1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements the function that runs the 13 ** bytecode of a prepared statement. 14 ** 15 ** Various scripts scan this source file in order to generate HTML 16 ** documentation, headers files, or other derived files. The formatting 17 ** of the code in this file is, therefore, important. See other comments 18 ** in this file for details. If in doubt, do not deviate from existing 19 ** commenting and indentation practices when changing or adding code. 20 */ 21 #include "sqliteInt.h" 22 #include "vdbeInt.h" 23 24 /* 25 ** Invoke this macro on memory cells just prior to changing the 26 ** value of the cell. This macro verifies that shallow copies are 27 ** not misused. A shallow copy of a string or blob just copies a 28 ** pointer to the string or blob, not the content. If the original 29 ** is changed while the copy is still in use, the string or blob might 30 ** be changed out from under the copy. This macro verifies that nothing 31 ** like that ever happens. 32 */ 33 #ifdef SQLITE_DEBUG 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 35 #else 36 # define memAboutToChange(P,M) 37 #endif 38 39 /* 40 ** The following global variable is incremented every time a cursor 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 42 ** procedures use this information to make sure that indices are 43 ** working correctly. This variable has no function other than to 44 ** help verify the correct operation of the library. 45 */ 46 #ifdef SQLITE_TEST 47 int sqlite3_search_count = 0; 48 #endif 49 50 /* 51 ** When this global variable is positive, it gets decremented once before 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. 54 ** 55 ** This facility is used for testing purposes only. It does not function 56 ** in an ordinary build. 57 */ 58 #ifdef SQLITE_TEST 59 int sqlite3_interrupt_count = 0; 60 #endif 61 62 /* 63 ** The next global variable is incremented each type the OP_Sort opcode 64 ** is executed. The test procedures use this information to make sure that 65 ** sorting is occurring or not occurring at appropriate times. This variable 66 ** has no function other than to help verify the correct operation of the 67 ** library. 68 */ 69 #ifdef SQLITE_TEST 70 int sqlite3_sort_count = 0; 71 #endif 72 73 /* 74 ** The next global variable records the size of the largest MEM_Blob 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 76 ** use this information to make sure that the zero-blob functionality 77 ** is working correctly. This variable has no function other than to 78 ** help verify the correct operation of the library. 79 */ 80 #ifdef SQLITE_TEST 81 int sqlite3_max_blobsize = 0; 82 static void updateMaxBlobsize(Mem *p){ 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 84 sqlite3_max_blobsize = p->n; 85 } 86 } 87 #endif 88 89 /* 90 ** This macro evaluates to true if either the update hook or the preupdate 91 ** hook are enabled for database connect DB. 92 */ 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 95 #else 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 97 #endif 98 99 /* 100 ** The next global variable is incremented each time the OP_Found opcode 101 ** is executed. This is used to test whether or not the foreign key 102 ** operation implemented using OP_FkIsZero is working. This variable 103 ** has no function other than to help verify the correct operation of the 104 ** library. 105 */ 106 #ifdef SQLITE_TEST 107 int sqlite3_found_count = 0; 108 #endif 109 110 /* 111 ** Test a register to see if it exceeds the current maximum blob size. 112 ** If it does, record the new maximum blob size. 113 */ 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 116 #else 117 # define UPDATE_MAX_BLOBSIZE(P) 118 #endif 119 120 #ifdef SQLITE_DEBUG 121 /* This routine provides a convenient place to set a breakpoint during 122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 124 ** available to add conditionals to the breakpoint. GDB example: 125 ** 126 ** break test_trace_breakpoint if pc=22 127 ** 128 ** Other useful labels for breakpoints include: 129 ** test_addop_breakpoint(pc,pOp) 130 ** sqlite3CorruptError(lineno) 131 ** sqlite3MisuseError(lineno) 132 ** sqlite3CantopenError(lineno) 133 */ 134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 135 static int n = 0; 136 n++; 137 } 138 #endif 139 140 /* 141 ** Invoke the VDBE coverage callback, if that callback is defined. This 142 ** feature is used for test suite validation only and does not appear an 143 ** production builds. 144 ** 145 ** M is the type of branch. I is the direction taken for this instance of 146 ** the branch. 147 ** 148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 151 ** 152 ** In other words, if M is 2, then I is either 0 (for fall-through) or 153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 158 ** depending on if the operands are less than, equal, or greater than. 159 ** 160 ** iSrcLine is the source code line (from the __LINE__ macro) that 161 ** generated the VDBE instruction combined with flag bits. The source 162 ** code line number is in the lower 24 bits of iSrcLine and the upper 163 ** 8 bytes are flags. The lower three bits of the flags indicate 164 ** values for I that should never occur. For example, if the branch is 165 ** always taken, the flags should be 0x05 since the fall-through and 166 ** alternate branch are never taken. If a branch is never taken then 167 ** flags should be 0x06 since only the fall-through approach is allowed. 168 ** 169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 170 ** interested in equal or not-equal. In other words, I==0 and I==2 171 ** should be treated as equivalent 172 ** 173 ** Since only a line number is retained, not the filename, this macro 174 ** only works for amalgamation builds. But that is ok, since these macros 175 ** should be no-ops except for special builds used to measure test coverage. 176 */ 177 #if !defined(SQLITE_VDBE_COVERAGE) 178 # define VdbeBranchTaken(I,M) 179 #else 180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 182 u8 mNever; 183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 187 I = 1<<I; 188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 189 ** the flags indicate directions that the branch can never go. If 190 ** a branch really does go in one of those directions, assert right 191 ** away. */ 192 mNever = iSrcLine >> 24; 193 assert( (I & mNever)==0 ); 194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 195 /* Invoke the branch coverage callback with three arguments: 196 ** iSrcLine - the line number of the VdbeCoverage() macro, with 197 ** flags removed. 198 ** I - Mask of bits 0x07 indicating which cases are are 199 ** fulfilled by this instance of the jump. 0x01 means 200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 201 ** impossible cases (ex: if the comparison is never NULL) 202 ** are filled in automatically so that the coverage 203 ** measurement logic does not flag those impossible cases 204 ** as missed coverage. 205 ** M - Type of jump. Same as M argument above 206 */ 207 I |= mNever; 208 if( M==2 ) I |= 0x04; 209 if( M==4 ){ 210 I |= 0x08; 211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 212 } 213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 214 iSrcLine&0xffffff, I, M); 215 } 216 #endif 217 218 /* 219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 220 ** a pointer to a dynamically allocated string where some other entity 221 ** is responsible for deallocating that string. Because the register 222 ** does not control the string, it might be deleted without the register 223 ** knowing it. 224 ** 225 ** This routine converts an ephemeral string into a dynamically allocated 226 ** string that the register itself controls. In other words, it 227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 228 */ 229 #define Deephemeralize(P) \ 230 if( ((P)->flags&MEM_Ephem)!=0 \ 231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 232 233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 235 236 /* 237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 238 ** if we run out of memory. 239 */ 240 static VdbeCursor *allocateCursor( 241 Vdbe *p, /* The virtual machine */ 242 int iCur, /* Index of the new VdbeCursor */ 243 int nField, /* Number of fields in the table or index */ 244 u8 eCurType /* Type of the new cursor */ 245 ){ 246 /* Find the memory cell that will be used to store the blob of memory 247 ** required for this VdbeCursor structure. It is convenient to use a 248 ** vdbe memory cell to manage the memory allocation required for a 249 ** VdbeCursor structure for the following reasons: 250 ** 251 ** * Sometimes cursor numbers are used for a couple of different 252 ** purposes in a vdbe program. The different uses might require 253 ** different sized allocations. Memory cells provide growable 254 ** allocations. 255 ** 256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 257 ** be freed lazily via the sqlite3_release_memory() API. This 258 ** minimizes the number of malloc calls made by the system. 259 ** 260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 263 */ 264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 265 266 int nByte; 267 VdbeCursor *pCx = 0; 268 nByte = 269 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 271 272 assert( iCur>=0 && iCur<p->nCursor ); 273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 274 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 275 p->apCsr[iCur] = 0; 276 } 277 278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 279 ** the pMem used to hold space for the cursor has enough storage available 280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 281 ** to hold cursors, it is faster to in-line the logic. */ 282 assert( pMem->flags==MEM_Undefined ); 283 assert( (pMem->flags & MEM_Dyn)==0 ); 284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 285 if( pMem->szMalloc<nByte ){ 286 if( pMem->szMalloc>0 ){ 287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 288 } 289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 290 if( pMem->zMalloc==0 ){ 291 pMem->szMalloc = 0; 292 return 0; 293 } 294 pMem->szMalloc = nByte; 295 } 296 297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 299 pCx->eCurType = eCurType; 300 pCx->nField = nField; 301 pCx->aOffset = &pCx->aType[nField]; 302 if( eCurType==CURTYPE_BTREE ){ 303 pCx->uc.pCursor = (BtCursor*) 304 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 305 sqlite3BtreeCursorZero(pCx->uc.pCursor); 306 } 307 return pCx; 308 } 309 310 /* 311 ** The string in pRec is known to look like an integer and to have a 312 ** floating point value of rValue. Return true and set *piValue to the 313 ** integer value if the string is in range to be an integer. Otherwise, 314 ** return false. 315 */ 316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 317 i64 iValue = (double)rValue; 318 if( sqlite3RealSameAsInt(rValue,iValue) ){ 319 *piValue = iValue; 320 return 1; 321 } 322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 323 } 324 325 /* 326 ** Try to convert a value into a numeric representation if we can 327 ** do so without loss of information. In other words, if the string 328 ** looks like a number, convert it into a number. If it does not 329 ** look like a number, leave it alone. 330 ** 331 ** If the bTryForInt flag is true, then extra effort is made to give 332 ** an integer representation. Strings that look like floating point 333 ** values but which have no fractional component (example: '48.00') 334 ** will have a MEM_Int representation when bTryForInt is true. 335 ** 336 ** If bTryForInt is false, then if the input string contains a decimal 337 ** point or exponential notation, the result is only MEM_Real, even 338 ** if there is an exact integer representation of the quantity. 339 */ 340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 341 double rValue; 342 u8 enc = pRec->enc; 343 int rc; 344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 346 if( rc<=0 ) return; 347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 348 pRec->flags |= MEM_Int; 349 }else{ 350 pRec->u.r = rValue; 351 pRec->flags |= MEM_Real; 352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 353 } 354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 355 ** string representation after computing a numeric equivalent, because the 356 ** string representation might not be the canonical representation for the 357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 358 pRec->flags &= ~MEM_Str; 359 } 360 361 /* 362 ** Processing is determine by the affinity parameter: 363 ** 364 ** SQLITE_AFF_INTEGER: 365 ** SQLITE_AFF_REAL: 366 ** SQLITE_AFF_NUMERIC: 367 ** Try to convert pRec to an integer representation or a 368 ** floating-point representation if an integer representation 369 ** is not possible. Note that the integer representation is 370 ** always preferred, even if the affinity is REAL, because 371 ** an integer representation is more space efficient on disk. 372 ** 373 ** SQLITE_AFF_TEXT: 374 ** Convert pRec to a text representation. 375 ** 376 ** SQLITE_AFF_BLOB: 377 ** SQLITE_AFF_NONE: 378 ** No-op. pRec is unchanged. 379 */ 380 static void applyAffinity( 381 Mem *pRec, /* The value to apply affinity to */ 382 char affinity, /* The affinity to be applied */ 383 u8 enc /* Use this text encoding */ 384 ){ 385 if( affinity>=SQLITE_AFF_NUMERIC ){ 386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 387 || affinity==SQLITE_AFF_NUMERIC ); 388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 389 if( (pRec->flags & MEM_Real)==0 ){ 390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 391 }else{ 392 sqlite3VdbeIntegerAffinity(pRec); 393 } 394 } 395 }else if( affinity==SQLITE_AFF_TEXT ){ 396 /* Only attempt the conversion to TEXT if there is an integer or real 397 ** representation (blob and NULL do not get converted) but no string 398 ** representation. It would be harmless to repeat the conversion if 399 ** there is already a string rep, but it is pointless to waste those 400 ** CPU cycles. */ 401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 403 testcase( pRec->flags & MEM_Int ); 404 testcase( pRec->flags & MEM_Real ); 405 testcase( pRec->flags & MEM_IntReal ); 406 sqlite3VdbeMemStringify(pRec, enc, 1); 407 } 408 } 409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 410 } 411 } 412 413 /* 414 ** Try to convert the type of a function argument or a result column 415 ** into a numeric representation. Use either INTEGER or REAL whichever 416 ** is appropriate. But only do the conversion if it is possible without 417 ** loss of information and return the revised type of the argument. 418 */ 419 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 420 int eType = sqlite3_value_type(pVal); 421 if( eType==SQLITE_TEXT ){ 422 Mem *pMem = (Mem*)pVal; 423 applyNumericAffinity(pMem, 0); 424 eType = sqlite3_value_type(pVal); 425 } 426 return eType; 427 } 428 429 /* 430 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 431 ** not the internal Mem* type. 432 */ 433 void sqlite3ValueApplyAffinity( 434 sqlite3_value *pVal, 435 u8 affinity, 436 u8 enc 437 ){ 438 applyAffinity((Mem *)pVal, affinity, enc); 439 } 440 441 /* 442 ** pMem currently only holds a string type (or maybe a BLOB that we can 443 ** interpret as a string if we want to). Compute its corresponding 444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 445 ** accordingly. 446 */ 447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 448 int rc; 449 sqlite3_int64 ix; 450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 452 if( ExpandBlob(pMem) ){ 453 pMem->u.i = 0; 454 return MEM_Int; 455 } 456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 457 if( rc<=0 ){ 458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 459 pMem->u.i = ix; 460 return MEM_Int; 461 }else{ 462 return MEM_Real; 463 } 464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 465 pMem->u.i = ix; 466 return MEM_Int; 467 } 468 return MEM_Real; 469 } 470 471 /* 472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 473 ** none. 474 ** 475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 476 ** But it does set pMem->u.r and pMem->u.i appropriately. 477 */ 478 static u16 numericType(Mem *pMem){ 479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ 480 testcase( pMem->flags & MEM_Int ); 481 testcase( pMem->flags & MEM_Real ); 482 testcase( pMem->flags & MEM_IntReal ); 483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); 484 } 485 if( pMem->flags & (MEM_Str|MEM_Blob) ){ 486 testcase( pMem->flags & MEM_Str ); 487 testcase( pMem->flags & MEM_Blob ); 488 return computeNumericType(pMem); 489 } 490 return 0; 491 } 492 493 #ifdef SQLITE_DEBUG 494 /* 495 ** Write a nice string representation of the contents of cell pMem 496 ** into buffer zBuf, length nBuf. 497 */ 498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 499 int f = pMem->flags; 500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 501 if( f&MEM_Blob ){ 502 int i; 503 char c; 504 if( f & MEM_Dyn ){ 505 c = 'z'; 506 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 507 }else if( f & MEM_Static ){ 508 c = 't'; 509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 510 }else if( f & MEM_Ephem ){ 511 c = 'e'; 512 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 513 }else{ 514 c = 's'; 515 } 516 sqlite3_str_appendf(pStr, "%cx[", c); 517 for(i=0; i<25 && i<pMem->n; i++){ 518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 519 } 520 sqlite3_str_appendf(pStr, "|"); 521 for(i=0; i<25 && i<pMem->n; i++){ 522 char z = pMem->z[i]; 523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 524 } 525 sqlite3_str_appendf(pStr,"]"); 526 if( f & MEM_Zero ){ 527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 528 } 529 }else if( f & MEM_Str ){ 530 int j; 531 u8 c; 532 if( f & MEM_Dyn ){ 533 c = 'z'; 534 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 535 }else if( f & MEM_Static ){ 536 c = 't'; 537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 538 }else if( f & MEM_Ephem ){ 539 c = 'e'; 540 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 541 }else{ 542 c = 's'; 543 } 544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 545 for(j=0; j<25 && j<pMem->n; j++){ 546 c = pMem->z[j]; 547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 548 } 549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 550 } 551 } 552 #endif 553 554 #ifdef SQLITE_DEBUG 555 /* 556 ** Print the value of a register for tracing purposes: 557 */ 558 static void memTracePrint(Mem *p){ 559 if( p->flags & MEM_Undefined ){ 560 printf(" undefined"); 561 }else if( p->flags & MEM_Null ){ 562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 564 printf(" si:%lld", p->u.i); 565 }else if( (p->flags & (MEM_IntReal))!=0 ){ 566 printf(" ir:%lld", p->u.i); 567 }else if( p->flags & MEM_Int ){ 568 printf(" i:%lld", p->u.i); 569 #ifndef SQLITE_OMIT_FLOATING_POINT 570 }else if( p->flags & MEM_Real ){ 571 printf(" r:%.17g", p->u.r); 572 #endif 573 }else if( sqlite3VdbeMemIsRowSet(p) ){ 574 printf(" (rowset)"); 575 }else{ 576 StrAccum acc; 577 char zBuf[1000]; 578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 579 sqlite3VdbeMemPrettyPrint(p, &acc); 580 printf(" %s", sqlite3StrAccumFinish(&acc)); 581 } 582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 583 } 584 static void registerTrace(int iReg, Mem *p){ 585 printf("R[%d] = ", iReg); 586 memTracePrint(p); 587 if( p->pScopyFrom ){ 588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 589 } 590 printf("\n"); 591 sqlite3VdbeCheckMemInvariants(p); 592 } 593 /**/ void sqlite3PrintMem(Mem *pMem){ 594 memTracePrint(pMem); 595 printf("\n"); 596 fflush(stdout); 597 } 598 #endif 599 600 #ifdef SQLITE_DEBUG 601 /* 602 ** Show the values of all registers in the virtual machine. Used for 603 ** interactive debugging. 604 */ 605 void sqlite3VdbeRegisterDump(Vdbe *v){ 606 int i; 607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 608 } 609 #endif /* SQLITE_DEBUG */ 610 611 612 #ifdef SQLITE_DEBUG 613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 614 #else 615 # define REGISTER_TRACE(R,M) 616 #endif 617 618 619 #ifdef VDBE_PROFILE 620 621 /* 622 ** hwtime.h contains inline assembler code for implementing 623 ** high-performance timing routines. 624 */ 625 #include "hwtime.h" 626 627 #endif 628 629 #ifndef NDEBUG 630 /* 631 ** This function is only called from within an assert() expression. It 632 ** checks that the sqlite3.nTransaction variable is correctly set to 633 ** the number of non-transaction savepoints currently in the 634 ** linked list starting at sqlite3.pSavepoint. 635 ** 636 ** Usage: 637 ** 638 ** assert( checkSavepointCount(db) ); 639 */ 640 static int checkSavepointCount(sqlite3 *db){ 641 int n = 0; 642 Savepoint *p; 643 for(p=db->pSavepoint; p; p=p->pNext) n++; 644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 645 return 1; 646 } 647 #endif 648 649 /* 650 ** Return the register of pOp->p2 after first preparing it to be 651 ** overwritten with an integer value. 652 */ 653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 654 sqlite3VdbeMemSetNull(pOut); 655 pOut->flags = MEM_Int; 656 return pOut; 657 } 658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 659 Mem *pOut; 660 assert( pOp->p2>0 ); 661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 662 pOut = &p->aMem[pOp->p2]; 663 memAboutToChange(p, pOut); 664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 665 return out2PrereleaseWithClear(pOut); 666 }else{ 667 pOut->flags = MEM_Int; 668 return pOut; 669 } 670 } 671 672 /* 673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 674 ** with pOp->p3. Return the hash. 675 */ 676 static u64 filterHash(const Mem *aMem, const Op *pOp){ 677 int i, mx; 678 u64 h = 0; 679 680 assert( pOp->p4type==P4_INT32 ); 681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 682 const Mem *p = &aMem[i]; 683 if( p->flags & (MEM_Int|MEM_IntReal) ){ 684 h += p->u.i; 685 }else if( p->flags & MEM_Real ){ 686 h += sqlite3VdbeIntValue(p); 687 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 688 h += p->n; 689 if( p->flags & MEM_Zero ) h += p->u.nZero; 690 } 691 } 692 return h; 693 } 694 695 /* 696 ** Return the symbolic name for the data type of a pMem 697 */ 698 static const char *vdbeMemTypeName(Mem *pMem){ 699 static const char *azTypes[] = { 700 /* SQLITE_INTEGER */ "INT", 701 /* SQLITE_FLOAT */ "REAL", 702 /* SQLITE_TEXT */ "TEXT", 703 /* SQLITE_BLOB */ "BLOB", 704 /* SQLITE_NULL */ "NULL" 705 }; 706 return azTypes[sqlite3_value_type(pMem)-1]; 707 } 708 709 /* 710 ** Execute as much of a VDBE program as we can. 711 ** This is the core of sqlite3_step(). 712 */ 713 int sqlite3VdbeExec( 714 Vdbe *p /* The VDBE */ 715 ){ 716 Op *aOp = p->aOp; /* Copy of p->aOp */ 717 Op *pOp = aOp; /* Current operation */ 718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 719 Op *pOrigOp; /* Value of pOp at the top of the loop */ 720 #endif 721 #ifdef SQLITE_DEBUG 722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 723 #endif 724 int rc = SQLITE_OK; /* Value to return */ 725 sqlite3 *db = p->db; /* The database */ 726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 727 u8 encoding = ENC(db); /* The database encoding */ 728 int iCompare = 0; /* Result of last comparison */ 729 u64 nVmStep = 0; /* Number of virtual machine steps */ 730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 732 #endif 733 Mem *aMem = p->aMem; /* Copy of p->aMem */ 734 Mem *pIn1 = 0; /* 1st input operand */ 735 Mem *pIn2 = 0; /* 2nd input operand */ 736 Mem *pIn3 = 0; /* 3rd input operand */ 737 Mem *pOut = 0; /* Output operand */ 738 #ifdef VDBE_PROFILE 739 u64 start; /* CPU clock count at start of opcode */ 740 #endif 741 /*** INSERT STACK UNION HERE ***/ 742 743 assert( p->iVdbeMagic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 744 sqlite3VdbeEnter(p); 745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 746 if( db->xProgress ){ 747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 748 assert( 0 < db->nProgressOps ); 749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 750 }else{ 751 nProgressLimit = LARGEST_UINT64; 752 } 753 #endif 754 if( p->rc==SQLITE_NOMEM ){ 755 /* This happens if a malloc() inside a call to sqlite3_column_text() or 756 ** sqlite3_column_text16() failed. */ 757 goto no_mem; 758 } 759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 760 testcase( p->rc!=SQLITE_OK ); 761 p->rc = SQLITE_OK; 762 assert( p->bIsReader || p->readOnly!=0 ); 763 p->iCurrentTime = 0; 764 assert( p->explain==0 ); 765 p->pResultSet = 0; 766 db->busyHandler.nBusy = 0; 767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 768 sqlite3VdbeIOTraceSql(p); 769 #ifdef SQLITE_DEBUG 770 sqlite3BeginBenignMalloc(); 771 if( p->pc==0 772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 773 ){ 774 int i; 775 int once = 1; 776 sqlite3VdbePrintSql(p); 777 if( p->db->flags & SQLITE_VdbeListing ){ 778 printf("VDBE Program Listing:\n"); 779 for(i=0; i<p->nOp; i++){ 780 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 781 } 782 } 783 if( p->db->flags & SQLITE_VdbeEQP ){ 784 for(i=0; i<p->nOp; i++){ 785 if( aOp[i].opcode==OP_Explain ){ 786 if( once ) printf("VDBE Query Plan:\n"); 787 printf("%s\n", aOp[i].p4.z); 788 once = 0; 789 } 790 } 791 } 792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 793 } 794 sqlite3EndBenignMalloc(); 795 #endif 796 for(pOp=&aOp[p->pc]; 1; pOp++){ 797 /* Errors are detected by individual opcodes, with an immediate 798 ** jumps to abort_due_to_error. */ 799 assert( rc==SQLITE_OK ); 800 801 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 802 #ifdef VDBE_PROFILE 803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 804 #endif 805 nVmStep++; 806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; 808 #endif 809 810 /* Only allow tracing if SQLITE_DEBUG is defined. 811 */ 812 #ifdef SQLITE_DEBUG 813 if( db->flags & SQLITE_VdbeTrace ){ 814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 815 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 816 } 817 #endif 818 819 820 /* Check to see if we need to simulate an interrupt. This only happens 821 ** if we have a special test build. 822 */ 823 #ifdef SQLITE_TEST 824 if( sqlite3_interrupt_count>0 ){ 825 sqlite3_interrupt_count--; 826 if( sqlite3_interrupt_count==0 ){ 827 sqlite3_interrupt(db); 828 } 829 } 830 #endif 831 832 /* Sanity checking on other operands */ 833 #ifdef SQLITE_DEBUG 834 { 835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 836 if( (opProperty & OPFLG_IN1)!=0 ){ 837 assert( pOp->p1>0 ); 838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 839 assert( memIsValid(&aMem[pOp->p1]) ); 840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 842 } 843 if( (opProperty & OPFLG_IN2)!=0 ){ 844 assert( pOp->p2>0 ); 845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 846 assert( memIsValid(&aMem[pOp->p2]) ); 847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 849 } 850 if( (opProperty & OPFLG_IN3)!=0 ){ 851 assert( pOp->p3>0 ); 852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 853 assert( memIsValid(&aMem[pOp->p3]) ); 854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 856 } 857 if( (opProperty & OPFLG_OUT2)!=0 ){ 858 assert( pOp->p2>0 ); 859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 860 memAboutToChange(p, &aMem[pOp->p2]); 861 } 862 if( (opProperty & OPFLG_OUT3)!=0 ){ 863 assert( pOp->p3>0 ); 864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 865 memAboutToChange(p, &aMem[pOp->p3]); 866 } 867 } 868 #endif 869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 870 pOrigOp = pOp; 871 #endif 872 873 switch( pOp->opcode ){ 874 875 /***************************************************************************** 876 ** What follows is a massive switch statement where each case implements a 877 ** separate instruction in the virtual machine. If we follow the usual 878 ** indentation conventions, each case should be indented by 6 spaces. But 879 ** that is a lot of wasted space on the left margin. So the code within 880 ** the switch statement will break with convention and be flush-left. Another 881 ** big comment (similar to this one) will mark the point in the code where 882 ** we transition back to normal indentation. 883 ** 884 ** The formatting of each case is important. The makefile for SQLite 885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 886 ** file looking for lines that begin with "case OP_". The opcodes.h files 887 ** will be filled with #defines that give unique integer values to each 888 ** opcode and the opcodes.c file is filled with an array of strings where 889 ** each string is the symbolic name for the corresponding opcode. If the 890 ** case statement is followed by a comment of the form "/# same as ... #/" 891 ** that comment is used to determine the particular value of the opcode. 892 ** 893 ** Other keywords in the comment that follows each case are used to 894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 895 ** Keywords include: in1, in2, in3, out2, out3. See 896 ** the mkopcodeh.awk script for additional information. 897 ** 898 ** Documentation about VDBE opcodes is generated by scanning this file 899 ** for lines of that contain "Opcode:". That line and all subsequent 900 ** comment lines are used in the generation of the opcode.html documentation 901 ** file. 902 ** 903 ** SUMMARY: 904 ** 905 ** Formatting is important to scripts that scan this file. 906 ** Do not deviate from the formatting style currently in use. 907 ** 908 *****************************************************************************/ 909 910 /* Opcode: Goto * P2 * * * 911 ** 912 ** An unconditional jump to address P2. 913 ** The next instruction executed will be 914 ** the one at index P2 from the beginning of 915 ** the program. 916 ** 917 ** The P1 parameter is not actually used by this opcode. However, it 918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 919 ** that this Goto is the bottom of a loop and that the lines from P2 down 920 ** to the current line should be indented for EXPLAIN output. 921 */ 922 case OP_Goto: { /* jump */ 923 924 #ifdef SQLITE_DEBUG 925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that 926 ** means we should really jump back to the preceeding OP_ReleaseReg 927 ** instruction. */ 928 if( pOp->p5 ){ 929 assert( pOp->p2 < (int)(pOp - aOp) ); 930 assert( pOp->p2 > 1 ); 931 pOp = &aOp[pOp->p2 - 2]; 932 assert( pOp[1].opcode==OP_ReleaseReg ); 933 goto check_for_interrupt; 934 } 935 #endif 936 937 jump_to_p2_and_check_for_interrupt: 938 pOp = &aOp[pOp->p2 - 1]; 939 940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 941 ** OP_VNext, or OP_SorterNext) all jump here upon 942 ** completion. Check to see if sqlite3_interrupt() has been called 943 ** or if the progress callback needs to be invoked. 944 ** 945 ** This code uses unstructured "goto" statements and does not look clean. 946 ** But that is not due to sloppy coding habits. The code is written this 947 ** way for performance, to avoid having to run the interrupt and progress 948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 949 ** faster according to "valgrind --tool=cachegrind" */ 950 check_for_interrupt: 951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 953 /* Call the progress callback if it is configured and the required number 954 ** of VDBE ops have been executed (either since this invocation of 955 ** sqlite3VdbeExec() or since last time the progress callback was called). 956 ** If the progress callback returns non-zero, exit the virtual machine with 957 ** a return code SQLITE_ABORT. 958 */ 959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 960 assert( db->nProgressOps!=0 ); 961 nProgressLimit += db->nProgressOps; 962 if( db->xProgress(db->pProgressArg) ){ 963 nProgressLimit = LARGEST_UINT64; 964 rc = SQLITE_INTERRUPT; 965 goto abort_due_to_error; 966 } 967 } 968 #endif 969 970 break; 971 } 972 973 /* Opcode: Gosub P1 P2 * * * 974 ** 975 ** Write the current address onto register P1 976 ** and then jump to address P2. 977 */ 978 case OP_Gosub: { /* jump */ 979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 980 pIn1 = &aMem[pOp->p1]; 981 assert( VdbeMemDynamic(pIn1)==0 ); 982 memAboutToChange(p, pIn1); 983 pIn1->flags = MEM_Int; 984 pIn1->u.i = (int)(pOp-aOp); 985 REGISTER_TRACE(pOp->p1, pIn1); 986 987 /* Most jump operations do a goto to this spot in order to update 988 ** the pOp pointer. */ 989 jump_to_p2: 990 pOp = &aOp[pOp->p2 - 1]; 991 break; 992 } 993 994 /* Opcode: Return P1 * P3 * * 995 ** 996 ** Jump to the next instruction after the address in register P1. After 997 ** the jump, register P1 becomes undefined. 998 ** 999 ** P3 is not used by the byte-code engine. However, the code generator 1000 ** sets P3 to address of the associated OP_BeginSubrtn opcode, if there is 1001 ** one. 1002 */ 1003 case OP_Return: { /* in1 */ 1004 pIn1 = &aMem[pOp->p1]; 1005 assert( pIn1->flags==MEM_Int ); 1006 pOp = &aOp[pIn1->u.i]; 1007 pIn1->flags = MEM_Undefined; 1008 break; 1009 } 1010 1011 /* Opcode: InitCoroutine P1 P2 P3 * * 1012 ** 1013 ** Set up register P1 so that it will Yield to the coroutine 1014 ** located at address P3. 1015 ** 1016 ** If P2!=0 then the coroutine implementation immediately follows 1017 ** this opcode. So jump over the coroutine implementation to 1018 ** address P2. 1019 ** 1020 ** See also: EndCoroutine 1021 */ 1022 case OP_InitCoroutine: { /* jump */ 1023 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1024 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 1025 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 1026 pOut = &aMem[pOp->p1]; 1027 assert( !VdbeMemDynamic(pOut) ); 1028 pOut->u.i = pOp->p3 - 1; 1029 pOut->flags = MEM_Int; 1030 if( pOp->p2 ) goto jump_to_p2; 1031 break; 1032 } 1033 1034 /* Opcode: EndCoroutine P1 * * * * 1035 ** 1036 ** The instruction at the address in register P1 is a Yield. 1037 ** Jump to the P2 parameter of that Yield. 1038 ** After the jump, register P1 becomes undefined. 1039 ** 1040 ** See also: InitCoroutine 1041 */ 1042 case OP_EndCoroutine: { /* in1 */ 1043 VdbeOp *pCaller; 1044 pIn1 = &aMem[pOp->p1]; 1045 assert( pIn1->flags==MEM_Int ); 1046 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 1047 pCaller = &aOp[pIn1->u.i]; 1048 assert( pCaller->opcode==OP_Yield ); 1049 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 1050 pOp = &aOp[pCaller->p2 - 1]; 1051 pIn1->flags = MEM_Undefined; 1052 break; 1053 } 1054 1055 /* Opcode: Yield P1 P2 * * * 1056 ** 1057 ** Swap the program counter with the value in register P1. This 1058 ** has the effect of yielding to a coroutine. 1059 ** 1060 ** If the coroutine that is launched by this instruction ends with 1061 ** Yield or Return then continue to the next instruction. But if 1062 ** the coroutine launched by this instruction ends with 1063 ** EndCoroutine, then jump to P2 rather than continuing with the 1064 ** next instruction. 1065 ** 1066 ** See also: InitCoroutine 1067 */ 1068 case OP_Yield: { /* in1, jump */ 1069 int pcDest; 1070 pIn1 = &aMem[pOp->p1]; 1071 assert( VdbeMemDynamic(pIn1)==0 ); 1072 pIn1->flags = MEM_Int; 1073 pcDest = (int)pIn1->u.i; 1074 pIn1->u.i = (int)(pOp - aOp); 1075 REGISTER_TRACE(pOp->p1, pIn1); 1076 pOp = &aOp[pcDest]; 1077 break; 1078 } 1079 1080 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 1081 ** Synopsis: if r[P3]=null halt 1082 ** 1083 ** Check the value in register P3. If it is NULL then Halt using 1084 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 1085 ** value in register P3 is not NULL, then this routine is a no-op. 1086 ** The P5 parameter should be 1. 1087 */ 1088 case OP_HaltIfNull: { /* in3 */ 1089 pIn3 = &aMem[pOp->p3]; 1090 #ifdef SQLITE_DEBUG 1091 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1092 #endif 1093 if( (pIn3->flags & MEM_Null)==0 ) break; 1094 /* Fall through into OP_Halt */ 1095 /* no break */ deliberate_fall_through 1096 } 1097 1098 /* Opcode: Halt P1 P2 * P4 P5 1099 ** 1100 ** Exit immediately. All open cursors, etc are closed 1101 ** automatically. 1102 ** 1103 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 1104 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 1105 ** For errors, it can be some other value. If P1!=0 then P2 will determine 1106 ** whether or not to rollback the current transaction. Do not rollback 1107 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 1108 ** then back out all changes that have occurred during this execution of the 1109 ** VDBE, but do not rollback the transaction. 1110 ** 1111 ** If P4 is not null then it is an error message string. 1112 ** 1113 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 1114 ** 1115 ** 0: (no change) 1116 ** 1: NOT NULL contraint failed: P4 1117 ** 2: UNIQUE constraint failed: P4 1118 ** 3: CHECK constraint failed: P4 1119 ** 4: FOREIGN KEY constraint failed: P4 1120 ** 1121 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 1122 ** omitted. 1123 ** 1124 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 1125 ** every program. So a jump past the last instruction of the program 1126 ** is the same as executing Halt. 1127 */ 1128 case OP_Halt: { 1129 VdbeFrame *pFrame; 1130 int pcx; 1131 1132 pcx = (int)(pOp - aOp); 1133 #ifdef SQLITE_DEBUG 1134 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 1135 #endif 1136 if( pOp->p1==SQLITE_OK && p->pFrame ){ 1137 /* Halt the sub-program. Return control to the parent frame. */ 1138 pFrame = p->pFrame; 1139 p->pFrame = pFrame->pParent; 1140 p->nFrame--; 1141 sqlite3VdbeSetChanges(db, p->nChange); 1142 pcx = sqlite3VdbeFrameRestore(pFrame); 1143 if( pOp->p2==OE_Ignore ){ 1144 /* Instruction pcx is the OP_Program that invoked the sub-program 1145 ** currently being halted. If the p2 instruction of this OP_Halt 1146 ** instruction is set to OE_Ignore, then the sub-program is throwing 1147 ** an IGNORE exception. In this case jump to the address specified 1148 ** as the p2 of the calling OP_Program. */ 1149 pcx = p->aOp[pcx].p2-1; 1150 } 1151 aOp = p->aOp; 1152 aMem = p->aMem; 1153 pOp = &aOp[pcx]; 1154 break; 1155 } 1156 p->rc = pOp->p1; 1157 p->errorAction = (u8)pOp->p2; 1158 p->pc = pcx; 1159 assert( pOp->p5<=4 ); 1160 if( p->rc ){ 1161 if( pOp->p5 ){ 1162 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 1163 "FOREIGN KEY" }; 1164 testcase( pOp->p5==1 ); 1165 testcase( pOp->p5==2 ); 1166 testcase( pOp->p5==3 ); 1167 testcase( pOp->p5==4 ); 1168 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 1169 if( pOp->p4.z ){ 1170 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 1171 } 1172 }else{ 1173 sqlite3VdbeError(p, "%s", pOp->p4.z); 1174 } 1175 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 1176 } 1177 rc = sqlite3VdbeHalt(p); 1178 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 1179 if( rc==SQLITE_BUSY ){ 1180 p->rc = SQLITE_BUSY; 1181 }else{ 1182 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 1183 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 1184 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 1185 } 1186 goto vdbe_return; 1187 } 1188 1189 /* Opcode: BeginSubrtn P1 P2 * * * 1190 ** Synopsis: r[P2]=P1 1191 ** 1192 ** Mark the beginning of a subroutine by loading the integer value P1 1193 ** into register r[P2]. The P2 register is used to store the return 1194 ** address of the subroutine call. 1195 ** 1196 ** This opcode is identical to OP_Integer. It has a different name 1197 ** only to make the byte code easier to read and verify. 1198 */ 1199 /* Opcode: Integer P1 P2 * * * 1200 ** Synopsis: r[P2]=P1 1201 ** 1202 ** The 32-bit integer value P1 is written into register P2. 1203 */ 1204 case OP_BeginSubrtn: 1205 case OP_Integer: { /* out2 */ 1206 pOut = out2Prerelease(p, pOp); 1207 pOut->u.i = pOp->p1; 1208 break; 1209 } 1210 1211 /* Opcode: Int64 * P2 * P4 * 1212 ** Synopsis: r[P2]=P4 1213 ** 1214 ** P4 is a pointer to a 64-bit integer value. 1215 ** Write that value into register P2. 1216 */ 1217 case OP_Int64: { /* out2 */ 1218 pOut = out2Prerelease(p, pOp); 1219 assert( pOp->p4.pI64!=0 ); 1220 pOut->u.i = *pOp->p4.pI64; 1221 break; 1222 } 1223 1224 #ifndef SQLITE_OMIT_FLOATING_POINT 1225 /* Opcode: Real * P2 * P4 * 1226 ** Synopsis: r[P2]=P4 1227 ** 1228 ** P4 is a pointer to a 64-bit floating point value. 1229 ** Write that value into register P2. 1230 */ 1231 case OP_Real: { /* same as TK_FLOAT, out2 */ 1232 pOut = out2Prerelease(p, pOp); 1233 pOut->flags = MEM_Real; 1234 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 1235 pOut->u.r = *pOp->p4.pReal; 1236 break; 1237 } 1238 #endif 1239 1240 /* Opcode: String8 * P2 * P4 * 1241 ** Synopsis: r[P2]='P4' 1242 ** 1243 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 1244 ** into a String opcode before it is executed for the first time. During 1245 ** this transformation, the length of string P4 is computed and stored 1246 ** as the P1 parameter. 1247 */ 1248 case OP_String8: { /* same as TK_STRING, out2 */ 1249 assert( pOp->p4.z!=0 ); 1250 pOut = out2Prerelease(p, pOp); 1251 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 1252 1253 #ifndef SQLITE_OMIT_UTF16 1254 if( encoding!=SQLITE_UTF8 ){ 1255 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 1256 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 1257 if( rc ) goto too_big; 1258 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 1259 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 1260 assert( VdbeMemDynamic(pOut)==0 ); 1261 pOut->szMalloc = 0; 1262 pOut->flags |= MEM_Static; 1263 if( pOp->p4type==P4_DYNAMIC ){ 1264 sqlite3DbFree(db, pOp->p4.z); 1265 } 1266 pOp->p4type = P4_DYNAMIC; 1267 pOp->p4.z = pOut->z; 1268 pOp->p1 = pOut->n; 1269 } 1270 #endif 1271 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1272 goto too_big; 1273 } 1274 pOp->opcode = OP_String; 1275 assert( rc==SQLITE_OK ); 1276 /* Fall through to the next case, OP_String */ 1277 /* no break */ deliberate_fall_through 1278 } 1279 1280 /* Opcode: String P1 P2 P3 P4 P5 1281 ** Synopsis: r[P2]='P4' (len=P1) 1282 ** 1283 ** The string value P4 of length P1 (bytes) is stored in register P2. 1284 ** 1285 ** If P3 is not zero and the content of register P3 is equal to P5, then 1286 ** the datatype of the register P2 is converted to BLOB. The content is 1287 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 1288 ** of a string, as if it had been CAST. In other words: 1289 ** 1290 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 1291 */ 1292 case OP_String: { /* out2 */ 1293 assert( pOp->p4.z!=0 ); 1294 pOut = out2Prerelease(p, pOp); 1295 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 1296 pOut->z = pOp->p4.z; 1297 pOut->n = pOp->p1; 1298 pOut->enc = encoding; 1299 UPDATE_MAX_BLOBSIZE(pOut); 1300 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 1301 if( pOp->p3>0 ){ 1302 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1303 pIn3 = &aMem[pOp->p3]; 1304 assert( pIn3->flags & MEM_Int ); 1305 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 1306 } 1307 #endif 1308 break; 1309 } 1310 1311 /* Opcode: Null P1 P2 P3 * * 1312 ** Synopsis: r[P2..P3]=NULL 1313 ** 1314 ** Write a NULL into registers P2. If P3 greater than P2, then also write 1315 ** NULL into register P3 and every register in between P2 and P3. If P3 1316 ** is less than P2 (typically P3 is zero) then only register P2 is 1317 ** set to NULL. 1318 ** 1319 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 1320 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 1321 ** OP_Ne or OP_Eq. 1322 */ 1323 case OP_Null: { /* out2 */ 1324 int cnt; 1325 u16 nullFlag; 1326 pOut = out2Prerelease(p, pOp); 1327 cnt = pOp->p3-pOp->p2; 1328 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 1329 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 1330 pOut->n = 0; 1331 #ifdef SQLITE_DEBUG 1332 pOut->uTemp = 0; 1333 #endif 1334 while( cnt>0 ){ 1335 pOut++; 1336 memAboutToChange(p, pOut); 1337 sqlite3VdbeMemSetNull(pOut); 1338 pOut->flags = nullFlag; 1339 pOut->n = 0; 1340 cnt--; 1341 } 1342 break; 1343 } 1344 1345 /* Opcode: SoftNull P1 * * * * 1346 ** Synopsis: r[P1]=NULL 1347 ** 1348 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 1349 ** instruction, but do not free any string or blob memory associated with 1350 ** the register, so that if the value was a string or blob that was 1351 ** previously copied using OP_SCopy, the copies will continue to be valid. 1352 */ 1353 case OP_SoftNull: { 1354 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 1355 pOut = &aMem[pOp->p1]; 1356 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 1357 break; 1358 } 1359 1360 /* Opcode: Blob P1 P2 * P4 * 1361 ** Synopsis: r[P2]=P4 (len=P1) 1362 ** 1363 ** P4 points to a blob of data P1 bytes long. Store this 1364 ** blob in register P2. If P4 is a NULL pointer, then construct 1365 ** a zero-filled blob that is P1 bytes long in P2. 1366 */ 1367 case OP_Blob: { /* out2 */ 1368 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 1369 pOut = out2Prerelease(p, pOp); 1370 if( pOp->p4.z==0 ){ 1371 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 1372 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 1373 }else{ 1374 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 1375 } 1376 pOut->enc = encoding; 1377 UPDATE_MAX_BLOBSIZE(pOut); 1378 break; 1379 } 1380 1381 /* Opcode: Variable P1 P2 * P4 * 1382 ** Synopsis: r[P2]=parameter(P1,P4) 1383 ** 1384 ** Transfer the values of bound parameter P1 into register P2 1385 ** 1386 ** If the parameter is named, then its name appears in P4. 1387 ** The P4 value is used by sqlite3_bind_parameter_name(). 1388 */ 1389 case OP_Variable: { /* out2 */ 1390 Mem *pVar; /* Value being transferred */ 1391 1392 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1393 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); 1394 pVar = &p->aVar[pOp->p1 - 1]; 1395 if( sqlite3VdbeMemTooBig(pVar) ){ 1396 goto too_big; 1397 } 1398 pOut = &aMem[pOp->p2]; 1399 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 1400 memcpy(pOut, pVar, MEMCELLSIZE); 1401 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 1402 pOut->flags |= MEM_Static|MEM_FromBind; 1403 UPDATE_MAX_BLOBSIZE(pOut); 1404 break; 1405 } 1406 1407 /* Opcode: Move P1 P2 P3 * * 1408 ** Synopsis: r[P2@P3]=r[P1@P3] 1409 ** 1410 ** Move the P3 values in register P1..P1+P3-1 over into 1411 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 1412 ** left holding a NULL. It is an error for register ranges 1413 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 1414 ** for P3 to be less than 1. 1415 */ 1416 case OP_Move: { 1417 int n; /* Number of registers left to copy */ 1418 int p1; /* Register to copy from */ 1419 int p2; /* Register to copy to */ 1420 1421 n = pOp->p3; 1422 p1 = pOp->p1; 1423 p2 = pOp->p2; 1424 assert( n>0 && p1>0 && p2>0 ); 1425 assert( p1+n<=p2 || p2+n<=p1 ); 1426 1427 pIn1 = &aMem[p1]; 1428 pOut = &aMem[p2]; 1429 do{ 1430 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 1431 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 1432 assert( memIsValid(pIn1) ); 1433 memAboutToChange(p, pOut); 1434 sqlite3VdbeMemMove(pOut, pIn1); 1435 #ifdef SQLITE_DEBUG 1436 pIn1->pScopyFrom = 0; 1437 { int i; 1438 for(i=1; i<p->nMem; i++){ 1439 if( aMem[i].pScopyFrom==pIn1 ){ 1440 aMem[i].pScopyFrom = pOut; 1441 } 1442 } 1443 } 1444 #endif 1445 Deephemeralize(pOut); 1446 REGISTER_TRACE(p2++, pOut); 1447 pIn1++; 1448 pOut++; 1449 }while( --n ); 1450 break; 1451 } 1452 1453 /* Opcode: Copy P1 P2 P3 * * 1454 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 1455 ** 1456 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 1457 ** 1458 ** This instruction makes a deep copy of the value. A duplicate 1459 ** is made of any string or blob constant. See also OP_SCopy. 1460 */ 1461 case OP_Copy: { 1462 int n; 1463 1464 n = pOp->p3; 1465 pIn1 = &aMem[pOp->p1]; 1466 pOut = &aMem[pOp->p2]; 1467 assert( pOut!=pIn1 ); 1468 while( 1 ){ 1469 memAboutToChange(p, pOut); 1470 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1471 Deephemeralize(pOut); 1472 #ifdef SQLITE_DEBUG 1473 pOut->pScopyFrom = 0; 1474 #endif 1475 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 1476 if( (n--)==0 ) break; 1477 pOut++; 1478 pIn1++; 1479 } 1480 break; 1481 } 1482 1483 /* Opcode: SCopy P1 P2 * * * 1484 ** Synopsis: r[P2]=r[P1] 1485 ** 1486 ** Make a shallow copy of register P1 into register P2. 1487 ** 1488 ** This instruction makes a shallow copy of the value. If the value 1489 ** is a string or blob, then the copy is only a pointer to the 1490 ** original and hence if the original changes so will the copy. 1491 ** Worse, if the original is deallocated, the copy becomes invalid. 1492 ** Thus the program must guarantee that the original will not change 1493 ** during the lifetime of the copy. Use OP_Copy to make a complete 1494 ** copy. 1495 */ 1496 case OP_SCopy: { /* out2 */ 1497 pIn1 = &aMem[pOp->p1]; 1498 pOut = &aMem[pOp->p2]; 1499 assert( pOut!=pIn1 ); 1500 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1501 #ifdef SQLITE_DEBUG 1502 pOut->pScopyFrom = pIn1; 1503 pOut->mScopyFlags = pIn1->flags; 1504 #endif 1505 break; 1506 } 1507 1508 /* Opcode: IntCopy P1 P2 * * * 1509 ** Synopsis: r[P2]=r[P1] 1510 ** 1511 ** Transfer the integer value held in register P1 into register P2. 1512 ** 1513 ** This is an optimized version of SCopy that works only for integer 1514 ** values. 1515 */ 1516 case OP_IntCopy: { /* out2 */ 1517 pIn1 = &aMem[pOp->p1]; 1518 assert( (pIn1->flags & MEM_Int)!=0 ); 1519 pOut = &aMem[pOp->p2]; 1520 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 1521 break; 1522 } 1523 1524 /* Opcode: FkCheck * * * * * 1525 ** 1526 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 1527 ** foreign key constraint violations. If there are no foreign key 1528 ** constraint violations, this is a no-op. 1529 ** 1530 ** FK constraint violations are also checked when the prepared statement 1531 ** exits. This opcode is used to raise foreign key constraint errors prior 1532 ** to returning results such as a row change count or the result of a 1533 ** RETURNING clause. 1534 */ 1535 case OP_FkCheck: { 1536 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 1537 goto abort_due_to_error; 1538 } 1539 break; 1540 } 1541 1542 /* Opcode: ResultRow P1 P2 * * * 1543 ** Synopsis: output=r[P1@P2] 1544 ** 1545 ** The registers P1 through P1+P2-1 contain a single row of 1546 ** results. This opcode causes the sqlite3_step() call to terminate 1547 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1548 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 1549 ** the result row. 1550 */ 1551 case OP_ResultRow: { 1552 Mem *pMem; 1553 int i; 1554 assert( p->nResColumn==pOp->p2 ); 1555 assert( pOp->p1>0 || CORRUPT_DB ); 1556 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 1557 1558 /* Invalidate all ephemeral cursor row caches */ 1559 p->cacheCtr = (p->cacheCtr + 2)|1; 1560 1561 /* Make sure the results of the current row are \000 terminated 1562 ** and have an assigned type. The results are de-ephemeralized as 1563 ** a side effect. 1564 */ 1565 pMem = p->pResultSet = &aMem[pOp->p1]; 1566 for(i=0; i<pOp->p2; i++){ 1567 assert( memIsValid(&pMem[i]) ); 1568 Deephemeralize(&pMem[i]); 1569 assert( (pMem[i].flags & MEM_Ephem)==0 1570 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1571 sqlite3VdbeMemNulTerminate(&pMem[i]); 1572 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1573 #ifdef SQLITE_DEBUG 1574 /* The registers in the result will not be used again when the 1575 ** prepared statement restarts. This is because sqlite3_column() 1576 ** APIs might have caused type conversions of made other changes to 1577 ** the register values. Therefore, we can go ahead and break any 1578 ** OP_SCopy dependencies. */ 1579 pMem[i].pScopyFrom = 0; 1580 #endif 1581 } 1582 if( db->mallocFailed ) goto no_mem; 1583 1584 if( db->mTrace & SQLITE_TRACE_ROW ){ 1585 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 1586 } 1587 1588 1589 /* Return SQLITE_ROW 1590 */ 1591 p->pc = (int)(pOp - aOp) + 1; 1592 rc = SQLITE_ROW; 1593 goto vdbe_return; 1594 } 1595 1596 /* Opcode: Concat P1 P2 P3 * * 1597 ** Synopsis: r[P3]=r[P2]+r[P1] 1598 ** 1599 ** Add the text in register P1 onto the end of the text in 1600 ** register P2 and store the result in register P3. 1601 ** If either the P1 or P2 text are NULL then store NULL in P3. 1602 ** 1603 ** P3 = P2 || P1 1604 ** 1605 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1606 ** if P3 is the same register as P2, the implementation is able 1607 ** to avoid a memcpy(). 1608 */ 1609 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1610 i64 nByte; /* Total size of the output string or blob */ 1611 u16 flags1; /* Initial flags for P1 */ 1612 u16 flags2; /* Initial flags for P2 */ 1613 1614 pIn1 = &aMem[pOp->p1]; 1615 pIn2 = &aMem[pOp->p2]; 1616 pOut = &aMem[pOp->p3]; 1617 testcase( pOut==pIn2 ); 1618 assert( pIn1!=pOut ); 1619 flags1 = pIn1->flags; 1620 testcase( flags1 & MEM_Null ); 1621 testcase( pIn2->flags & MEM_Null ); 1622 if( (flags1 | pIn2->flags) & MEM_Null ){ 1623 sqlite3VdbeMemSetNull(pOut); 1624 break; 1625 } 1626 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 1627 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 1628 flags1 = pIn1->flags & ~MEM_Str; 1629 }else if( (flags1 & MEM_Zero)!=0 ){ 1630 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 1631 flags1 = pIn1->flags & ~MEM_Str; 1632 } 1633 flags2 = pIn2->flags; 1634 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 1635 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 1636 flags2 = pIn2->flags & ~MEM_Str; 1637 }else if( (flags2 & MEM_Zero)!=0 ){ 1638 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 1639 flags2 = pIn2->flags & ~MEM_Str; 1640 } 1641 nByte = pIn1->n + pIn2->n; 1642 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1643 goto too_big; 1644 } 1645 if( sqlite3VdbeMemGrow(pOut, (int)nByte+3, pOut==pIn2) ){ 1646 goto no_mem; 1647 } 1648 MemSetTypeFlag(pOut, MEM_Str); 1649 if( pOut!=pIn2 ){ 1650 memcpy(pOut->z, pIn2->z, pIn2->n); 1651 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 1652 pIn2->flags = flags2; 1653 } 1654 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1655 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 1656 pIn1->flags = flags1; 1657 pOut->z[nByte]=0; 1658 pOut->z[nByte+1] = 0; 1659 pOut->z[nByte+2] = 0; 1660 pOut->flags |= MEM_Term; 1661 pOut->n = (int)nByte; 1662 pOut->enc = encoding; 1663 UPDATE_MAX_BLOBSIZE(pOut); 1664 break; 1665 } 1666 1667 /* Opcode: Add P1 P2 P3 * * 1668 ** Synopsis: r[P3]=r[P1]+r[P2] 1669 ** 1670 ** Add the value in register P1 to the value in register P2 1671 ** and store the result in register P3. 1672 ** If either input is NULL, the result is NULL. 1673 */ 1674 /* Opcode: Multiply P1 P2 P3 * * 1675 ** Synopsis: r[P3]=r[P1]*r[P2] 1676 ** 1677 ** 1678 ** Multiply the value in register P1 by the value in register P2 1679 ** and store the result in register P3. 1680 ** If either input is NULL, the result is NULL. 1681 */ 1682 /* Opcode: Subtract P1 P2 P3 * * 1683 ** Synopsis: r[P3]=r[P2]-r[P1] 1684 ** 1685 ** Subtract the value in register P1 from the value in register P2 1686 ** and store the result in register P3. 1687 ** If either input is NULL, the result is NULL. 1688 */ 1689 /* Opcode: Divide P1 P2 P3 * * 1690 ** Synopsis: r[P3]=r[P2]/r[P1] 1691 ** 1692 ** Divide the value in register P1 by the value in register P2 1693 ** and store the result in register P3 (P3=P2/P1). If the value in 1694 ** register P1 is zero, then the result is NULL. If either input is 1695 ** NULL, the result is NULL. 1696 */ 1697 /* Opcode: Remainder P1 P2 P3 * * 1698 ** Synopsis: r[P3]=r[P2]%r[P1] 1699 ** 1700 ** Compute the remainder after integer register P2 is divided by 1701 ** register P1 and store the result in register P3. 1702 ** If the value in register P1 is zero the result is NULL. 1703 ** If either operand is NULL, the result is NULL. 1704 */ 1705 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1706 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1707 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1708 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1709 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1710 u16 flags; /* Combined MEM_* flags from both inputs */ 1711 u16 type1; /* Numeric type of left operand */ 1712 u16 type2; /* Numeric type of right operand */ 1713 i64 iA; /* Integer value of left operand */ 1714 i64 iB; /* Integer value of right operand */ 1715 double rA; /* Real value of left operand */ 1716 double rB; /* Real value of right operand */ 1717 1718 pIn1 = &aMem[pOp->p1]; 1719 type1 = numericType(pIn1); 1720 pIn2 = &aMem[pOp->p2]; 1721 type2 = numericType(pIn2); 1722 pOut = &aMem[pOp->p3]; 1723 flags = pIn1->flags | pIn2->flags; 1724 if( (type1 & type2 & MEM_Int)!=0 ){ 1725 iA = pIn1->u.i; 1726 iB = pIn2->u.i; 1727 switch( pOp->opcode ){ 1728 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1729 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1730 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1731 case OP_Divide: { 1732 if( iA==0 ) goto arithmetic_result_is_null; 1733 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1734 iB /= iA; 1735 break; 1736 } 1737 default: { 1738 if( iA==0 ) goto arithmetic_result_is_null; 1739 if( iA==-1 ) iA = 1; 1740 iB %= iA; 1741 break; 1742 } 1743 } 1744 pOut->u.i = iB; 1745 MemSetTypeFlag(pOut, MEM_Int); 1746 }else if( (flags & MEM_Null)!=0 ){ 1747 goto arithmetic_result_is_null; 1748 }else{ 1749 fp_math: 1750 rA = sqlite3VdbeRealValue(pIn1); 1751 rB = sqlite3VdbeRealValue(pIn2); 1752 switch( pOp->opcode ){ 1753 case OP_Add: rB += rA; break; 1754 case OP_Subtract: rB -= rA; break; 1755 case OP_Multiply: rB *= rA; break; 1756 case OP_Divide: { 1757 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1758 if( rA==(double)0 ) goto arithmetic_result_is_null; 1759 rB /= rA; 1760 break; 1761 } 1762 default: { 1763 iA = sqlite3VdbeIntValue(pIn1); 1764 iB = sqlite3VdbeIntValue(pIn2); 1765 if( iA==0 ) goto arithmetic_result_is_null; 1766 if( iA==-1 ) iA = 1; 1767 rB = (double)(iB % iA); 1768 break; 1769 } 1770 } 1771 #ifdef SQLITE_OMIT_FLOATING_POINT 1772 pOut->u.i = rB; 1773 MemSetTypeFlag(pOut, MEM_Int); 1774 #else 1775 if( sqlite3IsNaN(rB) ){ 1776 goto arithmetic_result_is_null; 1777 } 1778 pOut->u.r = rB; 1779 MemSetTypeFlag(pOut, MEM_Real); 1780 #endif 1781 } 1782 break; 1783 1784 arithmetic_result_is_null: 1785 sqlite3VdbeMemSetNull(pOut); 1786 break; 1787 } 1788 1789 /* Opcode: CollSeq P1 * * P4 1790 ** 1791 ** P4 is a pointer to a CollSeq object. If the next call to a user function 1792 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1793 ** be returned. This is used by the built-in min(), max() and nullif() 1794 ** functions. 1795 ** 1796 ** If P1 is not zero, then it is a register that a subsequent min() or 1797 ** max() aggregate will set to 1 if the current row is not the minimum or 1798 ** maximum. The P1 register is initialized to 0 by this instruction. 1799 ** 1800 ** The interface used by the implementation of the aforementioned functions 1801 ** to retrieve the collation sequence set by this opcode is not available 1802 ** publicly. Only built-in functions have access to this feature. 1803 */ 1804 case OP_CollSeq: { 1805 assert( pOp->p4type==P4_COLLSEQ ); 1806 if( pOp->p1 ){ 1807 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 1808 } 1809 break; 1810 } 1811 1812 /* Opcode: BitAnd P1 P2 P3 * * 1813 ** Synopsis: r[P3]=r[P1]&r[P2] 1814 ** 1815 ** Take the bit-wise AND of the values in register P1 and P2 and 1816 ** store the result in register P3. 1817 ** If either input is NULL, the result is NULL. 1818 */ 1819 /* Opcode: BitOr P1 P2 P3 * * 1820 ** Synopsis: r[P3]=r[P1]|r[P2] 1821 ** 1822 ** Take the bit-wise OR of the values in register P1 and P2 and 1823 ** store the result in register P3. 1824 ** If either input is NULL, the result is NULL. 1825 */ 1826 /* Opcode: ShiftLeft P1 P2 P3 * * 1827 ** Synopsis: r[P3]=r[P2]<<r[P1] 1828 ** 1829 ** Shift the integer value in register P2 to the left by the 1830 ** number of bits specified by the integer in register P1. 1831 ** Store the result in register P3. 1832 ** If either input is NULL, the result is NULL. 1833 */ 1834 /* Opcode: ShiftRight P1 P2 P3 * * 1835 ** Synopsis: r[P3]=r[P2]>>r[P1] 1836 ** 1837 ** Shift the integer value in register P2 to the right by the 1838 ** number of bits specified by the integer in register P1. 1839 ** Store the result in register P3. 1840 ** If either input is NULL, the result is NULL. 1841 */ 1842 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1843 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1844 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1845 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1846 i64 iA; 1847 u64 uA; 1848 i64 iB; 1849 u8 op; 1850 1851 pIn1 = &aMem[pOp->p1]; 1852 pIn2 = &aMem[pOp->p2]; 1853 pOut = &aMem[pOp->p3]; 1854 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1855 sqlite3VdbeMemSetNull(pOut); 1856 break; 1857 } 1858 iA = sqlite3VdbeIntValue(pIn2); 1859 iB = sqlite3VdbeIntValue(pIn1); 1860 op = pOp->opcode; 1861 if( op==OP_BitAnd ){ 1862 iA &= iB; 1863 }else if( op==OP_BitOr ){ 1864 iA |= iB; 1865 }else if( iB!=0 ){ 1866 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1867 1868 /* If shifting by a negative amount, shift in the other direction */ 1869 if( iB<0 ){ 1870 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1871 op = 2*OP_ShiftLeft + 1 - op; 1872 iB = iB>(-64) ? -iB : 64; 1873 } 1874 1875 if( iB>=64 ){ 1876 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1877 }else{ 1878 memcpy(&uA, &iA, sizeof(uA)); 1879 if( op==OP_ShiftLeft ){ 1880 uA <<= iB; 1881 }else{ 1882 uA >>= iB; 1883 /* Sign-extend on a right shift of a negative number */ 1884 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1885 } 1886 memcpy(&iA, &uA, sizeof(iA)); 1887 } 1888 } 1889 pOut->u.i = iA; 1890 MemSetTypeFlag(pOut, MEM_Int); 1891 break; 1892 } 1893 1894 /* Opcode: AddImm P1 P2 * * * 1895 ** Synopsis: r[P1]=r[P1]+P2 1896 ** 1897 ** Add the constant P2 to the value in register P1. 1898 ** The result is always an integer. 1899 ** 1900 ** To force any register to be an integer, just add 0. 1901 */ 1902 case OP_AddImm: { /* in1 */ 1903 pIn1 = &aMem[pOp->p1]; 1904 memAboutToChange(p, pIn1); 1905 sqlite3VdbeMemIntegerify(pIn1); 1906 pIn1->u.i += pOp->p2; 1907 break; 1908 } 1909 1910 /* Opcode: MustBeInt P1 P2 * * * 1911 ** 1912 ** Force the value in register P1 to be an integer. If the value 1913 ** in P1 is not an integer and cannot be converted into an integer 1914 ** without data loss, then jump immediately to P2, or if P2==0 1915 ** raise an SQLITE_MISMATCH exception. 1916 */ 1917 case OP_MustBeInt: { /* jump, in1 */ 1918 pIn1 = &aMem[pOp->p1]; 1919 if( (pIn1->flags & MEM_Int)==0 ){ 1920 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1921 if( (pIn1->flags & MEM_Int)==0 ){ 1922 VdbeBranchTaken(1, 2); 1923 if( pOp->p2==0 ){ 1924 rc = SQLITE_MISMATCH; 1925 goto abort_due_to_error; 1926 }else{ 1927 goto jump_to_p2; 1928 } 1929 } 1930 } 1931 VdbeBranchTaken(0, 2); 1932 MemSetTypeFlag(pIn1, MEM_Int); 1933 break; 1934 } 1935 1936 #ifndef SQLITE_OMIT_FLOATING_POINT 1937 /* Opcode: RealAffinity P1 * * * * 1938 ** 1939 ** If register P1 holds an integer convert it to a real value. 1940 ** 1941 ** This opcode is used when extracting information from a column that 1942 ** has REAL affinity. Such column values may still be stored as 1943 ** integers, for space efficiency, but after extraction we want them 1944 ** to have only a real value. 1945 */ 1946 case OP_RealAffinity: { /* in1 */ 1947 pIn1 = &aMem[pOp->p1]; 1948 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 1949 testcase( pIn1->flags & MEM_Int ); 1950 testcase( pIn1->flags & MEM_IntReal ); 1951 sqlite3VdbeMemRealify(pIn1); 1952 REGISTER_TRACE(pOp->p1, pIn1); 1953 } 1954 break; 1955 } 1956 #endif 1957 1958 #ifndef SQLITE_OMIT_CAST 1959 /* Opcode: Cast P1 P2 * * * 1960 ** Synopsis: affinity(r[P1]) 1961 ** 1962 ** Force the value in register P1 to be the type defined by P2. 1963 ** 1964 ** <ul> 1965 ** <li> P2=='A' → BLOB 1966 ** <li> P2=='B' → TEXT 1967 ** <li> P2=='C' → NUMERIC 1968 ** <li> P2=='D' → INTEGER 1969 ** <li> P2=='E' → REAL 1970 ** </ul> 1971 ** 1972 ** A NULL value is not changed by this routine. It remains NULL. 1973 */ 1974 case OP_Cast: { /* in1 */ 1975 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 1976 testcase( pOp->p2==SQLITE_AFF_TEXT ); 1977 testcase( pOp->p2==SQLITE_AFF_BLOB ); 1978 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 1979 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 1980 testcase( pOp->p2==SQLITE_AFF_REAL ); 1981 pIn1 = &aMem[pOp->p1]; 1982 memAboutToChange(p, pIn1); 1983 rc = ExpandBlob(pIn1); 1984 if( rc ) goto abort_due_to_error; 1985 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 1986 if( rc ) goto abort_due_to_error; 1987 UPDATE_MAX_BLOBSIZE(pIn1); 1988 REGISTER_TRACE(pOp->p1, pIn1); 1989 break; 1990 } 1991 #endif /* SQLITE_OMIT_CAST */ 1992 1993 /* Opcode: Eq P1 P2 P3 P4 P5 1994 ** Synopsis: IF r[P3]==r[P1] 1995 ** 1996 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 1997 ** jump to address P2. 1998 ** 1999 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2000 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2001 ** to coerce both inputs according to this affinity before the 2002 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2003 ** affinity is used. Note that the affinity conversions are stored 2004 ** back into the input registers P1 and P3. So this opcode can cause 2005 ** persistent changes to registers P1 and P3. 2006 ** 2007 ** Once any conversions have taken place, and neither value is NULL, 2008 ** the values are compared. If both values are blobs then memcmp() is 2009 ** used to determine the results of the comparison. If both values 2010 ** are text, then the appropriate collating function specified in 2011 ** P4 is used to do the comparison. If P4 is not specified then 2012 ** memcmp() is used to compare text string. If both values are 2013 ** numeric, then a numeric comparison is used. If the two values 2014 ** are of different types, then numbers are considered less than 2015 ** strings and strings are considered less than blobs. 2016 ** 2017 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 2018 ** true or false and is never NULL. If both operands are NULL then the result 2019 ** of comparison is true. If either operand is NULL then the result is false. 2020 ** If neither operand is NULL the result is the same as it would be if 2021 ** the SQLITE_NULLEQ flag were omitted from P5. 2022 ** 2023 ** This opcode saves the result of comparison for use by the new 2024 ** OP_Jump opcode. 2025 */ 2026 /* Opcode: Ne P1 P2 P3 P4 P5 2027 ** Synopsis: IF r[P3]!=r[P1] 2028 ** 2029 ** This works just like the Eq opcode except that the jump is taken if 2030 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 2031 ** additional information. 2032 */ 2033 /* Opcode: Lt P1 P2 P3 P4 P5 2034 ** Synopsis: IF r[P3]<r[P1] 2035 ** 2036 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 2037 ** jump to address P2. 2038 ** 2039 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 2040 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 2041 ** bit is clear then fall through if either operand is NULL. 2042 ** 2043 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 2044 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 2045 ** to coerce both inputs according to this affinity before the 2046 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 2047 ** affinity is used. Note that the affinity conversions are stored 2048 ** back into the input registers P1 and P3. So this opcode can cause 2049 ** persistent changes to registers P1 and P3. 2050 ** 2051 ** Once any conversions have taken place, and neither value is NULL, 2052 ** the values are compared. If both values are blobs then memcmp() is 2053 ** used to determine the results of the comparison. If both values 2054 ** are text, then the appropriate collating function specified in 2055 ** P4 is used to do the comparison. If P4 is not specified then 2056 ** memcmp() is used to compare text string. If both values are 2057 ** numeric, then a numeric comparison is used. If the two values 2058 ** are of different types, then numbers are considered less than 2059 ** strings and strings are considered less than blobs. 2060 ** 2061 ** This opcode saves the result of comparison for use by the new 2062 ** OP_Jump opcode. 2063 */ 2064 /* Opcode: Le P1 P2 P3 P4 P5 2065 ** Synopsis: IF r[P3]<=r[P1] 2066 ** 2067 ** This works just like the Lt opcode except that the jump is taken if 2068 ** the content of register P3 is less than or equal to the content of 2069 ** register P1. See the Lt opcode for additional information. 2070 */ 2071 /* Opcode: Gt P1 P2 P3 P4 P5 2072 ** Synopsis: IF r[P3]>r[P1] 2073 ** 2074 ** This works just like the Lt opcode except that the jump is taken if 2075 ** the content of register P3 is greater than the content of 2076 ** register P1. See the Lt opcode for additional information. 2077 */ 2078 /* Opcode: Ge P1 P2 P3 P4 P5 2079 ** Synopsis: IF r[P3]>=r[P1] 2080 ** 2081 ** This works just like the Lt opcode except that the jump is taken if 2082 ** the content of register P3 is greater than or equal to the content of 2083 ** register P1. See the Lt opcode for additional information. 2084 */ 2085 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 2086 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 2087 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 2088 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 2089 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 2090 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 2091 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 2092 char affinity; /* Affinity to use for comparison */ 2093 u16 flags1; /* Copy of initial value of pIn1->flags */ 2094 u16 flags3; /* Copy of initial value of pIn3->flags */ 2095 2096 pIn1 = &aMem[pOp->p1]; 2097 pIn3 = &aMem[pOp->p3]; 2098 flags1 = pIn1->flags; 2099 flags3 = pIn3->flags; 2100 if( (flags1 & flags3 & MEM_Int)!=0 ){ 2101 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB ); 2102 /* Common case of comparison of two integers */ 2103 if( pIn3->u.i > pIn1->u.i ){ 2104 iCompare = +1; 2105 if( sqlite3aGTb[pOp->opcode] ){ 2106 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2107 goto jump_to_p2; 2108 } 2109 }else if( pIn3->u.i < pIn1->u.i ){ 2110 iCompare = -1; 2111 if( sqlite3aLTb[pOp->opcode] ){ 2112 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2113 goto jump_to_p2; 2114 } 2115 }else{ 2116 iCompare = 0; 2117 if( sqlite3aEQb[pOp->opcode] ){ 2118 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2119 goto jump_to_p2; 2120 } 2121 } 2122 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2123 break; 2124 } 2125 if( (flags1 | flags3)&MEM_Null ){ 2126 /* One or both operands are NULL */ 2127 if( pOp->p5 & SQLITE_NULLEQ ){ 2128 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 2129 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 2130 ** or not both operands are null. 2131 */ 2132 assert( (flags1 & MEM_Cleared)==0 ); 2133 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 2134 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 2135 if( (flags1&flags3&MEM_Null)!=0 2136 && (flags3&MEM_Cleared)==0 2137 ){ 2138 res = 0; /* Operands are equal */ 2139 }else{ 2140 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 2141 } 2142 }else{ 2143 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 2144 ** then the result is always NULL. 2145 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 2146 */ 2147 iCompare = 1; /* Operands are not equal */ 2148 VdbeBranchTaken(2,3); 2149 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 2150 goto jump_to_p2; 2151 } 2152 break; 2153 } 2154 }else{ 2155 /* Neither operand is NULL and we couldn't do the special high-speed 2156 ** integer comparison case. So do a general-case comparison. */ 2157 affinity = pOp->p5 & SQLITE_AFF_MASK; 2158 if( affinity>=SQLITE_AFF_NUMERIC ){ 2159 if( (flags1 | flags3)&MEM_Str ){ 2160 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2161 applyNumericAffinity(pIn1,0); 2162 testcase( flags3==pIn3->flags ); 2163 flags3 = pIn3->flags; 2164 } 2165 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 2166 applyNumericAffinity(pIn3,0); 2167 } 2168 } 2169 }else if( affinity==SQLITE_AFF_TEXT ){ 2170 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2171 testcase( pIn1->flags & MEM_Int ); 2172 testcase( pIn1->flags & MEM_Real ); 2173 testcase( pIn1->flags & MEM_IntReal ); 2174 sqlite3VdbeMemStringify(pIn1, encoding, 1); 2175 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 2176 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 2177 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str; 2178 } 2179 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 2180 testcase( pIn3->flags & MEM_Int ); 2181 testcase( pIn3->flags & MEM_Real ); 2182 testcase( pIn3->flags & MEM_IntReal ); 2183 sqlite3VdbeMemStringify(pIn3, encoding, 1); 2184 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 2185 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 2186 } 2187 } 2188 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 2189 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 2190 } 2191 2192 /* At this point, res is negative, zero, or positive if reg[P1] is 2193 ** less than, equal to, or greater than reg[P3], respectively. Compute 2194 ** the answer to this operator in res2, depending on what the comparison 2195 ** operator actually is. The next block of code depends on the fact 2196 ** that the 6 comparison operators are consecutive integers in this 2197 ** order: NE, EQ, GT, LE, LT, GE */ 2198 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 2199 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 2200 if( res<0 ){ 2201 res2 = sqlite3aLTb[pOp->opcode]; 2202 }else if( res==0 ){ 2203 res2 = sqlite3aEQb[pOp->opcode]; 2204 }else{ 2205 res2 = sqlite3aGTb[pOp->opcode]; 2206 } 2207 iCompare = res; 2208 2209 /* Undo any changes made by applyAffinity() to the input registers. */ 2210 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 2211 pIn3->flags = flags3; 2212 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 2213 pIn1->flags = flags1; 2214 2215 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 2216 if( res2 ){ 2217 goto jump_to_p2; 2218 } 2219 break; 2220 } 2221 2222 /* Opcode: ElseEq * P2 * * * 2223 ** 2224 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 2225 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 2226 ** opcodes are allowed to occur between this instruction and the previous 2227 ** OP_Lt or OP_Gt. 2228 ** 2229 ** If result of an OP_Eq comparison on the same two operands as the 2230 ** prior OP_Lt or OP_Gt would have been true, then jump to P2. 2231 ** If the result of an OP_Eq comparison on the two previous 2232 ** operands would have been false or NULL, then fall through. 2233 */ 2234 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 2235 2236 #ifdef SQLITE_DEBUG 2237 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 2238 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 2239 int iAddr; 2240 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 2241 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 2242 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 2243 break; 2244 } 2245 #endif /* SQLITE_DEBUG */ 2246 VdbeBranchTaken(iCompare==0, 2); 2247 if( iCompare==0 ) goto jump_to_p2; 2248 break; 2249 } 2250 2251 2252 /* Opcode: Permutation * * * P4 * 2253 ** 2254 ** Set the permutation used by the OP_Compare operator in the next 2255 ** instruction. The permutation is stored in the P4 operand. 2256 ** 2257 ** The permutation is only valid until the next OP_Compare that has 2258 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 2259 ** occur immediately prior to the OP_Compare. 2260 ** 2261 ** The first integer in the P4 integer array is the length of the array 2262 ** and does not become part of the permutation. 2263 */ 2264 case OP_Permutation: { 2265 assert( pOp->p4type==P4_INTARRAY ); 2266 assert( pOp->p4.ai ); 2267 assert( pOp[1].opcode==OP_Compare ); 2268 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 2269 break; 2270 } 2271 2272 /* Opcode: Compare P1 P2 P3 P4 P5 2273 ** Synopsis: r[P1@P3] <-> r[P2@P3] 2274 ** 2275 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 2276 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 2277 ** the comparison for use by the next OP_Jump instruct. 2278 ** 2279 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 2280 ** determined by the most recent OP_Permutation operator. If the 2281 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 2282 ** order. 2283 ** 2284 ** P4 is a KeyInfo structure that defines collating sequences and sort 2285 ** orders for the comparison. The permutation applies to registers 2286 ** only. The KeyInfo elements are used sequentially. 2287 ** 2288 ** The comparison is a sort comparison, so NULLs compare equal, 2289 ** NULLs are less than numbers, numbers are less than strings, 2290 ** and strings are less than blobs. 2291 */ 2292 case OP_Compare: { 2293 int n; 2294 int i; 2295 int p1; 2296 int p2; 2297 const KeyInfo *pKeyInfo; 2298 u32 idx; 2299 CollSeq *pColl; /* Collating sequence to use on this term */ 2300 int bRev; /* True for DESCENDING sort order */ 2301 u32 *aPermute; /* The permutation */ 2302 2303 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 2304 aPermute = 0; 2305 }else{ 2306 assert( pOp>aOp ); 2307 assert( pOp[-1].opcode==OP_Permutation ); 2308 assert( pOp[-1].p4type==P4_INTARRAY ); 2309 aPermute = pOp[-1].p4.ai + 1; 2310 assert( aPermute!=0 ); 2311 } 2312 n = pOp->p3; 2313 pKeyInfo = pOp->p4.pKeyInfo; 2314 assert( n>0 ); 2315 assert( pKeyInfo!=0 ); 2316 p1 = pOp->p1; 2317 p2 = pOp->p2; 2318 #ifdef SQLITE_DEBUG 2319 if( aPermute ){ 2320 int k, mx = 0; 2321 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 2322 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 2323 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 2324 }else{ 2325 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 2326 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 2327 } 2328 #endif /* SQLITE_DEBUG */ 2329 for(i=0; i<n; i++){ 2330 idx = aPermute ? aPermute[i] : (u32)i; 2331 assert( memIsValid(&aMem[p1+idx]) ); 2332 assert( memIsValid(&aMem[p2+idx]) ); 2333 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 2334 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 2335 assert( i<pKeyInfo->nKeyField ); 2336 pColl = pKeyInfo->aColl[i]; 2337 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 2338 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 2339 if( iCompare ){ 2340 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 2341 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 2342 ){ 2343 iCompare = -iCompare; 2344 } 2345 if( bRev ) iCompare = -iCompare; 2346 break; 2347 } 2348 } 2349 break; 2350 } 2351 2352 /* Opcode: Jump P1 P2 P3 * * 2353 ** 2354 ** Jump to the instruction at address P1, P2, or P3 depending on whether 2355 ** in the most recent OP_Compare instruction the P1 vector was less than 2356 ** equal to, or greater than the P2 vector, respectively. 2357 */ 2358 case OP_Jump: { /* jump */ 2359 if( iCompare<0 ){ 2360 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 2361 }else if( iCompare==0 ){ 2362 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 2363 }else{ 2364 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 2365 } 2366 break; 2367 } 2368 2369 /* Opcode: And P1 P2 P3 * * 2370 ** Synopsis: r[P3]=(r[P1] && r[P2]) 2371 ** 2372 ** Take the logical AND of the values in registers P1 and P2 and 2373 ** write the result into register P3. 2374 ** 2375 ** If either P1 or P2 is 0 (false) then the result is 0 even if 2376 ** the other input is NULL. A NULL and true or two NULLs give 2377 ** a NULL output. 2378 */ 2379 /* Opcode: Or P1 P2 P3 * * 2380 ** Synopsis: r[P3]=(r[P1] || r[P2]) 2381 ** 2382 ** Take the logical OR of the values in register P1 and P2 and 2383 ** store the answer in register P3. 2384 ** 2385 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 2386 ** even if the other input is NULL. A NULL and false or two NULLs 2387 ** give a NULL output. 2388 */ 2389 case OP_And: /* same as TK_AND, in1, in2, out3 */ 2390 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 2391 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2392 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 2393 2394 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 2395 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 2396 if( pOp->opcode==OP_And ){ 2397 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 2398 v1 = and_logic[v1*3+v2]; 2399 }else{ 2400 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 2401 v1 = or_logic[v1*3+v2]; 2402 } 2403 pOut = &aMem[pOp->p3]; 2404 if( v1==2 ){ 2405 MemSetTypeFlag(pOut, MEM_Null); 2406 }else{ 2407 pOut->u.i = v1; 2408 MemSetTypeFlag(pOut, MEM_Int); 2409 } 2410 break; 2411 } 2412 2413 /* Opcode: IsTrue P1 P2 P3 P4 * 2414 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 2415 ** 2416 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 2417 ** IS NOT FALSE operators. 2418 ** 2419 ** Interpret the value in register P1 as a boolean value. Store that 2420 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 2421 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 2422 ** is 1. 2423 ** 2424 ** The logic is summarized like this: 2425 ** 2426 ** <ul> 2427 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 2428 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 2429 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 2430 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 2431 ** </ul> 2432 */ 2433 case OP_IsTrue: { /* in1, out2 */ 2434 assert( pOp->p4type==P4_INT32 ); 2435 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 2436 assert( pOp->p3==0 || pOp->p3==1 ); 2437 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 2438 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 2439 break; 2440 } 2441 2442 /* Opcode: Not P1 P2 * * * 2443 ** Synopsis: r[P2]= !r[P1] 2444 ** 2445 ** Interpret the value in register P1 as a boolean value. Store the 2446 ** boolean complement in register P2. If the value in register P1 is 2447 ** NULL, then a NULL is stored in P2. 2448 */ 2449 case OP_Not: { /* same as TK_NOT, in1, out2 */ 2450 pIn1 = &aMem[pOp->p1]; 2451 pOut = &aMem[pOp->p2]; 2452 if( (pIn1->flags & MEM_Null)==0 ){ 2453 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 2454 }else{ 2455 sqlite3VdbeMemSetNull(pOut); 2456 } 2457 break; 2458 } 2459 2460 /* Opcode: BitNot P1 P2 * * * 2461 ** Synopsis: r[P2]= ~r[P1] 2462 ** 2463 ** Interpret the content of register P1 as an integer. Store the 2464 ** ones-complement of the P1 value into register P2. If P1 holds 2465 ** a NULL then store a NULL in P2. 2466 */ 2467 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 2468 pIn1 = &aMem[pOp->p1]; 2469 pOut = &aMem[pOp->p2]; 2470 sqlite3VdbeMemSetNull(pOut); 2471 if( (pIn1->flags & MEM_Null)==0 ){ 2472 pOut->flags = MEM_Int; 2473 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 2474 } 2475 break; 2476 } 2477 2478 /* Opcode: Once P1 P2 * * * 2479 ** 2480 ** Fall through to the next instruction the first time this opcode is 2481 ** encountered on each invocation of the byte-code program. Jump to P2 2482 ** on the second and all subsequent encounters during the same invocation. 2483 ** 2484 ** Top-level programs determine first invocation by comparing the P1 2485 ** operand against the P1 operand on the OP_Init opcode at the beginning 2486 ** of the program. If the P1 values differ, then fall through and make 2487 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 2488 ** the same then take the jump. 2489 ** 2490 ** For subprograms, there is a bitmask in the VdbeFrame that determines 2491 ** whether or not the jump should be taken. The bitmask is necessary 2492 ** because the self-altering code trick does not work for recursive 2493 ** triggers. 2494 */ 2495 case OP_Once: { /* jump */ 2496 u32 iAddr; /* Address of this instruction */ 2497 assert( p->aOp[0].opcode==OP_Init ); 2498 if( p->pFrame ){ 2499 iAddr = (int)(pOp - p->aOp); 2500 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 2501 VdbeBranchTaken(1, 2); 2502 goto jump_to_p2; 2503 } 2504 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 2505 }else{ 2506 if( p->aOp[0].p1==pOp->p1 ){ 2507 VdbeBranchTaken(1, 2); 2508 goto jump_to_p2; 2509 } 2510 } 2511 VdbeBranchTaken(0, 2); 2512 pOp->p1 = p->aOp[0].p1; 2513 break; 2514 } 2515 2516 /* Opcode: If P1 P2 P3 * * 2517 ** 2518 ** Jump to P2 if the value in register P1 is true. The value 2519 ** is considered true if it is numeric and non-zero. If the value 2520 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2521 */ 2522 case OP_If: { /* jump, in1 */ 2523 int c; 2524 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 2525 VdbeBranchTaken(c!=0, 2); 2526 if( c ) goto jump_to_p2; 2527 break; 2528 } 2529 2530 /* Opcode: IfNot P1 P2 P3 * * 2531 ** 2532 ** Jump to P2 if the value in register P1 is False. The value 2533 ** is considered false if it has a numeric value of zero. If the value 2534 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 2535 */ 2536 case OP_IfNot: { /* jump, in1 */ 2537 int c; 2538 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 2539 VdbeBranchTaken(c!=0, 2); 2540 if( c ) goto jump_to_p2; 2541 break; 2542 } 2543 2544 /* Opcode: IsNull P1 P2 * * * 2545 ** Synopsis: if r[P1]==NULL goto P2 2546 ** 2547 ** Jump to P2 if the value in register P1 is NULL. 2548 */ 2549 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2550 pIn1 = &aMem[pOp->p1]; 2551 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 2552 if( (pIn1->flags & MEM_Null)!=0 ){ 2553 goto jump_to_p2; 2554 } 2555 break; 2556 } 2557 2558 /* Opcode: IsNullOrType P1 P2 P3 * * 2559 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2 2560 ** 2561 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3. 2562 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT, 2563 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT. 2564 */ 2565 case OP_IsNullOrType: { /* jump, in1 */ 2566 int doTheJump; 2567 pIn1 = &aMem[pOp->p1]; 2568 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3; 2569 VdbeBranchTaken( doTheJump, 2); 2570 if( doTheJump ) goto jump_to_p2; 2571 break; 2572 } 2573 2574 /* Opcode: ZeroOrNull P1 P2 P3 * * 2575 ** Synopsis: r[P2] = 0 OR NULL 2576 ** 2577 ** If all both registers P1 and P3 are NOT NULL, then store a zero in 2578 ** register P2. If either registers P1 or P3 are NULL then put 2579 ** a NULL in register P2. 2580 */ 2581 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 2582 if( (aMem[pOp->p1].flags & MEM_Null)!=0 2583 || (aMem[pOp->p3].flags & MEM_Null)!=0 2584 ){ 2585 sqlite3VdbeMemSetNull(aMem + pOp->p2); 2586 }else{ 2587 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 2588 } 2589 break; 2590 } 2591 2592 /* Opcode: NotNull P1 P2 * * * 2593 ** Synopsis: if r[P1]!=NULL goto P2 2594 ** 2595 ** Jump to P2 if the value in register P1 is not NULL. 2596 */ 2597 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2598 pIn1 = &aMem[pOp->p1]; 2599 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 2600 if( (pIn1->flags & MEM_Null)==0 ){ 2601 goto jump_to_p2; 2602 } 2603 break; 2604 } 2605 2606 /* Opcode: IfNullRow P1 P2 P3 * * 2607 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 2608 ** 2609 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 2610 ** If it is, then set register P3 to NULL and jump immediately to P2. 2611 ** If P1 is not on a NULL row, then fall through without making any 2612 ** changes. 2613 */ 2614 case OP_IfNullRow: { /* jump */ 2615 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2616 assert( p->apCsr[pOp->p1]!=0 ); 2617 if( p->apCsr[pOp->p1]->nullRow ){ 2618 sqlite3VdbeMemSetNull(aMem + pOp->p3); 2619 goto jump_to_p2; 2620 } 2621 break; 2622 } 2623 2624 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 2625 /* Opcode: Offset P1 P2 P3 * * 2626 ** Synopsis: r[P3] = sqlite_offset(P1) 2627 ** 2628 ** Store in register r[P3] the byte offset into the database file that is the 2629 ** start of the payload for the record at which that cursor P1 is currently 2630 ** pointing. 2631 ** 2632 ** P2 is the column number for the argument to the sqlite_offset() function. 2633 ** This opcode does not use P2 itself, but the P2 value is used by the 2634 ** code generator. The P1, P2, and P3 operands to this opcode are the 2635 ** same as for OP_Column. 2636 ** 2637 ** This opcode is only available if SQLite is compiled with the 2638 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 2639 */ 2640 case OP_Offset: { /* out3 */ 2641 VdbeCursor *pC; /* The VDBE cursor */ 2642 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2643 pC = p->apCsr[pOp->p1]; 2644 pOut = &p->aMem[pOp->p3]; 2645 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 2646 sqlite3VdbeMemSetNull(pOut); 2647 }else{ 2648 if( pC->deferredMoveto ){ 2649 rc = sqlite3VdbeFinishMoveto(pC); 2650 if( rc ) goto abort_due_to_error; 2651 } 2652 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 2653 sqlite3VdbeMemSetNull(pOut); 2654 }else{ 2655 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 2656 } 2657 } 2658 break; 2659 } 2660 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 2661 2662 /* Opcode: Column P1 P2 P3 P4 P5 2663 ** Synopsis: r[P3]=PX 2664 ** 2665 ** Interpret the data that cursor P1 points to as a structure built using 2666 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2667 ** information about the format of the data.) Extract the P2-th column 2668 ** from this record. If there are less that (P2+1) 2669 ** values in the record, extract a NULL. 2670 ** 2671 ** The value extracted is stored in register P3. 2672 ** 2673 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 2674 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2675 ** the result. 2676 ** 2677 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then 2678 ** the result is guaranteed to only be used as the argument of a length() 2679 ** or typeof() function, respectively. The loading of large blobs can be 2680 ** skipped for length() and all content loading can be skipped for typeof(). 2681 */ 2682 case OP_Column: { 2683 u32 p2; /* column number to retrieve */ 2684 VdbeCursor *pC; /* The VDBE cursor */ 2685 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 2686 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2687 int len; /* The length of the serialized data for the column */ 2688 int i; /* Loop counter */ 2689 Mem *pDest; /* Where to write the extracted value */ 2690 Mem sMem; /* For storing the record being decoded */ 2691 const u8 *zData; /* Part of the record being decoded */ 2692 const u8 *zHdr; /* Next unparsed byte of the header */ 2693 const u8 *zEndHdr; /* Pointer to first byte after the header */ 2694 u64 offset64; /* 64-bit offset */ 2695 u32 t; /* A type code from the record header */ 2696 Mem *pReg; /* PseudoTable input register */ 2697 2698 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 2699 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 2700 pC = p->apCsr[pOp->p1]; 2701 p2 = (u32)pOp->p2; 2702 2703 op_column_restart: 2704 assert( pC!=0 ); 2705 assert( p2<(u32)pC->nField ); 2706 aOffset = pC->aOffset; 2707 assert( aOffset==pC->aType+pC->nField ); 2708 assert( pC->eCurType!=CURTYPE_VTAB ); 2709 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 2710 assert( pC->eCurType!=CURTYPE_SORTER ); 2711 2712 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 2713 if( pC->nullRow ){ 2714 if( pC->eCurType==CURTYPE_PSEUDO ){ 2715 /* For the special case of as pseudo-cursor, the seekResult field 2716 ** identifies the register that holds the record */ 2717 assert( pC->seekResult>0 ); 2718 pReg = &aMem[pC->seekResult]; 2719 assert( pReg->flags & MEM_Blob ); 2720 assert( memIsValid(pReg) ); 2721 pC->payloadSize = pC->szRow = pReg->n; 2722 pC->aRow = (u8*)pReg->z; 2723 }else{ 2724 pDest = &aMem[pOp->p3]; 2725 memAboutToChange(p, pDest); 2726 sqlite3VdbeMemSetNull(pDest); 2727 goto op_column_out; 2728 } 2729 }else{ 2730 pCrsr = pC->uc.pCursor; 2731 if( pC->deferredMoveto ){ 2732 u32 iMap; 2733 assert( !pC->isEphemeral ); 2734 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 2735 pC = pC->pAltCursor; 2736 p2 = iMap - 1; 2737 goto op_column_restart; 2738 } 2739 rc = sqlite3VdbeFinishMoveto(pC); 2740 if( rc ) goto abort_due_to_error; 2741 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 2742 rc = sqlite3VdbeHandleMovedCursor(pC); 2743 if( rc ) goto abort_due_to_error; 2744 goto op_column_restart; 2745 } 2746 assert( pC->eCurType==CURTYPE_BTREE ); 2747 assert( pCrsr ); 2748 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2749 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 2750 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 2751 assert( pC->szRow<=pC->payloadSize ); 2752 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 2753 } 2754 pC->cacheStatus = p->cacheCtr; 2755 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]); 2756 pC->nHdrParsed = 0; 2757 2758 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 2759 /* pC->aRow does not have to hold the entire row, but it does at least 2760 ** need to cover the header of the record. If pC->aRow does not contain 2761 ** the complete header, then set it to zero, forcing the header to be 2762 ** dynamically allocated. */ 2763 pC->aRow = 0; 2764 pC->szRow = 0; 2765 2766 /* Make sure a corrupt database has not given us an oversize header. 2767 ** Do this now to avoid an oversize memory allocation. 2768 ** 2769 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2770 ** types use so much data space that there can only be 4096 and 32 of 2771 ** them, respectively. So the maximum header length results from a 2772 ** 3-byte type for each of the maximum of 32768 columns plus three 2773 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2774 */ 2775 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 2776 goto op_column_corrupt; 2777 } 2778 }else{ 2779 /* This is an optimization. By skipping over the first few tests 2780 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 2781 ** measurable performance gain. 2782 ** 2783 ** This branch is taken even if aOffset[0]==0. Such a record is never 2784 ** generated by SQLite, and could be considered corruption, but we 2785 ** accept it for historical reasons. When aOffset[0]==0, the code this 2786 ** branch jumps to reads past the end of the record, but never more 2787 ** than a few bytes. Even if the record occurs at the end of the page 2788 ** content area, the "page header" comes after the page content and so 2789 ** this overread is harmless. Similar overreads can occur for a corrupt 2790 ** database file. 2791 */ 2792 zData = pC->aRow; 2793 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 2794 testcase( aOffset[0]==0 ); 2795 goto op_column_read_header; 2796 } 2797 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 2798 rc = sqlite3VdbeHandleMovedCursor(pC); 2799 if( rc ) goto abort_due_to_error; 2800 goto op_column_restart; 2801 } 2802 2803 /* Make sure at least the first p2+1 entries of the header have been 2804 ** parsed and valid information is in aOffset[] and pC->aType[]. 2805 */ 2806 if( pC->nHdrParsed<=p2 ){ 2807 /* If there is more header available for parsing in the record, try 2808 ** to extract additional fields up through the p2+1-th field 2809 */ 2810 if( pC->iHdrOffset<aOffset[0] ){ 2811 /* Make sure zData points to enough of the record to cover the header. */ 2812 if( pC->aRow==0 ){ 2813 memset(&sMem, 0, sizeof(sMem)); 2814 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 2815 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2816 zData = (u8*)sMem.z; 2817 }else{ 2818 zData = pC->aRow; 2819 } 2820 2821 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 2822 op_column_read_header: 2823 i = pC->nHdrParsed; 2824 offset64 = aOffset[i]; 2825 zHdr = zData + pC->iHdrOffset; 2826 zEndHdr = zData + aOffset[0]; 2827 testcase( zHdr>=zEndHdr ); 2828 do{ 2829 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 2830 zHdr++; 2831 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 2832 }else{ 2833 zHdr += sqlite3GetVarint32(zHdr, &t); 2834 pC->aType[i] = t; 2835 offset64 += sqlite3VdbeSerialTypeLen(t); 2836 } 2837 aOffset[++i] = (u32)(offset64 & 0xffffffff); 2838 }while( (u32)i<=p2 && zHdr<zEndHdr ); 2839 2840 /* The record is corrupt if any of the following are true: 2841 ** (1) the bytes of the header extend past the declared header size 2842 ** (2) the entire header was used but not all data was used 2843 ** (3) the end of the data extends beyond the end of the record. 2844 */ 2845 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 2846 || (offset64 > pC->payloadSize) 2847 ){ 2848 if( aOffset[0]==0 ){ 2849 i = 0; 2850 zHdr = zEndHdr; 2851 }else{ 2852 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2853 goto op_column_corrupt; 2854 } 2855 } 2856 2857 pC->nHdrParsed = i; 2858 pC->iHdrOffset = (u32)(zHdr - zData); 2859 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 2860 }else{ 2861 t = 0; 2862 } 2863 2864 /* If after trying to extract new entries from the header, nHdrParsed is 2865 ** still not up to p2, that means that the record has fewer than p2 2866 ** columns. So the result will be either the default value or a NULL. 2867 */ 2868 if( pC->nHdrParsed<=p2 ){ 2869 pDest = &aMem[pOp->p3]; 2870 memAboutToChange(p, pDest); 2871 if( pOp->p4type==P4_MEM ){ 2872 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2873 }else{ 2874 sqlite3VdbeMemSetNull(pDest); 2875 } 2876 goto op_column_out; 2877 } 2878 }else{ 2879 t = pC->aType[p2]; 2880 } 2881 2882 /* Extract the content for the p2+1-th column. Control can only 2883 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 2884 ** all valid. 2885 */ 2886 assert( p2<pC->nHdrParsed ); 2887 assert( rc==SQLITE_OK ); 2888 pDest = &aMem[pOp->p3]; 2889 memAboutToChange(p, pDest); 2890 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 2891 if( VdbeMemDynamic(pDest) ){ 2892 sqlite3VdbeMemSetNull(pDest); 2893 } 2894 assert( t==pC->aType[p2] ); 2895 if( pC->szRow>=aOffset[p2+1] ){ 2896 /* This is the common case where the desired content fits on the original 2897 ** page - where the content is not on an overflow page */ 2898 zData = pC->aRow + aOffset[p2]; 2899 if( t<12 ){ 2900 sqlite3VdbeSerialGet(zData, t, pDest); 2901 }else{ 2902 /* If the column value is a string, we need a persistent value, not 2903 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 2904 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 2905 */ 2906 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 2907 pDest->n = len = (t-12)/2; 2908 pDest->enc = encoding; 2909 if( pDest->szMalloc < len+2 ){ 2910 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2911 pDest->flags = MEM_Null; 2912 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 2913 }else{ 2914 pDest->z = pDest->zMalloc; 2915 } 2916 memcpy(pDest->z, zData, len); 2917 pDest->z[len] = 0; 2918 pDest->z[len+1] = 0; 2919 pDest->flags = aFlag[t&1]; 2920 } 2921 }else{ 2922 pDest->enc = encoding; 2923 /* This branch happens only when content is on overflow pages */ 2924 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 2925 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) 2926 || (len = sqlite3VdbeSerialTypeLen(t))==0 2927 ){ 2928 /* Content is irrelevant for 2929 ** 1. the typeof() function, 2930 ** 2. the length(X) function if X is a blob, and 2931 ** 3. if the content length is zero. 2932 ** So we might as well use bogus content rather than reading 2933 ** content from disk. 2934 ** 2935 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 2936 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 2937 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 2938 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 2939 ** and it begins with a bunch of zeros. 2940 */ 2941 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 2942 }else{ 2943 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 2944 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); 2945 if( rc!=SQLITE_OK ) goto abort_due_to_error; 2946 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 2947 pDest->flags &= ~MEM_Ephem; 2948 } 2949 } 2950 2951 op_column_out: 2952 UPDATE_MAX_BLOBSIZE(pDest); 2953 REGISTER_TRACE(pOp->p3, pDest); 2954 break; 2955 2956 op_column_corrupt: 2957 if( aOp[0].p3>0 ){ 2958 pOp = &aOp[aOp[0].p3-1]; 2959 break; 2960 }else{ 2961 rc = SQLITE_CORRUPT_BKPT; 2962 goto abort_due_to_error; 2963 } 2964 } 2965 2966 /* Opcode: TypeCheck P1 P2 P3 P4 * 2967 ** Synopsis: typecheck(r[P1@P2]) 2968 ** 2969 ** Apply affinities to the range of P2 registers beginning with P1. 2970 ** Take the affinities from the Table object in P4. If any value 2971 ** cannot be coerced into the correct type, then raise an error. 2972 ** 2973 ** This opcode is similar to OP_Affinity except that this opcode 2974 ** forces the register type to the Table column type. This is used 2975 ** to implement "strict affinity". 2976 ** 2977 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 2978 ** is zero. When P3 is non-zero, no type checking occurs for 2979 ** static generated columns. Virtual columns are computed at query time 2980 ** and so they are never checked. 2981 ** 2982 ** Preconditions: 2983 ** 2984 ** <ul> 2985 ** <li> P2 should be the number of non-virtual columns in the 2986 ** table of P4. 2987 ** <li> Table P4 should be a STRICT table. 2988 ** </ul> 2989 ** 2990 ** If any precondition is false, an assertion fault occurs. 2991 */ 2992 case OP_TypeCheck: { 2993 Table *pTab; 2994 Column *aCol; 2995 int i; 2996 2997 assert( pOp->p4type==P4_TABLE ); 2998 pTab = pOp->p4.pTab; 2999 assert( pTab->tabFlags & TF_Strict ); 3000 assert( pTab->nNVCol==pOp->p2 ); 3001 aCol = pTab->aCol; 3002 pIn1 = &aMem[pOp->p1]; 3003 for(i=0; i<pTab->nCol; i++){ 3004 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 3005 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 3006 if( pOp->p3 ){ pIn1++; continue; } 3007 } 3008 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 3009 applyAffinity(pIn1, aCol[i].affinity, encoding); 3010 if( (pIn1->flags & MEM_Null)==0 ){ 3011 switch( aCol[i].eCType ){ 3012 case COLTYPE_BLOB: { 3013 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 3014 break; 3015 } 3016 case COLTYPE_INTEGER: 3017 case COLTYPE_INT: { 3018 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 3019 break; 3020 } 3021 case COLTYPE_TEXT: { 3022 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 3023 break; 3024 } 3025 case COLTYPE_REAL: { 3026 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 3027 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal ); 3028 if( pIn1->flags & MEM_Int ){ 3029 /* When applying REAL affinity, if the result is still an MEM_Int 3030 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3031 ** so that we keep the high-resolution integer value but know that 3032 ** the type really wants to be REAL. */ 3033 testcase( pIn1->u.i==140737488355328LL ); 3034 testcase( pIn1->u.i==140737488355327LL ); 3035 testcase( pIn1->u.i==-140737488355328LL ); 3036 testcase( pIn1->u.i==-140737488355329LL ); 3037 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 3038 pIn1->flags |= MEM_IntReal; 3039 pIn1->flags &= ~MEM_Int; 3040 }else{ 3041 pIn1->u.r = (double)pIn1->u.i; 3042 pIn1->flags |= MEM_Real; 3043 pIn1->flags &= ~MEM_Int; 3044 } 3045 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 3046 goto vdbe_type_error; 3047 } 3048 break; 3049 } 3050 default: { 3051 /* COLTYPE_ANY. Accept anything. */ 3052 break; 3053 } 3054 } 3055 } 3056 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3057 pIn1++; 3058 } 3059 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 3060 break; 3061 3062 vdbe_type_error: 3063 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 3064 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 3065 pTab->zName, aCol[i].zCnName); 3066 rc = SQLITE_CONSTRAINT_DATATYPE; 3067 goto abort_due_to_error; 3068 } 3069 3070 /* Opcode: Affinity P1 P2 * P4 * 3071 ** Synopsis: affinity(r[P1@P2]) 3072 ** 3073 ** Apply affinities to a range of P2 registers starting with P1. 3074 ** 3075 ** P4 is a string that is P2 characters long. The N-th character of the 3076 ** string indicates the column affinity that should be used for the N-th 3077 ** memory cell in the range. 3078 */ 3079 case OP_Affinity: { 3080 const char *zAffinity; /* The affinity to be applied */ 3081 3082 zAffinity = pOp->p4.z; 3083 assert( zAffinity!=0 ); 3084 assert( pOp->p2>0 ); 3085 assert( zAffinity[pOp->p2]==0 ); 3086 pIn1 = &aMem[pOp->p1]; 3087 while( 1 /*exit-by-break*/ ){ 3088 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 3089 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 3090 applyAffinity(pIn1, zAffinity[0], encoding); 3091 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 3092 /* When applying REAL affinity, if the result is still an MEM_Int 3093 ** that will fit in 6 bytes, then change the type to MEM_IntReal 3094 ** so that we keep the high-resolution integer value but know that 3095 ** the type really wants to be REAL. */ 3096 testcase( pIn1->u.i==140737488355328LL ); 3097 testcase( pIn1->u.i==140737488355327LL ); 3098 testcase( pIn1->u.i==-140737488355328LL ); 3099 testcase( pIn1->u.i==-140737488355329LL ); 3100 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 3101 pIn1->flags |= MEM_IntReal; 3102 pIn1->flags &= ~MEM_Int; 3103 }else{ 3104 pIn1->u.r = (double)pIn1->u.i; 3105 pIn1->flags |= MEM_Real; 3106 pIn1->flags &= ~MEM_Int; 3107 } 3108 } 3109 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 3110 zAffinity++; 3111 if( zAffinity[0]==0 ) break; 3112 pIn1++; 3113 } 3114 break; 3115 } 3116 3117 /* Opcode: MakeRecord P1 P2 P3 P4 * 3118 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 3119 ** 3120 ** Convert P2 registers beginning with P1 into the [record format] 3121 ** use as a data record in a database table or as a key 3122 ** in an index. The OP_Column opcode can decode the record later. 3123 ** 3124 ** P4 may be a string that is P2 characters long. The N-th character of the 3125 ** string indicates the column affinity that should be used for the N-th 3126 ** field of the index key. 3127 ** 3128 ** The mapping from character to affinity is given by the SQLITE_AFF_ 3129 ** macros defined in sqliteInt.h. 3130 ** 3131 ** If P4 is NULL then all index fields have the affinity BLOB. 3132 ** 3133 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 3134 ** compile-time option is enabled: 3135 ** 3136 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 3137 ** of the right-most table that can be null-trimmed. 3138 ** 3139 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 3140 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 3141 ** accept no-change records with serial_type 10. This value is 3142 ** only used inside an assert() and does not affect the end result. 3143 */ 3144 case OP_MakeRecord: { 3145 Mem *pRec; /* The new record */ 3146 u64 nData; /* Number of bytes of data space */ 3147 int nHdr; /* Number of bytes of header space */ 3148 i64 nByte; /* Data space required for this record */ 3149 i64 nZero; /* Number of zero bytes at the end of the record */ 3150 int nVarint; /* Number of bytes in a varint */ 3151 u32 serial_type; /* Type field */ 3152 Mem *pData0; /* First field to be combined into the record */ 3153 Mem *pLast; /* Last field of the record */ 3154 int nField; /* Number of fields in the record */ 3155 char *zAffinity; /* The affinity string for the record */ 3156 u32 len; /* Length of a field */ 3157 u8 *zHdr; /* Where to write next byte of the header */ 3158 u8 *zPayload; /* Where to write next byte of the payload */ 3159 3160 /* Assuming the record contains N fields, the record format looks 3161 ** like this: 3162 ** 3163 ** ------------------------------------------------------------------------ 3164 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 3165 ** ------------------------------------------------------------------------ 3166 ** 3167 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 3168 ** and so forth. 3169 ** 3170 ** Each type field is a varint representing the serial type of the 3171 ** corresponding data element (see sqlite3VdbeSerialType()). The 3172 ** hdr-size field is also a varint which is the offset from the beginning 3173 ** of the record to data0. 3174 */ 3175 nData = 0; /* Number of bytes of data space */ 3176 nHdr = 0; /* Number of bytes of header space */ 3177 nZero = 0; /* Number of zero bytes at the end of the record */ 3178 nField = pOp->p1; 3179 zAffinity = pOp->p4.z; 3180 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 3181 pData0 = &aMem[nField]; 3182 nField = pOp->p2; 3183 pLast = &pData0[nField-1]; 3184 3185 /* Identify the output register */ 3186 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 3187 pOut = &aMem[pOp->p3]; 3188 memAboutToChange(p, pOut); 3189 3190 /* Apply the requested affinity to all inputs 3191 */ 3192 assert( pData0<=pLast ); 3193 if( zAffinity ){ 3194 pRec = pData0; 3195 do{ 3196 applyAffinity(pRec, zAffinity[0], encoding); 3197 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 3198 pRec->flags |= MEM_IntReal; 3199 pRec->flags &= ~(MEM_Int); 3200 } 3201 REGISTER_TRACE((int)(pRec-aMem), pRec); 3202 zAffinity++; 3203 pRec++; 3204 assert( zAffinity[0]==0 || pRec<=pLast ); 3205 }while( zAffinity[0] ); 3206 } 3207 3208 #ifdef SQLITE_ENABLE_NULL_TRIM 3209 /* NULLs can be safely trimmed from the end of the record, as long as 3210 ** as the schema format is 2 or more and none of the omitted columns 3211 ** have a non-NULL default value. Also, the record must be left with 3212 ** at least one field. If P5>0 then it will be one more than the 3213 ** index of the right-most column with a non-NULL default value */ 3214 if( pOp->p5 ){ 3215 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 3216 pLast--; 3217 nField--; 3218 } 3219 } 3220 #endif 3221 3222 /* Loop through the elements that will make up the record to figure 3223 ** out how much space is required for the new record. After this loop, 3224 ** the Mem.uTemp field of each term should hold the serial-type that will 3225 ** be used for that term in the generated record: 3226 ** 3227 ** Mem.uTemp value type 3228 ** --------------- --------------- 3229 ** 0 NULL 3230 ** 1 1-byte signed integer 3231 ** 2 2-byte signed integer 3232 ** 3 3-byte signed integer 3233 ** 4 4-byte signed integer 3234 ** 5 6-byte signed integer 3235 ** 6 8-byte signed integer 3236 ** 7 IEEE float 3237 ** 8 Integer constant 0 3238 ** 9 Integer constant 1 3239 ** 10,11 reserved for expansion 3240 ** N>=12 and even BLOB 3241 ** N>=13 and odd text 3242 ** 3243 ** The following additional values are computed: 3244 ** nHdr Number of bytes needed for the record header 3245 ** nData Number of bytes of data space needed for the record 3246 ** nZero Zero bytes at the end of the record 3247 */ 3248 pRec = pLast; 3249 do{ 3250 assert( memIsValid(pRec) ); 3251 if( pRec->flags & MEM_Null ){ 3252 if( pRec->flags & MEM_Zero ){ 3253 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 3254 ** table methods that never invoke sqlite3_result_xxxxx() while 3255 ** computing an unchanging column value in an UPDATE statement. 3256 ** Give such values a special internal-use-only serial-type of 10 3257 ** so that they can be passed through to xUpdate and have 3258 ** a true sqlite3_value_nochange(). */ 3259 #ifndef SQLITE_ENABLE_NULL_TRIM 3260 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 3261 #endif 3262 pRec->uTemp = 10; 3263 }else{ 3264 pRec->uTemp = 0; 3265 } 3266 nHdr++; 3267 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 3268 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 3269 i64 i = pRec->u.i; 3270 u64 uu; 3271 testcase( pRec->flags & MEM_Int ); 3272 testcase( pRec->flags & MEM_IntReal ); 3273 if( i<0 ){ 3274 uu = ~i; 3275 }else{ 3276 uu = i; 3277 } 3278 nHdr++; 3279 testcase( uu==127 ); testcase( uu==128 ); 3280 testcase( uu==32767 ); testcase( uu==32768 ); 3281 testcase( uu==8388607 ); testcase( uu==8388608 ); 3282 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 3283 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 3284 if( uu<=127 ){ 3285 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 3286 pRec->uTemp = 8+(u32)uu; 3287 }else{ 3288 nData++; 3289 pRec->uTemp = 1; 3290 } 3291 }else if( uu<=32767 ){ 3292 nData += 2; 3293 pRec->uTemp = 2; 3294 }else if( uu<=8388607 ){ 3295 nData += 3; 3296 pRec->uTemp = 3; 3297 }else if( uu<=2147483647 ){ 3298 nData += 4; 3299 pRec->uTemp = 4; 3300 }else if( uu<=140737488355327LL ){ 3301 nData += 6; 3302 pRec->uTemp = 5; 3303 }else{ 3304 nData += 8; 3305 if( pRec->flags & MEM_IntReal ){ 3306 /* If the value is IntReal and is going to take up 8 bytes to store 3307 ** as an integer, then we might as well make it an 8-byte floating 3308 ** point value */ 3309 pRec->u.r = (double)pRec->u.i; 3310 pRec->flags &= ~MEM_IntReal; 3311 pRec->flags |= MEM_Real; 3312 pRec->uTemp = 7; 3313 }else{ 3314 pRec->uTemp = 6; 3315 } 3316 } 3317 }else if( pRec->flags & MEM_Real ){ 3318 nHdr++; 3319 nData += 8; 3320 pRec->uTemp = 7; 3321 }else{ 3322 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 3323 assert( pRec->n>=0 ); 3324 len = (u32)pRec->n; 3325 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 3326 if( pRec->flags & MEM_Zero ){ 3327 serial_type += pRec->u.nZero*2; 3328 if( nData ){ 3329 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 3330 len += pRec->u.nZero; 3331 }else{ 3332 nZero += pRec->u.nZero; 3333 } 3334 } 3335 nData += len; 3336 nHdr += sqlite3VarintLen(serial_type); 3337 pRec->uTemp = serial_type; 3338 } 3339 if( pRec==pData0 ) break; 3340 pRec--; 3341 }while(1); 3342 3343 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 3344 ** which determines the total number of bytes in the header. The varint 3345 ** value is the size of the header in bytes including the size varint 3346 ** itself. */ 3347 testcase( nHdr==126 ); 3348 testcase( nHdr==127 ); 3349 if( nHdr<=126 ){ 3350 /* The common case */ 3351 nHdr += 1; 3352 }else{ 3353 /* Rare case of a really large header */ 3354 nVarint = sqlite3VarintLen(nHdr); 3355 nHdr += nVarint; 3356 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 3357 } 3358 nByte = nHdr+nData; 3359 3360 /* Make sure the output register has a buffer large enough to store 3361 ** the new record. The output register (pOp->p3) is not allowed to 3362 ** be one of the input registers (because the following call to 3363 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 3364 */ 3365 if( nByte+nZero<=pOut->szMalloc ){ 3366 /* The output register is already large enough to hold the record. 3367 ** No error checks or buffer enlargement is required */ 3368 pOut->z = pOut->zMalloc; 3369 }else{ 3370 /* Need to make sure that the output is not too big and then enlarge 3371 ** the output register to hold the full result */ 3372 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 3373 goto too_big; 3374 } 3375 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 3376 goto no_mem; 3377 } 3378 } 3379 pOut->n = (int)nByte; 3380 pOut->flags = MEM_Blob; 3381 if( nZero ){ 3382 pOut->u.nZero = nZero; 3383 pOut->flags |= MEM_Zero; 3384 } 3385 UPDATE_MAX_BLOBSIZE(pOut); 3386 zHdr = (u8 *)pOut->z; 3387 zPayload = zHdr + nHdr; 3388 3389 /* Write the record */ 3390 zHdr += putVarint32(zHdr, nHdr); 3391 assert( pData0<=pLast ); 3392 pRec = pData0; 3393 do{ 3394 serial_type = pRec->uTemp; 3395 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 3396 ** additional varints, one per column. */ 3397 zHdr += putVarint32(zHdr, serial_type); /* serial type */ 3398 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record 3399 ** immediately follow the header. */ 3400 zPayload += sqlite3VdbeSerialPut(zPayload, pRec, serial_type); /* content */ 3401 }while( (++pRec)<=pLast ); 3402 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 3403 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 3404 3405 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 3406 REGISTER_TRACE(pOp->p3, pOut); 3407 break; 3408 } 3409 3410 /* Opcode: Count P1 P2 P3 * * 3411 ** Synopsis: r[P2]=count() 3412 ** 3413 ** Store the number of entries (an integer value) in the table or index 3414 ** opened by cursor P1 in register P2. 3415 ** 3416 ** If P3==0, then an exact count is obtained, which involves visiting 3417 ** every btree page of the table. But if P3 is non-zero, an estimate 3418 ** is returned based on the current cursor position. 3419 */ 3420 case OP_Count: { /* out2 */ 3421 i64 nEntry; 3422 BtCursor *pCrsr; 3423 3424 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 3425 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 3426 assert( pCrsr ); 3427 if( pOp->p3 ){ 3428 nEntry = sqlite3BtreeRowCountEst(pCrsr); 3429 }else{ 3430 nEntry = 0; /* Not needed. Only used to silence a warning. */ 3431 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 3432 if( rc ) goto abort_due_to_error; 3433 } 3434 pOut = out2Prerelease(p, pOp); 3435 pOut->u.i = nEntry; 3436 goto check_for_interrupt; 3437 } 3438 3439 /* Opcode: Savepoint P1 * * P4 * 3440 ** 3441 ** Open, release or rollback the savepoint named by parameter P4, depending 3442 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 3443 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 3444 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 3445 */ 3446 case OP_Savepoint: { 3447 int p1; /* Value of P1 operand */ 3448 char *zName; /* Name of savepoint */ 3449 int nName; 3450 Savepoint *pNew; 3451 Savepoint *pSavepoint; 3452 Savepoint *pTmp; 3453 int iSavepoint; 3454 int ii; 3455 3456 p1 = pOp->p1; 3457 zName = pOp->p4.z; 3458 3459 /* Assert that the p1 parameter is valid. Also that if there is no open 3460 ** transaction, then there cannot be any savepoints. 3461 */ 3462 assert( db->pSavepoint==0 || db->autoCommit==0 ); 3463 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 3464 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 3465 assert( checkSavepointCount(db) ); 3466 assert( p->bIsReader ); 3467 3468 if( p1==SAVEPOINT_BEGIN ){ 3469 if( db->nVdbeWrite>0 ){ 3470 /* A new savepoint cannot be created if there are active write 3471 ** statements (i.e. open read/write incremental blob handles). 3472 */ 3473 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 3474 rc = SQLITE_BUSY; 3475 }else{ 3476 nName = sqlite3Strlen30(zName); 3477 3478 #ifndef SQLITE_OMIT_VIRTUALTABLE 3479 /* This call is Ok even if this savepoint is actually a transaction 3480 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 3481 ** If this is a transaction savepoint being opened, it is guaranteed 3482 ** that the db->aVTrans[] array is empty. */ 3483 assert( db->autoCommit==0 || db->nVTrans==0 ); 3484 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 3485 db->nStatement+db->nSavepoint); 3486 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3487 #endif 3488 3489 /* Create a new savepoint structure. */ 3490 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 3491 if( pNew ){ 3492 pNew->zName = (char *)&pNew[1]; 3493 memcpy(pNew->zName, zName, nName+1); 3494 3495 /* If there is no open transaction, then mark this as a special 3496 ** "transaction savepoint". */ 3497 if( db->autoCommit ){ 3498 db->autoCommit = 0; 3499 db->isTransactionSavepoint = 1; 3500 }else{ 3501 db->nSavepoint++; 3502 } 3503 3504 /* Link the new savepoint into the database handle's list. */ 3505 pNew->pNext = db->pSavepoint; 3506 db->pSavepoint = pNew; 3507 pNew->nDeferredCons = db->nDeferredCons; 3508 pNew->nDeferredImmCons = db->nDeferredImmCons; 3509 } 3510 } 3511 }else{ 3512 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 3513 iSavepoint = 0; 3514 3515 /* Find the named savepoint. If there is no such savepoint, then an 3516 ** an error is returned to the user. */ 3517 for( 3518 pSavepoint = db->pSavepoint; 3519 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 3520 pSavepoint = pSavepoint->pNext 3521 ){ 3522 iSavepoint++; 3523 } 3524 if( !pSavepoint ){ 3525 sqlite3VdbeError(p, "no such savepoint: %s", zName); 3526 rc = SQLITE_ERROR; 3527 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 3528 /* It is not possible to release (commit) a savepoint if there are 3529 ** active write statements. 3530 */ 3531 sqlite3VdbeError(p, "cannot release savepoint - " 3532 "SQL statements in progress"); 3533 rc = SQLITE_BUSY; 3534 }else{ 3535 3536 /* Determine whether or not this is a transaction savepoint. If so, 3537 ** and this is a RELEASE command, then the current transaction 3538 ** is committed. 3539 */ 3540 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 3541 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 3542 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3543 goto vdbe_return; 3544 } 3545 db->autoCommit = 1; 3546 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3547 p->pc = (int)(pOp - aOp); 3548 db->autoCommit = 0; 3549 p->rc = rc = SQLITE_BUSY; 3550 goto vdbe_return; 3551 } 3552 rc = p->rc; 3553 if( rc ){ 3554 db->autoCommit = 0; 3555 }else{ 3556 db->isTransactionSavepoint = 0; 3557 } 3558 }else{ 3559 int isSchemaChange; 3560 iSavepoint = db->nSavepoint - iSavepoint - 1; 3561 if( p1==SAVEPOINT_ROLLBACK ){ 3562 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 3563 for(ii=0; ii<db->nDb; ii++){ 3564 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 3565 SQLITE_ABORT_ROLLBACK, 3566 isSchemaChange==0); 3567 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3568 } 3569 }else{ 3570 assert( p1==SAVEPOINT_RELEASE ); 3571 isSchemaChange = 0; 3572 } 3573 for(ii=0; ii<db->nDb; ii++){ 3574 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 3575 if( rc!=SQLITE_OK ){ 3576 goto abort_due_to_error; 3577 } 3578 } 3579 if( isSchemaChange ){ 3580 sqlite3ExpirePreparedStatements(db, 0); 3581 sqlite3ResetAllSchemasOfConnection(db); 3582 db->mDbFlags |= DBFLAG_SchemaChange; 3583 } 3584 } 3585 if( rc ) goto abort_due_to_error; 3586 3587 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 3588 ** savepoints nested inside of the savepoint being operated on. */ 3589 while( db->pSavepoint!=pSavepoint ){ 3590 pTmp = db->pSavepoint; 3591 db->pSavepoint = pTmp->pNext; 3592 sqlite3DbFree(db, pTmp); 3593 db->nSavepoint--; 3594 } 3595 3596 /* If it is a RELEASE, then destroy the savepoint being operated on 3597 ** too. If it is a ROLLBACK TO, then set the number of deferred 3598 ** constraint violations present in the database to the value stored 3599 ** when the savepoint was created. */ 3600 if( p1==SAVEPOINT_RELEASE ){ 3601 assert( pSavepoint==db->pSavepoint ); 3602 db->pSavepoint = pSavepoint->pNext; 3603 sqlite3DbFree(db, pSavepoint); 3604 if( !isTransaction ){ 3605 db->nSavepoint--; 3606 } 3607 }else{ 3608 assert( p1==SAVEPOINT_ROLLBACK ); 3609 db->nDeferredCons = pSavepoint->nDeferredCons; 3610 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 3611 } 3612 3613 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 3614 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 3615 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3616 } 3617 } 3618 } 3619 if( rc ) goto abort_due_to_error; 3620 3621 break; 3622 } 3623 3624 /* Opcode: AutoCommit P1 P2 * * * 3625 ** 3626 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 3627 ** back any currently active btree transactions. If there are any active 3628 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 3629 ** there are active writing VMs or active VMs that use shared cache. 3630 ** 3631 ** This instruction causes the VM to halt. 3632 */ 3633 case OP_AutoCommit: { 3634 int desiredAutoCommit; 3635 int iRollback; 3636 3637 desiredAutoCommit = pOp->p1; 3638 iRollback = pOp->p2; 3639 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 3640 assert( desiredAutoCommit==1 || iRollback==0 ); 3641 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 3642 assert( p->bIsReader ); 3643 3644 if( desiredAutoCommit!=db->autoCommit ){ 3645 if( iRollback ){ 3646 assert( desiredAutoCommit==1 ); 3647 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 3648 db->autoCommit = 1; 3649 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 3650 /* If this instruction implements a COMMIT and other VMs are writing 3651 ** return an error indicating that the other VMs must complete first. 3652 */ 3653 sqlite3VdbeError(p, "cannot commit transaction - " 3654 "SQL statements in progress"); 3655 rc = SQLITE_BUSY; 3656 goto abort_due_to_error; 3657 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 3658 goto vdbe_return; 3659 }else{ 3660 db->autoCommit = (u8)desiredAutoCommit; 3661 } 3662 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 3663 p->pc = (int)(pOp - aOp); 3664 db->autoCommit = (u8)(1-desiredAutoCommit); 3665 p->rc = rc = SQLITE_BUSY; 3666 goto vdbe_return; 3667 } 3668 sqlite3CloseSavepoints(db); 3669 if( p->rc==SQLITE_OK ){ 3670 rc = SQLITE_DONE; 3671 }else{ 3672 rc = SQLITE_ERROR; 3673 } 3674 goto vdbe_return; 3675 }else{ 3676 sqlite3VdbeError(p, 3677 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 3678 (iRollback)?"cannot rollback - no transaction is active": 3679 "cannot commit - no transaction is active")); 3680 3681 rc = SQLITE_ERROR; 3682 goto abort_due_to_error; 3683 } 3684 /*NOTREACHED*/ assert(0); 3685 } 3686 3687 /* Opcode: Transaction P1 P2 P3 P4 P5 3688 ** 3689 ** Begin a transaction on database P1 if a transaction is not already 3690 ** active. 3691 ** If P2 is non-zero, then a write-transaction is started, or if a 3692 ** read-transaction is already active, it is upgraded to a write-transaction. 3693 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 3694 ** then an exclusive transaction is started. 3695 ** 3696 ** P1 is the index of the database file on which the transaction is 3697 ** started. Index 0 is the main database file and index 1 is the 3698 ** file used for temporary tables. Indices of 2 or more are used for 3699 ** attached databases. 3700 ** 3701 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 3702 ** true (this flag is set if the Vdbe may modify more than one row and may 3703 ** throw an ABORT exception), a statement transaction may also be opened. 3704 ** More specifically, a statement transaction is opened iff the database 3705 ** connection is currently not in autocommit mode, or if there are other 3706 ** active statements. A statement transaction allows the changes made by this 3707 ** VDBE to be rolled back after an error without having to roll back the 3708 ** entire transaction. If no error is encountered, the statement transaction 3709 ** will automatically commit when the VDBE halts. 3710 ** 3711 ** If P5!=0 then this opcode also checks the schema cookie against P3 3712 ** and the schema generation counter against P4. 3713 ** The cookie changes its value whenever the database schema changes. 3714 ** This operation is used to detect when that the cookie has changed 3715 ** and that the current process needs to reread the schema. If the schema 3716 ** cookie in P3 differs from the schema cookie in the database header or 3717 ** if the schema generation counter in P4 differs from the current 3718 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 3719 ** halts. The sqlite3_step() wrapper function might then reprepare the 3720 ** statement and rerun it from the beginning. 3721 */ 3722 case OP_Transaction: { 3723 Btree *pBt; 3724 int iMeta = 0; 3725 3726 assert( p->bIsReader ); 3727 assert( p->readOnly==0 || pOp->p2==0 ); 3728 assert( pOp->p2>=0 && pOp->p2<=2 ); 3729 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3730 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3731 assert( rc==SQLITE_OK ); 3732 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 3733 if( db->flags & SQLITE_QueryOnly ){ 3734 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 3735 rc = SQLITE_READONLY; 3736 }else{ 3737 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 3738 ** transaction */ 3739 rc = SQLITE_CORRUPT; 3740 } 3741 goto abort_due_to_error; 3742 } 3743 pBt = db->aDb[pOp->p1].pBt; 3744 3745 if( pBt ){ 3746 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 3747 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 3748 testcase( rc==SQLITE_BUSY_RECOVERY ); 3749 if( rc!=SQLITE_OK ){ 3750 if( (rc&0xff)==SQLITE_BUSY ){ 3751 p->pc = (int)(pOp - aOp); 3752 p->rc = rc; 3753 goto vdbe_return; 3754 } 3755 goto abort_due_to_error; 3756 } 3757 3758 if( p->usesStmtJournal 3759 && pOp->p2 3760 && (db->autoCommit==0 || db->nVdbeRead>1) 3761 ){ 3762 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 3763 if( p->iStatement==0 ){ 3764 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 3765 db->nStatement++; 3766 p->iStatement = db->nSavepoint + db->nStatement; 3767 } 3768 3769 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 3770 if( rc==SQLITE_OK ){ 3771 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 3772 } 3773 3774 /* Store the current value of the database handles deferred constraint 3775 ** counter. If the statement transaction needs to be rolled back, 3776 ** the value of this counter needs to be restored too. */ 3777 p->nStmtDefCons = db->nDeferredCons; 3778 p->nStmtDefImmCons = db->nDeferredImmCons; 3779 } 3780 } 3781 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 3782 if( rc==SQLITE_OK 3783 && pOp->p5 3784 && (iMeta!=pOp->p3 3785 || db->aDb[pOp->p1].pSchema->iGeneration!=pOp->p4.i) 3786 ){ 3787 /* 3788 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 3789 ** version is checked to ensure that the schema has not changed since the 3790 ** SQL statement was prepared. 3791 */ 3792 sqlite3DbFree(db, p->zErrMsg); 3793 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 3794 /* If the schema-cookie from the database file matches the cookie 3795 ** stored with the in-memory representation of the schema, do 3796 ** not reload the schema from the database file. 3797 ** 3798 ** If virtual-tables are in use, this is not just an optimization. 3799 ** Often, v-tables store their data in other SQLite tables, which 3800 ** are queried from within xNext() and other v-table methods using 3801 ** prepared queries. If such a query is out-of-date, we do not want to 3802 ** discard the database schema, as the user code implementing the 3803 ** v-table would have to be ready for the sqlite3_vtab structure itself 3804 ** to be invalidated whenever sqlite3_step() is called from within 3805 ** a v-table method. 3806 */ 3807 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 3808 sqlite3ResetOneSchema(db, pOp->p1); 3809 } 3810 p->expired = 1; 3811 rc = SQLITE_SCHEMA; 3812 } 3813 if( rc ) goto abort_due_to_error; 3814 break; 3815 } 3816 3817 /* Opcode: ReadCookie P1 P2 P3 * * 3818 ** 3819 ** Read cookie number P3 from database P1 and write it into register P2. 3820 ** P3==1 is the schema version. P3==2 is the database format. 3821 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 3822 ** the main database file and P1==1 is the database file used to store 3823 ** temporary tables. 3824 ** 3825 ** There must be a read-lock on the database (either a transaction 3826 ** must be started or there must be an open cursor) before 3827 ** executing this instruction. 3828 */ 3829 case OP_ReadCookie: { /* out2 */ 3830 int iMeta; 3831 int iDb; 3832 int iCookie; 3833 3834 assert( p->bIsReader ); 3835 iDb = pOp->p1; 3836 iCookie = pOp->p3; 3837 assert( pOp->p3<SQLITE_N_BTREE_META ); 3838 assert( iDb>=0 && iDb<db->nDb ); 3839 assert( db->aDb[iDb].pBt!=0 ); 3840 assert( DbMaskTest(p->btreeMask, iDb) ); 3841 3842 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 3843 pOut = out2Prerelease(p, pOp); 3844 pOut->u.i = iMeta; 3845 break; 3846 } 3847 3848 /* Opcode: SetCookie P1 P2 P3 * P5 3849 ** 3850 ** Write the integer value P3 into cookie number P2 of database P1. 3851 ** P2==1 is the schema version. P2==2 is the database format. 3852 ** P2==3 is the recommended pager cache 3853 ** size, and so forth. P1==0 is the main database file and P1==1 is the 3854 ** database file used to store temporary tables. 3855 ** 3856 ** A transaction must be started before executing this opcode. 3857 ** 3858 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 3859 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 3860 ** has P5 set to 1, so that the internal schema version will be different 3861 ** from the database schema version, resulting in a schema reset. 3862 */ 3863 case OP_SetCookie: { 3864 Db *pDb; 3865 3866 sqlite3VdbeIncrWriteCounter(p, 0); 3867 assert( pOp->p2<SQLITE_N_BTREE_META ); 3868 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 3869 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 3870 assert( p->readOnly==0 ); 3871 pDb = &db->aDb[pOp->p1]; 3872 assert( pDb->pBt!=0 ); 3873 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 3874 /* See note about index shifting on OP_ReadCookie */ 3875 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 3876 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 3877 /* When the schema cookie changes, record the new cookie internally */ 3878 pDb->pSchema->schema_cookie = pOp->p3 - pOp->p5; 3879 db->mDbFlags |= DBFLAG_SchemaChange; 3880 sqlite3FkClearTriggerCache(db, pOp->p1); 3881 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 3882 /* Record changes in the file format */ 3883 pDb->pSchema->file_format = pOp->p3; 3884 } 3885 if( pOp->p1==1 ){ 3886 /* Invalidate all prepared statements whenever the TEMP database 3887 ** schema is changed. Ticket #1644 */ 3888 sqlite3ExpirePreparedStatements(db, 0); 3889 p->expired = 0; 3890 } 3891 if( rc ) goto abort_due_to_error; 3892 break; 3893 } 3894 3895 /* Opcode: OpenRead P1 P2 P3 P4 P5 3896 ** Synopsis: root=P2 iDb=P3 3897 ** 3898 ** Open a read-only cursor for the database table whose root page is 3899 ** P2 in a database file. The database file is determined by P3. 3900 ** P3==0 means the main database, P3==1 means the database used for 3901 ** temporary tables, and P3>1 means used the corresponding attached 3902 ** database. Give the new cursor an identifier of P1. The P1 3903 ** values need not be contiguous but all P1 values should be small integers. 3904 ** It is an error for P1 to be negative. 3905 ** 3906 ** Allowed P5 bits: 3907 ** <ul> 3908 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3909 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3910 ** of OP_SeekLE/OP_IdxLT) 3911 ** </ul> 3912 ** 3913 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3914 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3915 ** object, then table being opened must be an [index b-tree] where the 3916 ** KeyInfo object defines the content and collating 3917 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3918 ** value, then the table being opened must be a [table b-tree] with a 3919 ** number of columns no less than the value of P4. 3920 ** 3921 ** See also: OpenWrite, ReopenIdx 3922 */ 3923 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 3924 ** Synopsis: root=P2 iDb=P3 3925 ** 3926 ** The ReopenIdx opcode works like OP_OpenRead except that it first 3927 ** checks to see if the cursor on P1 is already open on the same 3928 ** b-tree and if it is this opcode becomes a no-op. In other words, 3929 ** if the cursor is already open, do not reopen it. 3930 ** 3931 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 3932 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 3933 ** be the same as every other ReopenIdx or OpenRead for the same cursor 3934 ** number. 3935 ** 3936 ** Allowed P5 bits: 3937 ** <ul> 3938 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3939 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3940 ** of OP_SeekLE/OP_IdxLT) 3941 ** </ul> 3942 ** 3943 ** See also: OP_OpenRead, OP_OpenWrite 3944 */ 3945 /* Opcode: OpenWrite P1 P2 P3 P4 P5 3946 ** Synopsis: root=P2 iDb=P3 3947 ** 3948 ** Open a read/write cursor named P1 on the table or index whose root 3949 ** page is P2 (or whose root page is held in register P2 if the 3950 ** OPFLAG_P2ISREG bit is set in P5 - see below). 3951 ** 3952 ** The P4 value may be either an integer (P4_INT32) or a pointer to 3953 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3954 ** object, then table being opened must be an [index b-tree] where the 3955 ** KeyInfo object defines the content and collating 3956 ** sequence of that index b-tree. Otherwise, if P4 is an integer 3957 ** value, then the table being opened must be a [table b-tree] with a 3958 ** number of columns no less than the value of P4. 3959 ** 3960 ** Allowed P5 bits: 3961 ** <ul> 3962 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 3963 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 3964 ** of OP_SeekLE/OP_IdxLT) 3965 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 3966 ** and subsequently delete entries in an index btree. This is a 3967 ** hint to the storage engine that the storage engine is allowed to 3968 ** ignore. The hint is not used by the official SQLite b*tree storage 3969 ** engine, but is used by COMDB2. 3970 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 3971 ** as the root page, not the value of P2 itself. 3972 ** </ul> 3973 ** 3974 ** This instruction works like OpenRead except that it opens the cursor 3975 ** in read/write mode. 3976 ** 3977 ** See also: OP_OpenRead, OP_ReopenIdx 3978 */ 3979 case OP_ReopenIdx: { 3980 int nField; 3981 KeyInfo *pKeyInfo; 3982 u32 p2; 3983 int iDb; 3984 int wrFlag; 3985 Btree *pX; 3986 VdbeCursor *pCur; 3987 Db *pDb; 3988 3989 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 3990 assert( pOp->p4type==P4_KEYINFO ); 3991 pCur = p->apCsr[pOp->p1]; 3992 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 3993 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 3994 assert( pCur->eCurType==CURTYPE_BTREE ); 3995 sqlite3BtreeClearCursor(pCur->uc.pCursor); 3996 goto open_cursor_set_hints; 3997 } 3998 /* If the cursor is not currently open or is open on a different 3999 ** index, then fall through into OP_OpenRead to force a reopen */ 4000 case OP_OpenRead: 4001 case OP_OpenWrite: 4002 4003 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 4004 assert( p->bIsReader ); 4005 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 4006 || p->readOnly==0 ); 4007 4008 if( p->expired==1 ){ 4009 rc = SQLITE_ABORT_ROLLBACK; 4010 goto abort_due_to_error; 4011 } 4012 4013 nField = 0; 4014 pKeyInfo = 0; 4015 p2 = (u32)pOp->p2; 4016 iDb = pOp->p3; 4017 assert( iDb>=0 && iDb<db->nDb ); 4018 assert( DbMaskTest(p->btreeMask, iDb) ); 4019 pDb = &db->aDb[iDb]; 4020 pX = pDb->pBt; 4021 assert( pX!=0 ); 4022 if( pOp->opcode==OP_OpenWrite ){ 4023 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 4024 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 4025 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4026 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 4027 p->minWriteFileFormat = pDb->pSchema->file_format; 4028 } 4029 }else{ 4030 wrFlag = 0; 4031 } 4032 if( pOp->p5 & OPFLAG_P2ISREG ){ 4033 assert( p2>0 ); 4034 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 4035 assert( pOp->opcode==OP_OpenWrite ); 4036 pIn2 = &aMem[p2]; 4037 assert( memIsValid(pIn2) ); 4038 assert( (pIn2->flags & MEM_Int)!=0 ); 4039 sqlite3VdbeMemIntegerify(pIn2); 4040 p2 = (int)pIn2->u.i; 4041 /* The p2 value always comes from a prior OP_CreateBtree opcode and 4042 ** that opcode will always set the p2 value to 2 or more or else fail. 4043 ** If there were a failure, the prepared statement would have halted 4044 ** before reaching this instruction. */ 4045 assert( p2>=2 ); 4046 } 4047 if( pOp->p4type==P4_KEYINFO ){ 4048 pKeyInfo = pOp->p4.pKeyInfo; 4049 assert( pKeyInfo->enc==ENC(db) ); 4050 assert( pKeyInfo->db==db ); 4051 nField = pKeyInfo->nAllField; 4052 }else if( pOp->p4type==P4_INT32 ){ 4053 nField = pOp->p4.i; 4054 } 4055 assert( pOp->p1>=0 ); 4056 assert( nField>=0 ); 4057 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 4058 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 4059 if( pCur==0 ) goto no_mem; 4060 pCur->iDb = iDb; 4061 pCur->nullRow = 1; 4062 pCur->isOrdered = 1; 4063 pCur->pgnoRoot = p2; 4064 #ifdef SQLITE_DEBUG 4065 pCur->wrFlag = wrFlag; 4066 #endif 4067 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 4068 pCur->pKeyInfo = pKeyInfo; 4069 /* Set the VdbeCursor.isTable variable. Previous versions of 4070 ** SQLite used to check if the root-page flags were sane at this point 4071 ** and report database corruption if they were not, but this check has 4072 ** since moved into the btree layer. */ 4073 pCur->isTable = pOp->p4type!=P4_KEYINFO; 4074 4075 open_cursor_set_hints: 4076 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 4077 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 4078 testcase( pOp->p5 & OPFLAG_BULKCSR ); 4079 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 4080 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 4081 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 4082 if( rc ) goto abort_due_to_error; 4083 break; 4084 } 4085 4086 /* Opcode: OpenDup P1 P2 * * * 4087 ** 4088 ** Open a new cursor P1 that points to the same ephemeral table as 4089 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 4090 ** opcode. Only ephemeral cursors may be duplicated. 4091 ** 4092 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 4093 */ 4094 case OP_OpenDup: { 4095 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 4096 VdbeCursor *pCx; /* The new cursor */ 4097 4098 pOrig = p->apCsr[pOp->p2]; 4099 assert( pOrig ); 4100 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 4101 4102 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 4103 if( pCx==0 ) goto no_mem; 4104 pCx->nullRow = 1; 4105 pCx->isEphemeral = 1; 4106 pCx->pKeyInfo = pOrig->pKeyInfo; 4107 pCx->isTable = pOrig->isTable; 4108 pCx->pgnoRoot = pOrig->pgnoRoot; 4109 pCx->isOrdered = pOrig->isOrdered; 4110 pCx->ub.pBtx = pOrig->ub.pBtx; 4111 pCx->hasBeenDuped = 1; 4112 pOrig->hasBeenDuped = 1; 4113 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4114 pCx->pKeyInfo, pCx->uc.pCursor); 4115 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 4116 ** opened for a database. Since there is already an open cursor when this 4117 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 4118 assert( rc==SQLITE_OK ); 4119 break; 4120 } 4121 4122 4123 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 4124 ** Synopsis: nColumn=P2 4125 ** 4126 ** Open a new cursor P1 to a transient table. 4127 ** The cursor is always opened read/write even if 4128 ** the main database is read-only. The ephemeral 4129 ** table is deleted automatically when the cursor is closed. 4130 ** 4131 ** If the cursor P1 is already opened on an ephemeral table, the table 4132 ** is cleared (all content is erased). 4133 ** 4134 ** P2 is the number of columns in the ephemeral table. 4135 ** The cursor points to a BTree table if P4==0 and to a BTree index 4136 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 4137 ** that defines the format of keys in the index. 4138 ** 4139 ** The P5 parameter can be a mask of the BTREE_* flags defined 4140 ** in btree.h. These flags control aspects of the operation of 4141 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 4142 ** added automatically. 4143 ** 4144 ** If P3 is positive, then reg[P3] is modified slightly so that it 4145 ** can be used as zero-length data for OP_Insert. This is an optimization 4146 ** that avoids an extra OP_Blob opcode to initialize that register. 4147 */ 4148 /* Opcode: OpenAutoindex P1 P2 * P4 * 4149 ** Synopsis: nColumn=P2 4150 ** 4151 ** This opcode works the same as OP_OpenEphemeral. It has a 4152 ** different name to distinguish its use. Tables created using 4153 ** by this opcode will be used for automatically created transient 4154 ** indices in joins. 4155 */ 4156 case OP_OpenAutoindex: 4157 case OP_OpenEphemeral: { 4158 VdbeCursor *pCx; 4159 KeyInfo *pKeyInfo; 4160 4161 static const int vfsFlags = 4162 SQLITE_OPEN_READWRITE | 4163 SQLITE_OPEN_CREATE | 4164 SQLITE_OPEN_EXCLUSIVE | 4165 SQLITE_OPEN_DELETEONCLOSE | 4166 SQLITE_OPEN_TRANSIENT_DB; 4167 assert( pOp->p1>=0 ); 4168 assert( pOp->p2>=0 ); 4169 if( pOp->p3>0 ){ 4170 /* Make register reg[P3] into a value that can be used as the data 4171 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 4172 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 4173 assert( pOp->opcode==OP_OpenEphemeral ); 4174 assert( aMem[pOp->p3].flags & MEM_Null ); 4175 aMem[pOp->p3].n = 0; 4176 aMem[pOp->p3].z = ""; 4177 } 4178 pCx = p->apCsr[pOp->p1]; 4179 if( pCx && !pCx->hasBeenDuped && ALWAYS(pOp->p2<=pCx->nField) ){ 4180 /* If the ephermeral table is already open and has no duplicates from 4181 ** OP_OpenDup, then erase all existing content so that the table is 4182 ** empty again, rather than creating a new table. */ 4183 assert( pCx->isEphemeral ); 4184 pCx->seqCount = 0; 4185 pCx->cacheStatus = CACHE_STALE; 4186 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 4187 }else{ 4188 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 4189 if( pCx==0 ) goto no_mem; 4190 pCx->isEphemeral = 1; 4191 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 4192 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 4193 vfsFlags); 4194 if( rc==SQLITE_OK ){ 4195 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 4196 if( rc==SQLITE_OK ){ 4197 /* If a transient index is required, create it by calling 4198 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 4199 ** opening it. If a transient table is required, just use the 4200 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 4201 */ 4202 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 4203 assert( pOp->p4type==P4_KEYINFO ); 4204 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 4205 BTREE_BLOBKEY | pOp->p5); 4206 if( rc==SQLITE_OK ){ 4207 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 4208 assert( pKeyInfo->db==db ); 4209 assert( pKeyInfo->enc==ENC(db) ); 4210 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 4211 pKeyInfo, pCx->uc.pCursor); 4212 } 4213 pCx->isTable = 0; 4214 }else{ 4215 pCx->pgnoRoot = SCHEMA_ROOT; 4216 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 4217 0, pCx->uc.pCursor); 4218 pCx->isTable = 1; 4219 } 4220 } 4221 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 4222 if( rc ){ 4223 sqlite3BtreeClose(pCx->ub.pBtx); 4224 } 4225 } 4226 } 4227 if( rc ) goto abort_due_to_error; 4228 pCx->nullRow = 1; 4229 break; 4230 } 4231 4232 /* Opcode: SorterOpen P1 P2 P3 P4 * 4233 ** 4234 ** This opcode works like OP_OpenEphemeral except that it opens 4235 ** a transient index that is specifically designed to sort large 4236 ** tables using an external merge-sort algorithm. 4237 ** 4238 ** If argument P3 is non-zero, then it indicates that the sorter may 4239 ** assume that a stable sort considering the first P3 fields of each 4240 ** key is sufficient to produce the required results. 4241 */ 4242 case OP_SorterOpen: { 4243 VdbeCursor *pCx; 4244 4245 assert( pOp->p1>=0 ); 4246 assert( pOp->p2>=0 ); 4247 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 4248 if( pCx==0 ) goto no_mem; 4249 pCx->pKeyInfo = pOp->p4.pKeyInfo; 4250 assert( pCx->pKeyInfo->db==db ); 4251 assert( pCx->pKeyInfo->enc==ENC(db) ); 4252 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 4253 if( rc ) goto abort_due_to_error; 4254 break; 4255 } 4256 4257 /* Opcode: SequenceTest P1 P2 * * * 4258 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 4259 ** 4260 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 4261 ** to P2. Regardless of whether or not the jump is taken, increment the 4262 ** the sequence value. 4263 */ 4264 case OP_SequenceTest: { 4265 VdbeCursor *pC; 4266 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4267 pC = p->apCsr[pOp->p1]; 4268 assert( isSorter(pC) ); 4269 if( (pC->seqCount++)==0 ){ 4270 goto jump_to_p2; 4271 } 4272 break; 4273 } 4274 4275 /* Opcode: OpenPseudo P1 P2 P3 * * 4276 ** Synopsis: P3 columns in r[P2] 4277 ** 4278 ** Open a new cursor that points to a fake table that contains a single 4279 ** row of data. The content of that one row is the content of memory 4280 ** register P2. In other words, cursor P1 becomes an alias for the 4281 ** MEM_Blob content contained in register P2. 4282 ** 4283 ** A pseudo-table created by this opcode is used to hold a single 4284 ** row output from the sorter so that the row can be decomposed into 4285 ** individual columns using the OP_Column opcode. The OP_Column opcode 4286 ** is the only cursor opcode that works with a pseudo-table. 4287 ** 4288 ** P3 is the number of fields in the records that will be stored by 4289 ** the pseudo-table. 4290 */ 4291 case OP_OpenPseudo: { 4292 VdbeCursor *pCx; 4293 4294 assert( pOp->p1>=0 ); 4295 assert( pOp->p3>=0 ); 4296 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 4297 if( pCx==0 ) goto no_mem; 4298 pCx->nullRow = 1; 4299 pCx->seekResult = pOp->p2; 4300 pCx->isTable = 1; 4301 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 4302 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 4303 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 4304 ** which is a performance optimization */ 4305 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 4306 assert( pOp->p5==0 ); 4307 break; 4308 } 4309 4310 /* Opcode: Close P1 * * * * 4311 ** 4312 ** Close a cursor previously opened as P1. If P1 is not 4313 ** currently open, this instruction is a no-op. 4314 */ 4315 case OP_Close: { 4316 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4317 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 4318 p->apCsr[pOp->p1] = 0; 4319 break; 4320 } 4321 4322 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4323 /* Opcode: ColumnsUsed P1 * * P4 * 4324 ** 4325 ** This opcode (which only exists if SQLite was compiled with 4326 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 4327 ** table or index for cursor P1 are used. P4 is a 64-bit integer 4328 ** (P4_INT64) in which the first 63 bits are one for each of the 4329 ** first 63 columns of the table or index that are actually used 4330 ** by the cursor. The high-order bit is set if any column after 4331 ** the 64th is used. 4332 */ 4333 case OP_ColumnsUsed: { 4334 VdbeCursor *pC; 4335 pC = p->apCsr[pOp->p1]; 4336 assert( pC->eCurType==CURTYPE_BTREE ); 4337 pC->maskUsed = *(u64*)pOp->p4.pI64; 4338 break; 4339 } 4340 #endif 4341 4342 /* Opcode: SeekGE P1 P2 P3 P4 * 4343 ** Synopsis: key=r[P3@P4] 4344 ** 4345 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4346 ** use the value in register P3 as the key. If cursor P1 refers 4347 ** to an SQL index, then P3 is the first in an array of P4 registers 4348 ** that are used as an unpacked index key. 4349 ** 4350 ** Reposition cursor P1 so that it points to the smallest entry that 4351 ** is greater than or equal to the key value. If there are no records 4352 ** greater than or equal to the key and P2 is not zero, then jump to P2. 4353 ** 4354 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4355 ** opcode will either land on a record that exactly matches the key, or 4356 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4357 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4358 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 4359 ** IdxGT opcode will be used on subsequent loop iterations. The 4360 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4361 ** is an equality search. 4362 ** 4363 ** This opcode leaves the cursor configured to move in forward order, 4364 ** from the beginning toward the end. In other words, the cursor is 4365 ** configured to use Next, not Prev. 4366 ** 4367 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 4368 */ 4369 /* Opcode: SeekGT P1 P2 P3 P4 * 4370 ** Synopsis: key=r[P3@P4] 4371 ** 4372 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4373 ** use the value in register P3 as a key. If cursor P1 refers 4374 ** to an SQL index, then P3 is the first in an array of P4 registers 4375 ** that are used as an unpacked index key. 4376 ** 4377 ** Reposition cursor P1 so that it points to the smallest entry that 4378 ** is greater than the key value. If there are no records greater than 4379 ** the key and P2 is not zero, then jump to P2. 4380 ** 4381 ** This opcode leaves the cursor configured to move in forward order, 4382 ** from the beginning toward the end. In other words, the cursor is 4383 ** configured to use Next, not Prev. 4384 ** 4385 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 4386 */ 4387 /* Opcode: SeekLT P1 P2 P3 P4 * 4388 ** Synopsis: key=r[P3@P4] 4389 ** 4390 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4391 ** use the value in register P3 as a key. If cursor P1 refers 4392 ** to an SQL index, then P3 is the first in an array of P4 registers 4393 ** that are used as an unpacked index key. 4394 ** 4395 ** Reposition cursor P1 so that it points to the largest entry that 4396 ** is less than the key value. If there are no records less than 4397 ** the key and P2 is not zero, then jump to P2. 4398 ** 4399 ** This opcode leaves the cursor configured to move in reverse order, 4400 ** from the end toward the beginning. In other words, the cursor is 4401 ** configured to use Prev, not Next. 4402 ** 4403 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 4404 */ 4405 /* Opcode: SeekLE P1 P2 P3 P4 * 4406 ** Synopsis: key=r[P3@P4] 4407 ** 4408 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 4409 ** use the value in register P3 as a key. If cursor P1 refers 4410 ** to an SQL index, then P3 is the first in an array of P4 registers 4411 ** that are used as an unpacked index key. 4412 ** 4413 ** Reposition cursor P1 so that it points to the largest entry that 4414 ** is less than or equal to the key value. If there are no records 4415 ** less than or equal to the key and P2 is not zero, then jump to P2. 4416 ** 4417 ** This opcode leaves the cursor configured to move in reverse order, 4418 ** from the end toward the beginning. In other words, the cursor is 4419 ** configured to use Prev, not Next. 4420 ** 4421 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 4422 ** opcode will either land on a record that exactly matches the key, or 4423 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 4424 ** this opcode must be followed by an IdxLE opcode with the same arguments. 4425 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 4426 ** IdxGE opcode will be used on subsequent loop iterations. The 4427 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 4428 ** is an equality search. 4429 ** 4430 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 4431 */ 4432 case OP_SeekLT: /* jump, in3, group */ 4433 case OP_SeekLE: /* jump, in3, group */ 4434 case OP_SeekGE: /* jump, in3, group */ 4435 case OP_SeekGT: { /* jump, in3, group */ 4436 int res; /* Comparison result */ 4437 int oc; /* Opcode */ 4438 VdbeCursor *pC; /* The cursor to seek */ 4439 UnpackedRecord r; /* The key to seek for */ 4440 int nField; /* Number of columns or fields in the key */ 4441 i64 iKey; /* The rowid we are to seek to */ 4442 int eqOnly; /* Only interested in == results */ 4443 4444 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4445 assert( pOp->p2!=0 ); 4446 pC = p->apCsr[pOp->p1]; 4447 assert( pC!=0 ); 4448 assert( pC->eCurType==CURTYPE_BTREE ); 4449 assert( OP_SeekLE == OP_SeekLT+1 ); 4450 assert( OP_SeekGE == OP_SeekLT+2 ); 4451 assert( OP_SeekGT == OP_SeekLT+3 ); 4452 assert( pC->isOrdered ); 4453 assert( pC->uc.pCursor!=0 ); 4454 oc = pOp->opcode; 4455 eqOnly = 0; 4456 pC->nullRow = 0; 4457 #ifdef SQLITE_DEBUG 4458 pC->seekOp = pOp->opcode; 4459 #endif 4460 4461 pC->deferredMoveto = 0; 4462 pC->cacheStatus = CACHE_STALE; 4463 if( pC->isTable ){ 4464 u16 flags3, newType; 4465 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 4466 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 4467 || CORRUPT_DB ); 4468 4469 /* The input value in P3 might be of any type: integer, real, string, 4470 ** blob, or NULL. But it needs to be an integer before we can do 4471 ** the seek, so convert it. */ 4472 pIn3 = &aMem[pOp->p3]; 4473 flags3 = pIn3->flags; 4474 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 4475 applyNumericAffinity(pIn3, 0); 4476 } 4477 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 4478 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 4479 pIn3->flags = flags3; /* But convert the type back to its original */ 4480 4481 /* If the P3 value could not be converted into an integer without 4482 ** loss of information, then special processing is required... */ 4483 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 4484 int c; 4485 if( (newType & MEM_Real)==0 ){ 4486 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 4487 VdbeBranchTaken(1,2); 4488 goto jump_to_p2; 4489 }else{ 4490 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 4491 if( rc!=SQLITE_OK ) goto abort_due_to_error; 4492 goto seek_not_found; 4493 } 4494 } 4495 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 4496 4497 /* If the approximation iKey is larger than the actual real search 4498 ** term, substitute >= for > and < for <=. e.g. if the search term 4499 ** is 4.9 and the integer approximation 5: 4500 ** 4501 ** (x > 4.9) -> (x >= 5) 4502 ** (x <= 4.9) -> (x < 5) 4503 */ 4504 if( c>0 ){ 4505 assert( OP_SeekGE==(OP_SeekGT-1) ); 4506 assert( OP_SeekLT==(OP_SeekLE-1) ); 4507 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 4508 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 4509 } 4510 4511 /* If the approximation iKey is smaller than the actual real search 4512 ** term, substitute <= for < and > for >=. */ 4513 else if( c<0 ){ 4514 assert( OP_SeekLE==(OP_SeekLT+1) ); 4515 assert( OP_SeekGT==(OP_SeekGE+1) ); 4516 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 4517 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 4518 } 4519 } 4520 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 4521 pC->movetoTarget = iKey; /* Used by OP_Delete */ 4522 if( rc!=SQLITE_OK ){ 4523 goto abort_due_to_error; 4524 } 4525 }else{ 4526 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 4527 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 4528 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 4529 ** with the same key. 4530 */ 4531 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 4532 eqOnly = 1; 4533 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 4534 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4535 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 4536 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 4537 assert( pOp[1].p1==pOp[0].p1 ); 4538 assert( pOp[1].p2==pOp[0].p2 ); 4539 assert( pOp[1].p3==pOp[0].p3 ); 4540 assert( pOp[1].p4.i==pOp[0].p4.i ); 4541 } 4542 4543 nField = pOp->p4.i; 4544 assert( pOp->p4type==P4_INT32 ); 4545 assert( nField>0 ); 4546 r.pKeyInfo = pC->pKeyInfo; 4547 r.nField = (u16)nField; 4548 4549 /* The next line of code computes as follows, only faster: 4550 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 4551 ** r.default_rc = -1; 4552 ** }else{ 4553 ** r.default_rc = +1; 4554 ** } 4555 */ 4556 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 4557 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 4558 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 4559 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 4560 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 4561 4562 r.aMem = &aMem[pOp->p3]; 4563 #ifdef SQLITE_DEBUG 4564 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4565 #endif 4566 r.eqSeen = 0; 4567 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 4568 if( rc!=SQLITE_OK ){ 4569 goto abort_due_to_error; 4570 } 4571 if( eqOnly && r.eqSeen==0 ){ 4572 assert( res!=0 ); 4573 goto seek_not_found; 4574 } 4575 } 4576 #ifdef SQLITE_TEST 4577 sqlite3_search_count++; 4578 #endif 4579 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 4580 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 4581 res = 0; 4582 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4583 if( rc!=SQLITE_OK ){ 4584 if( rc==SQLITE_DONE ){ 4585 rc = SQLITE_OK; 4586 res = 1; 4587 }else{ 4588 goto abort_due_to_error; 4589 } 4590 } 4591 }else{ 4592 res = 0; 4593 } 4594 }else{ 4595 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 4596 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 4597 res = 0; 4598 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 4599 if( rc!=SQLITE_OK ){ 4600 if( rc==SQLITE_DONE ){ 4601 rc = SQLITE_OK; 4602 res = 1; 4603 }else{ 4604 goto abort_due_to_error; 4605 } 4606 } 4607 }else{ 4608 /* res might be negative because the table is empty. Check to 4609 ** see if this is the case. 4610 */ 4611 res = sqlite3BtreeEof(pC->uc.pCursor); 4612 } 4613 } 4614 seek_not_found: 4615 assert( pOp->p2>0 ); 4616 VdbeBranchTaken(res!=0,2); 4617 if( res ){ 4618 goto jump_to_p2; 4619 }else if( eqOnly ){ 4620 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 4621 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 4622 } 4623 break; 4624 } 4625 4626 4627 /* Opcode: SeekScan P1 P2 * * * 4628 ** Synopsis: Scan-ahead up to P1 rows 4629 ** 4630 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 4631 ** opcode must be immediately followed by OP_SeekGE. This constraint is 4632 ** checked by assert() statements. 4633 ** 4634 ** This opcode uses the P1 through P4 operands of the subsequent 4635 ** OP_SeekGE. In the text that follows, the operands of the subsequent 4636 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 4637 ** the P1 and P2 operands of this opcode are also used, and are called 4638 ** This.P1 and This.P2. 4639 ** 4640 ** This opcode helps to optimize IN operators on a multi-column index 4641 ** where the IN operator is on the later terms of the index by avoiding 4642 ** unnecessary seeks on the btree, substituting steps to the next row 4643 ** of the b-tree instead. A correct answer is obtained if this opcode 4644 ** is omitted or is a no-op. 4645 ** 4646 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 4647 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 4648 ** to. Call this SeekGE.P4/P5 row the "target". 4649 ** 4650 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 4651 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 4652 ** 4653 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 4654 ** might be the target row, or it might be near and slightly before the 4655 ** target row. This opcode attempts to position the cursor on the target 4656 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor 4657 ** between 0 and This.P1 times. 4658 ** 4659 ** There are three possible outcomes from this opcode:<ol> 4660 ** 4661 ** <li> If after This.P1 steps, the cursor is still pointing to a place that 4662 ** is earlier in the btree than the target row, then fall through 4663 ** into the subsquence OP_SeekGE opcode. 4664 ** 4665 ** <li> If the cursor is successfully moved to the target row by 0 or more 4666 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just 4667 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE. 4668 ** 4669 ** <li> If the cursor ends up past the target row (indicating the the target 4670 ** row does not exist in the btree) then jump to SeekOP.P2. 4671 ** </ol> 4672 */ 4673 case OP_SeekScan: { 4674 VdbeCursor *pC; 4675 int res; 4676 int nStep; 4677 UnpackedRecord r; 4678 4679 assert( pOp[1].opcode==OP_SeekGE ); 4680 4681 /* pOp->p2 points to the first instruction past the OP_IdxGT that 4682 ** follows the OP_SeekGE. */ 4683 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 4684 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE ); 4685 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 4686 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 4687 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 4688 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 4689 4690 assert( pOp->p1>0 ); 4691 pC = p->apCsr[pOp[1].p1]; 4692 assert( pC!=0 ); 4693 assert( pC->eCurType==CURTYPE_BTREE ); 4694 assert( !pC->isTable ); 4695 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 4696 #ifdef SQLITE_DEBUG 4697 if( db->flags&SQLITE_VdbeTrace ){ 4698 printf("... cursor not valid - fall through\n"); 4699 } 4700 #endif 4701 break; 4702 } 4703 nStep = pOp->p1; 4704 assert( nStep>=1 ); 4705 r.pKeyInfo = pC->pKeyInfo; 4706 r.nField = (u16)pOp[1].p4.i; 4707 r.default_rc = 0; 4708 r.aMem = &aMem[pOp[1].p3]; 4709 #ifdef SQLITE_DEBUG 4710 { 4711 int i; 4712 for(i=0; i<r.nField; i++){ 4713 assert( memIsValid(&r.aMem[i]) ); 4714 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 4715 } 4716 } 4717 #endif 4718 res = 0; /* Not needed. Only used to silence a warning. */ 4719 while(1){ 4720 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 4721 if( rc ) goto abort_due_to_error; 4722 if( res>0 ){ 4723 seekscan_search_fail: 4724 #ifdef SQLITE_DEBUG 4725 if( db->flags&SQLITE_VdbeTrace ){ 4726 printf("... %d steps and then skip\n", pOp->p1 - nStep); 4727 } 4728 #endif 4729 VdbeBranchTaken(1,3); 4730 pOp++; 4731 goto jump_to_p2; 4732 } 4733 if( res==0 ){ 4734 #ifdef SQLITE_DEBUG 4735 if( db->flags&SQLITE_VdbeTrace ){ 4736 printf("... %d steps and then success\n", pOp->p1 - nStep); 4737 } 4738 #endif 4739 VdbeBranchTaken(2,3); 4740 goto jump_to_p2; 4741 break; 4742 } 4743 if( nStep<=0 ){ 4744 #ifdef SQLITE_DEBUG 4745 if( db->flags&SQLITE_VdbeTrace ){ 4746 printf("... fall through after %d steps\n", pOp->p1); 4747 } 4748 #endif 4749 VdbeBranchTaken(0,3); 4750 break; 4751 } 4752 nStep--; 4753 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 4754 if( rc ){ 4755 if( rc==SQLITE_DONE ){ 4756 rc = SQLITE_OK; 4757 goto seekscan_search_fail; 4758 }else{ 4759 goto abort_due_to_error; 4760 } 4761 } 4762 } 4763 4764 break; 4765 } 4766 4767 4768 /* Opcode: SeekHit P1 P2 P3 * * 4769 ** Synopsis: set P2<=seekHit<=P3 4770 ** 4771 ** Increase or decrease the seekHit value for cursor P1, if necessary, 4772 ** so that it is no less than P2 and no greater than P3. 4773 ** 4774 ** The seekHit integer represents the maximum of terms in an index for which 4775 ** there is known to be at least one match. If the seekHit value is smaller 4776 ** than the total number of equality terms in an index lookup, then the 4777 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 4778 ** early, thus saving work. This is part of the IN-early-out optimization. 4779 ** 4780 ** P1 must be a valid b-tree cursor. 4781 */ 4782 case OP_SeekHit: { 4783 VdbeCursor *pC; 4784 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4785 pC = p->apCsr[pOp->p1]; 4786 assert( pC!=0 ); 4787 assert( pOp->p3>=pOp->p2 ); 4788 if( pC->seekHit<pOp->p2 ){ 4789 #ifdef SQLITE_DEBUG 4790 if( db->flags&SQLITE_VdbeTrace ){ 4791 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 4792 } 4793 #endif 4794 pC->seekHit = pOp->p2; 4795 }else if( pC->seekHit>pOp->p3 ){ 4796 #ifdef SQLITE_DEBUG 4797 if( db->flags&SQLITE_VdbeTrace ){ 4798 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 4799 } 4800 #endif 4801 pC->seekHit = pOp->p3; 4802 } 4803 break; 4804 } 4805 4806 /* Opcode: IfNotOpen P1 P2 * * * 4807 ** Synopsis: if( !csr[P1] ) goto P2 4808 ** 4809 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through. 4810 */ 4811 case OP_IfNotOpen: { /* jump */ 4812 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4813 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2); 4814 if( !p->apCsr[pOp->p1] ){ 4815 goto jump_to_p2_and_check_for_interrupt; 4816 } 4817 break; 4818 } 4819 4820 /* Opcode: Found P1 P2 P3 P4 * 4821 ** Synopsis: key=r[P3@P4] 4822 ** 4823 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4824 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4825 ** record. 4826 ** 4827 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4828 ** is a prefix of any entry in P1 then a jump is made to P2 and 4829 ** P1 is left pointing at the matching entry. 4830 ** 4831 ** This operation leaves the cursor in a state where it can be 4832 ** advanced in the forward direction. The Next instruction will work, 4833 ** but not the Prev instruction. 4834 ** 4835 ** See also: NotFound, NoConflict, NotExists. SeekGe 4836 */ 4837 /* Opcode: NotFound P1 P2 P3 P4 * 4838 ** Synopsis: key=r[P3@P4] 4839 ** 4840 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4841 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4842 ** record. 4843 ** 4844 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4845 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 4846 ** does contain an entry whose prefix matches the P3/P4 record then control 4847 ** falls through to the next instruction and P1 is left pointing at the 4848 ** matching entry. 4849 ** 4850 ** This operation leaves the cursor in a state where it cannot be 4851 ** advanced in either direction. In other words, the Next and Prev 4852 ** opcodes do not work after this operation. 4853 ** 4854 ** See also: Found, NotExists, NoConflict, IfNoHope 4855 */ 4856 /* Opcode: IfNoHope P1 P2 P3 P4 * 4857 ** Synopsis: key=r[P3@P4] 4858 ** 4859 ** Register P3 is the first of P4 registers that form an unpacked 4860 ** record. Cursor P1 is an index btree. P2 is a jump destination. 4861 ** In other words, the operands to this opcode are the same as the 4862 ** operands to OP_NotFound and OP_IdxGT. 4863 ** 4864 ** This opcode is an optimization attempt only. If this opcode always 4865 ** falls through, the correct answer is still obtained, but extra works 4866 ** is performed. 4867 ** 4868 ** A value of N in the seekHit flag of cursor P1 means that there exists 4869 ** a key P3:N that will match some record in the index. We want to know 4870 ** if it is possible for a record P3:P4 to match some record in the 4871 ** index. If it is not possible, we can skips some work. So if seekHit 4872 ** is less than P4, attempt to find out if a match is possible by running 4873 ** OP_NotFound. 4874 ** 4875 ** This opcode is used in IN clause processing for a multi-column key. 4876 ** If an IN clause is attached to an element of the key other than the 4877 ** left-most element, and if there are no matches on the most recent 4878 ** seek over the whole key, then it might be that one of the key element 4879 ** to the left is prohibiting a match, and hence there is "no hope" of 4880 ** any match regardless of how many IN clause elements are checked. 4881 ** In such a case, we abandon the IN clause search early, using this 4882 ** opcode. The opcode name comes from the fact that the 4883 ** jump is taken if there is "no hope" of achieving a match. 4884 ** 4885 ** See also: NotFound, SeekHit 4886 */ 4887 /* Opcode: NoConflict P1 P2 P3 P4 * 4888 ** Synopsis: key=r[P3@P4] 4889 ** 4890 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 4891 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 4892 ** record. 4893 ** 4894 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 4895 ** contains any NULL value, jump immediately to P2. If all terms of the 4896 ** record are not-NULL then a check is done to determine if any row in the 4897 ** P1 index btree has a matching key prefix. If there are no matches, jump 4898 ** immediately to P2. If there is a match, fall through and leave the P1 4899 ** cursor pointing to the matching row. 4900 ** 4901 ** This opcode is similar to OP_NotFound with the exceptions that the 4902 ** branch is always taken if any part of the search key input is NULL. 4903 ** 4904 ** This operation leaves the cursor in a state where it cannot be 4905 ** advanced in either direction. In other words, the Next and Prev 4906 ** opcodes do not work after this operation. 4907 ** 4908 ** See also: NotFound, Found, NotExists 4909 */ 4910 case OP_IfNoHope: { /* jump, in3 */ 4911 VdbeCursor *pC; 4912 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4913 pC = p->apCsr[pOp->p1]; 4914 assert( pC!=0 ); 4915 #ifdef SQLITE_DEBUG 4916 if( db->flags&SQLITE_VdbeTrace ){ 4917 printf("seekHit is %d\n", pC->seekHit); 4918 } 4919 #endif 4920 if( pC->seekHit>=pOp->p4.i ) break; 4921 /* Fall through into OP_NotFound */ 4922 /* no break */ deliberate_fall_through 4923 } 4924 case OP_NoConflict: /* jump, in3 */ 4925 case OP_NotFound: /* jump, in3 */ 4926 case OP_Found: { /* jump, in3 */ 4927 int alreadyExists; 4928 int takeJump; 4929 int ii; 4930 VdbeCursor *pC; 4931 int res; 4932 UnpackedRecord *pFree; 4933 UnpackedRecord *pIdxKey; 4934 UnpackedRecord r; 4935 4936 #ifdef SQLITE_TEST 4937 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 4938 #endif 4939 4940 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4941 assert( pOp->p4type==P4_INT32 ); 4942 pC = p->apCsr[pOp->p1]; 4943 assert( pC!=0 ); 4944 #ifdef SQLITE_DEBUG 4945 pC->seekOp = pOp->opcode; 4946 #endif 4947 pIn3 = &aMem[pOp->p3]; 4948 assert( pC->eCurType==CURTYPE_BTREE ); 4949 assert( pC->uc.pCursor!=0 ); 4950 assert( pC->isTable==0 ); 4951 if( pOp->p4.i>0 ){ 4952 r.pKeyInfo = pC->pKeyInfo; 4953 r.nField = (u16)pOp->p4.i; 4954 r.aMem = pIn3; 4955 #ifdef SQLITE_DEBUG 4956 for(ii=0; ii<r.nField; ii++){ 4957 assert( memIsValid(&r.aMem[ii]) ); 4958 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 4959 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 4960 } 4961 #endif 4962 pIdxKey = &r; 4963 pFree = 0; 4964 }else{ 4965 assert( pIn3->flags & MEM_Blob ); 4966 rc = ExpandBlob(pIn3); 4967 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 4968 if( rc ) goto no_mem; 4969 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 4970 if( pIdxKey==0 ) goto no_mem; 4971 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); 4972 } 4973 pIdxKey->default_rc = 0; 4974 takeJump = 0; 4975 if( pOp->opcode==OP_NoConflict ){ 4976 /* For the OP_NoConflict opcode, take the jump if any of the 4977 ** input fields are NULL, since any key with a NULL will not 4978 ** conflict */ 4979 for(ii=0; ii<pIdxKey->nField; ii++){ 4980 if( pIdxKey->aMem[ii].flags & MEM_Null ){ 4981 takeJump = 1; 4982 break; 4983 } 4984 } 4985 } 4986 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &res); 4987 if( pFree ) sqlite3DbFreeNN(db, pFree); 4988 if( rc!=SQLITE_OK ){ 4989 goto abort_due_to_error; 4990 } 4991 pC->seekResult = res; 4992 alreadyExists = (res==0); 4993 pC->nullRow = 1-alreadyExists; 4994 pC->deferredMoveto = 0; 4995 pC->cacheStatus = CACHE_STALE; 4996 if( pOp->opcode==OP_Found ){ 4997 VdbeBranchTaken(alreadyExists!=0,2); 4998 if( alreadyExists ) goto jump_to_p2; 4999 }else{ 5000 VdbeBranchTaken(takeJump||alreadyExists==0,2); 5001 if( takeJump || !alreadyExists ) goto jump_to_p2; 5002 if( pOp->opcode==OP_IfNoHope ) pC->seekHit = pOp->p4.i; 5003 } 5004 break; 5005 } 5006 5007 /* Opcode: SeekRowid P1 P2 P3 * * 5008 ** Synopsis: intkey=r[P3] 5009 ** 5010 ** P1 is the index of a cursor open on an SQL table btree (with integer 5011 ** keys). If register P3 does not contain an integer or if P1 does not 5012 ** contain a record with rowid P3 then jump immediately to P2. 5013 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 5014 ** a record with rowid P3 then 5015 ** leave the cursor pointing at that record and fall through to the next 5016 ** instruction. 5017 ** 5018 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 5019 ** the P3 register must be guaranteed to contain an integer value. With this 5020 ** opcode, register P3 might not contain an integer. 5021 ** 5022 ** The OP_NotFound opcode performs the same operation on index btrees 5023 ** (with arbitrary multi-value keys). 5024 ** 5025 ** This opcode leaves the cursor in a state where it cannot be advanced 5026 ** in either direction. In other words, the Next and Prev opcodes will 5027 ** not work following this opcode. 5028 ** 5029 ** See also: Found, NotFound, NoConflict, SeekRowid 5030 */ 5031 /* Opcode: NotExists P1 P2 P3 * * 5032 ** Synopsis: intkey=r[P3] 5033 ** 5034 ** P1 is the index of a cursor open on an SQL table btree (with integer 5035 ** keys). P3 is an integer rowid. If P1 does not contain a record with 5036 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 5037 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 5038 ** leave the cursor pointing at that record and fall through to the next 5039 ** instruction. 5040 ** 5041 ** The OP_SeekRowid opcode performs the same operation but also allows the 5042 ** P3 register to contain a non-integer value, in which case the jump is 5043 ** always taken. This opcode requires that P3 always contain an integer. 5044 ** 5045 ** The OP_NotFound opcode performs the same operation on index btrees 5046 ** (with arbitrary multi-value keys). 5047 ** 5048 ** This opcode leaves the cursor in a state where it cannot be advanced 5049 ** in either direction. In other words, the Next and Prev opcodes will 5050 ** not work following this opcode. 5051 ** 5052 ** See also: Found, NotFound, NoConflict, SeekRowid 5053 */ 5054 case OP_SeekRowid: { /* jump, in3 */ 5055 VdbeCursor *pC; 5056 BtCursor *pCrsr; 5057 int res; 5058 u64 iKey; 5059 5060 pIn3 = &aMem[pOp->p3]; 5061 testcase( pIn3->flags & MEM_Int ); 5062 testcase( pIn3->flags & MEM_IntReal ); 5063 testcase( pIn3->flags & MEM_Real ); 5064 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 5065 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 5066 /* If pIn3->u.i does not contain an integer, compute iKey as the 5067 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 5068 ** into an integer without loss of information. Take care to avoid 5069 ** changing the datatype of pIn3, however, as it is used by other 5070 ** parts of the prepared statement. */ 5071 Mem x = pIn3[0]; 5072 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 5073 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 5074 iKey = x.u.i; 5075 goto notExistsWithKey; 5076 } 5077 /* Fall through into OP_NotExists */ 5078 /* no break */ deliberate_fall_through 5079 case OP_NotExists: /* jump, in3 */ 5080 pIn3 = &aMem[pOp->p3]; 5081 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 5082 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5083 iKey = pIn3->u.i; 5084 notExistsWithKey: 5085 pC = p->apCsr[pOp->p1]; 5086 assert( pC!=0 ); 5087 #ifdef SQLITE_DEBUG 5088 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 5089 #endif 5090 assert( pC->isTable ); 5091 assert( pC->eCurType==CURTYPE_BTREE ); 5092 pCrsr = pC->uc.pCursor; 5093 assert( pCrsr!=0 ); 5094 res = 0; 5095 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 5096 assert( rc==SQLITE_OK || res==0 ); 5097 pC->movetoTarget = iKey; /* Used by OP_Delete */ 5098 pC->nullRow = 0; 5099 pC->cacheStatus = CACHE_STALE; 5100 pC->deferredMoveto = 0; 5101 VdbeBranchTaken(res!=0,2); 5102 pC->seekResult = res; 5103 if( res!=0 ){ 5104 assert( rc==SQLITE_OK ); 5105 if( pOp->p2==0 ){ 5106 rc = SQLITE_CORRUPT_BKPT; 5107 }else{ 5108 goto jump_to_p2; 5109 } 5110 } 5111 if( rc ) goto abort_due_to_error; 5112 break; 5113 } 5114 5115 /* Opcode: Sequence P1 P2 * * * 5116 ** Synopsis: r[P2]=cursor[P1].ctr++ 5117 ** 5118 ** Find the next available sequence number for cursor P1. 5119 ** Write the sequence number into register P2. 5120 ** The sequence number on the cursor is incremented after this 5121 ** instruction. 5122 */ 5123 case OP_Sequence: { /* out2 */ 5124 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5125 assert( p->apCsr[pOp->p1]!=0 ); 5126 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 5127 pOut = out2Prerelease(p, pOp); 5128 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 5129 break; 5130 } 5131 5132 5133 /* Opcode: NewRowid P1 P2 P3 * * 5134 ** Synopsis: r[P2]=rowid 5135 ** 5136 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 5137 ** The record number is not previously used as a key in the database 5138 ** table that cursor P1 points to. The new record number is written 5139 ** written to register P2. 5140 ** 5141 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 5142 ** the largest previously generated record number. No new record numbers are 5143 ** allowed to be less than this value. When this value reaches its maximum, 5144 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 5145 ** generated record number. This P3 mechanism is used to help implement the 5146 ** AUTOINCREMENT feature. 5147 */ 5148 case OP_NewRowid: { /* out2 */ 5149 i64 v; /* The new rowid */ 5150 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 5151 int res; /* Result of an sqlite3BtreeLast() */ 5152 int cnt; /* Counter to limit the number of searches */ 5153 #ifndef SQLITE_OMIT_AUTOINCREMENT 5154 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 5155 VdbeFrame *pFrame; /* Root frame of VDBE */ 5156 #endif 5157 5158 v = 0; 5159 res = 0; 5160 pOut = out2Prerelease(p, pOp); 5161 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5162 pC = p->apCsr[pOp->p1]; 5163 assert( pC!=0 ); 5164 assert( pC->isTable ); 5165 assert( pC->eCurType==CURTYPE_BTREE ); 5166 assert( pC->uc.pCursor!=0 ); 5167 { 5168 /* The next rowid or record number (different terms for the same 5169 ** thing) is obtained in a two-step algorithm. 5170 ** 5171 ** First we attempt to find the largest existing rowid and add one 5172 ** to that. But if the largest existing rowid is already the maximum 5173 ** positive integer, we have to fall through to the second 5174 ** probabilistic algorithm 5175 ** 5176 ** The second algorithm is to select a rowid at random and see if 5177 ** it already exists in the table. If it does not exist, we have 5178 ** succeeded. If the random rowid does exist, we select a new one 5179 ** and try again, up to 100 times. 5180 */ 5181 assert( pC->isTable ); 5182 5183 #ifdef SQLITE_32BIT_ROWID 5184 # define MAX_ROWID 0x7fffffff 5185 #else 5186 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 5187 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 5188 ** to provide the constant while making all compilers happy. 5189 */ 5190 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 5191 #endif 5192 5193 if( !pC->useRandomRowid ){ 5194 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 5195 if( rc!=SQLITE_OK ){ 5196 goto abort_due_to_error; 5197 } 5198 if( res ){ 5199 v = 1; /* IMP: R-61914-48074 */ 5200 }else{ 5201 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 5202 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5203 if( v>=MAX_ROWID ){ 5204 pC->useRandomRowid = 1; 5205 }else{ 5206 v++; /* IMP: R-29538-34987 */ 5207 } 5208 } 5209 } 5210 5211 #ifndef SQLITE_OMIT_AUTOINCREMENT 5212 if( pOp->p3 ){ 5213 /* Assert that P3 is a valid memory cell. */ 5214 assert( pOp->p3>0 ); 5215 if( p->pFrame ){ 5216 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5217 /* Assert that P3 is a valid memory cell. */ 5218 assert( pOp->p3<=pFrame->nMem ); 5219 pMem = &pFrame->aMem[pOp->p3]; 5220 }else{ 5221 /* Assert that P3 is a valid memory cell. */ 5222 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 5223 pMem = &aMem[pOp->p3]; 5224 memAboutToChange(p, pMem); 5225 } 5226 assert( memIsValid(pMem) ); 5227 5228 REGISTER_TRACE(pOp->p3, pMem); 5229 sqlite3VdbeMemIntegerify(pMem); 5230 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 5231 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 5232 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 5233 goto abort_due_to_error; 5234 } 5235 if( v<pMem->u.i+1 ){ 5236 v = pMem->u.i + 1; 5237 } 5238 pMem->u.i = v; 5239 } 5240 #endif 5241 if( pC->useRandomRowid ){ 5242 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 5243 ** largest possible integer (9223372036854775807) then the database 5244 ** engine starts picking positive candidate ROWIDs at random until 5245 ** it finds one that is not previously used. */ 5246 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 5247 ** an AUTOINCREMENT table. */ 5248 cnt = 0; 5249 do{ 5250 sqlite3_randomness(sizeof(v), &v); 5251 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 5252 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 5253 0, &res))==SQLITE_OK) 5254 && (res==0) 5255 && (++cnt<100)); 5256 if( rc ) goto abort_due_to_error; 5257 if( res==0 ){ 5258 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 5259 goto abort_due_to_error; 5260 } 5261 assert( v>0 ); /* EV: R-40812-03570 */ 5262 } 5263 pC->deferredMoveto = 0; 5264 pC->cacheStatus = CACHE_STALE; 5265 } 5266 pOut->u.i = v; 5267 break; 5268 } 5269 5270 /* Opcode: Insert P1 P2 P3 P4 P5 5271 ** Synopsis: intkey=r[P3] data=r[P2] 5272 ** 5273 ** Write an entry into the table of cursor P1. A new entry is 5274 ** created if it doesn't already exist or the data for an existing 5275 ** entry is overwritten. The data is the value MEM_Blob stored in register 5276 ** number P2. The key is stored in register P3. The key must 5277 ** be a MEM_Int. 5278 ** 5279 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 5280 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 5281 ** then rowid is stored for subsequent return by the 5282 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 5283 ** 5284 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 5285 ** run faster by avoiding an unnecessary seek on cursor P1. However, 5286 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 5287 ** seeks on the cursor or if the most recent seek used a key equal to P3. 5288 ** 5289 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 5290 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 5291 ** is part of an INSERT operation. The difference is only important to 5292 ** the update hook. 5293 ** 5294 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 5295 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 5296 ** following a successful insert. 5297 ** 5298 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 5299 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 5300 ** and register P2 becomes ephemeral. If the cursor is changed, the 5301 ** value of register P2 will then change. Make sure this does not 5302 ** cause any problems.) 5303 ** 5304 ** This instruction only works on tables. The equivalent instruction 5305 ** for indices is OP_IdxInsert. 5306 */ 5307 case OP_Insert: { 5308 Mem *pData; /* MEM cell holding data for the record to be inserted */ 5309 Mem *pKey; /* MEM cell holding key for the record */ 5310 VdbeCursor *pC; /* Cursor to table into which insert is written */ 5311 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 5312 const char *zDb; /* database name - used by the update hook */ 5313 Table *pTab; /* Table structure - used by update and pre-update hooks */ 5314 BtreePayload x; /* Payload to be inserted */ 5315 5316 pData = &aMem[pOp->p2]; 5317 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5318 assert( memIsValid(pData) ); 5319 pC = p->apCsr[pOp->p1]; 5320 assert( pC!=0 ); 5321 assert( pC->eCurType==CURTYPE_BTREE ); 5322 assert( pC->deferredMoveto==0 ); 5323 assert( pC->uc.pCursor!=0 ); 5324 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 5325 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 5326 REGISTER_TRACE(pOp->p2, pData); 5327 sqlite3VdbeIncrWriteCounter(p, pC); 5328 5329 pKey = &aMem[pOp->p3]; 5330 assert( pKey->flags & MEM_Int ); 5331 assert( memIsValid(pKey) ); 5332 REGISTER_TRACE(pOp->p3, pKey); 5333 x.nKey = pKey->u.i; 5334 5335 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5336 assert( pC->iDb>=0 ); 5337 zDb = db->aDb[pC->iDb].zDbSName; 5338 pTab = pOp->p4.pTab; 5339 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 5340 }else{ 5341 pTab = 0; 5342 zDb = 0; 5343 } 5344 5345 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5346 /* Invoke the pre-update hook, if any */ 5347 if( pTab ){ 5348 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 5349 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 5350 } 5351 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 5352 /* Prevent post-update hook from running in cases when it should not */ 5353 pTab = 0; 5354 } 5355 } 5356 if( pOp->p5 & OPFLAG_ISNOOP ) break; 5357 #endif 5358 5359 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 5360 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 5361 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 5362 x.pData = pData->z; 5363 x.nData = pData->n; 5364 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 5365 if( pData->flags & MEM_Zero ){ 5366 x.nZero = pData->u.nZero; 5367 }else{ 5368 x.nZero = 0; 5369 } 5370 x.pKey = 0; 5371 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 5372 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 5373 seekResult 5374 ); 5375 pC->deferredMoveto = 0; 5376 pC->cacheStatus = CACHE_STALE; 5377 5378 /* Invoke the update-hook if required. */ 5379 if( rc ) goto abort_due_to_error; 5380 if( pTab ){ 5381 assert( db->xUpdateCallback!=0 ); 5382 assert( pTab->aCol!=0 ); 5383 db->xUpdateCallback(db->pUpdateArg, 5384 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 5385 zDb, pTab->zName, x.nKey); 5386 } 5387 break; 5388 } 5389 5390 /* Opcode: RowCell P1 P2 P3 * * 5391 ** 5392 ** P1 and P2 are both open cursors. Both must be opened on the same type 5393 ** of table - intkey or index. This opcode is used as part of copying 5394 ** the current row from P2 into P1. If the cursors are opened on intkey 5395 ** tables, register P3 contains the rowid to use with the new record in 5396 ** P1. If they are opened on index tables, P3 is not used. 5397 ** 5398 ** This opcode must be followed by either an Insert or InsertIdx opcode 5399 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 5400 */ 5401 case OP_RowCell: { 5402 VdbeCursor *pDest; /* Cursor to write to */ 5403 VdbeCursor *pSrc; /* Cursor to read from */ 5404 i64 iKey; /* Rowid value to insert with */ 5405 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 5406 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 5407 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 5408 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 5409 pDest = p->apCsr[pOp->p1]; 5410 pSrc = p->apCsr[pOp->p2]; 5411 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 5412 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 5413 if( rc!=SQLITE_OK ) goto abort_due_to_error; 5414 break; 5415 }; 5416 5417 /* Opcode: Delete P1 P2 P3 P4 P5 5418 ** 5419 ** Delete the record at which the P1 cursor is currently pointing. 5420 ** 5421 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 5422 ** the cursor will be left pointing at either the next or the previous 5423 ** record in the table. If it is left pointing at the next record, then 5424 ** the next Next instruction will be a no-op. As a result, in this case 5425 ** it is ok to delete a record from within a Next loop. If 5426 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 5427 ** left in an undefined state. 5428 ** 5429 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 5430 ** delete one of several associated with deleting a table row and all its 5431 ** associated index entries. Exactly one of those deletes is the "primary" 5432 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are 5433 ** marked with the AUXDELETE flag. 5434 ** 5435 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row 5436 ** change count is incremented (otherwise not). 5437 ** 5438 ** P1 must not be pseudo-table. It has to be a real table with 5439 ** multiple rows. 5440 ** 5441 ** If P4 is not NULL then it points to a Table object. In this case either 5442 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 5443 ** have been positioned using OP_NotFound prior to invoking this opcode in 5444 ** this case. Specifically, if one is configured, the pre-update hook is 5445 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 5446 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 5447 ** 5448 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 5449 ** of the memory cell that contains the value that the rowid of the row will 5450 ** be set to by the update. 5451 */ 5452 case OP_Delete: { 5453 VdbeCursor *pC; 5454 const char *zDb; 5455 Table *pTab; 5456 int opflags; 5457 5458 opflags = pOp->p2; 5459 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5460 pC = p->apCsr[pOp->p1]; 5461 assert( pC!=0 ); 5462 assert( pC->eCurType==CURTYPE_BTREE ); 5463 assert( pC->uc.pCursor!=0 ); 5464 assert( pC->deferredMoveto==0 ); 5465 sqlite3VdbeIncrWriteCounter(p, pC); 5466 5467 #ifdef SQLITE_DEBUG 5468 if( pOp->p4type==P4_TABLE 5469 && HasRowid(pOp->p4.pTab) 5470 && pOp->p5==0 5471 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 5472 ){ 5473 /* If p5 is zero, the seek operation that positioned the cursor prior to 5474 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 5475 ** the row that is being deleted */ 5476 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5477 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 5478 } 5479 #endif 5480 5481 /* If the update-hook or pre-update-hook will be invoked, set zDb to 5482 ** the name of the db to pass as to it. Also set local pTab to a copy 5483 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 5484 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 5485 ** VdbeCursor.movetoTarget to the current rowid. */ 5486 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 5487 assert( pC->iDb>=0 ); 5488 assert( pOp->p4.pTab!=0 ); 5489 zDb = db->aDb[pC->iDb].zDbSName; 5490 pTab = pOp->p4.pTab; 5491 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 5492 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5493 } 5494 }else{ 5495 zDb = 0; 5496 pTab = 0; 5497 } 5498 5499 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 5500 /* Invoke the pre-update-hook if required. */ 5501 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 5502 if( db->xPreUpdateCallback && pTab ){ 5503 assert( !(opflags & OPFLAG_ISUPDATE) 5504 || HasRowid(pTab)==0 5505 || (aMem[pOp->p3].flags & MEM_Int) 5506 ); 5507 sqlite3VdbePreUpdateHook(p, pC, 5508 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 5509 zDb, pTab, pC->movetoTarget, 5510 pOp->p3, -1 5511 ); 5512 } 5513 if( opflags & OPFLAG_ISNOOP ) break; 5514 #endif 5515 5516 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 5517 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 5518 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 5519 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 5520 5521 #ifdef SQLITE_DEBUG 5522 if( p->pFrame==0 ){ 5523 if( pC->isEphemeral==0 5524 && (pOp->p5 & OPFLAG_AUXDELETE)==0 5525 && (pC->wrFlag & OPFLAG_FORDELETE)==0 5526 ){ 5527 nExtraDelete++; 5528 } 5529 if( pOp->p2 & OPFLAG_NCHANGE ){ 5530 nExtraDelete--; 5531 } 5532 } 5533 #endif 5534 5535 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 5536 pC->cacheStatus = CACHE_STALE; 5537 pC->seekResult = 0; 5538 if( rc ) goto abort_due_to_error; 5539 5540 /* Invoke the update-hook if required. */ 5541 if( opflags & OPFLAG_NCHANGE ){ 5542 p->nChange++; 5543 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 5544 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 5545 pC->movetoTarget); 5546 assert( pC->iDb>=0 ); 5547 } 5548 } 5549 5550 break; 5551 } 5552 /* Opcode: ResetCount * * * * * 5553 ** 5554 ** The value of the change counter is copied to the database handle 5555 ** change counter (returned by subsequent calls to sqlite3_changes()). 5556 ** Then the VMs internal change counter resets to 0. 5557 ** This is used by trigger programs. 5558 */ 5559 case OP_ResetCount: { 5560 sqlite3VdbeSetChanges(db, p->nChange); 5561 p->nChange = 0; 5562 break; 5563 } 5564 5565 /* Opcode: SorterCompare P1 P2 P3 P4 5566 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 5567 ** 5568 ** P1 is a sorter cursor. This instruction compares a prefix of the 5569 ** record blob in register P3 against a prefix of the entry that 5570 ** the sorter cursor currently points to. Only the first P4 fields 5571 ** of r[P3] and the sorter record are compared. 5572 ** 5573 ** If either P3 or the sorter contains a NULL in one of their significant 5574 ** fields (not counting the P4 fields at the end which are ignored) then 5575 ** the comparison is assumed to be equal. 5576 ** 5577 ** Fall through to next instruction if the two records compare equal to 5578 ** each other. Jump to P2 if they are different. 5579 */ 5580 case OP_SorterCompare: { 5581 VdbeCursor *pC; 5582 int res; 5583 int nKeyCol; 5584 5585 pC = p->apCsr[pOp->p1]; 5586 assert( isSorter(pC) ); 5587 assert( pOp->p4type==P4_INT32 ); 5588 pIn3 = &aMem[pOp->p3]; 5589 nKeyCol = pOp->p4.i; 5590 res = 0; 5591 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 5592 VdbeBranchTaken(res!=0,2); 5593 if( rc ) goto abort_due_to_error; 5594 if( res ) goto jump_to_p2; 5595 break; 5596 }; 5597 5598 /* Opcode: SorterData P1 P2 P3 * * 5599 ** Synopsis: r[P2]=data 5600 ** 5601 ** Write into register P2 the current sorter data for sorter cursor P1. 5602 ** Then clear the column header cache on cursor P3. 5603 ** 5604 ** This opcode is normally use to move a record out of the sorter and into 5605 ** a register that is the source for a pseudo-table cursor created using 5606 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 5607 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 5608 ** us from having to issue a separate NullRow instruction to clear that cache. 5609 */ 5610 case OP_SorterData: { 5611 VdbeCursor *pC; 5612 5613 pOut = &aMem[pOp->p2]; 5614 pC = p->apCsr[pOp->p1]; 5615 assert( isSorter(pC) ); 5616 rc = sqlite3VdbeSorterRowkey(pC, pOut); 5617 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 5618 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5619 if( rc ) goto abort_due_to_error; 5620 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 5621 break; 5622 } 5623 5624 /* Opcode: RowData P1 P2 P3 * * 5625 ** Synopsis: r[P2]=data 5626 ** 5627 ** Write into register P2 the complete row content for the row at 5628 ** which cursor P1 is currently pointing. 5629 ** There is no interpretation of the data. 5630 ** It is just copied onto the P2 register exactly as 5631 ** it is found in the database file. 5632 ** 5633 ** If cursor P1 is an index, then the content is the key of the row. 5634 ** If cursor P2 is a table, then the content extracted is the data. 5635 ** 5636 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 5637 ** of a real table, not a pseudo-table. 5638 ** 5639 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 5640 ** into the database page. That means that the content of the output 5641 ** register will be invalidated as soon as the cursor moves - including 5642 ** moves caused by other cursors that "save" the current cursors 5643 ** position in order that they can write to the same table. If P3==0 5644 ** then a copy of the data is made into memory. P3!=0 is faster, but 5645 ** P3==0 is safer. 5646 ** 5647 ** If P3!=0 then the content of the P2 register is unsuitable for use 5648 ** in OP_Result and any OP_Result will invalidate the P2 register content. 5649 ** The P2 register content is invalidated by opcodes like OP_Function or 5650 ** by any use of another cursor pointing to the same table. 5651 */ 5652 case OP_RowData: { 5653 VdbeCursor *pC; 5654 BtCursor *pCrsr; 5655 u32 n; 5656 5657 pOut = out2Prerelease(p, pOp); 5658 5659 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5660 pC = p->apCsr[pOp->p1]; 5661 assert( pC!=0 ); 5662 assert( pC->eCurType==CURTYPE_BTREE ); 5663 assert( isSorter(pC)==0 ); 5664 assert( pC->nullRow==0 ); 5665 assert( pC->uc.pCursor!=0 ); 5666 pCrsr = pC->uc.pCursor; 5667 5668 /* The OP_RowData opcodes always follow OP_NotExists or 5669 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 5670 ** that might invalidate the cursor. 5671 ** If this where not the case, on of the following assert()s 5672 ** would fail. Should this ever change (because of changes in the code 5673 ** generator) then the fix would be to insert a call to 5674 ** sqlite3VdbeCursorMoveto(). 5675 */ 5676 assert( pC->deferredMoveto==0 ); 5677 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 5678 5679 n = sqlite3BtreePayloadSize(pCrsr); 5680 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 5681 goto too_big; 5682 } 5683 testcase( n==0 ); 5684 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 5685 if( rc ) goto abort_due_to_error; 5686 if( !pOp->p3 ) Deephemeralize(pOut); 5687 UPDATE_MAX_BLOBSIZE(pOut); 5688 REGISTER_TRACE(pOp->p2, pOut); 5689 break; 5690 } 5691 5692 /* Opcode: Rowid P1 P2 * * * 5693 ** Synopsis: r[P2]=rowid 5694 ** 5695 ** Store in register P2 an integer which is the key of the table entry that 5696 ** P1 is currently point to. 5697 ** 5698 ** P1 can be either an ordinary table or a virtual table. There used to 5699 ** be a separate OP_VRowid opcode for use with virtual tables, but this 5700 ** one opcode now works for both table types. 5701 */ 5702 case OP_Rowid: { /* out2 */ 5703 VdbeCursor *pC; 5704 i64 v; 5705 sqlite3_vtab *pVtab; 5706 const sqlite3_module *pModule; 5707 5708 pOut = out2Prerelease(p, pOp); 5709 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5710 pC = p->apCsr[pOp->p1]; 5711 assert( pC!=0 ); 5712 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 5713 if( pC->nullRow ){ 5714 pOut->flags = MEM_Null; 5715 break; 5716 }else if( pC->deferredMoveto ){ 5717 v = pC->movetoTarget; 5718 #ifndef SQLITE_OMIT_VIRTUALTABLE 5719 }else if( pC->eCurType==CURTYPE_VTAB ){ 5720 assert( pC->uc.pVCur!=0 ); 5721 pVtab = pC->uc.pVCur->pVtab; 5722 pModule = pVtab->pModule; 5723 assert( pModule->xRowid ); 5724 rc = pModule->xRowid(pC->uc.pVCur, &v); 5725 sqlite3VtabImportErrmsg(p, pVtab); 5726 if( rc ) goto abort_due_to_error; 5727 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5728 }else{ 5729 assert( pC->eCurType==CURTYPE_BTREE ); 5730 assert( pC->uc.pCursor!=0 ); 5731 rc = sqlite3VdbeCursorRestore(pC); 5732 if( rc ) goto abort_due_to_error; 5733 if( pC->nullRow ){ 5734 pOut->flags = MEM_Null; 5735 break; 5736 } 5737 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 5738 } 5739 pOut->u.i = v; 5740 break; 5741 } 5742 5743 /* Opcode: NullRow P1 * * * * 5744 ** 5745 ** Move the cursor P1 to a null row. Any OP_Column operations 5746 ** that occur while the cursor is on the null row will always 5747 ** write a NULL. 5748 ** 5749 ** Or, if P1 is a Pseudo-Cursor (a cursor opened using OP_OpenPseudo) 5750 ** just reset the cache for that cursor. This causes the row of 5751 ** content held by the pseudo-cursor to be reparsed. 5752 */ 5753 case OP_NullRow: { 5754 VdbeCursor *pC; 5755 5756 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5757 pC = p->apCsr[pOp->p1]; 5758 assert( pC!=0 ); 5759 pC->nullRow = 1; 5760 pC->cacheStatus = CACHE_STALE; 5761 if( pC->eCurType==CURTYPE_BTREE ){ 5762 assert( pC->uc.pCursor!=0 ); 5763 sqlite3BtreeClearCursor(pC->uc.pCursor); 5764 } 5765 #ifdef SQLITE_DEBUG 5766 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 5767 #endif 5768 break; 5769 } 5770 5771 /* Opcode: SeekEnd P1 * * * * 5772 ** 5773 ** Position cursor P1 at the end of the btree for the purpose of 5774 ** appending a new entry onto the btree. 5775 ** 5776 ** It is assumed that the cursor is used only for appending and so 5777 ** if the cursor is valid, then the cursor must already be pointing 5778 ** at the end of the btree and so no changes are made to 5779 ** the cursor. 5780 */ 5781 /* Opcode: Last P1 P2 * * * 5782 ** 5783 ** The next use of the Rowid or Column or Prev instruction for P1 5784 ** will refer to the last entry in the database table or index. 5785 ** If the table or index is empty and P2>0, then jump immediately to P2. 5786 ** If P2 is 0 or if the table or index is not empty, fall through 5787 ** to the following instruction. 5788 ** 5789 ** This opcode leaves the cursor configured to move in reverse order, 5790 ** from the end toward the beginning. In other words, the cursor is 5791 ** configured to use Prev, not Next. 5792 */ 5793 case OP_SeekEnd: 5794 case OP_Last: { /* jump */ 5795 VdbeCursor *pC; 5796 BtCursor *pCrsr; 5797 int res; 5798 5799 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5800 pC = p->apCsr[pOp->p1]; 5801 assert( pC!=0 ); 5802 assert( pC->eCurType==CURTYPE_BTREE ); 5803 pCrsr = pC->uc.pCursor; 5804 res = 0; 5805 assert( pCrsr!=0 ); 5806 #ifdef SQLITE_DEBUG 5807 pC->seekOp = pOp->opcode; 5808 #endif 5809 if( pOp->opcode==OP_SeekEnd ){ 5810 assert( pOp->p2==0 ); 5811 pC->seekResult = -1; 5812 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 5813 break; 5814 } 5815 } 5816 rc = sqlite3BtreeLast(pCrsr, &res); 5817 pC->nullRow = (u8)res; 5818 pC->deferredMoveto = 0; 5819 pC->cacheStatus = CACHE_STALE; 5820 if( rc ) goto abort_due_to_error; 5821 if( pOp->p2>0 ){ 5822 VdbeBranchTaken(res!=0,2); 5823 if( res ) goto jump_to_p2; 5824 } 5825 break; 5826 } 5827 5828 /* Opcode: IfSmaller P1 P2 P3 * * 5829 ** 5830 ** Estimate the number of rows in the table P1. Jump to P2 if that 5831 ** estimate is less than approximately 2**(0.1*P3). 5832 */ 5833 case OP_IfSmaller: { /* jump */ 5834 VdbeCursor *pC; 5835 BtCursor *pCrsr; 5836 int res; 5837 i64 sz; 5838 5839 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5840 pC = p->apCsr[pOp->p1]; 5841 assert( pC!=0 ); 5842 pCrsr = pC->uc.pCursor; 5843 assert( pCrsr ); 5844 rc = sqlite3BtreeFirst(pCrsr, &res); 5845 if( rc ) goto abort_due_to_error; 5846 if( res==0 ){ 5847 sz = sqlite3BtreeRowCountEst(pCrsr); 5848 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1; 5849 } 5850 VdbeBranchTaken(res!=0,2); 5851 if( res ) goto jump_to_p2; 5852 break; 5853 } 5854 5855 5856 /* Opcode: SorterSort P1 P2 * * * 5857 ** 5858 ** After all records have been inserted into the Sorter object 5859 ** identified by P1, invoke this opcode to actually do the sorting. 5860 ** Jump to P2 if there are no records to be sorted. 5861 ** 5862 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 5863 ** for Sorter objects. 5864 */ 5865 /* Opcode: Sort P1 P2 * * * 5866 ** 5867 ** This opcode does exactly the same thing as OP_Rewind except that 5868 ** it increments an undocumented global variable used for testing. 5869 ** 5870 ** Sorting is accomplished by writing records into a sorting index, 5871 ** then rewinding that index and playing it back from beginning to 5872 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 5873 ** rewinding so that the global variable will be incremented and 5874 ** regression tests can determine whether or not the optimizer is 5875 ** correctly optimizing out sorts. 5876 */ 5877 case OP_SorterSort: /* jump */ 5878 case OP_Sort: { /* jump */ 5879 #ifdef SQLITE_TEST 5880 sqlite3_sort_count++; 5881 sqlite3_search_count--; 5882 #endif 5883 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 5884 /* Fall through into OP_Rewind */ 5885 /* no break */ deliberate_fall_through 5886 } 5887 /* Opcode: Rewind P1 P2 * * * 5888 ** 5889 ** The next use of the Rowid or Column or Next instruction for P1 5890 ** will refer to the first entry in the database table or index. 5891 ** If the table or index is empty, jump immediately to P2. 5892 ** If the table or index is not empty, fall through to the following 5893 ** instruction. 5894 ** 5895 ** This opcode leaves the cursor configured to move in forward order, 5896 ** from the beginning toward the end. In other words, the cursor is 5897 ** configured to use Next, not Prev. 5898 */ 5899 case OP_Rewind: { /* jump */ 5900 VdbeCursor *pC; 5901 BtCursor *pCrsr; 5902 int res; 5903 5904 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5905 assert( pOp->p5==0 ); 5906 pC = p->apCsr[pOp->p1]; 5907 assert( pC!=0 ); 5908 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 5909 res = 1; 5910 #ifdef SQLITE_DEBUG 5911 pC->seekOp = OP_Rewind; 5912 #endif 5913 if( isSorter(pC) ){ 5914 rc = sqlite3VdbeSorterRewind(pC, &res); 5915 }else{ 5916 assert( pC->eCurType==CURTYPE_BTREE ); 5917 pCrsr = pC->uc.pCursor; 5918 assert( pCrsr ); 5919 rc = sqlite3BtreeFirst(pCrsr, &res); 5920 pC->deferredMoveto = 0; 5921 pC->cacheStatus = CACHE_STALE; 5922 } 5923 if( rc ) goto abort_due_to_error; 5924 pC->nullRow = (u8)res; 5925 assert( pOp->p2>0 && pOp->p2<p->nOp ); 5926 VdbeBranchTaken(res!=0,2); 5927 if( res ) goto jump_to_p2; 5928 break; 5929 } 5930 5931 /* Opcode: Next P1 P2 P3 * P5 5932 ** 5933 ** Advance cursor P1 so that it points to the next key/data pair in its 5934 ** table or index. If there are no more key/value pairs then fall through 5935 ** to the following instruction. But if the cursor advance was successful, 5936 ** jump immediately to P2. 5937 ** 5938 ** The Next opcode is only valid following an SeekGT, SeekGE, or 5939 ** OP_Rewind opcode used to position the cursor. Next is not allowed 5940 ** to follow SeekLT, SeekLE, or OP_Last. 5941 ** 5942 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 5943 ** been opened prior to this opcode or the program will segfault. 5944 ** 5945 ** The P3 value is a hint to the btree implementation. If P3==1, that 5946 ** means P1 is an SQL index and that this instruction could have been 5947 ** omitted if that index had been unique. P3 is usually 0. P3 is 5948 ** always either 0 or 1. 5949 ** 5950 ** If P5 is positive and the jump is taken, then event counter 5951 ** number P5-1 in the prepared statement is incremented. 5952 ** 5953 ** See also: Prev 5954 */ 5955 /* Opcode: Prev P1 P2 P3 * P5 5956 ** 5957 ** Back up cursor P1 so that it points to the previous key/data pair in its 5958 ** table or index. If there is no previous key/value pairs then fall through 5959 ** to the following instruction. But if the cursor backup was successful, 5960 ** jump immediately to P2. 5961 ** 5962 ** 5963 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 5964 ** OP_Last opcode used to position the cursor. Prev is not allowed 5965 ** to follow SeekGT, SeekGE, or OP_Rewind. 5966 ** 5967 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 5968 ** not open then the behavior is undefined. 5969 ** 5970 ** The P3 value is a hint to the btree implementation. If P3==1, that 5971 ** means P1 is an SQL index and that this instruction could have been 5972 ** omitted if that index had been unique. P3 is usually 0. P3 is 5973 ** always either 0 or 1. 5974 ** 5975 ** If P5 is positive and the jump is taken, then event counter 5976 ** number P5-1 in the prepared statement is incremented. 5977 */ 5978 /* Opcode: SorterNext P1 P2 * * P5 5979 ** 5980 ** This opcode works just like OP_Next except that P1 must be a 5981 ** sorter object for which the OP_SorterSort opcode has been 5982 ** invoked. This opcode advances the cursor to the next sorted 5983 ** record, or jumps to P2 if there are no more sorted records. 5984 */ 5985 case OP_SorterNext: { /* jump */ 5986 VdbeCursor *pC; 5987 5988 pC = p->apCsr[pOp->p1]; 5989 assert( isSorter(pC) ); 5990 rc = sqlite3VdbeSorterNext(db, pC); 5991 goto next_tail; 5992 5993 case OP_Prev: /* jump */ 5994 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 5995 assert( pOp->p5<ArraySize(p->aCounter) ); 5996 pC = p->apCsr[pOp->p1]; 5997 assert( pC!=0 ); 5998 assert( pC->deferredMoveto==0 ); 5999 assert( pC->eCurType==CURTYPE_BTREE ); 6000 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 6001 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 6002 || pC->seekOp==OP_NullRow); 6003 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 6004 goto next_tail; 6005 6006 case OP_Next: /* jump */ 6007 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6008 assert( pOp->p5<ArraySize(p->aCounter) ); 6009 pC = p->apCsr[pOp->p1]; 6010 assert( pC!=0 ); 6011 assert( pC->deferredMoveto==0 ); 6012 assert( pC->eCurType==CURTYPE_BTREE ); 6013 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 6014 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 6015 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 6016 || pC->seekOp==OP_IfNoHope); 6017 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 6018 6019 next_tail: 6020 pC->cacheStatus = CACHE_STALE; 6021 VdbeBranchTaken(rc==SQLITE_OK,2); 6022 if( rc==SQLITE_OK ){ 6023 pC->nullRow = 0; 6024 p->aCounter[pOp->p5]++; 6025 #ifdef SQLITE_TEST 6026 sqlite3_search_count++; 6027 #endif 6028 goto jump_to_p2_and_check_for_interrupt; 6029 } 6030 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 6031 rc = SQLITE_OK; 6032 pC->nullRow = 1; 6033 goto check_for_interrupt; 6034 } 6035 6036 /* Opcode: IdxInsert P1 P2 P3 P4 P5 6037 ** Synopsis: key=r[P2] 6038 ** 6039 ** Register P2 holds an SQL index key made using the 6040 ** MakeRecord instructions. This opcode writes that key 6041 ** into the index P1. Data for the entry is nil. 6042 ** 6043 ** If P4 is not zero, then it is the number of values in the unpacked 6044 ** key of reg(P2). In that case, P3 is the index of the first register 6045 ** for the unpacked key. The availability of the unpacked key can sometimes 6046 ** be an optimization. 6047 ** 6048 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 6049 ** that this insert is likely to be an append. 6050 ** 6051 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 6052 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 6053 ** then the change counter is unchanged. 6054 ** 6055 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 6056 ** run faster by avoiding an unnecessary seek on cursor P1. However, 6057 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 6058 ** seeks on the cursor or if the most recent seek used a key equivalent 6059 ** to P2. 6060 ** 6061 ** This instruction only works for indices. The equivalent instruction 6062 ** for tables is OP_Insert. 6063 */ 6064 case OP_IdxInsert: { /* in2 */ 6065 VdbeCursor *pC; 6066 BtreePayload x; 6067 6068 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6069 pC = p->apCsr[pOp->p1]; 6070 sqlite3VdbeIncrWriteCounter(p, pC); 6071 assert( pC!=0 ); 6072 assert( !isSorter(pC) ); 6073 pIn2 = &aMem[pOp->p2]; 6074 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 6075 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 6076 assert( pC->eCurType==CURTYPE_BTREE ); 6077 assert( pC->isTable==0 ); 6078 rc = ExpandBlob(pIn2); 6079 if( rc ) goto abort_due_to_error; 6080 x.nKey = pIn2->n; 6081 x.pKey = pIn2->z; 6082 x.aMem = aMem + pOp->p3; 6083 x.nMem = (u16)pOp->p4.i; 6084 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 6085 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 6086 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 6087 ); 6088 assert( pC->deferredMoveto==0 ); 6089 pC->cacheStatus = CACHE_STALE; 6090 if( rc) goto abort_due_to_error; 6091 break; 6092 } 6093 6094 /* Opcode: SorterInsert P1 P2 * * * 6095 ** Synopsis: key=r[P2] 6096 ** 6097 ** Register P2 holds an SQL index key made using the 6098 ** MakeRecord instructions. This opcode writes that key 6099 ** into the sorter P1. Data for the entry is nil. 6100 */ 6101 case OP_SorterInsert: { /* in2 */ 6102 VdbeCursor *pC; 6103 6104 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6105 pC = p->apCsr[pOp->p1]; 6106 sqlite3VdbeIncrWriteCounter(p, pC); 6107 assert( pC!=0 ); 6108 assert( isSorter(pC) ); 6109 pIn2 = &aMem[pOp->p2]; 6110 assert( pIn2->flags & MEM_Blob ); 6111 assert( pC->isTable==0 ); 6112 rc = ExpandBlob(pIn2); 6113 if( rc ) goto abort_due_to_error; 6114 rc = sqlite3VdbeSorterWrite(pC, pIn2); 6115 if( rc) goto abort_due_to_error; 6116 break; 6117 } 6118 6119 /* Opcode: IdxDelete P1 P2 P3 * P5 6120 ** Synopsis: key=r[P2@P3] 6121 ** 6122 ** The content of P3 registers starting at register P2 form 6123 ** an unpacked index key. This opcode removes that entry from the 6124 ** index opened by cursor P1. 6125 ** 6126 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 6127 ** if no matching index entry is found. This happens when running 6128 ** an UPDATE or DELETE statement and the index entry to be updated 6129 ** or deleted is not found. For some uses of IdxDelete 6130 ** (example: the EXCEPT operator) it does not matter that no matching 6131 ** entry is found. For those cases, P5 is zero. Also, do not raise 6132 ** this (self-correcting and non-critical) error if in writable_schema mode. 6133 */ 6134 case OP_IdxDelete: { 6135 VdbeCursor *pC; 6136 BtCursor *pCrsr; 6137 int res; 6138 UnpackedRecord r; 6139 6140 assert( pOp->p3>0 ); 6141 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 6142 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6143 pC = p->apCsr[pOp->p1]; 6144 assert( pC!=0 ); 6145 assert( pC->eCurType==CURTYPE_BTREE ); 6146 sqlite3VdbeIncrWriteCounter(p, pC); 6147 pCrsr = pC->uc.pCursor; 6148 assert( pCrsr!=0 ); 6149 r.pKeyInfo = pC->pKeyInfo; 6150 r.nField = (u16)pOp->p3; 6151 r.default_rc = 0; 6152 r.aMem = &aMem[pOp->p2]; 6153 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 6154 if( rc ) goto abort_due_to_error; 6155 if( res==0 ){ 6156 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 6157 if( rc ) goto abort_due_to_error; 6158 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 6159 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 6160 goto abort_due_to_error; 6161 } 6162 assert( pC->deferredMoveto==0 ); 6163 pC->cacheStatus = CACHE_STALE; 6164 pC->seekResult = 0; 6165 break; 6166 } 6167 6168 /* Opcode: DeferredSeek P1 * P3 P4 * 6169 ** Synopsis: Move P3 to P1.rowid if needed 6170 ** 6171 ** P1 is an open index cursor and P3 is a cursor on the corresponding 6172 ** table. This opcode does a deferred seek of the P3 table cursor 6173 ** to the row that corresponds to the current row of P1. 6174 ** 6175 ** This is a deferred seek. Nothing actually happens until 6176 ** the cursor is used to read a record. That way, if no reads 6177 ** occur, no unnecessary I/O happens. 6178 ** 6179 ** P4 may be an array of integers (type P4_INTARRAY) containing 6180 ** one entry for each column in the P3 table. If array entry a(i) 6181 ** is non-zero, then reading column a(i)-1 from cursor P3 is 6182 ** equivalent to performing the deferred seek and then reading column i 6183 ** from P1. This information is stored in P3 and used to redirect 6184 ** reads against P3 over to P1, thus possibly avoiding the need to 6185 ** seek and read cursor P3. 6186 */ 6187 /* Opcode: IdxRowid P1 P2 * * * 6188 ** Synopsis: r[P2]=rowid 6189 ** 6190 ** Write into register P2 an integer which is the last entry in the record at 6191 ** the end of the index key pointed to by cursor P1. This integer should be 6192 ** the rowid of the table entry to which this index entry points. 6193 ** 6194 ** See also: Rowid, MakeRecord. 6195 */ 6196 case OP_DeferredSeek: 6197 case OP_IdxRowid: { /* out2 */ 6198 VdbeCursor *pC; /* The P1 index cursor */ 6199 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 6200 i64 rowid; /* Rowid that P1 current points to */ 6201 6202 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6203 pC = p->apCsr[pOp->p1]; 6204 assert( pC!=0 ); 6205 assert( pC->eCurType==CURTYPE_BTREE ); 6206 assert( pC->uc.pCursor!=0 ); 6207 assert( pC->isTable==0 ); 6208 assert( pC->deferredMoveto==0 ); 6209 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 6210 6211 /* The IdxRowid and Seek opcodes are combined because of the commonality 6212 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 6213 rc = sqlite3VdbeCursorRestore(pC); 6214 6215 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted 6216 ** out from under the cursor. That will never happens for an IdxRowid 6217 ** or Seek opcode */ 6218 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 6219 6220 if( !pC->nullRow ){ 6221 rowid = 0; /* Not needed. Only used to silence a warning. */ 6222 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 6223 if( rc!=SQLITE_OK ){ 6224 goto abort_due_to_error; 6225 } 6226 if( pOp->opcode==OP_DeferredSeek ){ 6227 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 6228 pTabCur = p->apCsr[pOp->p3]; 6229 assert( pTabCur!=0 ); 6230 assert( pTabCur->eCurType==CURTYPE_BTREE ); 6231 assert( pTabCur->uc.pCursor!=0 ); 6232 assert( pTabCur->isTable ); 6233 pTabCur->nullRow = 0; 6234 pTabCur->movetoTarget = rowid; 6235 pTabCur->deferredMoveto = 1; 6236 pTabCur->cacheStatus = CACHE_STALE; 6237 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 6238 assert( !pTabCur->isEphemeral ); 6239 pTabCur->ub.aAltMap = pOp->p4.ai; 6240 assert( !pC->isEphemeral ); 6241 pTabCur->pAltCursor = pC; 6242 }else{ 6243 pOut = out2Prerelease(p, pOp); 6244 pOut->u.i = rowid; 6245 } 6246 }else{ 6247 assert( pOp->opcode==OP_IdxRowid ); 6248 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 6249 } 6250 break; 6251 } 6252 6253 /* Opcode: FinishSeek P1 * * * * 6254 ** 6255 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 6256 ** seek operation now, without further delay. If the cursor seek has 6257 ** already occurred, this instruction is a no-op. 6258 */ 6259 case OP_FinishSeek: { 6260 VdbeCursor *pC; /* The P1 index cursor */ 6261 6262 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6263 pC = p->apCsr[pOp->p1]; 6264 if( pC->deferredMoveto ){ 6265 rc = sqlite3VdbeFinishMoveto(pC); 6266 if( rc ) goto abort_due_to_error; 6267 } 6268 break; 6269 } 6270 6271 /* Opcode: IdxGE P1 P2 P3 P4 * 6272 ** Synopsis: key=r[P3@P4] 6273 ** 6274 ** The P4 register values beginning with P3 form an unpacked index 6275 ** key that omits the PRIMARY KEY. Compare this key value against the index 6276 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6277 ** fields at the end. 6278 ** 6279 ** If the P1 index entry is greater than or equal to the key value 6280 ** then jump to P2. Otherwise fall through to the next instruction. 6281 */ 6282 /* Opcode: IdxGT P1 P2 P3 P4 * 6283 ** Synopsis: key=r[P3@P4] 6284 ** 6285 ** The P4 register values beginning with P3 form an unpacked index 6286 ** key that omits the PRIMARY KEY. Compare this key value against the index 6287 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 6288 ** fields at the end. 6289 ** 6290 ** If the P1 index entry is greater than the key value 6291 ** then jump to P2. Otherwise fall through to the next instruction. 6292 */ 6293 /* Opcode: IdxLT P1 P2 P3 P4 * 6294 ** Synopsis: key=r[P3@P4] 6295 ** 6296 ** The P4 register values beginning with P3 form an unpacked index 6297 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6298 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6299 ** ROWID on the P1 index. 6300 ** 6301 ** If the P1 index entry is less than the key value then jump to P2. 6302 ** Otherwise fall through to the next instruction. 6303 */ 6304 /* Opcode: IdxLE P1 P2 P3 P4 * 6305 ** Synopsis: key=r[P3@P4] 6306 ** 6307 ** The P4 register values beginning with P3 form an unpacked index 6308 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 6309 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 6310 ** ROWID on the P1 index. 6311 ** 6312 ** If the P1 index entry is less than or equal to the key value then jump 6313 ** to P2. Otherwise fall through to the next instruction. 6314 */ 6315 case OP_IdxLE: /* jump */ 6316 case OP_IdxGT: /* jump */ 6317 case OP_IdxLT: /* jump */ 6318 case OP_IdxGE: { /* jump */ 6319 VdbeCursor *pC; 6320 int res; 6321 UnpackedRecord r; 6322 6323 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6324 pC = p->apCsr[pOp->p1]; 6325 assert( pC!=0 ); 6326 assert( pC->isOrdered ); 6327 assert( pC->eCurType==CURTYPE_BTREE ); 6328 assert( pC->uc.pCursor!=0); 6329 assert( pC->deferredMoveto==0 ); 6330 assert( pOp->p4type==P4_INT32 ); 6331 r.pKeyInfo = pC->pKeyInfo; 6332 r.nField = (u16)pOp->p4.i; 6333 if( pOp->opcode<OP_IdxLT ){ 6334 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 6335 r.default_rc = -1; 6336 }else{ 6337 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 6338 r.default_rc = 0; 6339 } 6340 r.aMem = &aMem[pOp->p3]; 6341 #ifdef SQLITE_DEBUG 6342 { 6343 int i; 6344 for(i=0; i<r.nField; i++){ 6345 assert( memIsValid(&r.aMem[i]) ); 6346 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 6347 } 6348 } 6349 #endif 6350 6351 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 6352 { 6353 i64 nCellKey = 0; 6354 BtCursor *pCur; 6355 Mem m; 6356 6357 assert( pC->eCurType==CURTYPE_BTREE ); 6358 pCur = pC->uc.pCursor; 6359 assert( sqlite3BtreeCursorIsValid(pCur) ); 6360 nCellKey = sqlite3BtreePayloadSize(pCur); 6361 /* nCellKey will always be between 0 and 0xffffffff because of the way 6362 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 6363 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 6364 rc = SQLITE_CORRUPT_BKPT; 6365 goto abort_due_to_error; 6366 } 6367 sqlite3VdbeMemInit(&m, db, 0); 6368 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 6369 if( rc ) goto abort_due_to_error; 6370 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 6371 sqlite3VdbeMemReleaseMalloc(&m); 6372 } 6373 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 6374 6375 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 6376 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 6377 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 6378 res = -res; 6379 }else{ 6380 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 6381 res++; 6382 } 6383 VdbeBranchTaken(res>0,2); 6384 assert( rc==SQLITE_OK ); 6385 if( res>0 ) goto jump_to_p2; 6386 break; 6387 } 6388 6389 /* Opcode: Destroy P1 P2 P3 * * 6390 ** 6391 ** Delete an entire database table or index whose root page in the database 6392 ** file is given by P1. 6393 ** 6394 ** The table being destroyed is in the main database file if P3==0. If 6395 ** P3==1 then the table to be clear is in the auxiliary database file 6396 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6397 ** 6398 ** If AUTOVACUUM is enabled then it is possible that another root page 6399 ** might be moved into the newly deleted root page in order to keep all 6400 ** root pages contiguous at the beginning of the database. The former 6401 ** value of the root page that moved - its value before the move occurred - 6402 ** is stored in register P2. If no page movement was required (because the 6403 ** table being dropped was already the last one in the database) then a 6404 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 6405 ** is stored in register P2. 6406 ** 6407 ** This opcode throws an error if there are any active reader VMs when 6408 ** it is invoked. This is done to avoid the difficulty associated with 6409 ** updating existing cursors when a root page is moved in an AUTOVACUUM 6410 ** database. This error is thrown even if the database is not an AUTOVACUUM 6411 ** db in order to avoid introducing an incompatibility between autovacuum 6412 ** and non-autovacuum modes. 6413 ** 6414 ** See also: Clear 6415 */ 6416 case OP_Destroy: { /* out2 */ 6417 int iMoved; 6418 int iDb; 6419 6420 sqlite3VdbeIncrWriteCounter(p, 0); 6421 assert( p->readOnly==0 ); 6422 assert( pOp->p1>1 ); 6423 pOut = out2Prerelease(p, pOp); 6424 pOut->flags = MEM_Null; 6425 if( db->nVdbeRead > db->nVDestroy+1 ){ 6426 rc = SQLITE_LOCKED; 6427 p->errorAction = OE_Abort; 6428 goto abort_due_to_error; 6429 }else{ 6430 iDb = pOp->p3; 6431 assert( DbMaskTest(p->btreeMask, iDb) ); 6432 iMoved = 0; /* Not needed. Only to silence a warning. */ 6433 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 6434 pOut->flags = MEM_Int; 6435 pOut->u.i = iMoved; 6436 if( rc ) goto abort_due_to_error; 6437 #ifndef SQLITE_OMIT_AUTOVACUUM 6438 if( iMoved!=0 ){ 6439 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 6440 /* All OP_Destroy operations occur on the same btree */ 6441 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 6442 resetSchemaOnFault = iDb+1; 6443 } 6444 #endif 6445 } 6446 break; 6447 } 6448 6449 /* Opcode: Clear P1 P2 P3 6450 ** 6451 ** Delete all contents of the database table or index whose root page 6452 ** in the database file is given by P1. But, unlike Destroy, do not 6453 ** remove the table or index from the database file. 6454 ** 6455 ** The table being clear is in the main database file if P2==0. If 6456 ** P2==1 then the table to be clear is in the auxiliary database file 6457 ** that is used to store tables create using CREATE TEMPORARY TABLE. 6458 ** 6459 ** If the P3 value is non-zero, then the row change count is incremented 6460 ** by the number of rows in the table being cleared. If P3 is greater 6461 ** than zero, then the value stored in register P3 is also incremented 6462 ** by the number of rows in the table being cleared. 6463 ** 6464 ** See also: Destroy 6465 */ 6466 case OP_Clear: { 6467 i64 nChange; 6468 6469 sqlite3VdbeIncrWriteCounter(p, 0); 6470 nChange = 0; 6471 assert( p->readOnly==0 ); 6472 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 6473 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 6474 if( pOp->p3 ){ 6475 p->nChange += nChange; 6476 if( pOp->p3>0 ){ 6477 assert( memIsValid(&aMem[pOp->p3]) ); 6478 memAboutToChange(p, &aMem[pOp->p3]); 6479 aMem[pOp->p3].u.i += nChange; 6480 } 6481 } 6482 if( rc ) goto abort_due_to_error; 6483 break; 6484 } 6485 6486 /* Opcode: ResetSorter P1 * * * * 6487 ** 6488 ** Delete all contents from the ephemeral table or sorter 6489 ** that is open on cursor P1. 6490 ** 6491 ** This opcode only works for cursors used for sorting and 6492 ** opened with OP_OpenEphemeral or OP_SorterOpen. 6493 */ 6494 case OP_ResetSorter: { 6495 VdbeCursor *pC; 6496 6497 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 6498 pC = p->apCsr[pOp->p1]; 6499 assert( pC!=0 ); 6500 if( isSorter(pC) ){ 6501 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 6502 }else{ 6503 assert( pC->eCurType==CURTYPE_BTREE ); 6504 assert( pC->isEphemeral ); 6505 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 6506 if( rc ) goto abort_due_to_error; 6507 } 6508 break; 6509 } 6510 6511 /* Opcode: CreateBtree P1 P2 P3 * * 6512 ** Synopsis: r[P2]=root iDb=P1 flags=P3 6513 ** 6514 ** Allocate a new b-tree in the main database file if P1==0 or in the 6515 ** TEMP database file if P1==1 or in an attached database if 6516 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 6517 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 6518 ** The root page number of the new b-tree is stored in register P2. 6519 */ 6520 case OP_CreateBtree: { /* out2 */ 6521 Pgno pgno; 6522 Db *pDb; 6523 6524 sqlite3VdbeIncrWriteCounter(p, 0); 6525 pOut = out2Prerelease(p, pOp); 6526 pgno = 0; 6527 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 6528 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6529 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 6530 assert( p->readOnly==0 ); 6531 pDb = &db->aDb[pOp->p1]; 6532 assert( pDb->pBt!=0 ); 6533 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 6534 if( rc ) goto abort_due_to_error; 6535 pOut->u.i = pgno; 6536 break; 6537 } 6538 6539 /* Opcode: SqlExec * * * P4 * 6540 ** 6541 ** Run the SQL statement or statements specified in the P4 string. 6542 */ 6543 case OP_SqlExec: { 6544 sqlite3VdbeIncrWriteCounter(p, 0); 6545 db->nSqlExec++; 6546 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0); 6547 db->nSqlExec--; 6548 if( rc ) goto abort_due_to_error; 6549 break; 6550 } 6551 6552 /* Opcode: ParseSchema P1 * * P4 * 6553 ** 6554 ** Read and parse all entries from the schema table of database P1 6555 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 6556 ** entire schema for P1 is reparsed. 6557 ** 6558 ** This opcode invokes the parser to create a new virtual machine, 6559 ** then runs the new virtual machine. It is thus a re-entrant opcode. 6560 */ 6561 case OP_ParseSchema: { 6562 int iDb; 6563 const char *zSchema; 6564 char *zSql; 6565 InitData initData; 6566 6567 /* Any prepared statement that invokes this opcode will hold mutexes 6568 ** on every btree. This is a prerequisite for invoking 6569 ** sqlite3InitCallback(). 6570 */ 6571 #ifdef SQLITE_DEBUG 6572 for(iDb=0; iDb<db->nDb; iDb++){ 6573 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 6574 } 6575 #endif 6576 6577 iDb = pOp->p1; 6578 assert( iDb>=0 && iDb<db->nDb ); 6579 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 6580 || db->mallocFailed 6581 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 6582 6583 #ifndef SQLITE_OMIT_ALTERTABLE 6584 if( pOp->p4.z==0 ){ 6585 sqlite3SchemaClear(db->aDb[iDb].pSchema); 6586 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 6587 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 6588 db->mDbFlags |= DBFLAG_SchemaChange; 6589 p->expired = 0; 6590 }else 6591 #endif 6592 { 6593 zSchema = LEGACY_SCHEMA_TABLE; 6594 initData.db = db; 6595 initData.iDb = iDb; 6596 initData.pzErrMsg = &p->zErrMsg; 6597 initData.mInitFlags = 0; 6598 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 6599 zSql = sqlite3MPrintf(db, 6600 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 6601 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 6602 if( zSql==0 ){ 6603 rc = SQLITE_NOMEM_BKPT; 6604 }else{ 6605 assert( db->init.busy==0 ); 6606 db->init.busy = 1; 6607 initData.rc = SQLITE_OK; 6608 initData.nInitRow = 0; 6609 assert( !db->mallocFailed ); 6610 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 6611 if( rc==SQLITE_OK ) rc = initData.rc; 6612 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 6613 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 6614 ** at least one SQL statement. Any less than that indicates that 6615 ** the sqlite_schema table is corrupt. */ 6616 rc = SQLITE_CORRUPT_BKPT; 6617 } 6618 sqlite3DbFreeNN(db, zSql); 6619 db->init.busy = 0; 6620 } 6621 } 6622 if( rc ){ 6623 sqlite3ResetAllSchemasOfConnection(db); 6624 if( rc==SQLITE_NOMEM ){ 6625 goto no_mem; 6626 } 6627 goto abort_due_to_error; 6628 } 6629 break; 6630 } 6631 6632 #if !defined(SQLITE_OMIT_ANALYZE) 6633 /* Opcode: LoadAnalysis P1 * * * * 6634 ** 6635 ** Read the sqlite_stat1 table for database P1 and load the content 6636 ** of that table into the internal index hash table. This will cause 6637 ** the analysis to be used when preparing all subsequent queries. 6638 */ 6639 case OP_LoadAnalysis: { 6640 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 6641 rc = sqlite3AnalysisLoad(db, pOp->p1); 6642 if( rc ) goto abort_due_to_error; 6643 break; 6644 } 6645 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 6646 6647 /* Opcode: DropTable P1 * * P4 * 6648 ** 6649 ** Remove the internal (in-memory) data structures that describe 6650 ** the table named P4 in database P1. This is called after a table 6651 ** is dropped from disk (using the Destroy opcode) in order to keep 6652 ** the internal representation of the 6653 ** schema consistent with what is on disk. 6654 */ 6655 case OP_DropTable: { 6656 sqlite3VdbeIncrWriteCounter(p, 0); 6657 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 6658 break; 6659 } 6660 6661 /* Opcode: DropIndex P1 * * P4 * 6662 ** 6663 ** Remove the internal (in-memory) data structures that describe 6664 ** the index named P4 in database P1. This is called after an index 6665 ** is dropped from disk (using the Destroy opcode) 6666 ** in order to keep the internal representation of the 6667 ** schema consistent with what is on disk. 6668 */ 6669 case OP_DropIndex: { 6670 sqlite3VdbeIncrWriteCounter(p, 0); 6671 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 6672 break; 6673 } 6674 6675 /* Opcode: DropTrigger P1 * * P4 * 6676 ** 6677 ** Remove the internal (in-memory) data structures that describe 6678 ** the trigger named P4 in database P1. This is called after a trigger 6679 ** is dropped from disk (using the Destroy opcode) in order to keep 6680 ** the internal representation of the 6681 ** schema consistent with what is on disk. 6682 */ 6683 case OP_DropTrigger: { 6684 sqlite3VdbeIncrWriteCounter(p, 0); 6685 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 6686 break; 6687 } 6688 6689 6690 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 6691 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 6692 ** 6693 ** Do an analysis of the currently open database. Store in 6694 ** register P1 the text of an error message describing any problems. 6695 ** If no problems are found, store a NULL in register P1. 6696 ** 6697 ** The register P3 contains one less than the maximum number of allowed errors. 6698 ** At most reg(P3) errors will be reported. 6699 ** In other words, the analysis stops as soon as reg(P1) errors are 6700 ** seen. Reg(P1) is updated with the number of errors remaining. 6701 ** 6702 ** The root page numbers of all tables in the database are integers 6703 ** stored in P4_INTARRAY argument. 6704 ** 6705 ** If P5 is not zero, the check is done on the auxiliary database 6706 ** file, not the main database file. 6707 ** 6708 ** This opcode is used to implement the integrity_check pragma. 6709 */ 6710 case OP_IntegrityCk: { 6711 int nRoot; /* Number of tables to check. (Number of root pages.) */ 6712 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 6713 int nErr; /* Number of errors reported */ 6714 char *z; /* Text of the error report */ 6715 Mem *pnErr; /* Register keeping track of errors remaining */ 6716 6717 assert( p->bIsReader ); 6718 nRoot = pOp->p2; 6719 aRoot = pOp->p4.ai; 6720 assert( nRoot>0 ); 6721 assert( aRoot[0]==(Pgno)nRoot ); 6722 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 6723 pnErr = &aMem[pOp->p3]; 6724 assert( (pnErr->flags & MEM_Int)!=0 ); 6725 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 6726 pIn1 = &aMem[pOp->p1]; 6727 assert( pOp->p5<db->nDb ); 6728 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 6729 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot, 6730 (int)pnErr->u.i+1, &nErr); 6731 sqlite3VdbeMemSetNull(pIn1); 6732 if( nErr==0 ){ 6733 assert( z==0 ); 6734 }else if( z==0 ){ 6735 goto no_mem; 6736 }else{ 6737 pnErr->u.i -= nErr-1; 6738 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 6739 } 6740 UPDATE_MAX_BLOBSIZE(pIn1); 6741 sqlite3VdbeChangeEncoding(pIn1, encoding); 6742 goto check_for_interrupt; 6743 } 6744 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 6745 6746 /* Opcode: RowSetAdd P1 P2 * * * 6747 ** Synopsis: rowset(P1)=r[P2] 6748 ** 6749 ** Insert the integer value held by register P2 into a RowSet object 6750 ** held in register P1. 6751 ** 6752 ** An assertion fails if P2 is not an integer. 6753 */ 6754 case OP_RowSetAdd: { /* in1, in2 */ 6755 pIn1 = &aMem[pOp->p1]; 6756 pIn2 = &aMem[pOp->p2]; 6757 assert( (pIn2->flags & MEM_Int)!=0 ); 6758 if( (pIn1->flags & MEM_Blob)==0 ){ 6759 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6760 } 6761 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6762 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 6763 break; 6764 } 6765 6766 /* Opcode: RowSetRead P1 P2 P3 * * 6767 ** Synopsis: r[P3]=rowset(P1) 6768 ** 6769 ** Extract the smallest value from the RowSet object in P1 6770 ** and put that value into register P3. 6771 ** Or, if RowSet object P1 is initially empty, leave P3 6772 ** unchanged and jump to instruction P2. 6773 */ 6774 case OP_RowSetRead: { /* jump, in1, out3 */ 6775 i64 val; 6776 6777 pIn1 = &aMem[pOp->p1]; 6778 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 6779 if( (pIn1->flags & MEM_Blob)==0 6780 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 6781 ){ 6782 /* The boolean index is empty */ 6783 sqlite3VdbeMemSetNull(pIn1); 6784 VdbeBranchTaken(1,2); 6785 goto jump_to_p2_and_check_for_interrupt; 6786 }else{ 6787 /* A value was pulled from the index */ 6788 VdbeBranchTaken(0,2); 6789 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 6790 } 6791 goto check_for_interrupt; 6792 } 6793 6794 /* Opcode: RowSetTest P1 P2 P3 P4 6795 ** Synopsis: if r[P3] in rowset(P1) goto P2 6796 ** 6797 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 6798 ** contains a RowSet object and that RowSet object contains 6799 ** the value held in P3, jump to register P2. Otherwise, insert the 6800 ** integer in P3 into the RowSet and continue on to the 6801 ** next opcode. 6802 ** 6803 ** The RowSet object is optimized for the case where sets of integers 6804 ** are inserted in distinct phases, which each set contains no duplicates. 6805 ** Each set is identified by a unique P4 value. The first set 6806 ** must have P4==0, the final set must have P4==-1, and for all other sets 6807 ** must have P4>0. 6808 ** 6809 ** This allows optimizations: (a) when P4==0 there is no need to test 6810 ** the RowSet object for P3, as it is guaranteed not to contain it, 6811 ** (b) when P4==-1 there is no need to insert the value, as it will 6812 ** never be tested for, and (c) when a value that is part of set X is 6813 ** inserted, there is no need to search to see if the same value was 6814 ** previously inserted as part of set X (only if it was previously 6815 ** inserted as part of some other set). 6816 */ 6817 case OP_RowSetTest: { /* jump, in1, in3 */ 6818 int iSet; 6819 int exists; 6820 6821 pIn1 = &aMem[pOp->p1]; 6822 pIn3 = &aMem[pOp->p3]; 6823 iSet = pOp->p4.i; 6824 assert( pIn3->flags&MEM_Int ); 6825 6826 /* If there is anything other than a rowset object in memory cell P1, 6827 ** delete it now and initialize P1 with an empty rowset 6828 */ 6829 if( (pIn1->flags & MEM_Blob)==0 ){ 6830 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 6831 } 6832 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 6833 assert( pOp->p4type==P4_INT32 ); 6834 assert( iSet==-1 || iSet>=0 ); 6835 if( iSet ){ 6836 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 6837 VdbeBranchTaken(exists!=0,2); 6838 if( exists ) goto jump_to_p2; 6839 } 6840 if( iSet>=0 ){ 6841 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 6842 } 6843 break; 6844 } 6845 6846 6847 #ifndef SQLITE_OMIT_TRIGGER 6848 6849 /* Opcode: Program P1 P2 P3 P4 P5 6850 ** 6851 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 6852 ** 6853 ** P1 contains the address of the memory cell that contains the first memory 6854 ** cell in an array of values used as arguments to the sub-program. P2 6855 ** contains the address to jump to if the sub-program throws an IGNORE 6856 ** exception using the RAISE() function. Register P3 contains the address 6857 ** of a memory cell in this (the parent) VM that is used to allocate the 6858 ** memory required by the sub-vdbe at runtime. 6859 ** 6860 ** P4 is a pointer to the VM containing the trigger program. 6861 ** 6862 ** If P5 is non-zero, then recursive program invocation is enabled. 6863 */ 6864 case OP_Program: { /* jump */ 6865 int nMem; /* Number of memory registers for sub-program */ 6866 int nByte; /* Bytes of runtime space required for sub-program */ 6867 Mem *pRt; /* Register to allocate runtime space */ 6868 Mem *pMem; /* Used to iterate through memory cells */ 6869 Mem *pEnd; /* Last memory cell in new array */ 6870 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 6871 SubProgram *pProgram; /* Sub-program to execute */ 6872 void *t; /* Token identifying trigger */ 6873 6874 pProgram = pOp->p4.pProgram; 6875 pRt = &aMem[pOp->p3]; 6876 assert( pProgram->nOp>0 ); 6877 6878 /* If the p5 flag is clear, then recursive invocation of triggers is 6879 ** disabled for backwards compatibility (p5 is set if this sub-program 6880 ** is really a trigger, not a foreign key action, and the flag set 6881 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 6882 ** 6883 ** It is recursive invocation of triggers, at the SQL level, that is 6884 ** disabled. In some cases a single trigger may generate more than one 6885 ** SubProgram (if the trigger may be executed with more than one different 6886 ** ON CONFLICT algorithm). SubProgram structures associated with a 6887 ** single trigger all have the same value for the SubProgram.token 6888 ** variable. */ 6889 if( pOp->p5 ){ 6890 t = pProgram->token; 6891 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 6892 if( pFrame ) break; 6893 } 6894 6895 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 6896 rc = SQLITE_ERROR; 6897 sqlite3VdbeError(p, "too many levels of trigger recursion"); 6898 goto abort_due_to_error; 6899 } 6900 6901 /* Register pRt is used to store the memory required to save the state 6902 ** of the current program, and the memory required at runtime to execute 6903 ** the trigger program. If this trigger has been fired before, then pRt 6904 ** is already allocated. Otherwise, it must be initialized. */ 6905 if( (pRt->flags&MEM_Blob)==0 ){ 6906 /* SubProgram.nMem is set to the number of memory cells used by the 6907 ** program stored in SubProgram.aOp. As well as these, one memory 6908 ** cell is required for each cursor used by the program. Set local 6909 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 6910 */ 6911 nMem = pProgram->nMem + pProgram->nCsr; 6912 assert( nMem>0 ); 6913 if( pProgram->nCsr==0 ) nMem++; 6914 nByte = ROUND8(sizeof(VdbeFrame)) 6915 + nMem * sizeof(Mem) 6916 + pProgram->nCsr * sizeof(VdbeCursor*) 6917 + (pProgram->nOp + 7)/8; 6918 pFrame = sqlite3DbMallocZero(db, nByte); 6919 if( !pFrame ){ 6920 goto no_mem; 6921 } 6922 sqlite3VdbeMemRelease(pRt); 6923 pRt->flags = MEM_Blob|MEM_Dyn; 6924 pRt->z = (char*)pFrame; 6925 pRt->n = nByte; 6926 pRt->xDel = sqlite3VdbeFrameMemDel; 6927 6928 pFrame->v = p; 6929 pFrame->nChildMem = nMem; 6930 pFrame->nChildCsr = pProgram->nCsr; 6931 pFrame->pc = (int)(pOp - aOp); 6932 pFrame->aMem = p->aMem; 6933 pFrame->nMem = p->nMem; 6934 pFrame->apCsr = p->apCsr; 6935 pFrame->nCursor = p->nCursor; 6936 pFrame->aOp = p->aOp; 6937 pFrame->nOp = p->nOp; 6938 pFrame->token = pProgram->token; 6939 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6940 pFrame->anExec = p->anExec; 6941 #endif 6942 #ifdef SQLITE_DEBUG 6943 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 6944 #endif 6945 6946 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 6947 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 6948 pMem->flags = MEM_Undefined; 6949 pMem->db = db; 6950 } 6951 }else{ 6952 pFrame = (VdbeFrame*)pRt->z; 6953 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 6954 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 6955 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 6956 assert( pProgram->nCsr==pFrame->nChildCsr ); 6957 assert( (int)(pOp - aOp)==pFrame->pc ); 6958 } 6959 6960 p->nFrame++; 6961 pFrame->pParent = p->pFrame; 6962 pFrame->lastRowid = db->lastRowid; 6963 pFrame->nChange = p->nChange; 6964 pFrame->nDbChange = p->db->nChange; 6965 assert( pFrame->pAuxData==0 ); 6966 pFrame->pAuxData = p->pAuxData; 6967 p->pAuxData = 0; 6968 p->nChange = 0; 6969 p->pFrame = pFrame; 6970 p->aMem = aMem = VdbeFrameMem(pFrame); 6971 p->nMem = pFrame->nChildMem; 6972 p->nCursor = (u16)pFrame->nChildCsr; 6973 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 6974 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 6975 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 6976 p->aOp = aOp = pProgram->aOp; 6977 p->nOp = pProgram->nOp; 6978 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 6979 p->anExec = 0; 6980 #endif 6981 #ifdef SQLITE_DEBUG 6982 /* Verify that second and subsequent executions of the same trigger do not 6983 ** try to reuse register values from the first use. */ 6984 { 6985 int i; 6986 for(i=0; i<p->nMem; i++){ 6987 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 6988 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 6989 } 6990 } 6991 #endif 6992 pOp = &aOp[-1]; 6993 goto check_for_interrupt; 6994 } 6995 6996 /* Opcode: Param P1 P2 * * * 6997 ** 6998 ** This opcode is only ever present in sub-programs called via the 6999 ** OP_Program instruction. Copy a value currently stored in a memory 7000 ** cell of the calling (parent) frame to cell P2 in the current frames 7001 ** address space. This is used by trigger programs to access the new.* 7002 ** and old.* values. 7003 ** 7004 ** The address of the cell in the parent frame is determined by adding 7005 ** the value of the P1 argument to the value of the P1 argument to the 7006 ** calling OP_Program instruction. 7007 */ 7008 case OP_Param: { /* out2 */ 7009 VdbeFrame *pFrame; 7010 Mem *pIn; 7011 pOut = out2Prerelease(p, pOp); 7012 pFrame = p->pFrame; 7013 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 7014 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 7015 break; 7016 } 7017 7018 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 7019 7020 #ifndef SQLITE_OMIT_FOREIGN_KEY 7021 /* Opcode: FkCounter P1 P2 * * * 7022 ** Synopsis: fkctr[P1]+=P2 7023 ** 7024 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 7025 ** If P1 is non-zero, the database constraint counter is incremented 7026 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 7027 ** statement counter is incremented (immediate foreign key constraints). 7028 */ 7029 case OP_FkCounter: { 7030 if( db->flags & SQLITE_DeferFKs ){ 7031 db->nDeferredImmCons += pOp->p2; 7032 }else if( pOp->p1 ){ 7033 db->nDeferredCons += pOp->p2; 7034 }else{ 7035 p->nFkConstraint += pOp->p2; 7036 } 7037 break; 7038 } 7039 7040 /* Opcode: FkIfZero P1 P2 * * * 7041 ** Synopsis: if fkctr[P1]==0 goto P2 7042 ** 7043 ** This opcode tests if a foreign key constraint-counter is currently zero. 7044 ** If so, jump to instruction P2. Otherwise, fall through to the next 7045 ** instruction. 7046 ** 7047 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 7048 ** is zero (the one that counts deferred constraint violations). If P1 is 7049 ** zero, the jump is taken if the statement constraint-counter is zero 7050 ** (immediate foreign key constraint violations). 7051 */ 7052 case OP_FkIfZero: { /* jump */ 7053 if( pOp->p1 ){ 7054 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 7055 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7056 }else{ 7057 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 7058 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 7059 } 7060 break; 7061 } 7062 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 7063 7064 #ifndef SQLITE_OMIT_AUTOINCREMENT 7065 /* Opcode: MemMax P1 P2 * * * 7066 ** Synopsis: r[P1]=max(r[P1],r[P2]) 7067 ** 7068 ** P1 is a register in the root frame of this VM (the root frame is 7069 ** different from the current frame if this instruction is being executed 7070 ** within a sub-program). Set the value of register P1 to the maximum of 7071 ** its current value and the value in register P2. 7072 ** 7073 ** This instruction throws an error if the memory cell is not initially 7074 ** an integer. 7075 */ 7076 case OP_MemMax: { /* in2 */ 7077 VdbeFrame *pFrame; 7078 if( p->pFrame ){ 7079 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 7080 pIn1 = &pFrame->aMem[pOp->p1]; 7081 }else{ 7082 pIn1 = &aMem[pOp->p1]; 7083 } 7084 assert( memIsValid(pIn1) ); 7085 sqlite3VdbeMemIntegerify(pIn1); 7086 pIn2 = &aMem[pOp->p2]; 7087 sqlite3VdbeMemIntegerify(pIn2); 7088 if( pIn1->u.i<pIn2->u.i){ 7089 pIn1->u.i = pIn2->u.i; 7090 } 7091 break; 7092 } 7093 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 7094 7095 /* Opcode: IfPos P1 P2 P3 * * 7096 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 7097 ** 7098 ** Register P1 must contain an integer. 7099 ** If the value of register P1 is 1 or greater, subtract P3 from the 7100 ** value in P1 and jump to P2. 7101 ** 7102 ** If the initial value of register P1 is less than 1, then the 7103 ** value is unchanged and control passes through to the next instruction. 7104 */ 7105 case OP_IfPos: { /* jump, in1 */ 7106 pIn1 = &aMem[pOp->p1]; 7107 assert( pIn1->flags&MEM_Int ); 7108 VdbeBranchTaken( pIn1->u.i>0, 2); 7109 if( pIn1->u.i>0 ){ 7110 pIn1->u.i -= pOp->p3; 7111 goto jump_to_p2; 7112 } 7113 break; 7114 } 7115 7116 /* Opcode: OffsetLimit P1 P2 P3 * * 7117 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 7118 ** 7119 ** This opcode performs a commonly used computation associated with 7120 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] 7121 ** holds the offset counter. The opcode computes the combined value 7122 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 7123 ** value computed is the total number of rows that will need to be 7124 ** visited in order to complete the query. 7125 ** 7126 ** If r[P3] is zero or negative, that means there is no OFFSET 7127 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 7128 ** 7129 ** if r[P1] is zero or negative, that means there is no LIMIT 7130 ** and r[P2] is set to -1. 7131 ** 7132 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 7133 */ 7134 case OP_OffsetLimit: { /* in1, out2, in3 */ 7135 i64 x; 7136 pIn1 = &aMem[pOp->p1]; 7137 pIn3 = &aMem[pOp->p3]; 7138 pOut = out2Prerelease(p, pOp); 7139 assert( pIn1->flags & MEM_Int ); 7140 assert( pIn3->flags & MEM_Int ); 7141 x = pIn1->u.i; 7142 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 7143 /* If the LIMIT is less than or equal to zero, loop forever. This 7144 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 7145 ** also loop forever. This is undocumented. In fact, one could argue 7146 ** that the loop should terminate. But assuming 1 billion iterations 7147 ** per second (far exceeding the capabilities of any current hardware) 7148 ** it would take nearly 300 years to actually reach the limit. So 7149 ** looping forever is a reasonable approximation. */ 7150 pOut->u.i = -1; 7151 }else{ 7152 pOut->u.i = x; 7153 } 7154 break; 7155 } 7156 7157 /* Opcode: IfNotZero P1 P2 * * * 7158 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 7159 ** 7160 ** Register P1 must contain an integer. If the content of register P1 is 7161 ** initially greater than zero, then decrement the value in register P1. 7162 ** If it is non-zero (negative or positive) and then also jump to P2. 7163 ** If register P1 is initially zero, leave it unchanged and fall through. 7164 */ 7165 case OP_IfNotZero: { /* jump, in1 */ 7166 pIn1 = &aMem[pOp->p1]; 7167 assert( pIn1->flags&MEM_Int ); 7168 VdbeBranchTaken(pIn1->u.i<0, 2); 7169 if( pIn1->u.i ){ 7170 if( pIn1->u.i>0 ) pIn1->u.i--; 7171 goto jump_to_p2; 7172 } 7173 break; 7174 } 7175 7176 /* Opcode: DecrJumpZero P1 P2 * * * 7177 ** Synopsis: if (--r[P1])==0 goto P2 7178 ** 7179 ** Register P1 must hold an integer. Decrement the value in P1 7180 ** and jump to P2 if the new value is exactly zero. 7181 */ 7182 case OP_DecrJumpZero: { /* jump, in1 */ 7183 pIn1 = &aMem[pOp->p1]; 7184 assert( pIn1->flags&MEM_Int ); 7185 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 7186 VdbeBranchTaken(pIn1->u.i==0, 2); 7187 if( pIn1->u.i==0 ) goto jump_to_p2; 7188 break; 7189 } 7190 7191 7192 /* Opcode: AggStep * P2 P3 P4 P5 7193 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7194 ** 7195 ** Execute the xStep function for an aggregate. 7196 ** The function has P5 arguments. P4 is a pointer to the 7197 ** FuncDef structure that specifies the function. Register P3 is the 7198 ** accumulator. 7199 ** 7200 ** The P5 arguments are taken from register P2 and its 7201 ** successors. 7202 */ 7203 /* Opcode: AggInverse * P2 P3 P4 P5 7204 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 7205 ** 7206 ** Execute the xInverse function for an aggregate. 7207 ** The function has P5 arguments. P4 is a pointer to the 7208 ** FuncDef structure that specifies the function. Register P3 is the 7209 ** accumulator. 7210 ** 7211 ** The P5 arguments are taken from register P2 and its 7212 ** successors. 7213 */ 7214 /* Opcode: AggStep1 P1 P2 P3 P4 P5 7215 ** Synopsis: accum=r[P3] step(r[P2@P5]) 7216 ** 7217 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 7218 ** aggregate. The function has P5 arguments. P4 is a pointer to the 7219 ** FuncDef structure that specifies the function. Register P3 is the 7220 ** accumulator. 7221 ** 7222 ** The P5 arguments are taken from register P2 and its 7223 ** successors. 7224 ** 7225 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 7226 ** the FuncDef stored in P4 is converted into an sqlite3_context and 7227 ** the opcode is changed. In this way, the initialization of the 7228 ** sqlite3_context only happens once, instead of on each call to the 7229 ** step function. 7230 */ 7231 case OP_AggInverse: 7232 case OP_AggStep: { 7233 int n; 7234 sqlite3_context *pCtx; 7235 7236 assert( pOp->p4type==P4_FUNCDEF ); 7237 n = pOp->p5; 7238 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7239 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 7240 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 7241 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 7242 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 7243 if( pCtx==0 ) goto no_mem; 7244 pCtx->pMem = 0; 7245 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 7246 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 7247 pCtx->pFunc = pOp->p4.pFunc; 7248 pCtx->iOp = (int)(pOp - aOp); 7249 pCtx->pVdbe = p; 7250 pCtx->skipFlag = 0; 7251 pCtx->isError = 0; 7252 pCtx->argc = n; 7253 pOp->p4type = P4_FUNCCTX; 7254 pOp->p4.pCtx = pCtx; 7255 7256 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 7257 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 7258 7259 pOp->opcode = OP_AggStep1; 7260 /* Fall through into OP_AggStep */ 7261 /* no break */ deliberate_fall_through 7262 } 7263 case OP_AggStep1: { 7264 int i; 7265 sqlite3_context *pCtx; 7266 Mem *pMem; 7267 7268 assert( pOp->p4type==P4_FUNCCTX ); 7269 pCtx = pOp->p4.pCtx; 7270 pMem = &aMem[pOp->p3]; 7271 7272 #ifdef SQLITE_DEBUG 7273 if( pOp->p1 ){ 7274 /* This is an OP_AggInverse call. Verify that xStep has always 7275 ** been called at least once prior to any xInverse call. */ 7276 assert( pMem->uTemp==0x1122e0e3 ); 7277 }else{ 7278 /* This is an OP_AggStep call. Mark it as such. */ 7279 pMem->uTemp = 0x1122e0e3; 7280 } 7281 #endif 7282 7283 /* If this function is inside of a trigger, the register array in aMem[] 7284 ** might change from one evaluation to the next. The next block of code 7285 ** checks to see if the register array has changed, and if so it 7286 ** reinitializes the relavant parts of the sqlite3_context object */ 7287 if( pCtx->pMem != pMem ){ 7288 pCtx->pMem = pMem; 7289 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 7290 } 7291 7292 #ifdef SQLITE_DEBUG 7293 for(i=0; i<pCtx->argc; i++){ 7294 assert( memIsValid(pCtx->argv[i]) ); 7295 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 7296 } 7297 #endif 7298 7299 pMem->n++; 7300 assert( pCtx->pOut->flags==MEM_Null ); 7301 assert( pCtx->isError==0 ); 7302 assert( pCtx->skipFlag==0 ); 7303 #ifndef SQLITE_OMIT_WINDOWFUNC 7304 if( pOp->p1 ){ 7305 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 7306 }else 7307 #endif 7308 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 7309 7310 if( pCtx->isError ){ 7311 if( pCtx->isError>0 ){ 7312 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 7313 rc = pCtx->isError; 7314 } 7315 if( pCtx->skipFlag ){ 7316 assert( pOp[-1].opcode==OP_CollSeq ); 7317 i = pOp[-1].p1; 7318 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 7319 pCtx->skipFlag = 0; 7320 } 7321 sqlite3VdbeMemRelease(pCtx->pOut); 7322 pCtx->pOut->flags = MEM_Null; 7323 pCtx->isError = 0; 7324 if( rc ) goto abort_due_to_error; 7325 } 7326 assert( pCtx->pOut->flags==MEM_Null ); 7327 assert( pCtx->skipFlag==0 ); 7328 break; 7329 } 7330 7331 /* Opcode: AggFinal P1 P2 * P4 * 7332 ** Synopsis: accum=r[P1] N=P2 7333 ** 7334 ** P1 is the memory location that is the accumulator for an aggregate 7335 ** or window function. Execute the finalizer function 7336 ** for an aggregate and store the result in P1. 7337 ** 7338 ** P2 is the number of arguments that the step function takes and 7339 ** P4 is a pointer to the FuncDef for this function. The P2 7340 ** argument is not used by this opcode. It is only there to disambiguate 7341 ** functions that can take varying numbers of arguments. The 7342 ** P4 argument is only needed for the case where 7343 ** the step function was not previously called. 7344 */ 7345 /* Opcode: AggValue * P2 P3 P4 * 7346 ** Synopsis: r[P3]=value N=P2 7347 ** 7348 ** Invoke the xValue() function and store the result in register P3. 7349 ** 7350 ** P2 is the number of arguments that the step function takes and 7351 ** P4 is a pointer to the FuncDef for this function. The P2 7352 ** argument is not used by this opcode. It is only there to disambiguate 7353 ** functions that can take varying numbers of arguments. The 7354 ** P4 argument is only needed for the case where 7355 ** the step function was not previously called. 7356 */ 7357 case OP_AggValue: 7358 case OP_AggFinal: { 7359 Mem *pMem; 7360 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 7361 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 7362 pMem = &aMem[pOp->p1]; 7363 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 7364 #ifndef SQLITE_OMIT_WINDOWFUNC 7365 if( pOp->p3 ){ 7366 memAboutToChange(p, &aMem[pOp->p3]); 7367 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 7368 pMem = &aMem[pOp->p3]; 7369 }else 7370 #endif 7371 { 7372 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 7373 } 7374 7375 if( rc ){ 7376 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 7377 goto abort_due_to_error; 7378 } 7379 sqlite3VdbeChangeEncoding(pMem, encoding); 7380 UPDATE_MAX_BLOBSIZE(pMem); 7381 if( sqlite3VdbeMemTooBig(pMem) ){ 7382 goto too_big; 7383 } 7384 break; 7385 } 7386 7387 #ifndef SQLITE_OMIT_WAL 7388 /* Opcode: Checkpoint P1 P2 P3 * * 7389 ** 7390 ** Checkpoint database P1. This is a no-op if P1 is not currently in 7391 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 7392 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 7393 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 7394 ** WAL after the checkpoint into mem[P3+1] and the number of pages 7395 ** in the WAL that have been checkpointed after the checkpoint 7396 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 7397 ** mem[P3+2] are initialized to -1. 7398 */ 7399 case OP_Checkpoint: { 7400 int i; /* Loop counter */ 7401 int aRes[3]; /* Results */ 7402 Mem *pMem; /* Write results here */ 7403 7404 assert( p->readOnly==0 ); 7405 aRes[0] = 0; 7406 aRes[1] = aRes[2] = -1; 7407 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 7408 || pOp->p2==SQLITE_CHECKPOINT_FULL 7409 || pOp->p2==SQLITE_CHECKPOINT_RESTART 7410 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 7411 ); 7412 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 7413 if( rc ){ 7414 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 7415 rc = SQLITE_OK; 7416 aRes[0] = 1; 7417 } 7418 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 7419 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 7420 } 7421 break; 7422 }; 7423 #endif 7424 7425 #ifndef SQLITE_OMIT_PRAGMA 7426 /* Opcode: JournalMode P1 P2 P3 * * 7427 ** 7428 ** Change the journal mode of database P1 to P3. P3 must be one of the 7429 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 7430 ** modes (delete, truncate, persist, off and memory), this is a simple 7431 ** operation. No IO is required. 7432 ** 7433 ** If changing into or out of WAL mode the procedure is more complicated. 7434 ** 7435 ** Write a string containing the final journal-mode to register P2. 7436 */ 7437 case OP_JournalMode: { /* out2 */ 7438 Btree *pBt; /* Btree to change journal mode of */ 7439 Pager *pPager; /* Pager associated with pBt */ 7440 int eNew; /* New journal mode */ 7441 int eOld; /* The old journal mode */ 7442 #ifndef SQLITE_OMIT_WAL 7443 const char *zFilename; /* Name of database file for pPager */ 7444 #endif 7445 7446 pOut = out2Prerelease(p, pOp); 7447 eNew = pOp->p3; 7448 assert( eNew==PAGER_JOURNALMODE_DELETE 7449 || eNew==PAGER_JOURNALMODE_TRUNCATE 7450 || eNew==PAGER_JOURNALMODE_PERSIST 7451 || eNew==PAGER_JOURNALMODE_OFF 7452 || eNew==PAGER_JOURNALMODE_MEMORY 7453 || eNew==PAGER_JOURNALMODE_WAL 7454 || eNew==PAGER_JOURNALMODE_QUERY 7455 ); 7456 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7457 assert( p->readOnly==0 ); 7458 7459 pBt = db->aDb[pOp->p1].pBt; 7460 pPager = sqlite3BtreePager(pBt); 7461 eOld = sqlite3PagerGetJournalMode(pPager); 7462 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 7463 assert( sqlite3BtreeHoldsMutex(pBt) ); 7464 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 7465 7466 #ifndef SQLITE_OMIT_WAL 7467 zFilename = sqlite3PagerFilename(pPager, 1); 7468 7469 /* Do not allow a transition to journal_mode=WAL for a database 7470 ** in temporary storage or if the VFS does not support shared memory 7471 */ 7472 if( eNew==PAGER_JOURNALMODE_WAL 7473 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 7474 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 7475 ){ 7476 eNew = eOld; 7477 } 7478 7479 if( (eNew!=eOld) 7480 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 7481 ){ 7482 if( !db->autoCommit || db->nVdbeRead>1 ){ 7483 rc = SQLITE_ERROR; 7484 sqlite3VdbeError(p, 7485 "cannot change %s wal mode from within a transaction", 7486 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 7487 ); 7488 goto abort_due_to_error; 7489 }else{ 7490 7491 if( eOld==PAGER_JOURNALMODE_WAL ){ 7492 /* If leaving WAL mode, close the log file. If successful, the call 7493 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 7494 ** file. An EXCLUSIVE lock may still be held on the database file 7495 ** after a successful return. 7496 */ 7497 rc = sqlite3PagerCloseWal(pPager, db); 7498 if( rc==SQLITE_OK ){ 7499 sqlite3PagerSetJournalMode(pPager, eNew); 7500 } 7501 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 7502 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 7503 ** as an intermediate */ 7504 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 7505 } 7506 7507 /* Open a transaction on the database file. Regardless of the journal 7508 ** mode, this transaction always uses a rollback journal. 7509 */ 7510 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 7511 if( rc==SQLITE_OK ){ 7512 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 7513 } 7514 } 7515 } 7516 #endif /* ifndef SQLITE_OMIT_WAL */ 7517 7518 if( rc ) eNew = eOld; 7519 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 7520 7521 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 7522 pOut->z = (char *)sqlite3JournalModename(eNew); 7523 pOut->n = sqlite3Strlen30(pOut->z); 7524 pOut->enc = SQLITE_UTF8; 7525 sqlite3VdbeChangeEncoding(pOut, encoding); 7526 if( rc ) goto abort_due_to_error; 7527 break; 7528 }; 7529 #endif /* SQLITE_OMIT_PRAGMA */ 7530 7531 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 7532 /* Opcode: Vacuum P1 P2 * * * 7533 ** 7534 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 7535 ** for an attached database. The "temp" database may not be vacuumed. 7536 ** 7537 ** If P2 is not zero, then it is a register holding a string which is 7538 ** the file into which the result of vacuum should be written. When 7539 ** P2 is zero, the vacuum overwrites the original database. 7540 */ 7541 case OP_Vacuum: { 7542 assert( p->readOnly==0 ); 7543 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 7544 pOp->p2 ? &aMem[pOp->p2] : 0); 7545 if( rc ) goto abort_due_to_error; 7546 break; 7547 } 7548 #endif 7549 7550 #if !defined(SQLITE_OMIT_AUTOVACUUM) 7551 /* Opcode: IncrVacuum P1 P2 * * * 7552 ** 7553 ** Perform a single step of the incremental vacuum procedure on 7554 ** the P1 database. If the vacuum has finished, jump to instruction 7555 ** P2. Otherwise, fall through to the next instruction. 7556 */ 7557 case OP_IncrVacuum: { /* jump */ 7558 Btree *pBt; 7559 7560 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 7561 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 7562 assert( p->readOnly==0 ); 7563 pBt = db->aDb[pOp->p1].pBt; 7564 rc = sqlite3BtreeIncrVacuum(pBt); 7565 VdbeBranchTaken(rc==SQLITE_DONE,2); 7566 if( rc ){ 7567 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 7568 rc = SQLITE_OK; 7569 goto jump_to_p2; 7570 } 7571 break; 7572 } 7573 #endif 7574 7575 /* Opcode: Expire P1 P2 * * * 7576 ** 7577 ** Cause precompiled statements to expire. When an expired statement 7578 ** is executed using sqlite3_step() it will either automatically 7579 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 7580 ** or it will fail with SQLITE_SCHEMA. 7581 ** 7582 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 7583 ** then only the currently executing statement is expired. 7584 ** 7585 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 7586 ** then running SQL statements are allowed to continue to run to completion. 7587 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 7588 ** that might help the statement run faster but which does not affect the 7589 ** correctness of operation. 7590 */ 7591 case OP_Expire: { 7592 assert( pOp->p2==0 || pOp->p2==1 ); 7593 if( !pOp->p1 ){ 7594 sqlite3ExpirePreparedStatements(db, pOp->p2); 7595 }else{ 7596 p->expired = pOp->p2+1; 7597 } 7598 break; 7599 } 7600 7601 /* Opcode: CursorLock P1 * * * * 7602 ** 7603 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 7604 ** written by an other cursor. 7605 */ 7606 case OP_CursorLock: { 7607 VdbeCursor *pC; 7608 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7609 pC = p->apCsr[pOp->p1]; 7610 assert( pC!=0 ); 7611 assert( pC->eCurType==CURTYPE_BTREE ); 7612 sqlite3BtreeCursorPin(pC->uc.pCursor); 7613 break; 7614 } 7615 7616 /* Opcode: CursorUnlock P1 * * * * 7617 ** 7618 ** Unlock the btree to which cursor P1 is pointing so that it can be 7619 ** written by other cursors. 7620 */ 7621 case OP_CursorUnlock: { 7622 VdbeCursor *pC; 7623 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 7624 pC = p->apCsr[pOp->p1]; 7625 assert( pC!=0 ); 7626 assert( pC->eCurType==CURTYPE_BTREE ); 7627 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 7628 break; 7629 } 7630 7631 #ifndef SQLITE_OMIT_SHARED_CACHE 7632 /* Opcode: TableLock P1 P2 P3 P4 * 7633 ** Synopsis: iDb=P1 root=P2 write=P3 7634 ** 7635 ** Obtain a lock on a particular table. This instruction is only used when 7636 ** the shared-cache feature is enabled. 7637 ** 7638 ** P1 is the index of the database in sqlite3.aDb[] of the database 7639 ** on which the lock is acquired. A readlock is obtained if P3==0 or 7640 ** a write lock if P3==1. 7641 ** 7642 ** P2 contains the root-page of the table to lock. 7643 ** 7644 ** P4 contains a pointer to the name of the table being locked. This is only 7645 ** used to generate an error message if the lock cannot be obtained. 7646 */ 7647 case OP_TableLock: { 7648 u8 isWriteLock = (u8)pOp->p3; 7649 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 7650 int p1 = pOp->p1; 7651 assert( p1>=0 && p1<db->nDb ); 7652 assert( DbMaskTest(p->btreeMask, p1) ); 7653 assert( isWriteLock==0 || isWriteLock==1 ); 7654 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 7655 if( rc ){ 7656 if( (rc&0xFF)==SQLITE_LOCKED ){ 7657 const char *z = pOp->p4.z; 7658 sqlite3VdbeError(p, "database table is locked: %s", z); 7659 } 7660 goto abort_due_to_error; 7661 } 7662 } 7663 break; 7664 } 7665 #endif /* SQLITE_OMIT_SHARED_CACHE */ 7666 7667 #ifndef SQLITE_OMIT_VIRTUALTABLE 7668 /* Opcode: VBegin * * * P4 * 7669 ** 7670 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 7671 ** xBegin method for that table. 7672 ** 7673 ** Also, whether or not P4 is set, check that this is not being called from 7674 ** within a callback to a virtual table xSync() method. If it is, the error 7675 ** code will be set to SQLITE_LOCKED. 7676 */ 7677 case OP_VBegin: { 7678 VTable *pVTab; 7679 pVTab = pOp->p4.pVtab; 7680 rc = sqlite3VtabBegin(db, pVTab); 7681 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 7682 if( rc ) goto abort_due_to_error; 7683 break; 7684 } 7685 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7686 7687 #ifndef SQLITE_OMIT_VIRTUALTABLE 7688 /* Opcode: VCreate P1 P2 * * * 7689 ** 7690 ** P2 is a register that holds the name of a virtual table in database 7691 ** P1. Call the xCreate method for that table. 7692 */ 7693 case OP_VCreate: { 7694 Mem sMem; /* For storing the record being decoded */ 7695 const char *zTab; /* Name of the virtual table */ 7696 7697 memset(&sMem, 0, sizeof(sMem)); 7698 sMem.db = db; 7699 /* Because P2 is always a static string, it is impossible for the 7700 ** sqlite3VdbeMemCopy() to fail */ 7701 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 7702 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 7703 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 7704 assert( rc==SQLITE_OK ); 7705 zTab = (const char*)sqlite3_value_text(&sMem); 7706 assert( zTab || db->mallocFailed ); 7707 if( zTab ){ 7708 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 7709 } 7710 sqlite3VdbeMemRelease(&sMem); 7711 if( rc ) goto abort_due_to_error; 7712 break; 7713 } 7714 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7715 7716 #ifndef SQLITE_OMIT_VIRTUALTABLE 7717 /* Opcode: VDestroy P1 * * P4 * 7718 ** 7719 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 7720 ** of that table. 7721 */ 7722 case OP_VDestroy: { 7723 db->nVDestroy++; 7724 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 7725 db->nVDestroy--; 7726 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 7727 if( rc ) goto abort_due_to_error; 7728 break; 7729 } 7730 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7731 7732 #ifndef SQLITE_OMIT_VIRTUALTABLE 7733 /* Opcode: VOpen P1 * * P4 * 7734 ** 7735 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7736 ** P1 is a cursor number. This opcode opens a cursor to the virtual 7737 ** table and stores that cursor in P1. 7738 */ 7739 case OP_VOpen: { 7740 VdbeCursor *pCur; 7741 sqlite3_vtab_cursor *pVCur; 7742 sqlite3_vtab *pVtab; 7743 const sqlite3_module *pModule; 7744 7745 assert( p->bIsReader ); 7746 pCur = 0; 7747 pVCur = 0; 7748 pVtab = pOp->p4.pVtab->pVtab; 7749 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 7750 rc = SQLITE_LOCKED; 7751 goto abort_due_to_error; 7752 } 7753 pModule = pVtab->pModule; 7754 rc = pModule->xOpen(pVtab, &pVCur); 7755 sqlite3VtabImportErrmsg(p, pVtab); 7756 if( rc ) goto abort_due_to_error; 7757 7758 /* Initialize sqlite3_vtab_cursor base class */ 7759 pVCur->pVtab = pVtab; 7760 7761 /* Initialize vdbe cursor object */ 7762 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 7763 if( pCur ){ 7764 pCur->uc.pVCur = pVCur; 7765 pVtab->nRef++; 7766 }else{ 7767 assert( db->mallocFailed ); 7768 pModule->xClose(pVCur); 7769 goto no_mem; 7770 } 7771 break; 7772 } 7773 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7774 7775 #ifndef SQLITE_OMIT_VIRTUALTABLE 7776 /* Opcode: VInitIn P1 P2 P3 * * 7777 ** Synopsis: r[P2]=ValueList(P1,P3) 7778 ** 7779 ** Set register P2 to be a pointer to a ValueList object for cursor P1 7780 ** with cache register P3 and output register P3+1. This ValueList object 7781 ** can be used as the first argument to sqlite3_vtab_in_first() and 7782 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 7783 ** cursor. Register P3 is used to hold the values returned by 7784 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 7785 */ 7786 case OP_VInitIn: { /* out2 */ 7787 VdbeCursor *pC; /* The cursor containing the RHS values */ 7788 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 7789 7790 pC = p->apCsr[pOp->p1]; 7791 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 7792 if( pRhs==0 ) goto no_mem; 7793 pRhs->pCsr = pC->uc.pCursor; 7794 pRhs->pOut = &aMem[pOp->p3]; 7795 pOut = out2Prerelease(p, pOp); 7796 pOut->flags = MEM_Null; 7797 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free); 7798 break; 7799 } 7800 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7801 7802 7803 #ifndef SQLITE_OMIT_VIRTUALTABLE 7804 /* Opcode: VFilter P1 P2 P3 P4 * 7805 ** Synopsis: iplan=r[P3] zplan='P4' 7806 ** 7807 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 7808 ** the filtered result set is empty. 7809 ** 7810 ** P4 is either NULL or a string that was generated by the xBestIndex 7811 ** method of the module. The interpretation of the P4 string is left 7812 ** to the module implementation. 7813 ** 7814 ** This opcode invokes the xFilter method on the virtual table specified 7815 ** by P1. The integer query plan parameter to xFilter is stored in register 7816 ** P3. Register P3+1 stores the argc parameter to be passed to the 7817 ** xFilter method. Registers P3+2..P3+1+argc are the argc 7818 ** additional parameters which are passed to 7819 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 7820 ** 7821 ** A jump is made to P2 if the result set after filtering would be empty. 7822 */ 7823 case OP_VFilter: { /* jump */ 7824 int nArg; 7825 int iQuery; 7826 const sqlite3_module *pModule; 7827 Mem *pQuery; 7828 Mem *pArgc; 7829 sqlite3_vtab_cursor *pVCur; 7830 sqlite3_vtab *pVtab; 7831 VdbeCursor *pCur; 7832 int res; 7833 int i; 7834 Mem **apArg; 7835 7836 pQuery = &aMem[pOp->p3]; 7837 pArgc = &pQuery[1]; 7838 pCur = p->apCsr[pOp->p1]; 7839 assert( memIsValid(pQuery) ); 7840 REGISTER_TRACE(pOp->p3, pQuery); 7841 assert( pCur!=0 ); 7842 assert( pCur->eCurType==CURTYPE_VTAB ); 7843 pVCur = pCur->uc.pVCur; 7844 pVtab = pVCur->pVtab; 7845 pModule = pVtab->pModule; 7846 7847 /* Grab the index number and argc parameters */ 7848 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 7849 nArg = (int)pArgc->u.i; 7850 iQuery = (int)pQuery->u.i; 7851 7852 /* Invoke the xFilter method */ 7853 apArg = p->apArg; 7854 for(i = 0; i<nArg; i++){ 7855 apArg[i] = &pArgc[i+1]; 7856 } 7857 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 7858 sqlite3VtabImportErrmsg(p, pVtab); 7859 if( rc ) goto abort_due_to_error; 7860 res = pModule->xEof(pVCur); 7861 pCur->nullRow = 0; 7862 VdbeBranchTaken(res!=0,2); 7863 if( res ) goto jump_to_p2; 7864 break; 7865 } 7866 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7867 7868 #ifndef SQLITE_OMIT_VIRTUALTABLE 7869 /* Opcode: VColumn P1 P2 P3 * P5 7870 ** Synopsis: r[P3]=vcolumn(P2) 7871 ** 7872 ** Store in register P3 the value of the P2-th column of 7873 ** the current row of the virtual-table of cursor P1. 7874 ** 7875 ** If the VColumn opcode is being used to fetch the value of 7876 ** an unchanging column during an UPDATE operation, then the P5 7877 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 7878 ** function to return true inside the xColumn method of the virtual 7879 ** table implementation. The P5 column might also contain other 7880 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 7881 ** unused by OP_VColumn. 7882 */ 7883 case OP_VColumn: { 7884 sqlite3_vtab *pVtab; 7885 const sqlite3_module *pModule; 7886 Mem *pDest; 7887 sqlite3_context sContext; 7888 7889 VdbeCursor *pCur = p->apCsr[pOp->p1]; 7890 assert( pCur!=0 ); 7891 assert( pCur->eCurType==CURTYPE_VTAB ); 7892 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 7893 pDest = &aMem[pOp->p3]; 7894 memAboutToChange(p, pDest); 7895 if( pCur->nullRow ){ 7896 sqlite3VdbeMemSetNull(pDest); 7897 break; 7898 } 7899 pVtab = pCur->uc.pVCur->pVtab; 7900 pModule = pVtab->pModule; 7901 assert( pModule->xColumn ); 7902 memset(&sContext, 0, sizeof(sContext)); 7903 sContext.pOut = pDest; 7904 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 7905 if( pOp->p5 & OPFLAG_NOCHNG ){ 7906 sqlite3VdbeMemSetNull(pDest); 7907 pDest->flags = MEM_Null|MEM_Zero; 7908 pDest->u.nZero = 0; 7909 }else{ 7910 MemSetTypeFlag(pDest, MEM_Null); 7911 } 7912 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 7913 sqlite3VtabImportErrmsg(p, pVtab); 7914 if( sContext.isError>0 ){ 7915 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 7916 rc = sContext.isError; 7917 } 7918 sqlite3VdbeChangeEncoding(pDest, encoding); 7919 REGISTER_TRACE(pOp->p3, pDest); 7920 UPDATE_MAX_BLOBSIZE(pDest); 7921 7922 if( sqlite3VdbeMemTooBig(pDest) ){ 7923 goto too_big; 7924 } 7925 if( rc ) goto abort_due_to_error; 7926 break; 7927 } 7928 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7929 7930 #ifndef SQLITE_OMIT_VIRTUALTABLE 7931 /* Opcode: VNext P1 P2 * * * 7932 ** 7933 ** Advance virtual table P1 to the next row in its result set and 7934 ** jump to instruction P2. Or, if the virtual table has reached 7935 ** the end of its result set, then fall through to the next instruction. 7936 */ 7937 case OP_VNext: { /* jump */ 7938 sqlite3_vtab *pVtab; 7939 const sqlite3_module *pModule; 7940 int res; 7941 VdbeCursor *pCur; 7942 7943 pCur = p->apCsr[pOp->p1]; 7944 assert( pCur!=0 ); 7945 assert( pCur->eCurType==CURTYPE_VTAB ); 7946 if( pCur->nullRow ){ 7947 break; 7948 } 7949 pVtab = pCur->uc.pVCur->pVtab; 7950 pModule = pVtab->pModule; 7951 assert( pModule->xNext ); 7952 7953 /* Invoke the xNext() method of the module. There is no way for the 7954 ** underlying implementation to return an error if one occurs during 7955 ** xNext(). Instead, if an error occurs, true is returned (indicating that 7956 ** data is available) and the error code returned when xColumn or 7957 ** some other method is next invoked on the save virtual table cursor. 7958 */ 7959 rc = pModule->xNext(pCur->uc.pVCur); 7960 sqlite3VtabImportErrmsg(p, pVtab); 7961 if( rc ) goto abort_due_to_error; 7962 res = pModule->xEof(pCur->uc.pVCur); 7963 VdbeBranchTaken(!res,2); 7964 if( !res ){ 7965 /* If there is data, jump to P2 */ 7966 goto jump_to_p2_and_check_for_interrupt; 7967 } 7968 goto check_for_interrupt; 7969 } 7970 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 7971 7972 #ifndef SQLITE_OMIT_VIRTUALTABLE 7973 /* Opcode: VRename P1 * * P4 * 7974 ** 7975 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 7976 ** This opcode invokes the corresponding xRename method. The value 7977 ** in register P1 is passed as the zName argument to the xRename method. 7978 */ 7979 case OP_VRename: { 7980 sqlite3_vtab *pVtab; 7981 Mem *pName; 7982 int isLegacy; 7983 7984 isLegacy = (db->flags & SQLITE_LegacyAlter); 7985 db->flags |= SQLITE_LegacyAlter; 7986 pVtab = pOp->p4.pVtab->pVtab; 7987 pName = &aMem[pOp->p1]; 7988 assert( pVtab->pModule->xRename ); 7989 assert( memIsValid(pName) ); 7990 assert( p->readOnly==0 ); 7991 REGISTER_TRACE(pOp->p1, pName); 7992 assert( pName->flags & MEM_Str ); 7993 testcase( pName->enc==SQLITE_UTF8 ); 7994 testcase( pName->enc==SQLITE_UTF16BE ); 7995 testcase( pName->enc==SQLITE_UTF16LE ); 7996 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 7997 if( rc ) goto abort_due_to_error; 7998 rc = pVtab->pModule->xRename(pVtab, pName->z); 7999 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 8000 sqlite3VtabImportErrmsg(p, pVtab); 8001 p->expired = 0; 8002 if( rc ) goto abort_due_to_error; 8003 break; 8004 } 8005 #endif 8006 8007 #ifndef SQLITE_OMIT_VIRTUALTABLE 8008 /* Opcode: VUpdate P1 P2 P3 P4 P5 8009 ** Synopsis: data=r[P3@P2] 8010 ** 8011 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 8012 ** This opcode invokes the corresponding xUpdate method. P2 values 8013 ** are contiguous memory cells starting at P3 to pass to the xUpdate 8014 ** invocation. The value in register (P3+P2-1) corresponds to the 8015 ** p2th element of the argv array passed to xUpdate. 8016 ** 8017 ** The xUpdate method will do a DELETE or an INSERT or both. 8018 ** The argv[0] element (which corresponds to memory cell P3) 8019 ** is the rowid of a row to delete. If argv[0] is NULL then no 8020 ** deletion occurs. The argv[1] element is the rowid of the new 8021 ** row. This can be NULL to have the virtual table select the new 8022 ** rowid for itself. The subsequent elements in the array are 8023 ** the values of columns in the new row. 8024 ** 8025 ** If P2==1 then no insert is performed. argv[0] is the rowid of 8026 ** a row to delete. 8027 ** 8028 ** P1 is a boolean flag. If it is set to true and the xUpdate call 8029 ** is successful, then the value returned by sqlite3_last_insert_rowid() 8030 ** is set to the value of the rowid for the row just inserted. 8031 ** 8032 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 8033 ** apply in the case of a constraint failure on an insert or update. 8034 */ 8035 case OP_VUpdate: { 8036 sqlite3_vtab *pVtab; 8037 const sqlite3_module *pModule; 8038 int nArg; 8039 int i; 8040 sqlite_int64 rowid = 0; 8041 Mem **apArg; 8042 Mem *pX; 8043 8044 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 8045 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 8046 ); 8047 assert( p->readOnly==0 ); 8048 if( db->mallocFailed ) goto no_mem; 8049 sqlite3VdbeIncrWriteCounter(p, 0); 8050 pVtab = pOp->p4.pVtab->pVtab; 8051 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 8052 rc = SQLITE_LOCKED; 8053 goto abort_due_to_error; 8054 } 8055 pModule = pVtab->pModule; 8056 nArg = pOp->p2; 8057 assert( pOp->p4type==P4_VTAB ); 8058 if( ALWAYS(pModule->xUpdate) ){ 8059 u8 vtabOnConflict = db->vtabOnConflict; 8060 apArg = p->apArg; 8061 pX = &aMem[pOp->p3]; 8062 for(i=0; i<nArg; i++){ 8063 assert( memIsValid(pX) ); 8064 memAboutToChange(p, pX); 8065 apArg[i] = pX; 8066 pX++; 8067 } 8068 db->vtabOnConflict = pOp->p5; 8069 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 8070 db->vtabOnConflict = vtabOnConflict; 8071 sqlite3VtabImportErrmsg(p, pVtab); 8072 if( rc==SQLITE_OK && pOp->p1 ){ 8073 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 8074 db->lastRowid = rowid; 8075 } 8076 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 8077 if( pOp->p5==OE_Ignore ){ 8078 rc = SQLITE_OK; 8079 }else{ 8080 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 8081 } 8082 }else{ 8083 p->nChange++; 8084 } 8085 if( rc ) goto abort_due_to_error; 8086 } 8087 break; 8088 } 8089 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 8090 8091 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8092 /* Opcode: Pagecount P1 P2 * * * 8093 ** 8094 ** Write the current number of pages in database P1 to memory cell P2. 8095 */ 8096 case OP_Pagecount: { /* out2 */ 8097 pOut = out2Prerelease(p, pOp); 8098 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 8099 break; 8100 } 8101 #endif 8102 8103 8104 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 8105 /* Opcode: MaxPgcnt P1 P2 P3 * * 8106 ** 8107 ** Try to set the maximum page count for database P1 to the value in P3. 8108 ** Do not let the maximum page count fall below the current page count and 8109 ** do not change the maximum page count value if P3==0. 8110 ** 8111 ** Store the maximum page count after the change in register P2. 8112 */ 8113 case OP_MaxPgcnt: { /* out2 */ 8114 unsigned int newMax; 8115 Btree *pBt; 8116 8117 pOut = out2Prerelease(p, pOp); 8118 pBt = db->aDb[pOp->p1].pBt; 8119 newMax = 0; 8120 if( pOp->p3 ){ 8121 newMax = sqlite3BtreeLastPage(pBt); 8122 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 8123 } 8124 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 8125 break; 8126 } 8127 #endif 8128 8129 /* Opcode: Function P1 P2 P3 P4 * 8130 ** Synopsis: r[P3]=func(r[P2@NP]) 8131 ** 8132 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8133 ** contains a pointer to the function to be run) with arguments taken 8134 ** from register P2 and successors. The number of arguments is in 8135 ** the sqlite3_context object that P4 points to. 8136 ** The result of the function is stored 8137 ** in register P3. Register P3 must not be one of the function inputs. 8138 ** 8139 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8140 ** function was determined to be constant at compile time. If the first 8141 ** argument was constant then bit 0 of P1 is set. This is used to determine 8142 ** whether meta data associated with a user function argument using the 8143 ** sqlite3_set_auxdata() API may be safely retained until the next 8144 ** invocation of this opcode. 8145 ** 8146 ** See also: AggStep, AggFinal, PureFunc 8147 */ 8148 /* Opcode: PureFunc P1 P2 P3 P4 * 8149 ** Synopsis: r[P3]=func(r[P2@NP]) 8150 ** 8151 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 8152 ** contains a pointer to the function to be run) with arguments taken 8153 ** from register P2 and successors. The number of arguments is in 8154 ** the sqlite3_context object that P4 points to. 8155 ** The result of the function is stored 8156 ** in register P3. Register P3 must not be one of the function inputs. 8157 ** 8158 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 8159 ** function was determined to be constant at compile time. If the first 8160 ** argument was constant then bit 0 of P1 is set. This is used to determine 8161 ** whether meta data associated with a user function argument using the 8162 ** sqlite3_set_auxdata() API may be safely retained until the next 8163 ** invocation of this opcode. 8164 ** 8165 ** This opcode works exactly like OP_Function. The only difference is in 8166 ** its name. This opcode is used in places where the function must be 8167 ** purely non-deterministic. Some built-in date/time functions can be 8168 ** either determinitic of non-deterministic, depending on their arguments. 8169 ** When those function are used in a non-deterministic way, they will check 8170 ** to see if they were called using OP_PureFunc instead of OP_Function, and 8171 ** if they were, they throw an error. 8172 ** 8173 ** See also: AggStep, AggFinal, Function 8174 */ 8175 case OP_PureFunc: /* group */ 8176 case OP_Function: { /* group */ 8177 int i; 8178 sqlite3_context *pCtx; 8179 8180 assert( pOp->p4type==P4_FUNCCTX ); 8181 pCtx = pOp->p4.pCtx; 8182 8183 /* If this function is inside of a trigger, the register array in aMem[] 8184 ** might change from one evaluation to the next. The next block of code 8185 ** checks to see if the register array has changed, and if so it 8186 ** reinitializes the relavant parts of the sqlite3_context object */ 8187 pOut = &aMem[pOp->p3]; 8188 if( pCtx->pOut != pOut ){ 8189 pCtx->pVdbe = p; 8190 pCtx->pOut = pOut; 8191 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 8192 } 8193 assert( pCtx->pVdbe==p ); 8194 8195 memAboutToChange(p, pOut); 8196 #ifdef SQLITE_DEBUG 8197 for(i=0; i<pCtx->argc; i++){ 8198 assert( memIsValid(pCtx->argv[i]) ); 8199 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 8200 } 8201 #endif 8202 MemSetTypeFlag(pOut, MEM_Null); 8203 assert( pCtx->isError==0 ); 8204 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 8205 8206 /* If the function returned an error, throw an exception */ 8207 if( pCtx->isError ){ 8208 if( pCtx->isError>0 ){ 8209 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 8210 rc = pCtx->isError; 8211 } 8212 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 8213 pCtx->isError = 0; 8214 if( rc ) goto abort_due_to_error; 8215 } 8216 8217 /* Copy the result of the function into register P3 */ 8218 if( pOut->flags & (MEM_Str|MEM_Blob) ){ 8219 sqlite3VdbeChangeEncoding(pOut, encoding); 8220 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big; 8221 } 8222 8223 REGISTER_TRACE(pOp->p3, pOut); 8224 UPDATE_MAX_BLOBSIZE(pOut); 8225 break; 8226 } 8227 8228 /* Opcode: FilterAdd P1 * P3 P4 * 8229 ** Synopsis: filter(P1) += key(P3@P4) 8230 ** 8231 ** Compute a hash on the P4 registers starting with r[P3] and 8232 ** add that hash to the bloom filter contained in r[P1]. 8233 */ 8234 case OP_FilterAdd: { 8235 u64 h; 8236 8237 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8238 pIn1 = &aMem[pOp->p1]; 8239 assert( pIn1->flags & MEM_Blob ); 8240 assert( pIn1->n>0 ); 8241 h = filterHash(aMem, pOp); 8242 #ifdef SQLITE_DEBUG 8243 if( db->flags&SQLITE_VdbeTrace ){ 8244 int ii; 8245 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8246 registerTrace(ii, &aMem[ii]); 8247 } 8248 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8249 } 8250 #endif 8251 h %= pIn1->n; 8252 pIn1->z[h/8] |= 1<<(h&7); 8253 break; 8254 } 8255 8256 /* Opcode: Filter P1 P2 P3 P4 * 8257 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 8258 ** 8259 ** Compute a hash on the key contained in the P4 registers starting 8260 ** with r[P3]. Check to see if that hash is found in the 8261 ** bloom filter hosted by register P1. If it is not present then 8262 ** maybe jump to P2. Otherwise fall through. 8263 ** 8264 ** False negatives are harmless. It is always safe to fall through, 8265 ** even if the value is in the bloom filter. A false negative causes 8266 ** more CPU cycles to be used, but it should still yield the correct 8267 ** answer. However, an incorrect answer may well arise from a 8268 ** false positive - if the jump is taken when it should fall through. 8269 */ 8270 case OP_Filter: { /* jump */ 8271 u64 h; 8272 8273 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 8274 pIn1 = &aMem[pOp->p1]; 8275 assert( (pIn1->flags & MEM_Blob)!=0 ); 8276 assert( pIn1->n >= 1 ); 8277 h = filterHash(aMem, pOp); 8278 #ifdef SQLITE_DEBUG 8279 if( db->flags&SQLITE_VdbeTrace ){ 8280 int ii; 8281 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 8282 registerTrace(ii, &aMem[ii]); 8283 } 8284 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 8285 } 8286 #endif 8287 h %= pIn1->n; 8288 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 8289 VdbeBranchTaken(1, 2); 8290 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 8291 goto jump_to_p2; 8292 }else{ 8293 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 8294 VdbeBranchTaken(0, 2); 8295 } 8296 break; 8297 } 8298 8299 /* Opcode: Trace P1 P2 * P4 * 8300 ** 8301 ** Write P4 on the statement trace output if statement tracing is 8302 ** enabled. 8303 ** 8304 ** Operand P1 must be 0x7fffffff and P2 must positive. 8305 */ 8306 /* Opcode: Init P1 P2 P3 P4 * 8307 ** Synopsis: Start at P2 8308 ** 8309 ** Programs contain a single instance of this opcode as the very first 8310 ** opcode. 8311 ** 8312 ** If tracing is enabled (by the sqlite3_trace()) interface, then 8313 ** the UTF-8 string contained in P4 is emitted on the trace callback. 8314 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 8315 ** 8316 ** If P2 is not zero, jump to instruction P2. 8317 ** 8318 ** Increment the value of P1 so that OP_Once opcodes will jump the 8319 ** first time they are evaluated for this run. 8320 ** 8321 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 8322 ** error is encountered. 8323 */ 8324 case OP_Trace: 8325 case OP_Init: { /* jump */ 8326 int i; 8327 #ifndef SQLITE_OMIT_TRACE 8328 char *zTrace; 8329 #endif 8330 8331 /* If the P4 argument is not NULL, then it must be an SQL comment string. 8332 ** The "--" string is broken up to prevent false-positives with srcck1.c. 8333 ** 8334 ** This assert() provides evidence for: 8335 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 8336 ** would have been returned by the legacy sqlite3_trace() interface by 8337 ** using the X argument when X begins with "--" and invoking 8338 ** sqlite3_expanded_sql(P) otherwise. 8339 */ 8340 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 8341 8342 /* OP_Init is always instruction 0 */ 8343 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 8344 8345 #ifndef SQLITE_OMIT_TRACE 8346 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 8347 && !p->doingRerun 8348 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8349 ){ 8350 #ifndef SQLITE_OMIT_DEPRECATED 8351 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 8352 char *z = sqlite3VdbeExpandSql(p, zTrace); 8353 db->trace.xLegacy(db->pTraceArg, z); 8354 sqlite3_free(z); 8355 }else 8356 #endif 8357 if( db->nVdbeExec>1 ){ 8358 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 8359 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 8360 sqlite3DbFree(db, z); 8361 }else{ 8362 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 8363 } 8364 } 8365 #ifdef SQLITE_USE_FCNTL_TRACE 8366 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 8367 if( zTrace ){ 8368 int j; 8369 for(j=0; j<db->nDb; j++){ 8370 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 8371 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 8372 } 8373 } 8374 #endif /* SQLITE_USE_FCNTL_TRACE */ 8375 #ifdef SQLITE_DEBUG 8376 if( (db->flags & SQLITE_SqlTrace)!=0 8377 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 8378 ){ 8379 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 8380 } 8381 #endif /* SQLITE_DEBUG */ 8382 #endif /* SQLITE_OMIT_TRACE */ 8383 assert( pOp->p2>0 ); 8384 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 8385 if( pOp->opcode==OP_Trace ) break; 8386 for(i=1; i<p->nOp; i++){ 8387 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 8388 } 8389 pOp->p1 = 0; 8390 } 8391 pOp->p1++; 8392 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 8393 goto jump_to_p2; 8394 } 8395 8396 #ifdef SQLITE_ENABLE_CURSOR_HINTS 8397 /* Opcode: CursorHint P1 * * P4 * 8398 ** 8399 ** Provide a hint to cursor P1 that it only needs to return rows that 8400 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 8401 ** to values currently held in registers. TK_COLUMN terms in the P4 8402 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 8403 */ 8404 case OP_CursorHint: { 8405 VdbeCursor *pC; 8406 8407 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 8408 assert( pOp->p4type==P4_EXPR ); 8409 pC = p->apCsr[pOp->p1]; 8410 if( pC ){ 8411 assert( pC->eCurType==CURTYPE_BTREE ); 8412 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 8413 pOp->p4.pExpr, aMem); 8414 } 8415 break; 8416 } 8417 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 8418 8419 #ifdef SQLITE_DEBUG 8420 /* Opcode: Abortable * * * * * 8421 ** 8422 ** Verify that an Abort can happen. Assert if an Abort at this point 8423 ** might cause database corruption. This opcode only appears in debugging 8424 ** builds. 8425 ** 8426 ** An Abort is safe if either there have been no writes, or if there is 8427 ** an active statement journal. 8428 */ 8429 case OP_Abortable: { 8430 sqlite3VdbeAssertAbortable(p); 8431 break; 8432 } 8433 #endif 8434 8435 #ifdef SQLITE_DEBUG 8436 /* Opcode: ReleaseReg P1 P2 P3 * P5 8437 ** Synopsis: release r[P1@P2] mask P3 8438 ** 8439 ** Release registers from service. Any content that was in the 8440 ** the registers is unreliable after this opcode completes. 8441 ** 8442 ** The registers released will be the P2 registers starting at P1, 8443 ** except if bit ii of P3 set, then do not release register P1+ii. 8444 ** In other words, P3 is a mask of registers to preserve. 8445 ** 8446 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 8447 ** that if the content of the released register was set using OP_SCopy, 8448 ** a change to the value of the source register for the OP_SCopy will no longer 8449 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 8450 ** 8451 ** If P5 is set, then all released registers have their type set 8452 ** to MEM_Undefined so that any subsequent attempt to read the released 8453 ** register (before it is reinitialized) will generate an assertion fault. 8454 ** 8455 ** P5 ought to be set on every call to this opcode. 8456 ** However, there are places in the code generator will release registers 8457 ** before their are used, under the (valid) assumption that the registers 8458 ** will not be reallocated for some other purpose before they are used and 8459 ** hence are safe to release. 8460 ** 8461 ** This opcode is only available in testing and debugging builds. It is 8462 ** not generated for release builds. The purpose of this opcode is to help 8463 ** validate the generated bytecode. This opcode does not actually contribute 8464 ** to computing an answer. 8465 */ 8466 case OP_ReleaseReg: { 8467 Mem *pMem; 8468 int i; 8469 u32 constMask; 8470 assert( pOp->p1>0 ); 8471 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 8472 pMem = &aMem[pOp->p1]; 8473 constMask = pOp->p3; 8474 for(i=0; i<pOp->p2; i++, pMem++){ 8475 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 8476 pMem->pScopyFrom = 0; 8477 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 8478 } 8479 } 8480 break; 8481 } 8482 #endif 8483 8484 /* Opcode: Noop * * * * * 8485 ** 8486 ** Do nothing. This instruction is often useful as a jump 8487 ** destination. 8488 */ 8489 /* 8490 ** The magic Explain opcode are only inserted when explain==2 (which 8491 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 8492 ** This opcode records information from the optimizer. It is the 8493 ** the same as a no-op. This opcodesnever appears in a real VM program. 8494 */ 8495 default: { /* This is really OP_Noop, OP_Explain */ 8496 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 8497 8498 break; 8499 } 8500 8501 /***************************************************************************** 8502 ** The cases of the switch statement above this line should all be indented 8503 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 8504 ** readability. From this point on down, the normal indentation rules are 8505 ** restored. 8506 *****************************************************************************/ 8507 } 8508 8509 #ifdef VDBE_PROFILE 8510 { 8511 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 8512 if( endTime>start ) pOrigOp->cycles += endTime - start; 8513 pOrigOp->cnt++; 8514 } 8515 #endif 8516 8517 /* The following code adds nothing to the actual functionality 8518 ** of the program. It is only here for testing and debugging. 8519 ** On the other hand, it does burn CPU cycles every time through 8520 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 8521 */ 8522 #ifndef NDEBUG 8523 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 8524 8525 #ifdef SQLITE_DEBUG 8526 if( db->flags & SQLITE_VdbeTrace ){ 8527 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 8528 if( rc!=0 ) printf("rc=%d\n",rc); 8529 if( opProperty & (OPFLG_OUT2) ){ 8530 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 8531 } 8532 if( opProperty & OPFLG_OUT3 ){ 8533 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 8534 } 8535 if( opProperty==0xff ){ 8536 /* Never happens. This code exists to avoid a harmless linkage 8537 ** warning aboud sqlite3VdbeRegisterDump() being defined but not 8538 ** used. */ 8539 sqlite3VdbeRegisterDump(p); 8540 } 8541 } 8542 #endif /* SQLITE_DEBUG */ 8543 #endif /* NDEBUG */ 8544 } /* The end of the for(;;) loop the loops through opcodes */ 8545 8546 /* If we reach this point, it means that execution is finished with 8547 ** an error of some kind. 8548 */ 8549 abort_due_to_error: 8550 if( db->mallocFailed ){ 8551 rc = SQLITE_NOMEM_BKPT; 8552 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 8553 rc = SQLITE_CORRUPT_BKPT; 8554 } 8555 assert( rc ); 8556 #ifdef SQLITE_DEBUG 8557 if( db->flags & SQLITE_VdbeTrace ){ 8558 const char *zTrace = p->zSql; 8559 if( zTrace==0 ){ 8560 if( aOp[0].opcode==OP_Trace ){ 8561 zTrace = aOp[0].p4.z; 8562 } 8563 if( zTrace==0 ) zTrace = "???"; 8564 } 8565 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 8566 } 8567 #endif 8568 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 8569 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 8570 } 8571 p->rc = rc; 8572 sqlite3SystemError(db, rc); 8573 testcase( sqlite3GlobalConfig.xLog!=0 ); 8574 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 8575 (int)(pOp - aOp), p->zSql, p->zErrMsg); 8576 sqlite3VdbeHalt(p); 8577 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 8578 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 8579 db->flags |= SQLITE_CorruptRdOnly; 8580 } 8581 rc = SQLITE_ERROR; 8582 if( resetSchemaOnFault>0 ){ 8583 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 8584 } 8585 8586 /* This is the only way out of this procedure. We have to 8587 ** release the mutexes on btrees that were acquired at the 8588 ** top. */ 8589 vdbe_return: 8590 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 8591 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 8592 nProgressLimit += db->nProgressOps; 8593 if( db->xProgress(db->pProgressArg) ){ 8594 nProgressLimit = LARGEST_UINT64; 8595 rc = SQLITE_INTERRUPT; 8596 goto abort_due_to_error; 8597 } 8598 } 8599 #endif 8600 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 8601 sqlite3VdbeLeave(p); 8602 assert( rc!=SQLITE_OK || nExtraDelete==0 8603 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 8604 ); 8605 return rc; 8606 8607 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 8608 ** is encountered. 8609 */ 8610 too_big: 8611 sqlite3VdbeError(p, "string or blob too big"); 8612 rc = SQLITE_TOOBIG; 8613 goto abort_due_to_error; 8614 8615 /* Jump to here if a malloc() fails. 8616 */ 8617 no_mem: 8618 sqlite3OomFault(db); 8619 sqlite3VdbeError(p, "out of memory"); 8620 rc = SQLITE_NOMEM_BKPT; 8621 goto abort_due_to_error; 8622 8623 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 8624 ** flag. 8625 */ 8626 abort_due_to_interrupt: 8627 assert( AtomicLoad(&db->u1.isInterrupted) ); 8628 rc = SQLITE_INTERRUPT; 8629 goto abort_due_to_error; 8630 } 8631