 ** Synopsis: intkey=r[P3] 4101 ** 4102 ** P1 is the index of a cursor open on an SQL table btree (with integer 4103 ** keys). P3 is an integer rowid. If P1 does not contain a record with 4104 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 4105 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 4106 ** leave the cursor pointing at that record and fall through to the next 4107 ** instruction. 4108 ** 4109 ** The OP_SeekRowid opcode performs the same operation but also allows the 4110 ** P3 register to contain a non-integer value, in which case the jump is 4111 ** always taken. This opcode requires that P3 always contain an integer. 4112 ** 4113 ** The OP_NotFound opcode performs the same operation on index btrees 4114 ** (with arbitrary multi-value keys). 4115 ** 4116 ** This opcode leaves the cursor in a state where it cannot be advanced 4117 ** in either direction. In other words, the Next and Prev opcodes will 4118 ** not work following this opcode. 4119 ** 4120 ** See also: Found, NotFound, NoConflict, SeekRowid 4121 */ 4122 case OP_SeekRowid: { /* jump, in3 */ 4123 VdbeCursor *pC; 4124 BtCursor *pCrsr; 4125 int res; 4126 u64 iKey; 4127 4128 pIn3 = &aMem[pOp->p3]; 4129 if( (pIn3->flags & MEM_Int)==0 ){ 4130 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); 4131 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; 4132 } 4133 /* Fall through into OP_NotExists */ 4134 case OP_NotExists: /* jump, in3 */ 4135 pIn3 = &aMem[pOp->p3]; 4136 assert( pIn3->flags & MEM_Int ); 4137 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4138 pC = p->apCsr[pOp->p1]; 4139 assert( pC!=0 ); 4140 #ifdef SQLITE_DEBUG 4141 pC->seekOp = 0; 4142 #endif 4143 assert( pC->isTable ); 4144 assert( pC->eCurType==CURTYPE_BTREE ); 4145 pCrsr = pC->uc.pCursor; 4146 assert( pCrsr!=0 ); 4147 res = 0; 4148 iKey = pIn3->u.i; 4149 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 4150 assert( rc==SQLITE_OK || res==0 ); 4151 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4152 pC->nullRow = 0; 4153 pC->cacheStatus = CACHE_STALE; 4154 pC->deferredMoveto = 0; 4155 VdbeBranchTaken(res!=0,2); 4156 pC->seekResult = res; 4157 if( res!=0 ){ 4158 assert( rc==SQLITE_OK ); 4159 if( pOp->p2==0 ){ 4160 rc = SQLITE_CORRUPT_BKPT; 4161 }else{ 4162 goto jump_to_p2; 4163 } 4164 } 4165 if( rc ) goto abort_due_to_error; 4166 break; 4167 } 4168 4169 /* Opcode: Sequence P1 P2 * * * 4170 ** Synopsis: r[P2]=cursor[P1].ctr++ 4171 ** 4172 ** Find the next available sequence number for cursor P1. 4173 ** Write the sequence number into register P2. 4174 ** The sequence number on the cursor is incremented after this 4175 ** instruction. 4176 */ 4177 case OP_Sequence: { /* out2 */ 4178 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4179 assert( p->apCsr[pOp->p1]!=0 ); 4180 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 4181 pOut = out2Prerelease(p, pOp); 4182 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 4183 break; 4184 } 4185 4186 4187 /* Opcode: NewRowid P1 P2 P3 * * 4188 ** Synopsis: r[P2]=rowid 4189 ** 4190 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 4191 ** The record number is not previously used as a key in the database 4192 ** table that cursor P1 points to. The new record number is written 4193 ** written to register P2. 4194 ** 4195 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 4196 ** the largest previously generated record number. No new record numbers are 4197 ** allowed to be less than this value. When this value reaches its maximum, 4198 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 4199 ** generated record number. This P3 mechanism is used to help implement the 4200 ** AUTOINCREMENT feature. 4201 */ 4202 case OP_NewRowid: { /* out2 */ 4203 i64 v; /* The new rowid */ 4204 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 4205 int res; /* Result of an sqlite3BtreeLast() */ 4206 int cnt; /* Counter to limit the number of searches */ 4207 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 4208 VdbeFrame *pFrame; /* Root frame of VDBE */ 4209 4210 v = 0; 4211 res = 0; 4212 pOut = out2Prerelease(p, pOp); 4213 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4214 pC = p->apCsr[pOp->p1]; 4215 assert( pC!=0 ); 4216 assert( pC->eCurType==CURTYPE_BTREE ); 4217 assert( pC->uc.pCursor!=0 ); 4218 { 4219 /* The next rowid or record number (different terms for the same 4220 ** thing) is obtained in a two-step algorithm. 4221 ** 4222 ** First we attempt to find the largest existing rowid and add one 4223 ** to that. But if the largest existing rowid is already the maximum 4224 ** positive integer, we have to fall through to the second 4225 ** probabilistic algorithm 4226 ** 4227 ** The second algorithm is to select a rowid at random and see if 4228 ** it already exists in the table. If it does not exist, we have 4229 ** succeeded. If the random rowid does exist, we select a new one 4230 ** and try again, up to 100 times. 4231 */ 4232 assert( pC->isTable ); 4233 4234 #ifdef SQLITE_32BIT_ROWID 4235 # define MAX_ROWID 0x7fffffff 4236 #else 4237 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 4238 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 4239 ** to provide the constant while making all compilers happy. 4240 */ 4241 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 4242 #endif 4243 4244 if( !pC->useRandomRowid ){ 4245 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4246 if( rc!=SQLITE_OK ){ 4247 goto abort_due_to_error; 4248 } 4249 if( res ){ 4250 v = 1; /* IMP: R-61914-48074 */ 4251 }else{ 4252 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 4253 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4254 if( v>=MAX_ROWID ){ 4255 pC->useRandomRowid = 1; 4256 }else{ 4257 v++; /* IMP: R-29538-34987 */ 4258 } 4259 } 4260 } 4261 4262 #ifndef SQLITE_OMIT_AUTOINCREMENT 4263 if( pOp->p3 ){ 4264 /* Assert that P3 is a valid memory cell. */ 4265 assert( pOp->p3>0 ); 4266 if( p->pFrame ){ 4267 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 4268 /* Assert that P3 is a valid memory cell. */ 4269 assert( pOp->p3<=pFrame->nMem ); 4270 pMem = &pFrame->aMem[pOp->p3]; 4271 }else{ 4272 /* Assert that P3 is a valid memory cell. */ 4273 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 4274 pMem = &aMem[pOp->p3]; 4275 memAboutToChange(p, pMem); 4276 } 4277 assert( memIsValid(pMem) ); 4278 4279 REGISTER_TRACE(pOp->p3, pMem); 4280 sqlite3VdbeMemIntegerify(pMem); 4281 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 4282 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 4283 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 4284 goto abort_due_to_error; 4285 } 4286 if( v<pMem->u.i+1 ){ 4287 v = pMem->u.i + 1; 4288 } 4289 pMem->u.i = v; 4290 } 4291 #endif 4292 if( pC->useRandomRowid ){ 4293 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 4294 ** largest possible integer (9223372036854775807) then the database 4295 ** engine starts picking positive candidate ROWIDs at random until 4296 ** it finds one that is not previously used. */ 4297 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 4298 ** an AUTOINCREMENT table. */ 4299 cnt = 0; 4300 do{ 4301 sqlite3_randomness(sizeof(v), &v); 4302 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 4303 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, 4304 0, &res))==SQLITE_OK) 4305 && (res==0) 4306 && (++cnt<100)); 4307 if( rc ) goto abort_due_to_error; 4308 if( res==0 ){ 4309 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 4310 goto abort_due_to_error; 4311 } 4312 assert( v>0 ); /* EV: R-40812-03570 */ 4313 } 4314 pC->deferredMoveto = 0; 4315 pC->cacheStatus = CACHE_STALE; 4316 } 4317 pOut->u.i = v; 4318 break; 4319 } 4320 4321 /* Opcode: Insert P1 P2 P3 P4 P5 4322 ** Synopsis: intkey=r[P3] data=r[P2] 4323 ** 4324 ** Write an entry into the table of cursor P1. A new entry is 4325 ** created if it doesn't already exist or the data for an existing 4326 ** entry is overwritten. The data is the value MEM_Blob stored in register 4327 ** number P2. The key is stored in register P3. The key must 4328 ** be a MEM_Int. 4329 ** 4330 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 4331 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 4332 ** then rowid is stored for subsequent return by the 4333 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 4334 ** 4335 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 4336 ** run faster by avoiding an unnecessary seek on cursor P1. However, 4337 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 4338 ** seeks on the cursor or if the most recent seek used a key equal to P3. 4339 ** 4340 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 4341 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 4342 ** is part of an INSERT operation. The difference is only important to 4343 ** the update hook. 4344 ** 4345 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 4346 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 4347 ** following a successful insert. 4348 ** 4349 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 4350 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 4351 ** and register P2 becomes ephemeral. If the cursor is changed, the 4352 ** value of register P2 will then change. Make sure this does not 4353 ** cause any problems.) 4354 ** 4355 ** This instruction only works on tables. The equivalent instruction 4356 ** for indices is OP_IdxInsert. 4357 */ 4358 /* Opcode: InsertInt P1 P2 P3 P4 P5 4359 ** Synopsis: intkey=P3 data=r[P2] 4360 ** 4361 ** This works exactly like OP_Insert except that the key is the 4362 ** integer value P3, not the value of the integer stored in register P3. 4363 */ 4364 case OP_Insert: 4365 case OP_InsertInt: { 4366 Mem *pData; /* MEM cell holding data for the record to be inserted */ 4367 Mem *pKey; /* MEM cell holding key for the record */ 4368 VdbeCursor *pC; /* Cursor to table into which insert is written */ 4369 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 4370 const char *zDb; /* database name - used by the update hook */ 4371 Table *pTab; /* Table structure - used by update and pre-update hooks */ 4372 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 4373 BtreePayload x; /* Payload to be inserted */ 4374 4375 op = 0; 4376 pData = &aMem[pOp->p2]; 4377 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4378 assert( memIsValid(pData) ); 4379 pC = p->apCsr[pOp->p1]; 4380 assert( pC!=0 ); 4381 assert( pC->eCurType==CURTYPE_BTREE ); 4382 assert( pC->uc.pCursor!=0 ); 4383 assert( pC->isTable ); 4384 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 4385 REGISTER_TRACE(pOp->p2, pData); 4386 4387 if( pOp->opcode==OP_Insert ){ 4388 pKey = &aMem[pOp->p3]; 4389 assert( pKey->flags & MEM_Int ); 4390 assert( memIsValid(pKey) ); 4391 REGISTER_TRACE(pOp->p3, pKey); 4392 x.nKey = pKey->u.i; 4393 }else{ 4394 assert( pOp->opcode==OP_InsertInt ); 4395 x.nKey = pOp->p3; 4396 } 4397 4398 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4399 assert( pC->isTable ); 4400 assert( pC->iDb>=0 ); 4401 zDb = db->aDb[pC->iDb].zDbSName; 4402 pTab = pOp->p4.pTab; 4403 assert( HasRowid(pTab) ); 4404 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 4405 }else{ 4406 pTab = 0; /* Not needed. Silence a comiler warning. */ 4407 zDb = 0; /* Not needed. Silence a compiler warning. */ 4408 } 4409 4410 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4411 /* Invoke the pre-update hook, if any */ 4412 if( db->xPreUpdateCallback 4413 && pOp->p4type==P4_TABLE 4414 && !(pOp->p5 & OPFLAG_ISUPDATE) 4415 ){ 4416 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2); 4417 } 4418 #endif 4419 4420 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 4421 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey; 4422 if( pData->flags & MEM_Null ){ 4423 x.pData = 0; 4424 x.nData = 0; 4425 }else{ 4426 assert( pData->flags & (MEM_Blob|MEM_Str) ); 4427 x.pData = pData->z; 4428 x.nData = pData->n; 4429 } 4430 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 4431 if( pData->flags & MEM_Zero ){ 4432 x.nZero = pData->u.nZero; 4433 }else{ 4434 x.nZero = 0; 4435 } 4436 x.pKey = 0; 4437 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 4438 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult 4439 ); 4440 pC->deferredMoveto = 0; 4441 pC->cacheStatus = CACHE_STALE; 4442 4443 /* Invoke the update-hook if required. */ 4444 if( rc ) goto abort_due_to_error; 4445 if( db->xUpdateCallback && op ){ 4446 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey); 4447 } 4448 break; 4449 } 4450 4451 /* Opcode: Delete P1 P2 P3 P4 P5 4452 ** 4453 ** Delete the record at which the P1 cursor is currently pointing. 4454 ** 4455 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 4456 ** the cursor will be left pointing at either the next or the previous 4457 ** record in the table. If it is left pointing at the next record, then 4458 ** the next Next instruction will be a no-op. As a result, in this case 4459 ** it is ok to delete a record from within a Next loop. If 4460 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 4461 ** left in an undefined state. 4462 ** 4463 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 4464 ** delete one of several associated with deleting a table row and all its 4465 ** associated index entries. Exactly one of those deletes is the "primary" 4466 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 4467 ** marked with the AUXDELETE flag. 4468 ** 4469 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 4470 ** change count is incremented (otherwise not). 4471 ** 4472 ** P1 must not be pseudo-table. It has to be a real table with 4473 ** multiple rows. 4474 ** 4475 ** If P4 is not NULL then it points to a Table object. In this case either 4476 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 4477 ** have been positioned using OP_NotFound prior to invoking this opcode in 4478 ** this case. Specifically, if one is configured, the pre-update hook is 4479 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 4480 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 4481 ** 4482 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 4483 ** of the memory cell that contains the value that the rowid of the row will 4484 ** be set to by the update. 4485 */ 4486 case OP_Delete: { 4487 VdbeCursor *pC; 4488 const char *zDb; 4489 Table *pTab; 4490 int opflags; 4491 4492 opflags = pOp->p2; 4493 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4494 pC = p->apCsr[pOp->p1]; 4495 assert( pC!=0 ); 4496 assert( pC->eCurType==CURTYPE_BTREE ); 4497 assert( pC->uc.pCursor!=0 ); 4498 assert( pC->deferredMoveto==0 ); 4499 4500 #ifdef SQLITE_DEBUG 4501 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ 4502 /* If p5 is zero, the seek operation that positioned the cursor prior to 4503 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 4504 ** the row that is being deleted */ 4505 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4506 assert( pC->movetoTarget==iKey ); 4507 } 4508 #endif 4509 4510 /* If the update-hook or pre-update-hook will be invoked, set zDb to 4511 ** the name of the db to pass as to it. Also set local pTab to a copy 4512 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 4513 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 4514 ** VdbeCursor.movetoTarget to the current rowid. */ 4515 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 4516 assert( pC->iDb>=0 ); 4517 assert( pOp->p4.pTab!=0 ); 4518 zDb = db->aDb[pC->iDb].zDbSName; 4519 pTab = pOp->p4.pTab; 4520 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 4521 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4522 } 4523 }else{ 4524 zDb = 0; /* Not needed. Silence a compiler warning. */ 4525 pTab = 0; /* Not needed. Silence a compiler warning. */ 4526 } 4527 4528 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 4529 /* Invoke the pre-update-hook if required. */ 4530 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){ 4531 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) ); 4532 sqlite3VdbePreUpdateHook(p, pC, 4533 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 4534 zDb, pTab, pC->movetoTarget, 4535 pOp->p3 4536 ); 4537 } 4538 if( opflags & OPFLAG_ISNOOP ) break; 4539 #endif 4540 4541 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 4542 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 4543 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 4544 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 4545 4546 #ifdef SQLITE_DEBUG 4547 if( p->pFrame==0 ){ 4548 if( pC->isEphemeral==0 4549 && (pOp->p5 & OPFLAG_AUXDELETE)==0 4550 && (pC->wrFlag & OPFLAG_FORDELETE)==0 4551 ){ 4552 nExtraDelete++; 4553 } 4554 if( pOp->p2 & OPFLAG_NCHANGE ){ 4555 nExtraDelete--; 4556 } 4557 } 4558 #endif 4559 4560 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 4561 pC->cacheStatus = CACHE_STALE; 4562 pC->seekResult = 0; 4563 if( rc ) goto abort_due_to_error; 4564 4565 /* Invoke the update-hook if required. */ 4566 if( opflags & OPFLAG_NCHANGE ){ 4567 p->nChange++; 4568 if( db->xUpdateCallback && HasRowid(pTab) ){ 4569 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 4570 pC->movetoTarget); 4571 assert( pC->iDb>=0 ); 4572 } 4573 } 4574 4575 break; 4576 } 4577 /* Opcode: ResetCount * * * * * 4578 ** 4579 ** The value of the change counter is copied to the database handle 4580 ** change counter (returned by subsequent calls to sqlite3_changes()). 4581 ** Then the VMs internal change counter resets to 0. 4582 ** This is used by trigger programs. 4583 */ 4584 case OP_ResetCount: { 4585 sqlite3VdbeSetChanges(db, p->nChange); 4586 p->nChange = 0; 4587 break; 4588 } 4589 4590 /* Opcode: SorterCompare P1 P2 P3 P4 4591 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 4592 ** 4593 ** P1 is a sorter cursor. This instruction compares a prefix of the 4594 ** record blob in register P3 against a prefix of the entry that 4595 ** the sorter cursor currently points to. Only the first P4 fields 4596 ** of r[P3] and the sorter record are compared. 4597 ** 4598 ** If either P3 or the sorter contains a NULL in one of their significant 4599 ** fields (not counting the P4 fields at the end which are ignored) then 4600 ** the comparison is assumed to be equal. 4601 ** 4602 ** Fall through to next instruction if the two records compare equal to 4603 ** each other. Jump to P2 if they are different. 4604 */ 4605 case OP_SorterCompare: { 4606 VdbeCursor *pC; 4607 int res; 4608 int nKeyCol; 4609 4610 pC = p->apCsr[pOp->p1]; 4611 assert( isSorter(pC) ); 4612 assert( pOp->p4type==P4_INT32 ); 4613 pIn3 = &aMem[pOp->p3]; 4614 nKeyCol = pOp->p4.i; 4615 res = 0; 4616 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 4617 VdbeBranchTaken(res!=0,2); 4618 if( rc ) goto abort_due_to_error; 4619 if( res ) goto jump_to_p2; 4620 break; 4621 }; 4622 4623 /* Opcode: SorterData P1 P2 P3 * * 4624 ** Synopsis: r[P2]=data 4625 ** 4626 ** Write into register P2 the current sorter data for sorter cursor P1. 4627 ** Then clear the column header cache on cursor P3. 4628 ** 4629 ** This opcode is normally use to move a record out of the sorter and into 4630 ** a register that is the source for a pseudo-table cursor created using 4631 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 4632 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 4633 ** us from having to issue a separate NullRow instruction to clear that cache. 4634 */ 4635 case OP_SorterData: { 4636 VdbeCursor *pC; 4637 4638 pOut = &aMem[pOp->p2]; 4639 pC = p->apCsr[pOp->p1]; 4640 assert( isSorter(pC) ); 4641 rc = sqlite3VdbeSorterRowkey(pC, pOut); 4642 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 4643 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4644 if( rc ) goto abort_due_to_error; 4645 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 4646 break; 4647 } 4648 4649 /* Opcode: RowData P1 P2 P3 * * 4650 ** Synopsis: r[P2]=data 4651 ** 4652 ** Write into register P2 the complete row content for the row at 4653 ** which cursor P1 is currently pointing. 4654 ** There is no interpretation of the data. 4655 ** It is just copied onto the P2 register exactly as 4656 ** it is found in the database file. 4657 ** 4658 ** If cursor P1 is an index, then the content is the key of the row. 4659 ** If cursor P2 is a table, then the content extracted is the data. 4660 ** 4661 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4662 ** of a real table, not a pseudo-table. 4663 ** 4664 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer 4665 ** into the database page. That means that the content of the output 4666 ** register will be invalidated as soon as the cursor moves - including 4667 ** moves caused by other cursors that "save" the the current cursors 4668 ** position in order that they can write to the same table. If P3==0 4669 ** then a copy of the data is made into memory. P3!=0 is faster, but 4670 ** P3==0 is safer. 4671 ** 4672 ** If P3!=0 then the content of the P2 register is unsuitable for use 4673 ** in OP_Result and any OP_Result will invalidate the P2 register content. 4674 ** The P2 register content is invalidated by opcodes like OP_Function or 4675 ** by any use of another cursor pointing to the same table. 4676 */ 4677 case OP_RowData: { 4678 VdbeCursor *pC; 4679 BtCursor *pCrsr; 4680 u32 n; 4681 4682 pOut = out2Prerelease(p, pOp); 4683 4684 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4685 pC = p->apCsr[pOp->p1]; 4686 assert( pC!=0 ); 4687 assert( pC->eCurType==CURTYPE_BTREE ); 4688 assert( isSorter(pC)==0 ); 4689 assert( pC->nullRow==0 ); 4690 assert( pC->uc.pCursor!=0 ); 4691 pCrsr = pC->uc.pCursor; 4692 4693 /* The OP_RowData opcodes always follow OP_NotExists or 4694 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 4695 ** that might invalidate the cursor. 4696 ** If this where not the case, on of the following assert()s 4697 ** would fail. Should this ever change (because of changes in the code 4698 ** generator) then the fix would be to insert a call to 4699 ** sqlite3VdbeCursorMoveto(). 4700 */ 4701 assert( pC->deferredMoveto==0 ); 4702 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4703 #if 0 /* Not required due to the previous to assert() statements */ 4704 rc = sqlite3VdbeCursorMoveto(pC); 4705 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4706 #endif 4707 4708 n = sqlite3BtreePayloadSize(pCrsr); 4709 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4710 goto too_big; 4711 } 4712 testcase( n==0 ); 4713 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); 4714 if( rc ) goto abort_due_to_error; 4715 if( !pOp->p3 ) Deephemeralize(pOut); 4716 UPDATE_MAX_BLOBSIZE(pOut); 4717 REGISTER_TRACE(pOp->p2, pOut); 4718 break; 4719 } 4720 4721 /* Opcode: Rowid P1 P2 * * * 4722 ** Synopsis: r[P2]=rowid 4723 ** 4724 ** Store in register P2 an integer which is the key of the table entry that 4725 ** P1 is currently point to. 4726 ** 4727 ** P1 can be either an ordinary table or a virtual table. There used to 4728 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4729 ** one opcode now works for both table types. 4730 */ 4731 case OP_Rowid: { /* out2 */ 4732 VdbeCursor *pC; 4733 i64 v; 4734 sqlite3_vtab *pVtab; 4735 const sqlite3_module *pModule; 4736 4737 pOut = out2Prerelease(p, pOp); 4738 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4739 pC = p->apCsr[pOp->p1]; 4740 assert( pC!=0 ); 4741 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 4742 if( pC->nullRow ){ 4743 pOut->flags = MEM_Null; 4744 break; 4745 }else if( pC->deferredMoveto ){ 4746 v = pC->movetoTarget; 4747 #ifndef SQLITE_OMIT_VIRTUALTABLE 4748 }else if( pC->eCurType==CURTYPE_VTAB ){ 4749 assert( pC->uc.pVCur!=0 ); 4750 pVtab = pC->uc.pVCur->pVtab; 4751 pModule = pVtab->pModule; 4752 assert( pModule->xRowid ); 4753 rc = pModule->xRowid(pC->uc.pVCur, &v); 4754 sqlite3VtabImportErrmsg(p, pVtab); 4755 if( rc ) goto abort_due_to_error; 4756 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4757 }else{ 4758 assert( pC->eCurType==CURTYPE_BTREE ); 4759 assert( pC->uc.pCursor!=0 ); 4760 rc = sqlite3VdbeCursorRestore(pC); 4761 if( rc ) goto abort_due_to_error; 4762 if( pC->nullRow ){ 4763 pOut->flags = MEM_Null; 4764 break; 4765 } 4766 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 4767 } 4768 pOut->u.i = v; 4769 break; 4770 } 4771 4772 /* Opcode: NullRow P1 * * * * 4773 ** 4774 ** Move the cursor P1 to a null row. Any OP_Column operations 4775 ** that occur while the cursor is on the null row will always 4776 ** write a NULL. 4777 */ 4778 case OP_NullRow: { 4779 VdbeCursor *pC; 4780 4781 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4782 pC = p->apCsr[pOp->p1]; 4783 assert( pC!=0 ); 4784 pC->nullRow = 1; 4785 pC->cacheStatus = CACHE_STALE; 4786 if( pC->eCurType==CURTYPE_BTREE ){ 4787 assert( pC->uc.pCursor!=0 ); 4788 sqlite3BtreeClearCursor(pC->uc.pCursor); 4789 } 4790 break; 4791 } 4792 4793 /* Opcode: Last P1 P2 P3 * * 4794 ** 4795 ** The next use of the Rowid or Column or Prev instruction for P1 4796 ** will refer to the last entry in the database table or index. 4797 ** If the table or index is empty and P2>0, then jump immediately to P2. 4798 ** If P2 is 0 or if the table or index is not empty, fall through 4799 ** to the following instruction. 4800 ** 4801 ** This opcode leaves the cursor configured to move in reverse order, 4802 ** from the end toward the beginning. In other words, the cursor is 4803 ** configured to use Prev, not Next. 4804 ** 4805 ** If P3 is -1, then the cursor is positioned at the end of the btree 4806 ** for the purpose of appending a new entry onto the btree. In that 4807 ** case P2 must be 0. It is assumed that the cursor is used only for 4808 ** appending and so if the cursor is valid, then the cursor must already 4809 ** be pointing at the end of the btree and so no changes are made to 4810 ** the cursor. 4811 */ 4812 case OP_Last: { /* jump */ 4813 VdbeCursor *pC; 4814 BtCursor *pCrsr; 4815 int res; 4816 4817 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4818 pC = p->apCsr[pOp->p1]; 4819 assert( pC!=0 ); 4820 assert( pC->eCurType==CURTYPE_BTREE ); 4821 pCrsr = pC->uc.pCursor; 4822 res = 0; 4823 assert( pCrsr!=0 ); 4824 pC->seekResult = pOp->p3; 4825 #ifdef SQLITE_DEBUG 4826 pC->seekOp = OP_Last; 4827 #endif 4828 if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){ 4829 rc = sqlite3BtreeLast(pCrsr, &res); 4830 pC->nullRow = (u8)res; 4831 pC->deferredMoveto = 0; 4832 pC->cacheStatus = CACHE_STALE; 4833 if( rc ) goto abort_due_to_error; 4834 if( pOp->p2>0 ){ 4835 VdbeBranchTaken(res!=0,2); 4836 if( res ) goto jump_to_p2; 4837 } 4838 }else{ 4839 assert( pOp->p2==0 ); 4840 } 4841 break; 4842 } 4843 4844 4845 /* Opcode: SorterSort P1 P2 * * * 4846 ** 4847 ** After all records have been inserted into the Sorter object 4848 ** identified by P1, invoke this opcode to actually do the sorting. 4849 ** Jump to P2 if there are no records to be sorted. 4850 ** 4851 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 4852 ** for Sorter objects. 4853 */ 4854 /* Opcode: Sort P1 P2 * * * 4855 ** 4856 ** This opcode does exactly the same thing as OP_Rewind except that 4857 ** it increments an undocumented global variable used for testing. 4858 ** 4859 ** Sorting is accomplished by writing records into a sorting index, 4860 ** then rewinding that index and playing it back from beginning to 4861 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4862 ** rewinding so that the global variable will be incremented and 4863 ** regression tests can determine whether or not the optimizer is 4864 ** correctly optimizing out sorts. 4865 */ 4866 case OP_SorterSort: /* jump */ 4867 case OP_Sort: { /* jump */ 4868 #ifdef SQLITE_TEST 4869 sqlite3_sort_count++; 4870 sqlite3_search_count--; 4871 #endif 4872 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 4873 /* Fall through into OP_Rewind */ 4874 } 4875 /* Opcode: Rewind P1 P2 * * * 4876 ** 4877 ** The next use of the Rowid or Column or Next instruction for P1 4878 ** will refer to the first entry in the database table or index. 4879 ** If the table or index is empty, jump immediately to P2. 4880 ** If the table or index is not empty, fall through to the following 4881 ** instruction. 4882 ** 4883 ** This opcode leaves the cursor configured to move in forward order, 4884 ** from the beginning toward the end. In other words, the cursor is 4885 ** configured to use Next, not Prev. 4886 */ 4887 case OP_Rewind: { /* jump */ 4888 VdbeCursor *pC; 4889 BtCursor *pCrsr; 4890 int res; 4891 4892 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4893 pC = p->apCsr[pOp->p1]; 4894 assert( pC!=0 ); 4895 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 4896 res = 1; 4897 #ifdef SQLITE_DEBUG 4898 pC->seekOp = OP_Rewind; 4899 #endif 4900 if( isSorter(pC) ){ 4901 rc = sqlite3VdbeSorterRewind(pC, &res); 4902 }else{ 4903 assert( pC->eCurType==CURTYPE_BTREE ); 4904 pCrsr = pC->uc.pCursor; 4905 assert( pCrsr ); 4906 rc = sqlite3BtreeFirst(pCrsr, &res); 4907 pC->deferredMoveto = 0; 4908 pC->cacheStatus = CACHE_STALE; 4909 } 4910 if( rc ) goto abort_due_to_error; 4911 pC->nullRow = (u8)res; 4912 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4913 VdbeBranchTaken(res!=0,2); 4914 if( res ) goto jump_to_p2; 4915 break; 4916 } 4917 4918 /* Opcode: Next P1 P2 P3 P4 P5 4919 ** 4920 ** Advance cursor P1 so that it points to the next key/data pair in its 4921 ** table or index. If there are no more key/value pairs then fall through 4922 ** to the following instruction. But if the cursor advance was successful, 4923 ** jump immediately to P2. 4924 ** 4925 ** The Next opcode is only valid following an SeekGT, SeekGE, or 4926 ** OP_Rewind opcode used to position the cursor. Next is not allowed 4927 ** to follow SeekLT, SeekLE, or OP_Last. 4928 ** 4929 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 4930 ** been opened prior to this opcode or the program will segfault. 4931 ** 4932 ** The P3 value is a hint to the btree implementation. If P3==1, that 4933 ** means P1 is an SQL index and that this instruction could have been 4934 ** omitted if that index had been unique. P3 is usually 0. P3 is 4935 ** always either 0 or 1. 4936 ** 4937 ** P4 is always of type P4_ADVANCE. The function pointer points to 4938 ** sqlite3BtreeNext(). 4939 ** 4940 ** If P5 is positive and the jump is taken, then event counter 4941 ** number P5-1 in the prepared statement is incremented. 4942 ** 4943 ** See also: Prev, NextIfOpen 4944 */ 4945 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 4946 ** 4947 ** This opcode works just like Next except that if cursor P1 is not 4948 ** open it behaves a no-op. 4949 */ 4950 /* Opcode: Prev P1 P2 P3 P4 P5 4951 ** 4952 ** Back up cursor P1 so that it points to the previous key/data pair in its 4953 ** table or index. If there is no previous key/value pairs then fall through 4954 ** to the following instruction. But if the cursor backup was successful, 4955 ** jump immediately to P2. 4956 ** 4957 ** 4958 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 4959 ** OP_Last opcode used to position the cursor. Prev is not allowed 4960 ** to follow SeekGT, SeekGE, or OP_Rewind. 4961 ** 4962 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 4963 ** not open then the behavior is undefined. 4964 ** 4965 ** The P3 value is a hint to the btree implementation. If P3==1, that 4966 ** means P1 is an SQL index and that this instruction could have been 4967 ** omitted if that index had been unique. P3 is usually 0. P3 is 4968 ** always either 0 or 1. 4969 ** 4970 ** P4 is always of type P4_ADVANCE. The function pointer points to 4971 ** sqlite3BtreePrevious(). 4972 ** 4973 ** If P5 is positive and the jump is taken, then event counter 4974 ** number P5-1 in the prepared statement is incremented. 4975 */ 4976 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 4977 ** 4978 ** This opcode works just like Prev except that if cursor P1 is not 4979 ** open it behaves a no-op. 4980 */ 4981 /* Opcode: SorterNext P1 P2 * * P5 4982 ** 4983 ** This opcode works just like OP_Next except that P1 must be a 4984 ** sorter object for which the OP_SorterSort opcode has been 4985 ** invoked. This opcode advances the cursor to the next sorted 4986 ** record, or jumps to P2 if there are no more sorted records. 4987 */ 4988 case OP_SorterNext: { /* jump */ 4989 VdbeCursor *pC; 4990 int res; 4991 4992 pC = p->apCsr[pOp->p1]; 4993 assert( isSorter(pC) ); 4994 res = 0; 4995 rc = sqlite3VdbeSorterNext(db, pC, &res); 4996 goto next_tail; 4997 case OP_PrevIfOpen: /* jump */ 4998 case OP_NextIfOpen: /* jump */ 4999 if( p->apCsr[pOp->p1]==0 ) break; 5000 /* Fall through */ 5001 case OP_Prev: /* jump */ 5002 case OP_Next: /* jump */ 5003 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5004 assert( pOp->p5<ArraySize(p->aCounter) ); 5005 pC = p->apCsr[pOp->p1]; 5006 res = pOp->p3; 5007 assert( pC!=0 ); 5008 assert( pC->deferredMoveto==0 ); 5009 assert( pC->eCurType==CURTYPE_BTREE ); 5010 assert( res==0 || (res==1 && pC->isTable==0) ); 5011 testcase( res==1 ); 5012 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); 5013 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); 5014 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); 5015 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); 5016 5017 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. 5018 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ 5019 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen 5020 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 5021 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); 5022 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen 5023 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 5024 || pC->seekOp==OP_Last ); 5025 5026 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); 5027 next_tail: 5028 pC->cacheStatus = CACHE_STALE; 5029 VdbeBranchTaken(res==0,2); 5030 if( rc ) goto abort_due_to_error; 5031 if( res==0 ){ 5032 pC->nullRow = 0; 5033 p->aCounter[pOp->p5]++; 5034 #ifdef SQLITE_TEST 5035 sqlite3_search_count++; 5036 #endif 5037 goto jump_to_p2_and_check_for_interrupt; 5038 }else{ 5039 pC->nullRow = 1; 5040 } 5041 goto check_for_interrupt; 5042 } 5043 5044 /* Opcode: IdxInsert P1 P2 P3 P4 P5 5045 ** Synopsis: key=r[P2] 5046 ** 5047 ** Register P2 holds an SQL index key made using the 5048 ** MakeRecord instructions. This opcode writes that key 5049 ** into the index P1. Data for the entry is nil. 5050 ** 5051 ** If P4 is not zero, then it is the number of values in the unpacked 5052 ** key of reg(P2). In that case, P3 is the index of the first register 5053 ** for the unpacked key. The availability of the unpacked key can sometimes 5054 ** be an optimization. 5055 ** 5056 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 5057 ** that this insert is likely to be an append. 5058 ** 5059 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 5060 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 5061 ** then the change counter is unchanged. 5062 ** 5063 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5064 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5065 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5066 ** seeks on the cursor or if the most recent seek used a key equivalent 5067 ** to P2. 5068 ** 5069 ** This instruction only works for indices. The equivalent instruction 5070 ** for tables is OP_Insert. 5071 */ 5072 /* Opcode: SorterInsert P1 P2 * * * 5073 ** Synopsis: key=r[P2] 5074 ** 5075 ** Register P2 holds an SQL index key made using the 5076 ** MakeRecord instructions. This opcode writes that key 5077 ** into the sorter P1. Data for the entry is nil. 5078 */ 5079 case OP_SorterInsert: /* in2 */ 5080 case OP_IdxInsert: { /* in2 */ 5081 VdbeCursor *pC; 5082 BtreePayload x; 5083 5084 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5085 pC = p->apCsr[pOp->p1]; 5086 assert( pC!=0 ); 5087 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); 5088 pIn2 = &aMem[pOp->p2]; 5089 assert( pIn2->flags & MEM_Blob ); 5090 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5091 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); 5092 assert( pC->isTable==0 ); 5093 rc = ExpandBlob(pIn2); 5094 if( rc ) goto abort_due_to_error; 5095 if( pOp->opcode==OP_SorterInsert ){ 5096 rc = sqlite3VdbeSorterWrite(pC, pIn2); 5097 }else{ 5098 x.nKey = pIn2->n; 5099 x.pKey = pIn2->z; 5100 x.aMem = aMem + pOp->p3; 5101 x.nMem = (u16)pOp->p4.i; 5102 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5103 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), 5104 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 5105 ); 5106 assert( pC->deferredMoveto==0 ); 5107 pC->cacheStatus = CACHE_STALE; 5108 } 5109 if( rc) goto abort_due_to_error; 5110 break; 5111 } 5112 5113 /* Opcode: IdxDelete P1 P2 P3 * * 5114 ** Synopsis: key=r[P2@P3] 5115 ** 5116 ** The content of P3 registers starting at register P2 form 5117 ** an unpacked index key. This opcode removes that entry from the 5118 ** index opened by cursor P1. 5119 */ 5120 case OP_IdxDelete: { 5121 VdbeCursor *pC; 5122 BtCursor *pCrsr; 5123 int res; 5124 UnpackedRecord r; 5125 5126 assert( pOp->p3>0 ); 5127 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 5128 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5129 pC = p->apCsr[pOp->p1]; 5130 assert( pC!=0 ); 5131 assert( pC->eCurType==CURTYPE_BTREE ); 5132 pCrsr = pC->uc.pCursor; 5133 assert( pCrsr!=0 ); 5134 assert( pOp->p5==0 ); 5135 r.pKeyInfo = pC->pKeyInfo; 5136 r.nField = (u16)pOp->p3; 5137 r.default_rc = 0; 5138 r.aMem = &aMem[pOp->p2]; 5139 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 5140 if( rc ) goto abort_due_to_error; 5141 if( res==0 ){ 5142 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 5143 if( rc ) goto abort_due_to_error; 5144 } 5145 assert( pC->deferredMoveto==0 ); 5146 pC->cacheStatus = CACHE_STALE; 5147 pC->seekResult = 0; 5148 break; 5149 } 5150 5151 /* Opcode: Seek P1 * P3 P4 * 5152 ** Synopsis: Move P3 to P1.rowid 5153 ** 5154 ** P1 is an open index cursor and P3 is a cursor on the corresponding 5155 ** table. This opcode does a deferred seek of the P3 table cursor 5156 ** to the row that corresponds to the current row of P1. 5157 ** 5158 ** This is a deferred seek. Nothing actually happens until 5159 ** the cursor is used to read a record. That way, if no reads 5160 ** occur, no unnecessary I/O happens. 5161 ** 5162 ** P4 may be an array of integers (type P4_INTARRAY) containing 5163 ** one entry for each column in the P3 table. If array entry a(i) 5164 ** is non-zero, then reading column a(i)-1 from cursor P3 is 5165 ** equivalent to performing the deferred seek and then reading column i 5166 ** from P1. This information is stored in P3 and used to redirect 5167 ** reads against P3 over to P1, thus possibly avoiding the need to 5168 ** seek and read cursor P3. 5169 */ 5170 /* Opcode: IdxRowid P1 P2 * * * 5171 ** Synopsis: r[P2]=rowid 5172 ** 5173 ** Write into register P2 an integer which is the last entry in the record at 5174 ** the end of the index key pointed to by cursor P1. This integer should be 5175 ** the rowid of the table entry to which this index entry points. 5176 ** 5177 ** See also: Rowid, MakeRecord. 5178 */ 5179 case OP_Seek: 5180 case OP_IdxRowid: { /* out2 */ 5181 VdbeCursor *pC; /* The P1 index cursor */ 5182 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */ 5183 i64 rowid; /* Rowid that P1 current points to */ 5184 5185 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5186 pC = p->apCsr[pOp->p1]; 5187 assert( pC!=0 ); 5188 assert( pC->eCurType==CURTYPE_BTREE ); 5189 assert( pC->uc.pCursor!=0 ); 5190 assert( pC->isTable==0 ); 5191 assert( pC->deferredMoveto==0 ); 5192 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 5193 5194 /* The IdxRowid and Seek opcodes are combined because of the commonality 5195 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 5196 rc = sqlite3VdbeCursorRestore(pC); 5197 5198 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 5199 ** out from under the cursor. That will never happens for an IdxRowid 5200 ** or Seek opcode */ 5201 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 5202 5203 if( !pC->nullRow ){ 5204 rowid = 0; /* Not needed. Only used to silence a warning. */ 5205 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 5206 if( rc!=SQLITE_OK ){ 5207 goto abort_due_to_error; 5208 } 5209 if( pOp->opcode==OP_Seek ){ 5210 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 5211 pTabCur = p->apCsr[pOp->p3]; 5212 assert( pTabCur!=0 ); 5213 assert( pTabCur->eCurType==CURTYPE_BTREE ); 5214 assert( pTabCur->uc.pCursor!=0 ); 5215 assert( pTabCur->isTable ); 5216 pTabCur->nullRow = 0; 5217 pTabCur->movetoTarget = rowid; 5218 pTabCur->deferredMoveto = 1; 5219 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 5220 pTabCur->aAltMap = pOp->p4.ai; 5221 pTabCur->pAltCursor = pC; 5222 }else{ 5223 pOut = out2Prerelease(p, pOp); 5224 pOut->u.i = rowid; 5225 } 5226 }else{ 5227 assert( pOp->opcode==OP_IdxRowid ); 5228 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 5229 } 5230 break; 5231 } 5232 5233 /* Opcode: IdxGE P1 P2 P3 P4 P5 5234 ** Synopsis: key=r[P3@P4] 5235 ** 5236 ** The P4 register values beginning with P3 form an unpacked index 5237 ** key that omits the PRIMARY KEY. Compare this key value against the index 5238 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5239 ** fields at the end. 5240 ** 5241 ** If the P1 index entry is greater than or equal to the key value 5242 ** then jump to P2. Otherwise fall through to the next instruction. 5243 */ 5244 /* Opcode: IdxGT P1 P2 P3 P4 P5 5245 ** Synopsis: key=r[P3@P4] 5246 ** 5247 ** The P4 register values beginning with P3 form an unpacked index 5248 ** key that omits the PRIMARY KEY. Compare this key value against the index 5249 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 5250 ** fields at the end. 5251 ** 5252 ** If the P1 index entry is greater than the key value 5253 ** then jump to P2. Otherwise fall through to the next instruction. 5254 */ 5255 /* Opcode: IdxLT P1 P2 P3 P4 P5 5256 ** Synopsis: key=r[P3@P4] 5257 ** 5258 ** The P4 register values beginning with P3 form an unpacked index 5259 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5260 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5261 ** ROWID on the P1 index. 5262 ** 5263 ** If the P1 index entry is less than the key value then jump to P2. 5264 ** Otherwise fall through to the next instruction. 5265 */ 5266 /* Opcode: IdxLE P1 P2 P3 P4 P5 5267 ** Synopsis: key=r[P3@P4] 5268 ** 5269 ** The P4 register values beginning with P3 form an unpacked index 5270 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 5271 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 5272 ** ROWID on the P1 index. 5273 ** 5274 ** If the P1 index entry is less than or equal to the key value then jump 5275 ** to P2. Otherwise fall through to the next instruction. 5276 */ 5277 case OP_IdxLE: /* jump */ 5278 case OP_IdxGT: /* jump */ 5279 case OP_IdxLT: /* jump */ 5280 case OP_IdxGE: { /* jump */ 5281 VdbeCursor *pC; 5282 int res; 5283 UnpackedRecord r; 5284 5285 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5286 pC = p->apCsr[pOp->p1]; 5287 assert( pC!=0 ); 5288 assert( pC->isOrdered ); 5289 assert( pC->eCurType==CURTYPE_BTREE ); 5290 assert( pC->uc.pCursor!=0); 5291 assert( pC->deferredMoveto==0 ); 5292 assert( pOp->p5==0 || pOp->p5==1 ); 5293 assert( pOp->p4type==P4_INT32 ); 5294 r.pKeyInfo = pC->pKeyInfo; 5295 r.nField = (u16)pOp->p4.i; 5296 if( pOp->opcode<OP_IdxLT ){ 5297 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 5298 r.default_rc = -1; 5299 }else{ 5300 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 5301 r.default_rc = 0; 5302 } 5303 r.aMem = &aMem[pOp->p3]; 5304 #ifdef SQLITE_DEBUG 5305 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 5306 #endif 5307 res = 0; /* Not needed. Only used to silence a warning. */ 5308 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 5309 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 5310 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 5311 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 5312 res = -res; 5313 }else{ 5314 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 5315 res++; 5316 } 5317 VdbeBranchTaken(res>0,2); 5318 if( rc ) goto abort_due_to_error; 5319 if( res>0 ) goto jump_to_p2; 5320 break; 5321 } 5322 5323 /* Opcode: Destroy P1 P2 P3 * * 5324 ** 5325 ** Delete an entire database table or index whose root page in the database 5326 ** file is given by P1. 5327 ** 5328 ** The table being destroyed is in the main database file if P3==0. If 5329 ** P3==1 then the table to be clear is in the auxiliary database file 5330 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5331 ** 5332 ** If AUTOVACUUM is enabled then it is possible that another root page 5333 ** might be moved into the newly deleted root page in order to keep all 5334 ** root pages contiguous at the beginning of the database. The former 5335 ** value of the root page that moved - its value before the move occurred - 5336 ** is stored in register P2. If no page 5337 ** movement was required (because the table being dropped was already 5338 ** the last one in the database) then a zero is stored in register P2. 5339 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 5340 ** 5341 ** See also: Clear 5342 */ 5343 case OP_Destroy: { /* out2 */ 5344 int iMoved; 5345 int iDb; 5346 5347 assert( p->readOnly==0 ); 5348 assert( pOp->p1>1 ); 5349 pOut = out2Prerelease(p, pOp); 5350 pOut->flags = MEM_Null; 5351 if( db->nVdbeRead > db->nVDestroy+1 ){ 5352 rc = SQLITE_LOCKED; 5353 p->errorAction = OE_Abort; 5354 goto abort_due_to_error; 5355 }else{ 5356 iDb = pOp->p3; 5357 assert( DbMaskTest(p->btreeMask, iDb) ); 5358 iMoved = 0; /* Not needed. Only to silence a warning. */ 5359 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 5360 pOut->flags = MEM_Int; 5361 pOut->u.i = iMoved; 5362 if( rc ) goto abort_due_to_error; 5363 #ifndef SQLITE_OMIT_AUTOVACUUM 5364 if( iMoved!=0 ){ 5365 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 5366 /* All OP_Destroy operations occur on the same btree */ 5367 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 5368 resetSchemaOnFault = iDb+1; 5369 } 5370 #endif 5371 } 5372 break; 5373 } 5374 5375 /* Opcode: Clear P1 P2 P3 5376 ** 5377 ** Delete all contents of the database table or index whose root page 5378 ** in the database file is given by P1. But, unlike Destroy, do not 5379 ** remove the table or index from the database file. 5380 ** 5381 ** The table being clear is in the main database file if P2==0. If 5382 ** P2==1 then the table to be clear is in the auxiliary database file 5383 ** that is used to store tables create using CREATE TEMPORARY TABLE. 5384 ** 5385 ** If the P3 value is non-zero, then the table referred to must be an 5386 ** intkey table (an SQL table, not an index). In this case the row change 5387 ** count is incremented by the number of rows in the table being cleared. 5388 ** If P3 is greater than zero, then the value stored in register P3 is 5389 ** also incremented by the number of rows in the table being cleared. 5390 ** 5391 ** See also: Destroy 5392 */ 5393 case OP_Clear: { 5394 int nChange; 5395 5396 nChange = 0; 5397 assert( p->readOnly==0 ); 5398 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 5399 rc = sqlite3BtreeClearTable( 5400 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 5401 ); 5402 if( pOp->p3 ){ 5403 p->nChange += nChange; 5404 if( pOp->p3>0 ){ 5405 assert( memIsValid(&aMem[pOp->p3]) ); 5406 memAboutToChange(p, &aMem[pOp->p3]); 5407 aMem[pOp->p3].u.i += nChange; 5408 } 5409 } 5410 if( rc ) goto abort_due_to_error; 5411 break; 5412 } 5413 5414 /* Opcode: ResetSorter P1 * * * * 5415 ** 5416 ** Delete all contents from the ephemeral table or sorter 5417 ** that is open on cursor P1. 5418 ** 5419 ** This opcode only works for cursors used for sorting and 5420 ** opened with OP_OpenEphemeral or OP_SorterOpen. 5421 */ 5422 case OP_ResetSorter: { 5423 VdbeCursor *pC; 5424 5425 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5426 pC = p->apCsr[pOp->p1]; 5427 assert( pC!=0 ); 5428 if( isSorter(pC) ){ 5429 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 5430 }else{ 5431 assert( pC->eCurType==CURTYPE_BTREE ); 5432 assert( pC->isEphemeral ); 5433 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 5434 if( rc ) goto abort_due_to_error; 5435 } 5436 break; 5437 } 5438 5439 /* Opcode: CreateTable P1 P2 * * * 5440 ** Synopsis: r[P2]=root iDb=P1 5441 ** 5442 ** Allocate a new table in the main database file if P1==0 or in the 5443 ** auxiliary database file if P1==1 or in an attached database if 5444 ** P1>1. Write the root page number of the new table into 5445 ** register P2 5446 ** 5447 ** The difference between a table and an index is this: A table must 5448 ** have a 4-byte integer key and can have arbitrary data. An index 5449 ** has an arbitrary key but no data. 5450 ** 5451 ** See also: CreateIndex 5452 */ 5453 /* Opcode: CreateIndex P1 P2 * * * 5454 ** Synopsis: r[P2]=root iDb=P1 5455 ** 5456 ** Allocate a new index in the main database file if P1==0 or in the 5457 ** auxiliary database file if P1==1 or in an attached database if 5458 ** P1>1. Write the root page number of the new table into 5459 ** register P2. 5460 ** 5461 ** See documentation on OP_CreateTable for additional information. 5462 */ 5463 case OP_CreateIndex: /* out2 */ 5464 case OP_CreateTable: { /* out2 */ 5465 int pgno; 5466 int flags; 5467 Db *pDb; 5468 5469 pOut = out2Prerelease(p, pOp); 5470 pgno = 0; 5471 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5472 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 5473 assert( p->readOnly==0 ); 5474 pDb = &db->aDb[pOp->p1]; 5475 assert( pDb->pBt!=0 ); 5476 if( pOp->opcode==OP_CreateTable ){ 5477 /* flags = BTREE_INTKEY; */ 5478 flags = BTREE_INTKEY; 5479 }else{ 5480 flags = BTREE_BLOBKEY; 5481 } 5482 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 5483 if( rc ) goto abort_due_to_error; 5484 pOut->u.i = pgno; 5485 break; 5486 } 5487 5488 /* Opcode: ParseSchema P1 * * P4 * 5489 ** 5490 ** Read and parse all entries from the SQLITE_MASTER table of database P1 5491 ** that match the WHERE clause P4. 5492 ** 5493 ** This opcode invokes the parser to create a new virtual machine, 5494 ** then runs the new virtual machine. It is thus a re-entrant opcode. 5495 */ 5496 case OP_ParseSchema: { 5497 int iDb; 5498 const char *zMaster; 5499 char *zSql; 5500 InitData initData; 5501 5502 /* Any prepared statement that invokes this opcode will hold mutexes 5503 ** on every btree. This is a prerequisite for invoking 5504 ** sqlite3InitCallback(). 5505 */ 5506 #ifdef SQLITE_DEBUG 5507 for(iDb=0; iDb<db->nDb; iDb++){ 5508 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 5509 } 5510 #endif 5511 5512 iDb = pOp->p1; 5513 assert( iDb>=0 && iDb<db->nDb ); 5514 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 5515 /* Used to be a conditional */ { 5516 zMaster = MASTER_NAME; 5517 initData.db = db; 5518 initData.iDb = pOp->p1; 5519 initData.pzErrMsg = &p->zErrMsg; 5520 zSql = sqlite3MPrintf(db, 5521 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 5522 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); 5523 if( zSql==0 ){ 5524 rc = SQLITE_NOMEM_BKPT; 5525 }else{ 5526 assert( db->init.busy==0 ); 5527 db->init.busy = 1; 5528 initData.rc = SQLITE_OK; 5529 assert( !db->mallocFailed ); 5530 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 5531 if( rc==SQLITE_OK ) rc = initData.rc; 5532 sqlite3DbFree(db, zSql); 5533 db->init.busy = 0; 5534 } 5535 } 5536 if( rc ){ 5537 sqlite3ResetAllSchemasOfConnection(db); 5538 if( rc==SQLITE_NOMEM ){ 5539 goto no_mem; 5540 } 5541 goto abort_due_to_error; 5542 } 5543 break; 5544 } 5545 5546 #if !defined(SQLITE_OMIT_ANALYZE) 5547 /* Opcode: LoadAnalysis P1 * * * * 5548 ** 5549 ** Read the sqlite_stat1 table for database P1 and load the content 5550 ** of that table into the internal index hash table. This will cause 5551 ** the analysis to be used when preparing all subsequent queries. 5552 */ 5553 case OP_LoadAnalysis: { 5554 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5555 rc = sqlite3AnalysisLoad(db, pOp->p1); 5556 if( rc ) goto abort_due_to_error; 5557 break; 5558 } 5559 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 5560 5561 /* Opcode: DropTable P1 * * P4 * 5562 ** 5563 ** Remove the internal (in-memory) data structures that describe 5564 ** the table named P4 in database P1. This is called after a table 5565 ** is dropped from disk (using the Destroy opcode) in order to keep 5566 ** the internal representation of the 5567 ** schema consistent with what is on disk. 5568 */ 5569 case OP_DropTable: { 5570 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 5571 break; 5572 } 5573 5574 /* Opcode: DropIndex P1 * * P4 * 5575 ** 5576 ** Remove the internal (in-memory) data structures that describe 5577 ** the index named P4 in database P1. This is called after an index 5578 ** is dropped from disk (using the Destroy opcode) 5579 ** in order to keep the internal representation of the 5580 ** schema consistent with what is on disk. 5581 */ 5582 case OP_DropIndex: { 5583 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 5584 break; 5585 } 5586 5587 /* Opcode: DropTrigger P1 * * P4 * 5588 ** 5589 ** Remove the internal (in-memory) data structures that describe 5590 ** the trigger named P4 in database P1. This is called after a trigger 5591 ** is dropped from disk (using the Destroy opcode) in order to keep 5592 ** the internal representation of the 5593 ** schema consistent with what is on disk. 5594 */ 5595 case OP_DropTrigger: { 5596 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 5597 break; 5598 } 5599 5600 5601 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 5602 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 5603 ** 5604 ** Do an analysis of the currently open database. Store in 5605 ** register P1 the text of an error message describing any problems. 5606 ** If no problems are found, store a NULL in register P1. 5607 ** 5608 ** The register P3 contains the maximum number of allowed errors. 5609 ** At most reg(P3) errors will be reported. 5610 ** In other words, the analysis stops as soon as reg(P1) errors are 5611 ** seen. Reg(P1) is updated with the number of errors remaining. 5612 ** 5613 ** The root page numbers of all tables in the database are integers 5614 ** stored in P4_INTARRAY argument. 5615 ** 5616 ** If P5 is not zero, the check is done on the auxiliary database 5617 ** file, not the main database file. 5618 ** 5619 ** This opcode is used to implement the integrity_check pragma. 5620 */ 5621 case OP_IntegrityCk: { 5622 int nRoot; /* Number of tables to check. (Number of root pages.) */ 5623 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 5624 int nErr; /* Number of errors reported */ 5625 char *z; /* Text of the error report */ 5626 Mem *pnErr; /* Register keeping track of errors remaining */ 5627 5628 assert( p->bIsReader ); 5629 nRoot = pOp->p2; 5630 aRoot = pOp->p4.ai; 5631 assert( nRoot>0 ); 5632 assert( aRoot[nRoot]==0 ); 5633 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 5634 pnErr = &aMem[pOp->p3]; 5635 assert( (pnErr->flags & MEM_Int)!=0 ); 5636 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 5637 pIn1 = &aMem[pOp->p1]; 5638 assert( pOp->p5<db->nDb ); 5639 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 5640 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 5641 (int)pnErr->u.i, &nErr); 5642 pnErr->u.i -= nErr; 5643 sqlite3VdbeMemSetNull(pIn1); 5644 if( nErr==0 ){ 5645 assert( z==0 ); 5646 }else if( z==0 ){ 5647 goto no_mem; 5648 }else{ 5649 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 5650 } 5651 UPDATE_MAX_BLOBSIZE(pIn1); 5652 sqlite3VdbeChangeEncoding(pIn1, encoding); 5653 break; 5654 } 5655 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 5656 5657 /* Opcode: RowSetAdd P1 P2 * * * 5658 ** Synopsis: rowset(P1)=r[P2] 5659 ** 5660 ** Insert the integer value held by register P2 into a boolean index 5661 ** held in register P1. 5662 ** 5663 ** An assertion fails if P2 is not an integer. 5664 */ 5665 case OP_RowSetAdd: { /* in1, in2 */ 5666 pIn1 = &aMem[pOp->p1]; 5667 pIn2 = &aMem[pOp->p2]; 5668 assert( (pIn2->flags & MEM_Int)!=0 ); 5669 if( (pIn1->flags & MEM_RowSet)==0 ){ 5670 sqlite3VdbeMemSetRowSet(pIn1); 5671 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5672 } 5673 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 5674 break; 5675 } 5676 5677 /* Opcode: RowSetRead P1 P2 P3 * * 5678 ** Synopsis: r[P3]=rowset(P1) 5679 ** 5680 ** Extract the smallest value from boolean index P1 and put that value into 5681 ** register P3. Or, if boolean index P1 is initially empty, leave P3 5682 ** unchanged and jump to instruction P2. 5683 */ 5684 case OP_RowSetRead: { /* jump, in1, out3 */ 5685 i64 val; 5686 5687 pIn1 = &aMem[pOp->p1]; 5688 if( (pIn1->flags & MEM_RowSet)==0 5689 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 5690 ){ 5691 /* The boolean index is empty */ 5692 sqlite3VdbeMemSetNull(pIn1); 5693 VdbeBranchTaken(1,2); 5694 goto jump_to_p2_and_check_for_interrupt; 5695 }else{ 5696 /* A value was pulled from the index */ 5697 VdbeBranchTaken(0,2); 5698 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 5699 } 5700 goto check_for_interrupt; 5701 } 5702 5703 /* Opcode: RowSetTest P1 P2 P3 P4 5704 ** Synopsis: if r[P3] in rowset(P1) goto P2 5705 ** 5706 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 5707 ** contains a RowSet object and that RowSet object contains 5708 ** the value held in P3, jump to register P2. Otherwise, insert the 5709 ** integer in P3 into the RowSet and continue on to the 5710 ** next opcode. 5711 ** 5712 ** The RowSet object is optimized for the case where successive sets 5713 ** of integers, where each set contains no duplicates. Each set 5714 ** of values is identified by a unique P4 value. The first set 5715 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 5716 ** non-negative. For non-negative values of P4 only the lower 4 5717 ** bits are significant. 5718 ** 5719 ** This allows optimizations: (a) when P4==0 there is no need to test 5720 ** the rowset object for P3, as it is guaranteed not to contain it, 5721 ** (b) when P4==-1 there is no need to insert the value, as it will 5722 ** never be tested for, and (c) when a value that is part of set X is 5723 ** inserted, there is no need to search to see if the same value was 5724 ** previously inserted as part of set X (only if it was previously 5725 ** inserted as part of some other set). 5726 */ 5727 case OP_RowSetTest: { /* jump, in1, in3 */ 5728 int iSet; 5729 int exists; 5730 5731 pIn1 = &aMem[pOp->p1]; 5732 pIn3 = &aMem[pOp->p3]; 5733 iSet = pOp->p4.i; 5734 assert( pIn3->flags&MEM_Int ); 5735 5736 /* If there is anything other than a rowset object in memory cell P1, 5737 ** delete it now and initialize P1 with an empty rowset 5738 */ 5739 if( (pIn1->flags & MEM_RowSet)==0 ){ 5740 sqlite3VdbeMemSetRowSet(pIn1); 5741 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 5742 } 5743 5744 assert( pOp->p4type==P4_INT32 ); 5745 assert( iSet==-1 || iSet>=0 ); 5746 if( iSet ){ 5747 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); 5748 VdbeBranchTaken(exists!=0,2); 5749 if( exists ) goto jump_to_p2; 5750 } 5751 if( iSet>=0 ){ 5752 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 5753 } 5754 break; 5755 } 5756 5757 5758 #ifndef SQLITE_OMIT_TRIGGER 5759 5760 /* Opcode: Program P1 P2 P3 P4 P5 5761 ** 5762 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 5763 ** 5764 ** P1 contains the address of the memory cell that contains the first memory 5765 ** cell in an array of values used as arguments to the sub-program. P2 5766 ** contains the address to jump to if the sub-program throws an IGNORE 5767 ** exception using the RAISE() function. Register P3 contains the address 5768 ** of a memory cell in this (the parent) VM that is used to allocate the 5769 ** memory required by the sub-vdbe at runtime. 5770 ** 5771 ** P4 is a pointer to the VM containing the trigger program. 5772 ** 5773 ** If P5 is non-zero, then recursive program invocation is enabled. 5774 */ 5775 case OP_Program: { /* jump */ 5776 int nMem; /* Number of memory registers for sub-program */ 5777 int nByte; /* Bytes of runtime space required for sub-program */ 5778 Mem *pRt; /* Register to allocate runtime space */ 5779 Mem *pMem; /* Used to iterate through memory cells */ 5780 Mem *pEnd; /* Last memory cell in new array */ 5781 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 5782 SubProgram *pProgram; /* Sub-program to execute */ 5783 void *t; /* Token identifying trigger */ 5784 5785 pProgram = pOp->p4.pProgram; 5786 pRt = &aMem[pOp->p3]; 5787 assert( pProgram->nOp>0 ); 5788 5789 /* If the p5 flag is clear, then recursive invocation of triggers is 5790 ** disabled for backwards compatibility (p5 is set if this sub-program 5791 ** is really a trigger, not a foreign key action, and the flag set 5792 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 5793 ** 5794 ** It is recursive invocation of triggers, at the SQL level, that is 5795 ** disabled. In some cases a single trigger may generate more than one 5796 ** SubProgram (if the trigger may be executed with more than one different 5797 ** ON CONFLICT algorithm). SubProgram structures associated with a 5798 ** single trigger all have the same value for the SubProgram.token 5799 ** variable. */ 5800 if( pOp->p5 ){ 5801 t = pProgram->token; 5802 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 5803 if( pFrame ) break; 5804 } 5805 5806 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 5807 rc = SQLITE_ERROR; 5808 sqlite3VdbeError(p, "too many levels of trigger recursion"); 5809 goto abort_due_to_error; 5810 } 5811 5812 /* Register pRt is used to store the memory required to save the state 5813 ** of the current program, and the memory required at runtime to execute 5814 ** the trigger program. If this trigger has been fired before, then pRt 5815 ** is already allocated. Otherwise, it must be initialized. */ 5816 if( (pRt->flags&MEM_Frame)==0 ){ 5817 /* SubProgram.nMem is set to the number of memory cells used by the 5818 ** program stored in SubProgram.aOp. As well as these, one memory 5819 ** cell is required for each cursor used by the program. Set local 5820 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 5821 */ 5822 nMem = pProgram->nMem + pProgram->nCsr; 5823 assert( nMem>0 ); 5824 if( pProgram->nCsr==0 ) nMem++; 5825 nByte = ROUND8(sizeof(VdbeFrame)) 5826 + nMem * sizeof(Mem) 5827 + pProgram->nCsr * sizeof(VdbeCursor *); 5828 pFrame = sqlite3DbMallocZero(db, nByte); 5829 if( !pFrame ){ 5830 goto no_mem; 5831 } 5832 sqlite3VdbeMemRelease(pRt); 5833 pRt->flags = MEM_Frame; 5834 pRt->u.pFrame = pFrame; 5835 5836 pFrame->v = p; 5837 pFrame->nChildMem = nMem; 5838 pFrame->nChildCsr = pProgram->nCsr; 5839 pFrame->pc = (int)(pOp - aOp); 5840 pFrame->aMem = p->aMem; 5841 pFrame->nMem = p->nMem; 5842 pFrame->apCsr = p->apCsr; 5843 pFrame->nCursor = p->nCursor; 5844 pFrame->aOp = p->aOp; 5845 pFrame->nOp = p->nOp; 5846 pFrame->token = pProgram->token; 5847 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5848 pFrame->anExec = p->anExec; 5849 #endif 5850 5851 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 5852 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 5853 pMem->flags = MEM_Undefined; 5854 pMem->db = db; 5855 } 5856 }else{ 5857 pFrame = pRt->u.pFrame; 5858 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 5859 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 5860 assert( pProgram->nCsr==pFrame->nChildCsr ); 5861 assert( (int)(pOp - aOp)==pFrame->pc ); 5862 } 5863 5864 p->nFrame++; 5865 pFrame->pParent = p->pFrame; 5866 pFrame->lastRowid = lastRowid; 5867 pFrame->nChange = p->nChange; 5868 pFrame->nDbChange = p->db->nChange; 5869 assert( pFrame->pAuxData==0 ); 5870 pFrame->pAuxData = p->pAuxData; 5871 p->pAuxData = 0; 5872 p->nChange = 0; 5873 p->pFrame = pFrame; 5874 p->aMem = aMem = VdbeFrameMem(pFrame); 5875 p->nMem = pFrame->nChildMem; 5876 p->nCursor = (u16)pFrame->nChildCsr; 5877 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 5878 p->aOp = aOp = pProgram->aOp; 5879 p->nOp = pProgram->nOp; 5880 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 5881 p->anExec = 0; 5882 #endif 5883 pOp = &aOp[-1]; 5884 5885 break; 5886 } 5887 5888 /* Opcode: Param P1 P2 * * * 5889 ** 5890 ** This opcode is only ever present in sub-programs called via the 5891 ** OP_Program instruction. Copy a value currently stored in a memory 5892 ** cell of the calling (parent) frame to cell P2 in the current frames 5893 ** address space. This is used by trigger programs to access the new.* 5894 ** and old.* values. 5895 ** 5896 ** The address of the cell in the parent frame is determined by adding 5897 ** the value of the P1 argument to the value of the P1 argument to the 5898 ** calling OP_Program instruction. 5899 */ 5900 case OP_Param: { /* out2 */ 5901 VdbeFrame *pFrame; 5902 Mem *pIn; 5903 pOut = out2Prerelease(p, pOp); 5904 pFrame = p->pFrame; 5905 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5906 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5907 break; 5908 } 5909 5910 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5911 5912 #ifndef SQLITE_OMIT_FOREIGN_KEY 5913 /* Opcode: FkCounter P1 P2 * * * 5914 ** Synopsis: fkctr[P1]+=P2 5915 ** 5916 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5917 ** If P1 is non-zero, the database constraint counter is incremented 5918 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5919 ** statement counter is incremented (immediate foreign key constraints). 5920 */ 5921 case OP_FkCounter: { 5922 if( db->flags & SQLITE_DeferFKs ){ 5923 db->nDeferredImmCons += pOp->p2; 5924 }else if( pOp->p1 ){ 5925 db->nDeferredCons += pOp->p2; 5926 }else{ 5927 p->nFkConstraint += pOp->p2; 5928 } 5929 break; 5930 } 5931 5932 /* Opcode: FkIfZero P1 P2 * * * 5933 ** Synopsis: if fkctr[P1]==0 goto P2 5934 ** 5935 ** This opcode tests if a foreign key constraint-counter is currently zero. 5936 ** If so, jump to instruction P2. Otherwise, fall through to the next 5937 ** instruction. 5938 ** 5939 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5940 ** is zero (the one that counts deferred constraint violations). If P1 is 5941 ** zero, the jump is taken if the statement constraint-counter is zero 5942 ** (immediate foreign key constraint violations). 5943 */ 5944 case OP_FkIfZero: { /* jump */ 5945 if( pOp->p1 ){ 5946 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 5947 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5948 }else{ 5949 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 5950 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 5951 } 5952 break; 5953 } 5954 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5955 5956 #ifndef SQLITE_OMIT_AUTOINCREMENT 5957 /* Opcode: MemMax P1 P2 * * * 5958 ** Synopsis: r[P1]=max(r[P1],r[P2]) 5959 ** 5960 ** P1 is a register in the root frame of this VM (the root frame is 5961 ** different from the current frame if this instruction is being executed 5962 ** within a sub-program). Set the value of register P1 to the maximum of 5963 ** its current value and the value in register P2. 5964 ** 5965 ** This instruction throws an error if the memory cell is not initially 5966 ** an integer. 5967 */ 5968 case OP_MemMax: { /* in2 */ 5969 VdbeFrame *pFrame; 5970 if( p->pFrame ){ 5971 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5972 pIn1 = &pFrame->aMem[pOp->p1]; 5973 }else{ 5974 pIn1 = &aMem[pOp->p1]; 5975 } 5976 assert( memIsValid(pIn1) ); 5977 sqlite3VdbeMemIntegerify(pIn1); 5978 pIn2 = &aMem[pOp->p2]; 5979 sqlite3VdbeMemIntegerify(pIn2); 5980 if( pIn1->u.i<pIn2->u.i){ 5981 pIn1->u.i = pIn2->u.i; 5982 } 5983 break; 5984 } 5985 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5986 5987 /* Opcode: IfPos P1 P2 P3 * * 5988 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 5989 ** 5990 ** Register P1 must contain an integer. 5991 ** If the value of register P1 is 1 or greater, subtract P3 from the 5992 ** value in P1 and jump to P2. 5993 ** 5994 ** If the initial value of register P1 is less than 1, then the 5995 ** value is unchanged and control passes through to the next instruction. 5996 */ 5997 case OP_IfPos: { /* jump, in1 */ 5998 pIn1 = &aMem[pOp->p1]; 5999 assert( pIn1->flags&MEM_Int ); 6000 VdbeBranchTaken( pIn1->u.i>0, 2); 6001 if( pIn1->u.i>0 ){ 6002 pIn1->u.i -= pOp->p3; 6003 goto jump_to_p2; 6004 } 6005 break; 6006 } 6007 6008 /* Opcode: OffsetLimit P1 P2 P3 * * 6009 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 6010 ** 6011 ** This opcode performs a commonly used computation associated with 6012 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 6013 ** holds the offset counter. The opcode computes the combined value 6014 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 6015 ** value computed is the total number of rows that will need to be 6016 ** visited in order to complete the query. 6017 ** 6018 ** If r[P3] is zero or negative, that means there is no OFFSET 6019 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 6020 ** 6021 ** if r[P1] is zero or negative, that means there is no LIMIT 6022 ** and r[P2] is set to -1. 6023 ** 6024 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 6025 */ 6026 case OP_OffsetLimit: { /* in1, out2, in3 */ 6027 i64 x; 6028 pIn1 = &aMem[pOp->p1]; 6029 pIn3 = &aMem[pOp->p3]; 6030 pOut = out2Prerelease(p, pOp); 6031 assert( pIn1->flags & MEM_Int ); 6032 assert( pIn3->flags & MEM_Int ); 6033 x = pIn1->u.i; 6034 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 6035 /* If the LIMIT is less than or equal to zero, loop forever. This 6036 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 6037 ** also loop forever. This is undocumented. In fact, one could argue 6038 ** that the loop should terminate. But assuming 1 billion iterations 6039 ** per second (far exceeding the capabilities of any current hardware) 6040 ** it would take nearly 300 years to actually reach the limit. So 6041 ** looping forever is a reasonable approximation. */ 6042 pOut->u.i = -1; 6043 }else{ 6044 pOut->u.i = x; 6045 } 6046 break; 6047 } 6048 6049 /* Opcode: IfNotZero P1 P2 * * * 6050 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 6051 ** 6052 ** Register P1 must contain an integer. If the content of register P1 is 6053 ** initially greater than zero, then decrement the value in register P1. 6054 ** If it is non-zero (negative or positive) and then also jump to P2. 6055 ** If register P1 is initially zero, leave it unchanged and fall through. 6056 */ 6057 case OP_IfNotZero: { /* jump, in1 */ 6058 pIn1 = &aMem[pOp->p1]; 6059 assert( pIn1->flags&MEM_Int ); 6060 VdbeBranchTaken(pIn1->u.i<0, 2); 6061 if( pIn1->u.i ){ 6062 if( pIn1->u.i>0 ) pIn1->u.i--; 6063 goto jump_to_p2; 6064 } 6065 break; 6066 } 6067 6068 /* Opcode: DecrJumpZero P1 P2 * * * 6069 ** Synopsis: if (--r[P1])==0 goto P2 6070 ** 6071 ** Register P1 must hold an integer. Decrement the value in P1 6072 ** and jump to P2 if the new value is exactly zero. 6073 */ 6074 case OP_DecrJumpZero: { /* jump, in1 */ 6075 pIn1 = &aMem[pOp->p1]; 6076 assert( pIn1->flags&MEM_Int ); 6077 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 6078 VdbeBranchTaken(pIn1->u.i==0, 2); 6079 if( pIn1->u.i==0 ) goto jump_to_p2; 6080 break; 6081 } 6082 6083 6084 /* Opcode: AggStep0 * P2 P3 P4 P5 6085 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6086 ** 6087 ** Execute the step function for an aggregate. The 6088 ** function has P5 arguments. P4 is a pointer to the FuncDef 6089 ** structure that specifies the function. Register P3 is the 6090 ** accumulator. 6091 ** 6092 ** The P5 arguments are taken from register P2 and its 6093 ** successors. 6094 */ 6095 /* Opcode: AggStep * P2 P3 P4 P5 6096 ** Synopsis: accum=r[P3] step(r[P2@P5]) 6097 ** 6098 ** Execute the step function for an aggregate. The 6099 ** function has P5 arguments. P4 is a pointer to an sqlite3_context 6100 ** object that is used to run the function. Register P3 is 6101 ** as the accumulator. 6102 ** 6103 ** The P5 arguments are taken from register P2 and its 6104 ** successors. 6105 ** 6106 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 6107 ** the FuncDef stored in P4 is converted into an sqlite3_context and 6108 ** the opcode is changed. In this way, the initialization of the 6109 ** sqlite3_context only happens once, instead of on each call to the 6110 ** step function. 6111 */ 6112 case OP_AggStep0: { 6113 int n; 6114 sqlite3_context *pCtx; 6115 6116 assert( pOp->p4type==P4_FUNCDEF ); 6117 n = pOp->p5; 6118 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6119 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 6120 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 6121 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); 6122 if( pCtx==0 ) goto no_mem; 6123 pCtx->pMem = 0; 6124 pCtx->pFunc = pOp->p4.pFunc; 6125 pCtx->iOp = (int)(pOp - aOp); 6126 pCtx->pVdbe = p; 6127 pCtx->argc = n; 6128 pOp->p4type = P4_FUNCCTX; 6129 pOp->p4.pCtx = pCtx; 6130 pOp->opcode = OP_AggStep; 6131 /* Fall through into OP_AggStep */ 6132 } 6133 case OP_AggStep: { 6134 int i; 6135 sqlite3_context *pCtx; 6136 Mem *pMem; 6137 Mem t; 6138 6139 assert( pOp->p4type==P4_FUNCCTX ); 6140 pCtx = pOp->p4.pCtx; 6141 pMem = &aMem[pOp->p3]; 6142 6143 /* If this function is inside of a trigger, the register array in aMem[] 6144 ** might change from one evaluation to the next. The next block of code 6145 ** checks to see if the register array has changed, and if so it 6146 ** reinitializes the relavant parts of the sqlite3_context object */ 6147 if( pCtx->pMem != pMem ){ 6148 pCtx->pMem = pMem; 6149 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 6150 } 6151 6152 #ifdef SQLITE_DEBUG 6153 for(i=0; i<pCtx->argc; i++){ 6154 assert( memIsValid(pCtx->argv[i]) ); 6155 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 6156 } 6157 #endif 6158 6159 pMem->n++; 6160 sqlite3VdbeMemInit(&t, db, MEM_Null); 6161 pCtx->pOut = &t; 6162 pCtx->fErrorOrAux = 0; 6163 pCtx->skipFlag = 0; 6164 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 6165 if( pCtx->fErrorOrAux ){ 6166 if( pCtx->isError ){ 6167 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); 6168 rc = pCtx->isError; 6169 } 6170 sqlite3VdbeMemRelease(&t); 6171 if( rc ) goto abort_due_to_error; 6172 }else{ 6173 assert( t.flags==MEM_Null ); 6174 } 6175 if( pCtx->skipFlag ){ 6176 assert( pOp[-1].opcode==OP_CollSeq ); 6177 i = pOp[-1].p1; 6178 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 6179 } 6180 break; 6181 } 6182 6183 /* Opcode: AggFinal P1 P2 * P4 * 6184 ** Synopsis: accum=r[P1] N=P2 6185 ** 6186 ** Execute the finalizer function for an aggregate. P1 is 6187 ** the memory location that is the accumulator for the aggregate. 6188 ** 6189 ** P2 is the number of arguments that the step function takes and 6190 ** P4 is a pointer to the FuncDef for this function. The P2 6191 ** argument is not used by this opcode. It is only there to disambiguate 6192 ** functions that can take varying numbers of arguments. The 6193 ** P4 argument is only needed for the degenerate case where 6194 ** the step function was not previously called. 6195 */ 6196 case OP_AggFinal: { 6197 Mem *pMem; 6198 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 6199 pMem = &aMem[pOp->p1]; 6200 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 6201 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 6202 if( rc ){ 6203 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 6204 goto abort_due_to_error; 6205 } 6206 sqlite3VdbeChangeEncoding(pMem, encoding); 6207 UPDATE_MAX_BLOBSIZE(pMem); 6208 if( sqlite3VdbeMemTooBig(pMem) ){ 6209 goto too_big; 6210 } 6211 break; 6212 } 6213 6214 #ifndef SQLITE_OMIT_WAL 6215 /* Opcode: Checkpoint P1 P2 P3 * * 6216 ** 6217 ** Checkpoint database P1. This is a no-op if P1 is not currently in 6218 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 6219 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 6220 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 6221 ** WAL after the checkpoint into mem[P3+1] and the number of pages 6222 ** in the WAL that have been checkpointed after the checkpoint 6223 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 6224 ** mem[P3+2] are initialized to -1. 6225 */ 6226 case OP_Checkpoint: { 6227 int i; /* Loop counter */ 6228 int aRes[3]; /* Results */ 6229 Mem *pMem; /* Write results here */ 6230 6231 assert( p->readOnly==0 ); 6232 aRes[0] = 0; 6233 aRes[1] = aRes[2] = -1; 6234 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 6235 || pOp->p2==SQLITE_CHECKPOINT_FULL 6236 || pOp->p2==SQLITE_CHECKPOINT_RESTART 6237 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 6238 ); 6239 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 6240 if( rc ){ 6241 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 6242 rc = SQLITE_OK; 6243 aRes[0] = 1; 6244 } 6245 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 6246 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 6247 } 6248 break; 6249 }; 6250 #endif 6251 6252 #ifndef SQLITE_OMIT_PRAGMA 6253 /* Opcode: JournalMode P1 P2 P3 * * 6254 ** 6255 ** Change the journal mode of database P1 to P3. P3 must be one of the 6256 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 6257 ** modes (delete, truncate, persist, off and memory), this is a simple 6258 ** operation. No IO is required. 6259 ** 6260 ** If changing into or out of WAL mode the procedure is more complicated. 6261 ** 6262 ** Write a string containing the final journal-mode to register P2. 6263 */ 6264 case OP_JournalMode: { /* out2 */ 6265 Btree *pBt; /* Btree to change journal mode of */ 6266 Pager *pPager; /* Pager associated with pBt */ 6267 int eNew; /* New journal mode */ 6268 int eOld; /* The old journal mode */ 6269 #ifndef SQLITE_OMIT_WAL 6270 const char *zFilename; /* Name of database file for pPager */ 6271 #endif 6272 6273 pOut = out2Prerelease(p, pOp); 6274 eNew = pOp->p3; 6275 assert( eNew==PAGER_JOURNALMODE_DELETE 6276 || eNew==PAGER_JOURNALMODE_TRUNCATE 6277 || eNew==PAGER_JOURNALMODE_PERSIST 6278 || eNew==PAGER_JOURNALMODE_OFF 6279 || eNew==PAGER_JOURNALMODE_MEMORY 6280 || eNew==PAGER_JOURNALMODE_WAL 6281 || eNew==PAGER_JOURNALMODE_QUERY 6282 ); 6283 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6284 assert( p->readOnly==0 ); 6285 6286 pBt = db->aDb[pOp->p1].pBt; 6287 pPager = sqlite3BtreePager(pBt); 6288 eOld = sqlite3PagerGetJournalMode(pPager); 6289 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 6290 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 6291 6292 #ifndef SQLITE_OMIT_WAL 6293 zFilename = sqlite3PagerFilename(pPager, 1); 6294 6295 /* Do not allow a transition to journal_mode=WAL for a database 6296 ** in temporary storage or if the VFS does not support shared memory 6297 */ 6298 if( eNew==PAGER_JOURNALMODE_WAL 6299 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 6300 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 6301 ){ 6302 eNew = eOld; 6303 } 6304 6305 if( (eNew!=eOld) 6306 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 6307 ){ 6308 if( !db->autoCommit || db->nVdbeRead>1 ){ 6309 rc = SQLITE_ERROR; 6310 sqlite3VdbeError(p, 6311 "cannot change %s wal mode from within a transaction", 6312 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 6313 ); 6314 goto abort_due_to_error; 6315 }else{ 6316 6317 if( eOld==PAGER_JOURNALMODE_WAL ){ 6318 /* If leaving WAL mode, close the log file. If successful, the call 6319 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 6320 ** file. An EXCLUSIVE lock may still be held on the database file 6321 ** after a successful return. 6322 */ 6323 rc = sqlite3PagerCloseWal(pPager, db); 6324 if( rc==SQLITE_OK ){ 6325 sqlite3PagerSetJournalMode(pPager, eNew); 6326 } 6327 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 6328 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 6329 ** as an intermediate */ 6330 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 6331 } 6332 6333 /* Open a transaction on the database file. Regardless of the journal 6334 ** mode, this transaction always uses a rollback journal. 6335 */ 6336 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 6337 if( rc==SQLITE_OK ){ 6338 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 6339 } 6340 } 6341 } 6342 #endif /* ifndef SQLITE_OMIT_WAL */ 6343 6344 if( rc ) eNew = eOld; 6345 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 6346 6347 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 6348 pOut->z = (char *)sqlite3JournalModename(eNew); 6349 pOut->n = sqlite3Strlen30(pOut->z); 6350 pOut->enc = SQLITE_UTF8; 6351 sqlite3VdbeChangeEncoding(pOut, encoding); 6352 if( rc ) goto abort_due_to_error; 6353 break; 6354 }; 6355 #endif /* SQLITE_OMIT_PRAGMA */ 6356 6357 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 6358 /* Opcode: Vacuum P1 * * * * 6359 ** 6360 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 6361 ** for an attached database. The "temp" database may not be vacuumed. 6362 */ 6363 case OP_Vacuum: { 6364 assert( p->readOnly==0 ); 6365 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); 6366 if( rc ) goto abort_due_to_error; 6367 break; 6368 } 6369 #endif 6370 6371 #if !defined(SQLITE_OMIT_AUTOVACUUM) 6372 /* Opcode: IncrVacuum P1 P2 * * * 6373 ** 6374 ** Perform a single step of the incremental vacuum procedure on 6375 ** the P1 database. If the vacuum has finished, jump to instruction 6376 ** P2. Otherwise, fall through to the next instruction. 6377 */ 6378 case OP_IncrVacuum: { /* jump */ 6379 Btree *pBt; 6380 6381 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6382 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6383 assert( p->readOnly==0 ); 6384 pBt = db->aDb[pOp->p1].pBt; 6385 rc = sqlite3BtreeIncrVacuum(pBt); 6386 VdbeBranchTaken(rc==SQLITE_DONE,2); 6387 if( rc ){ 6388 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6389 rc = SQLITE_OK; 6390 goto jump_to_p2; 6391 } 6392 break; 6393 } 6394 #endif 6395 6396 /* Opcode: Expire P1 * * * * 6397 ** 6398 ** Cause precompiled statements to expire. When an expired statement 6399 ** is executed using sqlite3_step() it will either automatically 6400 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 6401 ** or it will fail with SQLITE_SCHEMA. 6402 ** 6403 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 6404 ** then only the currently executing statement is expired. 6405 */ 6406 case OP_Expire: { 6407 if( !pOp->p1 ){ 6408 sqlite3ExpirePreparedStatements(db); 6409 }else{ 6410 p->expired = 1; 6411 } 6412 break; 6413 } 6414 6415 #ifndef SQLITE_OMIT_SHARED_CACHE 6416 /* Opcode: TableLock P1 P2 P3 P4 * 6417 ** Synopsis: iDb=P1 root=P2 write=P3 6418 ** 6419 ** Obtain a lock on a particular table. This instruction is only used when 6420 ** the shared-cache feature is enabled. 6421 ** 6422 ** P1 is the index of the database in sqlite3.aDb[] of the database 6423 ** on which the lock is acquired. A readlock is obtained if P3==0 or 6424 ** a write lock if P3==1. 6425 ** 6426 ** P2 contains the root-page of the table to lock. 6427 ** 6428 ** P4 contains a pointer to the name of the table being locked. This is only 6429 ** used to generate an error message if the lock cannot be obtained. 6430 */ 6431 case OP_TableLock: { 6432 u8 isWriteLock = (u8)pOp->p3; 6433 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 6434 int p1 = pOp->p1; 6435 assert( p1>=0 && p1<db->nDb ); 6436 assert( DbMaskTest(p->btreeMask, p1) ); 6437 assert( isWriteLock==0 || isWriteLock==1 ); 6438 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 6439 if( rc ){ 6440 if( (rc&0xFF)==SQLITE_LOCKED ){ 6441 const char *z = pOp->p4.z; 6442 sqlite3VdbeError(p, "database table is locked: %s", z); 6443 } 6444 goto abort_due_to_error; 6445 } 6446 } 6447 break; 6448 } 6449 #endif /* SQLITE_OMIT_SHARED_CACHE */ 6450 6451 #ifndef SQLITE_OMIT_VIRTUALTABLE 6452 /* Opcode: VBegin * * * P4 * 6453 ** 6454 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 6455 ** xBegin method for that table. 6456 ** 6457 ** Also, whether or not P4 is set, check that this is not being called from 6458 ** within a callback to a virtual table xSync() method. If it is, the error 6459 ** code will be set to SQLITE_LOCKED. 6460 */ 6461 case OP_VBegin: { 6462 VTable *pVTab; 6463 pVTab = pOp->p4.pVtab; 6464 rc = sqlite3VtabBegin(db, pVTab); 6465 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 6466 if( rc ) goto abort_due_to_error; 6467 break; 6468 } 6469 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6470 6471 #ifndef SQLITE_OMIT_VIRTUALTABLE 6472 /* Opcode: VCreate P1 P2 * * * 6473 ** 6474 ** P2 is a register that holds the name of a virtual table in database 6475 ** P1. Call the xCreate method for that table. 6476 */ 6477 case OP_VCreate: { 6478 Mem sMem; /* For storing the record being decoded */ 6479 const char *zTab; /* Name of the virtual table */ 6480 6481 memset(&sMem, 0, sizeof(sMem)); 6482 sMem.db = db; 6483 /* Because P2 is always a static string, it is impossible for the 6484 ** sqlite3VdbeMemCopy() to fail */ 6485 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 6486 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 6487 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 6488 assert( rc==SQLITE_OK ); 6489 zTab = (const char*)sqlite3_value_text(&sMem); 6490 assert( zTab || db->mallocFailed ); 6491 if( zTab ){ 6492 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 6493 } 6494 sqlite3VdbeMemRelease(&sMem); 6495 if( rc ) goto abort_due_to_error; 6496 break; 6497 } 6498 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6499 6500 #ifndef SQLITE_OMIT_VIRTUALTABLE 6501 /* Opcode: VDestroy P1 * * P4 * 6502 ** 6503 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 6504 ** of that table. 6505 */ 6506 case OP_VDestroy: { 6507 db->nVDestroy++; 6508 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 6509 db->nVDestroy--; 6510 if( rc ) goto abort_due_to_error; 6511 break; 6512 } 6513 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6514 6515 #ifndef SQLITE_OMIT_VIRTUALTABLE 6516 /* Opcode: VOpen P1 * * P4 * 6517 ** 6518 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6519 ** P1 is a cursor number. This opcode opens a cursor to the virtual 6520 ** table and stores that cursor in P1. 6521 */ 6522 case OP_VOpen: { 6523 VdbeCursor *pCur; 6524 sqlite3_vtab_cursor *pVCur; 6525 sqlite3_vtab *pVtab; 6526 const sqlite3_module *pModule; 6527 6528 assert( p->bIsReader ); 6529 pCur = 0; 6530 pVCur = 0; 6531 pVtab = pOp->p4.pVtab->pVtab; 6532 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6533 rc = SQLITE_LOCKED; 6534 goto abort_due_to_error; 6535 } 6536 pModule = pVtab->pModule; 6537 rc = pModule->xOpen(pVtab, &pVCur); 6538 sqlite3VtabImportErrmsg(p, pVtab); 6539 if( rc ) goto abort_due_to_error; 6540 6541 /* Initialize sqlite3_vtab_cursor base class */ 6542 pVCur->pVtab = pVtab; 6543 6544 /* Initialize vdbe cursor object */ 6545 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); 6546 if( pCur ){ 6547 pCur->uc.pVCur = pVCur; 6548 pVtab->nRef++; 6549 }else{ 6550 assert( db->mallocFailed ); 6551 pModule->xClose(pVCur); 6552 goto no_mem; 6553 } 6554 break; 6555 } 6556 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6557 6558 #ifndef SQLITE_OMIT_VIRTUALTABLE 6559 /* Opcode: VFilter P1 P2 P3 P4 * 6560 ** Synopsis: iplan=r[P3] zplan='P4' 6561 ** 6562 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 6563 ** the filtered result set is empty. 6564 ** 6565 ** P4 is either NULL or a string that was generated by the xBestIndex 6566 ** method of the module. The interpretation of the P4 string is left 6567 ** to the module implementation. 6568 ** 6569 ** This opcode invokes the xFilter method on the virtual table specified 6570 ** by P1. The integer query plan parameter to xFilter is stored in register 6571 ** P3. Register P3+1 stores the argc parameter to be passed to the 6572 ** xFilter method. Registers P3+2..P3+1+argc are the argc 6573 ** additional parameters which are passed to 6574 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 6575 ** 6576 ** A jump is made to P2 if the result set after filtering would be empty. 6577 */ 6578 case OP_VFilter: { /* jump */ 6579 int nArg; 6580 int iQuery; 6581 const sqlite3_module *pModule; 6582 Mem *pQuery; 6583 Mem *pArgc; 6584 sqlite3_vtab_cursor *pVCur; 6585 sqlite3_vtab *pVtab; 6586 VdbeCursor *pCur; 6587 int res; 6588 int i; 6589 Mem **apArg; 6590 6591 pQuery = &aMem[pOp->p3]; 6592 pArgc = &pQuery[1]; 6593 pCur = p->apCsr[pOp->p1]; 6594 assert( memIsValid(pQuery) ); 6595 REGISTER_TRACE(pOp->p3, pQuery); 6596 assert( pCur->eCurType==CURTYPE_VTAB ); 6597 pVCur = pCur->uc.pVCur; 6598 pVtab = pVCur->pVtab; 6599 pModule = pVtab->pModule; 6600 6601 /* Grab the index number and argc parameters */ 6602 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 6603 nArg = (int)pArgc->u.i; 6604 iQuery = (int)pQuery->u.i; 6605 6606 /* Invoke the xFilter method */ 6607 res = 0; 6608 apArg = p->apArg; 6609 for(i = 0; i<nArg; i++){ 6610 apArg[i] = &pArgc[i+1]; 6611 } 6612 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 6613 sqlite3VtabImportErrmsg(p, pVtab); 6614 if( rc ) goto abort_due_to_error; 6615 res = pModule->xEof(pVCur); 6616 pCur->nullRow = 0; 6617 VdbeBranchTaken(res!=0,2); 6618 if( res ) goto jump_to_p2; 6619 break; 6620 } 6621 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6622 6623 #ifndef SQLITE_OMIT_VIRTUALTABLE 6624 /* Opcode: VColumn P1 P2 P3 * * 6625 ** Synopsis: r[P3]=vcolumn(P2) 6626 ** 6627 ** Store the value of the P2-th column of 6628 ** the row of the virtual-table that the 6629 ** P1 cursor is pointing to into register P3. 6630 */ 6631 case OP_VColumn: { 6632 sqlite3_vtab *pVtab; 6633 const sqlite3_module *pModule; 6634 Mem *pDest; 6635 sqlite3_context sContext; 6636 6637 VdbeCursor *pCur = p->apCsr[pOp->p1]; 6638 assert( pCur->eCurType==CURTYPE_VTAB ); 6639 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6640 pDest = &aMem[pOp->p3]; 6641 memAboutToChange(p, pDest); 6642 if( pCur->nullRow ){ 6643 sqlite3VdbeMemSetNull(pDest); 6644 break; 6645 } 6646 pVtab = pCur->uc.pVCur->pVtab; 6647 pModule = pVtab->pModule; 6648 assert( pModule->xColumn ); 6649 memset(&sContext, 0, sizeof(sContext)); 6650 sContext.pOut = pDest; 6651 MemSetTypeFlag(pDest, MEM_Null); 6652 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 6653 sqlite3VtabImportErrmsg(p, pVtab); 6654 if( sContext.isError ){ 6655 rc = sContext.isError; 6656 } 6657 sqlite3VdbeChangeEncoding(pDest, encoding); 6658 REGISTER_TRACE(pOp->p3, pDest); 6659 UPDATE_MAX_BLOBSIZE(pDest); 6660 6661 if( sqlite3VdbeMemTooBig(pDest) ){ 6662 goto too_big; 6663 } 6664 if( rc ) goto abort_due_to_error; 6665 break; 6666 } 6667 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6668 6669 #ifndef SQLITE_OMIT_VIRTUALTABLE 6670 /* Opcode: VNext P1 P2 * * * 6671 ** 6672 ** Advance virtual table P1 to the next row in its result set and 6673 ** jump to instruction P2. Or, if the virtual table has reached 6674 ** the end of its result set, then fall through to the next instruction. 6675 */ 6676 case OP_VNext: { /* jump */ 6677 sqlite3_vtab *pVtab; 6678 const sqlite3_module *pModule; 6679 int res; 6680 VdbeCursor *pCur; 6681 6682 res = 0; 6683 pCur = p->apCsr[pOp->p1]; 6684 assert( pCur->eCurType==CURTYPE_VTAB ); 6685 if( pCur->nullRow ){ 6686 break; 6687 } 6688 pVtab = pCur->uc.pVCur->pVtab; 6689 pModule = pVtab->pModule; 6690 assert( pModule->xNext ); 6691 6692 /* Invoke the xNext() method of the module. There is no way for the 6693 ** underlying implementation to return an error if one occurs during 6694 ** xNext(). Instead, if an error occurs, true is returned (indicating that 6695 ** data is available) and the error code returned when xColumn or 6696 ** some other method is next invoked on the save virtual table cursor. 6697 */ 6698 rc = pModule->xNext(pCur->uc.pVCur); 6699 sqlite3VtabImportErrmsg(p, pVtab); 6700 if( rc ) goto abort_due_to_error; 6701 res = pModule->xEof(pCur->uc.pVCur); 6702 VdbeBranchTaken(!res,2); 6703 if( !res ){ 6704 /* If there is data, jump to P2 */ 6705 goto jump_to_p2_and_check_for_interrupt; 6706 } 6707 goto check_for_interrupt; 6708 } 6709 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6710 6711 #ifndef SQLITE_OMIT_VIRTUALTABLE 6712 /* Opcode: VRename P1 * * P4 * 6713 ** 6714 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6715 ** This opcode invokes the corresponding xRename method. The value 6716 ** in register P1 is passed as the zName argument to the xRename method. 6717 */ 6718 case OP_VRename: { 6719 sqlite3_vtab *pVtab; 6720 Mem *pName; 6721 6722 pVtab = pOp->p4.pVtab->pVtab; 6723 pName = &aMem[pOp->p1]; 6724 assert( pVtab->pModule->xRename ); 6725 assert( memIsValid(pName) ); 6726 assert( p->readOnly==0 ); 6727 REGISTER_TRACE(pOp->p1, pName); 6728 assert( pName->flags & MEM_Str ); 6729 testcase( pName->enc==SQLITE_UTF8 ); 6730 testcase( pName->enc==SQLITE_UTF16BE ); 6731 testcase( pName->enc==SQLITE_UTF16LE ); 6732 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 6733 if( rc ) goto abort_due_to_error; 6734 rc = pVtab->pModule->xRename(pVtab, pName->z); 6735 sqlite3VtabImportErrmsg(p, pVtab); 6736 p->expired = 0; 6737 if( rc ) goto abort_due_to_error; 6738 break; 6739 } 6740 #endif 6741 6742 #ifndef SQLITE_OMIT_VIRTUALTABLE 6743 /* Opcode: VUpdate P1 P2 P3 P4 P5 6744 ** Synopsis: data=r[P3@P2] 6745 ** 6746 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 6747 ** This opcode invokes the corresponding xUpdate method. P2 values 6748 ** are contiguous memory cells starting at P3 to pass to the xUpdate 6749 ** invocation. The value in register (P3+P2-1) corresponds to the 6750 ** p2th element of the argv array passed to xUpdate. 6751 ** 6752 ** The xUpdate method will do a DELETE or an INSERT or both. 6753 ** The argv[0] element (which corresponds to memory cell P3) 6754 ** is the rowid of a row to delete. If argv[0] is NULL then no 6755 ** deletion occurs. The argv[1] element is the rowid of the new 6756 ** row. This can be NULL to have the virtual table select the new 6757 ** rowid for itself. The subsequent elements in the array are 6758 ** the values of columns in the new row. 6759 ** 6760 ** If P2==1 then no insert is performed. argv[0] is the rowid of 6761 ** a row to delete. 6762 ** 6763 ** P1 is a boolean flag. If it is set to true and the xUpdate call 6764 ** is successful, then the value returned by sqlite3_last_insert_rowid() 6765 ** is set to the value of the rowid for the row just inserted. 6766 ** 6767 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 6768 ** apply in the case of a constraint failure on an insert or update. 6769 */ 6770 case OP_VUpdate: { 6771 sqlite3_vtab *pVtab; 6772 const sqlite3_module *pModule; 6773 int nArg; 6774 int i; 6775 sqlite_int64 rowid; 6776 Mem **apArg; 6777 Mem *pX; 6778 6779 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 6780 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 6781 ); 6782 assert( p->readOnly==0 ); 6783 pVtab = pOp->p4.pVtab->pVtab; 6784 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 6785 rc = SQLITE_LOCKED; 6786 goto abort_due_to_error; 6787 } 6788 pModule = pVtab->pModule; 6789 nArg = pOp->p2; 6790 assert( pOp->p4type==P4_VTAB ); 6791 if( ALWAYS(pModule->xUpdate) ){ 6792 u8 vtabOnConflict = db->vtabOnConflict; 6793 apArg = p->apArg; 6794 pX = &aMem[pOp->p3]; 6795 for(i=0; i<nArg; i++){ 6796 assert( memIsValid(pX) ); 6797 memAboutToChange(p, pX); 6798 apArg[i] = pX; 6799 pX++; 6800 } 6801 db->vtabOnConflict = pOp->p5; 6802 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 6803 db->vtabOnConflict = vtabOnConflict; 6804 sqlite3VtabImportErrmsg(p, pVtab); 6805 if( rc==SQLITE_OK && pOp->p1 ){ 6806 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 6807 db->lastRowid = lastRowid = rowid; 6808 } 6809 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 6810 if( pOp->p5==OE_Ignore ){ 6811 rc = SQLITE_OK; 6812 }else{ 6813 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 6814 } 6815 }else{ 6816 p->nChange++; 6817 } 6818 if( rc ) goto abort_due_to_error; 6819 } 6820 break; 6821 } 6822 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 6823 6824 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6825 /* Opcode: Pagecount P1 P2 * * * 6826 ** 6827 ** Write the current number of pages in database P1 to memory cell P2. 6828 */ 6829 case OP_Pagecount: { /* out2 */ 6830 pOut = out2Prerelease(p, pOp); 6831 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 6832 break; 6833 } 6834 #endif 6835 6836 6837 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 6838 /* Opcode: MaxPgcnt P1 P2 P3 * * 6839 ** 6840 ** Try to set the maximum page count for database P1 to the value in P3. 6841 ** Do not let the maximum page count fall below the current page count and 6842 ** do not change the maximum page count value if P3==0. 6843 ** 6844 ** Store the maximum page count after the change in register P2. 6845 */ 6846 case OP_MaxPgcnt: { /* out2 */ 6847 unsigned int newMax; 6848 Btree *pBt; 6849 6850 pOut = out2Prerelease(p, pOp); 6851 pBt = db->aDb[pOp->p1].pBt; 6852 newMax = 0; 6853 if( pOp->p3 ){ 6854 newMax = sqlite3BtreeLastPage(pBt); 6855 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 6856 } 6857 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 6858 break; 6859 } 6860 #endif 6861 6862 6863 /* Opcode: Init P1 P2 * P4 * 6864 ** Synopsis: Start at P2 6865 ** 6866 ** Programs contain a single instance of this opcode as the very first 6867 ** opcode. 6868 ** 6869 ** If tracing is enabled (by the sqlite3_trace()) interface, then 6870 ** the UTF-8 string contained in P4 is emitted on the trace callback. 6871 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 6872 ** 6873 ** If P2 is not zero, jump to instruction P2. 6874 ** 6875 ** Increment the value of P1 so that OP_Once opcodes will jump the 6876 ** first time they are evaluated for this run. 6877 */ 6878 case OP_Init: { /* jump */ 6879 char *zTrace; 6880 int i; 6881 6882 /* If the P4 argument is not NULL, then it must be an SQL comment string. 6883 ** The "--" string is broken up to prevent false-positives with srcck1.c. 6884 ** 6885 ** This assert() provides evidence for: 6886 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 6887 ** would have been returned by the legacy sqlite3_trace() interface by 6888 ** using the X argument when X begins with "--" and invoking 6889 ** sqlite3_expanded_sql(P) otherwise. 6890 */ 6891 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 6892 assert( pOp==p->aOp ); /* Always instruction 0 */ 6893 6894 #ifndef SQLITE_OMIT_TRACE 6895 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 6896 && !p->doingRerun 6897 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6898 ){ 6899 #ifndef SQLITE_OMIT_DEPRECATED 6900 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 6901 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; 6902 char *z = sqlite3VdbeExpandSql(p, zTrace); 6903 x(db->pTraceArg, z); 6904 sqlite3_free(z); 6905 }else 6906 #endif 6907 { 6908 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 6909 } 6910 } 6911 #ifdef SQLITE_USE_FCNTL_TRACE 6912 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 6913 if( zTrace ){ 6914 int j; 6915 for(j=0; j<db->nDb; j++){ 6916 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 6917 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 6918 } 6919 } 6920 #endif /* SQLITE_USE_FCNTL_TRACE */ 6921 #ifdef SQLITE_DEBUG 6922 if( (db->flags & SQLITE_SqlTrace)!=0 6923 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 6924 ){ 6925 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 6926 } 6927 #endif /* SQLITE_DEBUG */ 6928 #endif /* SQLITE_OMIT_TRACE */ 6929 assert( pOp->p2>0 ); 6930 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 6931 for(i=1; i<p->nOp; i++){ 6932 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 6933 } 6934 pOp->p1 = 0; 6935 } 6936 pOp->p1++; 6937 goto jump_to_p2; 6938 } 6939 6940 #ifdef SQLITE_ENABLE_CURSOR_HINTS 6941 /* Opcode: CursorHint P1 * * P4 * 6942 ** 6943 ** Provide a hint to cursor P1 that it only needs to return rows that 6944 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 6945 ** to values currently held in registers. TK_COLUMN terms in the P4 6946 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 6947 */ 6948 case OP_CursorHint: { 6949 VdbeCursor *pC; 6950 6951 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6952 assert( pOp->p4type==P4_EXPR ); 6953 pC = p->apCsr[pOp->p1]; 6954 if( pC ){ 6955 assert( pC->eCurType==CURTYPE_BTREE ); 6956 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 6957 pOp->p4.pExpr, aMem); 6958 } 6959 break; 6960 } 6961 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 6962 6963 /* Opcode: Noop * * * * * 6964 ** 6965 ** Do nothing. This instruction is often useful as a jump 6966 ** destination. 6967 */ 6968 /* 6969 ** The magic Explain opcode are only inserted when explain==2 (which 6970 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 6971 ** This opcode records information from the optimizer. It is the 6972 ** the same as a no-op. This opcodesnever appears in a real VM program. 6973 */ 6974 default: { /* This is really OP_Noop and OP_Explain */ 6975 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 6976 break; 6977 } 6978 6979 /***************************************************************************** 6980 ** The cases of the switch statement above this line should all be indented 6981 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 6982 ** readability. From this point on down, the normal indentation rules are 6983 ** restored. 6984 *****************************************************************************/ 6985 } 6986 6987 #ifdef VDBE_PROFILE 6988 { 6989 u64 endTime = sqlite3Hwtime(); 6990 if( endTime>start ) pOrigOp->cycles += endTime - start; 6991 pOrigOp->cnt++; 6992 } 6993 #endif 6994 6995 /* The following code adds nothing to the actual functionality 6996 ** of the program. It is only here for testing and debugging. 6997 ** On the other hand, it does burn CPU cycles every time through 6998 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 6999 */ 7000 #ifndef NDEBUG 7001 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 7002 7003 #ifdef SQLITE_DEBUG 7004 if( db->flags & SQLITE_VdbeTrace ){ 7005 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 7006 if( rc!=0 ) printf("rc=%d\n",rc); 7007 if( opProperty & (OPFLG_OUT2) ){ 7008 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 7009 } 7010 if( opProperty & OPFLG_OUT3 ){ 7011 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 7012 } 7013 } 7014 #endif /* SQLITE_DEBUG */ 7015 #endif /* NDEBUG */ 7016 } /* The end of the for(;;) loop the loops through opcodes */ 7017 7018 /* If we reach this point, it means that execution is finished with 7019 ** an error of some kind. 7020 */ 7021 abort_due_to_error: 7022 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; 7023 assert( rc ); 7024 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 7025 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7026 } 7027 p->rc = rc; 7028 sqlite3SystemError(db, rc); 7029 testcase( sqlite3GlobalConfig.xLog!=0 ); 7030 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 7031 (int)(pOp - aOp), p->zSql, p->zErrMsg); 7032 sqlite3VdbeHalt(p); 7033 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 7034 rc = SQLITE_ERROR; 7035 if( resetSchemaOnFault>0 ){ 7036 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 7037 } 7038 7039 /* This is the only way out of this procedure. We have to 7040 ** release the mutexes on btrees that were acquired at the 7041 ** top. */ 7042 vdbe_return: 7043 db->lastRowid = lastRowid; 7044 testcase( nVmStep>0 ); 7045 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 7046 sqlite3VdbeLeave(p); 7047 assert( rc!=SQLITE_OK || nExtraDelete==0 7048 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 7049 ); 7050 return rc; 7051 7052 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 7053 ** is encountered. 7054 */ 7055 too_big: 7056 sqlite3VdbeError(p, "string or blob too big"); 7057 rc = SQLITE_TOOBIG; 7058 goto abort_due_to_error; 7059 7060 /* Jump to here if a malloc() fails. 7061 */ 7062 no_mem: 7063 sqlite3OomFault(db); 7064 sqlite3VdbeError(p, "out of memory"); 7065 rc = SQLITE_NOMEM_BKPT; 7066 goto abort_due_to_error; 7067 7068 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 7069 ** flag. 7070 */ 7071 abort_due_to_interrupt: 7072 assert( db->u1.isInterrupted ); 7073 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 7074 p->rc = rc; 7075 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 7076 goto abort_due_to_error; 7077 } 7078