xref: /sqlite-3.40.0/src/vdbe.c (revision 85b623f2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances.  This file is solely interested in executing
16 ** the VDBE program.
17 **
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
20 **
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement.  VDBE programs are
23 ** similar in form to assembly language.  The program consists of
24 ** a linear sequence of operations.  Each operation has an opcode
25 ** and 3 operands.  Operands P1 and P2 are integers.  Operand P3
26 ** is a null-terminated string.   The P2 operand must be non-negative.
27 ** Opcodes will typically ignore one or more operands.  Many opcodes
28 ** ignore all three operands.
29 **
30 ** Computation results are stored on a stack.  Each entry on the
31 ** stack is either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value.  An inplicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
39 **
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files.  The formatting
42 ** of the code in this file is, therefore, important.  See other comments
43 ** in this file for details.  If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
45 **
46 ** $Id: vdbe.c,v 1.660 2007/12/13 21:54:11 drh Exp $
47 */
48 #include "sqliteInt.h"
49 #include <ctype.h>
50 #include "vdbeInt.h"
51 
52 /*
53 ** The following global variable is incremented every time a cursor
54 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
55 ** procedures use this information to make sure that indices are
56 ** working correctly.  This variable has no function other than to
57 ** help verify the correct operation of the library.
58 */
59 #ifdef SQLITE_TEST
60 int sqlite3_search_count = 0;
61 #endif
62 
63 /*
64 ** When this global variable is positive, it gets decremented once before
65 ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
66 ** field of the sqlite3 structure is set in order to simulate and interrupt.
67 **
68 ** This facility is used for testing purposes only.  It does not function
69 ** in an ordinary build.
70 */
71 #ifdef SQLITE_TEST
72 int sqlite3_interrupt_count = 0;
73 #endif
74 
75 /*
76 ** The next global variable is incremented each type the OP_Sort opcode
77 ** is executed.  The test procedures use this information to make sure that
78 ** sorting is occurring or not occuring at appropriate times.   This variable
79 ** has no function other than to help verify the correct operation of the
80 ** library.
81 */
82 #ifdef SQLITE_TEST
83 int sqlite3_sort_count = 0;
84 #endif
85 
86 /*
87 ** The next global variable records the size of the largest MEM_Blob
88 ** or MEM_Str that has appeared on the VDBE stack.  The test procedures
89 ** use this information to make sure that the zero-blob functionality
90 ** is working correctly.   This variable has no function other than to
91 ** help verify the correct operation of the library.
92 */
93 #ifdef SQLITE_TEST
94 int sqlite3_max_blobsize = 0;
95 #endif
96 
97 /*
98 ** Release the memory associated with the given stack level.  This
99 ** leaves the Mem.flags field in an inconsistent state.
100 */
101 #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
102 
103 /*
104 ** Convert the given stack entity into a string if it isn't one
105 ** already. Return non-zero if a malloc() fails.
106 */
107 #define Stringify(P, enc) \
108    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
109      { goto no_mem; }
110 
111 /*
112 ** The header of a record consists of a sequence variable-length integers.
113 ** These integers are almost always small and are encoded as a single byte.
114 ** The following macro takes advantage this fact to provide a fast decode
115 ** of the integers in a record header.  It is faster for the common case
116 ** where the integer is a single byte.  It is a little slower when the
117 ** integer is two or more bytes.  But overall it is faster.
118 **
119 ** The following expressions are equivalent:
120 **
121 **     x = sqlite3GetVarint32( A, &B );
122 **
123 **     x = GetVarint( A, B );
124 **
125 */
126 #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
127 
128 /*
129 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
130 ** a pointer to a dynamically allocated string where some other entity
131 ** is responsible for deallocating that string.  Because the stack entry
132 ** does not control the string, it might be deleted without the stack
133 ** entry knowing it.
134 **
135 ** This routine converts an ephemeral string into a dynamically allocated
136 ** string that the stack entry itself controls.  In other words, it
137 ** converts an MEM_Ephem string into an MEM_Dyn string.
138 */
139 #define Deephemeralize(P) \
140    if( ((P)->flags&MEM_Ephem)!=0 \
141        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
142 
143 /*
144 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145 ** P if required.
146 */
147 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
148 
149 /*
150 ** Argument pMem points at a memory cell that will be passed to a
151 ** user-defined function or returned to the user as the result of a query.
152 ** The second argument, 'db_enc' is the text encoding used by the vdbe for
153 ** stack variables.  This routine sets the pMem->enc and pMem->type
154 ** variables used by the sqlite3_value_*() routines.
155 */
156 #define storeTypeInfo(A,B) _storeTypeInfo(A)
157 static void _storeTypeInfo(Mem *pMem){
158   int flags = pMem->flags;
159   if( flags & MEM_Null ){
160     pMem->type = SQLITE_NULL;
161   }
162   else if( flags & MEM_Int ){
163     pMem->type = SQLITE_INTEGER;
164   }
165   else if( flags & MEM_Real ){
166     pMem->type = SQLITE_FLOAT;
167   }
168   else if( flags & MEM_Str ){
169     pMem->type = SQLITE_TEXT;
170   }else{
171     pMem->type = SQLITE_BLOB;
172   }
173 }
174 
175 /*
176 ** Pop the stack N times.
177 */
178 static void popStack(Mem **ppTos, int N){
179   Mem *pTos = *ppTos;
180   while( N>0 ){
181     N--;
182     Release(pTos);
183     pTos--;
184   }
185   *ppTos = pTos;
186 }
187 
188 /*
189 ** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
190 ** if we run out of memory.
191 */
192 static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
193   Cursor *pCx;
194   assert( iCur<p->nCursor );
195   if( p->apCsr[iCur] ){
196     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
197   }
198   p->apCsr[iCur] = pCx = sqlite3MallocZero( sizeof(Cursor) );
199   if( pCx ){
200     pCx->iDb = iDb;
201   }
202   return pCx;
203 }
204 
205 /*
206 ** Try to convert a value into a numeric representation if we can
207 ** do so without loss of information.  In other words, if the string
208 ** looks like a number, convert it into a number.  If it does not
209 ** look like a number, leave it alone.
210 */
211 static void applyNumericAffinity(Mem *pRec){
212   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
213     int realnum;
214     sqlite3VdbeMemNulTerminate(pRec);
215     if( (pRec->flags&MEM_Str)
216          && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
217       i64 value;
218       sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
219       if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
220         sqlite3VdbeMemRelease(pRec);
221         pRec->u.i = value;
222         pRec->flags = MEM_Int;
223       }else{
224         sqlite3VdbeMemRealify(pRec);
225       }
226     }
227   }
228 }
229 
230 /*
231 ** Processing is determine by the affinity parameter:
232 **
233 ** SQLITE_AFF_INTEGER:
234 ** SQLITE_AFF_REAL:
235 ** SQLITE_AFF_NUMERIC:
236 **    Try to convert pRec to an integer representation or a
237 **    floating-point representation if an integer representation
238 **    is not possible.  Note that the integer representation is
239 **    always preferred, even if the affinity is REAL, because
240 **    an integer representation is more space efficient on disk.
241 **
242 ** SQLITE_AFF_TEXT:
243 **    Convert pRec to a text representation.
244 **
245 ** SQLITE_AFF_NONE:
246 **    No-op.  pRec is unchanged.
247 */
248 static void applyAffinity(
249   Mem *pRec,          /* The value to apply affinity to */
250   char affinity,      /* The affinity to be applied */
251   u8 enc              /* Use this text encoding */
252 ){
253   if( affinity==SQLITE_AFF_TEXT ){
254     /* Only attempt the conversion to TEXT if there is an integer or real
255     ** representation (blob and NULL do not get converted) but no string
256     ** representation.
257     */
258     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
259       sqlite3VdbeMemStringify(pRec, enc);
260     }
261     pRec->flags &= ~(MEM_Real|MEM_Int);
262   }else if( affinity!=SQLITE_AFF_NONE ){
263     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
264              || affinity==SQLITE_AFF_NUMERIC );
265     applyNumericAffinity(pRec);
266     if( pRec->flags & MEM_Real ){
267       sqlite3VdbeIntegerAffinity(pRec);
268     }
269   }
270 }
271 
272 /*
273 ** Try to convert the type of a function argument or a result column
274 ** into a numeric representation.  Use either INTEGER or REAL whichever
275 ** is appropriate.  But only do the conversion if it is possible without
276 ** loss of information and return the revised type of the argument.
277 **
278 ** This is an EXPERIMENTAL api and is subject to change or removal.
279 */
280 int sqlite3_value_numeric_type(sqlite3_value *pVal){
281   Mem *pMem = (Mem*)pVal;
282   applyNumericAffinity(pMem);
283   storeTypeInfo(pMem, 0);
284   return pMem->type;
285 }
286 
287 /*
288 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
289 ** not the internal Mem* type.
290 */
291 void sqlite3ValueApplyAffinity(
292   sqlite3_value *pVal,
293   u8 affinity,
294   u8 enc
295 ){
296   applyAffinity((Mem *)pVal, affinity, enc);
297 }
298 
299 #ifdef SQLITE_DEBUG
300 /*
301 ** Write a nice string representation of the contents of cell pMem
302 ** into buffer zBuf, length nBuf.
303 */
304 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
305   char *zCsr = zBuf;
306   int f = pMem->flags;
307 
308   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
309 
310   if( f&MEM_Blob ){
311     int i;
312     char c;
313     if( f & MEM_Dyn ){
314       c = 'z';
315       assert( (f & (MEM_Static|MEM_Ephem))==0 );
316     }else if( f & MEM_Static ){
317       c = 't';
318       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
319     }else if( f & MEM_Ephem ){
320       c = 'e';
321       assert( (f & (MEM_Static|MEM_Dyn))==0 );
322     }else{
323       c = 's';
324     }
325 
326     sqlite3_snprintf(100, zCsr, "%c", c);
327     zCsr += strlen(zCsr);
328     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
329     zCsr += strlen(zCsr);
330     for(i=0; i<16 && i<pMem->n; i++){
331       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
332       zCsr += strlen(zCsr);
333     }
334     for(i=0; i<16 && i<pMem->n; i++){
335       char z = pMem->z[i];
336       if( z<32 || z>126 ) *zCsr++ = '.';
337       else *zCsr++ = z;
338     }
339 
340     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
341     zCsr += strlen(zCsr);
342     if( f & MEM_Zero ){
343       sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
344       zCsr += strlen(zCsr);
345     }
346     *zCsr = '\0';
347   }else if( f & MEM_Str ){
348     int j, k;
349     zBuf[0] = ' ';
350     if( f & MEM_Dyn ){
351       zBuf[1] = 'z';
352       assert( (f & (MEM_Static|MEM_Ephem))==0 );
353     }else if( f & MEM_Static ){
354       zBuf[1] = 't';
355       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
356     }else if( f & MEM_Ephem ){
357       zBuf[1] = 'e';
358       assert( (f & (MEM_Static|MEM_Dyn))==0 );
359     }else{
360       zBuf[1] = 's';
361     }
362     k = 2;
363     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
364     k += strlen(&zBuf[k]);
365     zBuf[k++] = '[';
366     for(j=0; j<15 && j<pMem->n; j++){
367       u8 c = pMem->z[j];
368       if( c>=0x20 && c<0x7f ){
369         zBuf[k++] = c;
370       }else{
371         zBuf[k++] = '.';
372       }
373     }
374     zBuf[k++] = ']';
375     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
376     k += strlen(&zBuf[k]);
377     zBuf[k++] = 0;
378   }
379 }
380 #endif
381 
382 
383 #ifdef VDBE_PROFILE
384 /*
385 ** The following routine only works on pentium-class processors.
386 ** It uses the RDTSC opcode to read the cycle count value out of the
387 ** processor and returns that value.  This can be used for high-res
388 ** profiling.
389 */
390 __inline__ unsigned long long int hwtime(void){
391   unsigned long long int x;
392   __asm__("rdtsc\n\t"
393           "mov %%edx, %%ecx\n\t"
394           :"=A" (x));
395   return x;
396 }
397 #endif
398 
399 /*
400 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
401 ** sqlite3_interrupt() routine has been called.  If it has been, then
402 ** processing of the VDBE program is interrupted.
403 **
404 ** This macro added to every instruction that does a jump in order to
405 ** implement a loop.  This test used to be on every single instruction,
406 ** but that meant we more testing that we needed.  By only testing the
407 ** flag on jump instructions, we get a (small) speed improvement.
408 */
409 #define CHECK_FOR_INTERRUPT \
410    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
411 
412 
413 /*
414 ** Execute as much of a VDBE program as we can then return.
415 **
416 ** sqlite3VdbeMakeReady() must be called before this routine in order to
417 ** close the program with a final OP_Halt and to set up the callbacks
418 ** and the error message pointer.
419 **
420 ** Whenever a row or result data is available, this routine will either
421 ** invoke the result callback (if there is one) or return with
422 ** SQLITE_ROW.
423 **
424 ** If an attempt is made to open a locked database, then this routine
425 ** will either invoke the busy callback (if there is one) or it will
426 ** return SQLITE_BUSY.
427 **
428 ** If an error occurs, an error message is written to memory obtained
429 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
430 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
431 **
432 ** If the callback ever returns non-zero, then the program exits
433 ** immediately.  There will be no error message but the p->rc field is
434 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
435 **
436 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
437 ** routine to return SQLITE_ERROR.
438 **
439 ** Other fatal errors return SQLITE_ERROR.
440 **
441 ** After this routine has finished, sqlite3VdbeFinalize() should be
442 ** used to clean up the mess that was left behind.
443 */
444 int sqlite3VdbeExec(
445   Vdbe *p                    /* The VDBE */
446 ){
447   int pc;                    /* The program counter */
448   Op *pOp;                   /* Current operation */
449   int rc = SQLITE_OK;        /* Value to return */
450   sqlite3 *db = p->db;       /* The database */
451   u8 encoding = ENC(db);     /* The database encoding */
452   Mem *pTos;                 /* Top entry in the operand stack */
453 #ifdef VDBE_PROFILE
454   unsigned long long start;  /* CPU clock count at start of opcode */
455   int origPc;                /* Program counter at start of opcode */
456 #endif
457 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
458   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
459 #endif
460 #ifndef NDEBUG
461   Mem *pStackLimit;
462 #endif
463 
464   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
465   assert( db->magic==SQLITE_MAGIC_BUSY );
466   pTos = p->pTos;
467   sqlite3BtreeMutexArrayEnter(&p->aMutex);
468   if( p->rc==SQLITE_NOMEM ){
469     /* This happens if a malloc() inside a call to sqlite3_column_text() or
470     ** sqlite3_column_text16() failed.  */
471     goto no_mem;
472   }
473   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
474   p->rc = SQLITE_OK;
475   assert( p->explain==0 );
476   if( p->popStack ){
477     popStack(&pTos, p->popStack);
478     p->popStack = 0;
479   }
480   p->resOnStack = 0;
481   db->busyHandler.nBusy = 0;
482   CHECK_FOR_INTERRUPT;
483   sqlite3VdbeIOTraceSql(p);
484 #ifdef SQLITE_DEBUG
485   if( (p->db->flags & SQLITE_VdbeListing)!=0
486     || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)
487   ){
488     int i;
489     printf("VDBE Program Listing:\n");
490     sqlite3VdbePrintSql(p);
491     for(i=0; i<p->nOp; i++){
492       sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
493     }
494   }
495   if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
496     p->trace = stdout;
497   }
498 #endif
499   for(pc=p->pc; rc==SQLITE_OK; pc++){
500     assert( pc>=0 && pc<p->nOp );
501     assert( pTos<=&p->aStack[pc] );
502     if( db->mallocFailed ) goto no_mem;
503 #ifdef VDBE_PROFILE
504     origPc = pc;
505     start = hwtime();
506 #endif
507     pOp = &p->aOp[pc];
508 
509     /* Only allow tracing if SQLITE_DEBUG is defined.
510     */
511 #ifdef SQLITE_DEBUG
512     if( p->trace ){
513       if( pc==0 ){
514         printf("VDBE Execution Trace:\n");
515         sqlite3VdbePrintSql(p);
516       }
517       sqlite3VdbePrintOp(p->trace, pc, pOp);
518     }
519     if( p->trace==0 && pc==0
520      && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
521       sqlite3VdbePrintSql(p);
522     }
523 #endif
524 
525 
526     /* Check to see if we need to simulate an interrupt.  This only happens
527     ** if we have a special test build.
528     */
529 #ifdef SQLITE_TEST
530     if( sqlite3_interrupt_count>0 ){
531       sqlite3_interrupt_count--;
532       if( sqlite3_interrupt_count==0 ){
533         sqlite3_interrupt(db);
534       }
535     }
536 #endif
537 
538 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
539     /* Call the progress callback if it is configured and the required number
540     ** of VDBE ops have been executed (either since this invocation of
541     ** sqlite3VdbeExec() or since last time the progress callback was called).
542     ** If the progress callback returns non-zero, exit the virtual machine with
543     ** a return code SQLITE_ABORT.
544     */
545     if( db->xProgress ){
546       if( db->nProgressOps==nProgressOps ){
547         int prc;
548         if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
549         prc =db->xProgress(db->pProgressArg);
550         if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
551         if( prc!=0 ){
552           rc = SQLITE_INTERRUPT;
553           goto vdbe_halt;
554         }
555         nProgressOps = 0;
556       }
557       nProgressOps++;
558     }
559 #endif
560 
561 #ifndef NDEBUG
562     /* This is to check that the return value of static function
563     ** opcodeNoPush() (see vdbeaux.c) returns values that match the
564     ** implementation of the virtual machine in this file. If
565     ** opcodeNoPush() returns non-zero, then the stack is guarenteed
566     ** not to grow when the opcode is executed. If it returns zero, then
567     ** the stack may grow by at most 1.
568     **
569     ** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not
570     ** available if NDEBUG is defined at build time.
571     */
572     pStackLimit = pTos;
573     if( !sqlite3VdbeOpcodeNoPush(pOp->opcode) ){
574       pStackLimit++;
575     }
576 #endif
577 
578     switch( pOp->opcode ){
579 
580 /*****************************************************************************
581 ** What follows is a massive switch statement where each case implements a
582 ** separate instruction in the virtual machine.  If we follow the usual
583 ** indentation conventions, each case should be indented by 6 spaces.  But
584 ** that is a lot of wasted space on the left margin.  So the code within
585 ** the switch statement will break with convention and be flush-left. Another
586 ** big comment (similar to this one) will mark the point in the code where
587 ** we transition back to normal indentation.
588 **
589 ** The formatting of each case is important.  The makefile for SQLite
590 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
591 ** file looking for lines that begin with "case OP_".  The opcodes.h files
592 ** will be filled with #defines that give unique integer values to each
593 ** opcode and the opcodes.c file is filled with an array of strings where
594 ** each string is the symbolic name for the corresponding opcode.  If the
595 ** case statement is followed by a comment of the form "/# same as ... #/"
596 ** that comment is used to determine the particular value of the opcode.
597 **
598 ** If a comment on the same line as the "case OP_" construction contains
599 ** the word "no-push", then the opcode is guarenteed not to grow the
600 ** vdbe stack when it is executed. See function opcode() in
601 ** vdbeaux.c for details.
602 **
603 ** Documentation about VDBE opcodes is generated by scanning this file
604 ** for lines of that contain "Opcode:".  That line and all subsequent
605 ** comment lines are used in the generation of the opcode.html documentation
606 ** file.
607 **
608 ** SUMMARY:
609 **
610 **     Formatting is important to scripts that scan this file.
611 **     Do not deviate from the formatting style currently in use.
612 **
613 *****************************************************************************/
614 
615 /* Opcode:  Goto * P2 *
616 **
617 ** An unconditional jump to address P2.
618 ** The next instruction executed will be
619 ** the one at index P2 from the beginning of
620 ** the program.
621 */
622 case OP_Goto: {             /* no-push */
623   CHECK_FOR_INTERRUPT;
624   pc = pOp->p2 - 1;
625   break;
626 }
627 
628 /* Opcode:  Gosub * P2 *
629 **
630 ** Push the current address plus 1 onto the return address stack
631 ** and then jump to address P2.
632 **
633 ** The return address stack is of limited depth.  If too many
634 ** OP_Gosub operations occur without intervening OP_Returns, then
635 ** the return address stack will fill up and processing will abort
636 ** with a fatal error.
637 */
638 case OP_Gosub: {            /* no-push */
639   assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
640   p->returnStack[p->returnDepth++] = pc+1;
641   pc = pOp->p2 - 1;
642   break;
643 }
644 
645 /* Opcode:  Return * * *
646 **
647 ** Jump immediately to the next instruction after the last unreturned
648 ** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
649 ** processing aborts with a fatal error.
650 */
651 case OP_Return: {           /* no-push */
652   assert( p->returnDepth>0 );
653   p->returnDepth--;
654   pc = p->returnStack[p->returnDepth] - 1;
655   break;
656 }
657 
658 /* Opcode:  Halt P1 P2 P3
659 **
660 ** Exit immediately.  All open cursors, Fifos, etc are closed
661 ** automatically.
662 **
663 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
664 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
665 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
666 ** whether or not to rollback the current transaction.  Do not rollback
667 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
668 ** then back out all changes that have occurred during this execution of the
669 ** VDBE, but do not rollback the transaction.
670 **
671 ** If P3 is not null then it is an error message string.
672 **
673 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
674 ** every program.  So a jump past the last instruction of the program
675 ** is the same as executing Halt.
676 */
677 case OP_Halt: {            /* no-push */
678   p->pTos = pTos;
679   p->rc = pOp->p1;
680   p->pc = pc;
681   p->errorAction = pOp->p2;
682   if( pOp->p3 ){
683     sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
684   }
685   rc = sqlite3VdbeHalt(p);
686   assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
687   if( rc==SQLITE_BUSY ){
688     p->rc = rc = SQLITE_BUSY;
689   }else{
690     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
691   }
692   goto vdbe_return;
693 }
694 
695 /* Opcode:  StackDepth P1 * *
696 **
697 ** If P1 is less than zero, then store the current stack depth
698 ** in P1.  If P1 is zero or greater, verify that the current stack
699 ** depth is equal to P1 and throw an exception if it is not.
700 **
701 ** This opcode is used for internal consistency checking.
702 */
703 case OP_StackDepth: {       /* no-push */
704   int n = pTos - p->aStack + 1;
705   if( pOp->p1<0 ){
706     pOp->p1 = n;
707   }else if( pOp->p1!=n ){
708     p->pTos = pTos;
709     p->rc = rc = SQLITE_INTERNAL;
710     p->pc = pc;
711     p->errorAction = OE_Rollback;
712     sqlite3SetString(&p->zErrMsg, "internal error: VDBE stack leak", (char*)0);
713     goto vdbe_return;
714   }
715   break;
716 }
717 
718 /* Opcode: Integer P1 * *
719 **
720 ** The 32-bit integer value P1 is pushed onto the stack.
721 */
722 case OP_Integer: {
723   pTos++;
724   pTos->flags = MEM_Int;
725   pTos->u.i = pOp->p1;
726   break;
727 }
728 
729 /* Opcode: Int64 * * P3
730 **
731 ** P3 is a pointer to a 64-bit integer value.
732 ** Push  that value onto  the stack.
733 */
734 case OP_Int64: {
735   pTos++;
736   assert( pOp->p3!=0 );
737   pTos->flags = MEM_Int;
738   memcpy(&pTos->u.i, pOp->p3, 8);
739   break;
740 }
741 
742 /* Opcode: Real * * P3
743 **
744 ** P3 is a pointer to a 64-bit floating point value.  Push that value
745 ** onto the stack.
746 */
747 case OP_Real: {            /* same as TK_FLOAT, */
748   pTos++;
749   pTos->flags = MEM_Real;
750   memcpy(&pTos->r, pOp->p3, 8);
751   break;
752 }
753 
754 /* Opcode: String8 * * P3
755 **
756 ** P3 points to a nul terminated UTF-8 string. This opcode is transformed
757 ** into an OP_String before it is executed for the first time.
758 */
759 case OP_String8: {         /* same as TK_STRING */
760   assert( pOp->p3!=0 );
761   pOp->opcode = OP_String;
762   pOp->p1 = strlen(pOp->p3);
763   assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
764   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
765 
766 #ifndef SQLITE_OMIT_UTF16
767   if( encoding!=SQLITE_UTF8 ){
768     pTos++;
769     sqlite3VdbeMemSetStr(pTos, pOp->p3, -1, SQLITE_UTF8, SQLITE_STATIC);
770     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pTos, encoding) ) goto no_mem;
771     if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pTos) ) goto no_mem;
772     pTos->flags &= ~(MEM_Dyn);
773     pTos->flags |= MEM_Static;
774     if( pOp->p3type==P3_DYNAMIC ){
775       sqlite3_free(pOp->p3);
776     }
777     pOp->p3type = P3_DYNAMIC;
778     pOp->p3 = pTos->z;
779     pOp->p1 = pTos->n;
780     assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
781     break;
782   }
783 #endif
784   /* Otherwise fall through to the next case, OP_String */
785 }
786 
787 /* Opcode: String P1 * P3
788 **
789 ** The string value P3 of length P1 (bytes) is pushed onto the stack.
790 */
791 case OP_String: {
792   assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
793   pTos++;
794   assert( pOp->p3!=0 );
795   pTos->flags = MEM_Str|MEM_Static|MEM_Term;
796   pTos->z = pOp->p3;
797   pTos->n = pOp->p1;
798   pTos->enc = encoding;
799   break;
800 }
801 
802 /* Opcode: Null * * *
803 **
804 ** Push a NULL onto the stack.
805 */
806 case OP_Null: {
807   pTos++;
808   pTos->flags = MEM_Null;
809   pTos->n = 0;
810   break;
811 }
812 
813 
814 #ifndef SQLITE_OMIT_BLOB_LITERAL
815 /* Opcode: HexBlob * * P3
816 **
817 ** P3 is an UTF-8 SQL hex encoding of a blob. The blob is pushed onto the
818 ** vdbe stack.
819 **
820 ** The first time this instruction executes, in transforms itself into a
821 ** 'Blob' opcode with a binary blob as P3.
822 */
823 case OP_HexBlob: {            /* same as TK_BLOB */
824   pOp->opcode = OP_Blob;
825   pOp->p1 = strlen(pOp->p3)/2;
826   assert( SQLITE_MAX_SQL_LENGTH <= SQLITE_MAX_LENGTH );
827   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
828   if( pOp->p1 ){
829     char *zBlob = sqlite3HexToBlob(db, pOp->p3);
830     if( !zBlob ) goto no_mem;
831     if( pOp->p3type==P3_DYNAMIC ){
832       sqlite3_free(pOp->p3);
833     }
834     pOp->p3 = zBlob;
835     pOp->p3type = P3_DYNAMIC;
836   }else{
837     if( pOp->p3type==P3_DYNAMIC ){
838       sqlite3_free(pOp->p3);
839     }
840     pOp->p3type = P3_STATIC;
841     pOp->p3 = "";
842   }
843 
844   /* Fall through to the next case, OP_Blob. */
845 }
846 
847 /* Opcode: Blob P1 * P3
848 **
849 ** P3 points to a blob of data P1 bytes long. Push this
850 ** value onto the stack. This instruction is not coded directly
851 ** by the compiler. Instead, the compiler layer specifies
852 ** an OP_HexBlob opcode, with the hex string representation of
853 ** the blob as P3. This opcode is transformed to an OP_Blob
854 ** the first time it is executed.
855 */
856 case OP_Blob: {
857   pTos++;
858   assert( pOp->p1 <= SQLITE_MAX_LENGTH ); /* Due to SQLITE_MAX_SQL_LENGTH */
859   sqlite3VdbeMemSetStr(pTos, pOp->p3, pOp->p1, 0, 0);
860   pTos->enc = encoding;
861   break;
862 }
863 #endif /* SQLITE_OMIT_BLOB_LITERAL */
864 
865 /* Opcode: Variable P1 * *
866 **
867 ** Push the value of variable P1 onto the stack.  A variable is
868 ** an unknown in the original SQL string as handed to sqlite3_compile().
869 ** Any occurance of the '?' character in the original SQL is considered
870 ** a variable.  Variables in the SQL string are number from left to
871 ** right beginning with 1.  The values of variables are set using the
872 ** sqlite3_bind() API.
873 */
874 case OP_Variable: {
875   int j = pOp->p1 - 1;
876   Mem *pVar;
877   assert( j>=0 && j<p->nVar );
878 
879   pVar = &p->aVar[j];
880   if( sqlite3VdbeMemTooBig(pVar) ){
881     goto too_big;
882   }
883   pTos++;
884   sqlite3VdbeMemShallowCopy(pTos, &p->aVar[j], MEM_Static);
885   break;
886 }
887 
888 /* Opcode: Pop P1 * *
889 **
890 ** P1 elements are popped off of the top of stack and discarded.
891 */
892 case OP_Pop: {            /* no-push */
893   assert( pOp->p1>=0 );
894   popStack(&pTos, pOp->p1);
895   assert( pTos>=&p->aStack[-1] );
896   break;
897 }
898 
899 /* Opcode: Dup P1 P2 *
900 **
901 ** A copy of the P1-th element of the stack
902 ** is made and pushed onto the top of the stack.
903 ** The top of the stack is element 0.  So the
904 ** instruction "Dup 0 0 0" will make a copy of the
905 ** top of the stack.
906 **
907 ** If the content of the P1-th element is a dynamically
908 ** allocated string, then a new copy of that string
909 ** is made if P2==0.  If P2!=0, then just a pointer
910 ** to the string is copied.
911 **
912 ** Also see the Pull instruction.
913 */
914 case OP_Dup: {
915   Mem *pFrom = &pTos[-pOp->p1];
916   assert( pFrom<=pTos && pFrom>=p->aStack );
917   pTos++;
918   sqlite3VdbeMemShallowCopy(pTos, pFrom, MEM_Ephem);
919   if( pOp->p2 ){
920     Deephemeralize(pTos);
921   }
922   break;
923 }
924 
925 /* Opcode: Pull P1 * *
926 **
927 ** The P1-th element is removed from its current location on
928 ** the stack and pushed back on top of the stack.  The
929 ** top of the stack is element 0, so "Pull 0 0 0" is
930 ** a no-op.  "Pull 1 0 0" swaps the top two elements of
931 ** the stack.
932 **
933 ** See also the Dup instruction.
934 */
935 case OP_Pull: {            /* no-push */
936   Mem *pFrom = &pTos[-pOp->p1];
937   int i;
938   Mem ts;
939 
940   ts = *pFrom;
941   Deephemeralize(pTos);
942   for(i=0; i<pOp->p1; i++, pFrom++){
943     Deephemeralize(&pFrom[1]);
944     assert( (pFrom[1].flags & MEM_Ephem)==0 );
945     *pFrom = pFrom[1];
946     if( pFrom->flags & MEM_Short ){
947       assert( pFrom->flags & (MEM_Str|MEM_Blob) );
948       assert( pFrom->z==pFrom[1].zShort );
949       pFrom->z = pFrom->zShort;
950     }
951   }
952   *pTos = ts;
953   if( pTos->flags & MEM_Short ){
954     assert( pTos->flags & (MEM_Str|MEM_Blob) );
955     assert( pTos->z==pTos[-pOp->p1].zShort );
956     pTos->z = pTos->zShort;
957   }
958   break;
959 }
960 
961 /* Opcode: Push P1 * *
962 **
963 ** Overwrite the value of the P1-th element down on the
964 ** stack (P1==0 is the top of the stack) with the value
965 ** of the top of the stack.  Then pop the top of the stack.
966 */
967 case OP_Push: {            /* no-push */
968   Mem *pTo = &pTos[-pOp->p1];
969 
970   assert( pTo>=p->aStack );
971   sqlite3VdbeMemMove(pTo, pTos);
972   pTos--;
973   break;
974 }
975 
976 /* Opcode: Callback P1 * *
977 **
978 ** The top P1 values on the stack represent a single result row from
979 ** a query.  This opcode causes the sqlite3_step() call to terminate
980 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
981 ** structure to provide access to the top P1 values as the result
982 ** row.  When the sqlite3_step() function is run again, the top P1
983 ** values will be automatically popped from the stack before the next
984 ** instruction executes.
985 */
986 case OP_Callback: {            /* no-push */
987   Mem *pMem;
988   Mem *pFirstColumn;
989   assert( p->nResColumn==pOp->p1 );
990 
991   /* Data in the pager might be moved or changed out from under us
992   ** in between the return from this sqlite3_step() call and the
993   ** next call to sqlite3_step().  So deephermeralize everything on
994   ** the stack.  Note that ephemeral data is never stored in memory
995   ** cells so we do not have to worry about them.
996   */
997   pFirstColumn = &pTos[0-pOp->p1];
998   for(pMem = p->aStack; pMem<pFirstColumn; pMem++){
999     Deephemeralize(pMem);
1000   }
1001 
1002   /* Invalidate all ephemeral cursor row caches */
1003   p->cacheCtr = (p->cacheCtr + 2)|1;
1004 
1005   /* Make sure the results of the current row are \000 terminated
1006   ** and have an assigned type.  The results are deephemeralized as
1007   ** as side effect.
1008   */
1009   for(; pMem<=pTos; pMem++ ){
1010     sqlite3VdbeMemNulTerminate(pMem);
1011     storeTypeInfo(pMem, encoding);
1012   }
1013 
1014   /* Set up the statement structure so that it will pop the current
1015   ** results from the stack when the statement returns.
1016   */
1017   p->resOnStack = 1;
1018   p->nCallback++;
1019   p->popStack = pOp->p1;
1020   p->pc = pc + 1;
1021   p->pTos = pTos;
1022   rc = SQLITE_ROW;
1023   goto vdbe_return;
1024 }
1025 
1026 /* Opcode: Concat P1 P2 *
1027 **
1028 ** Look at the first P1+2 elements of the stack.  Append them all
1029 ** together with the lowest element first.  The original P1+2 elements
1030 ** are popped from the stack if P2==0 and retained if P2==1.  If
1031 ** any element of the stack is NULL, then the result is NULL.
1032 **
1033 ** When P1==1, this routine makes a copy of the top stack element
1034 ** into memory obtained from sqlite3_malloc().
1035 */
1036 case OP_Concat: {           /* same as TK_CONCAT */
1037   char *zNew;
1038   i64 nByte;
1039   int nField;
1040   int i, j;
1041   Mem *pTerm;
1042 
1043   /* Loop through the stack elements to see how long the result will be. */
1044   nField = pOp->p1 + 2;
1045   pTerm = &pTos[1-nField];
1046   nByte = 0;
1047   for(i=0; i<nField; i++, pTerm++){
1048     assert( pOp->p2==0 || (pTerm->flags&MEM_Str) );
1049     if( pTerm->flags&MEM_Null ){
1050       nByte = -1;
1051       break;
1052     }
1053     ExpandBlob(pTerm);
1054     Stringify(pTerm, encoding);
1055     nByte += pTerm->n;
1056   }
1057 
1058   if( nByte<0 ){
1059     /* If nByte is less than zero, then there is a NULL value on the stack.
1060     ** In this case just pop the values off the stack (if required) and
1061     ** push on a NULL.
1062     */
1063     if( pOp->p2==0 ){
1064       popStack(&pTos, nField);
1065     }
1066     pTos++;
1067     pTos->flags = MEM_Null;
1068   }else{
1069     /* Otherwise malloc() space for the result and concatenate all the
1070     ** stack values.
1071     */
1072     if( nByte+2>SQLITE_MAX_LENGTH ){
1073       goto too_big;
1074     }
1075     zNew = sqlite3DbMallocRaw(db, nByte+2 );
1076     if( zNew==0 ) goto no_mem;
1077     j = 0;
1078     pTerm = &pTos[1-nField];
1079     for(i=j=0; i<nField; i++, pTerm++){
1080       int n = pTerm->n;
1081       assert( pTerm->flags & (MEM_Str|MEM_Blob) );
1082       memcpy(&zNew[j], pTerm->z, n);
1083       j += n;
1084     }
1085     zNew[j] = 0;
1086     zNew[j+1] = 0;
1087     assert( j==nByte );
1088 
1089     if( pOp->p2==0 ){
1090       popStack(&pTos, nField);
1091     }
1092     pTos++;
1093     pTos->n = j;
1094     pTos->flags = MEM_Str|MEM_Dyn|MEM_Term;
1095     pTos->xDel = 0;
1096     pTos->enc = encoding;
1097     pTos->z = zNew;
1098   }
1099   break;
1100 }
1101 
1102 /* Opcode: Add * * *
1103 **
1104 ** Pop the top two elements from the stack, add them together,
1105 ** and push the result back onto the stack.  If either element
1106 ** is a string then it is converted to a double using the atof()
1107 ** function before the addition.
1108 ** If either operand is NULL, the result is NULL.
1109 */
1110 /* Opcode: Multiply * * *
1111 **
1112 ** Pop the top two elements from the stack, multiply them together,
1113 ** and push the result back onto the stack.  If either element
1114 ** is a string then it is converted to a double using the atof()
1115 ** function before the multiplication.
1116 ** If either operand is NULL, the result is NULL.
1117 */
1118 /* Opcode: Subtract * * *
1119 **
1120 ** Pop the top two elements from the stack, subtract the
1121 ** first (what was on top of the stack) from the second (the
1122 ** next on stack)
1123 ** and push the result back onto the stack.  If either element
1124 ** is a string then it is converted to a double using the atof()
1125 ** function before the subtraction.
1126 ** If either operand is NULL, the result is NULL.
1127 */
1128 /* Opcode: Divide * * *
1129 **
1130 ** Pop the top two elements from the stack, divide the
1131 ** first (what was on top of the stack) from the second (the
1132 ** next on stack)
1133 ** and push the result back onto the stack.  If either element
1134 ** is a string then it is converted to a double using the atof()
1135 ** function before the division.  Division by zero returns NULL.
1136 ** If either operand is NULL, the result is NULL.
1137 */
1138 /* Opcode: Remainder * * *
1139 **
1140 ** Pop the top two elements from the stack, divide the
1141 ** first (what was on top of the stack) from the second (the
1142 ** next on stack)
1143 ** and push the remainder after division onto the stack.  If either element
1144 ** is a string then it is converted to a double using the atof()
1145 ** function before the division.  Division by zero returns NULL.
1146 ** If either operand is NULL, the result is NULL.
1147 */
1148 case OP_Add:                   /* same as TK_PLUS, no-push */
1149 case OP_Subtract:              /* same as TK_MINUS, no-push */
1150 case OP_Multiply:              /* same as TK_STAR, no-push */
1151 case OP_Divide:                /* same as TK_SLASH, no-push */
1152 case OP_Remainder: {           /* same as TK_REM, no-push */
1153   Mem *pNos = &pTos[-1];
1154   int flags;
1155   assert( pNos>=p->aStack );
1156   flags = pTos->flags | pNos->flags;
1157   if( (flags & MEM_Null)!=0 ){
1158     Release(pTos);
1159     pTos--;
1160     Release(pTos);
1161     pTos->flags = MEM_Null;
1162   }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
1163     i64 a, b;
1164     a = pTos->u.i;
1165     b = pNos->u.i;
1166     switch( pOp->opcode ){
1167       case OP_Add:         b += a;       break;
1168       case OP_Subtract:    b -= a;       break;
1169       case OP_Multiply:    b *= a;       break;
1170       case OP_Divide: {
1171         if( a==0 ) goto divide_by_zero;
1172         /* Dividing the largest possible negative 64-bit integer (1<<63) by
1173         ** -1 returns an integer to large to store in a 64-bit data-type. On
1174         ** some architectures, the value overflows to (1<<63). On others,
1175         ** a SIGFPE is issued. The following statement normalizes this
1176         ** behaviour so that all architectures behave as if integer
1177         ** overflow occured.
1178         */
1179         if( a==-1 && b==(((i64)1)<<63) ) a = 1;
1180         b /= a;
1181         break;
1182       }
1183       default: {
1184         if( a==0 ) goto divide_by_zero;
1185         if( a==-1 ) a = 1;
1186         b %= a;
1187         break;
1188       }
1189     }
1190     Release(pTos);
1191     pTos--;
1192     Release(pTos);
1193     pTos->u.i = b;
1194     pTos->flags = MEM_Int;
1195   }else{
1196     double a, b;
1197     a = sqlite3VdbeRealValue(pTos);
1198     b = sqlite3VdbeRealValue(pNos);
1199     switch( pOp->opcode ){
1200       case OP_Add:         b += a;       break;
1201       case OP_Subtract:    b -= a;       break;
1202       case OP_Multiply:    b *= a;       break;
1203       case OP_Divide: {
1204         if( a==0.0 ) goto divide_by_zero;
1205         b /= a;
1206         break;
1207       }
1208       default: {
1209         i64 ia = (i64)a;
1210         i64 ib = (i64)b;
1211         if( ia==0 ) goto divide_by_zero;
1212         if( ia==-1 ) ia = 1;
1213         b = ib % ia;
1214         break;
1215       }
1216     }
1217     if( sqlite3_isnan(b) ){
1218       goto divide_by_zero;
1219     }
1220     Release(pTos);
1221     pTos--;
1222     Release(pTos);
1223     pTos->r = b;
1224     pTos->flags = MEM_Real;
1225     if( (flags & MEM_Real)==0 ){
1226       sqlite3VdbeIntegerAffinity(pTos);
1227     }
1228   }
1229   break;
1230 
1231 divide_by_zero:
1232   Release(pTos);
1233   pTos--;
1234   Release(pTos);
1235   pTos->flags = MEM_Null;
1236   break;
1237 }
1238 
1239 /* Opcode: CollSeq * * P3
1240 **
1241 ** P3 is a pointer to a CollSeq struct. If the next call to a user function
1242 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1243 ** be returned. This is used by the built-in min(), max() and nullif()
1244 ** functions.
1245 **
1246 ** The interface used by the implementation of the aforementioned functions
1247 ** to retrieve the collation sequence set by this opcode is not available
1248 ** publicly, only to user functions defined in func.c.
1249 */
1250 case OP_CollSeq: {             /* no-push */
1251   assert( pOp->p3type==P3_COLLSEQ );
1252   break;
1253 }
1254 
1255 /* Opcode: Function P1 P2 P3
1256 **
1257 ** Invoke a user function (P3 is a pointer to a Function structure that
1258 ** defines the function) with P2 arguments taken from the stack.  Pop all
1259 ** arguments from the stack and push back the result.
1260 **
1261 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1262 ** function was determined to be constant at compile time. If the first
1263 ** argument was constant then bit 0 of P1 is set. This is used to determine
1264 ** whether meta data associated with a user function argument using the
1265 ** sqlite3_set_auxdata() API may be safely retained until the next
1266 ** invocation of this opcode.
1267 **
1268 ** See also: AggStep and AggFinal
1269 */
1270 case OP_Function: {
1271   int i;
1272   Mem *pArg;
1273   sqlite3_context ctx;
1274   sqlite3_value **apVal;
1275   int n = pOp->p2;
1276 
1277   apVal = p->apArg;
1278   assert( apVal || n==0 );
1279 
1280   pArg = &pTos[1-n];
1281   for(i=0; i<n; i++, pArg++){
1282     apVal[i] = pArg;
1283     storeTypeInfo(pArg, encoding);
1284   }
1285 
1286   assert( pOp->p3type==P3_FUNCDEF || pOp->p3type==P3_VDBEFUNC );
1287   if( pOp->p3type==P3_FUNCDEF ){
1288     ctx.pFunc = (FuncDef*)pOp->p3;
1289     ctx.pVdbeFunc = 0;
1290   }else{
1291     ctx.pVdbeFunc = (VdbeFunc*)pOp->p3;
1292     ctx.pFunc = ctx.pVdbeFunc->pFunc;
1293   }
1294 
1295   ctx.s.flags = MEM_Null;
1296   ctx.s.z = 0;
1297   ctx.s.xDel = 0;
1298   ctx.s.db = db;
1299   ctx.isError = 0;
1300   if( ctx.pFunc->needCollSeq ){
1301     assert( pOp>p->aOp );
1302     assert( pOp[-1].p3type==P3_COLLSEQ );
1303     assert( pOp[-1].opcode==OP_CollSeq );
1304     ctx.pColl = (CollSeq *)pOp[-1].p3;
1305   }
1306   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
1307   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
1308   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
1309   if( db->mallocFailed ){
1310     /* Even though a malloc() has failed, the implementation of the
1311     ** user function may have called an sqlite3_result_XXX() function
1312     ** to return a value. The following call releases any resources
1313     ** associated with such a value.
1314     **
1315     ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
1316     ** fails also (the if(...) statement above). But if people are
1317     ** misusing sqlite, they have bigger problems than a leaked value.
1318     */
1319     sqlite3VdbeMemRelease(&ctx.s);
1320     goto no_mem;
1321   }
1322   popStack(&pTos, n);
1323 
1324   /* If any auxilary data functions have been called by this user function,
1325   ** immediately call the destructor for any non-static values.
1326   */
1327   if( ctx.pVdbeFunc ){
1328     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1329     pOp->p3 = (char *)ctx.pVdbeFunc;
1330     pOp->p3type = P3_VDBEFUNC;
1331   }
1332 
1333   /* If the function returned an error, throw an exception */
1334   if( ctx.isError ){
1335     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
1336     rc = SQLITE_ERROR;
1337   }
1338 
1339   /* Copy the result of the function to the top of the stack */
1340   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1341   pTos++;
1342   pTos->flags = 0;
1343   sqlite3VdbeMemMove(pTos, &ctx.s);
1344   if( sqlite3VdbeMemTooBig(pTos) ){
1345     goto too_big;
1346   }
1347   break;
1348 }
1349 
1350 /* Opcode: BitAnd * * *
1351 **
1352 ** Pop the top two elements from the stack.  Convert both elements
1353 ** to integers.  Push back onto the stack the bit-wise AND of the
1354 ** two elements.
1355 ** If either operand is NULL, the result is NULL.
1356 */
1357 /* Opcode: BitOr * * *
1358 **
1359 ** Pop the top two elements from the stack.  Convert both elements
1360 ** to integers.  Push back onto the stack the bit-wise OR of the
1361 ** two elements.
1362 ** If either operand is NULL, the result is NULL.
1363 */
1364 /* Opcode: ShiftLeft * * *
1365 **
1366 ** Pop the top two elements from the stack.  Convert both elements
1367 ** to integers.  Push back onto the stack the second element shifted
1368 ** left by N bits where N is the top element on the stack.
1369 ** If either operand is NULL, the result is NULL.
1370 */
1371 /* Opcode: ShiftRight * * *
1372 **
1373 ** Pop the top two elements from the stack.  Convert both elements
1374 ** to integers.  Push back onto the stack the second element shifted
1375 ** right by N bits where N is the top element on the stack.
1376 ** If either operand is NULL, the result is NULL.
1377 */
1378 case OP_BitAnd:                 /* same as TK_BITAND, no-push */
1379 case OP_BitOr:                  /* same as TK_BITOR, no-push */
1380 case OP_ShiftLeft:              /* same as TK_LSHIFT, no-push */
1381 case OP_ShiftRight: {           /* same as TK_RSHIFT, no-push */
1382   Mem *pNos = &pTos[-1];
1383   i64 a, b;
1384 
1385   assert( pNos>=p->aStack );
1386   if( (pTos->flags | pNos->flags) & MEM_Null ){
1387     popStack(&pTos, 2);
1388     pTos++;
1389     pTos->flags = MEM_Null;
1390     break;
1391   }
1392   a = sqlite3VdbeIntValue(pNos);
1393   b = sqlite3VdbeIntValue(pTos);
1394   switch( pOp->opcode ){
1395     case OP_BitAnd:      a &= b;     break;
1396     case OP_BitOr:       a |= b;     break;
1397     case OP_ShiftLeft:   a <<= b;    break;
1398     case OP_ShiftRight:  a >>= b;    break;
1399     default:   /* CANT HAPPEN */     break;
1400   }
1401   Release(pTos);
1402   pTos--;
1403   Release(pTos);
1404   pTos->u.i = a;
1405   pTos->flags = MEM_Int;
1406   break;
1407 }
1408 
1409 /* Opcode: AddImm  P1 * *
1410 **
1411 ** Add the value P1 to whatever is on top of the stack.  The result
1412 ** is always an integer.
1413 **
1414 ** To force the top of the stack to be an integer, just add 0.
1415 */
1416 case OP_AddImm: {            /* no-push */
1417   assert( pTos>=p->aStack );
1418   sqlite3VdbeMemIntegerify(pTos);
1419   pTos->u.i += pOp->p1;
1420   break;
1421 }
1422 
1423 /* Opcode: ForceInt P1 P2 *
1424 **
1425 ** Convert the top of the stack into an integer.  If the current top of
1426 ** the stack is not numeric (meaning that is is a NULL or a string that
1427 ** does not look like an integer or floating point number) then pop the
1428 ** stack and jump to P2.  If the top of the stack is numeric then
1429 ** convert it into the least integer that is greater than or equal to its
1430 ** current value if P1==0, or to the least integer that is strictly
1431 ** greater than its current value if P1==1.
1432 */
1433 case OP_ForceInt: {            /* no-push */
1434   i64 v;
1435   assert( pTos>=p->aStack );
1436   applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
1437   if( (pTos->flags & (MEM_Int|MEM_Real))==0 ){
1438     Release(pTos);
1439     pTos--;
1440     pc = pOp->p2 - 1;
1441     break;
1442   }
1443   if( pTos->flags & MEM_Int ){
1444     v = pTos->u.i + (pOp->p1!=0);
1445   }else{
1446     /* FIX ME:  should this not be assert( pTos->flags & MEM_Real ) ??? */
1447     sqlite3VdbeMemRealify(pTos);
1448     v = (int)pTos->r;
1449     if( pTos->r>(double)v ) v++;
1450     if( pOp->p1 && pTos->r==(double)v ) v++;
1451   }
1452   Release(pTos);
1453   pTos->u.i = v;
1454   pTos->flags = MEM_Int;
1455   break;
1456 }
1457 
1458 /* Opcode: MustBeInt P1 P2 *
1459 **
1460 ** Force the top of the stack to be an integer.  If the top of the
1461 ** stack is not an integer and cannot be converted into an integer
1462 ** without data loss, then jump immediately to P2, or if P2==0
1463 ** raise an SQLITE_MISMATCH exception.
1464 **
1465 ** If the top of the stack is not an integer and P2 is not zero and
1466 ** P1 is 1, then the stack is popped.  In all other cases, the depth
1467 ** of the stack is unchanged.
1468 */
1469 case OP_MustBeInt: {            /* no-push */
1470   assert( pTos>=p->aStack );
1471   applyAffinity(pTos, SQLITE_AFF_NUMERIC, encoding);
1472   if( (pTos->flags & MEM_Int)==0 ){
1473     if( pOp->p2==0 ){
1474       rc = SQLITE_MISMATCH;
1475       goto abort_due_to_error;
1476     }else{
1477       if( pOp->p1 ) popStack(&pTos, 1);
1478       pc = pOp->p2 - 1;
1479     }
1480   }else{
1481     Release(pTos);
1482     pTos->flags = MEM_Int;
1483   }
1484   break;
1485 }
1486 
1487 /* Opcode: RealAffinity * * *
1488 **
1489 ** If the top of the stack is an integer, convert it to a real value.
1490 **
1491 ** This opcode is used when extracting information from a column that
1492 ** has REAL affinity.  Such column values may still be stored as
1493 ** integers, for space efficiency, but after extraction we want them
1494 ** to have only a real value.
1495 */
1496 case OP_RealAffinity: {                  /* no-push */
1497   assert( pTos>=p->aStack );
1498   if( pTos->flags & MEM_Int ){
1499     sqlite3VdbeMemRealify(pTos);
1500   }
1501   break;
1502 }
1503 
1504 #ifndef SQLITE_OMIT_CAST
1505 /* Opcode: ToText * * *
1506 **
1507 ** Force the value on the top of the stack to be text.
1508 ** If the value is numeric, convert it to a string using the
1509 ** equivalent of printf().  Blob values are unchanged and
1510 ** are afterwards simply interpreted as text.
1511 **
1512 ** A NULL value is not changed by this routine.  It remains NULL.
1513 */
1514 case OP_ToText: {                  /* same as TK_TO_TEXT, no-push */
1515   assert( pTos>=p->aStack );
1516   if( pTos->flags & MEM_Null ) break;
1517   assert( MEM_Str==(MEM_Blob>>3) );
1518   pTos->flags |= (pTos->flags&MEM_Blob)>>3;
1519   applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
1520   rc = ExpandBlob(pTos);
1521   assert( pTos->flags & MEM_Str );
1522   pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
1523   break;
1524 }
1525 
1526 /* Opcode: ToBlob * * *
1527 **
1528 ** Force the value on the top of the stack to be a BLOB.
1529 ** If the value is numeric, convert it to a string first.
1530 ** Strings are simply reinterpreted as blobs with no change
1531 ** to the underlying data.
1532 **
1533 ** A NULL value is not changed by this routine.  It remains NULL.
1534 */
1535 case OP_ToBlob: {                  /* same as TK_TO_BLOB, no-push */
1536   assert( pTos>=p->aStack );
1537   if( pTos->flags & MEM_Null ) break;
1538   if( (pTos->flags & MEM_Blob)==0 ){
1539     applyAffinity(pTos, SQLITE_AFF_TEXT, encoding);
1540     assert( pTos->flags & MEM_Str );
1541     pTos->flags |= MEM_Blob;
1542   }
1543   pTos->flags &= ~(MEM_Int|MEM_Real|MEM_Str);
1544   break;
1545 }
1546 
1547 /* Opcode: ToNumeric * * *
1548 **
1549 ** Force the value on the top of the stack to be numeric (either an
1550 ** integer or a floating-point number.)
1551 ** If the value is text or blob, try to convert it to an using the
1552 ** equivalent of atoi() or atof() and store 0 if no such conversion
1553 ** is possible.
1554 **
1555 ** A NULL value is not changed by this routine.  It remains NULL.
1556 */
1557 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, no-push */
1558   assert( pTos>=p->aStack );
1559   if( (pTos->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1560     sqlite3VdbeMemNumerify(pTos);
1561   }
1562   break;
1563 }
1564 #endif /* SQLITE_OMIT_CAST */
1565 
1566 /* Opcode: ToInt * * *
1567 **
1568 ** Force the value on the top of the stack to be an integer.  If
1569 ** The value is currently a real number, drop its fractional part.
1570 ** If the value is text or blob, try to convert it to an integer using the
1571 ** equivalent of atoi() and store 0 if no such conversion is possible.
1572 **
1573 ** A NULL value is not changed by this routine.  It remains NULL.
1574 */
1575 case OP_ToInt: {                  /* same as TK_TO_INT, no-push */
1576   assert( pTos>=p->aStack );
1577   if( (pTos->flags & MEM_Null)==0 ){
1578     sqlite3VdbeMemIntegerify(pTos);
1579   }
1580   break;
1581 }
1582 
1583 #ifndef SQLITE_OMIT_CAST
1584 /* Opcode: ToReal * * *
1585 **
1586 ** Force the value on the top of the stack to be a floating point number.
1587 ** If The value is currently an integer, convert it.
1588 ** If the value is text or blob, try to convert it to an integer using the
1589 ** equivalent of atoi() and store 0 if no such conversion is possible.
1590 **
1591 ** A NULL value is not changed by this routine.  It remains NULL.
1592 */
1593 case OP_ToReal: {                  /* same as TK_TO_REAL, no-push */
1594   assert( pTos>=p->aStack );
1595   if( (pTos->flags & MEM_Null)==0 ){
1596     sqlite3VdbeMemRealify(pTos);
1597   }
1598   break;
1599 }
1600 #endif /* SQLITE_OMIT_CAST */
1601 
1602 /* Opcode: Eq P1 P2 P3
1603 **
1604 ** Pop the top two elements from the stack.  If they are equal, then
1605 ** jump to instruction P2.  Otherwise, continue to the next instruction.
1606 **
1607 ** If the 0x100 bit of P1 is true and either operand is NULL then take the
1608 ** jump.  If the 0x100 bit of P1 is clear then fall thru if either operand
1609 ** is NULL.
1610 **
1611 ** If the 0x200 bit of P1 is set and either operand is NULL then
1612 ** both operands are converted to integers prior to comparison.
1613 ** NULL operands are converted to zero and non-NULL operands are
1614 ** converted to 1.  Thus, for example, with 0x200 set,  NULL==NULL is true
1615 ** whereas it would normally be NULL.  Similarly,  NULL==123 is false when
1616 ** 0x200 is set but is NULL when the 0x200 bit of P1 is clear.
1617 **
1618 ** The least significant byte of P1 (mask 0xff) must be an affinity character -
1619 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1620 ** to coerce both values
1621 ** according to the affinity before the comparison is made. If the byte is
1622 ** 0x00, then numeric affinity is used.
1623 **
1624 ** Once any conversions have taken place, and neither value is NULL,
1625 ** the values are compared. If both values are blobs, or both are text,
1626 ** then memcmp() is used to determine the results of the comparison. If
1627 ** both values are numeric, then a numeric comparison is used. If the
1628 ** two values are of different types, then they are inequal.
1629 **
1630 ** If P2 is zero, do not jump.  Instead, push an integer 1 onto the
1631 ** stack if the jump would have been taken, or a 0 if not.  Push a
1632 ** NULL if either operand was NULL.
1633 **
1634 ** If P3 is not NULL it is a pointer to a collating sequence (a CollSeq
1635 ** structure) that defines how to compare text.
1636 */
1637 /* Opcode: Ne P1 P2 P3
1638 **
1639 ** This works just like the Eq opcode except that the jump is taken if
1640 ** the operands from the stack are not equal.  See the Eq opcode for
1641 ** additional information.
1642 */
1643 /* Opcode: Lt P1 P2 P3
1644 **
1645 ** This works just like the Eq opcode except that the jump is taken if
1646 ** the 2nd element down on the stack is less than the top of the stack.
1647 ** See the Eq opcode for additional information.
1648 */
1649 /* Opcode: Le P1 P2 P3
1650 **
1651 ** This works just like the Eq opcode except that the jump is taken if
1652 ** the 2nd element down on the stack is less than or equal to the
1653 ** top of the stack.  See the Eq opcode for additional information.
1654 */
1655 /* Opcode: Gt P1 P2 P3
1656 **
1657 ** This works just like the Eq opcode except that the jump is taken if
1658 ** the 2nd element down on the stack is greater than the top of the stack.
1659 ** See the Eq opcode for additional information.
1660 */
1661 /* Opcode: Ge P1 P2 P3
1662 **
1663 ** This works just like the Eq opcode except that the jump is taken if
1664 ** the 2nd element down on the stack is greater than or equal to the
1665 ** top of the stack.  See the Eq opcode for additional information.
1666 */
1667 case OP_Eq:               /* same as TK_EQ, no-push */
1668 case OP_Ne:               /* same as TK_NE, no-push */
1669 case OP_Lt:               /* same as TK_LT, no-push */
1670 case OP_Le:               /* same as TK_LE, no-push */
1671 case OP_Gt:               /* same as TK_GT, no-push */
1672 case OP_Ge: {             /* same as TK_GE, no-push */
1673   Mem *pNos;
1674   int flags;
1675   int res;
1676   char affinity;
1677 
1678   pNos = &pTos[-1];
1679   flags = pTos->flags|pNos->flags;
1680 
1681   /* If either value is a NULL P2 is not zero, take the jump if the least
1682   ** significant byte of P1 is true. If P2 is zero, then push a NULL onto
1683   ** the stack.
1684   */
1685   if( flags&MEM_Null ){
1686     if( (pOp->p1 & 0x200)!=0 ){
1687       /* The 0x200 bit of P1 means, roughly "do not treat NULL as the
1688       ** magic SQL value it normally is - treat it as if it were another
1689       ** integer".
1690       **
1691       ** With 0x200 set, if either operand is NULL then both operands
1692       ** are converted to integers prior to being passed down into the
1693       ** normal comparison logic below.  NULL operands are converted to
1694       ** zero and non-NULL operands are converted to 1.  Thus, for example,
1695       ** with 0x200 set,  NULL==NULL is true whereas it would normally
1696       ** be NULL.  Similarly,  NULL!=123 is true.
1697       */
1698       sqlite3VdbeMemSetInt64(pTos, (pTos->flags & MEM_Null)==0);
1699       sqlite3VdbeMemSetInt64(pNos, (pNos->flags & MEM_Null)==0);
1700     }else{
1701       /* If the 0x200 bit of P1 is clear and either operand is NULL then
1702       ** the result is always NULL.  The jump is taken if the 0x100 bit
1703       ** of P1 is set.
1704       */
1705       popStack(&pTos, 2);
1706       if( pOp->p2 ){
1707         if( pOp->p1 & 0x100 ){
1708           pc = pOp->p2-1;
1709         }
1710       }else{
1711         pTos++;
1712         pTos->flags = MEM_Null;
1713       }
1714       break;
1715     }
1716   }
1717 
1718   affinity = pOp->p1 & 0xFF;
1719   if( affinity ){
1720     applyAffinity(pNos, affinity, encoding);
1721     applyAffinity(pTos, affinity, encoding);
1722   }
1723 
1724   assert( pOp->p3type==P3_COLLSEQ || pOp->p3==0 );
1725   ExpandBlob(pNos);
1726   ExpandBlob(pTos);
1727   res = sqlite3MemCompare(pNos, pTos, (CollSeq*)pOp->p3);
1728   switch( pOp->opcode ){
1729     case OP_Eq:    res = res==0;     break;
1730     case OP_Ne:    res = res!=0;     break;
1731     case OP_Lt:    res = res<0;      break;
1732     case OP_Le:    res = res<=0;     break;
1733     case OP_Gt:    res = res>0;      break;
1734     default:       res = res>=0;     break;
1735   }
1736 
1737   popStack(&pTos, 2);
1738   if( pOp->p2 ){
1739     if( res ){
1740       pc = pOp->p2-1;
1741     }
1742   }else{
1743     pTos++;
1744     pTos->flags = MEM_Int;
1745     pTos->u.i = res;
1746   }
1747   break;
1748 }
1749 
1750 /* Opcode: And * * *
1751 **
1752 ** Pop two values off the stack.  Take the logical AND of the
1753 ** two values and push the resulting boolean value back onto the
1754 ** stack.
1755 */
1756 /* Opcode: Or * * *
1757 **
1758 ** Pop two values off the stack.  Take the logical OR of the
1759 ** two values and push the resulting boolean value back onto the
1760 ** stack.
1761 */
1762 case OP_And:              /* same as TK_AND, no-push */
1763 case OP_Or: {             /* same as TK_OR, no-push */
1764   Mem *pNos = &pTos[-1];
1765   int v1, v2;    /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
1766 
1767   assert( pNos>=p->aStack );
1768   if( pTos->flags & MEM_Null ){
1769     v1 = 2;
1770   }else{
1771     sqlite3VdbeMemIntegerify(pTos);
1772     v1 = pTos->u.i==0;
1773   }
1774   if( pNos->flags & MEM_Null ){
1775     v2 = 2;
1776   }else{
1777     sqlite3VdbeMemIntegerify(pNos);
1778     v2 = pNos->u.i==0;
1779   }
1780   if( pOp->opcode==OP_And ){
1781     static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1782     v1 = and_logic[v1*3+v2];
1783   }else{
1784     static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1785     v1 = or_logic[v1*3+v2];
1786   }
1787   popStack(&pTos, 2);
1788   pTos++;
1789   if( v1==2 ){
1790     pTos->flags = MEM_Null;
1791   }else{
1792     pTos->u.i = v1==0;
1793     pTos->flags = MEM_Int;
1794   }
1795   break;
1796 }
1797 
1798 /* Opcode: Negative * * *
1799 **
1800 ** Treat the top of the stack as a numeric quantity.  Replace it
1801 ** with its additive inverse.  If the top of the stack is NULL
1802 ** its value is unchanged.
1803 */
1804 /* Opcode: AbsValue * * *
1805 **
1806 ** Treat the top of the stack as a numeric quantity.  Replace it
1807 ** with its absolute value. If the top of the stack is NULL
1808 ** its value is unchanged.
1809 */
1810 case OP_Negative:              /* same as TK_UMINUS, no-push */
1811 case OP_AbsValue: {
1812   assert( pTos>=p->aStack );
1813   if( (pTos->flags & (MEM_Real|MEM_Int|MEM_Null))==0 ){
1814     sqlite3VdbeMemNumerify(pTos);
1815   }
1816   if( pTos->flags & MEM_Real ){
1817     Release(pTos);
1818     if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
1819       pTos->r = -pTos->r;
1820     }
1821     pTos->flags = MEM_Real;
1822   }else if( pTos->flags & MEM_Int ){
1823     Release(pTos);
1824     if( pOp->opcode==OP_Negative || pTos->u.i<0 ){
1825       pTos->u.i = -pTos->u.i;
1826     }
1827     pTos->flags = MEM_Int;
1828   }
1829   break;
1830 }
1831 
1832 /* Opcode: Not * * *
1833 **
1834 ** Interpret the top of the stack as a boolean value.  Replace it
1835 ** with its complement.  If the top of the stack is NULL its value
1836 ** is unchanged.
1837 */
1838 case OP_Not: {                /* same as TK_NOT, no-push */
1839   assert( pTos>=p->aStack );
1840   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
1841   sqlite3VdbeMemIntegerify(pTos);
1842   assert( (pTos->flags & MEM_Dyn)==0 );
1843   pTos->u.i = !pTos->u.i;
1844   pTos->flags = MEM_Int;
1845   break;
1846 }
1847 
1848 /* Opcode: BitNot * * *
1849 **
1850 ** Interpret the top of the stack as an value.  Replace it
1851 ** with its ones-complement.  If the top of the stack is NULL its
1852 ** value is unchanged.
1853 */
1854 case OP_BitNot: {             /* same as TK_BITNOT, no-push */
1855   assert( pTos>=p->aStack );
1856   if( pTos->flags & MEM_Null ) break;  /* Do nothing to NULLs */
1857   sqlite3VdbeMemIntegerify(pTos);
1858   assert( (pTos->flags & MEM_Dyn)==0 );
1859   pTos->u.i = ~pTos->u.i;
1860   pTos->flags = MEM_Int;
1861   break;
1862 }
1863 
1864 /* Opcode: Noop * * *
1865 **
1866 ** Do nothing.  This instruction is often useful as a jump
1867 ** destination.
1868 */
1869 /*
1870 ** The magic Explain opcode are only inserted when explain==2 (which
1871 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
1872 ** This opcode records information from the optimizer.  It is the
1873 ** the same as a no-op.  This opcodesnever appears in a real VM program.
1874 */
1875 case OP_Explain:
1876 case OP_Noop: {            /* no-push */
1877   break;
1878 }
1879 
1880 /* Opcode: If P1 P2 *
1881 **
1882 ** Pop a single boolean from the stack.  If the boolean popped is
1883 ** true, then jump to p2.  Otherwise continue to the next instruction.
1884 ** An integer is false if zero and true otherwise.  A string is
1885 ** false if it has zero length and true otherwise.
1886 **
1887 ** If the value popped of the stack is NULL, then take the jump if P1
1888 ** is true and fall through if P1 is false.
1889 */
1890 /* Opcode: IfNot P1 P2 *
1891 **
1892 ** Pop a single boolean from the stack.  If the boolean popped is
1893 ** false, then jump to p2.  Otherwise continue to the next instruction.
1894 ** An integer is false if zero and true otherwise.  A string is
1895 ** false if it has zero length and true otherwise.
1896 **
1897 ** If the value popped of the stack is NULL, then take the jump if P1
1898 ** is true and fall through if P1 is false.
1899 */
1900 case OP_If:                 /* no-push */
1901 case OP_IfNot: {            /* no-push */
1902   int c;
1903   assert( pTos>=p->aStack );
1904   if( pTos->flags & MEM_Null ){
1905     c = pOp->p1;
1906   }else{
1907 #ifdef SQLITE_OMIT_FLOATING_POINT
1908     c = sqlite3VdbeIntValue(pTos);
1909 #else
1910     c = sqlite3VdbeRealValue(pTos)!=0.0;
1911 #endif
1912     if( pOp->opcode==OP_IfNot ) c = !c;
1913   }
1914   Release(pTos);
1915   pTos--;
1916   if( c ) pc = pOp->p2-1;
1917   break;
1918 }
1919 
1920 /* Opcode: IsNull P1 P2 *
1921 **
1922 ** Check the top of the stack and jump to P2 if the top of the stack
1923 ** is NULL.  If P1 is positive, then pop P1 elements from the stack
1924 ** regardless of whether or not the jump is taken.  If P1 is negative,
1925 ** pop -P1 elements from the stack only if the jump is taken and leave
1926 ** the stack unchanged if the jump is not taken.
1927 */
1928 case OP_IsNull: {            /* same as TK_ISNULL, no-push */
1929   if( pTos->flags & MEM_Null ){
1930     pc = pOp->p2-1;
1931     if( pOp->p1<0 ){
1932       popStack(&pTos, -pOp->p1);
1933     }
1934   }
1935   if( pOp->p1>0 ){
1936     popStack(&pTos, pOp->p1);
1937   }
1938   break;
1939 }
1940 
1941 /* Opcode: NotNull P1 P2 *
1942 **
1943 ** Jump to P2 if the top abs(P1) values on the stack are all not NULL.
1944 ** Regardless of whether or not the jump is taken, pop the stack
1945 ** P1 times if P1 is greater than zero.  But if P1 is negative,
1946 ** leave the stack unchanged.
1947 */
1948 case OP_NotNull: {            /* same as TK_NOTNULL, no-push */
1949   int i, cnt;
1950   cnt = pOp->p1;
1951   if( cnt<0 ) cnt = -cnt;
1952   assert( &pTos[1-cnt] >= p->aStack );
1953   for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
1954   if( i>=cnt ) pc = pOp->p2-1;
1955   if( pOp->p1>0 ) popStack(&pTos, cnt);
1956   break;
1957 }
1958 
1959 /* Opcode: SetNumColumns P1 P2 *
1960 **
1961 ** Before the OP_Column opcode can be executed on a cursor, this
1962 ** opcode must be called to set the number of fields in the table.
1963 **
1964 ** This opcode sets the number of columns for cursor P1 to P2.
1965 **
1966 ** If OP_KeyAsData is to be applied to cursor P1, it must be executed
1967 ** before this op-code.
1968 */
1969 case OP_SetNumColumns: {       /* no-push */
1970   Cursor *pC;
1971   assert( (pOp->p1)<p->nCursor );
1972   assert( p->apCsr[pOp->p1]!=0 );
1973   pC = p->apCsr[pOp->p1];
1974   pC->nField = pOp->p2;
1975   break;
1976 }
1977 
1978 /* Opcode: Column P1 P2 P3
1979 **
1980 ** Interpret the data that cursor P1 points to as a structure built using
1981 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
1982 ** information about the format of the data.) Push onto the stack the value
1983 ** of the P2-th column contained in the data. If there are less that (P2+1)
1984 ** values in the record, push a NULL onto the stack.
1985 **
1986 ** If the KeyAsData opcode has previously executed on this cursor, then the
1987 ** field might be extracted from the key rather than the data.
1988 **
1989 ** If the column contains fewer than P2 fields, then push a NULL.  Or
1990 ** if P3 is of type P3_MEM, then push the P3 value.  The P3 value will
1991 ** be default value for a column that has been added using the ALTER TABLE
1992 ** ADD COLUMN command.  If P3 is an ordinary string, just push a NULL.
1993 ** When P3 is a string it is really just a comment describing the value
1994 ** to be pushed, not a default value.
1995 */
1996 case OP_Column: {
1997   u32 payloadSize;   /* Number of bytes in the record */
1998   int p1 = pOp->p1;  /* P1 value of the opcode */
1999   int p2 = pOp->p2;  /* column number to retrieve */
2000   Cursor *pC = 0;    /* The VDBE cursor */
2001   char *zRec;        /* Pointer to complete record-data */
2002   BtCursor *pCrsr;   /* The BTree cursor */
2003   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
2004   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
2005   u32 nField;        /* number of fields in the record */
2006   int len;           /* The length of the serialized data for the column */
2007   int i;             /* Loop counter */
2008   char *zData;       /* Part of the record being decoded */
2009   Mem sMem;          /* For storing the record being decoded */
2010 
2011   sMem.flags = 0;
2012   assert( p1<p->nCursor );
2013   pTos++;
2014   pTos->flags = MEM_Null;
2015 
2016   /* This block sets the variable payloadSize to be the total number of
2017   ** bytes in the record.
2018   **
2019   ** zRec is set to be the complete text of the record if it is available.
2020   ** The complete record text is always available for pseudo-tables
2021   ** If the record is stored in a cursor, the complete record text
2022   ** might be available in the  pC->aRow cache.  Or it might not be.
2023   ** If the data is unavailable,  zRec is set to NULL.
2024   **
2025   ** We also compute the number of columns in the record.  For cursors,
2026   ** the number of columns is stored in the Cursor.nField element.  For
2027   ** records on the stack, the next entry down on the stack is an integer
2028   ** which is the number of records.
2029   */
2030   pC = p->apCsr[p1];
2031   assert( pC!=0 );
2032 #ifndef SQLITE_OMIT_VIRTUALTABLE
2033   assert( pC->pVtabCursor==0 );
2034 #endif
2035   if( pC->pCursor!=0 ){
2036     /* The record is stored in a B-Tree */
2037     rc = sqlite3VdbeCursorMoveto(pC);
2038     if( rc ) goto abort_due_to_error;
2039     zRec = 0;
2040     pCrsr = pC->pCursor;
2041     if( pC->nullRow ){
2042       payloadSize = 0;
2043     }else if( pC->cacheStatus==p->cacheCtr ){
2044       payloadSize = pC->payloadSize;
2045       zRec = (char*)pC->aRow;
2046     }else if( pC->isIndex ){
2047       i64 payloadSize64;
2048       sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2049       payloadSize = payloadSize64;
2050     }else{
2051       sqlite3BtreeDataSize(pCrsr, &payloadSize);
2052     }
2053     nField = pC->nField;
2054   }else if( pC->pseudoTable ){
2055     /* The record is the sole entry of a pseudo-table */
2056     payloadSize = pC->nData;
2057     zRec = pC->pData;
2058     pC->cacheStatus = CACHE_STALE;
2059     assert( payloadSize==0 || zRec!=0 );
2060     nField = pC->nField;
2061     pCrsr = 0;
2062   }else{
2063     zRec = 0;
2064     payloadSize = 0;
2065     pCrsr = 0;
2066     nField = 0;
2067   }
2068 
2069   /* If payloadSize is 0, then just push a NULL onto the stack. */
2070   if( payloadSize==0 ){
2071     assert( pTos->flags==MEM_Null );
2072     break;
2073   }
2074   if( payloadSize>SQLITE_MAX_LENGTH ){
2075     goto too_big;
2076   }
2077 
2078   assert( p2<nField );
2079 
2080   /* Read and parse the table header.  Store the results of the parse
2081   ** into the record header cache fields of the cursor.
2082   */
2083   if( pC && pC->cacheStatus==p->cacheCtr ){
2084     aType = pC->aType;
2085     aOffset = pC->aOffset;
2086   }else{
2087     u8 *zIdx;        /* Index into header */
2088     u8 *zEndHdr;     /* Pointer to first byte after the header */
2089     u32 offset;      /* Offset into the data */
2090     int szHdrSz;     /* Size of the header size field at start of record */
2091     int avail;       /* Number of bytes of available data */
2092 
2093     aType = pC->aType;
2094     if( aType==0 ){
2095       pC->aType = aType = sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
2096     }
2097     if( aType==0 ){
2098       goto no_mem;
2099     }
2100     pC->aOffset = aOffset = &aType[nField];
2101     pC->payloadSize = payloadSize;
2102     pC->cacheStatus = p->cacheCtr;
2103 
2104     /* Figure out how many bytes are in the header */
2105     if( zRec ){
2106       zData = zRec;
2107     }else{
2108       if( pC->isIndex ){
2109         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2110       }else{
2111         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2112       }
2113       /* If KeyFetch()/DataFetch() managed to get the entire payload,
2114       ** save the payload in the pC->aRow cache.  That will save us from
2115       ** having to make additional calls to fetch the content portion of
2116       ** the record.
2117       */
2118       if( avail>=payloadSize ){
2119         zRec = zData;
2120         pC->aRow = (u8*)zData;
2121       }else{
2122         pC->aRow = 0;
2123       }
2124     }
2125     /* The following assert is true in all cases accept when
2126     ** the database file has been corrupted externally.
2127     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2128     szHdrSz = GetVarint((u8*)zData, offset);
2129 
2130     /* The KeyFetch() or DataFetch() above are fast and will get the entire
2131     ** record header in most cases.  But they will fail to get the complete
2132     ** record header if the record header does not fit on a single page
2133     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
2134     ** acquire the complete header text.
2135     */
2136     if( !zRec && avail<offset ){
2137       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
2138       if( rc!=SQLITE_OK ){
2139         goto op_column_out;
2140       }
2141       zData = sMem.z;
2142     }
2143     zEndHdr = (u8 *)&zData[offset];
2144     zIdx = (u8 *)&zData[szHdrSz];
2145 
2146     /* Scan the header and use it to fill in the aType[] and aOffset[]
2147     ** arrays.  aType[i] will contain the type integer for the i-th
2148     ** column and aOffset[i] will contain the offset from the beginning
2149     ** of the record to the start of the data for the i-th column
2150     */
2151     for(i=0; i<nField; i++){
2152       if( zIdx<zEndHdr ){
2153         aOffset[i] = offset;
2154         zIdx += GetVarint(zIdx, aType[i]);
2155         offset += sqlite3VdbeSerialTypeLen(aType[i]);
2156       }else{
2157         /* If i is less that nField, then there are less fields in this
2158         ** record than SetNumColumns indicated there are columns in the
2159         ** table. Set the offset for any extra columns not present in
2160         ** the record to 0. This tells code below to push a NULL onto the
2161         ** stack instead of deserializing a value from the record.
2162         */
2163         aOffset[i] = 0;
2164       }
2165     }
2166     Release(&sMem);
2167     sMem.flags = MEM_Null;
2168 
2169     /* If we have read more header data than was contained in the header,
2170     ** or if the end of the last field appears to be past the end of the
2171     ** record, then we must be dealing with a corrupt database.
2172     */
2173     if( zIdx>zEndHdr || offset>payloadSize ){
2174       rc = SQLITE_CORRUPT_BKPT;
2175       goto op_column_out;
2176     }
2177   }
2178 
2179   /* Get the column information. If aOffset[p2] is non-zero, then
2180   ** deserialize the value from the record. If aOffset[p2] is zero,
2181   ** then there are not enough fields in the record to satisfy the
2182   ** request.  In this case, set the value NULL or to P3 if P3 is
2183   ** a pointer to a Mem object.
2184   */
2185   if( aOffset[p2] ){
2186     assert( rc==SQLITE_OK );
2187     if( zRec ){
2188       zData = &zRec[aOffset[p2]];
2189     }else{
2190       len = sqlite3VdbeSerialTypeLen(aType[p2]);
2191       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
2192       if( rc!=SQLITE_OK ){
2193         goto op_column_out;
2194       }
2195       zData = sMem.z;
2196     }
2197     sqlite3VdbeSerialGet((u8*)zData, aType[p2], pTos);
2198     pTos->enc = encoding;
2199   }else{
2200     if( pOp->p3type==P3_MEM ){
2201       sqlite3VdbeMemShallowCopy(pTos, (Mem *)(pOp->p3), MEM_Static);
2202     }else{
2203       pTos->flags = MEM_Null;
2204     }
2205   }
2206 
2207   /* If we dynamically allocated space to hold the data (in the
2208   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2209   ** dynamically allocated space over to the pTos structure.
2210   ** This prevents a memory copy.
2211   */
2212   if( (sMem.flags & MEM_Dyn)!=0 ){
2213     assert( pTos->flags & MEM_Ephem );
2214     assert( pTos->flags & (MEM_Str|MEM_Blob) );
2215     assert( pTos->z==sMem.z );
2216     assert( sMem.flags & MEM_Term );
2217     pTos->flags &= ~MEM_Ephem;
2218     pTos->flags |= MEM_Dyn|MEM_Term;
2219   }
2220 
2221   /* pTos->z might be pointing to sMem.zShort[].  Fix that so that we
2222   ** can abandon sMem */
2223   rc = sqlite3VdbeMemMakeWriteable(pTos);
2224 
2225 op_column_out:
2226   break;
2227 }
2228 
2229 /* Opcode: MakeRecord P1 P2 P3
2230 **
2231 ** Convert the top abs(P1) entries of the stack into a single entry
2232 ** suitable for use as a data record in a database table or as a key
2233 ** in an index.  The details of the format are irrelavant as long as
2234 ** the OP_Column opcode can decode the record later and as long as the
2235 ** sqlite3VdbeRecordCompare function will correctly compare two encoded
2236 ** records.  Refer to source code comments for the details of the record
2237 ** format.
2238 **
2239 ** The original stack entries are popped from the stack if P1>0 but
2240 ** remain on the stack if P1<0.
2241 **
2242 ** If P2 is not zero and one or more of the entries are NULL, then jump
2243 ** to the address given by P2.  This feature can be used to skip a
2244 ** uniqueness test on indices.
2245 **
2246 ** P3 may be a string that is P1 characters long.  The nth character of the
2247 ** string indicates the column affinity that should be used for the nth
2248 ** field of the index key (i.e. the first character of P3 corresponds to the
2249 ** lowest element on the stack).
2250 **
2251 ** The mapping from character to affinity is given by the SQLITE_AFF_
2252 ** macros defined in sqliteInt.h.
2253 **
2254 ** If P3 is NULL then all index fields have the affinity NONE.
2255 **
2256 ** See also OP_MakeIdxRec
2257 */
2258 /* Opcode: MakeIdxRec P1 P2 P3
2259 **
2260 ** This opcode works just OP_MakeRecord except that it reads an extra
2261 ** integer from the stack (thus reading a total of abs(P1+1) entries)
2262 ** and appends that extra integer to the end of the record as a varint.
2263 ** This results in an index key.
2264 */
2265 case OP_MakeIdxRec:
2266 case OP_MakeRecord: {
2267   /* Assuming the record contains N fields, the record format looks
2268   ** like this:
2269   **
2270   ** ------------------------------------------------------------------------
2271   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2272   ** ------------------------------------------------------------------------
2273   **
2274   ** Data(0) is taken from the lowest element of the stack and data(N-1) is
2275   ** the top of the stack.
2276   **
2277   ** Each type field is a varint representing the serial type of the
2278   ** corresponding data element (see sqlite3VdbeSerialType()). The
2279   ** hdr-size field is also a varint which is the offset from the beginning
2280   ** of the record to data0.
2281   */
2282   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
2283   Mem *pRec;             /* The new record */
2284   Mem *pRowid = 0;       /* Rowid appended to the new record */
2285   u64 nData = 0;         /* Number of bytes of data space */
2286   int nHdr = 0;          /* Number of bytes of header space */
2287   u64 nByte = 0;         /* Data space required for this record */
2288   int nZero = 0;         /* Number of zero bytes at the end of the record */
2289   int nVarint;           /* Number of bytes in a varint */
2290   u32 serial_type;       /* Type field */
2291   int containsNull = 0;  /* True if any of the data fields are NULL */
2292   Mem *pData0;           /* Bottom of the stack */
2293   int leaveOnStack;      /* If true, leave the entries on the stack */
2294   int nField;            /* Number of fields in the record */
2295   int jumpIfNull;        /* Jump here if non-zero and any entries are NULL. */
2296   int addRowid;          /* True to append a rowid column at the end */
2297   char *zAffinity;       /* The affinity string for the record */
2298   int file_format;       /* File format to use for encoding */
2299   int i;                 /* Space used in zNewRecord[] */
2300   char zTemp[NBFS];      /* Space to hold small records */
2301 
2302   leaveOnStack = ((pOp->p1<0)?1:0);
2303   nField = pOp->p1 * (leaveOnStack?-1:1);
2304   jumpIfNull = pOp->p2;
2305   addRowid = pOp->opcode==OP_MakeIdxRec;
2306   zAffinity = pOp->p3;
2307 
2308   pData0 = &pTos[1-nField];
2309   assert( pData0>=p->aStack );
2310   containsNull = 0;
2311   file_format = p->minWriteFileFormat;
2312 
2313   /* Loop through the elements that will make up the record to figure
2314   ** out how much space is required for the new record.
2315   */
2316   for(pRec=pData0; pRec<=pTos; pRec++){
2317     int len;
2318     if( zAffinity ){
2319       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2320     }
2321     if( pRec->flags&MEM_Null ){
2322       containsNull = 1;
2323     }
2324     if( pRec->flags&MEM_Zero && pRec->n>0 ){
2325       ExpandBlob(pRec);
2326     }
2327     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2328     len = sqlite3VdbeSerialTypeLen(serial_type);
2329     nData += len;
2330     nHdr += sqlite3VarintLen(serial_type);
2331     if( pRec->flags & MEM_Zero ){
2332       /* Only pure zero-filled BLOBs can be input to this Opcode.
2333       ** We do not allow blobs with a prefix and a zero-filled tail. */
2334       nZero += pRec->u.i;
2335     }else if( len ){
2336       nZero = 0;
2337     }
2338   }
2339 
2340   /* If we have to append a varint rowid to this record, set pRowid
2341   ** to the value of the rowid and increase nByte by the amount of space
2342   ** required to store it.
2343   */
2344   if( addRowid ){
2345     pRowid = &pTos[0-nField];
2346     assert( pRowid>=p->aStack );
2347     sqlite3VdbeMemIntegerify(pRowid);
2348     serial_type = sqlite3VdbeSerialType(pRowid, 0);
2349     nData += sqlite3VdbeSerialTypeLen(serial_type);
2350     nHdr += sqlite3VarintLen(serial_type);
2351     nZero = 0;
2352   }
2353 
2354   /* Add the initial header varint and total the size */
2355   nHdr += nVarint = sqlite3VarintLen(nHdr);
2356   if( nVarint<sqlite3VarintLen(nHdr) ){
2357     nHdr++;
2358   }
2359   nByte = nHdr+nData-nZero;
2360   if( nByte>SQLITE_MAX_LENGTH ){
2361     goto too_big;
2362   }
2363 
2364   /* Allocate space for the new record. */
2365   if( nByte>sizeof(zTemp) ){
2366     zNewRecord = sqlite3DbMallocRaw(db, nByte);
2367     if( !zNewRecord ){
2368       goto no_mem;
2369     }
2370   }else{
2371     zNewRecord = (u8*)zTemp;
2372   }
2373 
2374   /* Write the record */
2375   i = sqlite3PutVarint(zNewRecord, nHdr);
2376   for(pRec=pData0; pRec<=pTos; pRec++){
2377     serial_type = sqlite3VdbeSerialType(pRec, file_format);
2378     i += sqlite3PutVarint(&zNewRecord[i], serial_type);      /* serial type */
2379   }
2380   if( addRowid ){
2381     i += sqlite3PutVarint(&zNewRecord[i], sqlite3VdbeSerialType(pRowid, 0));
2382   }
2383   for(pRec=pData0; pRec<=pTos; pRec++){  /* serial data */
2384     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
2385   }
2386   if( addRowid ){
2387     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRowid, 0);
2388   }
2389   assert( i==nByte );
2390 
2391   /* Pop entries off the stack if required. Push the new record on. */
2392   if( !leaveOnStack ){
2393     popStack(&pTos, nField+addRowid);
2394   }
2395   pTos++;
2396   pTos->n = nByte;
2397   if( nByte<=sizeof(zTemp) ){
2398     assert( zNewRecord==(unsigned char *)zTemp );
2399     pTos->z = pTos->zShort;
2400     memcpy(pTos->zShort, zTemp, nByte);
2401     pTos->flags = MEM_Blob | MEM_Short;
2402   }else{
2403     assert( zNewRecord!=(unsigned char *)zTemp );
2404     pTos->z = (char*)zNewRecord;
2405     pTos->flags = MEM_Blob | MEM_Dyn;
2406     pTos->xDel = 0;
2407   }
2408   if( nZero ){
2409     pTos->u.i = nZero;
2410     pTos->flags |= MEM_Zero;
2411   }
2412   pTos->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
2413 
2414   /* If a NULL was encountered and jumpIfNull is non-zero, take the jump. */
2415   if( jumpIfNull && containsNull ){
2416     pc = jumpIfNull - 1;
2417   }
2418   break;
2419 }
2420 
2421 /* Opcode: Statement P1 * *
2422 **
2423 ** Begin an individual statement transaction which is part of a larger
2424 ** BEGIN..COMMIT transaction.  This is needed so that the statement
2425 ** can be rolled back after an error without having to roll back the
2426 ** entire transaction.  The statement transaction will automatically
2427 ** commit when the VDBE halts.
2428 **
2429 ** The statement is begun on the database file with index P1.  The main
2430 ** database file has an index of 0 and the file used for temporary tables
2431 ** has an index of 1.
2432 */
2433 case OP_Statement: {       /* no-push */
2434   int i = pOp->p1;
2435   Btree *pBt;
2436   if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt)!=0
2437         && (db->autoCommit==0 || db->activeVdbeCnt>1) ){
2438     assert( sqlite3BtreeIsInTrans(pBt) );
2439     assert( (p->btreeMask & (1<<i))!=0 );
2440     if( !sqlite3BtreeIsInStmt(pBt) ){
2441       rc = sqlite3BtreeBeginStmt(pBt);
2442       p->openedStatement = 1;
2443     }
2444   }
2445   break;
2446 }
2447 
2448 /* Opcode: AutoCommit P1 P2 *
2449 **
2450 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2451 ** back any currently active btree transactions. If there are any active
2452 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
2453 **
2454 ** This instruction causes the VM to halt.
2455 */
2456 case OP_AutoCommit: {       /* no-push */
2457   u8 i = pOp->p1;
2458   u8 rollback = pOp->p2;
2459 
2460   assert( i==1 || i==0 );
2461   assert( i==1 || rollback==0 );
2462 
2463   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
2464 
2465   if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
2466     /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
2467     ** still running, and a transaction is active, return an error indicating
2468     ** that the other VMs must complete first.
2469     */
2470     sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit",
2471         " transaction - SQL statements in progress", (char*)0);
2472     rc = SQLITE_ERROR;
2473   }else if( i!=db->autoCommit ){
2474     if( pOp->p2 ){
2475       assert( i==1 );
2476       sqlite3RollbackAll(db);
2477       db->autoCommit = 1;
2478     }else{
2479       db->autoCommit = i;
2480       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2481         p->pTos = pTos;
2482         p->pc = pc;
2483         db->autoCommit = 1-i;
2484         p->rc = rc = SQLITE_BUSY;
2485         goto vdbe_return;
2486       }
2487     }
2488     if( p->rc==SQLITE_OK ){
2489       rc = SQLITE_DONE;
2490     }else{
2491       rc = SQLITE_ERROR;
2492     }
2493     goto vdbe_return;
2494   }else{
2495     sqlite3SetString(&p->zErrMsg,
2496         (!i)?"cannot start a transaction within a transaction":(
2497         (rollback)?"cannot rollback - no transaction is active":
2498                    "cannot commit - no transaction is active"), (char*)0);
2499 
2500     rc = SQLITE_ERROR;
2501   }
2502   break;
2503 }
2504 
2505 /* Opcode: Transaction P1 P2 *
2506 **
2507 ** Begin a transaction.  The transaction ends when a Commit or Rollback
2508 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
2509 ** transaction might also be rolled back if an error is encountered.
2510 **
2511 ** P1 is the index of the database file on which the transaction is
2512 ** started.  Index 0 is the main database file and index 1 is the
2513 ** file used for temporary tables.
2514 **
2515 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
2516 ** obtained on the database file when a write-transaction is started.  No
2517 ** other process can start another write transaction while this transaction is
2518 ** underway.  Starting a write transaction also creates a rollback journal. A
2519 ** write transaction must be started before any changes can be made to the
2520 ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2521 ** on the file.
2522 **
2523 ** If P2 is zero, then a read-lock is obtained on the database file.
2524 */
2525 case OP_Transaction: {       /* no-push */
2526   int i = pOp->p1;
2527   Btree *pBt;
2528 
2529   assert( i>=0 && i<db->nDb );
2530   assert( (p->btreeMask & (1<<i))!=0 );
2531   pBt = db->aDb[i].pBt;
2532 
2533   if( pBt ){
2534     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2535     if( rc==SQLITE_BUSY ){
2536       p->pc = pc;
2537       p->rc = rc = SQLITE_BUSY;
2538       p->pTos = pTos;
2539       goto vdbe_return;
2540     }
2541     if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
2542       goto abort_due_to_error;
2543     }
2544   }
2545   break;
2546 }
2547 
2548 /* Opcode: ReadCookie P1 P2 *
2549 **
2550 ** Read cookie number P2 from database P1 and push it onto the stack.
2551 ** P2==0 is the schema version.  P2==1 is the database format.
2552 ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
2553 ** the main database file and P1==1 is the database file used to store
2554 ** temporary tables.
2555 **
2556 ** If P1 is negative, then this is a request to read the size of a
2557 ** databases free-list. P2 must be set to 1 in this case. The actual
2558 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
2559 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
2560 **
2561 ** There must be a read-lock on the database (either a transaction
2562 ** must be started or there must be an open cursor) before
2563 ** executing this instruction.
2564 */
2565 case OP_ReadCookie: {
2566   int iMeta;
2567   int iDb = pOp->p1;
2568   int iCookie = pOp->p2;
2569 
2570   assert( pOp->p2<SQLITE_N_BTREE_META );
2571   if( iDb<0 ){
2572     iDb = (-1*(iDb+1));
2573     iCookie *= -1;
2574   }
2575   assert( iDb>=0 && iDb<db->nDb );
2576   assert( db->aDb[iDb].pBt!=0 );
2577   assert( (p->btreeMask & (1<<iDb))!=0 );
2578   /* The indexing of meta values at the schema layer is off by one from
2579   ** the indexing in the btree layer.  The btree considers meta[0] to
2580   ** be the number of free pages in the database (a read-only value)
2581   ** and meta[1] to be the schema cookie.  The schema layer considers
2582   ** meta[1] to be the schema cookie.  So we have to shift the index
2583   ** by one in the following statement.
2584   */
2585   rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
2586   pTos++;
2587   pTos->u.i = iMeta;
2588   pTos->flags = MEM_Int;
2589   break;
2590 }
2591 
2592 /* Opcode: SetCookie P1 P2 *
2593 **
2594 ** Write the top of the stack into cookie number P2 of database P1.
2595 ** P2==0 is the schema version.  P2==1 is the database format.
2596 ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
2597 ** the main database file and P1==1 is the database file used to store
2598 ** temporary tables.
2599 **
2600 ** A transaction must be started before executing this opcode.
2601 */
2602 case OP_SetCookie: {       /* no-push */
2603   Db *pDb;
2604   assert( pOp->p2<SQLITE_N_BTREE_META );
2605   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2606   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2607   pDb = &db->aDb[pOp->p1];
2608   assert( pDb->pBt!=0 );
2609   assert( pTos>=p->aStack );
2610   sqlite3VdbeMemIntegerify(pTos);
2611   /* See note about index shifting on OP_ReadCookie */
2612   rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->u.i);
2613   if( pOp->p2==0 ){
2614     /* When the schema cookie changes, record the new cookie internally */
2615     pDb->pSchema->schema_cookie = pTos->u.i;
2616     db->flags |= SQLITE_InternChanges;
2617   }else if( pOp->p2==1 ){
2618     /* Record changes in the file format */
2619     pDb->pSchema->file_format = pTos->u.i;
2620   }
2621   assert( (pTos->flags & MEM_Dyn)==0 );
2622   pTos--;
2623   if( pOp->p1==1 ){
2624     /* Invalidate all prepared statements whenever the TEMP database
2625     ** schema is changed.  Ticket #1644 */
2626     sqlite3ExpirePreparedStatements(db);
2627   }
2628   break;
2629 }
2630 
2631 /* Opcode: VerifyCookie P1 P2 *
2632 **
2633 ** Check the value of global database parameter number 0 (the
2634 ** schema version) and make sure it is equal to P2.
2635 ** P1 is the database number which is 0 for the main database file
2636 ** and 1 for the file holding temporary tables and some higher number
2637 ** for auxiliary databases.
2638 **
2639 ** The cookie changes its value whenever the database schema changes.
2640 ** This operation is used to detect when that the cookie has changed
2641 ** and that the current process needs to reread the schema.
2642 **
2643 ** Either a transaction needs to have been started or an OP_Open needs
2644 ** to be executed (to establish a read lock) before this opcode is
2645 ** invoked.
2646 */
2647 case OP_VerifyCookie: {       /* no-push */
2648   int iMeta;
2649   Btree *pBt;
2650   assert( pOp->p1>=0 && pOp->p1<db->nDb );
2651   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2652   pBt = db->aDb[pOp->p1].pBt;
2653   if( pBt ){
2654     rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
2655   }else{
2656     rc = SQLITE_OK;
2657     iMeta = 0;
2658   }
2659   if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
2660     sqlite3_free(p->zErrMsg);
2661     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
2662     /* If the schema-cookie from the database file matches the cookie
2663     ** stored with the in-memory representation of the schema, do
2664     ** not reload the schema from the database file.
2665     **
2666     ** If virtual-tables are in use, this is not just an optimisation.
2667     ** Often, v-tables store their data in other SQLite tables, which
2668     ** are queried from within xNext() and other v-table methods using
2669     ** prepared queries. If such a query is out-of-date, we do not want to
2670     ** discard the database schema, as the user code implementing the
2671     ** v-table would have to be ready for the sqlite3_vtab structure itself
2672     ** to be invalidated whenever sqlite3_step() is called from within
2673     ** a v-table method.
2674     */
2675     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2676       sqlite3ResetInternalSchema(db, pOp->p1);
2677     }
2678 
2679     sqlite3ExpirePreparedStatements(db);
2680     rc = SQLITE_SCHEMA;
2681   }
2682   break;
2683 }
2684 
2685 /* Opcode: OpenRead P1 P2 P3
2686 **
2687 ** Open a read-only cursor for the database table whose root page is
2688 ** P2 in a database file.  The database file is determined by an
2689 ** integer from the top of the stack.  0 means the main database and
2690 ** 1 means the database used for temporary tables.  Give the new
2691 ** cursor an identifier of P1.  The P1 values need not be contiguous
2692 ** but all P1 values should be small integers.  It is an error for
2693 ** P1 to be negative.
2694 **
2695 ** If P2==0 then take the root page number from the next of the stack.
2696 **
2697 ** There will be a read lock on the database whenever there is an
2698 ** open cursor.  If the database was unlocked prior to this instruction
2699 ** then a read lock is acquired as part of this instruction.  A read
2700 ** lock allows other processes to read the database but prohibits
2701 ** any other process from modifying the database.  The read lock is
2702 ** released when all cursors are closed.  If this instruction attempts
2703 ** to get a read lock but fails, the script terminates with an
2704 ** SQLITE_BUSY error code.
2705 **
2706 ** The P3 value is a pointer to a KeyInfo structure that defines the
2707 ** content and collating sequence of indices.  P3 is NULL for cursors
2708 ** that are not pointing to indices.
2709 **
2710 ** See also OpenWrite.
2711 */
2712 /* Opcode: OpenWrite P1 P2 P3
2713 **
2714 ** Open a read/write cursor named P1 on the table or index whose root
2715 ** page is P2.  If P2==0 then take the root page number from the stack.
2716 **
2717 ** The P3 value is a pointer to a KeyInfo structure that defines the
2718 ** content and collating sequence of indices.  P3 is NULL for cursors
2719 ** that are not pointing to indices.
2720 **
2721 ** This instruction works just like OpenRead except that it opens the cursor
2722 ** in read/write mode.  For a given table, there can be one or more read-only
2723 ** cursors or a single read/write cursor but not both.
2724 **
2725 ** See also OpenRead.
2726 */
2727 case OP_OpenRead:          /* no-push */
2728 case OP_OpenWrite: {       /* no-push */
2729   int i = pOp->p1;
2730   int p2 = pOp->p2;
2731   int wrFlag;
2732   Btree *pX;
2733   int iDb;
2734   Cursor *pCur;
2735   Db *pDb;
2736 
2737   assert( pTos>=p->aStack );
2738   sqlite3VdbeMemIntegerify(pTos);
2739   iDb = pTos->u.i;
2740   assert( (pTos->flags & MEM_Dyn)==0 );
2741   pTos--;
2742   assert( iDb>=0 && iDb<db->nDb );
2743   assert( (p->btreeMask & (1<<iDb))!=0 );
2744   pDb = &db->aDb[iDb];
2745   pX = pDb->pBt;
2746   assert( pX!=0 );
2747   if( pOp->opcode==OP_OpenWrite ){
2748     wrFlag = 1;
2749     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
2750       p->minWriteFileFormat = pDb->pSchema->file_format;
2751     }
2752   }else{
2753     wrFlag = 0;
2754   }
2755   if( p2<=0 ){
2756     assert( pTos>=p->aStack );
2757     sqlite3VdbeMemIntegerify(pTos);
2758     p2 = pTos->u.i;
2759     assert( (pTos->flags & MEM_Dyn)==0 );
2760     pTos--;
2761     assert( p2>=2 );
2762   }
2763   assert( i>=0 );
2764   pCur = allocateCursor(p, i, iDb);
2765   if( pCur==0 ) goto no_mem;
2766   pCur->nullRow = 1;
2767   if( pX==0 ) break;
2768   /* We always provide a key comparison function.  If the table being
2769   ** opened is of type INTKEY, the comparision function will be ignored. */
2770   rc = sqlite3BtreeCursor(pX, p2, wrFlag,
2771            sqlite3VdbeRecordCompare, pOp->p3,
2772            &pCur->pCursor);
2773   if( pOp->p3type==P3_KEYINFO ){
2774     pCur->pKeyInfo = (KeyInfo*)pOp->p3;
2775     pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
2776     pCur->pKeyInfo->enc = ENC(p->db);
2777   }else{
2778     pCur->pKeyInfo = 0;
2779     pCur->pIncrKey = &pCur->bogusIncrKey;
2780   }
2781   switch( rc ){
2782     case SQLITE_BUSY: {
2783       p->pc = pc;
2784       p->rc = rc = SQLITE_BUSY;
2785       p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
2786       goto vdbe_return;
2787     }
2788     case SQLITE_OK: {
2789       int flags = sqlite3BtreeFlags(pCur->pCursor);
2790       /* Sanity checking.  Only the lower four bits of the flags byte should
2791       ** be used.  Bit 3 (mask 0x08) is unpreditable.  The lower 3 bits
2792       ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
2793       ** 2 (zerodata for indices).  If these conditions are not met it can
2794       ** only mean that we are dealing with a corrupt database file
2795       */
2796       if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
2797         rc = SQLITE_CORRUPT_BKPT;
2798         goto abort_due_to_error;
2799       }
2800       pCur->isTable = (flags & BTREE_INTKEY)!=0;
2801       pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
2802       /* If P3==0 it means we are expected to open a table.  If P3!=0 then
2803       ** we expect to be opening an index.  If this is not what happened,
2804       ** then the database is corrupt
2805       */
2806       if( (pCur->isTable && pOp->p3type==P3_KEYINFO)
2807        || (pCur->isIndex && pOp->p3type!=P3_KEYINFO) ){
2808         rc = SQLITE_CORRUPT_BKPT;
2809         goto abort_due_to_error;
2810       }
2811       break;
2812     }
2813     case SQLITE_EMPTY: {
2814       pCur->isTable = pOp->p3type!=P3_KEYINFO;
2815       pCur->isIndex = !pCur->isTable;
2816       rc = SQLITE_OK;
2817       break;
2818     }
2819     default: {
2820       goto abort_due_to_error;
2821     }
2822   }
2823   break;
2824 }
2825 
2826 /* Opcode: OpenEphemeral P1 P2 P3
2827 **
2828 ** Open a new cursor P1 to a transient table.
2829 ** The cursor is always opened read/write even if
2830 ** the main database is read-only.  The transient or virtual
2831 ** table is deleted automatically when the cursor is closed.
2832 **
2833 ** P2 is the number of columns in the virtual table.
2834 ** The cursor points to a BTree table if P3==0 and to a BTree index
2835 ** if P3 is not 0.  If P3 is not NULL, it points to a KeyInfo structure
2836 ** that defines the format of keys in the index.
2837 **
2838 ** This opcode was once called OpenTemp.  But that created
2839 ** confusion because the term "temp table", might refer either
2840 ** to a TEMP table at the SQL level, or to a table opened by
2841 ** this opcode.  Then this opcode was call OpenVirtual.  But
2842 ** that created confusion with the whole virtual-table idea.
2843 */
2844 case OP_OpenEphemeral: {       /* no-push */
2845   int i = pOp->p1;
2846   Cursor *pCx;
2847   static const int openFlags =
2848       SQLITE_OPEN_READWRITE |
2849       SQLITE_OPEN_CREATE |
2850       SQLITE_OPEN_EXCLUSIVE |
2851       SQLITE_OPEN_DELETEONCLOSE |
2852       SQLITE_OPEN_TRANSIENT_DB;
2853 
2854   assert( i>=0 );
2855   pCx = allocateCursor(p, i, -1);
2856   if( pCx==0 ) goto no_mem;
2857   pCx->nullRow = 1;
2858   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
2859                            &pCx->pBt);
2860   if( rc==SQLITE_OK ){
2861     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
2862   }
2863   if( rc==SQLITE_OK ){
2864     /* If a transient index is required, create it by calling
2865     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
2866     ** opening it. If a transient table is required, just use the
2867     ** automatically created table with root-page 1 (an INTKEY table).
2868     */
2869     if( pOp->p3 ){
2870       int pgno;
2871       assert( pOp->p3type==P3_KEYINFO );
2872       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
2873       if( rc==SQLITE_OK ){
2874         assert( pgno==MASTER_ROOT+1 );
2875         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
2876             pOp->p3, &pCx->pCursor);
2877         pCx->pKeyInfo = (KeyInfo*)pOp->p3;
2878         pCx->pKeyInfo->enc = ENC(p->db);
2879         pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
2880       }
2881       pCx->isTable = 0;
2882     }else{
2883       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
2884       pCx->isTable = 1;
2885       pCx->pIncrKey = &pCx->bogusIncrKey;
2886     }
2887   }
2888   pCx->nField = pOp->p2;
2889   pCx->isIndex = !pCx->isTable;
2890   break;
2891 }
2892 
2893 /* Opcode: OpenPseudo P1 * *
2894 **
2895 ** Open a new cursor that points to a fake table that contains a single
2896 ** row of data.  Any attempt to write a second row of data causes the
2897 ** first row to be deleted.  All data is deleted when the cursor is
2898 ** closed.
2899 **
2900 ** A pseudo-table created by this opcode is useful for holding the
2901 ** NEW or OLD tables in a trigger.  Also used to hold the a single
2902 ** row output from the sorter so that the row can be decomposed into
2903 ** individual columns using the OP_Column opcode.
2904 */
2905 case OP_OpenPseudo: {       /* no-push */
2906   int i = pOp->p1;
2907   Cursor *pCx;
2908   assert( i>=0 );
2909   pCx = allocateCursor(p, i, -1);
2910   if( pCx==0 ) goto no_mem;
2911   pCx->nullRow = 1;
2912   pCx->pseudoTable = 1;
2913   pCx->pIncrKey = &pCx->bogusIncrKey;
2914   pCx->isTable = 1;
2915   pCx->isIndex = 0;
2916   break;
2917 }
2918 
2919 /* Opcode: Close P1 * *
2920 **
2921 ** Close a cursor previously opened as P1.  If P1 is not
2922 ** currently open, this instruction is a no-op.
2923 */
2924 case OP_Close: {       /* no-push */
2925   int i = pOp->p1;
2926   if( i>=0 && i<p->nCursor ){
2927     sqlite3VdbeFreeCursor(p, p->apCsr[i]);
2928     p->apCsr[i] = 0;
2929   }
2930   break;
2931 }
2932 
2933 /* Opcode: MoveGe P1 P2 *
2934 **
2935 ** Pop the top of the stack and use its value as a key.  Reposition
2936 ** cursor P1 so that it points to the smallest entry that is greater
2937 ** than or equal to the key that was popped ffrom the stack.
2938 ** If there are no records greater than or equal to the key and P2
2939 ** is not zero, then jump to P2.
2940 **
2941 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
2942 */
2943 /* Opcode: MoveGt P1 P2 *
2944 **
2945 ** Pop the top of the stack and use its value as a key.  Reposition
2946 ** cursor P1 so that it points to the smallest entry that is greater
2947 ** than the key from the stack.
2948 ** If there are no records greater than the key and P2 is not zero,
2949 ** then jump to P2.
2950 **
2951 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
2952 */
2953 /* Opcode: MoveLt P1 P2 *
2954 **
2955 ** Pop the top of the stack and use its value as a key.  Reposition
2956 ** cursor P1 so that it points to the largest entry that is less
2957 ** than the key from the stack.
2958 ** If there are no records less than the key and P2 is not zero,
2959 ** then jump to P2.
2960 **
2961 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
2962 */
2963 /* Opcode: MoveLe P1 P2 *
2964 **
2965 ** Pop the top of the stack and use its value as a key.  Reposition
2966 ** cursor P1 so that it points to the largest entry that is less than
2967 ** or equal to the key that was popped from the stack.
2968 ** If there are no records less than or eqal to the key and P2 is not zero,
2969 ** then jump to P2.
2970 **
2971 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
2972 */
2973 case OP_MoveLt:         /* no-push */
2974 case OP_MoveLe:         /* no-push */
2975 case OP_MoveGe:         /* no-push */
2976 case OP_MoveGt: {       /* no-push */
2977   int i = pOp->p1;
2978   Cursor *pC;
2979 
2980   assert( pTos>=p->aStack );
2981   assert( i>=0 && i<p->nCursor );
2982   pC = p->apCsr[i];
2983   assert( pC!=0 );
2984   if( pC->pCursor!=0 ){
2985     int res, oc;
2986     oc = pOp->opcode;
2987     pC->nullRow = 0;
2988     *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
2989     if( pC->isTable ){
2990       i64 iKey;
2991       sqlite3VdbeMemIntegerify(pTos);
2992       iKey = intToKey(pTos->u.i);
2993       if( pOp->p2==0 && pOp->opcode==OP_MoveGe ){
2994         pC->movetoTarget = iKey;
2995         pC->deferredMoveto = 1;
2996         assert( (pTos->flags & MEM_Dyn)==0 );
2997         pTos--;
2998         break;
2999       }
3000       rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
3001       if( rc!=SQLITE_OK ){
3002         goto abort_due_to_error;
3003       }
3004       pC->lastRowid = pTos->u.i;
3005       pC->rowidIsValid = res==0;
3006     }else{
3007       assert( pTos->flags & MEM_Blob );
3008       ExpandBlob(pTos);
3009       rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
3010       if( rc!=SQLITE_OK ){
3011         goto abort_due_to_error;
3012       }
3013       pC->rowidIsValid = 0;
3014     }
3015     pC->deferredMoveto = 0;
3016     pC->cacheStatus = CACHE_STALE;
3017     *pC->pIncrKey = 0;
3018 #ifdef SQLITE_TEST
3019     sqlite3_search_count++;
3020 #endif
3021     if( oc==OP_MoveGe || oc==OP_MoveGt ){
3022       if( res<0 ){
3023         rc = sqlite3BtreeNext(pC->pCursor, &res);
3024         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3025         pC->rowidIsValid = 0;
3026       }else{
3027         res = 0;
3028       }
3029     }else{
3030       assert( oc==OP_MoveLt || oc==OP_MoveLe );
3031       if( res>=0 ){
3032         rc = sqlite3BtreePrevious(pC->pCursor, &res);
3033         if( rc!=SQLITE_OK ) goto abort_due_to_error;
3034         pC->rowidIsValid = 0;
3035       }else{
3036         /* res might be negative because the table is empty.  Check to
3037         ** see if this is the case.
3038         */
3039         res = sqlite3BtreeEof(pC->pCursor);
3040       }
3041     }
3042     if( res ){
3043       if( pOp->p2>0 ){
3044         pc = pOp->p2 - 1;
3045       }else{
3046         pC->nullRow = 1;
3047       }
3048     }
3049   }
3050   Release(pTos);
3051   pTos--;
3052   break;
3053 }
3054 
3055 /* Opcode: Distinct P1 P2 *
3056 **
3057 ** Use the top of the stack as a record created using MakeRecord.  P1 is a
3058 ** cursor on a table that declared as an index.  If that table contains an
3059 ** entry that matches the top of the stack fall thru.  If the top of the stack
3060 ** matches no entry in P1 then jump to P2.
3061 **
3062 ** The cursor is left pointing at the matching entry if it exists.  The
3063 ** record on the top of the stack is not popped.
3064 **
3065 ** This instruction is similar to NotFound except that this operation
3066 ** does not pop the key from the stack.
3067 **
3068 ** The instruction is used to implement the DISTINCT operator on SELECT
3069 ** statements.  The P1 table is not a true index but rather a record of
3070 ** all results that have produced so far.
3071 **
3072 ** See also: Found, NotFound, MoveTo, IsUnique, NotExists
3073 */
3074 /* Opcode: Found P1 P2 *
3075 **
3076 ** Top of the stack holds a blob constructed by MakeRecord.  P1 is an index.
3077 ** If an entry that matches the top of the stack exists in P1 then
3078 ** jump to P2.  If the top of the stack does not match any entry in P1
3079 ** then fall thru.  The P1 cursor is left pointing at the matching entry
3080 ** if it exists.  The blob is popped off the top of the stack.
3081 **
3082 ** This instruction is used to implement the IN operator where the
3083 ** left-hand side is a SELECT statement.  P1 may be a true index, or it
3084 ** may be a temporary index that holds the results of the SELECT
3085 ** statement.
3086 **
3087 ** This instruction checks if index P1 contains a record for which
3088 ** the first N serialised values exactly match the N serialised values
3089 ** in the record on the stack, where N is the total number of values in
3090 ** the stack record (stack record is a prefix of the P1 record).
3091 **
3092 ** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
3093 */
3094 /* Opcode: NotFound P1 P2 *
3095 **
3096 ** The top of the stack holds a blob constructed by MakeRecord.  P1 is
3097 ** an index.  If no entry exists in P1 that matches the blob then jump
3098 ** to P2.  If an entry does existing, fall through.  The cursor is left
3099 ** pointing to the entry that matches.  The blob is popped from the stack.
3100 **
3101 ** The difference between this operation and Distinct is that
3102 ** Distinct does not pop the key from the stack.
3103 **
3104 ** See also: Distinct, Found, MoveTo, NotExists, IsUnique
3105 */
3106 case OP_Distinct:       /* no-push */
3107 case OP_NotFound:       /* no-push */
3108 case OP_Found: {        /* no-push */
3109   int i = pOp->p1;
3110   int alreadyExists = 0;
3111   Cursor *pC;
3112   assert( pTos>=p->aStack );
3113   assert( i>=0 && i<p->nCursor );
3114   assert( p->apCsr[i]!=0 );
3115   if( (pC = p->apCsr[i])->pCursor!=0 ){
3116     int res;
3117     assert( pC->isTable==0 );
3118     assert( pTos->flags & MEM_Blob );
3119     Stringify(pTos, encoding);
3120     if( pOp->opcode==OP_Found ){
3121       pC->pKeyInfo->prefixIsEqual = 1;
3122     }
3123     rc = sqlite3BtreeMoveto(pC->pCursor, pTos->z, pTos->n, 0, &res);
3124     pC->pKeyInfo->prefixIsEqual = 0;
3125     if( rc!=SQLITE_OK ){
3126       break;
3127     }
3128     alreadyExists = (res==0);
3129     pC->deferredMoveto = 0;
3130     pC->cacheStatus = CACHE_STALE;
3131   }
3132   if( pOp->opcode==OP_Found ){
3133     if( alreadyExists ) pc = pOp->p2 - 1;
3134   }else{
3135     if( !alreadyExists ) pc = pOp->p2 - 1;
3136   }
3137   if( pOp->opcode!=OP_Distinct ){
3138     Release(pTos);
3139     pTos--;
3140   }
3141   break;
3142 }
3143 
3144 /* Opcode: IsUnique P1 P2 *
3145 **
3146 ** The top of the stack is an integer record number.  Call this
3147 ** record number R.  The next on the stack is an index key created
3148 ** using MakeIdxRec.  Call it K.  This instruction pops R from the
3149 ** stack but it leaves K unchanged.
3150 **
3151 ** P1 is an index.  So it has no data and its key consists of a
3152 ** record generated by OP_MakeRecord where the last field is the
3153 ** rowid of the entry that the index refers to.
3154 **
3155 ** This instruction asks if there is an entry in P1 where the
3156 ** fields matches K but the rowid is different from R.
3157 ** If there is no such entry, then there is an immediate
3158 ** jump to P2.  If any entry does exist where the index string
3159 ** matches K but the record number is not R, then the record
3160 ** number for that entry is pushed onto the stack and control
3161 ** falls through to the next instruction.
3162 **
3163 ** See also: Distinct, NotFound, NotExists, Found
3164 */
3165 case OP_IsUnique: {        /* no-push */
3166   int i = pOp->p1;
3167   Mem *pNos = &pTos[-1];
3168   Cursor *pCx;
3169   BtCursor *pCrsr;
3170   i64 R;
3171 
3172   /* Pop the value R off the top of the stack
3173   */
3174   assert( pNos>=p->aStack );
3175   sqlite3VdbeMemIntegerify(pTos);
3176   R = pTos->u.i;
3177   assert( (pTos->flags & MEM_Dyn)==0 );
3178   pTos--;
3179   assert( i>=0 && i<p->nCursor );
3180   pCx = p->apCsr[i];
3181   assert( pCx!=0 );
3182   pCrsr = pCx->pCursor;
3183   if( pCrsr!=0 ){
3184     int res;
3185     i64 v;         /* The record number on the P1 entry that matches K */
3186     char *zKey;    /* The value of K */
3187     int nKey;      /* Number of bytes in K */
3188     int len;       /* Number of bytes in K without the rowid at the end */
3189     int szRowid;   /* Size of the rowid column at the end of zKey */
3190 
3191     /* Make sure K is a string and make zKey point to K
3192     */
3193     assert( pNos->flags & MEM_Blob );
3194     Stringify(pNos, encoding);
3195     zKey = pNos->z;
3196     nKey = pNos->n;
3197 
3198     szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
3199     len = nKey-szRowid;
3200 
3201     /* Search for an entry in P1 where all but the last four bytes match K.
3202     ** If there is no such entry, jump immediately to P2.
3203     */
3204     assert( pCx->deferredMoveto==0 );
3205     pCx->cacheStatus = CACHE_STALE;
3206     rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
3207     if( rc!=SQLITE_OK ){
3208       goto abort_due_to_error;
3209     }
3210     if( res<0 ){
3211       rc = sqlite3BtreeNext(pCrsr, &res);
3212       if( res ){
3213         pc = pOp->p2 - 1;
3214         break;
3215       }
3216     }
3217     rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res);
3218     if( rc!=SQLITE_OK ) goto abort_due_to_error;
3219     if( res>0 ){
3220       pc = pOp->p2 - 1;
3221       break;
3222     }
3223 
3224     /* At this point, pCrsr is pointing to an entry in P1 where all but
3225     ** the final entry (the rowid) matches K.  Check to see if the
3226     ** final rowid column is different from R.  If it equals R then jump
3227     ** immediately to P2.
3228     */
3229     rc = sqlite3VdbeIdxRowid(pCrsr, &v);
3230     if( rc!=SQLITE_OK ){
3231       goto abort_due_to_error;
3232     }
3233     if( v==R ){
3234       pc = pOp->p2 - 1;
3235       break;
3236     }
3237 
3238     /* The final varint of the key is different from R.  Push it onto
3239     ** the stack.  (The record number of an entry that violates a UNIQUE
3240     ** constraint.)
3241     */
3242     pTos++;
3243     pTos->u.i = v;
3244     pTos->flags = MEM_Int;
3245   }
3246   break;
3247 }
3248 
3249 /* Opcode: NotExists P1 P2 *
3250 **
3251 ** Use the top of the stack as a integer key.  If a record with that key
3252 ** does not exist in table of P1, then jump to P2.  If the record
3253 ** does exist, then fall thru.  The cursor is left pointing to the
3254 ** record if it exists.  The integer key is popped from the stack.
3255 **
3256 ** The difference between this operation and NotFound is that this
3257 ** operation assumes the key is an integer and that P1 is a table whereas
3258 ** NotFound assumes key is a blob constructed from MakeRecord and
3259 ** P1 is an index.
3260 **
3261 ** See also: Distinct, Found, MoveTo, NotFound, IsUnique
3262 */
3263 case OP_NotExists: {        /* no-push */
3264   int i = pOp->p1;
3265   Cursor *pC;
3266   BtCursor *pCrsr;
3267   assert( pTos>=p->aStack );
3268   assert( i>=0 && i<p->nCursor );
3269   assert( p->apCsr[i]!=0 );
3270   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3271     int res;
3272     u64 iKey;
3273     assert( pTos->flags & MEM_Int );
3274     assert( p->apCsr[i]->isTable );
3275     iKey = intToKey(pTos->u.i);
3276     rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
3277     pC->lastRowid = pTos->u.i;
3278     pC->rowidIsValid = res==0;
3279     pC->nullRow = 0;
3280     pC->cacheStatus = CACHE_STALE;
3281     /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
3282     ** processing is about to abort so we really do not care whether or not
3283     ** the following jump is taken.  (In other words, do not stress over
3284     ** the error that valgrind sometimes shows on the next statement when
3285     ** running ioerr.test and similar failure-recovery test scripts.) */
3286     if( res!=0 ){
3287       pc = pOp->p2 - 1;
3288       pC->rowidIsValid = 0;
3289     }
3290   }
3291   Release(pTos);
3292   pTos--;
3293   break;
3294 }
3295 
3296 /* Opcode: Sequence P1 * *
3297 **
3298 ** Push an integer onto the stack which is the next available
3299 ** sequence number for cursor P1.  The sequence number on the
3300 ** cursor is incremented after the push.
3301 */
3302 case OP_Sequence: {
3303   int i = pOp->p1;
3304   assert( pTos>=p->aStack );
3305   assert( i>=0 && i<p->nCursor );
3306   assert( p->apCsr[i]!=0 );
3307   pTos++;
3308   pTos->u.i = p->apCsr[i]->seqCount++;
3309   pTos->flags = MEM_Int;
3310   break;
3311 }
3312 
3313 
3314 /* Opcode: NewRowid P1 P2 *
3315 **
3316 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3317 ** The record number is not previously used as a key in the database
3318 ** table that cursor P1 points to.  The new record number is pushed
3319 ** onto the stack.
3320 **
3321 ** If P2>0 then P2 is a memory cell that holds the largest previously
3322 ** generated record number.  No new record numbers are allowed to be less
3323 ** than this value.  When this value reaches its maximum, a SQLITE_FULL
3324 ** error is generated.  The P2 memory cell is updated with the generated
3325 ** record number.  This P2 mechanism is used to help implement the
3326 ** AUTOINCREMENT feature.
3327 */
3328 case OP_NewRowid: {
3329   int i = pOp->p1;
3330   i64 v = 0;
3331   Cursor *pC;
3332   assert( i>=0 && i<p->nCursor );
3333   assert( p->apCsr[i]!=0 );
3334   if( (pC = p->apCsr[i])->pCursor==0 ){
3335     /* The zero initialization above is all that is needed */
3336   }else{
3337     /* The next rowid or record number (different terms for the same
3338     ** thing) is obtained in a two-step algorithm.
3339     **
3340     ** First we attempt to find the largest existing rowid and add one
3341     ** to that.  But if the largest existing rowid is already the maximum
3342     ** positive integer, we have to fall through to the second
3343     ** probabilistic algorithm
3344     **
3345     ** The second algorithm is to select a rowid at random and see if
3346     ** it already exists in the table.  If it does not exist, we have
3347     ** succeeded.  If the random rowid does exist, we select a new one
3348     ** and try again, up to 1000 times.
3349     **
3350     ** For a table with less than 2 billion entries, the probability
3351     ** of not finding a unused rowid is about 1.0e-300.  This is a
3352     ** non-zero probability, but it is still vanishingly small and should
3353     ** never cause a problem.  You are much, much more likely to have a
3354     ** hardware failure than for this algorithm to fail.
3355     **
3356     ** The analysis in the previous paragraph assumes that you have a good
3357     ** source of random numbers.  Is a library function like lrand48()
3358     ** good enough?  Maybe. Maybe not. It's hard to know whether there
3359     ** might be subtle bugs is some implementations of lrand48() that
3360     ** could cause problems. To avoid uncertainty, SQLite uses its own
3361     ** random number generator based on the RC4 algorithm.
3362     **
3363     ** To promote locality of reference for repetitive inserts, the
3364     ** first few attempts at chosing a random rowid pick values just a little
3365     ** larger than the previous rowid.  This has been shown experimentally
3366     ** to double the speed of the COPY operation.
3367     */
3368     int res, rx=SQLITE_OK, cnt;
3369     i64 x;
3370     cnt = 0;
3371     if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
3372           BTREE_INTKEY ){
3373       rc = SQLITE_CORRUPT_BKPT;
3374       goto abort_due_to_error;
3375     }
3376     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
3377     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
3378 
3379 #ifdef SQLITE_32BIT_ROWID
3380 #   define MAX_ROWID 0x7fffffff
3381 #else
3382     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3383     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
3384     ** to provide the constant while making all compilers happy.
3385     */
3386 #   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3387 #endif
3388 
3389     if( !pC->useRandomRowid ){
3390       if( pC->nextRowidValid ){
3391         v = pC->nextRowid;
3392       }else{
3393         rc = sqlite3BtreeLast(pC->pCursor, &res);
3394         if( rc!=SQLITE_OK ){
3395           goto abort_due_to_error;
3396         }
3397         if( res ){
3398           v = 1;
3399         }else{
3400           sqlite3BtreeKeySize(pC->pCursor, &v);
3401           v = keyToInt(v);
3402           if( v==MAX_ROWID ){
3403             pC->useRandomRowid = 1;
3404           }else{
3405             v++;
3406           }
3407         }
3408       }
3409 
3410 #ifndef SQLITE_OMIT_AUTOINCREMENT
3411       if( pOp->p2 ){
3412         Mem *pMem;
3413         assert( pOp->p2>0 && pOp->p2<p->nMem );  /* P2 is a valid memory cell */
3414         pMem = &p->aMem[pOp->p2];
3415         sqlite3VdbeMemIntegerify(pMem);
3416         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P2) holds an integer */
3417         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3418           rc = SQLITE_FULL;
3419           goto abort_due_to_error;
3420         }
3421         if( v<pMem->u.i+1 ){
3422           v = pMem->u.i + 1;
3423         }
3424         pMem->u.i = v;
3425       }
3426 #endif
3427 
3428       if( v<MAX_ROWID ){
3429         pC->nextRowidValid = 1;
3430         pC->nextRowid = v+1;
3431       }else{
3432         pC->nextRowidValid = 0;
3433       }
3434     }
3435     if( pC->useRandomRowid ){
3436       assert( pOp->p2==0 );  /* SQLITE_FULL must have occurred prior to this */
3437       v = db->priorNewRowid;
3438       cnt = 0;
3439       do{
3440         if( v==0 || cnt>2 ){
3441           sqlite3Randomness(sizeof(v), &v);
3442           if( cnt<5 ) v &= 0xffffff;
3443         }else{
3444           unsigned char r;
3445           sqlite3Randomness(1, &r);
3446           v += r + 1;
3447         }
3448         if( v==0 ) continue;
3449         x = intToKey(v);
3450         rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
3451         cnt++;
3452       }while( cnt<1000 && rx==SQLITE_OK && res==0 );
3453       db->priorNewRowid = v;
3454       if( rx==SQLITE_OK && res==0 ){
3455         rc = SQLITE_FULL;
3456         goto abort_due_to_error;
3457       }
3458     }
3459     pC->rowidIsValid = 0;
3460     pC->deferredMoveto = 0;
3461     pC->cacheStatus = CACHE_STALE;
3462   }
3463   pTos++;
3464   pTos->u.i = v;
3465   pTos->flags = MEM_Int;
3466   break;
3467 }
3468 
3469 /* Opcode: Insert P1 P2 P3
3470 **
3471 ** Write an entry into the table of cursor P1.  A new entry is
3472 ** created if it doesn't already exist or the data for an existing
3473 ** entry is overwritten.  The data is the value on the top of the
3474 ** stack.  The key is the next value down on the stack.  The key must
3475 ** be an integer.  The stack is popped twice by this instruction.
3476 **
3477 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3478 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P2 is set,
3479 ** then rowid is stored for subsequent return by the
3480 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3481 **
3482 ** Parameter P3 may point to a string containing the table-name, or
3483 ** may be NULL. If it is not NULL, then the update-hook
3484 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3485 **
3486 ** This instruction only works on tables.  The equivalent instruction
3487 ** for indices is OP_IdxInsert.
3488 */
3489 case OP_Insert: {         /* no-push */
3490   Mem *pNos = &pTos[-1];
3491   int i = pOp->p1;
3492   Cursor *pC;
3493   assert( pNos>=p->aStack );
3494   assert( i>=0 && i<p->nCursor );
3495   assert( p->apCsr[i]!=0 );
3496   if( ((pC = p->apCsr[i])->pCursor!=0 || pC->pseudoTable) ){
3497     i64 iKey;   /* The integer ROWID or key for the record to be inserted */
3498 
3499     assert( pNos->flags & MEM_Int );
3500     assert( pC->isTable );
3501     iKey = intToKey(pNos->u.i);
3502 
3503     if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
3504     if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->u.i;
3505     if( pC->nextRowidValid && pNos->u.i>=pC->nextRowid ){
3506       pC->nextRowidValid = 0;
3507     }
3508     if( pTos->flags & MEM_Null ){
3509       pTos->z = 0;
3510       pTos->n = 0;
3511     }else{
3512       assert( pTos->flags & (MEM_Blob|MEM_Str) );
3513     }
3514     if( pC->pseudoTable ){
3515       sqlite3_free(pC->pData);
3516       pC->iKey = iKey;
3517       pC->nData = pTos->n;
3518       if( pTos->flags & MEM_Dyn ){
3519         pC->pData = pTos->z;
3520         pTos->flags = MEM_Null;
3521       }else{
3522         pC->pData = sqlite3_malloc( pC->nData+2 );
3523         if( !pC->pData ) goto no_mem;
3524         memcpy(pC->pData, pTos->z, pC->nData);
3525         pC->pData[pC->nData] = 0;
3526         pC->pData[pC->nData+1] = 0;
3527       }
3528       pC->nullRow = 0;
3529     }else{
3530       int nZero;
3531       if( pTos->flags & MEM_Zero ){
3532         nZero = pTos->u.i;
3533       }else{
3534         nZero = 0;
3535       }
3536       rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3537                               pTos->z, pTos->n, nZero,
3538                               pOp->p2 & OPFLAG_APPEND);
3539     }
3540 
3541     pC->rowidIsValid = 0;
3542     pC->deferredMoveto = 0;
3543     pC->cacheStatus = CACHE_STALE;
3544 
3545     /* Invoke the update-hook if required. */
3546     if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
3547       const char *zDb = db->aDb[pC->iDb].zName;
3548       const char *zTbl = pOp->p3;
3549       int op = ((pOp->p2 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
3550       assert( pC->isTable );
3551       db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3552       assert( pC->iDb>=0 );
3553     }
3554   }
3555   popStack(&pTos, 2);
3556 
3557   break;
3558 }
3559 
3560 /* Opcode: Delete P1 P2 P3
3561 **
3562 ** Delete the record at which the P1 cursor is currently pointing.
3563 **
3564 ** The cursor will be left pointing at either the next or the previous
3565 ** record in the table. If it is left pointing at the next record, then
3566 ** the next Next instruction will be a no-op.  Hence it is OK to delete
3567 ** a record from within an Next loop.
3568 **
3569 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3570 ** incremented (otherwise not).
3571 **
3572 ** If P1 is a pseudo-table, then this instruction is a no-op.
3573 */
3574 case OP_Delete: {        /* no-push */
3575   int i = pOp->p1;
3576   Cursor *pC;
3577   assert( i>=0 && i<p->nCursor );
3578   pC = p->apCsr[i];
3579   assert( pC!=0 );
3580   if( pC->pCursor!=0 ){
3581     i64 iKey;
3582 
3583     /* If the update-hook will be invoked, set iKey to the rowid of the
3584     ** row being deleted.
3585     */
3586     if( db->xUpdateCallback && pOp->p3 ){
3587       assert( pC->isTable );
3588       if( pC->rowidIsValid ){
3589         iKey = pC->lastRowid;
3590       }else{
3591         rc = sqlite3BtreeKeySize(pC->pCursor, &iKey);
3592         if( rc ){
3593           goto abort_due_to_error;
3594         }
3595         iKey = keyToInt(iKey);
3596       }
3597     }
3598 
3599     rc = sqlite3VdbeCursorMoveto(pC);
3600     if( rc ) goto abort_due_to_error;
3601     rc = sqlite3BtreeDelete(pC->pCursor);
3602     pC->nextRowidValid = 0;
3603     pC->cacheStatus = CACHE_STALE;
3604 
3605     /* Invoke the update-hook if required. */
3606     if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p3 ){
3607       const char *zDb = db->aDb[pC->iDb].zName;
3608       const char *zTbl = pOp->p3;
3609       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3610       assert( pC->iDb>=0 );
3611     }
3612   }
3613   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
3614   break;
3615 }
3616 
3617 /* Opcode: ResetCount P1 * *
3618 **
3619 ** This opcode resets the VMs internal change counter to 0. If P1 is true,
3620 ** then the value of the change counter is copied to the database handle
3621 ** change counter (returned by subsequent calls to sqlite3_changes())
3622 ** before it is reset. This is used by trigger programs.
3623 */
3624 case OP_ResetCount: {        /* no-push */
3625   if( pOp->p1 ){
3626     sqlite3VdbeSetChanges(db, p->nChange);
3627   }
3628   p->nChange = 0;
3629   break;
3630 }
3631 
3632 /* Opcode: RowData P1 * *
3633 **
3634 ** Push onto the stack the complete row data for cursor P1.
3635 ** There is no interpretation of the data.  It is just copied
3636 ** onto the stack exactly as it is found in the database file.
3637 **
3638 ** If the cursor is not pointing to a valid row, a NULL is pushed
3639 ** onto the stack.
3640 */
3641 /* Opcode: RowKey P1 * *
3642 **
3643 ** Push onto the stack the complete row key for cursor P1.
3644 ** There is no interpretation of the key.  It is just copied
3645 ** onto the stack exactly as it is found in the database file.
3646 **
3647 ** If the cursor is not pointing to a valid row, a NULL is pushed
3648 ** onto the stack.
3649 */
3650 case OP_RowKey:
3651 case OP_RowData: {
3652   int i = pOp->p1;
3653   Cursor *pC;
3654   u32 n;
3655 
3656   /* Note that RowKey and RowData are really exactly the same instruction */
3657   pTos++;
3658   assert( i>=0 && i<p->nCursor );
3659   pC = p->apCsr[i];
3660   assert( pC->isTable || pOp->opcode==OP_RowKey );
3661   assert( pC->isIndex || pOp->opcode==OP_RowData );
3662   assert( pC!=0 );
3663   if( pC->nullRow ){
3664     pTos->flags = MEM_Null;
3665   }else if( pC->pCursor!=0 ){
3666     BtCursor *pCrsr = pC->pCursor;
3667     rc = sqlite3VdbeCursorMoveto(pC);
3668     if( rc ) goto abort_due_to_error;
3669     if( pC->nullRow ){
3670       pTos->flags = MEM_Null;
3671       break;
3672     }else if( pC->isIndex ){
3673       i64 n64;
3674       assert( !pC->isTable );
3675       sqlite3BtreeKeySize(pCrsr, &n64);
3676       if( n64>SQLITE_MAX_LENGTH ){
3677         goto too_big;
3678       }
3679       n = n64;
3680     }else{
3681       sqlite3BtreeDataSize(pCrsr, &n);
3682     }
3683     if( n>SQLITE_MAX_LENGTH ){
3684       goto too_big;
3685     }
3686     pTos->n = n;
3687     if( n<=NBFS ){
3688       pTos->flags = MEM_Blob | MEM_Short;
3689       pTos->z = pTos->zShort;
3690     }else{
3691       char *z = sqlite3_malloc( n );
3692       if( z==0 ) goto no_mem;
3693       pTos->flags = MEM_Blob | MEM_Dyn;
3694       pTos->xDel = 0;
3695       pTos->z = z;
3696     }
3697     if( pC->isIndex ){
3698       rc = sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
3699     }else{
3700       rc = sqlite3BtreeData(pCrsr, 0, n, pTos->z);
3701     }
3702   }else if( pC->pseudoTable ){
3703     pTos->n = pC->nData;
3704     assert( pC->nData<=SQLITE_MAX_LENGTH );
3705     pTos->z = pC->pData;
3706     pTos->flags = MEM_Blob|MEM_Ephem;
3707   }else{
3708     pTos->flags = MEM_Null;
3709   }
3710   pTos->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
3711   break;
3712 }
3713 
3714 /* Opcode: Rowid P1 * *
3715 **
3716 ** Push onto the stack an integer which is the key of the table entry that
3717 ** P1 is currently point to.
3718 */
3719 case OP_Rowid: {
3720   int i = pOp->p1;
3721   Cursor *pC;
3722   i64 v;
3723 
3724   assert( i>=0 && i<p->nCursor );
3725   pC = p->apCsr[i];
3726   assert( pC!=0 );
3727   rc = sqlite3VdbeCursorMoveto(pC);
3728   if( rc ) goto abort_due_to_error;
3729   pTos++;
3730   if( pC->rowidIsValid ){
3731     v = pC->lastRowid;
3732   }else if( pC->pseudoTable ){
3733     v = keyToInt(pC->iKey);
3734   }else if( pC->nullRow || pC->pCursor==0 ){
3735     pTos->flags = MEM_Null;
3736     break;
3737   }else{
3738     assert( pC->pCursor!=0 );
3739     sqlite3BtreeKeySize(pC->pCursor, &v);
3740     v = keyToInt(v);
3741   }
3742   pTos->u.i = v;
3743   pTos->flags = MEM_Int;
3744   break;
3745 }
3746 
3747 /* Opcode: NullRow P1 * *
3748 **
3749 ** Move the cursor P1 to a null row.  Any OP_Column operations
3750 ** that occur while the cursor is on the null row will always push
3751 ** a NULL onto the stack.
3752 */
3753 case OP_NullRow: {        /* no-push */
3754   int i = pOp->p1;
3755   Cursor *pC;
3756 
3757   assert( i>=0 && i<p->nCursor );
3758   pC = p->apCsr[i];
3759   assert( pC!=0 );
3760   pC->nullRow = 1;
3761   pC->rowidIsValid = 0;
3762   break;
3763 }
3764 
3765 /* Opcode: Last P1 P2 *
3766 **
3767 ** The next use of the Rowid or Column or Next instruction for P1
3768 ** will refer to the last entry in the database table or index.
3769 ** If the table or index is empty and P2>0, then jump immediately to P2.
3770 ** If P2 is 0 or if the table or index is not empty, fall through
3771 ** to the following instruction.
3772 */
3773 case OP_Last: {        /* no-push */
3774   int i = pOp->p1;
3775   Cursor *pC;
3776   BtCursor *pCrsr;
3777 
3778   assert( i>=0 && i<p->nCursor );
3779   pC = p->apCsr[i];
3780   assert( pC!=0 );
3781   if( (pCrsr = pC->pCursor)!=0 ){
3782     int res;
3783     rc = sqlite3BtreeLast(pCrsr, &res);
3784     pC->nullRow = res;
3785     pC->deferredMoveto = 0;
3786     pC->cacheStatus = CACHE_STALE;
3787     if( res && pOp->p2>0 ){
3788       pc = pOp->p2 - 1;
3789     }
3790   }else{
3791     pC->nullRow = 0;
3792   }
3793   break;
3794 }
3795 
3796 
3797 /* Opcode: Sort P1 P2 *
3798 **
3799 ** This opcode does exactly the same thing as OP_Rewind except that
3800 ** it increments an undocumented global variable used for testing.
3801 **
3802 ** Sorting is accomplished by writing records into a sorting index,
3803 ** then rewinding that index and playing it back from beginning to
3804 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
3805 ** rewinding so that the global variable will be incremented and
3806 ** regression tests can determine whether or not the optimizer is
3807 ** correctly optimizing out sorts.
3808 */
3809 case OP_Sort: {        /* no-push */
3810 #ifdef SQLITE_TEST
3811   sqlite3_sort_count++;
3812   sqlite3_search_count--;
3813 #endif
3814   /* Fall through into OP_Rewind */
3815 }
3816 /* Opcode: Rewind P1 P2 *
3817 **
3818 ** The next use of the Rowid or Column or Next instruction for P1
3819 ** will refer to the first entry in the database table or index.
3820 ** If the table or index is empty and P2>0, then jump immediately to P2.
3821 ** If P2 is 0 or if the table or index is not empty, fall through
3822 ** to the following instruction.
3823 */
3824 case OP_Rewind: {        /* no-push */
3825   int i = pOp->p1;
3826   Cursor *pC;
3827   BtCursor *pCrsr;
3828   int res;
3829 
3830   assert( i>=0 && i<p->nCursor );
3831   pC = p->apCsr[i];
3832   assert( pC!=0 );
3833   if( (pCrsr = pC->pCursor)!=0 ){
3834     rc = sqlite3BtreeFirst(pCrsr, &res);
3835     pC->atFirst = res==0;
3836     pC->deferredMoveto = 0;
3837     pC->cacheStatus = CACHE_STALE;
3838   }else{
3839     res = 1;
3840   }
3841   pC->nullRow = res;
3842   if( res && pOp->p2>0 ){
3843     pc = pOp->p2 - 1;
3844   }
3845   break;
3846 }
3847 
3848 /* Opcode: Next P1 P2 *
3849 **
3850 ** Advance cursor P1 so that it points to the next key/data pair in its
3851 ** table or index.  If there are no more key/value pairs then fall through
3852 ** to the following instruction.  But if the cursor advance was successful,
3853 ** jump immediately to P2.
3854 **
3855 ** See also: Prev
3856 */
3857 /* Opcode: Prev P1 P2 *
3858 **
3859 ** Back up cursor P1 so that it points to the previous key/data pair in its
3860 ** table or index.  If there is no previous key/value pairs then fall through
3861 ** to the following instruction.  But if the cursor backup was successful,
3862 ** jump immediately to P2.
3863 */
3864 case OP_Prev:          /* no-push */
3865 case OP_Next: {        /* no-push */
3866   Cursor *pC;
3867   BtCursor *pCrsr;
3868 
3869   CHECK_FOR_INTERRUPT;
3870   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3871   pC = p->apCsr[pOp->p1];
3872   if( pC==0 ){
3873     break;  /* See ticket #2273 */
3874   }
3875   if( (pCrsr = pC->pCursor)!=0 ){
3876     int res;
3877     if( pC->nullRow ){
3878       res = 1;
3879     }else{
3880       assert( pC->deferredMoveto==0 );
3881       rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
3882                                   sqlite3BtreePrevious(pCrsr, &res);
3883       pC->nullRow = res;
3884       pC->cacheStatus = CACHE_STALE;
3885     }
3886     if( res==0 ){
3887       pc = pOp->p2 - 1;
3888 #ifdef SQLITE_TEST
3889       sqlite3_search_count++;
3890 #endif
3891     }
3892   }else{
3893     pC->nullRow = 1;
3894   }
3895   pC->rowidIsValid = 0;
3896   break;
3897 }
3898 
3899 /* Opcode: IdxInsert P1 P2 *
3900 **
3901 ** The top of the stack holds a SQL index key made using either the
3902 ** MakeIdxRec or MakeRecord instructions.  This opcode writes that key
3903 ** into the index P1.  Data for the entry is nil.
3904 **
3905 ** P2 is a flag that provides a hint to the b-tree layer that this
3906 ** insert is likely to be an append.
3907 **
3908 ** This instruction only works for indices.  The equivalent instruction
3909 ** for tables is OP_Insert.
3910 */
3911 case OP_IdxInsert: {        /* no-push */
3912   int i = pOp->p1;
3913   Cursor *pC;
3914   BtCursor *pCrsr;
3915   assert( pTos>=p->aStack );
3916   assert( i>=0 && i<p->nCursor );
3917   assert( p->apCsr[i]!=0 );
3918   assert( pTos->flags & MEM_Blob );
3919   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3920     assert( pC->isTable==0 );
3921     rc = ExpandBlob(pTos);
3922     if( rc==SQLITE_OK ){
3923       int nKey = pTos->n;
3924       const char *zKey = pTos->z;
3925       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p2);
3926       assert( pC->deferredMoveto==0 );
3927       pC->cacheStatus = CACHE_STALE;
3928     }
3929   }
3930   Release(pTos);
3931   pTos--;
3932   break;
3933 }
3934 
3935 /* Opcode: IdxDelete P1 * *
3936 **
3937 ** The top of the stack is an index key built using the either the
3938 ** MakeIdxRec or MakeRecord opcodes.
3939 ** This opcode removes that entry from the index.
3940 */
3941 case OP_IdxDelete: {        /* no-push */
3942   int i = pOp->p1;
3943   Cursor *pC;
3944   BtCursor *pCrsr;
3945   assert( pTos>=p->aStack );
3946   assert( pTos->flags & MEM_Blob );
3947   assert( i>=0 && i<p->nCursor );
3948   assert( p->apCsr[i]!=0 );
3949   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3950     int res;
3951     rc = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, 0, &res);
3952     if( rc==SQLITE_OK && res==0 ){
3953       rc = sqlite3BtreeDelete(pCrsr);
3954     }
3955     assert( pC->deferredMoveto==0 );
3956     pC->cacheStatus = CACHE_STALE;
3957   }
3958   Release(pTos);
3959   pTos--;
3960   break;
3961 }
3962 
3963 /* Opcode: IdxRowid P1 * *
3964 **
3965 ** Push onto the stack an integer which is the last entry in the record at
3966 ** the end of the index key pointed to by cursor P1.  This integer should be
3967 ** the rowid of the table entry to which this index entry points.
3968 **
3969 ** See also: Rowid, MakeIdxRec.
3970 */
3971 case OP_IdxRowid: {
3972   int i = pOp->p1;
3973   BtCursor *pCrsr;
3974   Cursor *pC;
3975 
3976   assert( i>=0 && i<p->nCursor );
3977   assert( p->apCsr[i]!=0 );
3978   pTos++;
3979   pTos->flags = MEM_Null;
3980   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3981     i64 rowid;
3982 
3983     assert( pC->deferredMoveto==0 );
3984     assert( pC->isTable==0 );
3985     if( pC->nullRow ){
3986       pTos->flags = MEM_Null;
3987     }else{
3988       rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
3989       if( rc!=SQLITE_OK ){
3990         goto abort_due_to_error;
3991       }
3992       pTos->flags = MEM_Int;
3993       pTos->u.i = rowid;
3994     }
3995   }
3996   break;
3997 }
3998 
3999 /* Opcode: IdxGT P1 P2 *
4000 **
4001 ** The top of the stack is an index entry that omits the ROWID.  Compare
4002 ** the top of stack against the index that P1 is currently pointing to.
4003 ** Ignore the ROWID on the P1 index.
4004 **
4005 ** The top of the stack might have fewer columns that P1.
4006 **
4007 ** If the P1 index entry is greater than the top of the stack
4008 ** then jump to P2.  Otherwise fall through to the next instruction.
4009 ** In either case, the stack is popped once.
4010 */
4011 /* Opcode: IdxGE P1 P2 P3
4012 **
4013 ** The top of the stack is an index entry that omits the ROWID.  Compare
4014 ** the top of stack against the index that P1 is currently pointing to.
4015 ** Ignore the ROWID on the P1 index.
4016 **
4017 ** If the P1 index entry is greater than or equal to the top of the stack
4018 ** then jump to P2.  Otherwise fall through to the next instruction.
4019 ** In either case, the stack is popped once.
4020 **
4021 ** If P3 is the "+" string (or any other non-NULL string) then the
4022 ** index taken from the top of the stack is temporarily increased by
4023 ** an epsilon prior to the comparison.  This make the opcode work
4024 ** like IdxGT except that if the key from the stack is a prefix of
4025 ** the key in the cursor, the result is false whereas it would be
4026 ** true with IdxGT.
4027 */
4028 /* Opcode: IdxLT P1 P2 P3
4029 **
4030 ** The top of the stack is an index entry that omits the ROWID.  Compare
4031 ** the top of stack against the index that P1 is currently pointing to.
4032 ** Ignore the ROWID on the P1 index.
4033 **
4034 ** If the P1 index entry is less than  the top of the stack
4035 ** then jump to P2.  Otherwise fall through to the next instruction.
4036 ** In either case, the stack is popped once.
4037 **
4038 ** If P3 is the "+" string (or any other non-NULL string) then the
4039 ** index taken from the top of the stack is temporarily increased by
4040 ** an epsilon prior to the comparison.  This makes the opcode work
4041 ** like IdxLE.
4042 */
4043 case OP_IdxLT:          /* no-push */
4044 case OP_IdxGT:          /* no-push */
4045 case OP_IdxGE: {        /* no-push */
4046   int i= pOp->p1;
4047   Cursor *pC;
4048 
4049   assert( i>=0 && i<p->nCursor );
4050   assert( p->apCsr[i]!=0 );
4051   assert( pTos>=p->aStack );
4052   if( (pC = p->apCsr[i])->pCursor!=0 ){
4053     int res;
4054 
4055     assert( pTos->flags & MEM_Blob );  /* Created using OP_MakeRecord */
4056     assert( pC->deferredMoveto==0 );
4057     ExpandBlob(pTos);
4058     *pC->pIncrKey = pOp->p3!=0;
4059     assert( pOp->p3==0 || pOp->opcode!=OP_IdxGT );
4060     rc = sqlite3VdbeIdxKeyCompare(pC, pTos->n, (u8*)pTos->z, &res);
4061     *pC->pIncrKey = 0;
4062     if( rc!=SQLITE_OK ){
4063       break;
4064     }
4065     if( pOp->opcode==OP_IdxLT ){
4066       res = -res;
4067     }else if( pOp->opcode==OP_IdxGE ){
4068       res++;
4069     }
4070     if( res>0 ){
4071       pc = pOp->p2 - 1 ;
4072     }
4073   }
4074   Release(pTos);
4075   pTos--;
4076   break;
4077 }
4078 
4079 /* Opcode: Destroy P1 P2 *
4080 **
4081 ** Delete an entire database table or index whose root page in the database
4082 ** file is given by P1.
4083 **
4084 ** The table being destroyed is in the main database file if P2==0.  If
4085 ** P2==1 then the table to be clear is in the auxiliary database file
4086 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4087 **
4088 ** If AUTOVACUUM is enabled then it is possible that another root page
4089 ** might be moved into the newly deleted root page in order to keep all
4090 ** root pages contiguous at the beginning of the database.  The former
4091 ** value of the root page that moved - its value before the move occurred -
4092 ** is pushed onto the stack.  If no page movement was required (because
4093 ** the table being dropped was already the last one in the database) then
4094 ** a zero is pushed onto the stack.  If AUTOVACUUM is disabled
4095 ** then a zero is pushed onto the stack.
4096 **
4097 ** See also: Clear
4098 */
4099 case OP_Destroy: {
4100   int iMoved;
4101   int iCnt;
4102 #ifndef SQLITE_OMIT_VIRTUALTABLE
4103   Vdbe *pVdbe;
4104   iCnt = 0;
4105   for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
4106     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4107       iCnt++;
4108     }
4109   }
4110 #else
4111   iCnt = db->activeVdbeCnt;
4112 #endif
4113   if( iCnt>1 ){
4114     rc = SQLITE_LOCKED;
4115     p->errorAction = OE_Abort;
4116   }else{
4117     assert( iCnt==1 );
4118     assert( (p->btreeMask & (1<<pOp->p2))!=0 );
4119     rc = sqlite3BtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1, &iMoved);
4120     pTos++;
4121     pTos->flags = MEM_Int;
4122     pTos->u.i = iMoved;
4123 #ifndef SQLITE_OMIT_AUTOVACUUM
4124     if( rc==SQLITE_OK && iMoved!=0 ){
4125       sqlite3RootPageMoved(&db->aDb[pOp->p2], iMoved, pOp->p1);
4126     }
4127 #endif
4128   }
4129   break;
4130 }
4131 
4132 /* Opcode: Clear P1 P2 *
4133 **
4134 ** Delete all contents of the database table or index whose root page
4135 ** in the database file is given by P1.  But, unlike Destroy, do not
4136 ** remove the table or index from the database file.
4137 **
4138 ** The table being clear is in the main database file if P2==0.  If
4139 ** P2==1 then the table to be clear is in the auxiliary database file
4140 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4141 **
4142 ** See also: Destroy
4143 */
4144 case OP_Clear: {        /* no-push */
4145 
4146   /* For consistency with the way other features of SQLite operate
4147   ** with a truncate, we will also skip the update callback.
4148   */
4149 #if 0
4150   Btree *pBt = db->aDb[pOp->p2].pBt;
4151   if( db->xUpdateCallback && pOp->p3 ){
4152     const char *zDb = db->aDb[pOp->p2].zName;
4153     const char *zTbl = pOp->p3;
4154     BtCursor *pCur = 0;
4155     int fin = 0;
4156 
4157     rc = sqlite3BtreeCursor(pBt, pOp->p1, 0, 0, 0, &pCur);
4158     if( rc!=SQLITE_OK ){
4159       goto abort_due_to_error;
4160     }
4161     for(
4162       rc=sqlite3BtreeFirst(pCur, &fin);
4163       rc==SQLITE_OK && !fin;
4164       rc=sqlite3BtreeNext(pCur, &fin)
4165     ){
4166       i64 iKey;
4167       rc = sqlite3BtreeKeySize(pCur, &iKey);
4168       if( rc ){
4169         break;
4170       }
4171       iKey = keyToInt(iKey);
4172       db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4173     }
4174     sqlite3BtreeCloseCursor(pCur);
4175     if( rc!=SQLITE_OK ){
4176       goto abort_due_to_error;
4177     }
4178   }
4179 #endif
4180   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
4181   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
4182   break;
4183 }
4184 
4185 /* Opcode: CreateTable P1 * *
4186 **
4187 ** Allocate a new table in the main database file if P2==0 or in the
4188 ** auxiliary database file if P2==1.  Push the page number
4189 ** for the root page of the new table onto the stack.
4190 **
4191 ** The difference between a table and an index is this:  A table must
4192 ** have a 4-byte integer key and can have arbitrary data.  An index
4193 ** has an arbitrary key but no data.
4194 **
4195 ** See also: CreateIndex
4196 */
4197 /* Opcode: CreateIndex P1 * *
4198 **
4199 ** Allocate a new index in the main database file if P2==0 or in the
4200 ** auxiliary database file if P2==1.  Push the page number of the
4201 ** root page of the new index onto the stack.
4202 **
4203 ** See documentation on OP_CreateTable for additional information.
4204 */
4205 case OP_CreateIndex:
4206 case OP_CreateTable: {
4207   int pgno;
4208   int flags;
4209   Db *pDb;
4210   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4211   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
4212   pDb = &db->aDb[pOp->p1];
4213   assert( pDb->pBt!=0 );
4214   if( pOp->opcode==OP_CreateTable ){
4215     /* flags = BTREE_INTKEY; */
4216     flags = BTREE_LEAFDATA|BTREE_INTKEY;
4217   }else{
4218     flags = BTREE_ZERODATA;
4219   }
4220   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4221   pTos++;
4222   if( rc==SQLITE_OK ){
4223     pTos->u.i = pgno;
4224     pTos->flags = MEM_Int;
4225   }else{
4226     pTos->flags = MEM_Null;
4227   }
4228   break;
4229 }
4230 
4231 /* Opcode: ParseSchema P1 P2 P3
4232 **
4233 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4234 ** that match the WHERE clause P3.  P2 is the "force" flag.   Always do
4235 ** the parsing if P2 is true.  If P2 is false, then this routine is a
4236 ** no-op if the schema is not currently loaded.  In other words, if P2
4237 ** is false, the SQLITE_MASTER table is only parsed if the rest of the
4238 ** schema is already loaded into the symbol table.
4239 **
4240 ** This opcode invokes the parser to create a new virtual machine,
4241 ** then runs the new virtual machine.  It is thus a reentrant opcode.
4242 */
4243 case OP_ParseSchema: {        /* no-push */
4244   char *zSql;
4245   int iDb = pOp->p1;
4246   const char *zMaster;
4247   InitData initData;
4248 
4249   assert( iDb>=0 && iDb<db->nDb );
4250   if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
4251     break;
4252   }
4253   zMaster = SCHEMA_TABLE(iDb);
4254   initData.db = db;
4255   initData.iDb = pOp->p1;
4256   initData.pzErrMsg = &p->zErrMsg;
4257   zSql = sqlite3MPrintf(db,
4258      "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
4259      db->aDb[iDb].zName, zMaster, pOp->p3);
4260   if( zSql==0 ) goto no_mem;
4261   sqlite3SafetyOff(db);
4262   assert( db->init.busy==0 );
4263   db->init.busy = 1;
4264   assert( !db->mallocFailed );
4265   rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4266   if( rc==SQLITE_ABORT ) rc = initData.rc;
4267   sqlite3_free(zSql);
4268   db->init.busy = 0;
4269   sqlite3SafetyOn(db);
4270   if( rc==SQLITE_NOMEM ){
4271     goto no_mem;
4272   }
4273   break;
4274 }
4275 
4276 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
4277 /* Opcode: LoadAnalysis P1 * *
4278 **
4279 ** Read the sqlite_stat1 table for database P1 and load the content
4280 ** of that table into the internal index hash table.  This will cause
4281 ** the analysis to be used when preparing all subsequent queries.
4282 */
4283 case OP_LoadAnalysis: {        /* no-push */
4284   int iDb = pOp->p1;
4285   assert( iDb>=0 && iDb<db->nDb );
4286   rc = sqlite3AnalysisLoad(db, iDb);
4287   break;
4288 }
4289 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
4290 
4291 /* Opcode: DropTable P1 * P3
4292 **
4293 ** Remove the internal (in-memory) data structures that describe
4294 ** the table named P3 in database P1.  This is called after a table
4295 ** is dropped in order to keep the internal representation of the
4296 ** schema consistent with what is on disk.
4297 */
4298 case OP_DropTable: {        /* no-push */
4299   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
4300   break;
4301 }
4302 
4303 /* Opcode: DropIndex P1 * P3
4304 **
4305 ** Remove the internal (in-memory) data structures that describe
4306 ** the index named P3 in database P1.  This is called after an index
4307 ** is dropped in order to keep the internal representation of the
4308 ** schema consistent with what is on disk.
4309 */
4310 case OP_DropIndex: {        /* no-push */
4311   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
4312   break;
4313 }
4314 
4315 /* Opcode: DropTrigger P1 * P3
4316 **
4317 ** Remove the internal (in-memory) data structures that describe
4318 ** the trigger named P3 in database P1.  This is called after a trigger
4319 ** is dropped in order to keep the internal representation of the
4320 ** schema consistent with what is on disk.
4321 */
4322 case OP_DropTrigger: {        /* no-push */
4323   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
4324   break;
4325 }
4326 
4327 
4328 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4329 /* Opcode: IntegrityCk P1 P2 *
4330 **
4331 ** Do an analysis of the currently open database.  Push onto the
4332 ** stack the text of an error message describing any problems.
4333 ** If no problems are found, push a NULL onto the stack.
4334 **
4335 ** P1 is the address of a memory cell that contains the maximum
4336 ** number of allowed errors.  At most mem[P1] errors will be reported.
4337 ** In other words, the analysis stops as soon as mem[P1] errors are
4338 ** seen.  Mem[P1] is updated with the number of errors remaining.
4339 **
4340 ** The root page numbers of all tables in the database are integer
4341 ** values on the stack.  This opcode pulls as many integers as it
4342 ** can off of the stack and uses those numbers as the root pages.
4343 **
4344 ** If P2 is not zero, the check is done on the auxiliary database
4345 ** file, not the main database file.
4346 **
4347 ** This opcode is used to implement the integrity_check pragma.
4348 */
4349 case OP_IntegrityCk: {
4350   int nRoot;
4351   int *aRoot;
4352   int j;
4353   int nErr;
4354   char *z;
4355   Mem *pnErr;
4356 
4357   for(nRoot=0; &pTos[-nRoot]>=p->aStack; nRoot++){
4358     if( (pTos[-nRoot].flags & MEM_Int)==0 ) break;
4359   }
4360   assert( nRoot>0 );
4361   aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
4362   if( aRoot==0 ) goto no_mem;
4363   j = pOp->p1;
4364   assert( j>=0 && j<p->nMem );
4365   pnErr = &p->aMem[j];
4366   assert( (pnErr->flags & MEM_Int)!=0 );
4367   for(j=0; j<nRoot; j++){
4368     aRoot[j] = (pTos-j)->u.i;
4369   }
4370   aRoot[j] = 0;
4371   popStack(&pTos, nRoot);
4372   pTos++;
4373   assert( pOp->p2>=0 && pOp->p2<db->nDb );
4374   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
4375   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot,
4376                                  pnErr->u.i, &nErr);
4377   pnErr->u.i -= nErr;
4378   if( nErr==0 ){
4379     assert( z==0 );
4380     pTos->flags = MEM_Null;
4381   }else{
4382     pTos->z = z;
4383     pTos->n = strlen(z);
4384     pTos->flags = MEM_Str | MEM_Dyn | MEM_Term;
4385     pTos->xDel = 0;
4386   }
4387   pTos->enc = SQLITE_UTF8;
4388   sqlite3VdbeChangeEncoding(pTos, encoding);
4389   sqlite3_free(aRoot);
4390   break;
4391 }
4392 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4393 
4394 /* Opcode: FifoWrite * * *
4395 **
4396 ** Write the integer on the top of the stack
4397 ** into the Fifo.
4398 */
4399 case OP_FifoWrite: {        /* no-push */
4400   assert( pTos>=p->aStack );
4401   sqlite3VdbeMemIntegerify(pTos);
4402   if( sqlite3VdbeFifoPush(&p->sFifo, pTos->u.i)==SQLITE_NOMEM ){
4403     goto no_mem;
4404   }
4405   assert( (pTos->flags & MEM_Dyn)==0 );
4406   pTos--;
4407   break;
4408 }
4409 
4410 /* Opcode: FifoRead * P2 *
4411 **
4412 ** Attempt to read a single integer from the Fifo
4413 ** and push it onto the stack.  If the Fifo is empty
4414 ** push nothing but instead jump to P2.
4415 */
4416 case OP_FifoRead: {
4417   i64 v;
4418   CHECK_FOR_INTERRUPT;
4419   if( sqlite3VdbeFifoPop(&p->sFifo, &v)==SQLITE_DONE ){
4420     pc = pOp->p2 - 1;
4421   }else{
4422     pTos++;
4423     pTos->u.i = v;
4424     pTos->flags = MEM_Int;
4425   }
4426   break;
4427 }
4428 
4429 #ifndef SQLITE_OMIT_TRIGGER
4430 /* Opcode: ContextPush * * *
4431 **
4432 ** Save the current Vdbe context such that it can be restored by a ContextPop
4433 ** opcode. The context stores the last insert row id, the last statement change
4434 ** count, and the current statement change count.
4435 */
4436 case OP_ContextPush: {        /* no-push */
4437   int i = p->contextStackTop++;
4438   Context *pContext;
4439 
4440   assert( i>=0 );
4441   /* FIX ME: This should be allocated as part of the vdbe at compile-time */
4442   if( i>=p->contextStackDepth ){
4443     p->contextStackDepth = i+1;
4444     p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
4445                                           sizeof(Context)*(i+1));
4446     if( p->contextStack==0 ) goto no_mem;
4447   }
4448   pContext = &p->contextStack[i];
4449   pContext->lastRowid = db->lastRowid;
4450   pContext->nChange = p->nChange;
4451   pContext->sFifo = p->sFifo;
4452   sqlite3VdbeFifoInit(&p->sFifo);
4453   break;
4454 }
4455 
4456 /* Opcode: ContextPop * * *
4457 **
4458 ** Restore the Vdbe context to the state it was in when contextPush was last
4459 ** executed. The context stores the last insert row id, the last statement
4460 ** change count, and the current statement change count.
4461 */
4462 case OP_ContextPop: {        /* no-push */
4463   Context *pContext = &p->contextStack[--p->contextStackTop];
4464   assert( p->contextStackTop>=0 );
4465   db->lastRowid = pContext->lastRowid;
4466   p->nChange = pContext->nChange;
4467   sqlite3VdbeFifoClear(&p->sFifo);
4468   p->sFifo = pContext->sFifo;
4469   break;
4470 }
4471 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
4472 
4473 /* Opcode: MemStore P1 P2 *
4474 **
4475 ** Write the top of the stack into memory location P1.
4476 ** P1 should be a small integer since space is allocated
4477 ** for all memory locations between 0 and P1 inclusive.
4478 **
4479 ** After the data is stored in the memory location, the
4480 ** stack is popped once if P2 is 1.  If P2 is zero, then
4481 ** the original data remains on the stack.
4482 */
4483 case OP_MemStore: {        /* no-push */
4484   assert( pTos>=p->aStack );
4485   assert( pOp->p1>=0 && pOp->p1<p->nMem );
4486   rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
4487   pTos--;
4488 
4489   /* If P2 is 0 then fall thru to the next opcode, OP_MemLoad, that will
4490   ** restore the top of the stack to its original value.
4491   */
4492   if( pOp->p2 ){
4493     break;
4494   }
4495 }
4496 /* Opcode: MemLoad P1 * *
4497 **
4498 ** Push a copy of the value in memory location P1 onto the stack.
4499 **
4500 ** If the value is a string, then the value pushed is a pointer to
4501 ** the string that is stored in the memory location.  If the memory
4502 ** location is subsequently changed (using OP_MemStore) then the
4503 ** value pushed onto the stack will change too.
4504 */
4505 case OP_MemLoad: {
4506   int i = pOp->p1;
4507   assert( i>=0 && i<p->nMem );
4508   pTos++;
4509   sqlite3VdbeMemShallowCopy(pTos, &p->aMem[i], MEM_Ephem);
4510   break;
4511 }
4512 
4513 #ifndef SQLITE_OMIT_AUTOINCREMENT
4514 /* Opcode: MemMax P1 * *
4515 **
4516 ** Set the value of memory cell P1 to the maximum of its current value
4517 ** and the value on the top of the stack.  The stack is unchanged.
4518 **
4519 ** This instruction throws an error if the memory cell is not initially
4520 ** an integer.
4521 */
4522 case OP_MemMax: {        /* no-push */
4523   int i = pOp->p1;
4524   Mem *pMem;
4525   assert( pTos>=p->aStack );
4526   assert( i>=0 && i<p->nMem );
4527   pMem = &p->aMem[i];
4528   sqlite3VdbeMemIntegerify(pMem);
4529   sqlite3VdbeMemIntegerify(pTos);
4530   if( pMem->u.i<pTos->u.i){
4531     pMem->u.i = pTos->u.i;
4532   }
4533   break;
4534 }
4535 #endif /* SQLITE_OMIT_AUTOINCREMENT */
4536 
4537 /* Opcode: MemIncr P1 P2 *
4538 **
4539 ** Increment the integer valued memory cell P2 by the value in P1.
4540 **
4541 ** It is illegal to use this instruction on a memory cell that does
4542 ** not contain an integer.  An assertion fault will result if you try.
4543 */
4544 case OP_MemIncr: {        /* no-push */
4545   int i = pOp->p2;
4546   Mem *pMem;
4547   assert( i>=0 && i<p->nMem );
4548   pMem = &p->aMem[i];
4549   assert( pMem->flags==MEM_Int );
4550   pMem->u.i += pOp->p1;
4551   break;
4552 }
4553 
4554 /* Opcode: IfMemPos P1 P2 *
4555 **
4556 ** If the value of memory cell P1 is 1 or greater, jump to P2.
4557 **
4558 ** It is illegal to use this instruction on a memory cell that does
4559 ** not contain an integer.  An assertion fault will result if you try.
4560 */
4561 case OP_IfMemPos: {        /* no-push */
4562   int i = pOp->p1;
4563   Mem *pMem;
4564   assert( i>=0 && i<p->nMem );
4565   pMem = &p->aMem[i];
4566   assert( pMem->flags==MEM_Int );
4567   if( pMem->u.i>0 ){
4568      pc = pOp->p2 - 1;
4569   }
4570   break;
4571 }
4572 
4573 /* Opcode: IfMemNeg P1 P2 *
4574 **
4575 ** If the value of memory cell P1 is less than zero, jump to P2.
4576 **
4577 ** It is illegal to use this instruction on a memory cell that does
4578 ** not contain an integer.  An assertion fault will result if you try.
4579 */
4580 case OP_IfMemNeg: {        /* no-push */
4581   int i = pOp->p1;
4582   Mem *pMem;
4583   assert( i>=0 && i<p->nMem );
4584   pMem = &p->aMem[i];
4585   assert( pMem->flags==MEM_Int );
4586   if( pMem->u.i<0 ){
4587      pc = pOp->p2 - 1;
4588   }
4589   break;
4590 }
4591 
4592 /* Opcode: IfMemZero P1 P2 *
4593 **
4594 ** If the value of memory cell P1 is exactly 0, jump to P2.
4595 **
4596 ** It is illegal to use this instruction on a memory cell that does
4597 ** not contain an integer.  An assertion fault will result if you try.
4598 */
4599 case OP_IfMemZero: {        /* no-push */
4600   int i = pOp->p1;
4601   Mem *pMem;
4602   assert( i>=0 && i<p->nMem );
4603   pMem = &p->aMem[i];
4604   assert( pMem->flags==MEM_Int );
4605   if( pMem->u.i==0 ){
4606      pc = pOp->p2 - 1;
4607   }
4608   break;
4609 }
4610 
4611 /* Opcode: MemNull P1 * *
4612 **
4613 ** Store a NULL in memory cell P1
4614 */
4615 case OP_MemNull: {
4616   assert( pOp->p1>=0 && pOp->p1<p->nMem );
4617   sqlite3VdbeMemSetNull(&p->aMem[pOp->p1]);
4618   break;
4619 }
4620 
4621 /* Opcode: MemInt P1 P2 *
4622 **
4623 ** Store the integer value P1 in memory cell P2.
4624 */
4625 case OP_MemInt: {
4626   assert( pOp->p2>=0 && pOp->p2<p->nMem );
4627   sqlite3VdbeMemSetInt64(&p->aMem[pOp->p2], pOp->p1);
4628   break;
4629 }
4630 
4631 /* Opcode: MemMove P1 P2 *
4632 **
4633 ** Move the content of memory cell P2 over to memory cell P1.
4634 ** Any prior content of P1 is erased.  Memory cell P2 is left
4635 ** containing a NULL.
4636 */
4637 case OP_MemMove: {
4638   assert( pOp->p1>=0 && pOp->p1<p->nMem );
4639   assert( pOp->p2>=0 && pOp->p2<p->nMem );
4640   rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], &p->aMem[pOp->p2]);
4641   break;
4642 }
4643 
4644 /* Opcode: AggStep P1 P2 P3
4645 **
4646 ** Execute the step function for an aggregate.  The
4647 ** function has P2 arguments.  P3 is a pointer to the FuncDef
4648 ** structure that specifies the function.  Use memory location
4649 ** P1 as the accumulator.
4650 **
4651 ** The P2 arguments are popped from the stack.
4652 */
4653 case OP_AggStep: {        /* no-push */
4654   int n = pOp->p2;
4655   int i;
4656   Mem *pMem, *pRec;
4657   sqlite3_context ctx;
4658   sqlite3_value **apVal;
4659 
4660   assert( n>=0 );
4661   pRec = &pTos[1-n];
4662   assert( pRec>=p->aStack );
4663   apVal = p->apArg;
4664   assert( apVal || n==0 );
4665   for(i=0; i<n; i++, pRec++){
4666     apVal[i] = pRec;
4667     storeTypeInfo(pRec, encoding);
4668   }
4669   ctx.pFunc = (FuncDef*)pOp->p3;
4670   assert( pOp->p1>=0 && pOp->p1<p->nMem );
4671   ctx.pMem = pMem = &p->aMem[pOp->p1];
4672   pMem->n++;
4673   ctx.s.flags = MEM_Null;
4674   ctx.s.z = 0;
4675   ctx.s.xDel = 0;
4676   ctx.s.db = db;
4677   ctx.isError = 0;
4678   ctx.pColl = 0;
4679   if( ctx.pFunc->needCollSeq ){
4680     assert( pOp>p->aOp );
4681     assert( pOp[-1].p3type==P3_COLLSEQ );
4682     assert( pOp[-1].opcode==OP_CollSeq );
4683     ctx.pColl = (CollSeq *)pOp[-1].p3;
4684   }
4685   (ctx.pFunc->xStep)(&ctx, n, apVal);
4686   popStack(&pTos, n);
4687   if( ctx.isError ){
4688     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
4689     rc = SQLITE_ERROR;
4690   }
4691   sqlite3VdbeMemRelease(&ctx.s);
4692   break;
4693 }
4694 
4695 /* Opcode: AggFinal P1 P2 P3
4696 **
4697 ** Execute the finalizer function for an aggregate.  P1 is
4698 ** the memory location that is the accumulator for the aggregate.
4699 **
4700 ** P2 is the number of arguments that the step function takes and
4701 ** P3 is a pointer to the FuncDef for this function.  The P2
4702 ** argument is not used by this opcode.  It is only there to disambiguate
4703 ** functions that can take varying numbers of arguments.  The
4704 ** P3 argument is only needed for the degenerate case where
4705 ** the step function was not previously called.
4706 */
4707 case OP_AggFinal: {        /* no-push */
4708   Mem *pMem;
4709   assert( pOp->p1>=0 && pOp->p1<p->nMem );
4710   pMem = &p->aMem[pOp->p1];
4711   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
4712   rc = sqlite3VdbeMemFinalize(pMem, (FuncDef*)pOp->p3);
4713   if( rc==SQLITE_ERROR ){
4714     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
4715   }
4716   if( sqlite3VdbeMemTooBig(pMem) ){
4717     goto too_big;
4718   }
4719   break;
4720 }
4721 
4722 
4723 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
4724 /* Opcode: Vacuum * * *
4725 **
4726 ** Vacuum the entire database.  This opcode will cause other virtual
4727 ** machines to be created and run.  It may not be called from within
4728 ** a transaction.
4729 */
4730 case OP_Vacuum: {        /* no-push */
4731   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4732   rc = sqlite3RunVacuum(&p->zErrMsg, db);
4733   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4734   break;
4735 }
4736 #endif
4737 
4738 #if !defined(SQLITE_OMIT_AUTOVACUUM)
4739 /* Opcode: IncrVacuum P1 P2 *
4740 **
4741 ** Perform a single step of the incremental vacuum procedure on
4742 ** the P1 database. If the vacuum has finished, jump to instruction
4743 ** P2. Otherwise, fall through to the next instruction.
4744 */
4745 case OP_IncrVacuum: {        /* no-push */
4746   Btree *pBt;
4747 
4748   assert( pOp->p1>=0 && pOp->p1<db->nDb );
4749   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
4750   pBt = db->aDb[pOp->p1].pBt;
4751   rc = sqlite3BtreeIncrVacuum(pBt);
4752   if( rc==SQLITE_DONE ){
4753     pc = pOp->p2 - 1;
4754     rc = SQLITE_OK;
4755   }
4756   break;
4757 }
4758 #endif
4759 
4760 /* Opcode: Expire P1 * *
4761 **
4762 ** Cause precompiled statements to become expired. An expired statement
4763 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
4764 ** (via sqlite3_step()).
4765 **
4766 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
4767 ** then only the currently executing statement is affected.
4768 */
4769 case OP_Expire: {        /* no-push */
4770   if( !pOp->p1 ){
4771     sqlite3ExpirePreparedStatements(db);
4772   }else{
4773     p->expired = 1;
4774   }
4775   break;
4776 }
4777 
4778 #ifndef SQLITE_OMIT_SHARED_CACHE
4779 /* Opcode: TableLock P1 P2 P3
4780 **
4781 ** Obtain a lock on a particular table. This instruction is only used when
4782 ** the shared-cache feature is enabled.
4783 **
4784 ** If P1 is not negative, then it is the index of the database
4785 ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a
4786 ** write-lock is required. In this case the index of the database is the
4787 ** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
4788 ** required.
4789 **
4790 ** P2 contains the root-page of the table to lock.
4791 **
4792 ** P3 contains a pointer to the name of the table being locked. This is only
4793 ** used to generate an error message if the lock cannot be obtained.
4794 */
4795 case OP_TableLock: {        /* no-push */
4796   int p1 = pOp->p1;
4797   u8 isWriteLock = (p1<0);
4798   if( isWriteLock ){
4799     p1 = (-1*p1)-1;
4800   }
4801   assert( p1>=0 && p1<db->nDb );
4802   assert( (p->btreeMask & (1<<p1))!=0 );
4803   rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
4804   if( rc==SQLITE_LOCKED ){
4805     const char *z = (const char *)pOp->p3;
4806     sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
4807   }
4808   break;
4809 }
4810 #endif /* SQLITE_OMIT_SHARED_CACHE */
4811 
4812 #ifndef SQLITE_OMIT_VIRTUALTABLE
4813 /* Opcode: VBegin * * P3
4814 **
4815 ** P3 a pointer to an sqlite3_vtab structure. Call the xBegin method
4816 ** for that table.
4817 */
4818 case OP_VBegin: {   /* no-push */
4819   rc = sqlite3VtabBegin(db, (sqlite3_vtab *)pOp->p3);
4820   break;
4821 }
4822 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4823 
4824 #ifndef SQLITE_OMIT_VIRTUALTABLE
4825 /* Opcode: VCreate P1 * P3
4826 **
4827 ** P3 is the name of a virtual table in database P1. Call the xCreate method
4828 ** for that table.
4829 */
4830 case OP_VCreate: {   /* no-push */
4831   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p3, &p->zErrMsg);
4832   break;
4833 }
4834 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4835 
4836 #ifndef SQLITE_OMIT_VIRTUALTABLE
4837 /* Opcode: VDestroy P1 * P3
4838 **
4839 ** P3 is the name of a virtual table in database P1.  Call the xDestroy method
4840 ** of that table.
4841 */
4842 case OP_VDestroy: {   /* no-push */
4843   p->inVtabMethod = 2;
4844   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p3);
4845   p->inVtabMethod = 0;
4846   break;
4847 }
4848 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4849 
4850 #ifndef SQLITE_OMIT_VIRTUALTABLE
4851 /* Opcode: VOpen P1 * P3
4852 **
4853 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
4854 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
4855 ** table and stores that cursor in P1.
4856 */
4857 case OP_VOpen: {   /* no-push */
4858   Cursor *pCur = 0;
4859   sqlite3_vtab_cursor *pVtabCursor = 0;
4860 
4861   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
4862   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
4863 
4864   assert(pVtab && pModule);
4865   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4866   rc = pModule->xOpen(pVtab, &pVtabCursor);
4867   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4868   if( SQLITE_OK==rc ){
4869     /* Initialise sqlite3_vtab_cursor base class */
4870     pVtabCursor->pVtab = pVtab;
4871 
4872     /* Initialise vdbe cursor object */
4873     pCur = allocateCursor(p, pOp->p1, -1);
4874     if( pCur ){
4875       pCur->pVtabCursor = pVtabCursor;
4876       pCur->pModule = pVtabCursor->pVtab->pModule;
4877     }else{
4878       db->mallocFailed = 1;
4879       pModule->xClose(pVtabCursor);
4880     }
4881   }
4882   break;
4883 }
4884 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4885 
4886 #ifndef SQLITE_OMIT_VIRTUALTABLE
4887 /* Opcode: VFilter P1 P2 P3
4888 **
4889 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
4890 ** the filtered result set is empty.
4891 **
4892 ** P3 is either NULL or a string that was generated by the xBestIndex
4893 ** method of the module.  The interpretation of the P3 string is left
4894 ** to the module implementation.
4895 **
4896 ** This opcode invokes the xFilter method on the virtual table specified
4897 ** by P1.  The integer query plan parameter to xFilter is the top of the
4898 ** stack.  Next down on the stack is the argc parameter.  Beneath the
4899 ** next of stack are argc additional parameters which are passed to
4900 ** xFilter as argv. The topmost parameter (i.e. 3rd element popped from
4901 ** the stack) becomes argv[argc-1] when passed to xFilter.
4902 **
4903 ** The integer query plan parameter, argc, and all argv stack values
4904 ** are popped from the stack before this instruction completes.
4905 **
4906 ** A jump is made to P2 if the result set after filtering would be
4907 ** empty.
4908 */
4909 case OP_VFilter: {   /* no-push */
4910   int nArg;
4911 
4912   const sqlite3_module *pModule;
4913 
4914   Cursor *pCur = p->apCsr[pOp->p1];
4915   assert( pCur->pVtabCursor );
4916   pModule = pCur->pVtabCursor->pVtab->pModule;
4917 
4918   /* Grab the index number and argc parameters off the top of the stack. */
4919   assert( (&pTos[-1])>=p->aStack );
4920   assert( (pTos[0].flags&MEM_Int)!=0 && pTos[-1].flags==MEM_Int );
4921   nArg = pTos[-1].u.i;
4922 
4923   /* Invoke the xFilter method */
4924   {
4925     int res = 0;
4926     int i;
4927     Mem **apArg = p->apArg;
4928     for(i = 0; i<nArg; i++){
4929       apArg[i] = &pTos[i+1-2-nArg];
4930       storeTypeInfo(apArg[i], 0);
4931     }
4932 
4933     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4934     p->inVtabMethod = 1;
4935     rc = pModule->xFilter(pCur->pVtabCursor, pTos->u.i, pOp->p3, nArg, apArg);
4936     p->inVtabMethod = 0;
4937     if( rc==SQLITE_OK ){
4938       res = pModule->xEof(pCur->pVtabCursor);
4939     }
4940     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4941 
4942     if( res ){
4943       pc = pOp->p2 - 1;
4944     }
4945   }
4946 
4947   /* Pop the index number, argc value and parameters off the stack */
4948   popStack(&pTos, 2+nArg);
4949   break;
4950 }
4951 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4952 
4953 #ifndef SQLITE_OMIT_VIRTUALTABLE
4954 /* Opcode: VRowid P1 * *
4955 **
4956 ** Push an integer onto the stack which is the rowid of
4957 ** the virtual-table that the P1 cursor is pointing to.
4958 */
4959 case OP_VRowid: {
4960   const sqlite3_module *pModule;
4961 
4962   Cursor *pCur = p->apCsr[pOp->p1];
4963   assert( pCur->pVtabCursor );
4964   pModule = pCur->pVtabCursor->pVtab->pModule;
4965   if( pModule->xRowid==0 ){
4966     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xRowid", 0);
4967     rc = SQLITE_ERROR;
4968   } else {
4969     sqlite_int64 iRow;
4970 
4971     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4972     rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
4973     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4974 
4975     pTos++;
4976     pTos->flags = MEM_Int;
4977     pTos->u.i = iRow;
4978   }
4979 
4980   break;
4981 }
4982 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4983 
4984 #ifndef SQLITE_OMIT_VIRTUALTABLE
4985 /* Opcode: VColumn P1 P2 *
4986 **
4987 ** Push onto the stack the value of the P2-th column of
4988 ** the row of the virtual-table that the P1 cursor is pointing to.
4989 */
4990 case OP_VColumn: {
4991   const sqlite3_module *pModule;
4992 
4993   Cursor *pCur = p->apCsr[pOp->p1];
4994   assert( pCur->pVtabCursor );
4995   pModule = pCur->pVtabCursor->pVtab->pModule;
4996   if( pModule->xColumn==0 ){
4997     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xColumn", 0);
4998     rc = SQLITE_ERROR;
4999   } else {
5000     sqlite3_context sContext;
5001     memset(&sContext, 0, sizeof(sContext));
5002     sContext.s.flags = MEM_Null;
5003     sContext.s.db = db;
5004     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5005     rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5006 
5007     /* Copy the result of the function to the top of the stack. We
5008     ** do this regardless of whether or not an error occured to ensure any
5009     ** dynamic allocation in sContext.s (a Mem struct) is  released.
5010     */
5011     sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5012     pTos++;
5013     pTos->flags = 0;
5014     sqlite3VdbeMemMove(pTos, &sContext.s);
5015 
5016     if( sqlite3SafetyOn(db) ){
5017       goto abort_due_to_misuse;
5018     }
5019     if( sqlite3VdbeMemTooBig(pTos) ){
5020       goto too_big;
5021     }
5022   }
5023 
5024   break;
5025 }
5026 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5027 
5028 #ifndef SQLITE_OMIT_VIRTUALTABLE
5029 /* Opcode: VNext P1 P2 *
5030 **
5031 ** Advance virtual table P1 to the next row in its result set and
5032 ** jump to instruction P2.  Or, if the virtual table has reached
5033 ** the end of its result set, then fall through to the next instruction.
5034 */
5035 case OP_VNext: {   /* no-push */
5036   const sqlite3_module *pModule;
5037   int res = 0;
5038 
5039   Cursor *pCur = p->apCsr[pOp->p1];
5040   assert( pCur->pVtabCursor );
5041   pModule = pCur->pVtabCursor->pVtab->pModule;
5042   if( pModule->xNext==0 ){
5043     sqlite3SetString(&p->zErrMsg, "Unsupported module operation: xNext", 0);
5044     rc = SQLITE_ERROR;
5045   } else {
5046     /* Invoke the xNext() method of the module. There is no way for the
5047     ** underlying implementation to return an error if one occurs during
5048     ** xNext(). Instead, if an error occurs, true is returned (indicating that
5049     ** data is available) and the error code returned when xColumn or
5050     ** some other method is next invoked on the save virtual table cursor.
5051     */
5052     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5053     p->inVtabMethod = 1;
5054     rc = pModule->xNext(pCur->pVtabCursor);
5055     p->inVtabMethod = 0;
5056     if( rc==SQLITE_OK ){
5057       res = pModule->xEof(pCur->pVtabCursor);
5058     }
5059     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5060 
5061     if( !res ){
5062       /* If there is data, jump to P2 */
5063       pc = pOp->p2 - 1;
5064     }
5065   }
5066 
5067   break;
5068 }
5069 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5070 
5071 #ifndef SQLITE_OMIT_VIRTUALTABLE
5072 /* Opcode: VRename * * P3
5073 **
5074 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
5075 ** This opcode invokes the corresponding xRename method. The value
5076 ** on the top of the stack is popped and passed as the zName argument
5077 ** to the xRename method.
5078 */
5079 case OP_VRename: {   /* no-push */
5080   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
5081   assert( pVtab->pModule->xRename );
5082 
5083   Stringify(pTos, encoding);
5084 
5085   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5086   sqlite3VtabLock(pVtab);
5087   rc = pVtab->pModule->xRename(pVtab, pTos->z);
5088   sqlite3VtabUnlock(db, pVtab);
5089   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5090 
5091   popStack(&pTos, 1);
5092   break;
5093 }
5094 #endif
5095 
5096 #ifndef SQLITE_OMIT_VIRTUALTABLE
5097 /* Opcode: VUpdate P1 P2 P3
5098 **
5099 ** P3 is a pointer to a virtual table object, an sqlite3_vtab structure.
5100 ** This opcode invokes the corresponding xUpdate method. P2 values
5101 ** are taken from the stack to pass to the xUpdate invocation. The
5102 ** value on the top of the stack corresponds to the p2th element
5103 ** of the argv array passed to xUpdate.
5104 **
5105 ** The xUpdate method will do a DELETE or an INSERT or both.
5106 ** The argv[0] element (which corresponds to the P2-th element down
5107 ** on the stack) is the rowid of a row to delete.  If argv[0] is
5108 ** NULL then no deletion occurs.  The argv[1] element is the rowid
5109 ** of the new row.  This can be NULL to have the virtual table
5110 ** select the new rowid for itself.  The higher elements in the
5111 ** stack are the values of columns in the new row.
5112 **
5113 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
5114 ** a row to delete.
5115 **
5116 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5117 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5118 ** is set to the value of the rowid for the row just inserted.
5119 */
5120 case OP_VUpdate: {   /* no-push */
5121   sqlite3_vtab *pVtab = (sqlite3_vtab *)(pOp->p3);
5122   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
5123   int nArg = pOp->p2;
5124   assert( pOp->p3type==P3_VTAB );
5125   if( pModule->xUpdate==0 ){
5126     sqlite3SetString(&p->zErrMsg, "read-only table", 0);
5127     rc = SQLITE_ERROR;
5128   }else{
5129     int i;
5130     sqlite_int64 rowid;
5131     Mem **apArg = p->apArg;
5132     Mem *pX = &pTos[1-nArg];
5133     for(i = 0; i<nArg; i++, pX++){
5134       storeTypeInfo(pX, 0);
5135       apArg[i] = pX;
5136     }
5137     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5138     sqlite3VtabLock(pVtab);
5139     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
5140     sqlite3VtabUnlock(db, pVtab);
5141     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5142     if( pOp->p1 && rc==SQLITE_OK ){
5143       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5144       db->lastRowid = rowid;
5145     }
5146   }
5147   popStack(&pTos, nArg);
5148   break;
5149 }
5150 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5151 
5152 /* An other opcode is illegal...
5153 */
5154 default: {
5155   assert( 0 );
5156   break;
5157 }
5158 
5159 /*****************************************************************************
5160 ** The cases of the switch statement above this line should all be indented
5161 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
5162 ** readability.  From this point on down, the normal indentation rules are
5163 ** restored.
5164 *****************************************************************************/
5165     }
5166 
5167     /* Make sure the stack limit was not exceeded */
5168     assert( pTos<=pStackLimit );
5169 
5170 #ifdef VDBE_PROFILE
5171     {
5172       long long elapse = hwtime() - start;
5173       pOp->cycles += elapse;
5174       pOp->cnt++;
5175 #if 0
5176         fprintf(stdout, "%10lld ", elapse);
5177         sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
5178 #endif
5179     }
5180 #endif
5181 
5182 #ifdef SQLITE_TEST
5183     /* Keep track of the size of the largest BLOB or STR that has appeared
5184     ** on the top of the VDBE stack.
5185     */
5186     if( pTos>=p->aStack && (pTos->flags & (MEM_Blob|MEM_Str))!=0
5187          && pTos->n>sqlite3_max_blobsize ){
5188       sqlite3_max_blobsize = pTos->n;
5189     }
5190 #endif
5191 
5192     /* The following code adds nothing to the actual functionality
5193     ** of the program.  It is only here for testing and debugging.
5194     ** On the other hand, it does burn CPU cycles every time through
5195     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
5196     */
5197 #ifndef NDEBUG
5198     /* Sanity checking on the top element of the stack. If the previous
5199     ** instruction was VNoChange, then the flags field of the top
5200     ** of the stack is set to 0. This is technically invalid for a memory
5201     ** cell, so avoid calling MemSanity() in this case.
5202     */
5203     if( pTos>=p->aStack && pTos->flags ){
5204       assert( pTos->db==db );
5205       sqlite3VdbeMemSanity(pTos);
5206       assert( !sqlite3VdbeMemTooBig(pTos) );
5207     }
5208     assert( pc>=-1 && pc<p->nOp );
5209 
5210 #ifdef SQLITE_DEBUG
5211     /* Code for tracing the vdbe stack. */
5212     if( p->trace && pTos>=p->aStack ){
5213       int i;
5214       fprintf(p->trace, "Stack:");
5215       for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
5216         if( pTos[i].flags & MEM_Null ){
5217           fprintf(p->trace, " NULL");
5218         }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
5219           fprintf(p->trace, " si:%lld", pTos[i].u.i);
5220         }else if( pTos[i].flags & MEM_Int ){
5221           fprintf(p->trace, " i:%lld", pTos[i].u.i);
5222         }else if( pTos[i].flags & MEM_Real ){
5223           fprintf(p->trace, " r:%g", pTos[i].r);
5224         }else{
5225           char zBuf[200];
5226           sqlite3VdbeMemPrettyPrint(&pTos[i], zBuf);
5227           fprintf(p->trace, " ");
5228           fprintf(p->trace, "%s", zBuf);
5229         }
5230       }
5231       if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
5232       fprintf(p->trace,"\n");
5233     }
5234 #endif  /* SQLITE_DEBUG */
5235 #endif  /* NDEBUG */
5236   }  /* The end of the for(;;) loop the loops through opcodes */
5237 
5238   /* If we reach this point, it means that execution is finished.
5239   */
5240 vdbe_halt:
5241   if( rc ){
5242     p->rc = rc;
5243     rc = SQLITE_ERROR;
5244   }else{
5245     rc = SQLITE_DONE;
5246   }
5247   sqlite3VdbeHalt(p);
5248   p->pTos = pTos;
5249 
5250   /* This is the only way out of this procedure.  We have to
5251   ** release the mutexes on btrees that were acquired at the
5252   ** top. */
5253 vdbe_return:
5254   sqlite3BtreeMutexArrayLeave(&p->aMutex);
5255   return rc;
5256 
5257   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5258   ** is encountered.
5259   */
5260 too_big:
5261   sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
5262   rc = SQLITE_TOOBIG;
5263   goto vdbe_halt;
5264 
5265   /* Jump to here if a malloc() fails.
5266   */
5267 no_mem:
5268   db->mallocFailed = 1;
5269   sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
5270   rc = SQLITE_NOMEM;
5271   goto vdbe_halt;
5272 
5273   /* Jump to here for an SQLITE_MISUSE error.
5274   */
5275 abort_due_to_misuse:
5276   rc = SQLITE_MISUSE;
5277   /* Fall thru into abort_due_to_error */
5278 
5279   /* Jump to here for any other kind of fatal error.  The "rc" variable
5280   ** should hold the error number.
5281   */
5282 abort_due_to_error:
5283   if( p->zErrMsg==0 ){
5284     if( db->mallocFailed ) rc = SQLITE_NOMEM;
5285     sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
5286   }
5287   goto vdbe_halt;
5288 
5289   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5290   ** flag.
5291   */
5292 abort_due_to_interrupt:
5293   assert( db->u1.isInterrupted );
5294   if( db->magic!=SQLITE_MAGIC_BUSY ){
5295     rc = SQLITE_MISUSE;
5296   }else{
5297     rc = SQLITE_INTERRUPT;
5298   }
5299   p->rc = rc;
5300   sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
5301   goto vdbe_halt;
5302 }
5303